
L1 Shortest Path Queries among Polygonal
Obstacles in the Plane
Danny Z. Chen∗1 and Haitao Wang†2

1 Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556, USA
dchen@cse.nd.edu

2 Department of Computer Science, Utah State University
Logan, UT 84322, USA
haitao.wang@usu.edu

Abstract
Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of n vertices
in the plane, after the free space is triangulated, we present an O(n + h log h) time and O(n)
space algorithm for building a data structure (called shortest path map) of size O(n) such that
for any query point t, the length of the L1 shortest obstacle-avoiding path from s to t can be
reported in O(logn) time and the actual path can be found in additional time proportional to the
number of edges of the path. Previously, the best algorithm computes such a shortest path map
in O(n logn) time and O(n) space. In addition, our techniques also yield an improved algorithm
for computing the L1 geodesic Voronoi diagram of m point sites among the obstacles.

1998 ACM Subject Classification F.2 Analysis of algorithms and problem complexity

Keywords and phrases computational geometry, shortest path queries, shortest paths among
obstacles, L1/L∞/rectilinear metric, shortest path maps, geodesic Voronoi diagrams

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.293

1 Introduction

Given a point s and a set of h pairwise disjoint polygonal obstacles, P = {P1, P2, . . . , Ph},
with a total of n vertices in the plane, where s is considered as a special point obstacle,
the plane minus the interior of the obstacles is called the free space of P. Two obstacles
are pairwise disjoint if they do not intersect in their interior. The L1 shortest path query
problem, denoted by L1-SPQ, is to compute a data structure (called shortest path map or
SPM for short) with s as the source point such that for any query point t, an L1 shortest
obstacle-avoiding path from s to t can be obtained efficiently. Note that such a path can
have any polygonal segments but the length of each segment of the path is measured by the
L1 metric. Unless otherwise stated, all SPMs mentioned in this paper have the following
performances: for any query point t, the length of the L1 shortest path from s to t can be
reported in O(logn) time and the actual path can be found in additional time proportional
to the number of edges of the path.

We also study the L1 geodesic Voronoi diagram problem, denoted by L1-GVD: Given an
obstacle set P and a set of m point sites in the free space, compute the geodesic Voronoi
diagram for the m point sites under the L1 distance metric among the obstacles in P.

∗ The research of Chen was supported in part by NSF under Grants CCF-0916606 and CCF-1217906.
† Corresponding author.

© Danny Z. Chen and Haitao Wang;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 293–304

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.293
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

294 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

r3

r2

r1

d

c

r3

r2

r1 VD(r)1

d

c

2VD(r)

3VD(r)

(b)(a)

P

Figure 1 (a) Three weighted point sites (r1, r2, r3) and a simple polygon P with an open edge cd.
The goal is to compute the L1 geodesic Voronoi diagram in P for the three sites which influence P only
through the edge cd. (b) Illustrating a possible solution: P is partitioned into three Voronoi regions
VD(ri) for each ri, 1 ≤ i ≤ 3.

Computing L1 shortest paths has been studied extensively (e.g., see [5, 8, 15, 18, 19, 21]).
Mitchell [18, 19] builds an SPM in O(n logn) time and O(n) space, which is optimal when
h = Θ(n) because finding an L1 shortest path has a lower bound of Ω(n+ h log h) on the
running time [9]. Throughout this paper, let T refer to the time for triangulating the free
space of P and let ε > 0 be any arbitrarily small constant. It is known that T = O(n logn)
and T = O(n+ h log1+ε h) [1]. Recently, Chen and Wang gave an algorithm that can find a
single shortest path in O(T +n+h log h) time and O(n) space [5]. However, the algorithm in
[5] cannot construct an SPM, which is left as an open problem in [5]. For L1-GVD, Mitchell’s
algorithm [18, 19] can be extended to solve it in O((n+m) log(n+m)) time.

1.1 Our Results
In this paper, we answer the open problem in [5] by presenting an algorithm that builds an
SPM of size O(n) in O(n+ h log h) time and O(n) space after the free space is triangulated
in O(T) time. Hence, the running time of the overall algorithm is O(T + n+ h log h). If the
triangulation can be done optimally (i.e., T = O(n+ h log h)), then our algorithm matches
the Ω(n+ h log h) time lower bound [9]. In addition, it is easy to see that given an SPM, we
can add h− 1 segments in the free space to connect the obstacles in P together to obtain a
single simple polygon and then triangulate the free space, in totally O(n) time [1, 2]. This
shows that the problem L1-SPQ is solvable in Θ(T) time, i.e., building an SPM is equivalent
to triangulating the free space of P in terms of the running time.

As Mitchell’s algorithm [18, 19], our techniques can also be extended to solve the L1-GVD
problem in O(T ′ + (m + h) log(m + h))) time, where T ′ is the time for triangulating the
free space of P with the m point sites and T ′ = min{O((n + m) log(n + m)), O(n + (m +
h) log1+ε(m+ h))} [1]. Our new algorithm is faster than Mitchell’s O((n+m) log(n+m))
time solution for sufficiently small m and h (e.g., when m+ h = O(n1−ε)).

