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Abstract
In this paper we consider the problem of finding the densest subset subject to co-matroid con-
straints. We are given a monotone supermodular set function f defined over a universe U , and
the density of a subset S is defined to be f(S)/|S|. This generalizes the concept of graph
density. Co-matroid constraints are the following: given matroid M a set S is feasible, iff the
complement of S is independent in the matroid. Under such constraints, the problem becomes
NP-hard. The specific case of graph density has been considered in literature under specific
co-matroid constraints, for example, the cardinality matroid and the partition matroid. We show
a 2-approximation for finding the densest subset subject to co-matroid constraints. Thereby we
improve the approximation guarantees for the result for partition matroids in the literature.
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1 Introduction

In this paper, we consider the problem of computing the densest subset with respect to a
monotone supermodular function subject to co-matroid constraints. Given a universe U of n
elements, a function f : 2U → R+ is supermodular iff

f(A) + f(B) 6 f(A ∪B) + f(A ∩B)

for all A,B ⊆ U . If the sign of the inequality is reversed for all A,B, then we call the function
submodular. The function f is said to be monotone if f(A) 6 f(B) whenever A ⊆ B; we
assume f(∅) = 0. We define a density function d : 2U → R+ as d(S) , f(S)/|S|. Consider
the problem of maximizing the density function d(S) given oracle access to the function f .
We observe that the above problem can be solved in polynomial time (see Theorem 6).

The main problem considered in this paper is to maximize d(S) subject to certain
constraints that we call co-matroid constraints. In this scenario, we are given a matroid
M = (U, I) where I ⊆ 2U is the family of independent sets (we give the formal definition of
a matroid in Section 2). A set S is considered feasible iff the complement of S is independent
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i.e. S ∈ I. The problem is to find the densest feasible subset S given oracle access to f and
M. We denote this problem as DEN-M.

We note that even special cases of the DEN-M problem are NP-hard [14]. The main result
in this paper is the following:

I Theorem 1. Given a monotone supermodular function f over a universe U , and a matroid
M defined over the same universe, there is a 2-approximation algorithm for the DEN-M
problem.

Alternatively one could have considered the same problem under matroid constraints
(instead of co-matroid constraints). We note that this problem is significantly harder, since
the Densest Subgraph problem can be reduced to special cases of this problem (see [2, 14]).
The Densest Subgraph problem is notoriously hard: the best factor approximation known to
date is O(n1/4+ε) for any ε > 0 [3].

Special cases of the DEN-M problem have been extensively studied in the context of graph
density, and we discuss this next.

1.1 Comparison to Graph Density
Given an undirected graph G = (V,E), the density d(S) of a subgraph on vertex set S is
defined as the quantity |E(S)|

|S| , where E(S) is the set of edges in the subgraph induced by the
vertex set S. The densest subgraph problem is to find the subgraph S of G that maximizes
the density.

The concept of graph density is ubiquitous, more so in the context of social networks. In
the context of social networks, the problem is to detect communities: collections of individuals
who are relatively well connected as compared to other parts of the social network graph.

The results relating to graph density have been fruitfully applied to finding communities
in the social network graph (or even web graphs, gene annotation graphs [15], problems
related to the formation of most effective teams [9], etc.). Also, note that graph density
appears naturally in the study of threshold phenomena in random graphs, see [1].

Motivated by applications in social networks, the graph density problem and its variants
have been well studied. Goldberg [11] proved that the densest subgraph problem can be
solved optimally in polynomial time: he showed this via a reduction to a series of max-flow
computations. Later, others [7, 14] have given new proofs for the above result, motivated by
considerations to extend the result to some generalizations and variants.

Andersen and Chellapilla [2] studied the following generalization of the above problem.
Here, the input also includes an integer k, and the goal is to find the densest subgraph
S subject to the constraint |S| > k. This corresponds to finding sufficiently large dense
subgraphs in social networks. This problem is NP-hard [14]. Andersen and Chellapilla [2]
gave a 2-approximation algorithm. Khuller and Saha [14] give two alternative algorithms:
one of them is a greedy procedure, while the other is LP-based. Both the algorithms have
2-factor guarantees.

