
Matching of Compressed Patterns with
Character-Variables∗

Manfred Schmidt-Schauß1

1 Goethe-Universität, Frankfurt, Germany
schauss@ki.informatik.uni-frankfurt.de

Abstract
We consider the problem of finding an instance of a string-pattern s in a given string under com-
pression by straight line programs (SLP). The variables of the string pattern can be instantiated
by single characters. This is a generalisation of the fully compressed pattern match, which is
the task of finding a compressed string in another compressed string, which is known to have a
polynomial time algorithm. We mainly investigate patterns s that are linear in the variables, i.e.
variables occur at most once in s, also known as partial words. We show that fully compressed
pattern matching with linear patterns can be performed in polynomial time. A polynomial-sized
representation of all matches and all substitutions is also computed. Also, a related algorithm is
given that computes all periods of a compressed linear pattern in polynomial time. A technical
key result on the structure of partial words shows that an overlap of h + 2 copies of a partial
word w with at most h holes implies that w is strongly periodic.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.2 Gram-
mars and Other Rewriting Systems

Keywords and phrases matching, grammar-based compression, partial words

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.272

Category Regular Research Paper

1 Introduction

Matching is a widely used operation in computer science: Given a string (term, object)-
pattern s with variables, and a string (term, object) t, is there a substitution σ, such that
σ(s) is a substring (subterm, subobject) of t? There are at least two sources of motivation
for considering matching problems: (i) Given a term rewrite system R and a term t, in order
to rewrite t it is first necessary to find a substitution σ, and a rule s → r of R, such that
σ(s) is a subterm of t. (ii) Given a string t or a data base D, and a pattern s, find and
retrieve the substrings of t or the records (objects) in D, respectively, that are matched
by s. Here the pattern may be a string, a string with variables, with holes, or a regular
expression, or otherwise extended patterns. The task is to design efficient algorithms for the
different variants of matching. In the following we sometimes speak of submatching in order
to emphasize that substrings (subterms) are searched.
Often terms, strings or databases are very large, and are thus represented or stored in
a compressed format. This is the motivation to propose and analyze efficient variants of
matching, term rewriting or other algorithms that can also be run on the compressed strings

∗ Partially supported by DFG, grant SCHM 986/9-1

© Manfred Schmidt-Schauß;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 272–287

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2012.272
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-38-5
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Schmidt-Schauß 273

or terms. We do not directly tackle the full problem of compressed term-submatching. The
reason is that this turns out to be a nontrivial problem with complex algorithms even for
specializations if polynomial-time algorithms are requested: The technical report [24] contains
an approach to compressed term submatching and compressed rewriting but has to leave
open several issues. In particular wether there is a polynomial-time algorithm for finding a
redex for rewriting where the rule as well as the to-be-rewritten term are compressed. Even
the complexity-question of term-submatching for left-linear rules was left unsolved. Thus
this paper is restricted to matching algorithms on compressed strings where the patterns
are linear and variables mainly stand for characters. The result in this paper turns out
to be a first step in the construction of a polynomial-time algorithm for finding matches
of compressed left-linear rules in compressed terms. Note that compressed (exact) term
matching, where s should match the whole term t is known to be polynomial [11].
Potential applications of matching are in information retrieval, in optimizing term rewriting
systems on large terms, and in application domains where large strings are processed. Citing
the book [6], where algorithms on partial words (string patterns which are linear in the
variables) are investigated: “The next generation of research on combinatorics of partial
words promises to have a substantial impact on molecular biology, nanotechnology, data
communication, and DNA computing”. Our algorithm has potential applications in finding
DNA-fragments under compression taking care of SNPs (single nucleotide polymorphism),
which is a special case of a point mutation.
Well-known compression methods and compressed representations of strings are the LZ77,
LZ78 schemes [26, 27], where LZ77 may compress a string of length n into a representation
of O(log(n)) size. Other compression mechanisms are straight line programs (SLP), which
are context free grammars (in Chomsky normal form) that generate exactly one string. It is
well-known that there are efficient translations between LZ77 and SLPs. A prominent result
is that SLP-compressed strings can be tested for equality in polynomial time in the size of
SLPs using the method of Plandowski [22] (with improvements in [17, 12]). Plandowski’s
algorithm works top-down in the grammar and keeps the space (and time) requirements
small by exploiting periodicities to detect and eliminate redundancies, whereas Lifshits’ is a
dynamic programming algorithm that memorizes periodicities using arithmetic progressions.
Fully compressed matching of compressed strings (finding a string as a substring in another
string) can also be decided and computed in polynomial time [14]. An efficient algorithm
is given by Lifshits [17], who shows that it can be done in time O(mn2) where m is the
size of the SLP for the pattern and n is the size of the SLP of the string. An algorithm
with improved complexity is proposed by Jez [12]. Complexities of further algorithms on
SLP-compressed strings are in [18]. There are also generalizations of SLP-compression on
two-dimensional texts, see [2]. The SLP-compression scheme is also extended to terms and
ranked trees: An application and an analysis for XML-compressions is in [9], and an analysis
and application to matching and unification is in [11].
The matching problem for strings is the question, given a pattern string s, whether it occurs
in another given (long) string t. Well-known and folklore algorithms scanning the string t and
comparing it with s are for example the Knuth-Morris-Pratt and the Boyer-Moore algorithm.
An example for a generalization is searching for an instance of a regular expression in a string,
which is possible by a polynomial-time algorithm. There are also results for regular string
matching in compressed strings, which is also known to be executable in polynomial time
[4, 21], where however, the compression schemes LZ78 or LZW ([26, 27]) are used that have
a maximum compression ratio of O(

√
n), in contrast to straight line programs (SLP) which

have a potential compression ratio up to O(logn). In [19] the complexity of several variants

RTA’12

274 Matching of Compressed Patterns with Character-Variables

of the matching problem of regular expressions in SLP-compressed texts is investigated: for
the usual regular expressions with concatenation, union, and star-operator, the matching
problem is P-complete [20], whereas for slightly extended regular expressions including integer
exponents, the matching problem in an SLP-compressed string is PSPACE-hard [19].
The string-matching problem when both strings s, t are SLP-compressed is called fully
compressed matching. It is well known that the fully compressed pattern matching problem
can be decided in polynomial time [17, 12]. It is also well-known that if s contains string-
variables and s, t are both uncompressed, then exact matching is NP-complete [1]. The same
problem restricted to the case where s is linear, but where the pattern may be compressed,
can easily be decided in polynomial time by an eager search (see Lemma 5.1). A related
paper is [25], where the pattern s is linear, uncompressed and may contain character- and
string-variables and where t is SLP-compressed, matching is shown to be in PTIME .
In this paper we consider the following string matching problem: The pattern s is SLP-
compressed by Gs, s may have at most O(|G|) holes, and t is also a string SLP-compressed
by Gt. We use the view that the holes are character-variables (that may be instantiated
with characters from the signature). The question is whether there exists a substitution
σ (replacing variables by characters), such that σ(s) is a substring of t. The methods as
mentioned above lead to exponential time algorithms, so a different algorithm is required. As
a technical sub-problem we have to analyze structural properties of strings with character-
variables, where every variable occurs at most once. Such strings are more or less equivalent
to strings with holes (where a hole means a missing or unknown character). This notion
is equivalent to partial words. Some results on the structure of partial words and simple
unification equations on partial words are in [6, 7].

