
Towards Automated Program Abstraction and
Language Enrichment∗

Sergej Chodarev, Emília Pietriková, and Ján Kollár

Department of Computers and Informatics
Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
{Sergej.Chodarev,Emilia.Pietrikova,Jan.Kollar}@tuke.sk

Abstract
This paper focuses on the presentation of a method for automated raise of programming language
abstraction level. The base concept for the approach is a code pattern – recurring structure in
program code. In contrast to design patterns it has a specific representation at a code level and
thus can be parameterized and replaced by a new language element. In the article two algorithms
for automated recognition of patterns in samples of programs are described and examined. The
paper also presents an approach for language extension based on the found patterns. It is based
on an interactive communication with the programming environment, where recognized patterns
are suggested to a programmer and can be injected into the language in a form of new elements.
Conducted experiments are evaluated in regard to the future perspective and contributions.

1998 ACM Subject Classification D.3.2 Language Classifications – Extensible languages, D.2.6
Programming Environments

Keywords and phrases Abstraction, code patterns, language extension, projectional editing

Digital Object Identifier 10.4230/OASIcs.SLATE.2013.51

1 Introduction

One of the matters that make software development hard is the complexity. It is caused by the
inherent complexity of the problems that developed systems need to solve and also by the need
to comply to existing norms, interfaces and protocols [5]. With growth of software systems,
expression complexity of their properties in a programming language mounts up as well. As
the answer to complexity, higher levels of abstraction can be introduced. Abstraction allows
expressing problems more simply by defining new, more abstract concepts that encapsulate
complex expressions. This allows hiding the implementation details. Therefore, a promising
solution for growth of program complexity can be an abstraction based on a language,
allowing reduction of the complexity through defining new, more abstract concepts and
language constructions.

Abstractions are usually organized into several levels, where each level is built on the
abstractions provided by the level below it. This practice is called stratified [1] or layered
design. Provided that lower levels are already in place, it is possible to concentrate on
problem solution that can be expressed in high level terms relevant to the domain of solved
problem.

∗ This work was supported by project VEGA 1/0341/13 Principles and methods of automated abstrac-
tion of computer languages and software development based on the semantic enrichment caused by
communication.

© Sergej Chodarev, Emília Pietriková and and Ján Kollár;
licensed under Creative Commons License CC-BY

2nd Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simões; pp. 51–64

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

52 Towards Automated Program Abstraction and Language Enrichment

Programming languages are also part of the abstraction level hierarchy. They provide a
number of built-in abstractions that can be used to build programs. Moreover, they can also
provide ways to define new abstractions. For example, it is possible to define new functions,
data structures and classes. This allows distinguishing two ways of how new abstraction can
be defined [21]:
1. Linguistic abstraction, with abstractions built into the language, what is typical for DSLs

(Domain-Specific Languages),
2. In-language abstraction, with abstractions expressed by concepts available in the language,

typical for GPLs (General-Purpose Languages).

Linguistic abstraction makes new abstract concepts part of the language itself. Definition
of the concepts becomes a part of language translator or interpreter. Integration of abstrac-
tions into a language provides several advantages. First of all it provides a possibility to
use the most appropriate notation. The use of appropriate linguistic abstraction instead of
describing the same program using more general concepts can also provide additional semantic
information about programmer intents for language processor, thus allowing optimizations
to be performed without the need to reverse engineer the semantics. This is because no
details irrelevant to the model need to be expressed, increasing conciseness and avoiding
over-specification [21].

Compared to the linguistic, in-language abstraction constitutes achieving conciseness by
providing facilities allowing users to define new (non-linguistic) abstractions in programs [21],
including procedures or functions, and higher-order functions or monads. This way, abstrac-
tion can be provided but no declarativeness, in the sense of direct mapping of the program
concepts to the model semantics. Thus, in-language abstraction is more flexible as users can
build only those abstractions they actually need.

Linguistic abstraction is a basic element of Language-Oriented Programming [22, 6]. In
this methodology, the first step of program design is a definition of high-level domain-specific
language suitable for solving a specific problem1. Next, the program itself is implemented
using the new language which is built upon the existing (less abstract) language. From this
point of view, each level of abstraction is represented by a language, where each language is
defined using a lower level language.

In this paper we propose new approach for the introduction of linguistic abstractions
based on automated pattern recognition in program code. Section 2 provides a motivation
for our work. In section 3 the proposal of programming environment supporting language
enrichment is presented. Section 4 describes our experiments with two methods for pattern
recognition. Finally section 5 concludes the paper and proposes ideas for future research.

