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Preface

This volume contains papers presented at the German Conference on Bioinformatics (GCB
2012) held in Jena, Germany, September 19 – 22, 2012. The German Conference on Bioinform-
atics is an annual, international conference, which provides a forum for the presentation of
current research in bioinformatics and computational biology. The GCB 2012 was organized
by the Jena Center of Bioinformatics (JCB) in cooperation with the German Society for
Chemical Engineering and Biotechnology (DECHEMA) and the Society for Biochemistry
and Molecular Biology (GBM). The conference was open to all fields of bioinformatics and
theoretical systems biology.

Five satellite workshops that took place on 19 September 2012 placed thematic emphasis
on diverse aspects of systems biology: “Systems Biology of Aging” organized by J. Sühnel,
“Organ-oriented Systems Biology” by D. Driesch and R. Mrowka, “Network Reconstruction
and Analysis in Systems Biology” by W. Wiechert and T. Lengauer, “Computational
Proteomics and Metabolomics” by S. Böcker, and “Image-based Systems Biology” by M.T.
Figge.

Six leading scientists accepted our invitation to give keynote lectures at the conference:
Claude dePamphilis (Pennsylvania State University, University Park, USA)
The draft genome sequence of Amborella trichopoda sheds light on the ancestral angiosperm
genome
Oliver Fiehn (University of California, Davis, USA)
Comprehensive metabolomic databases and annotation workflows: The U.S. West Coast
Metabolomics Center
Arndt von Haeseler (Max F. Perutz Laboratories, Vienna, Austria)
Exploring the sampling universe of RNA-seq
Tom Kirkwood (Newcastle University, Newcastle, GB)
Probing the deep complexity of ageing
Erik van Nimwegen (University of Basel, Basel, Switzerland)
A democracy of transcription factors: Inferring transcription regulatory interactions from
high-throughput data
Ruth Nussinov (National Cancer Institute, Frederick, USA)
Structural proteome scale prediction of protein-protein interactions using interfaces

With the topics of these talks the meeting indeed succeeded in ‘Joining Evolution, N etworks,
and Algorithms’, according to this year’s conference motto.

From 39 submissions, the program committee selected 10 highlight papers and 11 regular
papers as contributed talks for the conference. Additionally, about 95 poster abstracts were
accepted for presentation. All regular papers are collected in this volume. The highlight
papers, the abstracts from the invited speakers, and the poster abstracts are collected in a
separate volume available online (www.gcb2012-jena.de).

We thank all members of the program committee as well as all local organizers and
helpers for their efforts. We are also very grateful to the participants who presented their
work at the lively panel sessions and poster party. Our special thanks go to the sponsors
who supported the conference financially.

August 2012,
Sebastian Böcker, Franziska Hufsky, Kerstin Scheubert, Jana Schleicher, and Stefan Schuster
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ModeScore: A Method to Infer Changed Activity
of Metabolic Function from Transcript Profiles
Andreas Hoppe and Hermann-Georg Holzhütter

Charité University Medicine Berlin, Institute for Biochemistry, Computational
Systems Biochemistry Group
hoppe@bioinformatics.org

Abstract
Genome-wide transcript profiles are often the only available quantitative data for a particular
perturbation of a cellular system and their interpretation with respect to the metabolism is a
major challenge in systems biology, especially beyond on/off distinction of genes.

We present a method that predicts activity changes of metabolic functions by scoring reference
flux distributions based on relative transcript profiles, providing a ranked list of most regulated
functions. Then, for each metabolic function, the involved genes are ranked upon how much they
represent a specific regulation pattern. Compared with the naïve pathway-based approach, the
reference modes can be chosen freely, and they represent full metabolic functions, thus, directly
provide testable hypotheses for the metabolic study.

In conclusion, the novel method provides promising functions for subsequent experimental
elucidation together with outstanding associated genes, solely based on transcript profiles.

1998 ACM Subject Classification J.3 Life and Medical Sciences

Keywords and phrases Metabolic network, expression profile, metabolic function

Digital Object Identifier 10.4230/OASIcs.GCB.2012.1

1 Background

The comprehensive study of the cell’s metabolism would include measuring metabolite
concentrations, reaction fluxes, and enzyme activities on a large scale. Measuring fluxes is
the most difficult part in this, for a recent assessment of techniques, see [31]. Although mass
spectrometry allows to assess metabolite concentrations in a more comprehensive way, the
larger the set of potential metabolites, the more difficult [8]. Enzyme activities are currently
measured only for selected enzymes [15, 33]. In contrast, the measurement of transcript RNA
[35, 41] and protein levels [4] on a large scale is an established technique. Chip assays allow
the high-throughput estimation for different conditions in a single experiment at manageable
cost. Thus, we are confronted with the situation that for many cellular systems there are
plenty of measured RNA profiles and a lack of accurate data for metabolite concentrations
and enzyme activities. Even though the RNA will not allow accurate quantitative predictions
of fluxes it is desirable to draw as many conclusions from that data as possible.

In the context of metabolic networks, transcript values are often used to select a subset of
active reactions using a threshold [3, 38, 20, 23, 11, 22]. This has two immediate problems:
(i) the selection of a proper threshold value and (ii) the subnetwork selected in that way may
not be a functional network. The first problem is tackled in the GIMME algorithm [3] by
gradually penalizing a reaction below a certain threshold, or in the approach by Shlomi et al.
[38] by using a three-valued system — off, on and intermediate — with two thresholds. The
second problem is solved either by the successive addition of necessary reactions considered
off [3, 38] or by maximizing the number of concordant genes in an optimization framework

© Andreas Hoppe and Hermann-Georg Holzhütter;
licensed under Creative Commons License ND
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2 ModeScore: Infer Changed Activity from Transcript Profiles

[20]. More elegantly, both problems are combined in a method which sets the threshold
according to network function [22].

However, the main problem of reducing the transcript information to on and off genes is
that it discards any information on gradual metabolic changes. But a complete switch-off of
a metabolic enzyme is a rare event, most regulation is just the reduction or amplification of a
particular function. Lee et al. predicted the metabolic state from absolute expression profiles
without thresholding [28] but for expression changes it has not yet been done. This prompted
us to develop a method focusing on quantitative changes of metabolic functionality.

To tackle this ambitious task the problem is restated first. While in transcript-based
flux-balance analysis [3, 38, 22] the flux distribution resp. activity network is the result of
the computation, here we assume that a plethora of functional flux distributions is already
known. The transcript profile are used to decide which of them change their activity, in
which direction, and how much.

In fact, functional reaction paths are studied throughout the last decades and are well-
known for a large number of functions. On the basis of well-curated metabolic networks
[10, 40] these functional flux modes can even be computed automatically [16].

In the context of the metabolism, transcript profiles are often used to find co-expressed
genes, e.g. to understand the pattern of regulation [37, 21] and, thus, to predict targets of
transcription factors. The Mamitsuka applied the approach to predefined metabolic reaction
paths [30, 39] based on the KEGG database [25]. They used the results to rank the reaction
paths [14], an idea which is also used here. However, the question of co-expression is not
the main aspect here, instead it is the relative change of activity. Thus, we combine the
idea of using expression profiles to score metabolic paths [14] with the idea of functional
flux distributions [16]. The approach is supported by a finding of Notebaart et al. that the
strongest gene co-expression occurs for coupled fluxes [32].

2 Results

Computation
of flux 

distributions

Network
recon-

struction
Function
definition

ModeScore
computation

Gene
annotation

Function-
based

analysis
Function-

related gene
pattern

Flux
distribution

sound?

Gene-
based

analysis

yes good good

to improve

to improveno

Figure 1 Flow chart of the ModeScore analysis.

The final goal of a ModeScore analysis is a set of remarkable function-related gene patterns
from a series of full-genome transcript (or protein) profiles. It is a multi-step method with
backwards jumps depicted in Figure 1, where the novel scoring algorithm is one of the steps.
While some of the steps are computed (blue boxes in Figure 1) others involve manual curation
(green rhomboids) and selective evaluation (khaki rhombi).

Preparation of flux distributions and gene annotations
For the predictivity of the ModeScore analysis sound representative flux distributions are
critical. Sometimes, reference modes are already the result of the network testing process [12]
but it still it may be worthwhile to tailor the flux distributions to a particular application.
In a broad screening of metabolic functions, 1000s of different functions can be used with
several alternate solutions computed automatically [18]. But the focus can be shifted, and
also a confined analysis with just a few functions is sensible.
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The gene–reaction association may be given in the reconstruction process [7] but even
then it is advisable to manually refine this with the help of UniProt [1] and BRENDA [36]
and the literature referenced with, e.g. if a respective isoform is expressed but at such a low
level that another isoform is dominant it should be discarded, or if the enzyme is present but
has a low affinity to the substrate. If several genes remain for one reaction, and if several
repeat experiments have been performed their average expression is used. In the comparison
between two cellular states, their expression values (as log2) are subtracted.

Scoring function
Let the k-th reference mode be denoted withMk = (mi)i, where mi is the flux rate of the i-th
reaction. The relative expression profile is denoted by V = (vi)i, where vi is the difference of
the log2 values of the transcript abundances of one state and a reference state. Then the
score of the mode is

Score(Mk, V ) =
∑
i∈Ik wiscorei(mi, vi)∑

i∈Ik wi

where

Ik = {i|mi 6= 0} and wi =
√
|mi|ωi

and

scorei(mi, vi) = e
− 1

2

(
2λvi−mi|mi|

)2

.

λ is chosen such that Score(Mk, V ) is maximal. The non-negative numbers ωi are fixed
adjustments to modify the impact of a reaction on the score. If the gene expression changes
are proportional to flux rates of a reference mode, the score would be equal to 1, and λ is
the scaling factor between fluxes and expression changes. The rationale of this approach is
that the larger the required flux increase, the larger the necessary enzyme amount and, thus,
the increase in RNA transcription.

In the application below, reactions with stoichiometric factors larger than one (except
protons) receive a weight ωi which is the number of individual conversions for lumped
reactions, and zero for non-enzymatic reactions, see Supplementary file 6.

The number 1/λ, called amplitude in the sequel, is a measure for the function’s expression
difference. In fact, if all genes related to a specific function are regulated by the same amount
α, then the score would be 1 and the amplitude equal to α. In this sense, the amplitudes are
compatible to the expression changes.

Optimization procedure
The scoring function has been observed to have many local maxima for larger reference flux
distributions, especially near zero. Therefore a specifically tuned calculation method has
been recruited.

To find the global optimum of the scaling factor λ the derivation of the scoring function
has been calculated algebraically. A set of probe points is calculated with the following
procedure: (i) for every mi/vi a first level probe point is defined (ii) for every pair of first level
probe points the arithmetic mean is added as another probe point (iii) for every consecutive
pair (x, y) of second level probe points n = 10 + 10( 1

1+x ) intermediate points with equal
distance are added as another probe point. This procedure is tailored to search for maxima

GCB 2012



4 ModeScore: Infer Changed Activity from Transcript Profiles

in superposed Gaussian bell curves with centers at mi/vi. It uses the fact that a higher
density of local maxima can be expected where the density of mi/vi is higher (→ii) and the
steepness of the bell curves for mi near zero is higher, thus more probe points are generated.
The huge abundance of probe points (compared to just a few maxima) to ensure a very
low probability to miss solutions. The zeros of the derivation function are computed with
the function fzero in octave [9] by supplying the probe points with different signs of the
derivation function value. The zeros of the derivation function are the candidates for the
global maximum which is subsequently selected.

ModeScore analysis
There are two different layers on which the ModeScore results can be analyzed, on the layer
of functions and on the layer of individual genes (for one selected function).

The ranking of the amplitudes of the different functions reveals which are the most up and
down-regulated functions in the comparison between two expression profiles. Additionally,
three or four expression profiles can be compared in a way that the difference of amplitudes
is ranked. This way, the functions with the most remarkable pattern are selected.

The next step is to check the layer of individual reactions and genes. For each function
and pair of expression profiles the individual score components scorei(mi, vi) are analyzed. A
high scorei(mi, vi) means that the reaction is considered belonging to the regulation pattern
that led to the evaluation of the function with the amplitude 1/λ. If the score is small or
zero this reaction has been overruled by other reactions.

Possibly, a reaction’s score scorei(mi, vi) has been the result of different genes, e.g.
subunits of a protein complex. If it becomes for instance apparent that only one subunit is
responsible for the regulation, other subunits can be deleted from the gene assignment to
the reaction. The same should be done if several isozymes are recorded, but some of them
are apparently not active in this particular experiment. It should be clear that a general
network reconstruction includes all the possible reaction assignments, and only at this point
of the analysis it is possible to select from the genes. After this modification, the ModeScore
calculation must be repeated.

After this process has been iteratively repeated, the final reaction scores will reflect the
function’s regulation as shown by the expression profiles. For visualization it is now advisable
to discard the genes which are not part of the regulation pattern.

In a nutshell, the following criteria are used to select the functions:
functions with high absolute amplitudes are favored,
central, well-known functions are favored to more peripheral functions,
if a function can be seen as a sub-function of another function, check if the super-function
is also a good candidate,
prefer functions which are top/bottom scorer in more than one of the comparisons,
prefer functions which show a plausible pattern of genes regulated in a consistent manner,
prefer functions which have already been noted as specifically sensitive in the experiment,
prefer functions which contain genes with highly remarkable regulation amplitude or
pattern, and
prefer functions whose pattern is not based on a single gene regulation.

Note that this selection process takes into account available domain knowledge.
The following criteria are used to select for each selected function the relevant genes

which led to the amplitude estimation of the whole function are selected. This is also a
manual process which takes into account several information sources and is guided by the
following criteria:
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prefer genes with large transcript value changes,

prefer genes with large absolute values,

prefer genes associated to reactions which are adjacent to reactions whose genes have
already been selected,

prefer genes of highly specific enzymes or transporters,

prefer genes of reactions which are most important for the function under regard and not
for any more important function, and

close gaps in an otherwise preferable reaction path.

Mostly, a connected reaction path (as a subset for the whole flux distribution) appears
to be responsible for the regulation. Transporters are also integrated if consistent with the
regulation of the enzymes. This aspect is noteworthy in comparison to the PathRanker [14]
concept which ignores transporters altogether. Another important aspect in comparison to
PathRanker (based on the KEGG MODULE reaction paths [26]) is that the definition of
the relevant paths is not predefined (and fixed) but flexible and dependent on the actual
expression values of the experiment. Often, they are in accordance with well-known reaction
paths but in some cases there is a unique and noteworthy different selection of genes forming
a functional unit.

Application of the method to TGFβ treatment of hepatocyte cultures

As an application of the proposed method, transcript profiles of primary mouse hepatocytes
in monolayer culture (3 time points, 1h, 6h, and 24h, control versus TGFβ stimulation, 3
repeats) [6, 13, 5] are screened for remarkable functional alterations.

The functions with very high and low amplitudes of the profile comparisons 1h vs. 24h
in the untreated sample and the control vs. TGFβ comparison at 24h have been analyzed
for their functional relevance, see Supplementary File 4. Functions related to intermediates
are replaced by their superordinate function, similar functions have been collected. For each
of these functions the scores for individual reactions, see Supplementary File 5, have been
analyzed for the set of genes which are responsible that the function in question has appeared
with a particular regulation pattern.

The most prominent functions are the down-regulation of tyrosine degradation and ethanol
degradation. The ethanol degradation pathway has already been verified to be sensitive to
TGFβ [5]

However, the strong down-regulation of tyrosine degradation is a novel finding yet to
be confirmed on the metabolic level, see Figure 2. The amplitudes 1

λ of the C1h/24h and
the C/T24h comparisons are -3.5 and -0.87, respectively, belonging to the largest negative
amplitudes among all functions. The scores Score(Mk, V ) are 0.41 and 0.44 indicating
a relatively strong coherence of the expression changes. The scores scorei(mi, vi) for the
individual genes are especially high (≥0.5) for the genes coding the reaction cascade from
Phenylalanine to Acetoacetate+Fumarate, see Supplementary File 5 for details. Thus, the
complete degradation pathway is down-regulated in time, amplified by TGFβ treatment, in
a very consistent pattern, even suggesting a common regulation factor.
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Figure 2 Regulation of the degradation cascade of phenylalanine and tyrosine. Red bars indicate
down-regulation. For each gene, the respective first bar (C1h/24h) shows the comparison of the beginning
of the experiment (1h) with the 24h time point of the control experiment, the second bar (C/T 24h) shows
the comparison of control vs. treated sample at 24h. Error bars indicate average standard deviation of the
3 repeat experiments. P-values refer to the probability that there is an equal expression of two respective
probe values, determined from the 3 repeats using Welch’s t test [42], implemented in R [29]. The chart
was prepared with R.

3 Discussion

Scoring algorithm
The scoring function is based on the superposition of Gaussian bell curves. The Gaussian
bell curve is the typical approximation in situation where an expected behavior (the expression
pattern matches the flux pattern) is blurred by a number of not quantitatively described
factors which is the case for the relation of the RNA expression to the expressed enzyme and
further to the reaction flux: RNA can be selectively degraded before translation, the rate
of misfolded protein differs for different proteins, the life span of the enzymes differs, the
reaction flux may deviate from the maximal catalytic rate, the enzyme life span is different
and so is the catalytic efficiency.

The influence of the scores of individual spots to the total score of the metabolic functions
is not equal but controlled by a weighting scheme. The weight mainly depends on the flux in
the reference flux distribution. This is based on the assumption that the importance of the
individual reactions to indicate the metabolic function as a whole can be approximated by
the flux. However, that one or very few reactions dominate the scoring of the whole scoring
function must be avoided. A good compromise has been found in a number of different trials
as the square root of the absolute flux rate.

The luminescence signal on a gene chip is not actually measuring the RNA concentration
in the sample as the affinity of the RNA to the probes is not equal and unknown for most
genes. However, with a high signal the expectation value of the RNA concentration is high
as well and the same is true for the resulting protein concentration, the enzyme activity, and
finally the reaction flux. As the relation can be assumed to be normally distributed, the
use of Gaussian bell curves is the most robust way to account for the uncertainty if the
signal-flux relation.

The ModeScore concept would also be applicable if not just gene array luminescence data
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but quantitatively more reliable qPCR [41], protein data, or even enzyme activity data were
available. The salient point is that array data suffices to draw first conclusions before the
laborious and costly other techniques are applied. On the other side, if data more closely
representing metabolic function (such as enzyme activity data) was available then methods
based on actual enzyme mechanisms could and should be applied such as kinetic modeling
with time-resolved differential equations.

Maxima in the scoring function
In the scoring formula the global maximum of the scoring function has been used to obtain
the scaling factor from the relative expression profile to the reference flux distribution. For
some examples alternative local maxima have been observed with only slightly smaller scoring
value. These alternative solutions can be seen as alternative ways to match the expression
pattern to the flux distribution. The alternative solutions can be analyzed in the same way
but generally their existence can be interpreted as an ambiguity of the expression profiles.

Reference flux distributions
The method critically depends on the quality of the predicted reference flux distributions.
For this work they have been obtained in a similar way as in [12]. Different computation
series have been preformed combining thermodynamic realizability [19] and flux minimization
[17] in different proportions. The obtained flux distributions have individually been checked
on biochemical plausibility while the one with the fewest reactions used is preferred, see
Supplementary File 3.

An advantage of the ranking concept is that the flux distributions need not be repre-
sentative (in the sense that overlaps are critical). Only a sufficient coverage of the whole
metabolic network should be ensured (not to miss remarkable transcript changes). Not to
miss a remarkable regulation abundance rather plentiful flux distributions should be used.

Comparison with other approaches
One may want to compare the ModeScore approach with a simple concept using the same
reference modes: average the expression changes of all genes associated to the function. This
has been tested and it showed almost no discriminative power. The problem is that even if a
function contains a recognizable pattern of regulation, other genes are constant or regulated
in the opposite direction. Thus the average expression changes are always close to zero. The
ModeScore function however finds an amplitude that is consistent with the changes of several
genes even if it is far from zero.

One may want to compare ModeScore with just filtering the largest changes of genes
associated to the metabolic network. The functional context of these genes then had to
be added manually. But many genes play a role in different functions, so they should be
discriminated again manually. Even if this has been done, the result would not be able
to detect moderately sized but very consistent regulation patterns (such as the Tyrosine
degradation function above).

Often, lists of transcript changes are filtered by a certain threshold and the regulated
genes (in both directions) are counted for each metabolic subsystem in either the gene
ontology [2] or in the KEGG maps [24]. The main problem is that in such a collection of
reactions/genes, the genes may have a completely different functional context: for instance in
the amino acid metabolism maps there are reactions specific to synthesis, degradation, and
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trans-amination, some of the reactions are needed to synthesize further cellular components
from amino acids, for gluconeogenesis or urea synthesis. A pathway-oriented approach can
not distinguish between these functions. Occasionally, even the same reaction located in
different compartments participates in different functions: HMG-CoA synthase in the cytosol
is involved in cholesterol synthesis while HMG-CoA synthase in the mitochondrium is only
recruited for the generation of ketone bodies (in mammalian hepatocytes).

4 Methods and Materials

The stoichiometric network of the human hepatocyte’s metabolism [12] has been adapted
to the mouse and a plethora of about 1000 metabolic functions defined, see Supplementary
File 2. The gene assignments have been obtained from the following resources: (i) Metabolic
reactions with a KEGG reaction annotation in HepatoNet can be mapped to a mouse gene
using KEGG [25]. (ii) Other metabolic functions with a EC number can also be mapped to a
mouse gene using KEGG. (iii) Transporters with an annotation in TCDB can be mapped to
a mammalian enzyme (UniProt nomenclature) using the TCDB [34]. (iv) Protein synthesis
reactions have been mapped to the protein directly which makes sense for this work as
the RNA is the most specific requisite for the synthesis reaction using Uniprot [1]. (v)
Proteins have been mapped to their coding gene using Ensembl/BioMart [27]. (vi) Genes
of the different species have been mapped to mouse genes (Ensembl nomenclature) using
the computed homologies contained in BioMart database. (vii) BioMart database has also
been used to assign the Affymetrix probeset identifiers to Ensembl annotations. HepatoNet
was enlarged by the synthesis reactions of collagens. See Supplementary file 1 for the final
network with gene annotations.

Availability

Calculation of the ModeScore scores is implemented in the freely available software FASIMU
[18] in the function modeset-score. Supporting scripts including the score optimization
process is available from the authors upon request.
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Abstract
Electron impact ionization (EI) is the most common form of ionization for GC-MS analysis of
small molecules. This ionization method results in a mass spectrum not necessarily containing
the molecular ion peak. The fragmentation of small compounds during EI is well understood, but
manual interpretation of mass spectra is tedious and time-consuming. Methods for automated
analysis are highly sought, but currently limited to database searching and rule-based approaches.
With the computation of hypothetical fragmentation trees from high mass GC-MS data the high-
throughput interpretation of such spectra may become feasible. We compare these trees with
annotated fragmentation pathways. We find that fragmentation trees explain the origin of the
ions found in the mass spectra in accordance to the literature. No peak is annotated with an
incorrect fragment formula and 78.7% of the fragmentation processes are correctly reconstructed.
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Keywords and phrases metabolomics, GC-MS, computational mass spectrometry, fragmentation
trees
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1 Introduction

Metabolomics, also called “metabonomics” or “metabolic profiling”, is a rapidly developing
field of ‘omics’ research, dealing with the detection, identification and quantification of low
molecular-weight compounds (typically below 1000Da) in cells, organs or organisms. The
analysis and identification of small molecules is important in many areas of biology and
medicine such as biomarker discovery, diagnostics, pharmaceutical chemistry and functional
genomics [2, 9, 36]. The metabolome consists of various compounds that belong to a wide
array of compound classes, including sugars, acids, bases, lipids, hormonal steroids, and
many others [5, 18]. The structural diversity of metabolites is extraordinarily large despite
of their small size [21]. Unlike biopolymers such as proteins and glycans, metabolites are
not made up of repeated building blocks. The genome sequence does not reveal information
about metabolite structure, as it does for protein structure. The number of metabolites in
any higher eukaryote is estimated between 4000 and 20 000 [7]. Unfortunately, an astounding
number of these metabolites remain uncharacterized with respect to their structure and
function [26].

At the moment there is no single instrumental platform that can analyze all metabol-
ites [5, 21]. Mass spectrometry (MS), typically coupled with a chromatographic separation
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technology, is one of the key technologies for the identification of small molecules. It has
excellent compound specificity and high sensitivity. In particular, MS sensitivity is orders of
magnitude higher than that of nuclear magnetic resonance (NMR) [21,29]. Several kinds of
analytical apparatus have been developed and most of these combine chromatography with a
fragmentation technique to increase compound specificity. Gas chromatography coupled to
mass spectrometry (GC-MS) is one of the most frequent tools for profiling metabolites and
it was in existence decades before liquid chromatography MS (LC-MS) [8, 14]. The amount
of data produced during metabolomic analysis is hard to process and analyze manually [18].

The most common ionization technique in GC-MS is electron impact ionization (EI).
The resulting fragment-rich mass spectra are in general consistent and specific for each
molecule [20,21] and fragmentation mechanisms are already well described [23]. Reference
spectra were collected over many years, allowing for automated interpretation via database
search [24]. Where the compound is unknown, comparing the spectrum obtained to a spectral
library will result in imprecise or incorrect hits, or no hits at all [8, 18, 20]. To cover a
wider range of compounds in silico fragmentation is used to predict spectra of compounds
with known structure [11,12,19,37]. A first step towards the structural elucidation of fully
unknown compounds is feature-based identification of the compound class [17, 19, 34, 35].
See Kind and Fiehn [20] for a comprehensive review of computational techniques for small
molecule mass spectrometry.

Böcker and Rasche [3] introduced fragmentation trees for the de novo interpretation
of metabolite fragmentation data. The fragmentation tree concept helps to identify the
molecular formulas of the compound and to interpret the fragmentation process. Nodes are
annotated with the molecular formulas of the fragments, and edges represent fragmentation
events, that is, neutral or radical losses. Computing fragmentation trees does not require
databases of compound structures or mass spectra or expert knowledge of fragmentation.
The trees can be compared to each other to identify compound classes of unknowns [28].
Expert evaluation suggests that the fragmentation trees from LC-MS2 data are of very good
quality [29]. Fragmentation trees can also be computed from LC-MSn data [31]. Recently,
Hufsky et al. [16] presented a computational method for the de novo interpretation of
EI fragmentation data, based on fragmentation tree construction, and applied it to real
world data. Besides a list of common losses, this method does not use any chemical expert
knowledge, but does require high mass accuracy of the measurements [16].

In this study, we evaluate the quality of fragmentation trees computed from EI fragmenta-
tion data [16]. To evaluate the potential of fragmentation trees to reconstruct fragmentation
processes we compare them to annotated fragmentation pathways of 22 compounds from
the literature. The constructed fragmentation trees were not supposed to depict the actual
fragmentation reactions. They however agree well with the annotated pathways explaining
the origin of the respective ions found in the mass spectra. No peak was annotated with an
incorrect fragment formula and 78.7% of the fragmentation processes were correctly recon-
structed. For the annotation of the fragmentation processes in the literature the molecular
structures of the compounds were used. In contrast, the computation of fragmentation trees
works without this knowledge. The assignment of molecular formulas to all fragments and
explanation of relevant fragmentation reactions independent of existing library knowledge,
supports the structural elucidation of unknown compounds. Combined with a method for the
automated comparison of fragmentation trees [15,28] it will enable the automated analysis
of metabolites that are not included in common libraries.
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2 Methods

For the interpretation of the GC-MS spectra we use fragmentation trees as introduced
by Böcker and Rasche [3] for LC-MS2 spectra. A hypothetical fragmentation tree models
fragmentation cascades by annotating nodes with the molecular formulas of fragments,
and edges with fragmentation events, that is, neutral or radical losses. The root of the
fragmentation tree is labeled with the molecular formula of the unfragmented ion. For
LC-MS2 data the molecular ion mass is known. EI results in a mass spectrum not necessarily
containing the molecular ion peak. Hufsky et al. [16] proposed a method for computing
fragmentation trees from such data.

To compute a fragmentation tree from an EI fragmentation spectrum a fragmentation
graph is constructed. All candidate molecular formulas within the mass accuracy of the
instrument are computed for each peak. The fragmentation graph contains a node for each
decomposition. The nodes are colored, such that all explanations of the same peak receive the
same color. Nodes are weighted using mass deviation and peak intensity [3]. Two nodes are
connected by an edge (corresponding to a loss) if the second molecular formula is a subformula
of the first. Edges are weighted according to their plausibility as real fragmentation steps
considering the mass of the loss, the ratio between carbon and hetero atoms, and common
losses for EI fragmentation (see Table 1). See [16] for a detailed description of the scoring.

The colorful subtree with maximum sum of edge weights is the explanation of the observed
fragments, that fits best with the given conditions. Considering trees every fragment is
explained by a unique fragmentation pathway, see [29]. Considering only colorful trees every
peak is explained by a single fragment. Several fragments resulting in a single peak is an
extremely rare event in practice.

By demanding that each fragment in the fragmentation spectrum is generated by a single
fragmentation pathway we slightly oversimplify the problem. Our optimization algorithm
will choose the mainly occurring pathway to compute a fragmentation tree. There are
two exceptions to this reasoning: (1) In the resulting fragmentation tree, assume that
some fragment f3 is cleaved from f2, which is in turn cleaved from f1. Solely from the EI
fragmentation pattern and without additional structural information, it cannot be ruled out
that fragment f3 is in truth cleaved directly from f1. Both interpretations are implicitly
encoded in the fragmentation tree: the fragmentation may occur from the fragment’s
direct parent in the tree or from any of its parents (see Figure 1(a)). (2) In the resulting
fragmentation tree, assume that some fragment f2 is cleaved from a fragment f1 by loosing
l1 and another fragment f3 is cleaved from f1 by loosing l2. Further, another fragment f4 is
cleaved from f2 by loosing l2. Solely from the data, it cannot be ruled out that fragment f4
is in truth cleaved from f3 by loosing l1. Again, both interpretations are implicitly encoded

Table 1 List of common losses over the alphabet used throughout this study (CHNOPSCl) for
scoring EI fragmentation reactions [13]. The losses are sorted by integer mass and their probability
of occurrence in a GC-MS spectrum [16]. Losses in the first row (dark green) are very common
and thus score high, while losses in the last row (orange) are not-that-common and thus score
comparatively low.
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f1

f2

f3

(a) f1

f2

f3

(b) f1

f4

l1

l1l2

l2

f2 f3

(c)

Figure 1 Comparing fragmentation trees (solid edges) with annotated pathways from the literature
(dashed edges). (a) In the fragmentation tree, fragment f3 is cleaved from f2, which is in turn
cleaved from f1. It cannot be ruled out that fragment f3 is in truth cleaved directly from f1 (dotted
edge). Both interpretations are implicitly encoded in the fragmentation tree. We evaluate these
edges as correct. (b) In the fragmentation tree, fragment f3 is cleaved directly from f1, while in
truth it is cleaved from f2 (dotted edge), which is in turn cleaved from f1. We evaluate these edges
as inserted to high. (c) Parallelogram: Fragment f4 is cleaved from f2 by loosing l2, which is in turn
cleaved from f1 by loosing l1. In truth fragment f4 is cleaved by loosing l2 first and l1 afterwards
(dotted edge). Both interpretations are implicitly encoded in the fragmentation tree. We evaluate
these edges as correct.

in the fragmentation tree: the fragmentation may occur by loosing l1 first and l2 afterwards,
or the other way (see Figure 1(c)). In the following, we call this constellation parallelogram.

EI is a hard ionization technique often resulting in missing or low intensity molecular ion
peaks [20,21]. Different from LC-MS2 analysis the mass of the molecular ion is not known.
All nodes in the graph are possible roots of the fragmentation tree. Molecular formulas
explaining each peak cannot be restricted to sub-molecular formulas as proposed in [29].
Therefore the identification of the molecular ion and formula and the computation of the
complete fragmentation tree is done in two separate steps.

