
Computationally Complete Symbolic Attacker in
Action
Gergei Bana∗1, Pedro Adão†2, and Hideki Sakurada3

1 MSR-INRIA Joint Centre, Palaiseau, France bana@math.upenn.edu
2 SQIG-IT and IST-TULisbon, Portugal, pedro.adao@ist.utl.pt
3 NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan,

sakurada.hideki@lab.ntt.co.jp

Abstract
We show that the recent technique of computationally complete symbolic attackers proposed
by Bana and Comon-Lundh [7] for computationally sound verification of security protocols is
powerful enough to verify actual protocols. In their work, Bana and Comon-Lundh presented
only the general framework, but they did not introduce sufficiently many axioms to actually
prove protocols.

We present a set of axioms—some generic axioms that are computationally sound for all PPT
algorithms, and two specific axioms that are sound for CCA2 secure encryptions—and illustrate
the power of this technique by giving the first computationally sound verification (secrecy and
authentication) via symbolic attackers of the NSL Protocol that does not need any further re-
strictive assumptions about the computational implementation. The axioms are entirely modular,
not particular to the NSL protocol.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Security Protocols, Symbolic Adversary, Computational Soundness

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.546

1 Introduction

Research into computational soundness of symbolic verification of security protocols started
with Abadi and Rogaway [1], followed by many others for passive [12, 10, 2] and active
adversaries. The aim is always that symbolic proofs imply computational security. Works
concerning active adversaries can be divided into two groups. Works in one [3, 16, 4, 14]
define symbolic adversaries, and soundness theorems state that under certain circumstances,
if there is no successful symbolic attack, then there is no successful computational attack
either. The other group aims to work directly in the computational model [18, 8, 13, 11].
This paper focuses on the first.

The first group, where symbolic attacker is defined, gives hope that already existing
automated tools may be used for computationally sound verification, but these soundness
theorems require large sets of restrictive assumptions on computational implementations.
Typically they assume that no key cycles can ever be created, that bit strings can be un-
ambiguously parsed into terms, that there is no dynamic corruption, that keys are certified

∗ Partially supported by the ANR project ProSe and FCT project ComFormCrypt PTDC/EIA-
CCO/113033/2009.
† Partially supported by FCT projects ComFormCrypt PTDC/EIA-CCO/113033/2009 and PEst-

OE/EEI/LA0008/2011.

© Gergei Bana,Pedro Adão,Hideki Sakurada;
licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 546–560

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.546
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

G. Bana, P. Adão, and H. Sakurada 547

(badly generated keys cannot be used), etc. These assumptions as well as reasons why they
are not realistic are discussed in [15].

Recently, Bana and Comon-Lundh presented in [7] (and improved in [6]) a new technique
to define symbolic attackers. They called this new symbolic adversary computationally
complete symbolic adversary, as it is capable of doing everything that a computational
adversary is capable of without any restrictions. Instead of listing every kind of move a
symbolic adversary is allowed to do as usual with Dolev-Yao adversaries, a few rules (axioms)
are listed that the symbolic adversary is not allowed to violate. That is, the symbolic
adversary is allowed to do everything that is consistent with these axioms. The axioms are
first-order formulas expressing properties that hold computationally for PPT adversaries
and for the computational implementations of cryptographic primitives. Their main result
is that once it is shown that no successful symbolic adversary can exist complying some set
of axioms, then for any computational implementation satisfying that set of axioms (that is,
implementations for which the axioms are computationally sound), successful computational
attacks are impossible as long as the number of sessions is bounded in the security parameter.

In their original work however, they did not show that their technique could actually be
used for practical protocol verification as they only presented the general framework and a
few computationally sound axioms as a proof of concept. To actually prove protocols, more
axioms have to be introduced in order to weaken the symbolic adversary sufficiently close
to the computational adversary (with unrealistically strong symbolic attackers, no protocol
can be verified).

In this paper, we show the technique of Bana and Comon-Lundh can indeed be used for
protocol verification. We introduce some modular, computationally sound axioms, and then
illustrate that the technique with the axioms we introduced can be used to verify secrecy
and authentication of an actual protocol, namely, the Needham-Schroeder-Lowe protocol.
More precisely, we show that there is no symbolic adversary for which the violation of either
secrecy or authentication (or both) of the NSL protocol is consistent with the set of general
axioms we give together with an additional minimal parsing property that the computational
implementation of pairing must satisfy (otherwise there is an attack). Applying the main
theorem of [7], this means that there is no computational adversary of the NSL protocol (in
an implementation satisfying the axioms) that can violate secrecy or authentication with
non-negligible probability.

The set of axioms we give is divided into four groups. One has a number of general
axioms sound for any computational implementation. Then, there is a group consisting of
the equations required for function symbols, such as the decryption of a cipher gives the
plaintext back. Then, there is a group of two axioms sound for CCA2 encryptions, one
expressing the secrecy of a CCA2 encrypted item, and one expressing the non-malleability
property of CCA2 encryptions. Furthermore, to prove security of the NSL protocol, one more
property is needed expressing a certain parsing unambiguity, which needs to be assumed as
otherwise an attack exists.

The axioms are not particular to NSL protocols. They are modular. Introducing further
primitives will not destroy the soundness of these axioms, they do not have to be proven
again.

The technique of [7] allows to avoid all restrictions mentioned before on the compu-
tational world. Once a protocol is proven secure in our symbolic model with respect to a
set of axioms, then all properties that the computational implementation has to satisfy for
computational security are included in the axioms. Any number of bad keys are allowed
to be generated by the adversary; any number of corrupted, uncorrupted, or dynamically

FSTTCS 2012

548 Computationally Complete Symbolic Attacker in Action

corrupted parties can be present. As for parsing of bit strings into terms, previous sound-
ness results relied on unambiguous parsing. Within this framework, we do not need such an
assumption. If unambiguous parsing is needed for the security of a protocol, then it is ne-
cessary to list it as a property that secure implementations need to satisfy. The only needed
assumption for proving NSL is that an honestly generated nonce N cannot be non-negligibly
parsed into a pair, such that the second part of the pair is some (dishonest) agent name,
i.e., looks like 〈n,Q〉 for some n. This is a necessary assumption, as the failure of it results
in an attack, presented in [9]. This can easily be achieved in an implementation by, for
example, checking the length of bit strings that should correspond to nonces. Other than
this, no parsing hypothesis is assumed. For example, honestly generated nonces may collide
with other kinds of pairs, encryptions could a priori collide with other kinds of expressions,
etc. That is, tagging of pairs, encryption etc is not necessary for the security of the NSL
protocol.

