
A Gradual Polymorphic Type System with
Subtyping for Prolog
Spyros Hadjichristodoulou

Computer Science Department, Stony Brook University
New York, U.S.A.

Abstract
Although Prolog was designed and developed as an untyped language, there have been numerous
attempts at proposing type systems suitable for it. The goal of research in this area has been
to make Prolog programming easier and less error-prone not only for novice users, but for the
experienced programmer as well. Despite the fact that many of the proposed systems have
deep theoretical foundations that add types to Prolog, most Prolog vendors are still unwilling
to include any of them in their compiler’s releases. Hence standard Prolog remains an untyped
language. Our work can be understood as a step towards typed Prolog. We propose an extension
to one of the most extensively studied type systems proposed for Prolog, the Mycroft-O’Keefe
type system, and present an implementation in XSB-Prolog. The resulting type system can be
characterized as a Gradual type system, where the user begins with a completely untyped version
of his program, and incrementally obtains information about the possible types of the predicates
he defines from the system itself, until type signatures are found for all the predicates in the
source code.

1998 ACM Subject Classification D.1.6. Logic Programming, D.3.3. Language Constructs and
Features

Keywords and phrases Type Inference, Polymorphic Type System, Gradual Typing, Tabling,
Answer Subsumption

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.451

1 Introduction and problem description

Since the seminal work of Mycroft and O’Keefe [5] in introducing a polymorphic type system
for Prolog, there has been vast research on the area. Some of it followed their direction,
and is essentially about extending or reconstructing the Mycroft-O’Keefe type system [7, 2],
while others take different paths for introducing types in logic programs [6, 1, 3].

The common denominator in these approaches, however, is that most of them are about
theoretically defining and constructing a type system for Logic Programming. Although
some early Prolog implementations contained type checking mechanisms based on the
Mycroft-O’Keefe type system (e.g. the DEC-10 compiler), most modern systems tend
to keep Prolog as an untyped language 1. Of course, there is the exception of Mercury
(http://www.mercury.csse.unimelb.edu.au/), which has become famous for the type-
checking abilities it offers to programmers; however, this comes with the price of strong
typing and “limited” polymorphism of Mercury programs.

As discussed in [5], the main purpose of developing a polymorphic type system for Prolog
is to provide the programmer with another tool which will make programming easier and

1 As we will discuss later, an implementation for the Mycroft-O’Keefe type system was developed with
the intention of being distributed with SWI-Prolog and YAP

© Spyros Hadjichristodoulou;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 451–457

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.451
http://www.mercury.csse.unimelb.edu.au/
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

452 A Gradual Polymorphic Type System with Subtyping for Prolog

less error-prone. We consider our research as a step towards that direction; our goal is to
build a working type system which will enable programmers to write correct Prolog programs
more easily than before. The challenge is to somewhat combine various aspects of the
approaches introduced in the literature and use modern techniques to implement a robust
type inference system which will be distributed with XSB Prolog. Our type checking and
inference mechanism will offer users two modes of operation; firstly, they will be able to
type-check their program, if they provide a type signature for every predicate they define.
Secondly, if some of these signatures are missing, the type inference engine will be able to
infer types for the respective predicates, in order to provide the user with information about
their newly defined predicates. This process will be conducted in an incremental, gradual
manner; the user will start with a completely untyped version of his program, and type
inference will gradually give more information about what the types of the defined predicates
may be. If the user is satisfied with the type inference engine’s suggestions, then these types
will be considered by the system as if they were declared by the user as type signatures. This
process will continue until each defined predicate in the source code has a type signature.
This kind of type systems, called Gradual Type Systems was introduced in [8].

2 Background and overview of the existing literature

The first work introducing some kind of type checking and inference in Prolog was Mycroft
and O’Keefe’s Polymorphic type system, [5]. It is based on the seminal work by Robin Milner,
[4], who created a polymorphic type system for the ML family of functional programming
languages, and first introduced the notion of “Well-typedness”. In the Mycroft-O’Keefe
type system, type signatures are provided by the user for each defined predicate, and the
type checker’s task is to verify that each definition respects the signature declaration. The
only notion of inference in this type system is with Variables; when a predicate p(X,Y) is
type-checked against its signature, a type is inferred for both X and Y. Also, it allows for
polymorphism in the usual meaning; arguments of predicates can be of any type, denoted
by type variables, and allows for user-defined type constructors as well as some predefined
ones (i.e. for lists, type list(A) –-> [] ; [A|list(A)]). Moreover, a connection is made
between the Prolog program to be type-checked and the type checker, which is itself another
Prolog meta-program. Finally, the notion of “Well-typedness” is introduced, and has the
same meaning as in the Hindley-Milner type system: “Well-typed programs can’t go wrong”.
In the context of Prolog, this means that no predicate will be called with arguments that
don’t respect the type signature declared by the user. The following example illustrates the
operations described above:

