
Report from Dagstuhl Seminar 12282

Database Workload Management
Edited by
Shivnath Babu1, Goetz Graefe2, and Harumi A. Kuno3

1 Duke University, USA shivnath@cs.duke.edu
2 HP Labs, USA goetz.graefe@hp.com
3 HP Labs, USA harumi.kuno@hp.com

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 12282 “Database
Workload Management”. Dagstuhl Seminar 12282 was designed to provide a venue where resear-
chers can engage in dialogue with industrial participants for an in-depth exploration of challenging
industrial workloads, where industrial participants can challenge researchers to apply the lessons-
learned from their large-scale experiments to multiple real systems, and that would facilitate the
release of real workloads that can be used to drive future research, and concrete measures to
evaluate and compare workload management techniques in the context of these workloads.

Seminar 09.–13. July, 2012 – www.dagstuhl.de/12282
1998 ACM Subject Classification H.2 Database Management, H.2.4 Systems, H.2.7 Database

Administration
Keywords and phrases database workload management, robust query processing, cloud compu-

ting, query execution, hadoop, application availability, performance modeling
Digital Object Identifier 10.4230/DagRep.2.7.73

1 Executive Summary

Shivnath Babu
Goetz Graefe
Harumi A. Kuno

License Creative Commons BY-NC-ND 3.0 Unported license
© Shivnath Babu, Goetz Graefe, and Harumi A. Kuno

Introduction
Much database research focuses on improving the performance of individual queries. Workload
management focuses on a larger question – how to optimize the performance of the entire
workload, as a whole. Workload management is one of the most expensive components of
system administration. Gartner listed workload management as the first of two key challenges
to emerge from the data warehouse market in 2009. However, we believe that even while
both researchers and industry are building and experimenting with increasingly large-scale
workloads, there is a disconnect between the OLTP/OLAP/Mixed/Hadoop/Map-Reduce
workloads used in experimental research and the complex workloads that practitioners
actually manage on large-scale data management systems.

One goal of this seminar was to bridge this gap between research and practice. Dagstuhl
Seminar 12282 provided a venue where researchers can engage in dialogue with industrial
participants for an in-depth exploration of challenging industrial workloads, where industrial
participants can challenge researchers to apply the lessons-learned from their large-scale

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

Database Workload Management, Dagstuhl Reports, Vol. 2, Issue 7, pp. 73–91
Editors: Shivnath Babu, Goetz Graefe, and Harumi Anne Kuno

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12282
http://dx.doi.org/10.4230/DagRep.2.7.73
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

74 12282 – Database Workload Management

experiments to multiple real systems, and that would facilitate the release of real workloads
that can be used to drive future research, and concrete measures to evaluate and compare
workload management techniques in the context of these workloads.

With regard to seminar participants, we took a system-centric focus, and invited partici-
pants who could speak to the management of workloads in a variety of systems. Seminar
participants came from a variety of academic and commercial institutions: Cloudera, EMC/-
Greenplum, LinkedIn, Microsoft, MIT, National University of Singapore, NEC, Queen’s
University, Stony Brook University, Teradatata, Tokutek, TU Berlin, TU Berlin, TU Ilmenau,
TU München, UC Berkeley, Universität des Saarlandes, Universität Hamburg, University of
Waterloo, and Yahoo.

Shivnath Babu, Goetz Graefe, and Harumi A. Kuno 75

2 Table of Contents

Executive Summary
Shivnath Babu, Goetz Graefe, and Harumi A. Kuno 73

Overview of the week . 76

Monday: Individual presentations . 76

Monday morning: commercial workload managmeent 76

Monday afternoon: benchmarks and workloads . 77

Summarizing Challenges and Open Questions from Commercial Systems . 78

Workload Characterization/ Performance Modeling 78

Workload Isolation . 79

Scheduling Workloads for Concurrency . 81

Tuesday: individual presentations . 82

Tuesday morning: performance modeling/prediction, algorithms 82

Tuesday afternoon: mixed workloads and robust query processing 82

Working Groups (Wednesday, Thursday, Friday) 83

Towards a Benchmark for Workload Management 83

Scheduling Workloads for Concurrency . 85

Provably Good Scheduling for Database Workload Management 85

Workload Characterization/ Performance Modeling 86

Eliminating memory knobs . 87

Cache-Adaptive Algorithms for Databases . 88

Dataflow programming atop Cilk . 89

Post-seminar outcomes . 89

Participants . 91

12282

76 12282 – Database Workload Management

3 Overview of the week

The week was structured around producing the following artifacts:

1. Descriptions of the most significant database workload management challenges facing
industry, each defined in terms of a rough specification of a target workload and its
objectives.

2. For some number of these challenges, a sample workload that would demonstrate the
challenge, and that would allow solutions to the challenge to be validated and compared.

3. Descriptions of the "best" workload management techniques and best practices (both
proven and unproven) that might apply to these challenges (both in practice and in
research), as well as a partially-annotated bibliography that lists the papers that discuss
those techniques and that summarizes their potential benefits and limitations.

4. Identify new synergies and opportunities for new techniques and new applications of
existing techniques.

On Monday, industry participants spoke about the top workload management challenges
commercial systems face, and other participants reviewed ongoing work on benchmarks that
expose those challenges. Tuesday featured a series of presentations surveying the current
state of the art in terms of research. On Wednesday, participants formed break out groups
and considered the commercial challenges and how best to cast them as challenges that
researchers could address. The break-out groups reformed on Thursday, and sketched paper
abstracts of research papers. On Friday morning, these abstracts were presented.

