Report from Dagstuhl Seminar 12363
Software Defined Networking

Edited by
Pan Hui' and Teemu Koponen?

1 TU Berlin, DE, ben@net.t-labs.tu-berlin.de
2 Nicira Networks Inc. — Palo Alto, US, koponen@nicira.com

—— Abstract

This report documents the talks and discussions of Dagstuhl Seminar 12363 “Software Defined
Networking”. The presented talks represent a spectrum of industrial and academic work as well
as both technical and organizational developments surrounding Software Defined Networking
(SDN). The topic of SDN has garnered significant attention over the past few years in the networ-
king community and beyond, and indeed the term “Software Defined Networking” itself carries
different meaning among different circles. A key focus of the talks and discussions presented here
is to capture the essence of SDN through concrete network applications, operational experience
reports, and open research problems.

Seminar 05.— 08. September, 2012 — www.dagstuhl.de/12363

1998 ACM Subject Classification C.2.1 Network Architecture and Design, C.2.3 Network Ope-
rations.

Keywords and phrases Software Defined Networking, Routing, Data centers, Network Abstrac-
tions

Digital Object ldentifier 10.4230/DagRep.2.9.95

Edited in cooperation with Dan Levin — dan@net.t-labs.tu-berlin.de

1 Executive Summary

Pan Hui
Teemu Koponen

License @ @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Pan Hui and Teemu Koponen

Software Defined Networks (SDN) is seen as the most promising solution to resolve the
challenges in realizing sophisticated network control. SDN builds its promise on the separation
of the network control functions from the network switching elements. By moving the control
plane out from the network elements into stand-alone servers, the switching elements can
remain simple, general-purpose, and cost-effective and at the same time the control plane
can rely on design principles of distributed systems in its implementation instead of being
confined to distributed routing protocols.

The purpose of the seminar was to look at the current developments in this quickly
evolving problem domain and identify future research challenges. The seminar brought
together researchers with different domains and backgrounds. Given the high level of
interest in SDN from industry, the organizers also invited many participants from companies
working with SDN related networking products and services. This mix of people resulted in
fruitful discussions and interesting information exchange. The structure of the seminar took
advantage of these different backgrounds by focusing on themed talks and group discussions.

@@@@ Except where otherwise noted, content of this report is licensed

Ol under a Creative Commons BY-NC-ND 3.0 Unported license
Software Defined Networking, Dagstuhl Reports, Vol. 2, Issue 9, pp. 95-108
Editors: Pan Hui and Teemu Koponen

\\v pagstunL Dagstuhl Reports
rReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/12363
http://dx.doi.org/10.4230/DagRep.2.9.95
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

96

12363 — Software Defined Networking

Organization of the Seminar

Software-Defined Networking (SDN) continues to remain relevant both for the industry
and academia and indeed this was very much reflected in the backgrounds of the seminar
participants; the seminar had a balanced mix of representatives both from industry and
academia.

These two very active communities, industry and academia, are pursuing SDN with
different mind-sets, different solutions and different implications in mind, however. The
organizers felt that the interactions had been clearly insufficient in the past: practical
challenges in SDN continue to remain little known in the academia whereas the industry
often remains unaware of the recent useful developments in research. To this end, the two
and half day seminar was explicitly structured around this observation; the goal was to allow
for fruitful interactions between the industry and academia to maximize the exchange of
ideas, challenges and lessons learnt between these two communities.

The seminar discussions and talks were structured around three themes:

1. Status updates. From the very definition to the ongoing standardization work, SDN is
still evolving. In these talks and discussions, we dived into the ongoing work at ONF as
well as the perceived hard problems to be solved.

2. Industry use cases. In this theme the focus was on exposing the academia to the practical
use cases on which industry is working.

3. Implementation. The third theme dived into the details and exposed the seminar
participants to both the practical implementation issues faced as well as more theoretical
observations about the system design.