I Example 1 (append/3). The user declares a type for the well-known append/3 predicate, as
:- pred append(list(A),list(A),list(A)). This means that append/3 has 3 arguments,
and each has the same type, namely list(A). So, each argument can be a list of anything,
as long as all 3 arguments have the same type.

The user may have the definition of append/3 available:

append ([],L,L).
append ([X|L1],L2 ,[X|L3]) :- append (L1 ,L2 ,L3).

Each clause of append/3 will now be type-checked against the given signature. It’s easy to
see that each clause respects the declared signature, and so append/3 is well-typed. Finally,
if the following clause appears in the program, p(X,Y,Z) :- ... , append(X,Y,Z), ...,
then types for X, Y and Z are inferred according to append/3’s signature (and all are list(A)).

S. Hadjichristodoulou 453

A recent implementation of the Mycroft-O’Keefe type system was developed in 2009
[7]. The authors’ aim was to gradually2 introduce types in Prolog using a type-checking
library that was planned to be shipped with two of the most popular Prolog implementations,
SWI-Prolog and YAP. This type checking library makes it easy to interface typed and
untyped code, by performing runtime checks when typed predicates (i.e. predicates for which
the user has provided a type signature) are called. By doing that, the authors make sure
that the type system can be used somewhat “on-demand”, i.e. only when the programmer
gives type signatures for certain predicates, and this makes the migration from untyped to
typed Prolog easier.

A rather different approach was introduced in [1]. The authors employ a fixed-point,
bottom-up, abstract interpretation technique in order to infer types for Horn-Clause programs.
Type declarations for predicates and constructors are very similar to the Mycroft-O’Keefe
type system [5], but in this approach, the system can infer types for predicates while not
depending on a type signature provided by the user. For example, the type of append/3
can be inferred only by its definition and the definition of the list(A) constructor, as given
above.

3 Goal of the research

Our goal is to combine the advantages of each of these approaches in order to build a robust
inference system for types of both predicates and constructors. The system will be distributed
along with XSB-Prolog, and is implemented as a preprocessor of the original source code.
This allows the user to start with a completely untyped Prolog program, and with the help
of the inference engine to gradually learn more about the types of the predicates he defines.
We believe that the existence of such a system will make programming in Prolog easier and
less error-prone, while at the same time maintaining the flexibility that Prolog gives.

4 Current status of the research

Our first task was to port the type-checking library from [7] which was written for SWI-Prolog
and YAP, to work in XSB-Prolog. Based on the XPP-Preprocessor 3, we implemented a
preprocessor that gets invoked by the user with a compiler flag. If the user desires to provide
type signatures for any of the predicates he has defined, the only thing to do is include the
following declaration in his source code: :- compiler_options(xpp_on(typecheck)).

After successfuly porting the type-checking library to XSB-Prolog, we used the approach
in [1] to build a type-inference engine. We use the same notations for declaring the types as
in [5]. Defined predicates for which a type signature has been provided get type-checked,
whereas the type of the others is inferred. Despite the similarities between our approach and
the ones discussed previously, there are basic differences:

We extended the Mycroft-O’Keefe type system in order to lift the limitation that each
clause of a predicate must have the same type. Prolog programmers often want to define
facts which may have different types, and we didn’t want our engine to infer that this

2 The use of the term “gradually” here has a different meaning that the one we used to describe our
approach in the previous section. In [7] it is used to describe the migration process from untyped Prolog
to typed Prolog, whereas in our approach, it is used to describe the process of adding types to a single
program, starting from a completely untyped program and moving towards a fully typed program

