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Abstract
Ground-and-solve methods used in state-of-the-art Answer Set Programming and model expan-
sion systems proceed by rewriting the problem specification into a ground format and afterwards
applying search. A disadvantage of such approaches is that the rewriting step blows up the ori-
ginal specification for large input domains and is unfeasible in case of infinite domains. In this
paper we describe a lazy approach to model expansion in the context of first-order logic that can
cope with large and infinite problem domains. The method interleaves grounding and search,
incrementally extending the current partial grounding only when necessary. It often allows to
solve the original problem without creating the full grounding and is hence more widely applic-
able than ground-and-solve. We report on an existing implementation within the IDP system
and on experiments that show the promise of the method.
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1 Introduction

Model expansion [8] is the task of generating models of a logical theory for a given uni-
verse of domain elements. It is a widely accepted way to solve a range of problems, by
encoding the problem in a declarative (logic) language such that structures which satisfy
the specification are solutions to the problem. Model expansion is related to answer set
generation in Answer Set Programming [10] and to finding variable assignments satisfying
sets of constraints in Constraint Programming [1]. One approach used to solve such infer-
ence tasks is the ground-and-solve paradigm. The problem specification is formulated in a
high-level (user-friendly) language, which is then rewritten into a lower-level representation
on which a search algorithm can be applied. This process is called grounding (also known as
unrolling). Examples are the high-level language FO(·) [5], which is grounded to its propos-
itional fragment PC(·); ASP is grounded to propositional ASP and MiniZinc [9] is unrolled
into Flatzinc.

An important bottleneck to applying ground-and-solve is the size of the grounding.
Grounding an FO theory results in a blow-up of the size of the theory, related to the nesting
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depth of quantifiers and the size of the domains of the original theory. There are lots of
practical problems in which the propositional theory is too large to generate.

In this paper, we present a novel approach to remedy this bottleneck, based on rewriting
the theory lazily instead of up-front. The two main ideas are placeholder introduction and
∀-instantiation. Placeholders which represent non-ground formulas are introduced in the
grounding. During search, they are “grounded further” depending on the interpretation.
For sentences of (universally quantified) disjunctions, conditions are derived under which
those sentences can certainly be satisfied by some extension of the current interpretation.
As long as the interpretation satisfies those conditions, the sentence is not added to the
grounding. Consider for example a disjunctive sentence: as long as one disjunct is true in
the model, the value of the others is irrelevant.

It is also shown that the approach becomes even stronger when we are only interested in
a subset of the full solution, as long as it can certainly be extended to a model. For example
for planning problems, we are often only interested in the actions necessary to achieve the
goal, independent of the full (possibly infinite) time frame and any additional relationships.

The approach is presented for theories in function-free first-order logic. Without loss
of generality, any FO theory can be transformed into one not containing functions [18]. In
section 3, it is shown how to represent partly ground theories and their properties. Section
4 shows which formulas to delay and the lazy model expansion algorithm is presented in
section 4.4. Experimental results are provided in section 5, related work in 6.

2 Preliminaries

In this section, we first present syntax and semantics of FO, used throughout the paper,
followed an introduction to the inference tasks modelexpansion and grounding.

2.1 FO
We assume familiarity with classical logic. A vocabulary Σ consists of a set of predicate
and function symbols. Propositional symbols and constants are 0-ary predicate symbols,
respectively function symbols. FO terms and formulae are defined as usual, and are built
inductively from variables, constant and function symbols, logical connectives (¬, ∧, ∨) and
quantifiers (∀, ∃).

Each variable x is assumed to have an associated set of domain elements t over which the
variable ranges, denoted as x[[t]]. We sometimes refer to such a variable as a typed variable
and formulae containing only typed variables as typed formulae. Given a formula ϕ with a
free variable x, substitution of x with domain element d is denoted as ϕ[x/d].

Throughout the paper, A and L are used to refer to an atom, respectively a literal. A
ground sentence is a sentence without variables (hence also without quantifiers). A ground
theory is a theory consisting of ground sentences.

In this paper we deal with three-valued interpretations I which allow us to adequately
represent the partial structure within a search algorithm. We will sometimes write an
interpretation I as the set of all domain literals which are true in it. For example given a
set of domain atoms {P,Q,R}, then I = {P,¬Q}, denotes the interpretation in which P is
true, Q is false and R is unknown.

