Minimum Enclosing Circle with Few Extra
Variables

Minati De!, Subhas C. Nandy!, and Sasanka Roy?

1 Indian Statistical Institute, Kolkata - 700108, India
{minati_r,nandysc}@isical.ac.in

2 Chennai Mathematical Institute, Chennai - 603103, India
sasanka@cmi.ac.in

—— Abstract

Asano et al. [JoCG 2011] proposed an open problem of computing the minimum enclosing circle
of a set of n points in R“ given in a read-only array in sub-quadratic time. We show that
Megiddo’s prune and search algorithm for computing the minimum radius circle enclosing the
given points can be tailored to work in a read-only environment in O(n!*€) time using O(logn)
extra space, where € is a positive constant less than 1. As a warm-up, we first solve the same
problem in an in-place setup in linear time with O(1) extra space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases Minimum enclosing circle, space-efficient algorithm, prune-and-search

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.510

1 Introduction

The minimum enclosing circle (MEC) for a set of points P is defined to be a circle of minimum
radius that encloses all the points in P. The problem of finding the minimum enclosing circle
has several vital applications. One such example is in planning the location of placing a
shared facility like a hospital, gas station, or sensor devices etc. The center of the minimum
enclosing circle will be the desired location for placing the facility. In the location theory
community, this type of problem is known as the 1-center problem. It is first proposed by
Sylvester in the year 1857 [15], and it asks for the location of a single facility that minimizes
the distance (in some chosen metric) of the farthest demand point from the facility. Thus
the problem we are considering is the Euclidean version of the 1-center problem. Elzinga
et al. with their work [8] paved the way for solving minimax problems with elementary
geometry, and proposed an O(n?) time algorithm for the Euclidean 1-center problem for
a point set P, where |P| = n. Note that, (i) the MEC for the point set P is the same as
the MEC for the convex hull of P (denoted by CH(P)), (ii) the center of the MEC of P is
either on the mid-point of the diameter of CH(P) or one of the vertices of the farthest point
Voronoi diagram of P (denoted by FV D(P)), and (iii) FVD(P) = FVD(CH(P)). Since
both computing CH(P) and FV D(P) need O(nlogn) time [14], we have an O(nlogn) time
algorithm for computing the MEC of the point set P. The best known result for computing
the MEC is an O(n) time algorithm proposed by Megiddo [10]. Later Welzl [16] proposed
an easy to implement randomized algorithm for computing the MEC that runs in expected
O(n) time. For the weighted version of the MEC problem, the best-known result is also by
Megiddo [11] that runs in O(n(logn)3(loglogn)?) time using the parametric search [9]. Later,
igiclg/i{sgiehrslag' grzr;?i}i;eagcoin?ﬁllzzziicense NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 510-521

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.510
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. De, S. C. Nandy, and S. Roy

Megiddo and Zemel [12] proposed an O(nlogn) time randomized algorithm for this problem
that does not use parametric search. All of these algorithms use O(n) extra work-space.

Recently, Asano et al. [2] proposed an O(n?) time and O(1) extra-space algorithm for
computing the vertices of the farthest point Voronoi diagram of P, where the points in the
set P are given in a read-only array. Needless to say, the same time complexity holds for
computing the minimum enclosing circle. In the same paper they mentioned the possibility of
finding the minimum enclosing circle in sub-quadratic time in read-only setup with sub-linear
work-space as an open problem. We answer this question affirmatively as stated below.

Our results: In this paper, we propose an algorithm for computing the minimum enclosing
circle of a given set of n points in a read-only array. The time and extra space required

for this algorithm are O(n'*t¢) and O(logn) respectively, where ,/lolgolﬁ <e<l Asa

warm-up, we first propose an algorithm for the same problem in an in-place model where

swapping elements in the array is permissible. This needs O(n) time and O(1) extra-space.

This algorithm is invoked in our proposed algorithm in the read-only setup.

Related works: If a set of n real values are given in an array, then the problem of computing
the median in an in-place environment can be solved using at most 3n comparisons with
O(1) extra space [6]. If the array is read-only (i.e., swapping two values in the input array is
prohibited) then the problem can be solved in O(n'*¢) time with O(1) space, where € is a
small (< 1) positive number to be fixed prior to the execution [13]. Chan [7] has shown that
if S extra-bits are given in addition to the input array, then a lower bound on the expected
time complexity of finding the median is Q(nlogloggn). A lower bound on the deterministic
time complexity for the same problem is Q(nlog™ § + nloggn), where S extra-words are
given as work space [7]. An important work in a different direction is the in-place algorithm
for the linear programming problem with two variables, which can be solved in O(n) time
with O(1) extra space, where n is the number of constraints [5]. This can be used to design
a prune-and-search algorithm for finding the center of the minimum enclosing circle of the
point set P where the center is constrained to lie on a given straight line [10].

