Extending C+ with Composite Actions for
Robotic Task Planning
Xiaoping Chen!, Guoqiang Jin!, and Fangkai Yang?

1 School of Computer Science, University of Science and Technology of China
2 Department of Computer Science, University of Texas at Austin

—— Abstract

This paper extends action language C+ by introducing composite actions as sequential execu-
tion of other actions, leading to a more intuitive and flexible way to represent action domains,
better exploit a general-purpose formalization, and improve the reasoning efficiency for large do-
mains. Our experiments show that the composite actions can be seen as a method of knowledge
acquisition for intelligent robots.

1998 ACM Subject Classification 1.2.4 Knowledge Representation Formalisms and Methods
Keywords and phrases Reasoning about Actions, Action Languages, Robotic Task Planning

Digital Object Identifier 10.4230/LIPIcs.JCLP.2012.404

1 Introduction

The problem of describing changes caused by the execution of actions plays an important
role in knowledge representation. Actions may be described

1. by specifying their preconditions and effects, as in STRIPS [5], PDDL-like languages,
action languages such as B and C [7], C+ [8], situation calculus [14];

2. in terms of execution of primitive actions, such as programs in GoLog [10], ASP [17],
extended event calculus [16], ABStrips [15] and HTN [4]; or

3. as a special case of actions of more general kind, as in MAD [11] and ALM [6].

Actions formalized in the first and third approach are used to automate planning, and
more generally, to automate commonsense reasoning tasks such as temporal projection and
postdiction, with an emphasis on addressing the problem of generality in AI [12]. However,
actions formalized in the second approach are usually used for complementary purposes: they
are abstractions or aggregates that characterize the hierarchical structure of the domain and
improve search efficiency. This paper extends action language C+ with composite actions
defined as sequential execution of other actions, and shows that these composite actions can
be used for the purposes of the first and third approaches as well.

The extended C+ has three advantages. First, it provides one more way to formalize
actions in C+. Second, composite actions can be defined by exploiting the general purpose
formalization of actions, a step of addressing the problem of generality in Al, or by exploiting
natural language information for knowledge acquisition. Third, composite actions can be
used to characterize the hierarchical structure of problem and improve planning efficiency.

To achieve this goal, we add a new construct to C+ that defines composite actions as
sequential executions of actions ag, ... ax under conditions (written as formulas) Fy, ... F.
For instance, consider a domain of a robot with a hand which can deliver small objects from
one place to another. The primitive actions represent the basic functions of the robot such
? Xiaoping Chen, Gl}oqiang Jin, anq Fangkai Yang;

Y _ND icensed under Creative Commons License ND
Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 404-414

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.404
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

X. Chen, G. Jin, and F. Yang

as move, pickup, putdown. We can define a composite action Fetch(s,l) as the consecutive
executing of the actions Move(l1) and Bring(s,!)
Fetch(s,l) is Move(ly) if Loc(s) =13 A Loc(Robot) # ly; Bring(s,1).

However, to define the semantics of the construct is not a trivial task. In C+, all actions
are assumed to be executed over 1 time interval. This assumption affects the design of both
description language and query language of CCALC!: descriptions of action domains don’t
involve formalizing time, leading to a concise representation; when formulating queries, time
instances can be named explicitly and conveniently based on the assumption. In presence
of composite actions, it is natural to talk about their lengths and how their lengths affect
the design of the language. It happens that defining the length of a composite action in
terms of the number of primitive actions it involves leads to a cumbersome query language,
since the number is not fixed for a composite action: the length of Fetch(s,!) depends on
the location of the robot and s. Therefore, when formulating queries, the user may need to
explicitly name the indefinite lengths of actions, which becomes complicated when doing
distant projection, postdiction or planning. For simplicity of the syntax, we extend the
assumption to composite actions so that it is fully compatible with CCALC input, but use a
notion of subintervals in their semantics to characterize execution trajectories of composite
actions.

