
Reconciling Well-Founded Semantics of
DL-Programs and Aggregate Programs∗

Jia-Huai You1, John Morris1, and Yi Bi2

1 Department of Computing Science
University of Alberta, Canada

2 School of Computer Science and Technology
Tianjin University, China

Abstract
Logic programs with aggregates and description logic programs (dl-programs) are two recent
extensions to logic programming. In this paper, we study the relationships between these two
classes of logic programs, under the well-founded semantics. The main result is that, under
a satisfaction-preserving mapping from dl-atoms to aggregates, the well-founded semantics of
dl-programs by Eiter et al., coincides with the well-founded semantics of aggregate programs,
defined by Pelov et al. as the least fixpoint of a 3-valued immediate consequence operator under
the ultimate approximating aggregate. This result enables an alternative definition of the same
well-founded semantics for aggregate programs, in terms of the first principle of unfounded sets.
Furthermore, the result can be applied, in a uniform manner, to define the well-founded semantics
for dl-programs with aggregates, which agrees with the existing semantics when either dl-atoms
or aggregates are absent.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Well-founded semantics, description logic programs, aggregate logic pro-
grams, three-valued logic.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.235

1 Introduction

In logic programming beyond positive logic programs, almost all semantics of the current
interest can be traced back to the origin of two semantics, the stable model semantics [10]
and the well-founded semantics [17]. While the former is based on guess-and-verify to sort
contradictory information into different stable models/answer sets, the latter is defined by
a built-in mechanism to circumvent contradictory conclusions, thus making safe inferences
in the presence of data that require conflicting interpretations.

More recently, well-founded semantics have been studied for two extensions of logic pro-
gramming: logic programs with aggregates (or, aggregate programs) [5, 13, 14] and description
logic programs (dl-programs) [8]. The former brings into logic programming reasoning with
constraints, while the latter is an example of logic programming with external atoms [7]. In
a dl-program an atom can be a dl-atom, which is a well-designed interface to an underlying
description logic knowledge base. In this way, some decidable fragments of first-order logic
can be integrated into rule-based non-monotonic reasoning. These extensions substantially
widen the application range of logic programming.

∗ The work was partially supported by Natural Sciences and Engineering Research Council of Canada.

© Jia-Huai You, John Morris, and Yi Bi;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 235–246

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.235
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

236 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

An aggregate is a constraint, which is a relation on a domain where the tuples in the
relation are called admissible solutions. A dl-atom can also be viewed as a constraint, in
terms of the sets of (ordinary) atoms under which it is satisfied. Despite this close connec-
tion, the semantics for these two kinds of programs have been studied independently. In
[8], the semantics is defined under the first principle of unfounded sets, while in the work of
Pelov et al. [14], a purely algebraic framework is developed under the theory of approxim-
ating operators on bilattices [4], parameterized by approximating operators and aggregate
relations. In particular, given an aggregate program Π, the well-founded semantics, based
on the least fixpoint of a 3-valued immediate consequence operator Φaggr

Π , is defined along
with the ultimate aggregate relation. Let us call this semantics the (ultimate) well-founded
semantics of Π. It extends the well-founded semantics for normal logic programs.

In this paper, we study the relationships between dl-programs and aggregate programs
under the well-founded approach. The main result is that the well-founded semantics of dl-
programs can be obtained from the ultimate well-founded semantics of aggregate programs,
under a mapping from dl-atoms to aggregates. This leads to the following conclusions: on
the one hand, the well-founded semantics for dl-programs can be viewed as a special case
of the ultimate well-founded semantics for aggregate programs, and on the other hand, the
latter semantics can be defined, alternatively, employing the notion of unfounded sets.1
As a result, the well-founded semantics can be defined, in a uniform manner using the
first principle of unfoundedness, for logic programs that may contain both dl-atoms and
aggregates.

The paper is organized as follows. The next section provides some definitions. Section
3 introduces the well-founded semantics for dl-programs. Section 4 shows that under a
mapping from dl-atoms to aggregates, the well-founded semantics for dl-programs is precisely
that of the corresponding aggregate programs. Then in Section 5 we extend the well-founded
semantics to logic programs that may contain dl-atoms as well as aggregates. Section 6 is
about related work followed by comments on future work.

2 Preliminaries

We introduce dl-programs. Although technically this paper does not intimately depend on
description logics (DLs) [1], some familiarity would be convenient.

A DL knowledge base L consists of a finite set of axioms built over a vocabulary ΣL =
(A ∪R, I), where A, R and I are pairwise disjoint (denumerable) sets of atomic concepts,
atomic roles and individuals, respectively. As usual, concepts can be built from atomic
concepts and other constructs, such as u (conjunction), t (disjunction), ¬ (negation), and
various restrictions (see [1] for more details).

