
Fast Algorithms for Abelian Periods in Words and
Greatest Common Divisor Queries
Tomasz Kociumaka1, Jakub Radoszewski1, and Wojciech Rytter∗1,2

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
[kociumaka,jrad,rytter]@mimuw.edu.pl

2 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

Abstract
We present efficient algorithms computing all Abelian periods of two types in a word. Regular
Abelian periods are computed in O(n log logn) randomized time which improves over the best
previously known algorithm by almost a factor of n. The other algorithm, for full Abelian periods,
works in O(n) time. As a tool we develop an O(n) time construction of a data structure that
allows O(1) time gcd(i, j) queries for all 1 ≤ i, j ≤ n, this is a result of independent interest.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Abelian period, greatest common divisor

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.245

1 Introduction

The area of Abelian stringology was initiated by Erdös who posed a question about the
smallest alphabet size for which there exists an infinite Abelian-square-free word, see [11]. An
example of such a word over five-letter alphabet was given by Pleasants [18] and afterwards
the optimal example over four-letter alphabet was shown by Keränen [16]. Quite recently
there have been several results on Abelian complexity in words [2, 8, 9, 10] and partial
words [3, 4] and on Abelian pattern matching [5, 17]. Abelian periods were first defined and
studied by Constantinescu and Ilie [6].

We say that two words are commutatively equivalent, if one can be obtained from the
other by permuting its symbols. This relation can be conveniently described using Parikh
vectors, which show frequency of each symbol of the alphabet in a word: x and y are
commutatively equivalent if and only if the Parikh vectors P(x) and P(y) are equal.

Let w be a non-empty word of length n over an alphabet Σ = {1, . . . ,m}. We assume
that m ≤ n, but if m is polynomially bounded, i.e. m = nO(1), the letters of w can be
renumbered in O(n) time so that m ≤ n. Let P(w) be an array such that P(w)[c] equals
to the number of occurrences of the symbol c ∈ Σ in w. Let us denote by w[i . . j] the
factor wi . . . wj and by Pi,j the Parikh vector P(w[i . . j]). For two vectors Q1, Q2 we write
Q1 ≤ Q2 if Q1[c] ≤ Q2[c] for each coordinate c.

An integer q is called an Abelian period of w if for k =
⌊

n
q

⌋
P1,q = Pq+1,2q = . . . = P(k−1)q+1,kq and Pkq+1,n ≤ P1,q.

∗ The author is supported by grant no. N206 566740 of the National Science Centre.

© T. Kociumaka, J. Radoszewski, and W. Rytter;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 245–256

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.245
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

246 Fast Algorithms for Abelian Periods and GCD Queries

An Abelian period is called full if it is a divisor of n. A pair (q, i) is called a weak
Abelian period of w if q is an Abelian period of w[i + 1 . . n] and P1,i ≤ Pi+1,i+q. For
example, the word ababacabaabcbaab has full Abelian periods 8 and 16, Abelian periods
6, 8, 9, 10, 11, 12, 13, 14, 15, 16 and its shortest weak period is (5, 3).

Fici et al. [13] gave an O(n log logn) time algorithm for full Abelian periods and an O(n2)
time algorithm for Abelian periods. An O(n2m) time algorithm for weak Abelian periods
was developed in [12] and it was recently improved to O(n2) time [7].

Our results. We present an O(n) time deterministic algorithm finding all full Abelian
periods. We also give an algorithm finding all Abelian periods, which comes in two variants:
an O(n log logn + n logm) time deterministic and an O(n log logn) time randomized. All
algorithms run onO(n) space in the standard word-RAMmodel with Ω(logn) word size. The
randomized algorithm is Monte Carlo and returns the correct answer with high probability,
i.e. for each c > 0 the parameters can be set so that the probability of error is at most 1

nc .
As a tool we develop a data structure that after O(n) preprocessing time computes

gcd(i, j) for any i, j ∈ {1, . . . , n} in O(1) time, which might be of its own interest. We are
not aware of any solutions to this problem besides the folklore ones: preprocessing all answers
(O(n2) preprocessing, O(1) queries), using Euclid’s algorithm (no preprocessing, O(logn)
queries) or prime factorization (O(n) preprocessing [14], queries in time proportional to the
number of distinct prime factors, which is O(log n

log log n)).

The structure of the paper. Our algorithms use several non-trivial number-theoretic
results, which are presented in the next two sections. The data structure for gcd-queries is
developed in Section 2 and the tools specific to Abelian periods are described in Section 3.
Then in Section 4 we introduce the proportionality relation on Parikh vectors, which provides
a convenient characterization of Abelian periods in a string. Further properties of this
relation are explored in Section 5. In particular we reduce efficient testing of this relation
to a problem of equality of members of certain vector sequences, which potentially being
of Θ(nm) total size, admit an O(n)-sized representation. Deterministic and randomized
constructions of an efficient data structure for the vector equality problem (based on such
representations) are proposed in Section 6. Finally in Section 7 we conclude with our main
algorithms for Abelian periods and full Abelian periods.

