
NESSy: a New Evaluator for Software
Development Tools∗

Enrique Miranda1, Mario Berón1, German Montejano1, Maria João
Varanda Pereira2, and Pedro Rangel Henriques3

1 Department of Informatics, Universidad Nacional de San Luis
Ejército de los Andes 950, Argentina
{eamiranda,mberon,gmonte}@unsl.edu.ar

2 Department of Informatics, Instituto Politécnico de Bragança
Quinta de St. Apolónia, Bragança, Portugal
mjoao@ipb.pt

3 Department of Informatics, Universidade do Minho
Campus de Gualtar, Braga, Portugal
prh@di.uminho.pt

Abstract
Select the best tool for developing a system is a complex process. There must be considered
several aspects corresponding to the domain where the system is going to run. Generally, the
domain characteristics only are comprehended by experts. They know very well which are the
main characteristics, how they can be combined and which should not be considered. This
knowledge is fundamental to select the most appropriate tool for implementing a system that
solves problems or automates processes in a specific domain. For this reason, it is difficult to get
a tool that allows to establish a ranking of development tools for a particular case. In this paper,
NESSy, a system to evaluate software development tools, is presented. This tool implements
a multi-criteria evaluation method named LSP (Logic Scoring of Preference). Furthermore, it
presents a user-friendly environment for carrying out the evaluation process. LSP uses a set of
structures aimed at describing software development tools with the goal of select the best one
for a specific problem. The features previously mentioned make NESSy a relevant application to
help the software engineer to select the best tool for solving specific problems related to particular
domains.

1998 ACM Subject Classification D.2.7. Distribution, Maintenance, and Enhancement

Keywords and phrases Evaluation Method, Elementary Criteria, Aggregation Structure, LSP.

Digital Object Identifier 10.4230/OASIcs.SLATE.2013.21

1 Introduction

During the software development process, the engineer faces several problems. In this context,
a common challenge is to select the most appropriate tool to develop software [23, 25, 24, 26].
This problem is not trivial, because the selection is highly dependent on the context and
on the application domain [27, 28]. For example, an Integrated Development Environment
(IDE) helps the engineer to develop systems when the computer used is powerful.

∗ This work was partially supported by Universidade do Minho and Universidad Nacional de San Luis.

© Enrique Miranda, Mario Berón, German Montejano, Maria João V. Pereira and Pedro R. Henriques;
licensed under Creative Commons License BY

2nd Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simões; pp. 21–37

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

22 NESSy: a New Evaluator for Software Development Tools

However, it is not true when this last requirement is not met. It is possible to find
thousand of examples like the previous one. Unfortunately, the process used by the engineers
to select the tools is ad-hoc. This process is based on the engineer’s experience and the
problem complexity. Both aspects are relevant, nevertheless many other features have to
be taken into consideration. In this context, we realized that there is a lack of tools that
implement a flexible and configurable evaluation method.

NESSy aims at solving the problem mentioned in the precedent paragraph by implementing
LSP (Logic Scoring of Preferences), a multi-criteria evaluation method. In order to simplify
the method application, NESSy implements and defines a visual domain specific language.
This language is based on graphs and it has several operations to do insert, delete and modify
the specification components (nodes and arcs and their corresponding attributes).

To evaluate a development tool using LSP, the following items must be defined: a list
of attributes, an aggregation structure and a set of elementary criteria functions [10, 11].
The first component describes all the characteristics that the product must have to simplify
the implementation of the problem solution. The second is defined using logical operators
and functions that combine the criteria specified. The third maps an attribute value into
an elementary preference, i.e. a value into the range [0,100]. This value represents the
attribute satisfaction level. Once defined the characteristics, the aggregation structure, and
the functions of elementary criterion, an evaluation process is applied to obtain a number
that represents a global preference. This preference indicates the satisfaction level of the
engineer regarding the Software Development Tool under evaluation. When many tools are
evaluated using LSP, it is possible to establish a ranking by sorting the global preference.
NESSy implements LSP providing a practical, functional and complete graphical interface
This peculiarity makes the selection process easier.

The article is organized as follow. Section 2 explains the Logic Scoring of Preference
method. Section 3 describes all the NESSy characteristics, i.e: architecture, environment, the
evaluation process, functionalities of its graphical interfaces, etc. Section 4 presents a case
study to validate the approach. This case study is concerned with the selection of the best
graphical library to build software views using software visualization techniques [29]. Finally,
section 5 summarizes the proposal and concludes this article with trends for future work.

2 Logic Scoring Preference

Logic Scoring of Preference (LSP) is a multicriteria evaluation method based in the definition
of: a criteria tree, elementary criteria functions and an aggregation structure. LSP is useful
to analyze, compare and select, the best alternative from a set of objects being graded
and ranked (in our case we are interested in software development tools). In the following
subsections, all the LSP components will be explained.