2 Motivation

Let us consider two pieces of pseudo-code expressing transformation of the array values:

results = new Array ();
for (int i = 0; i < data.size; i++){

a = data[i];
results[i] = f(a) * 5 + 3;

}

1 The process of solving a problem by designing new language first is itself also called metalinguistic
abstraction [2]

S. Chodarev, E. Pietriková and J. Kollár 53

squares = new Array ();
for (int i = 0; i < numbers.size; i++){

b = numbers[i];
squares[i] = pow(b, 2);

}

Both pieces of pseudo-code take all the values of arrays data and numbers, and transform
them according to the appropriate calculations. The first pseudo-code uses function f(),
multiplication and addition; the second pseudo-code uses power function. All the final values
are then stored in arrays results and squares respectively.

As both pieces of pseudo-code are very similar, replacement of the repeated structures
might be convenient. First, let us consider a new pseudo-code, applicable to both examples:

«output» = new Array ();
for (int i = 0; i < «input».size; i++){

x = «input»[i];
«output»[i] = «op x»;

}

Where:
«input» can be considered as a variable replaceable by arrays data and numbers;
«output» represents a variable for arrays results and squares; and
«op x» represents a variable for the calculations: f(x) × 5 + 3 and x2.

As it is possible to apply this new pseudo-code to both examples, it can be regarded as a
pattern, which is repeated in the examples.

Abstraction has one simple goal in mind: To replace repeated code structures in order
to increase expression abilities of the language. For the discussed examples, the identified
pattern might be reduced and simplified with a new construct map (inspired by functional
programming):

«output» = map («input», «op x»);

Where map can be considered as an abstraction to the identified pattern, representing
the entire structure of the cycle with appropriate parameters. For the two examples, it is
now possible to use new, more abstract pseudo-code (with notation backslash denoting an
anonymous function):

results = map(data , (\x -> f(x) * 5 + 3));
squares = map(numbers , (\x -> pow(x, 2));

This approach enables the program code to be much shorter, thus less prone to errors.
Several implications arise according to the mentioned considerations:
If it is possible to recognize language structures within a source code, then it is possible
to identify recurring structures as well.
If there is a large group of source code belonging to the same application domain, then it
is possible to identify plenty of recurring structures within the domain.
If frequently repeated structures are abstracted into the new ones, then it is feasible to
form a new language dialect.
If the new language structures are named by concepts of the appropriate application
domain, then the resultant dialect is domain-specific.
If a programmer is able to write short codes in concepts of the appropriate application
domain instead of long codes in concepts of the general-purpose language, then his work
might become much more effective.

SLATE 2013

54 Towards Automated Program Abstraction and Language Enrichment

If the programming environment would provide help with definition of new abstractions,
then there is a higher chance abstractions would be actually used.

Moreover, analysis of the current state within application of programming languages
proved that along with system development in various application areas, there is a demand
for the following language features [4, 14]:

Increasing level of abstraction when expressing complex issues
Increasing expression ability of a language, and thus effectiveness of its application
Specialization of languages on specific domains of use
Increasing flexibility when using a language in other domains

Considering importance of the abstraction concept in programming, there are a lot of
open questions remaining, particularly regarding automatic analysis and introduction of
abstraction. Therefore, in the following sections we will try to find answer (or more answers)
to the following main question: How can increase of abstraction be automated?

Our approach to this task is based on resolving two basic problems concerning tool
support for automated program abstraction and language enrichment:

1. Recognizing recurring patterns in program code.
2. Finding a way to inject identified patterns into a language as new constructs.

3 Proposal

We decided to base our approach to program abstraction on the concept of patterns – recurring
structures in program codes. The conceptual scheme of the proposal can be seen in Fig. 1.

To propose a solution for automated introduction of new language abstractions based
on patterns found in source code the problem of recurring pattern recognition should be
resolved. Manual analysis of code may be a hard and tedious task. However, a tool for
automatic pattern recognition can greatly help in this task.

AUTOMATED
ABSTRACTION

At the level of internal
representation of

programs (trees, graphs)

ALLOW PROGRAMMER TO
CREATE ABSTRACTIONS

Name the patterns

Define projection
from internal to
surface structure

PROJECTION
EDITING

Internal structure is primary

Text form is only projection
of the internal structure to

be edited by human

PATTERN
RECOGNITION

Object reflecting structure
of the tree/graph
fragment

Each fragment can
have several structures

Based on recognition of
recurring patterns in

programs

Figure 1 Proposal conceptual scheme.