4 Monday: Individual presentations

On Monday, we focused on commercial workload management systems, their open challenges,
and ongoing work on benchmarks that expose those challenges.

4.1 Monday morning: commercial workload managmeent
Teradata has the possibly most well-established and sophisticated workload management
system of any commercial database system, as evidenced by a recent keynote that credits
Teradata’s workload management as a key component of eBay’s success. It was thus
fitting that Douglas Brown from Teradata kicked off the first day with a presentation about
Teradata’s workload management capabilities.

Rao Kakarlamudi from HP presented an overview of HP Seaquest’s workload management
system. The HP Workload Management Services (WMS) provides the infrastructure to help
you manage query workloads and system resources in the mixed workload environment of
a SeaQuest Data Warehousing Platform for Business Intelligence. In the mixed workload
environment of an enterprise data warehouse, like the SeaQuest platform, a variety of query
workloads must run smoothly without interruptions to their throughput and performance.
As a database administrator, you need to be able to control when different types of queries
enter the system and how they proceed to execute, and you need to ensure that system
resources remain available for query execution. You do not want a rogue query to monopolize
system resources and slow down or prevent other queries from running in the system. Using
WMS, you can influence when queries run and how many system resources they are allowed

Shivnath Babu, Goetz Graefe, and Harumi A. Kuno 77

to consume by assigning groups of queries (that is, query workloads) to WMS services. You
can create your own services in WMS and configure them to have a relative priority and a
set of thresholds for the execution environment. That way, you can maintain different query
workloads and ensure that enough system resources are available to higher priority workloads
while minimizing contention with lower priority workloads.

Sivaramakrishnan Narayanan from EMC Greenplum spoke about workload management
at EMC Greenplum.

Russell Sears talked about his work at Yahoo: This talk summarizes Yahoo!’s current and
next-generation data serving infrastructure. We provide an overview of three systems, Mobius,
Walnut and bLSM, which promise to enable new classes of applications and to significantly
improve the performance of Yahoo!’s existing workloads. However, fully leveraging these
systems will require solutions to new workload management problems. We present the
problems, and suggest new approaches to workload management. Mobius allows the workload
manager to impact user-visible application semantics as well as performance SLAs. Walnut
is designed to leverage extreme mismatches in system scale to provision services on spare
capacity. Finally, unlike many data management systems, bLSM is designed to run in
carefully provisioned environments, allowing its latency and throughput to be predicted
directly from hardware parameters. We conclude the talk with a discussion of recent hardware
trends.

Robert Chansler from LinkedIn spoke about LinkedIn Workflows In Large Hadoop Clusters.
A workflow might be a coordinated collection of 20 job where each job might have a 1000
tasks (maps or reduces). A large Hadoop cluster will see thousands of jobs each day. For
a carefully configured job, the number of tasks will be proportional to the input size (1
task 500 MB). Today the management of work load is limited to simple assignment of
tasks to a small number of queues. Some conventional management tools are problematic for
Hadoop—throttling and preemption have never been satisfactorily implemented

Archana Ganapathi, from Splunk, spoke about her experiences with managing Big Data
Workloads in Splunk.

Jingren Zhou spoke about Microsoft’s Bing infrastructure and workloads.

4.2 Monday afternoon: benchmarks and workloads
In the afternoon, we heard about benchmarks and workloads. Kai-Uwe Sattler from TU
Ilmenau spoke about the Tractor Pulling for DBMS Benchmarking, which began as a
collaboration into benchmarking robust query processing at the 2010 Dagstuhl Seminar 12282
on Robust Query Processing and presented at DBTest 2011.

Michael Seibold from TU München spoke of the Mixed Workload CH-benCHmark from
the Technical University of Munich. While standardized and widely used benchmarks address
either operational or real-time Business Intelligence (BI) workloads, the lack of a hybrid
benchmark led us to the definition of a new, complex, mixed workload benchmark, called
mixed workload CH-benCHmark. This benchmark bridges the gap between the established
single-workload suites of TPC-C for OLTP and TPC-H for OLAP, and executes a complex
mixed workload: a transactional workload based on the order entry processing of TPC-C
and a corresponding TPC-H-equivalent OLAP query suite run in parallel on the same
tables in a single database system. As it is derived from these two most widely used TPC
benchmarks, the CH-benCHmark produces results highly relevant to both hybrid and classic
single-workload systems. Like the "Tractor Pulling" benchmark, this work was initiated at

12282

78 12282 – Database Workload Management

the 20101 Dagstuhl Seminar 12282 on Robust Query Processing and presented at DBTest
2011.

Finally, Yanpei Chen from UC Berkeley (he has since joined Cloudera) gave two presenta-
tions about on Hadoop/MapReduce workloads.

