
Mortality of Iterated Piecewise Affine Functions
over the Integers: Decidability and Complexity
Amir M. Ben-Amram

The Academic College of Tel-Aviv Yaffo
amirben@mta.ac.il

Abstract
In the theory of discrete-time dynamical systems, one studies the limiting behaviour of pro-

cesses defined by iterating a fixed function f over a given space. A much-studied case involves
piecewise affine functions on Rn. Blondel et al. (2001) studied the decidability of questions such
as mortality for such functions with rational coefficients. Mortality means that every trajectory
includes a 0; if the iteration is seen as a loop while (x 6= 0) x := f(x), mortality means that
the loop is guaranteed to terminate.

Blondel et al. proved that the problems are undecidable when the dimension n of the state
space is at least two. They assume that the variables range over the rationals; this is an essential
assumption. From a program analysis (and discrete Computability) viewpoint, it would be more
interesting to consider integer-valued variables.

This paper establishes (un)decidability results for the integer setting. We show that also
over integers, undecidability (moreover, Π0

2 completeness) begins at two dimensions. We further
investigate the effect of several restrictions on the iterated functions. Specifically, we consider
bounding the size of the partition defining f , and restricting the coefficients of the linear compo-
nents. In the decidable cases, we give complexity results. The complexity is PTIME for affine
functions, but for piecewise-affine ones it is PSPACE-complete. The undecidability proofs use
some variants of the Collatz problem, which may be of independent interest.
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1 Introduction

The purpose of this paper is to study some computational problems regarding the asymptotic
behaviour of discrete-time dynamical systems, in particular problems related to questions
about the termination of simple programs. In the context of this paper, an (n-dimensional)
discrete-time dynamical system is defined by xt+1 = f(xt), where f : Rn → Rn. For a given
initial point x0, the sequence so generated is called a trajectory. A class of functions much
studied in the Dynamical System literature is piecewise affine functions (Definition 3 at
the end of this section). Some of the central problems regarding such systems involve their
asymptotic behavior, among which are global convergence and mortality, defined next.

I Definition 1. Let f be an arbitrary map on Rn; let 0 be the origin. We call f globally
convergent to zero if for every initial point x0, the trajectory xt+1 = f(xt) converges to 0
(the words “to zero" and sometimes “globally" may be omitted in the sequel). We call f
mortal if for every initial point, the trajectory reaches the origin.

These problems were studied from a Computability viewpoint by Blondel et al. [3]. They
considered piecewise affine functions f , where the coefficients are all rational (this is important
since we are considering computability in the traditional, discrete sense).
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I Theorem 2. [3] . The following problems are undecidable for all n ≥ 2: Given a piecewise
affine function f : Rn → Rn (with rational coefficients), is it globally convergent? Is it
mortal?

Global convergence is decidable for n = 1 when the function is continuous.

Among the many decision problems studied for dynamical systems, mortality is the most
appealing in its discrete setting since it is a restricted halting problem for a very simple
type of program (more on the connection to program termination problems below). The
global convergence problem as defined above is very closely related (in a discrete setting, a
sequence xt converges to 0 if and only if it is eventually constantly zero) and we will treat
both problems throughout the following sections.

The main contribution of this paper is to establish for the integer setting results similar to
Theorem 2. The proofs in [3] do not apply to this setting, since they are based on encoding
the state of a computation (say, a Turing-machine tape) in the fractional digits of a number;
unlimited precision is essential. To handle a discrete (or limited precision) setting, different
proof techniques are necessary. As in the continuous case, we have decidability for one
dimension and undecidability for two or more. The new undecidability result is stronger
than the one in [3] in that it is achieved for a class of functions where there is a fixed bound
on the number of regions in the partition defining f ([3] left this case open; but one can
strengthen their result in this way, too). Furthermore, we prove Π0

2 completeness, which is a
sharper result than mere undecidability.

Next, we consider some other restrictions on the space of functions. Section 4 shows
undecidability for functions of a very simple form, f(x) = (xi1 + b1, xi2 + b2).

