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Abstract
We prove, in the universe of trees of bounded height, that for any MSO formula with m variables
there exists a set of kernels such that the size of each of these kernels can be bounded by an
elementary function of m. This yields a faster MSO model checking algorithm for trees of
bounded height than the one for general trees. From that we obtain, by means of interpretation,
corresponding results for the classes of graphs of bounded tree-depth (MSO2) and shrub-depth
(MSO1), and thus we give wide generalizations of Lampis’ (ESA 2010) and Ganian’s (IPEC 2011)
results. In the second part of the paper we use this kernel structure to show that FO has the same
expressive power as MSO1 on the graph classes of bounded shrub-depth. This makes bounded
shrub-depth a good candidate for characterization of the hereditary classes of graphs on which
FO and MSO1 coincide, a problem recently posed by Elberfeld, Grohe, and Tantau (LICS 2012).
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1 Introduction

First order (FO) and monadic second-order (MSO) logics play undoubtedly crucial role in
computer science. Besides traditional tight relations to finite automata and regular lan-
guages, this is also witnessed by their frequent occurrence in the so called algorithmic
metatheorems which have gained increasing popularity in the past few years. The term
algorithmic metatheorem commonly refers to a general algorithmic toolbox ready to be ap-
plied onto a wide range of problems in specific situations, and MSO or FO logic is often
used in the expression of this “range of problems”.

One of the perhaps most celebrated algorithmic metatheorems (and the original mo-
tivation for our research) is Courcelle’s theorem [3] stating that every graph property φ

expressible in the MSO2 logic of graphs (allowing for both vertex and edge set quantifiers)
can be decided in linear FPT time on graphs of bounded tree-width. Courcelle, Makowsky,
and Rotics [4] then have analogously addressed a wider class of graphs, namely those of
bounded clique-width, at the expense of restricting φ to MSO1 logic (i.e., with only vertex
set quantification). Among other recent works on algorithmic metatheorems we just briefly
mention two survey articles by Kreutzer [16] and by Grohe–Kreutzer [15], and an interesting
recent advance by Dvořák, Král’, and Thomas [7] showing linear-time FPT decidability of
FO model checking on the graphs of “bounded expansion”.

Returning back to Courcelle’s theorem [3] and closely related [1, 4], it is worth to remark
that a solution can be obtained via interpretation of the respective graph problem into an
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MSO formula over coloured trees (which relates the topic all the way back to Rabin’s S2S
theorem [21]). However, a drawback of these metatheorems is that, when their runtime is

expressed as O
(
f(φ,width(G)) · |G|

)
, this function f grows asymptotically as 2

2.
.width(G)}

a

where the height a depends on φ, precisely on the quantifier alternation depth of φ (i.e., f is
a non-elementary function of the parameter φ). The latter is not surprising since Frick and
Grohe [11, 10] proved that it is not possible to avoid a non-elementary tower of exponents
even in deciding MSO properties on all trees or coloured paths (unless P=NP).

Given the importance of Courcelle’s and other related algorithmic metatheorems, it is a
bit of surprise that apparently no research paper tackled this “nonelementary exponential
tower” issue of deciding graph MSO properties until recently: The first step in this direction
occurred in a 2010 ESA paper by Lampis [17], giving an FPT algorithm for MSO2 model
checking on graphs of bounded vertex cover with only a double-exponential parameter de-
pendence. Ganian [13] then analogously addressed MSO1 model checking problem on graphs
of bounded so-called twin-cover (much restricting bounded clique-width).

MSO on trees of bounded height

Frick–Grohe’s negative result leaves main room for possible improvement on suitably restric-
ted subclass(es) of all coloured trees, namely on those avoiding long paths. In this respect,
our first result here (Theorem 3.2 and Corollary 3.3) gives a new algorithm for deciding
MSO properties φ of rooted m-coloured trees T of fixed height d. This algorithm uses so
called kernelization—which means it efficiently reduces the input tree into an equivalent one
of elementarily bounded size, leading to an FPT algorithm with runtime

O (|V (T )|) + 22
..

O(m|φ|2)
}
d+1

.

Informally, our algorithm “trades” quantifier alternation of φ for bounded height of the
tree. Hence there is nothing interesting brought for all trees, while on the other hand, our
algorithm presents an improvement over the previous on the trees of height ≤ d for every
fixed value d. We refer to Section 3.1 for details and exact expression of runtime.