As result (Algorithm 4.1, Theorem 4.5) we describe an algorithm that runs in polynomial time,
decides this problem and moreover outputs a polynomial representation of all occurrences of
the pattern. A technical result that is required to show polynomiality of the algorithm is
a periodicity-lemma (Theorem 3.10): Given a partial word w with h holes, and an overlap
of h + 2 copies of w where the occurrences are dense enough, we show that w is strongly
periodic, together with a formula for the period. As a corollary, we show that if a partial
word has two periods p, q, then it has gcd(p, q) as periods, provided further conditions on
p, q, the length |w| and the number of holes hold. We also show that there is a polynomial
time algorithm to compute all periods of a compressed partial word (Proposition 4.6).
Also extensions are considered: The algorithm can be extended to the case where s contains
character and string-variables, and s contains every variable at most once (Proposition 5.2).
Another extension is that the variables in the pattern s may occur several times, and s is
compressed. Then a modification of the algorithm runs in polynomial time in the number of
variable occurrences, and the size of the SLPs (Proposition 5.3).
The paper is structured as follows. After some preliminaries on string properties and
compression, in Section 3 words with holes, periodicity and overlaps of a word with holes
with itself are analyzed. In Section 4 a dynamic programming algorithm is described that
computes all matching occurrences of one partial word in a string, both compressed. Finally,
some potential extensions are discussed in Section 5.

2 On Strings and Compression

We provide some preliminaries for our algorithm and results: strings, overlaps and periodicity,
straight line programs (SLP) for compressing strings and several algorithms and operations
on SLPs.

M. Schmidt-Schauß 275

2.1 Properties of Strings
If s is a string (also called a word) over a finite alphabet Σ of characters, we write s[i] for
the symbol of s at position i, where we assume that s = s[0] . . . s[n− 1], if n = |s|, where |s|
denotes the length of s. The substring of s from positions i to j is denoted as s[i..j]. We
also use tk for a k-fold concatenation of t with k ≥ 0, where t0 = ε is the empty string.
If for a string s there is a number 1 ≤ p < |s| such that s[i] = s[i + p] for all i, provided
s[i], s[i + p] are defined, then we say that s is periodic with period p. For strings this is
equivalent to: for all i, j: i ≡ j mod p implies s[i] = s[j] for all 0 ≤ i, j ≤ |s| − 1.

I Theorem 2.1. (Fine and Wilf [10]) Let s be a word with periods p and q. If |s| ≥
p+ q − gcd(p, q), then s has a period gcd(p, q).

A string w is a cyclic permutation of another string w′, iff there are substrings w1, w2 of w,
such that w = w1w2, and w′ = w2w1.

I Lemma 2.2. If w is a p-periodic string, then any two substrings v, v′ of w of length
|v| = |v′| = p are cyclic permutations of each other.

The following is easy and can be proved by induction using an Euclidean algorithm.

I Fact 2.3. If for two nontrivial strings s1, s2, the equation s1s2 = s2s1 holds, then there is
a nontrivial string t, and natural numbers m,n ≥ 1, such that s1 = tn, s2 = tm. Thus, |t| is
a period of s1s2 and also a divisor of gcd(|s1|, |s2|).

I Fact 2.4. Let w be a string that overlaps with itself, i.e. w = w1w2, and w2 is a prefix of
w. Then w is periodic with a period |w1|.

We will also use strings with variables. Let us assume that there are two kinds of variables:
(i) variables standing for characters and (ii) variables standing for strings. We assume that
substitutions respect the kind of variables. In the following, variables are character-variables,
if not stated otherwise.

2.2 Compression of Strings and Straight Line Programs
I Definition 2.5. A straight-line program (SLP) G (see [22, 23, 13]) is a context free grammar
with the following restrictions: Every nonterminal generates exactly one string, for every
nonterminal there is exactly one rule of one of the forms A → a for a ∈ Σ or A → A1A2,
where A,A1, A2 are nonterminals, and the grammar is not recursive. The generated string
for nonterminal A is denoted as val(A), and the string generated by the start nonterminal is
denoted as val(G). The size of G is the number of its rules, and the depth of G is the depth
of the derivation tree of the start nonterminal.

Note that |val(G)| may be as large as 2|G|, but not larger. Lempel-Ziv compression schemes
can be efficiently translated into SLPs [23]. However, SLP are more amenable to general
analyses and proofs about efficient algorithms for compressed strings.

I Lemma 2.6. (Plandowski [22]) Given two nonterminals A,B of an SLP G, it is decidable
in polynomially time in |G|, whether val(A) = val(B), where an efficient O(|G|3)-algorithm
was proposed in [17], and the recently proposed matching algorithm by Jez [12] further
improves the complexity.

The following operations, extensions and modifications of an SLP can be done efficiently (see
[15, 16, 11]).

RTA’12

276 Matching of Compressed Patterns with Character-Variables

I Lemma 2.7. Let G be an SLP. Then a sequence of m operations can be done in polynomial
time O(poly(|G|,m)), where poly is a polynomial and the operations may be the following:
1. Given a nonterminal A, and a prefix (or suffix) w of val(A), extend the SLP to G′ such

that there is a nonterminal B with val(B) = w. In this case the depth of the SPL G′ has
the same depth as G.

2. Given nonterminals A1, A2, extend the SLP to G′ by B → A1A2, where B is a fresh
nonterminal.

3. Given a nonterminal A, and a number n ≤ 2|G|, extend the SLP to G′ such that there is
a nonterminal B with val(B) = val(A)n.

Note that the complexity is not just m ∗ poly′(|G|), since the extensions iteratively increase
the size of intermediate grammars G.
Mainly based on Plandowski’s result [22], the following holds:

I Lemma 2.8. Let G be an SLP. Then the following can be performed in polynomial time:
1. Given a nonterminal A, compute the length |val(A)|.
2. Given two nonterminals A,B, check whether val(A) is a prefix (suffix) of val(B).

