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Abstract
We consider the stochastic on-time arrival (SOTA) routing problem of finding a routing policy
that maximizes the probability of reaching a given destination within a pre-specified time budget
in a road network with probabilistic link travel-times. The goal of this work is to provide a
theoretical understanding of the SOTA problem and present efficient computational techniques
to enable the development of practical applications for stochastic routing. We present multiple
speedup techniques that include a label-setting algorithm based on the existence of a minimal
link travel-time on each road link, advanced convolution methods centered on the Fast Fourier
Transform and the idea of zero-delay convolution, and localization techniques for determining
an optimal order of policy computation. We describe the algorithms for each speedup technique
and analyze their impact on computation time. We also analyze the behavior of the algorithms
as a function of the network topology and present numerical results to demonstrate this. Finally,
experimental results are provided for the San Francisco Bay Area arterial road network to show
how the algorithms would work in an operational setting.
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1 Introduction

Optimal routing strategies in many practical settings require taking into account some no-
tion of route reliability or travel-time variance in addition to simply considering the ex-
pected travel-time of a trip. However, most commercially available routing algorithms do
not present this as an option due to the computational time complexity of determining short-
est paths with reliability constraints. This work aims at extending the state of the art in
computational tractability for a particular type of stochastic shortest path problem known
as the stochastic on-time arrival (SOTA) problem. In this problem, we wish to determine a
routing policy that maximizes the probability of on-time arrival, given an origin destination
pair and a desired travel-time budget. Fan et al. [3] formulated the SOTA problem as a
stochastic dynamic programming problem and solved it using a standard successive approx-
imation (SA) algorithm. In an acyclic network, the SA algorithm converges in a number
of steps no greater than the maximum number of links in the optimal path. However, in a
network that contains cycles, as is the case with all road networks, there is no finite bound
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on the maximum number of iterations required for the algorithm to converge [3]. This is
due to the fact that the optimal solution can contain loops, as will be explained later. As an
alternative, Nie et al. [7] propose a discrete approximation algorithm for the SOTA problem
that converges in a finite number of steps and runs in pseudo-polynomial time.

Samaranayake et al. [10] showed how the SOTA problem can be solved exactly in a finite
number of steps, even in cyclic networks when there is a minimum realizable link travel-time
on every link. As with Fan et al.[3], this algorithm requires computing a continuous-time
convolution product, which is one of the main computational challenges of the method. In
general, this convolution cannot be solved analytically when routing in general networks,
and therefore a discrete approximation scheme is required. The solution presented in [10]
allows for batch computation of the convolution product and thus more efficient computation
methods than the standard (brute force) discrete time approximation algorithm used in [7].
In this formulation, the order in which the nodes of the graph are considered when solving
the underlying dynamic program greatly impacts the running time of the proposed solution.
Therefore, an optimal ordering algorithm that determines the best order in which to solve
the dynamic program is also proposed.

The contributions of this article are as follows. First we give a concise description of the
existing optimization techniques for the SOTA problem, which form the basis for the exten-
sions proposed in this work. We then present a new algorithm that combines the ideas of
a minimum realizable travel-time and optimal ordering from [10] and the idea of zero-delay
convolution [1, 4] to create a even more efficient solution to the SOTA problem. Complexity
results are given for all the optimization techniques presented. We also analyze the compu-
tation time of the algorithms as a function of the network topology. The algorithms perform
best on networks with long road segments and a limited number of loops. Road networks in
general consist of arterial networks with short segments and many loops that are connected
via a highway network that contains long segments and fewer loops. The implications of this
structure for efficient computation of stochastic shortest paths is discussed. Experimental
results are provided both for synthetic networks with varying levels of structural complexity
and for the San Francisco Bay Area arterial network using the Mobile Millennium [11] traffic
information system.

