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Abstract
Poljak and Turzík (Discrete Math. 1986) introduced the notion of λ-extendible properties of
graphs as a generalization of the property of being bipartite. They showed that for any 0 < λ < 1
and λ-extendible property Π, any connected graph G on n vertices and m edges contains a
spanning subgraph H ∈ Π with at least λm+ 1−λ

2 (n−1) edges. The property of being bipartite is
λ-extendible for λ = 1/2, and thus the Poljak-Turzík bound generalizes the well-known Edwards-
Erdős bound for Max-Cut.

We define a variant, namely strong λ-extendibility, to which the Poljak-Turzík bound applies.
For a strongly λ-extendible graph property Π, we define the parameterized Above Poljak-
Turzík (Π) problem as follows: Given a connected graph G on n vertices and m edges and an
integer parameter k, does there exist a spanning subgraph H of G such that H ∈ Π and H has
at least λm+ 1−λ

2 (n− 1) + k edges? The parameter is k, the surplus over the number of edges
guaranteed by the Poljak-Turzík bound.

We consider properties Π for which the Above Poljak-Turzík (Π) problem is fixed-
parameter tractable (FPT) on graphs which are O(k) vertices away from being a graph in which
each block is a clique. We show that for all such properties, Above Poljak-Turzík (Π) is FPT
for all 0 < λ < 1. Our results hold for properties of oriented graphs and graphs with edge labels.

Our results generalize the recent result of Crowston et al. (ICALP 2012) on Max-Cut
parameterized above the Edwards-Erdős bound, and yield FPT algorithms for several graph
problems parameterized above lower bounds. For instance, we get that the above-guarantee
Max q-Colorable Subgraph problem is FPT. Our results also imply that the parameterized
above-guarantee Oriented Max Acyclic Digraph problem is FPT, thus solving an open
question of Raman and Saurabh (Theor. Comput. Sci. 2006).
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1 Introduction

A number of interesting graph problems can be phrased as follows: Given a graph G as input,
find a subgraph H of G with the largest number of edges such that H satisfies a specified
property Π. Prominent among these is the Max-Cut problem, which asks for a bipartite
subgraph with the maximum number of edges. A cut of a graph G is a partition of the vertex
set of G into two parts, and the size of the cut is the number of edges which cross the cut;
that is, those which have their end points in distinct parts of the partition.

Max-Cut
Input: A graph G and an integer k.
Question: Does G have a cut of size at least k?

The Max-Cut problem is among Karp’s original list of 21 NP-complete problems [15],
and it has been extensively investigated from the point of view of various algorithmic
paradigms. Thus, for example, Goemans and Williamson showed [13] that the problem can
be approximated in polynomial-time within a multiplicative factor of roughly 0.878, and
Khot et al. showed that this is the best possible assuming the Unique Games Conjecture [16].

Our focus in this work is on the parameterized complexity of a generalization of the
Max-Cut problem. The central idea in the parameterized complexity analysis [8, 12] of
NP-hard problems is to associate a parameter k with each input instance of size n, and then
to ask whether the resulting parameterized problem can be solved in time f(k) · nc where c is
a constant and f is some computable function. Parameterized problems which can be solved
within such time bounds are said to be fixed-parameter tractable (FPT).

The standard parameterization of the Max-Cut problem sets the parameter to be the
size k of the cut being sought. This turns out to be not very interesting for the following
reason: Let m be the number of edges in the input graph G. By an early result of Erdős [11],
we know that every graph with m edges contains a cut of size at least m/2. Therefore, if
k ≤ m/2 then we can immediately answer YES. In the remaining case k > m/2, and there
are less than 2k edges in the input graph. It follows from this bound on the size of the input
that any algorithm—even a brute-force method—which solves the problem runs in FPT time
on this instance.

The best lower bound known on the size of a largest cut for connected loop-less graphs
on n vertices and m edges is m

2 + n−1
4 , as proved by Edwards [9, 10]. This is called the

Edwards-Erdős bound, and it is the best possible in the sense that it is tight for an infinite
family of graphs, for example, the class of cliques of odd order n. A more interesting
parameterization of Max-Cut is, therefore, the following:

Max-Cut Above Tight Lower Bound (Max-Cut ATLB)
Input: A connected graph G, and an integer k.
Parameter: k

Question: Does G have a cut of size at least m
2 + n−1

4 + k?

In the work which introduced the notion of “above-guarantee” parameterization, Mahajan
and Raman [17] showed that the problem of asking for a cut of size at least m

2 + k is FPT
parameterized by k, and stated the fixed-parameter tractability of Max-Cut ATLB as an
open problem. This question was resolved quite recently by Crowston et al. [6], who showed
that the problem is in fact FPT.