2.3 Equality of Compressed Strings
I Lemma 2.9. Equality up to renaming of variables of two compressed strings with variables
can be tested in polynomial time.

Proof. Let A,B be the nonterminals that represent the two strings that are to be compared,
where we assume for simplicity that there are no nonterminals shared in the derivation of A
and B. First we normalize the variable names and then we apply a compressed-equality test.
The normalization is top down in the grammar: For every variable x identify its leftmost
occurrence in val(A), and then replace it by yi, where i is the number of different variables
occurring to the left of this occurrence in val(A), and where yi is a unique name that is
used by the normalization. The yi can be seen as variables or as constants not occurring
in val(A) ∪ val(B). Then do the same for B. The number of variables is at most |G|, and
for every variable the normalization can be done in polynomial time. Note that there is no
size-change of G. Then use the equality-test for compressed strings. J

I Lemma 2.10. Let s be a string with character variables and t be a string, both compressed
with an SLP G. Then it is decidable in polynomial time whether there exists σ, such that
σ(s) = t.

Proof. Let there be n < |G| variables in s. It is sufficient to compute a single position
pi (say the leftmost one) for every variable xi in s for all i = 1, . . . , n. Then compute the
character ai at position pi of t. and perform the equality test of [a1/x1, . . . , an/xn]s = t. J

2.4 Submatching
I Definition 2.11. The compressed character-submatch (CCSM) problem for strings is
defined as follows. Let Σ be an alphabet, let G be an SLP over Σ, let t = val(T) where T
is a nonterminal of G, let s = val(G′) where G′ is an SLP over Σ ∪ V , where V is a set of
(character-)variable symbols.
Question: is there a substitution σ : V → Σ such that σ(s) is a substring of t? If every
variable occurs at most once in s, then it is called the linear compressed character submatch
(LCCSM) problem.

M. Schmidt-Schauß 277

Note that if σ can replace variables by strings, then even the following question is NP-complete:
Given uncompressed s, t, does there exists σ, such that σ(s) = t?
The following observations for special cases are easy to verify:

CSSM is in NP: guess the substitution σ and then use fully compressed pattern matching.
If there is only one variable x, then CSSM is in PTIME : try all possibilities for σ.
If there is a given number k that is an upper bound for |val(s)|, then CSSM is solvable in
polynomial time where k occurs in the exponent of the polynomial.

2.5 Remarks on Comparison with Other Approaches and Result
approximate matching with edit-distance. This is the question whether a variant s′ of the

string s occurs in t, where s′ and s differ by a form of edit-distance. This is also called
approximate matching. The investigations in the literature usually take a weaker form of
compression: LZ78, LZW, and the pattern s is not compressed. If s is not compressed,
then the approximate matching will also produce the matching solutions in case s has
character holes, but perhaps more, depending on the exact definition of edit-distance
used [4].

regular expression matching. Compression by SLP cannot be represented using a regular
expression. If the pattern has the form s = s1x1 . . . xnsn+1 and xi are character-variables
or string variables, and si are uncompressed and ground (no variables), then this can
be translated into a regular expression match question. If the regular expression syntax
also allows exponents wk for an integer k and a single string w, then it can also cover
special forms of compression, but not the general form. However, this syntax extension is
not discussed in [19]. It is not hard to see that in this case matching in SLP-compressed
strings is NP-hard (using NP-hardness of subsetsum and exploiting the union-operator).

3 The Linear Case: Partial Words

We mainly consider the linear compressed character submatch problem (LCCSM). A string
where every variable occurs at most once can also be seen as a string with several holes
where the holes represent single missing or unknown characters. We denote the hole with
◦, or with variable names x, y, z, depending on the context. In the literature these are also
called partial words, see for example [8, 5, 6].
If for a partial word s there is a number p < |s| such that s[i] = s[i + p] for all i, and
s[i], s[i+ p] are defined and are not holes, then we say that s is p-locally periodic with period
p. For example, the partial word ababa◦acac is 2-locally periodic. If there is a number
p < |s| such that i ≡ j mod p implies s[i] = s[j] for all 0 ≤ i, j ≤ |s| − 1 if s[i], s[j] are defined
and not holes, then s is called periodic (also strongly periodic), and p is a period of s. The
partial word ab◦bababa is 2-periodic. Note that p-periodic implies p-locally periodic, but the
converse might not hold, for example ab◦bb is 2-locally periodic, but not 2-periodic. Note
that p-periodic partial words can be made p-periodic strings by substituting characters into
the holes, whereas this is not the case for p-locally periodic partial words. We write s =h s

′

for two partial words s, s′ if |s| = |s′| and s, s′ are equal up to the occurrences of holes. Note
that =h is not transitive, for example a◦ =h ◦b, ◦b =h b◦, but a◦ 6=h b◦.
Equality =h of two partial words w,w′ that are SLP-compressed, and if holes are represented
as variables, can be checked polynomially in the size of the SLP and the number of holes of
w,w′. If holes were an extra symbol in the SLP, and there is no restriction on the number
of occurrences, then we could not find a polynomial algorithm to decide =h: adapting the

RTA’12

278 Matching of Compressed Patterns with Character-Variables

Plandowski-style algorithms is not possible, since periodicity lemmas fail in this case. The
only trivial information is that the problem is in co-NP.

3.1 Partial Words with One Hole
First we investigate some properties of (uncompressed) partial words with one hole. In the
following we fix an alphabet Σ. The inner structure of a p-locally periodic string is clarified:

I Lemma 3.1. Let s be a partial word with one hole at position r, and let s be p-locally
periodic. Then s is either p-periodic, or the following holds:

For all i, j : i ≡ j mod p and i 6≡ r mod p it holds that s[i] = s[j], if s[i], s[j] is defined;
s[0..r] as well as s[r..|s| − 1] are p-periodic.

An example for such a partial word is ababa◦acac, which is 2-locally periodic, but not
2-periodic, where ◦ represents the hole.
There are generalizations of the Fine and Wilf-theorem to partial words:

I Theorem 3.2. ([3, 8]) Let s be a partial word with one hole. If s is p-locally periodic and
q-locally periodic, p 6= q, and |s| ≥ p+ q, then s is also gcd(p, q)-periodic.

The bound |s| ≥ p+ q is sharp [3, 8].

I Definition 3.3. Let s be a partial word and n ≥ 2. An n-fold overlap of s (with itself)
is given by starting positions 0 ≤ p1 < p2 < p3 < . . . < pn ≤ |s| − 1, such that for all
i, j = 1, . . . , n and 0 ≤ k ≤ |s| − 1: if 0 ≤ k − pi, 0 ≤ k − pj , then s[k − pi] = s[k − pj],
provided neither s[k − pi] nor s[k − pj] is a hole.
In the following we let p1 = 0, if not stated otherwise.