Interactive Analytical Processing in Big Data Systems: A Cross Industry Study of MapRe-
duce Workloads. Within the past few years, organizations in diverse industries have adopted
MapReduce-based systems for large-scale data processing. Along with these new users,
important new workloads have emerged which feature many small, short, and increasingly
interactive jobs in addition to the large, long-running batch jobs for which MapReduce was
originally designed. As interactive, large-scale query processing is a strength of the RDBMS
community, it is important that lessons from that field be carried over and applied where
possible in this new domain. However, these new workloads have not yet been described in the
literature. We fill this gap with an empirical analysis of MapReduce traces from six separate
business-critical deployments inside Facebook and at Cloudera customers in e-commerce,
telecommunications, media, and retail. Our key contribution is a characterization of new
MapReduce workloads which are driven in part by interactive analysis, and which make heavy
use of query-like programming frameworks on top of MapReduce. These workloads display
diverse behaviors which invalidate prior assumptions about MapReduce such as uniform data
access, regular diurnal patterns, and prevalence of large jobs. A secondary contribution is a
first step towards creating a TPC-like data processing benchmark for MapReduce.

We Don’t Know Enough to make a Big Data Benchmark Suite — An Academia-Industry
View. This is a position paper that comes from an unprecedented empirical analysis of seven
production workloads of MapReduce, an important class of big data systems. The main
lesson we learned is that we do not know much about real life use cases of big data systems
at all. Without real life empirical insights, both vendors and customers often have incorrect
assumptions about their own workloads. Scientifically speaking, we are not quite ready to
declare anything to be worthy of the label “big data benchmark.” Nonetheless, we should
encourage further measurement, exploration, and development of stopgap tools.

5 Summarizing Challenges and Open Questions from Commercial
Systems

In the late afternoon, we broke into groups and focused on drilling down, categorizing and
prioritizing the challenges we’d heard about from commercial systems. These challenges are
captured below.

5.1 Workload Characterization/ Performance Modeling
Doug Brown, Yanpei Chen, Jens Dittrich, Archana Ganapathi, Harumi A. Kuno, Barzan
Mozafari, Awny Al-Omari, Norbert Ritter, Y.C. Tay

5.1.1 Industry challenges

1. What will be the impact of expected growth and planned changes?
2. How to set realistic service level goals (SLGs)?
3. How to change a workload’s priority (relative weight) to meet SLGs?

Shivnath Babu, Goetz Graefe, and Harumi A. Kuno 79

4. How to set workloads’ concurrency levels (TASM throttling) to meet SLGs?
5. How to justify tuning measures to meet SLGs?
6. How to predict new application implementation impact?
7. How to justify hardware upgrades required to meet SLGs?
8. How to compare actual performance with expected?
9. Memory vs. CPU isolation

10. Empirical validation
11. How to model all models
12. A tool to take a real workload and scale it up or down with "relativity" (specifics TVD).
13. How to achieve resource isolation between workloads.

Figure 1 Sketch by the workload characterization/performance modeling breakout group summa-
rizing the underlying challenge of workload characterization / performance modeling.

5.1.2 Top priorities (workload management)

1. How to change workload’s priority (rela0ve weight) to meet SLGs?
2. How to set workloads’ concurrency level to met SLGs?
3. How to predict new applicaion’s implementatation impact?

5.1.3 Top Priorities (capacity planning)

1. How to change workload’s priority (relative weight) to meet SLGs?
2. How to achieve resource isolation between workloads.
3. How to predict new application implementation impact?

5.2 Workload Isolation
Ashraf Aboulnaga, Shivnath Babu, Robert Chansler, Hakan Hacigümus, Rao Kakarlamudi,
and Michael Seibold

The group defined workload isolation as:
1. Space multiplexing of resources. Each of the N workloads achieves the same performance

that it would if it were running alone with unlimited computing resources

12282

80 12282 – Database Workload Management

2. Time multiplexing of resources. Each of the N workloads is promised a share of the
available computing resources, and it gets at least this share of the resources

3. Application view of performance. Each of the N workloads meets its SLOs

5.2.1 Research challenges

1. Level 1: Given 1 workload and its application level SLO, give me the resource requirements
of this workload

2. Level 2: Given N workloads and application level SLOs, give me the resource requirements
of each workload

3. Level 3: Given N workloads and application level SLOs that vary over time, give me the
resource requirements of each workload

4. Workload Isolation Objective: Meet all requirements with minimum computing resources
It is easy to isolate workloads by overprovisioning

5.2.2 Open questions

1. What actions can a system take to ensure workload isolation?
Data replication, admission control, resource allocation, preemption, time multiplexing
vs. space multiplexing
Not all actions applicable to all systems

2. Is virtualization a solution out of the box?
Dealing with multiple levels of virtualization that do not match with each other

3. Can elasticity be used as a mechanism to address overprovisioning?
How to provide elasticity in data intensive systems
Elasticity helps with changing workloads and SLAs

4. How to map from application level SLO to resource demands?
5. Quantifying and modeling the degree/impact of performance isolation.

Resource based metrics
SLA based metrics

6. Is data locality overrated given new developments in network
Inter-cluster bandwidth has gone up
Infiniband is becoming more popular

7. Can we just assume that data is spread across all available nodes and focus on compute-
level isolation?

5.2.3 Benchmarking Workload

Analytical workload
SQL or MapReduce both possible

Capability and complexity (SQL) vs. predictability (MapReduce)
TPC-H, WordCo-occurrence

Vary the number of queries/jobs from 1 to N
Control the amount of data and degree of overlap in data access (e.g., by varying a
filter on a time attribute)
Control degree of overlap in arrival times
Control degree of similarity between workloads

Shivnath Babu, Goetz Graefe, and Harumi A. Kuno 81

5.3 Scheduling Workloads for Concurrency
Kai-Uwe Sattler and others

This break-out group considered the top-three challenges in the area of scheduling theory,
performance prediction, and no-knob data management.