We should point out that when there is only one region (that is, f is affine) all problems
considered in this paper are decidable in any dimension, and moreover in polynomial time;
this follows from Linear-Algebraic techniques as used for linear discrete dynamical systems
over the reals. However, even when we have one convex region in which the function is
defined as an affine function, and is zero elsewhere, its analysis becomes challenging and, in
fact, is still an open problem [5].

Section 5) considers the one-dimensional case, where the problems are decidable, and
we concentrate on complexity results. While the affine case is PTIME, we show the one-
dimensional piecewise-affine case to be PSPACE-complete.

In Section 6 we mention a couple of similar problems whose solutions follow easily, whereas
the conclusion (Sect. 7) presents a selection of open problems.

To conclude this introduction, here are a few comments on the background to this
research. The connection of Dynamical System Theory to the Theory of Computation is
obvious—any traditional model of computation is a discrete-time dynamical system. However,
most literature in Dynamical System Theory refers to a continuous state-space, whereas in
the Theory of Computation, most models are discrete (but analog models are studied and
cross-fertilization with Dynamical System Theory is evident; see for example [19]).

Taking classical (discrete) computability to continuous dynamics, Moore [17] discusses
the significance of undecidability (in the Turing sense) to dynamical systems. He shows that
a TM can be simulated by a piecewise-affine map on the plane—the method is quite similar
to the one used by Blondel et al. He concludes that for such a map, the set of points on
which the sequence converges (to a particular zone) is not recursive. Koiran, Cosnard, and
Garzon showed that such simulations can be done already in two dimensions, but not in one
[13]. Blondel and Tsiklitis [4] survey applications of discrete computability and complexity
to dynamical systems, including the above-cited results.
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The author’s interest in the mortality problem and its variants is due to their interpretation
as special cases of the halting problem, a.k.a. program termination (the latter term often
refers to termination for any input, that is, a global property as those studied here). Decision
procedures for the termination of simple loops, where a fixed (loop-free) computation is
iterated until an end-condition is met, have gained much interest in program analysis and
several heuristic approaches have been proposed (e.g., linear ranking functions [8, 18, 1]).
These works concentrate on integer data, and on functions which are linear, piecewise
linear, or defined by linear constraints (which is a wider class). In [20], Tiwari draws on
inspiration from Dynamical System Theory to solve a termination problem for loops with
an affine-linear update function—however, over the reals. Consequently, Braverman [5]
tackled the problem for the rationals and integers. Passing from the real-number world to
the integers is sometimes quite a challenge as the theory of integers has many surprises
of its own. A notorious example is the solution of multivariate polynomial equations—or,
more generally, quantifier elimination—decidable for the reals, but undecidable for integers.
Another classic example of an integer-specific problem is the Collatz problem (or “3x + 1
problem”) [15]. Lagarias’ excellent volume shows clearly that this problem is related both to
dynamical system theory and to computability theory. Regarding the latter, Conway [9, 10]
and subsequent works [12, 7, 14] proved undecidability results for certain generalized Collatz
problems by showing how to simulate a counter machine. We shall make essential use of this
idea, specifically of the approach of [14], who were first to show Π0

2 hardness of mortality for
a generalized Collatz function.

For completeness, we should mention that there are kinds of dynamical systems very
remote from our subject, the interested reader is referred to [6].

Preliminary definitions

A closed (respectively open) half-space of Rn is the set defined by {x ∈ Rn : cx + d ≥ 0}
(respectively > 0) where c ∈ Rn, d ∈ R. We are interested in rational half-spaces, where the
components of c, d are rational. A (rational) convex polyhedron is the intersection of a finite
number of (closed or open) half-spaces, which we sometimes call the constraints.

I Definition 3. A piecewise affine function on Rn (respectively Zn) is a function f where

f(x) = Aix+ bi for x ∈ Hi (respectively, Hi ∩ Zn) (1)

where the sets H1, . . . ,Hp are an exhaustive partition of Rn into p convex rational polyhedra,
and for i = 1, . . . , p, Ai ∈ Qn×n and bi ∈ Qn (respectively, Zn×n and Zn).