Gajewar and Sarma [9] consider a further generalization. The input also includes a
partition of the vertex set into U1, U2, · · · , Ut, and non-negative integers r1, r2, · · · , rt. The
goal is to find the densest subgraph S subject to the constraint that for all 1 6 i 6 t,
|S ∩ Ui| > ri. They gave a 3-approximation algorithm by extending the greedy procedure of
Khuller and Saha [14].

We make the following observations: (i) The objective function |E(S)| is monotone and
supermodular. (ii) The constraint |S| > k (considered by [2]) is a co-matroid constraint;
this corresponds to the cardinality matroid. (iii) The constraint considered by Gajewar and
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238 Density Functions

Sarma [9] is also a co-matroid constraint; this corresponds to the partition matroid (formal
definitions are provided in Section 2). Consequently, our main result Theorem 1 improves
upon the above results in three directions:

Objective function: Our results apply to general monotone supermodular functions f
instead of the specific set function |E(S)| in graphs.
Constraints: We allow co-matroid constraints corresponding to arbitrary matroids.
Approximation Factor: For the problem considered by Gajewar and Sarma [9], we
improve the approximation guarantee from 3 to 2. We match the best factor known for
the at-least-k densest subgraph problem considered in [2, 14].

1.2 Other Results
Knapsack Covering Constraints:

We also consider the following variant of the DEN-M problem. In this variant, we will have
a weight wi (for i = 1, · · · , |U |) for every element i ∈ U , and a number k ∈ N. A set S of
elements is feasible if and only if the following condition holds:

∑
i∈S wi > k. We call this a

knapsack covering constraint. We extend the proof of Theorem 1 to show the following:

I Theorem 2. Suppose we are given a monotone supermodular function f over a universe U ,
weights wi for every element i ∈ U , and a number k ∈ N. Then there is a 3-approximation
algorithm for maximizing the density function d(S) subject to knapsack covering constraints
corresponding to the weights wi and the number k.

Dependency Constraints:
Saha et. al[15] consider a variant of the graph density problem. In this version, we are

given a specific collection of vertices A ⊆ V ; a subset S of vertices is feasible iff A ⊆ S. We
call this restriction the subset constraint. The objective is to find the densest subgraph among
subsets satisfying a subset constraint. Saha et. al[15] prove that this problem is solvable in
polynomial time by reducing this problem to a series of max-flow computations.

We study a generalization of the subset constraint problem. Here, we are given a monotone
supermodular function f defined over universe U . Additionally, we are given a directed
graph D = (U, ~A) over the universe U . A feasible solution S has to satisfy the following
property: if a ∈ S, then every vertex of the digraph D reachable from a also has to belong
to S. Alternatively, a ∈ S and (a, b) ∈ ~A implies that b ∈ S. We call the digraph D as the
dependency graph and such constraints as dependency constraints. The goal is to find the
densest subset S subject to the dependency constraints. We call this the DENdep problem.
We note that the concept of dependency constraints generalizes that of the subset constraints:
construct a digraph D by drawing directed arcs from every vertex in U to every vertex in A.
The motivation for this problem comes from certain considerations in social networks, where
we are to find the densest subgraph but with the restriction that in the solution subgraph all
the members of a sub-community (say, a family) are present or absent simultaneously. In
literature, such a solution S that satisfies the dependency constraints is also called a closure
(see [18], Section 3.7.2). Thus our problem can be rephrased as that of finding the densest
subset over all closures.

We note that dependency constraints are incomparable with co-matroid constraints. In
fact dependency constraints are not even upward monotone: it is not true that if S is a
feasible subset, any superset of S is feasible.