We generalize the result of Crowston et al. by extending it to apply to a special case of
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the so-called λ-extendible properties. Roughly stated1, for a fixed 0 < λ < 1 a graph property
Π is said to be λ-extendible if: Given a graph G = (V,E) ∈ Π, an “extra” edge uv not in
G, and any set F of “extra” edges each of which has one end point in {u, v} and the other
in V , there exists a graph H ∈ Π which contains (i) all of G, (ii) the edge uv, and (iii) at
least a λ fraction of the edges in F . The notion was introduced by Poljak and Turzík who
showed [20] that for any λ-extendible property Π and edge-weighting function c : E → R+,
any connected graph G = (V,E) contains a spanning subgraph H = (V, F ) ∈ Π such that
c(F ) ≥ λ · c(E) + 1−λ

2 c(T ). Here c(X) denotes the total weight of all the edges in X, and T
is the set of edges in a minimum-weight spanning tree of G. It is not difficult to see that
the property of being bipartite is λ-extendible for λ = 1/2, and so—once we assign unit
weights to all edges—the Poljak and Turzík result implies the Edwards-Erdős bound. Other
examples of λ-extendible properties—with different values of λ—include q-colorability and
acyclicity in oriented graphs.

In this work we study the natural above-guarantee parameterized problem for λ-extendible
properties Π, which is: given a connected graph G = (V,E) and an integer k as input, does
G contain a spanning subgraph H = (V, F ) ∈ Π such that c(F ) = λ · c(E) + 1−λ

2 c(T ) + k?
To derive a generic FPT algorithm for this class of problems, we use the “reduction” rules of
Crowston et al. To make these rules work, however, we need to make a couple of concessions.
Firstly, we slightly modify the notion of lambda extendibility; we define a (potentially)
stronger notion which we name strong λ-extendibility. Every strongly λ-extendible property
is also λ-extendible by definition, and so the Poljak-Turzík bound applies to strongly λ-
extendible properties as well. Observe that for each way of assigning edge-weights, the Poljak
and Turzík result yields a (potentially) different lower bound on the weight of the subgraph.
Following the spirit of the question posed by Mahajan and Raman and solved by Crowston
et al., we choose from among these the lower bound implied by the unit-edge-weighted case.
This is our second simplification, and for this “unweighted” case the Poljak and Turzík result
becomes: for any strongly λ-extendible property Π, any connected graph G = (V,E) contains
a spanning subgraph H = (V, F ) ∈ Π such that |F | = λ · |E|+ 1−λ

2 (|V | − 1).
The central problem which we discuss in this work is thus the following; here 0 < λ < 1,

and Π is an arbitrary—but fixed—strongly λ-extendible property:

Above Poljak-Turzík (Π) (APT(Π))
Input: A connected graph G = (V,E) and an integer k.
Parameter: k

Question: Is there a spanning subgraph H = (V, F ) ∈ Π of G such that
|F | ≥ λ|E|+ 1−λ

2 (|V | − 1) + k?

1.1 Our Results and their Implications

We show that the Above Poljak-Turzík (Π) problem is FPT for every strongly λ-extendible
property Π for which APT(Π) is FPT on a class of “almost-forests of cliques”. Informally1,
this is a class of graphs which are a small number (O(k)) of vertices away from being a graph
in which each block is a clique. This requirement is satisfied by the properties underlying a
number of interesting problems, including Max-Cut, Max q-Colorable Subgraph, and
Oriented Max Acyclic Digraph. The main result of this paper is the following.

1 See subsection 1.2 and section 2 for the definitions of various terms used in this section.
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I Theorem 1. The Above Poljak-Turzík (Π) problem is fixed-parameter tractable for a
λ-extendible property Π of graphs if

Π is strongly λ-extendible and
Above Poljak-Turzík (Π) is FPT on almost-forests of cliques.

This also holds for such properties of oriented and/or labelled graphs.

We prove Theorem 1 using the classical “Win/Win” approach of parameterized complexity.
To wit: given an instance (G, k) of a strongly λ-extendible property Π, in polynomial time
we either (i) show that (G, k) is a yes instance, or (ii) find a vertex subset S of G of size
at most 6k/(1 − λ) such that deleting S from G leaves a “forest of cliques”. To do this
we use the “reduction” rules derived by Crowston et al. [6] to solve Max-Cut. Our main
technical contribution is a proof that these rules are sufficient to show that every NO instance
of APT(Π) is at a vertex-deletion distance of O(k) from a forest of cliques. This proof
requires several new ideas: a result which holds for all strongly λ-extendible properties Π is
a significant step forward from Max-Cut. Our main result unifies and generalizes several
known FPT results, and implies new ones. These include such algorithms for (i) Max-Cut,
(ii) finding a q-colorable subgraph of the maximum size, and (ii) finding a maximum-size
acyclic subdigraph in an oriented graph. We also obtain a linear vertex kernel for the latter
problem, complementing the quadratic arc kernel by Gutin et al. [14].