We first identify the molecular ion and molecular formula using only a set of peaks that
appear to be most relevant for the compound. These peaks are selected using three different
criteria. We choose the k1 most intense peaks, the k2 peaks with highest score, and the k3
peaks with highest score in the upper m/z range. The score is a combination of m/z value
and relative intensity m/z · ln(100 · intrel) and the upper m/z range is the m/z region from
0.9M̃ to M̃ where M̃ is the highest m/z of a peak detected in the spectrum. In this step
fragmentation trees are computed using Dynamic Programming [3]. Afterwards we compute
a fragmentation tree for the complete spectrum assuming that we know the correct molecular
ion and molecular formula of the compound. The resulting fragmentation tree is rooted in
this molecular formula. In this step, fragmentation trees are computed using Integer Linear
Programming [30].

3 Data

The EI induced fragmentation of small molecules is well described in the literature. To
evaluate the potential of fragmentation trees to reconstruct fragmentation processes we
extract annotated fragmentation pathways for 22 compounds from different compound classes
(see Table 2). In [1] Acheson et al. describe the fragmentation of alkyl acridines. We choose
two simple alkylacridines and two reduced acridines containing chlorine. Further, we choose
seven compounds from a study on alkyl isocyanides and methyl branched alkyl cyanides [10].
From [25] we select four dihydro-1,4-oxathiines with fragmentation paths additionally invest-
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16 Comparing EI Fragmentation Trees with Annotated Fragmentation Pathways

Table 2 Overview of the 22 reference compounds with fragmentation pathways annotated in the
literature. If more than one compound of the same class is used, we denote the class name and give
the mass range and average mass.

mass
compound (class) # range average
alkyl acridines [1] 4 207.1 - 399.2Da 276.1Da
alkyl isocyanides & α-branched alkyl cyanides [10] 7 41.0 - 83.1Da 69.1Da
dihydro-1,4-oxathiines [25] 4 146.0 - 235.1Da 178.8Da
gossypol [27] 1 518.2Da
ephedrine [33] 1 165.1Da
2,1-benzisothiazoline 2,2-dioxide nitro derivatives [4] 5 214.0 - 242.0Da 228.0Da
all 22 41.0 - 518.2Da 187.6Da

igated with qualitative collisionally induced dissociation (CID) measurements. From [27]
we extract the fragmentation pathway of gossypol and from [33] the one from ephedrine.
Further, we choose five 2,1-benzisothiazoline 2,2-dioxide nitro derivatives from [4].

As the measured spectra are not available to us, we simulate spectra from the pathways.
From the molecular formulas in the fragmentation pathway, we compute exact peak masses,
and simulate “measured” spectra by adding a normal distributed error of 10 ppm on the mass
of the fragment formula (without considering ionization). Peak intensities of the fragment
peaks are taken from the literature. They are either given as actual number or estimated
from the plotted spectrum. In addition, we add 70% noise peaks with uniformly distributed
masses smaller than the parent mass, and pareto distributed intensities.

4 Results

4.1 Molecular Ion Peak and Formula Identification
Fragmentation trees enable the identification of the molecular ion and the molecular formula
of a metabolite if the molecular ion is present in the spectrum. EI is a hard ionization
technique resulting in missing molecular ion peaks in about 30% of the spectra [22]. For
two compounds in our dataset, namely gossypol and ephedrine, the relative intensity of the
molecular ion peak given in the literature was 0%. We test the identification of the molecular
ion and the molecular formula on the remaining 20 spectra containing a molecular ion peak.

To identify the molecular ion peak and its formula an alphabet of potential elements must
be provided to the method. For all compounds, we use the six elements most abundant in
metabolites, namely carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and
sulfur (S) [18]. When analyzing the two compounds in our dataset containing chlorine (Cl),
we also add this element to the alphabet. Information on whether a compound contains
chlorine can be usually obtained from isotope pattern analysis.

Computing the molecular ion peak and molecular formula requires an average of 4.6 s for
each compound. This time includes peak decomposition and graph construction. We discard
peaks with no decomposition. We then choose the subset of peaks that appear to be most
relevant for the compound as described above. We choose k1 = 10 and k2 = k3 = 5, resulting
in at most 20 peaks if the sets are not overlapping.

For all compounds, the method correctly detect the molecular ion peak. This is not
surprising, since the molecular ion peaks have the highest m/z values in all spectra, based
on the generation of noise peaks as described above. For 17 of the 20 compounds (85%),
the highest scoring suggestion for both the molecular ion peak and its molecular formula is
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Table 3 Results of the tree evaluation. (a) Peak explanations in the annotated pathways
compared to the computed fragmentation trees. 1Percent of the explanations in the annotated
pathways. 2Percent of the explanations in the computed fragmentation trees. (b) Evaluation of
the fragmentation events annotated in the fragmentation trees. For 5 of the 277 correct peak
explanations, the fragmentation process leading to this fragment is not given in the literature.
(c) Evaluation of the frequency of parallelograms in the annotated pathways. A parallelogram is
closed if both fragmentation ways are annotated, and “open” otherwise. 3Percent of the “open”
parallelograms.

(a) fragments pathway tree
total total correct missing additional

peak explanations 296 284 277 19 7
precentage 93.6%1 6.4%1 2.5%2

(b) losses total correct correct, but to high wrong
to deep reverse order

losses 272 214 31 8 19 39
percentage 78.7% 11.4% 2.9% 7.0% 14.3%

(c) parallelograms total closed “open” different in tree
parallelograms 99 29 70 8
percentage 29.3% 70.7% 11.4%3

correct. For the remaining three compounds, the correct molecular formula is the second
suggestion.

4.2 Fragmentation Tree Quality

We compute a hypothetical fragmentation for every compound, assuming that we know the
correct molecular ion and molecular formula of the compound. In this step, all peaks of
the spectrum are used for computation. Computation, including decomposition and graph
construction, requires 1.5 s on average and a maximum of 18.5 s for the largest compound,
namely gossypol. For this compound with mass of 518.2Da, decomposition of all peaks
requires 17.9 s (97% of the total running time).

We compare the computed fragmentation trees with annotated fragmentation patterns
from the literature. The fragmentation trees annotate 284 peaks in total (see Table 3(a)).
Only seven of this explanations (2.5%) are false positives, that is explanations of noise
peaks as fragments. The remaining 277 peaks are annotated with the correct fragment
formula. From all 296 fragments described in the pathways from literature 19 (6.4%) could
not be explained. There are different reasonings for a peak not being explained in the
tree. For some peaks, the mass deviation of the measured peak mass to the exact mass is
to high. This effect is getting stronger for smaller peaks, since mass deviation penalty is
dependent of the peak intensity [16]. For other peaks, the fragmentation step resulting in
this fragment gets a bad score. For example, the loss C2H2N that was annotated in the
literature as a first fragmentation step for three of the alkyl isocyanides is not included in
the list of common losses for EI fragmentation and is not even a combination of these (see
Table 1 and [16]). Therefore the fragments resulting from this step could not be identified.
Nevertheless, the method is capable of identifying losses that are very specific for a single
compound or compound class and therefore not listed as a common loss (see [16]).
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Figure 2 Computed fragmentation tree (solid edges) of 5,6-hydro-3-hyroxymethyl-2-methyl-1,4-
oxathiine (left) compared to the annotated pathways [25] from the literature (right). This compound
is a worst-case example to visualize all the things that can go wrong. All fragments are annotated
with the correct molecular formula. Dashed edges in the tree are losses from the annotated pathways.
Black edges in the fragmentation tree agree with the annotated pathways. Grey dashed edges are
additional pathways that could not be computed since the tree property would have been violated.
The blue fragment was actually cleaved in reverse order from the molecular ion. The green fragments
were inserted to deep, and the orange fragment was inserted to high in the fragmentation tree. The
red fragment was inserted into a completely different pathway. Note that mass errors of more than
10 ppm occur as we added the simulated mass error on the mass of the fragment formula (without
considering ionization).

Individual edges from the fragmentation tree were compared to those in the annotated
pathways, and matching losses were assigned as correct. In some cases, consecutive edges of
the fragmentation tree can be combined to give the molecular formula of a single fragmentation
step in the annotated fragmentation pathways (see Figure 1(a)). In some other cases two
consecutive losses in the fragmentation tree are described in reverse order in the annotated
fragmentation pathways (see Figure 1(c)). We evaluate those fragments that were inserted to
deep or in reverse order in the fragmentation trees as correct, since without a given structural
formula and solely from the EI fragmentation data, the correct case cannot be distinguished
from our method’s suggestion. If the fragmentation step in the resulting fragmentation tree
is explained by several consecutive steps in the annotated pathway, the fragment was inserted
to high (see Figure 1(b)). If the fragment was inserted into a completely different pathway
the edge is assigned as wrong.

For 5,6-hydro-3-hyroxymethyl-2-methyl-1,4-oxathiine [25], we now describe in more detail
how we evaluate the edges of the fragmentation tree (see Figure 2). We choose this compound
as worst-case example to visualize all the things that can go wrong. The loss of ethene from
the molecular ion (146-118) followed by a loss of C2H3O (118-75) as well as a loss of C2H4O2
(118-58) are annotated as correct, as they can be found in the annotated pathways. The water
loss from the molecular ion (146-128) is also annotated in the literature. In the fragmentation
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Figure 3 Fragmentation trees compared to annotated pathways from the literature. (a) Fragment-
ation tree (left) and annotated pathway (right) of a 2,1-benzisothiazoline 2,2-dioxide nitro derivative
(compound 6 from [4]). The grey fragment is not explained in the fragmentation tree as it has very
low intensity and results from a rather uncommon loss (see Table 1). Dashed edges in the tree are
additional losses from the annotated pathways that cannot be explained by our method since the tree
property would be violated. In the literature the edge (150-92) combines two fragmentation steps
(150-120-92), since the 120Da peak is very small. In truth, it is very likely, that this fragmentation
always proceeds in two steps, but that the lifetime of the intermediate ions is too short [4]. The same
applies to edge (150-95) combining the two fragmentation steps (150-122-95). (b) The fragmentation
tree (left) and the annotated pathway (right) of 6,9-dichloro-2-methoxyacridine [1] match completely.
Note that mass errors of more than 10 ppm occur as we added the simulated mass error on the mass
of the fragment formula (without considering ionization).

tree ethene gets lost first and water afterwards (146-118-100), while in the annotated pathway
these losses are cleaved in reverse order. Edges between nodes 118-75-43 can be combined
to the expected loss of C2H3OS so the loss of sulfur is considered as correct. Pulling up
the edges between nodes 146-118-87 results in a total loss of C3H7O, so the CH3O loss was
inserted to deep and is considered as correct by pull-up. Cleaving fragment 45 directly from
118 is considered as to high. Fragment 72 was cleaved by loosing ethene from fragment 100
in the annotated pathway. Therefore the methyl loss (87-72) in the fragmentation tree is
annotated as wrong.

We use similar reasoning processes to evaluate all hypothetical fragmentation trees (see
Figure 3 for two examples and Table 3(b) for an overview). For 5 of the 277 correct peak
explanations, the fragmentation process leading to this fragment is not given in the literature.
From the remaining 272 losses in our data set, 214 losses (78.7%) are assigned as correct.
From these, 31 fragments (11.4%) are inserted to deep and 8 fragments (2.9%) are actually
cleaved in reverse order. Further, we find that 19 fragments (7.0%) are inserted to high
and 39 edges (14.3%) are annotated as wrong. We stress that, unlike for the annotation
of the fragmentation processes in the literature, our method has no information about the
molecular structure of the compounds.
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4.3 Parallelograms
We evaluate the frequency of parallelograms in the annotated pathways from the literature
(see Table 3(c)). As mentioned above, these are constellations where it cannot be decided
solely from the data, whether a fragment results from cleaving loss l1 first and l2 afterwards
or the other way round (see Figure 1), since both intermediate fragment ions are present in
the spectrum. In total, we find 99 parallelograms in all but three compounds. 29 of these
are closed, that is both fragmentation ways are annotated. This is possible since pathways
from the literature not necessarily have to be trees. In contrast, our method has to choose
one of these fragmentation pathways. For the remaining 70 parallelograms, either the one
or the other way is annotated. From these 70 parallelograms, our method selects the other
(possibly wrong) pathway in only 8 (11.4%) cases.

5 Conclusion

We show that hypothetical fragmentation trees agree in their general information very well
with annotated EI fragmentation patterns. We stress that for the computation of the trees
no information about the molecular structure of the compounds is used. It is important
to note that fragmentation trees are not a tool to reflect the specific mechanisms of EI
fragmentation. We find that often the combination or inversion of edges results in pathways
that correspond to the true fragmentation. This is not a major set-back since the relevant
fragmentation can be constructed based on the trees. Fragmentation trees are a basis for
the further interpretation of EI mass spectra. The information obtained, such as fragment
formulas, can be used within other methods, for example to simplify in silico fragmentation
and presumably improve its results.

Many available methods for analyzing fragmentation spectra of metabolites are rule-
based. Mass spectral features are used for classifying compounds [35], Scott [32] uses rules for
different classes to estimate the molecular mass of the compound, and rules are used to predict
the fragmentation pattern of compounds not included in spectral libraries [19]. Completely
unknown compounds may not necessarily follow these known rules for classification or
fragmentation. In contrast, the computation and alignment of fragmentation trees is a fully
automated and “rule-free” approach that is not limited to known compound classes [28]. It
allows to find similar, not necessarily identical, compounds in a library search and unlike
other methods it can report the significance of these hits using a decoy database. Consensus
substructures of these hits may be key structural elements of the unknown compound and can
be used within molecular isomer generators to enumerate all structural isomers containing
these substructures [6]. This pipeline will suggest only a few molecular structures and thus
can greatly reduce manual analysis time.

Fragmentation tree alignment already accounts for the combination of two consecutive
edges [15]. In addition, we find that for some consecutive fragmentation steps the respective
ions do not allow to determine the correct fragmentation order solely from the EI data.
These constellations occur in 86% of the compounds. Our method cannot discern the correct
fragmentation order solely from the data and will select, based on the scoring properties,
the more common and smaller loss twice. In the future, both fragmentation ways should be
considered in the fragmentation tree alignment.
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Abstract
We introduce a method for finding a characteristic substructure for a set of molecular structures.
Different from common approaches, such as computing the maximum common subgraph, the
resulting substructure does not have to be contained in its exact form in all input molecules. Our
approach is part of the identification pipeline for unknown metabolites using fragmentation trees.
Searching databases using fragmentation tree alignment results in hit lists containing compounds
with large structural similarity to the unknown metabolite. The characteristic substructure of
the molecules in the hit list may be a key structural element of the unknown compound and might
be used as starting point for structure elucidation. We evaluate our method on different data sets
and find that it retrieves essential substructures if the input lists are not too heterogeneous. We
apply our method to predict structural elements for five unknown samples from Icelandic poppy.
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1 Introduction

The rapidly developing field of metabolomics deals with the detection, identification and
quantification of low molecular-weight compounds (typically below 1000 Da). All organisms
synthesize many different metabolites and a large portion of them remain uncharacterized
regarding their structure and function [25]. Metabolites cover a wide array of compound
classes and, due to their physical and chemical properties, show large structural diversity.
The analysis and identification of small molecules plays an important role in biomarker
discovery, diagnostics, pharmaceutical chemistry, and functional genomics [9, 21,41].

Currently, no single instrumental platform can analyze all metabolites. Mass spectrometry
(MS) is a key technique to analyze small molecules. It is orders of magnitude more sensitive
than nuclear magnetic resonance (NMR). MS enables high throughput experiments and the
amount of data produced is hard to process and analyze manually [19]. Usually, a combination
of a chromatography with a fragmentation technique is used to obtain information beyond
the compound mass. Most common combinations are gas chromatography MS (GC-MS)
using electron impact (EI) fragmentation and liquid chromatography MS (LC-MS) using
collision-induced dissociation (CID) for fragmentation.

The identification of unknown compounds is a major bottleneck in the interpretation of
metabolomics MS data. When the compound is unknown, comparison with library entries or
spectra of known standards will result in imprecise or incorrect hits, or no hits at all [10, 20].
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For GC-MS spectra Demuth et al. [7] propose a method for finding similar compounds
in a spectral library if the sample molecule is not contained. Further, methods for the
identification of chemical substructures of the unknown sample molecule based on the direct
comparison of fragmentation spectra have been proposed [17,34, 37, 39]. For the automated
analysis of LC-MS there are few computational pioneering studies [13,14,26,42].

Besides classification of unknown compounds, not much progress has been made towards
the de novo interpretation of mass spectra of small molecules, that cannot be found in any,
not even a structural, database. When manually analyzing fragmentation mass spectra
experts annotate fragmentation peaks and pathways to explain the data and determine the
molecular structure. Böcker and Rasche [3] developed a method for the de novo interpretation
of such spectra, resulting in hypothetical fragmentation trees. Fragmentation tree nodes are
annotated with the molecular formula of the fragments, whereas edges represent fragmentation
events, that is, neutral or radical losses. Here the computational analysis does not require
any knowledge about compound structures or databases of compound structures or mass
spectra. Only lists of common and implausible losses are required as expert knowledge about
fragmentation mechanisms. Recently, methods to calculate fragmentation trees from multiple
MS and GC-MS data have been developed [16,32].

Rasche et al. [28] propose local tree alignments for the automated comparison of frag-
mentation trees. A local tree alignment contains those parts of the two trees where similar
fragmentation cascades occurred. The authors could show, that this method is superior
to spectral comparison in applications such as database searching. Fragmentation tree
alignments even allow for inter-dataset comparisons for data sets measured on different
instruments [28]. The authors present FT-BLAST, a database search tool for the identifica-
tion of unknown metabolites based on fragmentation tree alignment. The received hit lists
contain compounds with large structural similarity to the unknown metabolite. The common
substructure of these compounds can be a starting point for its structural elucidation. A
similar approach has been proposed by [31].

Finding the largest substructure common to a collection of graphs is denoted as maximum
common subgraph (MCS) problem [29]. This problem is NP-hard even for two graphs [11].
There exists a rich literature in chemoinformatics and molecular modelling on this topic,
often targeted at searching in molecular databases [27]. See Brown [5] for an introduction to
chemoinformatics, and Raymond and Willet [29] for a review of exact and approximation
algorithms for the maximum common subgraph problem. When computing the MCS for
a set of molecules no deviation to the subgraphs in the molecules is allowed. This rather
strict definition may not reflect the chemical similarity between compounds [36]. Due to
their different physical and chemical properties, the structure of metabolites is heterogeneous
even within the same compound classes. Finding the maximum common substructure to
the hit lists received from FT-BLAST will often result in a very small structure that is not
meaningful, or even in a single (carbon-) atom or an empty graph. An alternative approach
is searching for frequent substructures in the molecule set. Frequent subgraph mining has
been studied extensively in the last decade [4, 12,15,18,23,24,43].

In this work, we loosen the strict definition of a common substructure that has to be
contained in its exact form in either some or all of the input molecules. We rather try to find a
characteristic substructure that is build of frequent (representative) substructures and reflects
the specific features of the molecule set. We present a method to compute this structure
and evaluate it on different compound classes and hit lists received from FT-BLAST. We
find that our method is suitable to deal with structural outliers and retrieves characteristic
substructures if the input lists are not too heterogeneous. We use this method to predict
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substructures for unknown samples from Icelandic poppy.
In addition we developed MoleculePuzzle to combine this characteristic substructure with

information from fragmentation trees, in silico fragmentation prediction [13,26,33,42], rule
based substructure prediction [17], or structural isomer generators [8]. This tool can help
with the assembly of structural pieces to elucidate the structure of an unknown compound.

2 Molecule graphs

We model the chemical structures of molecules using an undirected, labeled graph M = (V, E)
with vertices V representing the atoms of the molecule, and edges E representing the covalent
bonds. Vertices are labeled with the corresponding element. Edge labels consider single or
multiple bonds. In the following, we call these graphs molecule graphs. Molecule graphs only
reflect the topology of the molecule and do not indicate the geometric distance between a
pair of atoms (vertices). As hydrogen atoms are of limited importance for elucidating the
core structure of a molecule, they are ignored in the following.

Two graphs are isomorphic if there is a one-to-one correspondence between their vertices
such that an edge exists between two vertices in one graph if and only if an edge exists
between the two corresponding vertices in the other graph. A (vertex-) induced subgraph
of M is a set of vertices S ⊆ V and those edges from M that connect two vertices from S.
A graph M1,2 is a common induced subgraph of graphs M1 and M2 if M1,2 is isomorphic
to induced subgraphs of M1 and M2. A maximum common induced subgraph (MCIS) is
the common induced subgraph with maximum number of vertices. The related maximum
common edge subgraph (MCES) is a subgraph consisting of the largest number of edges
common to both M1 and M2.

Since the structures of metabolites are heterogeneous, finding the MCS (either MCIS or
MCES) will often result only in small subgraphs or even a single vertex. In this work we
loosen the strict definition of an MCS and try to find a characteristic substructure CS, that
is a graph reflecting the characteristics of a set of molecule graphs best.

3 Methods

To compute a characteristic substructure CS for a setM of m molecule graphs M1, . . . , Mm

we start with the computation of representative paths, since paths can be found fast in
(molecule) graphs. The relative frequency hM(p) of a path p is the number of molecule
graphs Mi ∈M that contain a path q that is isomorphic to p divided by the total number of
molecule graphs. We call a path representative if it has a relative frequency above a certain
threshold ht ∈ [0, 1]. For the computation of representative paths edge labels are ignored.

A path p induces a subgraph M(p) containing all edges from M that connect two vertices
vi, vj from p. We call this subgraph path structure P . Note that two isomorphic paths do not
necessarily have to induce two isomorphic subgraphs (see Figure 1). Path structures contain
the information that is necessary to construct the characteristic substructure. The relative

N O

N OC N C C C O C
N O

N O

p M1 M2 M1 M2

Figure 1 Molecules M1 and M2 both contain a path isomorphic to path p (red). The two
isomorphic paths induce two subgraphs in M1 and M2 that are not isomorphic (blue).
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Figure 2 Adding path structures to the characteristic substructure CS. The figure is not a
snapshot of a specific stage of the algorithm but rather an illustration of how to build up the CS from
several path structures. C atoms are implicit. The drawn structures are not meant to depict real
molecules. First, all subgraphs isomorphic to the first path structure P1 are located in the molecule
graphs (red) and P1 is used as skeletal structure to build CS (green). We store the locations of the
subgraphs (blue) to locate the subgraphs isomorphic to the next path structures. The second path
structure P2 is only isomorphic to subgraphs in M1 and M2 (red). Location of the subgraphs is the
same in both molecules. Path structure P2 is added to CS at this location. Path structure P3 is
isomorphic to subgraphs in all molecule graphs (red). The subgraphs in M1 and M2 are located at
the same position while the subgraph in M3 is located somewhere else. Path structure P3 is added to
CS at the most frequently occurring location and the subgraphs in M1 and M2 are marked (blue).

frequency hM(Pi) of a path structure Pi is the number of molecule graphs Mj ∈ M that
contain a subgraph that is isomorphic to Pi divided by the total number of molecule graphs.
We call a path structure representative if it has a relative frequency above a certain threshold
ht. For the computation of representative path structures, edge labels are reconsidered.

For a certain length l we compute all representative paths of length l, find all representative
path structures induced by these paths, and add these path structures to the characteristic
substructure. We start with a certain length lstart decreasing it stepwise until we find a path
structure that can be added to the characteristic substructure. Afterwards we increase the
step size to s to skip path structures that add only few information to the characteristic
substructure. We stop if l < lend since adding shorter paths seems to worsen the results.

Assume we have computed all representative path structures for a certain length l. We
sort these path structures by their relative frequency in descending order P1, . . . , Pn. Lets
assume that each path structure is isomorphic to at most one induced subgraph in each
molecule graph. We start building the characteristic substructure CS with the most frequent
path structure P1 using it as skeletal structure. After P1 is added to CS we remember
the locations of all subgraphs within the molecule graphs that are isomorphic to P1 (see
Figure 2).

By definition path structure Pi is a common induced subgraph of at least ht molecule
graphs Mj ∈ M. To add Pi to CS we have to compare the locations of these subgraphs
with the location of the subgraphs of recently added P1, . . . , Pi−1. Comparison can be done
easy, since we have stored the locations of all recently added path structures in the molecule
graphs. Path structure Pi gets the location in CS that most of the subgraphs have within
the molecules. Again, we memorize this subgraph location for the molecules in which it
occurs (see Figure 2).

If a path structure Pi is isomorphic to more than one subgraph in a molecule graph we
want to add all subgraphs instead of choosing one. If at least k ≥ 1 isomorphic subgraphs
within the same molecule graph in at least |M| · hiso molecule graphs occur, we proceed as
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Figure 3 Adding a path structures that is isomorphic to k = 2 subgraphs in all molecule graphs.
C atoms are implicit. The drawn structures are not meant to depict real molecules. In all molecules
we consider the two subgraphs isomorphic to Pi as a single subgraph (red). This subgraph is
disconnected in M1 and M3, and connected in M2. We add the most occurring subgraph to CS

(green) and mark its location in M1 and M3 (blue).

follows: In all molecules that contain exactly k subgraphs isomorphic to Pi we consider these
k subgraphs as a single subgraph. This subgraph is either connected or disconnected. We
compare the location of these subgraphs and add the most occurring to CS as described
above (see Figure 3).

4 MoleculePuzzle

Computing a characteristic substructure for a set of molecules that have presumably large
structural similarity to an unknown compound will greatly support its structure elucidation.
In combination with the information from the fragmentation tree this substructure can be
used to “puzzle” the molecular structure of the unknown compound. If need be, molecular
isomer generators [8] can be used to enumerate all structural isomers of the annotated
fragment formulas.

We present a puzzle tool to assemble molecular structures (see Figure 7 in the Appendix).
MoleculePuzzle is a JAVA based plugin for the SIRIUS2 framework1 [2]. It is based on
JChemPaint [22] which provides an interface that allows to draw chemical compounds.
JChemPaint already contains templates for ring structures and different bond types and
allows atom coloring, different render settings, as well as loading and storing structures from
and into various file formats. In addition, it offers automated highlighting of chemically
incorrect structures, which simplifies structure assembly.

We extend JChemPaint to work with a list of molecular structures which are transformed
into puzzle pieces. These pieces can be added to the painting panel to modify the structures
and fit them together. JChemPaint’s drag and drop feature indicates when it is possible to
connect one structure to another. MoleculePuzzle helps to assemble several structural pieces
to a full structure.

5 Experimental results and discussion

We evaluate our method on three different data sets: First, we compute characteristic
substructures for molecules from the same compound class and compare these structures
to all molecules within this class. Second, we compute the characteristic substructures for
molecules in the hit lists received from the FT-BLAST search tool for a reference data set

1 http://bio.informatik.uni-jena.de/sirius2/
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and compare them to the structure of the query compound. Third, we use our method on
FT-BLAST hit lists for structure prediction of unknowns from Icelandic poppy.

To evaluate the quality of the computed substructures we use binary fingerprint repres-
entations to compute Tanimoto similarity scores (Jaccard indices) [30] and Tversky similarity
scores [38]. We use fingerprints of the PubChem database [40] in the Chemistry Development
Toolkit version 1.3.7 [35] for our computations. To compute the asymmetric Tversky similarity
we weight the features only occurring in the CS with 1 and these only occurring in input
molecules with 0. Tversky similarity gives an indication whether the CS is a substructure of
the input molecules. Tanimoto similarity indicates whether the CS reconstructs important
features of the input list.

In the following, we choose lstart = 20, lend = 5, s = 4, hiso = 0.8, ht = 0.8. We
implemented the algorithm in Java and carried out all computations on a quad-core Intel®
Core™ i7-820QM with 8GB RAM under Windows 7 operating system.

5.1 Characteristic substructures for compound classes
This data set consists of 395 molecules from 15 different compound classes (based on MeSH2

categories) downloaded from PubChem Compound3 (see Table 3 in the Appendix for CIDs).
For each compound class, we compute the characteristic substructure (see Figure 8 in the
Appendix). Computation required 6.4 s on average.

We calculate a score TanimotoCS that is the average of Tanimoto scores of all input
molecules to the CS (see Table 1). To report the average Tanimoto structural similarity score
of a class, we calculate pairwise Tanimoto scores for all molecules in the class. Tanimotoclass
is the average of all these pairwise Tanimoto scores. This score may be seen as an upper
bound for TanimotoCS . TverskyCS is the average of Tversky scores of all input molecules to
the CS.

Table 1 Quality of the characteristic substructures for 15 metabolite classes. Tanimotoclass is
the average of all pairwise Tanimoto scores within the compound class. TanimotoCS (TverskyCS) is
the average Tanimoto (Tversky) score of all input molecules to the CS.

compound class # of Tanimotoclass TanimotoCS TverskyCS running
molecules time (s)

2-acetylaminofluorenes 12 0.88 0.82 0.99 1.6
adenines 44 0.81 0.71 0.97 8.1
benzothiadiazines 25 0.64 0.54 0.99 4.3
chlorothiazides 24 0.58 0.51 0.98 7.1
cytosines 22 0.62 0.45 0.98 1.5
erythromycins 24 0.77 0.53 0.99 8.0
glucosinolates 66 0.67 0.52 1 4.9
guanines 18 0.62 0.26 0.97 2.7
lipids 22 0.92 0.37 1 28.0
neuraminic acids 14 0.77 0.57 0.97 1.8
peroxides 24 0.59 0.18 0.98 4.7
pregnadienes 26 0.79 0.68 0.99 12.5
thymines 24 0.66 0.49 1 0.9
trichothecenes 26 0.86 0.74 1 8.9
uraciles 24 0.56 0.46 1 0.7

2 http://www.nlm.nih.gov/mesh/
3 http://www.ncbi.nlm.nih.gov/pccompound

http://www.nlm.nih.gov/mesh/
http://www.ncbi.nlm.nih.gov/pccompound
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For all compound classes, TverskyCS is at least 0.97, indicating that the CS is contained
in all molecules to a large extend. For 9 compound classes, TanimotoCS is above 0.5. We
argue that TanimotoCS > 0.5 indicates good quality of the result, as large parts of the input
structures have been reconstructed. From the remaining, we found that for three classes the
difference between TanimotoCS to Tanimotoclass is less than 0.2, so the classes already seem
to be very heterogeneous and therefore the resulting substructures are only small. For the
other three compound classes the difference is larger than 0.2: For guanines our method
only found the 6-membered-ring but unfortunately the 5-membered-ring is missing. Thus
TanimotoCS is low (0.26). Lipids are typically build of several 6-membered-rings and several
carbon sidechains of different lengths. Due to the different number of rings and sidechains,
our method only reconstructs a single 6-membered-ring with the typical oxygen and phosphor
structure and a carbon sidechain of eleven atoms connected via a nitrogen. We argue, that
this is the main substructure which can be duplicated and expanded (for example using the
MoleculePuzzle tool). Our method works worst for the class of peroxides, which we found
to be structurally more heterogeneous (at least for our method) than the Tanimoto score
suggests.

For erythromycins the difference between TanimotoCS and Tanimotoclass is also above 0.2.
Erythromycins are huge compounds (56 heavy atoms on average) all containing a macrocycle
(14 atoms). Our method reconstructs this ring correctly but has problems with the different
sidechains, resulting in a somewhat cluttered side structure. Nevertheless, TanimotoCS is
still above 0.5 and TverskyCS is 0.99.

5.2 Characteristic substructures for FT-BLAST hit lists
We compute the characteristic substructures for hit lists reported by FT-BLAST [28]. Rasche
et al. [28] evaluated their method on 97 compounds measured on an Orbitrap XL instrument
using Collision Induced Dissociation (CID) or High-energy Collision Dissociation (HCD)
for fragmentation. They computed fragmentation trees for all compounds and carried out
a leave-one-out FT-BLAST search. For each compound they removed the correct answer
from the database and searched for the compound in the remainder. They reported hits up
to a False Discovery Rate (FDR) of 30%. For the 60 reported lists with at least two hits
we compute characteristic substructures and compare them to the structure of the query
compound. We also use the hit lists with FDR 20% (57 lists with at least two hits) and 10%
(56 lists with at least two hits).

