
Report from Dagstuhl Seminar 12321

Robust Query Processing
Edited by
Goetz Graefe1, Wey Guy2, Harumi A. Kuno3, and Glenn Paulley4

1 HP Labs, USA goetz.graefe@hp.com
2 USA weyyuanguy@hotmail.com
3 HP Labs, USA harumi.kuno@hp.com
4 Conestoga College, Kitchener, Ontario, Canada gpaulley@acm.org

Abstract
The 2012 Dagstuhl 12321 Workshop on Robust Query Processing, held from 5–10 August 2012,
brought together researchers from both academia and industry to discuss various aspects of
robustness in database management systems and ideas for future research. The Workshop was
designed as a sequel to an earlier Workshop, Dagstuhl Workshop 10381, that studied a similar set
of topics. In this article we summarize some of the main discussion topics of the 12321 Workshop,
the results to date, and some open problems that remain.

Seminar 09.–13. July, 2012 – www.dagstuhl.de/12321
1998 ACM Subject Classification H.2 Database Management, H.2.2 Physical Design, H.2.4

Systems, H.2.7 Database Administration
Keywords and phrases robust query processing, adaptive query optimization, query execution,

indexing, workload management, reliability, application availability
Digital Object Identifier 10.4230/DagRep.2.8.1

1 Executive Summary

Goetz Graefe
Wey Guy
Harumi A. Kuno
Glenn Paulley

License Creative Commons BY-NC-ND 3.0 Unported license
© Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley

Introduction

In early August 2012 researchers from both academia and industry assembled in Dagstuhl
at the 2012 Dagstuhl Workshop on Robust Query Processing, Workshop 12321. An earlier
Workshop—Dagstuhl Workshop 10381—held in September 2010 [16] had supplied an op-
portunity to look at issues of Robust Query Processing but had failed to make significant
progress in exploring the topic to any significant depth. In 2012, 12321 Workshop participants
looked afresh at some of the issues surrounding Robust Query Processing with greater success
and with the strong possibility of future publications in the area that would advance the
state-of-the-art in query processing technology.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY-NC-ND 3.0 Unported license

Robust Query Processing, Dagstuhl Reports, Vol. 2, Issue 8, pp. 1–15
Editors: Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12321
http://dx.doi.org/10.4230/DagRep.2.8.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 12321 – Robust Query Processing

Background and related research
A considerable amount of query processing research over the past 20 years has focused on
improving relational database system optimization and execution techniques for complex
queries and complex, ever-changing workloads. Complex queries provide optimization
challenges because selectivity and cardinality estimation errors multiply, and so there is
a large body of work on improving cardinality estimation techniques and doing so in an
autonomic fashion: from capturing histogram information at run time [1, 17], to mitigating
the effects of correlation on the independence assumption [21], to utilizing constraints to
bound estimation error [18, 15, 9, 10], to permitting various query rewritings to simplify the
original statement [11, 23, 28, 27, 19, 26]. Studies of the feasibility of query re-optimization
[8, 7], or deferring optimization to execution time [24], have until recently largely been based
on the premise that the need for such techniques is due either to recovering from estimation
errors at optimization time in the former case, or avoiding the problem entirely by performing
all optimization on-the-fly, such as with Eddies [6] rather than in a staged, ‘waterfall’ kind of
paradigm.

More recent work on adaptive query processing [13, 25, 14, 24] has considered techniques
to handle the interaction of query workloads [3, 4, 5], coupled with the realization that
changes to environmental conditions can significantly impact a query’s chosen execution plan.
These environmental conditions include:

changes to the amount of memory available (buffer pool, heap memory);
changes to i/o bandwidth due to concurrent disk activity;
locking and other waits caused by concurrency control mechanisms;
detected flaws in the currently executing plan;
number of available cpu cores;
changes to the server’s multiprogramming level [2];
changes to physical access paths, such as the availability of indexes, which could be
created on the fly;
congestion with the telecommunications network;
contents of the server’s buffer pool;
inter-query interaction (contention on the server’s transaction log, ‘hot’ rows, and so on.