The overlap of s with itself intuitively is only meant in the range of the left most occurrence,
left of the vertical line. There are no overlap conditions right of the vertical line. The reason
for this choice is our application to overlapping prefixes below. For example, for a 3-overlap,
equality of characters must hold on every position of the topmost occurrence of s.

s

p1 = 0 s
p2 s

p3

A simple example of an overlap is s = ab◦baba, n = 2 and p2 = 2. Another overlap is
s = a◦bbb, where n = 2 and p2 = 1.
The following shows that the periodicity claim in Fact 2.3 also holds if one of s1, s2 is a
partial word with one hole, and the other one is a word without holes.

I Lemma 3.4. Let s1, s2 be nontrivial strings, and let si,h, i ∈ {1, 2} be partial words with a
single hole such that si,h =h si, i ∈ {1, 2}. If s1s2 =h s2,hs1, or if s1s2 =h s2s1,h, then s1s2
is periodic with a period gcd(|s1|, |s2|).

Proof. We use induction on |s1s2|. The base case is |s1| = |s2|. In this case each equation
implies that s1 = s2, and the period has length |s1| = gcd(|s1|, |s2|).
Let |s1| 6= |s2|. We first consider the case s1s2 =h s2,hs1, the other case is symmetric. We
distinguish several cases:

s1 s2

s2h s1

s1 s2

s2h s1

M. Schmidt-Schauß 279

|s2| > |s1| and the hole is at a position ≤ |s2| − |s1|.
Then let s′2 be such that s′2s1 = s2. Let s′2,h such that s′2,hs1 := s2,h. The induc-
tion hypothesis can be applied to s1s

′
2 =h s

′
2,hs1, and shows that a period has length

gcd(|s1|, |s2|) = gcd(|s1|, |s′2|), and it is also the period of s1s2.
|s2| > |s1| and the hole is at a position ≥ |s2| − |s1|.
Then let s′2 be such that s′2s1 = s2. Let s′1,h be such that s2,h =h s′2s

′
1,h. The induc-

tion hypothesis can be applied to s1s
′
2 =h s

′
2s
′
1,h, and shows that a period has length

gcd(|s1|, |s2|) = gcd(|s1|, |s′2|), and it is also the period of s1s2.
|s1| > |s2|. This can be proved similarly as above where only the occurrence of the hole
is in different partial words. J

Lemma 3.4 and Theorem 3.2 imply:

I Corollary 3.5. Let s1, s2 be nontrivial strings, such that s1s2 is periodic with period p,
p ≤ 0.5|s1s2|, and let si,h, i ∈ {1, 2} be partial words with a single hole such that si,h =h si, i =
1, 2. If s1s2 =h s2,hs1 or s1s2 =h s2s1,h, then s1s2 is periodic with a period gcd(|s1|, |s2|, p).

I Lemma 3.6. Let w be a partial word with one hole, and assume that there is a 2-overlap
of w, starting at p1, p2. Then w is locally periodic with period p2 − p1.

Proof. The overlap immediately implies that w is locally periodic with period p2 − p1.
Lemma 3.1 provides information about the exact structure of w. J

The following lemma shows a part of Lemma 3.9, which is the the base case of the induction
proof in Theorem 3.10.

I Lemma 3.7. Let w be a partial word with one hole, and assume that we have a 3-overlap
of w, starting at 0 = p1 < p2 < p3. Let p = p2 − p1 and assume that |w| − p3 ≥ p, i.e., the
last p positions are common to all the three occurrences of w. Then the partial word w is
periodic, and a period is gcd(p2 − p1, p3 − p2). Moreover, the overlap is consistent with using
the same substitution for the single variable for every occurrence of w.

Proof.
p

p1

b

p2

p3

For the occurrences starting at p1, p2, Lemma 3.6 implies
that w is locally periodic with period p = p2−p1 = p2. Also,
if t1, t2 are substrings of length p of w, then either t1, t2 are
cyclic permutations of each other, or cyclic permutations up

to the occurrence of one character. Note that the overlap does not imply that w is (p3 − p2)-
locally periodic, since there is a cut at b, hence Theorem 3.2 is not applicable.

Let b := |w| − 1. If the third occurrence does not contain a hole in the overlap, i.e.
w[0..b− p3] does not contain a hole, then the string w[b− p3 − p+ 1..b− p3] is equal to a
substring of length p of the first or of the second occurrence, without hole. This equality
implies that there are two equal substrings t′1, t′2 of w, both of length p, where t′1 is left of
the hole and t′2 is right of the hole. By Lemma 3.6, this is only possible if w is periodic
with period p.
If the third occurrence contains a hole in the overlap, then there are two subcases: (i)
r ≥ p, where r is the hole position in w. Then let t1 be the substring a[r−p3−p..r−p3−1],
which is the substring of the third occurrence immediately left to the hole. Due to the
overlap this is equal to a substring t1 of length p in the first occurrence of w, which is a
substring in w right of the hole. Again, this implies that w is periodic with period p.
(ii) r < p, i.e. the hole is in the first p-period of w. Then w is periodic with period p.

RTA’12

280 Matching of Compressed Patterns with Character-Variables

Now it remains to show that also p3 − p2 is a period of w. If p is a divisor of p3 − p2, then
there is nothing to show, so let us assume that p is not a divisor of p3 − p2. Since w is
already periodic with period p, it is sufficient to show that a substring of w of length p is also
periodic with period p3−p2, and then apply Theorem 3.2. The prefix of the third occurrence,
i.e. w[0..p− 1] overlaps a part of the first occurrence: w[p3..p3 + p− 1]. Either w[0..p− 1]
contains a hole and w[p3..p3 + p − 1] does not contain a hole, or vice versa. Moreover,
due to p-periodicity of w, there are nontrivial s1, s2, s

′
1, s
′
2 such that s1s2 = w[0..p− 1] and

s′2s
′
1 = w[p3..p3 + p − 1] where |s1| = |s′1|, |s2| = |s′2|, and |s2| ≡ p3 − p2 mod p. Also,

depending on where the hole is, we have either
s1s2 = s′2s

′
1, s1 = s′1, s2 = s′2, or

s1s2 =h s
′
2s
′
1, s1 = s′1, s2 =h s

′
2, or

s1s2 =h s
′
2s
′
1, s1 =h s

′
1, s2 = s′2

Then Fact 2.3 shows the claim on periodicity in the first case, and Lemma 3.4 shows the
claim on periodicity in the other cases. J

I Remark 3.8. The number of common overlap positions in Lemma 3.7 is sharp. For
example, let w = bab◦bcb, and let p2 = 2, p3 = 6 with |w| = 7 be an overlap. Then only
one character position is common to all the three occurrences. The string bab◦bcb is not
2-periodic.