The restriction to polyhedra which are convex is somewhat arbitrary, but follows the
definition in [3] and other related publications. Section 3 discusses an implication of this
restriction.

We use the notation [a, b] for an interval of integers, namely {a, a+ 1, . . . , b}.
The counter machine model, due to Minsky [16], is well known. The details of the

definition vary in the literature, but the differences are not essential. At this point, it should
suffice to remark that we write a state of the machine as (i, 〈r1, . . . , rn〉) where i is the
internal state and rj the contents of register (counter) Rj .

Π0
2 is the class of decision problems that can be expressed by a formula of the form

(∀z)(∃y)P (x, y, z) with P recursive. This class properly contains RE (characterized by
formulas (∃y)P (x, y)). A standard Π0

2-complete set is the totality problem (termination on
all inputs) for Turing machines, as well as counter machines.
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2 Undecidability in Two Dimensions

Blondel et al. prove their undecidability results for Generalized Collatz Problems by reducing
from the mortality problem for counter machines (the set of CMs that halt on every given
configuration). Indeed, the PAF mortality problem is similar to the GCP, which is also a
problem of reachability (of 1 instead of 0), but the functions considered in the GCP are not
piecewise affine; their expression involves division and remainders, which make it easier to
encode computations and simulate counter machines. Since the reductions in [3] are based
on fractional numbers, we introduce new reductions. In addition, we rely on some proof
techniques from [14], who proved that mortality of counter machines is Π0

2-complete (leading
to a similar result for GCPs). Note that hardness of mortality does not follow easily from
hardness of totality, since many programs, while halting from all initial states, still diverge if
started at a configuration that is not reachable in a proper computation (i.e., from an initial
state).

I Definition 4. A function g : N+ → N+ is called a generalized Collatz function if there is
an integer m > 0, positive integers {a0, . . . , am−1} and non-negative integers {b0, . . . , bm−1},
such that whenever x ≡ i mod m, g(x) = ai(x− i)/m+ bi.

A standard representation of g is the list m, a0, b0, . . . , am−1, bm−1.

The standard Collatz function is usually described by g(x) = 3x+ 1 if x is odd, g(x) = x/2
if x is even. In our notation, it is given by m = 2, a0 = 1, b0 = 0, a1 = 6, b1 = 4.

I Definition 5. GCP (for Generalized Collatz Problem) is the problem of deciding, from a
standard representation of g, whether every trajectory of g reaches 1.

I Theorem 6. [14] GCP is Π0
2-complete.

region label constraints f(x, y)

D x>m, y ≥ 0 (x−m, y + 1)

R0 x=0 , y > 0 (a0y + b0, 0)

R1 x=1 , y > 0 (a1y + b1, 0)

R2 x=2 , y ≥ 0 (a2y + b2, 0)

. . .

Rm−1 x=m, y ≥ 0 (amy + bm, 0)

Z elsewhere (0, 0)
Table 1 PAF representing a GCP.

Our first result is

I Theorem 7. Global convergence and mor-
tality over Z of piecewise affine functions with
integer coefficients is a Π0

2-complete problem.

Proof. Like the GCP, our problem is clearly
a “∀∃" problem, hence belonging to Π0

2. For
Π0

2-hardness, we reduce from the GCP.
Given a description
〈m, a0, b0, . . . , am−1, bm−1〉 of a generalized
Collatz function g, our reduction produces
the function f defined by the m + 1 cases
Table 1, where for convenience every region
has a label.

To simulate a Collatz sequence generated
by g, we repeatedly apply f starting from
(x0, 0). Observe that started at (x, 0) for x > 1, the computation will stay in Region D (the
division region) until obtaining the result (i, (x−i)/m) where x ≡ i mod m. Computation will
then reach one of Regions R0 through Rm−1 and apply the appropriate case of g, producing
(g(x), 0). This process iterates until arriving at (1, 0), which indicates the convergence of the
Collatz sequence and is mapped to (0, 0), the stopping state in our problems.