The new language is implemented by modifying the software CPLUS2ASP [1], which
translates the input into an incremental answer set program and calls the solver ICLINGO?.
We formalize a version of a service robot domain with composite actions, and show that
composite actions can be used for knowledge acquisition, and improve planning efficiency for
large problems.

The work presented in this paper is somewhat similar to [9] but composite actions defined
there have fixed and explicitly specified length.

2 Preliminaries

The review of action language C+ follows [8]. A (multi-valued) signature is a set o of symbols,
called (multi-valued) constants, along with a non-emtpy finite set Dom(c) of symbols, disjoint
from o, assigned to each constant c¢. Each constant belongs to one of the three groups: action
constants, simple fluent constants and statically determined fluent constants.

Consider a fixed multi-valued signature o. An atom is an expression of the form ¢ = v
(“the value of ¢ is v”) where ¢ € o and v € Dom(c). A formula is a propositional combination
of atoms. An interpretation maps every constant in o to an element of its domain. A formula
is called fluent formula if it does not contain action constants, and action formula if it
contains at least one action constant and no fluent constants.

An action description consists of a set of causal laws of the form

caused F if G (1)

where F' and G are formulas. The rule is called static law if F' and G are fluent formulas, or
action dynamic law if F' is an action formula; and rules of the form

caused F if G after H (2)
where I’ and G are fluent formulas, and H is a formula, called fluent dynamic law.

Many useful constructs are defined as abbreviations for the basic forms (1) and (2) shown
above. For instance, the law

! http://www.cs.utexas.edu/users/tag/cc/
2 http://potassco.sourceforge.net/

405

ICLP’12

406 Extending C+ with Composite Actions for Robotic Task Planning

a causes F if G, for an action constant a, (3)
stands for caused F if T after a A G,

inertial c, for a fluent constant c, (4)
stands for caused c if ¢ after c;

exogenous a, for an action constant a, (5)
stands for caused « if a and caused —a if —aq;

default a, for an action constant a, (6)
stands for caused « if a; and

nonexecutable H if F, for an action formula H, (7)

stands for caused L after H A F'.

A causal theory contains a finite set of causal rules of the form F' <= G where F' and G are
formulas. Following [8], the semantics of an action description D is defined by a translation
to the union of an infinite sequence of causal theories D, (m > 0). The signature of D,,
consists of pairs of form ¢ : ¢ such that ¢ € {0,...,m} and c is a fluent constant of D, or
i €{0,...,m — 1} and c is an action constant of D. The rules of D,, are

i:F <i:G, for static law (1) in D and i € {0,...,m}, and action dynamic law (1) in
Dandie{0,...,m—1}
i+1: F < (i+1:G) A(i: H), for every fluent dynamic law (2) and i € {0,...,m — 1};

0:c=v<«<0:c=uw, for simple fluent constant ¢ and v € Dom(c).

A model of causal theory D,,, can be seen as a path of length m in the transition diagram,
as described in proposition 8 of [8].

Example 1. Consider a robot that uses a manipulator to transfer small objects from one
place to another. It can perform actions Mowve(l), Pickup(s), Putdown(s) which affects
inertial fluents Loc(o), Hold(s), where [denotes the places in the domain, o the objects, s
the small objects which can be grasped by the robot. The action description is
inertial Loc(o) =1 inertial Hold(s)
exogenous Move(l) exogenous Pickup(s) exogenous Putdown(s)
caused Loc(s) =1 if Hold(s) A Loc(Robot) =1
Move(l) causes Loc(Robot) =1 mnonexecutable Move(l) if Loc(Robot) =1
Pickup(s) causes Hold(s) nonexecutable Pickup(s) if —Hold(Nothing)
nonexecutable Pickup(s) if Loc(Robot) # Loc(s)
Putdown(s) causes Hold(Nothing) nonexecutable Putdown(s) if —Hold(s)

The action desription D is obtained by setting the variables € {L1, Lo}, 0 € {Robot, S}, s €
{S}. A model of DY can be represented as a path of length 4 in the transition diagram of D°.

