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Abstract
Logic programs with aggregates and description logic programs (dl-programs) are two recent
extensions to logic programming. In this paper, we study the relationships between these two
classes of logic programs, under the well-founded semantics. The main result is that, under
a satisfaction-preserving mapping from dl-atoms to aggregates, the well-founded semantics of
dl-programs by Eiter et al., coincides with the well-founded semantics of aggregate programs,
defined by Pelov et al. as the least fixpoint of a 3-valued immediate consequence operator under
the ultimate approximating aggregate. This result enables an alternative definition of the same
well-founded semantics for aggregate programs, in terms of the first principle of unfounded sets.
Furthermore, the result can be applied, in a uniform manner, to define the well-founded semantics
for dl-programs with aggregates, which agrees with the existing semantics when either dl-atoms
or aggregates are absent.
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1 Introduction

In logic programming beyond positive logic programs, almost all semantics of the current
interest can be traced back to the origin of two semantics, the stable model semantics [10]
and the well-founded semantics [17]. While the former is based on guess-and-verify to sort
contradictory information into different stable models/answer sets, the latter is defined by
a built-in mechanism to circumvent contradictory conclusions, thus making safe inferences
in the presence of data that require conflicting interpretations.

More recently, well-founded semantics have been studied for two extensions of logic pro-
gramming: logic programs with aggregates (or, aggregate programs) [5, 13, 14] and description
logic programs (dl-programs) [8]. The former brings into logic programming reasoning with
constraints, while the latter is an example of logic programming with external atoms [7]. In
a dl-program an atom can be a dl-atom, which is a well-designed interface to an underlying
description logic knowledge base. In this way, some decidable fragments of first-order logic
can be integrated into rule-based non-monotonic reasoning. These extensions substantially
widen the application range of logic programming.

∗ The work was partially supported by Natural Sciences and Engineering Research Council of Canada.

© Jia-Huai You, John Morris, and Yi Bi;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 235–246

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.235
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


236 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

An aggregate is a constraint, which is a relation on a domain where the tuples in the
relation are called admissible solutions. A dl-atom can also be viewed as a constraint, in
terms of the sets of (ordinary) atoms under which it is satisfied. Despite this close connec-
tion, the semantics for these two kinds of programs have been studied independently. In
[8], the semantics is defined under the first principle of unfounded sets, while in the work of
Pelov et al. [14], a purely algebraic framework is developed under the theory of approxim-
ating operators on bilattices [4], parameterized by approximating operators and aggregate
relations. In particular, given an aggregate program Π, the well-founded semantics, based
on the least fixpoint of a 3-valued immediate consequence operator Φaggr

Π , is defined along
with the ultimate aggregate relation. Let us call this semantics the (ultimate) well-founded
semantics of Π. It extends the well-founded semantics for normal logic programs.

In this paper, we study the relationships between dl-programs and aggregate programs
under the well-founded approach. The main result is that the well-founded semantics of dl-
programs can be obtained from the ultimate well-founded semantics of aggregate programs,
under a mapping from dl-atoms to aggregates. This leads to the following conclusions: on
the one hand, the well-founded semantics for dl-programs can be viewed as a special case
of the ultimate well-founded semantics for aggregate programs, and on the other hand, the
latter semantics can be defined, alternatively, employing the notion of unfounded sets.1
As a result, the well-founded semantics can be defined, in a uniform manner using the
first principle of unfoundedness, for logic programs that may contain both dl-atoms and
aggregates.

The paper is organized as follows. The next section provides some definitions. Section
3 introduces the well-founded semantics for dl-programs. Section 4 shows that under a
mapping from dl-atoms to aggregates, the well-founded semantics for dl-programs is precisely
that of the corresponding aggregate programs. Then in Section 5 we extend the well-founded
semantics to logic programs that may contain dl-atoms as well as aggregates. Section 6 is
about related work followed by comments on future work.

2 Preliminaries

We introduce dl-programs. Although technically this paper does not intimately depend on
description logics (DLs) [1], some familiarity would be convenient.

A DL knowledge base L consists of a finite set of axioms built over a vocabulary ΣL =
(A ∪R, I), where A, R and I are pairwise disjoint (denumerable) sets of atomic concepts,
atomic roles and individuals, respectively. As usual, concepts can be built from atomic
concepts and other constructs, such as u (conjunction), t (disjunction), ¬ (negation), and
various restrictions (see [1] for more details).