In a more general perspective, our algorithm can be straightforwardly applied to any
suitable “depth-structured” graph class via efficient interpretability of logic theories. This
includes the aforementioned results of Lampis [17] and Ganian [13] as special cases. We
moreover extend the algorithm (Theorem 3.4) to testing MSO2 properties on all graphs of
tree-depth ≤ d (see Definition 2.1) in elementary FPT, covering a much wider graph class
than that of bounded vertex cover. This in Section 3.2 concludes the first half of our paper.

Expressive power of FO and MSO

Secondly, the existence of an (elementarily-sized) kernel for MSO properties φ of trees of
fixed height d (Theorem 3.2) is interesting on its own. Particularly, it immediately implies
that any such MSO sentence φ can be equivalently expressed in FO on the trees of height d
(simply testing the finitely many bounded-size kernels for which φ is true, Theorem 4.1).
This brings us to the very recent paper of Elberfeld, Grohe, and Tantau [9] who proved that
FO and MSO2 have equal expressive power on the graphs of bounded tree-depth. Their
approach is different and uses a constructive extension of Feferman–Vaught theorem for
unbounded partitions. We can now similarly derive the result from Theorem 3.2, as in the
tree case.
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114 Faster Deciding MSO Properties of Trees of Fixed Height, and Some Consequences

Figure 1 The path of length 14 has tree-depth 3 + 1 = 4 since it is contained in the closure of
the depicted (red) tree of height 3. It can be proved that this is optimal.

Going a step further, we actually half-answer the main open question posted in [9];
what characterizes the hereditary graph classes on which the expressive powers of FO and
MSO1 coincide? We use Theorem 3.2 and the new notions of [14] to prove that FO and
MSO1 coincide (Theorem 4.3) on all graph classes of bounded so called shrub-depth (see
Definition 2.3). Unfortunately, due to lack of a suitable “forbidden substructure” character-
ization of shrub-depth, we are not yet able to prove the converse direction, but we conjecture
that a hereditary class on which FO and MSO1 coincide must have bounded shrub-depth
(Conjecture 4.4). This conjecture is also supported by the following claim in [14]; a graph
class C has an MSO1 interpretation in the class of coloured trees of height ≤ d iff C is of
shrub-depth ≤ d.

2 Preliminaries

We assume standard terminology and notation of graph theory, see e.g. Diestel [5]. Due to
limited space, we refer there [5] for the standard definition of tree-width tw(G).

For an introduction to parameterized complexity we suggest [6]. Now we just recall that
a problem P with an input 〈x, k〉 ∈ Σ∗×N is fixed parameter tractable, or FPT, if it admits
an algorithm in time O

(
f(k) · |x|O(1)) where f is an arbitrary computable function. It is

known that P is in FPT if, and only if, it has a kernel, i.e., every instance 〈x, k〉 can be in
polynomial time transformed to an equivalent instance 〈x′, k′〉 such that 〈x, k〉 ∈ P ⇐⇒
〈x′, k′〉 ∈ P and |〈x′, k′〉| ≤ g(k) for some computable g.

Measuring depth of graphs

Our paper deals with some not-so-known decompositions of graphs, too. The first one is
related to tree-decompositions of low depth.

I Definition 2.1 (Tree-depth [18]). The closure cl(F ) of a rooted forest F is the graph
obtained from F by adding from each node all edges to its descendants. The tree-depth
td(G) of a graph G is one more than the smallest height (distance from the root to all
leaves) of a rooted forest F such that G ⊆ cl(F ).

Note that tree-depth is always an upper bound for tree-width. Some useful properties
of it can be derived from the following asymptotic characterization: If L is the length of a
longest path in a graph G, then dlog2(L+ 2)e ≤ td(G) ≤ L+ 1. See Figure 1. For a simple
proof of this, as well as for a more extensive study of tree-depth, we refer the reader to [19,
Chapter 6]. Particularly, it follows that td(G) can be approximated up to an exponential
error by a depth-first search, and furthermore computed exactly in linear FPT using the
tree-width algorithm of Bodlaender [2].



Jakub Gajarský and Petr Hliněný 115

Figure 2 The graph obtained from K3,3 by subdividing a matching belongs to TM3(2). The
respective tree model is depicted on the right.