Note that every point in the regions D through Rm−1 represents in fact an intermediate
state of a valid simulation of a g sequence, while all other points map immediately to the
origin. Thus, f globally converges to zero if and only if it is mortal if and only if g satisfies
the GCP. J

STACS’13
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In the following sections we prove results which are strictly stronger than Theorem 7, and
their proofs are also more involved, and could not be fully given in this extended abstract;
hopefully, the above proof was sufficiently clear, and the proof fragments in the sequel will
give the reader an idea of the techniques that were necessary to obtain the other results.

3 Undecidability with a Bounded Number of Regions

The number of regions in the definition of function f above depends on the modulus m of
the Collatz function. In this section, we establish that the mortality problem is also hard
when the number of regions is bounded by some a priori constant (if it is large enough).
This will follow immediately from proving that a result like Theorem 6 holds for a fixed
modulus (which may be interesting in itself)1.

First, we introduce a special variant of the counter machine. An enhanced CM is a
counter machine, where an instruction may increase the value of a register by an arbitrary
positive constant (a decrease, however, is limited to 1 as usual).

I Theorem 8. From an (ordinary) counter machine M , one can compute an enhanced
counter machine UM such that UM is mortal if and only if M halts on every initial state
(1, 〈x, 0, . . . , 0〉). The number of registers and instructions of UM is independent of M .

The proof combines the reduction of totality to mortality by [3] with the use of a universal
CM. The enhanced instruction set is necessary to keep the size of UM independent of M .

I Theorem 9. There is a constant m such that GCP restricted to modulus m is Π0
2-complete.

Proof. We reduce from the standard problem: Given an (ordinary) counter machine M ,
does it halt on every initial state (1, 〈x, 0, . . . , 0〉)? The reduction first maps M to UM , then
translates this counter machine to a generalized Collatz function g. The modulus of g only
depends on the number of registers and instructions in UM , and is independent of M . J

I Corollary 10. There is a constant m such that global convergence and mortality over Z of
piecewise affine functions f with integer coefficients and m regions are Π0

2-complete.

It is natural to ask what the threshold of undecidability is regarding the number of regions.
Consider the function f defined in Section 2. How many regions does it have? There are
m + 2 rows in the table. But the last one does not count as a single region according to
Definition 3. The problem is that it is not convex, and therefore has to be split into convex
polyhedra. It seems natural to adjust the way we count regions by allowing the function to be
defined explicitly on certain convex polyhedral regions, and zero elsewhere. We are interested
in the number R of these convex regions. The case R = 1 coincides with an important open
problem, see [5]. For R = 2 the problem has been recently shown to be undecidable [2].

1 By constructing a universal GCP, both [12, 7] show that undecidability of the reachability problem (is 1
reachable from a given initial point?) holds for a fixed modulus. But this does not imply any conclusion
for mortality; universal machines are, of course, immortal.
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4 Undecidability for Monic Functions

Figure 1 The dynamics of a Compass Collatz-
like function.

The result of the last section may be inter-
preted as showing that the hardness of the
problem does not depend on allowing an
unbounded number of regions. So, it must
come from allowing an unbounded set of
possible affine functions for each region. In
this section we will show that even when
restricting the coefficients in the linear com-
ponents of these functions to 1, we still have
undecidability.

I Definition 11. A monic piecewise affine
function (abbreviated to “monic PAF”) on
Z2 is a piecewise affine function where each
of the defining affine components has the
form f(x) = (xi1 + b1, xi2 + b2), where {i1, i2} = {1, 2}. In addition, the halfspaces which
define the space partition are given by inequalities of the form cxi + d ≥ 0 such that c = ±1.

The main point is that the definition of the function f does not allow for terms axj with
a > 1 (or sums like x1 + x2).

