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Abstract

The treatment of transfers is a major challenge in line planning. Existing models either route

passengers and lines sequentially, and hence disregard essential degrees of freedom, or they

are of extremely large scale, and seem to be computationally intractable. We propose a novel

direct connection approach that allows an integrated optimization of line and passenger rout-

ing, including accurate estimates of the number of direct travelers, for large-scale real-world

instances.
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1 Introduction

Line planning is a classical optimization problem in the design of a public transportation

system: Find, in an infrastructure network, a set of lines with corresponding operation

frequencies, such that a given travel demand can be satisfied. There are two main objectives,

namely, minimization of operation costs (the operator’s point of view) and minimization of

travel and transfer times (the passengers’ point of view).

Since the late nineteen-nineties, the line planning literature has developed a series of

integer programming approaches that try to capture these objectives better and better,

see Odoni, Rousseau, and Wilson [15] and Bussieck, Winter, and Zimmermann [9] for an

overview. A detailed treatment of operation costs is given in the articles of Claessens, van

Dijk, and Zwaneveld [10], Bussieck, Lindner, and Lübbecke [8], and Goossens, van Hoesel,

and Kroon [12, 13]; in this article, however, we focus on travel and transfer times. A first

approach in this direction was taken by Bussieck, Kreuzer, and Zimmermann [7] (see also

the thesis of Bussieck [6]), who proposed an integer programming model that maximizes the

number of direct travelers, i.e., travelers that do zero transfers, on the basis of a “system

split” of the demand, i.e., an a priori distribution of the passenger flow on the arcs of the

transportation network. The direct travelers approach is therefore a sequential passengers-

first lines-second routing method. However, the passenger flow strongly depends on the line

plan which is to be computed. Hence, a number of approaches that integrate line planning

and passenger routing have been developed. Schöbel and Scholl [16, 17] model travel and

transfer times explicitly in terms of a “change-and-go graph” that is constructed on the basis

of all potential lines. This model allows a complete and accurate formulation of travel and

transfer time objectives; its only drawback is its enormous size, which seems to make this
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model computationally intractable. Nachtigall and Jerosch [14] achieve a graph reduction

with a column generation approach in terms of partial passenger paths between two transfers;

however, the associated integer programming formulation still requires a capacity constraint

for each edge in each line. Borndörfer, Grötschel, and Pfetsch [3, 4] propose an integrated

line planning and passenger routing model with a polynomial number of constraints. This

model ignores transfers between lines of the same mode (transfers between, e.g., bus and

tram lines are considered).

We propose in this paper a novel direct connection approach that encourages direct

connections depending on the line plan to be computed, i.e., an integrated line planning

and passenger routing approach that penalizes non-direct connections. The model can be

interpreted as an advancement of Bussieck, Kreuzer, and Zimmermann’s direct travelers

approach that overcomes the system split. It can also be seen as a computationally tractable

“first order approximation” to the change-and-go approach of Schöbel and Scholl, or as a

“transfer improvement” of the model of Borndörfer, Grötschel, and Pfetsch. As far as we

know, our direct connection approach is currently the only computationally tractable line

planning method that provides good estimates of transfer times.

The paper is structured as follows. Sect. 2.1 starts by deriving a direct connection model

in an extended variable space, that correctly accounts for all direct travelers in the same way

as the change-and-go approach of Schöbel and Scholl. All other passenger paths, however,

receive a uniform penalty, independent of the number of transfers. This model is reduced

in Sect. 2.2 to a much smaller space of purely spatial variables via projection, in fact, via

a partial projection that uses only a small, explicit subset of combinatorially meaningful

inequalities. The resulting direct connection model can overestimate the number of direct

travelers. Our computational results in Section 3, however, show that the model works well

in practice and estimates the number of direct travelers in a surprisingly accurate way.