For the status updates the seminar had the following talks at the first day. The talks
were fairly short so enough discussion could be had between the talks:

Teemu Koponen: Evolving SDN

Peter Feil: ONF update

David Meyer: Hard problems in OF/SDN
Dirk Kutscher: Northbound interfaces

The discussions after (and during) the talks also bootstrapped the evening and its group
discussions about the definition of the SDN and its use cases.
The second day started with the industry use cases.

Peter Feil: Deutsche Telekom and SDN

James Kempf: SDN: Definition and Use Cases

Teemu Koponen: Network virtualization

Cedric Westphal: SDN for content management/network-based CDN emulation/transpa-
rent caching

The rest of the day was dedicated for the implementation theme and a set of short talks
were given again to spark the discussion later in the evening about the implementation
aspects.

Dan Levin: State distribution trade-offs in SDN
Nate Foster: Frenetic

Toby Moncaster: SDN, can we (IP)FIX it?
Andrew Moore: S/FPGA/NetFPGA

Pan Hui and Teemu Koponen

Jarno Rajahalme: Issues in routing and tunneling in OF and OVS
Wolfgang Riedel: Alignment of Storage, Compute and Networking
Anders Lindgren: Use cases of SDN in information centric mobile networks

The third day was again about the use cases but this time from the academic participants.

The following short talks were given with discussions between the talks:

Christian Rothenberg: RouteFlow

Fernando Ramos: Secure, trustworthy, resilient SDNs

Raimo Kantola: Customer Edge Switching

Frank Diirr: Supporting Communication Middleware with Software-Defined Networking

Outcome of the Seminar

The seminar was well received by the participants. Among the participants there were also
organizers of future SDN workshops (IRTF SDN and DIMACS SDN) who signaled the intent
of building their workshops around the similar discussion-oriented structure preferred at
Dagstuhl.

97

12363

98

12363 — Software Defined Networking

2 Table of Contents

Executive Summary
Pan Hui and Teemu Koponen o o i i i e

Overview of Talks

Revisiting Routing Control Platforms with the Eyes and Muscles of Software-Defined
Networking
Christian Esteve Rothenberg

Software Defined Networking: overview and use cases
James Kempf e
Evolving SDN: My view on "what the heck is it?"

Teemu Koponen o o o e e e e

Logically Centralized? State Distribution Trade-offs in Software Defined Networks
Daniel Levin o o e e e e

Hard Problems in Software Defined Networks
David Meyer e e e e e e e e

Language-Based Abstractions for SDN
Nate Foster o e e

Customer Edge Switching
Raimo Kantola e e

A Research Overview — “Things that consume my time”
Andrew Moore e

An Update on the Open Networking Foundation
Peter Feil e e e

Expanding SDN Primitives for Content
Cedric Westphal e

Secure, trustworthy, resilient SDNs

Fernando Ramos e e
Panel Discussions

Evening Discussion Day 1 o000

Evening Discussion Day 2 oo

Participants

Pan Hui and Teemu Koponen

3 Overview of Talks

3.1 Reuvisiting Routing Control Platforms with the Eyes and Muscles of
Software-Defined Networking

Christian Esteve Rothenberg (CPgD - Campinas, BR)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Christian Esteve Rothenberg
Joint work of Esteve Rothenberg, Christian; Nascimento, Marcelo; Salvador, Marcos; Correra, Carlos; Lucena,
Sidney; Raszuk, Robert

This talk addresses the question on the need and opportunities of combining IP routing
protocols in OpenFlow/SDN. The talk aims at raising the debate on (i) transitioning existing
networks to OpenFlow/SDN;, (ii) hybrid OpenFlow/SDN approaches (i.e. integration with
legacy control planes), and (iii) how OpenFlow direct FIB manipulation can help IP routing
control applications and enable cost-effective architectures. The research agenda of the
RouteFlow project touches prior work on centralized Routing Control Platform (RCP) and

its benefits in flexible routing, enhanced security, and ISP connectivity management tasks.

This talk calls for input to shape the project research agenda and discusses a number of
open research challenges. In addition, we present experiences from prototyping a RouteFlow
Control Platform (RFCP) that implements a single node abstraction by means of an AS-wide
eBGP routing service.