2 Stochastic On-Time Arrival (SOTA) problem

We consider a directed network G(N,A) with |N | = n nodes and |A| = m links. The weight
of each link (i, j) ∈ A is a random variable with probability density function pij(·) that
represents the travel-time on link (i, j). The link travel-time distributions are assumed to
be independent1. Given a time budget T , an optimal route is defined to be a policy that
maximizes the probability of arriving at a destination node s within total travel-time of T .
A routing policy is an adaptive set of instructions that determines the optimal path at each
node (intersection in the road network) based on the cumulative travel-time that has already
been realized. This is in contrast to a-priori solutions [8, 9] that determine the entire path
prior to departure. Given a node i ∈ N and a time budget t, let ui(t) denote the probability
of reaching the destination node s from a given node i in less than time t when following
the optimal policy. At each node i, the traveler should pick the link (i, j) that maximizes
the probability of arriving on time at the destination. If j is the next node being visited

1 See [10] for a formulation that considers localized correlations.
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after node i and ω is the time spent on link (i, j), the traveler starting at node i with a time
budget t has a time budget of t− ω to travel from j to the destination2.

I Definition 1. The optimal routing policy for the SOTA problem can be formulated as
follows:

ui(t) = max
j:(i,j)∈A

∫ t

0
pij(ω)uj(t− ω) dω ∀i ∈ N, i 6= s, 0 ≤ t ≤ T (1)

us(t) = 1 0 ≤ t ≤ T.

The functions pij(·) are assumed to be known and can be obtained for example using
historical data or real-time traffic information.

One approach to solving this problem would be to use a successive approximations (SA)
algorithm as in [3], which solves the system of equations (1) repeatedly until convergence and
gives an optimal routing policy. At each iteration k, uki (t) gives the probability of reaching
the destination node s from a given node i within a travel-time of t, using a path that has
no more than k links, when following the policy computed by the algorithm. This is an
approximation to the optimal solution that limits the total number of road links in a path
to k. The approximation error decreases monotonically with k and the solution eventually
reaches an optimal value when k is equal to the number of links in the longest optimal path
contained in the policy. However, since an optimal routing policy in a stochastic network
can have loops [10] (see Figure 1), the number of iterations required to attain convergence
is not known a-priori.

Path Travel-time Probability
{(a, b), (b, c)} 4 0.9
{(a, c)} 1 0.1
{(a, b), (b, a), (a, c)} 4 0.01

Figure 1 A simple network with an optimal routing policy that may contain a loop. Links
(b, c) and (b, a) have deterministic travel-times of respectively 3 and 1 time units. Link (a, b) has a
travel-time of 1 with probability 0.9 and a travel-time of 2 with probability 0.1. Link (a, c) has a
travel-time of 5 with probability 0.9 and a travel-time of 1 with probability 0.1. Assume that we
wish to find the optimal path from node a to node c with a total travel-time budget of 4. The table
presents on-time arrival probabilities for all feasible paths. The optimal solution clearly is to first
take link (a, b). However, if the realized travel-time on (a, b) is 2, the only feasible path is to return
back to node a and then proceed on link (a, c).

3 Label-setting algorithm

Samaranayake et al. [10] presented an algorithm for finding the optimal solution to the
continuous time SOTA problem in a single pass through the time-space domain of the
problem when the travel-time on each link is lower bounded by a strictly positive constant,
and uniformly bounded on the network. Additionally, the complexity of this algorithm does

2 In this formulation of the problem, the traveler is not allowed to wait at any of the intermediate nodes.
See [10] for the conditions under which travel-time distributions from traffic information systems satisfy
the first-in-first-out (FIFO) condition, which implies that the on-time arrival probability can not be
improved by waiting at a node.
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not depend on the number of links in the optimal path. Let β be the minimum realizable
link travel-time across the entire network. β is strictly positive since speeds of vehicles
have a finite uniform bound, and the network contains a finite number of links with strictly
positive length. Therefore, given ε ∈ (0, β), δ = β − ε is a strictly positive travel-time such
that pij(t) = 0 ∀ t ≤ δ, (i, j) ∈ A. Given a time budget T discretized in intervals of size δ,
let L = dT/δe. The SOTA problem can be solved using Algorithm 2.