In fact, the security proof is long exactly because of parsing ambiguities as any term
that was created by an honest agent or the adversary may a priori be wrongly parsed by
another honest agent. The fact that they are not wrongly parsed had to be derived in the
protocol proof from our axioms, that is, from reasons other than tagging. Had we assumed
tagging and completely unambiguous parsing (which, in fact, has always been assumed by
earlier NSL proofs, even in Cryptoverif), the proof would have been quite short.

In [20] the author provides a direct computational proof that the NSL protocol is secure
if the encryption scheme used is IND-CCA. His proof also uses bounded number of sessions,
but implicitly assumes some level of unambiguous parsing (hence did not find the attack
presented here). However, it allows agents to run both roles (but not against themselves).

We would like to emphasize that our aim here is to demonstrate that the technique works,
and not to provide the most general possible verification for the NSL protocol. Further
generalizations are possible at the cost of much longer proofs. For example, in the current
proof, we assume that each honest agent only executes either the initiator or the responder
role as this makes the proof much shorter and clearer. We have however been able to
complete the proof for the case when they are allowed to run both sessions, even against
themselves at the cost of an additional parsing axiom. A further assumption is that triples
are created from pairs. It is possible to do the proofs without this assumption, and have a
separate function symbol for triples (and introduce further necessary requirements to avoid
attacks), but again, it would make the proofs far longer.

The contributions of this paper include (i) the set of general axioms that are computa-
tionally sound for any PPT implementation, (ii) the non-malleability axiom that is compu-
tationally sound for CCA2 security, (iii) the additional parsing axiom needed to avoid an
attack to the NSL, and (iv) the security proof itself. Again, the axioms are all modular,
independent of the protocol, and they do not have to be proved again if further primitives
are included.

This paper is organized as follows: we start by recalling the framework of [7] (Section 2).
In Section 3, we show how the NSL protocol and its execution can be formulated in the
proposed framework. In Section 4, we present the first contribution of this paper introdu-
cing the set of computational sound axioms that are sufficient to show both secrecy and
authentication of the NSL protocol. In Section 5, we show our new computational attack to
the NSL. In Section 6, we show a few simple examples of how inconsistency of formulas can
be proven in the framework. In Section 7, we prove that no symbolic adversary compliant
with the presented axioms can violate secrecy or authentication of the NSL protocol. In
Section 8, we summarize our results and present directions for future work.

G. Bana, P. Adão, and H. Sakurada 549

2 Symbolic Execution and Properties

2.1 Terms, Frames, and Formulas
Terms are built from a set of function symbols F containing a countable set of names N ,
a countable set of handles H, which are of 0-arity, and a finite number of higher arity
symbols. Names denote items honestly generated by agents, while handles denote inputs
of the adversary. Let X be an infinite set of variables. A ground term is a term without
variables. Frames are sequences of terms together with name binders: a frame φ can be
written (νn).p1 7→ t1, . . . , pn 7→ tn where p1, . . . pn are place holders that do not occur in
t1, . . . , tn and n is a sequence of names. fn(φ), the free names of φ are names occurring in
some ti and not in n. The variables of φ are the variables of t1, . . . , tn.

Let P be a set of predicate symbols over terms. P contains the binary predicate = used
as t1 = t2, and a family of n+ 1-arity predicates `n used as t1, ..., tn ` t, intended to model
the adversary’s capability to derive something. We drop the index n for readability. We
allow any FOL interpretation of the predicates that does not contradict our axioms, which
we will introduce later.

Let M be any first-order structure that interprets the function and predicate symbols.
We only require that M interprets terms and predicates such that = is interpreted as the
equality in the underlying domain DM. Given an assignment σ of elements in DM to the
free variables of term t, we write [[t]]σM for the interpretation of tσ inM ([[_]]σM is the unique
extension of σ into a homomorphism of F-algebras). For any first order structureM over F
and P, and any assignment σ of the free variables of θ in the domain ofM, the satisfaction
relationM, σ |= θ, is defined as usual in FOL.

2.2 Symbolic Execution of a Protocol
I Definition 2.1. A symbolic state of the network consists of:

a control state q ∈ Q together with a sequence of names n1, . . . , nk (so far generated)
a sequence constants called handles h1, . . . , hn (recording the attacker’s inputs)
a ground frame φ (the agents’ outputs)
a set of formulas Θ (the conditions that have to be satisfied in order to reach the state).

A symbolic transition sequence of a protocol Π is a sequence

(q0(n0), ∅, φ0, ∅)→ . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm,Θm)

where, for every m− 1 ≥ i ≥ 0, there is a transition rule
(qi(αi), qi+1(αi+1), 〈x1, . . . , xi〉 , x, ψ, s) such that n = αi+1 \ αi, φi+1 = (νn).(φi · p 7→
sρiσi+1), ni+1 = ni]n, Θi+1 = Θi∪{φi ` hi+1, ψρiσi+1} where σi+1 = {x1 7→ h1, . . . , xi+1 7→
hi+1} and ρi is a renaming of the sequence αi into the sequence ni. We assume a renaming
that ensures the freshness of the names n: n ∩ ni = ∅.

I Definition 2.2. Given an interpretationM, a transition sequence of protocol Π

(q0(n0), ∅, φ0, ∅)→ . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm,Θm)

is valid w.r.t. M if, for every m− 1 ≥ i ≥ 0,M |= Θi+1.

Initialization. For technical purposes, we assume that all honestly generated items (nonces,
random inputs of encryptions, etc) are generated upfront. This is possible as we assumed
bounded number of sessions. We always set φ0 = νn(), where n are the honestly generated
items. φ1 contains the output of the initialization, that is, the names and the public keys.

