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Abstract
Recently there has been an increasing interest in the bottom-up evaluation of the semantics of
logic programs with complex terms. The main problem due to the presence of functional symbols
in the head of rules is that the corresponding ground program could be infinite and that finiteness
of models and termination of the evaluation procedure is not guaranteed. This paper introduces,
by deeply analyzing program structure, new decidable criteria, called safety and Γ-acyclicity,
for checking termination of logic programs with function symbols under bottom-up evaluation.
These criteria guarantee that stable models are finite and computable, as it is possible to generate
a finitely ground program equivalent to the source program. We compare new criteria with other
decidable criteria known in the literature and show that the Γ-acyclicity criterion is the most
general one. We also discuss its application in answering bound queries.
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1 Introduction

Recently there has been an increasing interest in Answer Set Programming (ASP) with
function symbols, and more in general on the bottom-up evaluation of the semantics of logic
programs with complex terms [1, 2, 3]. Indeed, one of the main limitations of current ASP
and datalog systems is the inability (or the limited power) to define programs with complex
terms and function symbols [4, 5, 6, 7]. The main problem in extending logic programming
under bottom-up evaluation with function symbols is that the corresponding ground program
is infinite and that finiteness of models and termination of the evaluation procedure is not
guaranteed.

The problem of checking whether the computation of a query terminates has been
investigated since the beginning of logic programming. Most of the past work was devoted to
the termination of programs under top-down evaluation or for SLD resolution [8, 9], although
it also received a significant attention from the deductive database community [10]. The
reason was that the only relevant logic programming implemented language was Prolog,
which computes answers to queries using a specific SLDNF resolution algorithm. Recently,
the attention has been concentrated on semantics which can be naturally computed by
means of bottom-up evaluation, such as stable model semantics for programs with possibly
unstratified negation, perfect model semantics for programs with stratified negation, and
minimum model semantics for positive programs. The following example shows a very simple
program which uses function symbols in rule heads and the problem is to decide if the fixpoint
computation of the program terminates.
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I Example 1. Consider the following logic program P1:

r1 : p(a, a).
r2 : p(f(X), g(X))← p(X, X).

The program has a unique minimal model M1 = {p(a, a), p(f(a), g(a))}, which can be
computed using the classical bottom-up fixpoint algorithm. Current techniques are not
able to establish (in advance, by analyzing the structure of the program) that the fixpoint
computation terminates. �

The problem, known as program termination, (or query termination, when we refer to a
specific query goal) is, in the general case, undecidable. Therefore, the recent research is
investigating the identification of structural criteria that guarantee that the semantics can
be computed using, for instance, bottom-up evaluators based on the grounding of programs.
This is not a simple task as it is possible to have equivalent queries (i.e. queries computing
the same answers, independently from the database) that have different structural properties
and very basic changes to the syntax of programs, even without changing the semantics, may
significantly alter the structural properties.

Current criteria analyze how values are propagated among predicate arguments, to
understand whether the set of values associable with an argument is finite. However,
these methods have limited capacity in comprehending finiteness of arguments appearing in
recursive rules with function symbols in the head of rules. Considering the previous example,
they are not able to understand that rule r2 can be activated a finite number of times
(actually, considering that there is only one exit rule, the recursive rule can be activated at
most once).

Related works. As said before, the problem of checking whether the computation of a query
terminates has been investigated since the beginning of logic programming.

Most of the past work was devoted to the termination of programs under top-down
evaluation or for SLD resolution [8, 9]. The class of finitary programs, allowing decidable
(ground) query computation using a top-down evaluation, has been proposed in [11]. A
program P is finitary if (1) the number of cycles involving an odd number of negative subgoals
is finite, and (2) it is finitely recursive. A program P is finitely recursive if each ground atom
depends on finitely many ground atoms [12].