3.2 Software Defined Networking: overview and use cases

James Kempf (Ericsson — San Jose, US)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© James Kempf

This talk presents perspectives and applications of SDN in the context of the wide area
network, specifically the mobile core, aggregation of carrier networks as well as within the
data-center. Historically, there have been many examples of split-architecture networks
enabling the separation of network control from data plane forwarding — following the general
principle of policy/mechanism separation. These approaches however did not introduce
sufficiently powerful abstractions to realize full convergence of the very diverse set of network
and service control interfaces inherent to today’s carrier networks. As carrier networks
become more closely integrated with services such as IPTV, customer data hosting, and
general infrastructure as a service, there is increasing demand for a unified control plane
and management interface for the network. For example, an SDN approach to this problem
would coordinate provisioning of storage, processing, and network resources through the
same management interface. These use cases depend heavily upon finding the right network
and service control abstractions and interfaces. Furthermore, they also introduce complex
distributed systems problems of control state management. Nevertheless, SDN presents
an opportunity toward unifying today’s complex tangle of network and service control
management.

99

12363

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

100

12363 — Software Defined Networking

3.3 Evolving SDN: My view on "what the heck is it?"
Teemu Koponen (Nicira Networks Inc. — Palo Alto, US)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
© Teemu Koponen

Despite the growing body of research and industrial initiatives based on Software Defined
Networks over the past few years, the true essence of SDN remains somehow unclear. This talk
shares observations of how today’s notion of SDN evolved — from early attempts to improve
the manageability of the IP network control plane, to current ideas on better leveraging
abstractions in network design and operation. SDN, today emerged from an approach to
decouple the control from forwarding, as a mechanism to enable better control (e.g., 4D,
Ethane, RCP, Sane). Consequently, OpenFlow and early controller implementations such as
NOX emerged as a means to realize this decoupling. The essence of SDN goes beyond the
notion of decoupling control from forwarding, however. Once decoupled, modern distributed
systems approaches using modular software design principles and tools can be applied to
network design and operations. This talk argues that the potential to bring network design,
control, and operation into the age of modern software development and deployment, to a
large extent, defines the essence of SDN.

3.4 Logically Centralized? State Distribution Trade-offs in Software
Defined Networks

Daniel Levin (TU Berlin, DE)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Daniel Levin
Joint work of Levin, Daniel; Wundsam, Andreas; Heller, Brandon; Handigol, Nikhil; Feldmann, Anja

Software Defined Networks (SDN) give network designers freedom to re-factor the network
control plane. One core benefit of SDN is that it enables the network control logic to be
designed and operated on a global network view, as though it were a centralized application,
rather than a distributed system — logically centralized. Regardless of this abstraction, control
plane state and logic must inevitably be physically distributed to achieve responsiveness,
reliability, and scalability goals. Consequently, we ask: “How does distributed SDN state
impact the performance of a logically centralized control application?”Motivated by this
question, we characterize the state exchange points in a distributed SDN control plane and
identify two key state distribution trade-offs. We simulate these exchange points in the
context of an existing SDN load balancer application. We evaluate the impact of inconsistent
global network view on load balancer performance and compare different state management
approaches. Our results suggest that SDN control state inconsistency significantly degrades
performance of logically centralized control applications agnostic to the underlying state
distribution.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Pan Hui and Teemu Koponen 101

3.5 Hard Problems in Software Defined Networks
David Meyer (CISCO Systems — Eugene, US)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© David Meyer