Let P be a finite set of predicate symbols and C a nonempty finite set of constants such
that P ∩ (A ∪R) = ∅ and C ⊆ I. A term is either a constant from C or a variable. An
atom is of the form p(t1, ..., tm), where p is a predicate symbol from P, and ti is a term. An
equality (resp. inequality) is of the form t1 = t2 (resp. t1 6= t2), where t1 and t2 are terms.
A dl-query is of the form Q(t), where t is a list of terms, and Q is an equality/inequality
symbol, or a concept, a role, or a concept inclusion axiom, built from A ∪R.

A dl-atom is of the form DL[S1op1p1, · · · , Smopmpm;Q](t), where Si is a concept or role
built from A ∪R, or an equality/inequality symbol; opi ∈ {∪+ , ∪- , ∩- }; pi ∈ P is a unary

1 In fact, such a definition of unfounded sets was already proposed in [9].

J. You, J. Morris, and Y. Bi 237

predicate symbol if Si is a concept, and a binary predicate symbol otherwise; and Q(t) is a
dl-query.

A dl-rule (or rule) is of the form h← A1, ..., Am, not B1, ..., not Bn, where h is an atom,
and Ai and Bi are atoms or equalities/inequalities or dl-atoms. An atom or a dl-atom A,
and its negated form not A, is called a literal. For any rule r, we denote the head of the rule
by H(r), and the body by B(r). In addition, B+ = {A1, ..., Am} and B− = {B1, ..., Bn}. A
rule base P is a finite set of rules.

A dl-program is a combined knowledge base KB = (L,P), where L is a DL knowledge
base and P is a rule base.

A ground instance of a rule r is obtained by first replacing every variable in r with a
constant from C, then replacing with > (resp. ⊥) every equality/inequality if it is valid (resp.
invalid) under the unique name assumption (UNA). > and ⊥ are two special predicates such
that > (resp. ⊥) is true (resp. false) in every interpretation.

In this paper, we assume a rule base P is already grounded using the constants appearing
in the given non-ground program. Likewise, when we refer to an atom/dl-atom/literal, by
default we mean it is one without variables.

The Herbrand base of a rule base P , denoted by HBP , is the set of all ground atoms
p(t1, ..., tm), where p is from P and ti is a constant from C, both occurring in P . Any subset
of HBP is an interpretation of P .

I Definition 1. Let KB = (L,P) be a dl-program and I ⊆ HBP an interpretation. Define
the satisfaction relation under L, denoted |=L, as follows:
1. I |=L > and I 6|=L ⊥.
2. For any atom a ∈ HBP , I |=L a if a ∈ I.
3. For any (ground) dl-atom A = DL[S1op1p1, · · · , Smopmpm;Q](c) occurring in P , I |=L

A if L ∪
⋃m

i=1Ai |= Q(c), where

Ai =


{Si(e) | pi(e) ∈ I}, if opi = ∪+ ;
{¬Si(e) | pi(e) ∈ I}, if opi = ∪- ;
{¬Si(e) | pi(e) 6∈ I}, if opi = ∩- .

4. For any ground atom or dl-atom A, I |=L not A if I 6|=L A.

The above satisfaction relation naturally extends to conjunctions of literals. For a rule
r ∈ P , I |=L r if I 6|=L B(r) or I |=L H(r). I is a model of a dl-program KB = (L,P) if
I |=L r for all r ∈ P .

A ground dl-atom A is monotonic relative to KB if for any I ⊆ J ⊆ HBP , I |=L A

implies J |=L A. Otherwise, A is nonmonotonic.
Additional notations: Given a set S of atoms, ¬.S = {¬a | a ∈ S}; given a set P of

rules, LitP = HBP ∪ ¬.HBP ; if I is a set of literals, I+ = {a | a is an atom in I} and
I− = {a | ¬a ∈ I}; a set of literals I ⊆ LitP is consistent if there is no atom a such that
a ∈ I and ¬a ∈ I. In this paper, by an interval [S1, S2], where S1 and S2 are sets and
S1 ⊆ S2, we mean the set {S | S1 ⊆ S ⊆ S2}.

3 Well-Founded Semantics for Arbitrary DL-Programs

The well-founded semantics is first defined for dl-programs with dl-atoms that may only
contain operators ∪+ and ∪- [8]. These dl-atoms are monotonic. It is then commented (see
Section 9.2 of [8]) that the definition can be generalized to the class of all dl-programs. For
contrast, here we introduce the well-founded semantics for arbitrary dl-programs directly.

ICLP’12

238 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

I Definition 2. (Unfounded set) Let KB = (L,P) be a dl-program and I ⊆ LitP be
consistent. A set U ⊆ HBP is an unfounded set of KB relative to I iff the following holds:

For every a ∈ U and every rule r ∈ P with H(r) = a, either (i) ¬b ∈ I ∪ ¬.U for
some ordinary atom b ∈ B+(r), or (ii) b ∈ I for some ordinary atom b ∈ B−(r), or
(iii) for some b ∈ B+(r), it holds that S+ 6|=L b for each consistent S ⊆ LitP with
I ∪ ¬.U ⊆ S, or (iv) for some b ∈ B−(r), it holds that S+ |=L b for each consistent
S ⊆ LitP with I ∪ ¬.U ⊆ S.

