
XML to Annotations Mapping Patterns
Milan Nosáľ and Jaroslav Porubän

Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics,
Technical University of Košice
Letná 9, 042 00, Košice, Slovakia
milan.nosal@tuke.sk,jaroslav.poruban@tuke.sk

Abstract
Configuration languages based on XML and source code annotations are very popular in the
industry. There are situations in which there are reasons to move configuration languages from
one format to the other, or to support multiple configuration languages. In such cases mappings
between languages based on these formats have to be defined. Mapping can be used to support
multiple configuration languages or to seamlessly move configurations from annotations to XML
or vice versa. In this paper, we present XML to annotations mapping patterns that can be used
to map languages from one format to the other.

1998 ACM Subject Classification D.3.4 Processors – Parsing

Keywords and phrases Mapping Patterns, Language Design, Annotations, Attribute-oriented
Programming, XML

Digital Object Identifier 10.4230/OASIcs.SLATE.2013.97

1 Introduction

Our paper concerns software system configuration metadata formats. We will use the term
software system metadata for the total sum (everything) of what one can say about any
program element, in a machine or human understandable representation. This definition is
in compliance with the understanding of software system metadata in Guerra et al. [6] or
Schult et al. [12].

By the association model (Duval et al. [3]) there are two types of metadata.
Embedded (or internal) metadata are metadata that share the source file with the
target data. Embedded metadata use in-place binding, they are associated with the
target data by their position.
External metadata are metadata that are stored in different source files than the target
data. They use navigational binding where metadata include references to the target
data.

Attribute-oriented programming (@OP) is a program level marking technique. This
definition shared by many works in the field [8, 11] is a basis for classifying @OP as a form
of embedded metadata. An annotation is a concrete mark annotating (marking) a program
element.

XML on the other hand is a classic form of external metadata [4, 15, 9]. XML allows
structuring metadata and storing them externally to the source code. From the point of
view of the language theory, XML is a generic language that can be used to host concrete
domain-specific languages [1].

These two are both widely used metadata formats used as notations for configuration
languages in professional frameworks. Java EE uses both formats in many technologies

© Milan Nosáľ and Jaroslav Porubän;
licensed under Creative Commons License CC-BY

2nd Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simões; pp. 97–113

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.97
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

98 XML to Annotations Mapping Patterns

such as Java Persistence API (JPA) or Enterprise Java Beans (EJB). The .NET framework
extensively uses both XML formats (e.g., in the Enterprise Library) and .NET attributes
(.NET attributes can be used for annotating, for example as in MyBatis.NET or Windows
Communication Foundation (WCF)).

Most of the frameworks started with supporting XML as a notation for a configuration
language, but after the introduction of annotations extended the configuration apparatus to
support the annotations as well. Designing a good new notation for a configuration language
with the same expression power in terms of supported configuration can be difficult. Mapping
patterns, which can be used as a basis for designing (and thus for implementing as well) a
new notation, may significantly reduce this effort.

2 Annotations and XML

In this paper, we want to present mapping patterns between this two formats. But why
would anyone want to map a language in one format to the other? There are characteristics
of these formats that make them complement each other. In some situations, annotations
are better; in other the XML documents are advantageous.

Fernandes et al. [4] present a case study that compares three forms of configuration
metadata – annotations, databases and XML. They compare these formats according to
three criteria: the ability to change metadata during runtime of a system; the ability to use
multiple configurations for the same program elements; and support for the definition of
custom metadata. Tilevich et al. [15] compares annotations and XML in few aspects such as
programmability, reusability, maintainability and understandability.

Annotations’ association model and their native support in a language is the reason
why Tansey et al. [14] talk about annotations as a tool for more robust and less verbose
software system metadata. The XML navigational binding is more fragile during refactoring
and evolution of the program than in-place binding [13, 15]. Annotations’ compactness and
simplicity is a consequence of native support in a language, that lowers the redundancy of
structural information [10]. Since the annotations are a part of a host language, changes
in annotations need recompilation. If runtime changes of configurations are a requirement,
external metadata are a solution [6, 9].

The fact that annotations are scattered in the code puts a programmer into a situation
when he/she needs to search whole source code to understand configuration [15, 9]. On
the other hand, when examining only one program component a programmer can see the
component code and configuration in one place [15].

All these arguments show that usages of both annotations and XML have their sense
and meaning. Therefore, we think that there are situations when one language format is
no longer the better and there is a need to port the configuration language to the other.
If it is expected that there will be situations in which annotations are more adequate and
also situations in which XML is better, then it is useful to support two notations for a
configuration language, one annotation-based and one XML-based. This we consider the
main motivation for using our mapping patterns. An interesting related work that deals with
finding mapping between XML and other data format is a comprehensive discussion of XML
to objects mapping by Lämmel and Meijer [7].

M. Nosáľ and J. Porubän 99

2.1 XML to @OP Mapping Patterns

We were dealing with the abstraction of multiple configuration sources in our previous work [9].
We have designed and implemented a tool called Bridge To Equalia (BTE) that facilitates
unified access to @OP-based and XML-based notations for one configuration language by
combining the sources into a complete configuration. One of the problems we had to deal
with was finding a default mapping that would be common in existing frameworks. In this
paper, we present XML to annotations mapping patterns that we identified while working
on experiments with BTE.

