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Abstract
Equality of expressions in lambda-calculi, higher-order programming languages, higher-order
programming calculi and process calculi is defined as alpha-equivalence. Permutability of bindings
in let-constructs and structural congruence axioms extend alpha-equivalence. We analyse these
extended alpha-equivalences and show that there are calculi with polynomial time algorithms,
that a multiple-binding “let” may make alpha-equivalence as hard as finding graph-isomorphisms,
and that the replication operator in the pi-calculus may lead to an EXPSPACE-hard alpha-
equivalence problem.
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1 Introduction

Motivation. Reasoning, rewriting, matching, and automated deduction in higher order
calculi often require – as a very basic operation – to identify higher-order expressions up to
alpha-equivalence. This means expressions are identified if they are syntactically equal up to
a renaming of bound variables (which represent the binding structure). As a basic example
consider the expressions of the classical lambda calculus e1 = λx.λy.x and e2 = λy.λx.y.
These expressions are alpha-equivalent, since the renaming σ = {y 7→ x, x 7→ y} of bound
variables makes σ(e1) and e2 syntactically equally. An approach to handle alpha-equivalence
in deduction systems is to use nominal techniques [27], however, the focus is to ease formula
specification and deduction rather than speeding up alpha-equivalence checking. In addition
nominal techniques consider so-called equivariance between terms, which is a slight extension
of alpha-equivalence, since terms e1, e2 are equivariant if there exists a finite permutation of
variable names π such that e1 is syntactically equal to πe2.

For a lot of classical program calculi (e.g. several variants of extensions of the lambda
calculus) checking alpha-equivalence can be performed by efficient (and also more or less
trivial) algorithms in log-linear time in the size of the expressions. Also deciding equivariance
of such terms is known to be in P [9].

However, more sophisticated calculi also allow programming primitives that satisfy laws
like commutativity and / or associativity in combination with binding primitives, like non-
recursive and recursive bindings, which may occur nested (e.g. let(rec)-expressions in
extended lambda-calculi like [2, 23, 38], the parallel composition and ν-binders in process
calculi, like the π-calculus [21, 20, 35]). Equality testing of expressions in such calculi,
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respecting alpha-equivalence and the laws of the primitives, turns out to have a harder
decision problem.

In this paper we focus on this problem and describe several algorithms and also determine
the complexity of checking equality of expressions up to alpha-equivalence under the usual laws
of the programming primitives (permutativity, commutativity, associativity, etc.). Algorithms
for expressions in higher-order extended lambda-calculi and process-calculi will be discussed,
which also includes alpha-equivalence of functional programs in Haskell.

Applications. Our motivation to analyze extended alpha-equivalence stems from recent
research that aims to automate the diagram-based proof method for showing correctness
of program transformations (see [38] for the method and [29, 28] for the automation). The
method is mainly used for call-by-need programming calculi modelling the semantics of
functional programming languages like Haskell, however, the method is also applicable
to other kinds of calculi like variations of call-by-need calculi, and to process calculi like
the π-calculus. The first step is to compute critical overlaps (similar to critical pairs)
between reduction rules from the operational semantics and program transformations using
a sophisticated unification algorithm [29, 30]. In a second step the overlappings must be
“closed”, which is similar to show joinability of critical pairs. This requires to find out
whether two reduction sequences starting from different expressions lead to expressions that
are alpha-equivalent after permutation of bindings. Thus checking expressions for extended
alpha-equivalence is an operation that is often performed even on large expressions. Ad-hoc
algorithms for checking alpha-equivalence of such expressions are worst-case exponential
due to searching for all possible permutations. Indeed, we will show in this paper that this
is unavoidable in general. Another potential application of interest in program analysis
during compilation of (functional) programs is in “common subexpression elimination” which
shares identical subexpressions and where subexpressions must be checked for equality up to
alpha-equivalence.

Graph isomorphism. Several extended alpha-equivalence problems will be shown to be
graph-isomorphism-complete (GI-complete) in this paper. The graph-isomorphism problem
as a complexity class GI is only known to be between PTIME and NP. Proving an
algorithmic problem as GI-complete indicates hardness and (assuming current knowledge)
that there is no polynomial time algorithm for it solving all instances. More details from a
complexity point of view on the class GI can e.g. be found in [39, 16, 15], where it is also
show that if GI were NP-complete, then the polynomial time hierarchy would collapse.

A related problem is term equality including associative-commutative operators which
is shown to be GI-complete in [6]. However, [6] does not consider the case of (perhaps
mutually-recursive) binding-environments as they are provided by the letrec-construct.
Another result is that deciding structural congruence in the π-calculus without replication (but
perhaps with recursion) is GI-complete [14]. Algorithms for deciding structural congruence in
the π-calculus with replication were investigated for several variants of the calculus in [10, 11],
where the complexity is either not analyzed or shown to be in EXPSPACE. As we show –
under mild restrictions – the problem is also EXPSPACE-hard. A further related result is
that syntactic equivalence of Boolean formulas in CNF using associativity/commutativity of
Boolean operators is GI-complete [5].

Results and structure of the paper. Section 2 contains preliminaries on graphs, the
isomorphism problem of various variants of graphs, and a proof of GI-completeness for
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a special class of graphs (so-called outgoing-ordered labelled directed graphs). Moreover,
an efficient decision procedure is presented for a subclass of these graphs. Based on these
results, we prove in Section 3 that alpha-equivalence for a class of higher-order languages
with letrec-expressions is GI-complete (Theorem 3.8), and that there is a polynomial time
algorithm provided the expressions are free of garbage (Theorem 3.11) or rewrite rules for
performing garbage collection are included in the calculus (Theorem 3.13). We also show
GI-completeness for languages with non-recursive or non-nested let. We also present several
instances of program calculi that are covered by our results. In Section 4 we investigate
structural congruence in process calculi. Especially, we summarize known results about the
complexity of structural congruence in several variations of the π-calculus and provide a
proof of EXPSPACE-hardness of structural congruence of Milner’s variant (Theorem 4.3).