2 Modeling Direct Connections

We consider a public transportation network with lines of different modes, e.g., bus, tram,

and subway. Passengers travel along these lines from the origins of their trips to their

destinations with or without transfers. The direct connection model distinguishes between

direct connections, i.e., passenger paths without transfers, and passenger paths with one or

more transfers, with which a transfer penalty will be associated. Because of this penalty,

passengers will prefer direct connections, unless routes with transfers are forced by a lack of

transportation capacity. The task is to design a system of lines with associated operation

frequencies such that a weighted sum of operation costs and total traveling time, including

transfer penalties, is minimized. A formal description of our approach is as follows.

We consider a multi-modal transportation network with M modes in terms of an undirected

graph N = (V,E). The nodes consist of M + 1 disjoint sets V0 ∪ V1 ∪ . . . ∪ VM , the edges of

M + 2 disjoint sets E0 ∪ . . . ∪ EM+1. The OD-nodes V0 are the origins and destinations of

passenger trips. Nodes Vi represent stations of lines of transport mode i = 1, . . . ,M . The

OD-edges E0 ⊆ V0 × (V1 ∪ . . . ∪ VM ) mark beginnings and ends of trips. The infrastructure

edges Ei denote streets and tracks on which lines of mode i = 1, . . . ,M can be established.

The transfer edges EM+1 ⊆
⋃

1≤i,j≤M Vi × Vj are walking connections between stations of

different or equal modes. Each edge e ∈ E has a travel time τe ∈ Q≥0, including a transfer

penalty σ ∈ Q≥0 for each transfer edge e ∈ EM+1, and each infrastructure edge e ∈
⋃
Ei

has a cost ce ∈ Q≥0. Figure 1 shows the infrastructure networks of the public transportation

system of the city of Potsdam in Germany.
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Figure 1 Multi-modal transportation network in Potsdam. Red: tram, violet: bus, blue: ferry,

large nodes: terminals, small nodes: stations, light blue: rivers and lakes.

A line ` of mode i is a (not necessarily simple) path in the mode infrastructure network

Ni = (Vi, Ei) that starts and ends in a set of terminal nodes Ti ⊆ Vi, i = 1, . . . ,M . It is

operated at a frequency f out of a finite set F ⊆ N. Line ` at frequency f has transportation

capacity κ`,f = κi · f`, where κi is a standard capacity of a line of mode i, e.g., the size of a

standard bus, and operation cost c`,f = ci + f` ·
∑

e∈` ce, where ci is a standard fixed cost

of a line of mode i. Working with standard capacities and costs is a simplification. Note,

however, that a more detailed treatment of different capacities, e.g., depending on bus types

or numbers of vehicles, can be handled by introducing additional modes. We denote by L
the set of all lines which we assume to be given in this paper.

The travel demand is given by an OD-matrix d ∈ QV0×V0
≥0 , i.e., dst is the number of

passengers that want to travel from origin s ∈ V0 to destination t ∈ V0; note that d does

not have to be symmetric. We denote by D = {(s, t) ∈ V 2
0 | dst > 0} the set of all OD-pairs

with positive travel demand. Passengers travel along routes in a directed passenger routing

graph G = (V,A) that arises from the transportation network N = (V,E) by replacing each

edge e ∈ E by two antiparallel arcs a(e) and ā(e); let conversely e(a) be the undirected edge

corresponding to such an arc a ∈ A. Travel times and lengths of the undirected edges carry

over to their directed counterparts. Denote by Pst the set of all (simple) directed st-passenger

paths from origin s to destination t in G and by P =
⋃

(s,t)∈D Pst the set of all passenger

paths.

A direct connection st-passenger path for line ` or an st-dcpath is an st-passenger path p

of the form p = (s, a0, v1, . . . , vr, ar, t) where s, t, vi ∈ V , a0, ai ∈ A, e(ai) ∈ `, i = 1, . . . , r,
r ∈ N0, i.e., passengers can travel along p from origin s directly to destination t via line
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` without transfers. Let P0,`
st be the set of st-dcpaths for line `, P0,` =

⋃
(s,t)∈D P

0,`
st , and

P0,L =
⋃

`∈L P0,`; note that |P0,`
st | = 1 if ` is simple and |δ+(s)| = |δ−(t)| = 1. Let further

