
Preprocessing of Complex Non-Ground Rules in
Answer Set Programming∗

Michael Morak and Stefan Woltran

Institute of Information Systems 184/2
Vienna University of Technology
Favoritenstrasse 9–11, 1040 Vienna, Austria
E-mail: [surname]@dbai.tuwien.ac.at

Abstract
In this paper we present a novel method for preprocessing complex non-ground rules in answer set
programming (ASP). Using a well-known result from the area of conjunctive query evaluation, we
apply hypertree decomposition to ASP rules in order to make the structure of rules more explicit
to grounders. In particular, the decomposition of rules reduces the number of variables per rule,
while on the other hand, additional predicates are required to link the decomposed rules together.
As we show in this paper, this technique can reduce the size of the grounding significantly and thus
improves the performance of ASP systems in certain cases. Using a prototype implementation and
the benchmark suites of the Answer Set Programming Competition 2011, we perform extensive
tests of our decomposition approach that clearly show the improvements in grounding time and
size.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases answer set programming, hypertree decomposition, preprocessing

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.247

1 Introduction

Starting from the pioneering work of Gelfond and Lifschitz [16, 17], the declarative problem
solving paradigm of answer set programming (short: ASP, see e.g. [2]) has become a central
formalism in artificial intelligence and knowledge representation. This is due to its simple,
yet expressive modelling language, which is implemented by systems showing a steadily
increasing performance. Such systems follow a two-step approach for evaluating a program:
The so-called grounder instantiates rules by replacing the various variables with applicable
constants. This yields a propositional logic program (consisting of propositional or “ground”
rules) that is equivalent for the given domain. This program is then finally fed into the
actual solver. In systems like lparse/smodels [23] or gringo/clasp [12] this separation is quite
strict whereas DLV [20] followed a more integrated approach.

Although today’s ASP systems have reached an impressive state of sophistication, we
believe that there is still room for improvement, in particular on the level of grounding. In fact,
since checking whether a non-ground rule fires is already NP-complete [9] in general (as easily
shown by analogy to the conjunctive query evaluation problem, which is also NP-complete,
cf. [1]), grounders have to list all possibly applicable instantiations of non-ground rules which
are, by the NP-completeness of the aforementioned problem, exponentially many in the worst
case. However, often the rules exhibit a particular structure which, in theory, could be used
to avoid or at least reduce this blow-up. Several preprocessing and optimization techniques

∗ This work was supported by special fund “Innovative Projekte 9006.09/008” of TU Vienna.

© Michael Morak and Stefan Woltran;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 247–258

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.247
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

248 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

that work well in practice have been developed in the past, see, e.g., [10, 13, 11], but to the
best of our knowledge, in the area of ASP, decomposition of rules via hypergraphs has not
been implemented or systematically investigated yet.

In this paper we present such a novel preprocessing strategy. It is based on ideas of Gottlob
et. al. in [19], who employed a similar mechanism to efficiently solve the boolean conjunctive
query evaluation problem. In our approach, each rule is represented as a hypergraph, where
each variable in the rule is represented by a vertex and each predicate in the rule is represented
by a hyperedge in the hypergraph. Using a hypertree decomposition of this hypergraph
representation, the rule can then be split up into an equivalent set of smaller rules, whose
grounding is only exponential in the size of the nodes in the hypertree decomposition (i.e.,
the number of variables in each node). In cases where the size of the nodes is considered to
be bound by a fixed constant, the grounding thus remains linear in the size of the non-ground
program when using current generation grounders. First experiments with a prototype
implementation and the benchmarks from the well-known Third ASP Competition 2011 [7]
show a significant decrease both in grounding time and grounding size for certain problems.

2 Preliminaries

In this section we give a brief introduction to Answer Set Programming (ASP) as well as the
to the concepts of hypergraphs and hypertree decompositions.