3 http://www.cross-browser.com/x/docs/xpp_reference.php

ICLP’12

http://www.cross-browser.com/x/docs/xpp_reference.php

454 A Gradual Polymorphic Type System with Subtyping for Prolog

kind of predicates is ill-typed. If, for example, the user has defined two facts as p(42)
and p(a), the type-inference engine will give p/1 the type p(atomic), instead of failing.
For this scheme to work, we have introduced simple-fixed subtyping rules between the
primitive types that each program can have. For example, integer, atom and float are
all subtypes of atomic.
In [1], the authors use a “cut-off” point to stop their inference when the type of a predicate
grows bigger at each step. Instead of doing this, we are using unify_with_occurs_check,
so that when two clauses of a predicate give types that can’t be unified with the occurs
check, our system infers that the predicate is ill-typed. This approach was also taken in
type-checking in [7].
None of the previous approaches were able to handle the case of inferring types for
type constructors. We are currently developing a type inference mechanism which will
be invoked when the user requests, which will try to infer what the type of a defined
constructor may be. This may be particularly useful when using large libraries with many
new constructors but no documentation on what each constructor does. We hope that
being able to see the type of each constructor will be useful to the programmer for better
understanding external code.

Algorithm 1 Outer fixed-point
1: do_type_inference_batch(PredList,TypedListIn,TypedList) :- {Let PredList

be the list of predicates we want to infer types for, TypedListIn be the list of types for
the predicates in PredList, TypedList be the list of types that will be inferred in one
step}

2: for all Pred in PredList do
3: type_inference_batch(Pred,Type,TypedListIn)
4: end for
5: Let TypeListTemp be the list consisting of all the returned Types
6: if TypeListIn != TypeListTemp then
7: call do_type_inference(PredList,TypeListTemp,TypedList)
8: else
9: set TypedList = TypeListIn

10: end if

Algorithm 2 Inner fixed-point
1: type_inference_batch(Pred,Type,TypedList) :- {Let Pred be the predicate we

want to infer types for, Type be the type we will infer for Pred, TypedList be the list of
types that were inferred in the previous step, TypeIn be the type of Pred computed in
the previous step as it resides in TypedList}

2: for all clauses of Pred do
3: call type_inference(Pred,TypedList,TypeIn)
4: end for
5: Gather all newly constructed TypeIns in a list, TList
6: Unify all elements of TList wich each other
7: Unify Type with the Head of TList

We currently have 3 versions of the type-inference engine. In the first, which is described
in algorithms 1, 2 and 3 below, the predicates that perform type-inference are all non-
tabled. The problem with this approach, is that we needed to pass around a list of all the

S. Hadjichristodoulou 455

Algorithm 3 Find a type from only one clause of the predicate
1: type_inference(Pred,TypedList,Type) :- {Let Pred be the predicate we want to

infer types for, Type be the type we will infer for Pred, TypedList be the list of types
that will be inferred in one step}

2: for each clause of Pred do
3: Find a type for Pred from the body of the clause and store it in Type
4: Find a type for Pred from the head of the clause and store it in PredType
5: if Type and PredType can be unified with occurs check then
6: succeed
7: else
8: throw error
9: end if

10: end for

(intermediate) types that had been inferred for each predicate of the source code, in order to
use the newest information at each step.

In order to remedy this, we re-wrote the basic type-inference predicates into a tabled
version. Each time a new type is inferred for a predicate, a record is entered in the global
table kept by XSB, so when the type of any predicate is requested during the process, it can
be obtained by looking-up the table, instead of passing around a list. This approach also
enabled us to be able to give some type to mutually recursive predicates.

For the final version of our type inference engine, we employed the principle of answer
subsumption as described in [9]. In essence, whenever a new answer is produced for a
predicate that is tabled with answer subsumption, it’s joined with the answer that already
resides in the table, and that join is now the only answer for that predicate. Now, instead of
using findall/3 in lines 5-7 and 6-8 of algorithms 1 and 2 respectively to get all the types
for each clause and until the fixed point is reached, we use answer subsumption and always
keep the most specific type found for each predicate. This may seem rather illogical in the
beginning, since when two answers are produced for a predicate, we tend to keep the most
general one. The reason is that when trying to find answers for goals in Prolog, we don’t care
which clause of the goal will make the answer found true, as long as there is one that does.
However, in type inference, the type inferred must respect all the clauses of the predicate.
We can think of this difference as the duality between union and intersection; when we want
answers for a goal we are looking for the union of answers, whereas when we want to find a
type for a predicate, we want the intersection of types found.