In the next proof we will use 2-counter machines (2CM). By combining the technique of
Blondel et al. with that of Simon and Kurtz, it is not hard to show that 2CM mortality is
Π0

2-complete. It will be useful to restrict the machines under consideration to a certain class
of “normal forms". A normalized machine: (1) modifies (increments or decrements) every
register in every transition; (2) only halts at a state where the values of the counters are
either 〈0, 0〉, 〈0, 1〉 or 〈1, 0〉.

From these machines, we construct a special (and new) variant of the Collatz problem,
the Compass Collatz-like function. In describing such functions we make use of the set
C = {E,N,W, S} of Compass Directions. A pair (x,∆), where x ∈ N, may be depicted as a
point on one of the axes in the Cartesian plane, in the direction ∆ (we may also refer to
such a point as lying on the ∆ axis). We refer to it as a compass point.

I Definition 12. A function g : N+×C→ N+×C is called a Compass Collatz-like function
if there is a number m = 6p with p ≥ 5 a prime, sets RN , RS ⊆ [0,m − 1] and integers
wi ∈ [0,m − 1] for i = 0, . . . ,m − 1, such that g satisfies the following equations (for
convenience we represent its argument in the form mx+ rp+ i, where x ≥ 0, 0 ≤ r < 6 and
0 ≤ i < p):

g(mx+ rp+ i, E) =
{

(mx+ rp+ i,N) rp+ i ∈ RN

(4(mx+ rp) + i,N) rp+ i /∈ RN

g(mx+ rp+ i,N) = (1
2mx+ b12rcp+ i,W )

g(mx+ rp+ i,W ) =
{

(mx+ rp+ wrp+i, S) rp+ i ∈ RS

(9(mx+ rp) + wrp+i, S) rp+ i /∈ RS

g(mx+ rp+ i, S) = (1
3mx+ b13rcp+ i, E)

(2)

STACS’13
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The action of such a function is schematically represented in Figure 1. The “compass”
representation is useful for the transition to a 2-dimensional dynamical system (and also
makes it easier to visualize the dynamics).

I Definition 13. CCP (for Compass Collatz-like Problem) is the problem of deciding, from
a standard representation of g, whether it is the case that every such sequence reaches some
point (x,E) with x < m (the set of such points is called the final zone).

I Lemma 14. CCP is Π0
2-complete.

Proof. (Sketch) The proof is a reduction from 2CM mortality. Given a normal 2-counter
machine M we simulate it by a Compass Collatz-like function, based on the following outline.

Let m = 6p where p > 3 is a prime such that the number of internal states of M is p− 1
(there is no loss of generality). We represent a state s = (i, 〈r1, r2〉) by ŝ = (2r13r2p+ i). We
design the function g so that it takes every encoded state (ŝ, E), in a bounded number of
steps, to a (ŝ′, E) where s′ is the successor state to s.

In greater detail: first, the point will move to the North axis, possibly increasing r1 by
two; then, move to the West axis, while decreasing r1 by one; the result is that r1 has either
been incremented or decremented—according to the instruction i, of course. In a similar way,
moving to the South axis and subsequently to the East again, an increment or decrement of
the second register is simulated.

If M is mortal, every trajectory starting at any encoded state will arrive at a halting
configuration, represented by a number of the form (rp+ 0, E) with r ∈ {1, 2, 3}, so the CCP
is satisfied. If M is not mortal, it has a non-ending computation, which translates into an
infinite trajectory under g.

Since g has to be total, we have to define g for points which do not encode a state, or
appear on the trajectory from a state to its successor, as described above; the full proof
(omitted here, for lack of space) includes a complete definition of g and argues that our claim
that the CCP is satisfied if M is mortal holds when taking all points into account. J

I Theorem 15. Global convergence and mortality of monic piecewise-affine functions over
Z2 are Π0

2-complete problems.

Figure 2 Simulating the 3x + 1 function by
a 2-dimensional monic PAF.

The theorem is proved by reducing the
CCP to the mortality problem for monic
PAFs. The details of this construction could
not fit in this abstract; but the reader may
be able to gain an idea of how it works
from the following example, where the clas-
sic 3x+ 1 problem is represented by a monic
2-dimensional PAF, whose iteration reaches
(1, 0) from initial point (x, 0) if and only if
the Collatz sequence from x reaches 1.