Loc(Robm‘) =Ly, Move(L,) Robot Lo, Pickup(S) Loc(Robot) = Lo, Move(Ly)
Loc(S) = Lo, = Lo, Loc(S) = Lo,
Huld Norhmg Holzl N()thlng) Hold(S).

Figure 1 One path in the transition diagram D°.

Loc(Robot) = Ly, Putdown(S) Loc(Robot) = Ly,
Loc(S) = L1, Loc(S) = L1,
Hold(S). Hold(Nothing).

X. Chen, G. Jin, and F. Yang

3 Defining Composite Actions

3.1 Syntax

We consider a fragment of general action descriptions in C+ containing static laws of the
form (1), action dynamic laws of the form (5) and (6), and fluent dynamic laws of the form
(3), (4) and (7).

Given an action description D with a set of fluent constants o/ and a set of action
tan extended action description DT introduces a set of composite action

constants c°°™P and composite action definition laws of the form

constants o%¢

bis (ag if Ey);...; (ay if Ey) (8)
where b € 0™ is the head of the law, called a composite action constant. ayg,...,a; €
ot U o™ and Ey,...,E, are fluent formulas. Intuitively, this law means executing

composite actions b is defined as executing aq if Ey holds, then executing aq if F; holds, ...,
then executing ay if Ey holds. If E; does not hold, action a; will be skipped.

A composite action defined in (8) is acyclic if there exists a mapping \ : 0% U g™ —
{0,1,2,...}, such that A(b) > A(a;) for every i € {0,...,k}. In the following we assume
composite actions are acyclic to forbid infinite recursion such as b is b; a.

An action description is acyclic if there exists one mapping A such that every composite
action definition law in the action description is acyclic.

Example 1, continued. We would like to extend the action description D° by introducing
two composite actions Fetch(s,l), and Bring(s,):
Fetch(s,l) is Move(ly) if Loc(s) =11 A Loc(Robot) # ly; Bring(s,1).)
Bring(s,l) is Pickup(s); Move(l); Putdown(s).

Intuitively, Fetch(s,l) means “fetch the object s from some other location to [”, and
Bring(s,l) means “bring the object s from here to location ”.

3.2 Semantics

Given an acyclic action description DT, let S be the set of composite action definition laws
in DF. For each r € S, an associate action tuple t(r) is a pair (b, A) where b is the head of r,
A is an ordered list over 0" U {e}.each t(r) is defined sequentially on the ordered list of
(71,72, ..., Tm], where r; € S and A(head(r;)) < A(head(r;)) for ¢ < j such that

t(r) = (b, [ao, . .., ax]) if for every i € {0,...,k}, a; € o of r.

otherwise, t(r) = a((b, [ag,...,ax])). For all a((b, A)) of the form (b, A’"), A’ is a list
obtained from replacing every a; € o™ in A with all elements of an corresponding
ordered list B; such that

for every a; € o™ in A, there is an associate action tuple ¢ = (a;, A;) which is
already defined for some r € S, and
B; is an ordered list of the same length as A;, with the first element a; and the
remaining elements e.
For example, the associate action tuples of the two rules in (9) are:
t(r1) = (Bring, [Pickup, Move, Putdown]) ,
t(re) = a({Fetch,[Move, Bring|)) = (Fetch,[Move, Bring, €, €]) .
For a composite action definition law r and its associate action tuple (b, [ag, a1, ..., ar]),
index(b,a;) =i if a; # e.
For instance, in (9), we have

407

ICLP’12

408

Extending C+ with Composite Actions for Robotic Task Planning

index(Fetch, Move) = 0, index(Fetch, Bring) = 1,
index(Bring, Pickup) = 0, index(Bring, Move) = 1, index(Bring, Putdown) = 2.