Besides tree-width, another useful width measure of graphs is clique-width; defined for a
graph G as the smallest number of labels k = cw(G) such that G can be constructed using
operations to create a new vertex with label i, take the disjoint union of two labeled graphs,
add all edges between vertices of label i and label j, and relabel all vertices with label i to
have label j. Similarly as tree-depth is related to tree-width, there exists a very new notion
of shrub-depth [14] which is (in a sense) related to clique-width, and which we explain next.

I Definition 2.2 (Tree model [14]). We say that a graph G has a tree model of m colours
and depth d ≥ 1 if there exists a rooted tree T (of height d) such that

i. the set of leaves of T is exactly V (G),
ii. the length of each root-to-leaf path in T is exactly d,
iii. each leaf of T is assigned one of m colours (this is not a graph colouring, though),
iv. and the existence of a G-edge between u, v ∈ V (G) depends solely on the colours of u, v

and the distance between u, v in T .
The class of all graphs having a tree model of m colours and depth d is denoted by TMm(d).

For instance, Kn ∈ TM1(1) or Kn,n ∈ TM2(1). Definition 2.2 is further illustrated in
Figure 2. It is easy to see that each class TMm(d) is closed under complements and induced
subgraphs, but neither under disjoint unions, nor under subgraphs. One can also routinely
verify that each class TMm(d) is of bounded clique-width. The depth d of a tree model can
be seen as a generalization of the aforementioned tree-depth parameter, and for that reason
it is useful to work with a more streamlined notion which only requires a single parameter.
To this end we introduce the following (and we refer to [14] for additional details):

I Definition 2.3 (Shrub-depth [14]). A class of graphs G has shrub-depth d if there exists m
such that G ⊆ TMm(d), while for all natural m it is G 6⊆ TMm(d− 1).

Note that Definition 2.3 is asymptotic as it makes sense only for infinite graph classes.
Particularly, classes of shrub-depth 1 are known as the graphs of bounded neighbourhood
diversity in [17], i.e., those graph classes on which the twin relation on pairs of vertices (for
a pair to share the same set of neighbours besides this pair) has a finite index.

MSO logic on graphs

Monadic second-order logic (MSO) is an extension of first-order logic (FO) by quantification
over sets. On the one-sorted adjacency model of graphs it specifically reads as follows:

I Definition 2.4 (MSO1 logic of graphs). The language of MSO1 contains the expressions
built from the following elements:

variables x, y, . . . for vertices, and X,Y, . . . for sets of vertices,

FSTTCS 2012
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the predicates x ∈ X and edge(x, y) with the standard meaning,
equality for variables, the connectives ∧,∨,¬,→, and the quantifiers ∀,∃ over vertex and
vertex-set variables.

Note that we do not allow quantification over edges or sets of edges (as edges are not
elements) in MSO1. If we consider the two-sorted incidence graph model (in which the edges
formed another sort of elements), then we get:

I Definition 2.5 (MSO2 logic of graphs). The language of MSO2 contains the expressions
built from elements of MSO1 plus the following:

variables e, f, . . . for edges, E,F, . . . for sets of edges, the respective quantifiers, and
the predicates e ∈ F and inc(x, e) with the standard meaning.

Already MSO1 logic is quite powerful as it can express various common hard graph
properties; e.g., 3-colourability. The expressive power of MSO2 is even strictly larger [8]
since, for instance, Hamiltonicity has an MSO2 definition (while not MSO1). On the other
hand, MSO2 and MSO1 coincide on the class of trees, or on many other restricted graph
classes. Hence we will speak only about MSO1 on trees, from now on. The large expressive
power of MSO logics is the reason for their popularity in algorithmic metatheorems.

The problem to decide, for a sentence ψ in logic L, whether an input structure G satisfies
G |= ψ, is also commonly called the L model checking problem (of ψ). Hence, for instance,
the c-colourability problem for each fixed c is an instance of MSO1 model checking; where
ψ ≡ ∃X1, . . . , Xc.

[(
∀x.

∨c
i=1 x ∈ Xi

)
∧
(
∀x, y.

∧c
i=1(x 6∈ Xi ∨ y 6∈ Xi ∨ ¬ edge(x, y))

)]
.