It is well known that with solutions in L1 version, the same problems in the rectilinear
version and L∞ version can be solved immediately [18, 19]. Hence, our results also hold for
the rectilinear version and the L∞ version of the problems.

A challenging subproblem we need to solve is a special case of the (additively) weighted
L1 geodesic Voronoi diagram problem on a simple polygon P : The weighted point sites all
lie outside P and influence P through an (open) edge (e.g., see Fig. 1). Our main effort of
this paper is to solve this problem in O(n′ +m′) time, where n′ is the number of vertices of
P and m′ is the number of sites. This problem is interesting in its own right.

This subproblem may not look “challenging” at all as it can be solved by many existing
techniques, e.g., the continuous Dijkstra paradigm [18, 19], the sweeping algorithm [11], and
divide-and-conquer [20]. However, all these methods would lead to an O((n′+m′) log(n′+m′))

D.Z. Chen and H. Wang 295

Figure 2 Illustrating a triangulation of the
free space among two obstacles and the corridors
(with red solid curves). There are two junction
triangles indicated by the large dots inside them,
connected by three solid (red) curves. Remov-
ing the two junction triangles results in three
corridors.

x

b e

f

a

y

b e

f

a

P j

P jc

d

z

d

bay(cd)

canal(x,y)

P i

P i

Figure 3 Illustrating an open hourglass (left) and a
closed hourglass (right) with a corridor path connecting
the apices x and y of the two funnels. The dashed
segments are diagonals. The paths π(a, b) and π(e, f)
are shown with thick solid curves. A bay bay(cd) with
gate cd (left) and a canal canal(x, y) with gates xd and
yz (right) are also indicated.

time solution, and consequently, the overall time for building an SPM would be O(n logn).
Our linear time algorithm can be viewed as an incremental approach. Incremental approaches
have been widely used in geometric algorithms, and normally they can result in good
randomized algorithms. Incremental approaches have also been used for constructing Voronoi
diagrams, which usually take quadratic time. Our result demonstrates that incremental
approaches are able to yield optimal deterministic solutions for building Voronoi diagrams.
The new techniques we provide here should be generalized to solving other related problems.

For simplicity of discussion, as in [18, 19], we assume no two obstacle vertices lie on the
same horizontal or vertical line. Henceforth, unless otherwise stated, a shortest path refers
to an L1 shortest path and a length is in the L1 metric.

In the following, in Section 2, we review some geometric structures. In Section 3, we
outline our algorithm for computing an SPM. Particularly, our algorithm for solving the
challenging subproblem is in Section 4. Due to the space limit, many details (including the
algorithm for L1-GVD) are omited and can be found in the full version of this paper [6].

2 Preliminaries

In this section, we review some geometric structures of P, i.e., the corridors, ocean, bays,
and canals, which have been used previously, e.g., [5, 7, 16].

For simplicity, we assume all obstacles are contained in a rectangle R (see Fig. 2). We
also view R as an obstacle in P . Let F be the free space inside R. We compute an arbitrary
triangulation of F , denoted by Tri(F), in O(T) time.

Let G(F) be the (planar) dual graph of Tri(F). As shown in [16], based on G(F), we
compute a 3-regular graph, denoted by G3 (the degree of every node in G3 is three), possibly
with loops and multi-edges, as follows. First, remove every degree-one node from G(F) along
with its incident edge; repeat this process until no degree-one node remains. Second, remove
every degree-two node from G(F) and replace its two incident edges by a single edge; repeat
this process until no degree-two node remains. The resulting graph is G3 (see Fig. 2), which
has O(h) faces, O(h) nodes, and O(h) edges [16]. Each node of G3 corresponds to a triangle
in Tri(F), which is called a junction triangle (see Fig. 2). The removal of all junction triangles
from Tri(F) results in O(h) corridors, each of which corresponds to one edge of G3.

The boundary of a corridor C consists of four parts (see Fig. 3): (1) A boundary portion
of an obstacle Pi ∈ P, from a point a to a point b; (2) a diagonal of a junction triangle from

STACS’13

296 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

b to a boundary point e on an obstacle Pj ∈ P (Pi = Pj is possible); (3) a boundary portion
of the obstacle Pj from e to a point f ; (4) a diagonal of a junction triangle from f to a.
Let π(a, b) (resp., π(e, f)) be the shortest path from a to b (resp., e to f) inside C. The
region HC bounded by π(a, b), π(e, f), and the two diagonals be and fa is called an hourglass,
which is open if π(a, b) ∩ π(e, f) = ∅ and closed otherwise (see Fig. 3). If HC is open, then
π(a, b) and π(e, f) are called sides of HC ; otherwise HC consists of two “funnels” and a path
πC = π(a, b) ∩ π(e, f) joining the two apices of the two funnels, called the corridor path of C.
The two funnel apices connected by the corridor path are called the corridor path terminals.