2 Greatest Common Divisor queries

The key idea behind our data structure is an observation that gcd-queries are easy when
one of the arguments is prime or both arguments are small enough for the precomputed
answers to be used. We exploit this fact by reducing each query to a constant number of
such special-case queries. In order to achieve this we define a special decomposition of an
integer k > 0 as a triple (k1, k2, k3) such that k = k1 · k2 · k3 and

ki ≤
√
k or ki ∈ Primes for i = 1, 2, 3.

I Example 1. (2, 64, 64) is a special decomposition of 8192. (1, 18, 479), (2, 9, 479) and
(3, 6, 479) are up to permutations all special decompositions of 8622.

Let us introduce an operation ⊗ such that (k1, k2, k3) ⊗ p results by multiplying the
smallest of ki’s by p. For example, (8, 2, 4) ⊗ 7 = (8, 14, 4). For an integer ` > 1, let
MinDiv[`] denote the least prime divisor of k.

I Fact 2. Let ` > 1 be an integer, p = MinDiv[`] and k = `/p. If (k1, k2, k3) is a special
decomposition of k then (k1, k2, k3)⊗ p is a special decomposition of `.

T. Kociumaka, J. Radoszewski, and W. Rytter 247

Proof. Assume that k1 ≤ k2 ≤ k3. If k1 = 1 then k1 · p = p is prime. Otherwise, k1
is a divisor of ` and by the definition of p we have p ≤ k1. Therefore: (k1p)2 = k2

1p
2 ≤

k3
1p ≤ k1k2k3p = `. Consequently k1p ≤

√
` and in both cases (k1p, k2, k3) is a special

decomposition of `. J

Fact 2 allows computing special decompositions provided that the values MinDiv[k] can
be computed efficiently. This is, however, a by-product of a linear time prime number sieve
of Gries and Misra [14].

I Lemma 3 ([14], Section 5). The values MinDiv[k] for all k ∈ {2, . . . , n} can be computed
in O(n) time.

I Theorem 4. After O(n) time preprocessing, given any k, ` ∈ {1, . . . , n} the value gcd(k, `)
can be computed in constant time.

Proof. In the preprocessing phase we compute in O(n) time two tables:
(a) a Gcd-small[i, j] table such that Gcd-small[i, j] = gcd(i, j) for all i, j ∈ {1, . . . , b

√
nc};

(b) a Decomp[k] table such that Decomp[k] is a special decomposition of k for each k ≤ n.
The Gcd-small table is filled using elementary steps in Euclid’s subtraction algorithm

and the Decomp table is computed according to Fact 2.

Algorithm Preprocessing(n)
for i := 1 to

⌊√
n
⌋

do
Gcd-small[i, i] := i;

for i := 1 to
⌊√

n
⌋

do
for j := 1 to i− 1 do

Gcd-small[i, j] := Gcd-small[i− j, j];
Gcd-small[j, i] := Gcd-small[i− j, j];

Decomp[1] := (1, 1, 1);
for i := 2 to n do

p := MinDiv[i];
Decomp[i] := Decomp[i/p]⊗ p;

return (Gcd-small,Decomp);

Algorithm Query(k, `)
(x1, x2, x3) := Decomp[k];
(y1, y2, y3) := Decomp[`];
g := 1;
foreach i, j ∈ {1, 2, 3} do

if max(xi, yj) ≤
√
n then

d := Gcd-small[xi, yj];
else if xi = yj then d := xi;
else d := 1;
g := g · d;
xi := xi/d; yj := yj/d;

return g;

The algorithm Query(k, `) computes gcd(k, `) using special decompositions (x1, x2, x3)
and (y1, y2, y3) of k and ` respectively. The values xi and yj are altered during the execution
of the algorithm, but remain prime or bounded by

√
n. In each step we have d = gcd(xi, yj);

if xi, yj ≤
√
n then Gcd-small table is used and otherwise the gcd can be greater than 1 only

if xi = yj ∈ Primes. We maintain an invariant that k = x1x2x3 · g and ` = y1y2y3 · g. At
the end gcd(xi, yj) = 1 holds for all i, j ∈ {1, 2, 3} and consequently g = gcd(k, `). J

3 Number-theoretic tools for Abelian periods

Now we introduce two abstract filter operations and show how to perform them efficiently.
For integers n, k > 0 let Mult(k, n) be the set of multiples of k not exceeding n, i.e.

Mult(k, n) = {m · k : m ∈ Z+,m · k ≤ n}.

Also denote Div(n) = {d ∈ Z+ : d | n}, the set of divisors of n.