Algorithm 2 Single iteration SOTA algorithm [10]

Step 0. Initialization.
k = 0
uki (t) = 0, ∀i ∈ N, i 6= s, t ∈ [0, T )
uks(t) = 1, ∀ t ∈ [0, T )

Step 1. Update
For k = 1, 2, . . . , L
τk = kδ

uks(t) = 1, ∀ t ∈ [0, T )
uki (t) = uk−1

i (t), ∀i ∈ N, i 6= s, t ∈ [0, τk − δ]
uki (t) = maxj:(i,j)∈A

∫ t
0 pij(ω)uk−1

j (t− ω) dω, ∀i ∈ N, i 6= s, t ∈ (τk − δ, τk]

In this formulation of the SOTA problem, the functions uki (·) are computed on [0, T ] by
increments of size δ. The proposed algorithm relies on the fact that for t ∈ (τk−δ, τk], uki (t)
can be computed exactly using only uk−1

j (·), (i, j) ∈ A, on (τk − 2 δ, τk − δ], where τk is the
budget up to which uki (·) is computed at the kth iteration of Step 1. See [10] for proof.

The main computational challenge of this algorithm is calculating the convolution prod-
uct at each update of ui(·). It can not be computed analytically since, ui(·) is the point-wise
maximum of the convolution products of the link travel-time distribution pij(·) with the
cumulative distributions of all of its neighboring downstream links uj(·), (i, j) ∈ A, and
the resulting function does not have an analytical expression in general. Since ui(·) is a
continuous monotone increasing function, one solution is to approximate it by a low degree
polynomial [2]. However, once again since ui(·) is a point-wise maximum of multiple func-
tions and its complexity depends on the traffic conditions and the topology of the network,
it is in general not well suited for being approximated by a low degree polynomial.

An alternative to computing the convolution by polynomial approximation or other simi-
lar methods, is to solve the convolution product via a time discretization of the distributions
involved [7], which results in a computational time complexity that is independent of the
shape of the optimal cumulative travel-time distributions ui(·). In the discrete setting, the
SOTA problem can be solved using a discretized version of Algorithm 2 [10]. Let ∆t (≤ δ)
be the length of the discretization interval and T be the time budget. The functions ui(·)
and pij(·) are now vectors of length L = d T∆te. For notational simplicity, we assume that
T is a multiple of ∆t. We also assume that the link travel-time distributions are available
either as discrete or continuous time distributions. If the link travel-time distributions are
discrete and the length of the discretization interval d is not equal to ∆t or the distribution
is continuous, the probability mass needs to be redistributed to intervals of ∆t.

Obtaining the appropriately discretized probability mass functions can be done in time
O(mT∆t ), since there are m links and each link travel-time distribution function is of length
T
∆t . Initializing n vectors (one for each node i) of length T

∆t takes O(nT∆t ) time. As in Al-
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gorithm 2 for each link (i, j) the algorithm progressively computes a set of convolutions of
increasing length from x = 1 to x = Lδ

d = T
∆t . Therefore, the time complexity of the sum-

mation for each link is O(( T∆t )
2). The assignment uki (x) = uk−1

i (x) can be done in constant
time by manipulating pointers instead of a memory copy or by simply having one array for
all ui(·) that keeps getting updated at each iteration of the loop. Since there are m links,
the total time complexity is O(m( T∆t )

2), which dominates the complexity of the algorithm.
The drawback of this method is the numerical discretization error in the representation of
the probability density function. A smaller discretization interval leads to a more accurate
approximation, but increases the computation time quadratically. Thus, this method still
turns out to be computationally intractable for practical settings [10].

A common strategy for speeding up computing convolutions is to use the Fast Fourier
Transform (FFT). The FFT is an algorithm that computes the convolution of two vectors of
length n in O(n logn) time. Notice however that the proposed algorithm does not compute
the entire convolution at once. The computation is required to be done in blocks of length
δ for correctness as explained previously. Therefore, L separate convolution products of
increasing lengths δ, 2δ, . . . , Lδ need to be computed. FFT based convolution is inefficient
in terms of complexity in this setting since successive convolutions recompute results that
have already been obtained in previous convolutions. For each link, the time complexity of
the sequence of FFTs is O(

∑L
k=1

δk
∆t log( δk∆t )), where L = dTδ e. Since there are m links, the

total time complexity is:

O

m dTδ e∑
k=1

δk

∆t log
(
δk

∆t

) . (2)

As T →∞, the complexity of the FFT based approach for each link is O
(
T 2

δ∆t log
(
T
∆t
))

and

asymptotically larger than the run-time of the brute force approach
∑ T

∆t
k=1 k = O

((
T
∆t
)2).