This talk outlines perspectives on the hard research and implementation problems to realizing
modern, reliable, robust, deterministic, and practical Software Defined Networks. These
problems fall roughly into the categories of technical, social, and economic challenges. Among
the technical challenges, the separation of data and control planes introduces scalability
and failure-resilience questions as new signalling mechanisms and failure modes may be
introduced. Distributed state management of the logically centralized control plane also
brings networking further into the realm of distributed and concurrent systems. Achieving
the right abstractions for network control that expose enough of the underlying distributed
systems complexity to prevent abstraction inversion while still ensuring sufficient control
to achieve near optimal network performance goals. Hardware implementations to realize
decoupling of the forwarding and control plane face very concrete problems in terms of ASIC
design optimization, TCAM space and power trade-offs, etc. Given the right abstractions
for network control, reasoning systems toward behavioral correctness guarantees will pose
a significant challenge to achieve, but potentially enable new levels of network behavioral
determinism. SDN challenges much of the existing dogma in network design and operation,
and thus poses a significant sociological challenge to the establishment. SDN challenges or at
least motivates revisiting fundamental philosophical design questions: Circuits vs. hop-by-hop
forwarding, centralized vs. Distributed control planes, and a shift in influence bases from
NetOps to DevOps all must be addressed. Finally, one can argue that the above problems all
pose economic challenges to the existing vendor and operator ecosystem. Ultimately, these
problems represent a sampling of the difficult problems that SDN presents to us.

3.6 Language-Based Abstractions for SDN
Nate Foster (Cornell University — NY, US)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
© Nate Foster
Joint work of Guha, Arjun; Gutz Stephen; Harrison, Rob; Monsanto, Chris; Reitblatt, Mark; Rexford, Jennifer;
Schlesinger, Cole; Story, Alec; Walker, David

This talk presents examples of how modular software abstraction principles, inspired from the
programming languages research domain, can be used to tackle problems in networking. This
work leverages a key aspect of Software Defined Networking, the programmable forwarding
plane, to enable these abstractions toward realizing more modular, portable, efficient, and
understandable networks.

The first principle, component modularity, is frequently used in the software engineering
and programming languages domain. Through this principle, system functionality is specified
and implemented once, and then reused and composed to realize more complex functionalities.
By reducing code duplication, modular composition can reduce system complexity and reduce
faults, enabling larger functional modules to be built from smaller, well-understood, and
well-tested components. Ideally, network control logic implementation should benefit in the
same fashion from the application of modular composition. For example, the forwarding plane
state needed to realize the functionality of (1) network topology discovery and (2) network

12363

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

102

12363 — Software Defined Networking

traffic statistics collection overlap to a degree — that is, both functions share a common
subset of instructions. In both functionalities, information about packet arrivals must be
collected at the forwarding device and then reported back to a controller. The challenge in
enabling these functionalities to be implemented as modular components however lies in how
the forwarding state for both functionalities is combined and installed on the devices. The
NetCore Language has been developed to this end, to demonstrate how to realize component
modularity. High level modular components can be compiled into low-level forwarding
instructions to modify forwarding state in order to correctly realize the composition of the
modular functional components.

Another example of how software abstraction principles can help ensure efficient and
correctly behaving networks, arises from the problem of configuration updates. More
specifically, in existing networks, it is extremely hard to reason about the behavior of a
network as it transitions from one configuration state to another. Even if a certain property of
the network holds before and after the configuration change has been made, e.g. reachability
between a given source and destination, it is incredibly difficult to know whether that
property will hold at all points through the transition. Abstractions for network update
enable network operators to better reason about the behavior of the network throughout
the entire transition process. The key idea is that for every packet belonging to a defined
flow, that packet must be forwarded at each switch through the network according to one
forwarding configuration only. This behavior is realized by keeping both the old and the new
forwarding states at every forwarding device within the network. Packets are tagged with
an identifier to ensure that as they traverse the network, they are forwarded at each hop
according to the same policy, either the old or the new, never a mixture. Consequently, for
certain network properties, it becomes possible to guarantee that if the property exists in
the starting and ending configuration, that property also exists throughout the configuration
transition.