Related Work. The notion of parameterizing above (or below) some kind of “guaranteed”
values—lower and upper bounds, respectively—was introduced by Mahajan and Raman [17].
It has proven to be a fertile area of research, and Max-Cut is now just one of a host of
interesting problems for which we have FPT results for such questions [1, 2, 3, 4, 5, 6, 14, 18, 21].
Indeed, very recent work due to Crowston et al. [4], where they take up an above-guarantee
parameterization of the problem of finding a large acyclic digraph in an oriented graph,
appears as an article in these selfsame proceedings; see the discussion after Corollary 32.

1.2 Preliminaries
We use “graph” to denote simple graphs without self-loops, directions, or labels, and assume
the graph terminology of Diestel [7]. V (G) and E(G) denote, respectively, the vertex and
edge sets of a graph G. For S ⊆ V (G), we use (i) G[S] to denote the subgraph of G induced
by the set S, (ii) G \ S to denote G[V (G) \ S], (iii) δ(S) to denote the set of edges in G

which have exactly one end-point in S, and (iv) eG(S) to denote |E(G[S])|; we omit the
subscript G if it is clear from the context. A clique in a graph G is a set of vertices C such
that between any pair of vertices in C there is an edge in E(G). A block of graph G is a
maximal 2-connected subgraph of G, and a graph G is a forest of cliques if the vertex set of
every block forms a clique. A leaf clique of a forest of cliques is a block of the graph which
contains at most one cutvertex of the graph.

For F ⊆ E(G), (i) we use G \ F to denote the graph (V (G), E(G) \ F ), and (ii) for a
weight function c : E(G) → R+, we use c(F ) to denote the sum of the weights of all the
edges in F . A graph property is a collection of graphs. For i, j ∈ N we use Ki to denote the
complete graph on i vertices, and Ki,j to denote the complete bipartite graph in which the
two parts of vertices are of sizes i, j.

Our results also apply to graphs with oriented edges, and those with edge labels. Subgraphs
of an oriented or labelled graph G inherit the orientation or labelling—as is the case—of G in
the natural manner: each surviving edge keeps the same orientation/labelling as it had in G.
For a graph G of any kind, we use GS to denote the simple graph obtained by removing
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all orientations and labels from G; we say that G is connected (or contains a clique, and so
forth) if GS is connected (or contains a clique, and so forth).

2 Definitions

The following notion is a variation on the concept of λ-extendibility [20].

I Definition 2 (Strong λ-extendibility). Let G be the class of (possibly oriented and/or
labelled) graphs, and let 0 < λ < 1. A property Π ⊆ G is strongly λ-extendible if it satisfies
the following:
Inclusiveness {G ∈ G |GS ∈ {K1,K2}} ⊆ Π
Block additivity G ∈ G belongs to Π if and only if each block of G belongs to Π.
Strong λ-subgraph extension Let G ∈ G and S ⊆ V (G) be such that G[S] ∈ Π and

G \ S ∈ Π. For any weight function c : E(G) → R+ there exists an F ⊆ δ(S) with
c(F ) ≥ λ · c(δ(S)), such that G \ (δ(S) \ F ) ∈ Π.

The strong λ-subgraph extension requirement can be rephrased as follows: Let V (G) =
X ] Y be a cut of graph G such that G[X], G[Y ] ∈ Π, and let F be the set of edges which
cross the cut. For any weight function c : F → R+, there exists a subset F ′ ⊆ F such that
(i) c(F ′) ≤ (1− λ) · c(F ), and (ii) (G \ F ′) ∈ Π. Informally, one can pick a λ-fraction of the
cut and delete the rest to obtain a graph which belongs to Π.

We recover Poljak and Turzík’s definition of λ-extendibility from the above definition by
replacing strong λ-subgraph extension with the following property:
λ-edge extension Let G ∈ G and S ⊆ V (G) be such that GS [S] is isomorphic to K2 and

G \ S ∈ Π. For any weight function c : E(G) → R+ there exists an F ⊆ δ(S) with
c(F ) ≥ λ · c(δ(S)), such that G \ (δ(S) \ F ) ∈ Π.

