
Computing Same Block Relations for Relational
Cache Analysis
Simon Wegener

AbsInt Angewandte Informatik GmbH
Science Park 1, 66123 Saarbrücken, Germany
wegener@absint.com

Abstract
In contrast to the classical cache analysis of Ferdinand, the relational cache analysis does not rely
on precise address information. Instead, it uses same block relations between memory accesses
to predict cache hits. The relational data cache analysis can thus also predict cache hits if fully
unrolling a loop is not feasible during analysis, for example due to high memory consumption or
long computation time. This paper proposes a static analysis based on abstract interpretation
which is able to compute same block relations for relational cache analysis.

1998 ACM Subject Classification C.4 Performance of Systems, D.2.4 Software/Program Veri-
fication

Keywords and phrases Cache Analysis, WCET Analysis, Real-time Systems, Static Program
Analysis, Abstract Interpretation

Digital Object Identifier 10.4230/OASIcs.WCET.2012.25

1 Introduction

In his doctoral thesis [4], Ferdinand proposed an analysis based on abstract interpretation to
predict the contents of set-associative caches with LRU replacement policy.

The analysis is split in two parts. One part, the so-called must analysis is used to predict
definite cache hits (“always hit”) by computing an under-approximation of the possible cache
contents at any program point. The other part, called may analysis is used to predict definite
cache misses (“always miss”) by computing an over-approximation of the possible cache
contents. For those memory accesses where neither the must analysis nor the may analysis
are able to predict a definite result, “not classified” is returned.

One requirement of the cache analysis described above is the knowledge of precise address
information for the targets of memory accesses. This information is typically available if
instruction caches are analyzed since the control flow and thus the addresses of instructions
have been computed beforehand. For data caches or unified instruction / data caches, this
requirement cannot always be fulfilled.

Consider for example an array access depending on a loop counter as in listing 1. As a
data-flow analysis computes invariants which hold for each and every execution of a program,
it can only compute a set or an interval of possible addresses. If for example a is the array’s
base address and w the width of an array element, then the address interval would be

Listing 1 Array summation in C.
for (i = 0; i < 128; i++)

sum += arr[i];

© Simon Wegener;
licensed under Creative Commons License ND

12th International Workshop on Worst-Case Execution Time Analysis (WCET 2012).
Editor: Tullio Vardanega; pp. 25–37

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2012.25
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

26 Computing Same Block Relations for Relational Cache Analysis

[a, a + 127 · w]. In this case, all abstract cache sets which possibly would handle one of these
addresses must be updated. For the may sets, this means that all the addresses included in
the interval must be added. For the must sets, this means that none of these addresses are
added, but all entries age by one. Ferdinand’s cache analysis thus reacts very sensitively to
imprecise address information.

One way to overcome this obstacle is to fully unroll the loop. Then, the different memory
accesses can be distinguished by the analysis. However, fully unrolling may not be feasible,
for example if the loop iterates several thousand or even million times. No information would
reside in the abstract data cache sets inside such a loop. The memory accesses could then
not be classified as either cache hits or misses.

Recent research [15, 9] studied how the dependency of the cache analysis on precise
address information can be reduced. The result is the so-called relational cache analysis.
There, symbolic names are used to identify memory accesses. Cache hits are predicted with
the help of same block relations. These relations describe sufficient conditions whether two
memory accesses target the same cache line. Ferdinand’s cache analysis can be seen as an
instance of the relational cache analysis framework, with cache address equality as same
block relation.

The goal of this paper is to define additional analyses which can be used to compute
same block relations. These can then be used in the relational cache analysis framework
described in [9] to predict cache hits.

2 Cache Configuration

In the following (and if not stated otherwise), the cache configuration is assumed to be a
write-through, write-allocate 2-way set associative LRU cache with a cache line size of 32
bytes. The whole memory is assumed to be cached. No cache locking takes place. Upon a
miss, a whole line is loaded into the cache.