3.7 Customer Edge Switching
Raimo Kantola(Aalto University — Findland)

License © @® @ Creative Commons BY-NC-ND 3.0 Unported license
© Raimo Kantola
Joint work of Beijar, Nicklas; Llorente, Jesus; Leppaaho, Petri; Pahlevan, Maryam

This talk describes research efforts toward solving customer edge traffic management and
considers the potential for exploiting the mechanisms of the programmable forwarding plane
of Software Defined Networks. Customer-facing networks face certain challenges in providing
scalable, cost-effective connectivity, while enforcing usage and service level policies and
preventing unwanted and malicious traffic from reaching end-users. Customer edge switching
(CES) has been proposed as an approach to allow customer-facing network operators to
realize these goals, by separating customer connected devices from the public internet and
mediating, where possible, connections through application-specific gateways. In theory, by
acting as an intermediary between the customer edge network and the public internet, traffic
filtering, admission, name resolution and route validity can be more easily established. The
mechanisms to realize these behaviors in CES share some semblance with the programmable
forwarding plane of Software Defined Networks. While there is ongoing research remaining to
understand what aspects of CES may be facilitated with the mechanisms of SDN, proofs of
concept demonstrate that certain functionality, i.e., collaborative firewalling, can be achieved.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Pan Hui and Teemu Koponen 103

3.8 A Research Overview — “Things that consume my time”
Andrew Moore (University of Cambridge Computer Lab — Cambridge, UK)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Andrew Moore

This talk broadly documents ongoing group research activities. A primary focus of the group
is the NetFPGA, a line-rate, flexible, open networking platform for teaching and research. The
NetFPGA is a PClexpress device that enables researchers to implement among other things,
hardware accelerated routers, traffic generators, and OpenFlow packet forwarding. It is an
appealing platform to try out new packet-forwarding primitives at line rate. The NetFPGA
is but one sub-project of another larger undertaking at Cambridge University, the (MRC?) or
Modular Research-based Composably trustworthy Mission-oriented Resilient Clouds project.
This project focuses on problems in areas of Data-center switching, distributed resilience,
and energy efficiency.

3.9 An Update on the Open Networking Foundation
Peter Feil (Telekom Innovation Laboratories — Berlin, DE)

License @ @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Peter Feil

This talk provides an overview of the activities and working group structure of the Open
Networking Foundation (ONF), with a specific highlight on the organizational goals. The
ONF was founded as a non-profit mutual benefit corporation, to promote the development
and use of SDN starting with OpenFlow. Members pool their Intellectual Property Rights
and may all share within this pool. There exist around 9 current working groups in charge
of tasks such as OF specification extensibility, testing interoperability of implementations,
marketing and education, and northbound interfaces.

3.10 Expanding SDN Primitives for Content
Cedric Westphal (Huawei US R&D Center — CA, USA)

License © @ (@ Creative Commons BY-NC-ND 3.0 Unported license
© Cedric Westphal

The current functionality supported by OpenFlow-based software defined networking (SDN)
includes switching, routing, tunneling, and some basic fire walling while operating on traffic
flows. However, the semantics of SDN do not allow for other operations on the traffic, nor
does it allow operations at a higher granularity. In this work, we describe a method to expand
the SDN framework to add other network primitives. In particular, we present a method
to integrate different network elements (like cache, proxy etc). Here, we focus on storage
and caching, but our method could be expanded to other functionality seamlessly. We also
present a method to identify content so as to perform per-content policy, as opposed to per
flow policy. We have implemented the proposed mechanisms to demonstrate its feasibility.

12363

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

104

12363 — Software Defined Networking

3.11 Secure, trustworthy, resilient SDNs
Fernando Ramos (University of Lisbon, FCUL, LaSIGE — Lisbon, PT)

License © @ (® Creative Commons BY-NC-ND 3.0 Unported license
© Fernando Ramos

This talk presented some of the generic ideas and preliminary research the SDN group
in the University of Lisbon (www.navigators.di.fc.ul.pt) is undertaking. It’s still all very
early-stage, but in summary they are looking at two aspects of Software Defined Networks.
First, they focus on the SDN as a distributed system. Their aim is to build secure, resilient,
consistent (in its several flavours) distributed control planes. Second, they are using SDN for
generic network research and to build robust middle-ware. Examples include improving fault
and intrusion tolerant systems, building robust pub/sub middle-ware, connecting massive
bioinformatics data processing infrastructures, increasing the efficiency of IPTV networks,
among others.