Low-memory algorithms have many advantages compared to traditional algorithms [5, 6]. As
they use only a very small amount of extra-space during their execution, a larger part of the
data can be kept in the faster memory. As a result, the algorithm becomes faster. Readers
are referred to [3, 4] for the in-place algorithms of several other geometric optimization
problems. For the geometric algorithms in the read-only setup, see [1, 2].

2 Overview of Megiddo’s algorithm

Let P[0,...,n — 1] be an array containing n points. We now describe Megiddo’s linear time

algorithm for the MEC problem for the points in P. Let n* be the center of desired MEC.

At each iteration, it identifies a pair of mutually perpendicular lines such that the quadrant
in which 7* lies can be identified, and a constant fraction of points in P can be deleted.

Algorithm 1: MEC(P)

Input: An array P[1,...,n] of points in R%
Output: The center m™* of the minimum enclosing circle of the points in P.
while |P| > 16 do

| P = PRUNE(P)

(* Finally, when |P| < 16 *) compute the minimum enclosing circle in brute force manner.

511

FSTTCS 2012

512

Algorithm 2: PRUNE(P)

Input: An array P[1,...,n] of points in R2.
Output: The set of points P after pruning.
Step 1: Arbitrarily pair up the points in P. Let (P[2i], P[2i 4+ 1]),i =0,1,...,[%]) be the
aforesaid pairs;
Step 2: Let L; denote the bisector of the pair of points (P[2i], P[2i + 1]), and a(L;) denote
the angle of L; with the z-axis. Compute the median u of {a(L:),i =0,1,...,[5]};
Step 3: Arbitrarily pair up (Li, L) where a(L;) < g and a(L;) > p. Let M be the set of
these | % | pairs of lines;
We split M into two subsets Mp and M;, where Mp = {(L;, L;)|a(L;) = a(L;) = p} (*
parallel line-pairs *) and M7 = {(L;, L;)|a(L;) # a(L;)} (* intersecting line-pairs *);
for each pair (Li,L;) € Mp do
‘ compute y;; = di;d" , where d; = distance of L; from the line y = pux
for each pair (Li, L;) € M; do
Let a;; = point of intersection of L; & Lj, and b;; = projection of a;; on y = px. Compute
yi; = signed distance of the pair of points (asj, bi;), and
xi; = signed distance of b;; from the origin;

Next, compute the median y,, of the y;; values corresponding to all the pairs in M;

Step 4: Consider the line Ly : y = px 4+ ym+/ 12 + 1, which is parallel to y = px and at a
distance y,, from y = u;

Compute the center 7 of the constrained minimum enclosing circle whose center lies on Ly
using Algorithm Constrained MEC(P, L) ;

Step 5: (* Decide in which side of Ly the center 7* of the unconstrained MEC lies *);

Let @ be the set of points in P that are farthest from ;

if |Q] =1 then 7" and the only point p; € Q lie in the same side of Ly;

if |Q| > 2 then

if all the members of Q lie in the same side of Lz, then 7™ will also lie in that side of Lp;
otherwise (* we need to check whether the convex polygon formed by the points in Q
contain 7 or not as follows *)

Let @1 and Q2 be two subsets of @ that lie in two different sides of Lx respectively;

@1 U Q2 = Q. Find two points p;, p; € Q1 that make maximum and minimum angles with
Ly with center at 7 in anticlockwise direction. Now consider each point ¢ € @2 and test
whether m € Apigp;.

Similarly, find pg, pe € Q2 that make maximum and minimum angles with £g with center
at 7 in clockwise direction. Consider each point ¢’ € Q; and test whether m € Aprq'pe;
If any one of these triangles contain 7, then the convex polygon @) contains 7. Here the
algorithm stops reporting 7* = .

Otherwise, either (p;, pr) or (pj, pe) define the diagonal (farthest pair of points) in Q. Let
q be the mid-point of the diagonal. Here, 7" and ¢ will lie in the same side of Lp;

Step 6: Let M; = {(L;, L;) € M(| a;; and 7* lie in the different sides of the line Ly } ;
Compute the median z,, of x;;-values for the line-pairs in M}. Define a line £y perpendicular
to y = px and passing through a point on y = px at a distance x,, from the origin;

Execute Algorithm Constrained_ MEC(P, Lv) and decide in which side of Ly the point 7* lies
as in Step b;

From now onwards, we will denote Ly and Ly as horizontal and vertical lines respectively;
Without loss of generality, assume that 7 lies in the top-left quadrant;

Step 7: (* Pruning step *)

for all the members (L;, L;) € Mr whose points of intersection (ai;) lie in the bottom-right
quadrant do

Let a(L;) < p and L; be defined by the pair of points (P[2i], P[2i 4 1]);

Discard one of P[2i] and P[2i + 1] which is top-left to other one from P;

for all the members (L;, L;) € Mp whose yi; < ym do

Let L; be below L, and L; be defined by a pair of points [P[2i], P[2i + 1]);

Discard either P[2i] or P[2i + 1] depending on which one lies above Lj;;

Step 9: return P (* Now P denotes the set of points after pruning *).

