Report from Dagstuhl Seminar 13052

Multicore Enablement for Embedded and Cyber Physical
Systems

Edited by
Andreas Herkersdorf! and Michael Paulitsch?

1 TU Miinchen, DE, herkersdorf@tum.de
2 EADS — Miinchen, DE, michael.paulitsch@eads.net

—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 13052 “Multicore
Enablement for Embedded and Cyber Physical Systems”. During the seminar the participants

from industry and academia actively discussed chances and problems of multicore processors in
embedded in cyber-physical systems. The focus of the seminar was on the exchange of experiences
and discussion of the challenges of reusable and transferable multicore technologies. Those were
covered in the individual talks and plenum discussions. Beside that, working groups have been
formed to discuss and present important topics in detail, which are also part of this report.

Seminar 27. January to 01. February, 2013 — www.dagstuhl.de/13052

1998 ACM Subject Classification C.1.4 Parallel Architectures

Keywords and phrases Multicore, hardware, software, platforms, embedded systems, security,
real-time, safety, cyber physical systems

Digital Object Identifier 10.4230/DagRep.3.1.149

Edited in cooperation with Stefan Wallentowitz

1 Executive Summary

Andreas Herkersdorf
Michael G. Hinchey
Michael Paulitsch

License) Creative Commons BY 3.0 Unported license
© Andreas Herkersdorf, Michael G. Hinchey, and Michael Paulitsch

Multicore processors are a key enabling technology for solving grand societal challenges of the
coming decades. Secure and ecological mobility, geographic coverage of high-tech healthcare,
sustainable energy generation, distribution and management, and in general the development
of our digitized society impose compute performance requirements on distributed embedded
and cyber physical IT equipment which makes multicore technology indispensable. All leading
processor vendors — ARM, Freescale, IBM, Infineon, Intel, MIPS, Nvidia — follow a strictly
multicore-oriented strategy. Due to the paradigm shift from exploiting instruction level to
process level parallelism, multicore processors are superior over single-core representatives
with respect to computing performance and energy efficiency. Prerequisite is, processes can
be balanced among parallel cores such that the nominally available computing performance
can be utilized effectively, and cores can be set into sleep mode or power gated when not
busy. As of today, the ability to efficient utilize the available resources depends to a large
extent on the aptitude of experienced programmers and the inherent ability of being able to
parallelize the computing problem.

Except where otherwise noted, content of this report is licensed
37 under a Creative Commons BY 3.0 Unported license

Multicore Enablement for Embedded and Cyber Physical Systems, Dagstuhl Reports, Vol. 3, Issue 1, pp. 149-182
Editors: Andreas Herkersdorf and Michael Paulitsch

\\v pagstunL Dagstuhl Reports
rReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13052
http://dx.doi.org/10.4230/DagRep.3.1.149
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

150

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

Embedded and Cyber Physical Systems exhibit demands for “non-functional require-
ments”, such as low(est) power and energy dissipation, reliability, availability and security,
real-time and cost constraints, which are typically not found to the same extent in general
purpose computing applications. The enablement of multicore technology for embedded
and cyber-physical markets imposes serious challenges to industry and academia which can
easily overwhelm the capabilities and capacities of individual corporations or even consortia.
Industry and university research in Europe recognized early and invested significantly into
the establishment of multicore know-how and competences. Examples of related projects
at EU level and in Germany are: RECOMP — Reduced Certification Costs Using Trusted
Multicore Platforms, ACROSS — ARTEMIS CROSS-Domain Architecture, SPES 2020 —
Software Plattform Embedded Systems 2020, Cesar — Cost-efficient methods and processes
for safety relevant embedded systems, MERASA — Multicore Execution of Hard Real-Time
Applications Supporting Analysability (see Relationship to other seminars and projects for a
more complete listing), and ARAMiS — Automotive, Railway and Avionics Multicore Systems.

The seminar brought together leading industry and university research groups from
different fields of embedded system design and application development, multicore architecture
and hardware/software design methodology & tools. The main objective of the seminar was
on reporting experiences and discussing challenges of reusable and transferable multicore
technologies among participants representing different application markets and scientific
backgrounds. The technical focus of the agenda was on:

Generic hardware/software building blocks for real-time performance, dependability,

functional safety and security for embedded systems built around enhanced standard

multicore solutions.

System modeling, design and validation methods and tools for such platforms.

The seminar established new and strengthened existing ties between players and networks
in the area of multicore and embedded technologies. Topical working groups were formed on
the following topics:

Specification & Interference

Industrial Perspective on MultiCore Motivations and Challenges

Certification of Safety-Critical Multicore Systems: Challenges and Solutions

Network-on-Chip — Dependability and Security Aspects

Multicore Ecosystem

Secure Elements in future embedded multicore systems

The working groups compiled summaries reflecting the status and outlook on the respective
topic. These summaries can be found in the sequel of this report.

Andreas Herkersdorf and Michael Paulitsch 151

2 Table of Contents

Executive Summary
Andreas Herkersdorf, Michael G. Hinchey, and Michael Paulitsch 149

Overview of Talks

The ARTEMIS ACROSS project

Christian El Salloum 153
A Model-based Approach for Optimizing Existing Real-Time Software on Multicore
Processors

Michael Deubzer e 153

IDAMC — A manycore architecture for mixed critical applications
Rolf Ernst e 154

Commerical Challenges of MultiCores in Automotive Domain
Glenn Farrall 0 . e 154

Timing Predictability of Multi-Core Processors
Christian Ferdinand e 154

Road to the use of multicore processors in space systems
Massimo Ferraguto e 155

Analysis of Embedded Software for Multicore in the Automotive Domain
Steffen Goerzigo 155

Multi core — Single bus
Rene Graf e 156

Distilling Programs for Multicore Architectures
Geoff Hamilton e 156

Necessity for & Feasibility of a Multicore Ecosystem
Andreas Herkersdorf e 157

“Heterogeneous Multiprocessing or Just a Bunch of Coprocessors?” — The case for
unified programmability
Enno Luebbers e e 158

Fault-Tolerant Time-Triggered Communication Infrastructure for Multi-Processor
Systems-on-a-Chip
Roman Obermaisser 158

Multi-Core in Avionics — On Problems and One Technical Approach Monitoring-
Based Shared Resource Separation for Commercial Multi-Core System-On-Chip

Michael Paulitsch e 159
Talk on ARTEMIS Project RECOMP

Michael Paulitsch e 159
Talk on German Project ARAMiS — Automotive, Railway, and Avionics Multi-Core
Systems

Michael Paulitsch e e e e e 160

Fine grained process migration for MPSoCs
Sri Parameswaran oo e e e e e e e 160

13052

152 13052 — Multicore Enablement for Embedded and Cyber Physical Systems

Task Mapping for Manycore-based Embedded Real-Time Systems

Stefan M. Pelters 0 e e 161
Sustainable Development of Software in the Multi-Core Age

Matthias Pruksch e 161
Chances and risks for security in Multicore processors

Georg Sigl e 161
Isolation of Cores to Support Development of Mixed Critical Systems

Claus Stellwag e 163
Safe(r) Loop Computations on Multi-Cores

Jirgen Teich e e 164
parMERASA- Multi-Core Execution of Parallelised Hard Real-Time Applications

Theo Ungerer o v v i i i e e e e e e e e e e e e 164
OpTiMSoC — An Open Source Experimentation Platform for Multicore

Stefan Wallentowitz e 165
Efficient observation of Multicore SoCs

Alexander Weiss o 165
Many cores — many problems

Reinhard Wilhelm e e e 166
High-level Simulation-based Design Space Exploration on Multicore Virtual Plat-
forms

Thomas Wild o e 167

Working Groups

Specification & Interference
Claus Stellwag, Michael Deubzer, and Glenn Farrall 167

Industrial Perspective on MultiCore Motivations and Challenges
Glenn Farrall, Christian Ferdinand, Massimo Ferraguto, Steffen Gdrzig, Michael
Paulitsch, Matthias Pruksch, Claus Stellwag, Sergey Tverdyshev, and Alezander Weiss169

Certification of Safety-Critical Multicore Systems: Challenges and Solutions
Stefan M. Petters and Rene Graf 173

Network-on-Chip — Dependability and Security Aspects
Roman Obermaisser, Christian El Salloum,Theo Ungerer, and Thomas Wild . . . 175

Multicore Ecosystem
Andreas Herkersdorf, Johan Lilius, Massimo Ferraguto, Christian Thiel, Stefan
Wallentowitz, and Thomas Wild 177

Secure Elements in future embedded multicore systems
Georg Sigl, Sri Paramareswaran, Michael Paulitsch, Stefan M. Petters, Matthias
Pruksch, Sergey Tverdyshev, and Stefan Wallentowitz 179

Inter-seminar workgroup: Software Certification & Multicore Processing
Michael Paulitsch e 181

Participants 182

Andreas Herkersdorf and Michael Paulitsch 153

3 Overview of Talks

3.1 The ARTEMIS ACROSS project
Christian El Salloum (TU Wien, AT)

License) Creative Commons BY 3.0 Unported license
© Christian El Salloum

The European ARTEMIS ACROSS project aims to overcome the limitations of existing
Multi-Processor Systemson-a-Chip (MPSoC) architectures with respect to safety-critical
applications. MPSoCs have a tremendous potential in the domain of embedded systems
considering their enormous computational capacity and energy efficiency. However, the
currently existing MPSoC architectures have significant limitations with respect to safety-
critical applications. These limitations include difficulties in the certification process due to
the high complexity of MPSoCs, the lacking temporal determinism and problems related to
error propagation between subsystems. These limitations become even more severe, when
subsystems of different criticality levels have to be integrated on the same computational
platform. Examples of such mixed-criticality integration are found in the avionics and
automotive industry with their desire to integrate safety-critical, mission critical and non-
critical subsystems on the same platform in order to minimize size, weight, power and cost.
The main objective of ACROSS is to develop a new generation of multicore processors
designed specially for safety-critical embedded systems; the ACROSS MPSoC. This talk will
show how the ACROSS MPSoC overcomes the limitations of existing MPSoC architectures
in order to make the multi-core technology available to the safety-critical domain.

3.2 A Model-based Approach for Optimizing Existing Real-Time
Software on Multicore Processors

Michael Deubzer (Timing Architects Embedded Systems GmbH, DE)

License) Creative Commons BY 3.0 Unported license
© Michael Deubzer

In many upcoming real-time system projects multicore processors are an integral part of
the roadmap. Till today, software in the embedded industry has been mostly developed for
single-core processor systems and represents a high investment for a company. To protect
their investment those companies are now faced with the challenge to migrate the software
to multicore processor systems. The approach presented in this talk describes a methodology
to migrate single-core software to multicore processor systems by regrouping of functions
and adding a hardware abstraction layer. The methodology is applied on the architectural
granularity of functions which are directly called in tasks of a multitasking system and
described by dataflow, execution time and resource demands. In the first step a partitioning
heuristic groups functions, considering the dataflow and execution time demands, to tasks and
allocates them to cores. In real-time systems two major requirements have to be guaranteed,
namely coherency and consistency. This is solved by evaluating data dependencies and
creating a middle-ware which copies shared data items of functions to a local memory and
writes back data after execution. In order to avoid conflicts at the access to shared resources,
a protection mechanism is applied which manages exclusive access and therefore limits the
degree of interference between applications. For the timing evaluation of a certain allocation

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

154

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

of tasks to cores, an explorative simulation is applied and timing constraints are checked.
This process has been automated and is used for a multi-objective optimization algorithm,
searching for best partitioning of functions and allocation of tasks in terms of predefined
criteria like reaction times, memory usage or bus traffic. By splitting tasks in smaller subtasks
and allocating those to cores a set of software allocations is generated and solutions, fitting
the system requirements and configuration best, can be selected.