FSTTCS 2012

550 Computationally Complete Symbolic Attacker in Action

2.3 Predicates, Constraints and FOL Formulas in Executions
M modeled, among others, the predicate t1, ..., tn ` t. In executions however, instead of this
predicate, we consider a predicate that we write as φ̂, t1, ..., tn ` t. This is also an n+1-arity
predicate. φ̂ is just a symbol, not an argument, and it represents the frame containing the
messages that protocol agents sent out, that is, the information available from the protocol
to the adversary. Computational semantics of the predicates x = y and φ̂, x1, ..., xm ` x was
defined in [7] and improved in [6]. Here we just briefly mention that = refers to equality
up to negligible probability, and ` means that the adversary is able to compute (with a
PT algorithm) the right side from the left. We also use another predicate, W (x), which
just tells if x is the name of an agent. We also use various constraints: Handle(h) means
h is a handle; RandGen(x) means that x was honestly, randomly generated (i.e. appearing
under ν in the frame); x v φ̂ means that x was part of a message sent out by an agent (i.e.
listed in the frame φ); x v ~x means x is part of ~x. dK v6d φ̂ means dK occurs other than
in a decryption position dec(, dK) in φ, and dK v 6d ~x is analogous. Let us introduce the
following abbreviations:

x v φ̂, ~x ≡ x v φ̂ ∨ x v ~x
x v 6d φ̂, ~x ≡ x v 6d φ̂ ∨ x v6d ~x

fresh(x; φ̂, ~x) ≡ RandGen(x) ∧ x 6v φ̂, ~x
~x 4 φ̂ ≡ h v ~x ∧ Handle(h)→ φ̂ ` h

Given a first-order modelM as before, satisfaction of predicates and constraints in a symbolic
execution is defined as:

Interpretation of predicates byM, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk), where σ is a substitution
as above, t1, ..., tm are closed terms, and n1, ..., nk are names: (note the interpretation
depends onM) is defined as follows
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= t = t′ ifM, σ |= t = t′

M,σ,〈t1, . . . , tm〉,n |= φ̂, s1, . . . , sn ` t ifM, σ |= s1, . . . , sn, t1, . . . , tm ` t.
M, σ, 〈t1, . . . , tm〉 , n |= W (x) ifM, σ |= W (x)

Interpretations of constraints byM, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk), where σ is a substitution
as above, t1, ..., tm are closed terms, and n1, ..., nk are names: (do not depend on the
modelM):

Handle(h) for h closed term:
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= Handle(h) if h ∈ H.
RandGen(s) for s closed term:
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= RandGen(s) if s ∈ N andM,σ |= s=n1∨. . .∨s=nk.
t v φ̂, where t is closed term:
M, σ, 〈t1, . . . , tm〉 , n |= t v φ̂ if t is a subterm of some ti
t v s1, ..., sn, where s1, ..., sn and t are closed terms:
M, σ, 〈t1, . . . , tm〉 , n |= t v s1, ..., sn if t is a subterm of some si

Interpretation of any FOL formula in which there are no free variables under constraints
by M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) where σ is a substitution as above, is defined recurs-
ively as:

Interpretations of θ1 ∧ θ2, θ1 ∨ θ2, and ¬θ are defined as usual in FOL
If x is not under a constraint in θ, interpretations of ∀xθ and ∃xθ are defined as usual
in FOL.
If x occurs under a constraint in θ, then
∗ M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∀xθ iff for every ground term t,
M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x 7→ t}

G. Bana, P. Adão, and H. Sakurada 551

∗ M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∃xθ iff there is a ground term t,
M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x 7→ t}

Satisfaction at step m: M, (q, 〈h1, . . . , hm〉 , n, φm,Θ) |= θ iff M, φm, n |= θ.

3 The NSL Protocol and Its Symbolic Execution

We now formulate the NSL protocol and its execution in the above framework. The steps
of the protocol, as usual are
1. A→ B : {N1, A}eKB 2. B → A : {N1, N2, B}eKA 3. A→ B : {N2}eKB

We use a randomized public-key encryption symbol: {m}reKQ is intended to represent the
encryption of the plaintext m with the public-key of the principal Q, with a random seed
r. So, consider the set of constructors Fc = {{_ }__ , 〈_ ,_ 〉, e_ , d_ ,K_}, and the set of
destructors Fd = {dec(_ ,_), π1 (_) , π2 (_)}, with the following equations:

Decryption of an encryption returns the plaintext: dec({x}ReK , dK) = x

First projection of pairing: π1 (〈x, y〉) = x, second projection of pairing: π2 (〈x, y〉) = y

We will use pairs to construct triples: 〈x, y, z〉 ≡ 〈x, 〈y, z〉〉. From now on, constant symbols
as hi and Ri will be used as meta-symbols, they are not the actual elements of N or H.

We define the roles of principals as follows: the initiator, communicating with intended
party Q, does the following sequence of steps in session i (denoted by
InitANSL[A, i,Q,N1, h1, h3, R1, R3]):
1. Receives handle h1 that triggers the start of the session with intended party Q;
2. A generates nonce N1;
3. A sends {N1, A}R1

eKQ
;

4. A receives h3, and checks: a. π1 (dec(h3, dKA)) = N1 b. π2 (π2 (dec(h3, dKA))) = Q;
5. A sends {π1 (π2 (dec(h3, dKA)))}R3

eKQ
;

6. A sends ci
(
A,Q,N1, π1 (π2 (dec(h3, dKA)))

)
.

For verification purposes, let ci be a special function symbol, that takes as arguments
A,B,N1, N2, respectively who commits for whom and the corresponding nonces.
ci(A,B,N1, N2) is sent along with {N1, N2, B}A. For the responder, there is a similar com-
mitment: at the end of the protocol, B emits (as a last message) cr(A,B,N1, N2).

The responder does the following sequence of steps in session i′ which we denote inform-
ally by RespBNSL[B, i′, N2, h2, h4, R2]:
1. B receives some h2 from the adversary and checks:

W (π2 (dec(h2, dKB))) (Checks that it is a name of someone);
2. B generates nonce N2;
3. B sends {π1 (dec(h2, dKB)) , N2, B}R2

eKπ2(dec(h2,dKB))
;

4. B receives h4, and checks if dec(h4, dKB) = N2;
5. B sends cr(π2 (dec(h2, dKB)) , B, π1 (dec(h2, dKB)) , N2).

I Example 3.1. We show the beginning of a possible branch in the symbolic execution of a
single session of the NSL protocol.

