Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs*

Jia-Huai You¹, John Morris¹, and Yi Bi²

- 1 Department of Computing Science University of Alberta, Canada
- 2 School of Computer Science and Technology Tianjin University, China

— Abstract -

Logic programs with aggregates and description logic programs (dl-programs) are two recent extensions to logic programming. In this paper, we study the relationships between these two classes of logic programs, under the well-founded semantics. The main result is that, under a satisfaction-preserving mapping from dl-atoms to aggregates, the well-founded semantics of dl-programs by Eiter et al., coincides with the well-founded semantics of aggregate programs, defined by Pelov et al. as the least fixpoint of a 3-valued immediate consequence operator under the ultimate approximating aggregate. This result enables an alternative definition of the same well-founded semantics for aggregate programs, in terms of the first principle of unfounded sets. Furthermore, the result can be applied, in a uniform manner, to define the well-founded semantics for dl-programs with aggregates, which agrees with the existing semantics when either dl-atoms or aggregates are absent.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Well-founded semantics, description logic programs, aggregate logic programs, three-valued logic.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.235

1 Introduction

In logic programming beyond positive logic programs, almost all semantics of the current interest can be traced back to the origin of two semantics, the stable model semantics [10] and the well-founded semantics [17]. While the former is based on guess-and-verify to sort contradictory information into different stable models/answer sets, the latter is defined by a built-in mechanism to circumvent contradictory conclusions, thus making safe inferences in the presence of data that require conflicting interpretations.

More recently, well-founded semantics have been studied for two extensions of logic programming: logic programs with aggregates (or, aggregate programs) [5, 13, 14] and description logic programs (dl-programs) [8]. The former brings into logic programming reasoning with constraints, while the latter is an example of logic programming with external atoms [7]. In a dl-program an atom can be a dl-atom, which is a well-designed interface to an underlying description logic knowledge base. In this way, some decidable fragments of first-order logic can be integrated into rule-based non-monotonic reasoning. These extensions substantially widen the application range of logic programming.

© Jia-Huai You, John Morris, and Yi Bi; licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP'12).

Editors: A. Dovier and V. Santos Costa; pp. 235–246

^{*} The work was partially supported by Natural Sciences and Engineering Research Council of Canada.

An aggregate is a constraint, which is a relation on a domain where the tuples in the relation are called admissible solutions. A dl-atom can also be viewed as a constraint, in terms of the sets of (ordinary) atoms under which it is satisfied. Despite this close connection, the semantics for these two kinds of programs have been studied independently. In [8], the semantics is defined under the first principle of unfounded sets, while in the work of Pelov et al. [14], a purely algebraic framework is developed under the theory of approximating operators on bilattices [4], parameterized by approximating operators and aggregate relations. In particular, given an aggregate program Π , the well-founded semantics, based on the least fixpoint of a 3-valued immediate consequence operator Φ_{Π}^{aggr} , is defined along with the ultimate aggregate relation. Let us call this semantics the (ultimate) well-founded semantics of Π . It extends the well-founded semantics for normal logic programs.

In this paper, we study the relationships between dl-programs and aggregate programs under the well-founded approach. The main result is that the well-founded semantics of dlprograms can be obtained from the ultimate well-founded semantics of aggregate programs, under a mapping from dl-atoms to aggregates. This leads to the following conclusions: on the one hand, the well-founded semantics for dl-programs can be viewed as a special case of the ultimate well-founded semantics for aggregate programs, and on the other hand, the latter semantics can be defined, alternatively, employing the notion of unfounded sets.¹ As a result, the well-founded semantics can be defined, in a uniform manner using the first principle of unfoundedness, for logic programs that may contain both dl-atoms and aggregates.

The paper is organized as follows. The next section provides some definitions. Section 3 introduces the well-founded semantics for dl-programs. Section 4 shows that under a mapping from dl-atoms to aggregates, the well-founded semantics for dl-programs is precisely that of the corresponding aggregate programs. Then in Section 5 we extend the well-founded semantics to logic programs that may contain dl-atoms as well as aggregates. Section 6 is about related work followed by comments on future work.

Preliminaries

We introduce dl-programs. Although technically this paper does not intimately depend on description logics (DLs) [1], some familiarity would be convenient.

A DL knowledge base L consists of a finite set of axioms built over a vocabulary Σ_L $(\mathbf{A} \cup \mathbf{R}, \mathbf{I})$, where \mathbf{A} , \mathbf{R} and \mathbf{I} are pairwise disjoint (denumerable) sets of atomic concepts, atomic roles and individuals, respectively. As usual, concepts can be built from atomic concepts and other constructs, such as \sqcap (conjunction), \sqcup (disjunction), \neg (negation), and various restrictions (see [1] for more details).

Let \mathbf{P} be a finite set of *predicate* symbols and \mathbf{C} a nonempty finite set of *constants* such that $\mathbf{P} \cap (\mathbf{A} \cup \mathbf{R}) = \emptyset$ and $\mathbf{C} \subseteq \mathbf{I}$. A term is either a constant from \mathbf{C} or a variable. An atom is of the form $p(t_1,...,t_m)$, where p is a predicate symbol from P, and t_i is a term. An equality (resp. inequality) is of the form $t_1 = t_2$ (resp. $t_1 \neq t_2$), where t_1 and t_2 are terms. A dl-query is of the form $Q(\mathbf{t})$, where \mathbf{t} is a list of terms, and Q is an equality/inequality symbol, or a concept, a role, or a concept inclusion axiom, built from $A \cup R$.

