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Abstract
Most theoretical definitions about the complexity of manipulating elections focus on the decision
problem of recognizing which instances can be successfully manipulated, rather than the search
problem of finding the successful manipulative actions. Since the latter is a far more natural goal
for manipulators, that definitional focus may be misguided if these two complexities can differ.
Our main result is that they probably do differ: If integer factoring is hard, then for election
manipulation, election bribery, and some types of election control, there are election systems
for which recognizing which instances can be successfully manipulated is in polynomial time but
producing the successful manipulations cannot be done in polynomial time.
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1 Introduction

Elections are such a ubiquitous model for human and electronic collective decision-making—
and during the past few decades, with the rise of computers, multiagent systems, and
the internet, elections have become important even in many “modern” challenges such as
collaborative filtering/recommender systems, planning, and reducing web spam—that much
work has been devoted to studying how to manipulate elections. However, the broad stream
of theoretical work on the computational complexity of manipulative attacks on elections
(see the surveys [15,12]) is largely centered on the complexity of the decision versions: Given
an instance, determining whether there exists a successful manipulation (typically, ensuring
that a given candidate wins, or ensuring that a given candidate does not win) of the given
sort.

As a running example that we will use in this introduction, consider unweighted noncoali-
tion (i.e., a single manipulator) manipulation, which was central in one of the seminal papers
on manipulation ([1], see also [2]). For this problem, relative to some fixed election system,
the inputs are the candidate set, the voter set consisting of a collection of nonmanipulative
voters (whose preferences are each typically expressed by each voter as a preference ballot,
e.g., Gore > Nader > Bush), and a single manipulative voter who has not yet set her vote
but who has a “preferred” candidate p. And the question is: Does there exist a preference
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(vote) the manipulative voter can cast that will make p win the election? This is typically
viewed as a decision (language) problem, namely, as the set of all instances for which the
answer to that question is “Yes.”

Of course, what a manipulator might most want is not to know a successful manipulation
exists (a decision problem), but rather to know what specific action (what vote, bribe, etc.)
to take to achieve success (a search problem). For the case of our unweighted noncoalition
manipulation example, the search version would be a function that takes the same input
as the decision version but then either outputs that no successful strategic vote for the
manipulative voter exists or, if a successful vote does exist, outputs a successful vote—one
that makes p win.

This paper studies whether these two goals’ achievability can differ: whether decision
versions of election problems can be easy yet their search versions intractable.

Virtually all papers in this area, to prove polynomial-time results for deciding when
manipulative actions can succeed, actually give polynomial-time algorithms to produce
the successful action. So one might suspect that perhaps that is always the case. For
manipulation, bribery, and some types of control, we prove otherwise, under a complexity-
theoretic hypothesis that is widely believed true. Our main contributions are:

If P 6= NP ∩ coNP, then for each of manipulation (including in particular the case of
our running example, unweighted noncoalition manipulation), bribery, and certain types
of partition-control, there exist election systems for which there are polynomial-time
algorithms to determine whether each given instance has a successful manipulative action,
but no polynomial-time algorithm can exist that given an instance that is manipulable
provides the successful manipulation. (It is widely believed in cryptography that integer
factoring is hard. It is well known that if integer factoring is hard then P 6= NP ∩ coNP.)
Informally put, the situation is that the frustrated world of polynomial-time computation
will have to say things such as, “I can totally guarantee you that there are strategic
votes you can cast to make Barack Obama win in the given electoral setting, but I
have no idea what those votes are.” We show that this bizarre setting can even occur
in extremely simple cases, such as unweighted noncoalition (i.e., where we have just a
single manipulative voter) manipulation. It follows immediately from our results that if
P 6= NP ∩ coNP then for each of the above-mentioned manipulative actions there exists
an election system in which the search problem does not polynomial-time Turing reduce
to the decision problem.
To the best of our knowledge, this is the first result separating, even conditionally, search
from decision in the setting of computational social choice (see [7,26])—an area whose core
definitions on election manipulative-actions, which date back twenty years, are framed in
terms of decision problems.
To the best of our knowledge, our proof is the first time the complexity-theoretic Borodin-
Demers Theorem, from the 1970s, has found application in an applied domain.
In contrast, we show that for all the standard types of election-control actions based on
adding or deleting voters or candidates, and for some of the standard election-control
actions based on partitioning, the search problem (finding how to succeed) polynomial-
time Turing reduces to the decision problem (knowing when one can succeed). It follows
that, for these manipulative actions and for every election system, the bizarre type of
behavior mentioned earlier cannot occur: Easy recognition of instances where success is
possible implies polynomial-time algorithms for how to achieve success.
While proving this, we notice that two pairs of control attacks assumed to differ in fact
are identical problems, namely, for every election system, destructive control by partition
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of candidates and destructive control by run-off partition of candidates are the same set
in both the standard tie-breaking cases (ties-eliminate and ties-promote); this reduces by
two the number of distinct, standard control types. This is the first collapse of standard
control types that we are aware of.
Regarding the results of the first bullet point above, which, when P 6= NP ∩ coNP make
decision easy but search hard, one might worry that search may be only infrequently
hard. We address this by, as Theorem 9, constructing manipulative-action problems
whose search versions are just as often hard as are those problems in NP∩ coNP that have
the highest density of hardness, give or take a slight degree of flexibility. These results
provide a transference of density-of-hardness from a class to a particular type of concrete
problem.

Given that P 6= NP ∩ coNP suffices to for some systems make the natural problem to
care about (the search version) hard even as the problem that has been the theoretical
literature’s central definition (the decision version) declares the problem easy, we suggest
that in definition and problem framing it may now be good to more energetically stress the
importance of the search versions of election manipulation problems.

2 Preliminaries

An election will consist of a set C of candidates and a (multi)set V of voters (who for us
will be given just as their preferences). For all the cases discussed in this paper, each voter’s
preferences will be a tie-free linear ordering of the candidates. We assume each vote is
input distinctly (i.e., the voters’ preferences come in as separate ballots; but it would be
cheating for us to use the order of that input list within our proofs). So a typical election
might be C = {Alice,Bob,Carol} and the voter (multi)set might be V = {(Carol > Bob >
Alice), (Bob > Alice > Carol)}. Most familiar election systems, such as plurality-rule
elections, don’t care about voter names; our constructions never need to use voter names,
and so like most papers we don’t have voter names in V .

Election systems, or voting systems, map from an election instance (C, V ) to a set of
winners (i.e., to a set W , ∅ ⊆W ⊆ C). (Pure social choice papers often definitionally exclude
the case W = ∅, but like most papers on computational social choice we allow it.)

For each fixed election system E , one can define the election winner problem as follows
(see [3]).

Name: E-winner, or the winner problem for E .
Given: Election (C, V ) and candidate p ∈ C.
Question: Is p a winner of the election (C, V ) under election system E?

This is actually, in the way universally accepted in computer science, describing a set, i.e.,
a language. That set is the set of all triples 〈C, V, p〉 such that the answer to the question is
“Yes.”

We now briefly present the key definitions for the three most commonly studied types
of manipulative actions: manipulation, bribery, and control. These three types were first
studied, respectively, by Bartholdi, Orlin, Tovey, and Trick [2,1], Faliszewski, Hemaspaandra,
and Hemaspaandra [11], and Bartholdi, Tovey, and Trick [4] for the “constructive” cases,
i.e., where the goal is to make a particular candidate be a winner.1 The “destructive” cases,

1 We say “be a winner” as this entire paper will focus on that notion, known as the nonunique-winner
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where the goal is to ensure that a particular candidate is not a winner, were introduced
by Conitzer, Sandholm, and Lang [8] for manipulation, by Faliszewski, Hemaspaandra and
Hemaspaandra for [11] for bribery, and by Hemaspaandra, Hemaspaandra and Rothe [20] for
control.

The manipulation problem is defined as follows, and models whether a coalition of
strategic voters can make a certain candidate win.