P0,`
st (a) = {p ∈ P0,`

st : a ∈ p} be the set of st-dcpaths for line ` that pass over arc a, and let

L0
st(a) = {` ∈ L : P0,`

st (a) 6= ∅} be the set of all lines that support an st-dcpath via arc a. A

path p is a direct connection st-passenger path (st-dcpath), if it is an st-dcpath for some line

`. Let P0
st be the set of st-dcpaths, and P0 =

⋃
(s,t)∈D P0

st their union. For a dcpath p ∈ P0,

we set the travel time to the sum of the arc travel times τp,0 =
∑

a∈p τa. For an st-passenger

path p ∈ P, we set the travel time to the sum of the arc travel times plus a summand σ(p)
to arrive at a travel time of τp,1 = σ(p) +

∑
a∈p τa, where σ(p) = σ if p does not contain a

transfer arc, and 0 otherwise, since we already incorporated a penalty on transfer arcs.

2.1 Direct Line Connection Model

We will first introduce a model that computes a line plan and a passenger routing minimizing

a weighted sum of line operation costs and passenger traveling times. This model accounts

exactly for the number of travelers on direct connections according to the model assumptions.

Introducing path flow variables z`
p,0 and yp,1 for the number of passengers that travel on

dcpath p on line ` and on path p with at least one transfer, respectively, and x`,f ∈ {0, 1} for

the operation of line ` at frequency f , we state a direct line connection model for integrated

line planning and passenger routing as follows:

(DLC) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)

∑
p∈P0

∑
`∈L:p∈P0,`

τp,0 z
`
p,0 +

∑
p∈P

τp,1 yp,1


∑
`∈L

∑
p∈P0,`

st

z`
p,0 +

∑
p∈Pst

yp,1 = dst ∀ (s, t) ∈ D (1)

∑
`∈L

∑
p∈P0,`:a∈p

z`
p,0 +

∑
p∈P:a∈p

yp,1 ≤
∑

`∈L:e(a)∈`

∑
f∈F

κ`,f x`,f ∀ a ∈ A (2)

∑
p∈P0,`:a∈p

z`
p,0 ≤

∑
f∈F

κ`,f x`,f ∀ ` ∈ L, e(a) ∈ ` (3)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (4)

x`,f ∈ {0, 1} ∀ ` ∈ L, f ∈ F (5)

z`
p,0 ≥ 0 ∀ ` ∈ L, p ∈ P0,` (6)

yp,1 ≥ 0 ∀ p ∈ P. (7)

The model (DLC) minimizes a weighted sum of line operation costs and passenger travel

times; 0 ≤ λ ≤ 1 is a weight parameter. Note that the st-passenger path variables yp,1
incur a penalty for each transfer arc and exactly one transfer penalty otherwise, i.e., the

number of transfers may be underestimated. Equations (1) enforce the passenger flow.

Inequalities (2) guarantee sufficient total transportation capacity on each arc. Constraints (3)

ensure sufficient transportation capacity for direct connection passenger paths on each arc of

each line. Inequalities (4) ensure that a line is operated at one frequency at most.

Model (DLC) includes a variable z`
p,0 for the assignment of each direct connection passenger

path p to a direct connection line `. A line of length k is usually a direct connection line for

O(k2) OD-pairs, such that the number of variables is much larger than the number of lines;

moreover, choices between several possible direct connection lines for each dcpath produce

lots of degeneracy. To overcome these problems, we will now compress the model by relaxing
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the explicit assignment of dcpaths to direct connection lines. We describe in the following

Subsection 2.2 an approximative construction, that we will use for computation, and argue

in Subsection 2.3 how it can be made exact.

2.2 Direct Connection Model

To construct a compact approximation of (DLC), we eliminate the assignment of passenger

paths to particular lines by aggregating the dcpath variables as yp,0 =
∑

`∈L z
`
p,0. To this

purpose, consider for each OD-pair (s, t) ∈ D the set P0
st of all st-dcpaths and unite them

to construct what we call a direct connection st-passenger routing graph G0
st = (V 0

st, A
0
st) =⋃

p∈P0
st

(V (p), A(p)), where V (p) and A(p) denote the nodes and arcs of dcpath p, respectively.