A dl-atom is of the form $DL[S_1op_1p_1, \cdots, S_mop_mp_m; Q](\mathbf{t})$, where S_i is a concept or role built from $\mathbf{A} \cup \mathbf{R}$, or an equality/inequality symbol; $op_i \in \{ \uplus, \, \cup, \, \cap \}; \ p_i \in \mathbf{P}$ is a unary

¹ In fact, such a definition of unfounded sets was already proposed in [9].

predicate symbol if S_i is a concept, and a binary predicate symbol otherwise; and $Q(\mathbf{t})$ is a dl-query.

A dl-rule (or rule) is of the form $h \leftarrow A_1, ..., A_m, not B_1, ..., not B_n$, where h is an atom, and A_i and B_i are atoms or equalities/inequalities or dl-atoms. An atom or a dl-atom A, and its negated form not A, is called a *literal*. For any rule r, we denote the head of the rule by H(r), and the body by B(r). In addition, $B^+ = \{A_1, ..., A_m\}$ and $B^- = \{B_1, ..., B_n\}$. A rule base P is a finite set of rules.

A *dl-program* is a combined knowledge base KB = (L, P), where L is a DL knowledge base and P is a rule base.

A ground instance of a rule r is obtained by first replacing every variable in r with a constant from \mathbf{C} , then replacing with \top (resp. \bot) every equality/inequality if it is valid (resp. invalid) under the unique name assumption (UNA). \top and \bot are two special predicates such that \top (resp. \bot) is true (resp. false) in every interpretation.

In this paper, we assume a rule base P is already grounded using the constants appearing in the given non-ground program. Likewise, when we refer to an atom/dl-atom/literal, by default we mean it is one without variables.

The *Herbrand base* of a rule base P, denoted by HB_P , is the set of all ground atoms $p(t_1,...,t_m)$, where p is from \mathbf{P} and t_i is a constant from \mathbf{C} , both occurring in P. Any subset of HB_P is an *interpretation* of P.

- ▶ **Definition 1.** Let KB = (L, P) be a dl-program and $I \subseteq HB_P$ an interpretation. Define the satisfaction relation under L, denoted \models_L , as follows:
- 1. $I \models_L \top \text{ and } I \not\models_L \bot$.
- **2.** For any atom $a \in HB_P$, $I \models_L a \text{ if } a \in I$.
- 3. For any (ground) dl-atom $A = DL[S_1op_1p_1, \cdots, S_mop_mp_m; Q](\mathbf{c})$ occurring in P, $I \models_L A$ if $L \cup \bigcup_{i=1}^m A_i \models_Q(\mathbf{c})$, where

4. For any ground atom or dl-atom A, $I \models_L not A$ if $I \not\models_L A$.

The above satisfaction relation naturally extends to conjunctions of literals. For a rule $r \in P$, $I \models_L r$ if $I \not\models_L B(r)$ or $I \models_L H(r)$. I is a model of a dl-program KB = (L, P) if $I \models_L r$ for all $r \in P$.

A ground dl-atom A is monotonic relative to KB if for any $I \subseteq J \subseteq HB_P$, $I \models_L A$ implies $J \models_L A$. Otherwise, A is nonmonotonic.

Additional notations: Given a set S of atoms, $\neg S = \{ \neg a \mid a \in S \}$; given a set P of rules, $Lit_P = HB_P \cup \neg .HB_P$; if I is a set of literals, $I^+ = \{ a \mid a \text{ is an atom in } I \}$ and $I^- = \{ a \mid \neg a \in I \}$; a set of literals $I \subseteq Lit_P$ is consistent if there is no atom a such that $a \in I$ and $\neg a \in I$. In this paper, by an *interval* $[S_1, S_2]$, where S_1 and S_2 are sets and $S_1 \subseteq S_2$, we mean the set $\{ S \mid S_1 \subseteq S \subseteq S_2 \}$.

3 Well-Founded Semantics for Arbitrary DL-Programs

The well-founded semantics is first defined for dl-programs with dl-atoms that may only contain operators \cup and \cup [8]. These dl-atoms are monotonic. It is then commented (see Section 9.2 of [8]) that the definition can be generalized to the class of all dl-programs. For contrast, here we introduce the well-founded semantics for arbitrary dl-programs directly.

▶ **Definition 2.** (Unfounded set) Let KB = (L, P) be a dl-program and $I \subseteq Lit_P$ be consistent. A set $U \subseteq HB_P$ is an unfounded set of KB relative to I iff the following holds:

For every $a \in U$ and every rule $r \in P$ with H(r) = a, either (i) $\neg b \in I \cup \neg U$ for some ordinary atom $b \in B^+(r)$, or (ii) $b \in I$ for some ordinary atom $b \in B^-(r)$, or (iii) for some $b \in B^+(r)$, it holds that $S^+ \not\models_L b$ for each consistent $S \subseteq Lit_P$ with $I \cup \neg U \subseteq S$, or (iv) for some $b \in B^-(r)$, it holds that $S^+ \models_L b$ for each consistent $S \subseteq Lit_P$ with $I \cup \neg U \subseteq S$.

Intuitively, the definition says that an atom a is in an unfounded set U, relative to I, because, for every rule with a in the head, at least one body literal is not satisfied by I under L, and this fact remains to hold for any consistent extension of $I \cup \neg U$.