2.1 Criteria Tree

The criteria tree has the characteristics that the tools under evaluation must have. With the
goal of developing a complete criteria list, a hierarchical decomposition process is applied. At
the end of this process a list of measurable attributes is obtained. In the first instance, the
high level characteristics are defined. Then, they are decomposed in sub-characteristics and
so on. This process is repeated until obtain the atomic attributes. The result of this task is
a tree that describes the main characteristics that the objects under evaluation must meet.

E. Miranda, M. Berón, G. Montejano, M. J. V. Pereira and P. R. Henriques 23

2.2 Elementary Criteria
LSP requires the normalization of the measurable attributes. This normalization is necessary
because: i) in several decision contexts the measurement units are different; ii) the values of
different attributes may be incomparable.

The LSP attribute normalization is accomplished through the definition of Elementary
Criterion Functions. An elementary criterion function maps a value taken by the performance
variable in other contained in the interval [0,1] or [0,100]. This value represents the satisfaction
level of the performance variable under observation. So, 0 represents a situation where the
performance variable does not satisfy the requirements at all, and 1 (or 100) means that
the requirement is totally satisfied. The elementary criteria can be classified as: Absolute or
Relative.

An Absolute elementary criterion is used to determine the absolute preference of some
attribute. A Relative elementary criterion is employed to establish the relative indicators of
the tools under comparison.

Relative elementary criteria are not frequently used for this kind of evaluation. So NESSy
only supports the Absolute type of elementary criteria and the Relative one will no more be
discussed in this context.

Absolute elementary criteria can belong to different types, as defined below.
Continuous Variable
Multivariable: The performance variable is computed by a function. This function

receives parameters as its input and returns the value corresponding to the attribute
under evaluation. For example, the attribute Supported Paradigms can be evaluated
by formula 1.

SupportedParadigms = 100× ParadigmsLG

ParadigmsMax
(1)

In this case, both the ParadigmsLG and ParadigmsMax are the parameters and the
value stored in the variable SupportedParadigms is the attribute value.

Direct: The performance variable has a value that is directly inserted by the evaluator.
Discrete Variable
Multilevel: The performance variable can take one value from a set of discrete values.

These values are established by the evaluator in the stage of elementary preference
definition; they correspond to different preference levels. The engineer in the evaluation
stage must choose a value from that set.

2.3 Aggregation Structure
The elemental preferences, that result from the application of the elementary criteria to
the measurable attributes, must be aggregated in order to obtain the global preference.
This global preference represents the satisfaction of all the requirements, by the tool under
evaluation.

In order to reach the global preference, some aggregation preference functions are used.
These functions receive a set of elementary preferences and their corresponding weights as
input. The weights represents the relative importance for each preference. The functions
return aggregated preferences as their output. All the outputs are aggregated in the next
level of the structure. This process is repeated until the global preference is reached. The
aggregation function proposed by LSP is presented in formula 2.

SLATE 2013

24 NESSy: a New Evaluator for Software Development Tools

E = (w1er
1 + w2er

2 + + wker
k) 1

r (2)

where:

−∞ ≤ r ≤ +∞
0 ≤ wi ≤ 1 and i = 1..k

w1 + + wk = 1

E is a general instantiation scheme which produces a continuous spectrum of aggregation
functions, depending on the value of r. Table 1 shows the most relevant values for r, taking
into account the number, n, of function input values. For example, if the operator under
consideration is D- and it receives three input values, then the value of r in the precedent
formula is 2.19. To be clearer, r represents the conjunction-disjunction degree of each
operator. We say that r generates several functions known as Conjunctive Disjunctive
Generalized functions (CDG). These functions are the operators used to aggregate the
elementary preferences. The formula employed to compute the values in table 1 is explained
in [11].

2.4 The Evaluation Process
The evaluation process is carried out defining the values of all performance variables for each
tool under evaluation. In this way, for each system, a global preference will be computed
and this value is used to elaborate the ranking. Figure 1 shows a representation of the LSP
Evaluation Method.

The global preference is obtained from the computation (represented in figure 1 by
L(E1..En)) of all the elementary preferences.

And these elementary preferences are the result of applying the elementary criteria to
the performance variables. Finally, the elementary criteria can be computed because the
engineer provides the required values.

2.5 Related Work
Multiple Criteria Decision Methods (MCDMs) are used to evaluate and make decisions
regarding some problems that admit a finite number of solutions [23]. Nowadays there

Table 1 Values of r corresponding to each CDG.