The problem of establishing whether the bottom-up based computation of logic programs
terminates received a significant attention since the beginning of deductive databases [10]
and recently has received an increasing interest. The class of finitely ground (FG) programs
has been proposed in [13]. The key property of this class is that stable models (answer sets)
are computable. In fact, for each program P in this class there exists a finite and computable
subset of its instantiation (grounding), called intelligent instantiation, having precisely the
same answer sets as P . As the problem of deciding whether a program is FG is not decidable,
decidable subclasses, such as finite domain (FD) programs [13], ω-restricted programs [14],
λ-restricted programs [15] and argument restricted (AR) programs [16] have been proposed.
The query termination problem for ground query goals has been studied in [17]. Other
approaches are the class of FDNC programs [2], i.e. programs having infinite answer sets in
general, but a finite representation that can be exploited for knowledge compilation and fast
query answering, and the proposal of [3], where functions are replaced by relations defined
over finite domains.
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Contribution. We first introduce the concept of safe arguments (a restriction of finite
domain arguments), by also analyzing how rules may fire each other. As safe arguments can
range only on a finite set of values, the instantiation of safe programs (that is, programs
whose arguments are all safe) results in a finite ground program. Consequently, safe programs
have a finite number of finite stable models and we show that the class of safe programs is
decidable. We also show that the class of safe programs extends the class of finite domain
programs, but is not comparable with the class of argument restricted programs.

Next we introduce a further criterion, called Γ-acyclicity, which analyzes the role of
function symbols used in the program. We introduce the concept of labelled propagation
graph, representing how complex terms in non-safe (or affected) arguments are created
and used during bottom-up evaluation. The class of Γ-acyclic programs is defined by only
considering affected arguments and cycles spelling strings of an underlying context free
language. We show that this class is decidable, strictly extends both classes of safe programs
and argument restricted programs and that it has a finite set of finite stable models which
can be computed using current ASP systems, by a simple rewriting of the source program.

Finally, we discuss how the new criterion can be used in bound query answering.

Organization. The paper is organized as follows. Section 2 introduces basic notions on logic
programming and recalls two main criteria guaranteeing the termination of logic programs
with function symbols under bottom-up evaluation. Section 3 presents the class of safe
programs. Section 4 introduces the class of Γ-acyclic programs. Section 5 shows how Γ-acyclic
programs are rewritten so that their semantics can be computed by current ASP systems.
Section 6 discusses bound query answering.

2 Logic programs with function symbols

Syntax. We assume to have infinite sets of constants, variables, predicate symbols and
function symbols. Predicate and function symbols have associated a fixed arity. For a
predicate p of arity n, we denote by p[i], for 1 ≤ i ≤ n, its i-th argument.

A term is either a constant, a variable or a complex term of the form f(t1, ..., tm), where
t1, ..., tm are terms and f is a function symbol of arity m; each term ti, for 1 ≤ i ≤ m, is a
subterm of f(t1, ..., tm). The subterm relation is reflexive (each term is subterm of itself) and
transitive (if ti is subterm of tj and tj is subterm of tk, then ti is subterm of tk). An atom is
of the form p(t1, ..., tn), where t1, ..., tn are terms and p is a predicate symbols of arity n. A
literal is either a (positive) atom A or its negation ¬A. A (disjunctive) rule r is a clause of
the form:

a1 ∨ · · · ∨ am ← b1, · · · , bk,¬c1, · · · ,¬cn

where m > 0 k, n ≥ 0 and a1, · · · , am, b1, · · · , bk, c1, · · · , cn are atoms. The disjunction
a1 ∨ · · · ∨ am is called the head of r and is denoted by head(r) while the conjunction
b1, · · · , bk,¬c1, · · · ,¬cn is called the body and is denoted by body(r). If m = 1, then r is
normal (i.e. ∨-free); if n = 0, then r is positive (i.e. ¬-free); if both m = 1 and n = 0, then r
is normal and positive. A program P is a finite set of rules. A term (resp. an atom, a rule or
a program) is said to be ground if no variables occur in it. A ground normal rule with an
empty body is also called fact.