- ▶ **Definition 3.** Let KB = (L, P) be a dl-program. We define the operators T_{KB} , U_{KB} , and W_{KB} on all consistent $I \subseteq Lit_P$ as follows:
- (i) $a \in T_{KB}(I)$ iff $a \in HB_P$ and some $r \in P$ exists such that (a) H(r) = a, (b) for all $b \in B^+(r)$, $S^+ \models_L b$ for each consistent S with $I \subseteq S \subseteq Lit_P$, (c) $\neg b \in I$ for all ordinary atoms $b \in B^-(r)$, and (d) for all $b \in B^-(r)$, $S^+ \not\models_L b$ for each consistent S with $I \subseteq S \subseteq Lit_P$.
- (ii) $U_{KB}(I)$ is the greatest unfounded set of KB relative to I; and
- (iii) $W_{KB}(I) = T_{KB}(I) \cup \neg .U_{KB}(I)$.

With the standard definition of monotonicity of operators over complete lattices, one can verify easily that the operators T_{KB} , U_{KB} , and W_{KB} are all monotonic.

As a notation, we define $W_{KB}^0 = \emptyset$, and $W_{KB}^{i+1} = W_{KB}(W_{KB}^i)$, for all $i \geq 0$. In the sequel, we will use a similar notion for other monotonic operators, but sometimes we may start applying such an operator from a nonempty set (this will be made clear when such a situation arises).

- ▶ Definition 4. (Well-founded Semantics) Let KB = (L, P) be a dl-program. The well-founded semantics of KB, denoted by WFS(KB), is defined as the least fixpoint of the operator W_{KB} , denoted $lfp(W_{KB})$. An atom $a \in HB_P$ is well-founded (resp. unfounded) relative to KB iff a (resp. $\neg a$) is in $lfp(W_{KB})$.
- **Example 5.** Consider a dl-program $KB = (\emptyset, P)$, where P consists of

```
r_1: p(a) \leftarrow not \ DL[S_1 \cap q, S_2 \uplus r; \neg S_1 \cap S_2](a).

r_2: q(a) \leftarrow DL[S \uplus q; S](a).

r_3: r(a) \leftarrow DL[S \cap q; \neg S](a).
```

Starting with $W_{KB}^0 = \emptyset$, for example, we do not derive p(a) since there is a consistent extension that satisfies the dl-atom in rule r_1 , but $\{q(a)\}$ is an unfounded set relative to \emptyset . The reader can verify that $W_{KB}^1 = \{\neg q(a)\}, W_{KB}^2 = \{\neg q(a), \neg p(a), r(a)\}$, which is the least fixpoint of W_{KB} .

We now discuss an alternative way to construct the least fixpoint of W_{KB} . The technical result given here will be used later when relating to the ultimate well-founded semantics for aggregate programs.

Since the operator T_{KB} only generates positive atoms, given a consistent $I \subseteq Lit_P$, we can apply T_{KB} iteratively, with I^- fixed. That is,

$$T_{KB}^{0} = I^{+}, T_{KB}^{1} = T_{KB}(T_{KB}^{0} \cup \neg .I^{-}), ..., T_{KB}^{k+1} = T_{KB}(T_{KB}^{k} \cup \neg .I^{-}), ...$$

$$(1)$$

Since this sequence is \subseteq -increasing, a fixpoint exists. Let us denote it by $FP_{T_{KB}}(I)$. Note that the operator $FP_{T_{KB}}: Lit_P \to HB_P$ is monotonic relative to a fixed I^- . Namely, for any consistent sets of literals I_1 and I_2 such that $I_1^- = I_2^-$ and $I_1 \subseteq I_2$, we have $FP_{T_{KB}}(I_1) \subseteq FP_{T_{KB}}(I_2)$.

Now, following Definition 3, we define an operator V_{KB} , which is similar to W_{KB} , as follows: Given a consistent set of literals $I \subseteq Lit_P$,

$$V_{KB}(I) = FP_{T_{KB}}(I) \cup \neg U_{KB}(I) \tag{2}$$

As the operator V_{KB} is monotonic, its least fixpoint exists, which we denote by $lfp(V_{KB})$. We can show that (the proof is omitted for lack of space)

▶ Lemma 6. $lfp(V_{KB}) = lfp(W_{KB})$.

4 Representing DL-Programs by Aggregate Programs

In general, an aggregate in a logic program is a constraint atom. Since in this paper our interest is in the semantics, we assume that an aggregate is a constraint whose semantics is pre-defined in terms of its domain and admissible solutions. An explicit representation of such constraints has been called *abstract constraint atoms* (or just *c-atoms*) [12].

We assume a propositional language, \mathcal{L}_{Σ} , determined by a fixed countable set Σ of propositional atoms. A *c-atom* A is a pair (D,C), where D is a nonempty finite set of atoms in Σ and $C \subseteq 2^D$. We use A_d and A_c to refer to the components D and C of A, respectively. As an abstraction, a c-atom A can be used to represent the semantics of any constraint with a set A_c of admissible solutions over a finite domain A_d [11, 12]. Therefore, in the sequel we will use the aggregate notation and c-atoms exchangeably.

The complement of a c-atom A is the c-atom A' with $A'_d = A_d$ and $A'_c = 2^{A_d} \setminus A_c$.

An interpretation $I \subset \Sigma$ satisfies an atom a if $a \in I$; $\neg a$ if $a \notin I$. I satisfies a c-atom A, written as $I \models A$, if $A_d \cap I \in A_c$; not A, written $I \models not A$, if $A_d \cap I \notin A_c$. Therefore, it follows that I satisfies not A iff I satisfies the complement of A. I satisfies a conjunction E of atoms or c-atoms, written $I \models E$, if I satisfies every conjunct in it.

A c-atom A is monotone if for any $J \supseteq I$, that I satisfies A implies J satisfies A. Otherwise, A is nonmonotone.