1. Scheduling theory
Goal: provide a performance theorem for: Given a DAG in which the nodes have CPU
work W & I/O work I running on a machine with P processors & D disks, a simple
scheduler can run the DAG with good performance and memory bounds
Why:

Theoretical foundation for scheduling
Provable property

How to test:
By proving
Implement and validate the performance against the theorem

Why:
Theoretical foundation for scheduling
Provable property

Challenge: In analogy with Brent’s theorem which states that a graph with work W

and span S running on P processors can run in time less than W/P + S. Extras (may
be harder):

P and D change dynamically.
Processor and disk speeds change dynamically.
What is the locality problem for this kind of computation?
Given several such DAGs, how do you execute them concurrently (and what kind
of bounds do you get)?
The DAG unfolds dynamically.

2. Performance prediction.
Goal: predict performance of individual requests as well as the overall workload
Why: required for scheduling, but difficult — see 30 years of research on query
optimizers
No knobs
How to test: compare predictions to real execution times.

3. No knobs.
Goal: Eliminate tuning knobs in WLM (memory, parallelism, MPL, ...).
Why: Base for other techniques; cost issues, corrective actions.
First Step: Start with eliminating memory knobs (e.g., memory-adaptive sorting).
How to test: Compare with gold standard in static and dynamic settings.

For workloads, see powerpoint slideset in seminar materials.

12282

82 12282 – Database Workload Management

6 Tuesday: individual presentations

Tuesday focused on research efforts relevant to the challenges highlighted on Monday.

6.1 Tuesday morning: performance modeling/prediction, algorithms
Archana Ganapathi, from Splunk but speaking of her work at UC Berkeley. Archana spoke
about two topics: 1. Using Statistical Machine Learning to predict performance for a parallel
database system. 2. Workload Synthesis and Replay for MapReduce.

Y.C. Tay from National University of Singapore presented his paper Bottleneck Analysis
for Cloud Transaction Architectures. At the SIGMOD 2010 conference, Kossman, Kraska
and Loesing presented an experimental comparison of four cloud architectures for transaction
processing. The paper concluded that “It is still unclear whether the observed results are
an artifact of the level of maturity of the studied services or fundamental to the chosen
architecture”. This issue is addressed here via a theoretical analysis that focuses on the
bottleneck in each architecture.

Jens Dittrich from Universität des Saarlandes presented his work on Hadoop++/HAIL.
Norbert Ritter from Universität Hamburg presented an alternative solution to the problem

of DBS self-management, which avoids the drawbacks of the existing self-management
functions (as described in the PhD thesis of Marc Holze). Instead of extending a DBMS with
a set of component-specific self-management functions, the developed solution is designed
as one single self-management loop, which has a system-wide view on all configuration
decisions. As long as the workload of the system does not change and the goals are met, this
self-management loop only performs very light-weight monitoring operations on the workload,
performance, and state information. For this purpose, a workload shift detection solution is
provided. This also comprises a workload classification solution, that groups similar workload
events in order to further reduce the monitoring overhead. Furthermore, the workload
information is analysed for cyclic patterns in order to predict upcoming workload shifts.
Only when the system-wide self-management solution detects a workload shift or a violation
of the goals, it performs a heavy-weight reconfiguration analysis. Given the current workload
and state of the DBS, this reconfiguration analysis has to derive a new set of configuration
parameter values that meet the goals in the best possible way. For this purpose the system-
wide self-management solution employs a system model, which quantitatively describes the
behaviour of the DBS using mathematical models. At runtime, the system model is evaluated
by the self-management logic using multi-objective optimization techniques, where the goal
values are represented as constraints.

6.2 Tuesday afternoon: mixed workloads and robust query processing
Wendy Powley from Queen’s University – Kingston provided an overview of the techniques
and approaches that her research group has taken to workload management in DBMSs over
the past 10 years.

Ashraf Aboulnaga from University of Waterloo provided an overview of his research on
workload management, focusing on (1) query interactions, (2) workload management for
Hadoop, and (3) virtualization.

Shivnath Babu, Goetz Graefe, and Harumi A. Kuno 83

Bradley Kuzsmaul (from MIT and Tokutek) and Michael Bender (from State University
of New York at Stony Brook and Tokutek) spoke of Cilk, work stealing, write-optimized data
structures, and scheduling algorithms.

Goetz Graefe from HP Labs spoke about robust query processing.
Kostas Tzoumas from TU Berlin spoke of his group’s work on Stratosphere.
Shivnath Babu from Duke University presented “Perspectives on MapReduce Workload

Management.” Abstract: This talk gives an overview of problems that arise in workload
management for MapReduce systems. We first discuss the reasons why the importance of
MapReduce workload management has grown rapidly in recent years. We then present the
preliminary techniques being used in the industry today for this problem, and why these
techniques are inadequate. With the goal of laying out a research agenda, the talk concludes
with an abstraction of the various aspects involved in MapReduce workload management.

7 Working Groups (Wednesday, Thursday, Friday)

For the second half of the week, participants worked in break out groups and considered
the commercial challenges and how best to cast them as challenges that researchers could
address.

7.1 Towards a Benchmark for Workload Management
Ashraf Aboulnaga, Awny Al-Omari, Shivnath Babu, Robert J. Chansler, Hakan Hacigumus,
Rao Kakarlamudi, and Michael Seibold

Summary: This breakout group focused on (i) developing a framework for benchmarking
workload management techniques, (ii) coming up with some example instantiations of this
framework, and (iii) identifying use cases in which the proposed benchmark can be of value.