XML to @OP mapping patterns are patterns that specify ways how an XML document or
parts of it can be mapped to its counterpart in annotations (and vice versa). The following
catalogue contains patterns that we have identified in experiments we have performed so far.
The patterns should be found useful in the following scenarios:

Rewriting an existing system from one configuration format to another – when a system
author decides to change configuration notation from XML to annotation or vice versa,
the patterns can help him/her to do better decisions in designing a new configuration
language.
Adding a new configuration notation to a system – in this situation a system supports XML
or annotations but not both. A framework author wants to support a new configuration
notation in order to gain benefits of supporting multiple configuration formats.
Building a new framework supporting multiple configuration notations – mapping patterns
can be used even when the two configuration notations are designed simultaneously from
scratch.
Designing a mapping apparatus for a configuration abstraction tool – in an abstraction
tool there has to be way to define a mapping between supported notations; there has to
be a mapping language. In this context, mapping patterns are perfect candidates for the
concepts of such a language.

These situations can be abstracted and summarised by Figure 1. In short, there is a need
to define mappings between annotations and XML to define configurations both with XML
and annotations. If the case is that configuration is moving from one format to another, then
mappings are needed to reuse domain knowledge from the old configuration language.

System

Partial

configuration

in annotations

Partial

configuration in

XML

Abstract

representation of

the configuration are mixed

is used to configure

Figure 1 Supporting XML and annotation-based configuration.

SLATE 2013

100 XML to Annotations Mapping Patterns

3 Pattern Catalogue

In the next sections we introduce a catalogue of XML to annotations mapping patterns. We
have divided these patterns into two groups according to their roots.

The following describes the pattern’s description elements (inspired by [5]):

The Motivation presents a problem context in which the pattern’s solution is suitable.
The Problem states the question to which a pattern provides an answer.
Forces lists conflicting forces that the pattern should help balance.
The Solution describes the mapping pattern.
Consequences lists the possible positive and negative consequences in a pattern.
Known Uses lists known uses of the described pattern.
The Example illustrates the pattern usage.
Related Patterns describes how the pattern interacts with the other ones from this catalog.

3.1 Structural Mapping Patterns
The first group of the patterns are simple structural patterns. They aim to show the
fundamental mappings between XML and annotations. They do not deal with the relationship
of a configuration to the program structure, merely with the structural mappings between
the languages.

An example when these patterns can be sufficient may be global configurations that
are not configurations of some program element but of a system as a whole. In case of
configurations through annotations this means that the binding of configuration annotations
to program elements does not have to be significant. Probably the best case would be if
they could just annotate a system as a whole. In .NET framework there is an option to
annotate assemblies. However, currently the Java annotations do not support annotating
a whole system. Package annotations are usually used for this purpose. Another solution
may be annotating an arbitrary class or a class that is somehow significant for configuration.
Interesting example of such usage are configuration classes in the Spring framework.

3.1.1 Direct Mapping Pattern
Motivation. The first and basic problem when mapping a language from XML to annotation
(or vice versa) is the question of how to represent language constructs from one language in
another. E.g., if there is an annotation-based configuration language and the new language
is supposed to be built on XML, there has to be a simple and direct way to match constructs
from the first language to the second to have a starting point.

Problem. What is the simplest way to map annotations’ constructs to XML and vice versa?

Forces.
An annotation-based and an XML-based language need to be able to represent the same
configuration information.
Both languages do not have to conform to any special rules.

Solution. The most common and straightforward way is to use the Direct Mapping pattern.
By default, the Direct Mapping pattern proposes to map annotation types to XML elements
with the same name. Annotation type parameters are mapped to elements with the same
name, too. This simple mapping is usually sufficient. From the point of view of XML an
XML element is by default mapped to an annotation that has its simple name identical to

M. Nosáľ and J. Porubän 101

the corresponding XML element’s name. XML attributes are mapped to annotation type
parameters of the same name.

This pattern can be parameterized with the name mapping and XML attribute/element
mapping choice. Naming parameterization allows different names (in this context we can
speak of keywords) for mapped constructs in both languages. It allows keeping naming
conventions in both formats, identifiers starting with uppercase for Java annotation types and
identifiers starting with lowercase in XML. For some language constructs in annotation-based
languages it might be interesting to use XML attributes instead of elements. This concerns
only marker annotations (see [16]) and annotation members that have as return type a
primitive, string or a class (if its canonical name is sufficient in XML). For example, arrays
are excluded since XML attributes are of simple type and there cannot be more than one
attribute with the same name.

Consequences.
[+] Simple XML structures can be mapped to annotations and vice versa.
[+] Naming parameterization allows different names in annotations and in XML.
[+] In some cases element/attribute choice parameterization allows more convenient notation

in XML, because attributes are less verbose than elements.
[-] More complex mappings cannot be realised merely using this pattern.

