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—— Abstract

Compressive Sampling (CS) is a new method of signal acquisition and reconstruction from fre-
quency data which do not follow the basic principle of the Nyquist-Shannon sampling theory.
This new method allows reconstruction of the signal from substantially fewer measurements than
those required by conventional sampling methods. We present and discuss a new, swarm based,
technique for representing and reconstructing signals, with real values, in a noiseless environ-
ment. The method consists of finding an approximation of the lp-norm based problem, as a
combinatorial optimization problem for signal reconstruction. We also present and discuss some
experimental results which compare the accuracy and the running time of our heuristic to the
THT and IRLS methods.
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1 Introduction

Over the last few years, a number of different methods for sparse approximation in signal
reconstruction have arised including the Compressive Sampling technique. Compressive
Sampling (CS) states that it is possible to reconstruct signals accurately and almost exactly
from much fewer number of measurements than those required by the Nyquist-Shannon
sampling theory. To achieve this, the method relies on two major principles: sparsity of signal
and incoherence of the measurements being taken [2, 7, 8, 9, 10, 11, 13, 15, 20]. Sparsity
implies that only a small percentage of the signal entries (less than 40%) in a known transform
domain is nonzero or significantly different from zero [8, 11, 20, 21, 15, 20]. Incoherence in
measurements states that all the collected samples of a signal are randomly generated and
independent to each other [7, 8, 11, 15, 20, 21]. For simplicity, we use signals with real values
each of which can be presented as a vector X = [z1,22,...,2z,]. In this article we propose a
new swarm based method for sparse signal representation and reconstruction based on the
key mathematical insights underlying this new theory. We compare the proposed method
with two well-known signal reconstruction methods in terms of time and recovery error. The
rest of this article is organised as follows: The next section presents the signal reconstruction
problem and how the algorithm deals with it. Then, the algorithm is stated in Section 3,
while in Section 4, we briefly describe the alternative algorithms used for comparison. Section
5 provides and presents some experimental results of our algorithm and its comparison with
the other two methods.
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2 The Signal Reconstruction problem

Obtaining sparse solutions from an under-determined system of linear equations has been of
paramount importance in the area of signal processing and analysis. The CS theory aims
to obtain the sparsest possible representation of the signal X = [z1,29,...,2y], from an
under-determined system of linear measurements Y € ®M, so as Y = CX, where X € RV is
the signal vector we want to find and C' € RM*N
X (with M <« N). This ill-posed problem can be modelled as an optimisation problem
(signal reconstruction problem) as follows [2, 7, 9, 11, 13, 15, 20, 21]:

is a Sensing matrix used for under-sampling

min || X|;, st Y =CX, (1)

where || X||;, is the {p norm which is equal to the number of non-zero components in the
vector X. Finding the solution to problem (1) is NP-hard due to its nature of non-convex
combinational optimization [2, 7, 9, 11, 13, 15]. For this reason many researchers suggested
replacing the Iy norm with the convex approximation of Iy norm [7, 9, 11, 13, 15, 19]. However,
it is still possible to reconstruct sparse signals using the constrained [p-minimisation, which
in many situations outperforms even [;-minimisation in the sense that substantially fewer
measurements are needed for recovery [1, 14, 16, 17, 19, 22]. The main idea is to approximate
the [y norm by a smooth continuous function which is easier to handle and does not suffer
from the discontinuities of the Iy norm. This function can be defined as [1, 14, 16, 17, 22]:
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where z; is the i-th element of the signal (vector) X of N terms (length) and f,(X) is a
continuous function, which belongs to the Gaussian family of functions. The o is actually a
decreasing sequence of constants [01,02,...,0;] for every iteration of the method so as to
maximise the smoothed [y norm of the problem. Then, the problem can be defined as:
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Now we have a smooth objective function, though non-linear, which is much easier for
calculations. The purpose is to maximise the objective function in (3) together with the
minimisation of the real parameter o. The value of this parameter represents the tradeoff
between accuracy and smoothness of the approximation.The smaller the o, the better the
approximation, while the larger the o, the smoother the approximation. Also note that the
minimisation of [y norm is actually equivalent with the maximisation of the f, for sufficiently
small o. For small values of o, f, contains a lot of local maxima and thus it is difficult to
maximise it. Therefore, we need to set this parameter initially very large so as to make
the objective function convex and then gradually decrease it according to the value of the
objective function so as to enter the region close to its global maximiser.