3 Trees of Bounded Height and MSO

The primary purpose of this section is to prove Theorem 3.2; that for any m-coloured tree T
of constant height h there exists an efficiently computable subtree T0 ⊆ T such that, for any
MSO1 sentence φ of fixed quantifier rank r, it is T |= φ ⇐⇒ T0 |= φ, and the size of T0 is
bounded by an elementary function of r and m (the dependence on h being non-elementary,
though). Particularly, since checking of an MSO1 property φ can be easily solved in time
O∗
(
2c|φ|

)
on a graph with c vertices (in this case T0) by recursive exhaustive expansion of

all quantifiers of φ, this gives a kernelization-based elementary FPT algorithm for MSO1
model checking of rooted m-coloured trees of constant height h (Corollary 3.3).

We need a bit more formal notation. The height h of a rooted tree T is the farthest
distance from its root, and a node is at the level ` if its distance from the root is h− `. For
a node v of a rooted tree T , we call a limb of v a subtree of T rooted at some child node of
v. Our rooted trees are unordered, and they “grow top-down”, i.e. we depict the root on the
top. For this section we also switch from considering m-coloured trees to more convenient
t-labelled ones, the difference being that one vertex may have several labels at once (and so
m ∼ 2t). MSO1 logic is naturally extended to labelled graphs by adding unary predicates
L(x) for every label L. We say that two such rooted labelled trees are l-isomorphic if there
is an isomorphism between them preserving the root and all labels.

3.1 The Reduction Lemma
Concretely, we preprocess a given tree T into a bounded kernel T0 ⊆ T by recursively
deleting from T all limbs which are “repeating (being l-isomorphic) too many times”. This
is formalized in Lemma 3.1. To describe the exact reduction of T to T0, we need to define
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the following recursive “threshold” values, for i = 0, 1, 2, . . . :

Ri(q, s, k) = q ·Ni(q, s, k)s, where (1)

N0(q, s, k) = 2k + 1 ≥ 2 and
Ni+1(q, s, k) = 2k ·

(
Ri(q, s, k) + 1

)Ni(q,s,k) ≤ 2k ·
(
2q ·Ni(q, s, k)s

)Ni(q,s,k) (2)

For clarity, we informally in advance outline the intended meaning of these values Ri and
Ni. We say a labelled rooted tree of height i is (q, s, k)-reduced if, at any level j, 0 < j ≤ i,
each node of T has at most (1) Rj−1(q, s, k) pairwise l-isomorphic limbs (which are of height
≤ j − 1). The value (2) Nj(q, s, k) is then an upper bound on the number of all possible
non-l-isomorphic rooted k-labelled trees T of height ≤ j that are (q, s, k)-reduced. Note that
N0(q, s, k) accounts for all distinct k-labelled single-node trees and the empty tree.

Assume now any MSO1 sentence (closed formula) φ with q element variables and s set
variables, and height i. Then, provided a, b ≥ Ri(q, s, k) where k = t+ 3q+ s, we show that
the sentence φ could not distinguish between a disjoint copies and b disjoint copies of any
(q, s, k)-reduced rooted t-labelled tree of height i. Altogether formally:

I Lemma 3.1. Let T be a rooted t-labelled tree of height h, and let φ be an MSO1 sentence
with q element quantifiers and s set quantifiers. Suppose that u ∈ V (T ) is a node at level
i+ 1 where i < h.

a) If, among all the limbs of u in T , there are more than Ri(q, s, t + 3q + s) pairwise
l-isomorphic ones, then let T ′ ⊆ T be obtained by deleting one of the latter limbs from T .
Then, T |= φ ⇐⇒ T ′ |= φ.

b) Consequently, there exists a rooted t-labelled tree T0 ⊆ T such that T0 is
(q, s, t+ 3q + s)-reduced, and T |= φ ⇐⇒ T0 |= φ.

In the case of FO logic, a statement analogous to Lemma 3.1 is obtained using folklore
arguments of finite model theory (even full recursive expansion of all q vertex quantifiers in φ
could “hit” only bounded number of limbs of u and the rest would not matter). However, in
the case of MSO logic there are additional nontrivial complications which require new ideas
(in addition to standard tools) in the proof. Briefly saying, one has to recursively consider
the internal structure of the limbs of u, and show that even an expansion of a vertex-set
quantifier in φ does not effectively distinguish too many of them (and hence some of them
remain irrelevant for the decision whether T |= φ).