The focus was on benchmarking analytical or decision support systems, as opposed to
transactional systems. The typical workflow in such systems is that data comes in through
one or more feeds that are loaded into the system, and users submit analytical queries that
are executed on the available data. The system must provide desired guarantees (SLAs)
on data freshness (how fast is data loaded) and query response times. The system has to
maintain these guarantees in the face of fluctuations in the workload and failures of the
infrastructure; which is the task of workload management.

Given the above usage scenario, the benchmark framework that we developed requires
benchmark creators to define the following six pluggable components:
1. Data feeds
2. Query workloads
3. SLAs and penalties for violating them
4. Failures (optional)
5. Temporal patterns for the arrival of data and queries, and for system failures
6. Scaling rules
A benchmark defined through this framework evaluates how well a workload management
solution fulfills the requirements of the presented data feeds and query workloads while
minimizing total cost. Thus, the benchmark measures performance metrics such as throughout
and latency, and how they vary over time (a time series). The benchmark also measures

12282

84 12282 – Database Workload Management

the number of SLA violations and the total cost of the system, defined as Cost C = R + P,
where R is the cost of the infrastructure and P is the cost of SLA violation penalties.

Temporal arrival patterns: A key feature of the benchmark framework is that the arrival
of data and queries is described by temporal arrival patterns. These temporal patterns are
also used to describe when failures happen. The temporal patterns can be deterministic or
probabilistic. If they are probabilistic, then they are generated prior to a benchmark run
to ensure repeatability. The patterns can be uniform or bursty. If they are bursty, then
it is important to control whether the peak arrival rates happen in a correlated fashion
(e.g., simultaneously) or independently. Simultaneous peaks stress workload management
solutions.

Data feeds: Benchmark data may have some schema, which needs to be specified. A
benchmark also has one or more data feeds. The data has to have a temporal dimension (a
timestamp attribute) and has to be generated in increasing timestamp order. The data that
appears in the feeds is described by the distribution for data generation (uniform or skewed,
data feeds correlated or not, etc.).

The arrival pattern of the data is specified by a temporal arrival pattern. The temporal
arrival pattern can specify two types of data loading: batch loading which happens every
once in a while (e.g., initial loading into the system or periodic updates to dimension tables),
and continuous streams (e.g., updating the fact tables). Batch loading would be described
by a spike in the temporal arrival pattern.

Query workloads: A benchmark has one or more query workloads.Each workload consists
of a stream of analytical queries (simple queries for tactical workloads and more complex
queries for reporting) that read controlled amounts of data. The queries, or at least a
significant fraction of them, must have a temporal predicate that restricts them to touching
some time window of the data. The arrival of queries on the different workloads is defined
by temporal arrival patterns, one per workload.

Queries have SLAs on how fast they need to be processed (query completion time). The
specification of the queries also controls how much data overlap there is, which can have a
significant effect on workload management, and how fresh the data needs to be, which places
a constraint on data loading.

SLA penalties: SLAs are defined by a penalty function for each query type and each
workload. The penalty function defines different penalties for missing different response
time requirements. Different penalty functions allow us to express different priorities for
workloads. For example, a penalty function in which the penalty is infinite means that we
cannot under any circumstance violate the SLA. In general, there are types of workloads
where there is significant (even if not infinite) penalty for violating the SLA, and others
where violating the SLA is less harmful.

The cost of SLA violation is included in the total cost that is reported in the benchmark
score. Another option is to count SLA violations and report them in the benchmark score.

Data overlap: Different workloads are more likely to affect each other if they touch the
same data. One way to control data overlap is to have different queries touch data in different
time windows. For example, we can have two workloads that both always touch the most
recent data, which creates a high degree of overlap. On the other hand, we can have one
workload that touches the most recent data and another workload that touches some fixed
data in the past, which results in zero overlap. It may also be possible to control data overlap
in other ways, for example by having queries look at the same tables or different tables.

Freshness: The correlation between the query arrival patterns and the data arrival
patterns controls how fresh the data has to be. If a query is supposed to see some recent

Shivnath Babu, Goetz Graefe, and Harumi A. Kuno 85

data, and this data has arrived but not been loaded yet, then the query will return a wrong
answer.

To give the system some slack in the time to load the data, the benchmark queries should
be allowed to touch queries only F seconds in the past or older. That is, the time window
predicates that are supposed to touch the most recent data in the different queries are of the
form: “WHERE timestamp BETWEEN pasttimestamp AND NOW() – F}”. The higher the
F, the more flexibility a system has in delaying the load of new data. In that sense, F is a
freshness target.

A benchmark needs to specify a penalty cost that is incurred by a query if it does not
see recent data that it is supposed to see. We can determine when this happens because
the correct answer of each query – or how to obtain this correct answer – is part of the
benchmark specification. The penalty cost for violating freshness is added into the total
cost reported in the benchmark score. An infinite penalty cost means that a system is not
allowed to violate freshness.