With a little abuse of notation we often use the same notation to denote a conjunction of
body literals and a set of body literals, that is body(r) is also used to denote the set of literals
appearing in the body of r. We also denote the positive body of r by body+(r) = {b1, . . . , bk}
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and the negative body of r by body−(r) = {c1, . . . , cn}. A predicate p depends on a predicate
q if there is a rule r such that p appears in the head and q in the body, or there is a predicate
s such that p depends on s and s depends on q. A predicate p is said to be recursive if
it depends on itself, whereas two predicates p and q are said to be mutually recursive if p
depends on q and q depends on p.

Generally, predicate symbols are partitioned into two different classes: extensional (or
EDB or base), i.e. defined by the ground facts of a database, and intensional (or IDB or
derived), i.e. defined by the rules of the program. The definition of a predicate p consists of
all the rules (or facts) having p in the head. A database D consists of all the facts defining
EDB predicates, whereas a program P consists of the rules defining IDB predicates. The
program consisting of rules defining IDB predicates and facts defining EDB predicates is
denoted by PD. When there is no ambiguity we shall use the symbol P to denote the complete
set of rules and database facts. Given a set of ground atoms S and an atom g(t), S[g] (resp.
S[g(t)]) denotes the set of g-tuples (resp. tuples matching g(t)) in S. Analogously, for a
given set of sets of atoms M we shall use the following notations M [g] = {S[g] | S ∈ M}
and M [g(t)] = {S[g(t)] | S ∈M}. We also assume that programs are range restricted [18],
i.e. variables appearing in the head or in negated body literals are range restricted, that is
they also appear in some positive body literal, and that possible constants in P are taken
from the database domain1.

Semantics. The Herbrand universe HP of a program P is the possibly infinite set of
ground terms which can be built using constants and function symbols appearing in P.
The Herbrand base BP of a program P is the set of ground atoms which can be built
using predicate symbols appearing in P and ground terms of HP . A rule r′ is a ground
instance of a rule r, if r′ is obtained from r by replacing every variable in r with some
ground term in HP ; ground(P) denotes the set of all ground instances of the rules in P.
An interpretation of a program P is any subset of BP . The value of a ground atom L

w.r.t. an interpretation I is valueI(L) = L ∈ I, whereas valueI(¬L) = L 6∈ I. The truth
value of a conjunction of ground literals C = L1, . . . , Ln is the minimum over the values
of Li, i.e. valueI(C) = min({valueI(Li) | 1 ≤ i ≤ n}), while the value of a disjunction
D = L1 ∨ ... ∨ Ln is its maximum, i.e. valueI(D) = max({valueI(Li) | 1 ≤ i ≤ n}); if
n = 0, then valueI(C) = true and valueI(D) = false. A ground rule r is satisfied by I if
valueI(head(r)) ≥ valueI(body(r)). Thus, a rule r with an empty body is satisfied by I if
valueI(head(r)) = true. An interpretation M for P is a model of P if M satisfies all the
rules in ground(P).

The model-theoretic semantics for a positive program P assigns the set of its minimal
models MM(P). A model M for P is minimal, if no proper subset of M is a model for
P. The more general disjunctive stable model semantics generalizes stable model semantics
previously defined for normal programs [19] and also applies to programs with (unstratified)
negation [20].

Let P be a logic program and let I be an interpretation for P, PI denotes the ground
positive program derived from ground(P) by (1) removing all the rules that contain a
negative literal ¬a in the body and a ∈ I, and (2) removing all the negative literals from
the remaining rules. An interpretation I is a (disjunctive) stable model for P if and only
if I ∈ MM(PI). The set of stable models of P is denoted by SM(P). It is well known

1 Range restricted programs are often called safe programs. We will use the term safe to denote a set of
program arguments.
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that stable models are minimal models (i.e. SM(P) ⊆MM(P)) and that for negation-free
programs minimal and stable model semantics coincide (i.e. SM(P) =MM(P)) and that
positive normal programs have a unique minimal model.

Finite domain programs. The class of finite domain programs is defined by analyzing the
structure of programs and is based on the concept of argument graph.

The argument graph GA(P) of a program P is a direct graph containing a node for each
argument p[i] of an IDB predicate p of P ; there is an edge (q[j], p[i]) iff there is a rule r ∈ P
such that: i) an atom p(t) appears in the head of r; ii) an atom q(v) appears in body+(r); iii)
p(t) and q(v) share the same variable within the i-th and the j-th term, respectively. Given
a program P, an argument p[i] is said to be recursive if it appears in a cycle of GA(P).

