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Abstract
In this paper we study a railway optimization problem known as the Train Unit Assignment
Problem. A train unit consists of a self-contained train with an engine and a set of wagons
with passenger seats. Given a set of timetabled train trips, each with a required number of
passenger seats, and a set of train units, each with a given number of available seats, the problem
calls for the best assignment of the train units to the trips, possibly combining more than one
train unit for a given trip, that fulfills the seat requests. We propose a heuristic algorithm
based on the computation of a lower bound obtained by solving an Integer Linear Programming
model that gives the optimal solution in a “peak period” of the day. The performance of the
heuristic algorithm is computationally evaluated on real-world instances provided by a regional
Italian Train Operator. The results are compared with those of existing methods from the
literature, showing that the new method is able to obtain solutions of good quality in much
shorter computing times.
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1 Introduction

It is well-known that the optimization of a railway system is very hard and is generally
performed in separate phases, each one corresponding to a very difficult problem itself (see
e.g. [11], [12]). In this paper, we focus on the so-called Train Unit Assignment Problem
(TUAP), which is also known as Rolling Stock Planning Problem. A train unit consists of a
self-contained train with an engine and a set of wagons with passenger seats. Given a set of
timetabled train trips, each with a required number of passenger seats, and a set of train
units, each with a given number of available seats, the problem calls for the best assignment
of the train units to the trips, possibly combining more than one train unit for a given trip,
that minimizes the number of used train units and satisfies a set of real-world constraints.
The constraints are the following: covering constraints (i.e. the request of passenger seats
must be satisfied for each trip), maximum combination constraints (i.e., for each trip a
maximum number of train units can be combined in order to cover the trip), sequencing
constraints (i.e. two trips can be performed in sequence by a train unit if and only if there is
enough time for the train unit for traveling from the arrival station of the first trip to the
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2 A Fast Heuristic Algorithm for the Train Unit Assignment Problem

departure station of the second trip), and availability constraints (i.e. no more units than
the ones available can be used). TUAP is strongly NP-hard, as it has been proven in [8].

1.1 Literature review
There is a considerable amount of literature on Rolling Stock Planning: locomotives and
cars have to be assigned to trips (see e.g. [4], [14], [15], [26], [28]) instead of self-contained
train-units (see e.g. [1], [2], [3], [18], [25], [27]); the order of the train-units assigned to a
trip has to be considered (see e.g. [18], [21], [22], [25]); different objective functions can
be considered for the problem, for example the goal can be to obtain a robust solution in
order to take care of possible disruptions (see e.g. [7], [24]). For surveys on the specific
problem as well as on the use of combinatorial optimization in railway planning see, e.g.,
[5, 9, 11, 12, 13, 16, 17, 20].

1.2 Outline of the paper
We consider the version of TUAP studied in works [6], [8] and [10]. In [8] an Integer Linear
Programming (ILP) model for the problem with one variable for each possible daily schedule
of each train unit is proposed. A diving heuristic based on the Linear Programming (LP)
relaxation of this model is developed, combined with a refinement procedure. In the recent
work [10], a heuristic based on the Lagrangian relaxation of an alternative ILP model is
developed. The relaxed solution is computed by solving a sequence of assignment problems.
In this work we propose a new heuristic algorithm, which is based on the computation of a
lower bound obtained by solving an ILP model that gives the optimal solution in a “peak
period" of the day.

The paper is organized as follows: in Section 2 we formally describe the problem and
in Section 3 we describe the heuristic algorithm we propose. In Section 4 we present
computational experiments on real-world instances and compare the results with those of
existing methods from the literature. Finally, in Section 5 we draw some conclusions and
guidelines for future research.

2 Problem Description

The problem input specifies a set of n timetabled train trips to be executed every day of a
given time period, and a set of p train unit types. Each trip j ∈ {1, . . . , n} is defined by a
required number rj of passenger seats, and a maximum number uj of train units that can be
assigned to the trip. In the specific application we consider, we have uj = 2 for j = 1, . . . , n,
i.e., each trip can be assigned to at most two train units. Each trip is also characterized
by its departure and arrival times and departure and arrival stations. Each train unit type
k ∈ {1, . . . , p} is defined by a number dk of available train units, and an associated capacity
sk (number of available seats). We say that a trip j is covered if the overall capacity of the
train units assigned to the trip is at least rj .