Let P be a finite set of predicate symbols and C a nonempty finite set of constants such
that P ∩ (A ∪R) = ∅ and C ⊆ I. A term is either a constant from C or a variable. An
atom is of the form p(t1, ..., tm), where p is a predicate symbol from P, and ti is a term. An
equality (resp. inequality) is of the form t1 = t2 (resp. t1 6= t2), where t1 and t2 are terms.
A dl-query is of the form Q(t), where t is a list of terms, and Q is an equality/inequality
symbol, or a concept, a role, or a concept inclusion axiom, built from A ∪R.

A dl-atom is of the form DL[S1op1p1, · · · , Smopmpm;Q](t), where Si is a concept or role
built from A ∪R, or an equality/inequality symbol; opi ∈ {∪+ , ∪- , ∩- }; pi ∈ P is a unary

1 In fact, such a definition of unfounded sets was already proposed in [9].
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predicate symbol if Si is a concept, and a binary predicate symbol otherwise; and Q(t) is a
dl-query.

A dl-rule (or rule) is of the form h← A1, ..., Am, not B1, ..., not Bn, where h is an atom,
and Ai and Bi are atoms or equalities/inequalities or dl-atoms. An atom or a dl-atom A,
and its negated form not A, is called a literal. For any rule r, we denote the head of the rule
by H(r), and the body by B(r). In addition, B+ = {A1, ..., Am} and B− = {B1, ..., Bn}. A
rule base P is a finite set of rules.

A dl-program is a combined knowledge base KB = (L,P ), where L is a DL knowledge
base and P is a rule base.

A ground instance of a rule r is obtained by first replacing every variable in r with a
constant from C, then replacing with > (resp. ⊥) every equality/inequality if it is valid (resp.
invalid) under the unique name assumption (UNA). > and ⊥ are two special predicates such
that > (resp. ⊥) is true (resp. false) in every interpretation.

In this paper, we assume a rule base P is already grounded using the constants appearing
in the given non-ground program. Likewise, when we refer to an atom/dl-atom/literal, by
default we mean it is one without variables.

The Herbrand base of a rule base P , denoted by HBP , is the set of all ground atoms
p(t1, ..., tm), where p is from P and ti is a constant from C, both occurring in P . Any subset
of HBP is an interpretation of P .

I Definition 1. Let KB = (L,P ) be a dl-program and I ⊆ HBP an interpretation. Define
the satisfaction relation under L, denoted |=L, as follows:
1. I |=L > and I 6|=L ⊥.
2. For any atom a ∈ HBP , I |=L a if a ∈ I.
3. For any (ground) dl-atom A = DL[S1op1p1, · · · , Smopmpm;Q](c) occurring in P , I |=L

A if L ∪
⋃m

i=1Ai |= Q(c), where

Ai =


{Si(e) | pi(e) ∈ I}, if opi = ∪+ ;
{¬Si(e) | pi(e) ∈ I}, if opi = ∪- ;
{¬Si(e) | pi(e) 6∈ I}, if opi = ∩- .

4. For any ground atom or dl-atom A, I |=L not A if I 6|=L A.

The above satisfaction relation naturally extends to conjunctions of literals. For a rule
r ∈ P , I |=L r if I 6|=L B(r) or I |=L H(r). I is a model of a dl-program KB = (L,P ) if
I |=L r for all r ∈ P .

A ground dl-atom A is monotonic relative to KB if for any I ⊆ J ⊆ HBP , I |=L A

implies J |=L A. Otherwise, A is nonmonotonic.
Additional notations: Given a set S of atoms, ¬.S = {¬a | a ∈ S}; given a set P of

rules, LitP = HBP ∪ ¬.HBP ; if I is a set of literals, I+ = {a | a is an atom in I} and
I− = {a | ¬a ∈ I}; a set of literals I ⊆ LitP is consistent if there is no atom a such that
a ∈ I and ¬a ∈ I. In this paper, by an interval [S1, S2], where S1 and S2 are sets and
S1 ⊆ S2, we mean the set {S | S1 ⊆ S ⊆ S2}.