LetM be the union of all O(h) junction triangles, open hourglasses, and funnels. We
callM the ocean. Denote by SPM(F) the SPM we want to compute on the free space F
(with respect to the source point s), and denote by SPM(M) the portion of SPM(F) inM.
After the free space is triangulated in O(T) time, the algorithm in [5] computes SPM(M) of
size O(n) in O(n + h log h) time and O(n) space, based on the following observation: For
any point t ∈M, there exists a shortest s-t path π(s, t) in F such that π(s, t) is inM but
possibly contains some corridor paths. Our task in this paper is to compute the portion
of SPM(F) in the space F \M, in additional O(n) time. Below, we partition the space
F \M into two types of regions: bays and canals. Consider the hourglass HC of a corridor
C. Depending on whether HC is open or closed, there are two cases.

If HC is open (see Fig. 3), then HC has two sides. Let S1(HC) be an arbitrary side of
HC . The obstacle vertices on S1(HC) all lie on the same obstacle, say P ∈ P . Let c and d be
any two adjacent vertices on S1(HC) such that the line segment cd is not an edge of P (see
the left figure in Fig. 3, with P = Pj). The region enclosed by cd and a boundary portion
of P between c and d is called the bay of cd and P , denoted by bay(cd), which is a simple
polygon. We call cd the bay gate of bay(cd), which is a common edge of bay(cd) andM.

If the hourglass HC is closed, then let x and y be the two apices of its two funnels.
Consider two adjacent vertices c and d on a side of a funnel such that the line segment cd is
not an obstacle edge. If neither c nor d is a funnel apex, then c and d must both lie on the
same obstacle and the segment cd also defines a bay with that obstacle. However, if either
c or d is a funnel apex, say, x = c, then x and d may lie on different obstacles. If they lie
on the same obstacle, then they also define a bay; otherwise, we call xd the canal gate at x
(see Fig. 3). Similarly, there is also a canal gate at the other funnel apex y, say yz. Let Pi
and Pj be the two obstacles bounding the hourglass HC . The obstacle-free region enclosed
by Pi, Pj , and the two canal gates xd and yz that contain the corridor path of HC is called
the canal of HC , denoted by canal(x, y), which is a simple polygon. Similarly, the two canal
gates are common edges of the canal andM.

Clearly, all the bays and canals together constitute the space F \M. Note that bays and
canals are connected withM only through their gates.

3 The Algorithm Outline

Our task is to compute SPM(F). To this end, again, SPM(M) has already been computed
in [5], our task in this paper is to compute the portion of SPM(F) in F \M, i.e., all bays
and canals, or in other words, compute an SPM for each bay/canal. More intuitively, we
“expand” SPM(M) to all bays/canals through their gates, in additional O(n) time.

Recall that an SPM is a partition of the free space into many cells; each cell C has a
root point r such that for any point p in C, a shortest path from the source point s to p
consists of the line segment pr and a shortest path from s to r. Further, pr is in C (i.e., C is
a star-shaped polygon with r in the kernel). Refer to [18, 19] for more details on SPM.

D.Z. Chen and H. Wang 297

We discuss the bays first. Consider a bay bay(cd). Since its gate cd is also an edge ofM,
cd is adjacent to some cells in SPM(M). If cd is in a single cell C(r) of SPM(M) with r
as the root, then each point in bay(cd) has a shortest path to s via r. Thus, to construct
an SPM for bay(cd), it suffices to compute an SPM on bay(cd) with respect to the point
r, which can be done in linear time (in terms of the number of vertices of bay(cd)) since
bay(cd) is a simple polygon1. Note that although r may not be a point in bay(cd), we can,
for example, connect r to both c and d with two line segments to form a new simple polygon
that contains bay(cd).

If the gate cd is not contained in a single cell of SPM(M), then cd intersects multiple
cells in SPM(M). When computing an SPM for bay(cd), we must consider the roots of all
such cells and each root has an additive weight that is the length of its shortest path to s.
In this case, multiple vertices of SPM(M) (i.e., the intersections of the boundaries of the
cells of SPM(M) with cd) may lie in the interior of cd. We call the vertices of SPM(M) on
cd (including its endpoints c and d) the SPM(M) vertices. Later in Section 4, we give an
algorithm for the following result.

I Theorem 1. For a bay of n′ vertices with m′ SPM(M) vertices on its gate, an SPM of
size O(n′ +m′) for the bay can be computed in O(n′ +m′) time.

Since a canal has two gates which are also edges ofM, multiple SPM(M) vertices may
lie on both its gates. Later in Section 5, we give an algorithm for the following Theorem 2,
which uses the algorithm for Theorem 1 as a main procedure.

I Theorem 2. For a canal of n′ vertices with totally m′ SPM(M) vertices on its two gates,
an SPM of size O(n′ +m′) can be computed in O(n′ +m′) time.

By Theorems 1 and 2, the total time for computing the SPMs for all bays and canals is
linear in terms of the total sum of the numbers of obstacle vertices of all bays and canals
(which is O(n)) and the total number of the SPM(M) vertices on the gates of all bays and
canals (which is also O(n) since the size of SPM(M) is O(n)). We hence conclude that after
SPM(M) is obtained, an SPM for F can be computed in additional O(n) time. Together
with a planar point location data structure [10, 17], we have the following result.

I Theorem 3. After the free space F is triangulated in O(T) time, an SPM(F) of size O(n)
can be built in O(n+ h log h) time and O(n) space.