3 Predicting Cache Hits: Globally Precise Address Information vs.
Locally Precise Address Information

A shortcoming of Ferdinand’s cache analysis is its dependency on globally precise address
information. This dependency on the exact position of a memory access in the whole address
space is quite natural if we look at the definition of a cache hit in the concrete domain:

hit(a) def= ∃i ∈ {1, 2} : cacheset(a)[i].valid ∧ cacheset(a)[i].tag = tag(a)

A memory access is a cache hit if and only if there is an entry in the cache set which is valid
and which stores the tag of the access address a (see also Figure 1). To compute the tag and
the cache address, the exact memory address is needed. If this information is not available,
we cannot evaluate the formula above.

Now recall the array summation example: There, some cache hits will occur after a cache
miss, because a cache miss loads whole cache lines into the cache. The subsequent memory
accesses will then lead to cache hits as long as they target the same cache line. How can we
use this fact to predict cache hits if we do not have the exact address information?

Fortunately, there is a possibility to specify whether two memory accesses target the
same cache line which does not depend on the exact addresses. Let aprev be the address
of the memory access previous to the ongoing access (with address a). Assume that the
distance x = a − aprev between the two access addresses is known as well as the position

S. Wegener 27

memory

v t
cache

⋯ ⋯

a

Figure 1 A cache consisting of only one cache line. The tag t maps the cache line to a specific
interval of memory locations. The memory access to a is a hit if tag(a) = t and the valid bit v is set.
The value of t depends on the memory access before the one to a.

aprev
memory

cache

… …

y… …0 31x+y …

a

Figure 2 A cache consisting of only one cache line. a is the address of the ongoing memory access,
aprev is the address of the previous access, x = a − aprev is the distance between the two accesses
and y = aprev mod 32 is the position of the previous access inside the cache line. The memory access
to a is a hit if the cache line offset of aprev plus the distance between a and aprev is smaller than
the cache line size.

of the previous access inside the cache line y = aprev mod 32. Then, the ongoing memory
access is a cache hit if 0 ≤ x + y < 32 (see Figure 2).

The values of x and y can be computed without knowing the exact values of a and aprev

(see section 4). Locally precise address information is thus enough to predict cache hits.

4 Computing Same Block Relations

In this section, the findings from the previous section are formalized and used to build an
analysis which is able to compute same block relations for the relational cache analysis.

4.1 Alignment Information
One information used to compute the same block relation is the relative position of a memory
access inside a cache line. To compute the relative position, we use a static analysis [7] using
arithmetical congruences as abstract domain. Values are identified by the congruence class
to which they belong. The 32-bit address a for example is described by the pair 〈a, 232〉
because a ≡ a (mod 232) holds. The two addresses a and a + 2 are described either by the
pair 〈0, 2〉 or by the pair 〈1, 2〉, depending whether a is even or odd.

Recall the array access example. If an element of the array has a size of four bytes, the
analysis deduces that the address of each memory access inside the loop goes to the same
congruence class (modulo 4). Formally speaking, the analysis computes the pair 〈y, 4〉, that
is, the equation ∃y ∈ {0, . . . , 3} : ∀i ∈ {0, . . . , 127} : ai ≡ y (mod 4). If the array is properly
32-bit aligned, the analysis can even deduce that y = 0.

WCET’12

28 Computing Same Block Relations for Relational Cache Analysis

However, this information is not precise enough for our needs, because not the whole
cache line is covered by congruence classes, i.e. the modulus is to small. To improve the
precision, some of the addresses must be kept apart (see section 4.2).

4.2 Loop Peeling and Loop Unrolling
The precision problems arise from the the fact that the computed invariants must hold for
each and every loop iteration. Thus only the least common divisor survives as modulus.

Skillful application of loop peeling (listing 2) and loop unrolling (listing 3) can be used to
keep some of the address apart. 4-fold unrolling of the loop in the running example can be
used to improve the alignment information such that the four pairs 〈0, 16〉, 〈4, 16〉, 〈8, 16〉 and
〈12, 16〉 are computed for the four array accesses (assuming a properly aligned array). Loop
peeling is used to control which alignment information pair is computed for what unrolled
array access (see section 6 for more details).

The loop unrolling and loop peeling can be done either directly by using the corres-
ponding loop transformations or virtually by using a specially tailored context mapping
(e.g. VIVUM [15]).