Name: E-unweighted coalition manipulation, or the unweighted coalition manipulation
problem for E ; for short, the manipulation problem for E .

Given: Candidate set C, nonmanipulative voter set V1 (as a collection of preference ballots
each with preferences over C), manipulative voter set V2 (since we don’t have names, this
will be input as a unary string, 1k, to indicate the number, k, of manipulative voters),
and a candidate p ∈ C.

Question: Is there some choice of preferences for the manipulative voters such that p is a
winner in the election in system E with candidates C and with both the nonmanipulative
and the manipulative voters voting?

This again is a decision problem consisting of the set of all inputs yielding the answer
“Yes.” However, there is a very natural search problem associated with this, which we will
call manipulation search, i.e., finding the successful action. In particular, a function f solves
the manipulation search problem (for a given election system) if on all inputs where the
Question’s answer is “No” (i.e., all inputs not in the set that is the decision version) the
function indicates in some clear way (e.g., by outputting -1) that manipulation is not possible,
and on each input that belongs to the decision version, f specifies settings to the preferences
of the manipulative voters in such a way that those result in p being a winner in the election
(C, V1 ∪ V2). If some solution for the manipulation search problem is a polynomial-time
computable function, we will say that the manipulation search problem is polynomial-time
computable.

One can also define “weighted” coalition manipulation, where each manipulative and
nonmanipulative voter has a weight (how many times her vote counts). Our results on
manipulation all will hold for that case too. But it is more interesting that the results hold
even in the unweighted case—and indeed, our proofs establish that they hold even when the
number of manipulative voters is limited to being at most one.

Unlike manipulation, in bribery all voters have initial preferences. In the simplest model of
bribery, voters are unweighted and each has unit cost to bribe. (By varying these parameters,
[11] obtained three other models: unweighted, priced; weighted, unpriced; and weighted,
priced. Our results on bribery hold in all four models.) This problem models whether having
the ability to reshape (bribe) the preferences of a number of voters allows one to make a
given candidate win.

Name: E-bribery, or the bribery problem for E .
Given: Election (C, V ), candidate p ∈ C, and integer b ≥ 0.
Question: Does there exist some collection of at most b voters, and a way of setting their

votes, so that in the election under E in which those votes are thus set and the other
voters cast the votes the input specified for them, p is a winner?

model (i.e., allowing ties). That model has broadly been the one previous papers favored (except the
earliest work on control, but we feel that for control too this model is the more natural one).
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Again, this is and should be viewed as a decision problem—as a set. It has the natural
search version, which we will call bribery search.

Finally, we come to election control, the most varied, the most difficult to describe, but
in our opinion the most interesting of the three most studied types of manipulative attacks
on elections. Control asks whether by various adjustments to the participation and structure
of an election, a given candidate can be made a winner. A natural set of control actions was
specified in [4], the seminal paper on control, and we adopt that set, very slightly modified—as
is now done in most papers—to treat adding of candidates symmetrically with the other
add/delete types (as suggested by [14]) and to be clear in the “partition” cases about how
first-round ties are handled (following [20]). Those control types are adding candidates,
deleting candidates, adding voters, deleting voters, partition of voters, run-off partition of
candidates, and partition of candidates. These loosely model many real-life settings, ranging
from get-out-the-vote drives, to voter suppression, to having a culling “primary” round, to
encouraging (or discouraging) “spoiler” candidates (see [14] for discussion of how these model
various real-life scenarios). Each of the three partition control types is two control types—one
(denoted by a TP—“ties promote”—modifier) for the model in which if a first-round election
has multiple winners they all move forward to the second round, and one (denoted by a
TE—“ties eliminate”—modifier) for the model in which one moves forward from a first-round
election only if one is the unique winner of that contest.

Due to space limitations, we define here only the control type for which we include a proof
sketch of our main result. The other control types are each defined in the intuitively natural
way, and their full definitions can be found in the TR version [19], which also contains proofs
of all our results.