However, in practice the computation time of the FFT based approach can be smaller than
the brute force approach in the time range of interest for most practical applications [10].
Furthermore, the idea of batch computation of the convolution integral can be extended with
the localization and optimal ordering techniques presented in the next section to obtain order
of magnitude gains in the computation time of the algorithm.

4 Localization and optimal ordering algorithm

As shown in Section 3, the runtime of the FFT based solution is a function of minimum
realizable link travel-time, δ, and decreases as the value of δ increases. However, in gen-
eral, road networks are extremely heterogeneous and can contain a large range of minimum
link travel-times from link to link, which can be treated individually to improve the total
computation time.
I Proposition 1. Let βij be the minimum realizable travel-time on link (i, j), δij = βij − ε
(0 < ε < βij) and τi be the budget up to which the cumulative distribution function ui(·)
has been computed for node i. For correctness, the following invariant must be satisfied
throughout the execution of the algorithm. See [10] for proof.

τi ≤ min
j

(τj + δij) ∀(i, j) ∈ A (3)

When computing the cumulative density function ui(·) using local δij values, the growth
of τi is different across the nodes i, unlike in the previously presented algorithms where τi

ATMOS’12
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grows at the constant uniform rate δ. Furthermore, it turns out that when ui(·) is updated
asynchronously using the invariant τi ≤ minj(τj + δij), (i, j) ∈ A, the order in which the
nodes are updated can impact the runtime of the algorithm. In addition, we show that
the maximum update interval for a node i is actually bounded by the minimum realizable
travel-time of the smallest loop the node belongs to, denoted by δi, and not its minimum
link travel-time δij .

Figure 2 Simple example of a situation where the order in which the dynamic program is solved
can have a significant impact of the runtime of the algorithm. The δij value for each link is given
along the link.

Table 1 τi values when
computing ui from values at
the previous iteration.

Iter. a b c d
1 1 2 5 10
2 11 3 7 15
3 16 13 8 17
4 18 18 18 18

Table 2 τi values when
computing ui by updating the
nodes in the order (a, b, c, d).

Iter. a b c d
1 1 3 8 18
2 19 21 26 36
3 37 39 44 54
4 55 57 62 72

Table 3 τi values when
computing ui by updating the
nodes in the order (d, c, b, a).

Iter. d c b a
1 10 5 2 11
2 15 7 13 16
3 17 18 18 18
4 28 23 20 29

To illustrate how the order in which the nodes are updated impacts the runtime of the
SOTA algorithm, consider the network in Figure 2. The value of τi at each step and the
total computation time of the FFT depends on the order in which the nodes are considered.
Table 1 shows the sequence of updates for four iterations when the nodes are updated using
the invariant constraint from the previous update iteration. Table 2 shows the sequence of
updates when the nodes are considered in the topological order (a, b, c, d). Table 3 shows
the sequence of updates when the nodes are considered in the order (d, c, b, a). The highest
speedup is achieved when the nodes in the loop are considered in topological order. As seen
in Table 2, in that case, the τi value for each node i can be incremented by δi, the length
of the shortest loop node i belongs to, at each step. The optimal order can be determined
easily in this simple example, but is non-trivial in complex transportation networks.

Given that the runtime of the SOTA algorithm depends on the update order, we would
like to find an optimal ordering that minimizes the runtime of the algorithm. The first step
in finding such an optimal ordering is to formalize the runtime of the FFT SOTA algorithm.

