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Abstract
Feature-based visualization of flow fields has proven as an effective tool for flow analysis. While
most flow visualization techniques operate on vector field data, our visualization techniques make
use of a different simulation output: Particle Tracers. Our approach solely relies on integral lines
that can be easily obtained from most simulation software. The task is the visualization of dense
integral line data. We combine existing methods for streamline visualization, i. e. illumination,
transparency, and halos, and add ambient occlusion for lines. But, this only solves one part
of the problem: because of the high density of lines, visualization has to fight with occlusion,
high frequency noise, and overlaps. As a solution we propose non-automated choices of transfer
functions on curve properties that help highlighting important flow features like vortices or tur-
bulent areas. These curve properties resemble some of the original flow properties. With the new
combination of existing line drawing methods and the addition of ambient occlusion we improve
the visualization of lines by adding better shape and depth cues. The intelligent use of transfer
functions on curve properties reduces visual clutter and helps focusing on important features
while still retaining context, as demonstrated in the examples given in this work.
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1 Introduction

Flow simulation has a long history in scientific computing. For several decades simulation
was limited to 2D because of symmetry or for computational considerations. Hence, a lot
of excellent methods for integral flow visualization have been developed, e. g. LIC (Line
Integral Convolution). Now, with the availability of more computational power, simulations
have expanded to three dimensions. This leaves the scientific visualization community with
new challenges for the visualization of flows in 3D. Existing techniques from two dimensions
cannot be easily adapted for 3D as most display devices are still 2D.
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Integral lines, i. e. streamlines and pathlines, are a common way to show the structure of
a flow. Several techniques like illuminated lines, halos, and tube-like rendering have been
developed to enhance rendering of these lines. In many cases there are too few or too many
lines showing a lot of unnecessary information instead of focusing on important flow features.

For our visualization we solely use integral lines as output from simulations without the
need of the underlying flow field. This makes it easy to use our visualization approach as a
post-processing step with any common flow simulation software that can produce integral
lines as output. There also are some tools available for visualizing integral lines. In contrast
to these existing methods we require a dense sampling of integral lines. The idea behind this
is that we are then able to provide high resolution visualization results in important regions
and adaptively dim out unwanted information.

Visualization of dense lines has two major problems: overlapping of lines and occlusion
of lines. These problems are even more severe with our requirement of dense sampling of
integral lines. There are already solutions to these two problems: (1) halos around lines
reduce overlap and provide visual separation, and (2) transparency reduces occlusion and
reveals hidden lines.

In this paper we combine illuminated lines, transparency, and halos for an improved line
visualization. To stress the spatial relationship of lines we introduce an ambient occlusion
technique that is suitable for dense line data sets. Transparency is mainly used to highlight
interesting flow features. The second contribution of our work is the definition of interactive
transfer functions on curve properties that allow to extract otherwise hidden structures, e. g.
vortices and turbulent regions. In addition, transfer functions on colors or standard color
maps can be applied for illustrative purposes or deeper insight into the flow.

In the next section we start by discussing existing related work. Section 3 motivates
the two problems that we are solving: improvement of visual quality and feature extraction.
Section 4 lays the mathematical foundation for the calculation of curve properties, e. g.
curvature and torsion. Section 5 picks up on this and explains how to use curve properties to
extract flow features. Ambient occlusion is described in Section 6. Here, we discuss ambient
occlusion in more detail, including the theoretical background, and explain the structure of
our voxel based algorithm. Section 7 details all necessary parts of the visualization: we shortly
describe lighting and transfer functions. In the results section we show some examples of
feature-based visualization of integral lines. In a separate subsection we investigate different
parameter settings of our algorithm for ambient occlusion computation. We conclude the
paper in the last section and suggest areas for future research.

2 Related Work

2.1 Lines
The basis for illuminated lines has been laid out by Zöckler et al. [30]. They introduced new
techniques for the calculation of Phong illumination for line primitives. Later, Schussman and
Ma used this approach in volume rendering [23]. Also, the techniques for basic illuminated
streamlines have been updated to current graphics hardware using shaders [11].

In many cases, line data is not rendered as line primitives on graphics cards at all.
Instead, visualization is achieved by either drawing tubes or, more often, self-orienting
surfaces [22, 10, 3]. The latter technique has been enhanced introducing bump mapping [10],
where the surfaces are rendered like tubes.