Known Uses.
JAX-WS’s mapping of the serviceName parameter of the @WebService annotation to
wsdl:service element of WSDL language.
JSF’s mapping of the @ManagedBean annotation mapped to managed-bean element.
JPA maps the @Table annotation to the table XML element and its name parameter to
the XML attribute name.

Example. Figure 2 shows an example of the Direct Mapping pattern. A simple sentence
states that there is a book Heaven Has No Favorites in a library. The book element is
mapped to the @Book annotation, its attributes (in-library) and child elements (title
and author) are mapped to corresponding parameters of the @Book annotation. The naming
parameterization can be seen in mapping the @Book annotation to the book element (blue
colour), where the name "book" has been capitalized in the annotation name. The attrib-
ute parameterization is present in mapping between in-library attribute and inLibrary
annotation parameter (green colour).

@Book(

 inLibrary=true,

 title="Heaven Has No Favorites",

 author="Erich Maria Remarque"

)

<book

 in-library="true">

 <title>Heaven Has No Favorites</title>

 <author>Erich Maria Remarque</author>

</book>

simple mapping

Figure 2 An example of the Direct Mapping pattern.

Related Patterns. The Direct Mapping pattern proposes only mappings of keywords one
to one. Usually, it is combined at least with the Nested Annotations pattern to define the
simplest mappings between annotations and XML.

SLATE 2013

102 XML to Annotations Mapping Patterns

3.1.2 Nested Annotations Pattern
Motivation. Another structural problem of mapping is handling the XML tree structure in
annotations. A tree structure of the XML is usually used to model some language property
and therefore it is significant.

Problem. How to preserve XML tree structure in annotation-based languages?

Forces.
XML allows to structure configuration information to trees of element nodes and their
attributes.
Meaning of the tree structure is significant and therefore it has to be preserved in some
form in annotations.

Solution. The Nested Annotations pattern proposes to nest annotations in order to model a
tree structure in annotations. The root of the tree in XML is modelled by an annotation type
and its direct descendants (in XPath the children axis of the XML element) are modelled by
the parameters of the annotation type. If one of the descendants has children itself, its type
will be an annotation type too. This annotation type defines the children by its parameters.

Consequences.
[+] XML tree structures can be mapped to annotations.
[-] Currently annotations’ implementations do not support cyclic nesting, so if the XML

language has an element that can have itself as a descendant, this pattern cannot be
used. XML allows modelling arbitrary trees, e.g., there can be a node XML element
with child elements of the same type. The same is not allowed in annotations (at least
not in Java or .NET attributes).

[-] The sequence of annotation members is not preserved during the compilation; therefore
if the order is significant, this approach will fall short. The only way of preserving the
order of the elements in annotations is usage of an array as an annotation parameter
type.

[-] In some programming languages, that do not support annotation nesting at all (e.g.
.NET), the pattern is not applicable.

[-] All nested annotations inherit the target program element from the root annotation.
Therefore, the modelled XML tree has to apply to the same target program element.

Known Uses.
In JPA there is a @Table annotation with the parameter uniqueConstraints that is
of the type array of @Unique annotations. The @Table is mapped to table element
and uniqueConstraints are mapped to the unique-constraint element with its own
children.
EJB and its @MessageDriven annotation with the parameter activationConfig that is
of type array of @ActivationConfigProperty annotations. This models a branch from
XML, where the @MessageDriven annotation is mapped to the message-driven element
and the parameter activationConfig to the activation-config-property element.
Java Servlets technology uses nested annotations pattern in the @WebFilter annotation.
Its parameter initParams is an array of @WebInitParam annotations. The @WebFilter
is mapped to the filter XML element and the configuration branch represented by the
initParams annotation parameter is mapped to an XML subtree init-param (or in fact
multiple subtrees, since the initParams parameter is an array).

M. Nosáľ and J. Porubän 103

Example. Figure 3 shows an example of the Nested Annotations pattern. The library
language from the example from the Direct Mapping pattern has been slightly changed. For
simplification we have omitted the flag that specifies whether the book is in the library and
decided to split the name of the author into first name and surname. In XML this is easy
to do using child elements (or possibly attributes). This splitting created a new subtree
(branch). In annotations it is mapped using the Nested Annotations pattern to @Book’s
parameter author (yellow colour), that holds another annotation called @Author. @Author
annotation deals with structuring the author’s name using its own parameters.

@Book(

 title="Heaven Has No Favorites",

 author=@Author(

 name="Erich",

 surname="Maria Remarque"

)

)

<book>

 <title>Heaven Has No Favorites</title>

 <author>

 <name>Erich</name>

 <surname>Maria Remarque</surname>

 </author>

</book> modeling tree structure

Figure 3 An example of the Nested Annotations pattern.

Related Patterns. A closely related pattern is the Parent pattern that can be used as an
alternative for mapping XML tree structures to annotations. The Parent pattern provides
more expressiveness than the Nested Annotations pattern, as we argue in its description.

3.1.3 Enumeration Pattern
Motivation. Sometimes there is a piece of configuration information represented by a set
of mutually exclusive marker annotations. Designing an XML language with "marker" XML
elements might seem a little too verbose and it increases the complexity of XML instance
documents.