An aggregate program (or exchangeably, a logic program with c-atoms) is a finite set of rules of the form $h \leftarrow B_1, ..., B_n, not \ C_1, ..., not \ C_k$, where h, B_i , and C_i are ordinary atoms or c-atoms. Given a rule r, we use H(r) to denote the head and B(r) to denote the body.

Note that in [14] negative aggregates $\neg C$ are allowed, but here we write them as not C. The notations Lit_{Π} , S^+ , and S^- (given a set of literals S) are defined similarly as for those used for dl-programs.

- ▶ Definition 7. (From dl-programs to aggregate programs) Given a dl-program KB = (L, P), we obtain an aggregate program, denoted $\beta(KB)$, by a mapping β_{KB} from atoms, dl-atoms, and their default negation occurring in P to aggregates as follows:
- If A is an ordinary atom a then $\beta_{KB}(A) = a$, and
- If A is a dl-atom then $\beta_{KB}(A) = (HB_P, C)$, where $C = \{I \subseteq HB_P \mid I \models_L A\}$.
- For any default negation of the form not A, $\beta_{KB}(not\ A) = \beta_{KB}(A)'$.

In the sequel, as the underlying KB is always clear, we will drop the subscript in β_{KB} . Also, by abuse of notation, given a rule $r \in P$, we denote by $\beta(B(r))$ the translated conjunction in the body of r, and by $\beta(r)$ the translated rule. Since this mapping does not introduce new symbols, given a dl-program KB = (L, P), we can identify Σ for the translated aggregate programs with HB_P .

As an example, consider a dl-program $KB = (\emptyset, \{p(a) \leftarrow DL[S \cap p; \neg S](a)\})$. The translated aggregate program consists of a single rule, $p(a) \leftarrow (\{p(a)\}, \{\emptyset\})$. The c-atom in the rule represents the semantics of, e.g., the cardinality constraint, $card_{=}(\{x \mid p(x)\}, 0)$.

- ▶ **Lemma 8.** Let KB = (L, P) be a dl-program and $I \subseteq HB_P$.
- (i) For any dl-atom A, $I \models_L A$ iff $I \models \beta(A)$, and $I \not\models_L A$ iff $I \models \beta(A)'$.
- (ii) For any rule $r \in P$, I satisfies r iff I satisfies $\beta(r)$.
- (iii) I is a model of KB iff I is a model of $\beta(KB)$.

4.1 Relationship

Following [13, 14], given a complete lattice $\langle L, \preceq \rangle$, the *bilattice* induced from it is the structure $\langle L^2, \preceq, \preceq_p \rangle$, where for all $x, y, x', y' \in L$,

$$\begin{array}{ll} (x,y) \preceq (x',y') & \text{if and only if} \ \ x \preceq x' \text{ and } y \preceq y' \\ (x,y) \preceq_p (x',y') & \text{if and only if} \ \ x \preceq x' \text{ and } y' \preceq y \end{array}$$

The order \leq on L^2 is called the *produce order*, while \leq_p is called the *precision order*. Both orders are complete lattice orders on L^2 . We are interested only in the subset of pairs (x, y) that are *consistent*, i.e., $x \leq y$, and when x = y it is said to be *exact*. We denote the set of consistent pairs by L^c .

Given a bilattice $\langle L^2, \preceq, \preceq_p \rangle$, the \preceq -least element is (\bot, \bot) and the \preceq_p -least element is (\bot, \top) . E.g., consider the complete lattice $\langle 2^{\Sigma}, \subseteq \rangle$ where Σ is a set of atoms. For the bilattice induced from it, the \preceq -least element is (\emptyset, \emptyset) and the \preceq_p -least element is (\emptyset, Σ) .

The idea of the well-founded semantics for an aggregate program is to start with the \leq_p -least element $\langle \emptyset, \Sigma \rangle$, and apply an approximating operator, denoted A, in a way that not only are the true atoms computed, but also the false atoms that are not reachable by derivations. It approximates an operator O on L, whose fixpoints are exact pairs on L^2 .

- ▶ **Definition 9.** Let $O: L \to L$ be an operator on a complete lattice $\langle L, \preceq \rangle$. We say that $A: L^c \to L^c$ is an approximating operator of O iff the following conditions are satisfied:
- \blacksquare A extends O, i.e., A(x,x) = (O(x),O(x)), for every $x \in L$.
- \blacksquare A is \leq_p -monotone.

The condition on A is a mild one: it only requires to extend O on exact pairs, in addition to monotonicity.

For aggregate programs, given a language \mathcal{L}_{Σ} , a program Π , and a monotonic approximating operator A of some operator O, we will compute a sequence

$$(\emptyset, \Sigma) = (u_0, v_0), (u_1, v_1), \dots, (u_k, v_k), \dots, (u_\infty, v_\infty)$$
(3)

such that the internal $[u_i, v_i]$ is decreasing, i.e., $[u_{i+1}, v_{i+1}] \subset [u_i, v_i]$, for all i, eventually reaching a fixpoint, which is denoted by (u_{∞}, v_{∞}) .

Intuitively, one can think of this sequence as representing the process that, initially nothing is known to be true and every atom in Σ is potentially true (as such, nothing is known to be false); and given (u_i, v_i) , after the current iteration, $u_{i+1} \setminus u_i$ is the set of atoms that become known to be true and $v_i \setminus v_{i+1}$ is the set of atoms that become known to be false. In this way, u_i represents a lower estimate and v_i an upper estimate of the eventual fixpoint. At the end, u_{∞} is the set of true atoms and $\Sigma \setminus v_{\infty}$ is the set of false atoms, and the truth value of the remaining atoms is undefined. This gives a 3-valued interpretation of the least fixpoint.