I Lemma 5. Let n be a positive integer and A ⊆ {1, . . . , n}. There exists an O(n) time
algorithm that computes the set

FILTER1 (A,n) = {d ∈ Div(n) : Mult(d, n) ⊆ A}.

STACS’13

248 Fast Algorithms for Abelian Periods and GCD Queries

Proof. Let A′ = {1, . . . , n} \A. Observe that for d ∈ Div(n)

d /∈ FILTER1 (A,n) ⇐⇒ ∃j∈A′ d | j.

Moreover, for d ∈ Div(n) and j ∈ {1, . . . , n} we have

d | j ⇐⇒ d | d′, where d′ = gcd(j, n).

These observations lead to the following algorithm.

Algorithm FILTER1 (A,n)
D := Div(n); X := Div(n);
foreach j ∈ A′ do

D := D \ {gcd(j, n)};
foreach d, d′ ∈ Div(n) do

if d | d′ and d′ /∈ D then
X := X \ {d};

return X;

We use O(1) time gcd queries from Theorem 4. The number of pairs (d, d′) is o(n), since
|Div(n)| = o(nε) for any ε > 0, see [1]. Consequently, the algorithm runs in O(n) time. J

I Lemma 6. Let ≈ be an arbitrary equivalence relation on {k0, k0 + 1, . . . , n} which can be
tested in constant time. Then, there exists an O(n log logn) time algorithm that computes
the set:

FILTER2 (≈) = {k ∈ {k0, . . . , n} : ∀i∈Mult(k,n) i ≈ k}.

Proof. In the algorithm we use the following observation, which holds for k ∈ {k0, . . . , n}:

k ∈ FILTER2 (≈) ⇐⇒ ∀ p∈Primes : k·p≤n (k ≈ k · p ∧ k · p ∈ FILTER2 (≈)). (1)

The (⇒) part of the equivalence is obvious. For the proof of the (⇐) part consider any k
satisfying the right hand side of (1) and any integer ` ≥ 2 such that k · ` ≤ n. We need to
show that k ≈ k · `. Let p be a prime divisor of `. By the right hand side, we have k ≈ k · p,
and since k · p ∈ FILTER2 (≈), we get k · p ≈ k · p · (`/p) = k · `.

The following algorithm uses (1) for k decreasing from n/2 to k0 to compute FILTER2 (≈).
It uses an invariant Y = {k0, . . . , k} ∪ (FILTER2 (≈) ∩ {k + 1, . . . , n}) while checking the
right hand side of (1) for k.

Algorithm FILTER2 (≈)
Y := {k0, . . . , n};
for k := n/2 downto k0 do

foreach p ∈ Primes, p · k ≤ n do
(?) if k · p 6≈ k or k · p 6∈ Y then

Y := Y \ {k};
return Y ;

In the algorithm we assume to have an ordered list of primes up to n. It can be computed in
O(n) time, see [14]. For a fixed p ∈ Primes the instruction (?) is called for at most n

p values
of k. The total number of operations performed by the algorithm is thus O(n log logn) due
to the following well-known fact from number theory, see [1]:∑

p∈Primes, p≤n

1
p = O(log logn). J

T. Kociumaka, J. Radoszewski, and W. Rytter 249

4 Characterization of Abelian periods by proportionality relation

Let w be a word of length n. Let Pi = P(w[1 . . i]). Two positions i, j ∈ {1, . . . , n} are called
proportional, which we denote i ∼ j, if Pi[k] = c · Pj [k] for each k, where c is a real number
independent of k. Note that ∼ is an equivalence relation, see also Figure 1.

a
b

a
b

b

a a a b

a b

a

a P3

P9

Figure 1 Here P3 = (2, 1) (the word aba) and P9 = (6, 3) (the word abaabbaaa), hence 3 ∼ 9.
In other words, the points P3 and P9 lie on the same line originating from (0, 0).

I Definition 7. An integer k is called a candidate (as a potential Abelian period) if i ∼ k

for each i ∈ Mult(k, n), or equivalently k ∼ 2k ∼ 3k ∼ . . .

Define the following tail table (assume min ∅ =∞):

tail[i] = min{j : Pi,n ≤ Pi−j,i−1}.

I Example 8. For the Fibonacci word Fib = abaababaabaababaababa of length 21, the first
ten elements of the table tail[i] are ∞, the remaining eleven elements are:

i 11 12 13 14 15 16 17 18 19 20 21
Fib[i] a a b a b a a b a b a

tail[i] ∞ 10 11 8 8 7 5 5 3 2 2

The following lemma is proved (implicitly) in [7].

I Lemma 9. Let w be a word of length n. The values tail[i] for 1 ≤ i ≤ n can be computed
in O(n) time.

The notions of a candidate and the tail table let us formulate a condition for a given integer
to be an Abelian period or a full Abelian period of w.