The intuitive meaning of indexz(b,a) = t is that a is the ¢-th action that defines b.

Let k* be the maximal length of A in the associate action tuples of S, og be the set of all the
actions that defines the composite actions. Intuitively, it is the maximal number of primitive
actions expanded by a composite action. e.g k* = 4 for (9), the action Fetch(s,l) can be
expanded to 4 primitive actions at most. Since we specify that a composite action is executed
in 1 time interval as well as a primitive action, we can only represent its executing trajectory in
a different dimension to specify time. As a result, a time interval (4,74 1) is divided by subtime
points ¢ = 4.0, ...,i.k* = i+1 and into k* subintervals (i,4.1), (¢.1,7.2) ..., (i.k*—1,i+1), and
fluents have values in all subtime points.

Formally, an extended action description DT can be translated into an infinite sequence
of causal theories D}, (m > 0).

The signature of D} contains all the symbols occurring in the signature of D,,, and in
addition, for each composite action definition law (8), the triples:

i.j : at, where i € {0,...,m —1}, j €{0,...,k*—1} and a; € 0 , and
i.j :c, where i € {0,...,m —1}, j € {0,...,k*} and c is a fluent constant.

The causal theory translated by D} contains rules of the following parts (assuming i €
{0,...m —1}, j € {0,...,k*—1} unless stated otherwise):

1. all rules in D,, except rules obtained from (4). That means the primitive actions are
executed in 1 time interval.
2. for every fluent dynamic law (4) and v € Dom(c), rules
ijtl:c=v<(i.j+l:c=v)A(i.j: c=0).
The rules state that the original inertial laws form (4) are replaced by a group of inertial
laws specifying the values of fluents at subtime points.
3. for every v € Dom(c), the synonymity rules
1.0:c=veitc=v<=T, i+tl:c=ve ik ic=v<T.
These rules states that every simple fluent has the same value at time point ¢ and .0, as
well as i.k* and 7+1.
4. for each static law (1) and ¢t € {1,...,k*—1}, rules
it F<it:G.
The rules mean that the static laws defining the relationship between fluents at time
points are also used for subtime points.
5. for every law (3), rules
i.j+1: F< (i.j+1:G)A(i.j: H).
These rules say that the action a; leads to the same effect in the subinterval.
6. for every law (7) where H contains only one action symbol, rules
L < (i.j: HAF).
The rules state that when an action is nonexecutable at some timepoint, it is also
nonexecutable at the subtime point with the same condition.
7. for each law (8),

a. for each fluent dynamic rule (7) and there is at least one action symbol other than ag
occurs in H, rules
1< (i:Hfl’0 ANF),
where H, go means to replace every occurrance of ag with b in H. The rules say that
any action that can not be concurrently executed with the first action of the composite
action can also not be executed concurrently with the composite action itself.

X. Chen, G. Jin, and F. Yang

b. for 0 < n <k, set of rules
1:b<=i:b 1:-b<=i:-b 1. ay <= 1.7 1 Day
it:bj <= (1:b) A (it : Ej) Aindex(b,b;) =t
.j+t:b; &= (1.7 : b) A(g+t: Ej) A indem(b, bj) =1
l<i:a,Ni:b.
These rules say that any composite action is exogenous, and its primitive actions
can only be “triggered” when the condition FE; is true at the shifted subtime point,
which is determined by the value of index over the action pair. Also, we state that the
composite action can not be executed concurrently with its primitive actions.

8. for by,, b, € c™P rules
L<i:b,ANi:b,.
The rules state that composite actions cannot be concurrently executed.