Listing 2 Loop peeling.
sum += arr [0];
sum += arr [1];
sum += arr [2];
for (i = 3; i < 128; i++) {

sum += arr[i];
}

Listing 3 Loop unrolling.
for (i = 0; i < 128; i += 4) {

sum += arr[i];
sum += arr[i + 1];
sum += arr[i + 2];
sum += arr[i + 3];

}

4.3 Distance Relations
Often, a variable is not invariant inside a loop, but changes its value. Thus, static analyses can
only compute an abstraction of the possible values, for example an interval. This abstraction
might be very imprecise. One possibility to improve the results is to check how the value
evolves over time.

In the running example, the address of the memory access is increased by the size of
one element in each iteration. More formally, the equation ∀i ∈ {1, . . . , 127} : ai − ai−1 = x

holds, where x is the size of one array element.
Such linear relations can be expressed with difference bound matrices (or short DBMs).

DBMs have been introduced by Dill [3] to express clock zones for the model-checking of
timed-automata. Miné [13] used them to build an abstract domain which efficiently handles
a restricted form of linear relations, namely those of the form xi − xj ≤ c.

In a DBM, the row / column positions identifies which variables are used in the relation
and the value inside the DBM is the constraining factor (i.e. the c above). The first row /
column is used for the special variable x0 which is used to express the constant zero. Infinity
is used as value if the difference cannot be bounded.

If again 4-fold unrolling is applied to the loop in the example, one gets the four DBM
variables x1, . . . , x4. The analysis computes the DBM in Figure 3, assuming each array
element has a size of 4 bytes.

The DBM analysis is applied to the whole program. However, not every register is covered
in the DBMs but only those that are used to compute the addresses of memory accesses.
This set is identified for each loop independently.

S. Wegener 29


0 ∞ ∞ ∞ ∞
∞ 0 4 8 12
∞ −4 0 4 8
∞ −8 −4 0 4
∞ −12 −8 −4 0



Figure 3 DBM for the array accesses in the loop in listing 3. The address of each access is exactly
four bytes greater than the address of the previous access.

4.4 Hit Classification

We have now all information available to compute the same block relation sb∼, which in turn
is used to predict cache hits.

Three data structures are needed for the classification: the abstract cache set Ŝ, the map
V̂ containing the relative positions of memory accesses inside a cache line and the map R̂
containing the distances between memory accesses.

The abstract cache set Ŝ is build as an array containing sets of reference memory accesses.
A reference memory access is an access which forces a particular line to be loaded into
the cache.1 To identify such a reference memory access, symbolic names are used, e.g. the
instruction which induced the access.

The map V̂ contains for each memory access the alignment information pairs from
section 4.1.

The map R̂ contains for each memory access a set of tuples, where each tuple consists of
another memory access and the minimal and maximal distance of this memory access to the
one used as index. If the DBM analysis could not derive such information, the set is empty.

Additionally, the width of a memory access is given as wi, as it depends only on the
instruction inducing the memory access.

A reference memory access iref and an ongoing memory access i are same block-related
if one can show that the addresses of the ongoing and the reference access target the same
cache line. For this, adding the access width wi and the maximum distance xmax to the
relative position of the reference access inside the cache line must not exceed the length
of the cache line. The same check has to be done for the lower cache line boundary, too.
Formally speaking:

sb∼ def= {〈i, iref 〉 | ∃xmin, xmax, y, z : 〈iref , xmin, xmax〉 ∈ R̂[i] ∧ 〈y, z〉 = V̂[iref]
∧ (y mod 32) + xmax + winstr ≤ min(z, 32) ∧ (y mod 32) + xmin ≥ 0}

The information 〈y, z〉 means that the address aref of the reference access satisfies
aref ≡ y (mod z). The remainder is then taken modulo the cache line width as we are only
interested in the relative position inside the cache line. The modulus z is taken as basis of
comparison if it is smaller than the cache line width.

1 In the assumed cache setting, each memory access is also a reference memory access, as both reads and
writes load a line when a cache miss happens. When a cache hit happens, the line is already loaded,
thus the access is again a reference memory access.