(q0, ∅, φ0, ∅) (q1, H1, φ1,Θ1) (q2, H2, φ2,Θ2) (q3, H3, φ3,Θ3) (q4, H4, φ4,Θ4)
• • • • •- - - -

where n = N1, N2, R1, R2, R3 and, with qAj , qBj counting the states of the A and B, q0 =
(qA0 , qB0)(n), q1 = (qA1 , qB0)(n), q2 = (qA1 , qB1)(n), q3 = (qA2 , qB1)(n) and q4 = (qA2 , qB2)(n). In
other words, we interleave the actions of A and B, as in an expected execution and assume
that the two processes were first activated.

FSTTCS 2012

552 Computationally Complete Symbolic Attacker in Action

φ0 = νKAKBAB(), Θ0 = ∅
H1 = ∅, φ1 = νKAKBAB(p1 7→ (A,B, eKA, eKB)), Θ1 = ∅
H2 = 〈h1〉, φ2 extends φ1 with p1 7→ {〈N1, A〉}R1

eKB
, Θ2 = {φ1 ` h1}

H3 = 〈h1, h2〉, φ3 extends φ2 with p2 7→ {〈π1 (dec(h2, dKB)) , 〈N2, B〉〉}R2
eKπ2(dec(h2,dKB))

,
Θ3 = Θ2 ∪ {φ2 ` h2,W (π2 (dec(h2, dKB)))}

H4 = 〈h1, h2, h3〉, φ4 extends φ3 with p3 7→ {π1 (π2 (dec(h3, dKA)))}R3
eKB

,
Θ4 = Θ3 ∪ {φ3 ` h3, π1 (dec(h3, dKh)) = N1, π2 (π2 (dec(h3, dKA))) =

B},
H5 = 〈h1, h2, h3, h4〉, φ5 = φ4, Θ5 = Θ4 ∪ {φ4 ` h4, dec(h4, dKB) = N2},

LetM be a model such that π2 (dec(h2, dKB)) = A,

h2 =M {〈N1, A〉}R1
eKB

, h3 =M {〈N1, 〈N2, B〉〉}R2
eKA

, h4 =M {N}R3
eKB

,

and `M is simply the classical Dolev-Yao deduction relation. Then the execution sequence
above is valid w.r.t. M, and this corresponds to the correct execution of the NSL protocol
between A and B.

I Example 3.2. Consider again Example 3.1, and a modelM in which
N0, {N1, N2, B}R2

eKA
`M {N1, N0, B}reKA for an honestly generated nonce N0 that can be

chosen by the attacker; the transition sequence of the previous example is also valid w.r.t.
this model. This however yields an attack, using a malleability property of the encryption
scheme. Discarding such attacks requires some properties of the encryption scheme (for
instance IND-CCA). It can be ruled out by the non-malleability axiom that we will introduce.
From this example, we see that unexpected attacks can be found when some assumption is
not explicitly stated as an axiom to limit adversarial capabilities.

4 The Axioms

This section contains the core results of this paper: a set of computationally sound axioms
that are sufficient to prove security of actual protocols that use CCA2 secure encryptions.
The axioms are not at all special to the NSL protocol and can be used in other protocol
proofs too. They are entirely modular, so introducing further primitives will not invalidate
their soundness, they do not have to be verified again. As usual, unquantified variables are
universally quantified.

Equality is a Congruence. The first axiom says that the equality is a congruence
relation:
x = x, and the substitutability (congruence) property of equal terms holds for predic-
ates (but not necessarily constraints).

This axiom is computationally sound simply as we limit ourself to consider computational
interpretations of predicates that are invariant if we change the arguments on sets with
negligible probability. The computational interpretations of =, ` and W are all such.
Axioms for the Derivability Predicate. The following axioms are trivially com-
putationally sound for what the PPT adversary can compute. The last is sound as we
assume that all function symbols are interpreted as PT computable functions.

Self derivability: φ̂, ~x, x ` x
Increasing capabilities: φ̂, ~x ` y −→ φ̂, ~x, x ` y
Commutativity: If ~x′ is a permutation of ~x, then φ̂, ~x ` y −→ φ̂, ~x′ ` y
Transitivity of derivability: φ̂, ~x ` ~y ∧ φ̂, ~x, ~y ` ~z −→ φ̂, ~x ` ~z
Functions are derivable: φ̂, ~x ` f(~x)

G. Bana, P. Adão, and H. Sakurada 553

Axioms for Randomly Generated Items. These are relations involving RandGen()
and the v constraints that are not purely symbolic (for example, as v is a constraint,
x v φ̂, x holds purely symbolically, so it does not have to be listed as an axiom). No
telepathy expresses that randomly generated items not yet sent out are not guessable.
It is sound as we assumed that random generation happens in a large enough space such
that guessing is only possible with negligible probability. The second axiom is sound
because random generation is independent of everything else, so a randomly generated
item x given to the adversary cannot help to compute y from which it is independent,
before x was sent out (that is, appear in φ). Once x appears in the frame (as e.g. {y}Rx),
giving x to the adversary may help to compute y. The condition ~x, y 4 φ̂ ensures that
~x, y do not contain future knowledge of the adversary in the form of handles computed
later.

No telepathy: fresh(x; φ̂) −→ φ̂ 6` x
Fresh items are independent and hence contain no information about other items:

fresh(x; φ̂, ~x, y) ∧ ~x 4 φ̂ ∧ y 4 φ̂ ∧ φ̂, ~x, x ` y −→ φ̂, ~x ` y

Equations for the fixed function symbols discussed earlier:
dec({x}ReK , dK) = x; π1 (〈x, y〉) = x; π2 (〈x, y〉) = y

Special to IND-CCA2 Encryption Let x1, ..., xn 4 φ̂ ≡ x1 4 φ̂ ∧ ... ∧ xn 4 φ̂. We
present two axioms here. Both follow if the encryption is CCA2 secure and if random
generation is only guessable with negligible probability. The first expresses secrecy, the
second non-malleability. None of them implies the other. As they are not trivial, we
state them in the form of theorems.
I Theorem 4.1 (Secrecy of CCA2 Encryption). If the encryption scheme is IND-CCA2,
then the following formula is computationally sound.

