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—— Abstract

MINIMUM FILL-IN is a fundamental and classical problem arising in sparse matrix computa-
tions. In terms of graphs it can be formulated as a problem of finding a triangulation of a given
graph with the minimum number of edges. By the classical result of Rose, Tarjan, Lueker, and
Ohtsuki from 1976, an inclusion minimal triangulation of a graph can be found in polynomial

time but, as it was shown by Yannakakis in 1981, finding a triangulation with the minimum
number of edges is NP-hard.

In this paper, we study the parameterized complexity of local search for the MiNIMUM FILL-
IN problem in the following form: Given a triangulation H of a graph G, is there a better
triangulation, i.e. triangulation with less edges than H, within a given distance from H? We
prove that this problem is fixed-parameter tractable (FPT) being parameterized by the distance
from the initial triangulation by providing an algorithm that in time O(f(k)|G|®™M) decides if a
better triangulation of G can be obtained by swapping at most k edges of H.

Our result adds MINIMUM FILL-IN to the list of very few problems for which local search is
known to be FPT.
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1 Introduction

A graph is chordal (or triangulated) if every cycle of length at least four contains a chord,
i.e. an edge between non-adjacent vertices of the cycle. The MINIMUM FILL-IN problem
(also known as MINIMUM TRIANGULATION and CHORDAL GRAPH COMPLETION) is to turn
a given graph into a chordal by adding as few new edges as possible. The name fill-in is
due to the fundamental problem arising in sparse matrix computations which was studied
intensively in the past. During Gaussian eliminations of large sparse matrices new non-
zero elements called fills can replace original zeros thus increasing storage requirements and
running time needed to solve the system. The problem of finding an optimal elimination
ordering minimizing the number of fill elements can be expressed as the MINIMUM FILL-IN
problem on graphs [44, 45]. See also [9, Chapter 7] for a more recent overview of related
problems and techniques. Besides sparse matrix computations, applications of MINIMUM
FILL-IN can be found in database management [3], artificial intelligence, and the theory
of Bayesian statistics [8, 22, 32, 50]. The survey of Heggernes [25] gives an overview of
techniques and applications of minimum and minimal triangulations.
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MINIMUM FILL-IN (under the name CHORDAL GRAPH COMPLETION) was one of the 12
open problems presented at the end of the first edition of Garey and Johnson’s book [19]
and it was proved to be NP-complete by Yannakakis [51]. While different approximation
and parameterized algorithms for MINIMUM FILL-IN were studied in the literature [2, 5,
7, 8, 17, 27, 38, in practice, to reduce the fill-in different heuristic ordering methods are
commonly used. We refer to the recent survey of Duff and Bora [13] on the history and
recent developments of fill-in reducing heuristics.

In this paper we study the following local search variant of the problem: given a fill-in
of a graph, is it possible to obtain a better fill-in by changing a small number of edges? An
efficient local search algorithm could be used as a generic subroutine of almost every fill-in
heuristic.

The idea of local search is to improve a solution by searching for a better solution in a
neighborhood of the current solution, that is defined in a problem specific way. For example,
for the classic TRAVELING SALESMAN problem, the neighborhood of a tour can be defined as
the set of all tours that differ from it in at most k edges, the so-called k-exchange neighborhood
[33, 42]. For inputs of size n, a naive brute-force search of the k-exchange neighborhood
requires n®®) time; this is infeasible in practical terms even for relatively small values of
k. But is it possible to do better? Is it possible to solve local search problems in, say time
7(k) -n®WM) for some function 7 of k only? It has been generally assumed, perhaps because
of the typical algorithmic structure of local search algorithms: “Look at all solutions in the
neighborhood of the current solution ...”; that finding an improved solution (if there is one)
in a k-exchange neighborhood necessarily requires brute-force search of the neighborhood;
therefore, verifying optimality in a k-exchange neighbourhood requires Q(n*) time (see, e.g.
[1] p. 339 or [29] p. 680).

An appropriate tool to answer these questions is parameterized complexity. In the para-
meterized framework, for decision problems with input size n and a parameter k, the goal is
to design algorithms with runtime 7(k) - n®®) | where 7 is a function of k alone. Problems
having such algorithms are said to be fized-parameter tractable (FPT). There is also a the-
ory of hardness to identify parameterized problems that are probably not amenable to FPT
algorithms, based on a complexity hypothesis similar to P#NP. For an introduction to the
field and more recent developments, see the books [12, 15, 39].