WCET’12

30 Computing Same Block Relations for Relational Cache Analysis

Listing 4 Array summation in PowerPC assembler.
.INIT:

lis r9 , 0 x18880000@h // load base address of arr ...
addi r9 , r9 , -736 // ... into r9
lis r8 , 0 x18880000@h // load first address after arr ...
addi r8 , r8 , -224 // ... into r8

.LOOP:
lwzx r0 , +0(r9) // load arr[i] into r0
add r3 , r3 , r0 // add arr[i] to sum (r3)
addi r9 , r9 , +4 // compute address of arr[i+1]

lwzx r0 , +0(r9) // same for arr[i+1] ...
add r3 , r3 , r0 // ...
addi r9 , r9 , +4 // ... due to loop unrolling

lwzx r0 , +0(r9) // same for arr[i+2] ...
add r3 , r3 , r0 // ...
addi r9 , r9 , +4 // ... due to loop unrolling

lwzx r0 , +0(r9) // same for arr[i+3] ...
add r3 , r3 , r0 // ...
addi r9 , r9 , +4 // ... due to loop unrolling

cmp cr0 , 0, r9 , r8 // check whether we are still ...
blt cr0 , 0 x18002c8 .t <LOOP > // ... in the bounds of arr

If one of the entries of the abstract cache set Ŝ and the ongoing memory access are same
block-related, then the ongoing access is classified as a hit. Otherwise, the access is not
classified.

hit(i, Ŝ) def= ∃j ∈ {1, 2} : ∃ iref ∈ Ŝ[j] : i
sb∼ iref

5 Example

To show the relational must analysis in action, we recall the little example used to show
the shortcomings of the classical must analysis. The little snippet of C code in listing 3 is
compiled to the PowerPC assembler code in listing 4. Note that loop unrolling has been
applied.

The control-flow graph of the loop body together with the alignment information and
the distance relations is given in Figure 4. The lwzx instructions are the only ones which
accesses the data memory. The access width of them is four bytes. To enhance readability,
only the ingoing and outgoing abstract cache sets of the lwzx instructions are shown, because
all other instructions do not change the abstract cache sets.

The analysis starts with an empty abstract cache set Ŝ. Since no distance relations exist
for i1, no cache hit can be predicted. Thus every entry in Ŝ ages by one and i1 is added to
the youngest one.

For i4, there exists a distance relation: the distance between the memory access of
i4 and i1 is four bytes. To check whether the access of i4 is a hit, we have to check
whether i4 and i1 are same block-related. To do so, we evaluate the constraint of relation sb∼,

S. Wegener 31

entry

?

i1: lwzx

?

i2: add

?

i3: addi

?

i4: lwzx

?

i5: add

?

i6: addi

?

i7: lwzx

?

i8: add

?

i9: addi

?

i10: lwzx

?

i11: add

?

i12: addi

?

i13: cmp

?

i14: blt

?
exit

-

Ŝ

[{}, {}]

[{i1}, {}]

[{i4, i1}, {}]

[{i7}, {i4, i1}]

[{i10, i7}, {i4, i1}]

[{i10, i7}, {i4, i1}]

V̂

〈8, 16〉

〈12, 16〉

〈0, 16〉

〈4, 16〉

R̂

{}

{〈i1, 4, 4〉}

{〈i4, 4, 4〉, 〈i1, 8, 8〉}

{〈i7, 4, 4〉, 〈i4, 8, 8〉, 〈i1, 12, 12〉}

hit?

no

yes

no

yes

Figure 4 Example for the relational must cache analysis.

WCET’12

32 Computing Same Block Relations for Relational Cache Analysis

namely (y mod 32) + xmax + w ≤ min(z, 32) ∧ (y mod 32) + xmin ≥ 0. Instantiation gives
8 + 4 + 4 ≤ 16 ∧ 8 + 4 ≥ 0. Thus the access of i4 is a predicted cache hit. Therefore no entry
ages, but i4 is inserted into the youngest one.

For i7 there exist also some distance relations. Instantiation of the constraint of relation
sb∼ gives 12 + 4 + 4 ≤ 16 ∧ 12 + 4 ≥ 0 and 8 + 8 + 4 ≤ 16 ∧ 8 + 8 ≥ 0. Both evaluate to
false. Therefore, no hit can be predicted for i7. All entries age by one and i7 is added to the
youngest one.