Background – Dagstuhl seminar 10381
Self-managing database technology, which includes automatic index tuning, automatic
database statistics, self-correcting cardinality estimation in query optimization, dynamic
resource management, adaptive workload management, and many other approaches, while
both interesting and promising, tends to be studied in isolation of other server components.
At the 2010 Dagstuhl Workshop on Robust Query Processing (Dagstuhl seminar 10381) held
on 19–24 September 2010, seminar attendees tried to unify the study of these technologies in
three fundamental ways:
1. determine approaches for evaluating these technologies in the ‘real’ environment where

these independently-developed components would interact;
2. establish a metric with which to measure the ‘robustness’ of a database server, ma-

king quantitative evaluations feasible so as to compare the worthiness of particular
approaches. For example, is dynamic join reordering during query execution worth more
than cardinality estimation feedback from query execution to query optimization?

Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley 3

Figure 1 Comparison of Systems A and B in response to increasing workloads over time.

3. utilize a metric, or metrics, to permit the construction of regression tests for particular
systems. The development of suitable metrics could lead to the development of a new,
possibly industry-standard benchmark, that could be used to measure self-managing
database systems by industry analysts, customers, vendors, and academic researchers and
thus lead to better improvements in robust operation.

At the 2010 Dagstuhl seminar, attendees struggled somewhat with trying to define the
notion of robustness, let alone trying to measure or quantify it. Robustness is, arguably,
somewhat orthogonal to absolute performance; what we are trying to assess is a system’s
ability to continue to operate in the face of changing workloads, system parameters and
environmental conditions.

An example of the sorts of problems encountered in trying to define robustness is illustrated
in Figure 1. Figure 1 shows the throughput rates of two systems, System A (blue line) and
System B (red line), over time, for the same workload. The Y -axis represents the throughput
rate, and the X-axis is elapsed time. Over time, the workload steadily increases.

Three areas of the graph are highlighted in Figure 1. The first, in green, shows that as
the workload is increased, System A outperforms System B by some margin. That peak
performance cannot be maintained, however, as the load continues to be increased. The area
in blue shows that once System A becomes overloaded, performance drops precipitously. On
the other hand, System B shows a much more gradual degradation (circled in red), offering
more robust behaviour than System A but with the tradeoff of not being able to match
System A’s peak performance.

One can argue that Figure 1 mixes the notions of query processing and workload mana-
gement. In Figure 2 we simplify the problem further, and consider only simple range queries
(using two columns) over a single table, where the (logarithmic) X-axis denotes the size of
the result set.

In Figure 2, the yellow line illustrates a table scan: it is robust—it delivers identical
performance over all result sets—but with relatively poor performance. The dashed red
line is a traditional index-to-index lookup plan: that is, search in secondary index, row
fetch out of the primary (clustered) index. This plan is considerably faster for very small
selectivities, but becomes considerably poorer with only a marginal decrease in selectivity.
The solid red line shows, in comparison, substantial-but-imperfect improvements over the
index-to-index technique, due to asynchronous prefetch coupled with sorting batches of

12321

4 12321 – Robust Query Processing

Figure 2 Comparison of access plans for a single table range query.

row pointers obtained from the secondary index. This query execution strategy is available
in Microsoft sql Server 2005. While Figure 2 is just one simple query—one table, range
predicates on two columns—Figure 2 illustrates both the magnitude of the problem and the
opportunity for improving the robustness of such plans.

At the 2010 Dagstuhl seminar, seminar attendees explored a number of different ways in
which to define robustness. One idea was to define a metric for robustness as the accumulated
variance in the wall clock times of workloads—or particular queries—or, alternatively, some
measure of the distribution of that variance, a 2nd level effect. Since this working definition
includes wall clock times, it implicitly includes factors such as optimizer quality, since a
robustness metric such as this must include statement execution times. However, while the
sophistication of query optimization, and the quality of access plans, is a component of a
robust database management system, it is not the only component that impacts any notion
of robustness.