4 Expanding the SPM(M) into a Bay (a Sketch)

In this section, we sketch our algorithm for Theorem 1, and all details can be found in [6].
Consider a bay bay(cd) with gate cd (see Fig. 3). Denote by n′ the number of vertices of

bay(cd). Let SPM(bay(cd)) be an SPM for bay(cd) that we seek to compute. If cd lies in a
single cell of SPM(M), we have shown SPM(bay(cd)) can be computed in O(n′) time. This
section focuses on the case when cd is not contained in a single cell of SPM(M). Denote
by m′ the number of SPM(M) vertices on cd. Our task is to compute SPM(bay(cd)) in
O(n′ +m′) time. Let R be the set of roots of the cells of SPM(M) that intersect with cd.

To obtain SPM(bay(cd)), we first compute, for each r ∈ R, the Voronoi region VD(r)
inside bay(cd) such that for any point t ∈ VD(r), there is a shortest s-t path going through

1 As the Euclidean shortest path between two points in a simple polygon is also an L1 shortest path [13],
a Euclidean SPM [12] in a simple polygon is also an L1 one.

STACS’13

298 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

r; we then compute an SPM on VD(r) with respect to the single point r, which can be done
in linear time since VD(r) is a simple polygon. Thus, the key is to decompose bay(cd) into
Voronoi regions for the roots of R (which is the challenging subproblem mentioned in Section
1.1). Denote by VD(bay(cd)) this Voronoi diagram decomposition of bay(cd). We aim to
compute VD(bay(cd)) in O(n′ +m′) time.

Without loss of generality (W.l.o.g.), assume that cd is positive-sloped, bay(cd) is on
the right of cd, and the vertex c is higher than d (e.g., bay(cd) = P in Fig. 1). Let
R = {r1, r2, . . . , rk} be the set of roots of the cells of SPM(M) that intersect with cd in the
order from c to d along cd. Note that R may be a multi-set, i.e., two roots ri and rj with
i 6= j may refer to the same physical point; but this is not important to our algorithm (e.g.,
we can view each ri as a physical copy of the same root). Let c = v0, v1, . . . , vk = d be the
SPM(M) vertices on cd ordered from c to d (thus m′ = k + 1). Hence, for each 1 ≤ i ≤ k,
the segment vi−1vi is on the boundary of the cell C(ri) of SPM(M). To obtain VD(bay(cd)),
for each ri ∈ R, we need to compute the Voronoi region VD(ri).

Our algorithm can be viewed as an incremental one, i.e., it considers the roots in R

one by one. It is commonly known that incremental approaches can construct Voronoi
diagrams in quadratic time, or may give good randomized results. In contrast, our algorithm
is deterministic and takes only linear time. The success of it hinges on that we can find
an order of the roots in R such that by following this order to consider the roots in R

incrementally, we are able to compute VD(bay(cd)) in linear time. The order is nothing
but that of the indices of the roots in R we have defined. With this order, the algorithm is
conceptually simple. However, it is quite challenging to argue its correctness and achieve a
linear time implementation. Our strategy is to show that the algorithm implicitly maintains
a number of invariants that assure the correctness of the algorithm. For this purpose, we
discover many observations that capture some essential properties of this L1 problem.

4.1 Algorithm Overview
To compute VD(bay(cd)), it turns out that we need to deal with the interactions between some
horizontal and vertical rays, each of which belongs to the bisector of two roots in R. Further,
considering the roots in R incrementally is equivalent to considering the corresponding rays
incrementally. We process these rays in a certain order (e.g., as to be proved, their origins
somehow form a staircase structure). For each ray considered, if it is vertical, then it is easy
(it eventually leads to a ray shooting operation), and its processing does not introduce any
new ray. But, if it is horizontal, then the situation is more complicated since its processing
may introduce many new horizontal rays and (at most) one vertical ray, also in a certain
order along a staircase structure (in addition to causing a ray shooting operation). A stack
is used to store certain vertical rays that need to be further processed.

The algorithm needs to perform ray shooting operations for some vertical and horizontal
rays. Although there are known data structures for ray shooting queries [3, 4, 12, 14], they
are not efficient enough for a linear time implementation of the entire algorithm. Based on
observations, we use the horizontal visibility map and vertical visibility map of bay(cd) [2].
More specifically, we prove that all vertical ray shootings are in a “nice” sorted order (called
target-sorted). With this property, all vertical ray shootings are performed in totally linear
time by using the vertical visibility map of bay(cd). The horizontal visibility map is used
to guide the overall process of the algorithm. During the algorithm, we march into the bay
and the horizontal visibility map allows us to keep track of our current position (i.e., in a
trapezoid of the map that contains our current position). The horizontal visibility map also
allows each horizontal ray shooting to be done in O(1) time. In addition, in the preprocessing

D.Z. Chen and H. Wang 299

p1
p1p1

p2 p2
p2

(1) (2) (3)

Figure 4 The L1 bisector B(p1, p2) of two weighted points
p1 and p2. In (3), an entire quadrant (the shaded area) is
B(p1, p2), but we choose B(p1, p2) to be the vertical (solid
thick) half-line.

ri−1

B’M(ri−1,ri)

ri

vi−1

bay(cd)
ρi−1

c

d

Figure 5 Illustrating the definition
of ρi−1.

of the algorithm, we also need to perform some other ray shootings (for rays of slope −1);
our linear time solution for this also hinges on the target-sorted property of such rays.