I Definition 2 (FD Program [13]). Given a program P, the set of finite-domain arguments
(FD arguments) of P is the maximal set FD(P) of arguments of P such that, for each
argument q[k] ∈ FD(P), every rule r with head predicate q satisfies the following condition.
Let t be the term corresponding to argument q[k] in the head of r. Then, either i) t is
variable-free, or ii) t is a subterm of (the term of) an FD argument of a positive body
predicate, or iii) every variable appearing in t also appears in (the term of) an FD argument
of a positive body predicate which is not recursive with q[k]. If all arguments of the predicates
of P are FD, then P is said to be an FD program. �

The main properties of FD programs are the following: (i) recognizing whether P is an
FD program is decidable, and (ii) every FD program is an FG program. Checking whether
a program P is FD or not can be done by assuming that all arguments are in FD(P) and
eliminating, iteratively, arguments appearing in the head of a rule such that none of the
three conditions of Definition 2 holds.

Argument Restricted programs. For any atom p(t1, ..., tn), p(t1, ..., tn)0 denotes the pre-
dicate symbol p, whereas p(t1, ..., tn)i, for 1 ≤ i ≤ n, denotes its argument term ti. The
depth of a variable X in a term t that contains X, denoted by d(X, t), is defined recursively
as follows:

d(X, t) =
{

0 if t = X

1 +maxi:ti contains Xd(X, ti) if t = f(t1, ..., tn)

I Definition 3 (AR Program [16]). An argument ranking for a program P is a function φ
from arguments to integers such that, for every rule r of P, every atom A occurring in the
head of r, and every variable X occurring in an argument term Ai, body+(r) contains an
atom B such that X occurs in an argument term Bj satisfying the condition

φ(A0[i])− φ(B0[j]) ≥ d(X,Ai)− d(X,Bj)

A program is argument restricted (AR) if it has an argument ranking. �

I Example 4. Consider the following logic program P4:

r1 : succ(X, f(X))← nat(X).
r2 : nat(0).
r3 : nat(Y)← succ(X, Y), bounded(Y).

where bounded is a base predicate. The argument graph GA(P4) contains the following
edges (nat[1], succ[1]), (nat[1], succ[2]), (succ[2], nat[1]) and (bounded[1], nat[1]). The pro-
gram is not finite domain as the argument succ[2] is not finite domain. However, P4 is
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argument restricted as it is possible to assign the following consistent ranking to arguments:
φ(bounded[1]) = φ(nat[1]) = φ(succ[1]) = 0 and φ(succ[2]) = 1. �

The class of argument restricted programs is contained in finitely ground, generalizes the
finite domain class and is decidable.

3 Safe programs

In this section we introduce a new criterion guaranteeing that there is a finite instantiation,
equivalent to the source program and, therefore, a finite set of finite stable models.

I Definition 5 (Activation Graph). Let P be a program, the activation graph Ω(P) = (P, E)
consists of a set of nodes denoting rules and a set of edges E defined as follows: for each pair
of rules r and s there is an edge (r, s) from r to s if there is a set of ground facts DB1 and
two matchers θ1 and θ2 such that
1. DB1 |= body(r)θ1 ∧DB1 6|= head(r)θ1 and
2. let DB2 = DB1 ∪ head(r)θ1, the following conditions hold:
• DB2 |= body(s)θ2 ∧DB2 6|= head(s)θ2 and
• DB1 6|= body(s)θ2 ∨DB1 |= head(s)θ2. �

I Example 6. Consider the program P1 of Example 1 and let Ω(P1) = (P1, E) its activation
graph. We have that (r1, r2) ∈ E, but (r2, r2) 6∈ E, as the firing of r2 cannot fire r2 again.
Clearly, being r1 a fact, it cannot be fired by another rule. Therefore, Ω(P1) is acyclic. �

