
Report from Dagstuhl Seminar 12272

Architecture-Driven Semantic Analysis of Embedded
Systems
Edited by
Peter Feiler1, Jérôme Hugues2, and Oleg Sokolsky3

1 Carnegie Mellon University – Pittsburgh, US, phf@sei.cmu.edu
2 ISAE – Toulouse, FR, jerome.hugues@isae.fr
3 University of Pennsylvania, Philadelphia, US, sokolsky@cis.upenn.edu

Abstract
Architectural modeling of complex embedded systems is gaining prominence in recent years,

both in academia and in industry. An architectural model represents components in a distributed
system as boxes with well-defined interfaces, connections between ports on component interfaces,
and specifies component properties that can be used in analytical reasoning about the model.
Models are hierarchically organized, so that each box can contain another system inside, with its
own set of boxes and connections between them.

The goal of Dagstuhl Seminar 12272 “Architecture-Driven Semantic Analysis of Embedded
Systems” is to bring together researchers who are interested in defining precise semantics of an
architecture description language and using it for building tools that generate analytical models
from architectural ones, as well as generate code and configuration scripts for the system.

This report documents the program and the outcomes of the presentations and working groups
held during the seminar.

Seminar 01.–06. July, 2012 – www.dagstuhl.de/12272
1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.2.4 Software/Program

Verification, D.2.11 Software Architectures
Keywords and phrases Architectu Description Language, AADL, EAST-ADL, MARTE, Verific-

ation, Validation, Analysis, Embedded Systems, Model-Driven techniques
Digital Object Identifier 10.4230/DagRep.2.7.30

1 Executive Summary

Peter Feiler
Jérôme Hugues
Oleg Sokolsky

License Creative Commons BY-NC-ND 3.0 Unported license
© Peter Feiler, Jérôme Hugues, and Oleg Sokolsky

Architectural modeling of complex embedded systems is gaining prominence in recent years,
both in academia and in industry. An architectural model represents components in a
distributed system as boxes with well-defined interfaces, connections between ports on
component interfaces, and specifies component properties that can be used in analytical
reasoning about the model. Models are hierarchically organized, so that each box can
contain another system inside, with its own set of boxes and connections between them.
An architecture description language for embedded systems, for which timing and resource
availability form an important part of the requirements, must describe resources of the system

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

Architecture-Driven Semantic Analysis of Embedded Systems, Dagstuhl Reports, Vol. 2, Issue 7, pp. 30–55
Editors: Peter Feiler, Jérôme Hugues, and Oleg Sokolsky

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12272
http://dx.doi.org/10.4230/DagRep.2.7.30
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 31

platform, such as processors, memories, communication links, etc. Several architectural
modeling languages for embedded systems have emerged in recent years, including AADL,
SysML, EAST-ADL, and the MARTE profile for UML.

In the context of model-based engineering (MBE) architectural modeling serves several
important purposes:

An architectural model allows us to break the system into manageable parts and establish
clear interfaces between these parts. In this way, we can manage complexity of the system
by hiding the details that are unimportant at a given level of consideration; Clear interfaces
between the components allow us to avoid integration problems at the implementation
phase. Connections between components, which specify how components affect each other,
help propagate the effects of change in one component to the affected components. Most
importantly, an architectural model can be seen as a repository of the knowledge about the
system, represented as requirements, design, and implementation artifacts, held together by
the architecture. Such a repository enables automatic generation of analytical models for
different aspects of the system, such as timing, reliability, security, performance, etc. Since
all the models are generated from the same source, ensuring consistency of assumptions and
abstractions used in different analyses becomes easier. The first two uses of architectural
modeling have been studied in the research literature for a number of years. However, the
coordination role of architectural modeling in MBE is just currently emerging. We expect
this role to gain importance in the coming years. It is clear that realizing this vision of
"single-source" MBE with an architectural model at its core is impossible without having
first a clear semantics of the architecture description language.

The goal of the seminar is to bring together researchers who are interested in defining
precise semantics of an architecture description language and using it for building tools
that generate analytical models from architectural ones, as well as generate code and
configuration scripts for the system. Despite recent research activity in this area to use
semantic interpretation of architectural models for analytical model generation, we observe a
significant gap between current state of the art and the practical need to handle complex
models. In practice, most approaches cover a limited subset of the language and target a
small number of modeling patterns. A more general approach would most likely require an
interpretation of the semantics of the language by the tool, instead of hard-coding of the
semantics and patterns into the model generator.

12272

32 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

2 Table of Contents

Executive Summary
Peter Feiler, Jérôme Hugues, and Oleg Sokolsky . 30

Overview of Talks
EAST-ADL – An Architecture-centric Approach to the Design, Analysis, Verification
and Validation of Complex Embedded Systems
De-Jiu Chen . 34

Model-Checking Support for AADL
Silvano Dal Zilio . 34

Model-Based/ Platform-Based/Architecture-Driven Design of Cyber-Physical Sys-
tems
Patricia Derler . 35

On the mechanization of AADL subsets
Mamoun Filali-Amine . 35

Extended Literate Programming. Introducing the
⊔

(SquareCup) Language
Laurent Founier . 36

Software Component Architecture Model Analysis and Executable Generation using
Semantic Language Layering
Serban Gheorghe . 36

Architecture Evaluation @ Run-time: Problems, Challenges and Solutions
Lars Grunske . 37

Embedded System Architecture for Software Health Management
Gabor Karsai . 37

Experience of Using Architecture Models in Civil Aviation Domain
Alexey Khoroshilov . 38

Hierarchy is Good For Discrete Time: a Compositional Approach to Discrete Time
Verification
Fabrice Kordon . 38

Formal Semantics of AADL Component Behavior to Prove Conformance to Spe-
cification
Brian Larson . 39

Software Architecture Modeling by Reuse, Composition and Customization
Ivano Malvolta . 40

Architecture-Driven analysis with MARTE/CCSL
Frédéric Mallet . 41

Approximating physics in the design of technical systems
Pieter J. Mosterman . 41

Satellite Platform Case Study with SLIM and COMPASS
Viet Yen Nguyen . 41

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 33

Correctness, Safety and Fault Tolerance in Aerospace Systems: The ESA COMPASS
Project
Thomas Noll . 42

Synchronous AADL: From Single-Rate to Multirate
Peter Csaba Ölveczky . 42

Semantic anchoring of industrial architectural description languages
Paul Petterson . 43

Integration of AADL models into the TTEthernet toolchain; Towards a model-
driven analysis of TTEthernet networks
Ramon Serna Oliver . 44

Architecture Modeling and Analysis for Automotive Control System Development
Shin’ichi Shirashi . 44

About architecture description languages and scheduling analysis
Frank Singhoff . 44

Co-modeling, simulation and validation of embedded software architectures using
Polychrony
Jean-Pierre Talpin . 45

Compositional Analysis of Architecture models
Michael W. Whalen . 45

Working Groups
Attaching semantics to a modeling framework . 46

Expressive Power of Architectural Models . 47

Analysis of architectural systems . 48

Multi-point view analysis and combination of analysis result 49

Run-time Architectural Analysis . 49

Notion of Time: Physical vs. Real-Time vs Discrete vs Logical time 50

Patterns for (de)composing and analysing systems 51

Summary and Open Challenges . 52

Bibliography . 53

Participants . 55

12272

34 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

3 Overview of Talks

3.1 EAST-ADL – An Architecture-centric Approach to the Design,
Analysis, Verification and Validation of Complex Embedded
Systems

De-Jiu Chen (KTH – Stockholm, SE)

License Creative Commons BY-NC-ND 3.0 Unported license
© De-Jiu Chen

EAST-ADL is a domain specific Architecture Description Language (ADL) for safety-critical
and software-intensive embedded systems. The language enables a formalized and traceable
description of a wide range of engineering concerns throughout the entire lifecycle of systems.
This makes it possible to fully utilize the leverage of state-of-the-art methods and tools for
the development of correct-by-construction system functions and components in a seamless
and cost efficient way.