At i10, the memory access is same block-related to i7. Thus the access is a predicted
cache hit. Again, no entry ages. The youngest entry will consist of i10 and i7 after the
update. The other entry stays the same.

Then the second round of the fixed point iteration starts. This time, we must first join the
two incoming abstract cache sets at i1. Set intersection plus maximal age gives Ŝ = [{}, {}].
This is the same value as the input in the first round, thus the fixed point iteration stabilizes
directly.

6 Precision

In the example above, two of four accesses are classified as cache hits. This is far below the
theoretical maximum of 7

8 .
There are two reasons for that. On the one hand, no relations existed for i1. This is due

to the join of flow from the entry and the recursive loop edge. One possibility would be to
add some kind of partitioning to keep the values apart.

The other possibility is to shift the first loop iteration with loop peeling such that the
first access in the unrolled loop coincides with the one in which the first entry of a cache line
is accessed. Then, the access in which naturally no cache hit is predictable and the one in
which not enough information is available coincide.

The other reason is the length of the unrolled loop. Only half of a cache line is covered
by one iteration of the loop. If the unroll factor is high enough, the congruence information
would cover the whole cache line.

Thus, loop peeling and loop unrolling should be applied in such a way that (a) the peeled
prefix is long enough to shift the start of the unrolled loop to match the cache line boundaries
and (b) the loop is unrolled enough to cover whole cache lines. The former is usually hard to
achieve without a preceding data-flow analysis to determine the right choice. The latter can
easily be computed: the unroll factor must be a multiple of the cache line size divided by the
access width.

For the example, this means a peeled prefix of three array accesses and eight array accesses
inside the unrolled loop. Then, the number of predicted cache hits equals the theoretical
maximum of 7

8 .

7 Correctness

The following section sketches the proof of correctness of the relational must analysis with
same block relation sb∼. We assume that the used data-flow analyses and the relational cache
analysis framework are correct.

I Lemma 1 (Soundness of V̂, R̂). V̂ contains only sound abstractions of the alignment of
memory accesses. R̂ contains only sound abstractions of the linear relations between two
memory accesses.

Proof. Both statements follow from the correctness of the underlying data-flow analyses. J

S. Wegener 33

I Lemma 2 (Soundness of Ŝ). For any instruction i in a given program, Ŝ contains only
reference memory accesses for cache lines that are in the cache at the point of execution of i.

Proof. Follows from the correctness of the relational cache analysis framework. J

I Lemma 3 (Soundness of sb∼). Two instruction i, iref are same block-related only if the
induced memory accesses of both instructions target the same cache line.

Proof. The proof is carried out by showing that if two accesses target different cache lines,
then they are not same block-related.

Let c be the size of the cache, b the size of one cache line. Let instruction i induce a
memory access to address a with width w > 0. Let instruction iref induce a memory access
to address aref . Let a− aref = x.

Assume furthermore that 〈y, z〉 ∈ V̂[iref] and 〈iref , xmin, xmax〉 ∈ R̂[i]. The last two
assumptions are safe as otherwise the constraint of sb∼ evaluates to false. From lemma 1, it
follows that y = aref mod z and xmin ≤ x ≤ xmax.

Let a go into a cache line after aref , that is, a mod c > aref mod c. Then (aref mod b)+x ≥
b because the offsets of the original cache line lie in the interval [0, b−1] and (aref mod b)+x

points to a later cache line.
Two cases must be distinguished: (1) b ≤ z and (2) b > z.
If (1) holds, then y mod b = aref mod b. Thus (y mod b) + xmax ≥ b. From w > 0, it
follows directly that the constraint evaluates to false.
If (2) holds, then y mod b = y. Moreover, k′ · z + y + x ≥ k · z holds with k = b