M. De, S. C. Nandy, and S. Roy

Algorithm 3: Constrained_ MEC(P, L)

Input: An array P[l,...,n] of points in R? and a line L (* assumed to be vertical *).
Output: The center m™ of the minimum enclosing circle of the points in P on the line L.
Step 1:

while |P| > 3 do
Step 1.1: Arbitrarily pair up the points in P. Let (P[2i], P[2i 4+ 1]),i =0,1,...,[%] be
the aforesaid pairs;
Step 1.2: Let ¢; denote the perpendicular bisector of the pair of points (P[2i], P[2i + 1]),
i=0,1,...[5]. Let ¢ intersect L at a point ¢;. and Q = {g;,i=0,1,...,[5]};
Step 1.3: Compute the median m of the y-coordinate of the members of Q;
Step 1.4: (* Test on which side (above or below) of m the center m* of the constrained
MEC lies (i.e., whether m* < m or m™ > m) as follows: *)
Identify the point(s) F' C P that is/are farthest from m;
if the projection of all the members in F' on L are in different sides of m then

| return m* = m (* center of the constrained minimum enclosing circle on the line L *)
else

(* i.e., the projection of all the members in F' on L are in the same side (above or

below) of m *) m* lies in that side of m on the line L
Step 1.5: Without loss of generality, assume, that m* > m. Then for each bisector line

lp.q (defined by the point-pair p, g € P) that cuts the line L below the point m, we can
delete one point among p and ¢ from P such that the said point and the point m lie in the
same side of £, 4;
Step 2: (* the case when |P|=2, *)
if the perpendicular bisector of the members of P intersects L then

‘ return the point of intersection as m”™;

else
(* the perpendicular bisector of the members of P is parallel with L *)
return m™ = projection of the farthest point of P on L.

The correctness of the algorithm is given in [10]. An iteration of the procedure PRUNE with
the set of points P needs O(|P]) time, and it deletes at least L‘%J points from P. Thus,
Megiddo’s algorithm for the MEC problem executes the procedure PRUNE at most O(logn)
times, and its total running time is O(n) time using O(n) extra space.

3 In-place implementation of MEC

In this section, we will show that Megiddo’s algorithm (stated in the Section 2) can be made
in-place with the same time complexity. It is to be noted that we may succeed in making all
the steps in-place separately but there may be problems while integrating them together. For
an example, one can easily be able to make the Constrained_MEC (Step 4 of the procedure
PRUNE) in-place (as 2D linear programming can be solved in an in-place manner in linear
time [5]), but one will have to assure that after this, one will be able to figure out the chosen
pair of bisectors satisfying the condition mentioned in Step 3 of the procedure PRUNE, as

this will be required in the Step 6 of the same procedure. We will ensure this integration.

We will extensively use the fact that the median of a set of n numbers stored in an array of
size n can be computed in an in-place manner in O(n) time using O(1) extra-space [6].

In Step 2 of the procedure PRUNE we can compute the median angle p in an in-place manner.

Note that we do not have to store the {L;,i = 0,1,...|5]} as one can compute them on
demand with the knowledge of (P[2i], P[2i + 1]).

Step 3 of the procedure PRUNE can be made in-place in O(n) time and O(1) extra space as

513

FSTTCS 2012

514

follows: identify | %] pairs (L;, L;) ((L;) < p and a(Lj;) > p), and for each pair accumulate
the tuple of four points (P[2i], P[2i + 1], P[24], P[2j + 1]) in consecutive locations of the
array. Note that this consecutive arrangement will help in computing x;; and y;; for L; and
L; (see Step 3 of Procedure PRUNE) on the fly. So, we maintain the following invariant

» Invariant 1. (i) During the execution of Steps 3-6 of the procedure PRUNE, the pair of

points (p, q) of P defining L; (their perpendicular bisector), for each i = 0,1,... %] will

remain in consecutive locations of the input array P.

(ii) During the execution of Steps 4-6 of the procedure PRUNE, the tuple of points (p, ¢, r, s)
of P, defining the y,;-value for two bisectors (L;, L;) ((p, ¢) defining L; and (r, s) defining
L;) that satisfy o(L;) < p and «(L;) > p, will remain in consecutive locations of the
input array P.

We store the number of input points in a variable n, and use a variable v to denote the
current size of the array P. In each iteration of the Algorithm MEC, after the (pruning)
Step 7 of the procedure PRUNE, the deleted points are moved at the end of the array, and v
is updated to the number of non-deleted points. We have already shown that Steps 1-3 can
be made in-place. In the next subsection, we show that Steps 4-6 can also be made in-place
satisfying invariant 1 (see Lemma 3). Thus, we have the following result.

» Theorem 1. Minimum enclosing circle of a set of n points in R? can be computed in an
in-place manner in O(n) time with O(1) extra work-space.