Problem. How to elegantly map a set of mutually exclusive marker annotations to XML?

Forces.
There is a configuration property that is in annotation represented by a set of mutually
exclusive marker annotations.
The Direct Mapping pattern makes the XML language too complex.

Solution. The Enumeration pattern proposes to map a set of mutually exclusive marker
annotations to XML element values. Each of the marker annotations is mapped to an
enumeration value.

This pattern can be extended for those that are not mutually exclusive merely by allowing
more occurrences of the enumeration element. Modifications may include allowing one
annotation with parameter (such as in case of JSF in the Known Uses paragraph) that is
mapped to XML element’s values that are not a part of the enumeration.

Consequences.
[+] XML language can be more compact and comprehensible.
[+] At the same time marker annotations are more compact regarding readability.
[-] Such an indirect mapping may make mixing configurations from XML and annotations

more complex.

SLATE 2013

104 XML to Annotations Mapping Patterns

Known Uses.
JSF technology uses this pattern to specify the scope of their managed beans. The
annotations @ApplicationScoped, @RequestScoped, @SessionScoped and other scoping
annotations from the javax.faces.bean package are mapped to single XML element –
the managed-bean-scope element. It is modified pattern, because the @CustomScoped
annotation has a parameter that is mapped to the managed-bean-scope value that
differs from the enumeration values. While the standard cases are handled by marker
annotations, specific cases are handled by using custom values.
EJB use @Stateless, @Stateful and @Singleton annotations to configure session beans.
These three annotations are mapped to the value of the session-type XML element in
the deployment descriptor.

Example. Figure 4 presents a simple example of the Enumeration pattern. The example is
based on the JSF managed beans technology. Annotations are mapped to the value of the
managed-bean-scope XML element and not to the element itself.

@SessionScoped

@RequestScoped

@ApplicationScoped

<managed-bean-scope>session</managed-bean-scope>

...

<managed-bean-scope>request</managed-bean-scope>

...

<managed-bean-scope>application</managed-bean-scope>

values mapped to annotations

Figure 4 An example of the Enumeration pattern.

Related Patterns. Enumeration pattern is an alternative to the Direct Mapping pattern,
but the Enumeration pattern is applicable only in special cases. The Enumeration pattern
can improve code and configuration readability in a situation when in an annotation there
is a set of mutually exclusive marker annotations, or vice versa, in XML there is an XML
element that has values of an enumeration type.

3.1.4 Wrapper Pattern
Motivation. In some situations there may be an implicit grouping property in annotations
that has to be mapped to XML. An example may be a grouping of some pieces of configuration
information according to their bound target elements. In annotations, this structuring is
implicit according to their usage, for example they annotate the members of the same class.

Problem. How to represent grouping in XML that is based on some implicit property of
annotations?

Forces.
Annotations use some implicit grouping property that does not have appropriate language
construct that could be mapped to XML.
Grouping is closed on branches and depth – grouping is defined strictly on one branch in
a tree and it groups merely constructs on the same level in the tree.

Solution. The Wrapper pattern proposes to map implicit groupings from annotations
to so called wrapper XML elements. Wrapper XML element is an element, that groups
together elements according to some property. A wrapper XML element does not have its
counterpart in annotations, at least not an explicit language construct like an annotation or
an annotation parameter. The Wrapper pattern is usually just a notation enhancement, for

M. Nosáľ and J. Porubän 105

example, binding to the members of the same class can be recovered from target program
element specifications. The Wrapper pattern simply structurally enhances the notation in
XML, for example, for design reasons.

Consequences.
[+] XML can model some implicit properties of the annotations or the target program.
[+] The Wrapper pattern may increase readability of the configuration in the XML language.
[+] @OP Wrapper pattern is used to overcome the problem of annotating the program

element with more annotations of the same type (so called Vectorial Annotation
idiom [5]).

[-] Since the Wrapper pattern proposes a use of a language construct in one language that
does not have a corresponding counterpart in the other, this may increase complexity
of mixing the configuration.

Known Uses.
JPA uses the attributes XML element to group column definitions in the entity
element. The attributes element does not have an @OP equivalent in the code.
JPA also uses vectorial annotation @NamedQueries that is a Wrapper for an array of
@NamedQuery annotations. In XML, the @NamedQueries does not have an equivalent, the
named-query XML elements (that are equivalents to @NamedQuery) are directly situated
in the root entity-mappings element.
The @MessageDriven annotation from EJB has a parameter that is of type array of
@ActivationConfigProperty. While using the nested annotations pattern this would be
mapped to a set of activation-config-property XML elements that would be direct
descendants of the message-driven XML element, EJB uses the Wrapper pattern to
wrap the activation-config-property elements into the activation-config element.

Example. Figure 5 presents an instance of the Wrapper pattern. The binding to program
elements is done with the Target pattern combined with the Parent pattern (introduced in
Section 3.2.2), mapping of the elements is highlighted with colours (to keep it simple the
binding to program elements is not considered). The important thing here is the attributes
XML element that has no direct equivalent in annotation-based language and is only used to
wrap column elements.