This working definition of robustness raised as many questions as answers, and many of
these were still unresolved by the end of the workshop. Those questions included:

Sources of variance in query optimization include the statistics model, the cardinality
model, and the cost model, with the latter usually being less critical in practice than the
former two. One measure of ‘robustness’ is to assess the accuracy between estimates and
actuals. What level of importance should the ‘correctness’ of a query optimizer have on a
metric of robustness?
Which offers more opportunity for disaster—and disaster prevention: robust query
optimization or robust query execution?
Is robustness a global property? Does it make sense to measure robustness at the
component level? If so, which components, and what weight should be attached to each?
Several of the attendees at the 2010 Dagstuhl workshop advocated a two-dimensional
tradeoff between actual performance and ‘consistency’. But what is ‘consistency’? Is it
merely plan quality, or something more?
Robustness for who? Expectations are different between product engineers and end users;
one should not try to define robustness unless one addresses whose expectations you are

Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley 5

trying to satisfy. Both rely on an idealized model of how a system should behave. Can
we define that model? At the same time, what expectations can a user have of a really
complex query?
Is adaptivity the only way to achieve robustness?
What would a benchmark for robustness attempt to measure?

During the workshop we analyzed these questions from various perspectives. Unfortunately
we failed to reach consensus on a clear definition of robustness, how to measure it, and
what sorts of tradeoffs to include. Our hope, in this, the second Dagstuhl workshop on
Robust Query Processing, is to make additional progress towards clarifying the problems,
and possibly make some progress towards defining some general—or specific—approaches to
improve dbms robustness.

12321

6 12321 – Robust Query Processing

2 Table of Contents

Executive Summary
Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley 1

Dagstuhl seminar 12321 . 7

Approach . 7

Scope . 7

Qualitative and quantitative measures . 7

Potential topics for exploration . 9

Promising techniques . 10

Achievements and further work . 12

Participants . 15

Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley 7

3 Dagstuhl seminar 12321

3.1 Approach
At the 2012 Dagstuhl seminar, attendees looked at the problem of robust query processing
both more simply and more directly. Rather than attempt to define robustness per se,
instead the attendees were asked to modify a classical model of query processing so that
the result would be more ‘robust’, whatever that might mean. The basic idea was to model
query processing as a simplistic, generic, cascading ‘waterfall’ system implementation, which
included parsing, followed by query rewrite optimization, then join enumeration, and finally
query execution. In detail, this set of cascading query processing functions included the
following steps:

logical database design;
physical database design;
SQL parsing;
plan caching: per query, per parameter, and so on, including recompilation control and
plan testing;
query rewrite optimization;
query optimization proper, including join enumeration;
query execution;
database server resource management: memory, threads, cores, and so on;
database server storage layer, including the server’s buffer pool and transactional support.

Workshop participants were then invited to propose approaches that would modify this
‘strawman’ query processing model by proposing the modification or transposition of query
optimization or query execution phases that, it was hoped, would lead to more robust system
behaviour.

3.2 Scope
The organizers purposefully chose to keep the focus of discussion relatively narrow and
concentrated on more traditional components of relation database query processing. Hence
the scope of our discussions included aspects such as Query optimization, query execution,
physical database design, resource management, parallelism, data skew, database updates,
and database utilities. Outside of the seminar’s scope were arguably more esoteric query
processing topics such as text and image retrieval, workload management, cloud-only issues,
map-reduce issues, extract, transform, load processing, and stream query processing.

3.3 Qualitative and quantitative measures
To permit workshop participants to focus their ideas on the costs and benefits of their
proposals, the workshop organizers developed a list of questions that each work group needed
to address with their specific proposal. The questions were:

1. What is the decision that’s to be moved within the waterfall model? Within the waterfall
framework workshop participants could make several choices; for example, they could
decide to introduce a new query processing layer, rather than (simply) move functionality

12321

8 12321 – Robust Query Processing

from one layer to another. As a concrete example, one might decide to create a new
Proactive Physical Database Design layer within the model, thereby treating physical
database design as a process and not as a static constraint imposed on server operation.

2. Where is the decision made in the original waterfall model? What alternative or additional
location do you suggest? To keep the discussions simple, the organizers decided to avoid
getting into complex situations such as ‘parallel’ waterfall implementations . For example,
the physical database design phase, typically considered an offline task, could be ‘pushed’
into a periodic query processing phase, but we would stop at considering an ‘online’
physical database design task that could greatly perturb the overall model of the system.