We introduce a directed acyclic graph G = (V, A), where each node corresponds to a trip,
i.e., V = {1, . . . , n}, and arc (i, j) ∈ A exists if and only if a train unit (of any type) can be
assigned to i and then to j within the same day. In other words, arc (i, j) exists whenever
both trips i and j can be assigned to a train unit, and the time between the arrival of trip i

and the departure of trip j allows the train unit to travel from the arrival station of trip i to
the departure station of trip j within the same day. It is to note that there is an overnight
break of a few hours, i.e. no trips have to be covered during the night. In addition, it is
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possible for any train unit to perform a “transfer" (i.e. to travel between any pair of stations)
within the night break. Therefore, it is not necessarily the case that every used train unit
performs the same set of trips every day. Indeed, after having performed a sequence of trips
on one day, a train unit can perform on the following day a trip sequence assigned to another
train unit of the same type (possibly performing a transfer within the night break). In other
words, number the, say, q trip sequences assigned to the train units of a given type as 1, . . . , q

in an arbitrary way. These q trip sequences can be performed by q train units of that type,
all performing a different sequence on each day, and each one performing the q sequences in
the cyclic order 1, . . . , q over a period of q days.

3 Heuristic Algorithm

In this section, we describe the proposed heuristic algorithm. It is composed of a constructive
phase and a local search phase, that are described in Sections 3.2 and 3.3, respectively.
The constructive phase is based on the computation of a lower bound: it is obtained by
solving at optimality the problem restricted to a “peak period". The description of the lower
bound computation is given in Section 3.1. Before starting the constructive phase, we apply
a straightforward preprocessing on the input instance: the seat request for each trip j is
redefined so that it matches the minimum sum of train unit capacities that can cover request
rj . The associated optimization problem, which is a cardinality-constrained bounded subset
sum problem (see, e.g., Martello and Toth [23]), can easily be solved by enumeration given
the small values of p and dk in practical cases.

3.1 Lower Bound

The lower bounding procedure we use is described in [8], but, for sake of clarity, we briefly
recall it. The main idea is to find a set of trips that are pairwise “incompatible”, i.e., that
cannot be performed by the same train unit (of whatever type) in the same day, and then
optimally solve the subinstance restricted to these trips: the obtained optimal value is a
lower bound on the optimal TUAP value. These incompatible trips correspond to a “peak
period" of the day, when many simultaneous trips need to be covered with a large seat
request. In order to determine a set of incompatible trips, we compute a maximum-weight
stable set in the auxiliary undirected graph (V, E) defined by neglecting the arc orientation
in graph G and adding to each node j (corresponding to trip j) a weight equal to rj . The
auxiliary graph is a comparability graph for which a maximum-weight stable set can be
computed efficiently by using flow techniques (see, e.g., [19]). Once the set of incompatible
trips has been determined, we find the optimal solution of the TUAP instance restricted to
these trips, by solving the following ILP model, where S represents the set of trips in the
maximum-weight stable set and wk

j is an integer variable representing the number of times
that trip j is assigned to a train unit of type k:
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min
p∑

k=1

∑
j∈S

wk
j , (1)

∑
j∈S

wk
j ≤ dk, k = 1, . . . , p, (2)

p∑
k=1

skwk
j ≥ rj , j ∈ S, (3)

p∑
k=1

wk
j ≤ uj , j ∈ S, (4)

wk
j ≥ 0, integer , k = 1, . . . , p, j ∈ S. (5)

The objective function calls for the minimization of the number of train units needed to
perform the set S of incompatible trips. Constraints (2) impose not to use more than dk train
units of type k. Constraints (3) ensure the covering of the trips in S. Finally, constraints (4)
guarantee to combine at most uj train units for covering trip j.

Of course, the value of the optimal solution of the ILP model (1)-(5) represents a valid
lower bound for the original TUAP instance given in input.

3.2 Constructive Phase
For each train unit type k we impose an upper limit d̄k on the number of available units
equal to the corresponding number of units used in the optimal solution of the ILP model
(1)-(5). I.e. our aim is to construct a feasible solution for the original TUAP instance with
the same value of the lower bound: obviously, if we manage to find it, this is an optimal
solution. Otherwise, we apply the local search phase after the constructive phase.

As observed in [8], TUAP can be solved efficiently if there is a unique train unit type.
This means that, if we have a subset of m trips assigned to a train unit type, the computation
of the best possible sequencing of these trips can be done in polynomial time (O(m3)). In
particular, the problem corresponds to an Assignment Problem that can be solved, for a
train unit of type k, by using a directed graph Ḡk = (V̄ k, Āk). It has a subset V̄ k of nodes
in V corresponding to the trips assigned to the current train unit type k, and the set of arcs
Āk defined as follows: all the arcs in A between nodes in V̄ k belong to Āk and have cost
equal to 0; in addition, we define an arc between any two nodes in V̄ k such that they are not
connected in A and we set its cost to 1. In this way, each arc (i, j) ∈ Āk with cost equal
to 0 (respectively, equal to 1) corresponds to a pair of trips i and j that can be covered in
sequence by a train unit of type k in the same day (respectively, in two consecutive days,
with a night within). As a consequence, the cost of the solution of the Assignment Problem
corresponds to the number of consecutive days (i.e. to the number of different units) required
by the train units of type k to cover all the trips currently assigned to it.