This talk focuses on the recent advances of EAST-ADL in supporting the description,
analysis, verification&validation of complex embedded systems for the purposes of require-
ments engineering, application design, and safety engineering. The approach is architecture
centric as all behavior descriptions are formalized and connected to a set of standardized
design artifacts existing at multiple levels of abstraction. This talk presents the language
design, its theoretical underpinning and tool implementation. From a bigger perspective, the
contribution makes it possible for embedded system and software developers to maintain
various engineering concerns coherently, while exploiting mature state-of-the-art technologies
from computer science and other related domains for a model-based design.

3.2 Model-Checking Support for AADL
Silvano Dal Zilio (LAAS – Toulouse, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Silvano Dal Zilio

We present recent work on the extension of the Fiacre language with real-time constructs
and real-time verification patterns. We will show how these enhancements have been used to
implement a new version of a model-checking toolchain for AADL.

Fiacre is a formal language with support for expressing concurrency and timing constraints;
its goal is to act as an intermediate format for the formal verification of high-level modeling
language, such as UML profiles for system modeling. Essentially, Fiacre is designed both as
the target of model transformation engines, as well as the source language of compilers into
verification toolboxes, namely Tina and CADP.

Our motivations for extending Fiacre are to reduce the semantic gap between Fiacre and
high-level description languages and to streamline our verification process. We will take the
example of a transformation from AADL (and its behavioral annex) to Fiacre to explain the
benefit of this new toolchain

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 35

3.3 Model-Based/ Platform-Based/Architecture-Driven Design of
Cyber-Physical Systems

Patricia Derler (University of California – Berkeley, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Patricia Derler

This presentation focuses on recent efforts of including architectural properties into executable
models in Ptolemy II. A programming model that includes some architecture information
such as Sensors, Actuators, Platforms, Execution Time, Memory is Ptides, which is also
implemented in Ptolemy. The talk describes the Ptides execution semantics and its imple-
mentation in Ptolemy. Evaluation of architectural properties and constraints is done via
simulation.

3.4 On the mechanization of AADL subsets
Mamoun Filali-Amine (Paul Sabatier University – Toulouse, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Mamoun Filali-Amine

AADL (Architecture Analysis & Design Language) is a real-time specification language that
focuses on the early analysis of the dynamic architecture of a system and the correctness of
resource allocation described by the soft- ware / hardware mapping. Although, these aspects
are precisely described in the standard, they need a formal expression in order to be able to
verify their properties formally.

With respect to formal verification, it is interesting to consider two kind of properties:

applicative properties like schedulability, absence of buffer overflows, deadlocks, starva-
tion and more generally safety and liveness properties. The first ones are application
independent while the last ones depend on the intended behavior of the application.
properties related to the semantics of the language constructs, e.g., determinism, cor-
rectness of some model transformations (flattening, application of distribution strategies,
...).

While for applicative properties, model checking techniques have been widely and suc-
cessfully applied, proof based techniques are still necessary to address properties which in
general do not concern a fixed finite domain.

In this talk, we will present the different proof based attempts that we have conducted in
order to mechanize some aspects of AADL.

Semantics of basic AADL protocols related to threads and communication.
Semantics of a basic AADL computation model.
Mechanization of the basic semantics of the FIACRE language and proof support for a
parameterized version.

12272

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

36 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

3.5 Extended Literate Programming. Introducing the ⊔ (SquareCup)
Language

Laurent Fournier (Rockwell Collins France, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Laurent Founier

We introduce a universal typed sparse graph language called "t" (the square cup character,
Unicode #2294, or \sqcup in TEX.). t extends the established Literate Programming (lp)
approach with Model Driven Engineering (mde) paradigm. Unlike Literate Modeling that
basically produces documented diagrams reports, our Extended Literate Programming (elp)
proposal focus on satisfying the two original lp goals; full automation from the highest
level declarative description to build a runnable machine code, and better understanding
to produce high quality shared documentation, all in a literate form and within the same
capture tool.

t graph nodes support the useful notion of port and the t simple text syntax – concision
and readability to compare for instance with xmi serialization format – can represent any
kind of nested graphs. Supported formalisms vary but not limited to uml, SysML, AADL
graph, Simulink/Scicos/Scade blocs, State machine, Markov chain, Petri Nets, EntityRelation
graph, kaos. . . For rendering, diagram positioning/routing attributes are excluded to rely
only on automatic layout algorithms. All the semantics of a t graph is defined in nodes
and arc types by a mapping to a particular generated code construction. Those types allow
to build some dsl and Domain Specific Libraries of components for easy Product Line
Development. elp facilitates Requirement Engineering tasks like traceability, impact analysis,
and transformations to design phase. Because each t-tool instance natively provides a t
models library and a types library available as a remote service, the designer can access to a
set of cooperating/competing code generators, building a simple Semantic Web for software
engineering. For any t graph, the same techniques apply to generate svg code for web
browsing, TikZ code for document embedded diagrams, than for generating compilable code.
Furthermore, the node/arc content is a free Unicode string parsed as a Python interpreter
so all downstream transformations works on the Python Abstract Syntax Tree (past). A
tool framework is under development, using a web based editor (CodeMirror), optimized
pdf rendering, a Git database on the cloud and Python3 as glue language. Code generation
will focus on aadl interpertation first. Unlike wysiwyg (What You See Is What you Get)
frameworks, the text nature of t models makes save, search, diff or merge operations easy
and long term resistant.

The t project is currently hosted at https://github.com/pelinquin/u.

3.6 Software Component Architecture Model Analysis and Executable
Generation using Semantic Language Layering

Serban Gheorhe (Edgewater Computer Systems Inc. – Ottawa, CA)

License Creative Commons BY-NC-ND 3.0 Unported license
© Serban Gheorghe

Without executable code generation, models of software systems are inevitably relegated to
the role of exploration of design alternatives and design documentation. They will inevitably
represent an alternative and potentially stale “source of truth” of the real running software,

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/pelinquin/u
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 37

usually implemented in programming languages accepted in the industry. In this talk, we focus
on executable software applications described using the AADL software component model
and compliant with the AADL run-time execution semantics. The AADL run time semantics
accommodates multiple possible computation model choices (synchronous/asynchronous,
preemptable/non-preemptable, etc.). Also, target execution platforms currently in use
have a wide variety of possible execution semantics. It would be extremely costly to build
trusted code generators for all possible combinations affecting the AADL run-time execution
semantics that also preserve at run-rime the formal temporal properties expressed and proven
by static analysis on the AADL model. Our approach is to select a small anchor subset of
the AADL run-time semantics, called the RTEdge AADL Microkernel subset, and use it
as a trusted lower level semantic layer, encoded in a run-time executive middleware (called
RTExec) available as a library on multiple execution platforms. Corresponding to the RTExec
semantics we define an AADL language subset, called the RTEdge modeling language subset,
which is executable via code generation and linking with the RTExec executive.