3. How do you know that this is a real problem? Industry representatives at the Workshop
stated that periodic workload fluctuations are the reality in commercial environments
and that manual intervention to deal with issues as they arise is unrealistic. Even if
performance analysis tools are available, the resources required to diagnose and solve
database server performance problems are too great. Moreover, workload creation
and/or modeling remains often too time-consuming for many database administrators,
exacerbating diagnosis issues.

4. What is the desired effect on robust performance or robust scalability in database query
processing? Not all proposals may lead to better absolute performance. Rather, the
target metric of the proposals is to improve the system’s robustness, however that may
be defined. For example, a specific proposal may: (a) better anticipate the workload,
(b) inform the dba ahead of the system’s peak workload, (c) permit the system to be
better prepared for the system’s expected workload, (d) support better energy efficiency,
(e) improve better worst case expected performance of a given workload, or (f) provide
additional insights for a dba to permit better fault diagnosis.

5. What are the conditions for moving this decision? One of the tasks for each group looking
at a specific proposal was to determine the parameters for moving a query processing
task from one phase to another. In some cases, decision tasks would be designed to move
to other phases only under some conditions—for example, due to the periodicity of the
workload—whereas in other cases proposals included ideas to permanently move decisions
from one query processing phase to another.

6. How do the two decision points differ in terms of available useful information? For
example, in many cases it is feasible to consider the migration of a query processing task
to another phase only when the metadata surrounding the execution context is known
and complete. For example, the system may have a real, captured workload, captured
performance indicators, and estimated and actual query execution costs. For other, the
amount of metadata required may be significantly less.

7. What are the limitations, i.e., when does the shift in decision time not work or not provide
any benefit? For example, is there a type of workload for which a shift in query processing
execution will be counter-productive?

8. How much effort (software development) would be required? Is is feasible to consider
implementing this proposed technique within a short-term engineering project? Are
the risks of implementing the proposal quantifiable? Are the risks real? Can they be
mitigated in some way?

9. How can the potential benefit be proven for the first time, e.g., in a first publication
or in a first white paper on a new feature? Can the benefits of the new technique be
described sufficiently well in a database systems conference paper? What workloads can
be used to demonstrate the proposal’s effectiveness, so that the proposal’s benefit can be
independently verified by others in the field?

Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley 9

10. How can the benefit be protected against contradictory software changes, e.g., with a
regression test? This is a complex and difficult problem due in part to subtle changes in
underlying assumptions that are made in virtually all complex software systems.

11. Can regression tests check mechanisms and policies separately?

To illustrate a potential re-ordering technique, seminar chair Goetz Graefe used an
example of moving statistics collection from the physical database design step into the query
optimization phase. This would mean that statistics collection would be performed on
an on-demand basis during query optimization, rather than as part of a separate, offline
‘performance tuning’ phase. The positive impact of such a change would be to avoid blind
cardinality estimation and access plan choices, at the expense of increasing the query’s
compile-time cost. Conditions that could impact the effectiveness of the proposal would be
missing statistics relevant to the query, or stale statistics that would yield an inaccurate cost
estimate. A proof of concept could include examples of poor index and join order choices
using an industry standard benchmark, along with mechanisms to control the creation and
refresh of these statistics at optimization time.

4 Potential topics for exploration

On the seminar’s first day, Monday, seminar attendees brainstormed a variety of potential
ideas to shift query processing functionality from one query processing phase to another.
These included:

1. Admission control moved from workload management to query execution: ‘pause and
resume’ functionality in queries and utilities.

2. Index creation moved from physical database design to query execution.
3. Materialized view and auxiliary data structures moved from physical database design to

query optimization or query execution.
4. Physical database design (vertical partitioning, columnar storage, and column and/or

table compression techniques) moved from physical database design to query execution.
5. Join ordering moved from query optimization to query execution.
6. Join and aggregation algorithm: moved from query optimization to query execution,

along with set operations, DISTINCT, etc.
7. Memory allocation moved from resource management and query optimization to query

execution.
8. Buffer pool policies: move policy control from the storage layer to query optimization

and/or query execution.
9. Transaction control: move from the server kernel to the application.