Recall that in the 3x+ 1 problem there
are just two possible “updates," division by
2 and the mapping x 7→ 3x+ 1. This makes
it simpler than the Compass problem, where
there are four “updates" and a large modulus.
However, we still make use of trajectories
that orbit around the origin, starting with the Cartesian point (x, 0) (Figure 2). The NE
quadrant carries (x, 0) to (bx/2c, x mod 2); if the division was even, the point is mapped to
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(x/2, 0), ready for the next iteration; otherwise, proceeding counter-clockwise, this point is
carried first to (−(3x+ 1), 0), then to (0,−(3x+ 1)) and finally to (3x+ 1, 0).

Here is the complete definition of the PAF:

role of region constraints f(x, y)

Div by 2 x≥2, y ≥ 0 (x− 2, y + 1)

x mod 2 = 0 x=0, y ≥ 0 (y, x)

x mod 2 = 1 x=1, y ≥ 1 (x− 5, y)

region function constraints f(x, y)

Compute 3x+ 1 x<0 , y ≥ 1 (x− 6, y − 1)

West to South x<0 , y < 0 (x+ 1, y − 1)

South to East x≥0 , y < 0 (x+ 1, y + 1)

Final zone 0 ≤x ≤ 1, y = 0 (x, y)

5 Decidability and Complexity in One Dimension

Blondel et al. prove that global convergence is decidable for n = 1 when the function is
continuous. We prove the result for the integers, where continuity is irrelevant. Furthermore,
we identify the complexity of the problem, proving it to be PSPACE-complete.

The following examples hint at the difference between mortality over the integers and
over the reals. The first function has a fixed point at 10/3 and therefore is not mortal over
the reals (or rationals); but it is over the integers.

f1(x) =


−2x+ 10 x > 2
4 x < 0
0 x = 0
4− 2x 1 ≤ x ≤ 2

f2(x) =


x− 3 x > 2
4 x < 0
0 x = 0
4− 2x 1 ≤ x ≤ 2

Below, we give an algorithm to decide mortality over the integers. We also show that it
requires polynomial space (Remark: space complexity is interpreted in the standard way,
that is, number of bits used as a function of the number of bits in the input).

Note that in dimension one, the regions are just a partition of Z into a finite number
of intervals. We may assume that these are given explicitly as the list of the end points of
closed intervals, e.g.,

(−∞,−3], [−2, 0], [1,+∞) .
There will always be one interval infinite to the left, which we denote by (−∞, L], and one
infinite to the right, denoted by [R,+∞); and by breaking intervals into parts if necessary
we can ensure L < 0 and R > 0. We denote the function in the negative part by a−x+ b−

and the function in the positive part by a+x+ b+.
We may also assume f(0) = 0 since, for the convergence problem, the answer is negative if

this does not hold, while for mortality, we may as well modify the function so that f(0) = 0.
First, we define

ρ0 = max({R} ∪ {f(x), where L ≤ x ≤ R})
λ0 = min({L} ∪ {f(x), where L ≤ x ≤ R})

We note that this value can be easily calculated in polynomial time, since for each finite
interval, f(x) assumes the maximum (or minimum) at one of its ends. These values show
how far away from 0 one can get without using the infinite regions.

Next, we show that one can efficiently either determine that the dynamic system is
divergent, which means that there is an unbounded trajectory; or find a finite attractor, an
interval such that all trajectories eventually stay within it.

STACS’13
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I Lemma 16. Suppose that at least one of a+, a− is non-negative. If either a+ or a− is
bigger than 1; or a+ = 1 and b+ ≥ 0; or a− = 1 and b− ≤ 0, then f is divergent, and not
mortal. Otherwise, it has the finite attractor A = [λ, ρ] where

ρ = max(ρ0, (λ0 − |b−|) ·min(a−, 0))
λ = min(λ0, (ρ0 + |b+|) ·min(a+, 0)) .