2 Graphs and Graph Isomorphism

Before considering the (extended) alpha-equivalence problems, as a preliminary we introduce
the necessary notions and notation on graphs and the graph isomorphism problem. In this
section, we also introduce some specific, restricted graphs and their isomorphism problems
together with algorithms and analyses of them. In later sections, these results will be applied
to the alpha-equivalence problem in different program calculi.

We define labelled directed graphs as a flexible formalism for several classes of graphs,
e.g. including unlabelled, undirected graphs.

I Definition 2.1. A labelled directed graph (LDG) is a tuple G = (V,E,L, lab) where V
is a finite set of nodes, E ⊆ (V × V × L) are directed labelled edges between nodes, L is
a finite set of labels, V,E are disjoint, and lab : V → L assigns a label to every node. If
(v1, v2, l) ∈ E ⇐⇒ (v2, v1, l) ∈ E, then the graph is undirected, and if |L| = 1, then we call
G unlabelled. For convenience, we omit the components L and lab for unlabelled graphs.

Note that this definition does only allow parallel edges with different labels, and forbids
parallel edges in unlabelled graphs. An isomorphism between two LDGs is defined as follows:

I Definition 2.2 (Isomorphic LDGs). Two LDGs G1 = (V1, E1, L, lab1), G2 = (V2, E2, L, lab2)
are isomorphic iff there is a bijection φ : V1 → V2 such that (v1, v2, l) ∈ E1 ⇐⇒
(φ(v1), φ(v2), l) ∈ E2 for all edges (v1, v2, l) ∈ E1 and lab1(v) = lab2(φ(v)) for all nodes
v ∈ V1. The mapping φ is called an isomorphism in this case.

Note that an isomorphism is completely determined by the mapping on the nodes.

I Definition 2.3 (Graph Isomorphism Problem (GI)). Graph-isomorphism (GI) is the following
problem: Given two finite (unlabelled, undirected) graphs G1 = (V1, E1) and G2 = (V2, E2),
are G1 and G2 isomorphic?

It is well-known that the isomorphism problem for directed graphs is GI-complete [41],
which we will use later for our encodings. Also, the labelled directed graph isomorphism
problem is equivalent to the unlabelled graph isomorphism problem, i.e. it is known to be
GI-complete. See [7] for further classes of graphs with a GI-complete isomorphism problem.
We summarize these known results in the following proposition:

I Proposition 2.4 ([7, 41]). The isomorphism problem for LDGs and the isomorphism
problem for unlabelled directed graphs are GI-complete.

RTA’13
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Figure 1 Example for the encoding ρ in the proof of Proposition 2.6 (new nodes are shaded).

The graph-isomorphism problem as a complexity class GI is only known to be between
PTIME and NP.

In our application in the next section, the following specific graphs play an important
role. The graphs are LDGs where all outgoing edges of a node have unique labels:

IDefinition 2.5 (Outgoing-Ordered LDG). We call a labelled directed graphG = (V,E, L, lab)
outgoing-ordered (an OOLDG), iff for every node v ∈ V : whenever (v, v1, l), (v, v2, l) ∈ E
then v1 = v2.

OOLDGs are related to expressions with a restricted use of let-expressions, where the
intuition is that their alpha-equivalence-check may be more efficient.

The paper [12] describes algorithms for matching directed labelled graphs, but the
isomorphism definition is w.r.t. the (infinite) unrolling, and thus different. The isomorphism
problem for so-called ordered directed graphs was shown to be solvable in polynomial time
by [13]. However, this result is only applicable to labelled directed graphs where for every
node the – outgoing as well as the incoming – edges are uniquely labelled for every node.
For our application, the incoming edges have no restrictions. Hence their result cannot be
used. The following proposition even shows that these questions are different:

I Proposition 2.6. The isomorphism problem for OOLDGs is GI-complete.

Proof. The problem is in GI (this trivially follows from Proposition 2.4). For proving
GI-hardness, we define an encoding ρ of arbitrary unlabelled directed graphs into OOLDGs:
Given an unlabelled directed graph G, we construct an OOLDG ρ(G) from G by the following
operation: Every edge (v1, v2) of G is replaced by two edges (v, v1, 1) and (v, v2, 2), where v
is a new node: i.e. v1 → v2 is replaced by v1

1←− v 2−→ v2, where for every edge a fresh node v
is constructed. An example of the encoding is shown in Figure 1.

Given two unlabelled directed graphs G1, G2, these are isomorphic iff ρ(G1) and ρ(G2)
are isomorphic: Any isomorphism of ρ(G1) and ρ(G2) only maps old nodes to old ones and
fresh nodes to fresh ones due to the direction of the new edges (i.e. only new nodes have
outgoing edges, and only old nodes have incoming edges). The direction of the edges is
preserved (i.e. encoded) due to the labels 1, 2. Since the encoding ρ at most doubles the size
of the graphs and the isomorphism problem for (unlabelled) directed graphs is GI-complete
(Proposition 2.4), OOLDG-isomorphism checking is GI-hard. J

Since the encoding generates an acyclic directed graph, this also implies:

I Proposition 2.7. The isomorphism problem for acyclic OOLDGs is GI-complete.

However, as we show in the remainder of this section, there are also some complexity
results for OOLDGs, which are positive under various reachability restrictions. First, we
define some notation:



M. Schmidt-Schauß, C. Rau, and D. Sabel 259

I Definition 2.8. Let G = (V,E, L, lab) be a (labelled or unlabelled) directed graph. We
say a node v ∈ V is a root, if it has no incoming edges (there exists no edge (w, v) ∈ E), and
it is a leaf if it has no outgoing edges (there exists no edge (v, w) ∈ E).