Intuitively, the definition says that an atom a is in an unfounded set U , relative to I,
because, for every rule with a in the head, at least one body literal is not satisfied by I

under L, and this fact remains to hold for any consistent extension of I ∪ ¬.U .

I Definition 3. Let KB = (L,P) be a dl-program. We define the operators TKB , UKB ,
and WKB on all consistent I ⊆ LitP as follows:
(i) a ∈ TKB(I) iff a ∈ HBP and some r ∈ P exists such that (a) H(r) = a, (b) for all

b ∈ B+(r), S+ |=L b for each consistent S with I ⊆ S ⊆ LitP , (c) ¬b ∈ I for all
ordinary atoms b ∈ B−(r), and (d) for all b ∈ B−(r), S+ 6|=L b for each consistent S
with I ⊆ S ⊆ LitP .

(ii) UKB(I) is the greatest unfounded set of KB relative to I; and
(iii) WKB(I) = TKB(I) ∪ ¬.UKB(I).

With the standard definition of monotonicity of operators over complete lattices, one
can verify easily that the operators TKB , UKB , and WKB are all monotonic.

As a notation, we define W 0
KB = ∅, and W i+1

KB = WKB(W i
KB), for all i ≥ 0. In the

sequel, we will use a similar notion for other monotonic operators, but sometimes we may
start applying such an operator from a nonempty set (this will be made clear when such a
situation arises).

I Definition 4. (Well-founded Semantics) Let KB = (L,P) be a dl-program. The
well-founded semantics of KB, denoted by WFS(KB), is defined as the least fixpoint of the
operator WKB , denoted lfp(WKB). An atom a ∈ HBP is well-founded (resp. unfounded)
relative to KB iff a (resp. ¬a) is in lfp(WKB).

I Example 5. Consider a dl-program KB = (∅, P), where P consists of

r1 : p(a)← not DL[S1 ∩- q, S2 ∪+ r;¬S1 u S2](a).
r2 : q(a)← DL[S ∪+ q;S](a).
r3 : r(a)← DL[S ∩- q;¬S](a).

Starting with W 0
KB = ∅, for example, we do not derive p(a) since there is a consist-

ent extension that satisfies the dl-atom in rule r1, but {q(a)} is an unfounded set re-
lative to ∅. The reader can verify that W 1

KB = {¬q(a)}, W 2
KB = {¬q(a), r(a)}, and

W 3
KB = {¬q(a),¬p(a), r(a)}, which is the least fixpoint of WKB .

We now discuss an alternative way to construct the least fixpoint ofWKB . The technical
result given here will be used later when relating to the ultimate well-founded semantics for
aggregate programs.

Since the operator TKB only generates positive atoms, given a consistent I ⊆ LitP , we
can apply TKB iteratively, with I− fixed. That is,

T 0
KB = I+, T 1

KB = TKB(T 0
KB ∪ ¬.I−), ..., T k+1

KB = TKB(T k
KB ∪ ¬.I−), ... (1)

J. You, J. Morris, and Y. Bi 239

Since this sequence is ⊆-increasing, a fixpoint exists. Let us denote it by FPTKB
(I). Note

that the operator FPTKB
: LitP → HBP is monotonic relative to a fixed I−. Namely,

for any consistent sets of literals I1 and I2 such that I−1 = I−2 and I1 ⊆ I2, we have
FPTKB

(I1) ⊆ FPTKB
(I2).

Now, following Definition 3, we define an operator VKB , which is similar to WKB , as
follows: Given a consistent set of literals I ⊆ LitP ,

VKB(I) = FPTKB
(I) ∪ ¬.UKB(I) (2)

As the operator VKB is monotonic, its least fixpoint exists, which we denote by lfp(VKB).
We can show that (the proof is omitted for lack of space)

I Lemma 6. lfp(VKB) = lfp(WKB).

4 Representing DL-Programs by Aggregate Programs

In general, an aggregate in a logic program is a constraint atom. Since in this paper our
interest is in the semantics, we assume that an aggregate is a constraint whose semantics is
pre-defined in terms of its domain and admissible solutions. An explicit representation of
such constraints has been called abstract constraint atoms (or just c-atoms) [12].

We assume a propositional language, LΣ, determined by a fixed countable set Σ of
propositional atoms. A c-atom A is a pair (D,C), where D is a nonempty finite set of atoms
in Σ and C ⊆ 2D. We use Ad and Ac to refer to the components D and C of A, respectively.
As an abstraction, a c-atom A can be used to represent the semantics of any constraint with
a set Ac of admissible solutions over a finite domain Ad [11, 12]. Therefore, in the sequel we
will use the aggregate notation and c-atoms exchangeably.