A fixpoint operator that constructs sequence (3) can be defined in different ways. For example, we can simply take the approximating operator A, i.e., $A(u_i, v_i) = (u_{i+1}, v_{i+1})$, for all i. If A is \leq_p -monotone, then the least fixpoint of A exists, which is called the Kripke-Kleene fixpoint of A.

As alluded to earlier, our interest is the well-founded semantics, which is determined by the so-called well-founded fixpoint of A. It is computed by a stable revision operator, denoted by $\mathcal{S}t_{\Pi}$, for a given aggregate program Π . Namely, $\mathcal{S}t_{\Pi}(u_i, v_i) = (u_{i+1}, v_{i+1})$, where (u_{i+1}, v_{i+1}) is computed from (u_i, v_i) using two component operators of A. The first one, denoted by $A^1(\cdot, v_i)$, is A with v_i fixed, and similarly, the second, denoted by $A^2(u_i, \cdot)$, is A with u_i fixed. Given an upper estimate b, we compute a new lower estimate by an iterative process:

$$x_0 = \bot, x_1 = A^1(x_0, b), ..., x_{i+1} = A^1(x_i, b), ...$$
 (4)

until a fixpoint is reached. That is, if $b = v_i$, then $u_{i+1} = x_{\infty}$ where $x_{\infty} = A^1(x_{\infty}, b)$. The operator that generates x_{∞} is called the *lower revision operator*.

On the other hand, given a lower estimate a, we compute a new upper estimate

$$y_0 = a, y_1 = A^2(a, y_0), ..., y_{i+1} = A^2(a, y_i), ...$$
 (5)

until a fixpoint is reached. That is, if $a = u_i$, then $v_{i+1} = y_{\infty}$ where $y_{\infty} = A^2(a, y_{\infty})$. The operator that generates y_{∞} is called the *upper revision operator*.

It can be seen that if A is \leq_p -monotone, so is $\mathcal{S}t_{\Pi}$, thus the least fixpoint of $\mathcal{S}t_{\Pi}$ can be constructed by a sequence (3), where (u_{∞}, v_{∞}) is called the *well-founded fixpoint* of A, which is the least fixpoint of the stable revision operator $\mathcal{S}t_{\Pi}$.

By this parameterized algebraic approach one can define possibly different well-founded semantics by employing different \leq_p -monotone approximating operators. In the context of aggregate programs, the operator we are approximating is the standard immediate consequence operator extended to aggregate programs Π , i.e., $\mathcal{T}_{\Pi}: \Sigma \to \Sigma$, where

$$\mathcal{T}_{\Pi}(I) = \{ H(r) \mid r \in \Pi \text{ and } I \models B(r) \}. \tag{6}$$

To approximate \mathcal{T}_{Π} while preserving the well-founded and stable model semantics for normal logic programs, in [13], a three-valued immediate consequence operator Φ_{Π}^{aggr} is defined for aggregate programs, which maps 3-valued interpretations to 3-valued interpretations. Recall that a 3-valued interpretation can be represented by a pair (I_1, I_2) of 2-valued interpretations with $I_1 \subseteq I_2$, where I_1 is the set of atoms assigned to true, $\Sigma \setminus I_2$ is the set of atoms assigned to false, and all the other atoms are assigned to undefined. Thus, Φ_{Π}^{aggr} maps a pair of 2-valued interpretations to a pair of 2-valued interpretations, i.e., $\Phi_{\Pi}^{aggr}(I_1, I_2) = (I'_1, I'_2)$. The definition of Φ_{Π}^{aggr} guarantees that it approximates the operator \mathcal{T}_{Π} , in that for any fixpoint (I, J) of Φ_{Π}^{aggr} , and for any x such that $\mathcal{T}_{\Pi}(x) = x$, $(I, J) \preceq_p (x, x)$.

From the definition of Φ_{Π}^{aggr} above, two component operators are induced. They are

$$\Phi_{\Pi}^{aggr,1}(I_1, I_2) = I_1' \quad \text{and} \quad \Phi_{\Pi}^{aggr,2}(I_1, I_2) = I_2'$$
(7)

The original definition of Φ_{Π}^{aggr} is given in 3-valued logic, parameterized by the choice of approximating aggregates [13]. In [16], the authors showed an equivalent definition of $\Phi_{\Pi}^{aggr,1}$ in terms of conditional satisfaction, when the approximating aggregate used is the ultimate approximating aggregate. We state this result below (see Appendix of [16]). Here, we replace aggregates with c-atoms. In a similar way, an equivalent definition of $\Phi_{\Pi}^{aggr,2}$ can be obtained.

▶ **Theorem 10.** Let Π be an aggregate program, and I and M interpretations with $I \subseteq M \subseteq \Sigma$. Then,

$$\Phi_{\Pi}^{aggr,1}(I,M) = \{ H(r) \mid r \in \Pi, \forall J \in [I,M], J \models B(r) \}$$
(8)

$$\Phi_{\Pi}^{aggr,2}(I,M) = \{ H(r) \mid r \in \Pi, \exists J \in [I,M], J \models B(r) \}$$
(9)

▶ **Lemma 11.** The component operators $\Phi_{\Pi}^{aggr,1}(\cdot,b)$ and $\Phi_{\Pi}^{aggr,2}(a,\cdot)$ are \subseteq -monotone, and Φ_{Π}^{aggr} is \subseteq_p -monotone.