Proof of Lemma 3.1. Note first that part b) readily follows by a recursive bottom-up ap-
plication of a) to the whole tree. Hence we focus on a), and sketch our proof as follows:

(I) We are going to use a so called “quantifier elimination” approach.1 That means,
assuming T |= φ 6⇐⇒ T ′ |= φ, we look at the “distinguishing choice” of the first
quantifier in φ, and encode it in the labeling of T (e.g., when φ ≡ ∃x.ψ, we give new
exclusive labels to the value of x and to its parent/children in T and T ′). By an
inductive assumption, we then argue that the shorter formula ψ cannot distinguish
between these newly labeled T and T ′, which is a contradiction.

(II) The traditional quantifier elimination approach—namely of set quantifiers in φ, how-
ever, might not be directly applicable to even very many pairwise l-isomorphic limbs
in T if their size is unbounded. Roughly explaining, the problem is that a single valu-
ation of a set variable on these repeated limbs may potentially pairwise distinguish

1 This approach has been inspired by recent [7], though here it is applied in a wider setting of MSO logic.
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ψ ∈ “L1 over K ”
H ∈ K

GI ∼= H

(s.t. GI |= ψ)

I
−−−−−→

I
←−−−−−

ψI ∈ “L2 over M ”
G ∈M

G

(s.t. G |= ψI)

Figure 3 A basic informal scheme of an interpretation of ThL1 (K ) into ThL2 (M ).

all of them. Hence additional combinatorial arguments are necessary to bound the
size of the limbs in consideration.

(III) Having successfully resolved technical (II), the rest of the proof is a careful composition
of inductive arguments using the formula (1) Ri(q, s, k) = q ·Ni(q, s, k)s.

Details can be found in the full paper [12]. J

3.2 Algorithmic applications
With some calculus, we summarize the obtained result from an algorithmic point of view.
Let exp(i)(x) be the i-fold exponential function defined inductively as follows: exp(0)(x) = x

and exp(i+1)(x) = 2exp(i)(x). Note that exp(h)(x) is an elementary function of x for each
particular height h. For a rooted t-labelled tree T of height ≤ h, we call the uniquely-
determined maximal (q, s, k)-reduced tree T0 ⊆ T from Lemma 3.1 b), where k = t+ 3q + s,
a (q, s, k)-reduction of the tree T . Then we routinely get:

I Theorem 3.2. Let t, h ≥ 1 be integers, and let φ be an MSO1 sentence with q element
quantifiers and s set quantifiers. For each rooted t-labelled tree T of height h, the tree T0 ⊆ T
which is a (q, s, t + 3q + s)-reduction of T and T0 |= φ ⇐⇒ T |= φ, can be computed in
linear time (non-parameterized) from T . Moreover, its size is bounded by

|V (T0)| ≤ exp(h) [(2h+5 − 12) · (t+ q + s)(q + s)
]
.

I Corollary 3.3. Let T be a rooted t-labelled tree of constant height h ≥ 1, and let φ be an
MSO1 sentence with r quantifiers. Then T |= φ can be decided by an FPT algorithm in time

O
(

exp(h+1) [2h+5 · r(t+ r)
]

+ |V (T )|
)

= O
(

exp(h+1)(|φ|2) + |V (T )|
)
.

The arguments of Corollary 3.3 can be further extended to suitable classes of general
graphs via the traditional tool of interpretability of logic theories [20]. This powerful tool,
however, has rather long formal description, and since we are going to use it only ad hoc in
some proofs anyway, we provide here only a brief conceptual sketch. Imagine two classes of
relational structures K ,M and two logical languages L1,L2. We say there is an interpret-
ation I of the L1 theory of K into the L2 theory of M if (see Figure 3)

there exist L2 formulas which can “define” the domain and the relations of each structure
H ∈ K inside a suitable structure G ∈M , formally H ' GI ,
and each formula ψ ∈ L1 over K can be accordingly translated into ψI ∈ L2 over M

such that “truth is preserved”, i.e., H |= ψ iff G |= ψI for all such related H,G.

A simple example is an interpretation of the complement of a graph G into G itself
via defining the edge relation as ¬ edge(x, y). A bit more complex example is shown by
interpreting a line graph L(G) of a graph G inside G; the domain (vertex set) of L(G) being
interpreted in E(G), and the adjacency relation of L(G) defined by the formula α(e, f) ≡
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e 6= f ∧ ∃x. inc(x, e) ∧ inc(x, f). This example interprets the MSO1 theory of line graphs in
the MSO2 theory of graphs.