Given an AADL software system, we use this semantic layering to generate software
executables for any execution platform that runs the RTExec: firstly by translating the
AADL source into the intermediate RTEdge subset, thus obtaining an RTEdge model with
equivalent execution semantics, secondly by generating target specific executables from the
RTEdge model. Formal temporal properties expressed at the AADL run-time semantic layer
can be mapped into equivalent temporal properties expressed and checked at the lower and
fix semantic layer of the RTEdge subset, guaranteeing consistency between the analysis
assumptions and the real execution semantics of the generated executable.

3.7 Architecture Evaluation @ Run-time: Problems, Challenges and
Solutions

Lars Grunske (TU Kaiserslautern, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Lars Grunske

The majority of innovations in modern technical systems are driven by software. Based on
the research results of the software engineering community over the past decades we are able
to develop software systems with immense complexity. However, concomitant with these
increases in complexity, the quality demands also appear to be ever-growing. Probabilistic
properties defined in probabilistic temporal logics are commonly applied to specify these
quality demands and are especially suitable for performance, reliability, safety, and availability
requirements. This talk will present approaches but also problems and challenges for run-time
architecture evaluation strategies of these probabilistic properties.

3.8 Embedded System Architecture for Software Health Management
Gabor Karsai (Vanderbilt University, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Gabor Karsai

As software increasingly becomes the main source of functionality and the ultimate tool for
system integration in cyber-physical systems there is an increasing chance that imperfections

12272

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

38 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

in the design and implementation of the software need to be detected and mitigated at
run-time. Such needs can be addressed by borrowing metaphors and techniques from the area
of ’systems health management’, where the concepts and technologies of anomaly detection,
fault source isolation, and fault mitigation have been developed. Similarly to physical systems,
a software health management (SHM) approach necessitates an architectural foundation: a
component framework that defines units for fault management and fault containment, with
precisely specified and controlled interfaces and interactions. Based on this foundation a
highly reusable software health management layer can be constructed that maintains system
functionality even when software defects appear. This layer is model-based: it consists of
generic building blocks and algorithms that are configured via models. Using an architectural
framework, with precisely defined component interaction semantics enables not only the
implementation but the formal verification and analysis of the entire system. The talk
introduces a motivating example, presents a component framework and how it was extended
to support software health management, and concludes with a realistic case study.

3.9 Experience of Using Architecture Models in Civil Aviation Domain
Alexey Khoroshilov (Russian Academy of Sciences – Moscow, RU)

License Creative Commons BY-NC-ND 3.0 Unported license
© Alexey Khoroshilov

The talk presents an experience of building an AADL-based toolset for integrated modular
avionics (IMA) design and integration. Features and an architecture of the toolset are
described and the role of the architecture description language is discussed.

3.10 Hierarchy is Good For Discrete Time: a Compositional Approach
to Discrete Time Verification

Fabrice Kordon (UPMC – Paris, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Fabrice Kordon

Introduction
Model checking is now widely used as an automatic and exhaustive way to verify complex
systems. However, this approach suffers from an intrinsic combinatorial explosion, due to
both a high number of synchronized components and a high level of expressivity in these
components.

With respect to the expressivity issue, we consider the particular problem of introducing
explicit time constraints in the components of a system. In this modeling step, the choice
of a time domain is important, impacting on the size of the resulting model, the class of
properties which can be verified and the performances of the verification.

In this presentation, we show that hierarchical encoding of elementary components
encapsulating labeled transition systems (LTS), synchronized by means of public transitions,
is an efficient way to encode discrete time.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 39

Instantiable Transition Systems
Instantiable Transition Systems (ITS) are a framework designed to exploit the hierarchical
characteristics of SDD [5]. This structure is used to encode the state space, for the description
of component based systems. ITS were introduced in [11]. Here are the main principles ITS
rely on:

ITS types (elementary) represent a LTS and export some public transitions that can be
synchronized with other ITS types,
composite ITS gather several ITS (composite or elementary) and propose a new interface
that can be connected to some of the synchronized public actions of enclosed ITS,
instanciation allows to create a number of entities having the same behavior. This
emphasizes the description of regularities in distributed systems.

Encoding discrete time with ITS
The basic idea of using ITS to model discrete time is to propose an extra interface dedicated
to time elapse [10]. This interface interacts with local clocks. When time elapse the same way
all over the system, the elapse interfaces must be synchronized together. It is also possible
to have local synchronization of clocks to model several timelines.

This presentation shows the main principles of this mechanism and illustrates it on a
simple example from the literature. Then, we emphasize its interest in a small medical
case study: the Body Area Network. Here, ITS are generated from a high-level language
dedicated to the description of Wireless Sensor Networks: Verisensor [4].

3.11 Formal Semantics of AADL Component Behavior to Prove
Conformance to Specification

Brian Larson (Multitude Corp., US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Brian Larson

Software can be more dependable than hardware. This requires programs, their specifications,
and their executions are mathematical objects, so that conformance to specification of
every execution can be formally verified. This talk presents an AADL annex sublanguage,
Behavioral Languages for Embedded Systems with Software (BLESS) to formally define
component behavior, based on the Behavior Annex (BA) language. BLESS adds Assertions to
form proof outlines that can be transformed into complete formal proofs semi-automatically.

12272

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

40 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

3.12 Software Architecture Modeling by Reuse, Composition and
Customization

Ivano Malavolta (Univ. degli Studi di L’Aquila, IT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ivano Malvolta

While developing a complex system, it is of paramount importance to correctly and clearly
specify its software architecture. Architecture Description Languages (ADLs) are the means
to define the software architecture of a system. ADLs are strongly related to stakeholder
concerns: they must capture all design decisions fundamental for systems stakeholders. From
the earliest work in software architecture, the usefulness of expressing software architectures
in terms of multiple views is well recognized. Architecture views represent distinct aspects
of the system of interest and are governed by viewpoints which define the conventions for
their construction, interpretation and use to frame specific system concerns. Most practicing
software architects operate within an architecture framework which is a coordinated set of
viewpoints, models and notations prescribed for them. As a matter of fact, stakeholders
concerns vary tremendously, depending on the project nature, on the domain of the system
to be realized, etc. So, even if current architecture frameworks are defined to varying degrees
of rigor and offer varying levels of tool support, finding the right architecture framework that
allows to address the various system concerns is both a risky and difficult activity. Therefore,
an effective way to define and combine architectural elements into a suitable framework for
effectively create architecture descriptions is still missing.

In this presentation, I propose an infrastructure for modeling the architecture of a software
system by adapting existing architectural languages, viewpoints and frameworks to domain-
and organization-specific features. Under this perspective, the proposed infrastructure allows
architects to set up customized architectural frameworks by: (i) defining and choosing a set
of viewpoints that adequately fit with the domain and features of the system being developed,
(ii) automatically adapting existing architecture description languages to project-specific
concerns, (iii) keeping architectural views within the framework synchronized, (iv) enabling
consistency and completeness checks based on defined correspondences and rules among
architectural elements. The proposed approach builds upon the conceptual foundations of
ISO/IEC/IEEE 42010 for architecture description and it is generic with respect to the used
architectural elements (i.e., views, viewpoints, languages, stakeholder’s concerns, etc.).

The impact of the proposed approach is three-fold: (i) a novel approach is presented for
architecting by reusing, composing and customizing existent architectural elements, (ii) a new
composition mechanism is presented for extending architectural languages in a controlled
fashion, (iii) a new mechanism for keeping architectural views in a consistent state is provided.