Our algorithm is conceptually simple. The only data structures we need are linked lists,
a stack, and the horizontal and vertical visibility maps. Again, it is much more difficult
to argue the correctness of the algorithm, making the presentation of this paper lengthy,
technically complicated, or even tedious, for which we ask for the reader’s patience.

Below, we sketch how our algorithm works, and the proof of its correctness is omitted.
We may also use some terminology of natural meaning without definitions (their formal
definitions are can also be found in [6].

4.2 The Algorithm
Each root ri ∈ R can be viewed as an additively weighted point whose weight is the length
of an L1 shortest path from s to ri. For any two weighted points p1 and p2 with weights w1
and w2, respectively, their bisector B(p1, p2) can be an entire quadrant of the plane (e.g.,
see Fig. 4); in this case, as in [18, 19], we choose a vertical half-line as the bisector. Denote
by Rec(p1, p2) the rectangle with p1 and p2 as its two diagonal vertices. Thus, as illustrated
in Fig. 4, B(p1, p2) consists of three portions, two rays whose origins are on the boundary of
Rec(p1, p2) and an open line segment (called middle segment and denoted by BM (p1, p2))
in Rec(p1, p2) connecting the origins the two rays; further each ray is either horizontal or
vertical and the middle segment is of slope 1 or −1.

For any pair of consecutive roots ri−1 and ri in R for 2 ≤ i ≤ k, since vi−1 is on the
common boundary of the cells C(ri−1) and C(ri), vi−1 lies on the bisector B(ri−1, ri) of ri−1
and ri. But vi−1 may lie on either a ray or the middle segment of B(ri−1, ri). If vi−1 lies on
a ray of B(ri−1, ri), let ρi−1 denote the ray; otherwise, vi−1 partitions BM (ri−1, ri) into two
portions and one portion (denoted by B′M (ri−1, ri)) intersects the interior of bay(cd), and
we let ρi−1 be the ray of B(ri−1, ri) connecting to B′M (ri−1, ri) (see Fig. 5). In either case,
ρi−1 is either vertically going south (downwards) or horizontally going east (rightwards). (If
BM (ri−1, ri) does not intersect cd, we let B′M (ri−1, ri) = ∅.) Further, if vi−1 ∈ BM (ri−1, ri),
BM (ri−1, ri) must be (−1)-sloped [6]. Denote by or(ρ) the origin of a ray ρ. We can prove
that the origins or(ρ1), or(ρ2), . . . , or(ρk−1) follow the order from northeast to southwest [6].

Let ∂ denote the boundary of bay(cd) excluding cd. The algorithm first determines for
each 2 ≤ i ≤ k whether B′M (ri−1, ri) intersects ∂, which is done by a set of (−1)-sloped ray
shootings. If, say B′M (ri−1, ri), intersects ∂ at a point p such that vi−1p is inside bay(cd),
then vi−1p partitions bay(cd) into two simple polygons bay1 and bay2 such that bay1 contains
cvi−1 as an edge (see Fig. 6). We show (in [6]) that vi−1p must appear in VD(bay(cd)) (which
means that vi−1p lies on some cell boundaries of VD(bay(cd))) and the original problem of
computing VD(bay(cd)) on bay(cd) and R can be broken into two subproblems of computing

STACS’13

300 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

vi−1

ri

ri−1

bay2

B(ri−1 ,r i) bay1

p

d

c

Figure 6 BM (ri−1, ri) inter-
sects both cd (at vi−1) and ∂ (at
p). The line segment vi−1p divides
bay(cd) into bay1 and bay2.

r2

r1

v1
ρ1

bay1

tp()ρ1

ρ2

d

c

p=

Figure 7 Illustrating an ex-
ample of ρ1 being horizontal.

vi ρi

VD(r)t

rt

ρ ’

tp()ρip=

ρtp()

ρ’

d

c

ρ

z=tp()

Figure 8 The target points of
all rays in S (whose rays are all ver-
tical) are before p = tp(ρi). The
ray ρ is at the top of S and ρ′ is
at the bottom of S.

VD(bay1) on bay1 and {r1, . . . , ri−1} and computing VD(bay2) on bay2 and {ri, . . . , rk}. The
above procedure is done in the preprocessing of the algorithm, where all (−1)-sloped ray
shootings are solved in totally O(n′+k) time. Thus, we only need to focus on each individual
subproblem. W.l.o.g., we assume the original problem is one subproblem (i.e., no B′M (ri−1, ri)
intersects ∂). We can show that each B′M (ri−1, ri) appears in VD(bay(cd)) [6]. To compute
VD(bay(cd)), essentially we need to handle the interactions of all rays ρ1, . . . , ρk−1. Let
Ψ = {ρ1, . . . , ρk−1}. Considering the roots in R incrementally is equivalent to considering
the corresponding rays in Ψ incrementally. Specifically, our algorithm processes the rays in
Ψ from ρ1 to ρk−1 incrementally. Recall that each ρi ∈ Ψ is either vertically going south or
horizontally going east. We use a stack S to store certain vertical rays and S = ∅ initially.
As will be seen later, some rays in S may not be in Ψ. For a ray ρ with its origin in bay(cd),
the point on ∂ hit first by ρ is called the target point of ρ, denoted by tp(ρ).