I Definition 1. Let E be an election system. In the control by run-off partition of candidates
problem for E , in the TP or TE tie-handling rule model, we are given an election (C, V ) and
a candidate p ∈ C. Is there a partition of C into C1 and C2 such that p is a winner of the
two-stage election where the winners of subelection (C1, V ) that survive the tie-handling rule
compete against the winners of subelection (C2, V ) that survive the tie-handling rule? Each
subelection (in both stages) is conducted using election system E .2

Control problems are decision problems, i.e., sets. And they have the obvious search
versions, which we will refer to in ways analogous to those we mentioned earlier regarding
manipulation.

All the manipulation, bribery, and control problems defined so far are about trying
to make a certain candidate be a winner. We will henceforward when mentioning these
problems always add the word “constructive,” to indicate that the problem is about making
the specified candidate be a winner. As alluded to earlier, for every problem we have defined
there is a “destructive” version, where the question is whether one can ensure that the
specified candidate is not a winner. Both the constructive and destructive problems have
both decision and search versions, in the obvious way.

A (decision or search) problem A is said to polynomial-time Turing reduce (≤pT -reduce)
to a decision problem B if there is a machine M such that (a) MB runs in polynomial time
(relative to the length of its input), and (b) if A is a decision problem then the language

2 When speaking of an election, (C′, V ′), we always implicitly mean that each vote in V ′ is passed to
the election system only as the version of itself restricted to the candidates in C′. This is the normal
approach in defining control types, but we stress it because if we did not follow this approach, we might
cheat in some of our constructions and use parts of a vote regarding candidates not in the election to
pass/control information.
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Table 1 Results summary. Key: “S ≤ D” is shorthand for: For each election system E ,
the named constructive or destructive manipulative action has the property that its search version
polynomial-time Turing reduces to its decision version. (Note that this implies that it is impossible
for its decision version to be polynomial-time computable but its search version not to be polynomial-
time computable.) “S 6≤ D” is shorthand for: If P 6= NP ∩ coNP, then there exists an election
system E , having a polynomial-time winner problem, such that the named constructive or destructive
manipulative action’s decision problem is in polynomial time but its search problem is not in
polynomial time. (Note that this implies that if P 6= NP ∩ coNP, then there is an election system E
such that for the named constructive or destructive manipulative action, search does not polynomial-
time Turing reduce to decision.)

Manipulative Action Constructive Destructive

bribery S 6≤ D S 6≤ D
control by adding voters S ≤ D S ≤ D
control by deleting voters S ≤ D S ≤ D

control by partition of voters, ties promote S 6≤ D S 6≤ D
control by partition of voters, ties eliminate S 6≤ D S 6≤ D

control by adding candidates S ≤ D S ≤ D
control by deleting candidates S ≤ D S ≤ D

control by partition of candidates, ties promote S 6≤ D S ≤ D
control by partition of candidates, ties eliminate S 6≤ D S ≤ D

control by run-off partition of candidates, ties promote S 6≤ D S ≤ D
control by run-off partition of candidates, ties eliminate S 6≤ D S ≤ D

control by unlimited adding of candidates S ≤ D S ≤ D
manipulation S 6≤ D S 6≤ D

accepted by MB is A, and if A is a search problem then MB computes a function that is a
solution of the search problem (MB means machine M given a unit-cost subroutine testing
membership in B); this is the standard definition of polynomial-time Turing reductions,
which along with polynomial-time many-one reductions are the central ways computer science
links and compares the complexity of problems. For example, if we say that E-manipulation
search polynomial-time Turing reduces to E-manipulation, that means that given an instance
of the E-manipulation problem (but being interested in getting an action, i.e., we are doing
the search version), we can in polynomial time, given access to an oracle for the set E-
manipulation, correctly either state that successful manipulation is impossible or output a
successful manipulation. We move directly on to the presentation of our results, and then
provide a discussion of related work.