3.3 IDAMC - A manycore architecture for mixed critical applications

Rolf Ernst (TU Braunschweig, DE)

License) Creative Commons BY 3.0 Unported license
© Rolf Ernst
Joint work of Ernst, Rolf; Jonas Diemer; Philip Axer
URL http://www.ida.ing.tu-bs.de/en/research/projects/aramis/

Mixed critical systems integrate application functions of different safety and time criticality.
For such systems, safety standards require that the critical functions must adhere to the
reliability requirements and are not be affected by the non-critical functions (“freedom from
interference”) while the less critical tasks shall be implemented with maximum efficiency.
This talk will present a many-core architecture based on a Network-on-chip that provides
core isolation and supports dynamic flow control for bounded timing interference. A formal
timing model allows formal verification of performance constraints. First results will be
presented.

3.4 Commerical Challenges of MultiCores in Automotive Domain

Glenn Farrall (Infineon — Bristol, GB)

License) Creative Commons BY 3.0 Unported license
© Glenn Farrall

While there are many challenging aspects to the deployment of Multicore devices, this talk
takes a step back and considers some of the basic implementation issues of Multicore SoCs.

As well as additional die area — many characteristics of devices targeting the Automotive
market (especially safety requirements) add to the power budget working against the major
driver of multicore usage, namely higher performance per $§ and per Watt. This talk briefly
covers several of these issues.

3.5 Timing Predictability of Multi-Core Processors
Christian Ferdinand (AbsInt — Saarbricken, DE)

License () Creative Commons BY 3.0 Unported license
© Christian Ferdinand

All contemporary safety standards require to demonstrate the availability of sufficient
resources to sustain correct functioning of the system. This includes determining safe upper
bounds on the worst-case execution and response time of real-time tasks. In mixed-criticality

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.ida.ing.tu-bs.de/en/research/projects/aramis/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andreas Herkersdorf and Michael Paulitsch

systems the entire system is subject to the highest occurring safety integrity level unless the
independence of all safety functions can be demonstrated in the spatial and temporal domain.
These requirements are imposed, e.g., by DO-178B, DO-178C, ISO-26262, IEC-61508, and
EN-50128. Since FDA regulations and the German Medizinproduktegesetz require to take
into account the state of the art they also pertain to software for medical devices. Spatial
independence can be ensured by using partitioned operating systems, or can be proven by
static analysis tools which, e.g. can demonstrate the absence of stack overflows or other
runtime errors. However, many multi-core processors exhibit characteristics that make it
difficult or even impossible to ascertain predictable performance: it may be hard to ensure
freedom of interference and to determine safe worst-case execution time bounds. We give
an overview of hardware features leading to interference and predictability problems, shows
examples of predictability-oriented multi-core configurations, and describe a tool-based
methodologies to ensure the correct timing behavior.

3.6 Road to the use of multicore processors in space systems
Massimo Ferraguto (Space Systems Finland Ltd — Espoo, FI)

License) Creative Commons BY 3.0 Unported license
© Massimo Ferraguto

The use of multicore in the space domain can be beneficial in terms of greater processing
capability (concentration of multiple functions in one single computer, with partitioning by
criticality level and/or function; more payload data processing on-board), weight, power and
fuel reduction which ultimately lead to longer lifetime and cost efficiency.

The European space industry is developing the enabling technology to reach the necessary
readiness level to be able to use multicore processors in real space missions. The main
enabling technologies considered and under development include: multicore processors
(Leon 4, etc.), Time and Space Partitioning approach of the integrated Modular Avionics
for Space (started from single-core and inspired from the ARINC 653 standard), hypervisor
technology (XtratuM, etc.) and SW architecture (SAVOIR-IMA). In particular the Time
and Space partitioning of resources is considered to be an essential driver to ensure the
predictability needed for critical missions.

3.7 Analysis of Embedded Software for Multicore in the Automotive
Domain

Steffen Goerzig (Daimler AG — Béblingen, DE)

License @@ Creative Commons BY 3.0 Unported license
© Steffen Goerzig

Multicore technology promises reduced energy consumption, reduced package dimensions,

and higher performance. But the road to multicore is covered with hazards — race hazards.

This is especially true for most of the software as it will be ported rather than re-implemented
for multicore platforms. The talk presents current approaches to avoid race hazards in
embedded software including technology transfer from academia to industry. First results of
automotive applications are shown.

155

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

156

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

3.8 Multi core — Single bus
Rene Graf (Siemens AG — Niirnberg, DE)

License) Creative Commons BY 3.0 Unported license
© Rene Graf

The use of multi core processors in embedded systems is essential in future designs. Though,
system architects have to think about the implications porting a former single core application
to a multi core hardware, since most of the peripherals will still remain a single resource.

Even if the application can be easily splitted into independent parts, which work on
different peripherals, the bus, e.g. PCI, between processor cores and peripherals will become
a bottle neck. Assuming one part of the distributed application running with real time
conditions, the latencies that were met on a single core processor may not be met any more
due to the interfering bus accesses of the other parts.

The modeling and analysis of such a system in the early phase of development can help
to find these implications both in a qualitative and quantitative manner.

The method to analyse those systems is described using a real system with a multi core
processor and different peripherals, which are connected by a single PCI bus. Finally, the
simulation results are compared with real measurement figures.

3.9 Distilling Programs for Multicore Architectures
Geoff Hamilton (Dublin City University, IE)

License @@ Creative Commons BY 3.0 Unported license
© Geoff Hamilton

The proliferation of increasingly parallel architectures will have a significant impact on
software developers; they can no longer develop software for a sequential architecture and
expect performance to improve as the underlying architecture becomes faster. There is
therefore a need to develop software that harnesses the power of parallel architectures directly.
The development of parallel software is inherently more difficult than the development of
sequential software; parallelization of programs by hand is very difficult, tedious and error-
prone. By automatically introducing parallelism into programs, the programmer can be freed
from explicitly implementing parallelism and can therefore concentrate on algorithmic issues.
However, producing automatically parallelized code which is comparable in performance
to code which has been parallelized by hand is very difficult, particularly for imperative
programming languages.

There has been a recent upsurge of interest in the parallelization of functional programming
languages. Functional programs are claimed to be better suited to parallelization than their
sequential counterparts for a couple of reasons. Firstly, computations do not involve a shared
state, which is problematic for parallel implementations; secondly, execution orders are solely
constrained by data dependencies, as opposed to the unnecessary dependencies caused by
statement sequences. Also, it is claimed that functional programs are easier to analyze and
more amenable to transformation. However, functional programs also have the disadvantage
that expressions are often combined using intermediate data structures, which would result
in costly inter-process communication if these expressions were to be evaluated in parallel.

In this work, we show how our own program transformation algorithm which we call
distillation can be used to transform programs into a form which makes functional programs

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andreas Herkersdorf and Michael Paulitsch

more amenable to parallelization and execution on multicore architectures. Distillation is a
very powerful source-to-source program transformation algorithm for removing intermediate
data structures which can achieve superlinear improvement in the run-time of sequential
programs. Programs produced by transformation are in a specialised form called distilled
form in which most functions are tail recursive and there are very few intermediate data
structures. We show how distillation can be used to convert programs defined over sequential
data structures to equivalent programs defined over data structures which are more easily
partitioned to facilitate parallel execution. We then show how the resulting programs can
be parallelised using Glasgow Parallel Haskell. We argue that this has the advantage over
alternative techniques that fewer intermediate data structures are created in the resulting
programs, so they can be executed more efficiently.

3.10 Necessity for & Feasibility of a Multicore Ecosystem
Andreas Herkersdorf (Technische Universitit Minchen, DE)

License) Creative Commons BY 3.0 Unported license
© Andreas Herkersdorf

Multicore technology overcomes the bottleneck of sequential task execution and provides
superior processing performance and power efficiency compared to sophisticated single-core
ancestors. Multicore technology also lets industry and academia face entirely new challenges
with respect to coping with system complexity. For the time being, the efficient utilization
of vast amounts of parallel processing resources relies predominantly on the skills of expert
programmers and system architects, but isn’t yet accessible for the broad community of
software engineers. In the field of embedded and cyber physical systems, multicore processors
must satisfy tough requirements with respect to real-time, power efficiency, reliability, safety
and security. Methods for multicore system modeling, verification and software debugging, if
existing, are specific to an individual processors, but not generically applicable to classes of
multicore systems (Would we need a Sync-Point as an enhancement to a Break-Point?).

Finding generic, flexible and scalable solutions to these problems in order to enable
multicore on an even broader scale for embedded systems applications may be beyond the
skills and capacities of individual enterprises. Therefore, the “Working Group Multicore”
within the Bavarian ICT Innovation Cluster BICCNet proposed establishing a research
and development network to jointly tackle these challenges. Through mutual exchange of
knowledge and (partially) providing access to solutions in the specific domain of expertise
of partners, a multicore ecosystem would gradually evolve. My objective for this Dagstuhl
seminar is to stimulate discussions on the feasibility of such an ecosystem, to hear what
reservations industry might have and how approaches for an initial instantiation could look
like.

157

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

158

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

3.11 “Heterogeneous Multiprocessing or Just a Bunch of
Coprocessors?” — The case for unified programmability

Enno Luebbers (Intel GmbH — Feldkirchen, DE)

License @@ Creative Commons BY 3.0 Unported license
© Enno Luebbers

Heterogeneous multiprocessor systems combine general-purpose processors with specialized
(and thus highly efficient) processing units for the acceleration of application-dependent
functionality. The increased overall efficiency, however, comes at the cost of programmability,
as usually, the application developer needs to be an expert in the respective programming
models for the individual acceleratos (FPGAs, GPUs, DSPs, ...) in order to exploit the
heterogeneous elements to their full potential.

Many approaches exist to cover hetereogeneous elements with new or extended existing
programming languages and models. In the face of upcoming challenges in embedded
systems like openness, extensibility, safety and security requirements and ever-increasing
complexity, the questions rises whether there is actually a silver bullet, at least for certain
application domains, or if we should look at different programming models which at least
allow the integration of heterogeneous parts, developed by domain experts, into heterogeneous
applications that fulfill the promise in terms of efficiency that heterogeneous platforms have
made.