To report the average structural similarity of the hits returned by FT-BLAST, we calculate
the Tanimoto score of the query compound to each hit list entry. Tanimotohitlist is the

Table 2 Quality of the characteristic substructures computed for FT-BLAST hit lists.
Tanimotohitlist is the average of all Tanimoto scores of the query compound to the hit list entries.
TanimotoCS (TverskyCS) is the Tanimoto (Tversky) score of the query compound to the CS. We
average Tanimotohitlist over all hit lists and TanimotoCS (TverskyCS) over all non empty substruc-
tures.

FDR nr of average average empty CS average average running
hit lists hit list Tanimotohitlist TanimotoCS TverskyCS time (s)

length
30% 60 11 0.76 9 0.49 1 1.4
20% 57 9 0.77 5 0.50 0.99 1.1
10% 56 8 0.79 4 0.50 0.99 0.9

GCB 2012



30 Finding Characteristic Substructures for Metabolite Classes

glucoiberin
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4-methoxy-3-indolylmethyl-glucosinolate
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indolylmethyl-glucosinolate
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7-methylthioheptyl-glucosinolate
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Figure 4 Characteristic substructure for the FT-BLAST hit list of glucoraphenin (CID 6443008).
(a) The FT-BLAST hit list with FDR 30% contains several glucosinolates (1-13) and two sugars
(14,15). Computing the maximum common substructure would result in a very small structure. The
characteristic substructure computed by our method (b) is contained in the query compound (c)
(green) with slight variation (orange). Note that H atoms are ignored by our method.

average over all these scores. Again, this is somewhat an upper bound for the Tanimoto
score between the query compound and the characteristic substructure (TanimotoCS). The
average Tanimotohitlist similarity for the complete dataset, using the leave-one-out strategy
described above, is 0.76 for an FDR of 30% and increases slightly with decreasing FDR to
0.79 (see Table 2).

For each hit list, we compute the characteristic substructure (see Table 2 for an overview
of the results). Computation required on average 1.4 s for the hit lists with FDR 30%
(average hit list length 11), 1.1 s for hit lists with FDR 20% (average hit list length 9),
and 0.9 s for hit lists with FDR 10% (average hit list length 8). We calculate TanimotoCS

(TverskyCS), that is the Tanimoto (Tversky) similarity between the query compound and
the characteristic substructure. For the hit lists with FDR 10% and 20% TanimotoCS was
0.5 on average and for FDR 30% it was about the same, namely 0.49. TverskyCS was 0.99
for 10% and 20% FDR and even increased to 1.0 for FDR 30%. Since using the hit lists
with smaller FDR seems not to improve the results significantly, we use the FDR 30% hit
lists reported by Rasche et al. [28] for further evaluation (see Table 2 in [28]).

The method works best if many compounds of the same class are included in the hit
lists (as for sugars, zeatins and glucosinolates). Nevertheless, the method also computes
good results even if some outliers are contained in the list. For example the hit list for an
anthocyanin (CID 44256805) contains benzopyrans, amino acids, anthocyanins and one sugar.
The method finds the main component, a 6-membered-ring with an oxygen and a carbon side
atom. This ring is contained several times in the structure of the query compound. Another
example is glucoraphenin (see Figure 4). Computing the maximum common substructure
would have result in a very small, as fucose and rhamnose do not share the large structure
with the remaining hits. Our method computes a characteristic substructure which is close
to the query compound.

Very heterogeneous hit lists are hard to process. For 9 query compounds the characteristic
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2 2

2

arginine - 175 Da stamen with base (pos)

hexose - 179 Da stamen (neg)

2

2

glutamine - 147 Da stamen (pos)

quercetin - 301 Da stamen (neg)

corytuberin - 328 Da stamen with base (pos), stem (pos), petal (pos)

reticuline - 330 Da stamen with base (pos), petal (pos)

Figure 5 Resulting characteristic substructures for the FT-BLAST hit lists for the six compounds
from Icelandic poppy that were manually identified. For each sample, the query compound (left)
is compared to the resulting substructure(s) (right). For corytuberin the hit lists for the different
samples from stamen, stem and petal supply different characteristic substructures that could be
further combined with the MoleculePuzzle tool. For reticuline the samples from stamen and petal
result in the same substructure, while no substructure was found for the stem sample. Processing
the hit lists of the samples for the unspecified palmatine derivates (370Da and 386Da) results in
the same substructure as for reticuline. Note that H atoms are ignored by our method.

substructure was empty. For other compounds (for example bergapten), the characteristic
substructure looks somewhat cluttered.

5.3 Characteristic substructures for unknowns from Icelandic poppy
As a real-world example Rasche et al. [28] tried to identify unknown metabolites from
Icelandic poppy (P. nudicaule). They computed fragmentation trees for 32 compounds
and compared them with the Orbitrap data set as reference using FT-BLAST. Again, they
reported hits up to an FDR of 30%. We use this lists, since smaller FDRs seem not to
improve the results for the previous data set.

Eight compounds from the dataset were manually identified by Rasche et al. [28]. For
arginine, glutamine, quercetin and a hexose the correct compound was in the hit list. FT-
BLAST results for reticuline (330.17 Da) and corytuberine (328.15 Da) included chemical
precursors of these alkaloids. Two other unknowns (370 and 386 Da) were manually classified
as palmatine-derivatives. For all these compounds our method predicts correct substructures
(see Figure 5).

We use our method to predict substructures for the remaining unknown compounds in
this data set. For one compound only one hit is received and substructure prediction is
not necessary. For seven compounds the hit lists are very heterogeneous (Tanimotohitlist=0)
and our method finds no characteristic substructure. This can be attributed to the small
database (97 compounds) we are searching in. For the remaining five samples we compute
characteristic substructures (see Figure 6) that can be used for further structure elucidation
of the compounds.

6 Conclusion

We have developed a method for computing a characteristic substructure for a set of molecules.
Different from the maximum common substructure this substructure does not have to be
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285 Da petal (neg) 400 Da stamen (pos) 438 Da petal (pos), 
stamen (pos)

537 Da stamen (pos)

Figure 6 Substructure prediction for five samples from Icelandic poppy that are unknown. FT-
BLAST hit list for 285 Da petal (neg) contains six compounds with Tanimotohitlist = 0.6. The hit
list for 400 Da stamen (pos) contains six compound with Tanimotohitlist = 0.4. For both compounds
we compute large characteristic substructures. The hit lists for 438 Da petal (pos) and 438 Da
stamen (pos) both contain ten compounds with Tanimotohitlist = 0.1. FT-BLAST hit list for 537
Da stamen (pos) contains twelve compounds with Tanimotohitlist = 0.1. The resulting characteristic
substructures for these three samples are rather small.

contained in its exact form in all input molecules. Finding characteristic substructures is an
important step in the identification of unknown metabolites. It is part of a pipeline which is
based on the computation of fragmentation trees from mass spectral data. Fragmentation
tree alignment allows to find similar, not necessarily identical, compounds in a library search.
Characteristic substructures of these hits may be key structural elements of the unknown
metabolite.

We have evaluated our method on classes of molecules and FT-BLAST hit lists. We
found that our method reconstructs many structural features contained in the input lists.
Different from finding the maximum common substructure our method can deal with
structural irregularities. Nevertheless, if the input lists are to heterogeneous no characteristic
substructure can be predicted. We used the Tanimoto score for estimating structural
homogeneity, but by visual inspection we found that some input lists are structurally more
heterogeneous (at least for our method) than the Tanimoto score suggests.

We have predicted substructures for five unknown samples from Icelandic poppy. Sub-
structure prediction is strongly dependent on the FT-BLAST hit lists. The reference data
set for FT-BLAST used in the study of Rasche et al. [28] was pretty small. The resulting hit
lists will become more homogeneous as more reference compounds become available, and we
expect that the predicted substructures will be better and probably larger.

The presented method is not taking atom valences into account, but rather adopts the bond
order from the input molecules. Bond orders can be corrected using automated bond order
assignment [1,6]. The characteristic substructure and information from fragment formulas can
be assembled in our MoleculePuzzle tool with results from in silico fragmentation prediction [13,
26,33,42], rule based substructure prediction [17], or structural isomer generators [8]. Together,
the two presented tools form an important step towards the structure elucidation of unknown
compounds.

Acknowledgments F. Hufsky was supported by the International Max Planck Research
School Jena.
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A Appendix

Figure 7 Screenshot of the MoleculePuzzle plugin for the SIRIUS2 framework. Several structural
pieces can be puzzled together to receive the full structure of a molecule.

Table 3 PubChem CIDs for the 395 molecules from 15 compound classes.

compound class # molecules PubChem CIDs
glucosinolates 66 23682211, 25244590, 46173878, 9548633, 9548621, 9576240,

9576416, 656498, 9548605, 656539, 656538, 9576241, 46173877,
44237373, 656547, 46173876, 44237368, 5281133, 656555, 656557,
46173880, 44237257, 656543, 656523, 44237260, 656527, 6325242,
9548892, 25244892, 441524, 46173879, 6442557, 5281135, 656568,
46173882, 9576738, 46173875, 656545, 656525, 7098673, 17756749,
656541, 656531, 46173881, 44237206, 5281136, 44237203, 9548619,
5281138, 46173884, 25245521, 6443008, 5281134, 656537,
25244538, 25244201, 17756744, 5281139, 46173883, 25246161,
25245774, 25244220, 25243874, 9548618, 656562, 656548

adenines 44 3083432, 3083316, 3082029, 3081390, 3080770, 3080762, 3036950,
703739, 466837, 465383, 440867, 25246029, 15938965, 12358355,
7059571, 7058055, 41211, 34768, 32014, 10238, 9687, 6083, 6076,
1913, 224, 50909893, 44134557, 25244014, 25201135, 23615303,
23615194, 23421209, 22848660, 16078938, 9578273, 9589376,
6992262, 6452236, 6449870, 6426627, 5748329, 5491933, 5399013,
4617095

cytosines 22 455597, 5276954, 597, 452713, 441224, 374908, 492030, 492031,
500131, 6473860, 471292, 477169, 477168, 467421, 455604, 455603,
455602, 455598, 16727509, 477170, 455605, 455601

guanines 18 764, 374910, 160219, 129161, 133387, 161069, 145817, 129136,
406591, 130450, 478537, 25082899, 471293, 485625, 485629,
485626, 485624, 195385

Continued on next page



M. Ludwig, F. Hufsky, S. Elshamy, and S. Böcker 37

Table 3 – continued from previous page
compound class # molecules PubChem CIDs
thymines 24 1135, 452067, 451954, 6439704, 135557, 6450954, 452068, 452063,

452715, 607039, 196362, 6477693, 370631, 406592, 6477695,
6477692, 492029, 465896, 445213, 495405, 374907, 457298, 485384,
452946

uraciles 24 1174, 6194, 18323, 9412, 5386, 68216, 13712, 5899, 5360852,
5282192, 688297, 6971263, 6029, 69672, 13268, 208432, 453162,
1177, 452948, 125110, 3067786, 55281, 456513, 54929

lipids 22 440885, 46173186, 46173313, 50909837, 46173444, 25246183,
25246208, 25200834, 46173394, 25246224, 3083382, 25202130,
25244473, 51351771, 51351791, 46173153, 50909852, 46173409,
127960, 13831140, 440886, 160295

benzothiadiazines 25 62940, 43148, 22425, 2910, 2348, 2343, 2122, 12933, 5560, 4870,
4121, 44154271, 44152755, 44151672, 6441852, 871720, 216293,
198367, 194167, 188359, 174783, 173791, 107748, 72070, 71652

trichothecenes 26 11968047, 11968045, 6540635, 6450461, 6444304, 6438947,
6438478, 6437354, 6437353, 45266518, 11969549, 6431315,
6321400, 5459303, 5284461, 3000635, 529495, 442403, 442400,
30552, 50987470, 50986319, 44144558, 44144549, 44144548,
11969469

chlorothiazides 24 127085, 116034, 107748, 71656, 62940, 2348, 2720, 5560, 3639,
50987261, 44151672, 44147212, 24847808, 23717274, 11354874,
3083286, 3083063, 242921, 216293, 193444, 188359, 174783,
172393, 159328

erythromycins 24 5284534, 3033819, 447043, 429694, 84029, 55185, 24847865,
17753754, 5748242, 5282045, 3002190, 44629874, 16212992,
6713919, 6426643, 83935, 83933, 12560, 44629879, 25102720,
17753750, 11969952, 9604450, 6915744

peroxides 24 5497123, 5464098, 641668, 637882, 45266618, 16760624, 16219283,
5311493, 445049, 1035, 45027791, 45027789, 44202131, 44145773,
25245484, 25244877, 25244708, 23690934, 22169438, 16394563,
6476300, 6543478, 6450800, 6454765

pregnadienes 26 63043, 63042, 63041, 62961, 45006164, 44266812, 24867475,
20054915, 23671691, 11957468, 11954369, 16490, 9793, 9782, 9642,
5876, 9571040, 6714002, 6713977, 6452749, 5388957, 5388959,
656804, 633091, 443958, 443936

2-
acetylaminofluorenes

12 5897, 22469, 5896, 168033, 135827, 130776, 130694, 119334,
108117, 22722, 19347, 17270

neuraminic
acids

14 46878426, 23679065, 20112027, 16760374, 6857396, 448209,
445063, 444885, 439197, 349960, 60855, 18292, 8565, 906
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Figure 8 Characteristic substructures for the 15 different compound classes.
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Abstract
We propose a new method for soft spatial segmentation of matrix assisted laser desorption/ioniz-
ation imaging mass spectrometry (MALDI-IMS) data which is based on probabilistic clustering
with subsequent smoothing. Clustering of spectra is done with the Latent Dirichlet Allocation
(LDA) model. Then, clustering results are smoothed with a Markov random field (MRF) res-
ulting in a soft probabilistic segmentation map. We show several extensions of the basic MRF
model specifically tuned for MALDI-IMS data segmentation. We describe a highly parallel im-
plementation of the smoothing algorithm based on GraphLab framework and show experimental
results.

1998 ACM Subject Classification I.4.6 Segmentation, J.3 Life and Medical Sciences, J.2 Physical
Sciences and Engineering, H.2.8 Database Applications

Keywords and phrases MALDI imaging mass spectrometry, hyperspectral image segmentation,
probabilistic graphical models, latent Dirichlet allocation, Markov random field
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1 Introduction
1.1 MALDI-imaging mass spectrometry and the segmentation problem
Untargeted spatially-resolved biochemical analysis of biological tissue sections using imaging
mass spectrometry (IMS) is an emerging field of biochemistry which has received considerable
attention over the last decade [11,16,35], with the most popular IMS technique called matrix-
assisted laser desorption/ionization (MALDI-IMS) or MALDI-imaging [9, 32]. IMS acquires
a set of mass spectra in a rasterized way across the surface of a prepared tissue section;
one mass spectrum corresponds to one pixel. A mass spectrum is a vector of intensities
associated with mass-to-charge (m/z) values representing in a semi-quantitative way the
abundances of ions separated by their m/z-values; a high intensity of a mass spectrum at an
m/z-value represents a high abundance of an ion of this m/z. In MALDI mass spectrometry,
an m/z-value is usually interpreted as the molecular mass, since ions with charge +1 prevail.
An IMS dataset is large, normally with around 100× 100 spectra acquired across the section
with each spectrum having around 10000 intensity values. An IMS dataset can be considered
as a hyperspectral image whose image channels correspond to m/z-values.
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Automatic mining of such massive hyperspectral imaging data is essential for applications
of the IMS technique to biomedical challenges. One of the established methods of MALDI-IMS
data mining is spatial segmentation that allows one to represent a hyperspectral MALDI-IMS
dataset with just one image, the so-called segmentation map. In this map, pixels of similar
mass spectra are pseudo-colored with the same color. There are several methods proposed
for spatial segmentation of MALDI-IMS data based on clustering of mass spectra. Spatial
segmentation of MALDI-IMS data is challenging because of the size of the datasets and
strong pixel-to-pixel variation inherent to the sample preparation and acquisition techniques
used for MALDI-IMS. It has been shown that the best-performing segmentation methods
reduce pixel-to-pixel variation, e.g. by means of incorporating spatial relations between pixels
into the distance function [2].

1.2 Results and structure of the paper
We propose a two-step procedure for spatial segmentation of MALDI-IMS data. On the first
step, we cluster MALDI-IMS spectra with the probabilistic graphical model called Latent
Dirichlet Allocation (LDA) [8]. LDA has recently obtained recognition in text mining because
it can remain scalable and efficient while extracting hidden features (“topics”) from a set
of documents. In the context of MALDI-IMS data segmentation, LDA has the following
advantages as compared to other published methods: (i) reduced memory requirements as
compared to hierarchical clustering recommended by [12]; (ii) reduced complexity as compared
to high-dimensional discriminant clustering recommended by [1]; (iii) most importantly,
additional information provided by LDA as compared to other clustering methods. This
information associates each data point (pixel) in the LDA model with the probabilities to
belong to each cluster and, moreover, the LDA model learns a distribution of the “words”
(m/z values) to be generated by different topics; this “soft” clustering is better suited for
further analysis such as extracting characteristic masses for each cluster. We describe our
clustering procedures in Section 2.

On the second step, we smooth soft clustering results provided by LDA with a probabilistic
smoothing model which we base upon Markov random fields. LDA results are convenient
to use in such a probabilistic setting. We introduce several extensions to the model that
let us enhance MRF smoothing results specifically for MALDI-imaging data processing; in
particular, we learn the weights of the MRF network with an EM-like procedure. Moreover,
we have developed a fast highly parallel implementation of MRF smoothing for clustering
results based on the GraphLab parallelization paradigm. These results are described in
Section 3. In Section 4, we describe the dataset and show experimental results of our
segmentation procedures. Section 5 concludes the paper.

2 Clustering of MALDI-IMS spectra

2.1 LDA
Latent Dirichlet allocation (LDA) is a clustering model that was originally intended for use
with natural language text processing [8, 24]. LDA takes the naive Bayes model one step
further: while naive Bayes has only one latent variable, namely the topic, and words are
conditionally independent given a topic, LDA view documents as mixtures of several topics.
In essence, LDA is a hierarchical Bayesian model: (i) on the first level, it has a mixture
whose components correspond to the “topics”; (ii) on the second level, a multinomial variable
with Dirichlet prior that corresponds to the “distribution of topics” in a document.
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Figure 1 LDA graphical model.

This gives rise to the following generative
model (see Fig. 1): (1) choose the num-
ber of words N ∼ p(N | ξ); (2) choose
the topic distribution θ ∼ Dir(α); (3) for
each word wn, n = 1..N : (i) choose a
topic zn ∼ Mult(θ); (ii) choose a word
wn ∼ p(wn | zn, β). The joint distribution in
the LDA model (for a fixed number of topics
k and parameters βij = p(wj = 1 | zi = 1))
is p(θ, z,w, N | α,β) = p(N | ξ)p(θ | α)∏N

n=1 p(zn | θ)p(wn | zn,β). Inference in
LDA can be done, for example, with variational methods or with Gibbs sampling.

The LDA model has had success in text processing, but its applications are not limited
to information retrieval problems. In this work, we have applied LDA to the clustering of the
spectra. Note that in MALDI-imaging, one spectrum is acquired at one pixel. We propose
to use individual pixels of the image as “documents” and masses corresponding to peaks
in the spectrum as “words”. The results of applying LDA to such “documents” are topic
distributions in each pixel of the image and a mass distribution for every topic. The number
of topics is a parameter defined in advance. Fig. 3a shows the results of a direct application
of LDA with 10 topics to the original dataset. Each color corresponds to a topic, and a pixel
represents a topic with maximal posterior probability. Fig. 3b shows a soft segmentation map
representing the second, fourth, and tenth clusters in the segmentation map from Fig 3a. A
soft segmentation map is an RGB-image where three clusters are encoded with red, blue, and
green channel respectively. Intensities of each channel represent probabilities of a pixel to
belong to the corresponding cluster. For example, a highly red pixel has high probability to
be in the second cluster; a blue pixel probably belongs to the fourth cluster, and a green pixel
probably belongs to the tenth cluster. Compared to a standard segmentation map (Fig. 3a),
a soft segmentation map, although restricted to visualize only three clusters, provides more
detailed information on probability distribution of pixels among the clusters. In particular,
it shows pixels with comparable probabilities of belonging to different clusters.

2.2 k-means
For comparison, we have implemented k-means as a simple yet effective clustering algorithm
[21, 23]. In k-means, we fix the number of clusters and initialize their centers (usually at
random dataset points that are chosen to be relatively far from each other). Then k-means
proceeds in alternating steps: (1) assign points to clusters; each point is assigned to the
nearest cluster center; (2) move cluster centers to the centers of mass for the points assigned
to them.

3 Smoothing probabilistic clustering results

3.1 Markov random fields
An undirected graphical model (or Markov random field) [5, 22, 27, 29] is a representation
of a complex probability distribution factorized into a product of potentials; the model
consists of an undirected graph with vertices corresponding to random variables X1, . . . , Xk

and a potential for each maximal clique in this graph, i.e., a nonnegative function of the
variables; the joint probability distribution corresponding to the model is the product of
potentials: p(X1 = x1, . . . , Xk = xk) = 1

Z

∏
C ψC(xC), where C are the maximal cliques, ψC
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are nonnegative functions (potentials), and Z is the normalization constant often called the
partition function. Since ψC are nonnegative, they are often represented in the exponential
form: ψC(xC) = exp (−EC(xC)); EC are often called energy functions, and the exponential
representation of the total energy p(X) = exp (−

∑
C EC(xC)) is called the Boltzmann

distribution (this field borrows much of its terminology from statistical physics).
This definition implies a simple conditional independence statement: p(xi, xj | xk 6=i,j) =

p(xi | xk 6=i,j)p(xj | xk 6=i,j) if xi and xj are not connected by an edge. Moreover, p(X , Y |
Z) = p(X | Z)p(Y | Z) if every path from X to Y goes through Z, where X , Y and Z are
disjoint subsets of random variables.

Undirected graphical models have a rich history; in particular, undirected graphical
models have been widely used for image denoising and similar problems, such as image
segmentation, which is the primary motivation for our current study [13,25,28,29]. Image
denoising was one of the first applications for undirected graphical models [3, 4, 14].

In image processing problems, undirected models usually appear in the form of rectangular
grids of pixels, with potentials on the edges intended to smooth the transitions; i.e., potentials
usually serve to bring the neigboring nodes closer together. A simple yet useful model
on a rectangular grid is the Ising model: energy functions on the edges of the grid are
given by εi,j(xi, xj) = −wi,jxixj , and the resulting joint distribution is p(x1, . . . , xn) =
1
Z exp

(∑
(i,j)∈E wi,jxixj +

∑
i uixi

)
. Inference in undirected graphical models can be done

via belief propagation. In the basic message passing algorithm, a node collects messages
from other nodes and sends out the marginalized results; for a detailed description of belief
propagation, we refer to [5, 27]. When the underlying graph of the model contains cycles
(and a grid model certainly does), belief propagation is not guaranteed to converge but when
it converges, it does find a local minimum of the total energy function; this version of the
algorithm is called loopy belief propagation.

These models also allow for a relatively simple approximate inference algorithm based
on Gibbs sampling [5, 10, 14, 30]. For an Ising model with weights wi,j and ui, the Gibbs
sampler sequentially updates all variables by fixing all values of the variables except one, say
xi, and then sampling xi from the conditional distribution: xi ∼ p(xi | x−i). The conditional
distribution is easy to compute in this case:

p(xi = k | x−i) = p(xi = k,x−i)∑
s p(xi = s,x−i)

=
∏

j∈nei(i) ψij(xi = k, xj)∑
s

∏
j∈nei(i) ψij(xi = s, xj) ,

where nei(i) is the neighbors set of the ith vertex. Gibbs sampling is a special case of the
Metropolis-Hastings algorithm for Monte-Carlo Markov chain sampling.

3.2 Our two-step approach
Markov random fields have already been successfully applied in the field of imaging mass
spectrometry [15]. In this paper, we present a two-stage procedure for the segmentation of
MALDI-imaging data. The first step is based on latent Dirichlet allocation, and the second
step is based on Markov random fields used for denoising.

In the first step we learn the LDA model from the data. To do this, we need to define
“documents” and their contents (“words”). The method we propose treats each pixel of a
MALDI-imaging dataset as a document and considers the masses with high intensity values
(peaks) in the associated spectrum as the words of the document. The result of this step
consists of topic distributions θi for each pixel and word (peak) distributions for each topic.

In the second step, we use a Markov random field similar to the Ising model in order to
denoise (smooth) the segmentation map. The model has two types of factors: binary factors
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(a) (b)

(c) (d)
Figure 2 Segmentation maps obtained with k-means and MRF: (a) no denoising; (b) w = 0.3;

(c) w = 0.6; (d) w = 0.9.

that correspond to the edges and unary factors that correspond to the vertices. A binary
factor φi,j(t1, t2) takes the value exp(w) whenever t1 = t2 and exp(−w) otherwise. These
factors are responsible for the smoothing part of the model. The unary factors are responsible
for the incorporation of topic distributions found on the previous step; we initialize unary
factors simply as ui(t) = θi(t), where θi is the topic distribution for pixel i and θi(t) is the
probability of topic t.

Previously, we developed other two-step approaches, where denoising was applied prior
to clustering [1] and where denoising was embedded into clustering [2]. In this paper,
we considered the potential of the two-step approach where the denoising is applied after
probabilistic clustering. Note that our approach is different from calculating the segmentation
map first and then denoising it for better visualization that might lead to losing details
during denoising. In line with [15], we first reduce the dataset to k images, where each image
represents the probabilities of pixels to belong to the corresponding topic. Then, the Markov
random field exploits all k probabilities calculated for one pixel to decide on the assignment
of this pixel to a specific cluster of the segmentation map.

For comparison, we have also implemented an approach in which the first step is based
on the k-means algorithm. In this approach, we consider a MALDI-imaging dataset as a
set of vectors and apply k-means clustering to it. The k-means algorithm outputs a set of
cluster centers. Next we use a Markov random field for segmentation map smoothing. Binary
factors are the same as above while unary factors look like ui(t) = 1/||si − ct||, where si is
the spectrum associated with pixel i and ct is the center of the tth cluster.

Thus, in both cases the models try to smooth the image and at the same time preserve the
segmentation map found on the first step. The use of LDA model on the first step not only
increases the quality of the resulting segmentation but also provides additional information
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concerning the structure of segments through the distributions on topics for each pixel and
distribution on words, i.e., masses, for each topic.

3.3 MRF extensions for MALDI-imaging
One problem with MRF smoothing for MALDI-IMS data is that the prior distribution induced
by the smoothing factors with constant weights might not be flexible enough to represent
the complex anatomical structures of the brain. In this section, we present two modifications
of the MRF approach that significantly improve segmentation results for MALDI-IMS data.

The first modification is based on the use of Kullback-Leibler divergence. Instead of
a constant weight w, we set the smoothing weight between neighboring pixels i and j

depending on the Kullback-Leibler divergence between the topic distributions θi and θj that
correspond to these pixels. In particular, we decrease the value of the smoothing weight
when the Kullback-Leibler divergence exceeds the chosen threshold. This modification allows
for different smoothing weights depending on the similarity of the pixels which results in
reducing of the noise while preserving the details of the picture.

The second modification works through a simple version of the EM algorithm. Here, we
use a more complicated form of the smoothing binary factor. We assume that the model
has a set of parameters {λt1,t2} and that the binary factor φi,j(t1, t2) has the following form:
φi,j(t1, t2) = exp(wλt1,t2). Then we use one iteration of the EM algorithm to estimate the
parameters. To do this, we first initialize binary factors with unit factors, λt1,t2 = 1 when
t1 = t2 and λt1,t2 = −1 otherwise. After that, we use the Markov random field to get the
denoised segmentation map. Then we reestimate λt1,t2 as λt1,t2 = Nt1,t2/N, where Nt1,t2 is
the number of neighboring pixel pairs with values t1 and t2 and N is the number of edges.
After that, we normalize each row in the matrix of λt1,t2 values and use the Markov random
field with updated binary factors to get the final segmentation map.

3.4 Parallel implementation
MRF inference algorithms take up the greater portion of the running time in our two-step
system. We have developed a highly parallel implementation of loopy belief propagation
based on GraphLab, a recently developed framework for parallelizing large-scale machine
learning tasks [26]. In the GraphLab paradigm, the data is represented as a graph, and the
algorithm is represented as two basic routines: (i) Update runs in a single node and can use
the data in this node, on its adjacent edges, and on its neighboring vertices; (ii) Sync collects
the results from several subgraphs and propagates them further up. GraphLab can be viewed
as a generalization of MapReduce. However, while MapReduce requires data subsets for
the Map function to be completely independent, GraphLab allows them to form a complex
highly connected graph, requiring only that the graph is relatively sparse (otherwise, there
will be no speed improvement from parallelization).

GraphLab guarantees that during an Update procedure the data that it uses cannot be
changed by any other Update, thus ensuring that there are no deadlocks and data races.
There are several levels of data independence: an Update in a node may lock either its
entire neighborhood (adjacent nodes and incident edges), incident edges only, or no other
graph elements. In the case of loopy belief propagation in MRF, it suffices to lock incident
edges since the message passing algorithm changes messages on the edges but does not
change anything in other nodes. The resulting system shows promising speed and accuracy;
it performs loopy belief propagation on an MRF until convergence in time which rapidly
decreases with the number of cores; see Fig. 4 for a comparison.
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 3 Segmentation maps obtained with LDA and MRF. (a) LDA clustering results; (b) a soft
segmentation map for three clusters; (c) MRF smoothing with w = 0.4; (d) w = 0.55; (e) w = 0.7;
(f ) Segmentation map obtained with k-means (w = 0.6); (g) Kullback-Leibler modification; (h) EM
algorithm modification.
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4 Experimental results

Samples preparation and MALDI-IMS measurements are described in detail in [1]. Shortly,
the cryosections of 10µm thickness were cut on a cryostat, transferred to a conductive indium-
tin-oxide coated glass slide (Bruker Daltonik GmbH, Bremen, Germany) and measured using
a MALDI-TOF instrument (Autoflex III; Bruker Daltonik GmbH) using flexControl 3.0 and
flexImaging 2.1 software (Bruker Daltonik GmbH). The lateral resolution was set to 80µm.
Preprocessing was done in ClinProTools 2.2 software (Bruker Daltonik GmbH). The spectra
were baseline-corrected with the TopHat algorithm (minimal baseline width set to 10%,
the default value in ClinProTools). No normalization or binning was done. The dataset
comprises 20185 spectra acquired within the area of the slice (120 × 201 pixels), each of
3045 data points covering the mass range 2.5–10 kDa. For examples of intensity images for
several m/z-values, see [1]. Afterwards, we applied a peak picking algorithm selecting 110
m/z-values; see [1] for the details and a visualization of the peak picking results.
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Figure 4 GraphLab imple-
mentation of loopy belief propaga-
tion on multiple cores.

Segmentation maps obtained with k-means and MRF
are shown on Fig. 2; the ones obtained with LDA and MRF
with varying values of w, on Fig. 3c–e. We consider the
best-looking denoised picture to be the one with w = 0.55
(Fig. 3d). For comparison with LDA pictures, an example of
segmentation map obtained with k-means is shown on Fig. 3f.
We also experimented with two modifications described
in Section 3.3. Results from the modification based on
Kullback-Leibler divergence are shown on Fig. 3g; from the
EM-based modification, on Fig. 3h. It is evident that our
modification based on Kullback-Leibler divergence results
in a cleaner image with less noise and at the same time
better preserved details in the central part of the image.
The EM-based modification produces an image that more
closely resembles the anatomical structure of the brain.