3.1 In-place implementation of Constrained MEC

In a particular iteration of the algorithm MEC, we have all non-deleted points stored in
consecutive locations of the array P starting from its leftmost cell. In Step 4 of the procedure
PRUNE, we use the procedure Constrained MEC to compute the center m* of the minimum
enclosing circle for these points where m* is constrained to lie on the given line L. Without
loss of generality, let us assume that L is a vertical line. A straight forward way to implement
this procedure in an in-place manner without maintaining Invariant 1 is as follows.

Find the median point m on the line L among the points of intersection of the lines ¢; and
Lfori=1,2,...,5
points of intersection are computed on the fly. This needs O(n) time. Next, inspect all
the points to decide whether m* is above or below m as follows. Let F' denote the set of
points in P which are farthest from m.

in an in-place manner using the algorithm given in [6], where the

e If the projection of the members in F on the line L lie in both the sides of m, then
m* =m.
e If the projection of all the members in F' on the line L lie in the same side (above or
below) of m, then m* lies in that side of m on the line L.
If m* = m then the iteration in Constrained_ MEC stops; otherwise the following pruning
step is executed for the next iteration. Without loss of generality, let m* be above m. We
again scan each ¢; = (P[2i], P[2¢ + 1]) and compute its intersection with L. If it is below
m, then we delete the one which is on the same side of m with respect to the bisector line
¢;. As we have 7 intersection points below m, we can delete (i.e., move at the end of the
array) 4 points from P. The case where m* is below m can be handled similarly. The
entire procedure Constrained_MEC needs O(n) time and O(1) extra space, but after an
iteration Invariant 1 will not remain valid.

M. De, S. C. Nandy, and S. Roy

i1 19 Ic 13

A B Ch Cy | D E

Figure 1 Block Partition of the Array P

To resolve this problem, we do the following. During the execution of Constrained_MEC, if a
point is deleted from a tuple (p, ¢, r, s) in an iteration, it is considered to be invalid from next
iteration onwards. We partition the array P containing all the points into five blocks namely
A, B, C, D and F and use four index variables iy, is, i3 and i4 to mark the ending of the
first four blocks (see Figure 1). Block A consists of those tuple (p, ¢, 7, s) whose four points
are invalid. The block B signifies all those tuples containing three invalid points. Similarly,
block C, D contain tuples with two and one invalid point(s) respectively. Block E contains
all tuples with no invalid point. We further partition the block C into two sub-blocks C}
and C respectively. The tuples with first two invalid points are kept in C; and the tuples
with first and third invalid points are stored in C5. If a tuple has invalid points in second
(resp. fourth) position, then these are swapped to first (resp. third) position. We use an
index variable i, to mark the partition between C; and Cy. All the invalid points in a tuple
belonging to block B and D are kept at the beginning of that tuple. In other words, during
the entire execution of Constrained MFEC, we maintain the following invariant along with
the Invariant 1.

» Invariant 2. The tuples with zero, one, two, three and four valid point(s) will be in the
block A, B, C, D and E, respectively as mentioned above.

Now, we need (i) to form the bisector lines {/;,i = 1,2,...[5|}, and then (ii) to find the
median m of the points of intersection of these bisector lines with L in an in-place manner
using the algorithm given in [6]. If we form these bisector lines with two consecutive valid
points in the array P, then the Invariant 1 may not be maintained since (i) during the median

finding ¢;’s need to be swapped, and (ii) the points in a tuple may contribute to different ¢;’s.

Here three important things need to be mentioned:

Formation of ¢;: Each tuple in block B contains only one valid point. Thus, we pair up two
tuples to form one bisector line ¢; in Step 1 of the algorithm Constrained MEC. Thus,
we will have |1(%25%)] bisectors. Let’s denote these set of bisectors by L;.

Similarly, C1 and Cy will produce *<;*2 and **< bisector lines respectively, and these
are denoted as Lo and L3 respectively.
In block D, each tuple (p, q,r, s) contains three valid points and the invalid point is p. In

each of these tuples, we consider the pair of points (r, s) to form a bisector line. Let us

denote this set of bisectors by L4, and the number of bisectors in this set is i41i3.

Next we consider each pair of consecutive tuples (p, q,r,s) and (p’,¢’, 7', s’) in block D,
and define a bisector line with the valid point-pair (g,¢’). Thus we get |1(%5%)] such
bisectors, and name this set Ls.

From each tuple (p,q,r,s) in block E, we get two bisectors. Here we form two sets of
bisectors, namely Lg and L7. Lg is formed with (p, q) of each tuple in block E, and L7 is

n—i4
4

formed with (r, s) of each tuple in block E. Each of these sets contains | | bisectors.
Thus, we have seven sets of bisectors, namely £;,1=1,2,...,7.
Computing median: We compute the median of the points of intersection of the lines in

each set of bisector lines £; with L separately. We use m; to denote the median for i-th

515

FSTTCS 2012

516

set. During the execution of in-place median finding algorithm of [6], if a pair of lines
;,L; € Ly, are swapped then the corresponding entire tuple(s) are swapped. Thus, the
tuples are not broken for computing the median and both the Invariants 1 and 2 are
maintained.