@Table

public class Person {

 @Column

 private String name;

 @Column

 private String surname;

<table class="tuke.Person">

 <attributes>

 <column field="name"/>

 <column field="surname"/>

 </attributes>

</table>

no explicit

equivalent

in @OP

X

X

Figure 5 An example of the Wrapper pattern.

Related Patterns. The Parent and the Nested Annotations patterns are related to this
pattern. The Parent and the Nested Annotations are used to group and structure configuration
information too, but they have direct and explicit representations in both languages. They
carry significant configuration information. The Wrapper pattern is more of a design decision
(e.g., to make the language more readable).

SLATE 2013

106 XML to Annotations Mapping Patterns

3.1.5 Distribution Pattern
Motivation. Sometimes the same configuration information is supposed to be distributed
in one configuration language differently than in the other. There may be some configuration
information that in XML is due to design reasons separated from its logical tree structure,
but it still has to be somehow associated together as a logic unit. An example may be dealing
with so called Fat Annotation annotations’ bad smell (Correia et al. in [2]). While an XML
element with many children elements might be good, overparameterized annotation might
increase code complexity and reduce code readability.

Problem. How to handle different distribution of configuration information in XML and
annotations?

Forces.
Due to design decisions one or more constructs in the first language are mapped to one
or more constructs in the second language, while the mapping is not straightforward.
Distributed constructs need to be tied together to form a logical unit.
Logical units in both languages need to be unambiguously mapped to their counterparts.

Solution. The Distribution pattern proposes to map distributed constructs by sharing a
unique identifier. This identifier is unique in the configuration. The complete model for
the corresponding configuration information is built up from all the constructs with the
same identifier. This unique identifier may even be a target program element, as in case
of mapping one XML element to more simple annotations. The unique identifier is shared
between both languages to serve for mapping between logical units.

Consequences.
[+] More complicated tree structures of configuration languages are possible that do not

have to strictly follow each other, and therefore there is more space to adapt the
languages to good design.

[-] Such differences in the languages may increase the complexity and readability of the
mapping itself and therefore of the configuration as well.

Known Uses.
Java Servlets technology is a nice example (since it is quite simple, we used it in the
example section). The @WebServlet annotation annotates a servlet implementation
and through parameters specifies its name and its URL mappings. XML configuration
distributes these pieces of information to the servlet XML element, that specifies the
servlet and binds it to its implementation, and to possibly multiple servlet-mapping
XML elements (one for each URL mapping in annotations). The servlet-mapping, the
servlet elements are tied together by the servlet’s name, which is servlet’s identifier.
Java Servlets use the same approach with the @WebFilter annotations.

Example. Figure 6 shows an example of the Distribution pattern. In this example the
PersonServ servlet configuration information is represented by one construct in the an-
notations – the @WebServlet annotation. In the XML language the same annotation is
distributed to two XML elements – the servlet and the servlet-mapping elements. These
elements are bound through the servlet name in servlet-name elements – "PersonServlet"
(highlighted in red). In the example there is again used the Target pattern (yellow colour),
that is explained in Section 3.2.1.

M. Nosáľ and J. Porubän 107

@WebServlet(

name="PersonServlet",

urlPatterns={"/Person"}

)

public class PersonServ

 extends HttpServlet {

...

<servlet>

 <servlet-name>PersonServlet</servlet-name>

 <servlet-class>tuke.PersonServ</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>PersonServlet</servlet-name>

 <url-pattern>/Person</url-pattern>

</servlet-mapping>

mapping is based on identifier

Figure 6 An example of the Distribution pattern.

Related Patterns. The Target pattern binds the XML constructs to target program
elements. The Distribution pattern can be used to indirectly bind scattered XML elements to
program elements. The Target pattern can be used to bind one of the distributed constructs
to target element, then the Distribution pattern that ties distributed constructs together
propagates this binding to the rest of them.

3.2 Program Elements Binding Patterns
The structural patterns are fundamental for mapping between annotations and XML. However,
in practice they are combined with program elements binding patterns. That is because
most of the configuration usually directly concerns program elements. Annotations deal
with this easily, because annotations by definition annotate program elements. They are a
form of embedded metadata and they bind themselves to program elements using in-place
binding. Annotations are written before (annotate) program elements. Metadata of an
annotated program element are enriched by the metadata represented by its annotation.
This of course raises a question of how to take into account this binding to program structure
in an XML-based language. This group of patterns deals with this issue and shows how
XML structures can be bound to their target program elements.

3.2.1 Target Pattern
Motivation. @OP is a form of embedded metadata. Annotations are always bound to
program elements. The same way the configuration author wants the XML elements to be
bound to program elements.

Problem. How to bind XML elements and/or attributes to program elements?

Forces.
XML elements/attributes have to be bound to the same program elements as their
corresponding annotation constructs.
XML elements/attributes are a form of external metadata so they do not provide in-place
binding of embedded metadata.