3.12 Fault-Tolerant Time-Triggered Communication Infrastructure for
Multi-Processor Systems-on-a-Chip

Roman Obermaisser (Universitit Siegen, DE)

License () Creative Commons BY 3.0 Unported license
© Roman Obermaisser

The ongoing technological advances in the semiconductor industry make MPSoCs more
attractive, because uniprocessor solutions do not scale satisfactorily with increasing tran-
sistor counts. However, higher integration causes more sensitivity w.r.t. energy variations
which requires new fault-tolerance measures to overcome the transient fault rates that have
significantly increased. In the transient tolerant time-triggered system-on-chip architecture,
fault-tolerance mechanisms for application components, communication interfaces and the
time-triggered network-on-a-chip are introduced. In addition, a fault injection framework
was developed to compare state-of-the-art integrated architectures (e.g., hypervisors such as
XtratuM) and the transient tolerant time-triggered system-on-chip architecture. Experiment
evaluations have provided evidence for the reliability of the architecture in the presence of
soft-errors.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andreas Herkersdorf and Michael Paulitsch 159

3.13 Multi-Core in Avionics — On Problems and One Technical
Approach Monitoring-Based Shared Resource Separation for
Commercial Multi-Core System-On-Chip

Michael Paulitsch (EADS — Miinchen, DE)

License @@ Creative Commons BY 3.0 Unported license
© Michael Paulitsch

Multi-core computer architectures are the first choice in consumer electronics. Their per-
formance and power efficiency are also attractive features for safety-critical applications, as
in avionics. But increased integration and optimizations for average case performance poses
challenges when deploying them for such domains. In the Dagstuhl presentation, we first
present visions and problems of multi-core processors. In an exemplary approach towards
solving a specific solution, we focus on the problems of temporal indeterminism and fault
containment introduced by shared resources such as network on chip and shared memory.
Pursuing previous work that quantified the impact of concurrent usage of shared resources,
targeting the integration of mixed-criticality applications on the same platform, we propose
a partitioning approach to control those interferences. We present a partitioning concept,
which is further used to develop a modified worst-case analysis for multi-core processors. For
evaluation we use representative benchmarks of the EEMBC Autobench benchmark suite on
the Freescale 8-core PowerPC P4080.

3.14 Talk on ARTEMIS Project RECOMP
Michael Paulitsch (EADS - Miinchen, DE)

License) Creative Commons BY 3.0 Unported license
© Michael Paulitsch

“RECOMP” stands for Reduced Certification Costs Using Trusted Multi-core Platforms and
is a European funded project from ARTEMIS JOINT UNDERTAKING (JU). The project
started April 1st of 2010 and has a duration of 36 months.

RECOMP research project pretend to form a joint European task force contributing to the
European Standard Reference Technology Platform for enabling cost-efficient certification and
re-certification of safety-critical systems and mixed-criticality systems, i.e. systems containing
safety-critical and non-safety-critical components. The aim is establish methods, tools and
platforms for enabling cost-efficient (re-)certification of safety-critical and mixed-criticality
systems. Applications addressed are automotive, aerospace, industrial control systems, and
lifts and transportation systems.

RECOMP recognizes the fact that the increasing processing power of embedded systems
is mainly provided by increasing the number of processing cores. The increased numbers of
cores is a design challenge in the safety-critical area, as there are no established approaches
to achieve certification. At the same time there is an increased need for flexibility in the
products in the safety-critical market. This need for flexibility puts new requirements on the
customization and the upgradability of both the non- safety-critical and safety-critical parts.
The difficulty with this is the large cost in both effort and money of the re-certification of
the modified software-

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

160

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

3.15 Talk on German Project ARAMIS — Automotive, Railway, and
Avionics Multi-Core Systems

Michael Paulitsch (EADS — Miinchen, DE)

License @@ Creative Commons BY 3.0 Unported license
© Michael Paulitsch

ARAMIS (Automotive, Railway and Avionic Multicore Systems) aims at the development of
concepts for multi-core processors in automotive, railway and avionics to reach a gain in safety,
comfort and efficiency. In current aircrafts or cars only single-core processors are used since
only their functionality can be certified according to domain specific safety-standards. But
these singe-core architectures cannot reach the performance needed for future applications and
are getting obsolete. To develop efficient multi-core architectures several research institutions
and manufacturers from the automotive, railway, and avionics domain, their suppliers as well
as hardware and software producers are working together in the ARAMiS project.

The project involves the following partners: AbsInt, Airbus, Audi, BMW, Bosch, Cas-
sidian, Continental, Daimler, Diehl, EADS, Freescale, Infineon, Intel, Liebherr, OpenSynergy,
Symta Vision, Vector, Wind River and various research institutions (Technische Universitét
Miinchen, Technische Universitdt Braunschweig, Karlsruher Institut fiir Technologie, Uni-
versitat Stuttgart, Technische Universidt Kaiserslautern, Christian-Albrechts-Universitat zu
Kiel, Universitdt Paderborn, Fraunhofer IESE AISEC, Offis, Fortiss).

3.16 Fine grained process migration for MPSoCs
Sri Parameswaran (UNSW — Syndey, AU

License) Creative Commons BY 3.0 Unported license
© Sri Parameswaran

Process migration (PM) is a method used in Multi-Processor System on Chips (MPSoCs)
to improve reliability, reduce thermal hotspots and balance loads. However, existing PM
approaches are limited by coarse granularity (i.e. can only switch at application or operating
systems boundaries), and thus respond slowly. Such slow response does not allow for fine
control over temperature, nor does it allow frequent migration which is necessary in certain
systems.

In this work, we showcase Thor, an approach which is a fine-grained reliable PM scheme,
for Embedded MPSoCs, to overcome the limitations of existing PM approaches. Our approach
leverages custom instructions to integrate a base processor architecture, with PM functionality.
We have proposed three schemes, Thor-BM (migration at basic block boundaries), Thor-
BM/CR, (migration at basic block boundaries with checkpoint and recovery), and ThorIM/CR,
(migration at instruction level with checkpoint and recovery). Our main motivation is to
realize a fine-grained PM approach beneath the OS level within the local processor architecture.
Performing locally, and without the use of the OS, results in short initiation Time. If such
a scheme were to be implemented, then this would let Dynamic Thermal Management
techniques (especially those with policies relying on frequent task migrations, improve overall
performance while maintaining low peak temperatures. Such a scheme would allow for a fast
process migration in the presence of faults. It is also possible for fast load balancing scenarios
to take place. Our experiments show that the execution time overhead is less than 2%, while
the additional area cost and power consumption costs are approximately 50% (excluding
main memories, which if taken into account would substantially decrease this overhead). The
average migration time cost is just 289 cycles.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andreas Herkersdorf and Michael Paulitsch 161

3.17 Task Mapping for Manycore-based Embedded Real-Time Systems
Stefan M. Petters (ISEP-IPP — Porto, PT)

License) Creative Commons BY 3.0 Unported license
© Stefan M. Petters
Joint work of Nikolic, Boirslav; Petters, Stefan M.;
Main reference B. Nikolic, S.M. Petters, “Application Mapping In NoC-Based Many-Cores,” Technical Report,
HURRAY-TR-121201, 2012.
URL http://www.cister.isep.ipp.pt/docs/733/

Manycores-based processors are clearly on the agenda for their eventual deployment in
embedded systems. While the widespread usage of manycores is still a few years into the
future, it is worth spending now some effort in considering implications and requirements
for this deployment. A current research activity in the area of operating systems for such
processors is the Barrelfish OS. Barrelfish operates on a limited migrative model, where a task
can only migrate within a subset of cores. Within the talk, various challenges in the mapping
process have been discussed, when it comes to the communication within the dispatcher
entities of an application, as well as between applications. In particular the notion of proxies
to simplify the analysis process of the communication delay has been introduced. Since
an exhaustive search for feasible mappings is of exponential complexity, the talk presented
a heuristic, which allowed via one parameter to control the mapping complexity and via
another parameter, the greediness of high priority applications when it comes to chip area.
A set of experiments showcase the complexity of the approach, as well as the impact of the
two parameters on the mapping result.

3.18 Sustainable Development of Software in the Multi-Core Age
Matthias Pruksch (sepp.med — Rottenbach, DE)

License) Creative Commons BY 3.0 Unported license
© Matthias Pruksch

In order to benefit from progress in hardware, software development faces a paradigm change
to parallelism. The impact is even more important, since life-cycle of software is much longer
than that of hardware: investments in software last for decades. In addition, software now
plays a crucial role for system design. Model based methods for development and quality
assurance show the prospect to master the increasing complexity of such systems. Notably,
if you are working in a context of products that have to be certified.

3.19 Chances and risks for security in Multicore processors
Georg Sigl (Technische Universitat Minchen, DE)

License) Creative Commons BY 3.0 Unported license
© Georg Sigl

The main security challenges in future systems in the application areas such as automotive,
transport, industry automation, health care, smart grid are:

Security for 10 and more (30) years.

Secure autonomous interaction of heterogeneous machines (M2M).

Protection against manipulation and misuse.

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.cister.isep.ipp.pt/docs/733/
http://www.cister.isep.ipp.pt/docs/733/
http://www.cister.isep.ipp.pt/docs/733/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

162

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

Fulfilling security requirements while keeping real time requirements.

Consider resource limitations.

Managing increasing complexity in embedded systems.

Protection of intellectual property (hardware and software) in embedded systems against
counterfeiting.

Support of adaptation of cyber physical systems through securely adaptable embedded
systems.

In order to fulfill these requirements in the future, secure elements will be integrated
in the systems in order to provide security services while still being resistant even against
hardware attacks. Hardware attacks can be classified into probing attacks, which try to
extract information out of a chip by probing internal signals or by forcing values. Side
channel attacks observe power consumption or electromagnetic radiation and fault attacks
inject faults into the chip, e.g. through spikes on the current supply or light. Examples for
systems with secure elements are cars with secure elements as investigated in the German
funded project SEIS, the smart meter gateway solution as specified by the German BSI
(Bundesamt fiir Sicherheit in der Informationstechnik) or mobile phones with up to three
secure elements, the SIM a secure element soldered in the phone for NFC payment and a
SD-card with secure element provided by a bank.

In multicore systems we have alternative solutions for solving security problems which
are nowadays solved with a secure element. In order to detect fault attacks a very proper
means is redundancy, which can be implemented in multicore systems very well. Security
critical tasks can be parallelized and the results can be checked afterwards for correctness. A
very good countermeasure against side channel attacks is randomization, which increases
the effort for the attacker to observe critical operations. In multicore systems the execution
of tasks is randomized by default and can be even increased by actively assigning parts of
tasks to different core s with changing degrees of parallelization. Another way to counteract
side channel attacks is the implementation of secret sharing schemes which avoid the use
of a complete secret key on one core but distribute it to many cores. Separation is another
important security measure, which may be easier on multicores as long as the underlying
architecture supports that. If there are too many shared resources this could however be
also a security risk. With multicores it may be even possible to assign the role of a secure
element flexibly to one or more of the standard cores, which the responsibility to monitor
the behavior of the system and to provide security services.

