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—— Abstract

We approach the task of topological localization in mobile robotics without using a temporal
continuity of the sequences of images. The provided information about the environment is con-
tained in images taken with a perspective colour camera mounted on a robot platform. The
main contributions of this work are quantifiable examinations of a wide variety of different global
and local invariant features, and different distance measures. We focus on finding the optimal
set of features and a deepened analysis was carried out. The characteristics of different features

were analysed using widely known dissimilarity measures and graphical views of the overall per-
formances. The quality of the acquired configurations is also tested in the localization stage
by means of location recognition in the Robot Vision task, by participating at the ImageCLEF
International Evaluation Campaign. The long term goal of this project is to develop integrated,
stand alone capabilities for real-time topological localization in varying illumination conditions
and over longer routes.
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1 Introduction and Related Work

Topological localization is a fundamental problem in mobile robotics. Most mobile robots
must be able to locate itself in their environment in order to accomplish their tasks. Robot
visual localization and place recognition are not easy tasks, and this is mainly due to the
perceptive ambiguity of acquired data and the sensibility to noise and illumination variations
of real world environments. In order to help reduce this gap, this work addresses the
problem of topological localization of a robot that uses a single perspective camera in an
office environment. The robot should be able to answer the question where are you? when
presented with a test sequence representing a room category seen during training [25, 28, 17].

Many approaches during last years have been developed using different methods for
robotic topological localization such as topological map building which makes good use
of temporal continuity [30], simultaneous localization and mapping [8], using Monte-Carlo
localization [32], appearance-based place recognition for topological localization, panoramic
vision creation [31].

The problem of topological mobile localization has mainly three dimensions: a type
of environment (indoor, outdoor, outdoor natural), a perception (sensing modality) and a
localization model (probabilistic, basic). Numerous papers deal with indoor environments [30,
31, 10, 15] and a few deal with outdoor environments, natural or urban [29, 13]. Experimental
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results for wide baseline image matching suggest the need for local invariant descriptors
of images. Earlier research into invariant features focused on invariance to rotation and
translation. There has also been research into the development of fully invariant features
[5, 18, 19]. In his milestone paper [16], D. Lowe has proposed a scale-invariant feature
transform (SIFT) for recognition based on local extrema of difference-of-Gaussian filters
in scale-space that is invariant to image scaling and rotation, illumination and viewpoint
changes. Lately, a new method has been proposed, Affine-SIFT (ASIFT) that simulates all
image views obtainable by varying the two camera axis orientation parameters, namely the
latitude and the longitude angles, left over by the SIFT method [21]. However, full affine

invariance has not been achieved due partly to the impractically large computational cost.

SIFT is a 128 dimensional feature vector that captures the spatial structure and the local
orientation distribution of a region surrounding a keypoint. The SIFT method has been
popularly applied for scene recognition [33, 1] and detection [11, 23] and robot localization
[2, 24, 22].

We analyze the problem of topological localization without taking in consideration the use
of the temporal continuity of the sequences of images which could be considered an advantage
by adding an additional understanding of the space. Our approach represents an extension
of our previous work [3, 4] where each RGB image is processed to extract sets of SIFT
keypoints from where the descriptors are defined. In this paper the comparison is carried out
for different configurations of features and matching distances of a topological localization
system. We perform an exhaustive evaluation and introduce new analysis statistics between
the quantization solutions.

2 Experimental Setup

2.1 Feature Matching

In this section we introduce different dissimilarity measures to compare features. That is,
a measure of dissimilarity between two features and thus between the underlying images
is calculated. Many of the features for images are in fact histograms (color histograms,
invariant feature histograms, texture histograms, local feature histograms, and other feature
histograms). As comparison of distributions is a well known problem, a lot of comparison
measures have been proposed and compared before [26]. In the following, dissimilarity
measures to compare two histograms H and K are proposed. Each of these histograms has
n bins and H; is the value of the i-th bin of histogram H.

Minkowski-form Distance (L; distance is often used for computing dissimilarity

between color images, also experimented in color histograms comparison [14]):

D .(H,K) = (DHZ» — K;|)T (1)

Jensen Shannon Divergence (also referred to as Jeffrey Divergence [9], is an
empirical extension of the Kullback-Leibler Divergence. It is symmetric and numerically
more stable):

DJSD(H7K):ZHZIOgm+K'LIOgm (2)
P i i i i
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x? Distance (measures how unlikely it is that one distribution was drawn from the
population represented by the other, [20]):

L \2
D1, 1) = Y2 K (3)
i=1 ¢

Bhattacharyya Distance [7] (measures the similarity of two discrete or continuous
probability distributions). For discrete probability distributions H and K over the same
domain, it is defined as:

Dp(H,K) = —IHZ V(H;K;) (4)

2.2 Datasets (Benchmark)

The chosen dataset contains images from nine sections of an office obtained from CLEF
(Conference on Multilingual and Multimodal Information Access Evaluation).
Detailed information about the dataset are in the overview and ImageCLEF publications
[25, 28, 17]. This dataset contains images that are widely used in topological localization
image classification papers and it has already been split into three training sets of images, as
shown in Table 1 one different from another. The provided images are in the RGB color space.
The sequences are acquired within the same building and floor but there can be variations in
the lighting conditions (sunny, cloudy, night) or the acquisition procedure (clockwise and
counter clockwise).