3 Well-Founded Semantics for Arbitrary DL-Programs

The well-founded semantics is first defined for dl-programs with dl-atoms that may only
contain operators ∪+ and ∪- [8]. These dl-atoms are monotonic. It is then commented (see
Section 9.2 of [8]) that the definition can be generalized to the class of all dl-programs. For
contrast, here we introduce the well-founded semantics for arbitrary dl-programs directly.
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I Definition 2. (Unfounded set) Let KB = (L,P ) be a dl-program and I ⊆ LitP be
consistent. A set U ⊆ HBP is an unfounded set of KB relative to I iff the following holds:

For every a ∈ U and every rule r ∈ P with H(r) = a, either (i) ¬b ∈ I ∪ ¬.U for
some ordinary atom b ∈ B+(r), or (ii) b ∈ I for some ordinary atom b ∈ B−(r), or
(iii) for some b ∈ B+(r), it holds that S+ 6|=L b for each consistent S ⊆ LitP with
I ∪ ¬.U ⊆ S, or (iv) for some b ∈ B−(r), it holds that S+ |=L b for each consistent
S ⊆ LitP with I ∪ ¬.U ⊆ S.

Intuitively, the definition says that an atom a is in an unfounded set U , relative to I,
because, for every rule with a in the head, at least one body literal is not satisfied by I

under L, and this fact remains to hold for any consistent extension of I ∪ ¬.U .

I Definition 3. Let KB = (L,P ) be a dl-program. We define the operators TKB , UKB ,
and WKB on all consistent I ⊆ LitP as follows:
(i) a ∈ TKB(I) iff a ∈ HBP and some r ∈ P exists such that (a) H(r) = a, (b) for all

b ∈ B+(r), S+ |=L b for each consistent S with I ⊆ S ⊆ LitP , (c) ¬b ∈ I for all
ordinary atoms b ∈ B−(r), and (d) for all b ∈ B−(r), S+ 6|=L b for each consistent S
with I ⊆ S ⊆ LitP .

(ii) UKB(I) is the greatest unfounded set of KB relative to I; and
(iii) WKB(I) = TKB(I) ∪ ¬.UKB(I).

With the standard definition of monotonicity of operators over complete lattices, one
can verify easily that the operators TKB , UKB , and WKB are all monotonic.

As a notation, we define W 0
KB = ∅, and W i+1

KB = WKB(W i
KB), for all i ≥ 0. In the

sequel, we will use a similar notion for other monotonic operators, but sometimes we may
start applying such an operator from a nonempty set (this will be made clear when such a
situation arises).

I Definition 4. (Well-founded Semantics) Let KB = (L,P ) be a dl-program. The
well-founded semantics of KB, denoted by WFS(KB), is defined as the least fixpoint of the
operator WKB , denoted lfp(WKB). An atom a ∈ HBP is well-founded (resp. unfounded)
relative to KB iff a (resp. ¬a) is in lfp(WKB).

I Example 5. Consider a dl-program KB = (∅, P ), where P consists of

r1 : p(a)← not DL[S1 ∩- q, S2 ∪+ r;¬S1 u S2](a).
r2 : q(a)← DL[S ∪+ q;S](a).
r3 : r(a)← DL[S ∩- q;¬S](a).

Starting with W 0
KB = ∅, for example, we do not derive p(a) since there is a consist-

ent extension that satisfies the dl-atom in rule r1, but {q(a)} is an unfounded set re-
lative to ∅. The reader can verify that W 1

KB = {¬q(a)}, W 2
KB = {¬q(a), r(a)}, and

W 3
KB = {¬q(a),¬p(a), r(a)}, which is the least fixpoint of WKB .

We now discuss an alternative way to construct the least fixpoint ofWKB . The technical
result given here will be used later when relating to the ultimate well-founded semantics for
aggregate programs.

Since the operator TKB only generates positive atoms, given a consistent I ⊆ LitP , we
can apply TKB iteratively, with I− fixed. That is,

T 0
KB = I+, T 1

KB = TKB(T 0
KB ∪ ¬.I−), ..., T k+1

KB = TKB(T k
KB ∪ ¬.I−), ... (1)
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Since this sequence is ⊆-increasing, a fixpoint exists. Let us denote it by FPTKB
(I). Note

that the operator FPTKB
: LitP → HBP is monotonic relative to a fixed I−. Namely,

for any consistent sets of literals I1 and I2 such that I−1 = I−2 and I1 ⊆ I2, we have
FPTKB

(I1) ⊆ FPTKB
(I2).

Now, following Definition 3, we define an operator VKB , which is similar to WKB , as
follows: Given a consistent set of literals I ⊆ LitP ,

VKB(I) = FPTKB
(I) ∪ ¬.UKB(I) (2)

As the operator VKB is monotonic, its least fixpoint exists, which we denote by lfp(VKB).
We can show that (the proof is omitted for lack of space)

I Lemma 6. lfp(VKB) = lfp(WKB).