For a node v of G, let reach(v,G) be the set of nodes in G reachable from v via directed
edges. A node v is called initial, iff every other node w ∈ V \ {v} can be reached from v

(i.e. w ∈ reach(v,G)). A set S of nodes is initial, iff every other node w ∈ V \ S can be
reached from some v ∈ S (i.e. w ∈

⋃
v∈S reach(v,G)).

G is weakly connected, iff its corresponding undirected graph is connected. Hence G can
be split into its weakly connected components. We say G is k-initial, if for every weakly
connected component G′ of G, there is an initial set SG′ within G′ of at most k nodes
(i.e. |SG′ | ≤ k). We say G is k-rooted, if every weakly connected component G′ of G has at
most k roots, and if the set of roots within G′ is initial. We say G is rooted, if it is 1-rooted,
and G is weakly connected. For an LDG G = (V,E, L, lab) its size |G| is the sum of the
cardinalities of V and E.

I Proposition 2.9. Let G1, G2 be rooted OOLDGs. Then isomorphism between G1 and G2
can be tested in time O(n log(n)) where n = |G1| + |G2|. Moreover, there is at most one
isomorphism between G1 and G2.

Proof. Let Gi = (Vi, Ei, Li, labi) for i = 1, 2. W.l.o.g, we can assume that for i = 1, 2: every
l ∈ Li is used in Gi. If L1 6= L2, then G1 and G2 are not isomorphic, hence we assume
L1 = L2. We construct a mapping φ : V1 → V2 such that either φ is an isomorphism between
G1 and G2 or the construction fails. In the latter case G1 and G2 are not isomorphic.
Let ri be the root nodes of Gi, for i = 1, 2. We set φ(r1) := r2. We iteratively process
all nodes in V1: Assume φ(v1) = w1 is already constructed, and the outgoing edges are
(v1, v1,j , lj) for j = 1, . . . ,m. Then the outgoing edges from w1 either can be ordered as
(w1, w1,j , lj) for j = 1, . . . ,m, or the φ-construction fails and G1, G2 are not isomorphic.
We set φ(v1,j) := w1,j for j = 1, . . . ,m. If there is a conflict, for example since φ is
already differently defined on some v1,k, then again the construction fails, and G1, G2 are
not isomorphic. If the construction goes through without failing, then an isomorphism has
been found, since the graphs are rooted, and hence every node is reachable. Obviously, the
construction leads to a unique φ, if the construction halts successfully. As a preprocessing
we store all edges (w1, w2, lj) of E2 in an efficient data structure with key (w1, lj) and value
w2. This can be done in O(|E2| log |E2|) time. During the construction of φ we lookup the
corresponding edge in O(log |E2|) time. The mapping φ can also be stored in an efficient
data structure, which shows that the whole procedure requires O(n logn) time. J

I Proposition 2.10. Let G1, G2 be OOLDGs with n = |G1| + |G2|. Estimations for the
complexity of isomorphism checking of G1, G2 are:
1. O(k! n log(n)), if G1, G2 are weakly connected and k-rooted.
2. O(k! n3 log(n)), if G1, G2 are k-rooted.
3. O(k! n2 log(n)), if G1, G2 are weakly connected and k-initial.
4. O(k! n4 log(n)), if G1, G2 are k-initial.

Proof. The first item for k = 1 is exactly Proposition 2.9. For k > 1, all possible bijections
of the roots have to be tried, which justifies the factor k!. The complexity in the second
item is derived from the previous item, since O(n2) isomorphism checks between the weakly-
connected components have to be performed followed by a comparison of the equivalence
classes. Since the initial nodes are not unique in contrast to the roots, also all possibilities
for other nodes have to be tried, which increases the exponent of n by 1 in the corresponding
cases (3) and (4). J

RTA’13
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I Definition 2.11. For an LDG G = (V,E, L, lab), we define the outgoing-ordered subgraph
(OO-subgraph) OO(G) = (V,E′, L, lab), which is constructed from G by removing all the
edges with ambiguous labels. More rigorously: for every node v ∈ V , and every label l ∈ L,
if e1, . . . , en are all the outgoing edges from v, labelled with l, and n ≥ 2, then remove
e1, . . . , en, but not the nodes. The resulting graph is denoted as OO(G).

I Proposition 2.12. Let G1, G2 be two LDGs such that G′i := OO(Gi) for i = 1, 2 are
rooted. Then isomorphism of G1, G2 can be tested in time O(n log(n)) where n = |G1|+ |G2|.
Moreover, there is at most one isomorphism.

Proof. Any isomorphism φ between G1 and G2 is also an isomorphism between G′1 and G′2,
since OO(·) does not remove nodes. Moreover, any isomorphism φ between G′1 and G′2 is a
bijective mapping between the nodes of G1 and G2. Using Proposition 2.9, the isomorphism
test of G′1, G′2 can be performed in time O(n log(n)), where the mapping φ is also constructed
on the fly. Then we test whether φ is an isomorphism of G1, G2 which can also be performed
in time O(n logn). J

3 Alpha-Equivalence for Higher-Order Languages with Let

We define a fragment of the core language of higher order extended lambda-calculi with a
recursive or non-recursive let that captures the essence at least of its alpha-equivalence issues
and is nevertheless general enough such that the results grade up to the full language.

A signature Σ is a finite set of ranked constructor or function symbols c, ci equipped
with an arity ar(c) ∈ N0. We assume a countable infinite set of variables denoted by x, y, z
(possibly indexed by numbers). The language CH (over the signature Σ) has the syntax

r, s, t ∈ LCH ::= x | c(s1, . . . , sar(c)) | λx.s | letrec x1 = s1; . . . ;xn = sn in s.