4 Panel Discussions

4.1 Evening Discussion Day 1

What’s our definition of SDN?
Applying the same kind of abstractions that we’ve been using everywhere else in our field
of computer science to the field of networking
Breaking up the vertically integrated, monolithic black boxes to enable more flexibility
and innovation based on software concepts
Relocate control to from tightly integrated devices to "somewhere else"
Actually, software is an irrelevant part of it. It’s abstraction-defined networking and the
ability to push the pieces around. The Modularization of it.
The term software is not just the control — also the ASICs on the forwarding plane.
The ability for consumers to have vendor-neutral APIs. The thin waist of network
management is the CLI, SNMP, and the python expect script.
Important to consider the semantics of the word "User" is the one who owns the box.

Does it really provide anything new or is it just hype?

It is nothing new, just packaged up in a nice way that has let it gain traction

It is a confluence of circumstance

Routebricks disaster!

All middle-boxes are x86. Why not everything? Because they're general and bad for
everything.

What are the difficult problems ahead? What are the issues that have been definitely
solved by now?
Vendors want to keep control. (One man’s opinion)

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Pan Hui and Teemu Koponen

Up to now, we don’t see cheaper products.

There’s a clear tension between the cost of implementation and the performance/modula-
rity of implementation

We have lessons having been learned from the distributed systems in the building blocks.
E.g. ONIX

Recursion and conditionals in the data-plane

No Consensus on the API

Fixed depth that you can push labels

Transformation of policy into forwarding entries

OpenFlow has an intimate relationship with a particular hardware forwarding approach.
Too hardware-coupled.

Functional control modules have very tight couplings. E.g. in NVP a change to the
configuration propagates throughout all the functional blocks

Not solved:

Modularity: the Quantum one

Flowvisor:

Things are very monolithic still. Nox and Pox. Not much solved.

It’s not clear what the proper semantics of the abstractions should be

OpenFlow will not be all things to all people.

Is it possible to achieve complex functionality with the simpler, building blocks where
complexity is moved out of the box and into the control platform. I.e., Multicast and
IGMP

Got right:

The huge miracle is the confluence of circumstances.

The door has been jimmied open.

OpenFlow 1.0 was very simple "so simple, even we idiots could implements" and this let
the research community get started

Low bar to entry.

What’s the role of OpenFlow in SDN, is it even needed in the end? What other interfaces

should we define, why or why not?

It’s one instance of an interface to realize SDN.
It gives us a starting point

What’s the killer use case for SDN? What’s the least appealing use case for it?
The Killer use case hasn’t yet been seen
The abstraction of the network control will be the killer case for SDN

4.2 Evening Discussion Day 2

N _/

AVa —= () =
A\N//0\\ >\ / 1\)~
//NNI N/ N/, \//0\\ I I\

| 1//0\ /###/#\ //o\ /o\\| /1 \
'V*l""l*,.l"*'*l: z|;|"'~'~| AAAAA |AA|AAAnunuuuuu(u ~~~~~~~~ /_l__\ ~~~~~~~~~~
‘|7: . | LR LLUERLE I |<===l|:7 nnonunon (n v o~ emmm—m—m— e~ ~—~ o~
==="" e L UL L (R P ~mn o~

105

12363

106 12363 — Software Defined Networking

Is reactive flow processing (i.e., first packet of a flow to controller) essential to SDN?
What’s a flow after all?

Reactivity is not inherent to OpenFlow. Reactivity comes from the need to handle

soft-state.

Difane

Just think about how an IP router populates its FIB

There’s a hierarchy of life-times for pipes,

Can centralized network control ever scale?

YES! But it depends on event rates, and where and how you centralize.
AND it doesn’t have to be physically centralized, Logically Centralize!
We are making separate decisions about distribution of state

What does logical centralization mean?

When you control the domain, It means you have design choices.
Eventually Consistency

Locking

2 or 3-Phase Commits

CAP Theorem

Transactional

Which you can achieve depends on the network environment and workload
It means you can aim for strong consistency models

You try to slice the functionality of the network to keep separate the divergence
Ben is not standing next to me right now.