S. Chodarev, E. Pietriková and J. Kollár 55

3.1 Pattern Recognition
Pattern for our purposes is a recurring structure in program code. This structure can be
expressed by fragment of a program with parts that may be different, replaced by pattern
variables. This concept is different from design patterns [9] which describe recurring patterns
and their usage on higher level. On the other hand, we are currently concentrating on
patterns of a smaller scale.

Patterns would be recognized at the level of language abstract syntax. The abstract
syntax tree or graph of a program contains all important information about structure of its
code without syntactic details.

We have developed two approaches to this task:
1. Pattern recognition by comparing
2. Pattern recognition by collecting

Recognition by comparing is based on traversing trees representing programs from leaves
up and comparing the subtrees to find groups of subtrees with the same structure.

The second approach that we propose is based on collection of abstracted structural
schemas of program fragments. They can be obtained by replacing parts of the fragment by
variables. Each fragment of code may be described by several structures of different level
of detail. If such structural schemas are identified and stored with references to program
fragments that contain them, it is possible to analyze frequency of their usage and by this
way identify possible pattern.

3.2 Language Enrichment
Since recognized patterns represent recurring structures found in programs, they also present
potential extensions of the language. To inject a pattern into the language there is a need to
name it and define its syntactic or surface structure that would be used to represent it in
program code.

Enrichment of language syntax and semantics directly by its users, though, is rarely
allowed. In most cases it requires modification of the original language implementation, since
a composition of the language with new elements is needed. Doing so with traditional textual
language processed using a parser usually generated by some parser generator according to the
grammar specification, it may result in several problems caused by possible ambiguity of the
resulting grammar. Partially, this is caused by the fact, that grammar subclasses supported
by common parser generators are not closed under composition [11]. Moreover, to allow
composition and extension of a language without modification of the original implementation,
it requires special tool support [7] and knowledge in the field of language development.

A possible way to solve the problem of language composition is a transition to concept
composition. This means that instead of composing languages and their grammar rules, only
concepts in a single base language are composed. This requires lowering the role of language
grammar and is possible to be achieved at least in two ways:
1. Using single syntax for composed languages.
2. Using projectional editing.

In our case, the first way means not to use special syntax for injected patterns. Patterns
would only be named and one of the shapes predefined in the language syntax would be
assigned to them. This is similar to the definition of a function – it is assigned a name and
standard syntax of function call or operator application. Another example is extension of
Lisp and its dialects using macros that are based on the uniform syntax of S-expressions [10],

SLATE 2013

56 Towards Automated Program Abstraction and Language Enrichment

Pattern Naming

Program Projection

Pattern Suggestion

Projection Syntax

Recognized Patterns

Program Graph

Language Definition

Program Evaluation

Figure 2 Architecture of language enrichment environment.

or definition of XML based language. Disadvantage of such an approach is, indeed, low
flexibility of choosing an appropriate notation.

On the other hand, projectional editing keeps different notations for languages on the
surface, while using unified representation internally. The syntax becomes only a matter of
projection and actual information of a program (code) is stored in some different form, not
visible for language user.

Projectional editing is used by some language workbenches, for example JetBrains MPS [6]
or Intentional Workbench [19]. They use internal graph-based representation as main form
of a program. Editable form is only a projection of internal form [8]. When a user is issuing
editing commands at the projection, the internal structure is modified and the projection is
updated accordingly. This allows different types of editable representation in addition to the
textual, for example graphical or table-based.

In this way, elements of languages developed using a language workbench are actually
only concepts of an internal representation language (which is usually not textual). This
means that in this case the composition of languages corresponds to the composition of
concepts inside a single language. Textual composition is only its projection which is not
required to be unambiguous.

3.3 Concept of Language Enrichment Environment
Based on the considerations described above, it is possible to construct an environment for
automated language enrichment based on patterns found in programs. The principles of
its functionality are depicted in Fig. 2. The primary representation of the program is its
abstract syntactic graph (ASG) editable through the projection. Syntax specification is used
as a basis for projection and editing environment.

While program is created by a programmer, the structure of its elements is collected
inside the environment to recognize the recurring patterns. Then, the environment should
use the collection to suggest recognized patterns to programmer. Patterns can have various
uses beside the automated abstraction. For instance, they can provide automatic completion
of snippets for frequently used constructs.

If a programmer decides the pattern is semantically significant, he can name the pattern
and therefore enrich the language he uses. He needs to provide specific concrete syntax for

S. Chodarev, E. Pietriková and J. Kollár 57

the named pattern that would be appropriate for conveying its meaning. A new syntax rule
would be added to the language syntax definition and used by the projectional editor.