5 Preliminary results accomplished

I Example 2. We will start with a simple recursive predicate, reverse_acc/3. It’s the
tail-recursive version of reverse/2, which binds the output with the input list, reversed.

reverse_acc ([], Acc , Acc).
reverse_acc ([Head|Tail], Acc , Reversed) :-

reverse_acc (Tail , [Head|Acc], Reversed).

Asking our engine to infer the type of reverse_acc/3 will yield:

| ?- infer_types (’test.P ’).

Inferred types for the following 1 predicates :
reverse_acc (list(A),list(A),list(A))

ICLP’12

456 A Gradual Polymorphic Type System with Subtyping for Prolog

I Example 3. In this second example, we will show how our extensions to the Mycroft-
O’Keefe type system behave. The predicate we want to infer a type for is foo/1:

foo (42).
foo(bar).

The original Mycroft-O’Keefe type system would not be able to give a type to foo/1.
Our extensions make it possible for the engine to assign the atomic type:

| ?- infer_types (’test.P ’).

Inferred types for the following 1 predicates :
foo(atomic)

I Example 4. For this last example, we will show some preliminary results of our constructor
type inference engine. We assume the following code snippet:

:- type natural ---> 0 ; s(natural).

formula (0).
formula (s(0)).
formula (s(s (0))).
formula (0 + s(0)).
formula (s(s(0)) - s(0)).

The above code declares a new type constructor natural for natural numbers, and
various versions of the same predicate, formula/1. The task is to find what is the type of
the constructors of formula/1’s argument:

| ?- infer_constructors (’test.P’, formula (_)).

Inferred the following constructors :
formula (natural)
formula (+(natural , natural))
formula (-(natural , natural))

The engine has managed to infer that the argument of formula/1 can be either a natural
(as per the type constructor above), a +(natural,natural) or a -(natural,natural).

6 Open issues and expected achievements

Although the implementation of the type inference engine has progressed over the few last
months, there are still issues that need to be resolved

The final version of the code where answer subsumption is used must be tested thoroughly
and compared to the other versions. It will be interesting to see the differences in both
runtime and table usage for large source files
The type inference for constructors must be refined; the correct type constructors for
the last example of the previous section would be expr –-> natural ; expr + expr
; expr - expr, so our engine must somehow recognize that the + and - combine more
complex things than simple naturals

S. Hadjichristodoulou 457

References
1 R. Barbuti and R. Giacobazzi. A bottom-up polymorphic type inference in logic program-

ming. Sci. Comput. Program., 19(3):281–313, 1992.
2 T.K. Lakshman and U.S. Reddy. Typed Prolog: A semantic reconstruction of the Mycroft-

O’Keefe type system. In Int. Logic Programming Symp, pages 202–217, 1991.
3 L. Lu. Polymorphic type analysis in logic programs by abstract interpretation. The Journal

of Logic Programming, 36(1):1–54, 1998.
4 R. Milner. A theory of type polymorphism in programming. Journal of computer and

system sciences, 17(3):348–375, 1978.
5 A. Mycroft and R.A. O’Keefe. A polymorphic type system for Prolog. Artificial Intelligence,

23(3):295–307, 1984.
6 T. Schrijvers and M. Bruynooghe. Towards constraint-based type inference with polymor-

phic recursion for functional and logic languages. In Proceedings of the 17th International
Workshop on Implementation and Application of Functional Languages, pages 1–16, 2005.

7 T. Schrijvers, V. Santos Costa, J. Wielemaker, and B. Demoen. Towards Typed Prolog. In
Proceedings of the 24th International Conference on Logic Programming, ICLP ’08, pages
693–697. Springer-Verlag, 2008.

8 J.G. Siek and M. Vachharajani. Gradual typing with unification-based inference. In Pro-
ceedings of the 2008 symposium on Dynamic languages, page 7. ACM, 2008.

9 T. Swift and D. S. Warren. Tabling with answer subsumption: implementation, applications
and performance. In Proceedings of the 12th European conference on Logics in artificial
intelligence, JELIA’10, pages 300–312. Springer-Verlag, 2010.

ICLP’12

	Introduction and problem description
	Background and overview of the existing literature
	Goal of the research
	Current status of the research
	Preliminary results accomplished
	Open issues and expected achievements