The proposed approach is realized through a combination of model transformations,
weaving, and megamodeling techniques. The approach has been put in practice in different
scenarios and has been evaluated in the context of a real complex system.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 41

3.13 Architecture-Driven analysis with MARTE/CCSL
Frédéric Mallet (INRIA Sophia Antipolis, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Frédéric Mallet

The UML Profile for Modeling and Analysis of Real-Time and Embedded systems promises
a general modeling framework to design and analyze systems. Lots of works have been
published on the modeling capabilities offered by MARTE, much less on verification techniques
supported. The Clock Constraint Specification Language (CCSL), first introduced as a
companion language for MARTE, was devised to offer a formal support to conduct causal
and temporal analysis on MARTE models.

This presentation focuses on the analysis capabilities of MARTE/CCSL and describes a
process where the logical description of the application is progressively refined to take into
account the execution platforms (software and hardware architectures) and the environment
constraints.

The approach is illustrated on two very simple examples where the architecture plays an
important role. During the presentation, issues are raised on the expressiveness of CCSL, on
the nature of properties that can be analyzed and on possible extensions.

3.14 Approximating physics in the design of technical systems
Pieter J. Mosterman (The MathWorks Inc. – Natick, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Pieter J. Mosterman

In the design of Cyber-Physical Systems, physics plays a crucial role. Models of physics
at a macroscopic level often comprise differential and algebraic equations. These equations
typically require computational approaches to derive solutions. Approximations introduced by
the solvers that derive these solutions to a large extent determine the meaning of the models,
in particular when discontinuities are included. In reasoning about models that are solved
computationally it is therefore imperative to also model the solvers. This presentation shows
how performance of a cyber- physical system may be affected by physics and conceptualizes
the modeling of computational solvers. Opportunities that derive from the availability of
solver models are presented and a control synthesis approach for stiff hybrid dynamic systems
based on model checking is outlined.

3.15 Satellite Platform Case Study with SLIM and COMPASS
Viet Yen Nguyen (RWTH Aachen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Viet Yen Nguyen

This talk is a continuation of Thomas Noll’s talk on SLIM, a formalized dialect of AADL.
We report on the use of the COMPASS toolset on a satellite platform in development at the
European Space Agency. These efforts were carried out in parallel with the conventional
software development of the satellite. The nominal behavior of the satellite platform model,

12272

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

42 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

expressed in SLIM, comprises nearly 50 million states. This multiplies manifold upon the
injection of failures. We show that verification and validation artifacts, typically constructed
manually in a space system engineering process, can be automatically generated by the
COMPASS toolset. The model’s size pushed the computational tractability of the algorithms
underlying the formal analyses, and revealed bottlenecks for future theoretical research.
Additionally, the effort led to newly learned practices from which subsequent formal modeling
and analysis efforts shall benefit, especially when they are injected in the conventional
software development lifecycle. The case demonstrates the feasibility of fully capturing a
system-level design as a single comprehensive formal model and analyze it automatically
using a formal methods toolset based on (probabilistic) model checkers.

3.16 Correctness, Safety and Fault Tolerance in Aerospace Systems:
The ESA COMPASS Project

Thomas Noll (RWTH Aachen, DE)

License Creative Commons BY-NC-ND 3.0 Unported license
© Thomas Noll

Building modern aerospace systems is highly demanding. They should be extremely depend-
able, offering service without failures for a very long time – typically years or decades. The
need for an integrated system- software co-engineering framework to support the design of
such systems is therefore pressing. However, current tools and formalisms tend to be tailored
to specific analysis techniques and do not sufficiently cover the full spectrum of required
system aspects such as safety, dependability and performability. Additionally, they cannot
properly handle the intertwining of hardware and software operation. As such, current
engineering practice lacks integration and coherence.

This talk gives an overview of the COMPASS project that was initiated by the European
Space Agency to overcome this problem. It supports system- software co-engineering of
real-time embedded systems by following a coherent and multidisciplinary approach. We
show how such systems and their possible failures can be modeled in (a variant of) AADL,
how their behavior can be formalized, and how to analyze them by means of model checking
and related techniques. Practical experiences obtained in a larger case study will be described
in a subsequent presentation by Viet Yen Nguyen.

3.17 Synchronous AADL: From Single-Rate to Multirate
Peter Csaba Ölveczky (University of Illinois – Urbana, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Peter Csaba Ölveczky

Distributed Real-Time Systems (DRTSs), such as avionics systems and distributed control
systems in motor vehicles, are very hard to design because of asynchronous communication,
network delays, and clock skews. Furthermore, their model checking typically becomes
unfeasible in practice due to the large state spaces caused by the interleavings. Based on the
observation that many automotive and avionics systems should be virtually synchronous—that
is, conceptually, there is a logical period during which all components perform a transition
and send messages to each other—that must be realized in a distributed environment with

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 43

network delays, skewed local clocks, etc., we have proposed the PALS transformation [8, 9].
The key idea of PALS (“physically asynchronous logically synchronous”) is that one can
model and verify the much simpler synchronous design, and PALS then provides a correct-
by-construction distributed asynchronous model.

To make the PALS modeling and verification methodology available to the modeler, we
have defined an annotated sublanguage of AADL, called Synchronous AADL, that can be
used to specify synchronous PALS designs in AADL [2]. We have defined the formal semantics
of Synchronous AADL in Real-Time Maude, and have used this semantics to develop an
OSATE plug-in, called SynchAADL2Maude, that provides simulation and temporal logic
model checking for synchronous designs modeled in Synchronous AADL within OSATE [3].
This enables a model-engineering process for important classes of distributed real-time
systems that combines the convenience of AADL modeling, the complexity reduction of
PALS, and formal verification in Real-Time Maude. We have used SynchAADL2Maude on a
virtually synchronous avionics system whose distributed asynchronous version (even in very
simple settings) has millions of reachable states and cannot be feasibly model checked, but
where the Synchronous AADL model of the corresponding synchronous PALS design could
be verified by the SynchAADL2Maude tool in less than a second.

However, a number of DRTSs are multirate systems whose components have different
periods. For example, the controller for the ailerons on an airplane may operate with
a period of 15 ms, whereas the rudder controller operates with period 20 ms. These
different components need to synchronize when turning the airplane. We have therefore
extended PALS to multirate virtually synchronous systems, and are working on extending
the SynchAADL2Maude tool to specify and verify such systems. That work could be based
on the support for modeling multirate systems in AADL that has recently been developed
by colleagues at UIUC and Rockwell Collins [1].

This presentation is based on joint work with José Meseguer, Kyungmin Bae, Lui Sha,
Abdullah Al-Nayeem, Steven P. Miller, and Darren D. Cofer.

3.18 Semantic anchoring of industrial architectural description
languages

Paul Pettersson (Mälardalen University – Västerås, SE

License Creative Commons BY-NC-ND 3.0 Unported license
© Paul Petterson

In some recent work, we have focused on defining semantics to industrial architecture
description languages, such as Procom, AADL and EAST-ADL. Semantic anchoring of such
languages has served different purposes. A main goal has been to enable analysis of the
languages in analysis tools such as simulators and model-checkers, including UPPAAL and
UPPAAL PORT. Current work is focusing on addressing dynamically reconfiguring systems
and model-based testing using ADLs.

12272

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

44 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

3.19 Integration of AADL models into the TTEthernet toolchain;
Towards a model-driven analysis of TTEthernet networks

Ramon Serna Oliver (TTTech Computertechnik – Wien, AT)

License Creative Commons BY-NC-ND 3.0 Unported license
© Ramon Serna Oliver

As networked cyber-physical embedded systems become more and more populated, models to
enable semantic analysis are a key factor to reduce complexity. We introduce Time-Triggered
Ethernet (TTEthernet) and the TTE Tool-chain and explore the advantages of a complete
system representation by means of the Architecture Analysis and Design Language (AADL).