The interpretation of a sentence under an interpretation I, denoted I(ϕ), is defined as
usual except for quantified formulae, as we assume each variable is typed. For existential
quantification, I(∃x[[t]](ϕ)) is true iff there is a d ∈ t such that I(ϕ[x/d]) = t; and false iff
for all d ∈ t we have I(ϕ[x/d]) = f. (Typed) universal quantification is defined similarly.
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The interpretation of formulae containing the shorthands ⇒,⇐ and ≡ is taken to be the
interpretation of the formulae they represent.

A (three-valued) interpretation I is a model of an FO sentence if and only if the sentence
is true under the interpretation. It is a model of an FO theory T if and only if it is a model
of each of the sentences in T .

An interpretation I is more precise than an interpretation I’ if and only if I is identical
to I’ except on symbols which are unknown in I’ (I ′ ⊆ I). Two interpretations I and J

agree on shared symbols if there is no proposition P where {P,¬P} ⊆ I ∪ J .
An occurrence of a subformula ϕ in T is called monotone if it is not in the scope of a

negation. It is anti-monotone if it is in the scope of a negation. If it occurs as a subformula
of an equivalence, it is called non-monotone. This reflects the well-known property that
increasing the truth value of an atom with only monotone occurrences, increases the truth
value of formulas. If the atom has only anti-monotone occurrences, then increasing its truth
value decreases the value of formulae.

With a slight abuse of notation, given a theory T , T is used both to refer to the set and
the conjunction of the sentences it contains.

2.2 Model expansion
Model generation is the inference task of, given a vocabulary Σ, a theory T over Σ and a
(partial) interpretation Sin of Σ, finding models M which satisfy T and are more precise
than Sin. If the universe of domain elements is part of the input structure, the inference
task is called model expansion, denoted as MX〈T ,Sin〉. Model expansion can be used to
solve problems by modelling them as a logical theory and structure such that solutions to
the problem are models of the theory extending the structure[8].

In this paper we consider an instance of model expansion where also an “output” vocab-
ulary σout is given, a subset of Σ. The idea is then to generate interpretations I which
are two-valued on σout and for which an extension exists which is a model of the theory
T and is more precise than Sin. Conceptually, this comes down to problems where we are
only interested in some part of the solution, as long as we are guaranteed that a complete
solution exists. This task generalizes both satisfiability checking (where σout is emtpy) and
model expansion (where σout = Σ). It is denoted as MX〈T ,Sin, σout〉.

In the next sections, we present an approach for model expansion over an empty output
vocabulary. In section 4.4, the approach is extended (in a straightforward way) to non-empty
output vocabularies.

2.3 Grounding
Basically, grounding is the process of instantiating all variables with domain elements to
obtain a propositional theory. The full grounding of a typed, free-variable free FO formula
ψ, Gfull(ψ), is defined by Table 1. The size of the full grounding of a formula is exponential
in the nesting depth of quantifiers and polynomial in the size of the domains.

More intelligent grounding techniques exist which reduce the size of the grounding, such
as grounding with bounds [16].

3 Delayed theories

Lazy grounding (lazy mx) is an approach to interleave grounding and search. The key
idea of our approach is to partly ground the input theory and to delay grounding of the
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Table 1 The definition of the full grounding Gfull(ψ) of an FO formula ψ not containing free
variables.

Original formula ψ Full grounding Gfull(ψ)
P (d) P (d)
¬P (d) ¬P (d)∧
i∈[1,n] ϕi

∧
i∈[1,n] Gfull(ϕi)∨

i∈[1,n] ϕi
∨
i∈[1,n] Gfull(ϕi)

∀y[[t]] : ϕ
∧
d∈tGfull(ϕ[y/d])

∃y[[t]] : ϕ
∨
d∈tGfull(ϕ[y/d])

ϕ ≡ ϕ′ Gfull(ϕ) ≡ Gfull(ϕ′)

remainder. Conditions on the partial interpretation are derived which govern whether ad-
ditional grounding is necessary. We call such conditions delays.