10. Serial execution (1 query at a time): consider moving away from concurrent workload
management to fixed, serial execution of all transactions.

11. Query optimization a week ago: move physical database design decisions to the query
optimizer by pro-actively, iteratively modifying the database’s physical database design
through continuous workload analysis.

12. Consider a minimal (in terms of algorithms, implementation effort, and so on) query
execution engine that is robust.

13. Query optimization: move from pre-execution to post-execution.

12321

10 12321 – Robust Query Processing

14. Consider the introduction of a robustness indicator during query execution; the idea is to
analyze the robustness or efficacy of the query optimization phase—as a simple example,
the standard deviation of query execution times.

15. Develop a comparator for pairs of ‘similar’ queries in order to explain what is different
between them, both in terms of sql semantics and in terms of access plans.

16. Holistic robustness.
17. Parallel plan generation, including degree of parallelism: move from query optimization

to query execution.
18. Statistics collection and maintenance: move from physical database design to query

optimization.
19. Storage formats: move from physical database design to another phase, possibly query

optimization or query execution based on plan cache information.
20. Move refresh statistics, predicate normalization and reordering, multi-query awareness,

access path selection, join order, join and aggregation algorithms, cardinality estimation,
cost calculation, query transformation, common subexpression compilation, parallel
planning, and Halloween protection to within the join sequence.

21. Pre-execution during query optimization; for cardinality estimation and for intermediate
results, consider the interleaving of query optimization and query execution.

22. Data structure reorganization: move from query execution to query optimization.
23. Develop a measure of robustness and predictable performance as a cost calculation

component for a query optimizer.
24. Statistics refresh: move from physical database design or query optimization to query

execution
25. Plan cache management: consider augmenting mechanisms and policies set by the query

optimization phase with outcomes from the query execution phase.
26. Plan caching decisions: move from the plan cache manager to within the query execution

phase.

Over the remaining days of the 12321 seminar, attendees selected topics from the above
list and met to consider these ideas in greater detail, and if possible develop a study approach
for each that could take place once the Seminar had concluded.

5 Promising techniques

During the seminar’s remaining days, attendees focused on studying the techniques above
and developed concrete plans of study for a variety of approaches that each could improve
a dbms system’s robustness. Of those discussed at Dagstuhl, attendees reached consensus
that the following ideas were worthwhile exploring in greater depth once the seminar had
concluded:

1. Smooth operations. The proposal is to implement a new query execution operator, called
SmoothScan. At the query execution level, via the SmoothScan operator the system
continuously refines the choices made initially by the query optimizer, being able to
switch dynamically between index look-up techniques to table scans and vice-versa in a
smooth manner.

2. Opportunistic query processing. Instead of executing only a single query plan (which may
or may not be adaptable), the proposal takes an opportunistic approach that carefully

Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley 11

chooses and executes multiple query plans in parallel, where the fastest plan at any given
stage of the query execution determines the overall execution time.

3. Run-time join order selection. Investigate techniques to not only re-order joins at
execution time, but utilize the construction of small intermediate results to interleave
optimization and execution and reduce the degree of errors in cardinality estimation.

4. Robust plans. The authors propose a new class of operators and plans that are ‘smooth’ in
that their performance degrades gracefully if the expected and the actual characteristics
of the underlying data differ. Smooth operators continuously refine the plan choices made
by the query optimizer up-front, in order to provide robust performance throughout a
wide range of query parameters.

5. Assessing robustness of query execution plans. Develop metrics and techniques for
comparing two query execution plans with respect to their robustness.

6. Testing adaptive execution. Develop an experimental methodology to assess the impact of
cardinality estimation errors on system performance and therefore evaluate, by comparison,
the impact of adaptive execution methods.

7. Pro-active physical design. Using an underlying assumption of periodicity in most work-
loads, pro-actively, iteratively modify the database’s physical design through continuous
workload analysis.