Our result is as follows:

I Theorem 3. The DENdep problem is solvable in polynomial time.
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The salient features of the above result are as follows:
While the result in [15] is specific to graph density, our result holds for density functions
arising from arbitrary monotone supermodular functions.
Our proof of this result is LP-based. The work of [15] is based on max-flow computations.
We can extend our LP-based approach (via convex programs) to the case for density
functions arising from arbitrary monotone supermodular f , while we are not aware as to
how to extend the max-flow based computation.
The proof technique, inspired by Iwata and Nagano [13] also extends to show “small
support” results: thus, for instance, we can show that for the LP considered by [14] for
the at-least-k-densest subgraph problem, every non-zero component of any basic feasible
solution is one of two values.

Combination of Constraints:
We also explore the problem of finding the densest subset subject to a combination of the

constraints considered. We are able to prove results for the problem of maximizing a density
function subject to (a) co-matroid constraints and (b) subset constraints. Suppose we are
given a monotone supermodular function f over a universe U , a matroidM = (U, I), and
a subset of elements A ⊆ U . A subset S is called feasible iff (1) S satisfies the co-matroid
constraints wrtM (i.e. S ∈ I) and (2) S satisfies the subset constraint wrt A (i.e. A ⊆ S).
We show the following:

I Theorem 4. There is a 2-approximation algorithm for the problem of maximizing the
density function d(S) corresponding to a monotone supermodular function f , subject to the
co-matroid and subset constraints.

1.3 Related Work
Recently, there has been a considerable interest in the problems of optimizing submodular
functions under various types of constraints. The most common constraints that are considered
are matroid constraints, knapsack constraints or combinations of the two varieties. Thus for
instance, Calinescu et. al [5] considered the problem of maximizing a monotone submodular
function subject to a matroid constraint. They provide an algorithm and show that it yields
a (1− 1/e)-approximation: this result is essentially optimal (also see the recent paper [8] for
a combinatorial algorithm for the same). Goemans and Soto [10] consider the problem of
minimizing a symmetric submodular function subject to arbitrary matroid constraints. They
prove the surprising result that this problem can be solved in polynomial time. In fact, their
result extends to the significantly more general case of hereditary constraints; the problem of
extending our results to arbitrary hereditary functions is left open.

The density functions that we consider may be considered as “close” to the notion of
supermodular functions. To the best of our knowledge, the general question of maximizing
density functions subject to a (co-)matroid constraint has never been considered before.

1.4 Proof Techniques
We employ a greedy algorithm to prove Theorems 1 and 2. Khuller and Saha [14] and Gajewar
and Sarma [9] had considered a natural greedy algorithm for the problem of maximizing
graph density subject to co-matroid constraints corresponding to the cardinality matroid and
partition matroid respectively. Our greedy algorithm can be viewed as a natural abstraction
of the greedy algorithm to the generalized scenario of arbitrary monotone supermodular
functions. However, our analysis is different from that in [14, 9]. In both of the earlier papers
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240 Density Functions

[14, 9], a particular stopping condition is employed to define a set D` useful in the analysis.
For instance, in Section 4.1 of [9] they define D` using the optimal set H∗ directly. We choose
a different stopping condition to define the set D`; it turns out that this choice is crucial
for achieving a 2-factor guarantee. Another reason for our improvement is the following:
a straightforward generalization of the arguments given in [9] (to the scenario of arbitrary
monotone supermodular functions) would imply a version of Claim 4 with a factor of d∗/4
(instead of d∗/2 as provided in Claim 4).

We prove Theorem 3 using LP-based techniques. Our technique also provides another
proof of the basic result that graph density is computable in polynomial time. The proof
method is inspired by Iwata and Nagano [13].

1.5 Organization
We present the relevant definitions in Section 2. We proceed to give the proof of Theorem 1
in Section 3. The proof of Theorem 3 is presented in Section 4. For space considerations, we
include the proofs of Theorems 2 and 4 in a fuller version of the paper available at [6].

