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Abstract
We propose a new method for soft spatial segmentation of matrix assisted laser desorption/ioniz-
ation imaging mass spectrometry (MALDI-IMS) data which is based on probabilistic clustering
with subsequent smoothing. Clustering of spectra is done with the Latent Dirichlet Allocation
(LDA) model. Then, clustering results are smoothed with a Markov random field (MRF) res-
ulting in a soft probabilistic segmentation map. We show several extensions of the basic MRF
model specifically tuned for MALDI-IMS data segmentation. We describe a highly parallel im-
plementation of the smoothing algorithm based on GraphLab framework and show experimental
results.
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1 Introduction
1.1 MALDI-imaging mass spectrometry and the segmentation problem
Untargeted spatially-resolved biochemical analysis of biological tissue sections using imaging
mass spectrometry (IMS) is an emerging field of biochemistry which has received considerable
attention over the last decade [11,16,35], with the most popular IMS technique called matrix-
assisted laser desorption/ionization (MALDI-IMS) or MALDI-imaging [9, 32]. IMS acquires
a set of mass spectra in a rasterized way across the surface of a prepared tissue section;
one mass spectrum corresponds to one pixel. A mass spectrum is a vector of intensities
associated with mass-to-charge (m/z) values representing in a semi-quantitative way the
abundances of ions separated by their m/z-values; a high intensity of a mass spectrum at an
m/z-value represents a high abundance of an ion of this m/z. In MALDI mass spectrometry,
an m/z-value is usually interpreted as the molecular mass, since ions with charge +1 prevail.
An IMS dataset is large, normally with around 100× 100 spectra acquired across the section
with each spectrum having around 10000 intensity values. An IMS dataset can be considered
as a hyperspectral image whose image channels correspond to m/z-values.
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40 Two-Step Soft Segmentation of MALDI-Imaging Data

Automatic mining of such massive hyperspectral imaging data is essential for applications
of the IMS technique to biomedical challenges. One of the established methods of MALDI-IMS
data mining is spatial segmentation that allows one to represent a hyperspectral MALDI-IMS
dataset with just one image, the so-called segmentation map. In this map, pixels of similar
mass spectra are pseudo-colored with the same color. There are several methods proposed
for spatial segmentation of MALDI-IMS data based on clustering of mass spectra. Spatial
segmentation of MALDI-IMS data is challenging because of the size of the datasets and
strong pixel-to-pixel variation inherent to the sample preparation and acquisition techniques
used for MALDI-IMS. It has been shown that the best-performing segmentation methods
reduce pixel-to-pixel variation, e.g. by means of incorporating spatial relations between pixels
into the distance function [2].

1.2 Results and structure of the paper
We propose a two-step procedure for spatial segmentation of MALDI-IMS data. On the first
step, we cluster MALDI-IMS spectra with the probabilistic graphical model called Latent
Dirichlet Allocation (LDA) [8]. LDA has recently obtained recognition in text mining because
it can remain scalable and efficient while extracting hidden features (“topics”) from a set
of documents. In the context of MALDI-IMS data segmentation, LDA has the following
advantages as compared to other published methods: (i) reduced memory requirements as
compared to hierarchical clustering recommended by [12]; (ii) reduced complexity as compared
to high-dimensional discriminant clustering recommended by [1]; (iii) most importantly,
additional information provided by LDA as compared to other clustering methods. This
information associates each data point (pixel) in the LDA model with the probabilities to
belong to each cluster and, moreover, the LDA model learns a distribution of the “words”
(m/z values) to be generated by different topics; this “soft” clustering is better suited for
further analysis such as extracting characteristic masses for each cluster. We describe our
clustering procedures in Section 2.

On the second step, we smooth soft clustering results provided by LDA with a probabilistic
smoothing model which we base upon Markov random fields. LDA results are convenient
to use in such a probabilistic setting. We introduce several extensions to the model that
let us enhance MRF smoothing results specifically for MALDI-imaging data processing; in
particular, we learn the weights of the MRF network with an EM-like procedure. Moreover,
we have developed a fast highly parallel implementation of MRF smoothing for clustering
results based on the GraphLab parallelization paradigm. These results are described in
Section 3. In Section 4, we describe the dataset and show experimental results of our
segmentation procedures. Section 5 concludes the paper.