Failures: In today’s world, it is important to consider failures when talking about
workloads and workload management. A lot of work these days goes into making systems
fault tolerant, and systems are often overprovisioned or geographically replicated to enable
them to handle failures. For example, if you consider a system that is mirrored for high
availability, such a system is incurring a cost overhead of 100

We envision two ways to incorporate failures into the benchmark:
1. The benchmark can specify a temporal arrival pattern for failures chosen from a

specific set of failure types (e.g., node and rack failures). For example, “After 30 minutes
of running the benchmark, a rack fails for 10 minutes and then recovers.” The issue with
this strategy is that specifying the meaning of failure and recovery from failure is not easy.
Pulling the plug on the entire cluster is easy to understand, but what does it mean to lose 30

2. Instead of specifying failure types, the benchmark specifies the effect of these failures
on the workload. For example, “After 30 minutes of running the benchmark, the data feed
becomes unavailable for 10 minutes and, for the next 20 minutes the workload is double the
past average as the system catches up.”

A benchmark needs to specify the expected behavior of data feeds and query workloads
during the failures. It is recommended that the data feeds continue while the system is failed.
Queries can either continue arriving and incur a penalty for failing, or we can model a case
in which the query streams stop when the system fails.

Scaling rules: A benchmark must specify scaling rules. A simple way to do scaling is to
say that each component (data, queries, arrival patterns) scales independently. However, we
acknowledge that more elaborate scaling rules may be needed.

The next steps for the breakout group are to come up with some example instantiations
of this framework, and to identifying use cases in which the proposed benchmark can be of
value.

7.2 Scheduling Workloads for Concurrency
7.3 Provably Good Scheduling for Database Workload Management
Bradley C. Kuszmaul (ed); Breakout Session B.

Problem 1. How should you schedule the DAG that includes CPU work W and I/O work
I on a machine with P processors and D disks? What performance and space guarantees can

12282

86 12282 – Database Workload Management

you make? These variants may be useful: P and D may change dynamically. What if the
processors or disks change speed dynamically? What is the locality problem for this kind of
computation? Given several such DAGs, how do you schedule them when they are running
at the same time? The DAG unfolds dynamically (as in Cilk).

Definition 2. The span of a DAG is the length longest path through the graph. (Sometimes
this is referred to as depth or critical-path length.)

Definition 3. The span of the work of a graph G, written SW, is the length of the longest
path through the graph, counting only the CPU work.

Definition 4. The span of the I/O of a graph G, written SI , counts only the I/O work.
Conjecture 5. A greedy schedule achieves time O(W=P+I=D+SW +SI), where I/O

and CPU are both measured in units of time. Idea for a proof. The idea is to extend
Brent-Graham as follows: At any time step at least one of the following is true: half the
processors are busy, half the disks are busy, or there are some idle processors and idle disks.
The number of time steps that half the processors are busy is at most 2W=P. The number
of time steps that half the disks are busy is at most 2I=D. If more than half the disks are
idle and half the processors are idle, then ... Application 6. If a query optimizer has several
query-plan choices, it needs to be able to estimate the run time of each plan. If we start
running queries using work stealing, we need a way to predict the performance. Conjecture
5, if true, may provide a way for the user or the query planner to predict the performance of
a plan on a machine with D disks and P processors.

7.4 Workload Characterization/ Performance Modeling
Doug Brown, Yanpei Chen, Jens Dittrich, Archana Ganapathi, Harumi A. Kuno, Barzan
Mozafari, Awny Al-Omari, Norbert Ritter, Y.C. Tay

Database vendors, developers, and administrators need to model and predict database
performance given a workload and a system configuration in order to perform tasks such as
workload management, capacity management, and system sizing. However, lack of data about
workload characterization and workload performance is a significant obstacle for researchers
working on modeling and prediction. Our breakout session produced a table showing
functional workload types, logical workload characteristics that could be used to describe those
types, and physical performance characteristics that could be observed from actual running
workloads. We also proposed two tools. First, we proposed a workload characterization
editor that could take an existing workload characterization and then manipulate one or
more logical workload characteristics, producing a new workload characterization. We
proposed that this tool could be made open and published, along with a repository of editable
workload characterizations. Second, we proposed a tool that could take the resulting workload
characterization and run the described workload. Finally, we described four use cases of
how the workload editor could be used: (1) how to anticipate the performance impact of
anticipated workload growth, (2) how to anticipate the performance impact of a workload
throttling mechanism on a given workload; (3) how to compare the performance for two
potential vendors (or systems); and (4) how to anticipate the performance impact of a new
application.

A subset of the group co-authored a paper pursuing this idea further.

Shivnath Babu, Goetz Graefe, and Harumi A. Kuno 87

7.5 Eliminating memory knobs
Goetz Graefe, Wendy Powley, Kai-Uwe Sattler, Kostas Tzoumas, Jingren Zhou

One of the tasks of workload management is to allocate resources to consumers with
conflicting demands. Systems typically contain “knobs” that dictate resource allocation, for
example how much memory should be allocated to the buffer pool, how much memory should
be allocated to sorting, etc. Eliminating knobs for tuning data management systems is an
important task to reduce maintenance costs and make the systems more usable to standard
customers. Eliminating knobs makes the problem of workload management significantly
easier by removing free variables.

We consider the problem of memory tuning in such systems as a building block towards
this overall goal: given an externally defined amount of memory (which may vary over time),
how should this memory be internally distributed among different heterogeneous consumers?
Using a basic model taking utility functions of the different consumers into account, we
formulate this problem as an optimization problem and present scenarios as well as metrics
for comparing and evaluating different strategies. Furthermore, we argue that consumers
should be memory-adaptive in order to provide a diminishing marginal utility function which
simplifies the optimal memory distribution significantly. Finally, we discuss how this can be
achieved for typical memory consumers in a database system.