Solution. The Target pattern proposes to use a special dedicated XML element or attribute
to set a target program element for an XML element. An attribute is preferred to make the
notation more compact. The name of the dedicated element/attribute has to be unique in a
given context for the node to be distinguishable from other nodes used to carry configuration
information. By default the generic name is used, like "class" for binding elements to class
definitions. By means of parameterization a special name can be used, that may suit better
for the language. Another reason may be preventing name clashes if the language already

SLATE 2013

108 XML to Annotations Mapping Patterns

defines a node with the same name that is used to represent configuration information. To
make the notation shorter, the target program element is inherited in XML branch, the same
way as XML namespaces are. Thus, by default a whole branch is bound to the same target
program element.

A more structured approach can be used as well. The reference can be structured to
more XML elements/attributes. For example, a canonical name of the class member can
be split to the class name and to the simple name of the member. This can be useful when
there is a need to use both of these pieces of configuration information. Then the canonical
name does not have to be parsed every time configuration is read.

Consequences.
[+] XML elements and attributes can be bound to target program elements.
[-] Navigational binding using canonical name of the target program element is error-prone

due to the absence of code refactoring that would take into account the composition
of languages. If the programmer changes the name of a method, thanks to in-place
binding, an annotation will be still valid while XML will need manual refactoring (or
implementing a tool that would be able to automate it).

Known Uses.
JSF technology uses the Target pattern for example in the managed-bean element to
bind it to the program element, to which its counterpart – the @ManagedBean annotation,
is bound. The managed-bean XML element has a child of name managed-bean-class
that states the target program element canonical name.
Servlets have the XML servlet element with a child servlet-class element that binds
the servlet to its implementation.
The JPA entity XML element is bound to its class using the class attribute.
EJB uses the resource-ref XML element as an equivalent to the @Resource annotation.
The resource-ref element is bound to its target program element by injection-target
element, that has two descendants, injection-target-class specifying the target class,
and injection-target-name identifies the actual field to be injected.

Example. Figure 7 shows an example of the Target pattern. The table XML element is
navigationally bound to class tuke.Person exactly as its corresponding annotation @Table.
The binding uses the canonical name of the class (highlighted in yellow), the pattern uses
the generic name for binding the XML attribute (highlighted in green).

@Table()

public class Person {

...

<table

 class="tuke.Person"/>

 bound with target’s

 canonical name

Figure 7 An example of the Target pattern.

Related Patterns. The Target pattern is related to the Distribution pattern. The Target
pattern proposes a way to define bindings between XML and program elements by using a
program element’s identifier. The Distribution pattern proposes a way to bind distributed
language structures together using a custom identifier. The Distribution pattern can be used
to indirectly bind distributed XML constructs to program elements by binding constructs
without explicit target program elements to a construct that is already bound to a target
program element.

M. Nosáľ and J. Porubän 109

3.2.2 Parent Pattern
Motivation. Sometimes the Nested Annotations pattern is not suitable for modelling the
XML tree. In the ORM the columns of the table belong to the table. In XML this is modelled
by putting the column element into the table element. Using the Nested Annotations pattern
this would be modelled by a single annotation @Table with a member which would have the
type of array of @Column annotations. But these annotations have a different target program
element type than the @Table that annotates the class. They enhance metadata of the class
members. According to the Target element pattern, in the Nested Annotations pattern, the
parameters of annotations are bound to the same target program element as the annotations
themselves.

Problem. How to model XML tree structure in annotations when the descendants of some
element belong to a different target program element then their parent does?

Forces.
XML allows to group elements by their meaning and to create trees of element nodes.
Meaning of the structure is significant and therefore it has to be preserved in some form
in annotations.
Some of the XML elements or attributes in the tree belong to different target program
element than the root.

Solution. The Parent pattern proposes to define parent-child relationships between an-
notation types. This relationship defines two roles, parent and its children. Parent-child
relationships can be used to define logical tree structures consisting of annotations. Metadata
carried by annotations in the children role are considered to be on the same level as the
parent’s members.

The matching of child annotations with their parents has to be unambiguous. Usually, a
matching based on program structure axes is sufficient. For example, in the Java programming
language a program structure is built from packages, classes and class members. Commonly
used axis is the descendant axis, where the children annotations annotate descendants of the
program element annotated by the parent annotation. A concrete example of using this axis
can be found in the example section of this pattern. Another example can be the self axis.
In this case all children annotations annotate the same program element as their parent. In
the XML tree the new target program element of some of the descendants can be specified
both using absolute name – full canonical name of the program element; or using relative
name, specifying merely the identifier relative to the current target element context1.

This pattern allows overriding the inherited target program element. In XML that is easy,
just by explicitly specifying a new target element. However, annotations have to use this
logical relationship to preserve the desired structure and to still properly annotate different
target program elements.

1 E.g., if the context is tuke.Person and a subtree has as target program element the surname field of the
tuke.Person class (the tuke.Person.surname field), its relative name in this context is merely surname.

SLATE 2013

110 XML to Annotations Mapping Patterns

Consequences.
[+] Tree structures of XML can be mapped to annotations.
[+] Different target program elements of the configuration information in the tree are

preserved in the annotation’s concrete syntax.
[+] In programming languages that do not support annotation nesting this pattern can

substitute the nested annotations pattern (using the self axis).
[-] Using unnatural or complicated matching algorithms can make annotation languages

difficult to understand and use. We believe using the direct descendant axis is easiest
to understand.