RandGen(K) ∧ eK v φ̂ ∧ fresh(R; φ̂, ~x, x, y) ∧ ~x, x, y 4 φ̂ ∧ φ̂, ~x, {x}ReK ` y

−→ dK v 6d φ̂, ~x, x ∨ φ̂, ~x ` y

This axiom is a stronger version of the one proved in [7] and its proof is available in the
full version of our paper [5]. It says that if K was correctly generated, R is fresh, and y
can be derived with the help of {x}ReK , then it can be derived without {x}ReK , or dK has
been sent out or it is in ~x or x. The condition dK 6v6d φ̂, ~x, x (if moved to the premise)
ensures dK has not been revealed, and it is also an easy way to avoid key-cycles, sufficient
for the NSL protocol. A tighter axiom is left for future work. Again, ~x, x, y 4 φ̂ ensures
that ~x, x, y do not contain future information in the form of handles not computable from
φ. Note, that this axiom may look like it would work for CPA security, but it does not
in general, as in general honest agents can be used as decryption oracles. For proving
this axiom we need the decryption oracle in the CCA2 game before the ciphertext was
created by the encryption oracle, but not after.
Let us now consider the case of non-malleability and suppose that we have pairing as
before. Let f1, ..., fn be the rest of the non-0-arity function symbols not in Fc ∪ Fd
from Section 3. Let maycorruptCCA2(u; φ̂, ~x) be a constraint meaning that u is a term
that is paired-together all terms which occur in φ, ~x not guarded by an honest encryp-
tion, immediately under one of the functions f1, . . . , fn or immediately under an honest
decryption, not in the key position.
I Theorem 4.2 (Non-Malleability of CCA2 Encryption). If the encryption scheme is IND-
CCA2, then the following formula is computationally sound.

FSTTCS 2012

554 Computationally Complete Symbolic Attacker in Action

∃u(maycorruptCCA2(u; φ̂, ~x) ∧ φ̂, ~x, u 6` N) ∧ RandGen(N) ∧ RandGen(K)

∧ eK v φ̂ ∧ ~x 4 φ̂ ∧ N v φ̂, ~x ∧ φ̂, ~x ` y ∧ φ̂, ~x, dec(y, dK) ` N

→ ∃K ′(RandGen(K ′) ∧ dK ′ v6d φ̂, ~x) ∨ φ̂, ~x ` N ∨ ∃xR(y = {x}ReK ∧ {x}ReK v φ̂, ~x)

This means that if N and K were correctly generated, y can be decrypted and from the
plaintext, N can be derived, but no honest agent ever produced y as an encryption, then
either N can be derived without the plaintext of y, or some dK ′ has been sent out. For
this, we need the full power of the CCA2 security, decryption oracle calls both before
and after encryption oracle calls. The first conjunct is necessary for making sure that
function symbols other than the ones related to pairing or encryption do not interfere
with our CCA2 encryption. In principle it is possible to have another encryption for
example that may allow to fake encryptions of our CCA2 encryption. Also, there is no
guarantee for a CCA2 encryption that, for example, dec(N, dK) does not decrypt to N .
In the NSL case, maycorruptCCA2 only refers to decryptions as we do not have other
function symbols. The proof is in [5].
Special to ci, cr. These axioms are trivial as ci, cr are just ideal functions introduced for
convenience to represent the agents’ view of a session. (Let c be either of them):
c does not help the adversary: RandGen(N) ∧ φ̂, ~x, c(x, y, z, w) ` N → φ̂, ~x ` N
c cannot be forged and cannot be subpart of a term:
φ̂, ~x ` c(x, y, z, w) −→ c(x, y, z, w) v φ̂ ∨ x1 = c(x, y, z, w) ∨ . . . ∨ xl = c(x, y, z, w)
c cannot be equal to anything else: If the outermost function symbol of a term T is
something different from c, then c(x, y, z, w) 6= T .

One Extra Axiom For the NSL protocol, we need an additional axiom, namely,
RandGen(N)→ ¬W (π2 (N)).

That is, the second projection of a nonce can never be a name (by overwhelming probab-
ility on a non-negligible set). We assume that the implementation of the pairing is such
that this condition is satisfied. If this does not hold, there is an attack which we include
in Section 5. It is very easy to ensure that an implementation satisfies this property. If
the length of nonces is fixed for a given security parameter, and agents check the length
of bit strings that are supposed to be nonces, in this case π1 (N), then we can prevent
W (π2 (N)) as it is easy to show that W (π2 (N)) is only possible if the length of π1 (N)
differs from the length of N with non-negligible probability. This means that security of
the NSL protocol does not require tagging of nonces, pairs, encryptions. This axiom is
used in step in 2.2.2 of the full proof of the NSL protocol presented in [5].

5 An Attack on NSL

If we assume that RandGen(N)∧W (π2 (N)) is computationally satisfiable, then we have the
following computational attack on the NSL protocol. RandGen(N)∧W (π2 (N)) is the same
as saying that with non-negligible probability, it is possible to choose a name (bit string)
Q for an agent such that for the output N of some honest nonce generation, there is a bit
string n such that 〈n,Q〉 = N . To show that this is not at all unrealistic, suppose that the
pairing 〈·, ·〉 is concatenation, and the length of agent names does not depend on the security
parameter, say always 8 bits. Then for any name Q, n can be chosen with 〈n,Q〉 = N as
long as the last four digits of N equals Q, which, if N is evenly generated, is of just 1/28, i.e.
non-negligible probability. So this situation is realistic. Now, the attack is the following, it
needs two sessions:
1. The adversary choses a name Q as above.

G. Bana, P. Adão, and H. Sakurada 555

2. The adversary catches the last message {N2}B in a session between A and B, two honest
agents.

3. The adversary, acting as agent Q initiates a new session with B, sending {N2}B to him.
4. Since B believes this is a new session with Q, it will parse {N2}B according to its role,

namely as {N ′
1, Q}B . This will succeed as long as there is an n with 〈n,Q〉 = N2, that

is, it will succeed with non-negligible probability 1/28.
5. B then generates a new nonce, N ′

2, and sends {n,N ′
2, B}Q to Q.

6. The adversary Q decrypts {n,N ′
2, B}Q, reads n, and computes N2 = 〈n,Q〉. The secrecy

of N2 is hence broken.
So, we can conclude that if 〈n,Q〉 = N is possible computationally with non-negligible
probability, then the protocol fails. In such case, trace-lifting soundness proofs fail as a bit
string can be understood both as 〈n,Q〉 and as N .