0̄

P10

P20

P30

u = P37

v

Figure 2 Illustration of Fact 10b. The word u = baaabbbaaabbbbaaaaaaaaabbaababbaaaaab

of length 37 has an Abelian period 10. We have 10 ∼ 20 ∼ 30 and P31,37 is dominated by the
period (P10), i.e. the graph of the word ends within the rectangle marked in the figure, the point v
dominates the point u.

STACS’13

250 Fast Algorithms for Abelian Periods and GCD Queries

I Fact 10. Let w be a word of length n. A positive integer q ≤ n is:
(a) a full Abelian period of w if and only if q | n and q is a candidate;
(b) an Abelian period of w if and only if q is a candidate and Pkq+1,n ≤ P(k−1)q+1,kq for

k =
⌊

n
q

⌋
, which is equivalent to tail[kq + 1] ≤ q (see Fig. 2).

5 Efficient implementation of the proportionality relation

Denote by s = LeastFreq(w), a least frequent letter of w. Let q0 be the position of the first
occurrence of s in w. For i ∈ {q0, . . . , n} let γi = Pi/Pi[s]. Vectors γi are introduced in
order to deal with vector equality instead of vector proportionality.

I Lemma 11. If i, j ∈ {q0, . . . , n} then i ∼ j is equivalent to γi = γj.

Proof. (⇒) If i ∼ j then the vectors Pi and Pj are proportional. Multiplying any of them
by a constant only changes the proportionality ratio. Hence, Pi/Pi[s] and Pj/Pj [s] are
proportional. The denominators of both fractions are positive, since i, j ≥ q0. However, the
s-th components of γi and γj are 1, consequently these vectors are equal.

(⇐) Pi/Pi[s] = Pj/Pj [s] means that Pi and Pj are proportional, so that i ∼ j. J

I Example 12. Consider the word w = acbaabacaacb for which the alphabet is of size 3,
LeastFreq(w) = b and q0 = 3. We have:

γ3 = (1, 1, 1), γ4 = (2, 1, 1), γ5 = (3, 1, 1), γ6 = (3
2 , 1,

1
2), γ7 = (2, 1, 1

2),
γ8 = (2, 1, 1), γ9 = (5

2 , 1, 1), γ10 = (3, 1, 1), γ11 = (3, 1, 3
2), γ12 = (2, 1, 1),

We conclude that γ4 = γ8 = γ12 and γ5 = γ10 and consequently 4 ∼ 8 ∼ 12 and 5 ∼ 10.

Let us formally define a natural way to store a sequence of vectors with a small total
Hamming distance between consecutive elements, like Pi or, as we prove in Lemma 15, γi.

I Definition 13. Given a vector v, consider an elementary operation of the form “v[j] := x”
that changes the j-th component of v to x. Let ū1, . . . , ūk be a sequence of vectors of the
same dimension, and let ξ = (σ1, . . . , σr) be a sequence of elementary operations. We say
that ξ is a diff-representation of ū1, . . . , ūk if (ūi)k

i=1 is a subsequence of the sequence (v̄j)r
j=0,

where v̄j = σj(. . . (σ2(σ1(0̄))) . . .).

I Example 14. Let ξ be the sequence: v[1] := 1, v[2] := 2, v[1] := 4, v[3] := 1, v[4] := 3,
v[3] := 0, v[1] := 1, v[2] := 0, v[4] := 0, v[1] := 3, v[2] := 2, v[1] := 2, v[4] := 1.
This sequence is schematically presented as the top rectangle in Fig. 3. The sequence of
vectors produced by the sequence ξ, starting from 0̄, is:

(0, 0, 0, 0), (1, 0, 0, 0), (1, 2, 0, 0), (4, 2, 0, 0), (4, 2, 1, 0), (4, 2, 1, 3), (4, 2, 0, 3),
(1, 2, 0, 3), (1, 0, 0, 3), (1, 0, 0, 0), (3, 0, 0, 0), (3, 2, 0, 0), (2, 2, 0, 0), (2, 2, 0, 1).

Hence ξ is a diff-representation of the above vector sequence as well as all its subsequences.

I Lemma 15. (a)
∑

distH(γi+1, γi) ≤ 2n, where distH is the Hamming distance.
(b) An O(n)-sized diff-representation of (γi)n

i=q0
can be computed in O(n) time.

Proof. To prove (a) observe that Pi differs from Pi−1 only at the coordinate corresponding
to w[i]. If w[i] 6= s, the same holds for γi and γi−1. If w[i] = s, vectors γi and γi−1 may
differ on all coordinates, so m operations might be necessary, but s occurs at most n

m times.
As a direct consequence of (a), the sequence (γi)n

i=q0
admits a diff-representation with

at most 2n+m operations in total. It can be computed by an algorithm that apart from γi

maintains Pi in order to compute the new values of the changing coordinates of γi. J

T. Kociumaka, J. Radoszewski, and W. Rytter 251

I Lemma 16. For a word w of length n, the equivalence class of n under ∼ can be computed
in O(n) time.