Logic Programs and Answer Set Semantics

We focus here only on the basic definitions; for a comprehensive and recent introduction to
answer set programming, see [6].

Disjunctive logic programs are programs that consist of rules of the form

H1 ∨ · · · ∨Hk ← P1, . . . , Pn,¬N1, . . . ,¬Nm

where Hi, Pi and Ni are atoms. An atom A is a predicate with an arity and accordingly many
variables or constant symbols (also called domain elements). If the arity is 0, we simply write
A instead of A(). Variables are denoted by capital letters, constants by lower-case words. If an
atom does not contain variables it is said to be ground. For a rule r of above form, we denote
by H(r) the set of head atoms of r (i.e. H(r) = {H1, . . . ,Hk}); the positive body we denote
by B+(r) = {P1, . . . , Pn} and the negative body by B−(r) = {N1, . . . , Nn}. H1, . . . ,Hk are
called the head atoms, and P1, . . . , Pn (resp. N1, . . . , Nm) are called the positive body (resp.
negative body) atoms of the rule. Moreover, we use B(r) = {P1, . . . , Pn,¬N1, . . . ,¬Nn} to
denote the set of all literals in the body or r. The ¬ operator is a unary logical connective,
called the negation as failure operator or, alternatively, default negation. Given a logic
program Π, we denote by BΠ its Herbrand Base, i.e., the set of all ground atoms which can
be constructed from the constants and predicates in Π.

A rule is said to be safe if every variable occurring in the head or negative body of the
rule also occurs in the positive body of the rule. From this point onward, we only consider
logic programs whose rules are safe.

I Example 1. An example logic program is given below:

q ← E(X,Y),¬E(X, a)

It has the intended meaning that the boolean predicate q is true, if there exists an
edge from a vertex X to a vertex Y in a graph, but not from the vertex X to a constant
vertex a. J

M. Morak and S. Woltran 249

A logic program is said to be ground, if it does not contain any rules with variables. A
non-ground rule (i.e. one that contains variables) can be seen as an abbreviation for all
possible instantiations of the variables with domain elements. In answer set programming,
this step is usually explicitly performed by a grounder. Note that such a ground program can
be exponential in the size of the non-ground program. In what follows, we denote by Gr(Π)
the grounding of a program Π. Moreover, we denote by Gr(r,Π) the grounding of a single
rule r with respect to the domain elements occurring in Π. Clearly, Gr(Π) =

⋃
r∈Π Gr(r,Π).

A set S of ground atoms is a model of a disjunctive logic program Π if S satisfies each
rule in Gr(Π). A ground rule r is satisfied by S if H(r) ∩ S 6= ∅ holds, whenever B(r) is
satisfied by S (i.e., whenever B+(r) ⊆ S and B−(r) ∩ S = ∅). The reduct ΠS of a ground
disjunctive logic program Π with respect to a set S of ground atoms is defined as:

ΠS = {H(r)← B+(r) | r ∈ Π, B−(r) ∩ S = ∅}

A set S of ground atoms is an answer set of a logic program Π if S is a minimal model of
(Gr(Π))S , the reduct of the grounding of Π with respect to S.

Hypergraphs and Hypertree Decompositions

Tree decompositions and treewidth, originally defined in [24], are a well known tool to tackle
computationally hard problems (see, e.g., [3, 4] for an overview). Treewidth is a measure for
the cyclicity of a graph and many NP-complete problems become tractable in cases where the
treewidth is bounded. However, many problems are even better represented by hypergraphs.
In [18] the concepts of hypertree decompositions and hypertree width were introduced that
extend the measurement of cyclicity to hypergraphs.

A hypergraph is a pair H = (V,E) with a set V of vertices and a set E of hyperedges. A
hyperedge e ∈ E is itself a set of vertices, with e ⊆ V . A hypergraph of a non-ground logic
program rule r is a pair HG(r) = (V,E) such that V consists of all the variables occurring
in r and E is a set of hyperedges, such that for each atom A ∈ B(r) there exists exactly one
hyperedge e ∈ E, which consists of all the variables occurring in A. Furthermore there exists
exactly one hyperedge e ∈ E that contains all the variables occurring in H(r).