By making use of developments from parameterized complexity, it appeared that the
complexity of local search is much more interesting and involved than it was assumed to be
for a long time. While many k-exchange neighbourhood search problems, like determining
whether there is an improved solution in the k-exchange neighborhood for TSP, are W[1]-
hard parameterized by k [35], it appears that for some problems FPT algorithms exist.
For example, Khuller, Bhatia, and Pless [28] investigated the NP-hard problem of finding a
feedback edge set that is incident to the minimum number of vertices. One of the results
obtained in [28] is that checking whether it is possible to improve a solution by replacing
at most k edges can be done in time O(n? + n7(k)), i.e., it is FPT parameterized by k.
Similar results were obtained for many problems on planar graphs [14] and for the feedback
arc set problem in tournaments [16]. Complexity of k-exchange problems for Boolean CSP
and SAT was studied in [31, 47]. The parameterized complexity of local search of different
problems was investigated in [20, 24, 36, 37, 41]. However, most of these results exhibit
the hardness of local search, and, as it was mentioned by Marx in [34], in most cases, the
fixed-parameter tractability results are somewhat unexpected.

Our result. There are various neighborhoods considered in the literature for different
problems. Since for the MINIMUM FILL-IN problem the solution is determined by an edge
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subset, the following definition of the neighbourhood comes naturally. For a pair of graphs
G = (V,E) and G' = (V, E’) on the same vertex set V, let H(G,G') be |[E A E’|, i.e. the
Hamming distance between the edge sets of F and E’. We say that G is a neighbor of G’
with respect to k-exchange neighbourhood k-ExN if H(G,G') < k. Let N¢"(G) be the set
of neighbours of G with respect to k-ExIN. We define the following variant of local search.

k-Local Search Fill-in (k-LS-FI) Parameter: k
Input: A graph G = (V, E), its triangulation H = (V, EU F) and an integer k > 0.
Question: Decide whether there is a triangulation of H' = (V, E U F’) of G such that
H' e N¢"(H) and |F'| < |F|.

The main result of the paper is the following theorem.
» Theorem 1. k-LS-FI is FPT.

The theorem is proved in several steps. Let a graph G = (V,E) and its triangulation
H = (V,EUF) be an input of k-LS-FI. We refer to a graph H' € N"(H) with |F'| < |F|
as to a solution of k-LS-FI. We start from a simple criteria to identify edges of F' that
should be in every solution of k-LS-FI (Lemma 15). Based on this criteria, we can show
that if a solution exist, i.e. G and H is a YES-instance of k-LS-FI, then there is a solution
H' = (V, EU F’) such that the edges of FAF’ “affect" at most k(k + 1) maximal cliques
of H. This is done in Lemma 17. The next step is to identify the cliques of H that can be
affected by the solution. While the number of sets of at most k(k + 1) maximal cliques in
a chordal graph can be no(kz), we design a procedure to generate at most n20*") sets of
maximal cliques of H, each set containing at most k(k + 1) cliques, and at least one of these
sets is a set of cliques affected by the solution. The procedure generating sets of affected
maximal cliques is given in Lemma 20, and this is the most technical part of our algorithm.
What remains to show is that for a given set of maximal cliques, we can construct in FPT
time a solution of k-LS-FI affecting only these cliques.

2 Preliminaries

We denote by G = (V, E) a finite, undirected and simple graph with vertex set V(G) = V and
edge set E(G) = E. We also use n to denote the number of vertices in G. For a non-empty
subset W C V| the subgraph of G induced by W is denoted by G[W]. We also use G\ W
to denote G|V \ W]. The open neighborhood of a vertex v is N(v) ={u € V: w € E}
and the closed neighborhood is N[v] = N(v) U {v}. For a vertex set W C V, we put
N(W) = Upew N(w) \ W and N[W] = N(W) U W. We say that an edge uv of graph G
is contained in set X C V, if u,v € X. We refer to Diestel’s book [10] for basic definitions
from graph theory.