Multicores enable creation of much more complex systems than today’s processors.
Increasing complexity usually increases the risk of vulnerabilities like denial of service,
undetected malware, or buffer overflows. The reason for these vulnerabilities is resource
sharing, lack of monitoring or control and badly separated software. Another risk is sid
e channel attacks which may be executed on multicore systems through software which is
executed on the same system on chip.

Overall multicore may offers opportunities to improve the security of embedded systems,
where we have currently a lot of open and un solved problems.

Andreas Herkersdorf and Michael Paulitsch 163

3.20 Isolation of Cores to Support Development of Mixed Critical
Systems

Claus Stellwag (Elektrobit Automotive — Erlangen, DE)

License @ Creative Commons BY 3.0 Unported license
© Claus Stellwag

The major issue when using multi-core controller in embedded devices is the huge amount
of legacy code developed in former times. This code is normally well suited (“proven in
use”) but not aware of execution parallelism and therefore cause problems when being
executed on multi-core controller. Reasons for this behavior are: fast interrupt locks, implicit
communication (e.g. activation order of threads) or cooperative scheduling (thus avoiding the
use of explicit locks for shared resources) among others. Additionally new requirements have
to be considered in the design (e.g. minimize energy consumption) and the use of standards
is forced (AUTOSAR). If safety relevant software has to be executed on the same device
with standard QM (or legacy) software the designer has to make sure that the safety part is
not influenced from non-safety parts.

One common idea when migrating software from single to multi-core is to perform a
redesign and split up threads to the different cores. Experience showed that this is possible
but causes lot of work, e.g. all implicit communication or locking have to be considered and
sometimes must be made explicit. Also the proof that the new partitioning of the redesign is
free of errors is difficult - especially from the safety viewpoint. Therefore a different approach
is presented here.

Central idea is to focuses on the separation and isolation of cores. This means that
existing applications should not be split but kept together. Still multiple applications can
run on one device, but each one mapped to its own core. Communication between the cores
shall be minimized in order to get the maximum performance. Safety applications get with
this mapping their own core and (if the hardware supports isolation) can be completely
protected from non-safety software. One controller family which supports this is the Infineon
AURIX. On this chip the cores and their RAM can be configured in way that only read but
no write access from other cores is possible.

As an example just consider an AUTOSAR system where normally the safety and non-
safety applications (SWCs) can be separated, but all the basic software is shared. This
means that all basic software must be developed according the related safety standard. If
isolation is used one core can use a standard AUTOSAR system with all the non-safety
code. The other core can be used for safety related software only. If required a core-to-core
communication module can offer an exchange mechanism between the cores. The safety core
might also need some basic software, but typically the amount of such modules for safety
is very low. In general it is always better to limit the amount of safety related software to
handle the complexity. Within one EU funded project (RECOMP) Elektrobit implemented
this isolation approach for the AURIX. The implementation was used by Delphi (automotive
supplier) to demonstrate an electrical steering column lock. The demonstrator showed that
the isolation method works.

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

164

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

3.21 Safe(r) Loop Computations on Multi-Cores
Jirgen Teich (Undversitit Erlangen-Niirnberg, DE)

License) Creative Commons BY 3.0 Unported license
© Jirgen Teich
Main reference J. Teich, W. Schroder-Preikschat, A. Herkersdorf, “Invasive Computing - Common Terms and
Granularity of Invasion,” arXiv:1304.6067v1 [cs.OS]
URL http://arxiv.org/abs/1304.6067v1

The necessity of satisfaction of non-functional constraints such as guaranteed data processing
throughputs, deadline reactive processing or safety properties on the correctness of computa-
tional results is of utmost importance for the successful introduction of multi-core technology
in many future embedded system products.

In this visionary introduction, we treat the problem of architectures, methods and tools
that allow a developer to specify a certain safety level for a quite general and important class
of loop computations. Loop programs are known to be quite amenable to parallel processing
and are typically also quite scalable. However, no existing work is known to us how to make
loop computations safe so to guarantee the correctness of the corresponding computed results
of a loop program at run-time.

In this realm, we propose first ideas how, dependent on a specified safety level, the core
allocation might be properly controlled for allowing concepts such as DMR and TMR known
for single processor systems to loop computations on multi-cores including the way how
deterministic voting may be efficiently implemented on a class of domain-specific multi-core
architectures called tightly-coupled processor arrays (TCPAs).

We conclude how these concepts of redundant in-sync loop computations might be nicely
supported by the recent parallel computing concept of invasive computing.

3.22 parMERASA- Multi-Core Execution of Parallelised Hard
Real-Time Applications

Theo Ungerer (Universitat Augsburg, DE)

License @ Creative Commons BY 3.0 Unported license
© Theo Ungerer
URL http://www.parmerasa.eu/

Providing higher performance than state-of-the-art embedded processors can deliver today
will increase safety, comfort, number and quality of services, while also lowering emissions as
well as fuel demands for automotive, avionic and automation applications. Such a demand
for increased computational performance is widespread among European key industries.
Engineers who design hard real-time embedded systems in such embedded domains express a
need for several times the performance available today while keeping safety as major criterion.
A breakthrough in performance is expected by parallelising hard real-time applications
and running them on an embedded multi-core processor, which enables combining the
requirements for high-performance with time-predictable execution.

The talk will discuss preliminary results of the EC FP-7 project parMERASA (Multi-Core
Execution of Parallelised Hard Real-Time Applications Supporting Analysability, started
Oct. 1, 2011). The project targets timing analysable systems of parallel hard real-time
applications running on a scalable and predictable multi-core processor with up to 64 cores.
We target in particular future complex control algorithms by parallelising hard real-time

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1304.6067v1
http://arxiv.org/abs/1304.6067v1
http://arxiv.org/abs/1304.6067v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.parmerasa.eu/

Andreas Herkersdorf and Michael Paulitsch 165

application programs to run on multi-/many-core processors. Application companies of
avionics, automotive, and construction machinery domains cooperate with tool developers
and multi-core architects to reach the project objectives.

3.23 OpTiMSoC — An Open Source Experimentation Platform for
Multicore

Stefan Wallentowitz (Technische Universitiat Minchen, DE)

License @@ Creative Commons BY 3.0 Unported license
© Stefan Wallentowitz
Joint work of Stefan Wallentowitz, Philipp Wagner, Michael Tempelmeier, Thomas Wild, Andreas Herkersdorf
Main reference S. Wallentowitz, P. Wagner, M. Tempelmeier, T. Wild, A. Herkersdorf, “Open Tiled Manycore
System-on-Chip,” arXiv:1304.5081v1 [cs.AR].
URL http://arxiv.org/abs/1304.5081v1

Future System-on-Chip will integrate an increasing amount of processing elements. Tiled
manycore System-on-Chip are a promising approach to organize future platforms. In such
platforms a Network-on-Chip connects “tiles” of processing elements, memories and I/0,
often as a mesh. For example Intel has presented the “Single Chip Cloud Computer”.

Research of such platforms and especially prototyping rely on building such a platform
or is bound to simulation. At LIS we develop a framework for prototyping of such tiled
manycore System-on-Chip: Open Tiled Manycore System-on-Chip (OpTiMSoC). It is based
on open source components and itself freely available. Essential elements and target platforms
are part of the library and a platform generator tool is in development to allow for fast
creation and implementation of platforms.

This talk gives an overview of OpTiMSoC and presents the current status and roadmap
of the project.

3.24 Efficient observation of Multicore SoCs
Alexander Weiss (Accemic GmbH & Co. KG - Kiefersfelden, DE)

License) Creative Commons BY 3.0 Unported license
© Alexander Weiss

Comprehensive observability of multicore System-on-Chip (SoC) is the basis for efficient
debugging, especially for the analysis of root causes of non-deterministic failures. Furthermore,
it is also important for the detection of race conditions, the measurement of WCET, cache and
memory layout optimization as well as different kinds of coverage measurements. Solutions
for multicore SoC observation can be rated by the completeness of accessible information,
which includes executed instructions, clock cycle accurateness, data access (value, address,
direction), cache and bus operations. This information should be captured in parallel for
multiple CPUs and other bus masters. Observation should be long-time, non-intrusive,
available in real-time and applicable for mass-produced SoCs. By using multicore SoCs the
traditional computation-centric observation strategy of single core SoCs has to be amended
by communication-centric observation. Today’s solutions are software instrumentation and
embedded trace, both with limitations especially in the multicore area. The bottleneck is the
required bandwidth for trace data output, which increases superlinear with the number of
CPU cores. With hidICE a new observer based approach for full visibility of internal states

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1304.5081v1
http://arxiv.org/abs/1304.5081v1
http://arxiv.org/abs/1304.5081v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

166

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

of multicore SoCs was developed. The fundamental idea behind hidICE is to equip the SoC
with a facility that allows the synchronization with an external emulator. Thus, only data
is communicated from the SoC to the emulator that is required to reconstruct all internal
data and the program flow. All other system responses are defined by the program code.
The advantage of this approach is the fact, that in most cases the bandwidth required for
synchronization is significantly lower than the bandwidth required for traditional trace data
output. The emulation provides full access to all internal CPU and bus states, including
CPU register trace or bus trace with the deep view as known from a logic state analyzer.
The hidICE approach was evaluated for different CPU architectures, including a LEON3
based multicore system. This implementation requires a very low gate count and provides
full, real-time, continuous, and concurrent observation of all CPU cores. Another challenge
in multicore SoC observation is an efficient strategy to handle the huge amount of trace data,
accessible from multicore SoCs. The traditional offline analysis has to be complemented and
replaced by online analysis approaches, such as runtime verification.

3.25 Many cores — many problems
Reinhard Wilhelm (Universitat des Saarlandes, DE)

License) Creative Commons BY 3.0 Unported license
© Reinhard Wilhelm

The embedded-systems industry goes multi-core. The main reason is the good performance
per consumed-energy ratio. For time-critical systems, this transition is problematic. No
sound and efficient method for the verification of timing constraints of embedded systems
executed on multi-core platforms exists. This problem is difficult and can not solved by the
established methods due to the interference on shared resources. There is a proposed method
for timing analysis: 1. analyze an application by established single-core methods assuming
that the access to shared resources happens instantaneously, then 2. add a safe bound on
the delays of all accesses as indicated by a given abstraction of the access behavior of all
co-running applications.