Pruning step: We take two variables m’ and m” to store two points on the line L such that
the desired center m* of the minimum enclosing circle of P on L satisfies m’ < m* < m”.
We initialize m’ = —oo and m” = oco. Now, we consider each m;,i = 1,2, ..., 7 separately;
if m* is above m; and m’ < m;, then m’ is set to m;. If m* is below m; and m” > m;
then m/’ is set to m;.

We now prune points by considering the intersection of the bisector lines in U!_, £; with
L. If a bisector line £ = (p,q) € U/_, L; intersects L in the interval [m’, m”] then none of
p, ¢ becomes invalid; otherwise one of the points p or ¢ becomes invalid as mentioned in
Step 4 of the Procedure Constrained MEC.
While considering the bisector lines in £, a tuple in the block B may be moved to block
A by swapping that tuple with the first tuple of block B and incrementing i, by 4.
While considering a bisector line £ € Lo U L3, if any one of its participating points is
deleted then the corresponding tuple is moved to block B by executing one or two swap
of tuple and incrementing i5 by 4.
Note that, the bisector lines in £4 and L5 are to be considered simultaneously. For a
pair of tuple (p,q,7,5),(p',q¢,1’,s") € D, we test the bisector lines ¢ = (¢q,¢') € L4 and
0 =(r,s) € Ly and ¢ = (1',5") € L5 with [m/,m”]. This may cause deletion of one or
two points from (p, q,r,s) (resp. (p',q¢’,7',s")). If for the tuple (p,q,r,s),
none of the points becomes inwvalid, it will remain in the set D;
if only ¢ becomes invalid, it is moved to C; by two swaps of tuples; necessary adjust-
ments of i, and i3 need to be done;
if r or s only becomes invalid, it is moved to Cy (with a swap of r and s if necessary),
and adjustment of i3 is done;
if ¢ and r both become invalid, it is moved to B with necessary adjustment of is, i3;
if ¢ and s both become invalid, then it is moved to B (with swap among r and s) and
necessary adjustment of iy, i3 need to be done.
The same set of actions may be necessary for the tuple (p’,¢’,r’, s") also.
Similarly, the bisector lines in Lg and L7 are considered simultaneously. For a tuple
(p,q,r,8) € E, L= (p,q) € L and ¢’ = (r,s) € L7. Here none or one or two points from
the tuple (p,q,r,s) may be deleted. Depending on that, it may reside in the same block
or may be moved to block D or C3. The necessary intra-block movement can be done
with one or two tuple-swap operation. Surely at most two swap operation inside the tuple
may be required to satisfy Invariant 2.

3.1.0.1 Correctness and complexity results

» Lemma 2. The above pruning steps ensure Invariants 1 and 2 and at least % points become
invalid after each iteration, where n is the number of valid points in P at the beginning of
the iteration.

Proof. The description of the pruning step justifies the first part of the lemma. For the
second part, note that m; (the median of the intersection points of the members in £; with
L) satisfies either m; < m' or m; > m”. In both the cases, at least half of the lines in £;
intersect L outside the interval [m’,m”]. Thus, the result follows. <

M. De, S. C. Nandy, and S. Roy

The correctness of the algorithm follows from the fact that after an iteration of the Con-
strained_MEC, the valid points can be easily identified using our proposed scheme of
maintaining the points in five different blocks as mentioned in Invariant 2. It also helps in
forming the bisector lines, and pruning of points maintaining Invariant 1. The second part
of Lemma 2 justifies the following result.

» Lemma 3. The Constrained_ MEC can be computed in an in-place manner in O(n) time
with constant amount of extra space.

4 When the memory is read-only

In this section, we show how one can compute the minimum enclosing circle efficiently for
a set of points in R2 with O(logn) extra variables, when the input points are given in a
read-only array P. Here again we will use the basic algorithm MEC of Megiddo as described
in Section 2. As we are not allowed to move the deleted elements to one end, the main
challenge in read-only memory for implementing Megiddo’s algorithm is in detecting the
valid points after pruning.

Long ago Munro and Raman [13] gave a space-time trade-off for median finding algorithms
in read-only memory. Though we can not use their algorithm directly for median finding
in our setup, we will use a similar idea. For ease of understanding, we will briefly describe
the median finding algorithm of [13]. Next we will describe our approach for computing the
minimum enclosing circle for the points in the array P.

4.1 Munro and Raman’s median finding algorithm

Given a set of n points in R in a read-only array P, the algorithm of [13] is designed by using
a set of procedures Ag, A1, As, ..., Ag, where procedure A; finds the median by evoking the
procedure A; 1 for i € {1,2,...,k}. The procedures Ay, A1, As, ..., A; are stated below.