A common problem, especially when introducing transparency, is a lack of depth perception
for the entire scene. This problem has been addressed using halos [13]. Special operations on
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the graphic card depth buffer can improve depth perception through halos by making their
width depth-dependent [3]. In this paper, we discuss an implementation which has the same
properties, but uses OpenGL’s line primitives instead of self-orienting surfaces.

There are further approaches connected to our visualization that we discuss in the
following. The method of Mattausch et al. [13] provides means for additional seeding of
streamlines in regions of interest. As already mentioned, we do not make use of the vector
field and hence are able to develop methods that work on arbitrary line input. Hence, we
will not discuss the differences of other methods [6, 9, 28].

Another approach developed for pathlines is provided by Shi et al. [24]. They imple-
mented methods for querying of pathline attributes. Interactive brushing and focus+context
visualization methods provide new means for investigation of pathlines.

In a two-dimensional setting, a number of methods for enhancing streamline visualization
were discussed previously. Most common are methods for streamline clustering [1], or
intelligent seeding of streamlines (cf. [27] and [8]). Some newer approaches extend such
techniques to 3D (cf. [12]). We will not use any of these approaches in our visualization.

A further application for line visualization is rendering of white matter fibers of the
human brain (e. g. [2]). Visual grouping and distinction of homogeneous paths can again
be achieved by clustering. Otten et al. [15] used a combination of hint lines, colored halos,
silhouettes, and outlines to enhance cluster visualization for illustrative output.

2.2 Ambient Occlusion

Ambient occlusion is a well established area of research. Ray tracing techniques do not need
ambient occlusion as calculation of physically accurate lighting already includes shadows.
Ambient occlusion mimics some of this behavior for arbitrary illumination models. Most
non-real-time approaches use object space techniques, but for real time rendering Screen
Space Ambient Occlusion (SSAO) can be applied. A short overview of the results of different
approaches can be found in [14].

For rendering of hair or fur there exist no real ambient occlusion methods yet. Usually,
the problem can be solved by depth-based approaches [29, 7]: Hair under the surface, for
instance, is occluded and hence darker.

A commonly used approach to accelerate the calculation of ambient occlusion is to
voxelize the scene [18]. This approach easily boosts ray tracing for the occlusion calculation
by approximation of the scene.

2.3 Flow Features

Flow features have been extensively investigated. A good overview over existing methods
is provided by Post et al. [17]. Related to our selection of flow features is the approach by
Salzbrunn and Scheuermann [21]. The problem of vortex detection/vortex core extraction
has not been solved entirely. Good approaches to this can be found in [20] and [5].

3 Motivation

The visualization of dense integral line data has many challenges. They can be split into the
visualization problems and problems concerning the data directly, i. e. extraction of important
flow features.

VLUDS’11
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(a) Using transparency
of 40% to reduce occlu-
sion of lines: more con-
text, no shape or depth
cues.

(b) Halos have been
traditionally used to
provide depth cues. In
this paper they are
used for resolving over-
laps.

(c) Enhancing illumi-
nated lines with our
ambient occlusion tech-
nique: good shape and
depth cues.

(d) Combining illumi-
nated lines, ambient oc-
clusion intensity map-
ping, transparency of
60%, and transparent
halos into one image.

Figure 1 Comparison of the effects of different line drawing techniques.

3.1 Improvement of Visual Quality
Obvious problems in the visualization are overlapping of lines and occlusion of lines in the
back. Common approaches to solve these two problems conflict each other.

Transparency, as discussed in the related work section, is a common method to reduce
occlusion (see Figure 1a). But, at the same time it reduces separation of lines at overlaps.
On the other hand overlaps are resolved by using halos around the lines (see Figure 1b).
This provides a better separation of lines. But again, halos add to the width of the line and
occlude more lines in the back.

More important for the understanding of the visualization is the perception of shape and
depth of the lines.

Illumination reveals the shape and curvature of the lines. This has been done right from
the beginning (see [30]). But, this approach only works well for few lines as there is no solid
visual clue for spatial ordering of lines.

Spatial ordering or depth perception has been generally solved by using halos. We already
discussed one problem of using halos. Another problem is that in order to keep the spatial
cues halos cannot be reasonably combined with transparency.