3 The Proposed Algorithm

In this section we present the pseudocode of the proposed method (Pseudocode (1)) together
with the parameter settings used. The method is an iterative process which is based on the
swarm optimisation. The computation is conducted by a group of agents, where every agent
carries a solution which is slightly different from the other agents. At each iteration t the
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Pseudocode 1
Problem: Determine a vector X s.t. CX =Y.
Inputs: o, C, Y, Iterations, Agents, Sparsity level S, f,(X).
Outputs: best value f,.(X), best sparse vector X,.
Proposed swarm based method:
Generate Initial Xi(o) using (4) for every swarm %
Set U,EO)ZZXXmm for every swarm ¢
While (t < Iterations) (for all iterations)
For all Agents (for all swarms)
Evaluate f,(X) for every Xi(t)
Find current best X" so as max fy(X) and mino
Set X,Et):XZ.(,t) (keep the best i’th solution)
Check Xit) entries for non-feasible values (Pseudocode (2))
Consider the comnstrains CX =Y (project back to feasibility
set): X =x"_cTcch)ytcx -v)
Set all but S largest entries of X" to zero
Generate new solutions for all the other agents based on (5)
End For all Agents (for all swarms)
Set o) =o® x 0.5
End While (¢ < Iterations)
Display the signal reconstruction error using equation (9).

current best solution X,Et) that maximises f, and minimises o is chosen. It is then corrected

in terms of feasibility and bounds of its values. All the other agents are destroyed and a new
solution is generated for each of them based on the previously created one. Again all the
solutions are evaluated against the current best solution, which is updated, till the method
completes all the number of iterations given. Also, note that the o value is initially assigned
to twice the maximum value of the vector X and then it is gradually decreased by half at
each iteration. This particular assignment was chosen based on the nature of the given
test vector (signal). Finally, it is notable that every solution vector generated is projected
back to the feasibility set based on the constraints equation CX =Y and then only the S
largest entries are kept, setting all the others equal to zero. This step of the method is very
important as it achieves the necessary feasibility of the new solution and also follows the
sparsity level of the original vector (signal).

3.1 |Initial Solution
The initial solution generated in vector format, for each swarm i, is given as:
x© = ((CcTc)'CTY) + k, (4)

where, (CTC)~1CTY is the pseudo-inverse of matrix C', X 2-(0) is the initial solution vector for
agent ¢ and k is a vector of small random numbers based on the lowest value of the original
signal X. This k value is slightly different for every agent that carries a solution.

3.2 Solution Generation

The generation of a new solution in vector format for each swarm ¢ is generated as:

X =2 x k' x XU %ot 4 (1 - k') x 1/M x L, (5)



T. Apostolopoulos

Pseudocode 2

Repeat for each dimension d of vector X (for each element z;)
If z; < Xmin, Then z; = Xnin
Else If z; > Xmae, Then z; = Xpae
Else the value of entry =z, is kept the same.

End of Repeat for each dimension d of vector X

where, M is the number of samples, k is a vector of small random numbers between 0 and 1,
different for every swarm 4, t is the current iteration, while Xi(t) and Xi(t_l) is the current
and the previously generated solution vector of the i-th swarm. L is the norm ||Y — CX ® Il
which stands for the Euclidean distance between the samples vector Y and the product

between the Sampling matrix C' and the current best solution at iteration ¢, Xit).

3.3 Solution Correction

Every solution vector Xl-(t) created in Equation (5) is tested and corrected so as to be within
the given ranges of the original vector (signal). X, and X4, are the minimum and
maximum value of the given original signal, which remain the same for all iterations. The
whole procedure is presented in Pseudocode (2).

4 Alternative Algorithms

Several methods have been proposed to find the sparsest solution of the under-determined
system of linear equations in (1), including many methods for obtaining signal representations
in over-complete dictionaries. These methods range from general approaches, like the Basis
Pursuit (BP), Orthogonal Matching Pursuit (OMP) and the method of Matching Pursuit
(MP) [6, 18] to more sophisticated ones such as a Steepest Descent/Ascent methods [1, 16]
together with the THT [3, 4, 5] and IRLS [12] methods, which will be briefly described in
this Section. In our point of view, all these methods have both advantages and shortcomings;
some are very slow in convergence, such as BP and OMP methods, while others have low
estimation quality especially for large systems of equations, such as IRLS. Furthermore, to
the best of our knowledge, we are not aware of any swarm based techniques used in the
Compressive Sampling framework so far.