4 Representing DL-Programs by Aggregate Programs

In general, an aggregate in a logic program is a constraint atom. Since in this paper our
interest is in the semantics, we assume that an aggregate is a constraint whose semantics is
pre-defined in terms of its domain and admissible solutions. An explicit representation of
such constraints has been called abstract constraint atoms (or just c-atoms) [12].

We assume a propositional language, LΣ, determined by a fixed countable set Σ of
propositional atoms. A c-atom A is a pair (D,C), where D is a nonempty finite set of atoms
in Σ and C ⊆ 2D. We use Ad and Ac to refer to the components D and C of A, respectively.
As an abstraction, a c-atom A can be used to represent the semantics of any constraint with
a set Ac of admissible solutions over a finite domain Ad [11, 12]. Therefore, in the sequel we
will use the aggregate notation and c-atoms exchangeably.

The complement of a c-atom A is the c-atom A′ with A′d = Ad and A′c = 2Ad \Ac.
An interpretation I ⊂ Σ satisfies an atom a if a ∈ I; ¬a if a 6∈ I. I satisfies a c-atom A,

written as I |= A, if Ad ∩ I ∈ Ac; not A, written I |= not A, if Ad ∩ I 6∈ Ac. Therefore, it
follows that I satisfies not A iff I satisfies the complement of A. I satisfies a conjunction E
of atoms or c-atoms, written I |= E, if I satisfies every conjunct in it.

A c-atom A is monotone if for any J ⊇ I, that I satisfies A implies J satisfies A.
Otherwise, A is nonmonotone.

An aggregate program (or exchangeably, a logic program with c-atoms) is a finite set of
rules of the form h← B1, ..., Bn, not C1, ..., not Ck, where h, Bi, and Ci are ordinary atoms
or c-atoms. Given a rule r, we use H(r) to denote the head and B(r) to denote the body.

Note that in [14] negative aggregates ¬C are allowed, but here we write them as not C.
The notations LitΠ, S+, and S− (given a set of literals S) are defined similarly as for

those used for dl-programs.

IDefinition 7. (From dl-programs to aggregate programs) Given a dl-programKB =
(L,P ), we obtain an aggregate program, denoted β(KB), by a mapping βKB from atoms,
dl-atoms, and their default negation occurring in P to aggregates as follows:

If A is an ordinary atom a then βKB(A) = a, and
If A is a dl-atom then βKB(A) = (HBP , C), where C = {I ⊆ HBP | I |=L A}.
For any default negation of the form not A, βKB(not A) = βKB(A)′.

In the sequel, as the underlying KB is always clear, we will drop the subscript in βKB .
Also, by abuse of notation, given a rule r ∈ P , we denote by β(B(r)) the translated con-
junction in the body of r, and by β(r) the translated rule. Since this mapping does not
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240 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

introduce new symbols, given a dl-program KB = (L,P ), we can identify Σ for the trans-
lated aggregate programs with HBP .

As an example, consider a dl-program KB = (∅, {p(a) ← DL[S ∩- p;¬S](a)}). The
translated aggregate program consists of a single rule, p(a)← ({p(a)}, {∅}). The c-atom in
the rule represents the semantics of, e.g., the cardinality constraint, card=({x| p(x)}, 0).

I Lemma 8. Let KB = (L,P ) be a dl-program and I ⊆ HBP .
(i) For any dl-atom A, I |=L A iff I |= β(A), and I 6|=L A iff I |= β(A)′.
(ii) For any rule r ∈ P , I satisfies r iff I satisfies β(r).
(iii) I is a model of KB iff I is a model of β(KB).

4.1 Relationship
Following [13, 14], given a complete lattice 〈L,�〉, the bilattice induced from it is the struc-
ture 〈L2,�,�p〉, where for all x, y, x′, y′ ∈ L,

(x, y) � (x′, y′) if and only if x � x′ and y � y′
(x, y) �p (x′, y′) if and only if x � x′ and y′ � y

The order � on L2 is called the produce order, while �p is called the precision order. Both
orders are complete lattice orders on L2. We are interested only in the subset of pairs (x, y)
that are consistent, i.e., x � y, and when x = y it is said to be exact. We denote the set of
consistent pairs by Lc.