2 Preliminaries

In this paper, we will use the following notation: given disjoint sets A and B we will use
A+B to serve as shorthand for A∪B. Vice versa, when we write A+B it will hold implicitly
that the sets A and B are disjoint.
Monotone: A set function f is called monotone if f(S) 6 f(T ) whenever S ⊆ T .
Supermodular: A set function f : 2U → R+ over a universe U is called supermodular if
the following holds for any two sets A,B ⊆ U :

f(A) + f(B) 6 f(A ∪B) + f(A ∩B)

If the inequality holds (for every A,B) with the sign reversed, then the function f is called
submodular. In this paper, we will use the following equivalent definition of supermodularity:
given disjoint sets A,B and C,

f(A+ C)− f(A) 6 f(A+B + C)− f(A+B)

We can think of this as follows: the marginal utility of the set of elements C to the set A
increases as the set becomes “larger" (A+B instead of A).

It is well known (see [12, 16]) that supermodular functions can be maximized in polynomial
time (whereas submodular functions can be minimized in polynomial time). Let us record
this as:

I Theorem 5. Any supermodular function f : 2U → R+ can be maximized in polynomial
time.

We also state the following folklore corollary:

I Corollary 6. Given any supermodular function f : 2U → R+, we can find maxS f(S)
|S| in

polynomial time.

A proof of this Corollary is provided in the full version [6].
Density Function: Given a function f over U , the density of a set S is defined to be
d(S) = f(S)

|S| .
Matroid: A matroid is a pairM = (U, I) where I ⊆ 2U , and
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i← 1
Hi ← arg maxX

f(X)
|X|

Di ← Hi

while Di infeasible do
Hi+1 ← arg maxX:X∩Di=∅

f(Di+X)−f(Di)
|X|

Di+1 ← Di +Hi+1
i← i+ 1

end while
L← i

for i = 1→ L do
Add arbitrary vertices to Di to make it minimal feasible
Call the result D′i

end for
Output the subset among the D′i’s with the highest density

Figure 1 Main Algorithm

1. (Hereditary Property) ∀B ∈ I, A ⊂ B =⇒ A ∈ I.
2. (Extension Property) ∀A,B ∈ I : |A| < |B| =⇒ ∃x ∈ B \A : A+ x ∈ I
Matroids are generalizations of vector spaces in linear algebra and are ubiquitous in combin-
atorial optimization because of their connection with greedy algorithms. Typically the sets
in I are called independent sets, this being an abstraction of linear independence in linear
algebra. The maximal independent sets in a matroid are called the bases (again preserving
the terminology from linear algebra). An important fact for matroids is that all bases have
equal cardinality – this is an outcome of the Extension Property of matroids.

Any matroid is equipped with a rank function r : 2U → R+. The rank of a subset S
is defined to be the size of the largest independent set contained in the subset S. By the
Extension Property, this is well-defined. See the excellent text by Schrijver [17] for details.

Two commonly encountered matroids are the (i) Cardinality Matroid: Given a universe U
and r ∈ N, the cardinality matroid is the matroidM = (U, I), where a set A is independent
(i.e. belongs to I) iff |A| 6 r. (ii) Partition Matroid: Given a universe U and a partition of
U as U1, · · · , Ur and non-negative integers r1, · · · , rt, the partition matroid isM = (U, I),
where a set A belongs to I iff |A ∩ Ui| 6 ri for all i = 1, 2, · · · , t.
Convex Programs: We will need the definition of a convex program, and that they can be
solved to arbitrary precision in polynomial time, via the ellipsoid method(see [12]). We refer
the reader to the excellent text [4].

3 Proof of Theorem 1
We first present the algorithm and then its analysis. To get started, we describe the intuition
behind the algorithm.

Note that co-matroid constraints are upward monotone: if a set S is feasible for such
constraints, then any superset of S is also feasible. Thus, it makes sense to find a maximal
subset of U with the maximum density. In the following description of the algorithm, one
may note that the sets D1, D2, · · · , Di are an attempt to find the maximal subset with the
largest density. Given this rough outline, the algorithm is presented in Figure 1.