Observe from the definitions that any graph property which is strongly λ-extendible
is also λ-extendible. It follows that Poljak and Turzík’s result for λ-extendible properties
applies also to strongly λ-extendible properties.

I Theorem 3 (Poljak-Turzík bound). [20] Let G be a class of (possibly oriented and/or
labelled) graphs. Let 0 < λ < 1, and let Π ⊆ G be a strongly λ-extendible property. For any
connected graph G ∈ G and weight function c : E(G)→ R+, there exists a spanning subgraph
H ∈ Π of G such that c(E(H)) ≥ λ · c(E(G)) + 1−λ

2 c(T ), where T is the set of edges in a
minimum-weight spanning tree of GS.

When all edges are assigned weight 1, we get:

I Corollary 4. Let G, λ,Π be as in Theorem 3. Any connected graph G ∈ G on n vertices
and m edges has a spanning subgraph H ∈ Π with at least λm+ 1−λ

2 (n− 1) edges.

Our results apply to properties which satisfy the additional requirement of being FPT on
almost-forests of cliques.

I Definition 5 (FPT on almost-forests of cliques). Let 0 < λ < 1, and let Π be a strongly
λ-extendible property (of graphs with or without orientations/labels). The Structured
Above Poljak-Turzík (Π) problem is a variant of the Above Poljak-Turzík (Π)
problem in which, along with the graph G and k ∈ N, the input contains a set S ⊆ V (G)
such that |S| = O(k) and G \ S is a forest of cliques. We say that the property Π is FPT on
almost-forests of cliques if the Structured Above Poljak-Turzík (Π) problem is FPT.
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In other words, a λ-extendible property Π is FPT on almost-forests of cliques, if for any
constant q there is an algorithm that, given a connected graph G, k and a set S ⊆ V (G) of
size at most q · k such that G \ S is a forest of cliques, correctly decides whether (G, k) is a
yes-instance of APT(Π) in O(f(k) · nO(1)) time, for some computable function f .

3 Fixed-Parameter Algorithms for Above Poljak-Turzík (Π)

We now prove Theorem 1 using Crowston et al.’s line of attack for solving Max-Cut [6].
The crux of their strategy is a polynomial-time procedure which takes the input (G, k) of
Max-Cut and finds a subset S ⊆ V (G) such that (i) G \ S is a forest of cliques, and (ii) if
(G, k) is a NO instance, then |S| ≤ 3k. Thus if |S| > 3k, then one can immediately answer
YES; otherwise one solves the problem in FPT time using the fact that Max-Cut is FPT on
almost-forests of cliques (Definition 5).

The nontrivial part of our work consists of proving that the procedure for Max-Cut
applies also to the much more general family of strongly λ-extendible problems, where the
bound on the size of S depends on λ. To do this, we show that each of the four rules used
for Max-Cut is safe to apply for any strongly λ-extendible property. From this we get

I Lemma 6. Let 0 < λ < 1, and let Π be a strongly λ-extendible graph property. Given a
connected graph G with n vertices and m edges and an integer k, in polynomial time we can
do one of the following:
1. Decide that there is a spanning subgraph H ∈ Π of G with at least λm+ 1−λ

2 (n− 1) + k

edges, or;
2. Find a set S of at most 6

1−λk vertices in G such that G \ S is a forest of cliques.
This also holds for strongly λ-extendible properties of oriented and/or labelled graphs.

We give an algorithmic proof of Lemma 6. Let (G, k) be an instance of Above Poljak-
Turzík (Π). The algorithm initially sets G̃ := G, S̃ := ∅, k̃ := k, and then applies a series of
rules to the tuple (G̃, S̃, k̃). Each application of a rule to (G̃, S̃, k̃) produces a tuple (G′, S′, k′)
such that (i) if G̃ \ S̃ is connected then so is G′ \ S′, and (ii) if (G̃ \ S̃, k̃) is a NO instance
of APT(Π) then so is (G′ \ S′, k′); the converse may not hold. The algorithm then sets
G̃ := G′, S̃ := S′, k̃ := k′, and repeats the process, till none of the rules applies.

We now state the four rules—which, but for minor changes, are due to Crowston et
al. [6]—and show that they suffice to prove Lemma 6. We assume throughout that λ and
Π are as in Lemma 6. For brevity we assume that the empty graph is in Π, and we let
λ′ = 1

2 (1− λ) so that λ+ 2λ′ = 1.

I Rule 1. Let G̃ \ S̃ be connected. If v ∈ (V (G̃) \ S̃) and X ⊆ (V (G̃) \ (S̃ ∪ {v})) are such
that (i) G̃[X] is a connected component of G̃ \ (S̃ ∪ {v}), and (ii) X ∪ {v} is a clique in G̃,
then delete X from G̃ to get G′; set S′ = S̃, k′ = k̃.