Therefore, the stable revision operator $\mathcal{S}t_{\Pi}$ induced from Φ_{Π}^{aggr} is also \subseteq_p -monotone, and we take the least fixpoint of this operator for the semantics. Recall that this fixpoint has been referred to as the well-founded fixpoint of Φ_{Π}^{aggr} .

▶ **Definition 12.** Let Π be an aggregate program and (u_{∞}, v_{∞}) the well-founded fixpoint of Φ_{Π}^{aggr} . The *ultimate well-founded semantics* of Π based on Φ_{Π}^{aggr} , denoted by $UWFS(\Pi)$, is defined as $u_{\infty} \cup \neg .(\Sigma \setminus v_{\infty})$.

In the sequel, we will drop the phrase "based on Φ_{Π}^{aggr} ", with the understanding that the underlying approximating operator is Φ_{Π}^{aggr} as identified in Theorem 10.

Example 13. Consider the following aggregate program Π :

$$\begin{array}{ll} p(-1). & p(-2) \leftarrow sum_{\leq}(\{x \mid p(x)\}, 2). \\ p(3) \leftarrow sum_{>}(\{x \mid p(x)\}, -4). & p(-4) \leftarrow sum_{\leq}(\{x \mid p(x)\}, 0). \end{array}$$

The aggregates under sum are self-explaining, e.g., $sum_{\leq}(\{x\mid p(x)\},2)$ means that the sum of x for satisfied atoms p(x) is less than or equal to 2. For the construction of the well-founded fixpoint, we start with the pair (\emptyset, Σ) . The reader can apply equations in (7) to verify: by applying the operator $\Phi_{\Pi}^{aggr,1}(\cdot,\Sigma)$ iteratively, we get a new lower estimate $Q=\{p(-1),p(-2),p(-4)\}$; and by applying $\Phi_{\Pi}^{aggr,2}(\emptyset,\cdot)$ iteratively, we get an upper estimate Σ , which is the same as before. Thus the new pair is (Q,Σ) . Continuing in the next iteration, Q remains the same but p(3) is no longer derivable. We thus have $(Q,\Sigma-\{p(3)\})$, which is a fixpoint. So the ultimate well-founded semantics is that all atoms in Q are true, p(3) is false, and nothing is undefined.

▶ **Theorem 14.** Let KB = (L, P) be a dl-program. The well-founded semantics of KB coincides with the ultimate well-founded semantics of the aggregate program $\beta(KB)$. That is, $WFS(KB) = UWFS(\beta(KB))$.

Proof. (Sketch) Let $\Pi = \beta(KB)$ and (u_{∞}, v_{∞}) in sequence (3) be the ultimate well-founded fixpoint of Φ_{Π}^{aggr} . Recall that $WFS(KB) = lfp(W_{KB}) = lfp(V_{KB})$ (the latter is by Lemma 6) and $UWFS(\Pi) = u_{\infty} \cup \neg.(\Sigma \setminus v_{\infty})$. We prove the coincidence by induction on the sequences of constructing $lfp(V_{KB})$ and (u_{∞}, v_{∞}) . In the proof, we assume rules in P are of the form $a \leftarrow \phi$ or $a \leftarrow not \phi$, where ϕ is a dl-atom. The proof can be generalized to arbitrary dl-rules. Below, we identify Σ for the corresponding aggregate program with HB_P for the given dl-program, i.e., we let $\Sigma = HB_P$.

Clearly, $V_{KB}^0 = u_0 \cup \neg .(\Sigma \setminus v_0) = \emptyset$. Assume $(V_{KB}^i)^+ = u_i$ and $(V_{KB}^i)^- = \Sigma \setminus v_i$ and we show $(V_{KB}^{i+1})^+ = u_{i+1}$ and $(V_{KB}^{i+1})^- = \Sigma \setminus v_{i+1}$, for all $i \geq 0$. Note that from (1), and by induction hypothesis, we have

$$(V_{KB}^{i+1})^+ = FP_{T_{KB}}(V_{KB}^i) = FP_{T_{KB}}(u_i \cup \neg \cdot (\Sigma \setminus v_i))$$

$$\tag{10}$$

(a) $(V_{KB}^{i+1})^+ = u_{i+1}$. First, observe that for the approximating operator Φ_{Π}^{aggr} , x_{∞} in (4) can be computed equivalently by starting with u_i , i.e.,

$$x_0 = u_i, x_1 = \Phi_{\Pi}^{aggr,1}(x_0, v_i), ..., x_{i+1} = \Phi_{\Pi}^{aggr,1}(x_i, v_i), ..., x_{\infty} = \Phi_{\Pi}^{aggr,1}(x_{\infty}, v_i)$$
(11)

and $u_{i+1} = x_{\infty}$. According to (10), we need to show $FP_{T_{KB}}(u_i \cup \neg.(\Sigma \setminus v_i)) = u_{i+1}$. We prove this by showing a one-one correspondence between the steps in (1) and those in (11). That is, $x_k = T_{KB}^k$ for all $k \geq 0$. The base case is due to the induction hypothesis, namely $x_0 = u_i = (V_{KB}^i)^+ = T_{KB}^0$ (note that T_{KB}^0 here refers to the one in (1)). Assume $x_k = T_{KB}^k$ and we show $x_{k+1} = T_{KB}^{k+1}$, for all $k \geq 0$. For any atom $a \in \Sigma$, $a \in x_{k+1}$ iff for some rule $r \in P$ with H(r) = a such that for every $J \in [x_k, v_i]$, $J \models \beta(B(r))$. Let us label the last statement as (C1).