Procedure Ay: In the first iteration, after checking all the elements in P, it finds the largest
element p(;) in linear time. In the second iteration it finds the second largest p(2) by checking
only the elements which are less than p(;y. Proceeding in this way, in the j-th iteration it

finds the j-th largest element p(;) considering all the elements in P that are less than p(;_1).

n

In order to get the median we need to proceed up to j = [%|. Thus, this simple median
finding algorithm takes O(n?) time and O(1) extra-space.

Procedure A;: It divides the array P into blocks of size \/n and in each block it finds
the median using Procedure Ag. After computing the median m of a block, it counts
the number of elements in P that are smaller than m, denoted by p(m), by checking all
the elements in the array P. It maintains two best block medians m; and msy, where
p(m1) = max{p(m)|p(m) < %}, and p(mg) = min{p(m)|p(m) > %}. Thus, this iteration
needs O(n4/n) time.

After this iteration, all the elements P[i] satisfying P[i] < mj or P[i] > my are marked as
invalid. This does not need any mark bit; only one needs to remember m; and ms. In the
next iteration we again consider same set of blocks, and compute the median ignoring the
invalid elements.

Since, in each iteration i fraction of the existing valid elements are marked invalid, we need
at most O(logn) iterations to find the median g. Thus the time complexity of this procedure

is O(ny/nlogn).

517

FSTTCS 2012

518

Procedure Ajy: It divides the whole array into n'/? blocks each of size n?/2, and computes
the block median using the procedure A;. Thus, the overall time complexity of this procedure
for computing the median is nlts log? n.

Proceeding in this way, the time complexity of the procedure Ay will be O(n(H#l) logk n).
As it needs a stack of depth k for the recursive evoking of Ag_1, Ax_o, ..., Ag, the space
complexity of this algorithm is O(k).

1
Setting € = %H’ gives the running time as O(%). If we choose n¢ = log% n, then e
will be 4/ loig)g", and this will give the running time O(’f;g:), which is of O(n!*2¢). So, the

general result is as follows:

» Result 1. For a set of n points in R given in a read-only memory, the median can be found

in O(n'*°) time with O(1) extra-space, where 2,/ loi}% <e< 1

4.2 Algorithm MEC in read-only setup

Given a set of n points in R2 in a read-only array P of size n, our objective is to compute
the minimum enclosing circle of the points in P using O(logn) extra space. We first show
how one can compute Constrained_ MEC when the input array is read-only using O(logn)
extra variables. Next, we use this algorithm along with another O(logn) space to compute
the center of the unconstrained minimum enclosing circle.

4.2.1 Constrained_ MEC in read-only setup

We first note that at each iteration of the procedure Constrained MEC at least 1|P| points
in P are pruned (marked invalid). Thus, the number of iterations executed in the procedure
Constrained_ MEC is at most O(log |P]).

We use an array M each element of which can store a real number, and an array D each
element of which is a bit. Both the arrays are of size O(log|P|). After each iteration of the
read-only algorithm, it needs to remember the median m among the points of intersection of
the bisector lines on the line L, and the direction in which we need to proceed from m to
reach the constrained center m*. So, after executing the i-th iteration, we store m at M[i];
D[i] will contain 0 or 1 depending on whether m* > m or m* < m.

We now explain the i-th iteration assuming that (i — 1) iterations are over. Here we need to
pair-up points in P in such a way that all the invalid elements up to the (i — 1)-th iteration
can be ignored correctly. We use one more array IndexP of size log|P|. At the beginning of
this iteration all the elements in this array are initialized with —1.

Note that, we have no space to store the mark bit for the invalid points in the array P. Thus,
we use the compute in lieu of store paradigm, or in other words, we check whether a point is
valid at the i-th iteration, by testing its validity in all the t = 1,2,...,4 — 1 levels (previous
iterations).

We start scanning the input array P from the left, and identify the points that are tested
as wvalid in the t-th level for all t = 1,2,...,9 — 1. As in the in-place version of the
Constrained__MEC algorithm, here also we pair up these valid points for computing the
bisector lines. Here we notice the following fact:

Suppose in the (i — 1)-th iteration (p, q) form a pair, and p is observed as invalid. While

M. De, S. C. Nandy, and S. Roy 519

executing the i-th iteration, we again need to check whether p was wvalid in the ¢ — 1-th
iteration since it was not marked. Now, during this checking if we use a different point ¢’
(# ¢) to form a pair with p, it may be observed wvalid. So, during the checking in the i-th
iteration, (p, q) should be paired at the (i — 1)-th level.

Thus, our pairing scheme for points should be such that it must satisfy the following invariant.

» Invariant 3. If (i) two points p, ¢ € P form a point-pair at the ¢-th level in the j-th iteration,
and (ii) both of them remain valid up to k-th iteration where k > j, then p, ¢ will also form
a point-pair at the ¢-th level of the the k-th iteration.