Operation Name Symbol r
n=2 n=3 n=4 n=5

Disjunction D +∞ +∞ +∞ +∞
Strong Cuasi Disjunction D+ 9.52 11.09 12.28 13.16
Cuasi Disjunction DA 3.83 4.45 4.82 5.09
Weak Cuasi Disjunction D- 2.02 2.19 2.30 2.38
Arithmetic Media A 1.00 1.00 1.00 1.00
Weak Cuasi Conjunction C- 0.26 0.20 0.17 0.16
Cuasi Conjunction CA -0.72 -0.73 -0.71 -0.67
Strong Cuasi Conjunction C+ -3.51 -3.51 -2.18 -2.61
Conjuction C −∞ −∞ −∞ -∞

E. Miranda, M. Berón, G. Montejano, M. J. V. Pereira and P. R. Henriques 25

Figure 1 LSP Method Representation.

are a considerable number of MCDMs that are used in decision making in various topics.
However, it was difficult to find, in the literature, systems that implement this kind of
methods. The MCDMs most recently used and implemented are ELECTRE (ELimination
Et Choix Traduisant la REalité) and PROMETHEE (Preference Ranking Organization
METHod for Enrichment Evaluations). Both methods use a similar approach than LSP.
ELECTRE was proposed by Bernard Roy in 1971 [24]. The tools that implement different
versions of ELECTRE [19, 1, 20], generally have some drawbacks, for example: they employ
traditional interaction strategies, they do not define a Domain Specific Language (DSL)
to be used during the evaluation process (even when it would be very functional), they
use complex fuzzy logic that user must deal with, etc. PROMETHEE was developed by
Brans and further extended by Vincke and Brans [9]. PROMETHEE is quite simple in
conception and application compared with the other MCDMs. Therefore, it is widely used in
research and practical contexts. Two of the most used implementations of PROMETHEE are
Decision LAB and PROCALC [8]. Nevertheless, both have similar drawbacks comparing to
ELECTRE implementations. Other MCDM implementations such as AHP [27], MAUT [17],
etc., were studied. However we could not find those implementations available for a deeper
comparative analysis. In the case of LSP (Logic Scoring of Preference), there are some tools
based on this method, as the one presented in this article. However, these tools have the
following drawbacks: i) they frequently are developed for specific cases (e.g. LSPmed [13],
webQEM [21]); ii) they do not provide a DSL (even when this kind of language might be
clearly useful); iii) some present a poor user interface (e.g ISEE [12]); iv) they do not offer
complete documentation; v) most of them are not available to be used or analyzed.

NESSy tries to tackle the problems before mentioned by providing a user-friendly interface,
a visual DSL, a simple evaluation process, among other features.

3 NESSy

In this section, NESSy characteristics are described. In first place, and with the goal of
providing an overview of NESSy components, the architecture will be explained. Then the
interface where the engineer carries out the evaluation process will be presented. Finally, the
evaluation process will be in detail explained.

3.1 Architecture
Figure 2 shows NESSy architecture. NESSy is composed of four components: Criteria Tree
Constructor (CTC), Aggregation Structure Constructor (ASC), Elementary Criteria Specifier
(ECS) and Evaluator.

SLATE 2013

26 NESSy: a New Evaluator for Software Development Tools

Figure 2 NESSy Architecture.

CTC receives as its input Criteria Information (CI) and produces as its output the
Criteria Tree (CT). CTC allows to define criteria for characterizing the tools to be evaluated.
Clearly, this component has functionalities like: Add Criterion, Delete Criterion, Modify
Criterion, etc. In this context CI represents the expert’s knowledge. It is important because
the evaluation process depends on the CT. If CT is not well built the results obtained will
not be correct. The CT structure reflects the successive decomposition of the characteristics
into sub-characteristics and so on until obtaining the measurable attributes.

ASC adds the logic needed to carry out the evaluation process.
It is important to mention that the aggregation structure is built bottom-up from the

leaves (attributes) until the last operator is obtained. This particular operator produces the
tool global preference. This component has functionalities such as: Add Logical Operator,
Delete Logical Operator, Add Weight, etc.

ECS receives as its input the CT. Like ASC, this component takes into consideration the
leaves of the CT, i.e. the measurable attributes. For each attribute, this component selects
its type and, according to the type, to define its evaluation function.

Finally, the Evaluator receives as its input both the AS and the refined ECs. Then the
Evaluator traverses the AS and, using the information provided by the engineer, produces a
ranking of the tools under evaluation.

3.2 Interface
NESSy interface is composed of four components: Menu, Top Panel (TP), Central Panel (CP)
and Bottom Panel (BP) (see figure 3). Menu exhibits a classical set of project management
operations. The operations available are: Load, Save, New Project, Exit and Help.

TP contains the buttons Load, Save, Validate and the field Current Stage. The buttons
have the same functionality that the options provided in the Menu component. Current
stage field indicates the process stage undergoing, i.e. the one carried out in the CP.