I Example 1. Consider the sentence (∃x[[t]] : P (t)) with t ranging from 1 to n. As long
as P (1) is not false, it can still be assigned a value (true) such that the formula becomes
satisfied. Therefore, we can delay the remaining instantiations by replacing them with a new
Tseitin symbol T , resulting in the ground clause P (1) ∨ T and the non-ground “delayed”
formula T ≡ ∃x[[t\1]]. The latter formula is only grounded further if T becomes true.

Such a condition on the partial structure I, I(T ) 6= t, is called a delay. As long as it is
satisfied, no additional grounding is performed on the associated sentence. The result is a
theory which is equivalent to the original one (as Tseitin transformation was used) and if a
partial interpretation can be found which satisfies the ground portion and the delay, it can
certainly be extended to a full model (setting I(T ) to I(∃x[[t\1]])). �

I Example 2 (Continued). Consider the theory consisting of the previous sentence and the
additional sentence (∀x[[t]] : P (x) ≡ ϕ(x)), with ϕ a general formula not containing P . As
long as P (d) has not been assigned a value, P (d) can still be assigned a value such that
P (d) ≡ ϕ[x/d] is consistent (namely I(P (d)) = I(ϕ[x/d])). Consequently, grounding only
has to be applied for instantations of x with domain elements d for which I(P (d)) is not
unknown. The delay is then the condition I(∃x[[t]] : ¬P (d)) 6= u. �

Delayed grounding can lead to a significant reduction in the size of the grounding. In
the case of (∃x[[t]] : P (t)), quantifier instantiation is only done partially. In the case of
(∀x[[t]] : P (x) ≡ ϕ(x)), it is even completely avoided as long as the delay is satisfied.

3.1 Delays on formulae
A delayed sentence has the form (ϕ)δ where ϕ is a sentence and δ is a delay condition (in
short, a delay). A delayed theory Td is a theory consisting of a ground theory G and a
residual (non-ground) theory D consisting of delayed sentences. We will often denote it by
〈G,D〉. Such a delayed theory will be obtained by partially grounding the theory, resulting
in G, and partially delaying the grounding, resulting in D.

Two types of delays are considered:
A true-delay, denoted ϕ 6= t, is satisfied in an interpretation I iff I(ϕ) 6= t.
A known-delay, denoted ϕ = u, is satisfied in an interpretation I iff I(ϕ) = u.

We say that a (partial) interpretation I satisfies (is a model of) a delayed sentence (ϕ)δ
if I satisfies ϕ. We say that I weakly satisfies (ϕ)δ if I satisfies the delay or I satisfies ϕ. By
extension, an interpretation weakly satisfies a (delayed) theory iff it satisfies all its sentences.
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We will say that a delayed sentence (φ)δ is active in I if its condition δ is not satisfied,
otherwise it is inactive. Conceptually, grounding will be triggered when a sentence becomes
active, transforming it into ground sentences and inactive delayed sentences.

The lazy grounding algorithm will iteratively reduce delayed theories into “more ground”
delayed theories. The main invariant of the algorithm is that any such delayed theory is a
partial grounding of T : A delayed theory Td is a partial grounding of a theory T iff
T and Td are “logically equivalent” in the sense that each 2-valued model M of T can
be extended to a model of Td and vice versa, each 2-valued model of Td satisfies T .
Each interpretation that weakly satisfies Td has a two-valued extension that satisfies T .

I Example 3 (Continued). The delayed theory introduced in example 2 is a partial grounding
of its original theory. It consists of a ground theory P (1) ∨ T and of the delayed sentences

(T ≡ ∃x[[t\1]])T 6=t (∀x[[t]] : P (x) ≡ ϕ(x))∃x[[t]]:¬P (d)=u

The next section shows which delays can be safely introduced to guarantee this invariant.

4 Introducing delayed sentences

The lazy grounding component of the lazy mx algorithm is responsible for the grounding of
an active delayed theory into a more ground, inactive one.1 To this end, delayed sentences
are replaced by a combination of ground and delayed sentences. This is either achieved with
Tseitin introduction (section 4.1) or ∀-instantiation (section 4.2). The lazy mx algorithm
itself is then presented in section 4.4.

4.1 Tseitin introduction

Recall from example 1 that ∃x[[t]] : P (x) was partially grounded to the ground formula P (1)∨
T and a delayed sentence ((T ≡ (∃x[[t\1]] : P (x))))T 6=t. We here describe this operation.