Current core designs do not allow this approach since they are not timing compositional.
In addition, the currently used abstractions seem to be too coarse as to allow precise bounding
of access delays. The MULCORS report, Use of Multicore Processors in airborne systems,
submitted by Thales Avionics to the European Aviation Safety Agency is considered a
document of capitulation in the face of the problem. It recommends to use measurement-
based, unsound methods for timing verification of safety-critical and mixed-critical avionics
systems implemented on COTS multi-core architectures. They ignore both the state of the
art in single-core timing analysis as well as fundamental problems of measurement-based
approaches. For example, they recommend using corrective factors to unsafe measurement-
based WCET estimations based on an identification of worst-case perturbances, ignoring the
high likelihood of domino effects on such architectures.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andreas Herkersdorf and Michael Paulitsch 167

3.26 High-level Simulation-based Design Space Exploration on
Multicore Virtual Platforms

Thomas Wild (Technische Universitat Miinchen, DE)

License @ Creative Commons BY 3.0 Unported license
© Thomas Wild

For an efficient simulation based performance assessment, instruction set simulators (ISSs)
cannot meet the simulation performance requirements to be applied in the exploration of
the macroarchitecture of multicore systems-on-chip (MPSoCs). In order to speed up the
exploration it is essential to use more abstract simulation models, which limit the number of
simulation events and yet deliver accurate and indicative insights into the architecture to
assist the designer in finding an optimal solution.

This talk presents McSim, a SystemC based high level simulation tool, which allows the
use of trace driven as well as compiled binary level simulation models. In a trace model,
internal structure and functionality of a processor core are abstracted in time interleaved
reads and writes, which are replayed and superimposed on the shared resources of the
MPSoC architecture. A binary simulation model includes in addition the execution of the
functionality, allowing the simulation of flexible input stimuli for the processor. Experiments
with various benchmark applications from MiBench and MediaBench show - compared to
SimpleScalar ISS — an increase of the simulation performance of a factor of up to 200 and 30,
respectively. The maximum error of the two models relative to SimpleScalar are 15% and
10%. Architecture exploration with McSim consists of two phases: A one time generation of
either the trace or the binary level model (which includes running the ISS). During the actual
exploration phase, in each iteration the trace and binary level models are executed thus
profiting from the acceleration compared to the ISS. The adaptation of HW/SW architecture
and of task mapping/scheduling for the solution alternative under investigation is done via
XML files.

4 Working Groups

4.1 Specification & Interference
Claus Stellwag, Michael Deubzer, and Glenn Farrall

License @@ Creative Commons BY 3.0 Unported license
© Claus Stellwag, Michael Deubzer, and Glenn Farrall

The workgroup focuses on the topics specification and interference but during the discussions
also other topics were touched. The following topics (A, B, C) were considered to be most
critical for a wide use of multi-core architectures in cyber physical systems.

A) Application Specification

It is of central importance that an application specification exists which details different

aspects of the application design. Especially the document should:

1. include all requirements include non-functional ones (e.g. requirements on timing).

2. enable legacy code integration and shall explain how this is performed/which rules are
applied.

3. help to avoid and safely bound interferences on shared resources.

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

168

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

Furthermore, as a base a well-defined software component model in needed. Basic
characteristics shall include dependencies between components and interface to e.g. global
variables which are accessed by the component. An example for such a model can be
found in AUTOSAR. Depending on the design stage the information will be updated or
extended. Example: During top down design the timing constraints are given and budgets
are assigned to software components, which can be later verified when the executable of the
application is available (e.g. by static analysis or tests on the final hardware). Standard
component models talk about functional interactions. But the models shall also be able
to include meta information e.g. by specifying memory interference, WCET, options to
map the components to different cores, or energy behavior. This would greatly simplify
the composition of applications in multicore architectures because it is assumed that the
component developer and the integrator of the system are different persons. This way also
parts of the design knowledge can be saved within the model and later reused e.g. to find
the best mapping of components to cores.

Requirements shall contain all necessary properties like timing constraints, safety require-
ments, data loss constraints, and criticality information.

It would be very helpful to use specification guidelines which help the software architect
to structure the specifications and to make sure that no important aspects gets lost. Such
guidelines should

be built upon a well-defined model of computation (interacting components)

make all component dependencies explicit

classify variables into configuration, start-up and volatile

provide memory partitioning on an appropriate level of abstraction (local to process,

shared between subsets of processes, global)

A compiler can map this to NUMA shared memory architectures. Depending on the real
needs security aspects shall be listed. (E.g. a security architecture could add monitors)

B) Legacy Code

There is no easy way to migrate existing code to multicore controllers. Most code has implicit
assumptions about the single core behavior, e.g. implicit communication between cooperative
threads. Ideally depending on the original design the effort of the changes can be estimated.
Unfortunately in many cases the know-how of this original design is lost (e.g. responsible
people have left or retired) and therefore the fear of changes is huge. (“don’t touch it, it’s a
piece of art”). The following four levels have been discussed (effort grows from low to high)

1. Small changes are often possible because their impact can be foreseen. (E.g. software unit
internal behavior which is not visible from outside). Additional abstraction layers and
interfaces to shared resources help to limit the degree of interference between software
components.

2. Mapping of existing SW to cores. This approach maps parts of the existing software to
separate cores and tries to minimize (or even omit) the communication between cores
and avoid sharing resources with other cores. If resources are shared (e.g. I/0) it has to
be handled in special way. Since the software runs only on a single core most of the old
behavior can be established without modifications (e.g. implicit communication will work
since all relevant communication processes are on the same core)

3. Redesign. Completely redesign (central) parts of the application based on a clear model
of computation and interaction that exposes (at least) the required degree of concurrency.

Andreas Herkersdorf and Michael Paulitsch

4. New development. Some industries (e.g. signal processing, mobile communications) have
to rewrite completely the application in a well-defined way, e.g. by model of computation
that reveals concurrency and interaction (e.g. data flow models). In these domains,
clearly defined design flows are available for multiprocessor platforms that optimize and
guarantee timing, energy, and memory.

C) Virtualization

Virtualization could help to migrate software to multicore architectures if it would talk
about real-time and not virtual time. In cyber physical systems programs typically have
dependencies to real-time, this is different to IT systems (e.g. servers) where the timing within
a virtualized software is not that important. Practically virtualization is quite established in
PC like environments, but only very rarely used in embedded systems.

As an example: just consider an algorithm which performs an analog to digital conversation.
This piece of software must know when it is time to convert the next analog value. If this
time is missed there will be no result. Supporting real-time in virtualized environments is
currently no considered in existing solutions and might also impact the used hardware (e.g.
when peripherals are virtualized).

4.2 Industrial Perspective on MultiCore Motivations and Challenges

Glenn Farrall, Christian Ferdinand, Massimo Ferraguto, Steffen Gorzig, Michael Paulitsch,
Matthias Pruksch, Claus Stellwag, Sergey Tverdyshev, and Alexander Weiss
License) Creative Commons BY 3.0 Unported license

© Glenn Farrall, Christian Ferdinand, Massimo Ferraguto, Steffen Gorzig, Michael Paulitsch,
Matthias Pruksch, Claus Stellwag, Sergey Tverdyshev, and Alexander Weiss

There were two questions asked of industrial participants to the “Multicore Enablement for
Embedded and Cyber Physical Systems” seminar.

For each question there is a summary of the response, and then for completeness the full
set of text is provided.

Q1: What is the major motivation for using multicore devices — both today and in
the future? (where using can be “implement a product with” or “supply tools and/or
services to support”)

There were two main answers to the first question. This is not surprising since the motivations
for multicore usage have high commonality and are aligned with the realities working against
performance of single core devices increasing ad infinitum.

Availability Lack of availability of single core devices was one strong answer. There is a
clear expectation that eventually there will only be multicore devices available (above a
certain performance threshold) — this answer has been summarised as TINA (There Is
No Alternative)!

Derived from product requirements The drive for new features, or step changes in capabil-
ity demand the extra performance or the extra performance per unit (of power, weight,
volume, etc.) that multicore devices offer. As should be obvious from the considered
markets (those with Cyber Physical aspects) included in features required are safety and
availability, and these also are attractively enhanced with multicore devices.

169

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

170

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

Collated feedback to question 1 with attribution (in alphabetical order):

Christian Ferdinand (AbsInt) Even for highly safety-critical applications, multi-core pro-
cessors seem to promise better performance. Therefore, many of AbsInt’s potential
customers are exploring the possibilities. Typical COTS multi-core processors use shared
memory and shared memory buses/networks. Such architectures introduce a high degree
of resource sharing that would not be there in a distributed memory architecture. This
additional resource sharing can lead to large interference effects between cores. This
complexity has created a new demand for timing verification tool support not only for
the highest criticality classes.

Massimo Ferraguto (Space Systems Finland) The use of multicore in the space domain can
be beneficial in terms of greater processing capability (concentration of multiple functions
in one single computer, with partitioning by criticality level and/or function; more payload
data processing on-board), weight, power and fuel reduction which ultimately lead to
longer lifetime and cost efficiency.

Steffen Gorzig (Daimler) TINA (There Is No Alternative). When you can only buy mul-
ticore processors in the market, your only choice is to switch cores off...

Michael Paulitsch (EADS)

Quest for more compute power due to new application demands.

Wish to reduce size, weight and power of computing for improved performance of
aircraft and improved environmental performance.

Tighter integration leads to the need of more powerful central compute platforms
wish to use COTS chips for reasons like possible lower cost (COTS are likely multicore
devices or SoC)

Matthias Pruksch (sepp.med) Customers, who are the customers of sepp.med customers,
demand ever increasing value of products in terms of quality, functionality and interoper-
ability. To achieve this, many products gain from smart acquisition, control and handling
of information. Savings in space, weight and power as well as added value by cyber
physical systems are just two important drivers to name. Multicore devices offer the
prospect to sustain the increasing demand for computing and communication performance.
The fundamental switch to multicore architectures lead to a paradigm shift in software
development and has a tremendous impact on the installed base of legacy software and
how new software has to be written in order to be sustainable. Specifically, regulated
domains like medical or avionics are challenged by current multicore implementations
that neither fulfil stringent requirements for predictability and absence of interference,
nor enable certified legacy software to be migrated without expensive reengineering and
costly re-certification. sepp.med is highly interested to provide qualified services for their
customers and partners from consulting, over development and quality assurance up to
certification.

Claus Stellwag (Electrobit Automotive) The increasing complexity and the rise of new
functions (Automotive: e.g. advanced driver assistance functions which build the base
for autonomous cars in the future) requires a lot more performance. Typical embedded
controllers with only some megahertz will not be able to solve this performance gap.
On the other hand the embedded environment (no active cooling of controllers, EMV,
etc.) forbids the usage of standard (PC like) processors. So the only way to deliver the
required performance and keeping the price affordable are multicore controllers.

Sergey Tverdyshev (SYSGO) The competition on the market drives companies to innovate.
This innovation includes developing new functionalities, higher utilisation of available
resources, sinking costs. Probably these are the main three reasons driving industry to

Andreas Herkersdorf and Michael Paulitsch

adopt multicore microprocessors.
SYSGO is one of the leading embedded RTOS providers provides and is constantly
researching and improving support for multi-core systems. The following are the some of
the reasons behind this work:
Customer demands for support multicore systems including system-level architectural
support (e.g. AMP, SMP)
OS support to maximise utilisation of HW resources
Increasing RTOS/OS performance which is transparent to the user
Hope to increase dependability for high-criticality systems with multicore
Alexander Weiss (Accemic)
traditional computation-centric observation has to be amended by communication-
centric observation
multicore possible increases the amount of non-deterministic failures
traditional storage and offline analysis of trace data gets more and more limited, online
trace data decompression and computation (for run-time verification, WCET, race
conditions, profiling, ...) seems to be the next step in tool evolution — new generation
of tools are required

Q2: What would be a key enabler to making their usage easier, or more prolific or
perhaps more profitable?