5 Conclusion
In this work, we have presented a method for processing MALDI-imaging data; our method
consists of two steps: probabilistic clustering with the LDA model and MRF smoothing. We
have presented two novel modifications for the MRF smoothing method that significantly
improve segmentation results for MALDI-imaging datasets. Further work in this direction is
twofold. First, we plan to further improve clustering and denoising: improve the LDA model
by learning hierarchical structures and/or correlated topics [6, 7], extend the undirected
smoothing model by hidden factors, thus passing from an MRF to a restricted Boltzmann
machine [17–20], incorporate ideas from segmentation algorithms based on hierarchical
Dirichlet processes and hierarchical Pitman-Yor processes [31,33,34]. But the main direction
of further work is to make the next step in analyzing the “spectrometry data cube” and
apply the resulting models for a deeper analysis of mass-spectrometry data: find m/z values
that are most characteristic for each segment, analyze spectra of the segments, construct
most characteristic mass sections, find least characteristic sections (outliers) and so on. We
hope that our approach will significantly assist us in this analysis.
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Abstract
Snakemake is a novel workflow engine with a simple Python-derived workflow definition language
and an optimizing execution environment. It is the first system that supports multiple named
wildcards (or variables) in input and output filenames of each rule definition. It also allows to
write human-readable workflows that document themselves. We have found Snakemake especially
useful for building high-throughput sequencing data analysis pipelines and present examples
from this area. Snakemake exemplifies a generic way to implement a domain specific language in
python, without writing a full parser or introducing syntactical overhead by overloading language
features.
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1 Introduction

Workflow systems manage the ever-increasing complexity of computational pipelines in large-
scale bioinformatics applications, e.g. for image processing or next-generation sequencing
data analysis. Existing solutions range from graphical systems, e.g. Biopipe [5], Taverna [11],
Galaxy [2] and GeneProf [4], to frameworks supporting only text based workflow definitions,
e.g. Ruffus [3], Pwrake [14], GXP Make [15] and Bpipe [12]. While graphical solutions are
easy to learn, text-based representations can be advantageous: Workflows can be edited
faster and directly on servers without graphical environments and developers can collaborate
on them via source code management tools.

A basic way to define a workflow is provided by the build system GNU Make [13] that
was originally intended to compile source code but can be used to execute arbitrary pipelines
of command line applications. In contrast to many of the above systems, here the actual
workflow (dependencies, parallelization) is inferred from a given set of rules with input and
output files, rather than relying on an explicit specification. This idea was adapted by Pwrake
and GXP Make, and is also the foundation of Snakemake.

In the spirit of the Python language, Snakemake complements these prior works with a
syntax close to pseudocode. The resulting workflows are human-readable and serve as both
documentation and formal definition. Further, Snakemake provides scalability because it
optimizes the number of parallel processes with respect to provided CPU cores and needed
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threads and can make use of single machines as well as cluster engines without the need to
modify the workflow. In contrast to Pwrake and GXP Make, Snakemake does not rely on
any password-less SSH setup or custom server processes runing on the cluster nodes. Finally,
Snakemake is the first system to support multiple named wildcards and output files in rules,
which we show to be useful in a common bioinformatics workflow.

This paper also presents a uniform way to implement a domain specific language (DSL)
that avoids to write a full parser. The approach avoids unnecessary syntactic overhead to be
exposed to the user (e.g., Python decorators or unintuitively overloaded operators).

The remainder of this paper is structured as follows: In Section 2.1 we describe the DSL
for defining and documenting Snakemake workflows, which is illustrated by an exemplary
pipeline for calling single nucleotide polymorphisms (SNPs) in Section 2.2. Section 2.3 focuses
on the technical implementation of the Snakemake language as a Python-based DSL. The
engine that executes the workflow is described in Section 3, and a final conclusion is drawn
in Section 4.

2 The Snakemake Workflow Language

2.1 Language Definition
A workflow is defined in a Snakefile via a domain specific language close to Python syntax.
It consists of rules that define how to create output files from input files. The workflow is
implied by dependencies between the rules that arise from one rule needing an output file of
another as an input file.

A rule definition in a Snakefile specifies (1) a name, (2) any number of input and output
files and (3) either a shell command or Python code that creates the output from the input.
Input and output files may contain multiple named wildcards and are specified as Python
strings. In extended Backus-Naur Form (EBNF), the Snakemake syntax can be defined as
follows.

snakemake = statement | rule
ni = NEWLINE INDENT

rule = "rule" (identifier | "") ":" ruleparams
ruleparams = [ni input] [ni output] [ni threads] [ni (run | shell)] NEWLINE snakemake

input = "input" ":" parameter_list
output = "output" ":" parameter_list
threads = "threads" ":" integer

run = "run" ":" ni statement
shell = "shell" ":" stringliteral

The terminal symbols NEWLINE and INDENT and the italic non-terminals refer to plain
Python syntax, e.g. statement allows any Python statement, stringliteral denotes a Python
string (i.e. "..." or """..."""), and parameter_list enables the same syntax as for the
parameters of Python functions.

2.2 Example: A SNP-Calling Pipeline
Listing 1 shows a single nucleotide polymorphism (SNP) calling pipeline in the context of
next generation sequencing, implemented as a Snakemake workflow. SNP calling is a typical
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Listing 1 Example Snakefile for read mapping and SNP calling.
1 SAMPLES = "100 101 102 103".split ()
2 REF = "hg19.fasta"
3 DBSNP = "dbsnp.vcf"
4
5 rule all:
6 input : "calls /{ sample }. vcf". format ( sample = sample )
7 for sample in SAMPLES
8
9 rule map_reads :

10 input : ref = REF , reads = "{ sample }.{ group }. fastq"
11 output : temp("{ sample }.{ group }. sai")
12 threads : 8
13 shell : "bwa aln -t{ threads } {input.ref} {input.reads} > { output }"
14
15 rule sai_to_bam :
16 input : REF , "{ sample }.1. sai", "{ sample }.2. sai",
17 "{ sample }.1. fastq", "{ sample }.2. fastq"
18 output : protected ("{ sample }. bam")
19 shell : "bwa sampe \
20 -r’@RG \\ tID :{ wildcards . sample }\\ tSM :{ wildcards . sample }’\
21 {input} | samtools view -Sbh - > { output }"
22
23 rule sort:
24 input : "{name }. bam"
25 output : "{name }. sorted .bam"
26 shell : " samtools sort {input} { wildcards .name }. sorted "
27
28 rule index:
29 input : "{name }. sorted .bam"
30 output : "{name }. sorted .bam.bai"
31 shell : " samtools index {input}"
32
33 rule realign_targets :
34 input : ref = REF , dbsnp = DBSNP
35 output : "known. intervals "
36 shell : "gatk -T RealignerTargetCreator -R {input.ref }\
37 -known {input.dbsnp} -o { output }"
38
39 rule realign :
40 input : bam = "{ sample }. sorted .bam",
41 bai = "{ sample }. sorted .bam.bai",
42 ref = REF , intervals = "known. intervals "
43 output : " realigned /{ sample }. sorted .bam"
44 shell : "gatk -T IndelRealigner -I {input.bam} -R {input.ref }\
45 --targetIntervals {input. intervals } -o { output }"
46
47 rule call_snps :
48 input : bam = " realigned /{ sample }. sorted .bam",
49 bai = " realigned /{ sample }. sorted .bam.bai",
50 dbsnp = DBSNP , ref = REF
51 output : "calls /{ sample }. vcf"
52 shell : "gatk -T UnifiedGenotyper --dbsnp {input.dbsnp }\
53 -I {input.bam} -R {input.ref} -o { output }"
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task e.g. in cancer genomics [10]. In this example, paired-end sequence reads are given as
.fastq files for four samples with IDs from 100 to 103, and shall be mapped to the human
reference genome. Afterwards, reads are realigned to avoid artifacts due to the mapping
heuristic, and finally SNPs are called. The Snakefile consists of seven rules that each start
with the keyword rule followed by their name and the indented definitions of input and
output files and executable shell commands.

In lines 1–3, a list of sample IDs is created, the desired genome reference and the database
of known SNPs is specified in plain Python. As Snakemake rules can intermix with any
Python statement, accessing configuration files or environment variables, even waiting for
user input or opening a graphical user interface is possible. In line 9, the rule map_reads aligns
the sequence reads to the reference genome with the BWA software [7], which is assumed to
be installed on the system. Specified in braces inside the input and output files, the rule uses
two named wildcards, since it shall be applied to the first and the second read of each read
pair (wildcard {group}) from each sample (wildcard {sample}). BWA creates suffix array
intervals (.sai-files) which are converted to the common format for aligned reads in the
rule sai_to_bam (line 15). These two rules illustrate major patterns for accessing input and
output files inside a rule. In the rule map_reads, input files are named and can be accessed as
attributes of the input-object (e.g. {input.ref} in line 13). In rule sai_to_bam, all input files
are accessed at once (separated by a space) via {input} (line 21).

BWA’s internal .sai-files can be deleted once the .bam-files are created, which are in
turn worth to be write-protected to avoid accidental deletion. Snakemake supports this by
marking files as temp (line 11) or protected (line 18), respectively.

Next, the rule realign (line 39) uses the GATK [9] to ensure that the read alignments
are free of artifacts from the mapping heuristic. It depends on the rules sort (line 23) and
index (line 28) being applied to the alignments from BWA to create an index for the .bam
file using samtools [8].

The actual SNP calling with GATK takes place in the rule call_snps (line 47); the result
is saved to .vcf-files. Here, the alignments created by the rule realign are used. Further,
another .bam-index has to be created, hence the rule index is used a second time.

When Snakemake is invoked without a specific target, the first rule (here called all) in
line 5 is executed, which ensures that the .vcf-files and hence all needed intermediate files
are created for each sample.

In place of shell commands, Snakemake allows to write pure Python code using a run
block instead of a shell block to create the output files of a rule. For example, we may want
to plot the coverage histogram as a quality control.

from matplotlib . pyplot import hist , savefig
rule plot_coverage_histogram :

input : "{ sample }. bam"
output : hist = "{ sample }. coverage .pdf"
run:

hist(list(map(int ,
shell (" samtools mpileup {input} | cut -f4",
iterable = True ))))

savefig ( output .hist)

Here, we use the hist function of Python’s matplotlib module [6] and parse the output of
Snakemakes shell function, that invokes samtools to calculate a per-nucleotide coverage.
This demonstrates how to apply Python code to the result of shell commands.

The example workflow illustrates the readability of the language and how the workflow
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rules document themselves. The advantage of conceptually separating a rule’s name from the
output file(s) it produces becomes evident, as does the benefit of mutiple named wildcards
for input and output files.

2.3 Implementation
In general, two extreme approaches for implementing a domain specific language are thinkable:
a full parser can be generated, or in-language facilities can be overloaded. The first allows a
concise syntax, the second (that can be approached e.g. by Python decorators or operator
overloading) can sometimes lead to syntactical overhead and unintuitive constructs. Here we
present a third way, using a finite automaton that translates tokens from the Snakemake
language to a sequence of Python tokens, that are interpreted by the ordinary Python
interpreter. Thereby, only a small subset of tokens needs to be altered. Formally, the
procedure can be specified by an automaton that recognizes the Snakemake grammar
(Section 2.1) and an emission function that emits Python language terminal symbols based
on the current state and token.

I Definition 1 (Snakemake Language Automaton). Given the Snakemake grammar, let NT
be the set of non-terminals and T be the set of terminal symbols. Over the alphabet of
tokens Σ = T , the Snakemake language automaton is denoted as (Q, q0, F,Σ, δ) with states
Q = NT , start state snakemake ∈ NT , and a single final state F = {statement}. The
transition function δ : Σ×Q→ Q is given by the EBNF grammar of Section 2.1.

The above finite automaton definition is possible because in the Snakemake grammar each non-
terminal is uniquely determined by a prefix of terminal symbols. We extend the automaton
with an emission function e : Q× Σ→ {(t0, t1, . . . ) | t0, t1, . . . ∈ T ′}, where T ′ is the set of
terminal symbols in the Python language, such that rule definitions are converted to Python
API calls. For example, the rule map_reads from Listing 1 is translated to the following
Python code using the (less user-readable) function decorator syntax (function decorators
are higher-order functions that operate on Python functions). This internal representation is
evaluated by the Python interpreter.

@rule(" map_reads ")
@input (ref = REF , reads = "{ sample }.{ group }. fastq")
@output (temp("{ sample }.{ group }. sai"))
@threads (8)
@run
def __map_reads (input , output , wildcards , threads ):

shell ("bwa aln -t { threads } {input.ref} {input.reads} > { output }")

In Snakemake, multiple named wildcards are allowed in input and output files. To
determine if a rule can create a requested file, its defined output files are matched against
the requested file. Thereby, wildcards are replaced by the Python regular expression .+ per
default (i.e. any non empty string is matched in a greedy fashion). The substring a wildcard
matches to is then propagated to the input files. When the rule map_reads is requested to
create a certain file, e.g. 100.1.sai, the wildcard {sample} matches 100 and {group} matches
1, so that the input file 100.1.fastq is expected. Multiple wildcards may in some cases
introduce the problem of ambigous matches. To avoid such problems, wildcards can be
restricted to particular regular expressions. In this case, to force the greedy matching to
the intended solution, {group} could be replaced by {group,[12]}, such that the regular
expression [12] is used instead of .+. The regular expression syntax is that of Pythons re
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map_reads
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Figure 1 Directed acyclic graph of jobs for the example workflow from Listing 1.

module, which is almost identical to PERL 5’s regular expressions, except for some corner
cases.

3 The Snakemake Execution Engine

When Snakemake is invoked with a Snakefile, it determines a plan of rule executions that are
needed to create the requested output. We call the planned execution of a rule a job. Since
one rule can be executed for multiple wildcard values, more than one job for each rule is
possible. A job may need certain input files that are created by other jobs, which gives rise
to a directed acyclic graph (DAG) that represents the execution plan (see Figure 1). The
nodes of the DAG are jobs, and a directed edge between job A and B means that the rule
underlying job B needs the output of job A as an input file. A path in the DAG represents a
sequence of jobs that have to be executed serially. Importantly, two disjoint paths in the
DAG can be executed independently from each other, i.e., in parallel.

On top of per-job parallelism, the number of threads that a single job uses can be specified
in a rule, via the parameter threads (line 12 of Listing 1), which defaults to 1 if it is not
specified. The number of threads can be accessed in the shell command by the variable
threads and thus passed to external tools that support multithreading. Snakemake tries to
maximize parallelism (i.e. minimize the number of idle cores) up to a given threshold of
available CPU cores. Considering that each job can use one or more threads as explained
above, the parallel job scheduling problem can be cast as follows.

I Definition 2 (Parallel Job Scheduling). Let J be the set of jobs that are ready to execute
(i.e. do not depend on missing input files), and tj be the number of threads for job j ∈ J .
Let T be the given threshold of available cores; if a job requests more threads (i.e. tj > T ),
the threads are reduced to T . Thus the problem is to find E∗ among all E ⊆ J such that∑

j∈E min(tj , T ) is maximized while the sum remains bounded by the number of currently
idle cores.

The parallel job scheduling problem is a classical binary knapsack problem and can
be solved by dynamic programming in pseudo-polynomial time. Given current CPU core
numbers, the solution is instantaneous. The problem is solved every time a new job becomes
ready to execute and idle cores exist. Snakemake first executes the jobs in the solution E∗.

Solving above problem to schedule jobs allows Snakemake to scale to environments with
a hard limit of used CPU cores, e.g., when multiple users share the same compute server, by
choosing T appropriately. Further, using only as many threads as there are cores available
can be beneficial for performance since it reduces the amount of context switching.
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Apart from running on single machines, Snakemake contains a generic mechanism that
allows the execution of jobs on a batch system or a compute cluster engine. For this, a
submit command that handles shell scripts (e.g. qsub) and a shared file system accessible by
all cluster nodes has to be available. Snakemake compiles every job into a shell script and
submits it with the given command once it is ready to execute. It then queries about the
existence of a certain guard file that indicates that the job is finished in regular intervals.

Per default, Snakemake only executes rules if the output files are not present or the
modification time of the input files is newer. Together with the automatic deletion of output
files from incomplete rule executions (e.g. due to a failing shell command), this enables
Snakemake to avoid duplicate work when resuming workflows.

To analyse the workflow, Snakemake provides options to perform a dry-run without actual
execution of jobs, give the reason for each executed job and print the DAG to the graphviz
.dot format [1] for visualization (see Figure 1).

4 Conclusion

Snakemake is a pythonic workflow system inspired by GNU Make, that allows to define a
workflow in terms of rules that create output files from input files and thereby automatically
handles dependencies and parallelization. It is the first workflow system to support multiple
named wildcards and output files in rules. We show that this is especially useful in bioinform-
atics workflows. Further, Snakemake offers a simple Python-like syntax with high readability,
and allows to efficiently intermix Python and shell commands. This removes the need to
write external shell or PERL scripts for simple format conversions, and additionally allows
to run complex algorithms within the workflow. Further, this allows to make use of web
services, e.g. using specialized libraries or the built-in Python http client and XML parsing
facilities.

Our approach exemplifies an automaton-based implementation of a domain-specific
language without the need to generate a full parser or creating syntactical overhead by
overloading language features.

By optimizing the schedule of jobs against a given threshold of available cores while
taking also intra-job parallelism into account, a Snakefile scales from single core workstations
over multi-core servers to compute clusters of different architectures, without the need to
modify the workflow.
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1 Introduction

Sophisticated biomedical measurement techniques generate a massive amount of data that
needs to be analyzed efficiently. One example is the availability of next-generation sequencing
(NGS) technology that provided us with almost two thousand whole-genome sequences [23].
This data is easily accessible for any researcher in the world-wide scientific community.
However, the sequences are worthless without annotations of the biological meaningful
elements, i.e. genes and non-coding functional elements, such as microRNAs. Analyzing
millions of such DNA sequences individually to determine their function is an impossible task
without the aid of specific bioinformatics tools [3, 25]. Just to give some numbers, the NCBI
database hosts data about approximately 5.2 million bacterial and 3.2 million eukaryotic
genes [22].

Although it appears that we have finally arrived in the post-genome era we still lack
fundamental knowledge about crucial genetic programs, the interplay of genes and proteins as
well as their biochemical regulation networks. We know very little about how cells, organs and
tissues regulate survival, reproduction, movement, etc. in response to altering environmental
conditions [20]. Therefore, we use so-called OMICS technology to generate even more data
in order to unravel this crucial knowledge about interactions of all kinds of biological entities.
The database content of the Gene Expression Omnibus (GEO) with data on more than
630,000 samples may exemplify this trend for the case of gene expression data [8].

Analyzing this impressive amount of data manually is infeasible. In order to draw
conclusions from such huge data sets successfully, we often start with compressing the raw
data such that the contained information becomes visible. One typical computational tool
is clustering [2]. Clustering is a computer science method that partitions data objects into
groups such that the objects share common traits, i.e. the elements within the groups
are more similar to each other than to objects from other groups. In bioinformatics, for
many tasks we have given a pair-wise similarity function s(u, v) that assigns each pair of
objects (u and v) a similarity value [12]. The corresponding similarity matrix serves as
input for many computational biology clustering problems: protein complex detection from
protein-protein interaction networks, cancer sub-typing from gene expression data and protein
homology detection from all-vs.-all BLAST [1] results. In our paper we exemplarily focus on
the later data type: protein sequence similarities utilized for finding clusters of potentially
homologous proteins. Various tools have been developed for this purpose: k-means, Affinity
Propagation, Markov Clustering, and FORCE as well as Transitivity Clustering, to name
just a few [11, 10, 9, 16, 27].

Here, we concentrate on the problem of finding clusters of homologous proteins with
Transitivity Clustering. While this task was extensively studied and published before (refer
to [26, 28, 29]), we will focus on two sideline challenges arousing in this context: (1) running
time aspects for computing the similarity matrix and (2) online access to a web interface
that allows for performing all necessary steps of a typical cluster analysis efficiently without
the need for downloading, installing and running the software tool on the local desktop PC.
While there exist clustering tools, which allow for clustering with incomplete information,
they mainly focus on repairing noise and incompleteness due to the underlying assays (e.g.
microarray studies or patient data collections) [13, 7, 18, 21]. Here, we present a systematic
approach of saving runtime and memory by omitting the calculation of a share of the similarity
values for homology detection while still using the well accepted standard NCBI BLAST.
This approach allows the user to save time and enables large-scale studies with almost no
drawbacks in the quality of the clustering results. Furthermore, the web front-end offers
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easy-to-use interfaces to typical data pre-processing, clustering as well as post-processing
tasks. In the following, we briefly describe our previous work on Transitivity Clustering
followed by a summary of our new contributions. Afterwards, we describe our approach in
detail. Finally, we will evaluate our improved method and discuss its’ robustness for protein
homology detection.

1.1 Our previous work

We recently developed Transitivity Clustering, an integrated software package dedicated
to partitioning biomedical data sets. In previous publications, we studied and evaluated
its’ performance for remote homology detection and protein (super)family reconstruction
[27, 28] as well as protein complex identification [29]. Based on gold standard data from
Paccanaro et al. [16] and Brown et al. [5] we demonstrated that Transitivity Clustering
performs equally well or outperforms other popular bioinformatics clustering tools for these
tasks. It is based on exact and heuristic algorithms for solving the Weighted Transitive Graph
Projection (WTGP) problem [19]. Given a similarity matrix and a user-given threshold
(density parameter), we compute a cost graph by removing all edges below the threshold.
Afterwards, we make the graph transitive by adding/deleting edges with respect to a cost
function that we minimize. Finally, we report the emerging cliques as clusters (see Definitions
in the Methods section). As demonstrated in [29], the average similarity within the clusters
is above the threshold while the average similarity between elements from different clusters
is below the density cutoff. So far, Transitivity Clustering comes as stand-alone tool, Java
library and as Cytoscape [24] plugin.

1.2 Our new contributions

However, Transitivity Clustering as well as most other approaches neglect two important
problems: First, computing the similarity matrix might not be trivial but resource-intense
(main memory, running time, costs for allocating appropriate data sets, etc.). Second, a
clustering algorithm itself is not sufficient for the biomedical researcher, who needs an
integrated online system capable of performing preparative and follow-up tasks as well. The
goal of Transitivity Clustering is to assist the user through the entire clustering pipeline. We
present a significantly extended version of Transitivity Clustering:

1. Missing similarity values: We added the capability of dealing with missing values in the
similarity matrix to the Transitivity Clustering framework such that we may save time
and memory. Hence, we reduce one main bottleneck of computing all pairwise similarity
values. We will describe how we integrated this functionality into the underlying Weighted
Graph Cluster Editing model such that we still achieve accurate results.

2. Evaluation of the robustness: We use the gold standard data from Brown et al. [5], as
well as a larger data set containing the protein sequences of 27 different corynebacteria,
to study the robustness of our extended approach. We utilize all-vs.-all BLAST results
and remove a varying amount of similarity values based on a block-wise scheme. We
study how this affects the accuracy of the clustering performance as well as the running
time improvement.

3. Web interface: We present a new, intuitive web interface that aids with all important
steps of a typical cluster analysis. We give examples and describe a workflow through the
interface.

GCB 2012



60 Online Transitivity Clustering of Biological Data with Missing Values

2 Methods

2.1 Extension of the Weighted Transitive Graph Projection model
Given a set of objects V , a threshold t ∈ R, and a pairwise similarity function sim:

(
V
2
)
→ R,

we define a graph G as

G = (V, E); E =
{

uv ∈
(

V

2

)
; sim(uv) > t

}
.

The WTGP problems is now defined as the determination of a transitive graph G′ = (V, E′),
such that there exists no other transitive graph G′′ = (V, E′′), with cost (G→ G′′) <

cost (G→ G′). The costs for edge additions/deletions are defined as

cost (G→ G′) :=
∑

uv∈E\E′

|sim (uv)− t|

︸ ︷︷ ︸
deletion cost

+
∑

uv∈E′\E

|sim (uv)− t|

︸ ︷︷ ︸
addition cost

.

This problem is NP-hard [14] and APX-hard [6] and we tackle it with a combination of exact
and heuristic algorithms (refer to [19, 27]). This problem is also known as “Cluster Editing”
and several other exact approaches are mentioned in literature. For an overview of exact
methods refer to [4].

Now we need to integrate a possibility to deal with missing edges in the graph G. Therefore,
we slightly adjust the underlying similarity function.

sim (uv) :=
{
∈ R if similarity available
t if missing value

The similarity of the missing values is set to the user-given threshold t. As a result, the costs
for adding/remove an edge with a missing value is

|sim (uv)− t|︸ ︷︷ ︸
deletion cost

= |sim (uv)− t|︸ ︷︷ ︸
addition cost

= |t− t| = 0

In consequence, the overall costs for transforming a graph G into the transitive G′ is not
affected by the missing values:

cost (missing values) =
∑

uv∈E\E′

|sim (uv)− t| =
∑

uv∈E\E′

|t− t| = 0

In summary, since the missing values have no information content we adapted our
approach such that they do not impact the clustering process. The remaining edges with
existing similarity values have to account for the clustering result. We are confident that
this does not affect the clustering quality much, as for most transitive most of the similarity
information is redundant anyways. Thus, whenever we find a cluster with high intra-cluster
similarity it is likely that missing similarities within this cluster are comparably high as well.
Our transitivity model is perfectly suited for this key feature, as the missing values do not
influence the clustering process itself. Thus, the remaining high similarities are capable of
forming the final cluster.

2.2 Costmatrix creation with missing values
With the presented method, the user is able to include missing values in the similarity input
files for Transitivity Clustering. In comparison to available methods [13, 7, 18, 21], we not
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only allow for missing values, which are repaired either a priori or during the clustering
process (in our case by exploiting the transitivity properties of the clusters), but we also
provide the user with the possibility to systematically benefit from missing values in order to
save calculation time of the similarity file and resulting cost matrices.

In this paper we concentrate on protein homology detection based on a BLAST all-vs-all
run. In our approach, we do not use missing values on randomly chosen positions but omit
the calculation of entire blocks of the similarity file. Therefore, we have developed the new
CostMatrixCreator (CMC) assisting the user in creating a similarity file with missing values.
First, a BLAST database for all protein sequences is created. Afterwards, only a certain
percentage of the proteins are BLASTed against the database. Figure 1 depicts this process.
CMC can either choose these proteins randomly (as in our evaluation) or the user can provide
a manually created list if the user wants to incorporate prior knowledge. Consequently, we
compute similarity values for only those pairs of sequences where at least one of them is in
the list of proteins compared against the database. The similarities for the other sequence
pairs are missing. That keeps the similarity file small, as the missing values are not required
to be explicitly marked as missing. The only additional information needed are the IDs
of the proteins left out. Note that this procedure distinguishes between missing similarity
values due the BLAST cut-off and missing values due to an omitted comparison. The missing
values resulting from the BLAST cut-off indeed carry information: They are very dissimilar
and are set to a minimum value. The missing values resulting from omitted comparisons do
not carry any information and are set to the density threshold.

This approach has four major advantages: (1) The user is still able to utilize the well
accepted standard BLAST. (2) The user saves the calculation time for the missing similarities.
(3) As the missing values are not stored explicitly, which reduces the memory consumption
of the result file drastically. (4) The created cost matrices can afterwards be analyzed with
the standard Transitivity Clustering workflow as before. Also note that our approach would
also work with any other similarity function than BLAST as well.

2.3 Data sets
We utilize the gold standard data set from Brown et al. for studying the effect of missing
values to the clustering performance, i.e. accuracy and running time. The data set comprises
of five enzyme superfamilies (amidohydrolase, crotonase, enolase, haloacid dehalogenase,
and vicinal oxygen chelate) with different levels of sequence diversity. On the one hand,
the enolase and crotonase superfamilies contain a very discrete set of sequences, i.e. high
sequence similarities. The other extreme are the haloacid dehalogenase and parts of the
amidohydrolase, which include a very divers set of sequences with a comparably high number
of outliers. Therefore, in congruence with Brown et al., this set of protein sequences serves
as an evaluation data set for clustering tools.

The five superfamilies consist of 4,887 proteins that are further divided into 91 families.
Each of the amino acid sequences is either annotated to a gold or a silver standard family.
Gold standard families only contain sequences with experimentally determined functions,
while silver standard families are less restrictive. As done in previous studies, when we
compared Transitivity Clustering to other approaches [27], we only used the 866 sequences
that are assigned to a gold standard family.

As the data set from Brown et al. resembles a rather small problem instance, we can not
expect huge improvements in terms of reduced computational time. Thus, we also apply our
methods to a larger remote homology detection data set consisting of 66,000 proteins of 27
different corynebacteria. In the remainder of this manuscript, we refer to this data set as the
“Coryne-Data”.
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Figure 1 Illustration of the block-based scheme for saving similarity value computation time. For
illustration reasons, we arbitrarily ordered the data to form six blocks. Now, only the data from
block three and six are selected to be BLASTed against the database. The remaining values in the
similarity matrix are displayed as "?". These are the steps used by the CostMatrixCreator to create
cost matrices for Transitivity Clustering.

2.4 Evaluation
We use the F-measure for comparing the results of Transitivity Clustering to the above
described gold standard. Essentially, the F-measure is an equal combination of precision
and recall. It gives a value between 0 and 1, where values near 0 mean "bad" results and a
value of 1 means a perfect overlap between clustering result and gold standard, i.e. protein
families in our case.

Let C = {C1, . . . , Cn} be the clusters obtained by Transitivity Clustering and K =
{K1, . . . , Km} be the gold standard. Furthermore let T = (ti,j) ∈ Nm×n denote the matrix
where each entry is the number of common objects between Ki and Cj ,

ti,j := |{Ki ∩ Cj}|, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We follow the scheme of Paccanaro et al. [16] for computing the F-measure for a clustering
C against a reference clustering K in the following way:

F-measure(Ki) = max
1≤j≤n

2 · ti,j

|Cj |+ |Ki|
.

The overall F-measure is then defined as

F-measure(C, K) = 1∑m
i=1 |Ki|

m∑
i=1

(|Ki| · F-measure(Ki))

= 1∑m
i=1 |Ki|

m∑
i=1

(
|Ki| · max

1≤j≤n

2 · ti,j

|Cj |+ |Ki|

)
.
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Note that we refer to the F-measure when we use the term “accuray”.
In order to use the above described Brown et al. gold standard data set we first downloaded

all amino acid sequences for all proteins and BLASTed them all-vs.-all (E-value threshold
0.01). We furthermore downloaded the corresponding protein family annotations. For the
Coryne-Data, we obtained all protein sequences of all 27 fully-sequenced corynebacteria from
the NCBI website. As there is no gold standard for this data set, we performed an all-vs.-all
BLAST and performed a TC clustering with a threshold of 20 in order to produce our own
"gold standard". Anyway, we may use this data set for studying the effect of missing values
compared a full-coverage similarity matrix and for evaluating run time savings.

For creating a similarity matrix with missing values we utilize the new CostMatrixCreator
to construct a BLAST database containing all proteins of a dataset. Here, only a certain
percentage of the available proteins are compared to the database (again with E-value
threshold 0.01). Figure 1 depicts this process. For systematic evaluation, we vary the
coverage from 1% to 90% and create the cost matrices accordingly. We call this method the
“block-based scheme”, as we exclude no single entries from the similarity matrix calculation
but entire blocks or rather stripes (Figure 1 illustrates that as well).

The emerging cost matrices are then used to perform the clustering with TC. For each
clustering we compute the accuracy (F-Measure) and measure the runtime. The running
time for the entire clustering is the time for CMC plus the successive clustering process. In
order to assess the variability (robustness) of the best threshold, we clustered both data sets
with different thresholds and always picked (and reported) the threshold leading to the best
F-measure.

2.5 Web interface

TransClust, our Transitivity Clustering implementation, and the new CostMatrixCreator can
be downloaded as stand-alone Java programs. Nevertheless, in order to increase the accessib-
ility of the presented tools, a web interface helps in attracting more users. Especially non
computer experts benefit from the now obsolete step of an installation process. Furthermore,
the results can be accessed from any computer with Internet connection, which allows for
an optimized workflow and eases collaborations. For the web interface, we mainly used the
following libraries and programming languages:

LAP: We use Linux, Apache, and PHP to generate the HTML code, for data handling
and for executing the Transitivity Clustering software.