The following lemma is the base case of the induction proof in Theorem 3.10.

I Lemma 3.9. Let w be a partial word with one hole, and assume that we have an overlap of
k ≥ 3 occurrences of w starting at 0 = p1 < p2 < . . . < pk, respectively. Let p = p2 − p1 and
assume that the last p positions, i.e., |w|− p, . . . , |w|− 1 are common to all the k occurrences.
Then the partial word w is periodic, and a period is gcd(p2 − p1, p3 − p2, . . . , pk − pk−1).

Proof. This follows by a repeated application of Lemma 3.7 and Corollary 3.5 as follows, by
induction on the number n of overlaps:
Assume that for j ≥ 3 it is shown that the period is gcd(p2 − p1, p3 − p2, . . . , pj − pj−1).
Then consider the next occurrence of the partial word w, and focus on the overlap of the
occurrence j + 1 of w at positions |w| − p, . . . , |w| − 1 with the first or second occurrence of
w. We take the first one, if there is no hole in the interval w[|w| − p..|w| − 1], otherwise we
take the second one. Due to periodicity with period p, this leads to one of the equations
s1s2 = s2s1, or s1s2 =h s2,hs1 or s1s2 =h s2s1,h with si =h si,h for i = 1, 2, and |s1| ≡ pj

mod p. Simple computation with gcd now shows the claim. J
Now we are in a position to perform an induction proof for overlaps of any number of
occurrences of a partial word with several holes.

I Theorem 3.10. Let w be a partial word with n holes, and assume there is an
overlap of m ≥ n + 2 occurrences of w, starting at p1 < p2 . . . < pm. Let pmax be
max{pi+1 − pi | i = 1, . . . ,m− 1}, and |w| − pm ≥ 2n · pmax ; this means there are 2n · pmax
common positions of all occurrences of w.
Then the partial word w is periodic, and a period is pall :=
gcd(p2 − p1, p3 − p2, . . . , pm − pm−1). There is a unique string w′ that can be over-
lapped with w, starting at m ending at |w| − 1, that is periodic with the same period.
Moreover, the overlap is consistent with using the same substitution for every occurrence of
w.

Proof. By induction on the number of holes. If w has one hole (i.e. n = 1), and there are
m ≥ n+ 2 = 3 occurrences, then the claim follows from Lemma 3.9.

M. Schmidt-Schauß 281

Now assume that there are n > 1 holes in w. Let r be the position of the leftmost hole of w,
and let w′ be a partial word, v1 be a string, such that w = v1◦w′. There are two cases:
1. r < 2pmax . The overlap of m ≥ n+ 2 occurrences of w′ is constructed from the given

overlap by cutting away all prefixes of length r + 1. For convenience, we have different
starting positions p′i := pi + r+ 1. The number of holes is decreased by one, the maximum
pmax is unchanged, and the condition |w′| − pm + 1 ≥ 2n′ · pmax with n′ = (n− 1) holds.
Now we can use induction and obtain that w′ is periodic with the period as claimed. It
remains to show that this claim can be transferred to the full partial word w: We look
at the prefix w1 of the mth (the last) occurrence of w. This string w1 is positioned such
that there are at least n + 1 other occurrences of w with a common position. For the
position q = pm + r − 1 in the prefix v1 of the mth occurrence of w, there is at least one
index j(q), such that wj(q)[q− pj(q)+1] is not a hole. Thus this character is determined by
the overlap. We scan the positions from greater indices to smaller ones and observe that
for one period pall the suffix w1,1 of w1 is determined. It is also obvious that the partial
word w1,1◦w′ is pall-periodic. Now we repeat this process of determining w1 period-wise
and finally obtain that w is pall-periodic.

2. r ≥ 2pmax . This implies |v1| ≥ 2pmax . The length condition shows that in the overlap of
the m occurrences, there are overlaps of v1 with itself for all the indices i, i,+1 where the
shift in the overlap is pi+1−pi, and the overlapping part is longer than |v1|/2 ≥ pmax . Fact
2.4 shows that v1 is periodic with period pi+1−pi for all i, and since |v1|/2 ≥ pi+1−pi for
all i, we obtain that v1 has period pall by Theorem 2.1. Since the copies of v1 cover the
overlap for all positions 0..pm + |v1| − 1, we have already periodicity of w[0..pm + |v1| − 1]
with period pall . Similar as for the first item, we obtain also for all further positions of
w, that these satisfy the periodicity condition by iterating the following step: determine
the next pall characters of w using the observation that there is an overlap of at least
n+ 2 occurrences and that the focussed positions are in the part where all occurrences
overlap. Since at least one occurrence has a character at the questioned position, we see
that the next pall characters are determined and satisfy the period condition. Iterating
this implies that the periodicity condition holds for w.

Since m ≥ n + 2, the string starting at m to |w| − 1 that overlaps all occurrences of w is
uniquely defined and is periodic with the same period due to the previous arguments. The
periodicity of w, and since w contains hole-free substrings of lengths greater than the period
implies that the substitutions can be chosen consistently for all occurrences. J

I Corollary 3.11. Let w be a partial word with n ≥ 2 holes, let w be periodic with periods
p, q ≤ |w|/(3n). Then w is also gcd(p, q)-periodic.

Proof. The periodicity assumptions imply that there is an overlap of w with pi = ip as well
as pi = iq for i = 0, 1, 2, The upper bound permits to apply Theorem 3.10: Assume p < q

and that q is not a multiple of p. Then in the interval 0..|w|/(3n) at least n + 2 different
copies of w are starting. The prerequisite of the theorem holds: |w| − np ≥ 2n · p. The
derived period is gcd(p, q − p), which is the same as gcd(p, q). J
The corollary is too weak for n = 1, since Theorem 3.2 provides a better bound, which
indicates that there is space for improvements in the case n ≥ 2.

4 A Matching-Algorithm Using Dynamic Programming

Let Gs, Gt be SLPs for s and t, respectively, where s is a partial word with n holes, and t is
a string, and S is a nonterminal with val(S) = s. First we build two tables, a prefix-table and

RTA’12

282 Matching of Compressed Patterns with Character-Variables

a result-table as follows: The coordinate is T , for the nonterminals of Gt. Entries in the lists
may be (i) positions a, (ii) arithmetic progressions, represented by triples (a, b,m), where
a is the start position, b is the step length, and m is the number of steps, (iii) arithmetic
sequences without upper bound, represented by pairs (a, b). The result table contains a list
with entries a or (a, b,m), whereas the prefix table contains a list with entries a or (a, b).
These entries have the following semantics:

a represents that a prefix of val(S) is a suffix of val(T) where the suffix starts at position
a in val(T).
(a, b,m) represents prefixes of val(S) as suffixes of val(T), where the starts of the S-suffixes
are at positions a+ ib for i = 0, . . . ,m− 1 in val(T).
(a, b) is the same as (a, b,m) for the maximal possible m. Moreover, val(T) has a
periodic suffix: val(T)[a..|val(T)| − 1] is periodic with period b. The period string is
val(T)[a, a+ b− 1].