CP displays all the components needed to carry out the evaluation process. This process
has four stages which are explained in the next subsection. The elements shown in CP
depend on the process stage. In the first two stages, the elements exhibited are concerned
with the construction of structures needed by the evaluation process. In the other stages,
the elements exhibited are related with the presentation of intermediate and final results.

BP has the buttons Previous and Next and Contextualization Figures. The buttons are
employed to proceed to the next stage or go back to the previous one. The Contextualization
Figures are useful to indicate the current phase and to notify the evolution of the evaluation
process (its present level).

E. Miranda, M. Berón, G. Montejano, M. J. V. Pereira and P. R. Henriques 27

Figure 3 NESSy Environment Screenshot.

3.3 The Process
The evaluation process provided by NESSy has four stages (the same specified in LSP
section), they are: CT Constructor, AS Constructor, EC Specifier and Evaluator.
The following subsections explain in detail each stage.

3.3.1 CT Constructor
In this stage, the main characteristics used to compare the tools to be evaluated will be
defined. This set of characteristics is represented using a tree. The leaves of this tree are
measurable attributes. It is important to notice that the evaluation process only use the tree
leaves. Nevertheless, the progressive elaboration of the tree from its root until its leaves has
the advantages mentioned below:
1. Makes easier the Criteria Definition: The creation of internal nodes allows to apply a top-

down decomposition process. In this process, the engineer defines high level characteristics
and decomposes them in sub-characteristics until obtain the attributes.

2. Improves the Visualization: At the end of the definition process, it is possible to observe
a tree structure that shows all the criteria defined. This global view permits to do some
reasoning and this particularity helps to improve the structure.

Each time that a new project is created, NESSy shows, in its central panel, the tree root.
The nodes are created pressing the mouse right button and selecting the option Add Node
from the pop-up menu. In order to improve the visualization, the tree nodes are distinguished
using different shapes and colors. The Internal Nodes (characteristics, sub-characteristics,
etc.) have elliptic shape and their background is green. The leaves (attributes) have square
shape and their background is yellow. The nodes can be edited just pressing the mouse right
button. The following operations are then available:
1. Edit Name: It allows to modify the node name.
2. Delete Node: It is employed to delete a node. This operation is implemented as a cascade

deletion, i.e. all the sub-tree corresponding to the node will be deleted.
3. Add Node: This operation is used to add a new node in the tree. The new node is tagged

as New Node and it is setted as Internal Node.

SLATE 2013

28 NESSy: a New Evaluator for Software Development Tools

4. Final Node: It is utilized when the engineer wants to change the node type to Final Node,
i.e. an attribute.

5. Internal Node: It is utilized when the engineer wants to change the node type to Internal
Node, i.e. a characteristic or sub-characteristic.

A larger number of nodes increases the complexity of visualizing and organizing the tree
structure. For this reason, NESSy provides visualization functionalities such as:
1. Zoom in and Zoom out: It is possible to zoom in or zoom out all the structure. Zoom in

is carried out holding pressed the mouse right button and moving it down. To do a zoom
out the same tasks must be done except that the mouse must be moved up.

2. Drag and Drop: It is employed to move all the structure and to focus on the structure
sector under analysis. This functionality is achieved by pressing the mouse left button
and moving it to the position wished.

3. Zoom to fit: It is used when the structure is out of focus. NESSy provides the operation
Zoom to fit to achieve that. This operation puts the structure on the center of the central
panel and executes the operations necessary for its total visualizaton. To accomplish a
zoom to fit the central mouse button must be pressed.

Along this stage, NESSy guarantees that:
1. It is not possible to delete the root node.
2. The root can not be a final node.
3. The final nodes have different names.
4. The Criteria Tree has at least two final nodes (attributes).
5. An internal node cannot be converted into a final node if it is the root of a sub-tree.

Figure 3 shows a fragment of the Criteria Tree used to compare graphical libraries. Notice
that among the four characteristics presented at the first level of the CT, only Compatibility
is decomposed into its elementary components, the attributes (tree leaves).

3.3.2 AS Constructor
In this stage, the attributes defined in the previous one (the CT leaves) are shown. They are
placed in the central panel following the order established in the CT.

The objective of this stage is to build a DAG (Directed Acyclic Graph), such that the
initial nodes (the DAG source nodes) are the attributes; these nodes are then aggregated until
obtaining just one node (the DAG sink node). The resulting value of this node represents
Global Preference. Each node, except those that represent attributes, must be associated
to a LSP operator. Furthermore, the arcs must be labeled with a number. This number
represents a weight. The elements of the DAG are differentiated through their shape and
color. In this case, we use a square shape with yellow color for the attributes. The operators,
i.e the internal nodes, have elliptic shape with gray color. The arcs are represented by arrows
with gray lines and yellow heads.

The aggregation structure is built using four pop up menus.
The first, Add Node, is employed to add an LSP operator node. When the left button

is pressed on the menu another pop up menu appears. It presents the following options:
i) Select Operator, this option permits to assign the corresponding logical operator to the
node. ii) Delete, it is utilized to delete the current node.