At the same time, named pattern becomes a part of the language structure and semantics
definition. By default it expands the pattern during program evaluation or translation.
Definition though can be amended by some optimization rules based on semantics of the
pattern.

Introduction of new abstractions into the language can also have a negative effect. The
more new constructs specific to a program are added into the language, the more is a
programmer forced to learn new abstractions. Moreover, if more than one programmer is
working with the same program code, and only few of them know the new abstractions,
a problem may occur as they may not understand program codes of each other. This
situation may occur already in the current abstraction range of various general-purpose and
domain-specific languages.

Considering this, it would be appropriate if the environment would also provide reverse
mode of work. The user should be allowed to switch the level of abstraction used in
the code and display it in expanded form. That is, our experiments and algorithms for
pattern recognition should result in two instruments available to user of the programming
environment:

Pattern contraction – pattern replacement by new syntactic element
Pattern expansion – syntactic element replacement by its implementation through elements
of lower level abstraction

For instance, if one programmer knows list comprehension construct, the other one,
who does not, should by able to specify directly within the environment that he does not
want to use list comprehension, or that he wants to learn their structure. Then, any list
comprehension would be equivalently substituted, e.g. through map or filter function. This
expansion can be even applied repeatedly as it is shown in Listing 1. On the contrary, a
programmer may also use several complex structures, and then replace them through the
known patterns by equivalent, shorter structures, and thus noticeably reduce the program
code length.

Listing 1 Example of language element expansion.
squares = [x ^ 2 | x <- xs]

↓
squares = map (\x -> x ^ 2) xs

↓
squares [] = []
squares (x:xs) = (x ^ 2) : squares xs

↓
squares xs | null xs = []

| otherwise = (head x ^ 2) : squares (tail xs)

4 Experiments

For pattern recognition, we suggest two different methods: by comparing and by collecting.
For experimental purposes, the first method has been performed and examined on a large
group of Haskell programs while the second method has been performed on a simple language
of functions and expressions.

Pattern recognition by comparing is also a successor to another research, as it uses results
and implementations acquired by experiments associated with effects of abstraction [16].

SLATE 2013

58 Towards Automated Program Abstraction and Language Enrichment

Haskell 98
Report

Lexer
Specification

Haskell
Grammar

Grammar
for Parser
Generator

Tr
an

sf
o

rm
at

io
n

Flex

Bison

Visualization

Statistics

Generating Infrastructure

Pattern Recognition by Comparing

Lexer

Parser

Analyzing Infrastructure

Derivation
Trees

Programs

parents
· allParents (elements)

groups
· findGroups (parents)

if groups is empty

return
· [elements]

else

return
· mergeGroups (foundGroups)

for each group ∈ groups
· Add

findPatterns (group)
to foundGroups

Figure 3 Architecture of Haskell syntax analyzing tools, including pattern recognition by com-
paring.

On the other hand, pattern recognition by collecting is based on the evaluation of the first
method, reducing unnecessary implementations and extending possibilities of the pattern
recognition.

4.1 Pattern Recognition by Comparing
Pattern recognition method based on comparing program fragments was developed on top of
the set of tools gathering information from Haskell programs to get a proper knowledge about
the used constructs in analyzed programs. As a result of the program analysis, derivation
tree is produced, consisting of the used rules of Haskell grammar [15]. The architecture
consists of three parts – generating infrastructure, analyzing infrastructure, and pattern
recognition (see Fig. 3).

The goal of the generating infrastructure is to prepare lexer and parser, which are used
within the analyzing infrastructure, and are developed using generative methods. Haskell
grammar specification is analyzed and transformed into a form suitable as an input for lexer
and parser generators. The analyzing infrastructure contains lexer and parser of Haskell
programs, intended for analysis of Haskell into lexical units and then processing them into
derivation trees. Derivation trees are produced in XML format and are further processed to
retrieve statistical data on Haskell programs and to recognize common language patterns.

The third part of the architecture, which builds on the generating and analyzing infra-
structures, is dedicated to pattern recognition by comparing. It is based on the principle
of comparing different fragments of a program to find groups of similar ones. The use of
derivation trees generated by the analyzing infrastructure is indeed not obligatory for the
proposed algorithm. Nevertheless, generating and analyzing parts of the Haskell syntax
analysis tools have already been part of other range of experiments devoted to effects of

S. Chodarev, E. Pietriková and J. Kollár 59

abstraction in programming languages, also published and more particularly described in [16].
To recognize syntactic patterns in a program or a set of programs, it is important to decide

which parts of the analyzed programs may be considered similar. The simplest possibility
is to consider only the equal trees. However, this approach is exceedingly limiting. Trees
can be considered similar if their structure is the same except for the attributes of terminal
symbols (approach that has been chosen in this experiment).