2 Clustering of MALDI-IMS spectra

2.1 LDA
Latent Dirichlet allocation (LDA) is a clustering model that was originally intended for use
with natural language text processing [8, 24]. LDA takes the naive Bayes model one step
further: while naive Bayes has only one latent variable, namely the topic, and words are
conditionally independent given a topic, LDA view documents as mixtures of several topics.
In essence, LDA is a hierarchical Bayesian model: (i) on the first level, it has a mixture
whose components correspond to the “topics”; (ii) on the second level, a multinomial variable
with Dirichlet prior that corresponds to the “distribution of topics” in a document.



I. Chernyavsky, T. Alexandrov, P. Maass, and S.I. Nikolenko 41

α θ

η β

z w

N
M

k

Figure 1 LDA graphical model.

This gives rise to the following generative
model (see Fig. 1): (1) choose the num-
ber of words N ∼ p(N | ξ); (2) choose
the topic distribution θ ∼ Dir(α); (3) for
each word wn, n = 1..N : (i) choose a
topic zn ∼ Mult(θ); (ii) choose a word
wn ∼ p(wn | zn, β). The joint distribution in
the LDA model (for a fixed number of topics
k and parameters βij = p(wj = 1 | zi = 1))
is p(θ, z,w, N | α,β) = p(N | ξ)p(θ | α)∏N

n=1 p(zn | θ)p(wn | zn,β). Inference in
LDA can be done, for example, with variational methods or with Gibbs sampling.

The LDA model has had success in text processing, but its applications are not limited
to information retrieval problems. In this work, we have applied LDA to the clustering of the
spectra. Note that in MALDI-imaging, one spectrum is acquired at one pixel. We propose
to use individual pixels of the image as “documents” and masses corresponding to peaks
in the spectrum as “words”. The results of applying LDA to such “documents” are topic
distributions in each pixel of the image and a mass distribution for every topic. The number
of topics is a parameter defined in advance. Fig. 3a shows the results of a direct application
of LDA with 10 topics to the original dataset. Each color corresponds to a topic, and a pixel
represents a topic with maximal posterior probability. Fig. 3b shows a soft segmentation map
representing the second, fourth, and tenth clusters in the segmentation map from Fig 3a. A
soft segmentation map is an RGB-image where three clusters are encoded with red, blue, and
green channel respectively. Intensities of each channel represent probabilities of a pixel to
belong to the corresponding cluster. For example, a highly red pixel has high probability to
be in the second cluster; a blue pixel probably belongs to the fourth cluster, and a green pixel
probably belongs to the tenth cluster. Compared to a standard segmentation map (Fig. 3a),
a soft segmentation map, although restricted to visualize only three clusters, provides more
detailed information on probability distribution of pixels among the clusters. In particular,
it shows pixels with comparable probabilities of belonging to different clusters.

2.2 k-means
For comparison, we have implemented k-means as a simple yet effective clustering algorithm
[21, 23]. In k-means, we fix the number of clusters and initialize their centers (usually at
random dataset points that are chosen to be relatively far from each other). Then k-means
proceeds in alternating steps: (1) assign points to clusters; each point is assigned to the
nearest cluster center; (2) move cluster centers to the centers of mass for the points assigned
to them.