8. Adaptive partitioning. In this proposal, the authors seek to continuously adapt physical
design considerations to the current workload. Extending the ideas of database cracking
[20], the authors propose additional ‘cracking’ techniques to both partition physical media
(including ssds) and to handle multi-dimensional queries over multiple attributes using
kd-trees and a Z-ordering curve to track related data partitions.

9. Adaptive resource allocation. In this proposal the authors make the case for dynamic
and adaptive resource allocation: dynamic memory allocation at run-time, and dynamic
workload throttling, adaptively control concurrent query execution.

10. Physical database design without workload knowledge. In this proposal, the authors look at
physical database design decisions during bulk loading. The potential set of design choices
are page size/format, sorting, indexing, partitioning (horizontal, vertical), compression,
distribution/replication within a distributed environment, and statistics.

11. Weather prediction. In an analogy to weather prediction, the authors propose a technique
to manage user expectations of system performance through analysis of the current
workload and prediction parameters analyzed using the current system state.

12. Lazy parallelization. Static optimization involving parallelization carries considerable
risk, due to several root causes: (1) the exact amount of work to be done is not known at
compile time, (2) data skew can have a significant impact on the benefits of parallelism,
and (3) the amount of resources available at run time may not be known at compile
time. Instead, the proponents of this approach intend to move parallelism choices from
the query optimization phase to the query execution phase. In this scenario, the query
optimizer would generate ‘generic’ access plans that could be modified on-the-fly during
query execution to increase or decrease the degree of parallelism and alter the server’s
resource assignment accordingly.

13. Pause and resume. This proposal focused on mechanisms that permit stopping and
resuming later with the least amount of work repeated or wasted—or even reverted, using
some form of undo recovery in order to reach a point from which the server can resume
the operation. While similar in intent to mechanisms that permit, for example, dynamic
memory allocation, the policies and mechanisms with this proposal are quite different,

12321

12 12321 – Robust Query Processing

and rely on task scheduling and concurrency control mechanisms in order to permit the
resumption of a paused sql request.

14. Physical database design in query optimization. The idea behind this proposal is to move
some physical database design decisions to the query optimization phase. For example,
one idea is to defer index creation to query optimization time, so that indexes are created
only when the optimizer can determine that they are beneficial. While this has the benefit
of avoiding static physical database design and workload analysis, there are no guarantees
that the system can detect cost and benefit bounds for all decisions and all inputs.

6 Achievements and further work

The 2012 Dagstuhl 12321 Workshop made considerable progress towards the goals of de-
veloping more robust query processing behaviour. That progress was made, primarily, by
maintaining strict focus on the task of shifting a query processing decision from one phase to
another, and then answering the questions listed in Section 3.3. The use of that framework
enabled more concentrated discussion on the relative merits of the specific techniques, and at
the same time reduced debate about the definition of ‘robust’ behaviour, or how to quantify
it.

In 2010, Seminar 10381 dwelled on measurement and benchmarks, and subsequent to
the seminar two benchmark papers were published. One, which combined elements of both
the tpc-c and tpc-h industry-standard benchmarks and entitled the ch-Benchmark, was
published in the 2011 dbtest Workshop, held in Athens the following summer [12]. The
other used the metaphor of an agricultural ‘tractor pull contest’ to create a benchmark to
examine several measures related to robustness. Like the ch-Benchmark above, the complete
tractor pulling benchmark is described in the Proceedings of the 2011 dbtest Workshop
[22].

In 2012, an achievement of the 2012 Dagstuhl seminar was in enumerating various
approaches that could either (1) improve the robustness of a database management system
under some criteria, or (2) developing metrics that could be used to measure aspects of a
system’s behaviour that could be used to optimize a system’s set of decision points. The
organizers are confident that this concrete progress will lead to several publications in the
very near future.

In particular, two drafts of potential proposals have already been developed: the first for
‘smooth’ scans and ‘smooth’ operators, and the second regarding proactive physical database
design for periodic workloads. The seminar’s organizers are confident that several other
proposals discussed at the 12321 Workshop will develop into research projects in the coming
months.