The following definition is central for our purposes:
A (generalized) hypertree decomposition of a hypergraph H = (V,E) is a triplet HD =

〈T, χ, λ〉, where T = (N,F) is a (rooted) tree and χ and λ are labelling functions such that
for each node n ∈ N , χ(n) ⊆ V and λ(n) ⊆ E and the following conditions hold:

1. for every e ∈ E there exists a node n ∈ N such that e ⊆ χ(n),
2. for every v ∈ V the set {n ∈ N | v ∈ χ(n)} induces a connected subtree of T ,
3. for every node n ∈ N , χ(n) ⊆

⋃
e∈λ(n) e.

A hypertree decomposition of a logic program rule r is therefore a hypertree decomposition
of the hypergraph of r . The width of a hypertree decomposition is the maximum λ-set size
over all its nodes. The minimum width over all possible hypertree decompositions is called
the (generalized) hypertree width. Similarly, the treewidth of a hypertree decomposition is
defined by the maximum χ-set size, minus one, of a hypretree decomposition of minimal
width.

Unfortunately, for a given hypergraph, it is NP-hard to compute a hypertree decomposition
of minimum width. However, efficient heuristics have been developed that offer good
approximations (cf. [8, 5]). In practice it turns out that these approximations are often
sufficient to obtain good results with decomposition-based algorithms (i.e., algorithms that
take the problem and its hypertree decomposition as input).

ICLP’12

250 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

3 Preprocessing of Non-ground Rules

In this section we describe our main contribution, a novel method for preprocessing complex
logic program rules in order to decrease the size of the grounding.

Current grounders for answer set programming do not consider the structure of a rule
and thus, when grounding, the number of ground rules produced can in the worst case be
exponential in the number of variables occurring in the rule. However, given a hypertree
decomposition of such a rule, the exponentiality of the grounding can be restricted to the
maximum χ-set size of the decomposition.

In order to describe our algorithm, we introduce the following notational aids: For a node
n in a hypertree decomposition, we represent by parent(n) and desc(n) the parent node of
n and the set of descendants (or child nodes) of n respectively. For a set (or sequence) B
of literals and a set X of variables, we denote with B ∩X (with some abuse of notation)
the literals in B that have at least one of the variables in X occurring in them. E.g.,
if B(r) = E(X1, X2), E(X2, X3),¬E(X3, X4, c), then the intersection B(r) ∩ {X1, X4} =
E(X1, X2),¬E(X3, X4, c).

Given these shorthands, the rewriting of logic program rules according to our method
works by running the following algorithm Preprocess:

1. We compute a (generalized) hypertree decomposition HD(r) = HD(HG(r)) = 〈T =
(N,F), χ, λ〉 of a given logic program rule r , trying to minimize the maximal χ-set size.
W.l.o.g. we assume that the edge representing H(r) occurs only in the root node of T .

2. We do a bottom-up traversal of the hypertree decomposition of r . For each node n ∈ N
(except the root) in the decomposition, let Yn = χ(n) ∩ χ(parent(n)) and Tn be a fresh
predicate to store the current result. At each node n ∈ N we generate a rule rn of the
form:

Tn(Yn) ← (B(r) ∩ χ(n))
∪ {ΣX(X) | X ∈ B−(r) ∩ χ(n)}
∪ {Tm(Ym) | m ∈ desc(n)}

The additional temporary predicates ΣX(X) are necessary to guarantee safety of the
generated rule. To this end, for each variable X occurring in B−(r) ∩ χ(n), we generate
a rule

ΣX(X)← b

where b ∈ B+(r) with X as one if its arguments1.
For the root node n, we generate a rule similar to rn but replace Tn(Yn) by H(r) and
we furthermore add all ground atoms of B(r) to this generated rule (since those atoms
are not represented in the tree decomposition). We refer to this generated rule as the
head rule. Generated rules stemming from a leaf node n ∈ N are referred to as leaf rules.
Atoms of the from Tn(Y) and ΣX(X) are subsequently called temporary atoms.