Distributed systems principles are often the magic proposed for scaling, but what are
really the mechanisms and principles required to scale?

See Above

everything stems from you need for strong consistency.

What about availability, doesn’t centralization result in reduced reliability by definition?
Logical Centralization! See above :-)

There are increasingly many language proposals for SDN. What are the fundamental
problems they assist developers with?

Network dev-ops need ways of specifying network configurations: e.g. the what of the

network lookup-algorithms

How do I specify to my network enforce the following policy and not more

Is my network actually doing what I think its doing?

Is the specification correct

Bluespec

Network debugging

There’s some real work to be done applying formal methods to reasoning about SDN

SDN is all about making network control more flexible. That tends to result in more
complicated network state and systems. What are your thoughts on the implications for
testing and debugging?

By the way: What is a good metric for measuring network control flexibility?

The total volume of configuration state goes up by orders of magnitude and it becomes

too much for a human to reason about

The abstraction makes it very hard to reason about what actually went wrong

Pan Hui and Teemu Koponen 107

What are the specific tools (or perhaps you have implemented one) that would be helpful?
OFRewind (maybe. At least the idea)

FPGAs

vim and git (it’s software!)

12363

108

12363 — Software Defined Networking

Participants

= Bengt Ahlgren

Swedish Institute of Computer
Science — Kista, SE

= Marcus Brunner

Swisscom AG — Bern, CH

= Frank Dirr

Universitdt Stuttgart, DE

= Lars Eggert

NetApp Deutschland GmbH —
Kirchheim, DE

= Christian Esteve Rothenberg
CPgD - Campinas, BR

= Peter Feil

Deutsche Telekom AG
Laboratories, DE

= Anja Feldmann

TU Berlin, DE

= Nate Foster

Cornell University — Ithaca, US
- Howard Green

Ericsson — San Jose, US

= Pan Hui

T-labs/TU Berlin, DE
= Raimo Kantola
Aalto University, FI

= James Kempf
Ericsson — San Jose, US
= Teemu Koponen

Nicira Networks Inc. —

Palo Alto, US

= Dirk Kutscher

NEC Laboratories Europe —
Heidelberg, DE

= Daniel Levin

TU Berlin, DE

= Anders Lindgren

Swedish Institute of Computer
Science — Kista, SE

= David Meyer

CISCO Systems — Eugene, US

= Toby Moncaster
University of Cambridge, GB

= Andrew W. Moore
University of Cambridge, GB

= Gerd Pflueger
CISCO Systems GmbH —
Halbergmoos, DE

= Jarno Rajahalme
Nokia Siemens Networks —
Espoo, FI

= Wolfgang Riedel
CISCO Systems GmbH —
Halbergmoos, DE

= Sasu Tarkoma
University of Helsinki, FI

= Fernando Manuel Valente
Ramos
University of Lisboa, PT

= Cedric Westphal
Huawei Technologies — Santa
Clara, US

	Executive Summary Pan Hui and Teemu Koponen
	Table of Contents
	Overview of Talks
	Revisiting Routing Control Platforms with the Eyes and Muscles of Software-Defined Networking Christian Esteve Rothenberg
	Software Defined Networking: overview and use cases James Kempf
	Evolving SDN: My view on "what the heck is it?" Teemu Koponen
	Logically Centralized? State Distribution Trade-offs in Software Defined Networks Daniel Levin
	Hard Problems in Software Defined Networks David Meyer
	Language-Based Abstractions for SDN Nate Foster
	Customer Edge Switching Raimo Kantola
	A Research Overview – ``Things that consume my time'' Andrew Moore
	An Update on the Open Networking Foundation Peter Feil
	Expanding SDN Primitives for Content Cedric Westphal
	Secure, trustworthy, resilient SDNs Fernando Ramos

	Panel Discussions
	Evening Discussion Day 1
	Evening Discussion Day 2

	Participants