Clearly, if the implementation of the protocol is such that B always checks the length of n,
then this attack is not possible. It just has to be made sure somehow that the implementation
satisfies the RandGen(N)→ ¬W (π2 (N)) property.

Notice, that this attack is not a usual type-flaw attack, because even if type-flaw attacks
are allowed, honestly generated nonces are normally considered atomic. For example, the
reader may suggest that this attack is in fact very similar to the one shown in [19] (as we
both wrote it as N = 〈n,Q〉). However, there is a very fundamental difference. The attack
in [19] is based on the fact that an honest agent sends a pair with a nonce and an agent
name, and the receiving honest agent understands this as a single nonce. In other words, in
[19] the honest receiver reads the pair of a nonce and a name into an input variable meant
for a nonce. There, n is the honest nonce and N is the input variable. In our attack, it
is an actual nonce that is understood by the receiver as a pair of a nonce and a name. In
our case, an actual nonce is read into the pair of two input variables: one for a nonce and
another for a name. Here N is the honest nonce and n corresponds to the input variable.
This is a fundamental difference as in our case there are no atomic objects at all. Even an
honest nonce is allowed to be split. To our knowledge, this is the first such attack on the
NSL protocol.

6 Examples for Proving Inconsistency

Here we look at three small example proofs so that the reader can become familiar with how
the axioms work. Note that these derivations are not pure first-order deductions. Not only
we use the axioms and first order deduction rules, but we also use how a symbolic execution
is defined.

I Example 6.1. We start with a very trivial example. It is rather obvious that in the
execution of the NSL protocol in Example 3.1, φ2 6` A should be inconsistent with the
axioms as A is included in φ2. We can derive it the following way: observe that

φ2 ≡ A,B, eKA, eKB , {〈N1, A〉}R1
eKB
≡ φ0, A,B, eKA, eKB , {〈N1, A〉}R1

eKB
. (1)

From the self-derivability axiom at step 0, φ0, B, eKA, eKB , {〈N1, A〉}R1
eKB

, A ` A. By com-
mutativity, φ0, A,B, eKA, eKB , {〈N1, A〉}R1

eKB
` A, so its negation is inconsistent with the

axioms. Hence,M, σ 6|= A,B, eKA, eKB , {〈N1, A〉}R1
eKB
6` A for any modelM, which implies

by (1) that φ2 6` A is inconsistent with the axioms.

I Example 6.2. We can also derive, as expected, that φ2 ` N1 is inconsistent with the
axioms in our NSL example. This should be the case, as N1 has only been sent out under

FSTTCS 2012

556 Computationally Complete Symbolic Attacker in Action

a single good encryption. As φ2 ≡ A,B, eKA, eKB , {〈N1, A〉}R1
eKB

≡ φ1, {〈N1, A〉}R1
eKB

, it
is enough to show that φ1, {〈N1, A〉}R1

eKB
` N1 is inconsistent with the axioms. Suppose,

in order to get a contradiction, that this is not the case, i.e., φ1, {〈N1, A〉}R1
eKB

` N1. To
apply the secrecy axiom consider that ~x = 〈〉, x = 〈N1, A〉, and y = N1. Since KB was
correctly generated (appeared as a name), RandGen(KB) holds. By Example 3.1 we have
eKB v φ1. fresh(R1;φ1, ~x, x, y) also holds because RandGen(R1) ∧ R1 6v φ1, 〈〉, 〈N1, A〉, N1.
Finally, since ~x 4 φ1, x 4 φ1 and y 4 φ1 because none has handles, φ1, {〈N1, A〉}R1

eKB
` N1

was supposed, and dKB 6v φ1, ~x, x, one may apply the secrecy axiom and get φ1 ` N1. At
Step 1 we have fresh(N1;φ1) as RandGen(N1) ∧N1 6v φ1, so fresh(N1;φ1) ∧ φ1 ` N1 holds,
which contradicts the no telepathy axiom.

I Example 6.3. From the axioms, we can also derive the increasing knowledge of an ad-
versary, i.e., for any m and x, if φm ` x is derivable from the axioms and agent checks,
then φm+1 ` x is also derivable from the axioms and agent checks. Assume that φm ` x
is derivable from the axioms and agent checks. Let t be the message sent in the m + 1’th
step i.e., φm+1 ≡ φm, t. The increasing capabilities axiom applied to step m means φm ` x
implies φm, t ` x. But that is the same as φm+1 ` x. Note that from the above and from
Example 6.1 it also follows that for any m, the axioms imply that φm ` A: it is clear from
Example 6.1, that φ2 ` A is implied, then from the above, by induction, φm ` A is also
implied. Note that the induction is not within FOL, we used the induction on the number
of execution steps.

7 Correctness Proof of NSL

We present now the correctness of the NSL protocol for any (bounded) number of sessions.
We show that in the symbolic execution defined above, violation of secrecy or authentication
is inconsistent with the axioms. As we mentioned, we assume that agent A only executes
the initiator role, and agent B only executes the responder role. But, we allow both A and
B to have other sessions running with possibly corrupted agents. We start by showing that
nonces that were generated by honest initiator A and sent to honest responder B, or vice-
versa, remain secret. We do this by picking any step m of the execution tree, and listing all
possible messages sent by A and B, show that φm 6` N together with the axioms and agent
checks imply φm+1 6` N for each possible sent message. Hence, φm 6` N , the axioms and the
agent checks, and φm+1 ` N are inconsistent. Since φ0 6` N initially holds by no-telepathy,
by induction we have φm 6` N after any finite number of steps m. The reader can see below
that the induction hypothesis is a little more complex, but essentially this is what we do.

Once secrecy is proven, authentication and agreement are shown. We pick the point
on the execution tree when the responder finished his task, and using that nonces remain
secret, together with non-malleability, we show that the initiator also finished his task and
the corresponding values seen by the two parties have to match. In other words, B finished,
A not finished or values don’t match, and the axioms and the agent checks are inconsistent.

7.1 Secrecy
The aim of the secrecy proof is to show that nonces N sent between A and B remain
secret. The fact that N is a nonce sent by A to B in the NSL protocol can be expressed as
∃R
(
{N,A}ReKB v φ̂

)
. If B sent it to A, that means ∃hR

(
{π1 (dec(h, dKB)) , N,B}ReKA v φ̂

)
.