The second, Add Arc, is used to connect the nodes. This connection can be carried out
between an attribute and one operator or between two operators. When an arc is pressed
another sub-menu is displayed; it offers several options to modify the node label, and to
delete the arc.

E. Miranda, M. Berón, G. Montejano, M. J. V. Pereira and P. R. Henriques 29

Applying the operations described above, it is possible to build any graph. However, LSP
method does not work with any graph, some conditions must be fulfilled. They are listed
below:
1. The graph must be a DAG.
2. The attributes have not input degree.
3. All the operator nodes must be defined as LSP operators.
4. All the arcs must have a weight p, 1 ≤ p ≤ 100, assigned.
5. The aggregation structure can not contain parallel arcs.
6. The input degree of the operator nodes ranges between two and five.
7. The sum of the weights of the input arcs of an operator node must be equal to 100.
8. There are only one sink node.
9. The Left Ideal1 of the sink node is composed by all the structure nodes.

Before proceeding to the next stage the aggregation structure must be validated. In
other words, NESSy must verify that the Aggregation Structure built complies with all the
conditions listed above. NESSy carries out this task when the button Validate is pressed. If
the aggregation structure is not correct, NESSy shows the errors found. Figure 4 illustrates
the precedent situation, using an example based in the evaluation of graphical libraries. The
errors detected in this example are:
1. There is one arc without weight – the arc with red color has no weight.
2. There is one node without operator – the node with label New Node has no LSP operator

assigned.
3. There are nodes with wrongly pounded arcs – the weight is not correct (the sum is not

equal to 100), as happens with node labeled a (one input arc has no weight assigned).
4. There is one criterion without use – Portability is an isolated node.
5. The aggregation structure is incorrectly formed – There is one node isolated: Portability.

1 Let G=(P,E) a graph where P is a node set and E is a relation defined on P, E ⊆ P × P , and let x be a
node x ∈ P then LeftIdeal(x)={y ∈ P/ρ(y, x)} where ρ(y, x) denotes a path from y to x.

Figure 4 Error detection in the definition of an Aggregation Structure.

SLATE 2013

30 NESSy: a New Evaluator for Software Development Tools

Figure 5 Interface corresponding to the Third Stage.

3.3.3 EC Specifier
At this stage, the type of each elementary criterion (EC) and the formula to evaluate it are
specified. NESSy interface to support this stage is shown in figure 5.

Observing this figure, it is possible to identify the elementary criteria displayed on the
left side, and two text areas on the right side. The first contains an advice to inform the
user that going back to stage one, all work done will be lost. The second displays some tips
regarding the criteria specification.

To specify the ECs, the left side of the screen, shown in figure 5, has three columns:
i) Variable Name contains the criteria names, ii) Type allows to select the type of each
criterion, iii) Modify is a button that allows to add information concerned with the criterion.
A forth column is included, Defined (yes/no), to indicate whether the criterion has been
defined, or not.

In order to specify the function for each elementary criterion, the engineer must follow
the steps described below.

1. Select the criterion type.
2. Press the button Modify to open the corresponding pop-up panel.
3. Complete the information required filling the form in that panel.

It is important to remark that NESSy supports the three types of elementary criteria
explained in section 2, they are: Continuous Variable – Multivariable (see figure 6), and
Direct; and Discrete Variable – Multilevel (see figure 7).

E. Miranda, M. Berón, G. Montejano, M. J. V. Pereira and P. R. Henriques 31

Figure 6 Pop up Panel to specify Criteria of type Continuous Variable (Multivariable).

3.3.4 Evaluator
In this phase, the engineer must:
1. Define the tools to evaluate.
2. Provide, for each tool the information required by the elementary criteria in order to

proceed the evaluation.

The evaluation phase also has its pop up panel. In this panel, it is possible to find a
table and two buttons (Add Element and Delete Element). The table allows to visualize the
software system to be submitted to the evaluation process. It has four columns, they are:
i) Name: It is the name of the tool; ii) Input Values: Each cell in this column has a button.
When this button is pressed a pop up panel appears. The format of this panel depend on
the type of elementary criterion. If it is a Continuous Variable the engineer must fill the

Figure 7 Pop up Panel to specify Criteria of type Discrete Variable (Multilevel).

SLATE 2013

32 NESSy: a New Evaluator for Software Development Tools

Figure 8 Panel to Evaluate a Continuous Variable Criterion.

data required by the panel shown in figure 8. If it is Constant Value the engineer just needs
to provide the preference level. Finally, if it is Discrete Multi-Level, all the values defined in
the previous steps are shown again. The engineer must select the preference level wished.