The complement of a c-atom A is the c-atom A′ with A′d = Ad and A′c = 2Ad \Ac.
An interpretation I ⊂ Σ satisfies an atom a if a ∈ I; ¬a if a 6∈ I. I satisfies a c-atom A,

written as I |= A, if Ad ∩ I ∈ Ac; not A, written I |= not A, if Ad ∩ I 6∈ Ac. Therefore, it
follows that I satisfies not A iff I satisfies the complement of A. I satisfies a conjunction E
of atoms or c-atoms, written I |= E, if I satisfies every conjunct in it.

A c-atom A is monotone if for any J ⊇ I, that I satisfies A implies J satisfies A.
Otherwise, A is nonmonotone.

An aggregate program (or exchangeably, a logic program with c-atoms) is a finite set of
rules of the form h← B1, ..., Bn, not C1, ..., not Ck, where h, Bi, and Ci are ordinary atoms
or c-atoms. Given a rule r, we use H(r) to denote the head and B(r) to denote the body.

Note that in [14] negative aggregates ¬C are allowed, but here we write them as not C.
The notations LitΠ, S+, and S− (given a set of literals S) are defined similarly as for

those used for dl-programs.

IDefinition 7. (From dl-programs to aggregate programs) Given a dl-programKB =
(L,P), we obtain an aggregate program, denoted β(KB), by a mapping βKB from atoms,
dl-atoms, and their default negation occurring in P to aggregates as follows:

If A is an ordinary atom a then βKB(A) = a, and
If A is a dl-atom then βKB(A) = (HBP , C), where C = {I ⊆ HBP | I |=L A}.
For any default negation of the form not A, βKB(not A) = βKB(A)′.

In the sequel, as the underlying KB is always clear, we will drop the subscript in βKB .
Also, by abuse of notation, given a rule r ∈ P , we denote by β(B(r)) the translated con-
junction in the body of r, and by β(r) the translated rule. Since this mapping does not

ICLP’12

240 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

introduce new symbols, given a dl-program KB = (L,P), we can identify Σ for the trans-
lated aggregate programs with HBP .

As an example, consider a dl-program KB = (∅, {p(a) ← DL[S ∩- p;¬S](a)}). The
translated aggregate program consists of a single rule, p(a)← ({p(a)}, {∅}). The c-atom in
the rule represents the semantics of, e.g., the cardinality constraint, card=({x| p(x)}, 0).

I Lemma 8. Let KB = (L,P) be a dl-program and I ⊆ HBP .
(i) For any dl-atom A, I |=L A iff I |= β(A), and I 6|=L A iff I |= β(A)′.
(ii) For any rule r ∈ P , I satisfies r iff I satisfies β(r).
(iii) I is a model of KB iff I is a model of β(KB).

4.1 Relationship
Following [13, 14], given a complete lattice 〈L,�〉, the bilattice induced from it is the struc-
ture 〈L2,�,�p〉, where for all x, y, x′, y′ ∈ L,

(x, y) � (x′, y′) if and only if x � x′ and y � y′
(x, y) �p (x′, y′) if and only if x � x′ and y′ � y

The order � on L2 is called the produce order, while �p is called the precision order. Both
orders are complete lattice orders on L2. We are interested only in the subset of pairs (x, y)
that are consistent, i.e., x � y, and when x = y it is said to be exact. We denote the set of
consistent pairs by Lc.

Given a bilattice 〈L2,�,�p〉, the �-least element is (⊥,⊥) and the �p-least element
is (⊥,>). E.g., consider the complete lattice 〈2Σ,⊆〉 where Σ is a set of atoms. For the
bilattice induced from it, the �-least element is (∅, ∅) and the �p-least element is (∅,Σ).

The idea of the well-founded semantics for an aggregate program is to start with the
�p-least element 〈∅,Σ〉, and apply an approximating operator, denoted A, in a way that
not only are the true atoms computed, but also the false atoms that are not reachable by
derivations. It approximates an operator O on L, whose fixpoints are exact pairs on L2.

I Definition 9. Let O : L → L be an operator on a complete lattice 〈L,�〉. We say that
A : Lc → Lc is an approximating operator of O iff the following conditions are satisfied:

A extends O, i.e., A(x, x) = (O(x), O(x)), for every x ∈ L.
A is �p-monotone.

The condition on A is a mild one: it only requires to extend O on exact pairs, in addition
to monotonicity.

For aggregate programs, given a language LΣ, a program Π, and a monotonic approx-
imating operator A of some operator O, we will compute a sequence

(∅,Σ) = (u0, v0), (u1, v1), ..., (uk, vk), ..., (u∞, v∞) (3)

such that the internal [ui, vi] is decreasing, i.e., [ui+1, vi+1] ⊂ [ui, vi], for all i, eventually
reaching a fixpoint, which is denoted by (u∞, v∞).