z > 1
and 0 ≤ k′ = (aref mod b)−y

z < k. Thus y + x ≥ (k − k′) · z and k − k′ ≥ 1. Thus
(y mod b) + xmax ≥ z. From w > 0, it follows directly that the constraint evaluates to
false.
Let a go into the same cache line as aref , a mod b > aref mod b and w such that the
access crosses the cache line boundary. Then (aref mod b) + x + w > b.
Two cases must be distinguished: (1) b ≤ z and (2) b > z.
If (1) holds, then y mod b = aref mod b. Thus (y mod b) + xmax + w > b. It follows
directly that the constraint evaluates to false.
If (2) holds, then y mod b = y. Moreover, k′ · z + y + x + w > k · z holds with k = b

z > 1
and 0 ≤ k′ = (aref mod b)−y

z < k. Thus y + x + w > (k − k′) · z and k − k′ ≥ 1. Thus
(y mod b) + xmax + w > z. It follows directly that the constraint evaluates to false.
Let ma go into a cache line before aref , that is, a mod c < aref mod c. Then (aref mod b)+
x < 0 because the offsets of the original cache line lie in the interval [0, b − 1] and
(aref mod b) + x points to an earlier cache line.
Two cases must be distinguished: (1) b ≤ z and (2) b > z.
If (1) holds, then y mod b = aref mod b. Thus (y mod b) + xmin < 0. It follows directly
that the constraint evaluates to false.
If (2) holds, then y mod b = y and y ≤ (aref mod b). Thus (y mod b) + xmin < 0. It
follows directly that the constraint evaluates to false.

J

I Theorem 4 (Soundness of the relational must cache analysis with same block relation sb∼).
For any instruction in a given program, a cache hit is only predicted if it would happen in
every concrete run of the program.

WCET’12

34 Computing Same Block Relations for Relational Cache Analysis

Proof. From lemma 2, it follows that at any instruction, Ŝ contains only reference memory
accesses for cache lines that are currently in the cache. A hit is only predicted, if the given
instruction is same block-related to a reference memory access in Ŝ. From lemma 3 follows
that two memory accesses are only same block-related if they target the same cache line.
Thus a hit is only predicted if a memory access targets a cache line that is currently in the
cache. J

8 Experimental Results

A prototype implementation of the relational cache analysis with same block relation sb∼
has been integrated into the aiT WCET analyzer [1]. With this prototype, the Mälardalen
WCET Benchmark [8] has been analyzed. The results of both the classical cache analysis
and the relational cache analysis are shown in table 1. For the classical cache analysis, the
loops have been 1-fold peeled. For the relational cache analysis, the loops have been 1-fold
peeled and 8-fold unrolled.

One interesting property is the data cache hit prediction ratio on the critical path. For
most tests, the prediction ratio increased as expected.

A closer look has been taken for those tests where the relational cache analysis did not
show the desired improvements. Three tests performed particularly bad: insertsort, fir
and cover. They all have in common that no relations could be computed. This is because
of the strange control flow generated by the compiler. In insertsort for example, two loops
are merged into one. On one join point, the relation r7 = r0 comes from one edge and the
relation r7 = r5 from another. As r0 and r5 have different values, no relation remains after
the join. A similar thing happens in fir. In cover, some of the loops are split into two
nested ones.

Another programming pattern that is bad for relational cache analysis is unveiled in crc.
Here, the computation depends heavily on bit operations. These destroyed the relational
information since the DBMs only handle linear relations.

One particular interesting test is lcdnum. The results of this test show a much higher
data cache prediction ratio for the classical cache analysis than for the relational one. This
seems counterintuitive at first glance, but there is no error. The reasons for this behaviour
are the paths which could be proven infeasible due to the loop unrolling. On these paths are
lots of loads which induce cache hits. Thus the data cache prediction ratio is higher than for
the relational cache analysis.

Another point of interest is the performance of the relational cache analysis. For most
tests, the additional runtime for performing the relational value analysis with difference
bound matrices is only a few seconds. The biggest exception is lms, where the runtime
increased from 3 to 127 seconds. However, the data cache prediction ratio increased from 56%
to 78% and the WCET bound decreased by about a quarter. Thus the decreased performance
is justified by the increased precision.

9 Related Work

Both Grewe [7] and Flexeder [5] propose to use alignment information to improve the
prediction of cache hits. However, they do not work out the details of their ideas.