I Algorithm 4.1. The construction of the tables is as follows and works bottom-up in Gt,
where we fix S. For a nonterminal T with rule T → T1T2, we assume that the prefix tables
for T1 and T2 are already constructed. Then the prefix table of T will be constructed using
the entries in the prefix tables of T1 and T2. If the entries for T are constructed, then a
compaction step is applied to all entries for T . The result-table is like an output and will not
be used for further constructions. For every nonterminal T , the following is performed:
Simple cases:
1. If |val(T)| = 1: If |val(S)| > 1, and val(S) has val(T) as prefix, or if val(S) starts with

a hole, then there is an entry 0 in the prefix-table of T , otherwise there is no entry in the
prefix table. If |val(S)| = 1, and val(S) has val(T) as prefix, or if val(S) starts with a
hole, then the result-table entry is (0, 1), otherwise there is no entry.

2. Let T be a nonterminal with rule T → T1T2.
a. All entries a, (a, b) in the prefix table of T2 are inherited to the prefix table of T as
a+ q and (a+ q, b), respectively, where q = |val(T1)|.

b. An entry a of the prefix table of T2 is tested by first adding a nonterminal A representing
the prefix of val(S) as suffix of val(T1), then A′ → AT2 is added to the SLP. If val(A′)
is a proper prefix of val(S), then a is added to the prefix table of T . If val(S) is a
prefix of val(A′), then a is in the result table of T . Otherwise, no entry is inherited.

The complex case: Let T be a nonterminal with rule T → T1T2, and let there be an entry
(a, b) in the list of the prefix table of T1.
Let T ′1 be a nonterminal that represents the suffix of val(T1) starting at a. We determ-
ine the maximal number of periods corresponding to entry (a, b) that fit as prefix into
val(T2). Therefore construct the potential period string as a nonterminal P as representing
the string val(T1)[a, a + b − 1]. Then construct nonterminals P1 as a prefix and P2 as a
suffix of P , such that val(P) = val(P1P2) and val(T1)[a..|val(T1)| − 1] = val(P)kval(P1)
for some k. Then construct P ′ as P ′ → P2P1, and its powers on demand and use inter-
val bisection to find the maximal prefix of val(T2) that is periodic with period string P ′.

T ′1 T2a

P

b

P1 P2

P ′

A similar computation has to be done for S: using interval bisection in order to find the
maximal number k′ of periods such that a prefix of val(S) matches val(P)k′ . The possible
case and corresponding outcomes and actions are:

M. Schmidt-Schauß 283

1. val(T2) is periodic with period string val(P ′), and val(S) has a proper prefix that matches
the periodic string val(T ′1T2). The new entry for the prefix-table for T is (a, b). There
will be no entry for the result-table.

2. val(T2) is periodic with period string val(P ′), and val(S) matches a prefix of val(P)k,
and item (1) does not hold. This means val(S) is periodic as a partial word with period
string val(P).
Compute the number k by comparing the length of val(S) with the length of val(T ′1T2)
such that the arithmetic sequence a, a + b, . . . , a + (k − 1)b represents the positions in
val(T ′1T2) where S matches substrings of val(T ′1T2). The entry (a, b, k) is added to the
result-table of T . The pair (a+ bk, b) is added as entry to the prefix-table of T .

3. val(T2) is periodic with period string val(P ′), and val(S) has a proper prefix that matches
val(P)m for some m, but not the the full periodic substring val(T ′1T2). Then compute the
smallest k by simple arithmetic, such that a+ bk is position in val(T ′1T2), such that S
matches the substring starting there. The entry (a+ bk, b) is added to the prefix-table of
T . There is no result entry added.

4. val(T2) has a proper prefix that is periodic with string val(P ′), but val(T2) is not periodic
with period string val(P ′), and val(S) matches a prefix of val(P)k for some k.
This means val(S) is periodic as a partial word with period string val(P).
Compute the number k using arithmetic, and interval bisection for val(T ′1T2), such that
the arithmetic progression a, a+ b, . . . , a+ (k − 1)b represents the positions in val(T ′1T2)
where S matches substrings of val(T ′1T2). The entry (a, b, k) is added to the result-table
of T . There are no entries in the prefix-table of T .

5. val(T2) has a proper prefix that is periodic with string val(P ′), val(T2) is not periodic
with period string val(P ′), and val(S) does not match a prefix of val(P)k for any k.

T ′1 T2

T2,1 T2,2q

P
S1a′ S2

Then compute nonterminals S1, S2 extending the SLP, such that val(S1) is the maximal
prefix of val(S) that matches a prefix of val(P)m for some m, and val(S) = val(S1S2).
Also compute T2,1, T2,2 extending the SLP with val(T2) = val(T2,1)val(T2,2), and such
that val(T2,1) is the maximal prefix of val(T2) that is periodic with period string val(P ′).
Then there is at most one potential position for a matching occurrence (derived from the
entries in T1): val(T2,2) and val(S2) must start at the same position. Let the position q
be computed as q := a + |val(T1T2,1)|. If val(S2) matches a prefix of val(T2,2) or there
is a prefix of val(S2) that matches val(T2,2), and val(S1) matches a suffix of val(T ′1T2,1),
then we can proceed; otherwise, there is no entry. Let a′ be the starting occurrence of
val(S) in val(T ′1T2), i.e. a′ := q − |val(S1)|.
If S matches val(T1T2) at position a′ and is completely contained, then a′ is an entry in
the result-table for T . If a proper prefix of S matches val(T1T2) at position a′ and is not
completely contained, then a′ will be an entry in the prefix-table of T .