3 Results

The tightly related goals of this paper are to determine for which manipulative actions
(a) for all election systems, search (polynomial-time Turing) reduces to decision,
and to determine for which manipulative actions
(b) there exists some election system E , whose winner problem is in P, for which the decision

version of the manipulative action is in P yet the search version of the decision problem
is not polynomial-time computable (i.e., no polynomial-time function solves the search
version).

These are related, as “(a)” implies “NOT (b).”
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For manipulation, bribery, and every standard type of control, we in effect strongly
resolve this. That is, for some, we prove (a)—which of course implies NOT (b) (in fact, it
implies even that “NOT (b′),” where (b′) is (b) with the “winner problem in P” requirement
removed). And for all the others we prove, under the complexity-theoretic assumption
P 6= NP ∩ coNP, that (b) holds—which of course implies NOT (a). The more striking group
of cases is the latter collection—manipulative actions for which for some election system
with an easy (i.e., polynomial-time) winner problem we can easily (i.e., in polynomial time)
for a given setting determine whether a successful attack exists, and yet there can exist no
polynomial-time algorithm to always tell us what the successful attack action (that we know
exists!) is.

In the process of proving the latter group of cases we will do even more than promised
above. We will not only show that P 6= NP ∩ coNP implies (b), but we also will characterize
(b), for each of those manipulative actions, as being equivalent to the right-hand side condition
of the so-called Borodin-Demers Theorem from computational complexity theory (i.e., the
“then” part of Theorem 4 below). So, although we need a rich variety of complex election
schemes and tricky coding schemes to prove our results, from those results and that work we
establish that twelve different instances of whether (b) holds are, deep down, the same issue.

In the process of proving the other group of cases we will note that two pairs of control
types that have always been viewed as distinct in fact pairwise collapse: viewed as sets,
they are the exact same set. So all previous papers that gave separate proofs for the two
elements of a collapsing pair were proving the same result twice. To be fair to earlier papers
it is important to mention that of the two pairs that we show to collapse (in the nonunique
winner model), only one of those pairs collapses in the unique winner model; that itself is
also a new result.

3.1 Cases When the Manipulative-Action Decision Problem Is Easy
but Its Search Problem Is Hard

Our main result, showing that if P 6= NP ∩ coNP then there are easy election systems (i.e.,
having a polynomial-time winner problem) whose manipulative-action decision problem is
easy but whose manipulative-action search problem is hard, is the following.

I Theorem 2. If P 6= NP ∩ coNP, then for each manipulative action A marked “S 6≤ D”
in Table 1, there exists an election system E (which may differ based on A), whose winner
problem is in polynomial time, such that the A-decision problem for E is in P but the A-search
problem for E is not polynomial-time computable.

I Corollary 3. If P 6= NP ∩ coNP, then for each of the manipulative actions A covered by
Theorem 2, A-search for E does not polynomial-time Turing reduce to A-decision for E.

Let us present the idea behind the proof of Theorem 2, focusing in particular as an
example on constructive control by run-off partition of candidates in the ties-promote model.
So, let us use the statement’s hypothesis, and assume that P 6= NP ∩ coNP holds. We
invoke a complexity-theoretic result known as the Borodin-Demers Theorem. To the best of
our knowledge, the Borodin-Demers Theorem has never before been applied in the study
of elections, computational social choice, multiagent systems, or for that matter anywhere
outside of computational complexity theory.

I Theorem 4 ([6], see [18,25] for the form used here). If P 6= NP ∩ coNP then there is a set
B so (1) B ∈ P, (2) B ⊆ SAT, and (3) no P machine can find solutions for all formulas in
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B (that is, for no polynomial-time computable function g do we have (∀f)[f ∈ B ⇒ g(f) is
a satisfying assignment of f ]).