4 Properties of Extended Action Description

In this section we investigate the properties of the semantics of extended action descriptions
by generalizing the notion of using a transition diagram to characterize the model of an
action description proposed in [8]. We will identify an interpretation I of a causal theory
with the set of atoms that are satisfied by this interpretation, that is to say, with the set of
atoms of the form ¢ = I(c). Such a convention allows us to represent a model of an extended
action description D} as

U 1:8 U U 1:e;U U (U i.j s U U i.j €) (10)

0<i<m 0<i<m—1 0<i<m—1 0<j<k* 0<j<k*—1
where e, ..., emn_1 are interpretations of o%* U g®™P, sy, ... 5m,Si1,...,8i% are interpreta-
tions of ¢, and €, ..., x~ are interpretations of og.

A state is an interpretation s of o/ such that 0 : s is a model of DS‘ . States are vertexes
of the transition diagram represented by D+.

The transitions are defined by models of D;, a model of D" can be represented in (10)
with m = 1.

An explicit transition is a triple (s, e, s’) where s and s’ are interpretations of o/ and e is
an interpretation of o%* U g™ such that (0:s) U (0:e)U(1:s") belongs to a model of
Dif. If for some b € 0™ e(b) = t, then (s, e, s') is called a composite transition, otherwise
it is called a simple transition.

An elaboration is a tuple of the form (s, €, s1, ..., Sg+, €+, '), where €; is an interpretation
of 0¢ and s; is an interpretation of ¢/, such that

(0:s)U(0.0:€)U(0.1:8)U... U0k =1:861) U0k —1:€_1)U(1:5)
belongs to a model of Df. An elaboration can be seen as a list of k* triples (s, e, s1),. ..,
(Sk=—1,€x+—1,). Each of the triples is called an implicit transition. If €;(a;) = f for any a;
occurring in (8) for j € {0,...,k}, the elaboration is called a trivial elaboration for b. The
edge of the transition diagram of DT are the transitions in the models of D7

The above definition implicitly relies on the following properties of transitions.

» Proposition 1. For any explicit transition (s, e, s’) or implicit transition (s,€;,s), s and s’
are states.

This proposition is a generalization of Proposition 7 in [8]. Again, the validity of this
proposition depends on the fact that statically determined fluents are not allow to occur in
the head of a fluent dynamic law (2).

To relate the model of the causal theory obtained from an extended action description,
Proposition 8 of [8] is generalized to include composite transitions and elaborations.

409

ICLP’12

410

Extending C+ with Composite Actions for Robotic Task Planning

» Proposition 2. For any m > 0, an interpretation (10) on the signature of D} is a model
of D} iff for 0 < i < m — 1 each triple (s;,e,s;41) is an explicit transition, and each tuple
(845 €iy8idy .-y Sik*—1,€ik*—1,8i+1) is an elaboration.

Proposition 1 and Proposition 2 allow us to represent an extended action description as a
transition graph.

Now we investigate the soundness of the new language. Following [3], for action description
D and D’ such that the signature of D is a part of the signature of D', D is a residue of
D’ if restricting the states and events of the transition system for D’ to the signature of D
establishes an isomorphism between the transition systems for D’ and D.

» Proposition 3. Let D be an action description of a signature o and b be a constant such
that b ¢ o. If D’ is an action description of the signature o U {b} obtained from D by adding
a composite action definition law of b in terms of o, then D is a residue of D’.

For instance, in the simple robotic domain, the transition system represented by (D°)*
is isomorphic to the transition system represented by DP, by restricting the events of the
transition system for (D°)T to the action constants other than Fetch(s,1), Bring(s,).

In addition to showing that an extended action description inherits all “good” things
from the original action description, we also show that it doesn’t introduce anything “bad”:
a primitive action a;, if executed at subtime point, is the exact simulation of the action a;
executed at some time point as a primitive action, their transitions are in 1-1 correspondence.

» Proposition 4. Each implicit transition (s, €, s’) of DT corresponds to a transition (s, e, s")
of D.

Based on this proposition, it is easy to see that an elaboration in DT corresponds to a
path of length £* in the transition diagram of D. Figure 2 shows the transitions of a model
of (DY)*, where the implicit transitions are represented as dashed arrows. It can be seen
that every implicit transition corresponds to a transition in D°, as shown in Figure 1.