Different memory consumers that we aim to model in the context of a DBMS are the
buffer pool (including the case of several buffer pools for multiple page sizes, devices, tables
vs. indexes, etc.), query execution (including sorting, hashing, exchange, etc), procedure
cache (compiled query execution plans and scripts), metadata, database utilities (e.g., load,
reorganization, compression, index creation, statistics/histograms, etc), log buffers, query
optimizer, complex UDFs (DB2 application memory and database heap), and UDFs in
garbage-collected languages such as C# or Java [1, 2].

A utility function describes the quantification of the performance for a given amount
of resource. In the context of memory management, we can quantify performance as the
reduction in IO rate. Utility functions are needed as an indication for performance prediction
to trade resource allocations between different consumers. It is important that utility
functions for all memory consumers are comparable, i.e., they are expressed in the same
units. IO rate reduction can be predicted, e.g., in the case of query optimizer by predicting
the expected reduction in execution plan cost if further exploration will take place.

A beautiful utility function obeys Gossen’s first law, i.e., is a monotonically increasing
function with decreasing marginal gain. With beautiful utility functions, a simple strategy
that trades resources based on possible gains converges to a solution that optimizes total
utility [3]. Examples of non-beautiful utility functions include linear functions, step functions,
and non-continuous functions. In the context of a DBMS, typical examples of operators with
non-beautiful utility functions are sorting without graceful degradation, non-hybrid hashing,
and LRU replacement strategy without scan protection.

Some memory consumers may be simply served by virtual memory paging to shrink
their memory allocation. For other consumers, the internal data structures need to be
adjusted. One research direction is changing the database engine in order to make utility
functions beautiful. A core strategy for making utility functions beautiful is applying
graceful degradation, i.e., the gradual and incremental use of page eviction, while retaining
as much state as possible in the available memory. This enables a graceful transition from
an in-memory to an external memory algorithm in presence of pressure. Examples include
hybrid hashing [4] and adaptive-memory sort. For query optimization, an option would be a
resource-guided query optimization enumeration strategy that prunes plans based on memory

12282

88 12282 – Database Workload Management

constraints. Finally, for data exchange in parallel DBMSs [5], a possible strategy would be
to reduce the network buffers using hierarchical partitioning [7].

A second research direction is formalizing and solving the allocation problem. We can
formalize memory distribution as an optimization problem:

We maximize the overall utility (possibly weighted to express externally-dictated priorities)
minus the cost of adjustment subject to the externally dictated memory constraints. Assuming
that utility functions are beautiful and all weights are equal to one, the problem can be solved
by a simple trading approach. While one consumer’s pain is less than another consumer’s
gain, we trade memory. The cost of trading is the aggregated utilities penalties over the
adjustment period. To avoid expensive oscillation a minimum gain/pain can be imposed.

Previous work in adaptive memory management [6] notes "[..] the difficulty in determining
the suitable experiment to test the efficiency of automatic memory tuner," and "the absence
of any standard metric for evaluation..." A further research direction is devising scenarios
for testing the performance, scalability, and robustness of various methods that (claim to)
eliminate memory knobs. A final research direction is generalizing the problem to include
other resources. While our outset is memory knobs, this work can be possibly generalized to
other knobs on data processing systems (such the degree of parallelism). Two issues must
be addressed by this generalization. First, appropriate utility functions for the resource
usage have to be defined. Second, the algorithms have to be adapted to graceful degradation
strategy for dealing with changing resources.

References
1 Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, Daniel Warneke:

Nephele/PACTs: a programming model and execution framework for web-scale analytical
processing. SoCC 2010:119-130

2 Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon Weaver,
Jingren Zhou: SCOPE: easy and efficient parallel processing of massive data sets. PVLDB
1(2):1265-1276 (2008)

3 Diane L. Davison, Goetz Graefe: Dynamic Resource Brokering for Multi-User Query Exe-
cution. SIGMOD 1995:281-292

4 Goetz Graefe: Query Evaluation Techniques for Large Databases. ACM Comput. Surv.
(CSUR) 25(2):73-170 (1993)

5 Goetz Graefe: Encapsulation of Parallelism in the Volcano Query Processing System. SIG-
MOD 1990:102-111

6 Adam J. Storm, Christian Garcia-Arellano, Sam Lightstone, Yixin Diao, Maheswaran Sur-
endra: Adaptive Self-tuning Memory in DB2. VLDB 2006:1081-1092

7 Jingren Zhou, Nicolas Bruno, Wei Lin: Advanced partitioning techniques for massively
distributed computation. SIGMOD 2012:13-24

7.6 Cache-Adaptive Algorithms for Databases
Michael A. Bender and Siva Narayanan (Eds.) Breakout session B.

Many commercial database execution engines reserve memory for operations statically
and offer no opportunity to change this at runtime. This causes under- utilization and queries
go slower than then can. Cache-adaptive algorithms offer a glimpse of hope.

We introduce class of cache-adaptive algorithms. Cache-adaptive algorithms adapt to
memory parameters that change over time, e.g., the available memory M and the block-transfer

Shivnath Babu, Goetz Graefe, and Harumi A. Kuno 89

size B. We exhibit optimal cache-adaptive algorithms for sorting, matrix multiplication, and
sort-merge-join and hash join.