However, despite the significant progress made at the 12321 Seminar in developing robust
query processing techniques, it became clear during both the 10381 and 12321 seminars
that there were no known ways of systematically, but efficiently, testing the robustness
properties of a database management system in a holistic way. While there is a fairly obvious
connection between robustness—however one might try to define it—and self-managing
database management system techniques, testing these systems to ensure that they provide
robust behaviour is typically limited in practice to individual unit tests of specific self-
managing components. Testing the interaction of these various technologies together, with a
production-like workload, remains an unsolved and difficult problem. Indeed, testing and

Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley 13

metrics development remain an unknown factor for many, if not all, of the ideas generated at
this latest Workshop.

References
1 Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning histograms: Building histograms

without looking at data. In acm sigmod International Conference on Management of
Data, pages 181–192, Philadelphia, Pennsylvania, May 1999.

2 Mohammed Abouzour, Kenneth Salem, and Peter Bumbulis. Automatic tuning of the
multiprogramming level in Sybase SQL Anywhere. In ICDE Workshops, pages 99–104.
IEEE, 2010.

3 Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala. QShuffler:
Getting the query mix right. In Proceedings of the ieee International Conference on Data
Engineering, pages 1415–1417, 2008.

4 Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala. Interaction-
aware scheduling of report-generation workloads. The vldb Journal, 20:589–615, August
2011.

5 Mumtaz Ahmad, Songyun Duan, Ashraf Aboulnaga, and Shivnath Babu. Predicting com-
pletion times of batch query workloads using interaction-aware models and simulation. In
Proceedings of the 14th International Conference on Extending Database Technology, pages
449–460, New York, NY, USA, 2011. ACM.

6 Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query processing. In
acm sigmod International Conference on Management of Data, pages 261–272, 2000.

7 Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. Progressive parametric query optimi-
zation. ieee Transactions on Knowledge and Data Engineering, 21:582–594, 2009.

8 Pedro G. Bizarro. Adaptive query processing: dealing with incomplete and uncertain statis-
tics. PhD thesis, University of Wisconsin at Madison, Madison, Wisconsin, 2006.

9 Surajit Chaudhuri, Hongrae Lee, and Vivek R. Narasayya. Variance aware optimization of
parameterized queries. In acm sigmod International Conference on Management of Data,
pages 531–542, 2010.

10 Surajit Chaudhuri, Vivek R. Narasayya, and Ravishankar Ramamurthy. A pay-as-you-go
framework for query execution feedback. Proceedings of the vldb Endowment, 1(1):1141–
1152, 2008.

11 Mitch Cherniack. Building Query Optimizers with Combinators. PhD thesis, Brown Uni-
versity, Providence, Rhode Island, May 1999.

12 Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan Krom-
pass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess, Kai-Uwe Sat-
tler, Michael Seibold, Eric Simon, and Florian Waas. The mixed workload CH-benCHmark.
In Proceedings of the Fourth International Workshop on Testing Database Systems, New
York, NY, USA, 2011. ACM.

13 Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman. Adaptive query processing.
Foundations and Trends in Databases, 1(1):1–140, 2007.

14 Kwanchai Eurviriyanukul, Norman W. Paton, Alvaro A. A. Fernandes, and Steven J. Lyn-
den. Adaptive join processing in pipelined plans. In 13th International Conference on
Extending Database Technology (edbt), pages 183–194, 2010.

15 Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. Exploiting constraint-like data characte-
rizations in query optimization. In acm sigmod International Conference on Management
of Data, pages 582–592, Santa Barbara, California, May 2001. Association for Computing
Machinery.

16 Goetz Graefe, Arnd Christian König, Harumi Kuno, Volker Markl, and Kai-Uwe Sattler.
Robust query processing. Dagstuhl Workshop Summary 10381, Leibniz-Zentrum für Infor-
matik, Wadern, Germany, September 2010.

12321

14 12321 – Robust Query Processing

17 Michael Greenwald. Practical algorithms for self-scaling histograms or better than average
data collection. Performance Evaluation, 20(2):19–40, June 1996.

18 Jarek Gryz, Berni Schiefer, Jian Zheng, and Calisto Zuzarte. Discovery and application
of check constraints in db2. In Proceedings, Seventeenth ieee International Conference
on Data Engineering, pages 551–556, Heidelberg, Germany, April 2001. ieee Computer
Society Press.