JavaScript and jQuery: jQuery is a JavaScript library under GPL or MIT license
that can be used to automate common tasks in web design. We make use of this for the
toggle switches that show/hide information such as advanced options for different steps in
the clustering process. We also used JavaScript to check input forms for correctness and for
changing contents of input forms, when using sliders, for instance.

jQueryUI: jQueryUI is an extension of jQuery specifically designed for providing exten-
ded functionality such as widgets and animations. We use jQueryUI for the tabs that can be
used to toggle the different outputs and for the sliders that can be used to change different
input parameters.

Highcharts: Highcharts is a charting library from Highsoft Solutions under the Creative
Commons Attribution-NonCommercial 3.0 License (free for non-academics). We use to create
the graphical representations of the results. We use jQuery/JavaScript to process the output
files and feed them to Highcharts.

The new web interface is publicly available online at http://transclust.mmci.uni-saarland.de/.
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Figure 2 The plots depict the runtime and accuracy of both datasets, Coryne-Data is on the
top ((a) and (b)), the data set of Brown et al. on the bottom ((c) and (d)). Figures (a) and (c)
display the F-measure as a function of the coverage. The numbers on the line give the threshold,
which yielded to the corresponding F-meassure. Figures (b) and (d) give two runtime measures,
again as a function of the coverage: red displays the time consumed for calculating the BLAST
results, green depicts the runtime for the clustering plus CMC. Note that both runtime plots have
different timescales displayed on the left for BLAST and on the right for clustering respectively.

3 Results and discussion

3.1 Clustering with missing values
We first investigate the robustness of our approach by comparing the F-Measure for different
percentages of missing values (inverse similarity coverage). The results are depicted in Figure
2. We can see that even for a low coverage (high amount of missing values) the F-Measure
only drops by a few percent when comparing against the protein families from Brown et al.,
as well as for the Coryne-Data. Furthermore, it is important to notice, that the threshold
delivering the best F-measure is very stable for all coverages. That means in conclusion,
that all methods for finding a good threshold (e.g. using a smaller gold standard dataset for
parameter training or utilizing the same threshold from a comparable study) can be applied
for clustering with missing values as well.

Running time scales as expected: BLAST computing times grow linearly with the number
of sequence comparisons while the runtime for the clustering process is essentially constant
with little variation.

Figure 3 plots the average runtime of the cost matrix creation CMC with missing values
against the F-Measures. It shows that with our approach the runtime can be drastically
reduced, while the drop of the F-Measure is comparably moderate, i.e. less than 10%
F-Measure drop for about 70% runtime saving. All runtimes are based on a single thread
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Figure 3 Runtime of CMC as a function of the F-Measure for (a) Coryne-Data and (b) Brown
et al. dataset. Due to the small size of the Brown et al. dataset and the resulting short BLAST
runs, we observe a certain variation of the clustering runtime. For the larger dataset, this is not
observed anymore.

execution of BLAST and CMC. Note, that CMC also supports parallel execution, which may
further reduce the runtime.

3.2 Web interface

The clustering process with the web interface is divided into three steps. In the first step, the
user provides the input (cost-matrix file, similarity file, or BLAST and FASTA files). In the
second step, a review of the given similarities is presented as a similarity distribution plot.
The user may then specify further clustering options, such as the clustering threshold(s) or
a gold standard file to compare against, if available/desired. In the third step the results
are presented as intra/inter-cluster similarity distribution graphs. The best way, however,
to evaluate our new web interface is navigating with your browser to the new Transitivity
Clustering web site. It is easy-to-use and provides start-to-end solutions for each important
step of a typical cluster analysis. Briefly, the new interface now assists with the following
typical data processing tasks: (1) computing and post-processing of a similarity matrix, (2)
estimation of a meaningful density parameter, (3) running the clustering process itself, (4)
automatic comparison with given gold standards, and (5) fine-tuning of the clustering by
varying the threshold and by visualizing inter-cluster vs. intra-cluster similarity distributions.

4 Conclusion and outlook

To sum up, we directly integrated the concept of missing similarity values with the weighted
transitive graph projection model of Transitivity Clustering in a straight forward fashion. We
demonstrated the power of the approach for protein homology detection based on all-vs.-all
BLAST results. The accuracy only drops slightly while run time for computing the similarity
matrix can be reduced linearly, with the presented tool. The new web interface saves time
and effort with download, configuration and installation.

The new CostMatrixCreator is a JAVA implementation and supports the user with the
creation of cost matrices with missing values step by step. Note that we do not use an own
BLAST implementation but we execute the standard NCBI Blast binaries from within CMC.
Thus our CMC implementation could easily be adapted for performing the necessary steps
with any kind of similarity function. The resulting cost matrices can finally be included
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easily into the normal clustering workflow by using our new Transitivity Clustering web
interface, for instance.

In the future, we aim to apply our method to more run time intense similarity computation
problems (3D structures of proteins, for instance). We will also integrate the new version of
Transitivity Clustering into clusterMaker [15]. The most important future work, however, is
to evaluate our method on more data sets. We are working closely together with the SFLD
(Structure-Function Linkage Database) team [17] to make this possible in the near future.
Another example for future applications is huge gene expression data sets.
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Abstract
Transcription factors (TFs) play a fundamental role in cellular regulation by binding to promoter
regions of target genes (TGs) in order to control their gene expression. TF-TG networks are
widely used as representations of regulatory mechanisms, e.g. for modeling the cellular response
to input signals and perturbations.

As the experimental identification of regulatory interactions is time consuming and expensive,
one tries to use knowledge from related species when studying an organism of interest. Here, we
present ConReg, an interactive web application to store regulatory relations for various species
and to investigate their level of conservation in related species. Currently, ConReg contains
data for eight model organisms. The regulatory relations stored in publicly available databases
cover only a small fraction both of the actual interactions and also of the regulatory relations
described in the scientific literature. Therefore, we included regulatory relations extracted from
PubMed and PubMedCentral using sophisticated text-mining approaches and from binding site
predictions into ConReg.

We applied ConReg for the investigation of conserved regulatory motifs in D. melanogaster.
From the 471 regulatory relations in REDfly our system was able to identify 66 confirmed con-
served regulations in at least one vertebrate model organism (H. sapiens, M. musculus, R. norve-
gicus, D. rerio). The conserved network consists among others of the well studied motifs for
eye-development and the pan-bilaterian kernel for heart specification, which are well-known ex-
amples for conserved regulatory relations between different organisms.

ConReg is available at http://services.bio.ifi.lmu.de/ConReg/ and can be used to ana-
lyze and visualize regulatory networks and their conservation among eight model organisms. It
also provides direct links to annotations including literature references to potentially conserved
regulatory relations.

1998 ACM Subject Classification J.3 Life and Medical Sciences, H.3.5 Online Information Ser-
vices, I.2.7 Natural Language Processing

Keywords and phrases web application, evolutionary biology, regulatory networks, text-mining

Digital Object Identifier 10.4230/OASIcs.GCB.2012.69

1 Introduction

The physical regulatory relationships of an organism can be described by gene regulatory
networks (GRNs). Transcription factors (TFs) and their respective targets (TGs) define the
majority of these regulations. GRNs can describe systems on the scale of a few genes, a
particular pathway or even on the whole gene complement of an organism. The inference of
these GRNs is generally done from experimental data sets, like gene expression data and
additional prior information from available databases [11]. Even though more and more
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high-throughput methods for the identification of TF-TG relations have been developed,
data of experimentally validated relations is still sparse for higher multi-cellular organisms
[22]. Therefore, transferring knowledge using orthologs from related species is typically done
when studying an organism of interest. Several approaches have been proposed which are
capable of transferring physical protein-protein interactions even between phylogenetically
distant species, e.g. from S. cerevisiae to A. thaliana or C. elegans [38]. The conservation
of a regulatory relation requires that at least the involved TF and the TG have to be
conserved and that the TF binds to the promoter region of the TG in two or more organisms.
Depending on the number of organisms in which the regulatory relation is conserved and
the evolutionary distance, relations between different organisms can be transferred with a
certain confidence [2, 27, 30].

Different methods have been proposed and used for the transfer of regulatory networks
from one organism to another. A well-known example is KEGG, which transfers confirmed
regulatory relations to (non-model) organisms based on ortholog definitions [13]. For bacteria
more advanced approaches have successfully been applied, which additionally incorporate
conserved information of the binding site [2] and subfamily classifications [27]. Similar
approaches exist for eukaryotes, which also make use of conserved transcription factor
binding sites [30]. Taher et al. claimed that 88% of the orthologs between H. sapiens and
D. rerio retain their regulatory mechanisms [30]. Nevertheless, the extend of regulatory
relations that can be directly transferred between organisms remains controversial [2]. There
are some well-known regulatory motifs, which appear to be conserved among a group of
quite distant species, supporting the transfer of conserved regulatory relations. A famous
example is the conservation of regulatory relations for the development of the eye in D.
melanogaster and vertebrates. It was shown that in M. musculus and other vertebrates
Pax-6, the ortholog of the eyeless (ey) gene - one of the central TFs controlling the eye
development in D. melanogaster - shares an extensive sequence identity and is even capable
of inducing ectopic eyes in D. melanogaster [36]. Also other motifs, like the pan-bilaterian
kernel for heart specification [6] or regulation of apoptosis regulation in D. melanogaster and
vertebrates [39] appear to be conserved. Studies revealing the similarity and the conservation
of regulatory subnetworks have been conducted for different species as well, like MAP kinase
expression in C. elegans and H. sapiens [15] or Toll-like receptor 4 regulated genes [26].

In the following we present ConReg, an interactive web application to investigate regulatory
relations. ConReg collects and visualizes evidences for the conservation of regulatory relations
in other eukaryotic model organisms. For that purpose, we collected regulatory data for
eight model organisms (H. sapiens, M. musculus, R. norvegicus, D. rerio, D. melanogaster,
C. elegans, A. thaliana and S. cerevisiae). The data was obtained from general and species-
specific regulatory databases, from text-mining approaches applied to PubMed abstracts and
PubMedCentral full text publications and from transcription factor binding site predictions
(TFBS).

2 Discovery of Conserved Regulatory Relations with ConReg

With ConReg conserved regulatory relations for a source species can be discovered in a target
species if these relations can be found between the respective orthologs in both species (by
default we do not require conservation of the transcription factor binding site in the two
species). ConReg searches regulatory relations of a source species which were extracted
from regulatory databases, in the specified target species. Several types of evidences for
regulatory relations of the target species can be considered based on the user’s selections.
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Figure 1 Screenshot of ConReg for the interactive discovery of conserved regulatory relations for
a source species in user selected target species. Conservation of regulatory relations for a species
can be interactively discovered using ConReg. The system allows searching for conservation in all
provided species and with different prediction methods for the target species, whereas for the source
species only reliable relations from databases are considered. For an identified conservation of a
regulatory relation details such as text-mining results and binding site predictions can be visualized.

Currently, regulatory information from publicly available databases like TRANSFAC [18] or
REDfly [10], relations found with text-mining approaches (RelEx [8], SL [9], Tri-occurrence)
in PubMed and PubMedCentral and TFBS predictions can be selected (see Materials and
Methods for details).

The Conservation Browser, where the entire predicted conserved network is shown and
the Motif Finder with which the user can search for conservations in a defined subset of genes
are the two main features of ConReg. For both features, the user can select the source species,
regulatory data sources for the target species and further constraints for the text-mining
approaches. Our system shows the conserved regulatory network as well as annotations for
each found conserved relation. This includes information about the orthologs, the textual
positions where our text-mining approach found regulatory relations in the literature, the
TFBS predictions and the protein-protein interaction score from the STRING database
(version 9) [29]. For further analysis the networks can be exported as tab separated files for
use in advanced network analysis tools. An example can be seen in Figure 1, which shows
a screenshot of the Conservation Browser with conserved relations for D. melanogaster as
source species. The detail view window in the front shows information about the regulatory
relations in the target species including an example of a regulatory relation which was
discovered by RelEx between Pax6 and Six3 in H. sapiens.
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Table 1 Overview of the model organisms from our database with the number of genes, number
of predicted and known transcription factors and the number of factors with position weight matrices
(PWMs). In addition, the number of regulatory relations collected from databases and relations
which were extracted from the scientific literature by using different text-mining approaches (RelEx
[8], SL [9] and Tri-occurrence) and from transcription factor binding site predictions (TFBS) are
shown. Most regulatory relations could be found for S. cerevisiae and A. thaliana which originate
mostly from genome-wide chromatin immunoprecipitation experiments. The numbers of found
text-mining relations and of predicted binding sites is quite different for the model organisms.

Species #Genes #TF #PWM 100×#TF
#Gene #Data-

base
#RelEx #SL #Tri-

Occ.
#TFBS

H. sapiens 21,673 1,416 300 6.5 3,230 20,391 29,422 103,511 220,245
M. musculus 23,497 1,431 276 6.1 932 10,682 15,616 51,729 130,456
R. norvegicus 22,503 1,181 20 5.2 321 5.950 8,905 33,857 3,050
D. rerio 21,322 1,081 0 5.9 0 2,930 4,322 16,219 0
D. melanogaster 14,076 570 139 4.0 471 2,433 3,802 11,635 6,054
C. elegans 19,992 688 6 3.2 128 102 149 385 1,308
A. thaliana 26,207 1,235 32 3.4 11,284 926 1,460 5,073 8,282
S. cerevisiae 5,884 233 170 4 29,716 812 1,446 4,036 6,075

2.1 Regulatory Data

For the source and target species, data from different data sources is available in our system.
Table 1 gives an overview of the collected data in ConReg. For S. cerevisiae and A. thaliana,
processed data from genome-wide chromatin immunoprecipitation (ChIP) experiments for
some TFs was additionally available. This explains why quite many regulatory relations were
found for these two species. For the other species only very few relations could be found
which emphasizes the need of text-mining approaches to get a more complete view on the
currently discovered regulatory networks. For instance, for D. rerio no relations were found
in the databases, but 16,219 putative relations were found using text-mining. Nevertheless,
we assume that data extracted from databases is reliable and use this data as source data for
the discovery of conservations, whereas also the predicted relations are considered for the
conservation search in the target species.

For our prediction methods, most relations were found with the Tri-occurrence text-
mining approach and the TFBS predictions, but likely with a large number of false positives.
Unfortunately, for some organisms the number of position weight matrices (PWM) for the
search of TFBS is very limited. For D. rerio no PWMs were available and for C. elegans and
R. norvegicus only six and 20 PWMs could be found in the public domain. This explains the
comparably low number of binding site predictions for these three species. The Tri-occurrence
approach was used as pre-filter for the more sophisticated relation extraction approaches
RelEx and SL. By comparing the relations found with RelEx to known relations extracted
from databases a small overlap can be observed. For example for H. sapiens 22% of the
database relations could also be found with RelEx. A similar consistency could be observed
for R. norvegicus, M. musculus and D. melanogaster. For SL 21% of the known relations
from H. sapiens could be detected. By combining the two state-of-the-art relation extraction
approaches RelEx and SL, this rate could be increased to 28% for H. sapiens. For those
species with regulatory data from ChIP experiments (S. cerevisiae and A. thaliana), this
fraction is much lower as can be seen on the number of found regulatory text-mining relations.
Furthermore, for A. thaliana and C. elegans only 34,729 and 31,325 species relevant abstracts
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could be found, whereas for H. sapiens and M. musculus 13,053,996 and 1,121,698 abstracts
could be used. This explains the quite small number of relations for A. thaliana and C.
elegans extracted with our text-mining approaches.

Most of the TFBS predictions could neither be confirmed with databases knowledge nor
with the text-mining results. For example for S. cerevisiae 84% of the predictions were
unique for this method. The number and accuracy of TFBS predictions strongly depends on
the available PWMs and their quality. Short PWMs for example produce many hits, but
only with low scores which were not considered for the predicted relations in ConReg.

The currently available regulatory data is distributed in many different databases and
stems from different data sources such as manual literature curations or genome-wide ChIP
experiments. In general, the overlaps and consistency between different sources are still
quite small. The collection and integration of data from different sources and organisms is a
difficult task and needs to be continued to make the most out of the available knowledge.

2.2 ConReg for the Discovery of Conserved Relations in
D. melanogaster

We used D. melanogaster as source species to outline the usability of our system to find
conserved regulatory relations for the 471 documented regulatory relations in REDfly[10].
We selected as target species the vertebrates H. sapiens, M. musculus, R. norvegicus and D.
rerio and used all available data sources for these species. D. melanogaster is phylogenetically
distant from the other species, but several conserved motifs are described in the literature
as already mentioned in the introduction. We checked all conserved relations predicted
by ConReg. We assume that relations extracted from databases are correct and manually
checked the relations found with our Tri-occurrence approach by reading the literature
reported as evidence for each found relation. The Tri-occurrence relations are a super set of
the relations extracted with our other text-mining approaches so that the performance for
these approaches could also be checked, whereas the TFBS predictions were compared to the
relations found in the databases and with the text-mining approaches.

The entire predicted conserved network is shown in Figure 2. Manual annotations where
we could confirm a conserved regulatory relation between the orthologs in at least one
vertebrate are shown as red edges. The conserved D. melanogaster network also contains the
well-studied motifs for eye-development (Optix, ey, eya and shf ) and conservations for the
pan-bilaterian kernel for heart specification, including the genes Tin, Mef2 and Mad.

Only seven conserved relations, involving nine different genes could be identified with
target relations extracted from databases. From these seven relations four were auto-
regulations and the others were isolated edges. By using only the knowledge from databases,
not even the well-studied conserved motifs between D. melanogaster and the other organisms
could be rediscovered. With our Tri-occurrence approach 132 possible conservations could be
found from which we could confirm 66 relations (50%) in at least one species. We compared
the different methods to each other with respect to the number of predicted and confirmed
relations. Furthermore, we compared the intersections of the predicted conserved relations
from the different approaches (see Figure 3). All of the 67 found conservations found with
RelEx could be confirmed or were also found by SL or the binding site predictions. With SL
six additional validated conservations could be found. In addition, 124 possible conserved
relations were discovered with the TFBS predictions. 33 of these relations could be found
with a different method including 25 confirmed Tri-occurrence relations. We note, that with
RelEx the best relation extraction performance could be achieved with 57 out of 67 confirmed
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Figure 2 Network of conserved regulatory relations from the 471 documented regulatory relations
in REDfly for D. melanogaster and in at least another vertebrate. The gray edges represent all
relations where we could find a possible conservation. Red edges represent edges where we could
confirm the relations between the orthologs in vertebrates using the literature references provided
by ConReg. In green, we highlighted the nodes where at least two ortholog identification approaches
found an ortholog mapping to another vertebrate for the respective gene. The conserved network
contains among others, the well studied motifs for eye-development and the pan-bilaterian kernel for
heart specification.

conserved relations (85%). With SL a similar performance could be reached with 59 out of
76 confirmed conserved relations (78%).

2.3 Comparison to alternative tools

There are several other tools which support the identification of conserved relations in
eukaryotes. For example, with the UCSC Genome Browser [7] one can map TFBS (e.g.
from ORegAnno [19]) and genome-wide chromatin immunoprecipitation experiments to the
genome of interest together with the conservation of DNA sequences for different species.
Another tool, the Genomatix suite1, allows for uploading experimental data and for searching
for conservations.

1 http://www.genomatix.de
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Figure 3 Venn-Diagram of found regulatory conservations between the 471 documented regulatory
relations in REDfly for D. melanogaster and vertebrates. Confirmed conservations are regulatory
relations which could be transferred from databases or which are correctly identified with our
Tri-occurrence approach for at least one vertebrate (relations were manually checked by reading the
corresponding literature). All relations found with RelEx could also be found with another method,
whereas most of the TFBS predictions were not reported with our text-mining approaches.

Compared to prokaryotic genomes, eukaryotic genomes are rich in non-coding sequences
of unknown functions and promoters can be several kilobases upstream from the transcription
start site. Nevertheless, different approaches have been introduced to predict conserved
binding sites [16, 4].

Furthermore, for microbial gene regulatory networks different platforms exist for the
storage and web based analysis as reviewed by Baumbach et al. [3].

In comparison to these tools, ConReg focuses on eukaryotes only. ConReg provides
detailed information of possible conservations. The main contribution of ConReg is the
addition of conserved relations mined from the publicly available literature, only a small
fraction of which is currently represented in databases. Moreover, TFBS predictions are
also integrated. All these data can easily be selected via the web-interface of ConReg, via a
Cytoscape [28] plug-in or downloaded from our server.

3 Conclusion

ConReg is a novel interactive online system for the discovery of conserved regulatory relations
in currently eight eukaryotic model organisms. Our system allows searching for regulatory
conservations among arbitrary user-definable sets of target species and outputs several
annotations for predicted conserved relations.

We collected regulatory relations from databases, via text-mining from scientific text
descriptions and from binding site predictions. We observed a severe incompleteness of
regulatory relations in databases which are not even sufficient for the discovery of well-known
conserved motifs. This slightly improves via the integration of information from state-of-the-
art text-mining approaches and binding site predictions. E.g., several conserved motifs could
be found using D. melanogaster as source species. For this showcase ConReg could identify
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Arabidopsis thaliana
Saccharomyces cerevisiae
Caenorhabditis elegans

Mus musculus
Rattus norvegicus

Homo sapiens
Danio rerio
Drosophila melanogaster

Figure 4 The eight species considered in our study and the associated phylogenetic tree as
extracted from the NCBI taxonomy tree. Currently, ConReg contains six animal model organisms
(H. sapiens, M. musculus, R. norvegicus, D. rerio, D. melanogaster, C. elegans) as well as S. cerevisiae
and the model plant A. thaliana.

conserved regulations for 14% (66 out of 461) of the relations from REDfly in at least one
vertebrate. Still, it remains unknown to which extent regulatory relations are conserved since
only few regulatory relations are experimentally confirmed for eukaryotes.

For our selected showcase we noticed that even with the simple Tri-occurrence text-
mining approach 50% of the identified regulatory relations are correctly identified if also
experimentally validated regulatory relations between orthologs are known. Thus, with the
integration of additional background knowledge the relation extraction could be significantly
increased. We designed our system in such a manner, that other information sources can
easily be added. In particular, we are planning to incorporate information from the increasing
number of available ChIP experiments into ConReg.

Availability

The ConReg web interface is publicly available at http://services.bio.ifi.lmu.de/
ConReg/ and an interface is provided as Cytoscape plug-in to access the data for follow-up
analyses. Furthermore, the extracted text-mining relations are provided for download on our
website.

4 Materials and Methods

4.1 Data Sources

We collected regulatory relations for H. sapiens, M. musculus, R. norvegicus, D. rerio, D.
melanogaster, C. elegans, A. thaliana and S. cerevisiae (see Figure 4 for a phylogenetic tree of
these species). Regulatory relations were extracted from the multi-species curated databases
TRANSFAC (Version 9.3) [18] and ORegAnno [19]. Species-specific relations were extracted
from YEASTRACT [31], REDfly [10] and AtRegNet [20] and from curated pathways from
Biocarta and NCI-Pathway [24]. Transcription factors were collected from these databases
and the transcription factor prediction database [14]. For the transfer of relations, we used
orthologs from InParanoid [21], EnsemblCompara [35] and OMA [25]. These databases were
used due to the evaluation results in [1, 12] and the coverage of ortholog mappings for all
considered species. All genes were mapped to Ensembl to obtain unique genomic locations
and the associated annotations. Relations involving genes which could not be mapped were
not considered.

http://services.bio.ifi.lmu.de/ConReg/
http://services.bio.ifi.lmu.de/ConReg/
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4.2 Regulatory Relation Extraction from the Scientific Literature
Abstracts from PubMed (20,766,340 abstracts) and the corresponding full text publications
from the PubMedCentral open access subset (389,322 documents) were used to search
for regulatory relations in textual descriptions. In order to find relations in unstructured
descriptions two tasks have to be accomplished: the named entity recognition (NER) of gene
names and the correct identification of relations between genes. For example, consider the
following sentence from [17]: “There is evidence that the expression of Six3 is regulated by
Pax6.” To infer a regulatory relation, the gene names Six3 and Pax6 need to be found and
the regulatory relation between Pax6 → Six3 has to be identified. We used syngrep [5], a
dictionary based NER tool, for the gene name recognition and the mapping of gene names to
identifiers. Dictionaries were compiled by combining gene names, aliases and synonyms from
UniProt, Ensembl, HGNC, MGI, RGD, Tair and FlyBase. Regulatory relations between
genes were initially identified with a simple Tri-occurrence approach. For this approach, a
relation was assumed between all pairs of genes which were found in a sentence, if a keyword
indicating a regulatory relation was found and at least one gene is annotated as a TF. For this
task, we defined a list of keywords, which are supposed to indicate regulatory interactions,
like regulates, represses, or downregulates. Such a Tri-occurrence approach provides a good
recall, but also implies many false positives. Therefore, we also used the following more
sophisticated relation extraction approaches to filter the discovered relations found with the
Tri-occurrence approach:

RelEx [8]: RelEx is a rule based relation extraction tool using dependency parse trees to
find relations.

SL [9]: SL is a shallow linguistics SVM kernel for the identification of relations. Since no
model was available for the identification of regulatory relations with this kernel, we used
the simple margin active learning [34] approach to train a SVM. A set of 175 positive and
negative relations was used to learn an initial model. This model was refined by applying
the learned predictor to 10,000 randomly selected relations found by the Tri-occurrence
approach. The 100 instances which were closest to the separating margin of the SVM
were manually annotated and used for the next round of SVM training. The model was
iteratively refined with this approach until no further performance improvement on a
control set of 100 examples (including 33 positive regulatory relations) could be observed.
An area under the receiver operating characteristic (ROC) of 0.85 and an area under the
precision-recall curve of 0.72 could be achieved with the final model on the control set.
Furthermore, with a standard probability threshold of 0.5 for the SVM, a precision of 0.56
and a recall of 0.75 were reached (see Figure 5 for the ROC curve of the final predictor).

We decided to use RelEx and SL due to their good performance on the task of identifying
undirected protein-protein interactions on different corpora [33]. The Tri-occurrence and the
SL kernel approach predict only undirected relations. We used our list of TFs to derive the
direction from the transcription factor to the non-factor. In the case that both genes are
non-factors or both are factors the relations were omitted by default in our system. Gene
names between closely related species can highly overlap. Therefore, we identified the species
context in each abstract using a pre-defined set of possible names for the different species.

4.3 Transcription Factor Binding Site Predictions
The promoter sequence for each gene was extracted using RSAT [32]. The same promoter
size of 1 kilo base pairs upstream of the transcription start site was chosen for all species.
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Figure 5 Receiver operating characteristic (ROC) curve for the final shallow linguistics (SL) SVM
model which was used for the identification of regulatory relations. The evaluation set consists of
100 examples including 33 positive regulatory relations and 67 negative regulatory relations. On this
control set the model reached an area under the ROC of 0.85 and an area under the precision-recall
curve of 0.72. With a standard probability threshold of 0.5 for the SVM, a precision of 0.56 and a
recall of 0.75 were reached.

Binding motifs for the different TFs were taken from TRANSFAC [18] and JASPAR [23].
The matching of these motifs to the promoter sequences was predicted with the R package
cureos [37]. We used an empirically chosen threshold of 16 on the TFBS scores to filter out
insignificant binding sites.

4.4 ConReg System Design
ConReg was developed as object oriented Java application using the open-source Ajax Web
application framework ZK. The underlying data was unified in a structured MySQL database.
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Abstract
DNA nanoarchitechtures require carefully designed oligonucleotides with certain non-hybridization
guarantees, which can be formalized as the q-uniqueness property on the sequence level. We study
the optimization problem of finding a longest q-unique DNA sequence. We first present a conve-
nient formulation as an integer linear program on the underlying De Bruijn graph that allows to
flexibly incorporate a variety of constraints; solution times for practically relevant values of q are
short. We then provide additional insights into the problem structure using the quotient graph of
the De Bruijn graph with respect to the equivalence relation induced by reverse complementarity.
Specifically, for odd q the quotient graph is Eulerian, so finding a longest q-unique sequence is
equivalent to finding an Euler tour and solved in linear time with respect to the output string
length. For even q, self-complementary edges complicate the problem, and the graph has to be
Eulerized by deleting a minimum number of edges. Two sub-cases arise, for one of which we
present a complete solution, while the other one remains open.
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1 Introduction

DNA synthesis technology allows to synthesize custom oligonucleotides of up to 80–100
basepairs (bp). Such oligonucleotides may assemble into larger regular structures, such as
grids of 4x4 tiles [6]. These structures in turn provide a basis for attaching other molecules
to protruding DNA arms, such as antibodies to capture specific proteins, which is why
the research field of DNA nanoarchitechtures offers exciting future prospects for molecular
biology and medicine.

Single-stranded DNA molecules form stable double-stranded helices according to the
canonical Watson-Crick base pairing rules (A-T, G-C). The stability of a DNA double
helix is given by a fine balance of interactions, such as hydrogen bonds between bases,
stacking interactions of parallel bonds, and thermodynamic properties, such as the melting
temperature or the free Gibbs Energy of a DNA sequence [9].
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The problem of designing appropriate DNA oligonucleotide sequences for assembly into a
desired structure has been pioneered by Seeman, who in cooperation with Kallenbach devel-
oped the semi-automated SEQUIN software [10] for this purpose. Later, Feldkamp developed
the DNA sequence compiler (dsc [7]) that allows to specify constraints between oligonu-
cleotides as a mini-language and automates the search process by randomized construction
and backtracking on sequences that violate the specifications.

For both approaches, a central aspect of the design problem is that the chosen oligonu-
cleotides must be q-unique (see Section 2). Of course, besides q-uniqueness, other factors
play an important role as well, such as uniform thermodynamic stability of all hybridizing
regions in the desired structure. Here, however, we focus on the theoretical and combinatorial
aspects of q-uniqueness.

We present a novel view on the computational problem of finding a longest q-unique DNA
sequence. This is of practical relevance: A long q-unique sequence can be cut at arbitrary
positions to obtain sets of oligonucleotides of any length that do not interact with each other.
For practically relevant values of q, the problem is straightforwardly solved as an integer
linear program (ILP) defined on a (standard directed) De Bruijn graph (Section 3). This
approach has the advantage that it allows to incorporate quite general constraints (exclusion
of certain substrings such as long homopolymers, inclusion of mandatory substrings, etc.)
and can be solved with standard technology.

Interestingly, as we show in Section 4, the basic design problem can be cast as an Euler
tour problem in an undirected variant of the De Bruijn graph, essentially the original De
Bruijn graph modulo the equivalence relation induced by reverse complementarity. This
graph is Eulerian for odd values of q, and the maximization problem has a closed-form
solution. For even values of q, the graph is not Eulerian, and the problem arises to convert
it into an Eulerian graph with a minimum number of edge (q-gram) deletions. An explicit
solution is obtained when self-complementary edges are allowed in the graph, but when they
are forbidden, a closed-form solution remains open.

2 Preliminaries

The reverse complement s of a sequence s = σ1σ2 · · ·σn over the DNA alphabet Σ =
{A,C,T,G} is defined as s := σnσn−1 · · ·σ1, where A = T, T = A, C = G and G = C.
A length-q string is an element of Σq and called a q-gram. A q-gram that is a substring a
given sequence s is called a q-gram of s. In the following, for a given sequence s and a given
(small) q, we consider the sequence of overlapping q-grams of s. For s = GATTACA and
q = 4, we obtain the q-gram sequence (GATT, ATTA, TTAC, TACA).

A sequence s is said to be q-unique [7] if the following requirements are fulfilled.
1. Every q-gram occurs at most once in s.
2. If a q-gram occurs in s, then its reverse complement does not.
Note that the second requirement implies that (for even q) no self-complementary q-gram
may occur in s. For odd q, self-complementary q-grams do not exist.