A walk is a sequence of vertices v1vs ... vy where v;v;41 € E(G) for 1 < i < £. The walk
is called a path if the vertices are distinct, and the path is called a cycle if vivy € E. The
path is refereed to as induced if G[{vivs...v,}] only contains the edges of the walk, and the
walk is an induced cycle if vjvy is the only non-walk edge. A chord of a cycle is an edge
between two non-consecutive vertices of the cycle, thus induced cycles are chordless.

Chordal graphs and minimal triangulations. Chordal or triangulated graphs form the
class of graphs containing no induced cycles of length more than three. In other words,
every cycle of length at least four in a chordal graph contains a chord.

A triangulation of graph G = (V, E) is a chordal supergraph H = (V, EUF) of G. For a
triangulation H = (V, EUF), we refer to edge set F' as the set of fill edges. A triangulation
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H of graph G is called minimal if H' = (V, E U F’) is not chordal for any edge set F/ C F
and H is a minimum triangulation if H' = (V, E U F’) is not chordal for every edge set F’
such that |F’| < |F|. If H is a minimum triangulation of G, then |F| is the minimum fill-in
for G.

By the following result, for every non-minimal triangulation, there is a fill edge whose
removal leaves a chordal graph. It also implies that a greedy approach—as far as there is an
edge e which removal does not create an induced 4-cycle, delete e—can be used to obtain a
minimal triangulation from a non-minimal triangulation.

» Proposition 2 ([46]). A triangulation H = (V, EUF) of G = (V, E) is minimal if and only
if for every edge uv € F, deleting uv from H results in a graph with a chordless cycle of
length four.

If chordal graph H = (V, E U F) is not a minimal triangulation of G = (V, E), then by
Proposition 2, we can always find an edge uv € F' such that H\uwv is chordal. It is possible to
check in linear time if the input graph is chordal [48], and thus in time O(|F|(|V|+|EUF]))
one can check if H is a minimal triangulation of G. Hence if the input graph H is not a
minimal triangulation of G, we can solve k-LS-FI in time O(|F|(|V| + |E U F|)). In the
remaining part of the paper, we assume that H is a minimal triangulation of G.

Even though we can always argue that the input chordal graph H is a minimal triangu-
lation of GG, we can not ensure that every solution H' of the k-LS-FI problem is a minimal
triangulation of G, see Fig. 1.

Figure 1 In the instance of k-LS-FI, k = 3, the original edges of G = (V, F) are solid lines, and
the fill edges F' are dashed lines. Graph H = (V, E U F) is one of two minimal triangulations of
G = (V,E) and H' on the right side is a solution of the provided 3-LS-FI instance. However, graph
H' is not a minimal triangulation of G' as H' \ uv is chordal and to obtain a minimal triangulation
H'\ wv from H one has to swap four edges.

On the other hand, the following lemma ensures that we can seek a solution which is
a minimal triangulation of some supergraph of G and a subgraph of H. Because of the
following lemma, we will be able to use nice properties of minimal triangulations in search
of a better solution.

» Lemma 3. Let H' = (V, EUF’) be a solution of k-LS-FI with instance graphs G = (V, E)
and H = (V,EUF). Then there is a solution H" = (V, EUF") such that H" is a minimal
triangulation of H, = (V,EU (F N F")).

Proof. Graph H’ is chordal and is a supergraph of H,, hence it is a triangulation of H,.
If H' was not a minimal triangulation of H,., then removal of a non-empty subset of edges
S CF'\ (FNF') from H' results in a minimal triangulation H” = (V, EUF") of H,. Since
|[FAF"| < |[FAF'| <k, we have that H” is the required minimal triangulation. <

Vertex eliminations. A vertex of a graph is simplicial, if its neighbourhood is a clique. By
the classical result of Fulkerson and Gross [18], a graph H is chordal if and only if it admits

11
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a perfect elimination ordering, i.e. vertex ordering w: {1,2,...,n} — V(G) such that for
every i € {1,2,...,n}, vertex w(i) is simplicial in graph H[{m(i),...,7(v)}]. Given a vertex
ordering w of a graph (G, we can construct a triangulation H of G such that m is a perfect
elimination ordering for H. Triangulation H is obtained by the following vertex elimination
procedure (also known as Elimination Game) [18, 44]. A vertex elimination procedure takes
as an input a vertex ordering 7 of graph G and outputs a chordal graph H = H,,. We put
Hy = G and define H; to be the graph obtained from H;_; by completing all neighbours v
of m(7) in H;—; with 7#=!(v) > 4 into a clique. An elimination ordering 7 is called minimal
if the corresponding vertex elimination procedure outputs a minimal triangulation of G.