Note that G0
st can be constructed in polynomial time. We proceed by considering all st-paths

in G0
st as relaxed st-dcpaths (st-rdcpaths); let P0+

st be the set of all such rdcpaths-paths,

P0+
st (a) = {p ∈ P0+

st : a ∈ p} the set of all st-rdcpaths via arc a, and P0+ =
⋃

(s,t)∈D P
0+
st .

Obviously, P0+
st ⊇ P0

st, i.e., P0+
st overestimates the number of direct connections between

origin s and destination t. We say that OD-pairs (s, t) and (u, v) are dc-equivalent with

respect to arc a, if L0
uv(a) = L0

st(a), i.e., if the st- and the uv-rdcpaths are supported by

the same set of lines. We further say that OD-pair (u, v) is dc-dominated with respect to

arc a by OD-pair (s, t) if L0
uv(a) ⊆ L0

st(a). Denote by [s, t]a and [s, t]≤a the corresponding

equivalence class and domination set, respectively, i.e., (u, v) ∈ [s, t]a if L0
uv(a) = L0

st(a)
and (u, v) ∈ [s, t]≤a if L0

uv(a) ⊆ L0
st(a). Let finally D(a) = {[s, t]a} be the set of equivalence

classes for dc-equivalent OD-pairs w.r.t. a. Introducing line-independent rdcpath variables

yp,0 for the number of direct travelers on path p, this flow must satisfy the following direct

connection constraints for each arc a and each class [s, t]a of equivalent OD-pairs:∑
(u,v)∈[s,t]≤a

∑
p∈P0+

uv (a)

yp,0 ≤
∑

`∈L0
st(a)

∑
f∈F

κ`,f x`,f ∀ a ∈ A, [s, t]a ∈ D(a). (8)

These constraints enforce sufficient transportation capacity to route all uv-rdcpaths, (u, v) ∈
[s, t]≤a , via arc a. Using variables yp,0 instead of z`

p,0, and substituting constraints (3) by the

direct connection constraints (8), we obtain the following direct connection model :

(DC) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)

 ∑
p∈P0+

τp,0 yp,0 +
∑
p∈P

τp,1 yp,1


∑

p∈P0+
st

yp,0 +
∑

p∈Pst

yp,1 = dst ∀ (s, t) ∈ D (9)

∑
p∈P0+:a∈p

yp,0 +
∑

p∈P:a∈p

yp,1 ≤
∑

`∈L:e(a)∈`

∑
f∈F

κ`,f x`,f ∀ a ∈ A (10)

∑
(u,v)∈[s,t]≤a

∑
p∈P0+

uv (a)

yp,0 ≤
∑

`∈L0
st(a)

∑
f∈F

κ`,f x`,f ∀ a ∈ A, [s, t]a ∈ D(a) (8)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (11)

x`,f ∈ {0, 1} ∀ ` ∈ L, f ∈ F (12)

yp,0 ≥ 0 ∀ p ∈ P0+ (13)

yp,1 ≥ 0 ∀ p ∈ P. (14)

AT M O S ’ 1 2
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2.3 Model Discussion

To relate the models (DLC) and (DC), we show now that (DC) is a relaxation of the projection

of model (DLC) onto the space of the dcpath variables. This can be seen as follows. For

each st-dcpath p ∈ P0
st, link the flow variables yp,0 and z`

p,0 via equations

yp,0 =
∑

`∈L:p∈P0,`
st

z`
p,0. (15)

Consider the polytopes

P := {(x, y1, z) ∈ R(L×F)×P×P0,L

≥0 | (DLC)(1)− (4), (6)− (7)}
PQ := {(x, y0, y1, z) ∈ R(L×F)×P0×P×P0,L

≥0 | (15), (DLC)(1)− (4), (6)− (7)}
Q := {(x, y0, y1) ∈ R(L×F)×P0×P

≥0 | ∃z ∈ RP0,L

≥0 s.t. (x, y0, y1, z) ∈ PQ}.