So, such nonces can be characterized by the condition

C[N] ≡ RandGen(N) ∧
(
∃R.{N,A}ReKB v φ̂ ∨ ∃hR.{π1 (dec(h, dKB)) , N,B}ReKA v φ̂

)
.

G. Bana, P. Adão, and H. Sakurada 557

Then the secrecy property we want to show is that ∀N
(
C[N] −→ φ̂ 6` N

)
, meaning that

such nonces cannot be computed by the adversary. It is equivalent to show that its negation,
∃N
(
C[N] ∧ φ̂ ` N

)
, is inconsistent with the axioms and the agent checks on every possible

symbolic trace.
Suppose the total length of the symbolic trace in question is n. At the end of the trace

the frame φ contains n terms. Let us denote the frames at each node of this trace by φ0, φ1,
φ2, etc. Each frame contains one more term than the previous one. Satisfaction of C[N] by
this trace means that one of the terms {N,A}ReKB or {π1 (dec(h, dKB)) , N,B}ReKA appears
in frame φn for some h,R. Let us fix such N . If ~x is a list of a finite number of nonces
~x ≡ N1, ..., Nl that were all generated by either A or B (possibly intended to each other,
possibly intended for other possibly malicious agents), and they are all different from N ,
then we say condition C ′[~x,N] is satisfied:

C ′[N1, ..., Nl, N] ≡
l∧
i=1

(
RandGen(Ni) ∧ N 6= Ni ∧

(
∃QR.{Ni, A}ReKQ v φ̂ ∨

∃QhR.{π1 (dec(h, dKB)) , Ni, B}ReKQ v φ̂
))

We will carry out an inductive proof on the length of φn. As it turns out, in order to avoid
loops in the proof, instead of ∃N

(
C[N] ∧ φ̂ ` N

)
, it is better to prove that

∃N∃~x
(
C[N] ∧ C ′[~x,N] ∧ φ̂, ~x ` N

)
(2)

is inconsistent with the axioms and agent checks. On the symbolic trace, this means that
for all n,

∃N∃~x
(
C[N] ∧ C ′[~x,N] ∧ φn, ~x ` N

)
is inconsistent with the axioms and agent checks. We do this by fixing an arbitrary N

satisfying C[N], and by showing that if for some m < n, ∃~x
(
C ′[~x,N] ∧ φm, ~x ` N

)
is

inconsistent with the axioms and agent checks, then ∃~x
(
C ′[~x,N] ∧ φm+1, ~x ` N

)
is also

inconsistent with the axioms and agent checks. As at m = 0 the statement follows from
no telepathy, we are done. To be completely precise, we would have to take into account
maycorruptCCA2 as well, but this is trivial for NSL as only those things are decrypted that
came from the clear (only handles are decrypted). Again, note that within C and C ′, φ̂ is
always φn and not φm.

I Proposition 7.1. In the above execution of NSL protocol, let N be such that C[N] is
satisfied, and let m < n. If for all ~x such that C ′[~x,N] holds, the axioms and agent checks
imply (by FOL deduction rules) that φm, ~x 6` N , then for all ~x such that C ′[~x,N] holds, the
axioms and agent checks imply (by FOL deduction rules) that φm+1, ~x 6` N holds.

The proof is in [5]. Once this is shown, we still have to prove that the property initially holds,
that is, ∃N∃~x

(
C[N] ∧ C ′[~x,N] ∧ φ0, ~x ` N

)
is inconsistent with the axioms. Let C[N] and

C ′[~x,N] hold for N and ~x ≡ N1, ..., Nl. At step 0, N , N1, ..., Nl are still fresh (remember,
we assumed for simplicity that everything was generated upfront, and clearly, these nonces
have not been sent), so by the no telepathy axiom, φ0 6` N , and then by the independence
of fresh items, φ0, N1 6` N . Then again by the independence of fresh items, φ0, N1, N2 6` N ,
etc. So φ0, N1, ..., Nl 6` N holds, meaning that ∃N∃~x

(
C[N]∧C ′[~x,N]∧φ0, ~x ` N

)
is indeed

inconsistent with the axioms. Therefore, together with the induction step of Proposition 7.1,
we have:

I Theorem 7.2 (Secrecy). Consider a symbolic execution of the NSL protocol, with an
arbitrary number of possible dishonest participants and two honest participants A, B that
follow the initiator and responder roles correspondingly, and that only execute these roles

FSTTCS 2012

558 Computationally Complete Symbolic Attacker in Action

in each of their bounded number of sessions. Further, consider the convention 〈x, y, z〉 ≡
〈x, 〈y, z〉〉. Our axioms together with the agent checks and RandGen(N) → ¬W (π2 (N))
imply that for any n ∈ N and for any nonce N that was either generated by A and sent to
B, or vice versa, φn 6` N .

The above Theorem states that secrecy of nonces satisfying C[N] is never broken. That is,
nonces that were generated by A or B and intended to be sent between each other, remain
secret. In particular, asking ~x to be the empty list, the formula ∃N

(
C[N]∧ φ̂ ` N

)
, together

with the axioms and the agent checks, and RandGen(N) → ¬W (π2 (N)) are inconsistent on
any symbolic trace.

7.2 Agreement and Authentication
We now prove agreement from the responder’s viewpoint. That is, we will show that

RespB
NSL[B, i′, N2, h2, h4, R2] AND

π2 (dec(h2, dKB)) = A
=⇒

EXIST i,N1, h1, h3, R1, R3 SUCH THAT
InitA

NSL[A, i, B,N1, h1, h3, R1, R3] AND
dec(h2, dKB) = 〈N1, A〉 AND
dec(h3, dKA) = 〈N1, N2, B〉 AND
dec(h4, dKB) = N2

where by the implication sign we mean that the agent checks and the axioms imply this.
We can also write this within our syntax:

A = π2 (dec(h2, dKB)) ∧
N1 = π1 (dec(h2, dKB)) ∧
cr(A,B,N1, N2) v φ̂ ∧

−→ ∃h3.