I Definition 2. The computation time of the cumulative density function ui(·) can be
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minimized by finding the ordering that solves the following optimization problem [10].

minimize(τki
i
,Ki)

∑
(i,j)∈A

Ki∑
ki=1

τkii
∆t log τ

ki
i

∆t (4)

subject to τkii ≤ τ
kj
j + δij ∀τkii , τ

kj
j s.t. (i, j) ∈ A,

C(i, ki) < C(j, kj + 1)
τKrr ≥ T, τ1

s ≥ T
τ1
i ≥ ∆t ∀i ∈ N, i 6= s

τk+1
i > τki ∀i ∈ N

where τkii is the budget up to which ui(·) has been computed in the kthi iteration of
computing ui(·), C(·, ·) is an index on the order in which nodes are updated such that
C(i, ki) denotes when node i is updated for the kthi time and Ki is the total number of
iterations required for node i.

Note that the optimal order in which ui(·) is computed might result in updating some set
of nodes multiple times before updating another set of nodes. Samaranayake et al. [10]
showed how an algorithm very similar to Dijkstra’s shortest path algorithm can be used
to find this optimal update order and the size of the updates at each step. The algorithm
works by initially considering the source node r and the time budget T to which it needs to
be updated, and then recursively updating the set of constraints that need to be satisfied
before ur(T ) can be computed. At the first iteration, the source and its terminal value in
the algorithm (the budget) are added to a stack χ, and the constraints that are required
for updating the source to that value are stored in a heap ψ. At each iteration, the largest
value in the heap is extracted and added to the stack, since it is the most constrained node
in the current working set. The optimal order of updates (node and value) that computes
the cumulative distribution function ur(T ) at the origin r most efficiently is stored in the
stack χ at the termination of the algorithm. A more detailed description of the algorithm
including the pseudocode and proof of correctness can be found in [10].

5 Efficient convolutions

As explained in section 3, the major computational overhead of the SOTA algorithm is the
numerical computation of the convolution products in the dynamic program. While the use
of localization with the optimal ordering algorithm, as explained above minimizes the total
computation time spent on convolutions, the complexity of the FFT based convolution for
each link remains O

(
T 2

δi∆t log
(
T
∆t
))

, with the only change being the minimum link travel-
time δij being replaced with the minimum loop travel-time of the upstream node δi. The
asymptotic complexity as a function of T remains the same since each cumulative distribution
function ui(·) is still recomputed at each update step, as described in section 3. We assume
that ∆t = 1 and denote δ = δi in the rest of this section for notational simplicity.

Gardner [4] proposes an algorithm called zero-delay convolution (ZDC) to compute con-
volutions more efficiently when the input signal is only available in an online fashion, as is
the case in our problem. The complexity of convolving two vectors of length n is reduced
from O(n2 logn) to O(n log2 n) when using this technique. ZDC works by constructing the
convolution via a series of smaller block convolutions and thereby eliminating the need to
recompute sections of the convolution product that have already been computed. Figure 3

ATMOS’12
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Figure 3 Illustration of the zero-delay convolution algorithm from [1]. The ZDC algorithm
computes the convolution one column at a time from left to right. The convolutions are computed
in blocks and reassembled to avoid recomputation. The functions ui[·] and uj [·] are the discrete
cumulative distribution functions for the probability of reaching the destination within some time
budget from nodes i and j respectively, where (i, j) ∈ A, and p[·] is shorthand for the probability
density function pij [·]. We assume that (i, j) is the only outgoing link from node i. Notice that
all the components needed to construct ui[k + 1] are available by the time column k is computed.
Some components are computed in advance to exploit the efficiency of block convolutions. The size
of the blocks increases exponentially as we proceed through the vectors with the final block having
size T . The total computation time is 2T +

∑log T

i=1 T log 2i = O(T log2 T ).
.

illustrates the algorithm. Dean [1] shows that ZDC can be applied to the standard SOTA
problem to reduce the computational time complexity of the convolutions in each link from
O(T 2 log T ) to O(T log2 T ).