P is the solution set of the LP relaxation of (DLC). PQ extends this set into a higher-

dimensional space by adding the aggregate flow variables (yp,0); hence, P is the projection of

PQ onto the space of (x`,f , yp,1, z
`
p,0) variables. Q is the projection of PQ onto the space of

(x`,f , yp,1, yp,0) variables, i.e., Q describes exactly the feasible combinations of line plans and

aggregate direct connection passenger flows.

Let Q = {Ax+By ≤ b}; then adding constraints Ax+By ≤ b to model (DC) and using

dcpaths instead of rdcpaths produces a strengthening of the direct connection model (DC)

that is equivalent to the direct line connection model (DLC), i.e., that handles all direct

connections correctly. Note that the cuts in the system Ax+By ≤ b can be separated using

Benders decomposition, i.e., this construction is algorithmic. Model (DC) is a relaxation that

considers a larger set of paths P0+
st ⊇ P0

st and replaces the Benders cut system Ax+By ≤ b
by the smaller, explicit, and purely combinatorial set of direct connection constraints (8).

This makes model (DC) algorithmically tractable. One can show that the pricing problem

for passenger path variables is a shortest path problem in G0
st for direct connection passenger

paths, and a constrained shortest path problem in G for paths with at least one transfer.

Indeed, consider the solution of the LP relaxation of model (DC) by column generation,

i.e., consider the pricing problems for the variables. Associate dual variables π (unbounded),

µ ≥ 0, ν ≥ 0, and ψ ≥ 0 with constraints (9), (10), (8), and (11) of program (DC). The dual

of the LP relaxation of (DC) is

max
∑

(s,t)∈D

dstπst −
∑
`∈L

ψ`

πst −
∑
a∈p

µa −
∑
a∈p

νa,[s,t]a
≤ (1− λ)τp,0 ∀ p ∈ P0+

st , (s, t) ∈ D,

πst −
∑
a∈p

µa ≤ (1− λ)τp,1 ∀ p ∈ Pst, (s, t) ∈ D,∑
a:e(a)∈`

κ`,fµa +
∑

a:e(a)∈`

∑
[s,t]a∈D(a)

κ`,fνa,[s,t]a
− ψ` ≤ λc`,f ∀ ` ∈ L, f ∈ F

µa ≥ 0 ∀ a ∈ A
νa,[s,t]a

≥ 0 ∀ a ∈ A, [s, t]a ∈ D(a)
ψ` ≥ 0 ∀ ` ∈ L.

The pricing problem for the passenger variables is twofold: Find an st-rdcpath with negative

reduced cost or find a path from s to t with at least one transfer and negative reduced cost.
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The reduced cost can be computed as follows

τ̄p,0 = −πst +
∑
a∈p

(
µa + νa,[s,t]a

+ (1− λ)τa

)
(16)

τ̄p,1 = −πst +
∑
a∈p

(µa + (1− λ)τa) + (1− λ)σ(p). (17)

In the first case we have to find an (s, t)-rdcpath in Gst with weight smaller than πst. The

arc weights are set to ωa = µa + νa,[s,t]a
+ (1− λ)τa ≥ 0 for a ∈ Ast. This problem can be

solved by Dijkstra’s algorithm.

In the second case we have to find an st-path in G with weight smaller than πst. The arc

weights are set to ωa = µa + (1− λ)τa ≥ 0 for a ∈ A. However, the reduced cost depends

on whether the path p contains a transfer arc or not; if not we have to add (1− λ)σ to the

weight of the path. This problem can be solved by a constrained shortest path algorithm.

Model (DC) can be seen as a “first order approximation” to the change-and-go approach

of Schöbel and Scholl, because (DC) does not consider transfer penalties for the second, third,

etc. transfer in a passenger path that can not be attributed to a transfer arc. It further

relaxes the assignment of direct connection paths to particular lines. Model (DC) can also

be seen a “transfer improvement” of the model of Borndörfer, Grötschel, and Pfetsch [3].