» Proposition 4 ([40]). Graph H is a minimal triangulation of G if and only if there exists
a minimal elimination ordering 7 of G such that the corresponding procedure outputs H.

We will also need the following description of the fill edges introduced by vertex elemin-
ations.

» Proposition 5 ([46]). Let H be the chordal graph produced by vertex elimination of graph
G according to ordering w. Then uv &€ E(G) is a fill edge of H if and only if there exists a
path P = uwjwsy ... wev such that 7~ (w;) < min(7~!(u), 771 (v)) for each 1 <i < /.

By the arguments used by Fulkerson and Gross [18] in combination with Ohtsuki et
al. [40], we can reach the following conclusion.

» Proposition 6 (Folklore). Let H be a minimal triangulation of G and let X C V be a clique
of G. Then there exists a minimal elimination ordering 7 of G resulting in H such that
vertices of X are the last vertices in .

Minimal separators. Let v and v be two non-adjacent vertices of a graph G. A set of
vertices S C V is an u,v-separator if u and v are in different connected components of the
graph G[V \ S]. We say that S is a minimal u,v-separator of G if no proper subset of S is
an u, v-separator and that S is a minimal separator of G if there are two vertices v and v
such that S is a minimal u, v-separator. Notice that a minimal separator can be contained
in another one. If a minimal separator is a clique, we refer to it as to a clique minimal
separator. In a chordal graph, each minimal separator is a clique minimal separator. Also a
chordal graph on n vertices contains at most n maximal cliques and n— 1 minimal separators
[11].

A connected component C of G\ S is a full component associated with S if N(C) = S.
The following proposition is an exercise in [23].

» Proposition 7 (Folklore). A set S of vertices of G is a minimal a, b-separator if and only
if a and b are in different full components associated with S. In particular, .S is a minimal
separator if and only if there are at least two distinct full components associated with S.

Two separators S and S’ are crossing if S is a u, v-separator for a pair of vertices u,v € S,
and S’ is a v/, v'-separator for some u’, v’ € S.

» Proposition 8 ([43]). Graph H is a minimal triangulation of G if and only if H can be
obtained from G by completing a maximal set of pairwise non-crossing minimal separators
into cliques.

» Proposition 9 ([30, 43]). Let H be a minimal triangulation of G. Then every minimal
separator in H is a minimal separator in G.

For a minimal triangulation H = (V, E U F) of G, propositions 8 and 9 imply that for
every edge uv € F' there exists a minimal separator S of both G and H such that u,v € S.
We also use the following result.
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» Proposition 10 ([30, 43]). Let H be a minimal triangulation of G. Then every full com-
ponent C associated with a minimal separator S in H is also a full component associated
with the minimal separator S in G.

The following proposition is folklore; see, e.g., [5].

» Proposition 11 ([5]). Let H = (V, EUF) be a minimal triangulation of G = (V, E) and let
V102 ...y be a chordless cycle in G. Then either vovy € F, or viv; € F for some 2 < i < 4.

We also use the following result.

» Proposition 12 ([30]). Let S be a minimal separator of G, and let Gg be the graph obtained
from G by completing S into a clique. Let C1,Cy,...,C, be the connected components of
G\ S. Then graph H obtained from Gg by adding a set of fill edges F' is a minimal
triangulation of G if and only if F = (J;_, F;, where F; is the set of fill edges in a minimal
triangulation of Gg[N[C;]].

Clique trees and tree decompositions. A tree decomposition T D¢ of a graph G = (V, E)
is a pair (T, x) consisting of a set x of vertex subsets of V and the elements of x are mapped
bijectively onto the nodes of T such that V = UXeX X; for every wv € E, u,v € X for
some X € x;, and for every vertex v € V the set of elements of x containing v induces a
subtree of T'. Tree decompositions are strongly related to chordal graphs due to the following
proposition.

» Proposition 13 ([6, 21, 49]). Graph G is chordal if and only if there exists a tree decom-
position (T, x) of G such that every X € y is a maximal clique in G.