In our setting, ZDC can be combined with the idea of localization to achieve a com-
putational time complexity of O

(
T
(
log2 T − log2 δ

))
, which can significantly reduce the

computation time for networks with large δ values. We call this algorithm δ-multiple ZDC.
The process is as follows. First the optimal ordering algorithm is executed to obtain the
update steps for all links. Let τki be the budget up to which ui(·) has to be calculated to at
the kth update for node i. For ease of explanation, without loss of generality we assume that
the update interval δk is constant over all updates and that both the budget T and update
interval δ are powers of two. Without ZDC, u(·) is updated at each step k by convolving
two vectors of length kδ at a cost of O(kδ log(kδ)). This sums to a total time complexity of
O
(
T 2

δ log T
)
as shown in section 3. With δ-multiple ZDC, as with the standard ZDC, the

convolution is done in blocks that are reassembled to create the entire convolution. Figure 4
shows a simple example with δ=4. Each block is now twice as large as it was with standard
ZDC and the computational time complexity is shown to be O

(
T
(
log2 T − log2 4

))
. More
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Figure 4 Illustration of the δ-multiple zero-delay convolution algorithm for the SOTA problem.
We consider a node i with one downstream link (i, j), where δ = 4 and δij = 2. The functions
ui[·] and uj [·] are the discrete cumulative distribution functions for the probability of reaching the
destination within some time budget from nodes i and j respectively, and p[·] is shorthand for the
probability density function pij [·]. The first two rows can be computed in constant time, since δij = 2
implies that p[1], p[2] = 0. The rest of the convolution is now computed using block sizes that are
multiples of δ making the process more efficient than the standard ZDC. Incorporating localization
reduces the computational time complexity from O

(
T log2 T

)
to O

(
T
(
log2 T − log2 δ

))
.

generally, the complexity for each link is:

d(logT/δ)e∑
i=0

O
(
T log

(
2i · δ

))
= O

(
T
(
log2 T − log2 δ

))
. (5)

Since the optimal ordering algorithms pre-computes the maximum update values for each
link, the δ-multiple ZDC algorithm can be run with the most efficient δ value for each link,
while preserving correctness invariant given in Equation 3.

6 Numerical results

In this section we present numerical results on the performance of the speed-up techniques
for the SOTA algorithm presented in the previous sections for two types of networks. First
we create a set of synthetic networks to illustrate the relative performance of the base
algorithm and its optimizations as a function of the structure of the network. Then we
provide some numerical results from implementing the algorithms in a traffic information
system for the San Francisco Bay Area. The performance of the algorithm is measured as a
function of the total budget T . The algorithms are programmed in Java and executed on an
Apple Macbook computer with a 2.4Ghz Intel Core 2 Duo processor and 4GB of RAM. We
use the open source Java libraries JTransforms [12] and SSJ [6] for FFT computations and
manipulating probability distributions. We consider the following combinations of speed-up

ATMOS’12
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Figure 5 Manhattan Grid with n arcs along the edge of the grid, and minimal link travel-
time δ.

techniques3:
• SOTA-Brute force: convolution as a point-wise shifted product.
• SOTA-FFT: convolution using the Fast Fourier Transform algorithm.
• SOTA-FFT-Opt: convolution using the FFT algorithm, policy updates according to

the optimal ordering algorithm.
• SOTA-FFT-ZeroDelay: convolution using the Fast Fourier Transform algorithm in a

zero delay framework.
• SOTA-FFT-ZeroDelay-Opt: convolution using the Fast Fourier Transform algorithm

in a zero delay framework, policy updates according to the optimal ordering algorithm.

6.1 Synthetic network
In this section we analyze the performances of the speed-up techniques proposed on a Man-
hattan grid (see Figure 5), parameterized by n, the number of arcs on each of the four sides
of the grid, δ, the minimal link travel-time, and ∆t, the discretization time. We consider
the following instantiations of a Manhattan grid:

Graph A: n=60, δ = 5, ∆t = 1
Graph B: n=30, δ = 10, ∆t = 1
Graph C: n=30, δ = 20, ∆t = 1
Graph D: n=30, δ = 5, ∆t = 1

The link travel-times are chosen as shifted Gamma distributions, with the left support
boundary at δ, mean travel-time µ = 2 δ, and variance σ = 0.5 δ. The origin is defined as
the node with coordinates (0, 0) in the grid and the destination is defined as the node with
coordinates (n, n) in the grid. Consequently, on algorithm instantiations for which search
pruning is used (implicitly via the optimal ordering algorithm in this case), an inflexion

3 The successive approximations algorithm from [3] is not considered, since SOTA-Brute force has been
shown to outperform it in [7].
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point in the runtime can be observed at the budget corresponding to the minimal origin-
destination travel-time, corresponding to the fact that the whole graph has been explored
by the SOTA policy computation method proposed at this point.