I Definition 4 (Tseitin introduction). Given a delayed theory Td = 〈G,D〉 and a set of
occurrences of a formula ϕ in sentences ψ with (ψ)δ ∈ Td, the Tseitin introduction for ϕ in
Td is the delayed theory Td’=〈G,D′〉 where D’ is obtained from D by

substituting each selected occurrence of ϕ in D with the new propositional symbol Tϕ
adding a new delayed sentence (Tϕ ≡ ϕ)δ′ where δ′ is determined as follows:

If all selected occurrences of ϕ are monotone in D, then δ′ = (Tϕ 6= t).
If all are anti-monotone, then δ′ = (¬Tϕ 6= t).
Otherwise, δ′ = (Tϕ = u). �

Applying Tseitin introduction to any partial grounding of a theory T results in a partial
grounding of T .

I Example 5. Consider the theory T = P ≡ ∀x[[t]] : Q(x). Applying Tseitin introduction
to ∀x[[t\1]] : Q(x) results in the ground theory P ≡ Q(1) ∧ T and the delayed sentence
(T ≡ ∀x[[t\1]] : Q(x))T = u. This delayed theory is a partial grounding of T .

1 Note that an initial theory T trivially corresponds to the delayed theory
〈
∅, {(ϕ)t 6=t |ϕ ∈ T }

〉
with an

empty ground theory and all its formulae active.

ICLP’12
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4.2 ∀-instantiation
Another approach to introducing delays applies to sentences of which a condition on their
satisfiability can be derived. For some classes of formulae such conditions are well-known:

I Example 6. Consider the definite clause ∀x[[t]] : P1(x) ∧ . . . ∧ Pn(x) ⇒ Q(x). Any
interpretation I in which none of the (ground) heads Q(d) are false can be extended to an
interpretation which satisfies all clauses, namely the extension in which all heads are true.
Consequently, only instantiations with domain elements d for which I(Q(d)) is false need to
be grounded. The remaining instantiations can then be delayed on the falsity of their heads.
Assume for example that only I(Q(d1)) = f for some d1 ∈ t. The delayed theory Td

Td =
〈
φ[x/d1]⇒ Q(d1), {(∀x[[t\d1]] : φ(x)⇒ Q(x))∃x[[t\d1]]:¬Q(x) 6= t}

〉
is then a partial grounding of the definite clause under I. �

Below, it is shown formally how to delay instantiation for universally quantified dis-
junctive sentences based on their satisfiability. Delaying those is not captured by Tseitin
introduction and they represent a class of formulae which occur often in practice. At the end
of the section, it is shown how the approach can be extended to other classes of formulae.

I Definition 7 (∀-instantiation). Consider a delayed theory Td = 〈G,D〉, a partial grounding
of T , and an interpretation I. Assume a sentence ψ = ∀x[[t]] :

∨
i∈[1,m] ϕi with (ψ)δ ∈ D.2

Applying ∀-instantiation to ψ for Td under I consists of selecting a subset Sd of
⋃
i∈[1,m] ϕi

such that each formula in Sd is a literal of which the symbol does not occur with opposite
sign in any delay in Td. Assume nd denotes the set of tuples of domain elements which
falsify all formulae in Sd under I (so they cannot be delayed). Then 〈Grem,Drem〉 is the
grounding of the sentence ∀x[[nd]]

∨
i∈[1,m] ϕi. The remaining instantiations are delayed by

the delay condition χ = ∃x[[t\nd]] :
∧
ϕi∈Sd ¬ϕi 6= t. The result is the delayed theory

T ′
d =

〈
G ∧ Grem,D − {ψ} ∪ Drem ∪ (∀x[[t\nd]]

∨
i∈[1,m] ϕi)χ

〉
. �

As for Tseitin introduction, it can be shown that applying ∀-instantiation to any partial
grounding of a theory T results in a partial grounding of T .