We now return back to the promised extensions. Since the MSO2 theory of graphs of
tree-depth ≤ d has an interpretation in coloured trees of depth ≤ d+1 (a graph G is actually
interpreted in W such that G ⊆ cl(W ), with labels determining which “back edges” of W
belong to G), we get the following generalization of Lampis’ [17] from Corollary 3.3: MSO2
model checking can be done in FPT time which depends elementarily on the checked formula,
not only for graphs of bounded vertex cover, but also for those of bounded tree-depth.

I Theorem 3.4. Let Dd denote the class of all graphs of tree-depth ≤ d, and φ be an MSO2
sentence with r quantifiers. Then the problem of deciding G |= φ for G ∈ Dd has an FPT
algorithm with runtime O

(
exp(d+2)(23d+7 · r2)+ |V (G)|

)
.

We also remark on an important aspect of FPT algorithms using width parameters—
how to obtain the associated decomposition of the input (here of G ∈ Dd). In the particular
case of tree-depth, the answer is rather easy since one can use the linear FPT algorithm for
tree-decomposition [2] to compute it (while, say, for clique-width this is an open problem).

Concerning MSO1 model checking, one can go further. Graphs of neighbourhood diversity
m (introduced in [17]) are precisely those having a model in which every vertex receives one
of m colours, and the existence of an edge between u, v depends solely on the colours of u, v.
Clearly, these graphs coincide with those having a tree model of m colours and depth 1, and
so we can give an FPT algorithm for MSO1 model checking on them from Corollary 3.3,
which is an alternative derivation for another result of Lampis [17]. We can similarly derive
an estimation of the main result of [13] (here just one exponential fold worse).

A common generalization of these particular applications of Corollary 3.3 has been found,
together with the new notion of shrub-depth, in this subsequent work:

I Theorem 3.5 (Ganian et al. [14]). Assume d ≥ 1 is a fixed integer. Let G be any graph
class of shrub-depth d (Definition 2.3). Then the problem of deciding G |= φ for the input
G ∈ G and MSO1 sentence φ, can be solved by an FPT algorithm, the runtime of which
has an elementary dependence on the parameter φ. This assumes G is given on the input
alongside with its tree model of depth d.

4 Expressive power of FO and MSO

Theorem 3.2 has another interesting corollary in the logic domain. Since the size of the
reduction T0 of T is bounded independently of T , the outcome of T |= φ actually depends
on a finite number of fixed-size cases, and one can use even FO logic to express (one would
say by brute force) which of these cases is the correct (q, s, t+ 3q + s)-reduction of T . The
outlined arguments lead to the following conclusions.

I Theorem 4.1 (Theorem 3.2). Let t, h ≥ 1 be integers, and let φ be an MSO1 sentence with
q element quantifiers and s set quantifiers. There exists a finite set of rooted t-labelled trees
Uh,t,φ satisfying the following: For any rooted t-labelled tree T of height ≤ h, it holds T |= φ

if and only if the (q, s, t+ 3q + s)-reduction of T is l-isomorphic to a member of Uh,t,φ.

With Theorem 4.1 we get quite close to the very recent achievement of Elberfeld, Grohe,
and Tantau [9] who prove that FO and MSO2 have equal expressive power on the graphs of
bounded tree-depth (and that this condition is also necessary on hereditary graph classes).
The following weaker statement is actually an easy consequence of our findings, too:
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I Corollary 4.2 (Elberfeld, Grohe, and Tantau [9]). Let h, t be integers, and φ an MSO1
sentence. Then there is an FO sentence ψh,t,φ such that, for any rooted t-labelled tree T of
height ≤ h, it is T |= φ ⇐⇒ T |= ψh,t,φ.

It is now a natural question whether and how could our alternative approach to coincidence
between FO and MSO on graphs be extended in the same direction.

Indeed, given an MSO2 sentence φ over Dd (the graphs of tree-depth ≤ d), we can
interpret this in an MSO1 sentence φId over rooted (d + 1)-labelled trees of height ≤ d + 1.
Then, by Corollary 4.2, we immediately get an FO sentence σd equivalent to φId. The problem
is, however, that σd is a formula over rooted (d+ 1)-labelled trees, and we would like to get
an interpretation of σd back in the FO theory of the class Dd, which does not seem to be an
easy task directly. Still, part of the arguments of [9] can be combined with the approach of
Corollary 4.2 to provide an alternative relatively short proof of coincidence between FO and
MSO1 on classes of bounded tree-depth (thus bypassing the Feferman–Vaught–type theorem
in [9]).