I Definition 2. Given a rule r we denote by r∗ the set of rules obtained by running Preprocess
on r . Moreover, for a logic program Π and r ∈ Π, we define Πr∗ = (Π \ {r}) ∪ r∗.

The intuition underlying the Preprocess algorithm is the following: Grounders have to
compute all the groundings for every rule in a given logic program. When these rules involve
multiple joins, this can be inefficient, because the grounder has to compute all possible tuples

1 We select here such a b from B+(r) with minimal arity. Note that such a predicate exists since r is safe.

M. Morak and S. Woltran 251

satisfying the first join, and then, for each of those, compute all possible tuples satisfying
the next join, and so forth.

However, the grounder actually only needs to store the values that are involved in the
next join, and perform the join operation on them, instead of the complete set of tuples.
The Preprocess algorithm makes this explicit: The hypertree decomposition takes care of
splitting the rules into multiple parts (i.e., the nodes in the decomposition). By construction
of the decomposition, the join operations performed inside a node cannot be split up any
further, thus, for each of the nodes we generate a rule performing these joins. However, in
the temporary head predicate we then only store the variables that are actually involved in a
join in the next node, thereby allowing the grounder to ignore the other variables for any
subsequent joins.

The following brief example shows this behaviour:

I Example 3. Given the rule

r = H(A,D)← E(A,B), E(B,C),¬E(C,D), E(D,A)

we compute a (simple) decomposition HD(r), for instance the following:

H(A,D), E(A,B), E(D,A)

E(B,C),¬E(C,D)

This decomposition then yields the following set of rules r∗, when applying the steps
discussed above:

ΣD(D)← E(D,A)

T1(B,D)← E(B,C),¬E(C,D),ΣD(D)

H(A,D)← E(A,B), E(D,A), T1(B,D)

The resulting set of rules is equivalent to the rule r in the sense of Theorem 4 below,
however the number of possible ground rules is now only in O(2maxn∈N |χ(n)|) instead of
O(2|X|), with X the variables in r . J

Once we have preprocessed a rule (or, every rule in a logic program), it is easy to recreate
the answer sets of the original program, as the following theorem states:

I Theorem 4. Let Π be a logic program. Then for every answer set A of Π there exists
exactly one answer set Ar∗ ⊇ A of Πr∗ and for every answer set Ar∗ of Πr∗ there exists
exactly one answer set A ⊆ Ar∗ of Π, such that in both cases it holds that BΠ ∩Ar∗ = A.

Due to space constraints, we refer the reader to the full version of this paper [22] for the
proof of this and the next theorem.

Note that Theorem 4 also shows that we can replace in a program Π step-by-step each
rule r by the corresponding replacement r∗ and obtain a program equivalent to Π in the
sense of Theorem 4 where each rule has been decomposed.

This leads to a decrease in grounding size, depending on the treewidth of the rules in the
program. We define the size of a rule to be the size of its hypergraph representation. Then
we can state the following theorem:

ICLP’12

252 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

I Theorem 5. Let Π be a logic program and r ∈ Π a rule of size n. If r has bounded
treewidth, then the size of Gr(r∗,Πr∗) is linear in the size of the rule; and, in fact, is bounded
by the function O(2k·n), where k is the treewidth of r.

I Corollary 6. Let Π be a logic program. If every rule in Π has bounded treewidth, then the
size of Gr(Π) is linear in the size of Π.

The implications of the above theorem, as we will show in Section 4, can lead to substantial
speedups in the time it takes current-generation grounders to ground a logic program.