The algorithm for analysing mortality is now as follows. First, if both a+ an a− are
negative, we construct (in polynomial time) a representation of f ◦ f , whose asymptotic
behaviour is the same, and has positive coefficients in the infinite regions; we thus assume
that Lemma 16 is applicable. By testing the conditions stated in the lemma, we either
conclude immediately that f is not mortal, or get the attactor A. In the latter case, we now
proceed to trace, for each point in this interval, the trajectory from this point, until finding
that it reaches zero, or that it cycles without meeting the origin—so we know if f is mortal.
It is not hard to verify that this can be accomplished in polynomial space. We conclude

I Theorem 17. Global convergence over Z of a piecewise affine function f with integer
coefficients is a PSPACE problem.

It may be interesting to note that the decision procedure for the one-dimensional case
in [3] is much simpler, and in fact polynomial-time (for rational coefficients in a standard
representation). Keep in mind, however, that it solves a different problem (a continuous state
space and a continuous function), which is neither a sub-problem nor a super-problem of the
problem we consider. In fact, for our problem, our problem turns out to be PSPACE-hard. To
prove it, we next introduce several Turing-machine variants as intermediate representations,
and show a sequence of reductions, starting with a standard PSPACE-hard problem and
culminating in our mortality problem (in this extended abstract, the more technical steps
have been omitted to save space).

The first machine is a restricted form of linearly bounded automaton (LBA) [21].

I Definition 18. A tally LBA is a single-tape machine that receives as input a string of
the form 0n for some n ≥ 0; this string is initially written on its work tape, delimited by
endmarkers. The machine is guaranteed to never move beyond the endmarkers. The tape
alphabet is binary.

In the next definition, we consider the tally string to be part of the machine’s description:
hence, a given machine only performs a single computation.

I Definition 19. A fixed-space machine with oblivious queue access is a Turing machine with
the following features:
1. The work tape is a queue of a fixed capacity n (which we consider to be given, in tally

form, as part of the standard description of such a machine). In every step the machine
strips a symbol from the front of the queue and adds one to the rear. Hence, an instruction
of the machine is given by a 4-tuple (q, b, q′, b′), where:
q is the current control state, q′ the next;
b the symbol read off the queue, b′ the symbol appended to the queue.
We use the customary symbol δ for the set of these 4-tuples.

2. The work-tape (queue) alphabet is binary.
3. The initial contents of the queue are 0n.

I Definition 20. A fixed-space machine with oblivious queue access and a clock, briefly a
fixed-space Q&C machine, is a Turing machine with the following features:
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1. The work tape is a queue, as in the previous definition.
2. The machine also has a clock. This device is a counter (a register of non-negative integer

value) that is automatically decremented each time the machine has completed another
cycle through the queue (that is, exactly n transitions). If the clock reaches zero, the
machine is reset: the queue is cleared, the control state is reset to an initial state (0) and
the clock is reset to its initial value.

3. The initial contents of the queue are 0n; the initial clock value is given—in binary—as
part of the standard description of such a machine.

I Lemma 21. The halting problem of tally LBAs is a PSPACE-hard problem.

I Lemma 22. The computation of a tally LBA on input 0n can be simulated by a fixed-space
machine with oblivious queue access, starting on a blank queue of capacity 2n.

Mortality of fixed-space machines is defined as usual: halting when started with any
possible configuration. Note that there are finitely many such configurations, due to the
fixed space.

I Lemma 23. The halting problem for fixed-space Turing machines with oblivious queue
access can be reduced, in logarithmic space, to mortality of a fixed-space Q&C machine.

Proof. If the given machine ever halts, the length of its computation must be bounded by
2n ·m, where n is the queue size and m the number of control states. We let this be the
initial value of the clock, so that if the machine does halt, it will halt before the clock times
out. If the machine does not halt, it will eventually time out, then restart, ad infinitum. To
see that a halting machine is transformed into a mortal one, note that regardless of its initial
configuration, the machine will either halt or time out, and from that point on, faithfully
simulate the given input-free machine. J

I Lemma 24. Mortality of fixed-space Turing machines with oblivious queue access is
PSPACE-hard.