Fetch(S, Ly)

I
Loc(Robot) = Ly, Move(L,) Loc(Robot) = Lo, Pickup(S) Loc Lo, Move(Ly) g Ly, Putdown(S) Loc(Robot) = Ly,
Loc(S) = Ly, F------5 Loc(S) = Ly, ------- Loc(S) = La, |------> c(S) = Ly, p-------3 Loc(S) = L1,

Hold(Nothing) Hold(Nothing). Hold(Nothing)

Bring(S, Ly

Figure 2 A model of (D?)" represented as transitions.

5 Experiments—KEJiA's Domain

5.1 Formalizing and Reasoning with Composite Actions

In this section, we use composite actions to formalize the domain of the robot KEJIA [2].
The robot has a manipulator that can operate various kinds of appliances. The actions that
he can perform include Mowve(l), Pickup(s), Putdown(s), Open(m), Close(m), Putin(s,m),
Takeout(s,m), Start(m). Typical scenarios include fetching objects from different places
according to the requests of humans and doing other housework such as heating the food with
the microwave oven. In addition to do usual task planning, KEJIA can acquire knowledge
from either human user or textual materials to enrich its knowledge base and planning
abilities. For instance, when KEJIA is asked to heat the food with microwave oven while he
doesn’t know how to use the appliance, he can either try to download microwave manuals

from internet, did textual analysis to extract instructions, or ask help from humans.?

3 A video of using microwave is at http://wrighteagle.org/en/demo/ServiceRobot_oven.php

X. Chen, G. Jin, and F. Yang 411

The instructions of using many household appliances is usually acquired from either
textual manuals or humans. The structure of these instructions are usually quite similar,
such as “first put the object into the machine, then close the door of the machine, and start
the machine, after a while, open the door, finally take out the object from the machine”.
Instructions of this kind can be converted to composite action definition law by KEJIA’s
natural language understanding module:

Use(o,m) is Putin(o,m); Close(m); Start(m); Open(m); Takeout(o,m).

Therefore, heating food with a microwave oven and washing clothes with a washer can be
formalized by refering to the knowledge of using the machine as:

Heat(f) is Move(l) if Loc(Microwave) =1 A Loc(Robot) # 1; Use(f, Microwave).
Wash(c) is Mowe(l) if Loc(Washer) =1 A Loc(Robot) # l; Use(c, Washer).

These laws are added into the knowledge base incrementally without modifying any other
parts in the knowledge base, due to the feature of elaboration tolerance of the formalism.
Composite actions make it easier for a robot to gain useful procedural knowledge in many
ways, such as oral instructions, or information from internet. More generally, the actions can
be defined by referring to actions in a general-purpose library.

A complete formalization of the domain is available at http://wrighteagle.org/kejiaexp/.
In the following we assume four places (I1,1l2,13,14).

Prediction. Initially, the robot is at lo, the popcorn is at l3 and not heated, the microwave

oven is at ly with the door open, the washer is at ly and the door is closed, and the milk

s in the robot’s hand. The robot heats the milk with the microwave oven, and then put to

milk into her plate. Does it follow that in the resulting state, the robot, the milk and the

microwave oven are at the same location?
To solve this problem, we add the following query rules into the causal theory

:— query

maxstep :: 2;

0:loc(robot)=12, loc(microwave)=12, loc(popcorn)=13, -heated(popcorn),
-heated(milk), dooropen(microwave), loc(washer)=14, doorclosed(washer),
inside(hand)=milk, heat(milk,microwave);

1:putintoplate (milk) .

2:1loc(robot) \= loc(milk) ++ loc(milk) \= loc(microwave).

The extended CPLUS2ASP return “UNSATISFIABLE”, indicating that at time 2, the robot
is at the same location with the milk and the microwave.