The constructs that bind variables are abstractions (λ-expressions) and letrec-expressions.
In a letrec-construct letrec x1 = s1; . . . ;xn = sn in s, the bindings xi = si may be
interchanged; the variables x1, . . . , xn must be distinct; the scope of the bound variables xi
is in every s1, . . . , sn as well as in s. As an abbreviation we use Env (as a meta symbol)
for a (non-empty) set of letrec-bindings, e.g. we sometimes write letrec Env in s, or
also letrec Env1,Env2 in s. As another abbreviation we use λx1, . . . , xn.s instead of
λx1. . . . .λxn.s. For a CH-expression s we use FV (s) for the set of free variables of s.

Several usual programming language constructs of extended lambda calculi like application,
seq-expression, non-deterministic choice fit into this syntax by choosing a corresponding func-
tion symbol c for the construct. Also calculi with case-expressions are covered, where the usual
case-expression case s of (c1(x1,1, . . . , x1,ar(c1)) → t1) . . . (cn(x1,1, . . . , xn,ar(cn)) → tn) is
represented as case(s, λx1,1, . . . , x1,ar(c1).t1, . . . , λxn,1, . . . , xn,ar(cn).tn). Alpha-equivalence
of CH-expressions is defined as follows and includes permutation of the letrec-bindings:

I Definition 3.1. Two CH-expressions s, t are alpha-equivalent, s 'α,CH t iff s can be
transformed into t using perhaps several of the two operations: (i) renaming of bound
variables without capture, (ii) permuting the bindings in the letrec-environments.

For example, (letrec x = y; y = z in x) 'α,CH (letrec x = z; y = x in y), where we have
to exchange x, y by a substitution and then to permute the bindings in the environment.

The language CHNR is the same language as CH except that letrec is non-recursive.
For convenience, in this case we write let instead of letrec. The scope of xi in let x1 =
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s1; . . . ;xn = sn in t is only t, and in CHNR the alpha-equivalence is defined accordingly,
where only the let-renamings are different due to the scoping.

It is known that alpha-equivalence of expressions in the lambda-calculus and its extensions
without permutations of bindings is decidable in polynomial time, even in time O(n logn),
where n is the size of the expressions [8].

The issue when checking alpha-equivalence of CH-expressions is the potential exponential
time requirement in searching for all possible permutations of letrec-bindings. It is easy to
see that the alpha-equivalence problem is in NP: A single guess for the permutation of every
letrec-expression and then checking alpha-equivalence in polynomial time are sufficient.

3.1 Complexity in the General Case of CH and CHNR

First we show that alpha-equivalence in CH is GI-hard.

I Proposition 3.2. Even if the signature Σ is empty, deciding CH-alpha-equivalence as well
as CHNR-alpha-equivalence is GI-hard.

Proof. We encode the graph isomorphism problem for unlabelled directed graphs into the
CHNR-alpha-equivalence problem. Hence, we encode two arbitrary unlabelled directed graphs
Gi = (Vi, Ei) for i = 1, 2 into CHNR-expressions exp(Gi). We first assume that Σ contains a
constant a and a binary constructor c, later we cover the case that Σ is empty. W.l.o.g. we
assume V1 = {v1,1, . . . , v1,n} and V2 = {v2,1, . . . , v2,n} such that V1 ∩ V2 = ∅.

The expression exp(Gi) is let Envi,A in (let Envi,B in a), where the environments are
as follows: For every node vi,j of Vi we have a component vi,j = a in Envi,A, and for every
edge (vi,j , vi,k) in Ei, we have the component xi,j,k = c(vi,j , vi,k) in Envi,B .

Assume that exp(G1) 'α,CHNR exp(G2). Then there is a renaming σ : V1 ∪
⋃
{x1,j,k} →

V2 ∪
⋃
{x2,j,k}, such that σ(exp(G1)) is syntactical equal to exp(G2) after some permutations

of let-bindings. Let σ′ be the restriction of σ to V1. Obviously, σ′ must be a bijection
between V1 and V2; and (v1,j , v1,k) ∈ E1 whenever (σ′(v1,j), σ′(v1,k)) ∈ E2. Thus σ′ is an
isomorphism between G1 and G2. Now assume that G1 and G2 are isomorphic. Then there
exists a bijection σ : V1 → V2 such that (v1,j , v1,k) ∈ E1 iff (σ(v1,j), σ(v1,k)) ∈ E2. Then
exp(G1) and exp(G2) are alpha-equivalent: σ can be used as a renaming, but has to be
extended on the variables x1,j,k which is always possible. Thus G1 and G2 are isomorphic iff
exp(G1) 'α,CHNR exp(G2). Since every CHNR-expression is also a CH-expression, this also
shows GI-hardness of CH-alpha-equivalence.

Now assume Σ = ∅: Then the same proof can be performed by replacing a by a free
variable xa and replacing c(vi, vj) by let y = vi in vj . J

I Example 3.3. We encode the following directed graphs as CHNR-expressions:

v1 v2

v3 v4

v5 w5 w4w3

w2

w1

G1 G2

RTA’13
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The encodings are si = exp(Gi) with:

s1 = let v1 = a; v2 = a; v3 = a; v4 = a; v5 = a in
let x1 = c(v1, v3);x2 = c(v1, v5);x3 = c(v2, v4);x4 = c(v2, v1);

x5 = c(v3, v5);x6 = c(v4, v3);x7 = c(v5, v2) in a
s2 = let w1 = a;w2 = a;w3 = a;w4 = a;w5 = a in

let x1 = c(w1, w4);x2 = c(w2, w3);x3 = c(w3, w1);x4 = c(w4, w2);
x5 = c(w4, w5);x6 = c(w5, w1);x7 = c(w5, w3) in a

The expressions are alpha-equivalent: For σ = {v1 7→ w5, v5 7→ w1, v2 7→ w4, v4 7→ w2, v3 7→
w3, x1 7→ x7, x2 7→ x6, x5 7→ x3, x3 7→ x4, x4 7→ x5, x6 7→ x2, x7 7→ x1} the expression σ(s1)
is syntactically equal to s2 after “sorting” the let-environments.