4 Experimental Evaluation

In order to empirically test our projected runtime behaviour, we have implemented a
prototypical rule-preprocessing system available at

http://www.dbai.tuwien.ac.at/research/project/dynasp/dynasp/#additional

This tool makes use of the SHARP framework for hypertree decomposition-based algo-
rithms2. Our system handles all basic ASP rules, including inequality as well as comparisons.
However, arithmetical operations are currently not implemented.

Using our prototype, we performed a series of tests on a set of benchmarks from the
third ASP competition3 (see also [7]). We selected the following four problems from the
competition

Sokoban Decision
Stable Marriage
Minimal Diagnosis
Partner Units Polynomial

This particular selection is motivated by the fact that these encodings do not use any
arithmetical operations, choice rules or other ASP extensions, thus our first prototype is able
to process them.

We chose problems from the ASP competition to show that, even though the encodings
have been extensively hand-tuned, by intelligently splitting rules according to our algorithms,
it is still possible to obtain improved grounding results. This also signifies the usefulness of
our algorithm, because employing it would eliminate the need for extensive, time-consuming
and notoriously imperfect hand-tuning.

In the following plots, red dots represent the value measured for the original benchmark
instance and blue triangles represent the value measured for the preprocessed benchmark
instance. Only the non-ground encoding was preprocessed, afterwards it was passed to
gringo [15], together with the actual problem instance from the third ASP competition
website, and the output was fed into claspd4 [14]. For each problem a sample of 50 problem
instances was selected. The time for preprocessing was not recorded in our plots, as for our
benchmark instances it was not measurable (i.e. always below 0.1 seconds). The time limit
for both gringo and claspd was 600 seconds each. If a timeout occurred, then no point was
plotted for the respective instance. The “size” of the grounded program was measured by
recording the number of variables, as determined by running claspd. As claspd introduces
variables not only for atoms but also for rule bodies, this gives a useful impression of the
actual problem size.

2 http://www.dbai.tuwien.ac.at/research/project/sharp
3 http://aspcomp2011.mat.unical.it
4 In short test-runs we obtained similar results for the well-known DLV solver [20].

 http://www.dbai.tuwien.ac.at/research/project/dynasp/dynasp/#additional
http://www.dbai.tuwien.ac.at/research/project/sharp
http://aspcomp2011.mat.unical.it

M. Morak and S. Woltran 253

instance

si
ze

5000

1+05

1500

2+05

2500

3+05

3500

preprocessing
no yes

(a) grounding size

instance
at

om
s

5000

10000

15000

20000

preprocessing
no yes

(b) number of atoms

Figure 1 Grounding size and number of ground atoms for the Sokoban Decision problem.

Figure 1a shows the size of the preprocessed grounded Sokoban Decision program that
was output by gringo in relation to the size of the grounding of the original. As can be seen
the grounding size can be reduced dramatically. On average, the size of the ground program
was reduced by 78%.

Figure 1b shows the number of atoms in the grounded Sokoban Decision problem. Given
that our preprocessing strategy introduces a number of temporary predicates in the non-
ground encoding, the number of actual atoms in the ground program increases by a linear
factor, as each hypertree decomposition itself is linear in the size of the respective rule, and at
each node, a single new temporary predicate is introduced. However, because of the nature
of our preprocessing method, the number of rules decreases, and the decrease in the number
of rules corresponds well with the decrease in size of the grounding.

Figure ?? shows the time in seconds needed by claspd for solving the whole grounded
problem, as well as the number of conflicts it encountered while doing so. Except for a few
cases, the solving time of claspd, when combined with our preprocessing algorithm, is slightly
increased, despite the much smaller size of the ground program. In rare cases however, there
is a substantial slowdown of claspd. However we also noticed that for a number of instances,
the smaller size of the ground program enabled claspd to solve the problem without hitting
the time limit (see the topmost few instances in Figure 2b). The number of conflicts, shown
in Figure 2a exhibit a similar behaviour. In most cases, an increased number of conflicts also
entails an increased number of restarts of claspd.