The presentation elaborates on the use of AADL at different levels. Namely: providing a
manageable representation of a (potentially complex) network; introducing a comprehensible
interface to and within TTE-Tools; building a repository of system components, properties,
constraints, and requirements; a means to network analysis and property verification; and,
an open door to complex analysis (through existing tools, annexes, etc...).

3.20 Architecture Modeling and Analysis for Automotive Control
System Development

Shin’ichi Shiraishi (TOYOTA InfoTechnology Center USA Inc., US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Shin’ichi Shirashi

Architecture modeling languages, e.g., AADL, SysML, and MARTE are well known languages
and used among several different domains. This talk explains modeling steps based on these
languages through a real-world automotive system example. On the other hand, this talk
also explains our experience of architecture analysis from the real-time automotive system
viewpoint.

In the end, the relation and gap between the architecture model and architecture analysis
are discussed.

3.21 About architecture description languages and scheduling analysis
Frank Singhoff (University of Brest, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Frank Singhoff

The talk deals with performance verifications of architecture models. We focus on real-time
embedded systems and their verification with the real-time scheduling theory.

Many industrial projects do not perform performance analysis with this theory even if
the demand for the use of it is large. To perform verifications with the real-time scheduling
theory, the architecture designers must check that their models are compliant with the
assumptions of this theory. Unfortunately, this task is difficult since it requires that designers
have a deep understanding of the real-time scheduling theory. In this presentation, we show
how to help designers to check that an architecture model is compliant with the real-time
scheduling theory assumptions.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 45

We focus on schedulability tests. We show how to explicitly model the relationships
between an AADL architectural model and schedulability tests. From these models, we apply
a model- based engineering process to generate tools which are able to check compliance of
architecture models with schedulability tests assumptions.

3.22 Co-modeling, simulation and validation of embedded software
architectures using Polychrony

Jean-Pierre Talpin (INRIA – Rennes, FR)

License Creative Commons BY-NC-ND 3.0 Unported license
© Jean-Pierre Talpin

The design of embedded systems from multiple views and heterogeneous models is ubiquitous
in avionics as, in particular, different high-level modeling standards are adopted for specifying
the structure, hardware and software components of a system. The system-level simulation
of such composite models is necessary but difficult task, allowing to validate global design
choices as early as possible in the system design flow. This paper presents an approach to the
issue of composing, integrating and simulating heterogeneous models in a system co-design
flow. First, the functional behavior of an application is modeled with synchronous data-flow
and statechart diagrams using Simulink/Gene-Auto. The system architecture is modeled
in the AADL standard. These high-level, synchronous and asynchronous, models are then
translated into a common model, based on a polychronous model of computation, allowing
for a Globally Asynchronous Locally Synchronous (GALS) interpretation of the composed
models. This compositional translation is implemented as an automatic model transformation
within Polychrony, a toolkit for embedded systems design supporting simulation, verification,
controller synthesis, sequential and distributed code-generation. An avionic case study,
consisting of a simplified doors and slides control system, is presented to illustrate our
approach.

3.23 Compositional Analysis of Architecture models
Michael W. Whalen (University of Minnesota, US)

License Creative Commons BY-NC-ND 3.0 Unported license
© Michael W. Whalen

This presentation describes work towards a design flow and supporting tools to improve
design and verification of complex cyber-physical systems. We focus on system architecture
models composed from libraries of components and complexity-reducing design patterns
having formally verified properties. This allows new system designs to be developed rapidly
using patterns that have been shown to reduce unnecessary complexity and coupling between
components. Components and patterns are annotated with formal contracts describing their
guaranteed behaviors and the contextual assumptions that must be satisfied for their correct
operation. We describe the compositional reasoning framework that we have developed for
proving the correctness of a system design, and provide a proof of the soundness of our
compositional reasoning approach. An example based on an aircraft flight control system is
provided to illustrate the method and supporting analysis tools.

12272

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

46 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

4 Working Groups

During the seminar, the group discussed possible topics for break-out sessions, and form
different working groups. We placed two afternoon sessions dedicated to brainstorming
session on Tuesday and Thursday afternoon.

The topics were the following, on Tuesday afternoon:
Attaching semantics to a modeling framework (section 4.1)
How much expressive power is needed for architectural models (section 4.2)
Analysis of architectural systems (section 4.3)

on Thursday afternoon:
Multi-point view analysis and combination of analysis result (section 4.4)
Run-time Architectural Analysis (section 4.5)
Notion of Time: Physical vs. Real-Time vs Discrete vs Logical (section 4.6)
Patterns for (de)composing and analysing systems (section 4.7).

4.1 Attaching semantics to a modeling framework
Motivation. The group acknowledged the fact that semantics is a key enabler to perform
further analysis. Actually, most analysis require hypothesis on the behavior of the system,
the interconnection between elements to follow some particular semantics: typing system,
execution semantics, propagation of information/events.

Also, the group recognized that this area is usually not well developed in many tools:
semantics is usually part of the analysis tool itself, except for some consistency checking
performed during model analysis and transformation. Actually, the interpretation of semantics
as done by a tool is usually not explicit and remains hidden.

The group contemplated different options:
at tool-level: this creates a strong link to a particular tool, and can be perceived as a
vendor lock-in strategy.
at model-level: the model can not only store user artifacts, but also the underlying
semantics. This could enable a wider sharing and understanding of how to interpret a
model.
Furthermore, analysis tools can use this additional information. Yet this poses the
question of the mechanisms to encode this semantics.
as part of the transformation process: yet, this still creates a strong link between
the tools, mostly the editing and processing parts, e.g. Eclipse.

Open questions and discussions. From the different options raised, the key question is
“What is expected from the tool?”. There might be several expectations from the users (design
teams, project management, tool builder, . . .).

Building consistent semantics is a complex work, usually performed using operational
semantics or equivalent frameworks. Attaching semantics, even if it is a desirable effort may
create an artifact that is, in the end, too-complex to be manipulated. A corollary to the
previous question is “Is formal too formal?”.

A good compromise seems to opt for the following strategy: 1) define a DSL to define
the model, with an implicit semantics easy to understand thanks to well-chosen concepts, 2)
define separately the formal semantics, in a readable format but only for people interested
in the core details. Such strategy would enable meeting certification requirements. Also,

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 47

defining separately the semantics would enable an adaptation on a per tool basis: scheduling
and fault analysis could be defined based on two separate yet compatible description of the
semantics of the system.

4.2 Expressive Power of Architectural Models
Motivation. A well-known trade-off in modeling is that, while increasing expressive power
of a modeling language makes construction of models easier, it also makes analysis of
models more difficult. Therefore, for an architectural modeling and analysis framework, it
is important to identify the right level of expressiveness. Architectural analysis is intended
to cover large-scale systems and systems of systems. This seems to imply that expressive
power of architectural models and the level of detail in models cannot be too high. At the
same time, an architectural modeling framework should not be viewed as a single modeling
language, but rather as a collection of complementary languages that concentrate on different
aspects of the system design, so that a model of a particular aspect can be simple and does
not have to require much expressive power.
Generative techniques in architectural analysis. The key to an architecture-centric
modeling framework is its reliance of generative techniques and model transformations. At
the core of the framework, an architectural model serves as a repository of knowledge about
the system. To perform analysis of a certain aspect of the system, an analysis model is
generated from the architectural model that contains only the details needed for the selected
analysis, and the expressive power of the language for the generated model is similarly
targeted to, and limited by, the needs of the analysis. On the other hand, expressive power
of the architectural description affects complexity of generation algorithms.