Compaction Finally, there is a compaction of the prefix table of T to keep the sum of the
sizes of all prefix-tables polynomial. The compaction takes the prefix table as computed above
as input and generates a completely new prefix table for T . Thereby it may generate also
entries for arithmetic progressions in the prefix-table.
Let h be the number of holes of val(S). Let c be the current position in val(T), where the

RTA’12

284 Matching of Compressed Patterns with Character-Variables

start is at position 0, and where the compaction stops if |val(T)| − c < h+ 3 and the input
positions are simply moved to the output in this case.
Let d := |val(T)| − c+ 1 and let e := bd/(2(h+ 2))c. If for val(T) in the (position) interval
c, c+ e− 1 there are at least h+ 3 positions for S including implicit positions from arithmetic
progression, then the leftmost h+ 2 entries in this interval are expanded, and b′ is computed
as the gcd of the position differences according to Theorem 3.10. If p′ is the (h+3)th position,
then the entry (p′, b′) is added to the output for T .
Then do the same for all intervals [c+ ie, c+ (i+ 1)e− 1] for i ∈ {1, . . . , h+ 1}. This covers
the left half of val(T)[d..|val(T)| − 1]. Continue with the same procedure for the right half of
val(T), but with refreshed c, d, e.

The two tables are a complete description of all occurrences of prefixes of val(S) as suffixes
of val(T) and of matching occurrences of S in T . The matching occurrences can be found in
the result table of minimal nonterminals: If T → T1T2, then only the occurrences of S in T
that cross the border between val(T1) and val(T2) are mentioned in the result-table of T .
Other occurrences are mentioned at T1, T2 or their descendents.

I Proposition 4.2. Let S be a nonterminal in Gs and T be a nonterminal in Gt, and
assume the two tables are constructed with Algorithm 4.1. Then the prefix-table is a complete
description of all occurrences of prefixes of val(S) as suffixes of val(T), and the result-tables
of the nonterminals contributing to T (including T) are a complete description of all matching
occurrences of S in T .

Proof. The argument is by induction: Let T → T1T2 be a rule in Gt: We assume that the
prefix-entries for T1 and T2 are complete, and then have to argue that the step of Algorithm
4.1 constructs a complete set of entries for T . This requires to verify that all the cases are
treated. This is done in the algorithm due to the exact knowledge about periodicities. J

I Proposition 4.3. The compaction step is correct. Also the semantics of the entries satisfied:
for a periodic entry (a, b), the suffix of val(T) is periodic with period b. Moreover, the period
is the optimal one, since the input contains all matching occurrences for prefixes of val(S).

Proof. This follows from Theorem 3.10. J

I Proposition 4.4. The construction of the prefix- and result-table requires at most polynomial
time in the size of G := Gs ∪Gt. For a fixed S, the size of the tables is of order O(|G|4).

Proof. The operations can all be done in polynomial time, and the table has a polynomial
number of places (see Lemma 2.7). What remains to be shown is that the number of entries
in the list for nonterminal T is polynomial. Let n be the size of the SLP G and h be the
number of holes of val(S), and assume that the rule for detection of arithmetic sequences
does not apply. Then we can determine an upper bound for the number of entries as follows:
Here a single entry and a pair for arithmetic sequences count as one entry. Let d = |val(T)|,
and let e = d/(2(h+ 2)). In the interval [0, e] at most h+ 3 are starting, since otherwise a
compaction step is possible. The same for all the intervals until [(h+ 1)e, (h+ 2)e]. Thus
there are at most (h+ 2)(h+ 3) entries in the left half of T . The same argument applies to
the right half in the role of T . Due to the generation of strings by an SLP not more than n
interval divisions by 2 are possible, hence at most n ∗ (h+ 2)(h+ 3) entries are in the table
for the nonterminal T . J

M. Schmidt-Schauß 285

4.1 Results for Matching of Strings with Holes
I Theorem 4.5. The LCCSM problem can be solved in polynomial time: If s is a string with
n holes, and t is a string, compressed by SLPs Gs and Gt, respectively, then a representation
of all the matching occurrences of s in t can be computed in polynomial time.

Proof. Using Algorithm 4.1 for the construction of the result-table is complete and requires
polynomial time in |Gt|+ |Gs| by Proposition 4.4. J
Note that the number of matching occurrences may be exponential in |Gt| + |Gs|. The
computed table represents all occurrences in a compact way in polynomial space.
A representation of all periods of a compressed partial word s can be computed: Let S be
a nonterminal with val(S) = s. Compute nonterminals Si, i = 1, . . . ,m with m ≤ |G| that
represent the maximal hole-free substrings of s. Then compute all the periods of val(Si)
for i = 1 using a fully compressed matching algorithm [17], also Algorithm 4.1 could be
specialized to this. This results in a polynomial number of potential periods. Now test
every potential period p as follows: First compute a nonterminal S′ representing S where
the holes are instantiated by characters using the period p. Then compute a nonterminal P
with val(P) = val(S)[0..p− 1] and check whether val(P kP ′) =h val(S) where P ′ represents
a prefix of val(P) and |val(P kP ′)| = |val(S)|. For every period of val(S), at least one divisor
will be found, their number is at most polynomial and every check can be done in PTIME.
Note that Algorithm 4.1 cannot be used to find periodicities of S in S (see item 5.3).

I Proposition 4.6. All periods of an SLP-compressed string s can be computed in PTIME.

5 Extensions and Generalizations

5.1 Adding Variables Representing Strings
I Lemma 5.1. Let s be a string linear in the variables, every variable is a string-variable,
let t be a string, and assume that both are compressed by an SLP. Then the question whether
there exists a substitution σ, such that σ(s) occurs in t can be decided in polynomial time.

Proof. Let S, T be nonterminals with val(S) = s, val(T) = t. An eager left-to-right search is
sufficient: If val(S) = s1x1 . . . xnsn+1, where si are ground, then first construct nonterminals
Si with val(Si) = si for i = 1, . . . , n. Then identify the first occurrence of s1 in t. The next
step is to construct a nonterminal representing the suffix of t right to the occurrence and
repeat the search. This is a sequential algorithm, every step can be performed in polynomial
time, and the required SLP does not grow in size. Hence whether a match exists can be
decided in polynomial time, and a match can be computed as a side-effect. J
This can be generalized to a mix of string-variables and character-variables:

I Proposition 5.2. Let s be a string linear in the variables, which may be string-variables or
character-variables, let t be a string, and assume s, t are SLP-compressed. Then the question
whether there exists a substitution σ, such that σ(s) occurs in t can be decided in PTIME.

Proof. Similar to the previous proof: let s = s1x1 . . . xnsn+1, where xi are all the string-
variables, and si may contain character-variables. Then an eager left-to-right search will run
in polynomial time, using Theorem 4.5, similar as in the proof of Lemma 5.1. J

5.2 Nonlinear Patterns
Suppose, we permit multiple occurrences of the same character-variable in the pattern. Note
that the number of different variables is at most |Gs|, however, there may be an exponential

RTA’12

286 Matching of Compressed Patterns with Character-Variables

number of occurrences of variables in s. Unfortunately, Theorem 3.10 is no longer applicable.
If the number of occurrences is polynomial, then we can use our current method as follows:

I Proposition 5.3. Let the number of occurrences of variables in s be k. Then the pattern
match problem can be decided in time O(polyk(|Gs|, |Gt|)) where poly is a polynomial.