Suppose $r = a \leftarrow \phi$. By Lemma 8, $J \models \beta(\phi)$ iff $J \models_L \phi$. From the induction hypothesis, we have $(V_{KR}^i)^- = \Sigma \setminus v_i$, and it follows

$$[x_k, v_i] = \{S^+ \mid S \text{ is consistent and } x_k \cup \neg .\Sigma \setminus v_i \subseteq S \subseteq Lit_P\}$$

From $x_k = T_{KB}^k$, it follows that (C1) iff $a \in T_{KB}^{k+1}$, as the condition (b) of Definition 3 is satisfed: for all $b \in B^+(r)$, $S^+ \models_L b$ for each consistent S with $T_{KB}^k \subseteq S \subseteq Lit_P$. The case where $r = a \leftarrow not \ \phi$ can be proved similarly, based on condition (d) of Definition 3.

(b) $(V_{KB}^{i+1})^- = \Sigma \setminus v_{i+1}$. Namely, $U_{KB}(V_{KB}^i) = \Sigma \setminus v_{i+1}$, i.e., the greatest unfounded set of KB relative to V_{KB}^i is precisely the fixpoint y_{∞} (= v_{i+1}) below:

$$y_0 = u_i, y_1 = \Phi_{\Pi}^{aggr,2}(u_i, y_0), ..., y_{i+1} = \Phi_{\Pi}^{aggr,2}(u_i, y_i), ..., y_{\infty} = \Phi_{\Pi}^{aggr,2}(u_i, y_{\infty})$$
 (12)

- (b-1) Prove that for any $a \in \Sigma$, if $a \in v_{i+1}$ then $a \notin U$, for any unfounded set U of KB relative to V_{KB}^i . By definition, $a \in v_{i+1}$ iff $a \in y_k$, for some $k \geq 0$, iff there is a rule $r \in P$ with H(r) = a such that $\exists J \in [u_i, y_k], J \models \beta(B(r))$. By Lemma 8, $J \models \beta(B(r))$ iff $J \models_L \phi$, if r is of form $a \leftarrow \phi$. This violates condition (iii) in Definition 2, as by induction hypothesis there is a consistent extension S of V_{KB}^i such that $S^+ = J$. The proof is similar if r is of form $a \leftarrow not \phi$, in which case condition (iv) is violated.
- (b-2) Show that $a \notin v_{i+1} \Rightarrow a \in U_{KB}(V_{KB}^i)$, for all $a \in \Sigma$. That $a \notin v_{i+1}$ (i.e., $a \notin y_{\infty}$) means, for every rule $r \in P$ with H(r) = a, and for all $I \in [u_i, y_{\infty}]$, $I \not\models \beta(B(r))$, hence by Lemma 8, $I \not\models_L \phi$ if $r = a \leftarrow \phi$ and $I \models_L \phi$ if $r = a \leftarrow not \phi$. Note that

$$[u_i, y_\infty] = \{S^+ \mid S \text{ is consistent and } u_i \cup \neg .\Sigma \setminus y_\infty \subseteq S \subseteq Lit_P\}$$

From the induction hypothesis we know $u_i = (V_{KB}^i)^+$ and $(V_{KB}^i)^- = \Sigma \setminus v_i$, and notationally $v_{i+1} = y_{\infty}$. It follows from Definition 2 that $\Sigma \setminus v_{i+1}$ is an unfounded set of KB relative to V_{KB}^i , and $a \in \Sigma \setminus v_{i+1}$. Obviously, it is the greatest unfounded set of KB relative to V_{KB}^i , since for any atom $\varphi \in y_{\infty}$, there is a derivation of φ based on V_{KB}^i . Therefore, $a \in U_{KB}(V_{KB}^i)$. The proof is completed.

5 Well-Founded Semantics of DL-Programs with Aggregates

A dl-program with aggregates is a combined knowledge base KB = (L, P), where L is a DL knowledge base and P a finite set of rules of the form $a \leftarrow b_1, ..., b_k$, not $c_1, ...,$ not c_n , where a is an atom, and each b_i or c_j is either an ordinary atom, a dl-atom, or an aggregate atom. In the following, we continue to denote by HB_P the set of atoms composed from the constants and predicate symbols of the underlying language.

Now we extend the satisfaction relation \models_L to cover aggregates. Let KB = (L, P) be a dl-program with aggregates and $I \subseteq HB_P$ an interpretation. For any aggregate ϕ , we define $I \models_L \phi$ iff $I \models \phi$, and extend \models_L naturally to conjunctions of atoms, dl-atoms, aggregates, and their negations. Then, Definitions 2 and 3 can be adopted directly, by replacing "dl-program" with "dl-program with aggregates". To distinguish, let us denote the fixpoint operator W_{KB} in Definition 3 by W'_{KB} .

- ▶ Definition 15. (Well-founded semantics for dl-programs with aggregates) Let KB = (L, P) be a dl-program with aggregates. The well-founded semantics of KB is defined as the least fixpoint of the operator W'_{KB} , denoted $lfp(W'_{KB})$.
- ightharpoonup Theorem 16. Let KB=(L,P) be a dl-program with aggregates. (i) If P contains no aggregates, then $lfp(W'_{KB}) = lfp(W_{KB})$; and (ii) If P contains no dl-atoms, then $lfp(W'_{KB}) = lfp(W'_{P}) = UWFS(P).$

For illustration, we close this section by presenting a dl-program with aggregates.