Proof. Observe that if k ∼ n then k ≥ q0. Indeed, if k ∼ n, then Pk is proportional to Pn,
so all letters occurring in w also occur in w[1 . . . k]. This lets us use the characterization
of Lemma 11 and a diff-representation provided by Lemma 15 to reduce the task to the
following problem with δi = γi − γn.

I Claim 17. Given a diff-representation of the vector sequence δq0 , . . . , δn we can decide for
which i vector δi is equal to 0̄ in O(m+ r) time, where m is the size of the vectors and r is
the size of the representation.

The solution simply maintains δi and the number of non-zero coordinates of δi. J

The main tool for proportionality queries is a data structure for the following problem.

I Problem 1 (Integer vector equality). Assume we are given a diff-representation ξ of
a vector sequence (ūi)k

i=1. Let m be the dimension of the vectors and r be the size of the
representation. Assume the vectors have integer components of absolute value (m + r)O(1).
Preprocess ξ to answer queries of the form: “Is ūi = ūj?” for i, j ∈ {1, . . . , k}.

In Section 6 we show that after O(m + r logm) time deterministic or O(m + r) time
randomized preprocessing these queries can be answered in constant time. In the latter
case, with a small probability we can get false positive answers.

Note that the next lemma can be used for testing proportionality only for i, j ≥ q0. In
other words, it allows testing ∼ |{q0,...,n}, the restriction of ∼ to {q0, . . . , n}.

I Lemma 18. Let w be a word of length n over an alphabet of size m. There exists a data
structure of O(n) size which for given i, j ∈ {q0, . . . , n} decides whether i ∼ j in constant
time. It can be constructed by an O(n logm) time deterministic or an O(n) time randomized
algorithm (Monte Carlo, correct with high probability).

Proof. By Lemma 11, to answer the proportionality-queries it suffices to efficiently compare
the vectors γi, which, by Lemma 15, admit a diff-representation of size O(n). Problem 1
requires integer values, so we split γ into two sequences α and β, of numerators and denom-
inators respectively. We need to store the fractions in a reduced form so that comparing
numerators and denominators can be used to compare fractions. Thus we set

αi[j] = Pi[j]/d and βi[j] = Pi[s]/d,

where d = gcd(Pi[j],Pi[s]) can be computed in O(1) time using a single gcd-query of Theo-
rem 4, since the values of Pi are non-negative integers up to n. Consequently the values of α
and β are also positive integers not exceeding n. This allows using a solution to Problem 1
given in Theorem 28, so that the whole algorithm runs in the desired O(n logm) and O(n)
time, respectively, using O(n) space. J

6 Vector equality in diff-representation

Recall that in the integer vector equality problem we are given a diff-representation of a
vector sequence (ūi)k

i=1, i.e. a sequence ξ of elementary operations σ1, σ2, . . . , σr on a vector
of dimension m. Each σi is of the form: set the j-th component to some value x. We assume
that x is an integer of magnitude (m + r)O(1). Let v̄0 = 0̄ and for 1 ≤ i ≤ r let v̄i be
the vector obtained from v̄i−1 by performing σi. Our task is answering queries of the form

STACS’13

252 Fast Algorithms for Abelian Periods and GCD Queries

“Is ūi = ūj?” but it reduces to answering equality queries of the form “Is v̄i = v̄j?”, since
(ūi)k

i=1 is a subsequence of (v̄i)r
i=0 by definition of the diff-representation.

I Definition 19. A function H : {0, . . . , r} → {0, . . . , `} is called an `-naming for ξ if
H(i) = H(j) holds if and only if v̄i = v̄j .

In order to answer the equality queries we construct an `-naming with ` = (m + r)O(1).
Integers of this magnitude can be stored in O(1) space, so this suffices to answer the equality
queries in constant time.

6.1 Deterministic construction of a naming function
Let ξ = (σ1, . . . , σr) be a sequence of operations on a vector of dimension m. Let A =
{1, . . . ,m} be the set of coordinates. For any B ⊆ A, let selectB [i] be the index of the ith
operation concerning B in ξ. Moreover, let rankB [i], where i ∈ {0, . . . , r}, be the number of
operations concerning coordinates in B among σ1, . . . , σi and let rB = rankB [r].

I Definition 20. Let ξ be a sequence of operations, A be the set of coordinates and B ⊆ A.
Let h : {0, . . . , rB} → Z be a function. Then define:

Squeeze(ξ,B) = ξB where ξB [i] = ξ[selectB [i]],

Expand(ξ,B, h) = ηB where ηB [i] = h(rankB [i]).