Pairing scheme: We consider the point-pairs (P[2a], P[2a+1]), « = 0,1,...,[5] in order.
For each pair, we compute their bisector ¢, and perform the level 1 test using M[1] and DI[1]
to see whether both of them remains valid at iteration 1. In other words, we observe where
the line £, intersects the vertical line z = M|[1], and then use D[1] to check whether any one
of the points P[2«] and P[2a + 1] becomes invalid or both of them remain wvalid. If the test
succeeds, we perform level 2 test for £, by using M[2] and D[2]. We proceed similarly until
(i) we reach up to i-th level and both the points remain valid at all the levels, or (ii) one
of these points is marked invalid at some level, say j (< i —1). In Case (i), the point pair
(P[2¢], P2+ 1]) participates in computing the median value m;. In case (ii), suppose P[2q]
remains valid and P[2a + 1] becomes invalid. Here two situations need to be considered
depending on the value of IndexP[j]. If IndexP[j] = —1 (no point is stored in IndexP[j]),
we store 2« or 2« + 1 in Index P[j] depending on whether P[2a] or P2« + 1] remains valid
at level j. If IndexP[j] = B(# —1) (index of a walid point), we form a pair (P[2a], P[3])
and proceed to check starting from j + 1-th level (i.e., using M[j + 1] and D[j + 1]) onwards
until it reaches the i-th level or one of them is marked invalid in some level between j and 1.
Both the situations are handled in a manner similar to Cases (i) and (ii) as stated above.

» Lemma 4. Invariant 3 is maintained throughout the execution.

Proof. Follows from the fact that the tests for the points in P at different levels ¢t =
1,2,...,49—2 at both the (i — 1)-th and i-th iterations are the same. At the (i — 1)-th level of
the (i — 1)-th iteration, we compute m;_; and D;_; with the valid points. At the (i — 1)-th
level of the i-th iteration, we prune points that were tested valid at the (i — 1)-th iteration
using M;_1 and D;_;. |

» Observation 1. At the end of the i-th iteration,

(i) Some cells of the IndexP array may contain valid indices (# —1).

(ii) In particular, IndexP[i — 1] will either contain —1 or it will contain the index of some
point 8 in P that has participated in computing m;_; (i.e., remained valid up to level
i—1).

(iii) If in this iteration IndexP[i — 1] = 8 (where § may be a valid index or —1), then at the
end of all subsequent iterations j (> 4) it will be observed that IndexP[i — 1] = 3.

Proof. Part (i) follows from the pairing scheme. Parts (ii) & (iii) follow from Lemma 4. <

» Lemma 5. In the i-th iteration, the amortized time complexity for finding all valid pairs
is O(ni).

Proof. Follows from the fact that each valid point in the i-th iteration has to qualify as a

valid point in the tests of all the ¢ — 1 levels. For any other point the number of tests is at
most 7 — 2. |

FSTTCS 2012

520

The main task in the i-th iteration is to find the median of the points of intersection of
all the valid pairs in that iteration with the given line L. We essentially use the median
finding algorithm in [13] for this purpose. Notice that, in order to get each intersection
point, we need to get a valid pair of points, which takes O(%) time (see Lemma 5). Assuming
L to be horizontal, the time required for finding the leftmost intersection point on L is
O(ni). Similarly, computing the second left-most intersection point needs another O(ni) time.
Proceeding similarly, the time complexity of the procedure Ag of [13] is O(n?i?). Similarly,
A takes O(i2n1+% logn) time, and so on. Finally, Ay takes O(iQn(Hk%l) log” n) time. Since

logn
loglogn

we have chosen k = < logn for the median finding algorithm of [13], we need

O(logn) space in total. Thus, we have the following result:

» Lemma 6. The time complezity of the i-th iteration of Constrained_ MEC is
O(i2n(1+’«+r1) logh n), where 1 < k < ./ log)ﬁ)gn. The extra space required is O(logn).

At the end of the O(logn) iterations, we could discard all the points except at most
|IndexP|+ 3 points, where |IndexP| is the number of cells in the array IndexP that contain
valid indices of P (# —1). This can be at most O(logn). We can further prune the points in
the Index P array using the in-place algorithm for Constrained MEC proposed in Section
3.1. Thus, we have the following result:

» Lemma 7. The time complexity of Constrained MEC is O(n(l'*'k%rl)logk+3 n), where
where 1 < k < 4/ 1o§i§n- Apart from the input array, it requires O(logn) extra space.

Proof. By Lemma 6, the time complexity of the i-th iteration is O(iQn(H#l) logk n),
where i = 1,2,...,logn. Thus, the total time complexity of all the O(logn) iterations is
O(n(Hk%l) logk+3 n). The extra time required by the in-place algorithm for considering all
the entries in the array IndexP is O(logn) (see Lemma 3), and it is subsumed by the time
complexity of the iterative algorithm executed earlier.