The second question had a much wider range of answers — as the challenges are not as
neatly encompassed as the first question on motivations was by physics.

The timing behaviour of multicores is consistently raised as a challenge which needs to
be made easier to cope with. So mechanisms for interference reduction (or elimination as
a goal) are definitely required for enhanced usage in Avionics and other safety critical
domains.

Documentation of existing behaviour (especially of interference or arbitration conditions)
is also clearly in a poor state today and improvements in this area would help (or at least
add confidence) to any safety case made on COTS based systems.

Architectures that would allow software to port seamlessly from singlecore to multicore
(of any number) are also on the wish list. This has a clear economic advantage — most
systems are not created from scratch, but involve reuse of existing code. The investment
in this existing code can be very significant and very few products will start from a
clean sheet. So either an architecture or tooling to enable this migration would enhance
deployment.

Collated feedback to question 2 with attribution (in alphabetical order):

Christian Ferdinand (Absint) Interferences complicate timing verification. The adoption of
multi-core processors in highly safety-critical applications could be helped by providing
support for processor configurations that reduce interferences and a clear documentation
of the resource conflict resolution mechanisms

Massimo Ferraguto (Space Systems Finland) The main enabling technologies considered
include: multicore processors (Leon 4, etc.), Time and Space Partitioning approach of
the integrated Modular Avionics for Space (started from single-core and inspired from
the ARINC 653 standard), hypervisor technology (XtratuM, etc.) and SW architecture
(SAVOIR-IMA). In particular the Time and Space partitioning of resources is considered
to be an essential driver to ensure the predictability needed for critical missions.

171

13052

172 13052 — Multicore Enablement for Embedded and Cyber Physical Systems

Steffen Gorzig (Daimler) Methods and tools to migrate old software to multicore without
adding errors.

Michael Paulitsch (EADS) Helping would be anything that addresses the limiting points
below

tight integration of function blocks on SoC with limited ability to control and monitor

their behaviour

complexity of SoC and fear of design faults and possible limitations of mitigation or

getting detailed design info to argue correctness

complexity of SoC and ability to holistically understand it

gap between average and worst-case performance increases

less ability to control at SoC system level (guaranteed switch off cores, controlled

access to shared resources ...)

increasing gap between COTS SoC design environment and avionics design environment
Making use easier:

having WCET in mind (does not necessarily have to be the centre of focus)

access to essential details of chip design

Matthias Pruksch (sepp.med) First objective is to get legacy programmes running without
touching the code. Therefore, a mandatory key enabler is access to sustainable multicore
devices that provide predictability without sacrificing performance: lockstep mode is no
solution. This enables the consolidation of previously separate devices of mixed criticality
into one multicore system. Second objective is to define requirements and design guidelines
for sustainable software development, e.g. scalability by number of cores. This means, by
the increasing number of cores, performance improvements can be realized. Integrated
development environments and tool chains are needed to tackle the complexity in terms
of an increasing number of software components and constraints and to support design
space exploration. Model driven development (correctness by design, formal methods
...) and model based testing show the prospect to handle those aspects. In our opinion,
solutions will bring us to the next level of system creation towards hardware/software
co-design, with the benefit of faster time-to-market, improved reuse and conservation of
resources.

Claus Stellwag (Electrobit Automotive) Key enabler will be the handling of the new com-
plexity (real parallelism). Devices with a clear partitioning approach can help as well
as good tools. Some areas need to be developed further (e.g. shared resources and the
access times to it).

Sergey Tverdyshev (SYSGO) However, there are obstacles which hinder wide adoption of
multi-core in safety critical domains:

The state-of-the-art COTS multi-core design is driven by cost reduction and average
performance optimisation. This lead to the gap between worst and best performance is
increasing and predictability of the system behaviour is decreasing. Lesser predictability
mitigates advantages of MC in medium to high critical systems.
The state-of-the-art COTS multi-core architecture focus on “simply adding” new cores.
This increases communication load on interconnects and peripheral devices making
them the truly bottlenecks for safety and sometimes security.
The lack of in-depth documentation on COTS hardware makes it impossible to mitigate
HW deficits in software on OS, middleware, RTE, or application levels.
The lack of acceptance by certification agencies
The current situation in safety critical area is similar to a round-dance around a huge-
camp fire where dancers see or believe to see something very precious in the middle and

Andreas Herkersdorf and Michael Paulitsch

while dancing trying to figure how to get it out with being burned.
Interestingly the security critical domains are not that hard affected by safety issues.
In theses domains MC is widely used (at least in prototypes), especially in the systems
without physical access to the hardware for attackers. The most of the problems are
similar to single core systems, e.g. lack endurance/evidences that the produced COTS
hardware is indeed the one which is described in documentation and does not contain
malicious changes.
Alexander Weiss (Accemic) All the observation issues are very important. Not only the
common instruction and data traces, also
cycle accurate trace options for all devices
trace of all bus masters (not only CPUs)
easy differentiation on data trace between read and write access without the need for
computing the instruction trace in parallel (ARM!)
access to all information to observe scenarios as listed in Michael’s paper [1, table 1]
high bandwidth trace ports (in combination with smart port replacement approaches)

References

1 O. Kotaba, M. Paulitsch, J. Nowotsch, S. Petters, H. Theiling, Multicore In Real-Time
Systems — Temporal Isolation Challenges Due To Shared Resource Workshop on Industry-
Driven Approaches for Cost-effective Certification of Safety-Critical, Mixed-Criticality Sys-
tems (WICERT); part of DATE 2013. Grenoble, France. 2013

4.3 Certification of Safety-Critical Multicore Systems: Challenges and
Solutions

Stefan M. Petters and Rene Graf

License) Creative Commons BY 3.0 Unported license
© Stefan M. Petters and Rene Graf

Certification in general is the process of a certification agent attesting to certain properties.
Depending on the domain, the procedures vary substantially. In most cases certification
applies to a complete system, which includes hardware, software and tools to build and
validate the artefact. However, for example in the automotive domain, the concept of
“certification-out-of-context” implies that some components may be certified in isolation. In
general the current landscape in the area of systems certification within the automotive
domain, industry automation and aerospace domains is dominated by a very conservative
mind-set. Anecdotal evidence suggests that at the time of writing at least one dual-core
system is in the certification process and the positive outcome of the process is not yet
assured. This is driven by a number of reasons. Most notably there is, for obvious reasons,
non-existent to negligible experience with the certification of multicore systems. This is
exacerbated by the lack of answers to some of the technological challenges and consequently
the lack of a reasonable safety argument. In particular the technological challenges with the
deployment of multicores often presents substantial hurdles for the migration of legacy systems
on Commercial-of-the-Shelf (COTS) based multicore platforms. The latter is driven primarily
by the changed paradigm of performance gains which are now achieved via parallelism. This
parallelism is in most cases not exposed in legacy systems. Even legacy applications using
multiple threads are not verified running on a multicore processor.

173

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

174

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

One of the challenges identified within the working group is the increase of complexity
in multicore systems. On the one hand this stems from the concurrency, as well as the fine
grained resource sharing present in multicore, on the other hand the integration of additional
components into the die which were previously accessible individually. Both concerns mean
the traditional divide and conquer approach of looking at individual components and reasoning
about the interaction between components in the analysis and safety argument are no longer
possible. In order to mitigate the issue, it is of paramount importance to identify all resource
sharing whether it’s explicitly or implicitly shared. Omnce this identification is complete,
platforms need to provide isolation as far as reasonably possible. The isolation properties
can be achieved by either separation of duplication of the respective shared resource. For
example, for caches, it would be of large benefit to avoid shared caches but rather have
the possibility to partition this or use it as scratchpad, which is at least in some COTS
processors available. However, shared caches or scratchpad memories may be needed in
real SMP applications, where communication and synchronisation of threads need to be
performed across several cores. In general it is also preferable to have the ability to control
parameters and access to the shared resources in a fine grained manner.

For those resources, where strict isolation is not possible, like for example the memory
interface, it is important to assure a fair and/or deterministic arbitration scheme. This would
enable to reason about the maximal interference suffered by the core under investigation
that is caused by applications running on the other cores. To validate the interference the
platform needs to expose enough observability. With current technology, the integration of
non-intrusive debug interfaces on individual cores and shared resources presents the most
promising path to achieve the required observability.

While there are a number of academic approaches available to provide predictable and
analysable HW platforms, their deployment in real-certified systems is very limited. This is
driven by the differences at both ends of the spectrum, where current certification practice is
focused on single core platforms while industrial pre-development is eyeing the computing
capabilities of modern COTS based multicore systems, to implement a plethora of new
system functionalities. The COTS issues can be mitigated to some degree by a working close
communication with the HW vendors. However, such a communication base is not achieved
on short notice but needs to be developed over years. The alternative is an individual
development of a platform, however, this is neither a likely path to a high performant
computer system, nor appears to be a cost effective solution.

Furthermore, the presence of dynamic and potentially non-controllable features in many
COTS present further issues. Examples for such features are the NMI interrupt in Intel
based systems or commonly used clock throttling for temperature and/or power management.
Similar to the resource sharing, the identification of such features requires great care to be
taken. Secondly, if such mechanisms may not be switched off in a guaranteed manner or
provide no way to reason about their behaviour and impact it will make the deployment of
such an architecture likely impossible in a certified environment.

Besides the HW architecture features discussed above, the software stack running on top
of a multicore platform has the potential to mitigate some of the issues occurring on the HW
platform. This reaches from the application driven pipelining of image processing segments
to concentrate memory accesses at the start and end of the execution and thus avoiding
interference on the shared read and write paths. On the operating system level tasks may be
pinned to specific cores and thus avoiding the indeterminism of migrating applications.

One fundamental asset in the certification process of new HW/SW platforms would be to
obtain a set of guidelines identifying “best practice” in the area. However, such guidelines

Andreas Herkersdorf and Michael Paulitsch

would naturally have to be developed by the certification agencies and are usually a product
of experience. Consequently the process faces a similar paradigm shift, as the introduction
of the first processors in certified systems delivered, with little clear idea on how to approach
the problem. The first system mentioned in the introduction is certainly a step in this
direction, even in this case though the process cannot be successfully completed, as it means
first testing the waters and then refining with future attempts.