As detailed in the previous section, the runtime of the algorithm depends on the graph
size, and on the discretized minimal loop size. In an operational setting, typical nation-wide
road networks are composed of two fundamentally different network types, which differ by
the inherent structure of their associated graphs, characterized by their minimal graph loop
size. Highway networks exhibit large loop sizes, whereas arterial networks are character-
ized by small loop sizes. Figure 6 illustrates the impact of the network structure over the
performances of the proposed speed-up techniques for the SOTA algorithm. For a given
budget, and fixed discretized loop size, the runtime on a highway network, with large loop
travel-times (Figure 6, right), is significantly reduced compared to the runtime on a arterial
network, with small loop travel-times (Figure 6, left). Over hybrid nation-wide networks
composed of highway and arterial components, the performance of the algorithm is con-
strained by the policy computation on arterial networks.
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Figure 6 Runtime as a function of budget for different graph structures: Runtime for
computing the optimal policy for graph A, left, with n = 60, δ = 5, ∆t = 1, and graph B, right,
with n = 30, δ = 10, ∆t = 1. The brute force method is represented in dotted line, SOTA-FFT
using star markers, SOTA-FFT-OPT using circle markers, SOTA-FFT-ZeroDelay in dashed line,
and SOTA-FFT-OPT-ZeroDelay in solid line.

Figure 7 illustrates the impact of the network size over the performances of the speed-
up techniques. For two graphs with identical network structure, and the larger network
(figure 7, left) having travel-times on average four times as long than those of the smaller
network (figure 7, right), the benefits of the speed-up techniques are more pronounced in
the larger network. The SOTA-FFT-ZeroDelay and SOTA-FFT-OPT-ZeroDelay algorithms
scale well with the network size, since the computational time complexity is sub-quadratic
in the time budget.

6.2 San Francisco Arterial Network
This section presents experimental results comparing the various versions of the SOTA
algorithm on a real network from the San Francisco Bay Area. The algorithms are im-
plemented within the Mobile Millennium [11] traffic information system and we test them
on the San Francisco arterial sub-network. The network contains 1069 nodes and 2644
links. The travel-time distributions are estimated using the statistical learning algorithm
described in [5] using a mixture of real-time and historical probe-generated travel-times.
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Figure 7 Runtime as a function of budget for different graph size: Runtime for com-
puting the optimal policy for graph C, left, with n = 30, δ = 20, ∆t = 1, and for graph D, right,
with n = 30, δ = 5, ∆t = 1. The brute force method is represented in dotted line, SOTA-FFT
using star markers, SOTA-FFT-OPT using circle markers, SOTA-FFT-ZeroDelay in dashed line,
and SOTA-FFT-OPT-ZeroDelay in solid line.

Time-varying link travel-time distributions are obtained a-posteriori from the traffic estima-
tion model. The link travel-time distributions are assumed to be independent. We present
the actual run-times (in CPU time) for a sample origin-destination (OD) pair (see Figure 8,
right), when computing the optimal policy over a range of travel-time budgets.