We note that we can find the maximum maxX:X∩Di=∅
f(Di+X)−f(Di)

|X| in polynomial time.
This is because the function f(Di +X) for a fixed Di is supermodular (and we appeal to
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Corollary 6).
LetH∗ denote the optimal solution, i.e. the subset that maximizes the density d(S) subject

to the co-matroid constraints. Let d∗ denote the optimal density, so that f(H∗) = d∗·|H∗|.
We can make the following easy claim:

I Claim 1. The subset D1 obeys the inequality d(D1) > d∗.

This is because D1 is the densest subset in the universe U , while d∗ is the density of a specific
subset H∗.

In the following, we will have occasion to apply the following lemmas.

I Lemma 7. Let a, b, c, d, θ ∈ R+ be such that the inequalities a
b > θ and c

d > θ hold. Then
it is true that a+c

b+d > θ. Thus, if ab > c
d , then

a+c
b+d > c

d (by setting θ = c
d).

Also,

I Lemma 8. Let a, b, c, d ∈ R+ be real numbers such that a
b > c

d holds.
Suppose a > c, b > d. Then the inequality a−c

b−d > a
b holds.

Suppose c > a, d > b. Then the inequality c
d > c−a

d−b holds.

We make the following claim:

I Claim 2. The sequence of subsets D1, D2, · · · , DL obeys the following ordering:

f(D1)
|D1|

>
f(D2)− f(D1)
|D2| − |D1|

> · · · > f(Di+1)− f(Di)
|Di+1| − |Di|

> · · · > f(DL)− f(DL−1)
|DL| − |DL−1|

Proof. Consider any term in this sequence, say f(Di+1)−f(Di)
|Di+1|−|Di| . Note that Hi+1 was chosen

as arg max of f(Di+X)−f(Di)
|X| . Therefore, maxX f(Di+X)−f(Di)

|X| = f(Di+1)−f(Di)
|Di+1|−|Di| . Hence this

quantity is larger than f(Di+2)−f(Di)
|Di+2|−|Di| (as long as Di+2 is well defined). Now from the second

part of Lemma 8, we get that

f(Di+1)− f(Di)
|Di+1| − |Di|

>
f(Di+2)− f(Di)
|Di+2| − |Di|

>
f(Di+2)− f(Di+1)
|Di+2| − |Di+1|

J

Via an application of Lemma 7, we then have:

I Claim 3. Given any i (1 6 i 6 L), the following holds:

f(Di)
|Di|

>
f(Di)− f(Di−1)
|Di| − |Di−1|

Proof. We will the prove the statement by induction.
Base Case: We implicitly assume that D0 = ∅, and hence the case for i = 1 holds.
Induction Step: Assume the statement by induction for i = k, and we prove it for i = k+1.
Thus, by hypothesis we have

f(Dk)
|Dk|

>
f(Dk)− f(Dk−1)
|Dk| − |Dk−1|

Now by Claim 2 we have that

f(Dk)− f(Dk−1)
|Dk| − |Dk−1|

>
f(Dk+1)− f(Dk)
|Dk+1| − |Dk|
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Thus,

f(Dk)
|Dk|

>
f(Dk+1)− f(Dk)
|Dk+1| − |Dk|

Applying Lemma 7, we get:

f(Dk+1)
|Dk+1|

>
f(Dk+1)− f(Dk)
|Dk+1| − |Dk|

Thus we have proven the Claim by induction. J

The analysis will be broken up into two parts. We will consider the set D` in the sequence
D1, D2, · · · , DL such that the following hold:

f(D`)− f(D`−1)
|D`| − |D`−1|

>
d∗

2

but

f(D`+1)− f(D`)
|D`+1| − |D`|

<
d∗

2

Since d(D1) ≥ d∗ by Claim 1, such an ` will exist or ` = L. If ` = L, then we have a feasible
solution DL with the property that f(DL)−f(DL−1)

|DL|−|DL−1| > d∗

2 . Therefore, by Claim 3 we have
that d(DL) > d∗

2 and we are done in this case.
So we may assume that ` < L so that D` is not feasible. In this case, we will prove that

D′` has the correct density, i.e. that d(D′`) > d∗

2 .
To this end, we will prove two facts about D` and that will yield the desired result:

I Claim 4.

f(D`)− f(D` ∩H∗) >
d∗

2 (|D`| − |D` ∩H∗|)

Proof. Note that D` = H1 +H2 + · · ·+H`. For brevity, for 1 6 i 6 `, denote Hi ∩H∗ as
Ai (thus, Ai ⊆ Hi for every i). Thus, D` ∩H∗ = A1 +A2 + · · ·+A`.