Intuitively, one can think of this sequence as representing the process that, initially
nothing is known to be true and every atom in Σ is potentially true (as such, nothing is
known to be false); and given (ui, vi), after the current iteration, ui+1 \ui is the set of atoms
that become known to be true and vi \ vi+1 is the set of atoms that become known to be
false. In this way, ui represents a lower estimate and vi an upper estimate of the eventual
fixpoint. At the end, u∞ is the set of true atoms and Σ \ v∞ is the set of false atoms, and
the truth value of the remaining atoms is undefined. This gives a 3-valued interpretation of
the least fixpoint.

J. You, J. Morris, and Y. Bi 241

A fixpoint operator that constructs sequence (3) can be defined in different ways. For
example, we can simply take the approximating operator A, i.e., A(ui, vi) = (ui+1, vi+1),
for all i. If A is �p-monotone, then the least fixpoint of A exists, which is called the
Kripke-Kleene fixpoint of A.

As alluded to earlier, our interest is the well-founded semantics, which is determined
by the so-called well-founded fixpoint of A. It is computed by a stable revision operator,
denoted by StΠ, for a given aggregate program Π. Namely, StΠ(ui, vi) = (ui+1, vi+1),
where (ui+1, vi+1) is computed from (ui, vi) using two component operators of A. The first
one, denoted by A1(·, vi), is A with vi fixed, and similarly, the second, denoted by A2(ui, ·),
is A with ui fixed. Given an upper estimate b, we compute a new lower estimate by an
iterative process:

x0 = ⊥, x1 = A1(x0, b), ..., xi+1 = A1(xi, b), ... (4)

until a fixpoint is reached. That is, if b = vi, then ui+1 = x∞ where x∞ = A1(x∞, b). The
operator that generates x∞ is called the lower revision operator.

On the other hand, given a lower estimate a, we compute a new upper estimate

y0 = a, y1 = A2(a, y0), ..., yi+1 = A2(a, yi), (5)

until a fixpoint is reached. That is, if a = ui, then vi+1 = y∞ where y∞ = A2(a, y∞). The
operator that generates y∞ is called the upper revision operator.

It can be seen that if A is �p-monotone, so is StΠ, thus the least fixpoint of StΠ can
be constructed by a sequence (3), where (u∞, v∞) is called the well-founded fixpoint of A,
which is the least fixpoint of the stable revision operator StΠ.

By this parameterized algebraic approach one can define possibly different well-founded
semantics by employing different �p-monotone approximating operators. In the context
of aggregate programs, the operator we are approximating is the standard immediate con-
sequence operator extended to aggregate programs Π, i.e., TΠ : Σ→ Σ, where

TΠ(I) = {H(r) | r ∈ Π and I |= B(r)}. (6)

To approximate TΠ while preserving the well-founded and stable model semantics for nor-
mal logic programs, in [13], a three-valued immediate consequence operator Φaggr

Π is defined
for aggregate programs, which maps 3-valued interpretations to 3-valued interpretations.
Recall that a 3-valued interpretation can be represented by a pair (I1, I2) of 2-valued inter-
pretations with I1 ⊆ I2, where I1 is the set of atoms assigned to true, Σ\I2 is the set of atoms
assigned to false, and all the other atoms are assigned to undefined. Thus, Φaggr

Π maps a pair
of 2-valued interpretations to a pair of 2-valued interpretations, i.e., Φaggr

Π (I1, I2) = (I ′1, I ′2).
The definition of Φaggr

Π guarantees that it approximates the operator TΠ, in that for any
fixpoint (I, J) of Φaggr

Π , and for any x such that TΠ(x) = x, (I, J) �p (x, x).
From the definition of Φaggr

Π above, two component operators are induced. They are

Φaggr,1
Π (I1, I2) = I ′1 and Φaggr,2

Π (I1, I2) = I ′2 (7)

The original definition of Φaggr
Π is given in 3-valued logic, parameterized by the choice

of approximating aggregates [13]. In [16], the authors showed an equivalent definition of
Φaggr,1

Π in terms of conditional satisfaction, when the approximating aggregate used is the
ultimate approximating aggregate. We state this result below (see Appendix of [16]). Here,
we replace aggregates with c-atoms. In a similar way, an equivalent definition of Φaggr,2

Π can
be obtained.

ICLP’12

242 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

I Theorem 10. Let Π be an aggregate program, and I and M interpretations with I ⊆M ⊆
Σ. Then,

Φaggr,1
Π (I,M) = {H(r) | r ∈ Π,∀J ∈ [I,M], J |= B(r)} (8)

Φaggr,2
Π (I,M) = {H(r) | r ∈ Π,∃J ∈ [I,M], J |= B(r)} (9)

I Lemma 11. The component operators Φaggr,1
Π (·, b) and Φaggr,2

Π (a, ·) are ⊆-monotone, and
Φaggr

Π is ⊆p-monotone.