I Definition 7 (Safe Function). For any program P, let A be a subset of arguments of P,
ΨP(A) denotes the set of arguments occurring in P such that for all rules r ∈ P where q
appears in the head
1. r does not appear in a cycle of Ω(P), or
2. let t be the term corresponding to argument q[k], for every variable X appearing in q[k]

in the head of r (considering all head occurrences), X also appears in some argument in
body+(r) belonging to A. �

The function ΨP is monotonic and, for every set of arguments A occurring in P, the
sequence ΨP(A), Ψ2

P(A), ... , Ψi
P(A), ... converges in a finite number of steps, that is, there

is some finite n such that Ψn
P(A) = Ψn+1

P (A).

I Definition 8 (Safe Arguments). For any program P , safe(P) = Ψ∞P (A), where A = FD(P)
is the set of finite domain arguments of P , denotes the set of safe arguments of P . A program
P is said to be safe if all arguments are safe. �

It is worth noting that the starting set to compute safe arguments could be the set of
finite domain arguments satisfying condition i) or ii) of Definition 2, that is condition iii) is
not necessary to compute safe arguments. We shall denote by args(P) the set of arguments
of a program P and by aff(P) = args(P) − safe(P) the set of affected arguments. The
class of safe programs will be denoted by SP.

I Example 9. Consider the program P4 of Example 4. Although the activation graph is not
acyclic (there is a cycle between r1 and r3), we have that i) bounded[1], nat[1] and succ[1]
are safe as they are finite domain, and ii) succ[2] is safe as the variable X in the first rule
appears in a safe body argument. Since all arguments are safe, we have that the program P4
is safe. �
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I Example 10. The program P1 of Example 1 is safe, as rule r2 does not fire itself and
the graph Ω(P1) is empty. Moreover, it is not argument-restricted as it is not possible
to assign a rank to p[1] and p[2] such that φ(p[1]) − φ(p[j]) ≥ d(X, f(X)) − d(X,X) and
φ(p[2])− φ(p[j]) ≥ d(X, g(X))− d(X,X), with j = 1, 2. �

I Proposition 11. The problem of deciding whether a program P is safe is decidable. �

The following theorem states that the class of safe programs i) strictly contains the
class of finite domain programs, ii) is not comparable with the class of argument-restricted
programs, and iii) is contained in the class of finitely ground programs.

I Theorem 12. FD ( SP ( FG, AR 6⊆ SP and SP 6⊆ AR. �

I Corollary 13. For any safe program P, the stable models of P are finite. �

From Theorem 12 it also follows that any safe program P has finitely many stable models and
both brave and cautious reasoning over safe programs are computable even for non-ground
queries.

4 Exploiting function symbols

In this section we further improve our technique by exploiting the role of function symbols
for checking program termination under bottom-up evaluation. We assume that if the same
variable X appears in two terms occurring in the head and body of a rule, then one of the two
terms must be a subterm of the other and that the nesting level of complex terms is at most
one. There is no real restriction in such an assumption as every program could be rewritten
into an equivalent program satisfying such a condition. For instance, a rule of the form
p(f(h(X))) ← q(g(X)) could be rewritten into the following two rules: p(f(X)) ← p′(X),
p′(h(X))← p′′(X) and p′′(X)← q(g(X)).

The following example shows a program admitting finite stable models, but previous
criteria, included the safety criterion, are not able to detect it.

I Example 14. Consider the below program P14:

r(f(X))← s(X).
q(f(X))← r(X).
p(X)← q(X).
n(X)← p(g(X)).
s(X)← n(X).

The program is neither safe, as all arguments are affected, nor argument restricted. �

The (labelled) propagation graph ∆(P) is the graph derived from the argument graph
GA(P) by only considering affected arguments and adding labels to arcs.

I Definition 15 (Labelled argument and propagation graphs). Let P be a program, the labelled
argument graph GAL (P) = (args(P), E), where E is a set of labelled edges defined as follows.
For each pair of nodes p[j], q[i] ∈ args(P) and for every rule r ∈ P such that i) there is an
atom q(u) ∈ body+(r), ii) head(r) = p(v) and iii) the same variable X occurs in both q[j]
and p[i], there is an arc (q[j], p[i], α) ∈ E where

α = ε if q[j] = p[i] and both arguments contain variables;
α = f if q[j] = X and p[i] = f(..., X, ...);
α = f if q[j] = f(..., X, ...) and q[j] = X.
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Figure 1 Criteria relationships.