Our algorithm maintains a number of invariants, and the next paragraph lists a subset of
them that are related to our discussion in this section. The complete list of invariants (as
well as the argument why our algorithm implicitly maintains them) are in [6].

Let ρ̂ be the next ray to be considered by the algorithm. Assume S 6= ∅. Invariants: (a)
All rays in S are vertically going south. (b) The origins of all rays in S from top to bottom
are ordered from southwest to northeast. (c) The origin of ρ̂ is to the southwest of the origin
of the ray at the top of S. (d) Suppose ρ̂ is on a bisector B(rj , ri) with j < i and the ray
at the top of S is on a bisector B(rt, rt′) with t < t′; then j = t′. (e) For each ray ρ′′ in
S ∪ {ρ̂}, suppose ρ′′ lies on a bisector B(rj′ , ri′) of two roots rj′ and ri′ with j′ < i′; then
the portion of the boundary of the Voronoi region VD(ri′) (resp., VD(rj′)) from vi′−1 (resp.,
vj′) to the origin or(ρ′′) of ρ′′ has already been computed. (f) The target points of all rays
in S from bottom to top are ordered clockwise on ∂, i.e., from c to d (this property is called
“target-sorted”).

Consider the first ray ρ1. If ρ1 is vertical, we push it on S and continue to consider
the ray ρ2 ∈ Ψ. If ρ1 is horizontal, we find the target point p = tp(ρ1) of ρ1 (i.e., the first
point on ∂ hit by ρ1) by performing a horizontal ray shooting. Then, B′M (r1, r2) and or(ρ1)p
together partition bay(cd) into two simple polygons, one of which contains cv1 as an edge
and we denote it by bay1 (see Fig. 7). We show that bay1 is the Voronoi region of r1, i.e.,
VD(r1) = bay1. We then continue to consider the ray ρ2 ∈ Ψ.

Now consider a general step of the algorithm, which processes a ray ρi ∈ Ψ. If ρi is
vertical, we simply push ρi on the top of the stack S and continue to consider the next ray
ρi+1 ∈ Ψ. Below, we discuss the case when ρi is horizontal. Let p = tp(ρi) be the target
point of ρi. If S = ∅, then as in the case of ρ1, the Voronoi region VD(ri) is determined
immediately (note that ρi ∈ B(ri, ri+1)), and we continue to consider ρi+1. Below, we assume

D.Z. Chen and H. Wang 301

tp()ρip=vi

ρi
ri+1

vj

vi−1

rj

p1

1q

ri

VD(r)i

p’1

��
��
��
��

��

����

c

d

ρ

Figure 9 Illustrating an example that the ray ρ at
the top of S intersects ρi (at p1) before hitting ∂.

tp()ρip=vi

ρi
ri+1

vj

vi−1

rj

p1

1q

ri

VD(r)i

p’1

��
��
��
��

��

����

c

ρd

z

bay’

Figure 10 Illustrating an example that
B′M (rj , ri+1) (= p1p′1) intersects ∂ (first at z).

S 6= ∅. For any two points a and b on ∂ with a lying in the portion of ∂ from the vertex
c clockwise to b, we say a is before b or b is after a. Suppose ρ is the ray on the top of S.
By Invariant (b), ρ is the leftmost ray in S. If the target point tp(ρ) is before p, then by
Invariants (f), ρi does not intersect any vertical ray in S before they hit ∂ (see Fig. 8). We
then perform a splitting procedure on the rays in S, as follows.

Let ρ′ be the ray at the bottom of S and z = tp(ρ′) (see Fig. 8). Suppose ρ′ is on a
bisector, say B(rt, rt′) for some t < t′. By Invariant (e), the boundary portion of VD(rt)
between vt and the origin or(ρ′) has been computed. The concatenation of the segment
or(ρ′)z and the above boundary portion of VD(rt) splits the current region of bay(cd) that
needs to be further decomposed for computing VD(bay(cd)) into two simple polygons. The
one containing vt−1vt is the Voronoi region VD(rt). We then continue to process the second
bottom ray in S in a similar fashion. This splitting procedure stops once all rays in S are
processed. The target points of all rays in S are found by vertical ray shootings, which is
done by a scanning procedure that basically scans a portion of ∂. Finally, we pop all rays out
of S. We then continue to consider the next ray ρi+1 ∈ Ψ.