Namely, dropping the direct connection constraints results in a variant of the model of

Borndörfer, Grötschel, and Pfetsch, in which each passenger path is handled as a direct

connection path unless it contains a transfer arc; we will denote this model by (B). The only

difference between (B) and the original model of Borndörfer, Grötschel, and Pfetsch is that

line frequencies are handled explicitly in terms of a finite set of possible integral frequencies

instead of allowing a continuum of values.

3 Computational Results

In this section, we will show that the direct connection model can be used to solve large-scale

line planning problems and that the direct connection constraints strongly improve the

number of direct travelers in comparison to models that ignore transfers, in particular, model

(B), see Section 2.3.

We consider four transportation networks that we denote as China, Dutch, SiouxFalls,

and Potsdam. The instance SiouxFalls uses the graph of the street network with the same

name from the Transportation Network Test Problems Library of Bar-Gera [20]. Instances

China, Dutch, and Potsdam correspond to public transportation networks. The Dutch

network was introduced by Bussieck in the context of line planning [11]. The China instance

is artificial; we constructed it as a showcase example, connecting the twenty biggest cities in

China by the 2009 high speed train network. The Potsdam instances are real multi-modal

public transportation networks for 1998 and 2009.

For China, Dutch, and SiouxFalls all nodes are considered as terminals, i.e., nodes where

lines can start or end. We constructed a line pool by generating for each pair of terminals all

lines that satisfy a certain length restriction. To be more precise, the number of edges of a

line between two terminals s and t must be less than or equal to k times the number of edges

of the shortest path between s and t. For each network, we increased k in three steps to

produce three instances with different line pool sizes. For Dutch and China instance number

3 contains all lines, i.e., all paths that are possible in the network. The line pools for the

Potsdam network of 1998 are generated for different restrictions on the length of the lines

considering the given turning restrictions on crossings. We defined all nodes as terminals that

AT M O S ’ 1 2
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Table 1 Statistics on the line planning instances. The columns list the instances, the number of

non-zero OD pairs, number of OD nodes, number of nodes and edges of the preprocessed passenger

routing graph, the number of considered lines, the number of direct connection constraints, and the

number of all other constraints.

problem |D| |VO| |V | |A| |L| vars dc-cons cons

Dutch1 420 23 23 106 402 1 608 1 832 1 080

Dutch2 420 23 23 106 2 679 10 716 7 544 3 341

Dutch3 420 23 23 106 7 302 29 208 9 736 7 945

China1 379 20 20 98 474 1 896 2 754 1 178

China2 379 20 20 98 4 871 19 484 8 162 5 457

China3 379 20 20 98 19 355 77 420 12 443 19 931

SiouxFalls1 528 24 24 124 866 3 464 4 400 1 779

SiouxFalls2 528 24 24 124 9 397 37 588 16 844 10 197

SiouxFalls3 528 24 24 124 15 365 61 460 21 220 16 145

Potsdam98a 7 734 107 344 2 746 207 776 3 538 9 970

Potsdam98b 7 734 107 344 2 746 1 907 7 572 60 902 11 991

Potsdam98c 7 734 107 344 2 746 4 342 17 313 76 640 14 366

Potsdam2009 4 443 236 851 5 542 3 433 14 140 30 780 12 006

are terminals of operating lines in the year 1998. The Potsdam 2009 instance arose within a

project with the Verkehr in Potsdam GmbH (ViP) [19] to optimize the 2010 line plan [2, 5].

The line pool contains all possible lines that fulfill the ViP requirements. The line pools of

the Potsdam instances contain also lines for regional and commuter trains. These lines are

not operated by ViP and we therefore fix them to given frequencies in our computations.

The other lines can be operated at frequencies 3, 6, 9, and 18; this corresponds to a cycle

time of 60, 30, 20, and 10 minutes in a time horizon of 3 hours. Line costs are proportional to

line lengths plus a fixed cost term that is used to reduce the number of lines. The objective

weighing parameter was set to λ = 0.8 and the transfer penalty was set to σ = 15 minutes.