In other words, the squeeze operation produces a subsequence ξB of ξ consisting of operations
concerning B. The expand operation is in some sense an inverse of the squeeze operation,
it propagates the values of h from the domain B to the full domain A.

I Example 21. Let ξ be the sequence from Example 14, here A = {1, 2, 3, 4}. Let B = {1, 2}
and assume HB = [0, 1, 2, 6, 2, 1, 4, 5, 3]. Then (see also Fig. 3):

Expand(ξ,B,HB) = (0, 1, 2, 6, 6, 6, 6, 2, 1, 1, 4, 5, 3, 3).

For a pair of sequences η′, η′′, denote by Align(η′, η′′) the sequence of pairs η such that
η[i] = (η′[i], η′′[i]) for each i. Moreover, for a sequence η of r + 1 pairs of integers, denote
by Renumber(η) a sequence H of r + 1 integers in the range {0, . . . , r} such that η[i] < η[j]
if and only if H[i] < H[j] for any i, j ∈ {0, . . . , r}.

The recursive construction of a naming function for ξ is based on the following fact.

I Fact 22. Let ξ be a sequence of elementary operations, A = B ∪ C (B ∩ C = ∅) be the
set of coordinates, HB be an rB-naming function for ξB and HC an rC-naming function for
ξC . Additionally, let

ηB = Expand(ξ,B,HB), ηC = Expand(ξ, C,HC), H = Renumber(Align(ηB , ηC))

Then H is an r-naming function for ξ.

The algorithm makes an additional assumption about the sequence ξ.

I Definition 23. We say that a sequence of operations ξ is normalized if for each operation
v[j] := x we have x ∈ {0, . . . , r{j}}, where (as defined above) r{j} is the number of operations
in ξ concerning the jth coordinate.

T. Kociumaka, J. Radoszewski, and W. Rytter 253

If for each operation v[j] := x the value x is of magnitude (m+ r)O(1), then normalizing the
sequence ξ, i.e., constructing a normalized sequence with the same answers to all equality
queries, takes O(m + r) time. This is done using a radix sort of triples (j, x, i) and by
mapping the values x corresponding to the same coordinate j to consecutive integers.

I Lemma 24. Let ξ be a normalized sequence of r operations on a vector of dimension m.
An r-naming for ξ can be deterministically constructed in O(r logm) time.

Proof. If the dimension of vectors is 1 (that is, |A| = 1), the single components of the
vectors v̄i already constitute an r-naming. This is due to the fact that ξ is normalized.

For larger |A|, the algorithm uses Fact 22, see the pseudocode below and Figure 3.

Algorithm ComputeH (ξ)
if ξ is empty then return 0̄;
if |A| = 1 then compute H naively;
Split A into two halves B, C;
ξB := Squeeze(ξ,B); ξC := Squeeze(ξ, C);
HB := ComputeH (ξB); HC := ComputeH (ξC);
ηB := Expand(ξ,B,HB); ηC := Expand(ξ, C,HC);
return Renumber(Align(ηB , ηC));

0
0
0
0 1

2
4

1
3

0

1
0

0

3
2

2

1

input = ξ
B

C

split & squeeze

0
0 1

2
4 1

0
3

2
2

ξB 0
0 1

3
0

0 1
ξC

recursive calls
0 1 2 6 2 1 4 5 3HB 0 3 4 2 0 1 HC

expand

0 1 2 6 6 6 6 2 1 1 4 5 3 3ηB

0 0 0 0 3 4 2 2 2 0 0 0 0 1 ηC

align

0 1 2 6 6 6 6 2 1 1 4 5 3 3
0 0 0 0 3 4 2 2 2 0 0 0 0 1

η

renumber
0 1 3 9 11 12 10 4 2 1 7 8 5 6H output

Figure 3 A schematic diagram of performance of algorithm ComputeH . The columns correspond
to elementary operations and the rows correspond to coordinates of the vectors.

Let us analyze the complexity of a single recursive step of the algorithm. Tables rank
and select are computed in O(r) time, hence both squeezing and expanding are performed
in O(r) time. Renumbering, implemented using radix sort and bucket sort, also runs in
O(r) time, since the values of HB and HC are positive integers bounded by r. Hence, the
recursive step takes O(r) time.

STACS’13

254 Fast Algorithms for Abelian Periods and GCD Queries

We obtain the following recursive formula for T (r,m), an upper bound on the execution
time of the algorithm for a sequence of r operations on a vector of length m:

T (r, 1) = O(r), T (0,m) = O(1)
T (r,m) = T (r1, bm/2c) + T (r2, dm/2e) +O(r) where r1 + r2 = r.