Given a bilattice 〈L2,�,�p〉, the �-least element is (⊥,⊥) and the �p-least element
is (⊥,>). E.g., consider the complete lattice 〈2Σ,⊆〉 where Σ is a set of atoms. For the
bilattice induced from it, the �-least element is (∅, ∅) and the �p-least element is (∅,Σ).

The idea of the well-founded semantics for an aggregate program is to start with the
�p-least element 〈∅,Σ〉, and apply an approximating operator, denoted A, in a way that
not only are the true atoms computed, but also the false atoms that are not reachable by
derivations. It approximates an operator O on L, whose fixpoints are exact pairs on L2.

I Definition 9. Let O : L → L be an operator on a complete lattice 〈L,�〉. We say that
A : Lc → Lc is an approximating operator of O iff the following conditions are satisfied:

A extends O, i.e., A(x, x) = (O(x), O(x)), for every x ∈ L.
A is �p-monotone.

The condition on A is a mild one: it only requires to extend O on exact pairs, in addition
to monotonicity.

For aggregate programs, given a language LΣ, a program Π, and a monotonic approx-
imating operator A of some operator O, we will compute a sequence

(∅,Σ) = (u0, v0), (u1, v1), ..., (uk, vk), ..., (u∞, v∞) (3)

such that the internal [ui, vi] is decreasing, i.e., [ui+1, vi+1] ⊂ [ui, vi], for all i, eventually
reaching a fixpoint, which is denoted by (u∞, v∞).

Intuitively, one can think of this sequence as representing the process that, initially
nothing is known to be true and every atom in Σ is potentially true (as such, nothing is
known to be false); and given (ui, vi), after the current iteration, ui+1 \ui is the set of atoms
that become known to be true and vi \ vi+1 is the set of atoms that become known to be
false. In this way, ui represents a lower estimate and vi an upper estimate of the eventual
fixpoint. At the end, u∞ is the set of true atoms and Σ \ v∞ is the set of false atoms, and
the truth value of the remaining atoms is undefined. This gives a 3-valued interpretation of
the least fixpoint.



J. You, J. Morris, and Y. Bi 241

A fixpoint operator that constructs sequence (3) can be defined in different ways. For
example, we can simply take the approximating operator A, i.e., A(ui, vi) = (ui+1, vi+1),
for all i. If A is �p-monotone, then the least fixpoint of A exists, which is called the
Kripke-Kleene fixpoint of A.

As alluded to earlier, our interest is the well-founded semantics, which is determined
by the so-called well-founded fixpoint of A. It is computed by a stable revision operator,
denoted by StΠ, for a given aggregate program Π. Namely, StΠ(ui, vi) = (ui+1, vi+1),
where (ui+1, vi+1) is computed from (ui, vi) using two component operators of A. The first
one, denoted by A1(·, vi), is A with vi fixed, and similarly, the second, denoted by A2(ui, ·),
is A with ui fixed. Given an upper estimate b, we compute a new lower estimate by an
iterative process:

x0 = ⊥, x1 = A1(x0, b), ..., xi+1 = A1(xi, b), ... (4)

until a fixpoint is reached. That is, if b = vi, then ui+1 = x∞ where x∞ = A1(x∞, b). The
operator that generates x∞ is called the lower revision operator.

On the other hand, given a lower estimate a, we compute a new upper estimate

y0 = a, y1 = A2(a, y0), ..., yi+1 = A2(a, yi), .... (5)

until a fixpoint is reached. That is, if a = ui, then vi+1 = y∞ where y∞ = A2(a, y∞). The
operator that generates y∞ is called the upper revision operator.

It can be seen that if A is �p-monotone, so is StΠ, thus the least fixpoint of StΠ can
be constructed by a sequence (3), where (u∞, v∞) is called the well-founded fixpoint of A,
which is the least fixpoint of the stable revision operator StΠ.

By this parameterized algebraic approach one can define possibly different well-founded
semantics by employing different �p-monotone approximating operators. In the context
of aggregate programs, the operator we are approximating is the standard immediate con-
sequence operator extended to aggregate programs Π, i.e., TΠ : Σ→ Σ, where

TΠ(I) = {H(r) | r ∈ Π and I |= B(r)}. (6)

To approximate TΠ while preserving the well-founded and stable model semantics for nor-
mal logic programs, in [13], a three-valued immediate consequence operator Φaggr