Another approach is to allow differences in whole subtrees rooted in the same type
node. This should allow more complex syntactic variables and is, however, more difficult
to implement using specified approach, as it requires comparisons of program fragments on
different levels of the tree.

To find patterns in the program derivation tree, a simple algorithm is used, based on the
function findPatterns defined in Listing 2 (see also Fig. 3).

Listing 2 Pseudo-code algorithm for pattern recognition by comparing.
parents ← allParents(elements)
groups ← findGroups(parents)

if groups is empty then
return [elements]

else
for all group ∈ groups do

Add findPatterns(group) to foundGroups
end for
return mergeGroups(foundGroups)

end if

Function findPatterns takes a list of the tree elements and recursively examines their
parents to find a set of groups of subtrees that have a similar structure. It uses helper
functions where allParents returns a set of parents of all tree elements in a group and
mergeGroups merges the list of group lists into a single list. An important function is
findGroups. Given a set of tree elements, it returns list of groups of elements with similar
subtrees.

To initiate the algorithm, the findPatterns function is called on terminal symbols of the
tree. Then it tries to walk up to the root of the tree while it can find groups of subtrees
with similar structure. List of subtree groups is a result of the algorithm, where each group
corresponds to a found pattern and contains all occurrences of the pattern.

Let us look at a simple example program in Listing 3 defining functions insert and delete

manipulating binary search trees. Derivation tree of this program is represented in Fig. 4.
Using the described method, it is possible to find several recurring patterns in this

program (see Fig. 4). The most important are:

| x α y = Bin y t1 (β x t2)
Bin y (α x t1) t2
α x (Bin y t1 t2)
α x Nil

Greek letters in the patterns regard the syntactic variables that can be replaced with
concrete syntactic elements. Other identified patterns are too small to be mentioned.

SLATE 2013

60 Towards Automated Program Abstraction and Language Enrichment

module

body

{ topdecls }

topdecl

data simpletype = constrs

conid constr

BStree

varid

a

con

conid

Nil

| constr

con

conid

Bin atype atype atype

varid

a

(type)

btype

atype

btype varid

atype

gtycon

conid

BStree

a

(type)

btype

atype

btype varid

atype

gtycon

conid

BStree

a

; topdecl ; topdecl ; topdecl ; topdecl

decl

rhs

funlhs = exp

var apat

varid var

insert varid

x

apat

gcon

qcon

conid

Nil

exp_10

fexp

aexp

fexp gcon

aexp

fexp gcon

aexp

fexp qvar

aexp

gcon

qcon

conid

Bin

varid

x

qcon

conid

Nil

qcon

conid

Nil

decl

rhs

funlhs gdrhs

var apat

varid var

insert varid

x

apat

(pat)

pat_i

pat_10

gcon

qcon

conid

Bin

apat apat apat

var

varid

y

var

varid

t1

var

varid

t2

gd = exp

| exp_i exp_10 gdrhs

exp_i

exp_10 qop exp_i

fexp

aexp

qvar

varid

x

qvarop exp_10

varsym

<

fexp

aexp

qvar

varid

y

fexp

aexp

fexp qvar

aexp

fexp (exp)

aexp

fexp qvar

aexp

gcon

qcon

conid

Bin

varid

y

exp_10

fexp

aexp

fexp qvar

aexp

fexp qvar

aexp

qvar

varid

insert

varid

x

varid

t1

varid

t2

gd = exp

| exp_i exp_10 gdrhs

exp_i

exp_10 qop exp_i

fexp

aexp

qvar

varid

x

qvarop exp_10

varsym

==

fexp

aexp

qvar

varid

y

fexp

aexp

fexp qvar

aexp

fexp qvar

aexp

fexp qvar

aexp

gcon

qcon

conid

Bin

varid

y

varid

t1

varid

t2

gd = exp

| exp_i exp_10

exp_i

exp_10 qop exp_i

fexp

aexp

qvar

varid

x

qvarop exp_10

varsym

>

fexp

aexp

qvar

varid

y

fexp

aexp

fexp (exp)