So we have something quite striking: A set of boolean formulas that are easily recognized
as being satisfiable but for which it is not in general easy to find how they can be satisfied,
i.e., every polynomial-time machine fails on some of them (indeed, on infinitely many, as
otherwise one could finitely patch). (The Borodin-Demers Theorem certainly does not say
that if P 6= NP ∩ coNP then search does not reduce to decision for SAT; it is well-known
that for SAT—and indeed for any NP-complete problem—search ≤pT -reduces to decision.
However, we will use Borodin-Demers as a tool to show that in certain election settings
search does not reduce to decision if P 6= NP ∩ coNP.) Our goal, of course, is to shoehorn
the set B into the world of election manipulation for a variety of manipulative actions. Of
course, each manipulative action comes with its own form and definition, and so for many
such shoehorning is essentially impossible—as we show in Section 3.2. But for others, we
can do this, sometimes smoothly and sometimes through extreme, difficult contortions. The
difficulty is that the structure of many electoral manipulations, and our goal to realize a
separation with respect even to some election system with a polynomial-time winner problem,
very much ties our hands. And in fact, even for our results here, the different manipulative
actions have enormously differing proofs, as each proof must be tailored to the manipulative
action.

Nonetheless, the general approach is clear and shared, although the implementations and
constructions differ wildly. The general approach is given a set B from the Borodin-Demers
result, we must build an election system E , whose winner problem is in P, such that for our
manipulative action the decision problem is in P but the search problem is not polynomial-
time computable. To do this, our election system E will clearly need to be very much attuned
to B. It typically will be interpreting voters, candidates, collections of voters, and collections
of candidates as variously trying to specify a Borodin-Demers “puzzle”—i.e., an obviously
satisfiable formula (a string x ∈ B), and it also will interpret some similar things about its
input as trying to propose solutions to that puzzle.

To really explain how this works in practice would require going through the actual proofs
(which we provide in [19]). But to give an idea of the flavor, let us speak here in a high-level,
handwaving way about a specific example (that is neither our hardest nor our easiest case),
namely constructive control by run-off partition of candidates in the ties-promote model.
Proof (sketch, for the just-mentioned case): Our scheme here is to hope—although
other inputs won’t trip us up—that our input consists of two almost-copies of a Borodin-
Demers puzzle x, namely that part of our input is x0 and x1, x ∈ B. In particular, we’ll
hope that the lexicographically two smallest candidates have those strings as their names.
Suppose that the obviously satisfiable formula x (for concreteness of this sketch) is 1000 bits
long and has 27 variables. Then we will hope to have exactly 2 · 27 = 54 other candidates,
who will all form a lexicographically contiguous segment starting at, say 05·1000, i.e., the first
of the 54 candidates is named 05000, the second is named 049991, the third is named 0499810,
and so on. Now, we’ll interpret these strings as 27 pairs—the first two, the next two, and so
on. And we’ll set up our election system so that it will try to ensure that exactly one of each
pair goes on one side of the partition in any partition that will lead to victory of x0. The
election system if it sees in its candidate set x0, x ∈ B, will compute the size and number
of variables of x, will see if it has the right collection of other candidates to indicate it has
precisely one from each of the 27 pairs, will then interpret the low-order bit of each of those
pair-choices as the ith bit of a guessed satisfying assignment for x, and if that assignment
does satisfy x, will make x0 the one and only winner. Also, the election system when its
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input contains x1, x ∈ B, will check that it also has precisely one candidate from each of the
27 pairs (and no candidates other than those and x1), and if so x1 and only x1 will win—it
does not in this case do any satisfiability check. A third and final case in which we will have
a winner is if the candidate set is {x0, x1}, x ∈ B, in which case x0 and only x0 will win.
And these three cases are the only ways to win.

Now, recall that run-off partition splits the candidates into two groups for primary
elections and then runs the winners of those against each other. If the input set is of just
the dream-case form we have described, and we ask whether x0 can by run-off partition,
ties-promote, be made a winner of the overall election, the answer is obviously “Yes,” as
x ∈ B is satisfiable and so the partition that puts into one side of the partition x0 and
precisely a set of one-per-pair candidates encoding a satisfying assignment and puts the rest
on the other side will have x0 win its first-round contest, will have x1 win its first-round
contest, and will have x0 win the second-round contest between x0 and x1.