Π is defined
for aggregate programs, which maps 3-valued interpretations to 3-valued interpretations.
Recall that a 3-valued interpretation can be represented by a pair (I1, I2) of 2-valued inter-
pretations with I1 ⊆ I2, where I1 is the set of atoms assigned to true, Σ\I2 is the set of atoms
assigned to false, and all the other atoms are assigned to undefined. Thus, Φaggr

Π maps a pair
of 2-valued interpretations to a pair of 2-valued interpretations, i.e., Φaggr

Π (I1, I2) = (I ′1, I ′2).
The definition of Φaggr

Π guarantees that it approximates the operator TΠ, in that for any
fixpoint (I, J) of Φaggr

Π , and for any x such that TΠ(x) = x, (I, J) �p (x, x).
From the definition of Φaggr

Π above, two component operators are induced. They are

Φaggr,1
Π (I1, I2) = I ′1 and Φaggr,2

Π (I1, I2) = I ′2 (7)

The original definition of Φaggr
Π is given in 3-valued logic, parameterized by the choice

of approximating aggregates [13]. In [16], the authors showed an equivalent definition of
Φaggr,1

Π in terms of conditional satisfaction, when the approximating aggregate used is the
ultimate approximating aggregate. We state this result below (see Appendix of [16]). Here,
we replace aggregates with c-atoms. In a similar way, an equivalent definition of Φaggr,2

Π can
be obtained.
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I Theorem 10. Let Π be an aggregate program, and I and M interpretations with I ⊆M ⊆
Σ. Then,

Φaggr,1
Π (I,M) = {H(r) | r ∈ Π,∀J ∈ [I,M ], J |= B(r)} (8)

Φaggr,2
Π (I,M) = {H(r) | r ∈ Π,∃J ∈ [I,M ], J |= B(r)} (9)

I Lemma 11. The component operators Φaggr,1
Π (·, b) and Φaggr,2

Π (a, ·) are ⊆-monotone, and
Φaggr

Π is ⊆p-monotone.

Therefore, the stable revision operator StΠ induced from Φaggr
Π is also ⊆p-monotone, and

we take the least fixpoint of this operator for the semantics. Recall that this fixpoint has
been referred to as the well-founded fixpoint of Φaggr

Π .

I Definition 12. Let Π be an aggregate program and (u∞, v∞) the well-founded fixpoint of
Φaggr

Π . The ultimate well-founded semantics of Π based on Φaggr
Π , denoted by UWFS(Π), is

defined as u∞ ∪ ¬.(Σ \ v∞).

In the sequel, we will drop the phrase “based on Φaggr
Π ", with the understanding that the

underlying approximating operator is Φaggr
Π as identified in Theorem 10.

I Example 13. Consider the following aggregate program Π:

p(−1). p(−2)← sum≤({x | p(x)}, 2).
p(3)← sum>({x | p(x)},−4). p(−4)← sum≤({x | p(x)}, 0).

The aggregates under sum are self-explaining, e.g., sum≤({x | p(x)}, 2) means that the sum
of x for satisfied atoms p(x) is less than or equal to 2. For the construction of the well-
founded fixpoint, we start with the pair (∅,Σ). The reader can apply equations in (7) to
verify: by applying the operator Φaggr,1

Π (·,Σ) iteratively, we get a new lower estimate Q =
{p(−1), p(−2), p(−4)}; and by applying Φaggr,2

Π (∅, ·) iteratively, we get an upper estimate Σ,
which is the same as before. Thus the new pair is (Q,Σ). Continuing in the next iteration,
Q remains the same but p(3) is no longer derivable. We thus have (Q,Σ − {p(3)}), which
is a fixpoint. So the ultimate well-founded semantics is that all atoms in Q are true, p(3) is
false, and nothing is undefined.

I Theorem 14. Let KB = (L,P ) be a dl-program. The well-founded semantics of KB
coincides with the ultimate well-founded semantics of the aggregate program β(KB). That
is, WFS(KB) = UWFS(β(KB)).

Proof. (Sketch) Let Π = β(KB) and (u∞, v∞) in sequence (3) be the ultimate well-founded
fixpoint of Φaggr

Π . Recall that WFS(KB) = lfp(WKB) = lfp(VKB) (the latter is by
Lemma 6) and UWFS(Π) = u∞ ∪ ¬.(Σ \ v∞). We prove the coincidence by induction
on the sequences of constructing lfp(VKB) and (u∞, v∞). In the proof, we assume rules in
P are of the form a← φ or a← not φ, where φ is a dl-atom. The proof can be generalized
to arbitrary dl-rules. Below, we identify Σ for the corresponding aggregate program with
HBP for the given dl-program, i.e., we let Σ = HBP .