I Rule 2. Let G̃ \ S̃ be connected. Suppose Rule 1 does not apply, and let X1, . . . , X` be
the connected components of G̃ \ (S̃ ∪ {v}) for some v ∈ V (G̃) \ S̃. If at least one of the Xis
is a clique, and at most one of them is not a clique, then

Delete all the Xis which are cliques—let these be d in number—to get G′, and
Set S′ := S̃ ∪ {v} and k′ := k̃ − dλ′.

I Rule 3. Let G̃ \ S̃ be connected. If a, b, c ∈ V (G̃) \ S̃ are such that {a, b}, {b, c} ∈ E(G̃),
{a, c} /∈ E(G̃), and G̃ \ (S̃ ∪ {a, b, c}) is connected, then

Set S′ := S̃ ∪ {a, b, c} and k′ := k̃ − λ′.
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I Rule 4. Let G̃ \ S̃ be connected. Suppose Rule 3 does not apply, and let x, y ∈ V (G̃) \ S̃
be such that {x, y} /∈ E(G̃). Let C1, . . . , C` be the connected components of G̃ \ (S̃ ∪ {x, y}).
If there is at least one Ci such that (i) both V (Ci) ∪ {x} and V (Ci) ∪ {y} are cliques in
G̃ \ S̃, and (ii) there is at most one Ci for which (i) does not hold, then

Delete all the Cis which satisfy condition (i) above to get G′, and,
Set S′ := S̃ ∪ {x, y}, k′ := k̃ − λ′.

Let (G?, S, k?) be the tuple which we get by applying these rules exhaustively to the
input tuple (G, ∅, k). To prove Lemma 6, it is sufficient to prove the following claims: (i) the
rules can be exhaustively applied in polynomial time; (ii) G \ S is a forest of cliques; (iii) the
rules transform NO-instances to NO-instances; and, (iv) if (G, k) is a NO instance, then
|S| ≤ 6

1−λk. We now proceed to prove these over several lemmata. Our rules are identical to
those of Crowston et al. in how the rules modify the graph; the only difference is in how we
change the parameter k. The first two claims thus follow directly from their work.

I Lemma 7. [?]2 Rules 1 to 4 can be exhaustively applied to an instance (G, k) of Above
Poljak-Turzík (Π) in polynomial time. The resulting tuple (G?, S, k?) has |V (G?)\S| ≤ 1.

I Lemma 8. [6, Lemma 8] Let (G?, S, k?) be the tuple obtained by applying Rules 1 to 4
exhaustively to an instance (G, k) of Above Poljak-Turzík (Π). Then G \ S is a forest
of cliques.

The correctness of the remaining two claims is a consequence of the λ-extendibility of
property Π, and we make critical use of this fact in building the rest of our proof. This is
the one place where this work is significantly different from the work of Crowston et al.;
they could take advantage of the special characteristics of one specific property, namely
bipartitedness, to prove the analogous claims for Max-Cut.

We say that a rule is safe if it preserves NO instances.

I Definition 9. Let (G̃, S̃, k̃) be an arbitrary tuple to which one of the rules 1, 2, 3, or 4
applies, and let (G′, S′, k′) be the resulting tuple. We say that the rule is safe if, whenever
(G′ \ S′, k′) is a YES instance of Above Poljak-Turzík (Π), then so is (G̃ \ S̃, k̃).

We now prove that each of the four rules is safe. For a graph G we use val(G) to
denote the maximum number of edges in a subgraph H ∈ Π of G, and pt(G) to denote the
Poljak-Turzík bound for G. Thus if G is connected and has n vertices and m edges then
pt(G) = λm+ λ′(n− 1), and Corollary 4 can be written as val(G) ≥ pt(G). For each rule
we assume that G′ \ S′ has a spanning subgraph H ′ ∈ Π with at least pt(G′ \ S′) + k′ edges,
and show that G̃ \ S̃ has a spanning subgraph H̃ ∈ Π with at least pt(G̃ \ S̃) + k̃ edges.

We first derive a couple of lemmas which describe how contributions from subgraphs of a
graph G add up to yield lower bounds on val(G).

I Lemma 10. [?] Let v be a cutvertex of a connected graph G, and let C = C1, C2, . . . Cr; r ≥ 2
be sets of vertices of G such that (i) for every i 6= j we have Ci ∩ Cj = {v}, (ii) there is no
edge between Ci \ {v} and Cj \ {v}, and (iii)

⋃
1≤i≤r Ci = V (G). For 1 ≤ i ≤ r, let Hi ∈ Π

be a subgraph of G[Ci] with pt(G[Ci]) + ki edges, and let H = (V (G),
⋃r
i=1 E(Hi)). Then H

is a subgraph of G, H ∈ Π, and |E(H)| ≥ pt(G) +
∑r
i=1 ki.