3 Smoothing probabilistic clustering results

3.1 Markov random fields
An undirected graphical model (or Markov random field) [5, 22, 27, 29] is a representation
of a complex probability distribution factorized into a product of potentials; the model
consists of an undirected graph with vertices corresponding to random variables X1, . . . , Xk

and a potential for each maximal clique in this graph, i.e., a nonnegative function of the
variables; the joint probability distribution corresponding to the model is the product of
potentials: p(X1 = x1, . . . , Xk = xk) = 1

Z

∏
C ψC(xC), where C are the maximal cliques, ψC

GCB 2012



42 Two-Step Soft Segmentation of MALDI-Imaging Data

are nonnegative functions (potentials), and Z is the normalization constant often called the
partition function. Since ψC are nonnegative, they are often represented in the exponential
form: ψC(xC) = exp (−EC(xC)); EC are often called energy functions, and the exponential
representation of the total energy p(X) = exp (−

∑
C EC(xC)) is called the Boltzmann

distribution (this field borrows much of its terminology from statistical physics).
This definition implies a simple conditional independence statement: p(xi, xj | xk 6=i,j) =

p(xi | xk 6=i,j)p(xj | xk 6=i,j) if xi and xj are not connected by an edge. Moreover, p(X , Y |
Z) = p(X | Z)p(Y | Z) if every path from X to Y goes through Z, where X , Y and Z are
disjoint subsets of random variables.

Undirected graphical models have a rich history; in particular, undirected graphical
models have been widely used for image denoising and similar problems, such as image
segmentation, which is the primary motivation for our current study [13,25,28,29]. Image
denoising was one of the first applications for undirected graphical models [3, 4, 14].

In image processing problems, undirected models usually appear in the form of rectangular
grids of pixels, with potentials on the edges intended to smooth the transitions; i.e., potentials
usually serve to bring the neigboring nodes closer together. A simple yet useful model
on a rectangular grid is the Ising model: energy functions on the edges of the grid are
given by εi,j(xi, xj) = −wi,jxixj , and the resulting joint distribution is p(x1, . . . , xn) =
1
Z exp

(∑
(i,j)∈E wi,jxixj +

∑
i uixi

)
. Inference in undirected graphical models can be done

via belief propagation. In the basic message passing algorithm, a node collects messages
from other nodes and sends out the marginalized results; for a detailed description of belief
propagation, we refer to [5, 27]. When the underlying graph of the model contains cycles
(and a grid model certainly does), belief propagation is not guaranteed to converge but when
it converges, it does find a local minimum of the total energy function; this version of the
algorithm is called loopy belief propagation.

These models also allow for a relatively simple approximate inference algorithm based
on Gibbs sampling [5, 10, 14, 30]. For an Ising model with weights wi,j and ui, the Gibbs
sampler sequentially updates all variables by fixing all values of the variables except one, say
xi, and then sampling xi from the conditional distribution: xi ∼ p(xi | x−i). The conditional
distribution is easy to compute in this case:

p(xi = k | x−i) = p(xi = k,x−i)∑
s p(xi = s,x−i)

=
∏

j∈nei(i) ψij(xi = k, xj)∑
s

∏
j∈nei(i) ψij(xi = s, xj) ,

where nei(i) is the neighbors set of the ith vertex. Gibbs sampling is a special case of the
Metropolis-Hastings algorithm for Monte-Carlo Markov chain sampling.

3.2 Our two-step approach
Markov random fields have already been successfully applied in the field of imaging mass
spectrometry [15]. In this paper, we present a two-stage procedure for the segmentation of
MALDI-imaging data. The first step is based on latent Dirichlet allocation, and the second
step is based on Markov random fields used for denoising.

In the first step we learn the LDA model from the data. To do this, we need to define
“documents” and their contents (“words”). The method we propose treats each pixel of a
MALDI-imaging dataset as a document and considers the masses with high intensity values
(peaks) in the associated spectrum as the words of the document. The result of this step
consists of topic distributions θi for each pixel and word (peak) distributions for each topic.

In the second step, we use a Markov random field similar to the Ising model in order to
denoise (smooth) the segmentation map. The model has two types of factors: binary factors
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(a) (b)

(c) (d)
Figure 2 Segmentation maps obtained with k-means and MRF: (a) no denoising; (b) w = 0.3;

(c) w = 0.6; (d) w = 0.9.

that correspond to the edges and unary factors that correspond to the vertices. A binary
factor φi,j(t1, t2) takes the value exp(w) whenever t1 = t2 and exp(−w) otherwise. These
factors are responsible for the smoothing part of the model. The unary factors are responsible
for the incorporation of topic distributions found on the previous step; we initialize unary
factors simply as ui(t) = θi(t), where θi is the topic distribution for pixel i and θi(t) is the
probability of topic t.