Our solution to this is that we use halos only for visual separation of lines. In this case
halos are still useful when combined with transparency. Instead, we use ambient occlusion to
improve visual spatial ordering of lines (see Figure 1c). For this, we had to adapt existing
methods for the computation of ambient occlusion to work with lines and allow for partial
occlusion.

The combination of these four methods, i. e. illumination, transparency, halos, and ambient
occlusion, still does not reduce the information overload when used with dense line data (see
Figure 1d). Therefore, we extract curve features to highlight important regions and dim out
unnecessary information.

3.2 Feature Extraction
In order to provide better visualizations which focus on interesting and important regions
we use transfer functions on curve properties such as length, curvature, and torsion. As we
require that we do not need access to the whole simulation data but just the generated lines
we use numerical methods to approximate these properties. We show with our results that
this is sufficient to highlight regions of interest.
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4 Curve Properties

In the following we discuss the computation of curve properties. For the scope of this paper
we concentrate on integral lines computed from flow simulation. But, in general we could
use arbitrary line data that represents a polyline by a sequence of points.

All the computed curve properties are scalar properties that can be easily mapped to
color or transparency by using transfer functions. Beside computing the properties locally
for each point of the polyline we additionally compute some global properties by computing
minima, maxima, and the average.

Throughout the remainder of this section we use the following conventions for variables
of a single curve or polyline:

vi, i = 1, . . . , n are n vertices describing the curve as a polyline
si, i = 1, . . . , n− 1 are the segments of the line enclosed by vi and vi+1.

Local curve characteristics at a given vertex i are given the same index. Contrarily, variables
without an index are always global curve parameters.

The segment length di is computed by the distance of neighboring vertices

di = ‖vi+1 − vi‖. (1)

Assuming a reasonable sampling of the curve we get its length l by summation

l =
∑

i

di. (2)

In addition to this we also compute the minimum segment length dmin, the maximum
segment length dmax, and the average segment length of a curve davg.

4.1 Derivative-based Curve Features
4.1.1 Curvature
For the input we only required that is has to fulfill C0 continuity. Hence, we approximate
derivatives through finite differences. The first derivative is the tangent ti computed by a
central difference scheme (cf. [25]). Accordingly, the second derivative ci is computed by a
first order scheme using the tangents ti. This yields the curvature κi:

κi = ‖ti × ci‖
‖ti‖3

. (3)

4.1.2 Torsion
For approximation of the torsion τi we need the third derivative wi along the curve. This
derivative again is obtained by a first order finite difference of the second derivatives ci.
Finally, the formula for the torsion τi reads:

τi = ‖(ti × ci) · wi‖
‖ti × ci‖2

. (4)

4.2 Depth
The depth of a point is computed as the distance to the camera plane. In contrast to the
previous parameters this one is dynamic and has to be updated each time the camera moves.
The depth parameter can be used in visualization to clip unnecessary lines that occlude flow
features on the inside of the flow volume.

VLUDS’11
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4.3 Ambient Occlusion
Ambient occlusion is also computed for each vertex of the polyline. Details concerning the
methodology and implementation of this technique can be found in Section 6. Ambient
occlusion is mostly used to enhance the illumination model to include soft shadows where the
intensity of ambient lighting is reduced. Furthermore, with the right choice of parameters
ambient occlusion can also encode the density of a flow field. In visualization this can be
used for peeling.

5 Curve-based Flow Features

The previous section described how to compute curve properties. In this section we elaborate
on the use of these properties to find and extract flow features.

Most visualizations of integral lines have access to the underlying flow field and can exactly
determine properties like curvature and torsion. This is especially helpful for extraction of
e. g. vortex core lines. Instead, our requirements stated that we do not rely on the underlying
flow structures, but we only rely on the line data as input. Hence, we have to find an
adequate mapping of flow field features to curve features. Appropriate filtering of the curve
data will then provide us with a feature-based visualization.

5.1 Vortex Core Lines
There have been attempts to formalize the description of vortex core lines [16, 19]. Still,
there is no agreement in the community on this. Instead, we use the intuition of Jiang et al.
[4]: A vortex is characterized by a central core and swirling streamlines surrounding it.