The next step is to proceed with the global evaluation. This process uses the Aggregation
Structure combining both the criteria and the LSP operators. The Aggregation Structure is
traversed and the value for each criterion is computed, following the LSP semantics. At the
end of the process, the global preference is computed.

The process described above is applied to all the tools under analysis and the ranking is
established taking into consideration the global preference of each tool.

4 Case Study: Visualization Libraries

Software Visualization (SV) is a discipline of Software Engineering aimed at creating and
displaying useful static or dynamic views of software [2, 3, 18]. A view is a graphical
representation that helps to understand some software aspects.

In order to build a view, many artifacts must be defined. An artefact is a concept used
to refer an object belonging to a particular visualization.

Building views and their associated artefacts can be a complex task. For example, to
build a graph-based view by implementing the graph from the scratch is a hard task and it
consumes much time and efforts. The engineer must consider: the internal representation,
the complexity of the operations and different strategies to visualize graphs.

When a complete and tested graph library is used much time is saved and many program-
ming errors are avoided.

The following sections describes how NESSy was used to select the most appropriate tool
to rig up software visualizations [4, 5].

4.1 Criteria Tree
The Criteria Tree shown in figure 9 has been built after a deep research in the context of
Software Visualization. As it possible to observe, the tree has four main characteristics:
Computational, Functional, Compatibility and Documentation.

The Computational characteristic is concerned with the computation of two kind of
sub-characteristics: Quantitative and Qualitative. The first analyzes simple metrics that
must be taken into account when a software tool is selected. The second is related with
properties concerning the current use of the library.

E. Miranda, M. Berón, G. Montejano, M. J. V. Pereira and P. R. Henriques 33

The Functional characteristic contains properties that a visualization library must have.
For example, a visualization library must have a large number of visual artifacts, because in
the other way it will not be useful.

The Compatibility characteristic describes the possibility of using the library with various
paradigms and in different platforms.

Finally, the Documentation characteristic includes a relevant software aspect: the existence
of well-formed and organized texts describing the software package. Many times, the engineers
reject using a powerful library because it is complex to understand how it works. It is due to
the absence of a good and clear documentation.

To finish this section, it is relevant to remark that, the actual tree has more criteria
(see [14] for more details) than those here considered. However, many of them need to be
disaggregated in order to be used by NESSy (for more details read [14]).

4.2 Aggregation Structure
The aggregation structure was built taken into account: i) The user’s experience using
graphical libraries; ii) Experts recomendations; iii) The state of the art of graphic libraries in
the context of Software Visualization, as exposed by Miranda in [14].

Figure 9 Criteria Tree.

SLATE 2013

34 NESSy: a New Evaluator for Software Development Tools

Figure 10 Aggregation Structure corresponding to High Level Characteristic Compatibility.

Table 2 ParadigmsGL and ParadigmsMax description.

Name Min. Max. Note
ParadigmsGL 0 100 Paradigms supported by the graphic library
ParadigmsMax 0 100 Maximum number of paradigms supported by a graphic library

Figure 10 shows the aggregation structure corresponding to the high level characteristic
Compatibility. The Compatibility’s partial preference is computed by using two operators.

The first, C+, a quasi-conjunctive function, aggregates Supported Paradigms and Integra-
tion with Programming Languages. This operator is employed when the input requirements
are mandatory. Thus if one of the input values is zero, the operation result will be zero.
The second operation A (the arithmetic average) is a neutral function (neither conjunctive
nor disjunctive). It aggregates the first result with the three criteria Integration with IDEs,
Extensibility and Portability. The reader willing to know the full aggregation structure can
read [14].

4.3 Elementary Criteria Functions
The approach to specify the Elementary Criteria Functions was described in section 3.3.3.
To illustrate how this task is carried out, a simple example is presented: the specification
of the elementary criterion Supported Paradigms. This criterion is of type Multivariable (a
Continuous Variable) and depends on two parameters ParadigmsGL and ParadigmsMax

that are described in table 2. The value of Supported Paradigms is determined by formula 1.
Using NESSy to accomplish this task, it is necessary to start specifying the criterion type

in the form shown in figure 5. After this action, a new pop-up panel will spring out. Then
the description of the two parameters and the evaluation formula, presented above, shall be
filled in the form associated to that pop-up panel, as can be seen in figure 6.

4.4 Evaluation
In order to show NESSy usefulness, three graphical libraries were evaluated: Graphviz, JUNG
and Prefuse. Graphviz is open source graph visualization software [15]. This library has
been used in several scientific projects. Jung provides a common and extensible language
for the modeling, analysis and visualization of data that can be represented as a graph or
network [16]. Prefuse is a software tool for creating rich interactive data visualization [22].

At this stage all the values required to evaluate the elementary criteria were provided.
This task was accomplished for each library. It is important to notice that the values
previously mentioned were obtained from: i) Graphic libraries Web Site; ii) Graphic libraries
Documentation; iii) Evaluators Experience.