Areas Trainingl  Training2 Training3
Corridor 438 498 444
ElevatorArea 140 152 84
LoungeArea 421 452 376
PrinterRoom 119 80 65
ProfessorOffice 408 336 247
StudentOffice 664 599 388
TechnicalRoom 153 96 118
Toilet 198 240 131
VisioConference 126 79 60

Table 1 Training Sequences of An Office Environment.

2.3 Comparison of Different Distance Functions for Global Features

Global features capture the diagnostic structure of the image, an overall view of the image
that is transformed in histograms of frequencies. Existing color-based general-purpose image
retrieval systems as [27, 6] roughly fall into three categories depending on the signature
extraction approach used: histogram, color layout, and region-based search. In this paper,
histogram-based search methods are investigated in two different color spaces, RGB (Red,
Green, and Blue) and HSV (Hue, Saturation, and Value). RGB and HSV color histograms
are subject to tests with Jeffrey Divergence, x?, Bhattacharyya, Minkowski and respectively
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the widely used Euclidean distance measure. These were chosen considering the literature
that underlies them as achieving the best results in image matching [7, 26].

The retrieved classes for images (Corridor, LoungeArea etc.) depend on a threshold, those
below this value being rejected. This becomes an optimization problem of finding the best
value that will cut the unwanted results, considering that it is better to have no results than
inconsistent results. To accomplish this, we used the genetic algorithm explained in detail in
[12]. For these experiments, we used a population of 200 individuals, the mutation probability

of 0.15, and the crossover, of 0.7. The optimization process is stopped after 1000 generations.

We used a selection scheme rank selection with elitism. For RGB histograms, as can be seen

Figure 1 Precision and recall depending on measure distance (RGB & HSV Histograms).

in Figure 1, Bhattacharyya and Jeffrey Divergence obtained the highest recall and also, high
precision, the highest F-measure being obtained by Jeffrey Divergence (0.806) extremely
close to Bhattacharyya (0.802). The lowest performance is with Euclidean distance, having
not only a low recall which means that this solution will bring more irrelevant results than
using the other distances, but also a lower precision. In the case of using HSV histograms,
the Bhattacharyya distance leaded to good results with a F-measure of 0.81 close to x?
distance with 0.807 and Minkowski with a F-measure of 0.805 . Folowing these chosen
metrics, we adopted the vizualization with confusion matrices. Entries on the diagonal of the
matrix, in blue, count the correct calls. Entries off the diagonal, in fading blue, count the
misclassifications. Corresponding to the confusion matrix represented in Figure 2, the results
show that HSV histogram with Bhattacharyya distance yielded very similar results with
RGB choices of distances but clearly outperforms RGB histogram comparison with Jeffrey
Divergence distance, similarity probabilty peaking at 100% in some of the office sections
(PrinterRoom, StudentOffice).

2.4 Comparison of Different Distance Functions for Local Features

The two types of features used in the experiments are SIFT (Scale Invariant Feature
Transform) and ASIFT (Affine Scale Invariant Feature Transform). The advantages of using
these features are that they describe localized image regions (patches), the descriptors are
computed around interest points, there is no need for segmentation and they are robust to
occlusion and clutter. The disadvantage is that images are represented by different size sets

of feature vectors and they do not lend themselves easily to standard classification techniques.

These results were obtained performing experiments on local feature histograms obtained
using the bag-of-visual-words model. The descriptors are quantized and normalized. Different
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Figure 2 Confusion Matrix (RGB/HSV Histograms) using Jeffrey Divergence/Bhattacharyya
Distances.

dissimilarity measures for the different types of features are compared experimentally and
the performance for the different types of features is quantitatively measured.

For matthcing features, we chose literature-based distances known as having the best
results: Euclidean, Minkowski, x? and Jeffrey Divergence distances. For each of the local
features descriptors we created Precision/Recall graphs from which we determine the superior
runs. Figure 3 shows the Precision/Recall graphs for SIFT, respectively ASIFT and also
shows that there is still vast room for improvement but the most promising results were
obtained in the case of the usage of SIF'T descriptors with Minkowski and Euclidean distance.
The results show that Euclidean and Minkowski distance yielded very similar results, in the
case of SIFT features matching.
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Figure 3 PR curves using different distance measures (SIFT & ASIFT).

3 Conclusions and Future Work

In this work, we approached the task of topological localization without using a temporal
continuity of the sequences of images using a broad variety of features for image recognition.
The provided information about the environment is contained in images taken with a
perspective color camera mounted on a robot platform and it represents a know office
environment dataset offered by ImageCLEF.

A large scale of global and local invariant features of images was presented, investigated,
and experimentally evaluated. To analyze the features various dissimilarity measures were
implemented and tested, as different features require different comparison methods.
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The experiments show that the configurations from different feature descriptors and
distance measures depends on the proper combinations. One important aspect is to use
a selection of features accounting for the different properties of the images as there is no
feature capable of covering all aspects of an image. The experiments showed the following
features are suitable:

RGB & HSV color histograms

SIFT (Scale Invariant Feature Transform) as visual words with an Euclidean 100-means
The experiments showed also that the following image matching settings are suitable:

RGB color histograms with Jeffrey Divergence distance & HSV color histograms with

Bhattacharyya distance

SIFT (Scale Invariant Feature Transform) matched with Minkowski distance
From the fact that most of the works cited are from the last couple of years, topological
localization is a new and active area of research. which is increasingly producing interest
and enforces further development. A first starting point for this field is given in this thesis,
along with notable experimental results, but there is still room for improvement and further
research.
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