aexp

fexp qvar

aexp

fexp qvar

aexp

gcon

qcon

conid

Bin

varid

y

varid

t1

exp_10

fexp

aexp

fexp qvar

aexp

fexp qvar

aexp

qvar

varid

insert

varid

x

varid

t2

decl

rhs

funlhs = exp

var apat

varid var

delete varid

x

apat

gcon

qcon

conid

Nil

exp_10

fexp

aexp

gcon

qcon

conid

Nil

decl

rhs

funlhs gdrhs

var apat

varid var

delete varid

x

apat

(pat)

pat_i

pat_10

gcon

qcon

conid

Bin

apat apat apat

var

varid

y

var

varid

t1

var

varid

t2

gd = exp

| exp_i exp_10 gdrhs

exp_i

exp_10 qop exp_i

fexp

aexp

qvar

varid

x

qvarop exp_10

varsym

<

fexp

aexp

qvar

varid

y

fexp

aexp

fexp qvar

aexp

fexp (exp)

aexp

fexp qvar

aexp

gcon

qcon

conid

Bin

varid

y

exp_10

fexp

aexp

fexp qvar

aexp

fexp qvar

aexp

qvar

varid

delete

varid

x

varid

t1

varid

t2

gd = exp

| exp_i exp_10 gdrhs

exp_i

exp_10 qop exp_i

fexp

aexp

qvar

varid

x

qvarop exp_10

varsym

==

fexp

aexp

qvar

varid

y

fexp

aexp

fexp qvar

aexp

fexp qvar

aexp

qvar

varid

join

varid

t1

varid

t2

gd = exp

| exp_i exp_10

exp_i

exp_10 qop exp_i

fexp

aexp

qvar

varid

x

qvarop exp_10

varsym

<

fexp

aexp

qvar

varid

y

fexp

aexp

fexp (exp)

aexp

fexp qvar

aexp

fexp qvar

aexp

gcon

qcon

conid

Bin

varid

y

varid

t1

exp_10

fexp

aexp

fexp qvar

aexp

fexp qvar

aexp

qvar

varid

delete

varid

x

varid

t2

Figure 4 Example of program derivation tree with recognized patterns.

Listing 3 Example program code for pattern recognition by comparing.
data BStree a = Nil

| Bin a (BStree a) (BStree a)

insert x Nil = Bin x Nil Nil
insert x (Bin y t1 t2)

| x < y = Bin y (insert x t1) t2
| x == y = Bin y t1 t2
| x > y = Bin y t1 (insert x t2)

delete x Nil = Nil
delete x (Bin y t1 t2)

| x < y = Bin y (delete x t1) t2
| x == y = join t1 t2
| x < y = Bin y t1 (delete x t2)

4.2 Pattern Recognition by Collecting

Another experiment has been performed to evaluate different algorithm for pattern recognition.
It is based on collecting potential patterns found in a processed program. This allows
evaluation of their frequency in a program and selection of patterns that may be interesting
for a programmer. Basically, compared to the first method (by comparing), it is unique in
its ability to recognize new patterns which differ from each other in their subtrees, not only
leaves as it is in the first method. As opposed to the previous experiment, the input consists
of abstract syntax trees and not derivation trees.

The main idea of the proposed algorithm is to avoid direct comparison of program
fragments with each other. Instead, structure of a fragment should be described using
structural schema. This is a data structure that reflects structure of program fragment with
some details omitted. It is obvious that a fragment of program can correspond to several
structural schemas which describe different parts of it and with different levels of detail.

In our case structural schema is implemented as modified abstract syntax tree with
some nodes or leaves replaced by variables. Variables can match different subtrees allowing
coverage of program fragments that differ whole subexpressions. Structural schemas are

S. Chodarev, E. Pietriková and J. Kollár 61

Abstract
Syntax
Trees

PATTERN
RECOGNITION

· Multiple
occurrence
of structural
schemas

ARRAY
REDUCTION

· Patterns
generalizing
other
patterns

· Low
occurrence

for each expression E

· Creation of structural schemas

ASSOCIATIVE ARRAY CREATION

· Keys: Structural schemas
· Values: Lists of trees T covered by

particular structural schemas

Pattern Recognition by Collecting

Figure 5 Architecture of pattern recognition by collecting tools.

actually potential patterns and therefore they have the same structure.
Fig. 5 depicts an algorithm for pattern recognition by collecting that was performed within

the experiment. The input is a sequence of abstract syntax trees representing expressions of
a program or collection of programs. In the first step structural schemas are derived from
each expression tree. The process is outlined in Listing 4.