The mapping σ restricted to v1, . . . , v5 is an isomorphism between the graphs G1, G2.

I Proposition 3.4. If Σ contains a binary constructor or function symbol, deciding alpha-
equivalence in CH is GI-hard, even if the expressions are restricted s.t. letrec is only allowed
on the top-level of any expression, i.e. nested letrec-expressions are not permitted.

Proof. The same proof as of Theorem 3.2 can be used, except that the expression encoding
is letrec Envi,A,Envi,B in a. J

Proposition 3.4 does not hold in CHNR, i.e., for non-recursive let-bindings. In this case
alpha-equivalence can be decided in polynomial time which we show in Corollary 3.15.

Now we show that every alpha-equivalence problem in CH can be encoded as a directed
graph-isomorphism problem, where the encoding can be done in polynomial time, and even
in logarithmic space, i.e. deciding 'α,CH is in GI. First we define a graph construction from
an expression:

I Definition 3.5. Given a CH-expression s, we describe the construction of G(s), the
labelled directed graph corresponding to s. We assume that s fulfills the distinct variable
convention, i.e. the set of bound variables is distinct from free variables and bound variables
are pairwise distinct. During the construction we use (and construct) a helper function
node(.) which computes a node of the graph for every subexpression (with its position) of s.
First the variables in s are partitioned into three sets: Let {x1, . . . , xk} be the free variables,
{y1, . . . , ym} be the lambda-bound variables, {z1, . . . , zn} be the letrec-bound variables, and
let Var(s) be the union of the three sets.

Let c1, . . . , ck be the constructor and function symbols occurring in s, and q be
the maximum arity of these symbols. Then the LDG G(s) has the label set L =
{var, lamvar, lvar, body, letvar, bind, letrec, in, λ} ∪ {c1, . . . , ck} ∪ {1, . . . , q} ∪ {x1, . . . , xk}.

For every variable w ∈ Var(s) there is a node N(w) in the graph G(s). We set node(w) :=
N(w). For every free variable xi we set lab(N(xi)) := xi, for every lambda-bound variable yi
we set lab(N(yi)) = lamvar, and for every letrec-bound variable zi we set lab(N(zi)) = letvar.

For the construction of the graph every subexpression is inspected (performed bottom
up), according to the following cases (variables are already treated above):

If the subexpression is λx.r, then construct a new node v with lab(v) := λ, and add edges
(v, node(x), lvar), (v, node(r), body). Set node(λx.r) := v.
If the subexpression is (letrec x1 = s1; . . . ;xn = sn in t), then we add one new node
u with lab(u) := letrec, and let node(letrec x1 = s1; . . . ;xn = sn in t) := u. For
all i = 1, . . . , n we add edges (u, node(xi), var), (node(xi), node(si), bind), and an edge
(u, node(t), in).
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If the subexpression is c(s1, . . . , sn) then add one new node u with lab(u) = c, and set
node(c(s1, . . . , sn)) := u. For i = 1, . . . n add the edges (u, vi, i).

Note that the construction of node(.) is meant together with the position of the subexpression,
with the exception that for variables the position does not play any role, since there is only
one node for every variable.

I Example 3.6. For the CH-expression letrec x = y, y = z in x its corresponding
LDG is G = (V,E,L, lab) where L = {var, lamvar, lvar, body, letvar, bind, letrec, in, λ, z},
V = {v1, v2, v3, v4}, E = {(v4, v1, var), (v4, v2, var), (v1, v2, bind), (v2, v3, bind), (v4, v1, in)},
and lab = {v1 7→ letvar, v2 7→ letvar, v3 7→ z, v4 7→ letrec}. The graph can be depicted as
follows:

letrec

letvar letvar z
var

var
in

bind bind

I Proposition 3.7. CH-alpha-equivalence is in GI.

Proof. We encode alpha-equivalence of CH-expressions into the isomorphism problem of
labelled directed graphs (which is GI-complete, see Proposition 2.4).

Let t1, t2 be CH-expressions. W.l.o.g. we assume that the expressions fulfill the distinct
variable convention (if not, this can be achieved in time O(n logm) where n is the size of
the term, and m is the number of variables). Let G(t1), G(t2) be the graphs constructed
according to Definition 3.5.

One can verify that t1 and t2 are alpha-equivalent if, and only if G(t1) and G(t2) are
isomorphic: The whole term structure is preserved, letrec-bindings are commutable in the
graph, and variable occurrences are represented by edges in the graph. Given an isomorphism
φ from G(t1) to G(t2), the variable renaming making t1 and t2 syntactically equivalent
(modulo commutation of letrec-bindings) can be derived by inspecting φ(node(w)) for every
lambda- or letrec-bound variable w of t1. This gives a node v ∈ G(t2) which must correspond
to the according lambda- or letrec-bound variable in t2. J

Obviously, CH-alpha-equivalence also solves CHNR-alpha-equivalence. Thus Proposi-
tions 3.7 and 3.2 imply:

I Theorem 3.8. CH-alpha-equivalence and CHNR-alpha-equivalence are GI-complete.