We do not have the information about neighboring lines. But, what we can conclude
from this is that the vortex core line has to have a high torsion because of continuity in the
flow field and the swirling streamlines surrounding it. Still, it is not possible to extract every
vortex core line since for a straight line the torsion computed according to equation 4 is
always zero.

Nevertheless, we were able to reliably identify lines in the neighborhood of a vortex core.
Our assumption for this is that these lines have high torsion and low curvature at the same
time. This assumption works in a lot of cases, but does not guarantee to find all vortices.

5.2 Turbulence
As for vortex core lines it is hard to describe turbulences by a formal definition based on
curve properties. Instead, we will again use intuition.

In a turbulent region of a flow streamlines have high rotational components. This is
mapped to a high curvature in these regions. In addition, turbulences are small scale feature
and particles have a low velocity magnitude. Hence, our adaptive streamline integration used
for generation of the test data results in shorter streamlines than in other areas. Combining
these two properties, high curvature and short total length, helps finding turbulences in the
flow.

6 Ambient Occlusion

The main idea behind using ambient occlusion for line visualization is to add further spatial
information through additional shading. Especially for dense line data sets these additional
spatial cues will significantly enhance depth perception of the scene.
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Figure 2 Tracing rays on
the hemisphere of a surface for
visibility calculations.

(a) (b)

Figure 3 Voxelization for ambient occlusion. (a) Two
subdivision steps in 2D for one half-circle resulting in eight
bins. Blue: before subdivision, green: first subdivision, red:
second subdivision. (b) Putting voxels into bins. Voxels
exactly on the boundary are sorted into both adjoint bins.

6.1 Challenges
Compared to existing applications of ambient occlusion the computation of ambient occlusion
for lines introduces new challenges: one-dimensional geometry, no geometry normals, SSAO
is not suitable, high geometric complexity, and unclear contribution to occlusion. In the
following we discuss these challenges and why they pose a problem in further detail.

The common approach to compute ambient occlusion for a specific point in the scene is
to use ray casting. On any hardware we can only trace a finite number of rays. Since lines
have a one-dimensional geometry for most lines the computer cannot detect a collision of the
ray and a line. We will see that this problem is solved by seamlessly partitioning a sphere
around a point into so-called ray bins. Because of this seamless partition each line that has
an influence on the ambient occlusion will be put into a least one ray bin.

As we describe in the background section the original idea behind ambient occlusion
assumes a surface normal for the computation. Only objects on a hemisphere in the direction
of the normal can have an influence on occlusion. However, one-dimensional objects do
not have a surface normal. From this we derive that the ambient occlusion of the line is
dependent on the viewing direction and this has to be solved.

Screen Space Ambient Occlusion (SSAO) is commonly used to accelerate the computation
of ambient occlusion. As the name already tells this approach works in screen space. For
many usage scenarios SSAO is a good approximation for ambient occlusion. But, our dense
line data results in high depth-frequencies in the projected 2D image. This is why SSAO as
an approximation will yield a completely different result than a more accurate calculation of
ambient occlusion.

High geometric complexity is another problem. Since this paper is specifically about the
visualization of dense line data there are a lot of objects to be visualized. Hence, tracing rays
in such a scene has high computational costs. We use a common approach of voxelization
of the scene to speed up computation. However, this raises the question how much a line
contributes to occlusion and how to handle transparency.

The contribution of a line to occlusion is unclear due to its one-dimensionality. Intuitively
a thin line inside a voxel should not set the voxel’s occlusion value to one. Our approach
attacks this problem and suggests a solution that we show works well with our visualization.

6.2 General Background
The general idea of ambient occlusion is to map the visibility of an object to soft shadows.
Together with common shading and lighting formulas such as the Phong illumination model
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this provides a more realistic and intuitive visualization.
For the computation of ambient occlusion for a certain point on a surface we trace rays

in every direction of the hemisphere pointing away from the surface (see Figure 2). Then the
occlusion is obtained by integrating the visibility for each ray. The general equation for this
reads:

AO = 1
π

∫
Ω
Vω(n · ω)dω (5)

where Ω is the hemisphere, ω is the direction of the ray, and Vω(·) the binary visibility
function for this ray.

Actual implementations usually perform an approximation of the integral described in
equation (5). A very common approach is using Monte Carlo Integration as a numerical
method (e. g. see [18]). Another simplification is sampling the geometry on a voxel grid.
This still yields good results for small voxels, but usually is faster.