4.1 Iterative Hard Thresholding (IHT)

Iterative Hard Thresholding Algorithm (IHT) is a simple, yet efficient, iterations based
method for signal reconstruction, which uses a non-linear operator (Py) to reduce the value
of the ly norm at every iteration. The new solution is generated as follows [3, 4, 5]:

X0 = p(xtY 4 oT(y —cxtYy), (6)

where, Y is the samples vector, C' the Sensing matrix, and X ¢~ X® are the current and
the new generated solution. Py is a hard thresholding operator that sets all but K largest
elements to zero. The algorithm can be summarised in Pseudocode (3) [3, 4, 5].

4.2 Iteratively Re-weighted Least Squares (IRLS)

This algorithm tries to reconstruct sparse signals, using a re-weighted least squares method
for computing local minima of the non-convex problem. It replaces the [y norm with a

11
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Pseudocode 3

Input : Matrix C, vector Y, sparsity level k, number of iterations T
Output : Approximation vector X

The IHT Method:

set X =0

while (t<7T) (number of iterations)
X® = p(X®Y L 0T(Yy — X))
end while (t<T)

weighted lo norm, as follows [12]:

N
min szxf, s.t. CX =Y, (7)

i=1

where, the weights w; are calculated based on the previous solution so as the objective
function is a first order approximation of the I, objective function (0 < p < 1). The new
solution at k-th iteration is generated as follows [12]:

+® =Q,cT(CQ,cT) 1y, (8)

where, Q,, is a diagonal matrix with entries 1/w; = 1/((x§k_1))2 +e)P?2Land e > 0is a
small constant used to regularise the optimisation problem. The whole procedure is repeated
a number of iterations based on the nature of the problem.

5 Experimental Results

In this Section we conduct numerical experiments to test the performance and the efficiency
of the proposed heuristic. Table (1) shows the average time and the recovery error of the
methods for the test run. It can be seen that the proposed heuristic performed faster than the
others with better results. Notice that all the algorithms are based on non-linear problems
and that all of them performed well in the under-sampled case of 70 samples. In experiments
conducted, the Revised Simplex method (used for solving the I; equivalent convex problem)
performed better than all the previous methods (10716 error) for more than 200 samples
and failed in smaller sample sizes (70,100, 150 samples), where the three methods discussed
achieved very good results. However, all the three methods failed to recover a signal using less
than 70 samples, which appears to be the limit for efficient recovery. All the computations

Table 1 Average Time and Recovery Error for IHT, IRLS and Proposed method.

Iterations Time Recovery Error | Complexity Algorithm
30 0.32335 0.0338 linear IHT
30 0.27018 0.0653 linear IRLS
23 0.24875 0.0281 linear Proposed method

were performed on an Intel Core2 Duo CPU (2 GHz) with 2 GB RAM, using Matlab R2010a
under MS Windows 7 Ultimate. The whole experiment took less than 2 mins. A discrete
time randomly generated signal (in vector format) of 500 entries with 10% sparsity (non-zero
entries) has been used for 100 test runs with 70 samples. This simple signal was constructed
using the Real Gaussian model (i.e. using Standard Normal distribution) to generate real
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values between 0 and 10, which constitutes a realistic model for testing the efficiency of the
methods. The signal reconstruction error is defined as [7, 9, 11, 15, 20]:

Recovery Error = || X — XHZQ/||X||l27 (9)

where X and X is the original and the recovered signal, while | X — X||;, stands for the
Euclidean distance between these two vectors. Note that the Euclidean distance of the vector
[IX |11, is simply the square root of the sum of the squares of its elements. The CPU time was
used as a rough estimation of time in secs, while 12 agents have been used by the proposed
method, during this simulation.

6 Conclusions — Future work

In this article, an efficient heuristic for finding a sparse approximation of a signal, by solving
an under-determined system of linear equations with non-linear objective function, has been
proposed. It is based on maximising a smooth approximation of the [y norm. Although the
presented heuristic has no guarantee of achieving a global minimum as does its convex [y
analogue, the local minimum found by solving the non-convex problem in (1) typically allows
for accurate and successful signal reconstruction even at much higher under-sampling rates
where linear optimisation fails. Overall, the method has shown to be better in accuracy
for a small number of samples and a bit faster than other alternative algorithms, without
adding complexity, for the same randomly generated signal in a noiseless environment. A
potential improvement of this heuristic is to re-weight the smooth [y norm using coefficients
at every iteration; a technique that has been applied successfully to similar [y and I3 norm
based CS problems [10, 12, 17]. The algorithm’s adaption in noisy environments constitutes
another realistic improvement with much higher applicability since it is already known that
the THT and IRLS have not been extensively tested in noisy environments. Finally, potential
applications of this method include the areas of signal separation, de-noising in images and
signals, image sparse representation and inpainting (i.e. the process of reconstructing lost
parts of images) [15, 20].
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