2 Proofs of results marked with a ? have been deferred to the full version of the paper, a preprint of which
is available on arXiv [19].



M. Mnich, G. Philip, S. Saurabh, and O. Suchý 419

I Lemma 11. [?] Let G be a graph, and let S ⊆ V (G) be such that there exist (i) a subgraph
HS ∈ Π of G[S] with at least pt(G[S]) + λ′ + kS edges, and (ii) a subgraph H ∈ Π of G \ S
with at least pt(G \ S) + λ′ + k edges. Then there is a subgraph H ∈ Π of G with at least
pt(G) + λ′ + kS + k edges.

This lemma has a useful special case which we state as a corollary:

I Corollary 12. Let G be a graph, and let S ⊆ V (G) be such that (i) there exists a subgraph
HS ∈ Π of G[S] with at least pt(G[S]) + λ′ + kS edges, and (ii) the subgraph G \ S has a
perfect matching. Then there is a subgraph H ∈ Π of G with at least pt(G) + λ′ + kS edges.

Proof. Recall that the graph K2 is in Π by definition, and observe that pt(K2) = λ+λ′. Thus
K2 has pt(K2) + λ′ edges. The corollary now follows by repeated application of Lemma 11,
each time considering a new edge of the matching as the graph H. J

The safeness of Rule 1 is now a consequence of the block additivity property.

I Lemma 13. [?] Rule 1 is safe.

We now prove some useful facts about certain simple graphs, in the context of strongly
λ-extendible properties. Observe that every block of a forest is one of {K1,K2}, which are
both in Π. From this and the block additivity property of Π we get

I Observation 14. Every forest (with every orientation and labeling) is in Π.

The graph K2,1 is a useful special case.

I Observation 15. The graph K2,1—also with any kind of orientation or labelling—is in Π,
and it has pt(K2,1) + λ′ + λ′ edges.

The graph obtained by removing one edge from K4 is another useful object, since it
always has more edges than its Poljak-Turzík bound.

I Lemma 16. [?] Let G be a graph formed from the graph K4—also with any kind of
orientation or labelling—by removing one edge. Then (i) val(G) ≥ 3, (ii) val(G) ≥ 4 if
λ > 1/3, and (iii) val(G) = 5 if λ > 1/2. As a consequence,

val(G) ≥ pt(G) + λ′ +


(1− 3λ) if λ ≤ 1/3,
(2− 3λ) if 1/3 < λ ≤ 1/2, and,
(3− 3λ) if λ > 1/2.

(1)

The above lemmata help us prove that Rules 2 and 3 are safe.

I Lemma 17. [?] Rule 2 is safe.

Following the notation of Rule 3, observe that for the vertex subset T = {a, b, c} ⊆ V (G̃\S̃)
we have—from Observation 15—that G̃[T ] ∈ Π and val(T ) ≥ pt(T ) + λ′ + λ′. Since
G′ \ S′ = (G̃ \ S̃) \ T , if val(G′ \ S′) ≥ pt(G′ \ S′) + k′ then applying Lemma 11 we get that
val(G̃ \ S̃) ≥ pt(G̃ \ S̃) + λ′ + k′ = pt(G̃ \ S̃) + k̃. Hence we get

I Lemma 18. Rule 3 is safe.

To show that Rule 4 is safe, we need a number of preliminary results. We first observe
that—while the rule is stated in a general form—the rule only ever applies when it can delete
exactly one component.
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I Observation 19. [?] Whenever Rule 4 applies, there is exactly one component to be
deleted, and this component has at least 2 vertices.

Our next few lemmas help us further restrict the structure of the subgraph to which
Rule 4 applies. We start with a result culled from Crowston et al.’s analysis of the four rules.

I Lemma 20. [6][?] If none of Rules 1, 2, and 3 applies to (G̃, S̃, k̃), and Rule 4 does
apply, then one can find

A vertex r ∈ V (G̃ \ S̃) and a set X ⊆ V (G̃ \ S̃) such that X is a connected component of
G̃ \ (S̃ ∪ {r}), and the graph (G̃ \ S̃)[X ∪ {r}] is 2-connected;
Vertices x, y ∈ X such that {x, y} /∈ E(G̃) and

(G̃ \ S̃) \ {x, y} has exactly two components G′, C,
r ∈ G′; C ∪ {x}, C ∪ {y} are cliques, and each of x, y is adjacent to some vertex in G′

From this we get the following.