6.3 Ambient Occlusion for Lines
The previous paragraph described how ambient occlusion is implemented for general geometry.
As we mentioned before this can only be a basis for occlusion computations with lines. For
our adaption of ambient occlusion we use a voxel based method. Instead of tracing rays, we
sample hemispheres in voxel space. In the following we explain the details of our approach.

First, we give an overview over all steps needed for the computation of ambient occlusion
implemented by our method:
1. Rasterize lines into voxels and count the number of lines per voxel
2. Create a subdivision of a hemisphere into ray bins for each axis
3. Create a voxel stencil for each hemisphere
4. Sort voxels of each ray bin according to the distance to the center of the hemisphere
5. Compute occlusion for each voxel
6. Store the occlusion values for each vertex of a curve

6.3.1 Rasterization
As we mentioned before we use a voxel based approach for the computation of ambient
occlusion. In general we use a 128× 128× 128 voxel grid on a unit cube – a justification for
this can be found in the evaluation section. The line data is then scaled to fit the volume.
As most simulations are run on boxes that are not cubes in most case we have a lot of empty
space.

In this first step we take the segments of our lines and rasterize them using the 3D
Bresenham line algorithm. For each traversed voxel a counter is incremented. After that
the line count per voxel is scaled down to the range [0, 1]. This results in a discretized
three-dimensional line density map. It is important that the values are normalized because
in a later step we use them for our own adaption of occlusion blending.

6.3.2 Subdivision
As we already discussed it is problematic to find collisions of rays and lines. To compute the
occlusion of a voxel, we have to traverse a spherical neighborhood. We therefore partition a
sphere around the voxel into so-called ray bins. As we will see later it does not make sense to
compute the overall occlusion of a point. We rather compute the occlusion for hemispheres
pointing in six different directions – one along each axis and its opposite direction. Later, for
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visualization three of these occlusion values are blend together depending on the viewing
direction.

In order to generate the ray bins we use a subdivision scheme to approximate the spherical
hull by a set of tetrahedra. We start off with a pyramid divided into four tetrahedra as a
rough approximation of a hemisphere. The general concept is shown in Figure 3(a) for half a
circle in 2D. Each tetrahedron (or triangle in 2D) is recursively split into four new tetrahedra
(two triangles). For most visualizations two of these subdivision steps already proved to be
sufficient.

6.3.3 Stencil
Each of the previously generated tetrahedra corresponds to a ray bin. In this next step we
create a stencil that can be applied to any voxel to find voxels belonging to its ray bins.
So, we take the relative offset of voxels to the current voxel and put them into the ray bins
according to their relative position (see Figure 3(b)).

It is only feasible to use such a stencil if its size is significantly smaller than that of
the entire voxel grid. The physical explanation for this is that the influence of occlusion is
attenuated over distance. In our implementation we use the formula

w(d, r) =
{(

1− d
r

)4 ( 4d
r + 1

)
0 ≤ d ≤ r

0 d > r
(6)

which has been successfully used in ambient occlusion [18]. The attenuation function w(d, r)
reaches zero at a previously defined maximum distance r. An evaluation of different radii r
can be found in Section 8.1. Generally, voxels outside of this radius have a weight of zero
and hence do not have to be included into the stencil.

6.3.4 Sorting
In this step all voxels of a ray bin are sorted into a single list with increasing distance from
the center of the hemisphere. This sorting is needed for efficient blending of occlusion values.
This step still operates on the stencil, thus the sorting has to be done only once.

6.3.5 Occlusion Computation
The previous steps, i. e. sphere subdivision, stencil generation, and voxel sorting for a
hemisphere, is a one-time process and independent from concrete properties of a data set.
Thus, this information can be stored to disc and loaded on demand for ambient occlusion
computation. Nevertheless, setup time in the tables 3 and 2 show that this is not necessary.

Now, the setup for the actual occlusion computation is finished. In the actual occlusion
computation pre-computed stencil information is applied to a given data set. At first, the
occlusion calculation is done for each ray bin separately. Voxels are successively taken from
the sorted list of the stencil. Their occlusion values are blended together from front to back
just like alpha blending is used to emulate transparency. Additionally, the occlusion values
are weighted according to equation 6.