The q-uniqueness requirements (for small values of q) ensure that the designed sequence
does not hybridize to itself in a stable way, except at exact reverse complementary counterparts,
which are not part of the designed sequence, but introduced deliberately at a later stage.
The first requirement ensures that each q-gram of s has exactly one reverse complementary
counterpart and hence binds at a well-defined location to the reverse complement of s. If
this requirement is violated, switching may occur, as shown in Figures 1a, 1b, which leads to
unstable DNA structures. The second requirement ensures that s does not bind to itself; the

GCB 2012



84 Designing q-Unique DNA Sequences with ILPs and Euler Tours in De Bruijn Graphs

A

A
G

C

A

C

C

T

C
T

C

T

A

A

A

G
A

C
C

C

C
A

A

T
A

(a)

A

A
G

C

A

C

C

T

C
T

C

T

A

A

A

G
A

C
C

C

C
A

A

T
A

(b)

T

A C

G T

A
A

A

A A

A A

A

C

C
C

C

C

C

C

T

T

A
C

C

(c)

A

G

G
G

C
C

T
T

A
T

G
G

A

A

G

G
G

C
C

T
T

T
G

G

(d)

Figure 1 Sequences violating the q-uniqueness requirements. (a), (b): The q-gram TCT occurs
twice, which leads to two alternative hybridizations. (c), (d): Existence of (self-)complementary
q-grams results in the possibility of the sequence folding unto itself or binding to another molecule
of the same type.

adverse case is shown in Figures 1c, 1d.
We note that there exist 4q DNA q-grams. The number of self-complementary q-grams is

zero if q is odd, and 4q/2 if q is even. Thus, an upper bound on the number of q-grams that
can be used in a q-unique sequence is Mq := 4q/2 if q is odd, and Mq := (4q − 4q/2)/2 if q is
even. If self-complementary q-grams are allowed (a variant of the problem that is irrelevant
in practice, but combinatorially interesting), the Mq-bound for even q is increased by 4q/2.
Thus M ′q = 42/2 if q is odd and M ′q = (4q + 4q/2)/2 if q is even.

The optimization problem at hand is to find a q-unique sequence of maximal length. In
the following, we study the question whether the upper bound Mq can be achieved. For this,
the Mq selected q-grams would have to be ordered such that consecutive q-grams overlap by
(q − 1) characters. We use a De Bruijn graph as a convenient data structure to study the
optimization problem.

3 An Integer Linear Program on the De Bruijn Graph

We briefly recall the definition of a (directed) De Bruijn graph (DBG).

I Definition 1 (De Bruijn graph). The De Bruijn graph of order q ≥ 2 over the alphabet Σ
has vertices and edges

V := Σq−1,

E := {(σ1s, sσ2) : σ1, σ2 ∈ Σ, s ∈ Σq−2}.

Thus, the vertices are (q − 1)-grams and the edges represent q-grams by connecting two
vertices such that the source’s (q − 2)-suffix equals the sink’s (q − 2)-prefix.

Traversing a DBG using every edge at most once and avoiding edges labeled with self-
complementary q-grams and complementary q-grams of used edges results in a path that
describes a q-unique sequence. The optimization problem of finding a longest q-unique
sequence can now be cast as an edge selection problem in the DBG: Find an edge sequence
of maximal length that forms a path (or cycle), such that each edge is traversed at most
once, traversal of an edge implies non-traversal of its reverse complement, and (for even q)
no self-complementary edges are traversed.

This problem in turn can be conveniently cast as an integer linear program (ILP); see
Table 1. Three sets of binary indicator variables are defined: (xe)e∈E , (av)v∈V , and (zv)v∈V .
The variable xe indicates whether edge e is selected. Variables av and zv indicate the start
vertex and end vertex of a path, respectively. The objective function naturally maximizes
the number of selected edges.
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Table 1 ILP for selecting a maximal number of edges under q-uniqueness constraints. Selected
edges may form cycles and/or one path. All variables are binary indicator variables: edge selection
indicators xe, path start indicators av, and path end indicators zv. Functions γ, In and Out are
defined in the text.

Maximize
∑

e∈E
xe

subject to 0 ≤ xe ≤ 1, xe ∈ Z ∀e ∈ E,
0 ≤ av ≤ 1, av ∈ Z ∀v ∈ V,
0 ≤ zv ≤ 1, zv ∈ Z ∀v ∈ V,

xe + xγ(e) ≤ 1 ∀e ∈ E,∑
e∈In(v)

xe + av =
∑

e∈Out(v)

xe + zv ∀v ∈ V,

∑
v

av ≤ 1,∑
v

zv ≤ 1,

av + zv ≤ 1 ∀v ∈ V.

Let γ(e) denote the edge labeled with the reverse complement of e’s label. To ensure
q-uniqueness, we must not select both edge e and its complement, thus xe + xγ(e) ≤ 1 for all
edges e ∈ E. If e = γ(e), this becomes 2xe ≤ 1, which implies xe = 0 because of the integer
constraints.

Let In(v) and Out(v), respectively, be the set of incoming and outgoing edges of vertex v.
To ensure the chosen edges form a path or cycle, we require that for every vertex the number
of incoming edges equals the number of outgoing edges. If the path is not a cycle, the start
vertex has one incoming edge less than outgoing edges, and the end vertex has one outgoing
edge less than incoming ones. Thus we require

∑
e∈In(v) xe + av =

∑
e∈Out(v) xe + zv for all

v ∈ V . To ensure that we obtain at most one start vertex and one end vertex and that they
are not identical, we require

∑
v av ≤ 1,

∑
v zv ≤ 1 and for all v ∈ V : av + zv ≤ 1.

Table 1 summarizes the ILP. Its conditions do not ensure that the solution is a single
path. Instead, the solution may consist of one or more cycles and at most one path. To
ensure a single path or cycle, further constraints may be added: Assume that the optimal
solution of the ILP in Table 1 consists of two vertex-disjoint components, such as two cycles
on vertex sets V ′ and V ′′, respectively. Then we add a constraint requiring the existence
of an edge between V ′ and V ′′ and solve the ILP again. This technique of adding violated
constraints on demand is called cutting-plane method. However, we found that the solution
of the ILP from Table 1 already produced a single cycle or path, i.e., adding cutting planes
was not necessary.

Table 2 shows the ILP’s solution for 2 ≤ q ≤ 8. The ILP was implemented in Python with
the python-zibopt library [8] and solved with the SCIP solver [1]. The obtained solutions
were single cycles for odd q and single paths for even q. The ILP’s optimal solution agrees
with the upper bound Mq for odd q (cf. Section 2), but differs for even q ≥ 4. These findings
suggest that for odd q, the problem is trivial and that the solution agrees with the upper
bound. However, self-complementary q-grams appear to complicate the problem. We now
present a different approach that proves that for odd q, the above conjecture holds, and that
the solution can be obtained in linear time (without resorting to an ILP).
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Table 2 ILP results on DNA De Bruijn graphs of order 2 ≤ q ≤ 8. |Eq|: number of edges, |Esc
q |:

number of self-complementary edges, Mq: Upper bound on the number of selectable q-grams (see
Section 2), opt: optimal ILP solution value (≤Mq), diff: Mq − opt.

q |Eq| |Esc
q | Mq opt diff

2 16 4 6 6 0
3 64 0 32 32 0
4 256 16 120 115 5
5 1024 0 512 512 0
6 4096 64 2016 1959 57
7 16384 0 8192 8192 0
8 65536 256 32640 32279 361

4 Euler Tours of the De Bruijn Quotient Graph

To represent the double-stranded nature of DNA directly in the graph, the central idea is to
collapse vertices and edges whose label is the reverse complement of each other into a single
vertex or edge. Formally, we define an equivalence relation ≡ by s ≡ t := (s = t or s = t).
Each equivalence class has size 1 (for self-complementary sequences) or 2 (all others). The De
Bruijn graph modulo ≡ on edges and vertices is called De Bruijn Quotient Graph (DBQG).
It was introduced by Anderson et al. [2] in a different context (to construct universal DNA
footprints). Each vertex of the quotient graph is jointly labeled with a (q − 1)-gram and its
reverse complement; each edge represents a q-gram and its reverse complement.

I Definition 2 (De Bruijn quotient graph, DBQG). The De Bruijn quotient graph of order
q ≥ 2 over the DNA alphabet Σ has vertices and edges

Ṽq := {{s, s} : s ∈ Σq−1},

Ẽq :=
{{
{σ1s, s σ1}, {sσ2, σ2 s}

}
: σ1, σ2 ∈ Σ, s ∈ Σq−2

}
,

where s denotes the reverse complement of a sequence s.

We observe that in the DBQG of order q,

|Ṽq| = [4(q−1) + 4(q−1)/2]/2, |Ẽq| = 4q/2 if q is odd,

|Ṽq| = 4(q−1)/2, |Ẽq| = [4q + 4q/2]/2 if q is even.

A key characteristic of the quotient graph is that it contains paths not corresponding to
valid sequences. Although the edges of the quotient graph are undirected, choosing one of
the edge labels determines a direction. As a consequence, a vertex v which is reached via an
edge e1 must be left via an edge e2, such that the label of v, the (q− 1)-suffix of a label of e1
and the (q − 1)-prefix of a label of e2 are identical. Since in this case, we may also enter v
via e2 and leave via e1, we refer to e1 and e2 as admissible edge pair. Consider the vertex
{ACT, AGT} in Figure 2. By entering it via CACT, the vertex label ACT is selected. Now
only the edges starting with ACT can be followed to leave the vertex, here {ACTC, GAGT},
{ACTG, CAGT}, {ACTT, AAGT}, or {ACTA, TAGT}.

An admissible path in the DBQG is a path whose internal vertices are entered and left
via admissible edge pairs. We consider only admissible paths from now on and “path” always
refers to admissible path.
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Figure 2 Admissible edge pairs (see text).
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Figure 3 Vertex types of a DBQG with odd q.

The structure of the DBQG is more complex than the structure of the original DBG due
to the presence of additional self-loops. In the DBG, an edge e is a self-loop from v to v if
and only if e is labeled with a homopolymer, e.g., AA. . . A = Aq and v is labeled with the
corresponding homopolymer of length q − 1. However, in the DBQG, an edge e is a self-loop
if its label is either a homopolymer or self-complementary (this new case only occurs for
even q). In the following sections, we precisely discuss this fact’s implications on the graph
structure and the maximization problem.

Each self-loop is part of two admissible edge pairs: First the entering edge and the loop
are one admissible edge pair and then the loop and a leaving edge are the second one.

We define a vertex to be balanced if all incident edges can be arranged in admissible edge
pairs, including self-loops. A DBQG is Eulerian if there exists a path or cycle that uses each
edge exactly once. The following lemma is an adaptation of the same lemma for standard
undirected graphs and proved in exactly the same way.

I Lemma 3. A DBQG is Eulerian if and only if each vertex is balanced.

If the DBQG is Eulerian, an Euler tour may be constructed in linear time with a slight
modification of the Hierholzer algorithm [4].

Note that a path that traverses each edge at most once and that does not traverse
any self-complementary edge corresponds by definition to a q-unique double-stranded DNA
sequence.

4.1 The Case of Odd q

Using the DBQG, we can understand why finding a longest q-unique sequence is easy when
q is odd. In particular, the optimization problem can be solved in linear time with respect to
the resulting q-unique sequence.

I Theorem 4. For odd q, the DBQG is an Eulerian graph [2]. Each Euler tour is a cycle
whose overlapping concatenated edge labels specify a q-unique sequence of maximum length.
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Figure 4 Vertex types of a DBQG with even q.

Proof. Recall from Section 1 that for odd q, the upper bound on the number of selectable
q-grams is Mq = 4q/2 = |Ẽq|. Thus if an Euler tour exists, each possible q-gram is used
exactly once, and the upper bound is attained.

To prove that an Euler tour exists (this was already noted in [2]), we need to show that
each vertex is balanced according to Lemma 3. Thus we consider the possible vertex types
in a DBQG of odd order; see Figure 3. There are self-complementary vertices (the vertex
label is self-complementary), homopolymer vertices (the vertex label is the repetition of a
single nucleotide) and standard vertices. Note that the self-loop of a homopolymer vertex
can be traversed when entering and leaving the vertex via an admissible edge pair. While
the incident edges differ in number and type, each vertex is balanced. J

4.2 The Case of Even q

As in the odd case, we consider all types of vertices in a DBQG for even q, see Figure 4 and
note that the graph is not Eulerian due to unbalanced vertices with one self-complementary
edge (Figure 4d). It follows that an Euler tour cannot exist, and the bound Mq cannot be
attained, explaining the differences in Table 2.

Finding a longest q-unique sequence now becomes the following problem: Given an
undirected graph G = (V,E), find an Eulerian graph G∗ = (V,E∗) with E∗ ⊆ E such that
|E \ E∗| is minimal. We call this process Eulerization-by-deletion. (This use of the term
Eulerization is non-standard, as the literature reserves the term for Eulerization by duplication
of existing edges.) In standard undirected graphs, Eulerization-by-deletion is polynomially
solvable via minimum-weight perfect matchings [3, 5], where in our case the weight corresponds
to the path length between the matched odd-degree vertices. Unfortunately this approach
cannot be directly applied to the DBQG because of the restrictions imposed by admissible
edge pairs.

We consider two cases for even q. The first one is of theoretical interest and assumes that
the self-complementary edges still exist in the DBQG (i.e., self-complementary q-grams are
allowed). We present a simple construction to optimally Eulerize the DBQG, so finding a
maximal q-unique sequence is polynomially solvable. The second case is the original problem,
where self-complementary edges are removed. For this case, we also present a construction
to Eulerize the graph such that an Eulerian path exists; however, this construction is not
optimal. Therefore, we only obtain a lower bound on the number of selectable edges, and
the complexity remains open.

DBQG with self-complementary edges. Four types of vertices exist in the graph (Figure 4);
only the vertices with one self-complementary edge (Figure 4d) are unbalanced. We investigate
the the odd-degree vertices and their relations in the graph assuming q ≥ 4.
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Figure 5 Substructures in DBQG with even q.
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Figure 7 Path of length q/2 − 1 obtained
by cyclic permutation of self-complementary
edge CCTAGG into AGGCCT. When the self-
complementary edges and the path are removed,
all vertices on the path are balanced.

A bat-group is a set of 7 vertices centered around a vertex labeled {σ(σσ)q/2−1, σ(σσ)q/2−1},
σ ∈ Σ (Figure 5a). There are only 2 bat-groups (the central vertex is labeled with ATAT. . . A
or CGCG. . . C); each bat-group contains 8 self-complementary edges. The central vertex is
balanced, but the other six are not. At least four edges must be deleted to balance each
vertex in such a group, and Figure 5a shows several ways to achieve this.

Let s be a self-complementary (q−2)-gram. Then the kite-group of s is the set of 4 vertices
that are not part of a bat-group and are labeled with {σs, s σ}, for all σ ∈ Σ (Figure 5b).
Each kite-group contains four self-complementary edges. Because of the two bat-groups,
there are (4q/2−16)/4 kite-groups in the graph (for q = 4, there are none). At least two edges
must be deleted to balance each vertex in a kite-group, and Figure 5b shows all possibilities
to achieve this. In more detail, Figure 6 shows that a single edge (the central edge in the
figure) between two problematic vertices can be deleted, leaving both vertices balanced. For
the balance, the self-complementary edge in each of the vertices is essential.
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Figure 8 Alternative permutation path to delete: Vertex v1 in (a) and vertex v′
1 in (b) are the

cyclic permutation pair described in Section 4; so are v2 in (a) and v′
2 in (b). Now, (a) shows a

shorter path from v1 to v2 and (b) a longer one from v′
1 to v′

2.

Summarizing, to Eulerize the graph, it is both necessary and possible to delete δ :=
2 · 4 + (4q/2 − 16)/4 · 2 = 4q/2/2 edges. As we are equally satisfied with an Eulerian path
instead of a cycle, we allow two unbalanced vertices and re-add two edges.

I Theorem 5. In the DBQG for even q with self-complementary edges, an Eulerian subgraph
with N ′q := |Ẽq| − δ + 2 = 4q/2 + 2 edges exists; larger Eulerian subgraphs do not exist.

DBQG without self-complementary edges. When self-complementary edges are omitted,
deleting an edge connecting two odd-degree vertices may leave them unbalanced (consider
Figure 6 without the self-loops and with the central edge removed). Identifying an edge-
minimal set of paths between pairs of these vertices, whose deletion leaves all vertices
balanced, appears difficult and remains an open problem.

Here we present a systematic but sub-optimal construction. Consider a self-complementary
q-gram of the form st, where s and t have length q/2 and are reverse complements of each
other, and consider the vertices incident to st and its cyclic permutation ts. There is a path
of length q/2− 1 between these vertices (see Figure 7).

As there are two vertices with two self-complementary edges (Figure 4c), there are
4q/2/2− 2 such (s, t) pairs. Since an Eulerian path instead of a cycle suffices, one of these
paths may remain, resulting in ∆ := (4q/2/2− 3)(q/2− 1) edge deletions.

I Theorem 6. In the DBQG for even q without self-complementary edges, an Eulerian
subgraph with

Nq := (|Ẽq| − 4q/2)−∆ = (4q − 4q/2)/2− (4q/2/2− 3)(q/2− 1)

edges exists. Larger Eulerian subgraphs may exist.

For even q ≥ 6, the value of Nq does not match the optimal ILP solution and is therefore
suboptimal (e.g., q = 6: Nq = 1958, optimum 1959; q = 8: Nq = 32265, optimum 32279).
For q = 6, we can manually improve the Eulerization to match the ILP solution: Due to the
symmetry of some self-complementary edges it is possible to find an alternative shorter path
between two self-complementary edges. Figure 8 shows this alternative pairing. Deleting only
the path in Figure 8a and preserving that in Figure 8b saves exactly one edge. In general,
the problem of optimal Eulerization in this case remains open.
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5 Discussion and Conclusion

We presented two approaches to generate q-unique sequences, via an ILP and an Euler tour
in a De Bruijn quotient graph.

For odd q, the DBQG is Eulerian and an adaptation of a standard algorithm for finding
Euler tours yields an optimal algorithm. Additionally, the number of different longest
q-unique sequences is related to the number of Euler tours in the DBQG, which can be
computed by a small modification (accounting for admissible pairs instead of all edges) of
the BEST Theorem (de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte, [11]) for standard
undirected graphs.

For even q, the DBQG turns out not to be Eulerian, and edges must be removed to
Eulerize it. In the variant where self-complementary edges are allowed, we presented an
optimal Eulerization by deleting edges, proving this problem variant to be as easy as the case
of odd q. When self-complementary edges are forbidden, the cyclic permutation construction
gives suboptimal results compared to the optimal ILP solution for even q ≥ 6.

In practice, the design problem of q-unique sequences is generally restricted to q ∈ {3, 4, 5},
but augmented by additional constraints: Some substrings might be prescribed (existing
DNA libraries that must be used) and others forbidden (homopolymers of certain length,
q-grams with too extreme GC-content). The ILP formulation supports such constraints by
fixing certain variables and provides reasonable performance for relevant values of q.

Respecting constraints with the approach based on the DBQG corresponds to the removal
of certain edges. Clearly, conducting a thorough structural analysis for individual constraints
is prohibitive. Therefore, this work poses the general problem of Eulerizing a given quotient
graph by removing a minimum number of edges, such that each vertex has even degree and
allows admissible edge pairings.

Acknowledgments. We gratefully acknowledge funding by the DFG Collaborative Re-
search Center (Sonderforschungsbereich, SFB) 876 “Providing Information by Resource-
Constrained Data Analysis” within project TB1 (http://sfb876.tu-dortmund.de). We
thank C. Niemeyer, B. Sacca and J. Ksienczyk for fruitful discussions, and P. Mutzel and
T. Schwentick for very helpful pointers to the Eulerization-by-deletion problem. We also
thank the participants of Dagstuhl seminar 12291 “Structure Discovery in Biology: Motifs,
Networks & Phylogenies” organized by A. Dress, L. Parida and A. Apostolico for their
valuable comments.

References
1 T. Achterberg. SCIP: solving constraint integer programs. Mathematical Programming

Computation, 1(1):1–41, 2009.
2 J.W. Anderson, K.R. Fox, and G.A. Niblo. A fast algorithm for the construction of universal

footprinting templates in DNA. Journal of mathematical biology, 52(3):307–342, 2006.
3 W. Cook and A. Rohe. Computing minimum-weight perfect matchings. INFORMS Journal

on Computing, 11(2):138–148, 1999.
4 R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer Verlag,

2005.
5 J. Edmonds and E.L. Johnson. Matching, euler tours and the chinese postman. Math.

Programming, 5:88–124, 1973.
6 U. Feldkamp and C.M. Niemeyer. Rational design of DNA nanoarchitectures. Angewandte

Chemie International Edition, 45(12):1856–1876, 2006.

GCB 2012

http://sfb876.tu-dortmund.de


92 Designing q-Unique DNA Sequences with ILPs and Euler Tours in De Bruijn Graphs

7 U. Feldkamp, H. Rauhe, and W. Banzhaf. Software tools for DNA sequence design. Genetic
Programming and Evolvable Machines, 4(2):153–171, 2003.

8 Ryan J. O’Neil. Python interfaces to the ZIB Optimization Suite. http://code.google.
com/p/python-zibopt/. Accessed June 2012.

9 J. SantaLucia Jr, H.T. Allawi, and P.A. Seneviratne. Improved Nearest-Neighbor Parame-
ters for Predicting DNA Duplex Stability. Biochemistry, 35(11):3555–3562, 1996.

10 N.C. Seeman and N.R. Kallenbach. Design of immobile nucleic acid junctions. Biophysical
journal, 44(2):201–209, 1983.

11 T. van Aardenne-Ehrenfest and N.G. de Bruijn. Circuits and trees in oriented linear graphs.
Simon Stevin, 28:203–217, 1951.

http://code.google.com/p/python-zibopt/
http://code.google.com/p/python-zibopt/


Polyglutamine and Polyalanine Tracts Are
Enriched in Transcription Factors of Plants
Nina Kottenhagen1∗, Lydia Gramzow1∗, Fabian Horn2,
Martin Pohl3, and Günter Theißen1

1 Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, Philosophenweg 12,
D–07743 Jena, {nina.kottenhagen,lydia.gramzow,guenter.theissen}@uni-jena.de

2 Leibniz-Institut für Naturstoffforschung und Infektionsbiologie e.V. -
Hans-Knöll-Institut, Systembiologie/ Bioinformatik, Beutenbergstr. 8,
D–07745 Jena, fabian.horn@hki-jena.de

3 Friedrich-Schiller-Universität Jena, Lehrstuhl für Bioinformatik,
Ernst-Abbe-Platz 2, D–07743 Jena, m.pohl@uni-jena.de

Abstract
Polyglutamine (polyQ) tracts have been studied extensively for their roles in a number of human
diseases such as Huntington’s or different Ataxias. However, it has also been recognized that
polyQ tracts are abundant and may have important functional and evolutionary roles. Especially
the association of polyQ and also polyalanine (polyA) tracts with transcription factors and their
activation activity has been noted. While a number of examples for this association have been
found for proteins from opisthokonts (animals and fungi), only a few studies exist for polyQ and
polyA stretches in plants, and systematic investigations of the significance of these repeats in
plant transcription factors are scarce. Here, we analyze the abundance and length of polyQ and
polyA stretches in the conceptual proteomes of six plant species and examine the connection
between polyQ and polyA tracts and transcription factors of the repeat-containing proteins. We
show that there is an association of polyQ stretches with transcription factors in plants. In
grasses, transcription factors are also significantly enriched in polyA stretches. While there is
variation in the abundance, length, and association with certain functions of polyQ and polyA
stretches between different species, no general differences in the evolution of these repeats could
be observed between plants and opisthokonts.
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Keywords and phrases tandem repeats, molecular evolution, GO annotation
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1 Introduction

In general, amino acid repeats (AARs) in a protein can have very different consequences,
ranging from causing severe diseases over neutral polymorphisms being suitable as genetic
markers to “tuning knobs” of evolution [27, 28]. Polyglutamine (polyQ) tracts have found
special interest because they are found in various severe human neurodegenerative or neuro-
muscular hereditary diseases [55]. In the case of Huntington’s disease, aberrantly extended
polyQ tracts in the HUNTINGTIN protein cause abnormal folding, subsequent protein
aggregation and neuronal loss (reviewed in [41]). The repeat length and the severity of the
disease are positively correlated: The longer the repeat, the earlier the age of onset and also
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the more severe the symptoms. However, apart from their roles in diseases, the functional
and evolutionary importance of polyQ stretches has also already been recognized, especially
when they occur in transcription factors (TFs) [4, 17, 18, 19, 45].
Concerning the functional significance of polyQ stretches in TFs, their role in breeding and
evolution has found special interest. Fondon and Garner [17], for example, studied protein
repeats in RUNT-RELATED TRANSCRIPTION FACTOR 2 (RUNX-2), which is a main
regulator of osteoblast differentiation, in various dog breeds. The authors found different
lengths of adjacent polyalanine (polyA) and polyQ tracts in RUNX-2 in the different dog
breeds, where the length ratio of these sequences correlates with the dorsoventral nose bend
and midface length across breeds. As the repeat lengths evolve fast, Fondon and Garner
concluded that repeats contributed to an acceleration of the morphological evolution of limbs
and skulls in different dog breeds [17].
Other striking examples, where polyA or polyQ stretches in TFs may lead to phenotypic
variability, were found in a broad range of species. In insects, the acquisition of a polyA
transcription repression domain in the HOX protein ULTRABITHORAX may have con-
tributed to the suppression of abdominal limbs during arthropod evolution and hence to the
macroevolution of a body plan [45, 19]. A polymorphism at a polyA stretch in the protein
Hoxd-13 may contribute to variation in sesamoid bone formation in amniotes [4]. The longer
the polyQ tract in White Collar-1 (WC-1), a protein which influences the circadian clock of
the fungus Neurospora crassa, the shorter are the circadian periods [18].
One important molecular mechanism by which differences in repeat lengths lead to phenotypic
variation is likely due to the capacity of polyA and polyQ tracts to modulate transcription
factor activity. Specifically, polyA tracts are thought to decrease and polyQ stretches are
thought to increase transcriptional activation [20]. Hence, changes in the lengths of polyA
and polyQ stretches of TFs may alter the transcription rate and implicate changes in the
expression of a set of target genes. This could generate variation upon which selection acts
and thus contribute to morphological changes [17].
Based on this exemplary evidence for the importance of polyA and polyQ tracts in TFs, it
was hypothesized that, in general, polyA and polyQ stretches predominantly occur in TFs
[20]. Subsequently, several systematic studies have been conducted as well. For a number of
proteomes, the entirety of polyA and polyQ tracts was analyzed and the association of the
repeat-containing proteins with functions in transcriptional activation was studied [29]. In
yeast, polyQ stretches belong to the most abundant amino acid repeats found beside repeats
of asparagine (N), aspartic acid (D), glutamic acid (E), and serine (S) [2]. Furthermore,
repeats of acidic and polar amino acids, to which Q belongs, were found to be significantly
associated with TFs and protein kinases. Similar results were obtained for other species.
In rodents, humans, fruit flies, and nematodes, a functional bias of proteins with repeats,
including A and Q repeats, was observed, where TFs were consistently overrepresented
[1, 2, 23, 51].
In plants, however, systematic studies on polyA and polyQ tracts and their association with
certain functions of the repeat-containing proteins are scarce [49, 59]. Plants, including
Glaucophytes, Red algae, Green algae and Embryophytes (land plants), are one of the
major eukaryotic groups whereas animals and fungi, for which association studies between
amino-acid repeats and the function of the containing proteins are common, belong to another
major group, the opisthokonts [58]. The most recent common ancestor of opisthokonts and
plants was recently estimated to have lived at least one billion years ago [12]. Considering
this long period of independent evolution between plants and opisthokonts, it is questionable
whether polyA and polyQ tracts show the same abundance and variability and the same
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functional bias of the repeat-containing proteins in these two major eukaryotic groups.
Amino-acid repeats are thought to expand or contract mainly by replication slippage or
recombination of the corresponding protein-coding DNA [32, 43]. These mechanisms result
in a rapid evolution of repeats. However, selection may act on repeat length as has been
shown for opisthokonts [36]. For polyA and polyQ stretches in TFs, a correlation between
repeat length and transcriptional activation has been shown [20] and hence the existence
of repeats may be favored in some cases. On the other hand, long polyA and polyQ tracts
may have negative effects, such as aggregation of the containing proteins, and thus there
may be selection against polyA and polyQ stretches that are too long [10, 35]. All these
factors, i.e., the mutational mechanism leading to the expansion and contraction of repeats,
the capacity of polyQ and polyA to modulate transcription, and the negative effects of long
repeats, may be different in plants. Hence, whether polyA and polyQ tracts are as important
for phenotypic variation and morphological evolution in plants as in opisthokonts remains to
be clarified.
Here, we analyze A and Q repeats in six proteomes of diverse species which span the phylogeny
of land plants. We obtain the total number of polyA and polyQ tracts and their lengths in
these proteomes and study the association between the containing proteins and a function
in transcriptional regulation. We compare our findings to those found for opisthokonts and
hypothesize on similarities and differences of the importance of polyA and polyQ stretches
in opisthokonts and plants.

2 Materials and methods

To study the evolution of polyQ and polyA stretches in plants, six species spanning the
phylogeny of land plants were selected with respect to their taxonomic placement and the
availability of their proteome and corresponding GO annotations. These species are the
moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, the eudikotyledonous
angiosperms Arabidopsis thaliana and Populus trichocarpa and the monocotyledonous an-
giosperms Sorghum bicolor and Oryza sativa. As an animal reference set, Homo sapiens,
Danio rerio, and Anopheles gambiae were selected. We decided not to take our data from
databases like COPASAAR [13], GENPEPT [14], TRIPS [29], ProtRepeatsDB [25], or ProRe-
peat [34], as they proved not to be customizable for our research. Therefore, conceptual
proteome datasets for the selected species were obtained from the Ensembl, EnsemblMeta-
zoa and EnsemblPlants project [16] (versions: May, 22nd 2012, http://www.ensembl.org/
index.html, http://metazoa.ensembl.org/index.html, http://plants.ensembl.org/
index.html). The datasets chosen contained all ab initio predicted protein sequences as
well as manually curated sequences. Ensembl distinguishes between „known“, „novel“, and
„putative“ proteins. For our analyses, all three classes were used. We selected only the first
splice variant to avoid a bias due to overrepresentation of proteins originating from genes
with multiple splice variants. The number of protein sequences included in our analyses for
each species is given in Table 1.
Here, we define an AAR as a stretch of at least five identical amino acids in a row which
is significant according to Karlin et al. (2002) [26]. The number and length of polyQ and
polyA stretches within each species was determined using a custom Perl-script (all scripts
are available upon request). The length of an amino acid repeat is defined as the number
of residues forming the repeat. For comparison, the number and length of polyasparagine
(polyN) stretches were also determined.
Gene Ontology (GO) annotation files [5] were downloaded with the help of Ensembl BioMart
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[30] (version: May, 22nd 2012, v0.7, http://www.biomart.org/biomart/martview/). To
check whether polyQ, polyA or polyN stretches show a specific enrichment pattern, a GO
enrichment analysis was performed using a custom R-script based on the topGO package
available from the Bioconductor website [3]. An exact Fisher test [15] was used to investigate
whether certain GO categories are enriched in sequences containing a polyA, polyQ, or polyN
stretch. The obtained p-values were corrected for multiple testing using the Benjamini-
Hochberg method [8]. We focused on the GO category GO:0003700 (sequence-specific DNA
binding transcription factor activity) as it has been shown for fungi and animal species that
polyQ as well as polyA stretches are associated with this GO category [1, 2, 22, 51].
The significant results were assigned a rank according to their p-value. The lower the p-value
was, the lower was the assigned rank. We use the p-value as a sign of the strength of the
association. To compare the magnitude of the association between the studied repeats
and the GO category GO:0003700, the average ranking of this GO category was compared
between plants and animals. If the category was not identified as an enriched GO category,
a penalty score was assigned to be able to calculate the average ranking. This penalty score
was chosen to be the number of the highest rank of the category GO:0003700 across all
studied plant and animal species plus one.