Therefore, the stable revision operator StΠ induced from Φaggr
Π is also ⊆p-monotone, and

we take the least fixpoint of this operator for the semantics. Recall that this fixpoint has
been referred to as the well-founded fixpoint of Φaggr

Π .

I Definition 12. Let Π be an aggregate program and (u∞, v∞) the well-founded fixpoint of
Φaggr

Π . The ultimate well-founded semantics of Π based on Φaggr
Π , denoted by UWFS(Π), is

defined as u∞ ∪ ¬.(Σ \ v∞).

In the sequel, we will drop the phrase “based on Φaggr
Π ", with the understanding that the

underlying approximating operator is Φaggr
Π as identified in Theorem 10.

I Example 13. Consider the following aggregate program Π:

p(−1). p(−2)← sum≤({x | p(x)}, 2).
p(3)← sum>({x | p(x)},−4). p(−4)← sum≤({x | p(x)}, 0).

The aggregates under sum are self-explaining, e.g., sum≤({x | p(x)}, 2) means that the sum
of x for satisfied atoms p(x) is less than or equal to 2. For the construction of the well-
founded fixpoint, we start with the pair (∅,Σ). The reader can apply equations in (7) to
verify: by applying the operator Φaggr,1

Π (·,Σ) iteratively, we get a new lower estimate Q =
{p(−1), p(−2), p(−4)}; and by applying Φaggr,2

Π (∅, ·) iteratively, we get an upper estimate Σ,
which is the same as before. Thus the new pair is (Q,Σ). Continuing in the next iteration,
Q remains the same but p(3) is no longer derivable. We thus have (Q,Σ − {p(3)}), which
is a fixpoint. So the ultimate well-founded semantics is that all atoms in Q are true, p(3) is
false, and nothing is undefined.

I Theorem 14. Let KB = (L,P) be a dl-program. The well-founded semantics of KB
coincides with the ultimate well-founded semantics of the aggregate program β(KB). That
is, WFS(KB) = UWFS(β(KB)).

Proof. (Sketch) Let Π = β(KB) and (u∞, v∞) in sequence (3) be the ultimate well-founded
fixpoint of Φaggr

Π . Recall that WFS(KB) = lfp(WKB) = lfp(VKB) (the latter is by
Lemma 6) and UWFS(Π) = u∞ ∪ ¬.(Σ \ v∞). We prove the coincidence by induction
on the sequences of constructing lfp(VKB) and (u∞, v∞). In the proof, we assume rules in
P are of the form a← φ or a← not φ, where φ is a dl-atom. The proof can be generalized
to arbitrary dl-rules. Below, we identify Σ for the corresponding aggregate program with
HBP for the given dl-program, i.e., we let Σ = HBP .

Clearly, V 0
KB = u0 ∪ ¬.(Σ \ v0) = ∅. Assume (V i

KB)+ = ui and (V i
KB)− = Σ \ vi and we

show (V i+1
KB)+ = ui+1 and (V i+1

KB)− = Σ \ vi+1, for all i ≥ 0. Note that from (1), and by
induction hypothesis, we have

(V i+1
KB)+ = FPTKB

(V i
KB) = FPTKB

(ui ∪ ¬.(Σ \ vi)) (10)

J. You, J. Morris, and Y. Bi 243

(a) (V i+1
KB)+ = ui+1. First, observe that for the approximating operator Φaggr

Π , x∞ in (4)
can be computed equivalently by starting with ui, i.e.,

x0 =ui, x1 =Φaggr,1
Π (x0, vi), ..., xi+1 =Φaggr,1

Π (xi, vi), ..., x∞=Φaggr,1
Π (x∞, vi) (11)

and ui+1 = x∞. According to (10), we need to show FPTKB
(ui ∪ ¬.(Σ \ vi)) = ui+1. We

prove this by showing a one-one correspondence between the steps in (1) and those in (11).
That is, xk = T k

KB for all k ≥ 0. The base case is due to the induction hypothesis, namely
x0 = ui = (V i

KB)+ = T 0
KB (note that T 0

KB here refers to the one in (1)). Assume xk = T k
KB

and we show xk+1 = T k+1
KB , for all k ≥ 0. For any atom a ∈ Σ, a ∈ xk+1 iff for some rule

r ∈ P with H(r) = a such that for every J ∈ [xk, vi], J |= β(B(r))). Let us label the last
statement as (C1).

Suppose r = a← φ. By Lemma 8, J |= β(φ) iff J |=L φ. From the induction hypothesis,
we have (V i

KB)− = Σ \ vi, and it follows

[xk, vi] = {S+ | S is consistent and xk ∪ ¬.Σ \ vi ⊆ S ⊆ LitP }

From xk = T k
KB , it follows that (C1) iff a ∈ T k+1

KB , as the condition (b) of Definition 3 is
satisfed: for all b ∈ B+(r), S+ |=L b for each consistent S with T k

KB ⊆ S ⊆ LitP . The case
where r = a← not φ can be proved similarly, based on condition (d) of Definition 3.