For the final occlusion value of a voxel in one of the six directions we use the average of
the occlusion values of all the ray bins of the corresponding hemisphere. To speed up the
computation ray bins are first combined into octants of the sphere. Then, four octants are
combined into the actual hemisphere to contain the occlusion value.
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Finally, for faster access we store the six occlusion values for each vertex of a curve. For
this, we just have to find the corresponding voxel for a vertex and transfer its occlusion
values.

Our actual implementation of this method computes the occlusion for a voxel at most
once and only if there is a least one vertex inside the voxel. Furthermore, each voxel has
a list of all vertices that are located inside the voxel. Then, we get an additional speed up
because we can just transfer the occlusion values from the voxel to all corresponding vertices.

7 Visualization

The main purpose of this paper is to find a method which provides a feasible visualization
option for dealing with dense line data. The obvious solution to use transparency which
allows us to show previously hidden lines. With the help of transfer functions based on
curve features we can even extract flow features. However, as we discussed in the motivation,
Section 3, transparency introduces new problems. Hence, we combine existing methods like
illuminated lines and halos and add ambient occlusion for lines to address these problems.

In the following we discuss the basics that are needed for expedient rendering of integral
lines. Since the common method to emulate transparency on the GPU is alpha blending we
need depth sorting of the line segment. This computation is quite slow for the high number
of lines we are using. And a pre-computation for every possible viewing direction is not
feasible.

Instead, line segments are pre-sorted along the coordinate axes. During visualization the
sorting that corresponds most to the current viewing direction is used. According to [30] this
induces an error for at most 1% of the rendered pixels. Looking at our pictures rendering
artifacts are very rare.

Many existing methods use a tube-like geometry for rending streamlines (for example
see [10]). In our implementation we use OpenGL’s line primitive to draw the line segments.
The line width is usually given in screen space and does not scale with depth by itself. Thus,
for some renderings we use the depth information to adjust the line width per segment. This
approach allows for a more natural depth perception while reducing the amount of vertex
information compared to rendering a more complex geometry like tubes.

Halos are most commonly used to help the viewer with depth perception. However, we
figured out that combining halos with transparency destroys this perception. Nevertheless,
halos are useful to visually separate lines from each other. Our implementation draws the
original lines first and in a second run draws halos as a thicker line using the background’s
color. Using the depth buffer of the graphics card the halo line is only drawn along the sides
of the actual line segment. The halo width is set as ratio to the original line’s thickness. This
combines well with the depth dependent scaling of the line width if needed.

7.1 Lighting
Since the first rendering of 3D streamlines [30] the Phong illumination model has been used
to support perception of the line’s shape. In order for the Phong illumination to work we
need a surface normal that is not available for a one-dimensional geometry like a line. Hence,
the normal is calculated such that it is in one plane with the tangent ti at the position of
the vertex vi and the light vector Li. The corresponding formula reads:

ni = (Li × ti)× ti
‖(Li × ti)× ti‖

. (7)
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(a) (b) (c)

(d) (e) (f)

Figure 4 Flow around a cylinder. Left: no halos. Middle: transparent halos. Right: opaque
halos. Top row: no ambient occlusion. Bottom row: ambient occlusion mapped to intensity.

(a) (b)

Figure 5 Flow around an ellipsoid. (a) Focusing
on a region of interest by cutting off lines in front.
(b) Selecting lines with higher curvature through
transparency. Coloring shows the magnitude of
curvature per segment.

Figure 6 Extraction of vortex cores for
the delta wing data set [26]. Transparency
selects regions with high torsion and low cur-
vature. Red streamlines on the center of the
vortex have a high torsion, green streamlines
have a low torsion and are only provided for
context.

With this information we compute the illumination of each line segment.
Ambient occlusion is mostly implemented to assist with illumination. It feels natural to

the human eye that objects that are partially occluded have soft shadows which means that
they are darker. So, the occlusion value is used to reduce the intensity of a line segment, i. e.
the influence of ambient lighting is reduced for hidden lines. The result feels more natural
and enhances depth perception.

7.2 Transfer Functions and Color Maps
Transfer functions, both on transparency and color, are heavily used in our visualizations.
Simply applying the same transparency to all lines reveals more lines, but does not reduce
visual clutter. Hence, we are using transfer functions on line properties like e. g. curvature
and torsion to focus on important flow features. There is no automated process for this. But
instead, there are some general rules as described in Section 5 which combined with basic
expert knowledge yield good results.