Listing 4 Pseudo-code algorithm for pattern recognition by collecting.
patterns ← empty associative array
for all expression ∈ expressions do

subexpressions ← allSubtrees(expression)
for all subexpression ∈ subexpressions do

schemas ← structuralSchemas(subexpression)
for all schema ∈ schemas do

Add subexpression to patterns[schema]
end for

end for
end for
return patterns

The key part is the generation of structural schemas based on the fragment of program
syntax tree (represented by the function structuralSchemas in the listing). Generated
schemas actually represent possible modifications of a particular tree. By modification, we
mean substitutions of the tree leaves or nodes by variables. In different schemas different
combinations of nodes would be substituted.

As the result, an associative array is created of which the keys are structural schemas and
values are lists of trees or subtrees covered by a particular structural schema. Within the
associative array it is possible to determine multiple occurrences of the structural schemas.
These schemas are important as they can be considered as patterns. Moreover, it is possible
to reduce the associative array by those schemas that represent generalization of other
schemas, without higher frequency.

Disadvantage of the algorithm is that it is not possible to generate and store all possible
structural schemas for larger program fragments. This limitation can by overcame using
different approaches:
1. Collecting only schemas for small program expressions.
2. Limit the depth of subtrees that are taken into account while generating structural

schemas. All details below the specified threshold would be always replaced by variables.

SLATE 2013

62 Towards Automated Program Abstraction and Language Enrichment

While the first approach would limit possibly recognized patterns significantly, the second
one may still be able to recognize a lot of useful patterns.

This algorithm has been evaluated within an experiment based on a simple language
of functions and expressions. To simplify the development and make the relation between
internal structure and concrete syntax more direct, S-expressions were used in the experiment.

For instance, if the code in Listing 5 is used as an input for the algorithm, it successfully
recognizes a pattern in Listing 6.

Listing 5 Example program code for pattern recognition by collecting.
(def squares xs

(if (= xs nil) nil
(cons (* (head xs) (head xs))

(squares (tail xs)))))
(def withTwo xs

(if (= xs nil) nil
(cons (+ (head xs) 2)

(withTwo (tail xs)))))
(def op xs

(if (= xs nil) nil
(cons (- (* (head xs) 2) 2)

(op (tail xs)))))
(def positives xs

(if (= xs nil) nil
(cons (>= (head xs) 0)

(positives (tail xs)))))

Listing 6 Pattern found in example code (variables marked with greek letters).
(def α xs (if (= xs nil) nil (cons β γ)))

5 Conclusion and Future Work

In this article, we have proposed a solution for automated introduction of new language
abstractions based on patterns that in this study are understood as recurring structures in
program code.

As part of the solution, two different approaches were experimentally developed to
recognize language patterns: pattern recognition by comparing and by collecting. The first
approach is based on comparing program fragments based on derivation trees of the applied
Haskell grammar rules, generated by a complex set of analyzing tools [16]. Its principle lies
in traversing particular derivation trees and recognizing the highest possible subtrees of the
same structure.

While implementation of pattern recognition by comparing is relatively simple, and it
is able to recognize most of the common recurring program structures, it does not allow
substitution of particular subtrees by variables. That is, it cannot recognize some specific
patterns. For instance, if we considered example code from Listing 5, the algorithm would
only recognize the following pattern:

(def α xs (if (= xs nil) nil (cons (β (head xs) γ) (α (tail xs)))))

However, this covers only two of the four structurally similar program fragments. More
general pattern (mentioned in Listing 6) was supported and recognized only by the second

S. Chodarev, E. Pietriková and J. Kollár 63

technique, which is pattern recognition by collecting. It reduced some drawbacks of the
previous method, thus allowing substitution of subtrees by variables. On the other hand, the
number of potential patterns inspected for each subtree needs to by limited since it is not
possible to collect all of them for every size of a subtree.

Unlike in the previous experiment, the input of this algorithm consists of abstract syntax
trees (not derivation trees) and its main principle lies in sequential generation of an associative
array, with the keys of structural schemas and values of collected subtree lists corresponding
to particular structural schemas.

The approach to pattern recognition by collecting is also more suitable for interactive use
as a part of programming environment, because it allows incremental addition of program
expressions into the pattern recognition process.

These experiments are significant to further part of the proposal focused on the concept of
pattern based language enrichment using projectional editing. They show that it is possible to
automatically find structural patterns in program code. To make more significant conclusions,
it is necessary to perform experiments on greater set of programs and to further develop the
algorithms. Development of the language enrichment environment is also needed to fully
evaluate the proposal.