Hahn and Grund [9] use global value numbering [2] in combination with interval analysis
to compute the same block relation. This technique, however, is not powerful enough to
relate the changing addresses of the array accesses inside the loop.

S. Wegener 35

Table 1 Results for the Mälardalen WCET benchmark. For both the relational cache analysis
and the classical cache analysis, it is given the computed WCET bound in cycles, the predicted data
cache hit ratio on the critical path and the analysis time in seconds.

Relational Classical
program WCET ratio time WCET ratio time

adcpm 407360 .68 6 569195 .21 4
bs 1230 .08 1 1234 .08 1
bsort100 1827484 .86 14 3205665 .00 2
cnt 20007 .91 5 28668 .51 1
compress 4254976 .30 17 4281933 .30 2
cover 31196 .04 6 43102 .00 8
crc 175060 .17 3 228931 .01 2
duff 13039 .70 2 18425 .00 1
edn 541462 .42 12 836568 .04 3
expint 9999 .72 2 59291 .72 1
fac 824 .33 1 898 .33 1
fdct 11192 .93 2 22740 .15 1
fft1 57139 .93 14 66627 .87 5
fibcall 715 .00 1 715 .00 1
fir 32102 .04 6 36381 .01 1
insertsort 17887 .00 1 17887 .00 1
janne_complexa 12633 — 2 12633 — 1
jfdctint 17021 .91 2 32266 .08 1
lcdnum 2339 .57 1 5658 .78 1
lms 3575657 .78 127 4599643 .56 3
ludcmp 13129 .93 6 495695 .01 2
matmult 1570041 .43 44 2225727 .04 2
minver 13283 .70 2 36194 .10 3
ndes 644343 .57 17 759276 .54 3
ns 9744 .86 6 84442 .00 1
nsichneu 292027 .85 14 292027 .85 11
prime 27515 .76 2 27518 .76 1
qsort-exam 497534 .01 34 644161 .00 2
qurt 21101 .73 3 24002 .69 1
recursion 10972 .37 5 12308 .05 1
select 104532 .03 7 111912 .00 1
sqrt 9140 .50 2 20446 .50 1
stb — — — — — —
statemate 138338 .97 10 146960 .96 7
ud 9850 .93 3 104877 .01 2

a This program contains no loads.
b This program could not be compiled.

WCET’12

36 Computing Same Block Relations for Relational Cache Analysis

Lundqvist and Stenström [12] proposed a method to classify data structures as predictable
or unpredictable. Unpredictable data structures should then be moved into some uncached
memory areas to prevent the eviction of cache entries which buffer parts of the predictable
data structures to reduce the overestimation caused by imprecise address information.

Vera and Xue [14] use cache miss equations [6]. They try to relate memory accesses, too,
but instead of using an abstract interpretation based data-flow analysis, they compute linear
equation systems to count the number of accesses between the reference and the ongoing
access. If at least k such accesses exist, they assume a sure miss. Their analysis is restricted
to precise address information.

Li, Malik and Wolfe [10, 11] expressed the cache behaviour through integer linear programs.
In case of imprecise address information, they add a constraint to the ILP that only one
of the addresses is taken. This allows the ILP solver to choose the worst case. This may
lead to huge ILPs with unacceptable solving times. Moreover, they do not express mutually
exclusive cache misses.

10 Conclusion and Future Work

This paper presented a method to compute same block relations for relational cache analysis.
The relational cache analysis is a novel cache analysis which is able to predict cache hits even
if precise address information is unavailable. It relates memory accesses and checks whether
they go to the same cache line. Thus it forms a substantial improvement over Ferdinand’s
cache analysis which needs precise address information for its predictions.

Using the analyses presented in the work at hand, a same block relation sb∼ is computed
which – in contrast to the one in [9] – is powerful enough to relate memory accesses with
changing addresses, for example if array accesses happen inside a loop.

First experiments on the Mälardalen WCET Benchmark [8] show that the presented
same block relation works well. In the mean, about 52% of the memory accesses have been
predicted as cache hits by the relational cache analysis. The classical cache analysis predicts
only about 27% cache hits if the loops are not unrolled, and about 64% cache hits if the
loops have been fully unrolled to compute globally precise address information.