Generation of analysis models is enabled by the semantic core of the architectural
framework that helps ensure that generated analysis models are consistent with each other
and provides the basis for proving correctness of the generation. The semantic core is built
on a semantic domain (e.g., sets of event sequences). Elements of the language establish
relationships between elements of the domain. The logic for expressing these relationships
can be general and expressive. We can use domain-specific languages to limit expressive
power as needed.

An important aspect of a framework such as AADL is the ability to extend models
through custom properties and annexes. Such an extension mechanism allows us to use
different formalisms for different aspects of the system. The challenge is to use the extension
mechanism is a way that keeps extensions compatible. Semantics of the extension mechanism
itself become important here. In particular, when the extension is done by means of a new
property set, a suitable semantics for properties may be by means of equations or constraints
that relate values of properties in the set to each other as well as to concepts from the
semantic core.
Architectural vs. behavioral modeling. Many architecture-level analysis techniques
are concerns with operational aspects of the system. For example, timing and schedulability
analysis relies on high-level thread execution semantics. Other analysis techniques can refine
these high-level semantics with additional details of application behavior. There is much
discussion in the community about the distinction between behavioral and architectural
modeling and analysis, and whether the addition of behavioral details to an architectural
model turns it into a behavioral model, defeating the promise of architecture-driven, system-
level analysis. If this is indeed a valid concern, a question to be addressed by the research

12272

48 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

community is to decide whether the modeling language should enforce the acceptable level of
behavioral detail.

It has been pointed out that the distinction between behavior and architecture may lie
in the kind of analysis that is applied and not in the formalism per se. For example, a
system of differential equations can be simulated, which involves computing the flows in the
system. This is a clear example of behavioral analysis. On the other hand, the same system
of equations can be used for structural analysis, which is, essentially, an architecture-level
technique.

4.3 Analysis of architectural systems
Motivation. The breakout session started with a presentation of an example by Gabor
Karsai of a multi-mission versatile constellation of satellites: the Fractionated Space System
Architecture. Each satellite carries different instruments. The combination of satellites allows
for complex missions. There are multi-scale architectural issues in this system: satellite-level,
constellation-level to dimension network, scheduling, fault management logic or energy. But
also mission-level challenges, e.g. to select the best configuration, but also the satellites most
suitable for a particular mission.

The group noted that the architecture of the system is central to the analysis. Given the
complexity of the whole constellation, one needs to perform careful and clever separation of
concerns along the various dimensions. One needs to distinguish:

Architectural level at which a property can be assessed
Property determination as part of lifecycle: permanent, instance-specific
V&V techniques: model checking, test, proof, validation, runtime monitoring, etc
Time available for V&V effort to be bounded

Open questions and discussions. From these considerations, we note there are several
issues related to the analysis strategy to be deployed:

We first note that the analysis strategy, as part of the design or the V&V qualification
effort, is costly. A first element of choice is therefore the running-time assumptions one
may attach to particular activities (e.g. model checking vs. static analysis of a pattern)
Composability of analysis across architectural layers could also reduce this effort.

A first solution would be to properly document analysis in the form of contract passed to
architecture elements. Pre-conditions are expected patterns, properties, post-conditions are
new elements deduced and propagated to the architecture. Although the group agrees on
general list of V&V techniques and objectives, we acknowledged such document is lacking to
the community.

Another issues reported by the group is a “chicken/egg” problem among analysis. Some
analysis are cross-dependent, but more important is that the output of these analysis are
of equal importance to the designer, for instance parameter configuration of the system.
Therefore, one needs to apply some particular optimization or SAT problem solving strategies
at the architectural level.

We note these two open questions pose a strong constraint on tooling support. We note
that analysis tools are usually viewed as “extensions” plug-in to the modeling environment.
Actually, we may need to view it the other way: the analysis framework is central, and
considers the actual architecture descriptions as “plug-in” from which it extracts relevant
information and support the designer activities.

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 49

4.4 Multi-point view analysis and combination of analysis result
Motivation. Analyzing a complex embedded systems involve combining a model of the
system under consideration (architecture, functional and non-functional properties) and
analysis tools. We note several issues in this domain.

First, “properties” is a fuzzy term used to define either
1. what to describe: the way the system is from a set of simple classifiers, e.g. a task

priority;
2. or what to assess: more complex elements deduced from the interacting componenents,

answering an elaborate question “is the system schedulable? safe, etc”?

Besides, properties are either defined by the designer, or output of a particular analysis.
A typical example being priorities applied to thread that can be either enforced or deduced
from other elements. If we continue in the field of scheduling, it could be Rate Monotonic
Analysis for deciding schedulability of a system based on actual priority value, or computing
a priority assignment from Deadline Monotonic Analysis, etc.

Finally, we note, from the variety of Architecture Description Languages presented (MARTE,
EAST-ADL, AADL, but also Simulink) that common properties may differ in names (WCET,
Compute_Execution_Time), semantics (fixed value, range, . . .), but also mae assumption
on units (“ticks” vs. actual time units). Finally, they can be used in different contexts, to
represent an assumption, a budget, a computed, measured or refined value depending on the
process and the maturity of the model.
Open questions and discussions. We note a strong interaction between models and
analysis. Actually, the “final” system after the whole design effort is actually an iterative
fix-point where properties and model are no longer evolving. This raises some questions on
how to combine analysis in a way that eases convergence to this fix point.

The group note this is highly related to the modeling process in place, and that some
elements of solutions already exist. For instance, EAST-ADL has been defined so that project
manager knows elements to be modeled for each steps of its design, how to relate those steps
to analysis, and how to build new properties at step N+1 from analysis performed at step
N. Such process is highly specific to the automotive domain covered by EAST-ADL that
constrains the system dimension, it is not available for generic ADL like MARTE or AADL.

Another open question is about the role of analytical model in the whole design process.
In MARTE or AADL, this analytical model is a by-product, that is not kept. Yet, some
analysis are time consuming (e.g. simulations, model checking), knowing whether they should
be redone is a critical part to help converging to the final solution. An option is to determine
when a model has evolved in a way that impact the analytical model.

The group discussed possible options to tackle this issue: one may consider an analytical
model to be: an actual result (yes/no, numerical values, etc.) and a contract set on the model,
defining invariants to be preserved so that the result is preserved, e.g. architectural patterns,
properties to be maintained over time. If one of the invariant is broken, the analytical model
should be rebuilt. Such concept, although appealing to the mind needs to be further refined
and applied to the underlying meta-modeling framework, e.g. EMF.

The group concluded that it would be a good topic for further collaborations.

4.5 Run-time Architectural Analysis
Motivation. Discussions at the working group were concerned with using architectural
knowledge in dynamic analysis that is performed during the execution of the system. The

12272

50 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

need for run-time analysis is motivated by the two observations:
On the one hand, the system is not always built according to the model. This is
inevitable, since existing generative technologies cannot produce all aspects of the system
implementation automatically. Manual implementation inevitably opens the possibility
that developers deviate from the model, either by misinterpretation or by overzealous
optimization.
On the other hand, model-based process always realized on the assumptions made during
modeling. These assumptions need to be validated at run time. A typical example of
such an assumption is failure rates built into the error model of the system [7].

Design of run-time monitors. Based on the discussion above, runtime monitoring has
two distinct functions:

Enforce guarantees that have been offered by static architectural analysis done at run
time. This includes validation of assumptions that were used to build the model, as well
as validation of model parameters.
Provide error detection and invocation of recovery operations.

Run-time analysis is based on monitoring of the system execution, which means that the
system, in addition to the components introduced into the architectural model by the system
designer, also implicitly contains components that implement the monitor. The choice of
monitoring architecture, to some extent, is determined by the architecture of the system
itself.