19 Waqar Hasan and Hamid Pirahesh. Query rewrite optimization in starburst. Research
Report RJ6367, ibm Corporation, Research Division, San Jose, California, August 1988.

20 Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database cracking. In CIDR,
pages 68–78. www.cidrdb.org, 2007.

21 Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboulnaga. cords:
Automatic discovery of correlations and soft functional dependencies. In acm sigmod
International Conference on Management of Data, pages 647–658, Paris, France, June
2004.

22 Martin L. Kersten, Alfons Kemper, Volker Markl, Anisoara Nica, Meikel Poess, and Kai-
Uwe Sattler. Tractor pulling on data warehouses. In Proceedings of the Fourth International
Workshop on Testing Database Systems, pages 7:1–7:6, New York, NY, USA, 2011. ACM.

23 Jonathan J. King. quist–A system for semantic query optimization in relational databases.
In Proceedings of the 7th International Conference on Very Large Data Bases, pages 510–
517, Cannes, France, September 1981. ieee Computer Society Press.

24 Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and Hamid Pira-
hesh. Robust query processing through progressive optimization. In acm sigmod Interna-
tional Conference on Management of Data, pages 659–670, 2004.

25 Rimma V. Nehme, Elke A. Rundensteiner, and Elisa Bertino. Self-tuning query mesh
for adaptive multi-route query processing. In 12th International Conference on Extending
Database Technology (edbt), pages 803–814, 2009.

26 G. N. Paulley and Per-Åke Larson. Exploiting uniqueness in query optimization. In Procee-
dings, Tenth ieee International Conference on Data Engineering, pages 68–79, Houston,
Texas, February 1994. ieee Computer Society Press.

27 Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/rule based query
rewrite optimization in starburst. In acm sigmod International Conference on Manage-
ment of Data, pages 39–48, San Diego, California, June 1992. Association for Computing
Machinery.

28 H. J. A. van Kuijk. The application of constraints in query optimization. Memoranda
Informatica 88–55, Universiteit Twente, Enschede, The Netherlands, 1988.

Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley 15

Participants

Martina-Cezara Albutiu
TU München, DE

Peter A. Boncz
CWI – Amsterdam, NL

Renata Borovica
EPFL – Lausanne, CH

Surajit Chaudhuri
Microsoft – Redmond, US

Campbell Fraser
Microsoft – Redmond, US

Johann Christoph Freytag
HU Berlin, DE

Goetz Graefe
HP Labs – Madison, US

Ralf Hartmut Güting
FernUniversität in Hagen, DE

Wey Guy
Independent, US

Theo Härder
TU Kaiserslautern, DE

Fabian Hüske
TU Berlin, DE

Stratos Idreos
CWI – Amsterdam, NL

Ihab Francis Ilyas
University of Waterloo, CA

Alekh Jindal
Universität des Saarlandes, DE

Martin L. Kersten
CWI – Amsterdam, NL

Harumi Anne Kuno
HP Labs – Palo Alto, US

Andrew Lamb
Vertica Systems – Cambridge, US

Allison Lee
Oracle Corporation – Redwood
Shores, US

Stefan Manegold
CWI – Amsterdam, NL

Anisoara Nica
Sybase – Waterloo, CA

Glenn Paulley
Conestoga College –
Kitchener, CA

Ilia Petrov
TU Darmstadt, DE

Meikel Poess
Oracle Corp. –
Redwood Shores, US

Ken Salem
University of Waterloo, CA

Bernhard Seeger
Universität Marburg, DE

Krzysztof Stencel
University of Warsaw, PL

Knut Stolze
IBM Deutschland –
Böblingen, DE

Florian M. Waas
EMC Greenplum Inc. – San
Mateo, US

Jianliang Xu
Hong Kong Baptist Univ., CN

Marcin Zukowski
ACTIAN – Amsterdam, NL

12321

	Executive Summary Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn Paulley
	Table of Contents
	Dagstuhl seminar 12321
	Approach
	Scope
	Qualitative and quantitative measures

	Potential topics for exploration
	Promising techniques
	Achievements and further work
	Participants