Since the sequencing of the trips for each train unit type can be solved efficiently, the
constructive phase decides how to assign each trip to one or two train unit types and then
solves, for each train unit type, an Assignment Problem to determine the optimal sequence
of the trips. The assignment is accepted only if the corresponding number of units of type k

does not exceed d̄k.
What remains to be determined is a good policy for assigning a trip to the best train

unit type. We consider the trips in the maximum-weight stable set as the first ones to be
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assigned and consider the remaining ones in chronological order. For each trip i, we perform
the following steps:
1. If ri > skmax , where kmax corresponds to the train unit type with the largest capacity,

then assign i to two train unit types k1 and k2 (k1, k2 = 1, . . . , p), possibly with k1 = k2,
such that sk1 + sk2 − ri is minimum and non negative. Otherwise, assign i to a train unit
type k (k = 1, . . . , p) such that sk − ri is minimum and non negative.

2. Compute the optimal solution of the Assignment Problem corresponding to the trips
assigned up to now to the considered train unit type k (or train unit types k1 and k2).
Check if the value of the optimal solution of the Assignment Problem corresponding to
each considered train unit type k does not exceed the number of available train units d̄k.

3. If this is the case, accept the assignment; otherwise try to assign trip i to a train unit
type k (or even to two train unit types k1 and k2) with larger capacity and go to 2.

4. If no train unit type leads to a feasible assignment for trip i, leave trip i uncovered.

At the end of the constructive procedure, either we have a feasible solution with the same
value of the lower bound (i.e. optimal), or we have a set of uncovered trips. In the latter
case, we move to the local search phase described in Section 3.3.

3.3 Local Search Phase
Note that in the proposed heuristic algorithm, the solution of the Assignment Problem
already gives the best sequencing of the trips assigned to a given train unit type. Thus, it
is not useful to exchange a trip from a unit to another one of the same type, but it is only
necessary to consider exchanges of trips to different train unit types.

The local search phase consists of two procedures. The first one applies an exchange
move between a trip that was assigned to a given train unit type (or to two train unit types)
to a different train unit type (or to two different train unit types), with the aim of allowing
the insertion of an uncovered trip. More specifically, for each uncovered trip i, we execute
the following procedure:
1. Consider a trip j that was assigned to a train unit type k (or to two train unit types

k1 and k2), with sk ≥ ri (or sk1 + sk2 ≥ ri) and such that its timetable overlaps the
timetable of trip i.

2. Remove trip j from train unit type k (or k1 and k2), and proceed as in the constructive
phase in order to try to assign the uncovered trip i to the train unit type k (or k1 and
k2).

3. If it is possible to perform this assignment without exceeding the lower bound value
of train unit type k (or k1 and k2), then proceed as in the constructive phase in order
to try to assign trip j to a different train unit type (leaving all the other assignments
unchanged). Otherwise, re-assign trip j to train unit type k (or k1 and k2). If all the
assigned trips have been considered as a possible exchange move for trip i then stop (trip
i remains uncovered), otherwise go to 1.

The second procedure of the local search phase tries to compute a feasible solution taking
into account all the available train units and not only those corresponding to the computation
of the lower bound. The trips that are still uncovered at the end of the exchange phase
are assigned to one or two currently unused train units, by performing steps 1 to 4 of the
constructive phase (see Section 3.2). Note that, in our case study, due to the large number
of train units available (i.e. those used in the practitioners’ solutions), it was always possible
to find a feasible solution with the proposed heuristic algorithm.
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Table 1 Comparison of the proposed heuristic algorithm with the LP-diving heuristic presented
in [8] and the Lagrangian heuristic presented in [10] on real-world instances.

New heur. [8] heur. [10] heur.
Inst. n p D LB value time LB value time LB value time
1 85 1 2 2 2 0 2 2 0 2 2 0
2 120 1 4 4 4 0 4 4 0 4 4 0
3 221 1 18 17 17 3 17 17 288 15 17 4
4 127 2 27 25 25 1 25 25 17 20 25 4
5 283 2 22 20 20 4 20 20 1912 17 20 18
A 528 8 72 62 66 28 62 63 1932 27 70 288
B 662 10 76 53 57 31 53 54 2309 19 59 600
C 660 10 75 53 55 31 53 53 1878 16 57 572
D 196 3 19 13 14 1 13 13 280 9 13 12
E 143 4 32 26 27 1 26 26 18 12 26 7
F 366 3 26 23 24 11 23 23 1013 11 24 49
G 348 3 45 39 42 6 39 39 1590 22 45 52
H 137 3 21 20 20 0 20 20 25 13 20 7

Avg. %Gap 2.99 0.26 3.55
Avg. Times 9.00 866.3 124.1

4 Computational Experiments

We present computational experiments on a set of 13 real-world instances provided by a
regional Italian Train Operator, and compare the results of the proposed heuristic algorithm
with those of the approaches presented in [8] and in [10]. The heuristic algorithm presented
in [8] is composed of a fixing phase and a refinement phase and leads to a good improvement
over the practitioners’ solutions but requires large computing times. The heuristic algorithm
presented in [10] is composed of a constructive phase and a local search phase similar to the
one described in Section 3.3. The considered algorithms are coded in C and the tests are
performed on a PC Pentium 4, 3.2 GHz, 2 GB RAM.