An important question is how to isolate the observer from the system and minimize, or at
least account for, the monitoring overhead. The two common ways of implementing monitors
are 1) build the monitor into the control path of the system or 2) run it in parallel with the
system. For the first solution, monitoring can be built into the budget for each component
during design. Concurrent observers are more powerful, as it is easier for the to maintain
a global view of the execution of multiple components. However, their overhead is harder
to quantify. Moreover, deployment of concurrent observers presents additional challenges,
since an observer has to be synchronized to stable observation points of each component it
monitors.
Open questions and discussions. In addition to the problem of monitoring of information
related to the architectural model, a reverse question can be asked. Many systems already
employ run-time observers; for example, for health management [6]. How can we use the
available architectural information to improve efficiency of monitoring and reduce overhead.
For example, system architecture can be utilized in deciding monitor placement.

The question of quantifying additional robustness is achieved in the system design through
run-time monitoring remains an important question to be answered.

4.6 Notion of Time: Physical vs. Real-Time vs Discrete vs Logical
time

Motivation. The notion of time is central not only in physics, but also in computer-centric
systems, where several dimensions are to be combined:

Semantics: discrete/dense time
Uniformity: uniform/non-uniform time
Linearity: linear/non-linear

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 51

Representation: Timed Automata, Petri Nets, Tagged Systems, clocks
Solving techniques
Requirements and time

Actually, these dimensions reflect several use cases of time concepts for 1) modeling a
system and its semantics then 2) to analyze it.

Hence, discrete time can be use to model logical time relationships between events (e.g.
Lamport clocks, synchronous systems), discrete events systems or time scales for simulation.
Dense time is relevant for physical system (ideal time for Newtonian systems) and is well
represented by Timed automata.

Representing a system using a particular class of time (or clocks) is the first aspect. The
challenging part is to define consistent solving techniques to assess time-based properties.
A timed system is possibly infinite, one needs to map them to an equivalent problem that
is finite. Several techniques have been defined: K-induction with monotonic real input,
symbolic approaches (region graphs, etc.), explicit model checking (dealing with instants);
representation of time using rational or floating-point abstractions.
Open questions and discussions. At first, the group questioned the necessity for mul-
tiple representations of time. Considering the family of embedded systems, we note that
heterogeneous time representations are required to capture the time as seen by the hardware
elements of the system, connected to the physical environment; but also logical time for pure
software system as a logical abstraction of its behavior. Hence, we need to combine safely
these representations, and “meet-in-the-middle” either in a top-down or bottom-up way.

Then, another question is how to map requirements onto this time system. Requirements
to be fulfilled by the system are usually expressed in natural language, such as “The pacemaker
shall pace the heart at least once per second”. This requires variants of temporal logic (e.g.
Timed-CTL) that are usually hard to master.

From these considerations, the group defined the following set of open questions:

Which analyses are compatible ?
How to combine different analysis techniques? In a practical way, but not in a purely
engineering way !
What is the role of architecture ? What can be reused/combined?

4.7 Patterns for (de)composing and analysing systems
Motivation. Patterns for composing and decomposing systems is an essential element
for the engineering of complex system. The group reviewed typical strategies to address
complexity in systems:

“Divide and conquer”, where a problem is separated into subproblems being resolved
separately. The global problem being solved when all subproblems have a solution;
“Separation of concerns”, where concerns (e.g. safety and security) are addressed separ-
ately, with adapted techniques.

Open questions and discussions. One interesting question answered by the group is
the relationship between well-known engineering practice and architectures. Architecture is
about defining relationships between elements.

We note there are actually many elements to consolidate through an architecture.
“Architecture of structure” focuses on the system decomposition into subsystems, their

interfaces, connections, etc. It is also concerned by extension points for later system evolution.

12272

52 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

“Architecture of relations” focuses on the comprehension of a system intrinsic nature:
functional, safety, reliability, physical, cost, etc.

Both architectures follow a similar “divide and conquer” pattern, the main distinction
being that interfaces are more natural to separate than concern. Security can be seen
as a particular view of the global system, while divide and conquer applies recursively to
(sub)systems elements in an orderly way.

Hence, the challenge is to know how a particular concern can be mapped onto the
architecture. Keeping the example of security, it is a global concept that emerges from the
combination of all system blocks. The architecture details how basic elements cooperate to
provide security.

The group made a convincing point that in initial stages of specification, the combination
of concerns/components is usually explicit, but that it tends to get lost in later stages. In
some sense, the engineering process evolves from a “correct by construction” paradigm to a
“construct by correction” one.

We concluded that system architecture but also architecture modeling framework should
guide the designer back on track to follow only a “correct by construction” path.

5 Summary and Open Challenges

The working group and the concluding session were the occasion of a lively discussion about
open problems and roadmap for our community. The diversity of speakers, themes discussed
and existing contributions showed that architecture is a central artifact in many processes,
tools and methodology.

We summarize some of the discussions we had, and open challenges outlined by the group:

Building an architecture design activities have a goal that may differ in nature: either
test an hypothesis, build a full system ready to be deployed. In between, V&V activities
must be conducted. Design patterns helped structuring software activities, but fails short
to guide architectural designs.
Hot topic the building of architecture requires higher-level patterns to know how to
combine elements. At first, combining interfaces/components, but also concerns (e.g.
safety, security, . . .). The former is well mastered by the industry, the latter is more
problematic. Yet, we note that it is the failure to combine concerns that delay most
projects, in particular in the embedded domain.
Semantics of an architecture an architecture interconnects element, and give meaning
to this assembly. Defining its semantics is usually done in an informal way (natural
language), or through the combination of small elements of semantics (timed automata,
syntactic elements, etc).
Hot topic we see the emergence of numerous “Model of Computation” (Ravenscar,
synchronous, etc), but also semantics for key aspects like time, fault propagation, . . . They
precisely describe one semantics, but separately. One needs a global view on how to
combine them to give a precise meaning to the whole architecture.
Architecture analysis as a MDE topic Architecture Description Language are bound
to model-based technology. Hence, many projects around ADL focus on model transform-
ation techniques, mapping one architecture onto numerous analysis tools.
Hot topic the preservation of semantics between the model of a system, and its ana-
lytical model (in a scheduling analysis framework, model checker, etc.) is mandatory to

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 53

demonstrate that the results is meaningful. Current technologies fail to demonstrate this
mapping in a general case.
Analysis of systems several talks and discussions focused on particular analysis tech-
niques, either to address particular properties (time, fault), or technical limitations
(combinatorial explosions). We also noted that analysis is usually performed by people
who are experts in a particular problem space (avionics, medical) but not in a given
design space (timed automata, Petri nets, . . .).
Hot topic thanks to MDE, one can map architecture to particular analysis, and take
advantage of advanced techniques. One needs to complete this mapping with “wizards”
to determine when a model is “ready” for analysis, and how to correct it to reach this
state. Another hot topic is to determine how to send back meaningful diagnosis to the
architectural designer in case an analysis fails.
Coupling architecture/analysis we notes that analysis rely on architecture artifacts,
but could also enrich architectures. This has a complex impact that must be evaluated.
As it could definitely helps building better architectures faster.
Hot topic an analysis could be defined as a contract set on an architecture. There are
several “concerns” associated to analysis techniques and tools. An important topic is to
build a cartography of these analysis, and their requirement put on architecture. Such
map would ease the definition of architecture that is “correct by construction”.

These different topics are already studied by the different participants. A consensus
emerged that all these topics must be addressed in uniform way: either vertically, following
one concern and one family of analysis; or horizontally, by combining concerns.