Further research in this area can be focused on the possibility to recognize patterns on
higher level than the structure of code. These patterns may be scattered in the program
code but semantically interconnected. Therefore, the pattern recognition process needs to
have a high degree of knowledge about program semantics.

The contribution of the presented proposal for language enrichment is the new approach
to the extension of programming language based on the needs of programmers [20]. It tries
to combine the advantages of both linguistic and in-language abstractions, allowing language
users to define new abstractions that are integrated into the language. In addition, the
process of language enrichment is aided by automated patterns recognition.

However, upon the presented results, the most significant is the contribution to automated
software evolution. Clearly, this would mean to shift from a language analysis to language
abstraction, associating concepts to formal language constructs [17], and formalizing them by
means of these associations. In this way, we expect to integrate programming and modeling,
associating general purpose and domain-specific languages [18], [13], as well as to perform
a qualitative move from an automatic roundtrip engineering [3], [12] to the automated
roundtrip software evolution.

References

1 Harold Abelson and Gerald J Sussman. Lisp: A language for stratified design. Technical
report, Cambridge, MA, USA, 1987.

2 Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Electrical Engineering and Computer Science. The MIT Press, second edition,
1996.

3 Uwe Aßmann. Automatic roundtrip engineering. Electronic Notes in Theoretical Computer
Science, 82(5):33–41, 2003.

4 D. Astapov. Using haskell with the support of business-critical information systems. Prac-
tice of Functional Programming (in Russian), 2, 2009.

5 Frederick P. Brooks. No silver bullet: Essence and accidents of software engineering. IEEE
Computer, 20(4):10–19, april 1987.

SLATE 2013

64 Towards Automated Program Abstraction and Language Enrichment

6 Sergey Dmitriev. Language oriented programming: The next programming paradigm. Jet-
Brains onBoard, 1(2), November 2004. Available at http://www.jetbrains.com/mps/
docs/Language_Oriented_Programming.pdf.

7 Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. Language composition un-
tangled. In Proceedings of Workshop on Language Descriptions, Tools and Applications
(LDTA), 2012. to appear.

8 Martin Fowler. Language workbenches: The killer-app for domain specific languages? 2005.
Available at http://martinfowler.com/articles/languageWorkbench.html.

9 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

10 Paul Graham. On Lisp. Prentice Hall, 1994.
11 Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. Pure and declarative syntax

definition: Paradise lost and regained. In Proceedings of Onward! 2010. ACM, 2010.
12 Carsten Lohmann, Joel Greenyer, and Juanjuan Jiang. Applying triple graph grammars for

pattern-based workflow model transformations. Journal of Object Technology, 6(9):253–273,
2007.

13 Ivan Luković, Pavle Mogin, Jelena Pavićević, and Sonja Ristić. An approach to devel-
oping complex database schemas using form types. Software – Practice & Experience,
37(15):1621–1656, December 2007.

14 Alex Ott. Using scheme in the development of “dozor-jet” family of products. Practice of
Functional Programming (in Russian), 2, 2009.

15 Simon Peyton Jones. Haskell 98 language and libraries – the revised report. Technical
report, Cambridge England, 2003.

16 Emília Pietriková, Ľubomír Wassermann, Sergej Chodarev, and Ján Kollár. The effect of
abstraction in programming languages. Journal of Computer Science and Control Systems,
4(1):137–142, 2011.

17 Jaroslav Porubän and Peter Václavík. Extensible language independent source code re-
factoring. In AEI ’2008: International Conference on Applied Electrical Engineering and
Informatics, pages 58–63, 2008.

18 Miroslav Sabo and Jaroslav Porubän. Preserving design patterns using source code annota-
tions. Journal of Computer Science and Control Systems, 2(1):53–56, 2009.

19 Charles Simonyi, Magnus Christerson, and Shane Clifford. Intentional software. In
OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, pages 451–464, New York, NY,
USA, 2006. ACM.

20 Guy L. Steele. Growing a language. Higher-Order and Symbolic Computation, 12:221–236,
1999.

21 Markus Voelter. DSL Engineering: Designing, Implementing and Using Domain-Specific
Languages. CreateSpace Independent Publishing Platform, 2013.

22 Martin P. Ward. Language-oriented programming. Software - Concepts and Tools,
15(4):147–161, 1994.

http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf
http://martinfowler.com/articles/languageWorkbench.html

	Introduction
	Motivation
	Proposal
	Pattern Recognition
	Language Enrichment
	Concept of Language Enrichment Environment

	Experiments
	Pattern Recognition by Comparing
	Pattern Recognition by Collecting

	Conclusion and Future Work