The reason for specifically mentioning Elberfeld, Grohe, and Tantau’s [9] here is actually
their main posted question—what are the sufficient and necessary conditions for a hereditary
graph class to guarantee the same expressive power of FO and MSO1? Using Theorem 4.1
and improved ideas based on a proof of Corollary 4.2, we provide a nontrivial sufficient
condition which we also conjecture to be necessary.

I Theorem 4.3. Let d be an integer and S be any graph class of shrub-depth d (Defini-
tion 2.3). Then for every MSO1 sentence φ there is an FO sentence ψd,φ such that, for any
G ∈ S , it is G |= φ ⇐⇒ G |= ψd,φ. Consequently, FO and MSO1 have the same expressive
power on S .

I Conjecture 4.4. Consider a hereditary (i.e., closed under induced subgraphs) graph class S .
If the expressive powers of FO and MSO1 are equal on S , then the shrub-depth of S is
bounded (by a suitable constant).

The key to proving Theorem 4.3 is the notion of twin sets. Recall that two vertices
x, y ∈ V (G) are called twins if their neighbour sets in G− x− y coincide. Though the edge
xy is not specified in this definition, it easily follows that whenever we have a set of pairwise
twins in G, then those induce a clique or an independent set.

I Definition 4.5 (Twin sets). Assume X = {x1, . . . , xk} and Y = {y1, . . . , yk} are disjoint
indexed sets (k-tuples) of vertices of a graph G. We say that X,Y are twin sets in G if

the subgraphs of G induced onX and on Y are identical, i.e., xixj ∈ E(G) iff yiyj ∈ E(G)
for all pairs i, j ∈ {1, . . . , k}, and
for i = 1, . . . , k, the set of neighbours of xi in V (G) \ (X ∪ Y ) equals that of yi.

Note that, for simplicity, we consider the twin-sets relation only on disjoint sets, and that
this relation is generally not transitive. Although we do not need more for this paper, we
suggest that the notion deserves further extended study elsewhere.

A tree model (Definition 2.2) of a graph G can be, informally, viewed as a complete
recursive decomposition (of bounded depth) of G into groups of pairwise disjoint pairwise
twin sets. Roughly, an application of Lemma 3.1 a) then says that if (at any level) the
number of pairwise twin sets in a group is “too large”, then one of these sets can be deleted
from G without affecting validity of a fixed MSO1 property on G. Our main task is to
describe “reducibility” of a large group of twin sets in G using FO (the sets having bounded
size, though), which is more complicated than in the tree-depth case due to lack of some
“nice connectivity properties” of a tree-depth decomposition.
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Proof outline (Theorem 4.3). We assume a graph G ∈ S with a tree model T of constant
depth d, and an MSO1 sentence φ. We informally continue as follows.

(I) For every fixed d, one can easily interpret φ in an MSO1 formula φId over T , such that
G |= φ ⇐⇒ T |= φId.

(II) By Definition 2.2, pairwise l-isomorphic sibling limbs in T correspond to a group of
pairwise twin sets in G. Deleting one of these sets from G is equivalent to deleting
the corresponding limb from T . Hence by (I) and Theorem 4.1, there is a finite set
Uφ of graphs (independent of G) such that G |= φ iff G “reduces” to a member of Uφ.

(III) The meaning of “reduction” is analogous to Section 3.1, to a (q, s, k)-reduced sub-
tree of the tree model T . The minor technical differences are; (1) we can describe
the reduction using twin sets, without an explicit reference to whole T , and (2) we
actually aim at a (q, s, k)′-reduction which means the reduction threshold values are
R′j(q, s, k) = max{Rj(q, s, k), 2}. (We need to guarantee that at least two twin sets
of each group remain after the reduction, even in degenerate cases.)

(IV) We provide an FO definition of the fact that G reduces to H ∈ Uφ, modulo some tech-
nical details. This FO formula %H depends mainly on d and H (actually on a suitable
tree model of H). The desired sentence ψd,φ in Theorem 4.3 is then constructed as
the (finite) disjunction ψd,φ ≡

∨
H∈Uφ

%H .