Solution to these different problems will address actual shortcomings in many domains:
system engineering, software engineering and model-based techniques that are required to
address the complexity of embedded systems.

6 Bibliography

1 A. Al-Nayeem, L. Sha, D. D. Cofer, and S. M. Miller. Pattern-based composition and
analysis of virtually synchronized real-time distributed systems. In Proc. Cyber-Physical
Systems (IEEE/ACM ICCPS’12), 2012.

2 K. Bae, P. C. Ölveczky, A. Al-Nayeem, and J. Meseguer. Synchronous AADL and its formal
analysis in Real-Time Maude. In Proc. ICFEM’11, volume 6991 of LNCS. Springer, 2011.

3 K. Bae, P. C. Ölveczky, J. Meseguer, and A. Al-Nayeem. The SynchAADL2Maude tool.
In Proc. FASE’12, volume 7212 of LNCS. Springer, 2012.

4 Y. Ben Maïssa, F. Kordon, S. Mouline, and Y. Thierry-Mieg. Modeling and Analyzing
Wireless Sensor Networks with VeriSensor. In Petri Net and Software Engineering (PNSE
2012), volume 851, pages 60–76, Hamburg, Germany, June 2012. CEUR.

5 J-M. Couvreur and Y. Thierry-Mieg. Hierarchical Decision Diagrams to Exploit Model
Structure. In Formal Techniques for Networked and Distributed Systems - FORTE, volume
3731 of LNCS, pages 443–457. Springer, 2005.

6 N. Mahadevan, A. Dubey, and G. Karsai. Architecting health management into software
component assemblies: Lessons learned from the arinc-653 component model. In The 15th
IEEE International Symposium on Object/component/service-oriented Real-time distrib-
uted computing, April 2012.

12272

54 12272 – Architecture-Driven Semantic Analysis of Embedded Systems

7 I. Meedeniya, I. Moser, A. Aleti, and L. Grunske. Architecture-based reliability evaluation
under uncertainty. In Proceedings of the 7th International Conference on the Quality of
Software Architectures (QoSA 2011), pages 85–94, June 2011.

8 J. Meseguer and P. C. Ölveczky. Formalization and correctness of the PALS architectural
pattern for distributed real-time systems. Theoretical Computer Science, 2012. Article in
press, http://dx.doi.org/10.1016/j.tcs.2012.05.040.

9 S. P. Miller, D. D. Cofer, L. Sha, J. Meseguer, and A. Al-Nayeem. Implementing logical
synchrony in integrated modular avionics. In Proc. DASC’09. IEEE, 2009.

10 Y. Thierry-Mieg, B. Bérard, F. Kordon, D. Lime, and O. H. Roux. Compositional Analysis
of Discrete Time Petri nets. In 1st workshop on Petri Nets Compositions (CompoNet 2011),
volume 726, pages 17–31, Newcastle, UK, June 2011. CEUR.

11 Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon. Hierarchical set decision
diagrams and regular models. In Tools and Algorithms for the Construction and Analysis
of Systems – TACAS, volume 5505 of LNCS, pages 1–15. Springer, 2009.

http://dx.doi.org/10.1016/j.tcs.2012.05.040

Peter Feiler, Jérôme Hugues, and Oleg Sokolsky 55

Participants

De-Jiu Chen
KTH – Stockholm, SE

Silvano Dal Zilio
LAAS – Toulouse, FR

Patricia Derler
University of California –
Berkeley, US

Mamoun Filali-Amine
Paul Sabatier University –
Toulouse, FR

Laurent Fournier
Rockwell Collins France, FR

Serban Gheorghe
Edgewater Computer Systems
Inc. – Ottawa, CA

Lars Grunske
TU Kaiserslautern, DE

Jérôme Hugues
ISAE – Toulouse, FR

Naoki Ishihama
JAXA – Ibaraki, JP

Gabor Karsai
Vanderbilt University, US

Alexey Khoroshilov
Russian Academy of Sciences –
Moscow, RU

Fabrice Kordon
UPMC – Paris, FR

Brian Larson
Multitude Corp., US

Bruce Lewis
US Army AMRDEC, US

Ivano Malavolta
Univ. degli Studi di L’Aquila, IT

Frédéric Mallet
INRIA Sophia Antipolis, FR

Pieter J. Mosterman
The MathWorks Inc. –
Natick, US

Viet Yen Nguyen
RWTH Aachen, DE

Thomas Noll
RWTH Aachen, DE

Peter Csaba Ölveczky
Univ. of Illinois – Urbana, US

Paul Pettersson
Mälardalen University –
Västerås, SE

Ramon Serna Oliver
TTTech Computertechnik –
Wien, AT

Shin’ichi Shiraishi
TOYOTA InfoTechnology Center
USA Inc., US

Frank Singhoff
University of Brest, FR

Oleg Sokolsky
University of Pennsylvania, US

Jean-Pierre Talpin
INRIA – Rennes, FR

Michael W. Whalen
University of Minnesota, US

12272

	Executive Summary Peter Feiler, Jérôme Hugues, and Oleg Sokolsky
	Table of Contents
	Overview of Talks
	EAST-ADL – An Architecture-centric Approach to the Design, Analysis, Verification and Validation of Complex Embedded Systems De-Jiu Chen
	Model-Checking Support for AADL Silvano Dal Zilio
	Model-Based/ Platform-Based/Architecture-Driven Design of Cyber-Physical Systems Patricia Derler
	On the mechanization of AADL subsets Mamoun Filali-Amine
	Extended Literate Programming. Introducing the (SquareCup) Language Laurent Founier
	Software Component Architecture Model Analysis and Executable Generation using Semantic Language Layering Serban Gheorghe
	Architecture Evaluation @ Run-time: Problems, Challenges and Solutions Lars Grunske
	Embedded System Architecture for Software Health Management Gabor Karsai
	Experience of Using Architecture Models in Civil Aviation Domain Alexey Khoroshilov
	Hierarchy is Good For Discrete Time: a Compositional Approach to Discrete Time Verification Fabrice Kordon
	Formal Semantics of AADL Component Behavior to Prove Conformance to Specification Brian Larson
	Software Architecture Modeling by Reuse, Composition and Customization Ivano Malvolta
	Architecture-Driven analysis with MARTE/CCSL Frédéric Mallet
	Approximating physics in the design of technical systems Pieter J. Mosterman
	Satellite Platform Case Study with SLIM and COMPASS Viet Yen Nguyen
	Correctness, Safety and Fault Tolerance in Aerospace Systems: The ESA COMPASS Project Thomas Noll
	Synchronous AADL: From Single-Rate to Multirate Peter Csaba Ölveczky
	Semantic anchoring of industrial architectural description languages Paul Petterson
	Integration of AADL models into the TTEthernet toolchain; Towards a model-driven analysis of TTEthernet networks Ramon Serna Oliver
	Architecture Modeling and Analysis for Automotive Control System Development Shin'ichi Shirashi
	About architecture description languages and scheduling analysis Frank Singhoff
	Co-modeling, simulation and validation of embedded software architectures using Polychrony Jean-Pierre Talpin
	Compositional Analysis of Architecture models Michael W. Whalen

	Working Groups
	Attaching semantics to a modeling framework
	Expressive Power of Architectural Models
	Analysis of architectural systems
	Multi-point view analysis and combination of analysis result
	Run-time Architectural Analysis
	Notion of Time: Physical vs. Real-Time vs Discrete vs Logical time
	Patterns for (de)composing and analysing systems

	Summary and Open Challenges
	Bibliography
	Participants