In Table 1, we present the comparison of the proposed heuristic algorithm (New heur.)
with the existing methods. For each method we report the lower bound value (LB), the
solution value (value) and the computing time expressed in seconds (time). The first four
columns in the table represent, respectively, the instances name, the number of trips n, the
number of train unit types p and the global number of available train units D. We report
in bold the best solutions found and we underline the values that correspond to optimal
solutions. The last two rows report, for each method, the average percentage gap (computed
by considering for each instance the value of the solution found by the corresponding method
and the best lower bound), and the average computing time on the 13 instances.

Table 1 shows that the proposed heuristic algorithm is very fast in obtaining solutions
of good quality. Compared with the algorithm proposed in [8], the new heuristic has a
larger percentage gap but the average computing time is much shorter. Compared with the
algorithm proposed in [10], the new heuristic has a smaller percentage gap, a computing
time again much shorter, and obtains 4 better solutions (on the larger instances) while the
heuristic proposed in [10] obtains only 2 better solutions.

In Table 2, we present a comparison between the three methods when a time limit of 30
seconds or 1 minute is imposed. For each method we report the solution values found within
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Table 2 Comparison of the proposed heuristic algorithm with the LP-diving heuristic presented
in [8] and the Lagrangian heuristic presented in [10] on real-world instances with a time limit
imposed.

Time limit = 30 seconds Time limit = 1 minute
New heur. [8] heur. [10] heur. New heur. [8] heur. [10] heur.

Inst. n p D value value value value value value
1 85 1 2 2 2 2 2 2 2
2 120 1 4 4 4 4 4 4 4
3 221 1 18 17 17 17 17 17 17
4 127 2 27 25 25 25 25 25 25
5 283 2 22 20 22 20 20 22 20
A 528 8 72 66 - - 66 - -
B 662 10 76 57 - - 57 - 61
C 660 10 75 56 - - 55 - 64
D 196 3 19 14 - 13 14 16 13
E 143 4 32 27 26 26 27 26 26
F 366 3 26 24 25 24 24 25 24
G 348 3 45 42 - - 42 - 45
H 137 3 21 20 20 20 20 20 20

Avg. %Gap w.r.t [8] 0.98 2.14 1.67 3.98
Avg. %Gap w.r.t [10] 1.67 0.46 2.73 3.98

# found 13 8 9 13 9 12

the imposed time limit, showing in bold the best solutions found and underlining the optimal
solutions. The last three rows report, for each method, the number of feasible solutions
found, and the average percentage gap, computed by considering only the instances for which
the new heuristic and the method presented in [8] ([10], respectively) were able to find a
feasible solution. The results show that, by imposing a time limit of 30 seconds, the proposed
heuristic is able to find a feasible solution for all the instances, while the approaches proposed
in [8] and in [10] obtain a feasible solution for 8 and 9 instances, respectively. When a time
limit of 1 minute is imposed, the methods proposed in [8] and [10] still fail in finding a feasible
solution for 4 and 1 instances, respectively. We can see that the average percentage gap of
the proposed heuristic is always better than the one obtained by the heuristic presented in
[8]. With respect to the heuristic presented in [10], the new heuristic finds a larger average
percentage gap when a time limit of 30 seconds is imposed (but, with this time limit, the
method presented in [10] is not able to find a feasible solution for 4 instances), while a smaller
average percentage gap is obtained by the new heuristic when a time limit of 1 minute is
imposed.

5 Conclusions and Future Research

We have proposed a heuristic algorithm for the Train Unit Assignment Problem, based on
the computation of a lower bound obtained by solving an Integer Linear Programming model
that gives the optimal solution in a “peak period" of the day. Compared with the results
obtained by existing methods, the new heuristic algorithm is able to obtain solutions of good
quality in much shorter computing times. Therefore, the new heuristic algorithm can also
be used in a real-time setting. Future research will be devoted to improve the performance
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of the proposed algorithm, by executing it iteratively, considering, at each iteration, the
unassigned trips (of the previous iteration) as the first to be assigned together with the trips
in the maximum-weight stable set. In addition, larger realistic instances, presented in [10],
will be tested. Finally, variants of the problem, related to Fixed Job Scheduling Problems,
will be considered.
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