Planning. Given the same initial state as above, find a plan within 10 steps so that the milk
and the popcorn are both heated by the robot.

When the corresponding query is specified, one of the answer sets returned by the extended
CPLUS2ASP contains atoms:

0:heat(milk), 0.1:use(milk,microwave), O0.1:putin(milk,microwave),
0.2:close(microwave), 0.3:operate(microwave), 0.4:open(microwave),
0.5:takeout (milk,microwave), 1l:toplate(milk), 2:move(13), 3:pickup(popcorn),
4:heat (popcorn), 4.0:move(1l2), 4.1:use(popcorn,microwave),
4.1:putin(popcorn,microwave), 4.2:close(microwave), 4.3:operate(microwave),
4.4:open(microwave), 4.5:takeout(popcorn,microwave) .

We have three observations. First, composite actions occur as building blocks of the plan,
for example, we see 0:heat(milk), 0.0:use(milk,microwave), etc in the result. Second,
when a composite action is executed, all details about the executions of the primitive actions
in the composite action are also included, for instance, when O:heat(milk) is executed,
we also have the details 0.0:use(milk,microwave), ..., 0.4:takeout (milk,microwave).

ICLP’12

412

Extending C+ with Composite Actions for Robotic Task Planning

Table 1 The results of the KeJia domain.

Length of Plans #Instances #Time-Outs Time ratio

<20 35 0 0.138
21-25 13 0 0.274
26-30 24 0 1.505
31-35 23 3 1.553
36-40 2 2.096
41-45 1 1 —

Third, composite actions can have different kinds of execution trajectory, for instance, the
execution trajectory of the action 4:heat (popcorn) has the action 4.0:move (12) more than
that of 0:heat(milk).

5.2 Performance

We test planning performance by two representations of the domain KEJIA: a traditional
representation KeJia; without any composite actions, and an extended representation KeJiao
by adding some composite actions into KeJia;. We consider 120 different instances, for every
instance, the numbers of locations and objects, the initial states and the goal states are
randomly generated. We set the longest acceptable length of a plan for a instance using
KeJia; to 50 and time limit for computing to be 30min?.

The result is shown in Table 1. There are 18 problems which can be solved by neither
representations. We classify the other instances into 6 categories by the length of the plans
generated using KeJia;. For each category, the third column shows the number of instances
that cannot be computed using KeJia;. The last column shows the average ratio of times
on computing a instance using KeJia; and KeJias where time-out instances are excluded.
There are no time-outs using KeJias.

In Table 1, we notice that when the plan length increases from <20 to 3640, the ratio
increases simultaneously, especially, when the length of a plan is up to 26-30, the time
ratio is always > 1, indicating that the composite actions help improve the efficiency as the
complexity of domain tasks increases. The reason the time ratio is < 1 is that there are more
rules introduced by composite actions, which may also become overhead of computation. For
large domains, the composite actions in the plan contain a lot of consecutive executions of
the primitive actions. Making use of composite actions allows the solver ICLINGO to find the
“cumulative effects” at earlier stages of grounding.

Therefore, when the task domain has a “hierarchical structure” such that its plan consists
of many consecutive executions of primitive actions which can compose to an action in
a different abstraction space, composite actions may be worthwhile and can improve the
efficiency.

6 Conclusion

In this paper we introduce composite actions into a fragment of C+. Action description
equipped with composite actions leads to a more intuitive and flexible way to formalize
action domains by exploiting general-purpose formalization, a step to address the problem of

4 The detailed representation, instances and logs, as well as the extended CPLUS2ASP system can be
found at http://wrighteagle.org/kejiaexp/

X. Chen, G. Jin, and F. Yang

generality, and improve efficiency of reasoning and planning by characterizing the hierarchical
structure of the problem domain. Extended action descriptions can be processed by the
extended CPLUS2ASP system.