The (labelled) propagation graph ∆(P) is the graph derived from the labelled argument graph
GAL(P) by only considering affected arguments. �

A path π is a sequence n1 α1 n2 α2 ...nk αk nk+1, where k ≥ 1 and for each i ∈ [1..k]
(ni, ni+1, αi) is an edge of ∆(P). For any path π = n1 α1 n2 α2 ...nk αknk+1, we denote with
λ(π) the string α1 ...αk.

I Definition 16. Let P be a program and let F = {f1, ..., fm} be the set of function symbols
occurring in P. The grammar ΓP is a 4-tuple (N,T,R, S), where N = {S, S1, S2} is the set
of nonterminal symbols, T = {f | f ∈ F} ∪ {f | f ∈ F} is the set of terminal symbols, S is
the start symbol and R is the set of production rules below defined:

S → S1 fi S2, ∀fi ∈ F ;
S1 → fi S1 fi S1 | ε, ∀fi ∈ F ;
S2 → (S1 | fi)S2 | ε, ∀fi ∈ F . �

The language L(ΓP) is the set of strings generated by ΓP . As ΓP is context free, the
language L(ΓP) can be recognized by means of a pushdown automaton. Given a grammar
Γ = {N,T,R, S} and a graph G, we say that path π in G spells a string w ∈ L(Γ) if λ(π) = w.

I Definition 17 (Γ-acyclic Programs). A program P is said Γ-acyclic if there is no cycle in
∆(P) spelling a string of L(ΓP). �

Considering previous Example 14, the program P14 is Γ-acyclic, but not safe. Indeed,
there is a cycle spelling the strings “f f g”, “f g f” and “g f f”, but all strings do not belong
to the language L(ΓP14). Observe that, in order to correctly recognize a cycle in ∆(P)
spelling a string of L(ΓP), we have to start from an edge with a positive label f (i.e. starting
from an unlabelled edge or from an edge with a label f is not useful).

I Proposition 18. The problem of deciding whether a program is Γ-acyclic is decidable. �

The below theorem states that the class of acyclic programs strictly contains both classes
of safe programs and argument restricted programs and is contained in the class of finitely
ground programs.

I Theorem 19. SP ∪ AR ( AP ( FG �

I Corollary 20. For any Γ-acyclic program P, the stable models of P are finite. �

The relationships among previous criteria and the new ones are reported in Fig. 1.
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5 Computing stable models for Γ-acyclic programs

We now show how stable models for Γ-acyclic programs can be computed using current
algorithms based on the grounding of programs. The idea is that, considering that positive
normal Γ-acyclic programs have a finite minimum model, from a Γ-acyclic program P , we first
generate a standard Γ-acyclic program st(P) such that all stable models of P are contained
in the minimum model of st(P) and next we generate a new program ext(P) equivalent to
P, such that there is a ground, finite, equivalent version. The computation of the stable
models of ext(P) could be carried out by current answer set systems [4, 5, 6].

I Definition 21 (Standard program). Let P be a logic program, st(P) denote the normal,
positive program, called standard version, obtained by replacing i) each disjunctive rule r
having m atoms a1, ..., am in the head with m positive rules of the form ai ← body+(r), for
1 ≤ i ≤ m, and ii) each derived predicate symbol q with a new derived predicate symbol Q. �

I Example 22. Consider the program P22 consisting of the two rules

p(X) ∨ q(X)← r(X),¬a(X).
r(X)← b(X),¬q(X).

where p, q and r are derived predicates (mutually recursive), whereas a and b are base
predicates. The derived standard program st(P22) is:

P(X)← R(X).
Q(X)← R(X).
R(X)← b(X).