Previously, we developed other two-step approaches, where denoising was applied prior
to clustering [1] and where denoising was embedded into clustering [2]. In this paper,
we considered the potential of the two-step approach where the denoising is applied after
probabilistic clustering. Note that our approach is different from calculating the segmentation
map first and then denoising it for better visualization that might lead to losing details
during denoising. In line with [15], we first reduce the dataset to k images, where each image
represents the probabilities of pixels to belong to the corresponding topic. Then, the Markov
random field exploits all k probabilities calculated for one pixel to decide on the assignment
of this pixel to a specific cluster of the segmentation map.

For comparison, we have also implemented an approach in which the first step is based
on the k-means algorithm. In this approach, we consider a MALDI-imaging dataset as a
set of vectors and apply k-means clustering to it. The k-means algorithm outputs a set of
cluster centers. Next we use a Markov random field for segmentation map smoothing. Binary
factors are the same as above while unary factors look like ui(t) = 1/||si − ct||, where si is
the spectrum associated with pixel i and ct is the center of the tth cluster.

Thus, in both cases the models try to smooth the image and at the same time preserve the
segmentation map found on the first step. The use of LDA model on the first step not only
increases the quality of the resulting segmentation but also provides additional information
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concerning the structure of segments through the distributions on topics for each pixel and
distribution on words, i.e., masses, for each topic.

3.3 MRF extensions for MALDI-imaging
One problem with MRF smoothing for MALDI-IMS data is that the prior distribution induced
by the smoothing factors with constant weights might not be flexible enough to represent
the complex anatomical structures of the brain. In this section, we present two modifications
of the MRF approach that significantly improve segmentation results for MALDI-IMS data.

The first modification is based on the use of Kullback-Leibler divergence. Instead of
a constant weight w, we set the smoothing weight between neighboring pixels i and j

depending on the Kullback-Leibler divergence between the topic distributions θi and θj that
correspond to these pixels. In particular, we decrease the value of the smoothing weight
when the Kullback-Leibler divergence exceeds the chosen threshold. This modification allows
for different smoothing weights depending on the similarity of the pixels which results in
reducing of the noise while preserving the details of the picture.

The second modification works through a simple version of the EM algorithm. Here, we
use a more complicated form of the smoothing binary factor. We assume that the model
has a set of parameters {λt1,t2} and that the binary factor φi,j(t1, t2) has the following form:
φi,j(t1, t2) = exp(wλt1,t2). Then we use one iteration of the EM algorithm to estimate the
parameters. To do this, we first initialize binary factors with unit factors, λt1,t2 = 1 when
t1 = t2 and λt1,t2 = −1 otherwise. After that, we use the Markov random field to get the
denoised segmentation map. Then we reestimate λt1,t2 as λt1,t2 = Nt1,t2/N, where Nt1,t2 is
the number of neighboring pixel pairs with values t1 and t2 and N is the number of edges.
After that, we normalize each row in the matrix of λt1,t2 values and use the Markov random
field with updated binary factors to get the final segmentation map.

3.4 Parallel implementation
MRF inference algorithms take up the greater portion of the running time in our two-step
system. We have developed a highly parallel implementation of loopy belief propagation
based on GraphLab, a recently developed framework for parallelizing large-scale machine
learning tasks [26]. In the GraphLab paradigm, the data is represented as a graph, and the
algorithm is represented as two basic routines: (i) Update runs in a single node and can use
the data in this node, on its adjacent edges, and on its neighboring vertices; (ii) Sync collects
the results from several subgraphs and propagates them further up. GraphLab can be viewed
as a generalization of MapReduce. However, while MapReduce requires data subsets for
the Map function to be completely independent, GraphLab allows them to form a complex
highly connected graph, requiring only that the graph is relatively sparse (otherwise, there
will be no speed improvement from parallelization).