But it is possible to see that if we have a polynomial-time algorithm for the search problem
of how to make x0 win, that on the special input we just described, any search-problem
output, i.e., any successful partition, will immediately make clear a satisfying assignment of x,
as the election system in fact will force that. So if we had a search-problem polynomial-time
algorithm, the third property (the one about no FP function always yielding solutions)
of the Borodin-Demers set B would be violated. So search for our election system is not
polynomial-time computable.

But our election system clearly does have a P winner problem—it is just three simple
cases to check. So all that remains is to show that the decision problem for this control type
is in P. Note that we need a P algorithm that works for all inputs—not just inputs so nice
as to have our dream-case format. However, when one carefully checks everything, with the
system very clearly specified, one can see that this holds also (see our full version of this
paper [19]). This is the part that causes a large part of the complexity of the election system;
for example, the simpler system without the x1 requirement will fail this requirement. q

Now, Theorem 2 gives twelve cases where P 6= NP ∩ coNP implies the existence of a
P-winner problem election system where for a particular manipulative action decision is easy
but search is hard. It is natural to wonder whether the converses of some or all of these
twelve results hold. We note that either all of the converses hold or none do, and which of
those cases holds is identical to a long-open issue in complexity theory, namely, whether the
converse of the Borodin-Demers Theorem holds. Let us call the three-part right-hand side
of the Borodin-Demers Theorem the “Borodin-Demers Condition.” We claim the following
result.

I Theorem 5. For each of the twelve manipulative actions A referred to in Theorem 2, the
following two conditions are equivalent:

The Borodin-Demers Condition holds.
There exists an election system E, with a polynomial-time winner problem, such that the
A decision problem for E is in P but the A search problem for E is not polynomial-time
computable.

Finally, one might worry, given the broad interest recently in how often NP-hard election
manipulation problems are hard (e.g., [17]), that although Theorem 2’s conclusion says that
decision is easy while search is hard, the hardness for search that it speaks of is a worst-case
notion of hardness, and so perhaps the hard instances form a very sparse set. This is a
natural worry, but to partially address it we will as Theorem 9 prove that if even one set A
in NP ∩ coNP is frequently hard, then all of our search cases are (in a certain sense) almost
as frequently hard as that set A.

STACS’13
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3.2 Cases Where Search Reduces to Decision
This section’s main result states that for many manipulative actions search polynomial-time
Turing reduces to decision.

I Theorem 6. For each manipulative action A marked “S ≤ D” in Table 1, and for each
election system E, the A search problem for E polynomial-time Turing reduces to the A
decision problem for E.

Thus the behavior displayed in Theorem 2 is impossible for all of the above manipulative
actions, even if Theorem 2’s “winner problem in P” requirement is dropped.

I Corollary 7. For each of the manipulative actions A referred to in Theorem 6, for no
election system E can it be the case that the A decision problem for E is in P but the A
search problem for E is not polynomial-time computable.

The proofs can be found in [19]. But we mention that important to establishing the
four cases with the most interesting proofs, and an interesting result in its own right, is
the following. We show that two pairs of control types which in previous papers have been
assumed to be distinct, are in fact identical.

I Theorem 8. 1. DC-RPC-TP = DC-PC-TP (i.e., viewed as decision problems, destruct-
ive control by run-off partition of candidates in the ties-promote model is exactly the
same problem—the same set—as is destructive control by partition of candidates in the
ties-promote model).

2. DC-RPC-TE = DC-PC-TE.

4 Related Work, Frequency of Hardness, and Open Directions

Although to the best of our knowledge search versus decision has not previously been a focus
area in the long line of work on the complexity of manipulative attacks, the detailed analysis
of the complexity of attacks on particular systems has been a focus area. For example,
detailed classifications of the complexities of constructive and destructive control actions
on specific systems can be found in such work as [14,10,9,5,24]. These papers are about
specific systems. In contrast, our “search reduces to decision” results hold for all systems.
Our “if P 6= NP ∩ coNP” results on the other hand use that complexity-theoretic hypothesis
to build specific systems that make decision easy while making search hard.