Clearly, V 0
KB = u0 ∪ ¬.(Σ \ v0) = ∅. Assume (V i

KB)+ = ui and (V i
KB)− = Σ \ vi and we

show (V i+1
KB )+ = ui+1 and (V i+1

KB )− = Σ \ vi+1, for all i ≥ 0. Note that from (1), and by
induction hypothesis, we have

(V i+1
KB )+ = FPTKB

(V i
KB) = FPTKB

(ui ∪ ¬.(Σ \ vi)) (10)
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(a) (V i+1
KB )+ = ui+1. First, observe that for the approximating operator Φaggr

Π , x∞ in (4)
can be computed equivalently by starting with ui, i.e.,

x0 =ui, x1 =Φaggr,1
Π (x0, vi), ..., xi+1 =Φaggr,1

Π (xi, vi), ..., x∞=Φaggr,1
Π (x∞, vi) (11)

and ui+1 = x∞. According to (10), we need to show FPTKB
(ui ∪ ¬.(Σ \ vi)) = ui+1. We

prove this by showing a one-one correspondence between the steps in (1) and those in (11).
That is, xk = T k

KB for all k ≥ 0. The base case is due to the induction hypothesis, namely
x0 = ui = (V i

KB)+ = T 0
KB (note that T 0

KB here refers to the one in (1)). Assume xk = T k
KB

and we show xk+1 = T k+1
KB , for all k ≥ 0. For any atom a ∈ Σ, a ∈ xk+1 iff for some rule

r ∈ P with H(r) = a such that for every J ∈ [xk, vi], J |= β(B(r))). Let us label the last
statement as (C1).

Suppose r = a← φ. By Lemma 8, J |= β(φ) iff J |=L φ. From the induction hypothesis,
we have (V i

KB)− = Σ \ vi, and it follows

[xk, vi] = {S+ | S is consistent and xk ∪ ¬.Σ \ vi ⊆ S ⊆ LitP }

From xk = T k
KB , it follows that (C1) iff a ∈ T k+1

KB , as the condition (b) of Definition 3 is
satisfed: for all b ∈ B+(r), S+ |=L b for each consistent S with T k

KB ⊆ S ⊆ LitP . The case
where r = a← not φ can be proved similarly, based on condition (d) of Definition 3.

(b) (V i+1
KB )− = Σ \ vi+1. Namely, UKB(V i

KB) = Σ \ vi+1, i.e., the greatest unfounded set of
KB relative to V i

KB is precisely the fixpoint y∞ (= vi+1) below:

y0 =ui, y1 =Φaggr,2
Π (ui, y0), ..., yi+1 =Φaggr,2

Π (ui, yi), ..., y∞=Φaggr,2
Π (ui, y∞) (12)

(b-1) Prove that for any a ∈ Σ, if a ∈ vi+1 then a 6∈ U , for any unfounded set U of KB
relative to V i

KB . By definition, a ∈ vi+1 iff a ∈ yk, for some k ≥ 0, iff there is a rule r ∈ P
with H(r) = a such that ∃J ∈ [ui, yk], J |= β(B(r)). By Lemma 8, J |= β(B(r)) iff J |=L φ,
if r is of form a← φ. This violates condition (iii) in Definition 2, as by induction hypothesis
there is a consistent extension S of V i

KB such that S+ = J . The proof is similar if r is of
form a← not φ, in which case condition (iv) is violated.

(b-2) Show that a 6∈ vi+1 ⇒ a ∈ UKB(V i
KB), for all a ∈ Σ. That a 6∈ vi+1 (i.e., a 6∈ y∞)

means, for every rule r ∈ P with H(r) = a, and for all I ∈ [ui, y∞], I 6|= β(B(r)), hence by
Lemma 8, I 6|=L φ if r = a← φ and I |=L φ if r = a← not φ. Note that

[ui, y∞] = {S+ | S is consistent and ui ∪ ¬.Σ \ y∞ ⊆ S ⊆ LitP }

From the induction hypothesis we know ui = (V i
KB)+ and (V i

KB)− = Σ\vi, and notationally
vi+1 = y∞. It follows from Definition 2 that Σ \ vi+1 is an unfounded set of KB relative
to V i

KB , and a ∈ Σ \ vi+1. Obviously, it is the greatest unfounded set of KB relative to
V i

KB , since for any atom ϕ ∈ y∞, there is a derivation of ϕ based on V i
KB . Therefore,

a ∈ UKB(V i
KB). The proof is completed. J

5 Well-Founded Semantics of DL-Programs with Aggregates

A dl-program with aggregates is a combined knowledge base KB = (L,P ), where L is a
DL knowledge base and P a finite set of rules of the form a ← b1, ..., bk, not c1, ..., not cn,
where a is an atom, and each bi or cj is either an ordinary atom, a dl-atom, or an aggregate
atom. In the following, we continue to denote by HBP the set of atoms composed from the
constants and predicate symbols of the underlying language.