(b) (V i+1
KB)− = Σ \ vi+1. Namely, UKB(V i

KB) = Σ \ vi+1, i.e., the greatest unfounded set of
KB relative to V i

KB is precisely the fixpoint y∞ (= vi+1) below:

y0 =ui, y1 =Φaggr,2
Π (ui, y0), ..., yi+1 =Φaggr,2

Π (ui, yi), ..., y∞=Φaggr,2
Π (ui, y∞) (12)

(b-1) Prove that for any a ∈ Σ, if a ∈ vi+1 then a 6∈ U , for any unfounded set U of KB
relative to V i

KB . By definition, a ∈ vi+1 iff a ∈ yk, for some k ≥ 0, iff there is a rule r ∈ P
with H(r) = a such that ∃J ∈ [ui, yk], J |= β(B(r)). By Lemma 8, J |= β(B(r)) iff J |=L φ,
if r is of form a← φ. This violates condition (iii) in Definition 2, as by induction hypothesis
there is a consistent extension S of V i

KB such that S+ = J . The proof is similar if r is of
form a← not φ, in which case condition (iv) is violated.

(b-2) Show that a 6∈ vi+1 ⇒ a ∈ UKB(V i
KB), for all a ∈ Σ. That a 6∈ vi+1 (i.e., a 6∈ y∞)

means, for every rule r ∈ P with H(r) = a, and for all I ∈ [ui, y∞], I 6|= β(B(r)), hence by
Lemma 8, I 6|=L φ if r = a← φ and I |=L φ if r = a← not φ. Note that

[ui, y∞] = {S+ | S is consistent and ui ∪ ¬.Σ \ y∞ ⊆ S ⊆ LitP }

From the induction hypothesis we know ui = (V i
KB)+ and (V i

KB)− = Σ\vi, and notationally
vi+1 = y∞. It follows from Definition 2 that Σ \ vi+1 is an unfounded set of KB relative
to V i

KB , and a ∈ Σ \ vi+1. Obviously, it is the greatest unfounded set of KB relative to
V i

KB , since for any atom ϕ ∈ y∞, there is a derivation of ϕ based on V i
KB . Therefore,

a ∈ UKB(V i
KB). The proof is completed. J

5 Well-Founded Semantics of DL-Programs with Aggregates

A dl-program with aggregates is a combined knowledge base KB = (L,P), where L is a
DL knowledge base and P a finite set of rules of the form a ← b1, ..., bk, not c1, ..., not cn,
where a is an atom, and each bi or cj is either an ordinary atom, a dl-atom, or an aggregate
atom. In the following, we continue to denote by HBP the set of atoms composed from the
constants and predicate symbols of the underlying language.

ICLP’12

244 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

Now we extend the satisfaction relation |=L to cover aggregates. Let KB = (L,P) be
a dl-program with aggregates and I ⊆ HBP an interpretation. For any aggregate φ, we
define I |=L φ iff I |= φ, and extend |=L naturally to conjunctions of atoms, dl-atoms,
aggregates, and their negations. Then, Definitions 2 and 3 can be adopted directly, by
replacing "dl-program" with "dl-program with aggregates". To distinguish, let us denote the
fixpoint operator WKB in Definition 3 by W ′KB .

I Definition 15. (Well-founded semantics for dl-programs with aggregates) Let
KB = (L,P) be a dl-program with aggregates. The well-founded semantics of KB is
defined as the least fixpoint of the operator W ′KB , denoted lfp(W ′KB).

I Theorem 16. Let KB = (L,P) be a dl-program with aggregates. (i) If P contains
no aggregates, then lfp(W ′KB) = lfp(WKB); and (ii) If P contains no dl-atoms, then
lfp(W ′KB) = lfp(W ′P) = UWFS(P).

For illustration, we close this section by presenting a dl-program with aggregates.

I Example 17. ConsiderKB = (L,P) with L = {V ip v CR}, possibly plus some assertions
of individuals in the concepts V ip and/or CR, where CR stands for Customer-Record, and
P containing

1. purchase(X)← purchase(X,Obj), item(Obj).
2. client(X)← DL[CR ∪+ purchase;CR](X).
3. imp_client(X)← DL[V ip](X).
4. imp_client(X)←client(X), sum≥({Y | item(Obj), cost(Obj,Y), purchase(X,Obj)},100).
5. discount(X)← imp_client(X).
6. promo_offer(X)← DL[CR ∪- imp_client;CR](X), card=({Y | purchase(Y)}, 0).