If tp(ρ) is after p, then ρi intersects ρ before they hit ∂ (e.g., see Fig. 9). Suppose ρ is
on B(rj , rj′) with j < j′. Recall ρi ∈ B(ri, ri+1). By Invariant (d), j′ = i, and the Voronoi
region VD(ri) can be determined immediately [6]. Let p1 be the intersection of ρi and ρ
(see Fig. 9). Let q1 be the intersection of the vertical line through rj and the horizontal line
through ri+1. We show (in [6]) that q1 must be to the southeast of p1. The line of slope −1
through p1 intersects the boundary of the rectangle Rec(p1, q1) at two points: One is p1 and
denote the other one by p′1 (see Fig. 9). We show that p1p′1 ⊆ B(rj , ri+1) and p1p′1 ∩ bay(cd)
appears in VD(bay(cd)). Depending on whether p1p′1 intersects ∂, there are two cases.

If p1p′1 intersects ∂, let z be the first intersection point (see Fig. 10). Similarly as before,
the line segment p1z appears in VD(bay(cd)) and partitions the current region of bay(cd)
that needs further decomposition for computing VD(bay(cd)) into two simple polygons; one
of them, say bay′, contains the point p. Then, the Voronoi regions of the roots that define
the rays in S form a decomposition of bay′, and we use a procedure similar to the splitting
procedure discussed earlier to compute this decomposition of bay′, i.e., consider the rays in
S from bottom to top. Finally, we pop all rays out of S, and continue with the next ray
ρi+1 ∈ Ψ.

If p1p′1 does not intersect ∂, then depending on whether p′1 is on the bottom edge or the
right edge of the rectangle Rec(p1, q1), there are further two subcases. In either subcase, we
first pop ρ out of S. If p′1 is on the bottom edge, then let ρ∗i be the vertical ray originating
at p′1 and going south (see Fig. 11). We call ρ∗i the termination vertical ray of ρi. We push

STACS’13

302 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

tp()ρip=vi

ρi
ri+1

vj

vi−1

rj

p1

1q

ri

VD(r)i

p’1

ρ*
i

��
��
��
��

��

����

c

d

ρ

’ρ

Figure 11 Illustrating an example that the point
p′1 (= or(ρ∗i)) is on the bottom edge of Rec(p1, q1).

tp()ρip=vi
ri+1

vj

vi−1ri

VD(r)i

ρi
p1

rj

1q

p’1
��
��
��
��

��

��

c

d

ρ

’ρ

ρi1

Figure 12 Illustrating an example that the point
p′1 (= or(ρi1)) is on the right edge of Rec(p1, q1).

ρ∗i on the top of S. We then continue to consider the next ray ρi+1 ∈ Ψ. If p′1 is on the right
edge of Rec(p1, q1), then let ρi1 be the horizontal ray originating at p′1 and going east (see
Fig. 12). We call ρi1 a successor horizontal ray of ρi. The ray ρi1 (not ρi+1) is the next
ray that will be considered by the algorithm. Note that ρi1 6∈ Ψ. We then continue with
processing ρi1. We should mention that although our discussion above is on a ray ρi in Ψ,
the processing for (the horizontal) ρi1 is very similar to the case when ρi ∈ Ψ is horizontal.
In particular, there may also be a termination vertical ray or a successor horizontal ray
generated after processing ρi1. Thus, the processing of a horizontal ray ρi ∈ Ψ may lead to
generating multiple successor horizontal rays but at most one termination vertical ray, i.e., a
successor horizontal ray may generate another successor horizontal ray (e.g., see Fig. 13),
but a termination vertical ray does not generate another ray.

We have discussed all possible cases for processing a ray. The algorithm finishes when
the Voronoi regions for all roots in R are computed.

ri+1

ri

vi 1p

p2

q1 q2

p’2

i
ρ

1p’

d

c

i2
ρ

ρ ρ ’

ρ
i1

Figure 13 Illustrating the first two successor
horizontal rays ρi1 and ρi2 of a horizontal ray ρi ∈ Ψ.

Figure 14 Illustrating the horizontal visibility
map of a simple polygon.

The running time of the algorithm is O(n′ +m′) (recall m′ = k + 1 and n′ is the number
of vertices in bay(cd)). For the implementation, in the preprocessing we also compute a
horizontal visibility map HM(bay(cd)) (see Fig. 14) and a vertical visibility map VM(bay(cd))
[2]. We do not overlap the two maps. In the main algorithm, we use HM(bay(cd)) to guide
the computation, i.e., we keep track of which trapezoid of HM(bay(cd)) we are in during
the algorithm. This allows each horizontal ray shooting to be performed in constant time.
We also use HM(bay(cd)) to compute the first intersection point of p1p′1 and ∂ (i.e., the
point z in Fig. 10). To conduct the vertical ray shootings (i.e., for the rays in S), we utilize
the vertical map VM(bay(cd)) and a scanning procedure. Further, with Invariant (f), we

D.Z. Chen and H. Wang 303

can show that the target points of the vertical rays in the entire algorithm that we need to
compute are ordered on ∂ from c to d (i.e., the target-sorted property). In addition, we use
a reference point p∗ to help implement the vertical ray shootings. The reference point p∗,
which is at c (resp., d) at the beginning (resp., end) of the algorithm, always moves (forward)
on ∂ from c to d during the algorithm but it never moves backward. These components
together perform all vertical ray shootings in totally O(n′ +m′) time. Note that although
there are known data structures for general ray shootings [3, 4, 12, 14], they are not efficient
enough for our purpose. Also note that although the processing of a horizontal ray ρi in
Ψ may produce multiple successor horizontal rays, we can show that the total number of
horizontal rays in the entire algorithm is at most k and that of vertical rays is also at most k.