Such a tree decomposition is referred to as a clique tree of G. It is well known that a
clique tree of a chordal graph on n vertices and m edges can be constructed in O(n + m)
time [4]. Vertices of the clique tree will be refereed to as nodes in order to distinguish them
from the vertices of the graph. We also need the following result relating edges of a clique
tree of a chordal graph and its minimal separators.

» Proposition 14 ([6, 26]). Let (T, x) be a clique tree of a chordal graph G. Then S is a
minimal separator of G if and only if S = X; N X for some edge X;X; € E(T).

For ease of notation we will often refer to the edge set of an edge X; X, in the clique tree
T as the vertex set S = X; N Xj;.

Parameterized complexity. A parameterized problem II is a subset of I'* x N for some
finite alphabet T'. An instance of a parameterized problem consists of (x, k), where k is called
the parameter. A central notion in parameterized complexity is fized-parameter tractability
(FPT) which means, for a given instance (x, k), solvability in time f(k) - p(|z|), where f is
an arbitrary function of k, and p is a polynomial in the input size. We refer to the book of
Downey and Fellows [12] for further reading on parameterized complexity.

3 Local search

Immovable edges. Let G = (V, E) be a graph and H = (V, E U F') be a minimal tri-
angulation of G. We say that an edge e € F is immouvable, if for every triangulation
H = (V,EUF') € Nf"(H) we have e € F'. In other words, each triangulation H' from the
k-neighbourhood of H should contain e. We need a sequence of results providing conditions
enforcing edges to be immovable. Due to space limitations the proof of the following lemma
has been removed.

13
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» Lemma 15. Let S be a minimal separator of a minimal triangulation H = (V,E U F) of
an n-vertex graph G = (V, E), let C be a full component associated with S in H, and let
u,v € S such that wv € F and |(Ng(u) " Ng(v)) \ (CUS)| > k. Then uv is an immovable
edge. Moreover, one can check in time O(n?) if an edge uv € F satisfies the above conditions
and thus is tmmovable.

Lemma 15 yields the following lemma.

» Lemma 16. Let H = (V,E U F) be a minimal triangulation of graph G = (V,E) and
let X1 and X5 be mazimal cliques of H such that | X3 \ X1| > k. Then every edge of F
contained in X1 N Xy is immovable.

Proof. Let T be a clique tree of H and remember that each node of T represent a maximal
clique of H. Let X’ be the neighbour of X; on the unique path from X; to X5 in T. By
Proposition 14, S = X; N X’ is a minimal separator in H. Let us remark, that S O X; N Xs.
Let C be the full component of H \ S associated with S containing X; \ S. For every
edge uwv € F such that u,v € X; N X5, we have that u,v € S, and because X5 is a
clique, we have that every vertex from X5 \ (S U C) is adjacent to both u and v. Finally,
[(Ng(u)NNg () \ (CUS)| > | X2\ (SUC)| =|X2\ X1| > k. Now the proof of the lemma
follows by Lemma 15. |

» Lemma 17. Let H = (V,EUF) and H' = (V,EUF") € N"(H) be minimal triangulations
of G. Then H has at most k(k+ 1) mazimal cliques containing both endpoints of some edge
from F\ F'.

Proof. We start the proof with the following claim.
Claim: FEwvery edge uv € F contained in more than k+1 mazximal cliques of H is immovable.

Proof of the claim: In the clique tree T of H, the nodes corresponding to these maximal
cliques containing uv induce a subtree Ty,. Let X1, X5,..., Xy, £ > k + 2 be the maximal
cliques corresponding to nodes of T, and let them be numbered such that X is a leaf of
T and X5 is the parent of X in Ty,,. Then S = X; N X5 is a minimal separator containing
u and v. Because X; is a maximal clique, there is 21 € X; \ S such that the connected
component of H \ S containing x; is a full component C associated with S. Remove X; and
repeat on the cliques X, ..., Xy, £ > k + 2 that still induces a sub-tree of T'. Hence, there
are at least k + 1 vertices that are adjacent to both v and v and not contained in C'U S. By
Lemma 15, edge uv is immovable. This concludes the proof of the claim.