For illustrative purposes or deeper insight into the data transfer functions can also be
applied for colors. Coloring is often used for visualization of streamlines. It shows how flow
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Figure 7 Extraction of turbulences in the jet stream data set. Streamlines are selected by high
curvature and short total length. The right image shows the inverse selection.

properties change inside the simulation domain. With the dense line data that we have it is
only useful in combination with transparency highlighting important regions.

8 Results

In a first part, we shortly discuss results using ambient occlusion for line rendering. Then, we
focus in depth on the use of transfer functions on transparency to highlight important flow
features. In a separate subsection we evaluate different parameter settings for the calculation
of ambient occlusion.

Figure 4 shows differences for halos and ambient occlusion used for highlighting spatial
relationships and separation of lines. Within the dense data set it is not possible for the
viewer to clearly separate lines by just using illuminated lines (see Figure 4a). Ambient
occlusion clearly improves depth perception in all cases. But without halos it only weakly
separates lines in the foreground from those in the background (see Figure 4d). Opaque halos
clearly give a nice illustrative visualization (Figure 4f) that can be further improved with
ambient occlusion (Figure 4c). Still the insight gained from this visualization is questionable.
In general we conclude that we can use intensity mapping based on ambient occlusion for
improved depth perception, and transparent halos for separation of lines.

In the following, we show examples of how transfer functions on curve properties can
be used to extract or highlight important flow features. We start with a generally known
example.

Figure 5a shows the flow around an ellipsoid by cutting off lines in front of the region
of interest. The problem here is that in order to get close to the interesting flow features
we also cut off streamlines with important flow features. This focusing technique can be
improved by using different curve properties. In Figure 5b we use transparency transfer
functions on curvature that only select streamline segments that have a high curvature. This
removes all straight lines that occluded the view before.
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Another well known example for streamline visualization is the delta wing data set. Here,
we extract streamlines near the vortex cores according to our description in Section 5.1. In
Figure 6 we see that the extraction works well showing streamlines near the center of vortices
in red. Streamlines with lower torsion are colored in green. Rendering them with higher
transparency gives some context for the overall data set.

In a last example, we show the extraction of turbulent regions in a jet stream data set.
As for the vortex core lines we apply the description from Section 5.2. This means that we
can find turbulent streamlines by looking for high curvature and a short total length of the
streamline.

8.1 Evaluation of Ambient Occlusion Computations
In this section we evaluate the choice of different parameters for ambient occlusion. There
are three parameters that can be adjusted: the number of voxels, the maximum distance of
the sphere around a voxel, and the number of subdivision steps used as approximation of
the sphere. The last parameter directly influences the number of ray bins – two subdivision
steps already yield 64 ray bins per hemisphere.

Although the computation of the ambient occlusion is done as a pre-processing step prior
to the visualization the right choice of parameters is a trade-off between computation time –
which is O(n3) – and visual quality. The latter one in many cases is specific to ones visual
preferences.

In a first experiment we adjusted the number of voxels used for rasterization. At the
same time we linearly scaled the maximum radius of the sphere, given as number of voxels,
such that the same lines have an impact on occlusion. This is the only way to make a visual
comparison of the results. Our benchmark machine is a notebook with an Intel Pentium
T2330 Dual Core CPU running at 1.6GHz. Our algorithm is completely parallelized for
the actual calculation of the ambient occlusion and entirely uses up the two cores. Table 1
shows the runtimes for different parameters averaged over five runs and Figure 8 shows the
corresponding visualization for comparison.

For a second test we varied just the maximum distance. Low values are especially
interesting when using ambient occlusion as some measurement for density. Then, the
influence on lines to occlusion is restricted to the immediate neighborhood. In visualization
the interpretation as density can be used for some sort of peeling. From the results in Table 3
we can derive that the maximum distance already has a high impact on runtimes.

Finally, we tested the influence of subdivision steps of the hemisphere. From the runtime
results in Table 2 we see that number of subdivisions has only a minor impact on the overall
runtime. The reason for this is that we have the same amount of voxels that have an influence
on occlusion regardless of the subdivision. There is only a slight overhead for descending to
the next subdivision and additional recursive function calls.