A solution to this recurrence yields T (r,m) = O(r logm). J

6.2 Randomized construction of a naming function
Our randomized construction is based on fingerprints, see [15]. Let us fix a prime number
p. For a vector v̄ = (v1, v2, . . . , vm) we introduce a polynomial over the field Zp:

Qv̄(x) = v1 + v2x+ v3x
2 + . . .+ vmx

m−1 ∈ Zp[x].

Let us choose x0 ∈ Zp uniformly at random. Clearly, if v̄ = v̄′ then Qv̄(x0) = Qv̄′(x0). The
following lemma states that the converse is true with high probability.

I Lemma 25. Let v̄ 6= v̄′ be vectors in {0, . . . , n}m. Let p > n be a prime number and let
x0 ∈ Zp be chosen uniformly at random. Then

P (Qv̄(x0) = Qv̄′(x0)) ≤ m
p .

Proof. Note that, since p > n, R(x) = Qv̄(x)−Qv̄′(x) ∈ Zp[x] is a non-zero polynomial of
degree ≤ m, hence it has at most m roots. Consequently, x0 is a root of R with probability
bounded by m/p. J

I Lemma 26. Let v̄1, . . . , v̄r be vectors in {0, . . . , n}m. Let p > max(n, (m + r)c+3) be
a prime number, where c is a positive constant, and let x0 ∈ Zp be chosen uniformly at
random. Then H(i) = Qv̄i(x0) is a naming function with probability at least 1− 1

(m+r)c .

Proof. Assume that H is not a naming function. This means that there exist i, j such that
H(i) = H(j) despite v̄i 6= v̄j . Hence, by the union bound and Lemma 25 we obtain the
conclusion of the lemma:

P(H is not a naming) ≤
∑

i,j : v̄i 6=v̄j

P (H(i) = H(j)) ≤
∑

i,j : v̄i 6=v̄j

m
p ≤

mr2

p ≤ 1
(m+r)c . J

I Lemma 27. Let ξ be a sequence of r operations on a vector of dimension m with values
of magnitude n = (m + r)O(1). There exists a randomized O(m + r) time algorithm that
constructs a function H which is a k-naming for ξ with high probability for k = (m+ r)O(1).

Proof. Assume all values in ξ are bounded by (m+ r)c′ . Let c ≥ c′. Let us choose a prime
p such that (m + r)3+c < p < 2(m + r)3+c. Moreover let x0 ∈ Zp be chosen uniformly at
random.

Then we set H(i) = Qv̄i(x0). By Lemma 26, this is a naming function with probability
at least 1− 1

(m+r)c .
If we know all powers xj

0 mod p for j ∈ {1, . . . ,m}, then we can compute H(i) from
H(i− 1) (a single operation) in constant time. Thus H(i) for all 1 ≤ i ≤ r can be computed
in O(m+ r) time. J

With a naming function stored in an array, answering equality queries is straightforward.
In the randomized version, there is a small chance that H is not a naming function, which
makes the queries Monte Carlo (with one-sided error). Nevertheless, the answers are correct
with high probability. Thus we obtain the following result.

T. Kociumaka, J. Radoszewski, and W. Rytter 255

I Theorem 28. The integer vector equality problem can be solved in O(n) space and:
(a) in O(m+ r logm) time deterministically or
(b) in O(m+ r) time using a Monte Carlo algorithm (with one-sided error, correct w.h.p.).

7 Two main algorithms

In this section we combine our tools to develop efficient algorithms computing all Abelian
periods of two types.

I Theorem 29. Let w be a word of length n over the alphabet {1, . . . ,m}. Full Abelian
periods of w can be computed in O(n) time.

Proof. Full Abelian periods are computed using the characterization given by Fact 10a.
Recall that FILTER1 ([n]∼, n) = {d | n : Mult(d, n) ⊆ [n]∼} = {d | n : Mult(d, n) ⊆ [d]∼}.

Algorithm Full Abelian periods
Compute the data structure for answering gcd queries; {Theorem 4}
A := {k : k ∼ n}; {Lemma 16}
K := FILTER1 (A,n); {Lemma 5}
return K;

The algorithms from Lemmas 5 and 16 take O(n) time. Hence, the whole algorithm works
in linear time. J

I Theorem 30. Let w be a word of length n over the alphabet {1, . . . ,m}. There exist an
O(n log logn+n logm) time deterministic and an O(n log logn) time randomized algorithm
that compute all Abelian periods of w. Both algorithms require O(n) space.

Proof. Abelian periods are computed using the characterization given by Fact 10b. Recall
that Lemma 18 allows testing ∼ |{q0,...,n}, the restriction of ∼ to {q0, . . . , n}, only. Never-
theless all Abelian periods of w are at least q0 and thus it suffices to initialize Y to the set
of candidates greater than or equal to q0, that is the set

{k ∈ {q0, . . . , n} : Mult(k, n) ⊆ [k]∼} = FILTER2 (∼ |{q0,...,n}).