The space complexity follows from the fact that the same set of arrays M, D, IndexP and
the stack for finding the median can be used for all the logn iterations, and each one is of
size at most O(logn). <

4.2.2 Unconstrained MEC in a read-only setup

As earlier, we use the read-only variation of the Constrained_MEC algorithm (described in
Subsection 4.2.1) for solving the unconstrained minimum enclosing circle problem. Here we
need to maintain three more arrays M, D and Z, each of size O(logn). M]i] contains the
point of intersection of the vertical and horizontal lines used for pruning points at level 4 of
the algorithm MEC; D[i] (a two bit space) indicates the quadrant in which the center of the
MEC lies. The array Z plays the role of the array IndexP used for Constrained_ MEC. 1t is
shared by all the iterations of the algorithm.

While checking a point to be wvalid in any iteration of the procedure Constrained MEC at
the i-th iteration of the MEC algorithm, we first need to check whether it is pruned in any
previous iteration of the algorithm MEC.

» Theorem 8. The minimum enclosing circle of a set of n points in R? given in a read-only
array can be found in O(n'*€) time and O(logn) space, where 1/%;5" <e<l.

M. De, S. C. Nandy, and S. Roy

Proof. In the i-th iteration of the algorithm M EC, the time required for Steps 1-3 of the
procedure PRUNE is O(izn(Hﬁrl) log®n) (see the justifications of Lemma 6). In Step 4,
the procedure constrained MEC needs O(n(l*‘k%l) loght3 n) time (see Lemma 7). Since the
algorithm MEC consists of at most O(logn) iterations of the procedure PRUNE, the overall

ime complexity of the algorithm is O(n 1) loglﬁ'4 n). Substituting £ = 2~ and then
t lexity of the algorithm is O(n{'* £ =
ns > log4+% n, we have time complexity O(n'*€), where € satisfies ,/lolgol% <e<l <

5 Conclusion

In this paper, we propose a general prune-and-search technique in read-only memory which
can be applied in other problems as well. Our in-place MEC as well as read-only MEC
algorithm significantly improve the previously known best results. It will be worthy to study
whether one can further improve the time-space complexity of MEC in a read-only setting.

—— References

1 T. Asano and B. Doerr. Memory-constrained algorithms for shortest path problem. In
CCCaq, 2011.
2 T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for geometric
problems. JoCG, 2(1):46-68, 2011.
3 P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. H. M. Smid, and J. Vahrenhold. Space-
efficient geometric divide-and-conquer algorithms. Comput. Geom., 37(3):209-227, 2007.
4 H. Bréonnimann, T. M. Chan, and E. Y. Chen. Towards in-place geometric algorithms and
data structures. In Symp. on Comput. Geom., pages 239246, 2004.
5 H. Brénnimann, J. Iacono, J. Katajainen, P. Morin, J. Morrison, and G. T. Toussaint.
Space-efficient planar convex hull algorithms. Theor. Comput. Sci., 321(1):25-40, 2004.
6 S. Carlsson and M. Sundstrom. Linear-time in-place selection in less than 3n comparisons.
In ISAAC, pages 244-253, 1995.
7 T. M. Chan. Comparison-based time-space lower bounds for selection. In SODA, pages
140-149, 2009.
8 D. J. Elzinga and D. W. Hearn. Geometrical solutions for some minimax location problems.
Transportation Science, 6(4):379-394, 1972.
9 N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
J. ACM, 30(4):852—-865, 1983.
10 N. Megiddo. Linear-time algorithms for linear programming in R? and related problems.
SIAM J. Comput., 12(4):759-776, 1983.
11 N. Megiddo. The weighted euclidean 1-center problem. Mathematics of Operations Research,
8(4):498-504, 1983.
12 N. Megiddo and E. Zemel. An o(n log n) randomizing algorithm for the weighted euclidean
1-center problem. J. Algorithms, 7(3):358-368, 1986.
13 J. I. Munro and V. Raman. Selection from read-only memory and sorting with minimum
data movement. Theor. Comput. Sci., 165(2):311-323, 1996.
14 M. I. Shamos and D. Hoey. Closest-point problems. In FOCS, pages 151-162, 1975.
15 J. J. Sylvester. A question in the geometry of situation. Quarterly Journal of Mathemaitcs,
1:79, 1857.
16 E. Welzl. Smallest enclosing disks (balls and ellipsoids). In Results and New Trends in
Computer Science, pages 359-370. Springer-Verlag, 1991.

521

FSTTCS 2012

	Introduction
	Overview of Megiddo's algorithm
	In-place implementation of MEC
	In-place implementation of Constrained_MEC

	When the memory is read-only
	Munro and Raman's median finding algorithm
	Algorithm MEC in read-only setup
	Constrained_MEC in read-only setup
	 Unconstrained MEC in a read-only setup

	Conclusion