The Global Preferences obtained for each library are shown in table 3. In the same table it
is possible to see the decomposition of the Global Preference of each tools into its components

E. Miranda, M. Berón, G. Montejano, M. J. V. Pereira and P. R. Henriques 35

Table 3 Final Scores obtained by NESSy.

High-Level Characteristics Graphviz JUNG Prefuse
Computational Characteristics 69.0892 51.8395 47.4708

Functionalities 64.5728 63.2473 76.5484
Compatibility 88.1042 75.2208 75.2208
Documentation 74.7158 88.6803 85.2318
Final Scores 71.7626 66.1774 67.9197

(the high level characteristic preferences). Graphiz was ranked in the first position (achieve
the maximal punctuation for the Global Preference) due to values got for the characteristics
Computational and Compatibility.

5 Conclusion and Future Work

In the context of a bilateral cooperation project devoted to the research of Program Com-
prehension and Language-based Tools, we decided to adopt Logic Scoring of Preference
(LSP)—a multi-criteria Evaluation Method adaptable to several domains, that was being
applied by the Argentinean team for a long time in different areas—as a method to compare
or select software systems (as discussed for instance in [7] or [6]).

This decision has created the need for a tool that could help in the application of LSP,
leading to the development of NESSy, a new evaluator for software development tools, that
was presented in this paper. In order to correctly follow the LSP approach, NESSy has four
stages.

The first stage allows the engineer to define the criteria tree. The second is concerned with
the definition of an aggregation structure. The third phase allows to define the elementary
criteria types and the respective evaluation functions. Finally, the fourth stage uses the
aggregation structure and the elementary criteria to produce a global preference. This
preference represents the engineer satisfaction level regarding the tool evaluated.

NESSy provides an easy-to-use interface to support the user work along all these four
steps. As a proof of concept, NESSy was used to rank three powerful graphic libraries:
Graphviz, JUNG and Prefuse. The main goal was to establish which of them provide more
functionalities to build graph-based software views. The results obtained indicate that
Graphviz is better (more helpful) than Jung and Prefuse. It is because Graphviz got the best
scores concerning the Computational Characteristics and Compatibility. These characteristics
were considered more important by the Aggregation Structure designers.

From the experience gained using NESSy in laboratory contexts, we can say: NESSy is
user-friendly, has an attractive and easy to learn visual DSL which is employed to specify
the aggregation structure, NESSy uses few computational resources and the time consumed
to produce the result is acceptable. The evaluation task is a difficult process, either using
NESSy tool or adopting the traditional manual approach. However, the advantage of using
NESSy is that a considerable amount of work (e.g Criteria Tree, Agregation Structure and
Elementary Criteria) is already done for future evaluations.

The future work is oriented in four directions. The first is concerned with improving
NESSy adding the following characteristics: i) New types of elementary criteria, and ii) More
support for project management.

The second is related with the elaboration of strategies to automatize the evaluation
process. Currently, all the necessary data is provided manually. However, some elementary

SLATE 2013

36 NESSy: a New Evaluator for Software Development Tools

criteria can be automatically computed. An example of this assertion is the metric SLOC
(Source Lines of Code). For this reason, we intend to study the possibility of using plug-ins
in order to automatize the evaluation of some attributes.

The third is related with the improvement of the Criteria Tree for the Software Visualiza-
tion Domain. As was mentioned along this paper, the CT is wider than the presented in
section 4.1. Many criteria were not included because they need to be disaggregated. This
problem motivates further research for producing a more complete CT.

Finally, we also plan to explore the application of NESSy to other areas such as: Reverse
Engineering, Program Comprehension and Re-Engineering. The goal is to define the Criteria
Tree, Aggregation Structure and Elementary Criteria for specific problems in these areas. For
example, if a Program Comprehension tool is needed in a specific context, the components
previously mentioned, can help to select the best option for this particular situation. Obviously,
NESSy is fundamental to carry out this task properly.

References

1 Aicha Aguezzoul, B. Rabenasolo, and A.-M. Jolly-Desodt. Multicriteria decision aid tool
for third-party logistics providers’ selection. In Service Systems and Service Management,
2006 International Conference on, volume 2, pages 912–916, 2006.

2 T. Ball and SG Eick. Software visualization in the large. Computer, 29(4):33–43, 1996.
3 Michael Balzer, Andreas Noack, Oliver Deussen, and Claus Lewerentz. Software Land-

scapes: Visualizing the Structure of Large Software Systems, 2004.
4 S. Bassil and R. Keller. A Qualitative and Quantitative Evaluation of Software Visualization

Tools. Proc. of the IEEE Symposium on Information Visualization, pages 69–75, 2001.
5 M. Beron, P. Henriques, and R. Uzal. Program Inspection to interconnect Behavioral and

Operational Views for Program Comprehension. Ph.D Thesis Dissertation at University
of Minho. Braga. Portugal, 2010.