It should be noted that whether such a delay can contain a literal over a symbol P
depends on occurrences of P in existing delays. If multiple delays are watching different
truth assignments to the same symbol, inconsistencies might not be detected.
∀-instantiation can be extended to other classes of formulae such as equivalences and

non-monotone occurrences of quantifiers. For sentences of the form ∀x[[t]] : L(x) ≡ ϕ(x) for
example, the strategy is as outlined above except that χ becomes a known-delay. In the
same fashion, the approach can be extended to inductive definitions[5], sets of rules of the
form (∀x : L(x)← φ) evaluated by the well-founded semantics[13]. Furthermore, the exact
delays used by ∀-instantiation allow us to trade-off propagation versus grounding size and
towards solving query tasks. Details are out of the scope of this paper, but results of these
ideas are included in the prototype implementation used in the experiments.

4.3 Delayed grounding algorithm
With these techniques, we can now give an informal (due to lack of space) presentation
of the delayed grounding algorithm for_del_gnd. The algorithm takes as arguments an

2 A delayed sentence (ϕ ∧ ϕ′)δ can be seen as the union of delayed sentences (ϕ)δ and (ϕ′)δ.
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interpretation I, a theory T and the set of delays of all currently delayed sentences. It
returns a delayed theory Td inactive in I which is a partial grounding of T .

We assume a standard top-down reduced grounding algorithm, such as in e.g. [15], which
recursively visits the theory top-down to ground it. The algorithm keeps track of the set of
ground and delayed sentences and of the context ((anti/non)-monotone).

Lazy grounding is applied in two different scenarios. Firstly, if a universally quantified
disjunctive sentence is encountered for which a set of subformulas can be selected according
to the above conditions, the sentence is delayed using ∀-instantiation (recursively grounding
non-delayable instantiations). Secondly, for an existential quantification or disjunction, a
non-false subformula is selected randomly3 and grounded recursively; the remainder of the
formula is delayed by Tseitin introduction. The second approach is also applied for non-
monotone occurrences of universal quantifiers and conjunctions.

4.3.1 Incremental delayed grounding algorithm
Initially, for_del_gnd is applied to I and T (no delayed sentences yet), resulting in an initial
delayed theory Td. In order to construct a weak model for a delayed theory Td, search and
grounding are interleaved. When, during search, an interpretation I is constructed where
some delays in Td are active, further grounding is applied to the associated delayed sentences.
This is achieved by iterating over all delayed sentences in Td and incrementally applying
for_del_gnd to each active delayed sentence. Each new ground sentence is added to the
ground theory and the original delayed sentence is replaced by new delayed sentences (if
any). This algorithm is denoted as inc_del_gnd. It takes as input an interpretation I and a
delayed theory T and the result is a partial grounding of T which is inactive under I.

I Example 8. Consider T = ∃x[[t]] : (P (x) ∧ R(x)) ∨ (∀y[[t′]] : Q(x, y)). Delayed grounding
of this sentence is achieved by selecting a domain element d ∈ t and applying for_del_gnd
to (P (d) ∧ R(d)) ∨ (∀y[[t′]] : Q(d, y)) while applying Tseitin introduction to the residual
subformula φ = ∃x[[t\d]] : (P (x) ∧R(x)) ∨ (∀y[[t′]] : Q(x, y)).

Applying for_del_gnd to (P (d) ∧ R(d)) ∨ (∀y[[t′]] : Q(d, y)) recursively calls for_del_gnd
on P (d) ∧ R(d) and Tseitin introduction on the other disjunct ψ = (∀y[[t′]] : Q(d, y)). The
resulting delayed theory consists of the ground sentence (P (d) ∧ R(d)) ∨ Tψ ∨ Tφ and the
true-delayed sentences:

(Tψ ≡ (∀y[[t′]] : Q(d, y)))Tψ 6= t

(Tφ ≡ ∃x[[t\d]] : (P (x) ∧R(x)) ∨ (∀y[[t′]] : Q(x, y)))Tφ 6= t �

4.4 Lazy model expansion
The complete lazy model expansion algorithm, denoted lazy_mx and shown below, inter-
leaves grounding and search based on a standard (incremental) CDCL search algorithm.
The algorithm (shown below) gets as input a theory T and a pre-interpretation Sin and
maintains the current delayed theory 〈G,D〉. The (current) ground theory provides the con-
straints used during search. If a conflict at root level is encountered, then G has no model
and hence neither does T since 〈G,D〉 is a partial grounding of T . If a delay is active,
grounding is performed to construct a new delayed theory which is a partial grounding of
T . If all delays are inactive and the search algorithm detects that I satisfies all constraints
in G, I is a weak model of 〈G,D〉. As 〈G,D〉 is a partial grounding of T , T is satisfiable.