I Lemma 21. [?] Suppose Rules 1, 2, and 3 do not apply, and Rule 4 applies. Then we can
apply Rule 4 in such a way that if x, y are the vertices to be added to S̃ and C the clique to
be deleted, then N(x) ∪N(y) \ (C ∪ S̃) contains at most one vertex z such that G̃ \ (S̃ ∪ {z})
is disconnected.

We now show that in such a case N(x) \ (C ∪ S̃) = N(y) \ (C ∪ S̃) = {r}, and so the
graph G̃ \ (S̃ ∪ {r}) is not connected. First we need the following simple lemma.

I Lemma 22. [?] Whenever Rule 4 applies, with x, y the vertices to be added to S̃ and C
the clique to be deleted, every u in N(x) \ (C ∪ S̃) is a cutvertex in G̃ \ (S̃ ∪ {x}) and every
u in N(y) \ (C ∪ S̃) is a cutvertex in G̃ \ (S̃ ∪ {y}).

This allows us to enforce a very special way of applying Rule 4.

I Lemma 23. [?] Suppose Rules 1, 2, and 3 do not apply, and Rule 4 applies. Then we can
apply Rule 4 in such a way that if x, y are the vertices to be added to S̃ and C the clique to
be deleted, then N(x) \ (C ∪ S̃) = N(y) \ (C ∪ S̃) = {z}, and G̃ \ (S̃ ∪ {z}) is disconnected.

These lemmas help us prove that Rule 4 is safe.

I Lemma 24. [?] Rule 4 is safe.

The next lemma gives us a bound on the size of the set S which we compute.

I Lemma 25. [?] Let G̃ be a connected graph, S̃ ⊆ V (G̃), and k̃ ∈ N, and let one application
of Rule 1, 2, 3, or 4 to (G̃, S̃, k̃) result in the tuple (G′, S′, k′). Then |S′ \ S̃| ≤ 3(k̃ − k′)/λ′.

Now we are ready to prove Lemma 6, from which our main result (Theorem 1) easily
follows.

Proof (of Lemma 6). Let (G, k) be an input instance of Above Poljak-Turzík (Π), and
let (G?, S, k?) be the tuple which we get by applying the four rules exhaustively to the tuple
(G, ∅, k). From Lemma 7 we know that this can be done in polynomial time, and that the
resulting graph satisfies |V (G?) \ S| ≤ 1.

Thus G? \ S is either K1 or the empty graph, and so G? \ S ∈ Π and pt(G? \ S) =
0, |E(G? \ S)| = 0. Hence if k? ≤ 0 then (G? \ S, k?) is a YES instance of Above Poljak-
Turzík (Π). Since all the four rules are safe—Lemmas 13, 17, 18, and 24—we get that in
this case (G, k) is a YES instance, and we can return YES. On the other hand if k? > 0
then we know—using Lemma 25—that |S| < 3k/λ′ = 6k/(1−λ), and—from Lemma 8—that
G \ S is a forest of cliques. This completes the proof. J
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4 Applications

In this section we use Theorem 1 to show that Above Poljak-Turzík (Π) is FPT for
almost all natural examples of λ-extendible properties listed by Poljak and Turzík [20]. For
want of space, we defer the definitions and all proofs to the full version of the paper.

4.1 Application to Partitioning Problems
First we focus on properties specified by a homomorphism to a vertex transitive graph. As a
graph is h-colorable if and only if it has a homomorphism to Kh, searching for a maximal
h-colorable subgraph is one of the problems resolved in this section. In particular, a maximum
cut equals a maximum bipartite subgraph and, hence, is also one of the properties studied in
this section. We use G to denote the class of graphs—oriented or edge-labelled—to which
the property in question belongs.

It is not difficult to see that every vertex-transitive graph G is a regular graph. In
particular, if G allows labels and/or orientations, then for every label l and every orientation
r each vertex of a vertex transitive graph G is incident to the same number of edges of label
l and orientation r. Let us denote this number dl,r(G). Let us also denote by dG(G) the
minimum of dl,r(G) over all labels and orientations allowed in G.

I Lemma 26. [?] Let G0 be a vertex-transitive graph with at least one edge of every label and
orientation allowed in G. Then the property “to have a homomorphism to G0” is strongly
d/n0-extendible in G, where n0 is the number of vertices of G0 and d = dG(G0).

Note that while the above lemma poses no restrictions on the graphs considered, we can
prove the following only for simple graphs.

I Lemma 27. [?] If G0 is an unoriented unlabeled graph, then the problem APT(“to have a
homomorphism into G0”) is FPT on almost-forests of cliques.