4.4 Network-on-Chip — Dependability and Security Aspects
Roman Obermaisser, Christian El Salloum, Theo Ungerer, and Thomas Wild

License) Creative Commons BY 3.0 Unported license
© Roman Obermaisser, Christian El Salloum,Theo Ungerer, and Thomas Wild

A major requirements for NoCs in embedded systems in predictability. Techniques for
predictability range from static scheduling (e.g., time-triggered) to dynamic scheduling (e.g.,
priority-based). Also, NoCs provide solutions for monitoring and enforcement of resource
budgets (e.g., AEthereal). Predictable application behavior for a given NoC also requires
suitable modeling and timing analysis techniques.

The second challenge for NoCs is composability. Composability refers to a framework
that supports the integration and reuse of independently developed components in order to
increase the level of abstraction in the design process. Prior services of components must not
be invalidated by integration, which is facilitated by temporal and spatial isolation based on
precise interface specifications. In addition, the goal of composability is to avoid unintended
emerging side effects at the system-level. Of particular importance in NoCs is deadlock
freedom. Deadlock freedom can be ensured by isolation (i.e., control of dependencies),
suitable routing strategies without deadlocks and formal analysis methods for routing cycles.
Furthermore, resource guarantees such as bandwidth, jitter and latency must be maintained
upon component integration. A key mechanism are specifications with explicit resource and
memory requirements.

A third challenge for NoCs is fault-tolerance and robustness to support the reliable
operation in the presence of faults. NoCs need to support the provision of an acceptable level
of service on an MPSoC despite the occurrence of transient and permanent hardware faults
of resources. For permanent hardware faults, important techniques are active redundancy or
migration and reconfiguration of services exploiting spare resources. Transient hardware faults
require the recovery in predictable time with state recovery. In mixed-criticality systems,
containment of design faults is the primary concern, which is supported by NoCs with
strong temporal and spatial isolation. The error detection mechanisms for operational faults
and design faults can be based on a priori knowledge, information redundancy, analytical
redundancy or replication. Recent advances in fault-tolerance of NoCs focus on proactive
fault-tolerance. For example, wear-out specific scheduling takes into account temperature
variations or increasing fault-rates.

Security is rapidly gaining significance in the field of embedded systems. In particular in
safety-critical systems, security has to be considered as a safety aspect in scenarios where
a malicious attack can lead to unspecified system behavior with catastrophic consequences
(e.g., sabotage or terroristic attacks). The NoC in a multi-core processor provides the perfect
opportunity to implement security mechanisms directly in hardware in order to enforce
specific inter-core security policies. Considering the role that a NoC has, namely establishing
communication among the individual cores and other entities like on-chip device controllers,
a security-enabled NoC should establish the following properties:

175

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

176

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

Authenticity of the sender: A receiving core on the NoC should be able to reliably
determine the core from which a message was sent. It should be not possible for any core
to forge the sender address without being detected.

Message integrity: It should be not possible for any core to modify, delete or duplicate
the messages sent by any other core. In a real-time system, the integrity of a message
does not only depend on the message content, but also on the timing of the message.
Therefore the integrity requirement has to be extended, such that it also should be not
possible for any core to change the timing of messages that where sent by any other core.
Message confidentiality: Only the intended receivers of a message should be allowed to
read the message contents.

Availability of guaranteed communication resources: In a (hard) real-time system, guar-
anteed communication resources have to be given to the individual cores, in order to
assure that end-to-end deadlines are always met. From a security perspective it must be
prevented, that the behavior of a malicious core (e.g., due to a compromised program
running on a core) can lead to a violation of such guarantees (i.e. Denial-of-Service DoS
attacks).

Prevention of side-channel attacks: For some applications, it is required that there are no
other possible means of communication than the explicitly defined communication channels.
Such other means of communication are called side channels. An example of a side channel
can be found in a NoC where the temporal properties of a given communication channel
depend (even slightly) on the communication activities on another communication channel.
Imagine two malicious nodes located on two explicitly defined distinct communication
channels. Since the communication channels are defined as distinct, it should be not
possible to leak confidential information from one channel to the other. The problem in a
NoC that is not free from temporal interference, is that the two malicious cores can use
that interference to illegally exchange information in a Morse-Code like manner. One core
can induce a specific temporal interference pattern (by sending a pattern of channel-local
messages) which can be observed and interpreted by the core on the other channel.

An example of a NoC satisfying all the above stated requirements is the time-triggered
NoC (TTNoC) in the ACROSS architecture. In ACROSS the cores have no direct access to
the NoC, but only via the Trusted Interface Sub System (TISS) which acts as a guardian. The
TISS stores a statically defined time-triggered message schedule, which holds for each message
the sent instance as well as the route and the set of receivers. Thus, the time-triggered
schedule holds the entire topology which defines to which receivers a given message will
be forwarded. All other cores will never see the message. The statically defined topology
ensures message integrity and authenticity as well as confidentiality. Furthermore, the TISS
ensures that messages are only sent according to the time-triggered schedule such that
there is absolutely no temporal interference among different messages. Thereby the TTNoC
establishes availability of the communication resources and prevents hidden side-channel
attacks.

Adaptiveness is a challenge for NoCs to support system evolution, context adaptation
and resource variation. In long-lived systems, the integration of new components, services
and resources is needed to cope with changed application requirements. Technique for
adaptiveness include predictable, fault-tolerant and secure configuration of the NoC. A
prerequisite are standardized interfaces supporting configuration. Recent techniques for self-
optimization in NoCs are a promising approach to autonomously and continuously adapted to
the application behavior and resource availability. The extension of these feedback techniques
for safety-critical embedded systems is a future research challenge.

Andreas Herkersdorf and Michael Paulitsch

4.5 Multicore Ecosystem

Andreas Herkersdorf, Johan Lilius, Massimo Ferraguto, Christian Thiel, Stefan Wallentowitz,
and Thomas Wild
License) Creative Commons BY 3.0 Unported license

© Andreas Herkersdorf, Johan Lilius, Massimo Ferraguto, Christian Thiel, Stefan Wallentowitz,
and Thomas Wild

Multicore as an ICT Key Technology

Multicore processors are a key technology for coping with the important challenges our
society will face in the upcoming decades. Secure and sustainable mobility, comprehensive
healthcare, universal power management and the development of a digital society pose great
demands on a distributed and powerful information and communication technology (ICT).
These demands on embedded and cyber physical systems can only be met with multicore
processors. All leading processor vendors — Intel, IBM, ARM, Nvidia, Freescale, Infineon,
MIPS, TTI — pursue a multicore architecture strategy. Such multicore processors are superior
to their single-core ancestors with respect to processing performance and power efficiency, as
they can execute different tasks concurrently on less complicated but parallel processor cores.
On the other hand, industry and academia are facing entirely new challenges with respect
to system complexity. The efficient utilization of parallel processing resources currently
relies predominantly on the individual skills of the programmers. In the field of embedded
and cyber physical systems, multicore processors must adhere to much stronger demands of
real-time, power efficiency, reliability, safety and security when compared to standard desktop
machines. Furthermore, multicore-enabled test and debugging tools are often missing along
with universal methods for the modeling, design and validation of system issues. Various
industrial and academic institutions in Europe have identified the relevance of multicore
as a key ICT technology from the very beginning, and have established a competitive
knowledge base for multicore technologies. However, finding flexible and scalable solutions
for non-functional requirements, performance and power efficiency in increasingly demanding
embedded system applications will soon be beyond the capabilities of large-scale enterprises
or even networks of companies.

Roles and Benefits of a Multicore Ecosystem

The “Working Group Multicore” within the Bavarian ICT Innovation Cluster BICCNet
proposes the establishment of a research and development network to jointly tackle these
challenges [1]. In particular, topics such as parallelization support for non-functional re-
quirements, migration of existing software and the development of sophisticated tools for
debugging, testing and validation of multicore systems need to be addressed jointly. By
achieving their individual goals, partners in this research network will also contribute to the
above-mentioned topics. The results from publicly funded projects can be designed with
compatibly in mind by using standard interfaces, and are available to all partners, allowing
a growing multicore ecosystem to develop. Along with software and hardware components,
this ecosystem will also contain models, methods and tools for multicore solutions; to the
advantage of all contributing partners.

A multicore ecosystem can have a number of beneficial aspects. It can be an innovation
ecosystem, where the idea is to encourage the interaction among of the actors to create
new innovations, or its goal can be to create new business. In the first the main goal is
the creation of new ideas, while in the latter the goal is to create new economic value. In

177

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

178

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

addition, the mere information exchange among different players and recognizing, who can
bring what asset to the table and looks for filling what gaps in the own portfolio, may bring
together new partners and represents a value by itself.

An ecosystem is often recognised post-facto, when one realises that there are strong
activities around an issue. In the area of multi-core, the classical example of a business
ecosystem is the ARM ecosystem, that has grown around ARM processors. Other examples
of ecosystems are e.g. the activities around the AUTOSAR standard (which maybe is not as
clearly identified as an ecosystem yet), or the activities around the eclipse tools (for which
there is not necessarily big economic gain for the participants). Characteristic for these
ecosystems is that there is a central entity around which the actors of the ecosystems place
themselves to achieve added value.

In order to get started, the basic set of entities for a multicore ecosystem could center
around could be a set of tools or hardware and software intellectual property building blocks
(such as, e.g., elements of the AUTOSAR stack) that are either difficult to obtain (portability,
licensing), very expensive to buy, and would be too complex to build oneself. Identifying such
a set of tools and building blocks, and providing them for use to the community could be an
interesting foundation to start ecosystem building activities. Providing this set of tools as
open-source is crucial, since as noted by Riehle [3] this provides an avenue not only for users
of the software, but also for system integrators and other actors to increase profit. Finally
participation in the further development of the tools also becomes crucial for companies, as
this will allow them to participate in the decision processes and influence the tool evolution.

As a proposal the OpTiMSoC [2] tools could form a starting point.

Many-core Monday

An ecosystem needs a platform for interaction and for attracting new participants. One such
platform is the regular BICCnet AK Multicore meetings in Munich. Another interesting
concept is Mobile Monday'. This is an open community platform of mobile industry
visionaries, developers and influential individuals fostering brand neutral cooperation and
cross-border P2P business opportunities through live networking events to demo products,
share ideas and discuss trends from both local and global markets. Mobile Monday started
as an informal gathering in Helsinki, with the aim of bringing together persons in the mobile
industry. Initially it was just a group of people inviting friends and colleagues to an informal
drink in a bar on Mondays. Often there were one or two presentations about something
interesting, but the emphasis was on informal discussion and networking. The movement has
grown and is organised into chapters that have organised events in over 140 cities worldwide.

Open Innovation

Open Innovation is an idea promoted by Henry Chesbrough [4], where companies use both
internal and external ideas to create new products. An open innovation ecosystem consists of
a group of actors that share both risk and rewards, creating growth for everybody. Central
in this idea is that it is possible to build on top of other ideas. In the multicore area,
open innovation could help create larger toolflows if tool vendors would make their tools
interoperable, and would build new tools based on these toolflows. Open innovation is
promoted by many large companies, and e.g. Nokia has been working successfully with a
number of Universities (EPFL Lausanne, Berkley, Aalto), by forming “lablets” small research

Y http://www.mobilemonday.net/ — “Mobile Monday”

http://www.mobilemonday.net/

Andreas Herkersdorf and Michael Paulitsch

groups at the University campus. This makes it easy for the industrial and the academic
researchers to interact.