3.2 An Efficient Algorithm for Expressions without Garbage
The results up to now show that general CH-expressions have a hard alpha-equivalence
problem. However, the question whether two CH-expressions are alpha-equivalent up to
removing unused bindings can be answered efficiently, as we will see. Concretely, we define
the following rewriting rules on CH-expressions for garbage collection (gc) that iteratively
remove unused bindings:

(gc1) letrec x1 = s1; . . . ;xn = sn; y1 = t1; . . . ; ym = tm in tm+1
gc−→ letrec y1 = t1; . . . ; ym = tm in tm+1 if

m+1⋃
i=1

FV (ti) ∩ {x1, . . . , xn} = ∅

(gc2) letrec x1 = s1; . . . ;xn = sn in t
gc−→ t if FV (t) ∩ {x1, . . . , xn} = ∅
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It is easy to verify that the rewriting system on CH-expressions induced by gc−→ is confluent
and terminating. Thus unique normal forms w.r.t. (gc) exist. We say a CH-expression s is
without garbage (or garbage free), if it is such a normal form, i.e. the rule (gc) is not applicable
to any subexpression of s. Computing the normal form w.r.t. (gc) can be done in polynomial
time, since (gc)-redexes can be detected efficiently and the rewriting can be performed by an
innermost-strategy, inspecting every letrec-expression once. The complexity of computing
the (gc)-normal form using the (gc)-rewriting steps is polynomial in n where n is the size of
the expressions. However, by a global procedure an (alpha-equivalent) (gc)-normal form can
also be computed in time O(n logn):

I Lemma 3.9. Let s be a CH-expression. Then an alpha-equivalent (gc)-normal form of s
can be computed in time O(n logn) where n is the size of s.

Proof. W.l.o.g. we assume that s fulfills the distinct variable convention (otherwise a renamed
expression can be computed in time O(n logn)). As a first step, construct the LDG G(s)
according to Definition 3.5. Then mark all nodes of G(s) that are reachable from node(s)
by never using any edge labelled var. This requires time O(|G(s)| log |G(s)|) if we store
the nodes in an efficient data structure. Clearly, unmarked nodes are garbage. Hence, we
delete all unmarked nodes, all corresponding edges from G(s), and finally letrec-nodes that
have no outgoing edges marked with var, where incoming edges are redirected to the node
corresponding to the in-expression. Let the result be the LDG G′. The deletion procedure
requires O(|G(s)| log |G(s)|) time, since a traversal of the graph (with some lookups whether
nodes are marked or not marked) is sufficient. Finally, reconstruct the garbage-free expression
corresponding to G′ which is always possible. J

Below we show that the alpha-equivalence-problem for garbage free CH-expressions can
be decided efficiently, and thus also the question whether for two given expressions s1, s2
their (gc)-normal forms s′1, s′2 are alpha-equivalent can be answered in polynomial time.

Hence, the conclusion is that the worst-case high complexity for checking alpha-equivalence
in CH is due to comparing the garbage subexpressions.

I Lemma 3.10. Let s be a garbage free CH-expression, and G(s) the LDG constructed from
s (see Definition 3.5). Then the subgraph G′ := OO(G(s)) satisfies the assumptions of
Proposition 2.12: G′ is rooted and an OOLDG.

Proof. It is easy to see that garbage-freeness of s implies that every node of G(s) is reachable
from the root via edges that are not labelled with var. The subgraph G′ := OO(G(s)) is the
subgraph of G(s) where for the nodes all var-edges are removed, if there are at least two
outgoing var-edges from this node. J

I Theorem 3.11. Given CH-expressions s1, s2, where at least one of s1, s2 is free of garbage,
their alpha-equivalence can be checked in time O(n log(n)) where n = |G(s1)|+ |G(s2)|.

Proof. It can be checked in log-linear time whether (gc) is applicable to an expression by
constructing G(si) and checking whether every node is reachable via edges not labelled with
var. The expressions can only be alpha-equivalent, if both are free of garbage. Thus by
Lemma 3.10 and Proposition 2.12 the isomorphism-test of G(s1) and G(s2) can be performed
in time O(n log(n)) where n = |G(s1)|+ |G(s2)|. Since this is equivalent to alpha-equivalence
of s1, s2, the theorem holds. J

I Definition 3.12. CH-expressions s, t are alpha-equivalent up to garbage-collection, denoted
by s 'α,gc,CH t, iff the (gc)-normal forms s′ and t′ of s and t are alpha-equivalent.
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I Theorem 3.13. For CH-expressions s1, s2 it is possible to decide whether s1 'α,gc,CH s2
in time O(n logn) where n = |s1|+ |s2|.

Proof. First, alpha-equivalent (gc)-normal forms of s1, s2 are computed by Lemma 3.9.
Finally, Theorem 3.11 is applied to the (gc)-normal forms. J

Note that checking 'α,gc,CH instead of 'α,CH is an option for the automation of the
diagram method, but requires the transformation (gc) in the set of permitted transforma-
tions/reductions in the reduction sequences, which is often not the case.
After adapting the (gc)-definition to CHNR, very similar reasoning and arguments show:

I Theorem 3.14. Theorem 3.11 and 3.13 also hold for CHNR.

I Corollary 3.15. For CHNR-expressions s1, s2 where let-expressions are only allowed on
the top-level of expressions, it is possible to decide whether s1 'α,CHNR s2 in time O(n3 logn)
where n = |s1|+ |s2|.

Proof. First decide whether s1 'α,gc,CHNR s2 using Theorem 3.14. Then compute the
bindings of s1 and s2 that are garbage. Testing whether these bindings are alpha-equivalent
is possible in time O(n3 logn): alpha-equivalence of a single binding x = t1 of s1 and a single
binding y = t2 of s2 can be tested in time O(n logn), since t1, t2 are usual terms (i.e. ranked
trees). For testing the sets of bindings we have to compare O(n2) bindings. J

For CH-expressions s, t with garbage, but without nested letrecs, one can test first the
expressions after removing the garbage bindings, and then test all combinations of the
garbage-bindings. This implies the following complexity estimation:

I Corollary 3.16. Let s1, s2 be CH-expressions with a one-level top letrec. Let n = |s1|+ |s2|
and k be the number of let-variables that are garbage in s1. Then s1 'α,CH s2 can be decided
in time O(k! n logn).