Note that this increase in solving time could be easily eliminated if the solver (clasdp or
otherwise) would be aware of the nature our the temporary atoms. The increase is mainly
due to the solver making lots of unnecessary guesses about which temporary atoms should
be in the answer set and which ones should not. However, by Lemma 3.4 in [22], given a set
of non-temporary atoms, the temporary atoms for this set can always be deterministically
calculated with minimal overhead. Therefore the solver could (a) ignore all rules with
temporary head atoms, as by the Lemma 3.4 in [22] those are always satisfied, (b) for a
guessed (partial) answer set, compute the corresponding temporary atoms as per the proof
of Lemma 3.4 in [22] and (c) check, whether the head rule is satisfied.

ICLP’12

254 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

instance

co
nf

lic
ts

50000

100000

150000

200000

250000

preprocessing
no yes

(a) conflicts while solving

instance

tim
e

100

200

300

400

500

preprocessing
no yes

(b) solving time

Figure 2 The number of conflicts encountered and the time in seconds needed by claspd for
solving the grounded Sokoban Decision problem.

instance

si
ze

2+05

4+05

6+05

8+05

1+06

1200

1400

preprocessing
no yes

(a) Minimal Diagnosis grounding size

instance

si
ze

1+06

2+06

3+06

4+06

5+06

preprocessing
no yes

(b) Partner Units grounding size

Figure 3 Grounding size of the Minimal Diagnosis and the Partner Units Polynomial problems.

The Sokoban Decision problem is the only problem in our benchmark selection that
involves a solving phase. The other three problems that we discuss in the following are in
fact solved by the grounder itself, therefore only the grounding size and grounding time plots
are relevant for these problems.

Figure 3 shows the size of the grounding of the Minimal Diagnosis and Partner Units
Polynomial problems. In the latter, only a single rule is split up, which is a rule with an
all-positive body (i.e. no default negation). In this case our approach works best, because no

M. Morak and S. Woltran 255

instance

gr
ou

nd
in

g
tim

e

50

100

150

200

250

300

preprocessing
no yes

(a) Stable Marriage grounding time

instance
si

ze

1+06

2+06

3+06

4+06

5+06

preprocessing
no yes

(b) Stable Marriage grounding size

Figure 4 Grounding time and grounding sizes for the Stable Marriage problem.

domain closure predicates (Σ) are needed. This simple split-up rule already decreases the
grounding size by an average of 4%, as seen in Figure 3b.

On the other hand, for the Minimal Diagnosis problem in Figure 3a, all the rules that
are split up are of the form

a(U, V)← b(U, S), b(V, T), S != T

and therefore get split up into the following three rules:

T1(V, S)← b(V, T), S != T,ΣS(S)

a(U, V)← b(U, S), T1(V, S)

ΣS(S)← b(U, S)

In this case, with our approach there is a chance that the actual grounding size increases,
especially if many valid groundings for the fact b(U, S) exist. Note that the grounding size
with our preprocessing algorithm is always upper-bounded by O(2maxn∈N |χ(n)|), as opposed
to exponential in the number of variables of the whole rule. However these worst-case bounds
are seldom exhausted. Whether a rule that gets split up as described above is actually
beneficial to the overall grounding size, heavily depends on the configuration of the ground
facts that are supplied to the grounder.

Note also that if our preprocessing approach would be integrated directly into the grounder,
it would eliminate the need for domain closure predicates as the grounder already knows
about the domain anyway. In this case it would be impossible for the grounding size to
increase when employing our preprocessing approach and thus the only potential disadvantage
could be eliminated.