Table 1 gives some statistics about the test instances. The columns labeled |D|, |VO|,
|V |, |A|, and |L| list the number of OD pairs with non-zero demand, OD nodes, nodes, arcs,

and lines after some preprocessing. The last three columns give the number of variables and

constraints associated with the integer program (DC). Here, “dc-cons” gives the number of

direct connection constraints while “cons” gives the number of all other constraints.

The instances were solved with a column generation algorithm implemented on the basis

of the CIP framework scip, version 2.1.0, see [1, 18], using CPLEX 12.4 as LP-solver (in

single core mode). Line/frequency variables were enumerated, passenger path variables were

priced with Dijkstra’s shortest path algorithm and a labeling algorithm for the constrained

shortest path case. We mainly used the default settings of SCIP. We further implemented

three special rounding heuristics and preprocessing cuts that account for the demand on

single arcs that disconnect at least two OD-nodes as well as the out-going and in-coming

demand of an OD-node. Namely, we scale the capacity constraints associated with these

demand sets by κif , for each f ∈ F , and apply mixed integer rounding. We also added

violated cuts of the form∑
p∈P0+

st (a)

yp,0

dst
≤

∑
`∈L0

st(a)

∑
f∈F

x`,f (s, t) ∈ D, a ∈ Ast (18)

in each branching node. These cuts can be derived from the direct connection constraints (8).

The preprocessing constraints and the cuts (18) improve the root LP value by around 0.1% to
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Table 2 Statistics on the computations for model (DC) and (B). The columns list the instances,

computation time, number of branching nodes, and the integrality gap.

(DC) (B)

problem time nodes gap time nodes gap

Dutch1 15s 329 opt. 10h 5 940 327 0.03%

Dutch2 <1h 11 532 opt. 10h 815 966 0.04%

Dutch3 10h 57 273 0.05% 10h 151 053 0.08%

China1 10h 814 964 0.32% 10h 3 754 582 0.11%

China2 10h 5 366 0.53% 10h 129 217 0.15%

China3 10h 997 0.47% 10h 37 519 0.18%

SiouxFalls1 10h 458 379 0.10% <1h 347 999 opt.

SiouxFalls2 10h 13 868 0.09% 10h 110 836 0.01%

SiouxFalls3 10h 3 230 0.10% 10h 44 713 0.00%

Potsdam98a 10h 7 357 0.09% 10h 6 266 0.12%

Potsdam98b 10h 62 0.28% 10h 2 491 0.26%

Potsdam98c 10h 10 0.27% 10h 661 0.25%

Potsdam2010 10h 2 0.81% 10h 2123 0.41%

0.5% for the Dutch and Potsdam instances (which is much). The improvement for the China

and SiouxFalls instances is in the order of per mill. Finally, we included additional auxiliary

branching variables ha,i ∈ Z≥0, a ∈ A, i ∈ F , that account for the number of lines on arc

a with frequency greater than or equal to i, and the corresponding branching constraints∑
`∈L:e(a)∈`

∑
f∈F :f≥i x`,f = ha,i ∀ a ∈ A, i ∈ F .

Including these branching variables and constraints combines the possibility to branch on

those constraints with the sophisticated branching rules implemented in the SCIP framework.

This works well, e.g., it needs nearly half a million branching nodes to solve instance N1

without the branching variables in comparison to less than 500 nodes with the branching

variables. Instance N2 could not be solved within 10 hours without branching variables.

We also included the branching variables in the computations for model (B) as well as

the preprocessing cuts, and constraints similar to (18) that can be derived from the capacity

constraints for each arc. We set a time limit of 10 hours for all instances. All computations

were done on computers with an Intel(R) Xeon(R) CPU X5672 with 3.20 GHz, 12 MB cache,

and 48 GB of RAM.