3.3 Applications: Lambda-Calculi with Bindings and Haskell
In this section we analyze and list several program calculi and programming languages which
fit into the syntax of CH or CHNR and thus have a GI-complete alpha-equivalence problem.

The first class of calculi covers several call-by-need lambda calculi with letrec, all of them
fit into the syntax of the language CH.

I Proposition 3.17. Deciding alpha-equivalence in lambda-calculi with letrec is GI-complete.
This includes the following calculi: The call-by-need lambda calculi in [3, 2] (in the variants
with letrec), the call-by-need lambda calculus with letrec in [37], and the cyclic lambda calculi
[4, 1]. Extended call-by-need letrec calculi as e.g. used in [23, 38], and also extensions with
non-deterministic operators [22, 24, 33, 36].

In all the mentioned calculi a rule for garbage collection can be defined such that The-
orem 3.13 is applicable.

Note that in call-by-need lambda calculi with non-recursive, single-binding let-expressions
(as e.g. [18]) alpha-equivalence can be decided in log-linear time.

We analyze the following fragment of Haskell. Data definitions are permitted where the
names of types and constructors are not renameable. Supercombinator definitions are also
permitted, but no modules, expressions are built by the usual constructs: variables, abstrac-
tions, applications, constructor applications and case-expressions, also letrec-expressions
may be present. We also assume that main is a distinguished name of a supercombinator and
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that the other supercombinator names may be renamed. Then clearly, a Haskell program
with supercombinators xi y1,i . . . y1,mi

= si for i = 1, . . . , n can be expressed in CH as
letrec x1 = λy1,1, . . . , y1,m1 .s1; . . . ;xn = λyn,1, . . . yn,mn

.sn in main and thus we have:

I Corollary 3.18. Haskell with only data definitions and renamble supercombinator definitions
has a GI-complete alpha-equivalence problem, even if letrec-expressions are forbidden. Also
a rule for garbage collection can be defined such that Theorem 3.13 is applicable.

In the record calculus [17] records are sets of bindings li 7→ ti where ti are expressions of
an extended lambda calculus (no letrec-bindings). This is like a one-level letrec, hence:

I Proposition 3.19. The alpha-equivalence problem in the record calculus [17] is GI-complete,
provided renaming of the record names is permitted.

Proof. This follows from Proposition 3.4. J

In the record calculus there is no distinguished main-label and thus a sufficient rule for
garbage collection is not definable in this calculus, i.e. Theorem 3.13 is not applicable.

3.4 Comparison of Types
Another application of our methods is comparison of types under various equivalences, which
for example is a useful feature for searching functions with similar types in function libraries
[31]. Fix a finite, non-empty set of type constructors tci where every type constructor has a
fixed arity ar(tci) ∈ N0. Let α, αi be type variables of a countably-infinite set of type variables.
The syntax of polymorphic types τ ∈ T is τ, τi ∈ T ::= α | τ1 → τ2 | tc(τ1, . . . , τar(tc)). As
usual we assume arrow-types to be right-associative. Let similarity, ∼, of types be ∼1 ◦ ∼2
where ∼1 allows renaming of type variables and ∼2 is the least congruence on types that
respects the axiom τ1 → τ2 → τ3 ∼ τ2 → τ1 → τ3. For instance, (α1 → α2)→ List(α1)→
List(α2) ∼ List(α4) → (α4 → α3) → List(α3). A type is positive, if it is a type variable,
or of the form τ1 → . . . → τn or tc(τ1, . . . , τar(tc)) where every type τi does not contain
arrow-types.

I Theorem 3.20. Similarity of Hindley-Milner polymorphic types (as defined above), even
for only positive types, is GI-complete.

Proof. In GI follows using standard methods. GI-hardness follows, where the encoding of
a directed graph G is as follows: For nodes vi, i = 1, . . . , n, edges {(vi1 , vj1), . . . , (vik , vjk

)},
1 ≤ ih, jh ≤ n, let the constructed (positive) type be v1 → . . . → vn → tc(vi1 , vj1) →
tc(vi2 , vj2)→ . . .→ tc(vik , vjk

)→ α where vi1 , vj1 , α are now type variables. J

4 Structural Congruence in Process Calculi

In this section we consider structural congruence in process calculi. In particular the π-calculus
and several fragments are analyzed that not only include an associative and commutative
binary operator | for parallel composition but also axioms for moving ν-binders, like
νx.νy.P ≡ νy.νx.P and (νx.P ) |Q ≡ νx.(P |Q) if x 6∈ FV (Q).

4.1 Process Calculi with Bindings
We first consider two extended lambda calculi that have a recursive binding scope only at
top-level, where bindings may be permutable, and where a structural congruence is defined
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extending alpha-equivalence. This covers the call-by-value lambda calculus with futures in
[26, 25, 40] and also CHF [34], a concurrent process-extension of Haskell languages.

I Proposition 4.1. Deciding structural congruence ≡ in the variants of the lambda-calculus
with futures in [25, 40] is GI-complete, as well as of the language CHF modelling Concurrent
Haskell with futures [34].

Proof. GI-hardness follows from Proposition 3.4, since these calculi can express renameable,
recursive one-level letrec-bindings. The proof that deciding structural congruence is in GI
does not directly follow from results for CH: First one has to verify that a prenex-normal
form can be computed, where all ν-binders are on the top of the process, i.e. a process in
prenex-normal form is of the form νx1. . . . νxn.P where P does not contain ν-binders. For
encoding these normal forms into graphs, the nested ν-binders are treated like a single binding-
operator which binds a set of variables, i.e. νX.P where X = {x1, . . . , xn}. Also nested
parallel compositions P1 |P2 | . . . are treated like a (multi-)set of processes {P1, . . . , Pn}.
With this preparations the corresponding LDG of a process can be encoded such that
isomorphism of the LDGs is equivalent to structural congruence of the processes. J

Note that in CHF a garbage collection rule can be defined which is sufficient to apply
Theorem 3.13, since there is a distinguished main-thread, while in the lambda calculus with
futures there is no such thread and thus Theorem 3.13 is not applicable.