Rule 1 is self-explaining. Rule 2 queries the DL knowledge base in order to enhance the
client predicate. In rules 3 and 4 we establish that important clients are those who have
spent at least $100 or are VIPs. Rules 5 and 6 provide benefits to certain customers. In
rule 5, a discount is offered to important clients - VIPs and those whose purchases sum to
$100 or more. Rule 6 describes a promotional offer for non-VIP customers who have not
made any purchases - they are potential clients. For applications, P may contain some facts
about items, cost, and purchase.

6 Related Work and Further Direction

The close relationships between well-founded model, partial stable models, and stable models
are well-understood (see, e.g., [6, 15, 19]). That the well-founded model of a normal logic
program is contained in all its stable models makes it possible in a stable model solver to
compute the well-founded model as the first approximation. The well-founded semantics
has been defined for disjunctive programs [18] and default logic [2]. The close relationship
between dl-programs and aggregate programs is noticed in [8], but left as an interesting
future direction.

In [9], the notion of unfounded sets for arbitrary aggregate programs is defined (which
generalizes that of [3] for logic programs with monotone and anti-monotone aggregates): A
set of atoms U is an unfounded set for an aggregate program P and a partial interpretation
I, if for every a ∈ U , and for every rule r ∈ P with a as the head, a literal ξ in B(r) is false
w.r.t. I or w.r.t. (I−U)∪¬.U . The latter expression equals I∪¬.U if I∩U = ∅. Here, falsity
in I amounts to falsify in all of its totalization. It thus gives the same effect as requiring

J. You, J. Morris, and Y. Bi 245

that ξ is not satisfied by any consistent extension of I ∪ ¬.U in our definition. Thus, it
follows from our result that, if we define the well-founded semantics for arbitrary aggregate
programs using the notion of unfounded sets in [9], the resulting semantics is equivalent to
the ultimate well-founded semantics defined by Pelov et al. [13, 14].

The complexity issues for various classes of dl-programs and aggregate programs under
the well-founded semantics will be addressed in future work.

References
1 F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.

The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

2 Gerhard Brewka and Georg Gottlob. Well-founded semantics for default logic. Fundamenta
Informaticae, 31(3/4):221–236, 1997.

3 Francesco Calimeri, Wolfgang Faber, Nicola Leone, and Simona Perri. Declarative and
computational properties of logic programs with aggregates. In Proc. IJCAI-05, pages
406–411, 2005.

4 M. Denecker, V. W. Marek, and M. Truszczynski. Ultimate approximation and its applic-
ation in nonmonotonic knowledge representation systems. Information and Computation,
192(1):84–121, 2004.

5 M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-founded and stable semantics
for logic programs with aggregates. In Proc. ICLP’01, pages 212–226, 2001.

6 Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358,
1995.

7 Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform
integration of higher-order reasoning and external evaluations in answer-set programming.
In Proc. IJCAI-05, pages 90–96, 2005.

8 Thomas Eiter, Thomas Lukasiewicz, Giovambattista Ianni, and Roman Schindlauer. Well-
founded semantics for description logic programs in the semantic web. ACM Transactions
on Computational Logic, 12(2), 2011. Article 3.

9 W. Faber. Unfounded sets for disjunctive logic programs with arbitrary aggregates. In
proc. LPNMR-05, pages 40–52, 2005.

10 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proc. ICLP’88, pages 1070–1080, 1988.

11 V. W. Marek and J. B. Remmel. Set constraints in logic programming. In Proc. LPNMR-04,
pages 167–179, 2004.

12 V. W. Marek and M. Truszczynski. Logic programs with abstract constraint atoms. In
Proceedings of AAAI-04, pages 86–91, 2004.

13 N. Pelov, M. Denecker, and M. Bruynooghe. Partial stable models for logic programs with
aggregates. In Proc. LPNMR-04, pages 207–219, 2004.

14 N. Pelov, M. Denecker, and M. Bruynooghe. Well-founded and stable semantics of logic
programs with aggregates. Theory and Practice of Logic Programming, 7:301–353, 2007.

15 Teodor C. Przymusinski. The well-founded semantics coincides with the three-valued stable
semantics. Fundam. Inform., 13(4):445–463, 1990.

16 Tran Cao Son and Enrico Pontelli. A constructive semantic characterization of aggregates
in answer set programming. TPLP, 7(3), 2007.

17 Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for
general logic programs. J. ACM, 38(3):620–650, 1991.

ICLP’12

246 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

18 Kewen Wang and Lizhu Zhou. Comparisons and computation of well-founded semantics
for disjunctive logic programs. ACM Trans. Comput. Log., 6(2):295–327, 2005.

19 Jia-Huai You and Li Yan Yuan. On the equivalence of semantics for normal logic programs.
J. Log. Program., 22(3):211–222, 1995.

	Introduction
	Preliminaries
	Well-Founded Semantics for Arbitrary DL-Programs
	Representing DL-Programs by Aggregate Programs
	Relationship

	Well-Founded Semantics of DL-Programs with Aggregates
	Related Work and Further Direction