Lastly, the Stable Marriage problem in Figure 4 shows the strength of our preprocessing
algorithm. Here the non-ground rules contain many free variables and many predicates are
joined together which forms the ideal basis for our algorithm. The non-ground rules force
gringo to output almost exponentially many groundings for each rule. Figure 4a shows that

ICLP’12

256 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

a significant speedup in all cases can here be gained, for the worst-case instances, cutting the
grounding time from over 300 seconds to about 5 seconds. Also the grounding size decreases
dramatically. In Figure 4b it can also be seen, that for the topmost 15 instances, clasp could
not even finish parsing the gringo output within the timeout limit of 600 seconds. In case of
our significantly reduced grounding size, this was however easily possible.

5 Conclusion

In this paper, we have presented a novel preprocessing strategy for non-ground rules in
answer set programming. The preprocessing intelligently splits up non-ground rules into
smaller ones by means of a hypertree decomposition in order to decrease the maximum
number of variables per rule (and thus to reduce the size of the entire grounding). This
technique follows the rule of thumb experienced ASP users will apply when encoding their
problems. However, for complex rules, manual splitting becomes increasingly difficult and the
readability of the encoding may suffer considerably. Also, programs may be automatically
generated or specified for the purpose of presentation rather than for optimization (for
instance, specifications in general game playing, see, e.g., [21]).

Benchmarks performed on problems used in the well-established answer set programming
competition show significant potential of our strategy and thus warrant inclusion of such a
method into existing grounders. The speedup of the grounding process is due to two factors:

Firstly, if the number of rule instantiations is reduced significantly, also the time it takes
to compute and output each of these instantiations is reduced by the same amount. This
effect can clearly be seen for the Stable Marriage problem in the previous section.

Secondly, by splitting up rules into smaller, equivalent ones, the number of joins between
non-ground predicates is reduced. Therefore the grounder does not have to perform as many
join operations as before, which also leads to a speedup of the grounding process.

Future Work

In order to use the demonstrated positive effects of our algorithm in state-of-the-art ASP
grounders and solvers, there are two approaches worth investigating.

Firstly, if this preprocessing approach is directly incorporated to a grounder, the grounder
may use the information about temporary predicates in order to speed up the grounding
process further. Also, the domain closure predicates (Σ) are currently only a workaround,
as currently our preprocessing algorithm has no information about the domain of specific
variables in a non-ground rule. However, if included directly into the grounder, the domain
closure predicates would become obsolete, as the grounder can immediately fill the respective
variables with their now known domain, as the grounder has full information about the
ground facts and domains of the various predicates and variables. This would not only lead
to a speedup, but also would further decrease the size of the grounding, as the domain
predicates do no longer exist, eliminating also the increase in size of the Minimal Diagnosis
grounding.

Secondly, even though the size of the ground program decreases in all our benchmark
cases except the Minimal Diagnosis problem, the solving time actually increases. This
means that claspd is currently not aware of the tree-like structure of the split-up rules in
the preprocessed and grounded instance. If the grounder could pass information about the
temporary predicates to the solver, this could significantly speed up the solving process, as
the temporary predicates could be automatically dismissed from the computation and the
answer sets.

M. Morak and S. Woltran 257

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press, 2003.
3 H. L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–22, 1993.
4 H. L. Bodlaender. Discovering treewidth. In P. Vojtás, M. Bieliková, B. Charron-Bost,

and O. Sýkora, editors, SOFSEM 2005: 31st Conference on Current Trends in Theory and
Practice of Computer Science. Proceedings, volume 3381 of LNCS, pages 1–16. Springer,
2005.

5 H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations I. Upper bounds. Inf.
Comput., 208(3):259–275, 2010.

6 G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a glance. Commun.
ACM, 54(12):92–103, 2011.

7 F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza, W. Faber,
O. Febbraro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. Reale, M. C.
Santoro, M. Sirianni, G. Terracina, and P. Veltri. The third answer set programming
competition: Preliminary report of the system competition track. In J. P. Delgrande and
W. Faber, editors, 11th Conference on Logic Programming and Nonmonotonic Reasoning,
LPNMR 2011. Proceedings, volume 6645 of LNCS, pages 388–403. Springer, 2011.