A direct next step is to apply CPLUS2ASP on robot KEJ1A to solve the real-life problems for
real-time computation. In the future, we would like to introduce composite action definition
to MAD, where modular actions can be defined as special case or sequential executions of
actions, by referring to a general-purpose library. Composite actions should also be defined
on C+ in its full generality.

Acknowledgements. This work is supported by the National Hi-Tech Project of China under
grant 2008AA017150 and the Natural Science Foundation of China under grant 60745002
and 61175057, as well as the USTC Key Direction Project and the USTC 985 Project. The
authors are grateful to Vladimir Lifschitz, Michael Gelfond, Alfredo Gabaldon, Daniela
Inclezan and the anonymous reviewers for their constructive comments and suggestions.

—— References

1 Michael Casolary and Joohyung Lee. Representing the language of the causal calculator in
answer set programming. In Technical Communications of the 27th International Confer-
ence on Logic Programming (ICLP 2011), pages 51-61, 2011.

2 X. Chen, J. Ji, J. Jiang, G. Jin, F. Wang, and J. Xie. Developing high-level cognitive
functions for service robots. In Proc. of 9th Int. Conf. on Autonomous Agents and Multi-
agent Systems (AAMAS 2010), 2010.

3 Selim T. Erdogan and Vladimir Lifschitz. Actions as special cases. In Proceedings of
International Conference on Principles of Knowledge Representation and Reasoning (KR),
pages 377-387, 2006.

4 Kutluhan Erol, James A. Hendler, and Dana S. Nau. Htn planning: Complexity and
expressivity. In AAAI pages 1123-1128, 1994.

5 Richard Fikes and Nils Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3-4):189-208, 1971.

6 Michael Gelfond and Daniela Inclezan. Yet another modular action language. In Pro-
ceedings of the Second International Workshop on Software Engineering for Answer Set
Programming, pages 64-78, 2009.

7 Michael Gelfond and Vladimir Lifschitz. Action languages. FElectronic Transactions on
Artificial Intelligence, 3:195-210, 1998.

8 Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson
Turner. Nonmonotonic causal theories. Artificial Intelligence, 153(1-2):49-104, 2004.

9 Daniela Inclezan and Michael Gelfond. Representing Biological Processes in Modular Action
Language ALM. In Proceedings of the 2011 AAAI Spring Symposium on Formalizing
Commonsense, pages 49-55. AAAI Press, 2011.

10 Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B.
Scherl. Golog: A logic programming language for dynamic domains. J. Log. Program.,
31(1-3):59-83, 1997.

11 Vladimir Lifschitz and Wanwan Ren. A modular action description language. In Proceedings
of National Conference on Artificial Intelligence (AAAI), pages 853-859, 2006.

12 John McCarthy. Generality in Artificial Intelligence. Communications of the ACM,
30(12):1030-1035, 1987. Reproduced in [13].

13 John McCarthy. Formalizing Common Sense: Papers by John McCarthy. Ablex, Norwood,
NJ, 1990.

413

ICLP’12

414

Extending C+ with Composite Actions for Robotic Task Planning

14

15

16

17

John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4,
pages 463-502. Edinburgh University Press, Edinburgh, 1969.

Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. In Proceedings of the 3rd
international joint conference on Artificial intelligence. Morgan Kaufmann Publishers Inc.,
1973.

Murray Shanahan. Event calculus planning revisited. In Proceedings 4th European Con-
ference on Planning (ECP 97), Springer Lecture Notes in Artificial Intelligence no. 1348,
pages 390-402. Springer, 1997.

Tran Cao Son, Chitta Baral, and Sheila A. Mcllraith. Planning with different forms of
domain-dependent control knowledge - an answer set programming approach. In LPNMR,
pages 226-239, 2001.

	Introduction
	Preliminaries
	Defining Composite Actions
	Syntax
	Semantics

	Properties of Extended Action Description
	Experiments—KeJia's Domain
	Formalizing and Reasoning with Composite Actions
	Performance

	Conclusion