We will prove the following statement by induction on i (for 1 6 i 6 `):

f(H1 +H2 +· · ·+Hi)−f(A1 +A2 +· · ·+Ai) >
d∗

2 (|H1 +H2 +· · ·+Hi|−|A1 +A2 +· · ·+Ai|)

Base Case: For i = 1, we have to prove that:

f(H1)− f(A1)
|H1| − |A1|

>
d∗

2

Since H1 is the densest subset, we have

f(H1)
|H1|

>
f(A1)
|A1|

and we may apply (the first part of) Lemma 8 to obtain the desired.
Induction Step: Assume the statement to be true for i, and we will prove it for i+ 1.
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Consider the following chain:

f(H1 + · · ·+Hi +Hi+1)− f(H1 + · · ·+Hi)
|Hi+1|

Hi+1arg max
>

f(H1 + · · ·+Hi +Ai+1)− f(H1 + · · ·+Hi)
|Ai+1|

supermodular

>

f(A1 + · · ·+Ai +Ai+1)− f(A1 + · · ·+Ai)
|Ai+1|

We would now like to apply Lemma 8 to the first and last terms in the above chain. To
this end, let us check the preconditions:

f(H1 + · · ·+Hi +Hi+1)− f(H1 + · · ·+Hi)
monotone

>

f(H1 + · · ·+Hi +Ai+1)− f(H1 + · · ·+Hi)
supermodular

>

f(A1 + · · ·+Ai +Ai+1)− f(A1 + · · ·+Ai)

Since, clearly |Hi+1| > |Ai+1|, the preconditions in Lemma 8 hold and we have:

f(H1 + · · ·+Hi+1)− f(A1 + · · ·+Ai+1)− f(H1 + · · ·+Hi) + f(A1 + · · ·+Ai)
|Hi+1| − |Ai+1|

>

f(H1 + · · ·+Hi +Hi+1)− f(H1 + · · ·+Hi)
|Hi+1|

>
d∗

2

Applying Lemma 7 to the first term in the above chain and the induction statement for i,
we obtain the desired result for i+ 1. Hence done. J

The next claim lower bounds the value f(D` ∩H∗).
Building up to the Claim, let us note that D` ∩H∗ 6= ∅. If the intersection were empty,

then H∗ is a subgraph of density d∗, and so H`+1 would be a subgraph of density at least d∗.
But then,

f(D` +H`+1)− f(D`)
|H`+1|

supermodular

>
f(H`+1)
|H`+1|

> d∗

But this contradicts the choice of D`.

I Claim 5.

f(D` ∩H∗) >
d∗

2 |D` ∩H∗|+
d∗

2 |H
∗|

Proof. Let X = H∗−D`∩H∗. Then, X∩D` = ∅ and D`+X = D`∪H∗. Then by definition
of D`, we know that f(D`+X)−f(D`)

|X| 6 f(D`+1)−f(D`)
|D`+1|−|D`| < d∗/2. Thus, f(D` ∪H∗)− f(D`) 6

d∗

2 (|H∗| − |D` ∩H∗|).
Therefore, f(D` ∪H∗) + f(D` ∩H∗) 6 f(D`) + f(D` ∩H∗) + d∗

2 (|H∗| − |D` ∩H∗|).
Applying supermodularity we have that f(D` ∪ H∗) + f(D` ∩ H∗) > f(D`) + f(H∗).