Existing papers that give polynomial-time attack algorithms against specific systems
typically do so by (at least implicitly) finding a polynomial-time solution to the search
problem. Probably the definition most related to the interests of this paper is the definition
of “certifiably vulnerable” of Hemaspaandra, Hemaspaandra, and Rothe [20], which captures
the notion of demanding that an attack provide a successful action when one exists. That
paper actually adds an “optimality” twist to that notion, but subsequent papers (e.g., [13,
16]) when using the notion of certifiability take it to mean providing some successful action
when one exists, rather than the “smallest in size/effort/cost” such action.

Our search reduces to decision results of course hold on all inputs. But our “P 6=
NP ∩ coNP”-induced results put decision versions in P while ensuring that their search
versions are not polynomial-time computable. That latter part is a worst-case claim. However,
by a detailed look at the properties of (and length-stretching in, and injectivity of reductions
related to) the proofs of both the Borodin-Demers Theorem and Theorem 2, we can prove
(see [19]) the following result, that says that we can construct manipulative-action problems
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within Theorem 2 whose search versions are just as often hard as are those problems in
NP ∩ coNP (such as, potentially, problems related to factoring) that have the highest density
of hardness, give or take an ε of flexibility. Speaking more broadly, although our paper
speaks in terms of keeping search algorithms out of polynomial time, its proof infrastructure
is enough to strongly address the issue of how often failure occurs—or at least to strongly
link that to the open issue of how densely hard sets in NP ∩ coNP can be.

I Theorem 9. If f is any nondecreasing function, and for some set A ∈ NP ∩ coNP it
holds that every polynomial-time membership-in-A-testing algorithm errs, at infinitely many
lengths n (respectively, at almost every length n), on at least f(n) of the strings up to that
length, then for each manipulative action (that appears in our P 6= NP ∩ coNP theorems)
there will exist an ε > 0 and an election system having a polynomial-time winner problem
such that each search algorithm for that manipulative action with respect to that election
system will err, at infinitely many lengths n (respectively, at almost every length n), on at
least f(nε) of the strings up to that length, but the decision problem will be in P.

As a concrete example, if some set in NP ∩ coNP causes, for some ε > 0, 2nε errors up to
length n at infinitely many lengths, by each P algorithm, then in our theorems we can, for
some ε̃ > 0, have our search problems for infinitely many lengths make each polynomial-time
solver err 2nε̃ times up to that length.

There is far too large a literature exploring the many aspects of search versus decision
to cite it all here, but as an indication of how broad the literature is we mention a paper
related to search versus decision as it interacts with parallelism [22] and a paper related to
P-selectivity and self-reducibility [21]. Of course, the present paper is looking at concrete
cases of search versus decision, in the context of manipulative actions on elections.

Does P 6= NP∩ coNP hold? There are a number of problems that are known to belong to
NP∩coNP yet that despite intense effort have not been shown to belong to P. Such problems
include important questions about lattice problems, stochastic games, parity games, and
factoring. Regarding factoring, it is well known that if P = NP∩ coNP then integer factoring
is in polynomial time; this is to many people very strong evidence that P 6= NP ∩ coNP
(see [23]). Note that, thus, if one believes factoring is hard, then by our results one must also
believe that search and decision differ in complexity for many types of manipulative attack.
The natural lesson to draw is that in framing definitions and questions, heightened attention
should in the future be given to search versions.

The problems mentioned in the previous paragraph are relevant to the most pressing open
direction: Can one find existing—or build new but still highly natural—election systems for
which, for some of the attacks we’ve discussed, the decision problem is in P but the search
problem seems not to be in P? Note that since decision reduces to search, system-attack pairs
known to have poly-time search algorithms or NP-hard decision problems are not reasonable
possibilities here. Rather, the most attractive approach would be to find or more likely build
natural election systems whose definitions involve seemingly NP-intermediate problems, such
as factoring, lattice problems, and graph isomorphism.
Acknowledgments We are grateful to the STACS 2013 referees for helpful comments.
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