References

1 A. Herkersdorf et al., Relevanz eines Multicore-Okosystems fiir kiinftige Embedded Systems,
BICC-net, 2011, http://www.bicc-net.de/nachrichten/artikel/multicore-oekosystem/.

2 S. Wallentowitz, P. Wagner, M. Tempelmeier, T. Wild, A. Herkersdorf, Open Tiled Ma-
nycore System-on-Chip, arXiv:1304.5081, http://arxiv.org/abs/1304.5081

3 D. Riehle, The economic motivation of open source software: Stakeholder perspectives,
Computer, vol. 40, no. 4, pp. 25-32, 2007.

4 H. W. Chesbrough, Open Innovation, Harvard Business Press, 2006.

4.6 Secure Elements in future embedded multicore systems

Georg Sigl, Sri Paramareswaran, Michael Paulitsch, Stefan M. Petters, Matthias Pruksch,
Sergey Tverdyshev, and Stefan Wallentowitz
License) Creative Commons BY 3.0 Unported license

© Georg Sigl, Sri Paramareswaran, Michael Paulitsch, Stefan M. Petters, Matthias Pruksch,
Sergey Tverdyshev, and Stefan Wallentowitz

There is currently a trend that a specifically designed hardware attack resistant very well
isolated secure element is integrated in systems on chip (SoC). The purpose of this secure
element is:

Integrity check of software that is executed on the system during boot

Remote Attestation to confirm to a remote party that integrity of system is ok

Provide identity and authentication for communication with other parties (PKI)

Access control to resources and configuration registers of the SoC

Key storage and secure memory

One example where these features are used is the boot process in a system. Normally in
a microprocessor system using secure boot technology as specified by the Trusted Computing
Group, the boot code calculates a hash value of its own executable, sends this to the secure
element where the value is compared to an expected value. Then the secure element would
recognize if the boot code has been changed. After that the boot core calculates the hash
value of configuration code, e.g. BIOS, and afterwards of the operating system kernel and
sends these values to the secure element as well for comparison. After completion of this
process the secure element can confirm that the system has been started with trusted software.
In a multicore embedded system this start up procedure is executed by one core (core 0)
which then starts the boot process of other cores.

This security solution is based on the assumption that no hardware attacks are performed
on the system on chip and a software security layer, e.g. a hypervisor, provides sufficient
security and separation services for the applications running on the multicore system. For
a better separation of cores a new architecture with an encryption and decryption (D/E)
unit at each core could be helpful as shown in Figure 1. All data leaving a core would be
encrypted and could be put into common memories without the chance to access it from
other cores unless the correct key is known.

If we assume hardware attacks on a multicore system we currently have no hardware
means in the multicore to detect them. The only solution in a system with a secure element
is to move all security critical tasks into the secure element and establish an end-to-end

179

13052

http://www.bicc-net.de/nachrichten/artikel/multicore-oekosystem/
http://arxiv.org/abs/1304.5081
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

180

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

Figure 1 An encryption and decryption unit at each core can help with better separation of
cores.

protected communication channel between the secure element and the remote application
requesting the security service. If we have security services, which need a high bandwidth
such as car2car communication with hundreds of signatures to be computed within seconds,
there may be a need to integrate many secure elements as well. Otherwise there may be a
bandwidth problem in an architecture as shown above.

There are both chances and risks in multicore systems concerning security (see presentation
of Georg Sigl). One example where we see even both advantages and disadvantages in
multicore systems is the chance to implement monitoring services in multicores. One core
could be used to monitor the behavior of others in order to detect misbehavior created by
malware running. On the other side the monitoring could be used to perform side channel
attacks with a much better measurement accuracy compared to an external measurement of
the cache behavior, e.g..

A very good countermeasure against many attacks, such as side channel attacks, is
randomization. Multicores give plenty of opportunity for randomization, which is exactly the
most severe concern of safety-critical system design engineers. Designers and certification
authorities insist in deterministic behavior for these systems in order to determine, e.g., worst
case execution times and to guarantee certain timings. As a solution to resolve this conflict
for secure safety-critical systems, it would be very interesting to investigate implementations,
which accept random behavior and still guarantee a timely execution with high probability.
The project Proartis? goes into this direction. Synergies between this approach and the
needs and solutions developed in the security domain could be a very interesting research
direction and may be also a topic for a future Dagstuhl seminar.

2 http://www.proartis-project.eu/

http://www.proartis-project.eu/

Andreas Herkersdorf and Michael Paulitsch 181

4.7 Inter-seminar workgroup: Software Certification & Multicore
Processing

Michael Paulitsch

License @ Creative Commons BY 3.0 Unported license
© Michael Paulitsch

Multicore processing for safety-critical and security-relevant and safe deployment strongly
depends on the ability to certify software running on multicore processors in the system
context. The workshop “Multicore Enablement for Embedded and Cyber Physical Systems”
has been incidentally running in parallel to the workshop “Software Certification: Methods
and Tools (Seminar 13051)”. Both groups realized the link between the two topics and
organized an open common exchange and discussion session that addressed both topics in
some detail. The common session increased the understanding of each other’s workshop
topic and made participants realize the complexity of certification involving multicore
processors. An exemplary common observation of both seminar participant groups was
the ever increasing gap and wishes of simplicity of processing in certified safety-critical
environments for deterministic execution of critical software and the increasing modern
multicore processor complexity.

13052

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

182

13052 — Multicore Enablement for Embedded and Cyber Physical Systems

Participants

= Michael Deubzer

Timing Architects Embedded
Systems GmbH, DE

= Christian El Salloum

TU Wien, AT

= Rolf Ernst

TU Braunschweig, DE

= Glenn Farrall
Infineon — Bristol, GB

= Christian Ferdinand
AbsInt — Saarbriicken, DE

= Massimo Ferraguto

Space Syst. Finland Ltd —
Espoo, FI

= Steffen Gorzig

Daimler AG — Boéblingen, DE
= René Graf

Siemens AG — Niirnberg, DE

= David Gregg

Trinity College Dublin, IE
= Geoff Hamilton

Dublin City University, IE

- Andreas Herkersdorf
TU Miinchen, DE

= Johan Lilius
Abo Akademi University, FI

= Enno Liibbers
Intel GmbH — Feldkirchen, DE

= Roman Obermaisser
Univ. Siegen — Feldkirchen, DE

= Sri Parameswaran
UNSW - Sydney, AU
= Michael Paulitsch
EADS — Minchen, DE

= Stefan M. Petters
ISEP-IPP - Porto, PT

= Matthias Pruksch
sepp.med — Réttenbach, DE

= Georg Sigl
TU Minchen, DE

= Claus Stellwag
Elektrobit Automotive —
Erlangen, DE

= Jiirgen Teich
Univ. Erlangen-Niirnberg, DE

= Christian Thiel
BICCnet — Miinchen, DE

= Lothar Thiele
ETH Ziirich, CH

- Sergey Tverdyshev
Sysgo AG — Mainz, DE

= Theo Ungerer
Universitdt Augsburg, DE

= Stefan Wallentowitz
TU Miinchen, DE

= Alexander Weiss
Accemic GmbH & Co. KG —
Kiefersfelden, DE

= Thomas Wild
TU Minchen, DE

= Reinhard Wilhelm
Universitit des Saarlandes, DE

	Executive Summary Andreas Herkersdorf, Michael G. Hinchey, and Michael Paulitsch
	Table of Contents
	Overview of Talks
	The ARTEMIS ACROSS project Christian El Salloum
	A Model-based Approach for Optimizing Existing Real-Time Software on Multicore Processors Michael Deubzer
	IDAMC – A manycore architecture for mixed critical applications Rolf Ernst
	Commerical Challenges of MultiCores in Automotive Domain Glenn Farrall
	Timing Predictability of Multi-Core Processors Christian Ferdinand
	Road to the use of multicore processors in space systems Massimo Ferraguto
	Analysis of Embedded Software for Multicore in the Automotive Domain Steffen Goerzig
	Multi core – Single bus Rene Graf
	Distilling Programs for Multicore Architectures Geoff Hamilton
	Necessity for & Feasibility of a Multicore Ecosystem Andreas Herkersdorf
	``Heterogeneous Multiprocessing or Just a Bunch of Coprocessors?'' – The case for unified programmability Enno Luebbers
	Fault-Tolerant Time-Triggered Communication Infrastructure for Multi-Processor Systems-on-a-Chip Roman Obermaisser
	Multi-Core in Avionics – On Problems and One Technical Approach Monitoring-Based Shared Resource Separation for Commercial Multi-Core System-On-Chip Michael Paulitsch
	Talk on ARTEMIS Project RECOMP Michael Paulitsch
	Talk on German Project ARAMiS – Automotive, Railway, and Avionics Multi-Core Systems Michael Paulitsch
	Fine grained process migration for MPSoCs Sri Parameswaran
	Task Mapping for Manycore-based Embedded Real-Time Systems Stefan M. Petters
	Sustainable Development of Software in the Multi-Core Age Matthias Pruksch
	Chances and risks for security in Multicore processors Georg Sigl
	Isolation of Cores to Support Development of Mixed Critical Systems Claus Stellwag
	Safe(r) Loop Computations on Multi-Cores Jürgen Teich
	parMERASA- Multi-Core Execution of Parallelised Hard Real-Time Applications Theo Ungerer
	OpTiMSoC – An Open Source Experimentation Platform for Multicore Stefan Wallentowitz
	Efficient observation of Multicore SoCs Alexander Weiss
	Many cores – many problems Reinhard Wilhelm
	High-level Simulation-based Design Space Exploration on Multicore Virtual Platforms Thomas Wild

	Working Groups
	Specification & Interference Claus Stellwag, Michael Deubzer, and Glenn Farrall
	Industrial Perspective on MultiCore Motivations and Challenges Glenn Farrall, Christian Ferdinand, Massimo Ferraguto, Steffen Görzig, Michael Paulitsch, Matthias Pruksch, Claus Stellwag, Sergey Tverdyshev, and Alexander Weiss
	Certification of Safety-Critical Multicore Systems: Challenges and Solutions Stefan M. Petters and Rene Graf
	Network-on-Chip – Dependability and Security Aspects Roman Obermaisser, Christian El Salloum,Theo Ungerer, and Thomas Wild
	Multicore Ecosystem Andreas Herkersdorf, Johan Lilius, Massimo Ferraguto, Christian Thiel, Stefan Wallentowitz, and Thomas Wild
	Secure Elements in future embedded multicore systems Georg Sigl, Sri Paramareswaran, Michael Paulitsch, Stefan M. Petters, Matthias Pruksch, Sergey Tverdyshev, and Stefan Wallentowitz
	Inter-seminar workgroup: Software Certification & Multicore Processing Michael Paulitsch

	Participants