Thus, cancelling f(D`) gives us that f(D` ∩H∗) + d∗

2 (|H∗| − |D` ∩H∗|) > f(H∗). The claim
follows by observing that d∗ = f(H∗)

|H∗| . J

Note that this claim also implies that the density of the set D` ∩ H∗ is at least d∗.
Intuitively, D` ∩H∗ is a subset that has “enough f -value” as well as a “good” density.
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We may now combine the statements of Claim 4 and Claim 5 to get the following chain
of inequalities:

f(D`)
Claim 4

> f(D` ∩H∗) + d∗

2 |D`| −
d∗

2 |D` ∩H∗|
Claim 5

>
d∗

2 |D`|+
d∗

2 |H
∗|

Consider D′`: this is obtained from D` by adding suitably many elements to make D`

feasible. Let r be the minimum number of elements to be added to D` so as to make it
feasible. Since H∗ is a feasible solution too, clearly, r 6 |H∗|. With this motivation, we
define the Extension Problem for a matroidM. The input is a matroidM = (U, I) and a
subset A ⊆ U . The goal is to find a subset T of minimum cardinality such that A ∪ T ∈ I.
Lemma 9 shows that we can find such a subset T in polynomial time. Thus, we would have
that:

d(D′`) = f(D′`)
|D`|+ r

>
f(D`)
|D`|+ r

>
f(D`)

|D`|+ |H∗|
> d∗/2

and we are done with the proof of Theorem 1, modulo the proof of Lemma 9.
We proceed to present the lemma and its proof:

I Lemma 9. The Extension Problem for matroidM and subset A can be solved in polynomial
time.

Proof. The proof considers the base polyhedron of the matroid (see the text by Schrijver [17]).
We will have a variable xi for each element i ∈ U \A, where xi = 1 would indicate that we
pick the element i in our solution T . For brevity, we will also maintain a variable yi that
indicates whether i is absent from the solution T . Thus for every i, we will maintain that
xi + yi = 1. Given an arbitrary set S, we will let r(S) denote the rank of the subset S in the
matroidM.

The following is a valid integer program for the Extension Problem (where y(S) is
shorthand for

∑
i∈S yi). The linear program to the right is the relaxation of the integer

program, and with variables xi eliminated.

IP1 :

min
∑
i∈U

xi

s.t. xi + yi = 1 for all i ∈ U
y(S) 6 r(S) for all S ⊆ U
xi = 1 for all i ∈ A
xi, yi ∈ {0, 1} for all i ∈ U .

LP1 :

min
∑
i∈U

(1− yi)

s.t. y(S) 6 r(S) for all S ⊆ U
yi = 0 for all i ∈ A
yi > 0 for all i ∈ U .

The linear program LP1 can also be formulated as a maximization question. To be precise,
let VAL(LP1) denote the value of the program LP1. Then VAL(LP1) = |U | − VAL(LP2),
where LP2 is as follows:

LP2 :

max
∑
i∈U

yi

s.t. y(S) 6 r(S) for all S ⊆ U
yi = 0 for all i ∈ A
yi > 0 for all i ∈ U .

Now, by folklore results in matroid theory (cf. [17]), we have that solutions to LP2 are
integral and can be found by a greedy algorithm. Thus, we can solve IP1 in polynomial time,
and this proves the statement of the Lemma. J
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4 Proof of Theorem 3

We will present the proof for the case of the graph density function, i.e. where f(S) = |E(S)|.
The proof for arbitrary f will require a passage to the Lovász Extension Lf (x) of a set
function f(S) and is deferred to the full version [6].

We will augment the LP that Charikar [7] uses to prove that graph density is computable
in polynomial time. Given a graph G = (V,E), there are edge variables ye and vertex
variables xi in the LP. We are also given an auxiliary dependency digraph D = (V, ~A) on the
vertex set V . In the augmented LP, we also have constraints xi 6 xj if there is an arc from i

to j in the digraph D = (V, ~A). The DENdep problem is modelled by the linear program LP3.