5 Expanding SPM(M) into a Canal (a Sketch)

We sketch the idea of computing an SPM for a canal, say canal(x, y). The details are in [6].
A main difference than the bay case is that a canal has two gates, say xd and yz (e.g., see
Fig. 3). Let R1 (resp., R2) be the set of roots whose cells in SPM(M) intersect xd (resp., yz).
Let VD(canal(x, y), R1) denote the weighted Voronoi diagram of canal(x, y) with respect to
R1, i.e., we treat canal(x, y) as a bay with the gate xd. Define VD(canal(x, y), R2) similarly.

We first compute VD(canal(x, y), R1) and VD(canal(x, y), R2) by our algorithm for a
bay in Section 4. We then find a “dividing curve” γ in canal(x, y) that divides canal(x, y)
into two simple polygons C1 and C2, such that each point in C1 (resp., C2) has a shortest
path from s via a root in R1 (resp., R2). We apply our algorithm for a bay on C1 and R1
to compute the weighted Voronoi diagram of C1 with respect to R1, i.e., VD(C1, R1). We
similarly compute VD(C2, R2). It is easy to see that SPM(canal(x, y)) is a concatenation of
VD(C1, R1) and VD(C2, R2). It remains to compute the dividing curve γ.

To compute γ, we first determine a point p∗ ∈ γ (e.g., with the help of the corridor
path). Then, we trace γ out from p∗ by traversing the cells of VD(canal(x, y), R1) and
VD(canal(x, y), R2), which is similar to the merge procedure of the divide-and-conquer
Voronoi diagram algorithm [20].

References
1 R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains. International Journal

of Computational Geometry and Applications, 4(4):475–481, 1994.
2 B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Computational

Geometry, 6:485–524, 1991.
3 B. Chazelle, H. Edelsbrunner, M. Grigni, L. Gribas, J. Hershberger, M. Sharir, and

J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica,
12(1):54–68, 1994.

4 B. Chazelle and L. Guibas. Visibility and intersection problems in plane geometry. Discrete
and Computational Geometry, 4:551–589, 1989.

5 D.Z. Chen and H. Wang. A nearly optimal algorithm for finding L1 shortest paths among
polygonal obstacles in the plane. In Proc. of the 19th European Symposium on Algorithms,
pages 481–492, 2011.

6 D.Z. Chen and H. Wang. Computing L1 shortest paths among polygonal obstacles in the
plane. arXiv:1202.5715v1, 2012.

7 D.Z. Chen and H. Wang. Computing the visibility polygon of an island in a polygonal
domain. In Proc. of the 39th International Colloquium on Automata, Languages and Pro-
gramming, pages 218–229, 2012.

STACS’13

304 L1 Shortest Path Queries among Polygonal Obstacles in the Plane

8 K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal
obstacles in O(n log2 n) time. In Proc. of the 3rd Annual Symposium on Computational
Geometry, pages 251–257, 1987.

9 P.J. de Rezende, D.T. Lee, and Y.F. Wu. Rectilinear shortest paths in the presence of
rectangular barriers. Discrete and Computational Geometry, 4:41–53, 1989.

10 H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.
SIAM Journal on Computing, 15(2):317–340, 1986.

11 S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987.
12 L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan. Linear-time algorithms

for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2(1-4):209–233, 1987.

13 J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy
class. Computational Geometry: Theory and Applications, 4(2):63–97, 1994.

14 J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a
walk. Journal of Algorithms, 18(3):403–431, 1995.

15 R. Inkulu and S. Kapoor. Planar rectilinear shortest path computation using corridors.
Computational Geometry: Theory and Applications, 42(9):873–884, 2009.

16 S. Kapoor, S.N. Maheshwari, and J.S.B. Mitchell. An efficient algorithm for Euclidean
shortest paths among polygonal obstacles in the plane. Discrete and Computational Geo-
metry, 18(4):377–383, 1997.

17 D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983.

18 J.S.B. Mitchell. An optimal algorithm for shortest rectilinear paths among obstacles. Ab-
stracts of the 1st Canadian Conference on Computational Geometry, 1989.

19 J.S.B. Mitchell. L1 shortest paths among polygonal obstacles in the plane. Algorithmica,
8(1):55–88, 1992.

20 M.I. Shamos and D. Hoey. Closest-point problems. In Proc. of the 16th Annual Symposium
on Foundations of Computer Science, pages 151–162, 1975.

21 P. Widmayer. On graphs preserving rectilinear shortest paths in the presence of obstacles.
Annals of Operations Research, 33(7):557–575, 1991.

	Introduction
	Our Results

	Preliminaries
	The Algorithm Outline
	Expanding the SPM(M) into a Bay (a Sketch)
	Algorithm Overview
	The Algorithm

	Expanding SPM(M) into a Canal (a Sketch)