We proceed with the proof of the lemma. Because H' € Nf™"(H), we have that none
of the edges from F'\ F’ is immovable. By the claim above, each such edge e € F'\ F’ is
contained in at most k + 1 maximal cliques of H. Since |F \ F'| < k, the lemma follows. <

Generating affected cliques. The following lemmata allow us to reduce the search space.
As a result, we are able to generate at most 20(K*) gets of cliques, each set of size at most
k(k + 1), such that if there is a solution to the problem, then there is also a solution that
swaps edges only between vertices in one of the sets of maximal cliques. Due to space
limitations the proof of the following lemma has been removed.

» Lemma 18. Let H = (V,EUF) be a minimal triangulation of G and let H = (V, EUF")
be a solution of k-LS-FI. If H has a minimal separator S containing no edges of F'\ F’,
then there is a connected component C of H\ 'S and a solution H" = (V,EUF") of k-LS-FI
such that every edge from (F" \ F)U (F \ F") is contained in Ng[C].
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By Lemma 18, we obtain the following lemma.

» Lemma 19. Let H = (V, EUF) be a minimal triangulation of G and let T be a clique tree
of H. If there is a triangulation H' = (V,EU F') € Nf"(H) with |F'| < |F|, then there is
a triangulation H" = (V,E U F") € Nf"(H) with |F"| < |F| such that the mazimal cliques
of H containing edges from F'\ F" induce a subtree of T.

Proof. As long as the maximal cliques of H containing edges from F'\ F’ do not induce a
subtree of the clique tree T of H, there exists a minimal separator S of H such that no edges
of F\ F’ are contained in S and there exist endpoints of edges in F'\ F’ that are separated by
S. By Lemma 18, we can obtain a new solution H” = (V, EU F") where |F\ F"| < |F\ F'|
and all endpoints of the edges in F'\ F" are contained in the same connected component of
H[V \ S]. Repeat this until the maximal cliques of H containing edges from F\ F” induce
a subtree of the clique tree of H. >

By Lemma 19, if there is a solution of k-LS-FI, then there is also a solution where the
maximal cliques of H containing edges deleted from H form a subtree of the clique tree
of H. The next lemma gives an algorithm that in FPT time outputs at least one of such
subtrees. Due to space limitations the proof of the following lemma has been removed.

» Lemma 20. Let H = (V, EUF) be a minimal triangulation of an n-vertex graph G. There
is an algorithm that in time (’)(20(’“5)712 +|F|-n®) outputs sets X1, Xo, ..., X, t < nQO(ks),
of maximal cliques of H such that
if there is a solution to k-LS-F1I, then there exists a solution H' = (V,EUF’), |F'| < |F|,
of k-LS-FI and a set X € {X1,Xa, ..., X;} such that the cliques of X induces a subtree
of clique tree T of H and are exactly the cliques containing edges of F'\ F’.

Final step. By Lemma 20, we are able to compute at least one of the subtrees of the
maximal clique tree of H that consists of maximal cliques containing edges of H that will
be removed in a better triangulation. We are ready to prove the main result about k-LS-FI,
Theorem 1.

Proof of Theorem 1. To prove the theorem, we show that given a minimal triangulation
H = (V,EUF) of an n-vertex graph G = (V, E), searching for a better triangulation in the
k-exchange neighbourhood of H can be performed in time (9(20(]“5)714 + |F|-n?).

Let T be a clique tree of H. We use Lemma 15 to mark some edges of I’ as immovable. We
also mark minimal separators of H containing only immovable edges from F' as immovable.
We use the algorithm from Lemma 20 to output at most n20*") gets Xy, Ao, .o X of
maximal cliques of H = (V, E U F) such that

If pair G and H is a YES-instance of k-LS-FI, then there is a triangulation of G, H' =

(V,EUF') € Nf™(H) with |[F'| < |F| such that at least one X; consists of all cliques

containing both endpoints for some edge of F \ F’;

Each set X; contains at most k(k + 1) maximal cliques of H;

For every set X;, no two maximal cliques from X; can be separated by an immovable

separator.

For set X;, 1 < i < t, we define H; to be the induced subgraph of H induced by the
vertices of cliques from &;. Let S be a minimal separator of H;. By Lemma 16, for every
intersecting maximal cliques X7, X5 € A&;, we have that |X; \ X2| < k. Hence, graph H;
contains at most | S|+ k%(k+ 1) vertices as the hole sub-tree can be reduced to two maximal
cliques by recursively removing leaf cliques and each of them have at most k — 1 private
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vertices. We also define GG; to be the induced subgraph of G induced by the vertices of
cliques from X;. Then G; also has at most |S| + k2(k + 1) vertices.