LP3 :

max
∑
e∈E

ye

s.t.
∑
i

xi = 1

ye 6 xi ∀e ∼ i, e ∈ E
xi 6 xj ∀(i, j) ∈ ~A

xi > 0 ∀i ∈ V (G)

CP1 :

max
∑

e=(i,j)∈E

min{xi, xj}

s.t.
∑
i

xi = 1

xi 6 xj ∀(i, j) ∈ ~A

xi > 0 ∀i ∈ V (G)

Suppose we are given an optimal solution H∗ to the DENdep problem. Let VAL(LP3)
denote the feasible value of this LP: we will prove that VAL(LP3) = d(H∗).
VAL(LP3) > d(H∗):

We let |H∗| = `, and xi = 1/` for i ∈ H∗, and 0 otherwise. Likewise, we set ye = 1/` for
e ∈ E(H∗), and 0 otherwise. Note that H∗ is feasible, so if a ∈ H∗ and (a, b) ∈ ~A, then it
also holds that b ∈ H∗. We may check that the assignment x and y is feasible for the LP.
So, d(H∗) = |E(H∗)|

` is achieved as the value of a feasible assignment to the LP.
VAL(LP3) 6 d(H∗):

In the rest of the proof, we will prove that there exists a subgraphH such that VAL 6 d(H).
First, it is easy to observe that in any optimal solution of the above LP, the variables ye
will take the values min{xi, xj} where e = (i, j). Thus, we may eliminate the variables ye
from the program LP3 to obtain the program CP1. We claim that CP1 is a convex program.
Given two concave functions, the min operator preserves concavity. Thus, the objective
function of the above modified program is concave. Hence we have a convex program: here,
the objective to be maximized is concave, subject to linear constraints. We may solve the
program CP1 and get an output optimal solution x∗. Relabel the vertices of V such that the
following holds: x∗1 > x∗2 > · · · > x∗n. If there are two vertices with (modified) indices a and b
where a < b and there is an arc (a, b) ∈ ~A, then we have the equalities x∗a = x∗a+1 = · · · = x∗b .
We will replace the inequalities in the program CP1 as follows:

LP4 :

max
∑

e=(i,j)∈E:i<j

xj

s.t.
∑
i

xi = 1

xi > xi+1 for all i ∈ {1, 2, · · · , (n− 1)}
xn > 0 .

where some of the inequalities xi > xi+1 may be equalities if there is an index a with a 6 i

and an index b with b > (i+ 1) such that (a, b) ∈ ~A. Note also that because of the ordering of
the variables of this LP, the objective function also simplifies and becomes a linear function.
Clearly x∗ is a feasible solution to this LP. Thus the value of this LP is no less than the
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value of CP1. Consider a BFS x to LP4. The program LP4 has (n+ 1) constraints, and n
variables. Given the BFS x, call a constraint non-tight if it does not hold with equality under
the solution x. Thus, there may be at most one non-tight constraint in LP4. In other words,
there is at most one constraint xi > xi+1 that is a strict inequality. This, in turn, implies
that all the non-zero values in x are equal. Let there be ` such non-zero values. From the
equality

∑
i xi = 1, we get that each non-zero xi = 1/`. Let H denote the set of indices i

that have xi > 0. The objective value corresponding to this BFS x is |E(H)|/` = d(H).
Thus we have proven that d(H) > VAL(LP4) > VAL(CP1) = VAL(LP3), as required.

This completes the proof of Theorem 3.
Remarks about the proof:

We remark that the objective in the convex program CP1 is precisely the Lovász Extension
Lf (x) for the specific function f = |E(S)|. Thus our proof shows that the LP provided
by Charikar [7] is precisely the Lovász Extension for the supermodular function |E(S)|.
Note that there are other proofs possible for this result. For instance, one can follow the
basic argument of Charikar to show that LP3 satisfies d(H∗) = VAL(LP3). The proof we
provide above is new, and is inspired by the work of Iwata and Nagano [13].
Via our proof, we also prove that any BFS for the basic graph density LP has the property
that all the non-zero values are equal. This fact is not new: it was proven by Khuller and
Saha [14] but we believe our proof of this fact is more transparent.
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