I Lemma 23. Let P be a program and let P ′ = st(P) ∪ {q(X̄) ← Q(X̄) | q ∈ dpred(P)},
where dpred(P) denotes the set of derived predicate symbols in P. For any stable model
M ∈ SM(P), M ⊆MM(P ′)[SP ], where SP denotes the set of predicate symbols in P. �

For any rule r such that head(r) = q1(u1) ∨ · · · ∨ qk(uk), headconj(r) denotes the
conjunction Q1(u1), ..., Qk(uk).

I Definition 24 (Extended program). Let P be a disjunctive program and let r be a rule
of P, then, ext(r) denotes the (disjunctive) extended rule head(r)← headconj(r), body(r)
obtained by extending the body of r, whereas ext(P) = {ext(r) | r ∈ P} ∪ st(P) denotes
the (disjunctive) program obtained by extending the rules of P and adding (standard) rules
defining the new predicates. �

I Example 25. Consider the program P22 of Example 22. The extended program ext(P22)
is as follows:

p(X) ∨ q(X)← P(X), Q(X), r(X),¬a(X)
r(X)← R(X), b(X),¬q(X)

plus the rules in st(P22) showed in Example 22. �

The following theorem states that P and ext(P) are equivalent w.r.t. the set of predicate
symbols in P.

I Theorem 26. For every program P, SM(P)[SP ] = SM(ext(P))[SP ], where SP is the set
of predicate symbols occurring in P. �
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6 Bound queries

The bottom-up computation of queries whose related programs are not range-restricted, could
not be carried out, as the ground instantiation is infinite. The application of well known
rewriting techniques, such as magic-set, may allow bottom-up evaluators to (efficiently)
compute bounded queries, by rewriting queries so that the top-down evaluation is emulated
[21, 22, 23, 17]. Before presenting our technique, let us introduce some notations.

A query is a pair Q = 〈q(u1, .., un),P〉, where q(u1, .., un) is an atom called query goal
and P is a program. An adornment of predicate p with arity n is a string α ∈ {b, f}∗ such
that |α| = n. The symbols b and f denote, respectively, bound and free arguments. Given a
query Q = 〈q(u1, .., un),P〉, MagicS(Q) = 〈qα(u1, .., un),MagicS(q(u1, .., un),P)〉 denotes
the rewriting of Q, where MagicS(q(u1, .., un),P) denotes the rewriting of rules in P with
respect to the query goal q(u1, .., un) and α is the adornment associated with the query goal.

Since the magic-set rewriting technique has been defined for subclasses of queries (e.g.
stratified queries), we assume that our queries are positive2, although we could consider
larger classes with the only necessary condition being that after their rewriting queries must
be range restricted.

I Definition 27. A query Q = 〈G,P〉 is said Γ-acyclic if either P or MagicS(G,P) is
Γ-acyclic. �

It is worth noting that it is possible to have a query Q=〈G,P〉 such that P is Γ-acyclic,
but the rewritten program MagicS(G,P) is not Γ-acyclic and vice versa.

I Example 28. Consider the query Q = 〈p(f(f(a))),P28〉, where P28 is defined below:

p(a).
p(f(X))←p(X).

P28 is not Γ-acyclic, but if we rewrite the program using the magic-set method, we obtain
the Γ-acyclic program:

pb(a)← magic_pb(a). magic_pb(f(f(a))).
pb(f(X))← magicb

p(f(X)), pb(X). magic_pb(X)← magic_pb(f(X)).

Consider now the query Q = 〈p(a),P ′28〉, where P ′28 is defined as follows:

p(f(f(a))).
p(X)←p(f(X)).

The program is Γ-acyclic, but after the magic-set rewriting we obtain the below set of rules:

pb(f(f(a)))← magic_pb(f(f(a))). magic_pb(a).
pb(X)← magicb

p(X), pb(f(X)). magic_pb(f(X))← magic_pb(X).

which is not Γ-acyclic. �

Thus, we propose to first check if the input program is Γ-acyclic and, if it does not satisfy
Γ-acyclicity, to check the property on the rewritten program, which is query-equivalent to
the original one.

2 For positive queries we mean queries 〈G, P〉 such that P is positive.
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