Table 1 Overview on source data. Species are in taxonomic order, animals are highlighted in
gray.

Species Number
of protein
sequences

Number of first
splice variants

Number of an-
notated first

splice variants

Reference

Arabidopsis
thaliana

35386 27416 27155 [24]

Populus
trichocarpa

45778 41377 26091 [56]

Oryza sativa 68619 57995 16994 [37]
Sorghum bicolor 36338 34496 21744 [38]
Selaginella moel-
lendorffii

34825 34799 22650 [7]

Physcomitrella
patens

38354 32273 8931 [42]

Homo sapiens 100354 22400 22400 [33]
Danio rerio 42171 26212 26212 [54]
Anopheles
gambiae

14324 12670 8873 [21]

3 Results

3.1 Number and length of polyQ, polyA and polyN stretches
We studied amino acid repeats which had a length of at least five residues. On average,
polyQ stretches were shorter in plants than in animals (Table 2). Also the maximum number
of residues in a polyQ stretch was lower in plants than in animals. In P. trichocarpa, the
longest polyQ stretch contained 33 residues, in A. gambiae, there were an exceptional 132
residues in the longest repeat. The total number of polyQ stretches was on average lower in
plant proteins than in animal proteins, which is due to the exceptionally high number in A.
gambiae.

http://www.biomart.org/biomart/martview/
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Figure 1 Length distribution of polyQ (a), polyA (b) and polyN (c) stretches in the conceptual
proteomes of plant and animal species. Plant species are indicated by solid lines, broken lines
represent animal species.

Similar to polyQ stretches, the average polyA stretch in plant proteins was a bit shorter
than in animal proteins (Table 2). Also the maximum number of residues in a polyA stretch
was lower in plants than in animals. Both numbers were lower as compared to polyQ
stretches. The total number of polyA stretches varied widely within both kingdoms with
plants harboring a higher number of them. PolyA stretches were also more commonly found
than polyQ stretches in all species except A. gambiae.
PolyN was used as a control for polyQ because both amino acids are encoded by two codons
and are chemically quite similar; their side chains differ from one another only by one methyl
group. Unlike polyQ and polyA stretches, a higher average length was found in plant proteins
than in animal proteins for polyN stretches (Table 2). The maximum number of residues
in a polyN stretch was also higher in proteins of plants than of animals as well as the total
number of polyN stretches. Across all species, fewer polyN stretches were found than polyQ
and polyA stretches. However, the trends for polyN stretches were less clear than for polyQ
and polyA stretches in both, plants and animals.
The length distributions for polyQ, polyA and polyN stretches followed the same trend
across all species: While there are many short repeats the number of long repeats is low
(Figure 1). A. gambiae harbored more polyQ stretches of every length than any other species.
Remarkebly, however, also O. sativa showed an increased number of polyQ stretches of eight
residues. PolyA stretches were most abundant in the grasses O. sativa and S. bicolor. For
polyN stretches, no clear pattern could be found. In O. sativa, a plateau for polyN stretches
of six to eleven residues was observed.
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Table 2 Number, average repeat length and maximum length of polyQ, polyA, and polyN
stretches in the conceptual proteomes of plant and animal species. Species are in taxonomic order,
animals are highlighted in gray.

Amino
acid

Species Number of
stretches

Average length of
stretches

Longest stretch

Q A. thaliana 376 6.61 24
P. trichocarpa 462 6.44 33
O. sativa 1005 6.49 27
S. bicolor 571 6.08 24
S. moellendorffii 811 6.74 25
P. patens 322 6.63 22
H. sapiens 307 8.79 40
D. rerio 334 6.79 41
A. gambiae 2373 7.68 132

A A. thaliana 296 5.65 17
P. trichocarpa 545 5.7 17
O. sativa 6926 5.77 19
S. bicolor 3705 5.83 18
S. moellendorffii 1193 6.09 19
P. patens 540 5.67 10
H. sapiens 800 6.86 21
D. rerio 335 6.12 18
A. gambiae 1068 6.92 23

N A. thaliana 226 6.13 20
P. trichocarpa 138 5.99 13
O. sativa 249 6.18 19
S. bicolor 53 10.02 61
S. moellendorffii 38 6.39 12
P. patens 37 6.19 12
H. sapiens 10 5.3 8
D. rerio 57 5.58 11
A. gambiae 263 6.56 16

3.2 Abundance of amino acid repeats within sequences annotated as
transcription factors

The overall percentage of proteins related to transcription factor activity (GO:0003700)
was quite low in plants as well as in animals, except in A. thaliana for which 10% of its
proteins were annotated as TFs (Table 3). The percentage of polyQ-containing sequences in
plants and animals was also quite low. Only in A. gambiae an exceptional 9% of its proteins
contained polyQ stretches. The percentage of proteins annotated as TFs and containing
polyQ stretches ranged from 4% to 10% in plants and animals. However, an exception was
again A. gambiae with 26% of its putative TFs containing polyQ stretches.
Very few proteins harbored polyA stretches, not even A. gambiae proteins. In contrast, of
the proteins annotated as TFs between 2% and 35% contained polyA stretches. They were
most commonly found in proteins of O. sativa, S. bicolor, H. sapiens and A. gambiae.
Except for in A. gambiae with 2%, polyN stretches were hardly found. Proteins annotated
as TFs contained to a slightly higher percentage polyN stretches (~1%). A. thaliana and
A. gambiae constituted the exceptions with 4% and 13%, respectively, of their proteins
annotated as TFs and containing polyN stretches. Hence, the control amino acid asparagine
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Table 3 Percentages of sequences annotated as transcription factors (TFs) and sequences con-
taining polyQ, polyA or polyN stretches. Species are ordered according to taxonomy, animals are
highlighted in gray.

Species % of
proteins

anno-
tated

as TFs

% of pro-
teins con-
taining
polyQ

stretches

% of
TFs con-
taining
polyQ

stretches

% of pro-
teins con-
taining
polyA

stretches

% of
TFs con-
taining
polyA

stretches

% of pro-
teins con-
taining
polyN

stretches

% of
TFs con-
taining
polyN

stretches

A. thaliana 10.06 1.02 3.77 0.21 2.07 0.80 3.59
P. tricho-
carpa

2.10 0.89 4.26 0.06 2.65 0.32 1.27

O. sativa 0.88 1.49 7.48 0.31 35.24 0.43 0.39
S. bicolor 1.95 1.41 8.2 0.46 23.85 0.15 0.45
S. moellen-
dorffii

0.97 0.75 4.79 0.07 7.35 0.11 <0.01

P. patens 1.15 1.81 9.52 0.10 8.52 0.10 <0.01
H. sapiens 4.14 1.00 4.20 0.59 14.22 0.04 <0.01
D. rerio 2.88 1.01 3.58 0.13 4.64 0.22 0.80
A.
gambiae

2.15 8.72 26.47 0.49 22.79 1.74 12.87

was less prevalent in both, proteins annotated as TFs and in stretches, than glutamine and
alanine.
Thus, even though only a low percentage of proteins contained polyQ or polyA stretches
and only a low percentage of proteins were annotated as TFs, a high percentage of proteins
annotated as TFs contained polyQ or polyA stretches in both plants and animals (Table 3).

3.3 PolyQ and polyA stretches significantly associated with
transcription factors

To find out whether TFs are significantly overrepresented in plant proteins containing polyQ
and polyA stretches, we carried out GO enrichment analyses. The significant results were
assigned a rank according to their p-value. Thereby, the rank was lower when the p-value
was lower.
In all plant species examined, protein sequences containing polyQ tracts were found to be
significantly associated with the GO category GO:0003700 “sequence-specific DNA binding
transcription factor activity” (Table 4 in appendix). The mean rank value equaled 4.13.
In animals, proteins annotated as having transcription factor activity were also significantly
enriched in polyQ stretches. However, other transcription-related categories were found
at even lower p-values except in A. gambiae where categories related to different binding
activities were found at the lowest ranks. In comparison to plants, the category GO:0003700
was found at lower ranks in animals. However, other more specific GO categories related
to transcription regulation like GO:0044212 “transcription regulatory region DNA binding”
exhibited lower p-values in animals.
Protein sequences containing polyA stretches also showed a significant association with the
GO category GO:0003700 in all species except in P. trichocarpa. Instead, the association of
proteins annotated with GO categories related to catalytic activity was found on the first
ranks in this species, while in the other plants and in animals proteins belonging to various
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categories connected to binding activity were found on the first ranks. In humans, protein
sequences annotated with more specific GO categories such as “transcription regulatory
region DNA transcription activity” appeared at ranks shortly after the more general category
GO:0003700. Thus, except for P. trichocarpa, plant and animal proteins belonging to GO
categories related to transcription factor activity were enriched in polyA stretches.
Unlike the two other types of amino acid repeats, polyN-containing proteins were hardly
associated with GO categories related to transcription factor activity. Only in A. thaliana
and P. trichocarpa such an association was found. In the other species, either no significant
association with any category was found or with proteins belonging to GO categories related
to different kinds of binding and catalytic activities.

4 Discussion

PolyQ and polyA tracts in the conceptual proteomes of different plant and animal species
were investigated and their association with TFs was analyzed to determine whether there
are differences in the evolution of these repeats between plants and animals. As a control,
we also studied the occurrence of polyN stretches.

4.1 No major difference in the abundance and length of polyQ and
polyA stretches between plants and animals

On average, the length distributions of polyQ, polyA and polyN stretches varied between
the different species but no major difference between plants and animals could be observed
(Figure 1). The abundance of repeats generally decreased with increasing repeat lengths
for all species. The length distributions were different for the different amino acids. PolyQ
and polyA stretches were found far more often, with longer repeat lengths and a higher
average repeat length than polyN stretches. These findings correspond well with the findings
of Faux et al. [14]. who found more polyQ and polyA stretches than polyN stretches in
proteins of H. sapiens, D. rerio, A. thaliana, and O. sativa. Siwach et al. [51] also found
length distributions of many shorter and few longer amino acid repeats. Of the proteins
they analyzed, 84% contained repeats consisting of 10 residues or less. At least in part, this
may simply be due to the fact that the DNA sequences encoding long repeats have a higher
likelihood of being split into shorter repeats by non-synonymous point mutations. As we
have only analyzed pure repeats, those long impure repeats escaped our statistics. On the
other hand, long polyQ and polyA stretches are probably also selected against, possibly
because the containing proteins have a tendency of aggregation [10, 35].
Even though Q is encoded by only two codons and found less often than A, an amino acid
encoded by four codons [31, 47], it occurs in quite long repeats and a high number of repeats
in both, plants and animals. N, also encoded by two codons and approximately as frequent as
Q in the proteomes of A. thaliana and O. sativa [31, 47], forms fewer and shorter repeats than
the other two types of amino acids in both kingdoms. Furthermore, polyQ stretches were
found to a higher percentage in proteins than polyA and polyN stretches. This indicates that
there are differences in the rate at which the different repeats are elongated and contracted
and/ or in the selection forces acting on the different repeats. There are two main mechanisms
which are thought to contribute to the expansion of repeats, replication slippage and unequal
recombination [50]. While replication slippage is supposed to be the major mechanism for the
extension of polyQ stretches, polyA stretches are thought to be mainly extended by unequal
recombination, at least in animals [9]. Selection has also been shown to contribute to the
generation and extension of amino acid repeats in animals [36, 52] and in simulation studies
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[46]. Analyses of the codons contributing to the different repeats will provide insights into
the relative contributions of mutation and selection to the observed frequencies of polyQ,
polyA and polyN stretches. Replication slippage and unequal recombination generally lead
to amino acid repeats which are encoded by the same codon [57]. In contrast, if selection
has contributed to the conservation of a polyQ or polyA stretch, one would expect that the
amino acid repeat may be encoded by different synonymous codons rather than by the same
codon [46].
A clear trend was that polyQ and polyA stretches are longer on average in animals than
in plants (Table 2). Also the maximum number of residues in a polyQ stretch is markedly
higher in animals than in plants. In contrast, a higher abundance of polyQ, polyA and polyN
stretches is observed in plants (excluding the outlier A. gambiae). These differences may
be caused by differences in the underlying mutation rates and/ or repair mechanisms or
by differences in the selection patterns between plants and animals. Selection against long
polyQ and polyA stretches may be stronger while a higher number of amino acid repeats
is tolerated by or selected for in plants. It is possible that, instead of having long repeats,
plant proteins may have a number of consecutive shorter repeats to fulfill the same function
(if any). However, we did not study the distribution of the repeats within the proteins and
additional studies are required to test this hypothesis.
Further studies, taking into account the underlying codons of the polyQ and polyA stretches
and the distribution of these repeats within the proteins will permit a more thorough
characterization of the relative contributions of the mutational mechanisms and selection
regimes to the generation and maintenance of repeats. Moreover, studies including, for
example, additional plant, animal, fungal and possibly also bacterial genomes will allow more
general conclusions as to which of the observed abundances and length distributions of polyQ
and polyA stretches are characteristic for certain species and which patterns are observed in
a broader taxonomic range.
In other words, some differences in the number and length distributions of polyQ, polyA and
polyN stretches were found but they currently cannot be extrapolated to major differences
distinguishing plants and animals.

4.2 PolyQ and polyA stretches are enriched in transcription factors
also in plants

The genomes of all analyzed species were published several years ago [7, 21, 24, 33, 38,
40, 42, 54, 56] and have been studied for some time now [37, 48, 53] resulting in a good
quality of the sequence assembly and annotation. Many TFs belong to transcription factor
families which each are defined by highly conserved DNA-binding domains (DBD). These
DBD are used to predict TFs in newly sequenced species. Thus, many common TFs are
reasonably predictable and are likely annotated even in newly released proteomes. In animals,
more proteins annotated as TFs (GO:0003700) were found than in plants. This may be
ascribed to the fact that the animal proteins are completely (H. sapiens and D. rerio) or
to a high percentage annotated [16]. Annotation of proteins of A. thaliana is also nearly
complete (99%). A. thaliana has previously been shown to have a higher amount of TFs
than investigated animal and fungal species [44]. When the annotations of the other species
become more elaborated, the number of TFs may change. Most annotations have been
assigned automatically and may improve with manual curation. However, the quality of
automatic annotations has been shown to be quite high for H. sapiens and several other
model organisms [52]. Hence, despite possible differences in the progress of the assembly, the
amount of TFs and the completeness of protein annotation in the different species, we do not
assume that our findings are considerably biased.
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PolyQ as well as polyA stretches are found more often in TFs than one would expect from their
individual occurrence rates in both, plants and animals. An exceptionally high percentage
of TFs of O. sativa and S. bicolor contain polyA stretches. The high GC content of grass
genomes [11] and the fact that A is encoded by GC-rich codons (GCN) may contribute to
this phenomenon.
Our GO enrichment analyses confirm that polyQ and polyA tracts are associated with
proteins annotated as TFs (GO category GO:0003700). Hence, our findings corroborate that
the correlation between polyQ and polyA stretches and TFs found in animals and fungi
[20] also holds true for plants. The ranks of this category are a bit lower in plants than in
animals. However, this probably does not indicate a major difference between plants and
animals because the other associations at low ranks in animals are also categories involved in
transcription activity. Thus, differences are rather species-specific than kingdom-specific.
Unlike polyQ and polyA, polyN, used as a control here, was not found to be associated with
TFs in several plant and animal species. Thus, the overrepresentation of polyQ and polyA
hints at a function of these stretches in TFs. Selection may often favor polyQ and polyA
stretches, at least up to a certain length, whereas polyN stretches may be neutral or even
deleterious except for A. thaliana and P. trichocarpa. In these two species, polyN-rich regions,
just like polyQ-rich regions, may have a role in mediating protein-protein interactions [39].
For vertebrates, selection increasing the retention of amino-acid repeats including polyQ
and polyA has been found recently [36]. It has also been shown before that polyQ tracts
enhance transcriptional activation in animals in a length dependent manner [20]. This result
was recently extended to fungi [6], indicating a role for polyQ tracts in the modulation of
transcription in opisthokonts. Our findings now make it appear likely that polyQ stretches
also have such a function in plants. PolyA stretches have been hypothesized to repress
transcriptional activity in animals [17]. The overrepresentation of polyA stretches also in
plant TFs again hints at a conservation of this function between plants and opisthokonts.
Further support for the role of these repeats in transactivation could be gained from an
analysis of the position of the repeats within the corresponding proteins. The repeats would
be expected to occur outside of the DNA-binding domain where transcriptional activity
can mainly be modulated. In our analyses, we observed some species-specific differences
in the abundance and length distributions of polyQ and polyA stretches. However, there
seem to be no major differences in the evolution of polyQ and polyA stretches between
plants and opisthokonts. Hence, the mutational mechanisms for the generation, expansion
and contraction as well as the selection pressure on polyQ and polyA stretches seem to be
similar in respective species, or differences in mutation and selection compensate each other.
Furthermore, the association between TFs and polyQ and polyA stretches was also found for
the plant species examined. These stretches may have similar roles in plants and opisthokonts.
Hence, we provide data suggesting that polyQ and polyA tracts act as “evolutionary tuning
knobs” [28, 27] not only for opisthokonts but also for land plants.
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A Appendix

Table 4 GO enrichment analysis. Shown are the three significant results with the lowest p-values of
the analysis for polyA, polyN, and polyQ tracts for all species. If the GO category related to transcription
factor activity (GO:0003700) did not belong to the first three entries, this category with its corresponding
rank is shown in addition, if found significant. Species are in taxonomic order, animals are highlighted in
gray. T – transcription, A – activity, TFA – transcription factor activity, if no significant results were
found, this is indicated by “–”.

Repeat Species Rank GO-ID GO category P-value
polyQ A. thaliana 1 GO:0001071 nucleic acid binding TFA 1E-28

2 GO:0003700 sequence-specific DNA binding TFA 1E-28
3 GO:0003677 DNA binding 1.8E-25

P. trichocarpa 1 GO:0003676 nucleic acid binding 1E-28
2 GO:0003677 DNA binding 1E-28
3 GO:0001071 nucleic acid binding TFA 7.8E-11
4 GO:0003700 sequence-specific DNA binding TFA 7.8E-11

O. sativa 1 GO:0003677 DNA binding 2.5E-28
2 GO:0003676 nucleic acid binding 2.5E-24
3 GO:0001071 nucleic acid binding TFA 8.4E-12
4 GO:0003700 sequence-specific DNA binding TFA 8.4E-12

S. bicolor 1 GO:0003677 DNA binding 1E-28
2 GO:0003676 nucleic acid binding 1E-28
3 GO:0001071 nucleic acid binding TFA 2.3E-21
4 GO:0003700 sequence-specific DNA binding TFA 2.3E-21

S. moellendorffii 1 GO:0003677 DNA binding 1E-28
2 GO:0003676 nucleic acid binding 1.3E-26
3 GO:0005515 protein binding 3.7E-20
5 GO:0003700 sequence-specific DNA binding TFA 3.4E-16

P. patens 1 GO:0003676 nucleic acid binding 1.7E-14
2 GO:0046983 protein dimerization A 2.6E-10
3 GO:0003677 DNA binding 8.7E-09
6 GO:0003700 sequence-specific DNA binding TFA 6.1E-06

H. sapiens 1 GO:0003676 nucleic acid binding 1.2E-14
2 GO:0003677 DNA binding 1.3E-14
3 GO:0044212 T regulatory region DNA binding 6.7E-12
9 GO:0003700 sequence-specific DNA binding TFA 2.1E-11

D. rerio 1 GO:0003676 nucleic acid binding 3,00E-19
2 GO:0003677 DNA binding 6.3E-17
3 GO:0003712 transcription cofactor A 3.4E-07
6 GO:0003700 sequence-specific DNA binding TFA 1.3E-06

A. gambiae 1 GO:0008270 zinc ion binding 7.1E-26
2 GO:0005488 binding 7.6E-24
3 GO:0005515 protein binding 1.1E-23
8 GO:0003700 sequence-specific DNA binding TFA 8.1E-16

polyA A. thaliana 1 GO:0004124 cysteine synthase A 3.6E-05
2 GO:0001071 nucleic acid binding TFA 6.7E-05
3 GO:0003700 sequence-specific DNA binding TFA 6.7E-05

P. trichocarpa 1 GO:0004124 cysteine synthase A 9.00E-09
2 GO:0004970 ionotropic glutamate receptor A 1.3E-06
3 GO:0005231 excitatory extracellular ligand- 1.3E-06

gated ion channel A 1.3E-06
O. sativa 1 GO:0050824 water binding 1E-28

2 GO:0050825 ice binding 1E-28
3 GO:0001071 nucleic acid binding TFA 1E-28
4 GO:0003700 sequence-specific DNA binding TFA 1E-28

S. bicolor 1 GO:0001071 nucleic acid binding TFA 7.1E-21
2 GO:0003700 sequence-specific DNA binding TFA 7.1E-21
3 GO:0003677 DNA binding 2.9E-19

S. moellendorffii 1 GO:0003676 nucleic acid binding 7.5E-13
2 GO:0003677 DNA binding 3.2E-09
3 GO:0005488 binding 1.6E-07
6 GO:0003700 sequence-specific DNA binding TFA 3.2E-06

continued on next page
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P. patens 1 GO:0001071 nucleic acid binding TFA 5.2 E-06
2 GO:0003700 sequence-specific DNA binding TFA 5.2 E-06
3 GO:0003844 1,4-alpha-glucan branching enzyme A 7.8E-04

H. sapiens 1 GO:0003676 nucleic acid binding 1E-28
2 GO:0043565 sequence-specific DNA binding 1E-28
3 GO:0003677 DNA binding 1E-28
5 GO:0003700 sequence-specific DNA binding TFA 1E-28

D. rerio 1 GO:0003676 nucleic acid binding 1.5E-23
2 GO:0003677 DNA binding 6.1E-09
3 GO:0003700 sequence-specific DNA binding TFA 1.8E-08

A. gambiae 1 GO:0003676 nucleic acid binding 1E-28
2 GO:0003677 DNA binding 3.4E-26
3 GO:0005488 binding 6.5E-26
7 GO:0003700 sequence-specific DNA binding TFA 4.9E-16

polyN A. thaliana 1 GO:0001071 nucleic acid binding TFA 1E-28
2 GO:0003700 sequence-specific DNA binding TFA 1E-28
3 GO:0003677 DNA binding 4.1E-19

P. trichocarpa 1 GO:0003676 nucleic acid binding 1.7E-07
2 GO:0043565 sequence-specific DNA binding 1.4E-07
3 GO:0003677 DNA binding 5.6E-04
7 GO:0003700 sequence-specific DNA binding TFA 1.0E-02

O. sativa — — — —
S. bicolor — — — —
S. moellendorffii 1 GO:0015018 galactosylgalactosylxylosylprotein 5.7E-04

3-beta-glucuronosyltransferase A
2 GO:0015020 glucuronosyltransferase A 1.7E-03

P. patens — — — —
H. sapiens — — — —
D. rerio 1 GO:0003676 nucleic acid binding 1.6E-02
A. gambiae 1 GO:0003677 DNA binding 1.6E-18

2 GO:0001071 nucleic acid binding TFA 5,00E-17
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Abstract
Motivation: Ligand information is of great interest to understand protein function. Protein
structure topology can be modeled as a graph with secondary structure elements as vertices and
spatial contacts between them as edges. Meaningful representations of such graphs in 2D are
required for the visual inspection, comparison and analysis of protein folds, but their automatic
visualization is still challenging. We present an approach which solves this task, supports different
graph types and can optionally include ligand contacts.
Results: Our method extends the field of protein structure description and visualization by
including ligand information. It generates a mathematically unique representation and high-
quality 2D plots of the secondary structure of a protein based on a protein-ligand graph. This
graph is computed from 3D atom coordinates in PDB files and the corresponding SSE assignments
of the DSSP algorithm. The related software supports different notations and allows a rapid
visualization of protein structures. It can also export graphs in various standard file formats so
they can be used with other software. Our approach visualizes ligands in relationship to protein
structure topology and thus represents a useful tool for exploring protein structures.
Availability: The software is released under an open source license and available at
http://www.bioinformatik.uni-frankfurt.de/ in the Software section under Visualization
of Protein Ligand Graphs.
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1 Introduction

Our knowledge of proteins expands rapidly with the high-throughput technologies and
more and more 3D structures are available in databases like the RCSB Protein Data Bank
(PDB, [1]). Thus, computational tools to automatically search, compare and classify protein
structures are needed. Proteins are complex macromolecules and representing their structure
in a way which allows for fast visual analysis requires significant simplification. This can be
achieved by choosing the secondary structure level as an abstraction level and then drawing
a 2D cartoon image of the protein. After the pioneering work of Jane Richardson, who
first defined protein topology cartoons [23] and the first visualization methods, e.g. based
on hydrogen bonds [10], it is not surprising that many secondary structure databases and
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software tools to perform these tasks on all levels of protein structure exist today. The
databases CATH [22], SCOP [21] and TOPS [19] all operate on the secondary structure level,
i.e., abstracting from the atomic level they consider secondary structure elements (SSEs) and
their relations in proteins to describe protein topology. Both CATH and SCOP split proteins
into structural domains and then use a combination of automated and manual techniques
to classify them into a hierarchic system that reflects structural as well as evolutionary
relationships. In contrast, GRAST [7] and TOPS are fully automated methods. They all
use graphs to represent protein topologies. GRATH abstracts SSEs as vectors and uses
geometric relationships between all pairs of vectors to construct a graph of the protein
structure. VAST [6, 16] also uses graph algorithms to detect similar spatial orientation and
connectivity between SSEs.

Protein structure databases usually compare protein topologies based on atom coordinates
from PDB files, but all methods listed above ignore the ligand atoms stored in those files.
TOPS+ [28, 29] is the first method which includes ligand information in the comparison of
proteins on the secondary structure level. It works on the domain level, uses a string-based
description of protein secondary structure and includes additional biochemical and structural
features like length of SSEs. String alignment methods are used to find similarities between
domains.

The Protein Topology Graph Library (PTGL, [17, 18]) is a database of protein topologies
that provides a web interface to compare and visualize protein folds based on SSEs. It uses
a graph-based protein model related to earlier work by Koch et al. [12, 15, 14] and finds
structural similarities between proteins by detecting maximum common substructures in
their graph representations, allowing abstraction from the order of the SSEs in the amino
acid sequence. This approach has recently been used to explore super-secondary structure
patterns in proteins [13].

Images of protein topologies should contain information on the SSEs, their contacts and
relative orientations and should still be clear and unequivocal. Automatically arranging the
SSE symbols in the plane and fulfilling these constraints is not trivial, but some programs
which address this task exist. TOPS cartoons [30] use circles and triangles to represent helices
and strands. Pro-Origami [25] also draws protein cartoons and finds a balance between
structural information and a clear layout. Additionally, it provides interactive diagrams and
a search interface via a website. With the exception of TOPS+, all these programs consider
α-helices and β-strands, but ignore ligands.

2 Approach

Our method works on the level of the secondary structure for protein chains. The 3D atom
coordinates of all protein residues of a chain as well as the ligand molecules associated with
the chain are parsed from PDB files. Each amino acid of the protein chain is assigned a
SSE type by the DSSP algorithm [11]. After a pre-processing step which includes filtering
of certain residues, the contacts between all remaining residues and ligand molecules are
calculated. These residue level contacts are analyzed and SSE level contacts are defined
according to specific rules. For each SSE pair which is in contact, we compute the spatial
orientation. This leads to a contact matrix which can be used to create a protein graph (see
Figure 1). These protein graphs are not necessarily connected and can thus be split into
one or more connected components, which we call folding graphs. Both protein graphs and
folding graphs can be visualized as 2D cartoons which allow for a rapid visual inspection and
comparison.
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Figure 1 Computation of the protein graph from 3D atom data. Contacts are calculated on atom
level from the 3D data in a PDB file (a). All residues of the considered protein chain are assigned to
SSEs (b), which become the vertices of the protein graph (c). The atom contact information is used
to determine the spatial relationships between the SSEs represented by edges in the graph (d).

3 Methods

3.1 Preprocessing and secondary structure assignment

Meta data, data on protein residues and atom coordinates is first parsed from the PDB file.
During this step, PDB files which contain only very short protein chains with less than 30
residues or no protein chains at all are ignored. A list of all helices and strands of a protein
chain in sequential order is created from the DSSP output according to the rules described
below. Then all protein residues and ligands are assigned to one of the classes listed in Table
1.

Table 1 Description of the SSE classes used in protein ligand graphs.

SSE class DSSP types Description
H H, G, I residue which is part of an α-helix
E E, B residue which is part of a β-strand
C S, T, none residue which is not part of an α-helix or β-strand
L n/a ligand molecule
O n/a other non-protein molecules (solvent, polymers)

Solvent molecules like H2O as well as polymers like DNA and RNA are filtered at this
stage. Protein residues which are not part of a helix or strand are also ignored by default.
This leads to a list of SSEs which is ordered by appearance in the primary structure from
the N- to the C-terminus. An example for the residues with DSSP numbers 212–247 of chain
A of PDB ID 7TIM is given below.

DSSP pos. | 212 220 230 240 247
Residue | NGSNAVTFKDKADVDGFLVGGASLKPEFVDIINSRN
DSSP SSE | TTTGGGGTT TT EEEESGGGGSTTHHHHHHTT
SSE class | CCCCHHHHCCCCCCCEEEECHHHHCCCHHHHHHCCC
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Consecutive residues of the classes E or H form an SSE, which means that the example
above contains four SSEs: a β-strand (227–230) and three α-helices (216–219, 232–235,
239–244). Each ligand is treated as a single SSE of type L and appended to the SSE list at
the end of the chain. The contacts between the residues and ligands of the classes H, E and
L are computed in the following step.

3.2 Computation of atom level and residue level contacts

A hard-sphere model is used to determine atom contacts: atoms are treated as hard spheres,
and the atom coordinates defined in a PDB file are assigned to collision spheres. The default
collision sphere radius ratom is 2 Å for protein atoms and 3 Å for ligand atoms. Depending on
the experiment which was used to generate the data, a PDB file may or may not contain data
on hydrogen atoms, so we ignore them if they are listed. By definition, a contact between
two atoms exists if their collision spheres overlap and a contact between two residues exists
if the collision spheres of any of their atoms overlap.

According to its type, each atom can be assigned to one of the following classes: protein
backbone atom, protein side chain atom or ligand atom. Thus, a contact between a pair
of residues can be the result of multiple contacts of different types on the atom level. We
distinguish the following contact types:

backbone–backbone (BB) contacts
backbone–side chain (BC) contacts
side chain–side chain (CC) contacts
ligand–backbone (LB) contacts
ligand–side chain (LC) contacts
ligand–ligand (LL) contacts
ligand–non-ligand (LX) contacts, i.e., LX = LB || LC

For each residue pair which is in contact, the number of contacts of all these classes is
saved for SSE contact determination.

To speed up the calculation, collision spheres are also assigned to residues by determining
the central atom c and the maximal distance dmax between c and any other atom of the
same residue. For protein residues, the Cα-atom is considered to be the residue center. This
rule cannot be applied to ligand molecules though, so we choose the atom with minimal
maximal distance to all other atoms of the molecule in this case. Thus, the collision sphere
for a residue has the radius rres = dmax + ratom. If the collision spheres of two residues do
not overlap, no contact is possible and the atom level comparison can be omitted.

Furthermore, multiple consecutive residues may be skipped entirely under certain cir-
cumstances (see Figure 2): if two residues with DSSP numbers n and m are very far from
each other, the residues n and m+ 1 are far from each other as well, and it may be possible
to skip the residues m+ 1,m+ 2, . . . ,m+ k. The maximum distance between the central
atoms of consecutive residues in the chain, distmax, the maximum collision sphere radius of
all residues, and the distance distn,m between the central atoms of the residues n and m are
required to determine k, the number of residues that can be skipped. Integer division1 is used
to compute k = distn,m\distmax and skip residues during the pairwise contact calculation.