Algorithm Abelian periods
Compute the data structure for answering gcd queries; {Theorem 4}
Prepare data structure to answer in O(1) time proportionality-queries; {Lemma 18}
Compute table tail; {Lemma 9}
Y := FILTER2 (∼ |{q0,...,n}); {Lemma 6}
K := ∅;
foreach q ∈ Y do

j := q ·
⌊

n
q

⌋
+ 1;

if tail[j] < q then K := K ∪ {q};
return K;

The deterministic version of the algorithm from Lemma 18 runs in O(n logm) time and the
randomized version runs in O(n) time. The algorithm from Lemma 6 runs in O(n log logn)
time and all the remaining algorithms (see Theorem 4, Lemma 9) run in linear time. This
implies the required complexity of the Abelian periods’ computation. J

STACS’13

256 Fast Algorithms for Abelian Periods and GCD Queries

References
1 Tom M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in Math-

ematics. Springer, 1976.
2 Sergey V. Avgustinovich, Amy Glen, Bjarni V. Halldórsson, and Sergey Kitaev. On shortest

crucial words avoiding Abelian powers. Discrete Applied Mathematics, 158(6):605–607,
2010.

3 Francine Blanchet-Sadri, Jane I. Kim, Robert Mercas, William Severa, and Sean Simmons.
Abelian square-free partial words. In Adrian Horia Dediu, Henning Fernau, and Carlos
Martín-Vide, editors, LATA, volume 6031 of Lecture Notes in Computer Science, pages
94–105. Springer, 2010.

4 Francine Blanchet-Sadri and Sean Simmons. Avoiding Abelian powers in partial words. In
Giancarlo Mauri and Alberto Leporati, editors, Developments in Language Theory, volume
6795 of Lecture Notes in Computer Science, pages 70–81. Springer, 2011.

5 Peter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. Algorithms for
jumbled pattern matching in strings. Int. J. Found. Comput. Sci., 23(2):357–374, 2012.

6 Sorin Constantinescu and Lucian Ilie. Fine and Wilf’s theorem for Abelian periods. Bulletin
of the EATCS, 89:167–170, 2006.

7 Maxime Crochemore, Costas Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Jakub Pa-
chocki, Jakub Radoszewski, Wojciech Rytter, Wojciech Tyczyński, and Tomasz Waleń. A
note on efficient computation of all Abelian periods in a string. Information Processing
Letters, 113(3):74–77, 2013.

8 James D. Currie and Ali Aberkane. A cyclic binary morphism avoiding Abelian fourth
powers. Theor. Comput. Sci., 410(1):44–52, 2009.

9 James D. Currie and Terry I. Visentin. Long binary patterns are Abelian 2-avoidable.
Theor. Comput. Sci., 409(3):432–437, 2008.

10 Michael Domaratzki and Narad Rampersad. Abelian primitive words. Int. J. Found.
Comput. Sci., 23(5):1021–1034, 2012.

11 P. Erdös. Some unsolved problems. Hungarian Academy of Sciences Mat. Kutató Intézet
Közl., 6:221–254, 1961.

12 Gabriele Fici, Thierry Lecroq, Arnaud Lefebvre, and Élise Prieur-Gaston. Computing
Abelian periods in words. In Jan Holub and Jan Žďárek, editors, Proceedings of the Prague
Stringology Conference 2011, pages 184–196, Czech Technical University in Prague, Czech
Republic, 2011.

13 Gabriele Fici, Thierry Lecroq, Arnaud Lefebvre, Elise Prieur-Gaston, and William Smyth.
Quasi-linear time computation of the abelian periods of a word. In Jan Holub and Jan
Žďárek, editors, Proceedings of the Prague Stringology Conference 2012, pages 103–110,
Czech Technical University in Prague, Czech Republic, 2012.

14 David Gries and Jayadev Misra. A linear sieve algorithm for finding prime numbers.
Commun. ACM, 21(12):999–1003, December 1978.

15 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

16 Veikko Keränen. Abelian squares are avoidable on 4 letters. In Werner Kuich, editor,
ICALP, volume 623 of Lecture Notes in Computer Science, pages 41–52. Springer, 1992.

17 Tanaeem M. Moosa and M. Sohel Rahman. Indexing permutations for binary strings. Inf.
Process. Lett., 110(18-19):795–798, 2010.

18 P. A. Pleasants. Non-repetitive sequences. Proc. Cambridge Phil. Soc., 68:267–274, 1970.

	Introduction
	Greatest Common Divisor queries
	Number-theoretic tools for Abelian periods
	Characterization of Abelian periods by proportionality relation
	Efficient implementation of the proportionality relation
	Vector equality in diff-representation
	Deterministic construction of a naming function
	Randomized construction of a naming function

	Two main algorithms