6 M. M. Beron, D. Cruz, M. J. Varanda Pereira, P. R. Henriques, and R. Uzal. Evaluation
criteria of software visualization system used for program comprehension. 3a Conferencia
Nacional em Interacção Pessoa-Máquina, 03:285, 2008.

7 Mario Marcelo Berón. Program Inspection to interconnect the Behavioral and Operational
Views for Program Comprehension. PhD thesis, National University of San Luis & Univer-
sity of Minho, Nov 2009.

8 Jean-Pierre Brans and Bertrand Mareschal. Promethee methods. In Multiple criteria
decision analysis: state of the art surveys, pages 163–186. Springer, 2005.

9 J.P. Brans, Ph. Vincke, and B. Mareschal. How to select and how to rank projects: The
promethee method. European Journal of Operational Research, 24(2):228 – 238, 1986.
<ce:title>Mathematical Programming Multiple Criteria Decision Making</ce:title>.

10 J.J. Dujmovic. A Method for Evaluation and Selection of Complex Hardware and Soft-
ware Systems. The 22nd Int’l Conference for the Resource Management and Performance
Evaluation of Enterprise CS. CMG 96 Proceedings, 1:368–378, 1996.

11 J.J. Dujmovic, R. Elnicki, University of Florida, and United States. National Bureau
of Standards. A DMS Cost/benefit Decision Model: Mathematical Models for Data Manage-
ment System Evaluation, Comparison and Selection (part 1 of Second Deliverable). National
Bureau of Standards, 1981.

12 Jozo Dujmović and Metin Kadaster. A technique and tool for software evaluation. Evolution,
374:246, 2002.

13 Jozo J Dujmović, Jeffrey W Ralph, and Leslie J Dorfman. Evaluation of disease severity and
patient disability using the lsp method. In Proceedings of the 12th Information Processing
and Management of Uncertainty international conference (IPMU 2008), pages 1398–1405.

E. Miranda, M. Berón, G. Montejano, M. J. V. Pereira and P. R. Henriques 37

14 Miranda Enrique. Evaluación de funcionalidades de visualización de software provistas por
librerías gráficas. licentiate thesis. 2013.

15 GraphViz-Team. http://www.graphviz.org/, 2011.
16 JUNG-Team. http://jung.sourceforge.net/, 2011.
17 Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Preferences and

Value Tradeoffs. Cambridge University Press, 1993.
18 K. Mens, T. Mens, and M. Wermelinger. Supporting software evolution with intentional

software views. Proceedings of the International Workshop on Principles of Software Evol-
ution, pages 138–142, 2002.

19 Gholam Ali Montazer, Hamed Qahri Saremi, and Maryam Ramezani. Design a new mixed
expert decision aiding system using fuzzy electre iii method for vendor selection. Expert
Syst. Appl., 36(8):10837–10847, October 2009.

20 V. Mousseau, R. Slowinski, and P. Zielniewicz. A user-oriented implementation of the
electre-tri method integrating preference elicitation support. Comput. Oper. Res., 27(7-
8):757–777, June 2000.

21 L. Olsina and G. Rossi. Measuring Web Application Quality with WebQEM. IEEE Multi-
Media, 2002, 09(4):20–29, 2002.

22 Prefuse-Team. http://prefuse.org/, 2011.
23 Carlos Romero. Teoría de la Decisión Multicriterio: Conceptos, técnicas y aplicaciones.

Alianza Editorial: Madrid., 1993.
24 B. Roy. Problems and methods with multiple objective functions. Mathematical Program-

ming, 1:239–266, 1971.
25 Bernard Roy. The outranking approach and the foundations of electre methods. Theory

and Decision, 31:49–73, 1991.
26 M.J.; Ríos-Insua S Ríos, S.; Ríos-Insua. Procesos de Decisión Multicriterio. 1989.
27 T. Saaty. How to make a decision: The analytic hierarchy process. European Journal of

Operational Research, 48(1):9–26, September 1990.
28 Herbert Alexander Simon. The New Science of Management Decision. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 1977.
29 S. Tilley and S. Huang. On selecting software visualization tools for program understanding

in an industrial context. iwpc, 00:285, 2002.

SLATE 2013

	Introduction
	Logic Scoring Preference
	Criteria Tree
	Elementary Criteria
	Aggregation Structure
	The Evaluation Process
	Related Work

	NESSy
	Architecture
	Interface
	The Process
	CT Constructor
	AS Constructor
	EC Specifier
	Evaluator

	Case Study: Visualization Libraries
	Criteria Tree
	Aggregation Structure
	Elementary Criteria Functions
	Evaluation

	Conclusion and Future Work