GraphLab guarantees that during an Update procedure the data that it uses cannot be
changed by any other Update, thus ensuring that there are no deadlocks and data races.
There are several levels of data independence: an Update in a node may lock either its
entire neighborhood (adjacent nodes and incident edges), incident edges only, or no other
graph elements. In the case of loopy belief propagation in MRF, it suffices to lock incident
edges since the message passing algorithm changes messages on the edges but does not
change anything in other nodes. The resulting system shows promising speed and accuracy;
it performs loopy belief propagation on an MRF until convergence in time which rapidly
decreases with the number of cores; see Fig. 4 for a comparison.
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 3 Segmentation maps obtained with LDA and MRF. (a) LDA clustering results; (b) a soft
segmentation map for three clusters; (c) MRF smoothing with w = 0.4; (d) w = 0.55; (e) w = 0.7;
(f ) Segmentation map obtained with k-means (w = 0.6); (g) Kullback-Leibler modification; (h) EM
algorithm modification.
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4 Experimental results

Samples preparation and MALDI-IMS measurements are described in detail in [1]. Shortly,
the cryosections of 10µm thickness were cut on a cryostat, transferred to a conductive indium-
tin-oxide coated glass slide (Bruker Daltonik GmbH, Bremen, Germany) and measured using
a MALDI-TOF instrument (Autoflex III; Bruker Daltonik GmbH) using flexControl 3.0 and
flexImaging 2.1 software (Bruker Daltonik GmbH). The lateral resolution was set to 80µm.
Preprocessing was done in ClinProTools 2.2 software (Bruker Daltonik GmbH). The spectra
were baseline-corrected with the TopHat algorithm (minimal baseline width set to 10%,
the default value in ClinProTools). No normalization or binning was done. The dataset
comprises 20185 spectra acquired within the area of the slice (120 × 201 pixels), each of
3045 data points covering the mass range 2.5–10 kDa. For examples of intensity images for
several m/z-values, see [1]. Afterwards, we applied a peak picking algorithm selecting 110
m/z-values; see [1] for the details and a visualization of the peak picking results.

5 10 15
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20
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im
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s

Figure 4 GraphLab imple-
mentation of loopy belief propaga-
tion on multiple cores.

Segmentation maps obtained with k-means and MRF
are shown on Fig. 2; the ones obtained with LDA and MRF
with varying values of w, on Fig. 3c–e. We consider the
best-looking denoised picture to be the one with w = 0.55
(Fig. 3d). For comparison with LDA pictures, an example of
segmentation map obtained with k-means is shown on Fig. 3f.
We also experimented with two modifications described
in Section 3.3. Results from the modification based on
Kullback-Leibler divergence are shown on Fig. 3g; from the
EM-based modification, on Fig. 3h. It is evident that our
modification based on Kullback-Leibler divergence results
in a cleaner image with less noise and at the same time
better preserved details in the central part of the image.
The EM-based modification produces an image that more
closely resembles the anatomical structure of the brain.

5 Conclusion
In this work, we have presented a method for processing MALDI-imaging data; our method
consists of two steps: probabilistic clustering with the LDA model and MRF smoothing. We
have presented two novel modifications for the MRF smoothing method that significantly
improve segmentation results for MALDI-imaging datasets. Further work in this direction is
twofold. First, we plan to further improve clustering and denoising: improve the LDA model
by learning hierarchical structures and/or correlated topics [6, 7], extend the undirected
smoothing model by hidden factors, thus passing from an MRF to a restricted Boltzmann
machine [17–20], incorporate ideas from segmentation algorithms based on hierarchical
Dirichlet processes and hierarchical Pitman-Yor processes [31,33,34]. But the main direction
of further work is to make the next step in analyzing the “spectrometry data cube” and
apply the resulting models for a deeper analysis of mass-spectrometry data: find m/z values
that are most characteristic for each segment, analyze spectra of the segments, construct
most characteristic mass sections, find least characteristic sections (outliers) and so on. We
hope that our approach will significantly assist us in this analysis.
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