While loop peeling and loop unrolling are needed to increase the precision of sb∼, loop
fusion and loop fission may hamper the precision as the experimental results show.

Further improvements are possible: At the moment, only cache hits are predicted by the
relational cache analysis, i.e. it is a must analysis. Finding the right congruence analyses to
support precise relational may analysis is still an open research question. Moreover, using
only sb∼ as same block relation, the relational cache analysis cannot distinguish between the
different cache sets, and all collapse into one, effectively decreasing the achievable precision.
To overcome this obstacle, same set, different set relations need to be computed, too. Both
will be targeted in future work.

Acknowledgements This work is based on the author’s master’s thesis [15], written under
the supervision of Prof. Dr. Dr. h.c. Reinhard Wilhelm and Dr. Florian Martin. The author
likes to thank Dr. Reinhold Heckmann, Dr. Daniel Grund and the anonymous reviewers for
their valuable comments and suggestions.

S. Wegener 37

References
1 AbsInt Angewandte Informatik GmbH. aiT Worst-Case Execution Time Analyzer. http:

//www.absint.com/ait/.
2 Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of variables

in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’88, pages 1–11. ACM, 1988.

3 David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Proceedings of the International Workshop on Automatic Verification Methods for Finite
State Systems, pages 197–212, London, UK, 1990. Springer-Verlag.

4 Christian Ferdinand. Cache Behavior Prediction for Real-Time Systems. PhD thesis, Saar-
land University, 1997.

5 Andrea Flexeder. Interprocedural Analysis of Low-Level Code. PhD thesis, Technische
Universität München, 2011.

6 Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equations: a compiler
framework for analyzing and tuning memory behavior. ACM Trans. Program. Lang. Syst.,
21(4):703–746, July 1999.

7 Dominik Grewe. Static Congruence Analysis on Binaries. Bachelor’s thesis, Saarland
University, 2008.

8 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET
Benchmarks - Past, Present and Future. In Proceedings of the 10th International Workshop
on Worst-Case Execution Time Analysis, July 2010.

9 Sebastian Hahn and Daniel Grund. Relational Cache Analysis for Static Timing Analysis.
In Proceedings of the 24th Euromicro Conference on Real-Time Systems, Los Alamitos, CA,
USA, July 2012. IEEE.

10 Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Efficient microarchitecture model-
ing and path analysis for real-time software. In Proceedings of the 16th IEEE Real-Time
Systems Symposium, RTSS ’95, page 298, Washington, DC, USA, 1995. IEEE Computer
Society.

11 Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Cache modeling for real-time soft-
ware: beyond direct mapped instruction caches. In Proceedings of the 17th IEEE Real-Time
Systems Symposium, RTSS ’96, page 254, Washington, DC, USA, 1996. IEEE Computer
Society.

12 Thomas Lundqvist and Per Stenström. A method to improve the estimated worst-case
performance of data caching. In Proceedings of the Sixth International Conference on Real-
Time Computing Systems and Applications, RTCSA ’99, page 255, Washington, DC, USA,
1999. IEEE Computer Society.

13 Antoine Miné. A new numerical abstract domain based on difference-bound matrices. In
PADO ’01: Proceedings of the Second Symposium on Programs as Data Objects, pages
155–172, London, UK, 2001. Springer-Verlag.

14 Xavier Vera and Jingling Xue. Let’s study whole-program cache behaviour analytically.
In Proceedings of International Symposium on High-Performance Computer Architecture
(HPCA ’02), pages 175–186, 2002.

15 Simon Wegener. Improving Static Analysis of Loops. Master’s thesis, Saarland University,
2011.

WCET’12

http://www.absint.com/ait/
http://www.absint.com/ait/

	Introduction
	Cache Configuration
	Predicting Cache Hits: Globally Precise Address Information vs. Locally Precise Address Information
	Computing Same Block Relations
	Alignment Information
	Loop Peeling and Loop Unrolling
	Distance Relations
	Hit Classification

	Example
	Precision
	Correctness
	Experimental Results
	Related Work
	Conclusion and Future Work