Table 2 shows statistics on the number of branching nodes, computation time, and the

integrality gap for model (DC) and model (B). Albeit model (DC) seems to be harder to

solve (the number of solved branching nodes is usually smaller for (DC) than for (B)), the

integrality gaps are similar for (DC) and (B). The Dutch instances 1 and 2 can even be

solved to optimality for model (DC); for those instances the direct connection constraints

improve the optimization process.

We evaluate the quality of the solutions of model (DC) and (B) by computing an optimal

passenger routing, including penalties for all transfers, in a change-and-go graph similar to

that of Schöbel and Scholl [16]. Namely, we construct nodes and arcs for each line individually,

i.e., the change-and-go graph contains a copy of each node and arc for every line that contains

this node and arc. Further transfer arcs are added between two nodes of different lines

whenever a transfer between these two lines is possible on this node. The travel time of

all arcs is set to the travel time of the associated arc in G, transfer arcs are additionally

penalized by σ. We then fix the frequencies of the lines according to the computed line plan

and route the passenger to minimize the total travel and transfer times, i.e., we compute the

AT M O S ’ 1 2
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Table 3 Evaluation of the solutions of (DC) and (B) of Table 2 in the change-and-go graph. The

columns list travel time (in minutes), cost, objective value, number of direct travelers predicted in

the considered model, and number of direct travelers in the change-and-go graph.

problem travel time cost obj. dir. trav. of model exact dir. trav.

Dutch1 (DC) 1.279·107 68 900 2613305 179 496 179 496

Dutch1 (B) 1.333·107 57 800 2711770 183 582 148 924

Dutch2 (DC) 1.279·107 66 900 2612122 180 484 179 384

Dutch2 (B) 1.319·107 57 500 2683071 183 582 156 251

Dutch3 (DC) 1.279·107 66 900 2612122 180 484 179 384

Dutch3 (B) 1.319·107 57 500 2683071 183 582 156 251

China1 (DC) 1.259·107 267 937 2732445 749 736 716 040

China1 (B) 1.559·107 233 268 3304432 759 950 509 526

China2 (DC) 1.258·107 247 241 2714438 759 936 709 145

China2 (B) 1.559·107 233 268 3304432 759 950 509 526

China3 (DC) 1.245·107 244 361 2684860 759 950 714 728

China3 (B) 1.559·107 233 268 3304432 759 950 509 526

SiouxFalls1 (DC) 3.267·106 9 205 660675 360 600 358 888

SiouxFalls1 (B) 3.633·106 8 295 733288 360 600 335 355

SiouxFalls2 (DC) 3.392·106 5 787 682996 360 600 360 178

SiouxFalls2 (B) 3.776·106 5 178 759365 360 600 326 625

SiouxFalls3 (DC) 3.431·106 4 899 690200 360 600 355 068

SiouxFalls3 (B) 3.695·106 4 283 742397 360 600 334 052

Potsdam98a (DC) 5.076·106 27 044 1036865 70 513 71 075

Potsdam98a (B) 5.102·106 29 018 1043617 83 702 68 900

Potsdam98b (DC) 4.836·106 33 484 993938 78 745 79 511

Potsdam98b (B) 4.970·106 28 302 1016610 84 879 73 983

Potsdam98c (DC) 4.829·106 32 544 991772 79 694 79 576

Potsdam98c (B) 4.952·106 29 320 1013779 84 979 74 356

Potsdam2010 (DC) 1.032·106 9 314 213769 38 152 38 001

Potsdam2010 (B) 1.073·106 8 734 221549 41 052 35 285

correct number of transfers for all passengers in a system optimum routing. Table 3 shows

the result of this evaluation for the best solutions computed with model (DC) and model

(B), respectively,

It can be seen that the exact number of direct travelers is very close to the number

of direct travelers predicted by model (DC), which is exactly what we wanted to achieve.

The only bigger differences (of around 7%) are in the China instances. However, the China

instances also display the largest prediction improvement in comparison to model (B), namely,

around 40%. Over all instances, model (DC) significantly improves the number of direct

travelers in comparison to (B); the improvement is around 7% for the Potsdam and SiouxFalls

instances and around 15% to 20% for the Dutch instances.
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