Known Uses.
JPA provides a classical example of the Parent pattern on the direct descendant program
axis. The @Entity annotation annotates a class. The annotations @Id, @Basic and
@Column annotate members members of the same class. In XML, their equivalents are
logically structured as descendants of the entity element, the equivalent of the @Entity
annotation.
JSF uses the Parent pattern on the self axis with annotations @ManagedBean and scope
annotations, such as @RequestScoped or @SessionScoped. Scope annotations are logical
descendants of the @ManagedBean annotation.

Example. Figure 8 shows an example of the Parent pattern. The @Column annotation is
on the descendant program axis of the @Table’s target program element. Class members
are descendants of the class itself in the program structure in Java. The @Table is in this
example a parent of the @Column annotation. This relationship models the structure in
XML, where the table element is the parent of the column element (while the column have
different target program elements than the table). The table’s simple descendants are
mapped to @Table’s members using the Direct Mapping pattern.

@Table(name="PERSON")

public class Person {

 @Column(name="SURNAME")

 private String surname;

 ...

<table

 class="tuke.Person">

 <name>PERSON</name>

 <column field="surname">

 <name>SURNAME</name>

 </column>

</table>

mapped to logical

relationship

Figure 8 An example of the Parent pattern (using relative naming).

Related Patterns. Related pattern is the Nested Annotations parent. Both of these
patterns are used to model the tree structure of XML languages, but the Parent pattern is
more flexible.

3.2.3 Mixing Point Pattern
Motivation. If the system supports both XML and annotations, there has to be the
mechanism to recognize whether some configuration information is in both annotations and
XML or merely in one of the formats. The common situation may be using an annotation-
based configuration language to define a default configuration and an XML-based language
to override the default configuration. In such a situation processing only one configuration

M. Nosáľ and J. Porubän 111

format based on users choice is not sufficient, finer granularity in mixing is required than
merely on the root construct level. The languages should not only be substitutable but
rather be able to complement each other.

Problem. How to provide finer granularity for duplicity checking in XML and annotations
configuration languages?

Forces.
The annotation-based and XML-based configuration languages can both be used to define
the configuration.
Some pieces of the configuration information are duplicated in either XML and annota-
tions.
Both XML and annotations configuration are not complete, a complete configuration is a
combination of both.

Solution. The Mixing Point pattern proposes to define so called mixing points in a tree
structure of the languages. A node that is a mixing point has to be unambiguously identified,
e.g., by its name and target program element (or another policy may be used, like merely
by its name). These two properties are easily represented in both formats using the Direct
Mapping pattern and the Target pattern. When a node in a tree is a mixing point, the
checks for duplication on its level must be performed in both annotation and XML-based
trees and the configuration information is mixed from both sources. If a node is not a mixing
point, no mixing is performed and simply the configuration information is taken from the
language with higher priority. The Mixing Point pattern is parameterized by the priority
parameter that specifies which format has higher priority and thus overrides the duplicated
configuration information. A root node is always by default a mixing point.

Consequences.
[+] A finer granularity of combining two partial configurations in XML and annotations.
[-] Sometimes even this granularity might be too coarse-grained. The same name and

the target element can be found in array annotation members. So if there is a need
to combine two arrays without duplicates, some more adequate duplication detection
mechanisms must be used (for example based on values).

Known Uses.
The Spring framework currently supports mixing of both annotations and XML config-
uration, an example may be using both approaches to configure dependency injection,
where the XML configuration can be complemented by annotations (@Autowired can be
considered one of the mixing points in this example). XML has the higher priority in the
Spring framework.
Hibernate (ORM framework) supports mixing too; it allows specifying mappings in both
annotations and XML. However, as mixing points there are classes and not fields, it is
possible to configure one class through annotations and one through XML, but it is not
possible to configure one class by mixing both formats. The annotations have higher
priority in Hibernate.

Example. Figure 9 shows an example of the Mixing Point pattern. The configuration
information specifing column for the field tuke.Person.name is duplicated. The duplication
is detected using the naming parameter of the Direct Mapping pattern (@Column to column
XML element – blue colour) and using the target element identifier (green colour). If there is
a configuration information that is not duplicated, this information is directly used in whole
configuration (configuration information for tuke.Person.id and tuke.Person.surname).

SLATE 2013

112 XML to Annotations Mapping Patterns

Otherwise the information from the language with higher priority is used, in our example it
may be XML overriding the column value "NAME" to "FIRSTNAME".

@Column(name="ID")

private int id;

@Column(name="SURNAME")

private String surname;

@Column(name="NAME")

private String name;

<column field="tuke.Person.id">

 <name>ID</name>

</column>

<column field="tuke.Person.surname">

 <name>SURNAME</name>

</column>

<column field="tuke.Person.name">

 <name>FIRSTNAME</name>

</column>

duplication

used from @OP

used from XML

Figure 9 An example of the Mixing Point pattern.