1 Integer division can be defined as a\b ≡ ba/bc.
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Figure 2 Residue skipping during the determination of residue level contacts. The maximum
distance between the central atoms of consecutive residues in the chain is distmax, and distn,m is
the distance between the central atoms of the residues n and m. Then, distn,m+1 is at least distn,m

− distmax.

3.3 Computation of SSE level contacts and relative orientation
We apply a rule set to determine whether two SSEs are in contact. This is the case if enough
atom level contacts exist between residues of the considered pair. Determining the number
of atom level contacts that is considered to be sufficient for an SSE contact is a difficult and
time-consuming task though, because different settings have to be tested on a number of
proteins and their results have to be verified manually by visual inspection using a viewer
program like PyMol [24]. The rules depend on the type of both SSEs, see Table 2.

Table 2 Rules for the determination of SSE contacts. The class X represents an arbitrary SSE
class, i.e., X = E || H || L.

SSE 1 SSE 2 Required contacts
E E BB > 1 ||CC > 2
H E (BB > 1 &&BC > 3) ||CC > 3
H H BC > 3 ||CC > 3
L X LX >= 1

Since a polypeptide chain has a direction, multiple spatial relationships can be defined
between two adjacent sections: they can be parallel, anti-parallel or something in between,
which we call mixed orientation. Each edge in the protein graph is labeled with the spatial
relation of the SSEs represented by its vertices, which is computed as follows:

Let u and v be two spatially adjacent, non-ligand SSEs of a protein chain. Let A and
B be the sets of the DSSP residue numbers of the SSEs u and v respectively. Let S be
the set of all sums of the DSSP residue numbers of the residue pairs (ai, bj) with ai ∈ A
and bj ∈ B which form a contact and D the set of all differences of these pairs. The
double difference is then defined as DD = (Smax − Smin) − (Dmax −Dmin). The spatial
relation between the SSEs u and v is determined from DD using four thresholds for which
Tantip < TmixedLower < 0 < TmixedUpper < Tparallel holds. By definition, the SSEs are (1)
mixed, if TmixedLower < DD < TmixedUpper, (2) parallel, if DD > Tparallel and (3) anti-
parallel, if DD < Tantip. If one of them is a ligand and thus has no direction, the contact
type is defined as (4) ligand.

During the computation of contacts between the n SSEs of a protein chain and the
relative orientation of all SSE pairs which are in contact, an orientation matrix M of size n2
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is generated. At position (i, j), the matrix is 0 if the SSEs i and j are not in contact, 1 if
they are anti-parallel, 2 if they are mixed, 3 if they are parallel and 4 if one of them is a
ligand.

3.4 Computation of the different protein graph types

The orientation matrix M can be interpreted as the adjacency matrix of an undirected
protein graph G = (V,E) with the vertex set V and the edge set E. Each vertex v of the
graph represents an SSE and each edge e = (vi, vj) a contact between the vertices vi and vj
it connects. An edge e = (vi, vj) is added to E if and only if Mi,j > 0.

Depending on what the user is interested in, a subset of the SSE types can be ignored
when creating the graph. For example, a protein graph which only consists of helices and
the contacts between them is called an alpha-graph. We support the following graph types:

the alpha-graph based on the α-helices (H),
the beta-graph consisting of all β-strands (E),
the albe-graph with all SSEs of types E and H,
the alphalig-graph consisting of all SSEs of types H and L (ligands),
the betalig-graph with all SSEs of types E and L,
the albelig-graph based on all β-strands, helices, and ligands.

Note that two consecutive SSEs in the SSE list may be separated by a variable region in
the amino acid sequence and thus an SSE is not necessarily spatially adjacent to its primary
structure predecessor and successor in the protein graph. This means that protein graphs
are not necessarily connected in the graph-theoretic sense, i.e., protein graphs may consist
of several connected components. We call these connected components the folding graphs
of a protein graph. They can be computed using the algorithm described in [9] and drawn
separately. Optionally, folding graphs under a certain size can be ignored during this process.
It turned out that many protein graphs consist of one large connected component and several
isolated vertices which often represent helices on the protein surface.

3.5 Visualization of protein graphs and folding graphs

Both protein and folding graphs can be visualized in the same way. The vertices are ordered
and labeled by the position of the SSE they represent in the amino acid sequence (S) and
by their position in the graph (G). Helices are shown as red, filled circles, strands are
represented by black, filled squares, and ligands by magenta rings. The contacts are drawn
as arcs, and their color encodes the spatial relation between the two SSEs (red → parallel;
blue → anti-parallel; green → mixed; magenta → ligand contact). The protein graph of
triosephosphate isomerase is depicted in Figure 3 as an example.
To visualize a graph G = (V,E) consisting of the n vertices v0, v1, . . . , vn−1, the visualization
function first computes the required image dimensions from the number of vertices. Ignoring
the page margins of fixed size, the drawing area can be split into three parts vertically:

1. The header section is used to print information on the depicted graph, including the
graph type, PDB ID and chain ID. Its width wh is determined from the font size and the
number of characters of the printed string. The header section is not shown in the figures
of this paper.
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Figure 3 The albelig-graph of the β-chain of triosephosphate isomerase. The α-helices are shown
as red, filled circles and the β-strands as black, filled squares. Ligands are represented by magenta
circles. From left to right, the vertices are labeled by their position in the amino acid sequence.
The arcs mark spatial contacts (red for parallel; blue for anti-parallel; green for mixed; magenta for
ligand contact).

2. The graph section contains the visualization of the protein graph. Its width wg is
|V | ∗ distv + 2 ∗ r, where distv is the distance of adjacent vertices in the visualization
(distv is fixed and set to 50 pixels by default) and r is the vertex radius. Its height hg is
hmax + r, where hmax is the height of the largest arc that could possibly occur in the
image, the one between vertices v0 and vn−1.

3. The footer section is used to label the vertices from N- to C-terminus. The labels are
written directly underneath the vertices, so the width of the footer also is wg.

The total width of the image thus is marginleft + max(wh, wg) + marginright and its
height is margintop + hh + hg + hf +marginbottom.

Once the canvas has been prepared, the header and footer are printed and the graph is
depicted. Before drawing a vertex or edge, the color is set based on the vertex or edge type.
The position (v1

x, v
1
y) of the first vertex in the list is determined and all other vertices are

drawn relative to it, i.e., the nth vertex is drawn at position (vnx , vny ) = (v1
x+(n−1)∗distv, v1

y).
An arc is then used to visualize contacts between a pair of SSEs. The required values

for an arc connecting a vertex pair (n,m) can be computed from the position of these
vertices. All edges are drawn and the resulting image is written to the output directory
in in pixel-based (PNG or JPG) and vector-based (SVG) formats. Additionally, a text file
representing the protein graph is saved to the same directory in our own PLG file format,
GML format [8], GraphML format [26], and DOT language format [27]. These text files can
be used to get more detailed information on the SSEs shown in the image, i.e., their length
and amino acid sequence. They can also be opened in other graph editing and visualization
software like GraphViz [3]. Furthermore, our software can read PLG files and visualize them
directly without having to re-compute any SSE data. In that case, no PDB and DSSP files
are required.

The software comes with a graphical user interface but can also be used on the command
line, which is useful in batch mode. Options exist to write the results to a database and to
include coiled regions in the protein graphs. Our software also includes an option to filter
ligands based on their atom count.

4 Discussion

We have applied our method to a copy of the PDB retrieved on May 2011 and saved the
results in a database. The database contains entries on 139,923 protein chains stored in
60,880 PDB files, the average PDB file in the database thus contains 2.3 chains. These
proteins contain a total of 1,165,616 α-helices, 1,322,639 β-strands and 357,311 ligands. The
average SSE consists of about 7 residues, and in general helices are longer than β-strands.
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Figure 4 Coiled regions in protein graphs. (a) The protein graph of chain A of biotin carboxylase,
PDB identifier 2W70. The chloride ion (SSE #37) is isolated because it only has contacts with
residues in coiled regions. (b) A modified version of the protein graph which includes coiled regions
as a new SSE type (shown as gray, filled circles). The contacts between the chloride ion (SSE #59)
and protein residues in two coiled regions of the chain (SSE #13 and #38), become visible in this
representation.

Note that not all currently available PDB files are included in the database. Many of the
ignored files contain only RNA or DNA, others contain very short polypeptides or cannot be
processed properly by DSSP.

More than 2,500,000 contacts between SSEs and about 400,000 ligand contacts were
detected in the data set. This means that the average α-helix or β-strand has 1.0 contacts
to other SSEs of the protein while the average ligand is in contact with 1.1 SSEs or other
ligands. These numbers include 319,962 SSEs and 133,216 ligands that do not have any SSE
contacts at all, i.e., they are isolated vertices in the protein graph. The higher percentage
of isolated ligands compared to SSEs may be related to the fact that ligands usually are
small molecules bound to the surface area of a protein. Note that some ligands like Mg2+

only consist of a single atom. This means they cannot be surrounded by a large number of
SSEs like an α-helix or β-strand deep within the protein core. Additionally, the majority of
contacts to coiled regions are ignored by our method, because coiled regions are not made
up of regular spatial patterns.

The phosphate ion PO4-147, which is associated with chain D of hemoglobin in the PDB
structure 2HHB [5], is such an example: with a collision sphere setting of 2 Å, it is in contact
only with VAL-1, but this residue is part of a coiled region. A situation like this is not
directly related to the contact computation algorithm, but rather is a consequence of the
protein model. A possible solution could be to increase the collision sphere radius of ligand
atoms. Visual inspection did indeed show that in many cases, only a subset of the residues
forming the binding pocket overlaps with the collision sphere of small ligands. Therefore the
default collision sphere radius of ligand atoms was increased to 3 Å. An alternative solution
could be to include coiled regions as a new SSE type and to consider all protein residues
which are neither an α-helix nor a β-sheet to be part of a coiled region. This would mean
that all protein residues are represented by an SSE in the protein graph and ligands which
only have contacts to coiled regions are not longer isolated.

The large protein graph for chain A of PDB entry 2W70 [20] is depicted in Figure 4, with
and without consideration of coiled regions. In the graph which includes coiled regions, the
last ligand, the chloride ion CL-1448 is not longer represented by an isolated vertex, but
the number of vertices and edges in the graph is dramatically increased. A problem is that
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allowing coiled regions as SSEs may split other SSEs into multiple parts. Another approach
would be to determine the SSE which is spatially closest to such ligands and introduce a new
contact type with a new spatial relation ”close to“.

5 Conclusion

In the following we demonstrate the results of our approach using the structure of triosephos-
phate isomerase (TIM) with PDB identifier 7TIM [2]. TIM is a glycolytic enzyme which
catalyzes the interconversion of the three-carbon sugars dihydroxyacetone phosphate and D-
glyceraldehyde 3-phosphate. Each of its two chains consists of a central parallel eight-strand
β-barrel surrounded by α-helices. The albelig-graph consists of 22 SSEs and is depicted in
Figure 3. The betalig-graph makes it easier to spot the β-barrel (see Figure 5). The ligand,
phosphoglycolohydroxamic acid, has contacts to several β-strands and α-helices.

Figure 5 Examples for different types of protein graphs and the structure of triosephosphate
isomerase (a). The betalig-graph (b) and the alphalig-graph (c) of the β-chain of triosephosphate
isomerase, PDB identifier 7TIM. The α-helices are shown as red, filled circles and the β-strands as
black, filled squares. Ligands are represented by magenta circles. From left to right, the vertices are
ordered by their position in the amino acid sequence. The arcs mark spatial contacts (red, parallel;
blue, anti-parallel; green, mixed; magenta, ligand contact). Note that the β-barrel is clearly visible
in the betalig-graph as a series of parallel β-strands.

We have presented a new method to describe and visualize the structure of proteins
on the secondary structure level including ligand information. This method is based on a
unique graph-theoretic description of protein structure topology. In this paper, we explain
the description and how ligand information is considered in the graph representation as well
as in the topology cartoons. The visualization of these cartoons is described in detail using
examples for illustration.

The related software is baded on PDB structures and DSSP files and produces high
quality cartoons which include ligand data. These cartoons can be used for exploring protein
structure topology with ligand information. Additionally, the graphs can be stored in a
database or exported in various standard graph file formats for usage in other software tools.

The protein model defined by the software has been evaluated on the atom and SSE levels.
Limits of both the input data and our method have been discussed. We demonstrate that
our approach produces a clear, unique and meaningful representation of protein structure
topology. The description as well as the visualization can be applied in proteomics, drug
design, medicine and biology. Our software can also be used to extend the existing PTGL
[18] database by adding ligand information. The protein graphs could be used for similarity
searching within the database using graph-based or string-based methods. A web server
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with links to other databases, including sequence and pathway databases as well as ligand
databases like the PDB Ligand Expo [4], is planned.
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Abstract
Proteins interact with each other to perform essential functions in cells. Consequently, identific-
ation of their binding interfaces can provide key information for drug design. Here, we introduce
Weighted Protein Interface Prediction (WePIP), an original framework which predicts protein
interfaces from homologous complexes. WePIP takes advantage of a novel weighted score which is
not only based on structural neighbours’ information but, unlike current state-of-the-art methods,
also takes into consideration the nature of their interaction partners. Experimental validation
demonstrates that our weighted schema significantly improves prediction performance. In par-
ticular, we have established a major contribution to ligand diversity quantification. Moreover,
application of our framework on a standard dataset shows WePIP performance compares favour-
ably with other state of the art methods.
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1 Introduction

Protein-protein interaction (PPIs) is essential for the functionality of living cells. Alterations
of these interactions affect biochemical processes which may lead to critical diseases such
as cancer [31]. Therefore, knowledge about protein interactions and their resulting 3D
complexes can provide key information for drug design. A number of experimental techniques
are available to identify residues involved in PPIs [31]. Although they provide valuable
contribution to PPI knowledge, their cost in terms of time and expense limits their practical
use [10]. Consequently, computational methods have been proposed to identify protein
interfaces. They can be broadly divided in sequence only and structure based approaches.

Sequence based methodologies usually rely on a sliding window which allows calculating
specific features associated to each amino acid according to its neighbours [24, 28, 35, 8].
Then, a classifier discriminates between interface and non-interface residues according to
residue scores. Those approaches differ mainly in their selection of amino acid properties, such
as physico-chemical properties [8, 7], residues distribution [24] or conservation degree [34, 25],
machine learning algorithm and scoring functions [38].

When the 3D structure of the query protein (QP) is available, integration of structural
information, e.g. residues secondary structure or solvent-accessible surface area, allows
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better predictions [25, 32]. Three approaches taking advantage of these properties are
seen as state of the art [38]. ProMate combines 13 different properties, such as chemical
component, geometric properties and information from relevant crystal structures, to generate
a quantitative measure [23]. Protein interface residues are then predicted using a clustering
process relying on mutual information. Alternatively, Cons-PPISP discriminates between
residues using neural networks trained with protein’s surface sequence profiles and solvent
accessibility of neighbouring residues [6]. Finally, PINUP addresses the problem using an
empirical energy function which is based on a linear combination of side chain energy score,
interface propensity and residue conservation [22]. Despite fundamental differences, these
three approaches display very similar performance [38]. However, each of them seems to
capture different important aspects of residue interactions. As a result, a meta-predictor,
Meta-PPISP, combining their scores using a linear regression analysis, is able to outperform
each of these individual methods in terms of accuracy [27].

With the increasing number of experimentally determined protein 3D structures, they
have become the main source of interface prediction methods. First, structurally homologous
proteins tend to display similar interaction sites [1, 9]. Secondly, protein’s binding sites are
evolutionarily conserved among structurally similar proteins (or structural neighbours) [37,
18, 19, 4, 36, 5]. Even remote structural neighbours have been shown to display a significant
level of interface conservation [37]. Consequently, structure based methods for interface
prediction rely on analysing proteins which are structurally similar to the query protein.

Initial approaches focused on detecting conserved areas among homologous structural
neighbours. Carl et al. use graph representation of surface residues [18, 19] to describe homo-
logous binding sites [4]. They then refine their technique by using local structural similarity
instead of global similarities of the query protein to detect the structural neighbours [5]. A
more general method, PredUs, maps interacting residues from structural neighbours onto
QP even if they do not display any homology [36]. Whereas PredUs still dependents on the
existence of structural neighbours of QP, PrISE proposes to deal with this limitation by
predicting interface residues from local structural similarity only [15]. This is achieved using
a repository of structural elements (SE) generated from the Protein Data Bank (PDB) [3].
For each SE of the query protein (consisting of a central residues and it neighbours) a set of
similar SEs are extracted from the repository and a weight is assigned to them based on their
similarity to QP. The central residues of the query protein’s SE are predicted as interface if
a weighted majority of its similar SEs are interface residues. Although more general, PrISE
displays comparable performance to PredUs [15].

Those two approaches have significantly improved the ability of predicting interface
residues; see Table 3. However, they do not deal satisfactorily with the very heterogeneous
nature of the PDB. First, the presence of complex duplicates, or homologs, biases predictions
towards specific configurations, which can affect negatively performance. Secondly, confidence
in the information provided by the interface of a structural neighbour should depend on
its degree of homology with QP. Although PrISE acknowledges both issues, it does not
address the first one [15]. PredUs deals with these matters in a binary fashion. Complexes
involving structural neighbours are clustered and a 40% similarity cut-off is used to choose
the representatives which will inform interface prediction. Here, we address those limitations
of structure based methods by quantifying, first, homology between QP and its structural
neighbours and,second, ligand diversity between the partners, or ligands, of the structural
neighbours.

In this study we introduce Weighted Protein Interface Prediction (WePIP) framework,
a novel PIP approach based on structural neighbours’ information. Its main contribution
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Figure 1 Interface prediction framework for single (A) and pair protein queries (B). A) For
a single query, if at least one homologous complex exists, interfaces are predicted using WePIP
otherwise PredUs is used. B) For a pair of proteins, depending on the existence of homologous
complexes, interfaces are predicted by one or a combination of the WePIPc, WePIP and PredUs
methods.

is the weighted score assigned to each residue of QP, which takes into account not only
the degree of homology of structural neighbours, but also the nature of their interacting
partners. After description of the methodology and validation of the proposed weighted
schema, WePIP is evaluated against state of art protein interface prediction methods using a
standard benchmark dataset.

2 Methods

2.1 Interface Prediction Principles

When two protein chains form a dimer, they bind through their interaction interfaces. We
propose a novel methodology predicting the amino acids which are involved in binding
interactions based on the 3D structures of the dimer partners. In this study dimer refers
to any two protein chains involved in interaction. Not only does our approach predict the
locations of interfaces when both binding partners are known, but it also infers the most
likely binding interface of a single protein. Figure 1.A and 1.B describe those interface
prediction pipelines for single and pair protein queries respectively.

Our methodology relies on discovering interaction patterns from the analysis of the
3D structures of complexes involving homologs of the dimer partners, called ‘homologous
complexes’. In this work, proteins are defined as homologous if their sequence similarity
is expressed by an E-value ≤ 10−2. First, Blast [2] is used to classify each query partner
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according to the availability of homologous complexes in PDB [3]. When both interaction
partners are known and common homologous complexes exist, the WePIPc method exploits
them as templates to predict both interfaces jointly (see Section 2.2). If both partners have
homologous complexes, but none of them is common, or, if one deals with only one partner
and this partner has homologous complexes, then interfaces are predicted independently from
the interaction partner by the WePIP method (see Section 2.3). Finally, when no homologous
complex is available, interface prediction is outside the scope of the WePIP/ WePIPc suite.
Therefore, a third party PIP software, such as PredUs [36], is required. In this work, we use
PredUs when homologous complexes are not available, because not only it is one of the best
performing methods, but also it has been implemented as a Web server which can be used
free of charge.

2.2 WePIPc
With rapid increase of experimentally determined structures, homology modelling of the
whole 3D structure of a dimer is becoming more and more possible. It has been reported [11]
that high quality homologous models could be found for 62% of the protein complexes present
in the standard Protein Docking Benchmark 4.0 [13]. Consequently, template-based docking
methods have been proposed based on common dimer complexes, i.e. dimers where each chain
is homologous to a sequence of the query dimer [11, 21, 20]. For example, 66% of complexes
generated by HOMBACOP were categorised as either acceptable or medium-quality models
according to CAPRI assessment criteria [21]. Since these approaches have proved particularly
accurate, we have included in our PIP framework a module, WePIPc, which infers interfaces
based on common complex homologs.

Homologous complexes of each sequence of the protein query pairs are extracted from
the PDB using Blast. Common homologous complexes are then selected and ranked by
multiplying the E-values associated with the sequential alignments of each query chain with
the homologous chain of the common complex. The common complex with the lower score is
selected as the template from which the interfaces of the query chains are inferred. This is
achieved by mapping the interface residues of the templates on the query chains according
to their sequence alignments.

2.3 WePIP
WePIP relies on the observation that interface residues are usually structurally conserved
between evolutionary related proteins [36]. Following extraction of homologous complexes
from the PDB using Blast, the 3D structure of QP is structurally aligned with its homologs.
In this study processing time is reduced by considering at most the 30 homologous complexes
involving a chain whose E-value shows closest similarity to the QP. Alignment of multiple
protein structures is performed by Multiprot [30], since it is a popular tool [16, 12, 33, 26] that
has already be used successfully in interface residue prediction [16]. Using this information,
a structure-based multiple sequence alignment (S-MSA) is produced. Then, known interface
residues of the homolog complexes are highlighted on the S-MSA, see Figure 2. In agreement
with the CAPRI definition [14], an interface residue is defined as an amino acid whose heavy
atoms are within 5Å from those of a residue in a separate chain. Using this multiple alignment,
an interaction score is calculated for each residue of the query protein (see Section 2.3.1).
Finally, the expected number of interface residues, nIA, is predicted from known interfaces
(see Section 2.3.2). The nIA residues with the highest scores are then returned as defining
the interaction interface.
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Figure 2 Application of the WePIP method on a query protein (green). First, it is structurally
aligned with its homologous complexes. Then, an S-MSA is produced where X and I represent
non-interface and interface residues, respectively. Finally, interaction residues (red) of QP are
predicted according to interaction scores and the estimated size of the interface. Note that residues
weights are not shown here.

2.3.1 Interaction Score
In order to identify residues likely to be involved in the dimer interaction, we propose a
residue scoring function which relies on the S-MSA of QP and its complexed homologs.
In principle, any QP amino acid aligned with a residue involved in a dimer interaction is
a potential candidate. However, confidence in the association of interaction activity to a
residue depends on three factors: the degree of homology between the QP sequence and
that of the protein from which the interaction is inferred, the nature of the ligand involved
in the interaction with the homologous protein and the number of homologous proteins
suggesting interaction. First, the more homologous a complexed protein, k, is to QP, the
more informative is that protein regarding which residues are likely to be involved in the
dimer interaction. We express this information by the query weight, xk, (1):

xk =


1 − 10−200, if Ek < 10−200

1 − Ek, if 10−200 ≤ Ek ≤ 10−2

0, if Ek > 10−2

(1)

where Ek is the E-value of protein k against QP as estimated by Blast.
Secondly, since none of the homologous complexed proteins interacts with the query

ligand, diversity of ligands has to be rewarded given that they increase generalisation of
interaction patterns. A second weight conveys this requirement by penalising homologous
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proteins, whose ligands are similar to each others. This is estimated by the average distance
between the sequence of a ligand and all the other as expressed by the arithmetic mean of
the pair wise E-values. Given a homologous complex protein, k, interacting with a ligand,
Lk, and the other N − 1 homologous complexed proteins interacting with their respective
ligand, Lj , the ligand weight, yk, is formulated as (2):

yk =


∑N

j=1,j 6=k E(Lk,Lj)

N − 1 , if N > 1

1, if N = 1
(2)

where E(Lk,Lj) is set to 1, if E(Lk,Lj) > 1, and E(Lk,Lj) is set to 10−200, if E(Lk,Lj) < 10−200.
The yk score is designed so that the presence of complex duplicates does not bias

predictions towards their configuration. For example, if a QP has 3 complex homologs, A, B
and C where LA is unrelated to LB and LC , but LB and LC are identical, E(LA,LB) = 1,
E(LA,LC ) = 1 and E(LB ,LC) = 0. Therefore, yA = yB + yC , i.e. interface configurations of A
and B/C will have the same weight.

The weighted score of the residue i of protein, k, is expressed by the product of these two
weights (3):

wik =
{

xkyk, if i interacts with Ck

0, otherwise
(3)

Finally, since it was shown that usage of non-interface information improves prediction
performance [36, 15], the score for residues i of QP is calculated in (4) as the sum of the
weights of the interface residues in the homologs over all the interface and non-interface
residues which are 3D aligned with i:

Si =
∑N

j=1 wij∑N
j=1 xjyj

(4)

Note that for non-interface residues the ligand which is geometrically the closest is used
to calculate their weight yk.

2.3.2 Estimation of the number of interface residues
After calculating Si for all the amino acids of QP, it is necessary to estimate the expected
number of interface residues of its interface, nIA. Studies have shown that despite variability
in ligand structures, the binding location between homologous structures and their ligands
is conserved [17]. This suggests that the number of interface residues between homologs
should remain quite stable even when the binding partners vary. Therefore, WePIP uses the
weighted average number of interacting amino acids of all QP’s homologs (nIA) to estimate
the number of interface residues of QP (5):

nIA =
R∑

i=1
Si (5)

where R is the number of residues in the QP sequence plus the number of gaps added to
allow alignment with its homologs. Finally, once nIA has been calculated, the predicted
interface is defined as the nIA residues with the highest scores.



R. Esmaielbeiki and J.-C. Nebel 125

Figure 3 Generation of ground truth interface residues. a) Interfaces residues (blue spheres) are
identified on the bound structure (cyan). The interaction partner is in red. b) The unbound and
bound sequences are aligned to infer interfaces of the unbound structure. Mapping is shown by blue
rectangles. c) Inferred interfaces are shown as blue spheres on the unbound structure (cyan).

3 Experimental results

3.1 Dataset and ground truth
Our interface prediction framework has been evaluated on a standard benchmark dataset,
Ds56unbound, to allow comparison of its performance with state of the art methods [37, 15, 38].
The dataset is comprised of 56 unbound chains generated from 27 targets, T01∼T27,
investigated during the communitywide experiment CAPRI [14]. The corresponding bound
structures (Ds56bound) are used as ground truth. In total, DS56unbound contains 12173
residues including 2112 interacting ones. According to CAPRI’s definition, interface residues
are defined as amino acids on separate chains which have at least one heavy atom within a
cut-off threshold of 5Å.

Since interface residues are not explicitly provided in DS56unbound, they were generated
from the interface residues in their bound form. The process is illustrated in Figure 3. First,
interface residues are detected on the bound complexes. Then, the unbound sequences
are aligned with the bound sequences. Finally, the interfaces are mapped from the bound
sequences onto the unbound ones.

3.2 WePIP Performance
All chains from Ds56unbound were processed by our interface prediction framework. Following
initial homolog search where the Ds56bound complexes were excluded from the Blast results,
homologous complexes were returned for 51 chains. Among them, 27 chains (Ds27unbound)
displayed common complex(es) with their interacting partner and were further processed by
WePIPc. Interfaces of the other 24 chains (Ds24unbound) were estimated by WePIP. Finally,
the 5 chains (Ds5unbound) that could not be handled using a homology based approach were
submitted to the PredUs server. Table 1 provides detailed performance of our system using
standard measures, i.e. precision, recall, F-measure (F1), accuracy, Matthews correlation
coefficient (MCC) and area under the receiver operating characteristic – ROC - curve (AUC).
As expected, the more the method is able to exploit homology, the better is the interface
prediction. Moreover, the table reveals that WePIP is quite conservative in its prediction: it
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Figure 4 Interface predictions generated by the WePIP framework using either a) WePIP, b)
WePIPc or c) PredUs. On each PDB target, true interface residues are coloured in red, whereas false
positives and false negatives are shown in blue and yellow respectively. Corresponding F1 scores are
also provided.

Table 1 Detailed performance of the WePIP framework. ∗DSxunbound: this means x chains out
of the 56 unbound chains are solved by this specific predictor.

Predictor∗ Precision Recall F1 Accuracy MCC AUC
WePIPc (DS27unbound) 68.8 60.5 63.2 87.0 56.0 77.1
WePIP (DS24unbound) 43.3 35.6 38.2 82.3 28.8 70.1
PredUs (DS5unbound) 23.6 45.5 30.1 75.8 19.4 63.2
WePIP + WePIPc
(DS51unbound) 56.8 48.8 51.5 84.8 43.2 73.6

WePIP framework
(DS56unbound) 53.9 48.5 49.6 84.0 41.1 72.9

displays relatively low recall value compared to precision. Figure 4 illustrates qualitatively
those results by displaying representative predicted interfaces compared to ground truth.

In Figure 5, we provide the receiver operating characteristic curves of WePIP interface
predictions for the six targets represented in Figure 4 a). First, curves are in agreements
with model ranking based on F1 score. Second, accuracy regarding the number of estimated
residues in the interface is highly correlated with the AUC. Finally, actual numbers of residues
tend to be close to the curve’s optimal cut-off point [29]. This point is located on the ROC
curve where the distance is the largest to the random diagonal. This suggests there is scope
for improving the estimation of expected interacting residues.

In order to validate the formulation of the weights used by WePIP, interface predictions
for Ds24unbound were also estimated by setting those weights to 1. As shown in Table 2,
results confirm the added value provided by our weighted schema. While usage of the query
weight, xk, only provides modest improvements when compared to a non weighted approach,
the proposed ligand weight, yk, offers a more significant increase of performance. Finally,
when both weights are combined, most performance indicators improve further. These results
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Figure 5 Receiver operating characteristic of WePIP interface predictions.

Table 2 Validation of weights used by WePIP (DS24unbound).

Query weight Ligand weight Precision Recall F1 Accuracy MCC AUC
1 1 40.6 32.5 37.0 81.6 25.5 70.3

xk 1 40.8 32.7 38.7 82.4 26.2 70.4
1 yk 42.4 34.6 37.3 82.6 28.1 70.9

xk yk 43.3 35.6 41.7 82.3 28.8 70.1

confirm that taking into account both homology of QP and ligands leads to better interface
predictions.

Finally, performance of our framework is compared with state of the art methods, see
Table 3. Whatever measure is considered, the WePIP framework displays either best or
second best performance competing with PrISE [15] and PredUS [36]. Moreover, the two
aggregate measures, i.e. F1 and MCC, show that, globally, our system tends to produce
better prediction than any other approach. In addition, since WePIP running time for a
300-residue protein with 30 homologous complexes is around 20 seconds on a standard PC,
it can be used online. WePIP will be available as a web server in the near future.

Table 3 Comparison of WePIP framework with state of the art methods.

Predictor (DS56unbound) Precision Recall F1 Accuracy MCC AUC
Promate [15] 28.7 27.3 28.0 76.6 14.0 62.7
PINUP [15] 30.4 30.1 30.2 76.9 16.4 60.0
Cons-PPISP [15] 37.4 34.5 35.9 79.5 23.8 71.2
Meta-PPISP [15] 38.9 24.0 29.7 81.1 20.2 71.5
PrISE [15] 43.7 44.0 43.8 81.2 32.6 75.5
PredUs [36] 43.3 53.6 47.9 73.2 30.4 72.9
WePIP framework 53.9 48.5 49.6 84.0 41.1 72.9
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4 Conclusion

Although structure based methods perform best at predicting protein interfaces, they do not
deal adequately with biases generated by the heterogeneous nature of the PDB. To address
this issue, we have introduced the WePIP framework which associates to each putative
interaction residue a confidence score taking into account both the degree of homology of
structural neighbours and their ligands. Validation demonstrated that our novel weighted
schema significantly improves prediction performance. In particular, we showed the major
contribution of ligand diversity quantification. Moreover, application of our framework on a
standard dataset shows WePIP performance compares favourably with other state of the art
methods.

Despite the fact that our framework is state of the art, prediction of interface residues
is still an unsolved problem: predictions remain unreliable for too many protein targets,
even when homologous complexes are available. In future work, we intend to refine the
proposed framework by integrating within our scoring schema the degree of spatial clustering
of interface residues among structural neighbours.
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