We first prove that so-called cache-oblivious algorithms are also cache-adaptive. Cache-
oblivious algorithms are memory-hierarchy universal, i.e., the same algorithm works simulta-
neously on all memory-hierarchies and with no memory- specific parameterization. We then
exhibit algorithms, whose parameters depend on B and M, and show that they are adaptive.

We first model how B and M are allowed to change. We then give a formal definition
what it means to be optimal.

If we can prove this:
– Query execution engine can adapt its memory usage.
– Utilization can be maximized.
– Workload management can be more intelligent about memory as a resource.

7.7 Dataflow programming atop Cilk
Russell Sears, Bradley Kuzsmaul, Michael Bender (and others?).

Cilk is a superset of the C++ programming language for parallel programming tasks. It
introduces two new keywords, "spawn" and "sync" that allow the runtime environment to
optionally run portions of a computation in parallel on a second processor.

Dataflow programs are inherently parallel, and are therefore a seemingly natural fit for
languages such as Cilk. The most natural way to encode relational query trees in Cilk is to
treat each relational operator as an iterator embedded in a C function call graph. However,
doing so yields invalid, deadlock-prone Cilk programs.

The problem is due to a mismatch between Cilk’s "strict" semantics, which require
function arguments to be executed before the function call itself, and dataflow programming
semantics, which require each operator to be executed in parallel. Certain dataflow operators,
such as merge join, stream data from multiple inputs without materializing intermediate
results. In order to execute such programs, we must be able to guarantee that each operator
makes progress independent of the other.

In a serial execution, it is possible that one of the join subqueries will be partially executed,
and then block until its output is consumed. Similarly, the join algorithm will block until
the other output produces data. Because the execution is serial, the second subquery will
never be invoked, and the program will deadlock.

The solution seems to be to explicitly spawn a new pthread for each such operator. The
Cilk runtime simultaneously guarantees that all pthread threads make progress, and that
reasonable runtime scheduling decisions will be made, leveraging the inherent parallelism of
each query operator.

In this work, we will examine the performance tradeoffs between conventional, dataflow-
oriented execution environments and our new Cilk-style approach, characterizing queries for
which each approach outperforms the other.

8 Post-seminar outcomes

A number of collaborations were begun during the seminar that continued after the seminar’s
end. Ashraf Aboulnaga and Shivnath Babu collaborated on a tutorial proposal, “Workload
Management for Big Data Analytics”, that has been accepted for ICDE 2013. Douglas
Brown from Teradata began a collaboration with Barzan Mozafari from MIT exploring
performance modeling. Douglas Brown, Yanpei Chen, Jens Dittrich, Archana Ganapathi,

12282

90 12282 – Database Workload Management

Harumi A. Kuno, and Y. C. Tay from Teradata, Cloudera, Saarland University, Splunk Inc,
HP Labs, National University of Singapore developed their break-out group’s abstract into a
vision statement (they are currently considering where to publish it). Robert Chansler from
LinkedIn began a collaboration with Shivnath Babu’s Starfish project at Duke University.

Shivnath Babu, Goetz Graefe, and Harumi A. Kuno 91

Participants

Ashraf Aboulnaga
University of Waterloo, CA

Awny Al-Omari
Teradata, US

Shivnath Babu
Duke University, US

Michael A. Bender
State University of New York at
Stony Brook, US

Douglas Brown
Teradata – Rancho Santa Fe, US

Robert J. Chansler
Linkedin, US

Yanpei Chen
University of California –
Berkeley, US

Jens Dittrich
Universität des Saarlandes, DE

Archana Ganapathi
Splunk Inc., USA

Goetz Graefe
HP Labs – Madison, USA

Hakan Haciguemus
NEC Laboratories America, Inc.
– Cupertino, US

Rao Kakarlamudi
HP – Palo Alto, US

Harumi A. Kuno
HP Labs – Palo Alto, US

Bradley C. Kuszmaul
MIT – Cambridge, US

Barzan Mozafari
MIT – Cambridge, US

Sivaramakrishnan Narayanan
EMC Corp. – Bangalore, IN

Wendy Powley
Queen’s Univ. – Kingston, CA

Norbert Ritter
Universität Hamburg, DE

Kai-Uwe Sattler
TU Ilmenau, Germany

Russell Sears
Microsoft Research –
Mountain View, US

Michael Seibold
TU München, US

Y. C. Tay
National Univ. of Singapore, SG

Kostas Tzoumas
TU Berlin, DE

Jingren Zhou
Microsoft Research –
Redmond, US

12282

	Executive Summary Shivnath Babu, Goetz Graefe, and Harumi A. Kuno
	Table of Contents
	Overview of the week
	Monday: Individual presentations
	Monday morning: commercial workload managmeent
	Monday afternoon: benchmarks and workloads

	Summarizing Challenges and Open Questions from Commercial Systems
	Workload Characterization/ Performance Modeling
	Workload Isolation
	Scheduling Workloads for Concurrency

	Tuesday: individual presentations
	Tuesday morning: performance modeling/prediction, algorithms
	Tuesday afternoon: mixed workloads and robust query processing

	Working Groups (Wednesday, Thursday, Friday)
	Towards a Benchmark for Workload Management
	Scheduling Workloads for Concurrency
	Provably Good Scheduling for Database Workload Management
	Workload Characterization/ Performance Modeling
	Eliminating memory knobs
	Cache-Adaptive Algorithms for Databases
	Dataflow programming atop Cilk

	Post-seminar outcomes
	Participants