3 Better heuristics are part of future work.
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lazy_mx (T , I)
〈G,D〉 := for_del_gnd(T , I, ∅)
while true do

I := unit_propagation(G,I)
if (conflict detected)

if (at root level) return false

G := G ∧ conflict clause
I := I at state of backjump point

else if (some delay in D is active in I)
〈G,D〉 := inc_del_gnd (〈G,D〉,I)

else if (satisfaction of G in I is detected) return true

else I := I ∪ {l} with l a search choice

If the lazy_mx algorithm returns true, T has a model that is more precise than I. If the
algorithm returns false, no interpretation exists which is more precise than I and satisfies
T . The algorithm terminates if T and I are finite. If T has a finite number of sentences,
termination is possible but not guaranteed (not even when a finite model exists).

Deciding atoms occurring in known-delays when I is already a weak model of T will
obviously cause unnecessary grounding. As standard search algorithms decide all literals in
the ground theory, we use a modified algorithm which tracks satisfaction of constraints in
an efficient way without deciding all literals in the ground theory.

To handle non-empty output vocabularies σout, we modified the algorithm to always
return models which are two-valued on σout. This is achieved by forcing the search algorithm
to decide all atoms in the set of domain atoms of σout under Sin.

5 Experiments

A prototype implementation was created within the idp-3 system, a knowledge base system
based on extensions of first-order logic. The idp system is a state-of-the-art model expansion
system, based on the ground-and-solve paradigm [14], [3].

Experiments were conducted with three setups: basic model expansion (denoted idp),
lazy model expansion by Tseitin introduction (idpT ) and by Tseitin introduction and by
∀-instantiation (idpT,S).

The considered benchmarks represent a diverse set of problems, both existing benchmarks
(e.g. from previous ASP competitions) and newly constructed ones. As most existing
benchmarks are problems with a feasible grounding and difficult search part, we also created
new instances which are computationally easier but have a very large grounding. This
combination will allow to assess the strengths and weaknesses of the approach.

For each benchmark instance, runtime and grounding size are measured for each setup.
Grounding size is measured as the number of literals over the input vocabulary. The ground-
ing size of all setups is compared to the (theoretical) grounding size of the full grounding
(see table 1). 4 The results are shown in table 2.

The experiments show that, for a range of benchmarks and instances, lazy mx by in-
cremental grounding can be very beneficial. For most benchmarks, the grounding size is
reduced orders of magnitude over both the full grounding and the reduced grounding as

4 For the full grounding, the input structure is not taken into account. Consequently, even the grounding
of the IDP setup can be smaller than the full grounding as IDP constructs a reduced grounding.
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Table 2 Experimental results of applying lazy model expansion (idpT and idpT,S) compared to
default model expansion (idp). Grounding time (in seconds) is denoted as t, grounding size as G, ∗∗
denotes ASP competition instances. A timeout of 1000 seconds was used and a memory limit of 3
Gb, — indicates timeout or memory overflow. All experiments were run on an Intel Core 2 Machine
(dual 2.40Ghz) running Ubuntu 10.4. The version of the idp system used in the experiments and
all data files are available from http://dtai.cs.kuleuven.be/krr/research/experiments.

Benchmark Gfull Gidp GidpT GidpT,S tidp tidpT tidpT,S

func-1 8.0 ∗ 107 8.0 ∗ 107 1.6 ∗ 105 540 99.03 4.07 0.1
func-2 ∞ — — 1370 — — 0.1
bnq** 1.4 ∗ 108 1.1 ∗ 105 1.1 ∗ 105 6.8 ∗ 104 2.56 2.56 1.96
packing-1 1.0 ∗ 1010 1.2 ∗ 108 1.1 ∗ 108 1.0 ∗ 106 171 172 5.0
packing-2 3.1 ∗ 1012 — — 2.2 ∗ 107 — — 27.0
agentK 5.0 ∗ 106 — — 626 — — 0.02
planning1 ∞ — — 385 — — 0.29
planning2-1 3.0 ∗ 108 2.0 ∗ 108 .05 ∗ 106 4.3 ∗ 104 139.02 5.96 0.46
planning2-2 3.0 ∗ 1010 — 5.1 ∗ 108 2.5 ∗ 106 — 455.02 31.05
soko-18** 1.6 ∗ 108 8.3 ∗ 107 — — 247.5 — —
soko-L 3.7 ∗ 108 — 1.5 ∗ 106 4.0 ∗ 105 — 16.0 6.0
reach-08** 2.3 ∗ 1018 — — 60 — — 26.05
reach-14** 6.2 ∗ 1014 — — 1.7 ∗ 105 — — 3.36