8 A. Dermaku, T. Ganzow, G. Gottlob, B. J. McMahan, N. Musliu, and M. Samer. Heuristic
methods for hypertree decomposition. In A. F. Gelbukh and E. F. Morales, editors, MICAI
2008: 7th Mexican International Conference on Artificial Intelligence, Proceedings, volume
5317 of LNCS, pages 1–11. Springer, 2008.

9 T. Eiter, W. Faber, M. Fink, and S. Woltran. Complexity results for answer set program-
ming with bounded predicate arities and implications. Ann. Math. Artif. Intell., 51(2-
4):123–165, 2007.

10 W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using database optimization techniques
for nonmonotonic reasoning. In Proc. 7th International Workshop on Deductive Databases
and Logic Programming (DDLP’99), pages 135–139, 1999.

11 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges in answer set solving.
In M. Balduccini and T. Son, editors, Logic Programming, Knowledge Representation, and
Nonmonotonic Reasoning: Essays in Honor of Michael Gelfond, volume 6565, pages 74–90.
Springer, 2011.

12 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp : A conflict-driven answer
set solver. In C. Baral, G. Brewka, and J. S. Schlipf, editors, Logic Programming and Non-
monotonic Reasoning, 9th International Conference, LPNMR 2007. Proceedings, volume
4483 of LNCS, pages 260–265. Springer, 2007.

13 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Advanced preprocessing for answer
set solving. In M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and N. M. Avouris, editors,
ECAI 2008 - 18th European Conference on Artificial Intelligence, Proceedings, volume 178
of Frontiers in Artificial Intelligence and Applications, pages 15–19. IOS Press, 2008.

14 M. Gebser, B. Kaufmann, and T. Schaub. The conflict-driven answer set solver clasp:
Progress report. In E. Erdem, F. Lin, and T. Schaub, editors, Logic Programming and Non-
monotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany,
September 14-18, 2009. Proceedings, volume 5753 of LNCS, pages 509–514. Springer, 2009.

15 M. Gebser, T. Schaub, and S. Thiele. Gringo : A new grounder for answer set programming.
In C. Baral, G. Brewka, and J. S. Schlipf, editors, Logic Programming and Nonmonotonic
Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17,
2007, Proceedings, volume 4483 of LNCS, pages 266–271. Springer, 2007.

16 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
ICLP/SLP, pages 1070–1080, 1988.

ICLP’12

258 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

17 M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Comput., 9(3/4):365–386, 1991.

18 G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. In
Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, 1999, pages 21–32. ACM Press, 1999.

19 G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. J.
ACM, 48(3):431–498, 2001.

20 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The dlv
system for knowledge representation and reasoning. ACM Trans. Comput. Log., 7(3):499–
562, 2006.

21 M. Möller, M. T. Schneider, M. Wegner, and T. Schaub. Centurio, a general game player:
Parallel, Java- and ASP-based. Künstliche Intelligenz, 25(1):17–24, 2011.

22 M. Morak and S. Woltran. Preprocessing of complex non-ground rules in answer set pro-
gramming. Technical Report DBAI-TR-2011-72 (revised version), Institute of Information
Systems 184/2, Vienna University of Technology, Austria, 2012.

23 I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-
founded semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode,
editors, Logic Programming and Nonmonotonic Reasoning, 4th International Conference,
LPNMR’97, Dagstuhl Castle, Germany. Proceedings, volume 1265 of Lecture Notes in Com-
puter Science, pages 421–430. Springer, 1997.

24 N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory,
Ser. B, 36(1):49–64, 1984.

	Introduction
	Preliminaries
	Preprocessing of Non-ground Rules
	Experimental Evaluation
	Conclusion