I Theorem 25. Global convergence over Z of a piecewise affine function f with integer
coefficients is PSPACE-hard (under logspace reductions).

Proof. We reduce from mortality of fixed-space machines with oblivious queue access. The
reduction transforms a machine M , given with its space bound n, into a representation of a
piecewise-affine function f that simulates M and is mortal if and only if M is.

Let us first describe the essence of this simulation. Suppose that M has m states. A
configuration of M is specified by (q, w) where q ∈ [0,m − 1] is the control state, and
w ∈ {0, 1}n is the contents of the queue.

By identifying w with the integer that it represents in binary notation, we define an
integer that encodes a configuration:

〈q, w〉 = q · 2n + w . (3)

Next, we define f as a function that maps a configuration to the next, simulating the machine;
we present the definition by cases.

For each (q, b, q′, b′) ∈ δ, we define f(〈q, bz〉) = 〈q′, zb′〉 . (4)
If there is no transition starting with (q, b), f(〈q, bz〉) = 0. (5)
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We now verify that the above definitions yield a piecewise-affine function. Since this is a
one-dimensional PAF, its regions of definition are intervals and we use the notation a+ [b, c]
for [a+ b, a+ c]. Let Rq,b be the interval q · 2n + b · 2n−1 + [0, 2n−1 − 1]. The function f is
defined on each such interval according to the applicable case; specifically, every transition
described by (4) is translated into: x ∈ Rq,b ⇒ f(x) = 2(x− q · 2n − b · 2n−1) + q′ · 2n + b′

while if there is no such transition, x ∈ Rq,b ⇒ f(x) = 0. J

6 Similar Problems

There are several natural problems similar to mortality and global convergence, and results
fall out of the same reductions (mostly). Here are two examples. The first behaves just the
same as mortality (Π0

2-complete in two dimensions, PSPACE-complete in one), while the
second differs in the one-dimensional case being in PTIME.

Global convergence to a fixed point [13].
Input: f , a PAF. Question: do all trajectories of f reach a fixed point?

Convergence to a Finite Set (In Dynamical System parlance: Finite Attractor).
Input: f , as previously. Question: is there a finite set S such that every sequence

xt+1 = f(xt) stays within S for all t large enough?

7 Conclusion and Open Problems

We have presented work on the border between Dynamical System Theory (much of which
refers to continuous state-spaces) and the Theory of Computation in discrete models. In
particular, this work connects Dynamical System Theory to problems of program termination.
I’d like to argue that such results may be of interest in the context of continuous-space
dynamical systems (e.g., as models of some kinds of physical systems), since, unlike previous
proofs, the undecidability is not derived from the encoding of information into the fractional
bits of a value, which boils down to assuming unlimited precision in measurement.

The focus of this work has been on deciding global properties of systems, so we have not
dwelled on the problem that corresponds to the common Turing-machine halting problem,
namely: given a function and an initial value x0, does the sequence beginning with x0 reach
zero. However it is easy to see, from our proofs, that this problem is RE-complete in two
dimensions, and PSPACE-complete in one. The problem: does the sequence beginning with
x0 reach a given value y? Is known as the orbit problem and was solved in polynomial time
for linear transformations over Qn [11].

I hope that the results presented are of interest, but also the techniques and connections
made to Collatz-like problems and to automata that capture PSPACE. Finally, here are
some open problems.
1. Is there any constant bound on the number of regions which suffices to make mortality of

monic piecewise-affine functions over Z2 as hard as the general problem, i.e., Π0
2 hard?

2. (Braverman’s problem) Is mortality decidable for functions which are zero outside a single
convex region (and affine within)?

3. What is the complexity of the mortality problem in the one-dimensional case, when the
coefficient of x is always 1?

4. What is the complexity of the mortality problem in the one-dimensional case, when the
number of intervals is considered a constant?
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