(
ci(A,B,N1, N2) v φ̂ ∧
N2 = π1 (π2 (dec(h3, dKA)))

)
What we have to prove is that the negation of this is inconsistent with the axioms and
agent checks. But for that it is sufficient to show that the agent checks and axioms, and the
premise of the formula imply the conclusion of this formula, as the following theorem states
with the proof available in [5].

I Theorem 7.3 (Agreement and Authentication). Consider a symbolic execution of the NSL
protocol, with an arbitrary number of possible dishonest participants and two honest parti-
cipants A, B that follow the initiator and responder roles correspondingly, and that only
execute these roles in each of their bounded number of sessions. Further, consider the con-
vention 〈x, y, z〉 ≡ 〈x, 〈y, z〉〉.

Our axioms together with the agent checks and RandGen(N) → ¬W (π2 (N)) are incon-
sistent with the negation of the formula

cr(π2 (dec(h2, dKB)), B, π1 (dec(h2, dKB)), N2) v φ̂ ∧ A = π2 (dec(h2, dKB))

−→ ∃N1h3.

(
ci(A,B,N1, π1 (π2 (dec(h3, dKA)))) v φ̂ ∧
N2 = π1 (π2 (dec(h3, dKA))) ∧ N1 = π1 (dec(h2, dKB))

)

8 Conclusion and Future Work

In this paper we illustrated that the framework proposed by Bana and Comon-Lundh [7],
where one does not define explicitly the Dolev-Yao adversarial capabilities but rather the
limitations (axioms) on these capabilities, is suitable and powerful enough to prove cor-
rectness of security protocols. The proofs with this technique are computationally sound
without the need of any further assumptions such as no bad keys, etc that are otherwise
usually assumed in other literature.

G. Bana, P. Adão, and H. Sakurada 559

We presented a modular set of axioms that are computationally sound for implement-
ations using CCA2 secure encryption. Using the axioms together with a minimal parsing
assumption, we were able to perform an inductive proof to show both secrecy and agreement
of the NSL protocol. Applying the main theorem of [7] we obtain that for any implementation
satisfying CCA2 security and the parsing assumption, there is no computational adversary
that can violate secrecy or authentication except with negligible probability. We also be-
lieve the axioms of secrecy and non-malleability constitute a sufficient abstraction of CCA2
security to prove correctness of protocols other than NSL.

As other current techniques have problems incorporating dynamic corruption, it is worth
noting, that our technique works even if the protocol allows the release of a decryption key
of A or B at some time. Secrecy can still be proven until that point, and authentication
that was carried out earlier can be verified even if the decryption key is later released.

The proof we presented in this paper was done by hand but we believe that automation
is possible and is left for future work.

References
1 M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational

soundness of formal encryption). Journal of Cryptology, 15(2):103–127, January 2002.
2 P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness and completeness of formal

encryption: the cases of key-cycles and partial information leakage. Journal of Computer
Security, 17(5):737–797, 2009.

3 M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. In CCS’03, pages 220–230. ACM, 2003.

4 M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (RSIM) framework
for asynchronous systems. Information and Computation, 205(12):1685–1720, 2007.

5 G. Bana, P. Adão, and H. Sakurada. Computationally Complete Symbolic Attacker in
Action—Long version, 2012. Available at http://eprint.iacr.org/2012/316.

6 G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally com-
plete symbolic attacker, 2012. Available at http://eprint.iacr.org/2012/019.

7 G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally com-
plete symbolic attacker. In POST’12, volume 7215 of LNCS, pages 189–208. Springer,
2012.

8 G. Bana, K. Hasebe, and M. Okada. Computational Semantics for First-Order Logical
Analysis of Cryptographic Protocols. In Formal to Practical Security, volume 5458 of
LNCS, pages 33–56. Springer, 2007.

9 G. Bana, K. Hasebe, and M. Okada. Secrecy-oriented first-order logical analysis of cryp-
tographic protocols, 2010. Available at http://eprint.iacr.org/2010/080.

10 G. Bana, P. Mohassel, and T. Stegers. Computational Soundness of Formal Indistinguishab-
ility and Static Equivalence. In ASIAN’06, volume 4435 of LNCS, pages 182–196. Springer,
2007.

11 G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification of code-based cryp-
tographic proofs. In POPL’09, pages 90–101. ACM, 2009.

12 M. Baudet, V. Cortier, and S. Kremer Computationally Sound Implementations of Equa-
tional Theories Against Passive Adversaries. In ICALP’05, volume 3580 of LNCS, pages
652–663. 2005.

13 B. Blanchet. A computationally sound mechanized prover for security protocols. IEEE
Transactions on Dependable and Secure Computing, 5(4):193–207, 2008.

14 H. Comon-Lundh and V. Cortier. Computational soundness of observational equivalence.
In CCS’08, pages 109–118. ACM, 2008.

FSTTCS 2012

http://eprint.iacr.org/2012/316
http://eprint.iacr.org/2012/019
http://eprint.iacr.org/2010/080

560 Computationally Complete Symbolic Attacker in Action

15 H. Comon-Lundh and V. Cortier. How to prove security of communication protocols?
A discussion on the soundness of formal models w.r.t. computational ones. In STACS’11,
volume 9 of LIPIcs, pages 29–44. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

16 V. Cortier and B. Warinschi. Computationally sound, automated proofs for security pro-
tocols. In ESOP’05, volume 3444 of LNCS, pages 157–171. Springer, 2005.

17 V. Cortier and B. Warinschi. A composable computational soundness notion. In CCS’11,
pages 63–74. ACM, 2011.

18 A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic
polynomial-time semantics for a protocol security logic. In ICALP’05, volume 3580 of
LNCS, pages 16–29. 2005.

19 J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol
analysis. In CCS’01, pages 166–175. ACM, 2001.

20 B. Warinschi. A computational analysis of the Needham-Schroeder protocol. In CSFW’03,
pages 248–262. IEEE Computer Society, 2003.

	Introduction
	Symbolic Execution and Properties
	Terms, Frames, and Formulas
	Symbolic Execution of a Protocol
	Predicates, Constraints and FOL Formulas in Executions

	The NSL Protocol and Its Symbolic Execution
	The Axioms
	An Attack on NSL
	Examples for Proving Inconsistency
	Correctness Proof of NSL
	Secrecy
	Agreement and Authentication

	Conclusion and Future Work