Related Patterns. The Distribution pattern is related to the Mixing Point pattern. While
the Mixing Point pattern uses the unique identifier to find conflicts in configuration to prevent
duplications, the Distribution pattern uses the identifier of the configuration information to
logically bind pieces of information together.

4 Conclusion

This pattern catalogue presents common mapping patterns between XML and @OP. These
patterns are the basis for designing new annotation-based or XML-based configuration
languages that are based on existing configuration languages. Its contribution lies in
recognizing and formalizing mapping patterns from practice. Future work can address
mappings between other configuration formats – YAML, .properties, INI files or even
proprietary domain-specific languages, if they are built upon generic languages.

Acknowledgements This work was supported by VEGA Grant No. 1/0305/11 Co-evolution
of the Artifacts Written in Domain-specific Languages Driven by Language Evolution.

References

1 Sergej Chodarev and Ján Kollár. Language development based on the extensible host
language. In Proceedings of CSE 2012 International Scientific Conference on Computer
Science and Engineering, pages 55–62. EQUILIBRIA, s.r.o., 2012.

2 Diego A. A. Correia, Eduardo M. Guerra, Fábio F. Silveira, and Clovis T. Fernandes.
Quality improvement in annotated code. CLEI Electron. J., 13(2), 2010.

3 Erik Duval, Wayne Hodgins, Stuart A. Sutton, and Stuart Weibel. Metadata principles
and practicalities. D-Lib Magazine, 8(4), 2002.

4 Clovis Fernandes, Douglas Ribeiro, Eduardo Guerra, and Emil Nakao. Xml, annotations
and database: a comparative study of metadata definition strategies for frameworks. In
Proceedings of XATA 2010: XML, Associated Technologies and Applications, XATA 2010,
pages 115–126, 2010.

5 Eduardo Guerra, Menanes Cardoso, Jefferson Silva, and Clovis Fernandes. Idioms for code
annotations in the java language. In Proceedings of the 17th Latin-American Conference
on Pattern Languages of Programs, SugarLoafPLoP, pages 1–14, 2010.

M. Nosáľ and J. Porubän 113

6 Eduardo Guerra, Clovis Fernandes, and Fábio Fagundes Silveira. Architectural patterns
for metadata-based frameworks usage. In Proceedings of the 17th Conference on Pattern
Languages of Programs, PLoP2010, pages 1–14, 2010.

7 Ralf Lämmel and Erik Meijer. Revealing the x/o impedance mismatch: changing lead into
gold. In Proceedings of the 2006 international conference on Datatype-generic programming,
SSDGP’06, pages 285–367, Berlin, Heidelberg, 2007. Springer-Verlag.

8 Carlos Noguera and Renaud Pawlak. Aval: an extensible attribute-oriented programming
validator for java: Research articles. J. Softw. Maint. Evol., 19(4):253–275, July 2007.

9 Milan Nosáľ and Jaroslav Porubän. Supporting multiple configuration sources using ab-
straction. Central European Journal of Computer Science, 2(3):283–299, October 2012.

10 Renaud Pawlak. Spoon: Compile-time annotation processing for middleware. IEEE Dis-
tributed Systems Online, 7(11):1–, November 2006.

11 Romain Rouvoy and Philippe Merle. Leveraging component-oriented programming with
attribute-oriented programming. In Proceedings of the 11th International ECOOP Work-
shop on Component-Oriented Programming, WCOP’06. Karlsruhe University, July 2006.

12 Wolfgang Schult and Andreas Polze. Aspect-oriented programming with c# and .net. In
Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Dis-
tributed Computing, ISORC ’02, pages 241–. IEEE Computer Society, 2002.

13 Myoungkyu Song and Eli Tilevich. Metadata invariants: checking and inferring metadata
coding conventions. In Proceedings of the 2012 International Conference on Software En-
gineering, ICSE 2012, pages 694–704, Piscataway, NJ, USA, 2012. IEEE Press.

14 Wesley Tansey and Eli Tilevich. Annotation refactoring: inferring upgrade transformations
for legacy applications. SIGPLAN Not., 43(10):295–312, October 2008.

15 Eli Tilevich and Myoungkyu Song. Reusable enterprise metadata with pattern-based struc-
tural expressions. In Proceedings of the 9th International Conference on Aspect-Oriented
Software Development, AOSD ’10, pages 25–36, New York, NY, USA, 2010. ACM.

16 Hiroshi Wada and Shingo Takada. Leveraging metamodeling and attribute-oriented pro-
gramming to build a model-driven framework for domain specific languages. In Proc. of
the 8th JSSST Conference on Systems Programming and its Applications, 2005.

SLATE 2013

	Introduction
	Annotations and XML
	XML to @OP Mapping Patterns

	Pattern Catalogue
	Structural Mapping Patterns
	Direct Mapping Pattern
	Nested Annotations Pattern
	Enumeration Pattern
	Wrapper Pattern
	Distribution Pattern

	Program Elements Binding Patterns
	Target Pattern
	Parent Pattern
	Mixing Point Pattern

	Conclusion