4.2 Structural Congruence in the π-Calculus

We analyze deciding structural congruence in the π-calculus [21, 20, 35]. Note that in the
π-calculus a prenex-normal form does not exist, since not every ν-binder can be moved to
the top.

Note that in calculi with commutable ν-binders and commutative-associative composition,
GI-hardness of structural congruence can also be concluded by encoding directed graphs
(V,E) with V = {v1, . . . , vn} as νv1, . . . vn.P where P is a (nested) parallel composition of
the components: c1(v) for any v ∈ V and c2(v, w) for every directed edge (v, w) ∈ E where
c1 is a unary, and c2 a binary constructor or function symbol. E.g. in the π-calculus with
input and output prefixes defined by π ::= x(y) | x〈y〉 we can use v〈w〉.0 for c2(v, w) and
v(z).0 for c1(v) for some name z. These encodings can be found in [14] and are similar to
the encodings given in [6]. This shows that structural congruence in several fragments of the
π-calculus is at least GI-hard. In [14] it was also shown that in the π-calculus with sums and
non-renameable defined function symbols (perhaps recursive) deciding structural equivalence
is GI-complete.

However, in the π-calculus with a replication operator ! structural congruence includes
the axiom !P ≡ P | !P . With this axiom deciding structural congruence is much harder.
We consider the following fragment – called PIR – which covers several variants of the
π-calculus with replication. Let C be an infinite set of constants (atomic actions), then the
syntax of PIR is: s, si ∈ PIR := C | (s1 | s2) | ! s. We assume that structural congruence
is defined by the axioms (s1 | s2) ≡ (s2 | s1), (s1 | (s2 | s3)) ≡ ((s1 | s2) | s3) and ! s ≡ s | ! s.

In [11] it is shown that structural congruence in PIR can be decided in EXPSPACE.
Indeed the problem is also EXPSPACE-hard, which we show in the following.

First we consider commutative semigroups. Let Σ be an alphabet of constants, written
a, b, c, perhaps with indices.
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I Lemma 4.2. Given equations s1 = 1, . . . , sn = 1 where si are (commutative) words over
Σ, and two further commutative words s, t over Σ, then the decision problem of the word
problem s1 = 1 ∧ . . . ∧ sn = 1 |= s = t over commutative monoids is EXPSPACE-complete.

Proof. Given equations s1 = t1, . . . , sn = tn where si, ti are (commutative) words over Σ,
and two further commutative words s, t over Σ, then the decision problem of the word problem
s1 = t1 ∧ . . . ∧ sn = tn |= s = t over commutative semigroups is EXPSPACE-complete
[19]. We apply this result. Encoding the commutative monoid word problem is easy by
adding the axioms for the unit to the given equations. For the other direction we add n

fresh constants g1, . . . , gn to the signature and encode the equations as s1g1 = 1, t1g1 =
1, . . . , sngn = 1, tngn = 1. The equation si = sigiti = ti for i = 1, . . . , n is then derivable
from these equations. It is also not hard to see that the extension is conservative, i.e.,
the equational theories are equivalent on words free of g1, . . . gn. Since the encodings are
polynomial, we are done. J

I Theorem 4.3. Structural congruence of expressions in PIR is EXPSPACE-complete.

Proof. Due to the results of [11] it suffices to show EXPSPACE-hardness. For con-
venience, let us write the expressions without the parallel-operator, and assume that we
have commutative words in C∗. Then w1!(v1) . . .!(vn) ≡ w2!(v1) . . .!(vn) is equivalent to
v1 = 1 ∧ . . . ∧ vn = 1 |= w1 = w2 in a commutative monoid. Thus Lemma 4.2 implies
EXPSPACE-hardness. J

Since PIR can be embedded in the π-calculus with replication by simulating the constants
with different input-expressions, and omitting ν-binders, we have the following result:

I Corollary 4.4. Structural congruence in the π-calculus with replication is EXPSPACE-
hard.

This high complexity is a hint that it is not a good idea to include the replication axiom
in the congruence relation. It would be better to include it in the operational semantics and
only copy expressions “by need”.

Engelfriet and Gelsema [10] investigate variants of the congruence axioms for the rep-
lication operator and show decidability of the congruence, however, they do not mention
complexity bounds. An application of congruence and complexity of these variants is in [32].

Note that Theorem 4.3 does not apply to variants of congruence for the replication
operator as proposed in [10], since the respective congruences are different.
I Remark. The complexity (and even the decidability) of the congruence problem for
Milner’s variant of the π-calculus is still open. We show an example for one of
the problematic cases (using term notation) that are not covered by [11]: Let s =
νx.(f(x) | ! (f(x) | a)) | νx.! (g(x) | a), and t = νx.! (f(x) | a) | νx.(g(x) | ! (g(x) | a)),
then s ≡ t by exchanging the action a and using the replication axiom in both directions.

5 Summary and Conclusion

We have shown that alpha-equivalence of expressions in higher-order core functional pro-
gramming languages with a recursive let-construct that permits to permute the bindings,
and thus also for Haskell-expressions, is GI-complete, and consequently, algorithms require
exponential time in the worst case. If there is no garbage, then the worst case time complexity
is polynomial. This fact allows deduction systems a choice: if the application of algorithms for
alpha-equivalence is infeasible in the deduction, then the program transformation (gc) could
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be added to the set of transformations, which opens the possibility to use the polynomial
time algorithm for garbage free expression as proposed above.
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