As illustrated in table 4, the speed-up techniques introduced in this article provide a sig-
nificant gain in runtime for the SOTA algorithm. The consideration of batch computation
via FFT-based convolution (SOTA-FFT), presented in section 3, increases the runtime com-
pared to the brute force method (SOTA-Brute force) due to the inefficiency of computing
multiple convolutions products for the same link, however it allows the use of a localiza-
tion technique (SOTA-FFT-OPT), introduced in section 4, providing an order of magnitude
speed-up compared to SOTA-FFT overall, and a factor 2 speed-up, for a budget of 30
minutes compared to SOTA-Brute force. Additionally, the zero-delay convolution method,
introduced in section 5, provides an order of magnitude speed-up (SOTA-FFT-ZeroDelay-
OPT) compared to the localized algorithm (SOTA-FFT-OPT). Overall, the combination of
the localization technique and the zero-delay convolution bring the runtime on a standard
laptop from values comparable to the travel budget, to values below the minute for city-level
trips, which fall into the practical range for real-time transportation applications.

The three best combinations of the speed-up techniques are also illustrated in Figure 8,
left. The impact of the localization technique, which induces a pruning of the graph and leads
to policy updates only for vertices that are feasible given the travel budget, is visible in the
typical shape of the curves corresponding to SOTA-FFT-OPT and SOTA-FFT-ZeroDelay-
OPT, which illustrate that for large budget, the marginal increase in computation time is
limited when using the localization technique because fewer additional vertices are feasible.
On the other hand the computation time curve for SOTA-FFT-ZeroDelay has a convex
shape. The complexity reduction provided by the zero-delay method combined with local-
ization is also clearly visible by comparing the computation times for SOTA-FFT-OPT and
SOTA-FFT-ZeroDelay-OPT, which decrease from around 15 minutes to around 1 minute
for a budget of 30 minutes.
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Table 4 Runtime (in minutes) for different budgets.

Algorithm Budget 10 minutes Budget 20 minutes Budget 30 minutes
SOTA-Brute force 3.3 13.0 29.2
SOTA-FFT 19.1 73.2 154.9
SOTA-FFT-OPT 2.7 9.8 15.0
SOTA-FFT-ZeroDelay 0.8 2.7 5.2
SOTA-FFT-ZeroDelay-OPT 0.3 0.8 1.1
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Figure 8 Left: Runtime for computing the optimal policy for a route from the Fi-
nancial District (Columbus and Kearny) to the Golden Gate Park (Lincoln and 19th)
Comparison of run-times (CPU time) for SOTA-FFT-OPT (dotted line), SOTA-FFT-ZeroDelay
(dashed line), SOTA-FFT-ZeroDelay-OPT (solid line). The time discretization (∆t) is 0.4 sec-
onds. Right: Illustration of the San Francisco Arterial network Cumulated probe data
measurements from the San Francisco arterial network for a single day.

7 Conclusions and future work

This article presents a collection of optimization techniques that can be used to improve
the tractability of the SOTA problem and move closer to the eventual goal of implementing
a real-time stochastic router in an operational setting. All the optimization techniques
are based on the existence of an uniform strictly positive minimum link travel-time. This
allows us to compute the SOTA solution using a label-setting algorithm instead of a label
correcting successive approximations scheme. It also allows for batch computation of the
convolution integrals which is a key component of the optimization techniques. It is seen
that the heterogeneity of the minimum link travel-times on a network can make the SOTA
algorithm very sensitive to the order in which the nodes are treated. An optimal ordering
algorithm is then presented to find the update order that minimizes the computational time
complexity. Finally, a technique to compute convolutions for streaming signals efficiently,
zero-delay convolution (ZDC), is extended to create a new δ-multiple ZDC algorithm that
reduces the time complexity of each convolution product to O(T

(
log2 T − log2 δi

)
, where

δi is the minimum strictly positive loop travel-time for node i. Experimental results are
provided to numerically justify the theoretical contributions.

While all the results presented here focus on exact solutions to the SOTA problem, prac-
tical routing applications rarely require the problem to be solved exactly. The tractability of
the problem has the potential to be improved significantly using approximation algorithms.
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Additional improvements could also be archived via heuristic search pruning algorithms and
pre-processing methods similar to those used in the deterministic shortest path problem to
reduce the computation times by multiple orders of magnitude. Even though we have pre-
sented techniques for order of magnitude improvements in solving the exact SOTA problem,
further runtime reductions via approximation algorithms and heuristics will hold the key to
being able to implement stochastic shortest path algorithms in mainstream vehicle routing
systems.
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