(a) 8 × 2 × 2 (b) 16 × 4 × 2 (c) 32 × 8 × 2 (d) 64 × 16 × 2 (e) 128 × 32 × 2

Figure 8 Grayscale maps of occlusion values. The number of voxels used for AO computation
increases from left to right (compare Table 1). Low resolutions show voxelization artifacts, but 128
voxels already provides smooth results.
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(a) 128 × 20 × 0 (b) 128 × 20 × 1 (c) 128 × 20 × 2 (d) 128 × 20 × 3

Figure 9 Grayscale maps of occlusion values for increasing subdivision steps. There are only
minor differences for one and two subdivision steps, but no visible changes for two and three
subdivision steps.

The images in Figure 9 show that no or only one subdivision step do not give satisfactory
visual results. For a lot of data sets two subdivisions are sufficient and only for very dense
data sets there is a visible difference compared to three subdivision steps. From these three
tests we derived that the parameter setting of 128 × 20 × 2 is a good trade-off between
computation times and visual quality for most cases. Our images including a mapping
of ambient occlusion to intensity enhancing the lighting model were generated with these
settings.

9 Conclusions and Future Work

In the future there is clearly a need for good visualizations of flow simulations. Integral lines
build a good basis for this. In contrast to previous methods we do not rely on the underlying
flow field. Instead, we solely use integral lines that can be generated as output by most
simulation software. Another difference is that we require a dense sampling of integral lines:
without the flow field it is impossible to add information in the visualization step if you have
too few lines. On the other hand, if there are too many lines, we provide a solution based on
transfer functions to reduce visual clutter and highlight important flow features. To sum
it up, this paper has two major contributions. Our results show that our approaches yield
insightful pictures.

First, our approach improves rendering of lines, especially for dense line data. For
the rendering part we have two major contributions. For one, transparency can be used
while maintaining separation of lines and their spatial relationships. Transparency is really
helpful for focusing on important flow features. Then, we contribute to ambient occlusion
computation by extending existing methods to include AO for lines. With the combination
of this and existing techniques – sometimes combining only some of them – we can provide
better visualizations than before.

Second, we provide a new method to find important flow features. For this, we do not

Table 1 Runtimes for different voxel
grid resolution. The increasing maximum
distance has a high impact on increasing
computation times.

nvoxels × maxdist × nsubdiv runtime
8 × 2 × 2 0.14 s
16 × 4 × 2 0.16 s
32 × 8 × 2 0.88 s
64 × 16 × 2 27.93 s
128 × 32 × 2 1313.24 s

Table 2 Runtimes for different numbers of subdivi-
sions of the hemisphere.

nvoxels × maxdist × nsubdiv runtime setup time
128 × 20 × 0 374.27 s 0.88 s
128 × 20 × 1 420.63 s 0.89 s
128 × 20 × 2 490.62 s 0.90 s
128 × 20 × 3 530.42 s 0.88 s
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Table 3 Runtimes for increasing maximum distance. Additionally, we include the setup time for
the stencil and rasterization, i. e. steps 1-4 of our method. The setup is only single threaded and the
setup times are already included in the overall runtimes.

nvoxels × maxdist × nsubdiv runtime setup time
128 × 1 × 2 1.47 s 0.66 s
128 × 2 × 2 2.55 s 0.66 s
128 × 4 × 2 8.76 s 0.66 s
128 × 8 × 2 46.22 s 0.68 s
128 × 16 × 2 282.06 s 0.78 s
128 × 32 × 2 1314.10 s 1.72 s

rely on the underlying flow field information. This makes it easier to integrate with existing
simulation software. Instead, we use only integral lines for visualization. In order to have all
the information that is needed we require a dense sampling of integral lines. For the flow
expert we provide the steps that are necessary to find vortices and turbulent regions.

Still, there is a lot of improvement for future research. For one, ambient occlusion can
be used with a small surrounding sphere to compute the local density. These regions might
incorporate interesting flow features as well. For example, regions with a high density can
point to sources, sinks, or separation lines.

Furthermore, in this paper we just used properties on single curves. Combining curve
properties with neighboring integral lines can give even more insight into the data. Especially,
the definition of vortices is easier if the neighborhood is included. Then, it might also
be possible to detect vortex cores that are straight lines and hence do not have a torsion
according to our calculation from Section 4.
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