ICLP’12
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Now we extend the satisfaction relation |=L to cover aggregates. Let KB = (L,P ) be
a dl-program with aggregates and I ⊆ HBP an interpretation. For any aggregate φ, we
define I |=L φ iff I |= φ, and extend |=L naturally to conjunctions of atoms, dl-atoms,
aggregates, and their negations. Then, Definitions 2 and 3 can be adopted directly, by
replacing "dl-program" with "dl-program with aggregates". To distinguish, let us denote the
fixpoint operator WKB in Definition 3 by W ′KB .

I Definition 15. (Well-founded semantics for dl-programs with aggregates) Let
KB = (L,P ) be a dl-program with aggregates. The well-founded semantics of KB is
defined as the least fixpoint of the operator W ′KB , denoted lfp(W ′KB).

I Theorem 16. Let KB = (L,P ) be a dl-program with aggregates. (i) If P contains
no aggregates, then lfp(W ′KB) = lfp(WKB); and (ii) If P contains no dl-atoms, then
lfp(W ′KB) = lfp(W ′P ) = UWFS(P ).

For illustration, we close this section by presenting a dl-program with aggregates.

I Example 17. ConsiderKB = (L,P ) with L = {V ip v CR}, possibly plus some assertions
of individuals in the concepts V ip and/or CR, where CR stands for Customer-Record, and
P containing

1. purchase(X)← purchase(X,Obj), item(Obj).
2. client(X)← DL[CR ∪+ purchase;CR](X).
3. imp_client(X)← DL[V ip](X).
4. imp_client(X)←client(X), sum≥({Y | item(Obj), cost(Obj,Y ), purchase(X,Obj)},100).
5. discount(X)← imp_client(X).
6. promo_offer(X)← DL[CR ∪- imp_client;CR](X), card=({Y | purchase(Y )}, 0).

Rule 1 is self-explaining. Rule 2 queries the DL knowledge base in order to enhance the
client predicate. In rules 3 and 4 we establish that important clients are those who have
spent at least $100 or are VIPs. Rules 5 and 6 provide benefits to certain customers. In
rule 5, a discount is offered to important clients - VIPs and those whose purchases sum to
$100 or more. Rule 6 describes a promotional offer for non-VIP customers who have not
made any purchases - they are potential clients. For applications, P may contain some facts
about items, cost, and purchase.

6 Related Work and Further Direction

The close relationships between well-founded model, partial stable models, and stable models
are well-understood (see, e.g., [6, 15, 19]). That the well-founded model of a normal logic
program is contained in all its stable models makes it possible in a stable model solver to
compute the well-founded model as the first approximation. The well-founded semantics
has been defined for disjunctive programs [18] and default logic [2]. The close relationship
between dl-programs and aggregate programs is noticed in [8], but left as an interesting
future direction.

In [9], the notion of unfounded sets for arbitrary aggregate programs is defined (which
generalizes that of [3] for logic programs with monotone and anti-monotone aggregates): A
set of atoms U is an unfounded set for an aggregate program P and a partial interpretation
I, if for every a ∈ U , and for every rule r ∈ P with a as the head, a literal ξ in B(r) is false
w.r.t. I or w.r.t. (I−U)∪¬.U . The latter expression equals I∪¬.U if I∩U = ∅. Here, falsity
in I amounts to falsify in all of its totalization. It thus gives the same effect as requiring
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that ξ is not satisfied by any consistent extension of I ∪ ¬.U in our definition. Thus, it
follows from our result that, if we define the well-founded semantics for arbitrary aggregate
programs using the notion of unfounded sets in [9], the resulting semantics is equivalent to
the ultimate well-founded semantics defined by Pelov et al. [13, 14].

The complexity issues for various classes of dl-programs and aggregate programs under
the well-founded semantics will be addressed in future work.
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