Lemma 26 and Lemma 27 together with Theorem 1 imply the following corollary.

I Corollary 28. The problem APT(“to have a homomorphism into G0”) is fixed-parameter
tractable for every unoriented unlabeled vertex transitive graph G0.

In particular, by setting G0 = Kq we get the following result.

I Corollary 29. Given a graph G with m edges and n vertices and an integer k, it is FPT
to decide whether G has an q-colorable subgraph with at least m · (q− 1)/q+ (n− 1)/(2q) + k

edges.

This shows that the Max q-Colorable Subgraph problem is FPT when parameterized
above the Poljak and Turzík bound [20].

4.2 Finding Acyclic Subgraphs of Oriented Graphs
In this section we show how to apply our result to the problem of finding a maximum-size
directed acyclic subgraph of an oriented graph, where the size of the subgraph is defined as
the number of arcs in the subgraph. Recall that an oriented graph is a directed graph where
between any two vertices there is at most one arc. We show that Theorem 1 applies to this
problem. To this end we need the following two lemmata.

I Lemma 30. [?] The property “acyclic oriented graphs” is strongly 1/2-extendible in the
class of oriented graphs.
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I Lemma 31. [?] The problem APT(“acyclic oriented graphs”) is FPT on almost-forests of
cliques.

Combining Lemmata 30 and 31 with Theorem 1 we get the following corollary.

I Corollary 32. The problem APT(“acyclic oriented graphs”) is fixed-parameter tractable.

To put this result in some context, we recall a couple of open problems posed by Raman
and Saurabh [21]: Are the following questions FPT parameterized by k?

Given an oriented directed graph on n vertices and m arcs, does it have a subset of at
least m

2 + 1
2 (dn−1

2 e) + k arcs that induces an acyclic subgraph?
Given a directed graph on n vertices and m arcs, does it have a subset of at least m/2 +k

arcs that induces an acyclic subgraph?

In the first question, a “more correct” lower bound is the one of Poljak and Turzík, i.e.,
m
2 + 1

2
(n−1)

2 , and the lower bound is true only for connected graphs. Without the connectivity
requirement, the problem is NP-hard already for k = 0: The reduction is from the NP-hard
problem of finding if a connected oriented graph has an acyclic subgraph with m

2 + 1
2

(n−1)
2 +k

arcs, and consists of adding 4k disjoint oriented 3-cycles. Corollary 32 answers the corrected
question. Crowston et al. take up this problem in their recent independent work [4], a version
of which appears as another article in these proceedings. In addition to showing that the
problem is FPT, they also derive an O(k2) kernel for the problem.

For the second question, observe that each maximal acyclic subgraph contains exactly
one arc from every pair of opposite arcs. Hence we can remove these pairs from the digraph
without changing the relative solution size, as exactly half of the removed arcs can be added
to any solution to the modified instance. Thus, we can restrict ourselves to oriented graphs.

Now suppose that the oriented graph which we have as input is disconnected. It is easy to
check that picking two vertices from different connected components and identifying them does
not change the solution size, as this way we never create a cycle from an acyclic graph. After
applying this reduction rule exhaustively, the digraph becomes an oriented connected graph,
and the parameter is unchanged. But then if k ≤ (n− 1)/4 then m/2 + k ≤ m/2 + (n− 1)/4
and we can answer YES due to Corollary 4. Otherwise n ≤ 4k, we have a linear vertex kernel,
and we can solve the problem by the well known dynamic programming on the kernel [22].
The total running time of this algorithm is O(24k · k2 +m). The smallest kernel previously
known for this problem is by Gutin et al., and has a quadratic number of arcs [14].

5 Conclusion and Open Problems

In this paper we studied a generalization of the graph property of being bipartite, from the
point of view of parameterized algorithms. We showed that for every strongly λ-extendible
property Π which satisfies an additional “solvability” constraint, the Above Poljak-Turzík
(Π) problem is FPT. As an illustration of the usefulness of this result, we obtained FPT
algorithms for the above-guarantee versions of three graph problems.

Note that for each of the three problems—Max-Cut, Max q-Colorable Subgraph,
and Oriented Max Acyclic Digraph—for which we used Theorem 1 to derive FPT
algorithms for the above-guarantee question, we needed to devise a separate FPT algorithm
which works for graphs that are at a vertex deletion distance of O(k) from forests of cliques.
We leave open the important question of finding a right logic that captures these examples,
and of showing that any problem expressible in this logic is FPT parameterized by deletion
distance to forests of cliques. We also leave open the kernelization complexity question for
λ-extendible properties.
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