- **Example 17.** Consider KB = (L, P) with $L = \{Vip \subseteq CR\}$, possibly plus some assertions of individuals in the concepts Vip and/or CR, where CR stands for Customer-Record, and P containing
- 1. $purchase(X) \leftarrow purchase(X, Obj), item(Obj)$.
- 2. $client(X) \leftarrow DL[CR \uplus purchase; CR](X)$.
- 3. $imp_client(X) \leftarrow DL[Vip](X)$.
- 4. $imp\ client(X) \leftarrow client(X), sum_{>}(\{Y | item(Obj), cost(Obj,Y), purchase(X,Obj)\}, 100).$
- 5. $discount(X) \leftarrow imp_client(X)$.
- 6. $promo_offer(X) \leftarrow DL[CR \cup imp_client; CR](X), card_{=}(\{Y | purchase(Y)\}, 0).$

Rule 1 is self-explaining. Rule 2 queries the DL knowledge base in order to enhance the client predicate. In rules 3 and 4 we establish that important clients are those who have spent at least \$100 or are VIPs. Rules 5 and 6 provide benefits to certain customers. In rule 5, a discount is offered to important clients - VIPs and those whose purchases sum to \$100 or more. Rule 6 describes a promotional offer for non-VIP customers who have not made any purchases - they are potential clients. For applications, P may contain some facts about items, cost, and purchase.

6 **Related Work and Further Direction**

The close relationships between well-founded model, partial stable models, and stable models are well-understood (see, e.g., [6, 15, 19]). That the well-founded model of a normal logic program is contained in all its stable models makes it possible in a stable model solver to compute the well-founded model as the first approximation. The well-founded semantics has been defined for disjunctive programs [18] and default logic [2]. The close relationship between dl-programs and aggregate programs is noticed in [8], but left as an interesting future direction.

In [9], the notion of unfounded sets for arbitrary aggregate programs is defined (which generalizes that of [3] for logic programs with monotone and anti-monotone aggregates): A set of atoms U is an unfounded set for an aggregate program P and a partial interpretation I, if for every $a \in U$, and for every rule $r \in P$ with a as the head, a literal ξ in B(r) is false w.r.t. I or w.r.t. $(I-U) \cup \neg U$. The latter expression equals $I \cup \neg U$ if $I \cap U = \emptyset$. Here, falsity in I amounts to falsify in all of its totalization. It thus gives the same effect as requiring

that ξ is not satisfied by any consistent extension of $I \cup \neg U$ in our definition. Thus, it follows from our result that, if we define the well-founded semantics for arbitrary aggregate programs using the notion of unfounded sets in [9], the resulting semantics is equivalent to the ultimate well-founded semantics defined by Pelov et al. [13, 14].

The complexity issues for various classes of dl-programs and aggregate programs under the well-founded semantics will be addressed in future work.

References

- 1 F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.
- 2 Gerhard Brewka and Georg Gottlob. Well-founded semantics for default logic. *Fundamenta Informaticae*, 31(3/4):221–236, 1997.
- 3 Francesco Calimeri, Wolfgang Faber, Nicola Leone, and Simona Perri. Declarative and computational properties of logic programs with aggregates. In *Proc. IJCAI-05*, pages 406–411, 2005.
- 4 M. Denecker, V. W. Marek, and M. Truszczynski. Ultimate approximation and its application in nonmonotonic knowledge representation systems. *Information and Computation*, 192(1):84–121, 2004.
- M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-founded and stable semantics for logic programs with aggregates. In *Proc. ICLP'01*, pages 212–226, 2001.
- 6 Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-monotonic reasoning, logic programming and n-person games. *Artif. Intell.*, 77(2):321–358, 1995.
- 7 Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In *Proc. IJCAI-05*, pages 90–96, 2005.
- 8 Thomas Eiter, Thomas Lukasiewicz, Giovambattista Ianni, and Roman Schindlauer. Wellfounded semantics for description logic programs in the semantic web. *ACM Transactions on Computational Logic*, 12(2), 2011. Article 3.
- **9** W. Faber. Unfounded sets for disjunctive logic programs with arbitrary aggregates. In proc. LPNMR-05, pages 40–52, 2005.
- Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In Proc. ICLP'88, pages 1070–1080, 1988.
- V. W. Marek and J. B. Remmel. Set constraints in logic programming. In *Proc. LPNMR-04*, pages 167–179, 2004.
- 12 V. W. Marek and M. Truszczynski. Logic programs with abstract constraint atoms. In *Proceedings of AAAI-04*, pages 86–91, 2004.
- N. Pelov, M. Denecker, and M. Bruynooghe. Partial stable models for logic programs with aggregates. In *Proc. LPNMR-04*, pages 207–219, 2004.
- N. Pelov, M. Denecker, and M. Bruynooghe. Well-founded and stable semantics of logic programs with aggregates. Theory and Practice of Logic Programming, 7:301–353, 2007.
- 15 Teodor C. Przymusinski. The well-founded semantics coincides with the three-valued stable semantics. *Fundam. Inform.*, 13(4):445–463, 1990.
- 16 Tran Cao Son and Enrico Pontelli. A constructive semantic characterization of aggregates in answer set programming. TPLP, 7(3), 2007.
- 17 Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for general logic programs. *J. ACM*, 38(3):620–650, 1991.

246 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

- 18 Kewen Wang and Lizhu Zhou. Comparisons and computation of well-founded semantics for disjunctive logic programs. *ACM Trans. Comput. Log.*, 6(2):295–327, 2005.
- 19 Jia-Huai You and Li Yan Yuan. On the equivalence of semantics for normal logic programs. $J.\ Log.\ Program.,\ 22(3):211-222,\ 1995.$