Proof. Linearize the pattern s giving s′, such that ρ(s′) = s for some variable-variable
substitution. Perform a pattern match using s′, resulting in a polynomially-sized result-table.
Then scan every entry: For single entries a, test whether s′ occurs in t at position a, which
is polynomial. For arithmetic sequences of length < k + 2 use the method for single entries,
otherwise a unique substitution can be computed from the sequence. Then test whether this
substitution is compatible with ρ. All the tests can be done in polynomial time. J

5.3 Further Possible Extension and Problems
Pattern Target is a Partial Word. If the target t of the pattern match is a partial word,

then our method does no longer work as expected, since the overlap-theorem can no
longer by applied. For example let s = aa◦bb, and t = aaa◦◦bb, then s matches t at
positions 0, 1, 2. However, the three occurrences of s do not overlap, and so the overlap
theorem cannot be used for compacting the entries in the prefix-table in Algorithm 4.1.

Compressed Partial Words Including Holes If holes are not seen as variables, but repres-
ented as an extra symbol, then compression can represent partial words with a larger
number of holes, up to an exponential number of holes. However, then our arguments fail,
in particular the application of the overlap-theorem 3.10 no longer helps in compacting
the prefix-table entries, since the number of holes is no longer O(|Gs|).

Term Matching Looking for submatching (or the encompassment relation) of terms as a
generalisation of strings is of course an interesting generalization. The technical report
[24] contains an approach to compressed term matching but has to leave open the issue
whether a single compressed term submatch can be performed in polynomial time and
even the question for terms with linear variable occurrence was left open.

6 Conclusion and Further Work

Future work is to analyze the CCSM problem for strings. Another important issue is to
analyze term-submatching, to generalize CCSM and LCCSM to terms, and then to improve
the algorithms in [24].

Acknowledgements I thank David Sabel for discussions on compressions and for reading
the paper.

References
1 D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems. J. Symb.

Comput., 3(1/2):203–216, 1987.
2 P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, andW. Rytter. On the complexity

of pattern matching for highly compressed two-dimensional texts. J. Comput. Syst. Sci.,
65(2):332–350, 2002.

3 J. Berstel and L. Boasson. Partial words and a theorem of Fine and Wilf. Theor. Comput.
Sci., 218(1):135–141, 1999.

M. Schmidt-Schauß 287

4 Ph. Bille, R. Fagerberg, and I. Li Gørtz. Improved approximate string matching and regular
expression matching on Ziv-Lempel compressed texts. ACM Transactions on Algorithms,
6(1), 2009.

5 F. Blanchet-Sadri. Periodicity on partial words. Comput. Math. Appl., 47:71–82, 2004.
6 F. Blanchet-Sadri. Algorithmic combinatorics on partial words. Chapman & Hall/CRC,

2008.
7 F. Blanchet-Sadri, D. Dakota Blair, and R. V. Lewis. Equations on partial words. In

MFCS, LNCS 4162 , pages 167–178. Springer, 2006.
8 F. Blanchet-Sadri and R. A. Hegstrom. Partial words and a theorem of Fine and Wilf

revisited. Theor. Comput. Sci., 270(1-2):401–419, 2002.
9 G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML documents.

In Proceedings of DBPL 2005, LNCS 3774, pages 199–216, 2005.
10 N. J. Fine and H. S. Wilf. Uniqueness theorem for periodic functions. Proc. Am. Math.

Soc., 16:109–114, 1965.
11 A. Gascón, G. Godoy, and M. Schmidt-Schauß. Unification and matching on compressed

terms. ACM Trans. Comput. Log., 12(4):26:1–26:37, 2011.
12 A. Jez. Faster fully compressed pattern matching by recompression. CoRR, abs/1111.3244,

2011.
13 M. Karpinski, W. Rytter, and A. Shinohara. Pattern-matching for strings with short

description. In CPM ’95, LNCS 937, pages 205–214. Springer-Verlag, 1995.
14 M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algorithm for

strings with short descriptions. Nord. J. Comput., 4(2):172–186, 1997.
15 J. Levy, M. Schmidt-Schauß, and M. Villaret. Monadic second-order unification is NP-

complete. In RTA-15, LNCS 3091, pages 55–69. Springer, 2004.
16 J. Levy, M. Schmidt-Schauß, and M. Villaret. The complexity of monadic second-order

unification. SIAM J. of Computing, 38(3):1113–1140, 2008.
17 Y. Lifshits. Processing compressed texts: A tractability border. In CPM 2007, pages

228–240, 2007.
18 M. Lohrey. Word problems and membership problems on compressed words. SIAM Journal

on Computing, 35(5):1210–1240, 2006.
19 M. Lohrey. Compressed membership problems for regular expressions and hierarchical

automata. Int. J. Found. Comput. Sci., 21(5):817–841, 2010.
20 N. Markey and Ph. Schnoebelen. A PTIME-complete matching problem for SLP-

compressed words. Inf. Process. Lett., 90(1):3–6, 2004.
21 G. Navarro. Regular expression searching on compressed text. J. Discrete Algorithms,

1(5-6):423–443, 2003.
22 W. Plandowski. Testing equivalence of morphisms in context-free languages. In ESA 94,

volume 855 of Lecture Notes in Computer Science, pages 460–470, 1994.
23 W. Plandowski and W. Rytter. Complexity of language recognition problems for com-

pressed words. In Jewels are Forever, pages 262–272. Springer, 1999.
24 M. Schmidt-Schauß. Pattern matching of compressed terms and contexts and polynomial

rewriting. Frank report 43, Institut für Informatik. Goethe-Univ. Frankfurt am Main, 2011.
25 T. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda. Faster subsequence and don’t-care

pattern matching on compressed texts. In 22nd CPM, LNCS 6661, pages 309–322. Springer,
2011.

26 J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337–343, 1977.

27 J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, 1978.

RTA’12

	Introduction
	On Strings and Compression
	Properties of Strings
	Compression of Strings and Straight Line Programs
	Equality of Compressed Strings
	Submatching
	Remarks on Comparison with Other Approaches and Result

	The Linear Case: Partial Words
	Partial Words with One Hole

	A Matching-Algorithm Using Dynamic Programming
	Results for Matching of Strings with Holes

	Extensions and Generalizations
	Adding Variables Representing Strings
	Nonlinear Patterns
	Further Possible Extension and Problems

	Conclusion and Further Work