done by idp. Running times on many benchmarks go from untractable to solvable within
seconds. Runtime is only worse for the sokoban 18 problem.

Tseitin introduction proves to be an advantage in benchmarks such as encoding functional
dependencies and planning: problems which are generally solved by selecting an appropriate
(small) subset of literals to assign, even if this choice is unguided. Indeed, it is enough to
select one domain elelement for each function range or only actions for a small timeframe
in many planning problems. On the other hand sokoban 18 shows that in hard planning
problems, the incremental approach has an adverse effect on the search (introduction of
large number of Tseitin literals). As expected, it has few effects on problems with a universal
quantifications over large domains, such as packing 2, reachability and func 2.

Delaying using ∀-instantiation was expected to have a positive effect on most benchmarks,
unless the loss in propagation is too significant (such as for sokoban 18). On all other
benchmarks, it has an outspoken positive effect:

Even for bounded N-Queens, a hard search problem, the grounding size is reduced and
the performance increased, because non-propagating implications are not grounded.

Problems with an infinite full grounding can be solved, such as planning problems over
infinite times. The conjunction with Tseitin introduction is crucial to delay both exist-
ential and universal quantifiers.

It acts as a kind of dynamic dependency analysis, selecting the parts of the theory which
(hopefully) contribute to finding a model. This can be observed in particular in reach-
ability (reach-*), in fact a query task generally solved by (static) dependency analysis.
Additionally, the dynamic character of our approach is both at least as powerful and
more general, during search only grounding what becomes relevant.
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6 Related work

Within logic programming and ASP, static dependency analysis is applied as a means to
reduce the size of the grounding up-front by detecting non-relevant parts of the theory. It has
been implemented for example in [7] and [17]. Furthermore, lazy grounding techniques have
been researched within ASP [6], [12] and CP [11]. Such techniques usually work on delaying
grounding of specific constraints as long as they do not cause propagation, for example for
all-different constraints, aggregates and equality reasoning. Our lazy mx approach is more
general, as it performs dependency analysis dynamically and is able to delay grounding even
when propagation is possible, but might be less powerful for constraints for which specific
algorithms exist. Comparing those techniques in-depth is part of future work.

The model generation theorem prover Paradox [4] uses a grounding technique based on
lazily extending the domain of the quantifiers. It first chooses a domain (all domain elements
are symmetrical) and constructs the full grounding. If no model is found, it increases the
domain size, until a model is found or a bound on the size is hit (if one could be derived).
Such an approach stands orthogonal to the work presented in this paper and it is part of
future work to combine the advantages of both approaches.

As part of future work, we will investigate the relation with techniques used to delay the
grounding of quantifiers such as skolemisation, used e.g. in theorem proving, and congruence
closure algorithms which reason on equality of terms, from the domain of SAT-Modulo-
Theories. Another promising topic is that of undoing grounding on backtracking. In effect,
it might be possible to track whether delays have become inactive again and to remove the
associated constraints again. Such a strategy would allow to reduce the size of the grounding
again when a different part of the search space comes under investigation.

7 Conclusion

Lazy model expansion is an approach to model expansion that interleaves solving and search.
It can be highly beneficial when the original theory has a large (or infinite) grounding, be-
cause it tries to introduce just enough grounding to solve the problem. The disadvantages of
lazy mx are that it provides less propagation than full grounding, and the order of ground-
ing can effect search detrimentally. There remains much future work to improve lazy mx
by incorporating ideas such as lifted unit propagation and devising better heuristics for
controlling delay, but there are already examples where lazy mx is highly beneficial.
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