Let C be the set of all maximal cliques of H. By Lemmata 18 and 20, the search of
a solution boils down to the search in the k-exchange neighbourhood of H for a better
triangulation H' = (V, EUF"), which satisfies for some i, 1 < ¢ < t, the following additional
condition: no maximal clique C' € C \ X; contains any edges from F'\ F’ and no edge from
F’\ F. The later is trivial as edges of F'\ F are not present in H.

Let G be the graph obtained from G; by adding immovable edges of H; and all edges of
F N E(H;) which are contained in maximal cliques of C \ &;. We show how to find a better
triangulation of G.

By Proposition 4, every minimal triangulation of G/, corresponds to a minimal elimination

/

ordering of G/. In graph G, there are at most k?(k + 1) vertices outside S. Thus in every
elimination ordering, there are at most k%(k + 1) vertices preceding the first vertex of S.
We try all possible subsets of V(G%) \ S and their permutations for a possible prefix in
this ordering. Thus we try at most 2% *+1D(k2(k + 1))! ordered subsets. For every prefix
m, we guess also the first vertex v € S which goes after 7. So in total we try at most
n- 28 (D) (k2(k + 1))! ordered subsets. Let Y be the subset of vertices of § which are either
adjacent to v or reachable from v through the vertices of the prefix. By Proposition 5, set
Y is a clique in any triangulation obtained by an ordering extending w. Let Z = S\ Y. If
|Z| > k, then we made a wrong guess on the prefix m because at least k + 1 edges incident
to v have to be deleted, and this prefix cannot produce a triangulation in a k-exchange
neighbourhood of H;.

Hence we assume that |Z| < k. By eliminating vertices of = and v first it follows by
Proposition 6, that there exists a minimal elimination ordering producing the minimum fill
such that the vertices of Y are the last vertices in this ordering. Thus there is a minimal
elimination ordering producing the minimum fill of the form 7vZY. As we already shown,
there are at most 28" (*+D (k2(k + 1))! ways to select the ordered prefix 7, and at most n ways
to select v € S. As far as m and v are fixed, there is a unique way to define Y and Z. There
are at most k! permutations of Z and any permutation of Y will do the job. Thus in total,
there are at most n - 28 *+D (k2(k 4 1))kl = 20+ losk)y, permutations. If H) € Nem(H;),
then we output the minimal triangulation H' = (V, EU (F'\ (E(H;)) U E(H}). If for every
i, 1 < i <t, the minimum triangulation H; ¢ N¢"(H;), then we conclude that the pair G
and H is a NO-instance of the problem, and thus there is no better triangulation of G in
the k-exchange neighbourhood of H.

By Lemma 20, it takes time (9(20(’“5)712 + |F| - n?) to generate all subsets of set X
and there are 20(*")n, such subsets. For each of the subsets consisting of at most k(k + 1)
maximal cliques, a separator S can be found in O(n?) time. For each set, we try 20(k* log k)
permutations, resulting in 20(k%) . 20K log )y — 20(R*) 2 different elimination orderings.
Finally, for each ordering, the corresponding triangulation can be computed in O(n?) time.
Thus, the total running time is O(2°*)nt 4 |F| . n3). <

4 Conclusion and open problems

We have shown fixed-parameter tractability of the variant of search of the k-exchange neigh-
bourhood for MINIMUM FILL-IN. Since only a very few search problems known to be FPT,
we find it very interesting to explore what general properties of problems and exchange
neighbourhoods are responsible for such phenomena. Another natural question is about the
running time of the algorithm. The worst case upper bound on the running time of our
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algorithm makes the result of the paper mainly of theoretical importance. However, the
common story about improvements of FPT algorithms is that with more work and new
ideas, these algorithm can be made practical.! Very recently, it was shown that the para-
meterized version of MINIMUM FILL-IN is solvable in subexponential 2°(*)n®() time. Can
it be that k-LS-FI is solvable in time O(2°(*)n¢) for some small constant ¢? Combined with
other fill-in reducing heuristics, such an algorithm would be of real practical importance.
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