Now we give the crucial technical detail and the related claims which make step (IV)
working. Assume T is a tree model of a graph G, and B is a limb of a node v in T , such that
W is the set of leaves of B. We say that a tree model T ′ is obtained from T by splitting B
along X ⊆W if a disjoint copy B′ of B with the same parent v is added into T , and then B
is restricted to a rooted Steiner tree of W \X while B′ is restricted to a rooted Steiner tree
of X ′ (the corresponding copy of X). A tree model T is splittable if some limb in T can be
split along some subset X of its leaves, making a tree model T ′ which represents the same
graph G as T does. A tree model is unsplittable if it is not splittable. Notice that any tree
model can be turned into an unsplittable one; simply since the splitting process must end
eventually.

I Lemma 4.6. Let H be a graph, and R ⊆ H be an induced subgraph having a tree model T
(of m colours and depth d, but this is not relevant). Let T contain two disjoint l-isomorphic
limbs B,B′ of a node v, and a limb C of a node u. The position of C against B,B′ can be
arbitrary (it may be u = v or even C = B or C = B′), as long as C is disjoint from one
of B,B′. Let W,W ′ ⊆ V (R) denote the sets of leaves of B,B′, respectively, and X ⊆ V (R)
denote the set of leaves of C. Assume Y, Z ⊆ V (H) \ V (R) are such that W,W ′, Y are
pairwise twin sets in H, and that X,Z are also twin sets in H. If Y 6= Y ∩Z 6= ∅, then the
tree model T of R is splittable.

I Lemma 4.7. Let m, d ≥ 1 and q, s be integers. Assume G ∈ TMm(d) is a graph, and
R ⊆ G is an induced subgraph having an unsplittable tree model T (of m colours and depth
d). Let x̂R = (xv : v ∈ V (R)) be a vector of free variables valued in the respective vertices of
R in G. Then there exists an FO formula %T , depending on d,m, q, s, and T , such that the
following holds: G |= %T (x̂R) if, and only if, R ⊆ G and there exists a tree model T ′ ⊇ T of
G of m colours and depth d, such that the (q, s,m+ 3q + s)′-reduction of T ′ is T .

The importance of Lemma 4.6 in the proof of Lemma 4.7 is, informally, in that one can
focus just on including every vertex of G − R into some set which is twin (possibly after
recursive reduction) to suitable limbs of T , while such sets will then never overlap. See
Figure 4. With Lemma 4.7 at hand, it is then straightforward (though technical and not
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.

R : X W W ′ Y Z : G−R

T

Figure 4 A situation which cannot happen, in a graph G with an unsplittable tree model T of
an induced subgraph R ⊆ G, and with the sets W, W ′, Y and X, Z as in Lemma 4.6.

short) to finish the proof of Theorem 4.3 along the aforementioned outline. Details can be
found in the full paper [12]. J

5 Conclusions

We briefly recapitulate the two-fold contribution of our primary result; that the MSO model
checking problem on the universe of coloured trees of bounded height can be reduced to a
kernel of size bounded by an elementary function of the formula. Firstly, it allows us to
easily obtain nontrivial extensions of Lampis’ and Ganian’s result and to fill the gap set by
Courcelle’s theorem and the negative result of Frick and Grohe.

Secondly, it provides an alternative simple and intuitive way of understanding of why on
some classes of graphs FO and MSO logics coincide. In this respect, the most important
property of our kernel is that, after seeing more than a certain number of copies of a certain
substructure in the input graph, the validity of an MSO formula in question does not change
any further. While such a behavior is natural for FO properties, it is somehow surprising to
see it for much wider MSO. This “loss of expressiveness” of MSO (getting down to the FO
level) is inherited by graph classes of bounded tree-depth and shrub-depth.

Finally, we briefly discuss why we believe Conjecture 4.4 holds true. It is known [9] that
each subgraph closed class of graphs such that FO = MSO2 has to have bounded tree-depth.
Both classes of bounded tree-depth and classes of bounded shrub-depth are interpretable
in trees of bounded depth, the main difference is how “dense” they are. By allowing “too
many” edges in graphs of bounded shrub-depth, we basically lost the ability to address edges
of the interpreted graph in the underlying tree and hence also the ability to quantify over
these edges and sets of edges (notice that this also means that our class of graphs is no longer
closed under taking subgraphs, but is still hereditary). Since this is exactly the difference
between MSO1 and MSO2, classes of graphs of bounded shrub-depth are natural candidates
for exactly those hereditary classes where FO = MSO1.
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