STACS 2008, 21-23 February 2008

Proceedings of the
25th International Symposium
on Theoretical Aspects

of Computer Science
Bordeaux, France, 2008

Edited by: Susanne Albers and Pascal Weil

o)in

S

2008

Published by: IBFI Schloss Dagstuhl
Printed by: Imprimerie de 1’Université Bordeaux I
ISBN: 978-3-939897-06-4

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 1-6
www.stacs-conf.org

FOREWORD

SUZANNE ALBERS ! AND PASCAL WEIL 2

! Institut fiir Informatik, Universitit Freiburg
E-mail address: salbers@informatik.uni-freiburg.de

2 LaBRI, Université de Bordeaux, France
E-mail address: pascal.weil@labri.fr

The Symposium on Theoretical Aspects of Computer Science (STACS) is held alter-
nately in France and in Germany. The conference of February 21-23, 2008, held in Bordeaux,
is the 25th in this series. Previous meetings took place in Paris (1984), Saarbriicken (1985),
Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg
(1991), Cachan (1992), Wiirzburg (1993), Caen (1994), Miinchen (1995), Grenoble (1996),
Liibeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002),
Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006) and Aachen (2007).

The interest in STACS has remained at a high level over the past years. The STACS
2008 call for papers led to approximately 200 submissions from 38 countries. Each was
assigned to at least three program committee members. The program committee held a
2-week long electronic meeting at the end of November, to select 54 papers. As co-chairs
of this committee, we would like to sincerely thank its members and the many external
referees for the valuable work they put into the reviewing process. The overall very high
quality of the papers that were submitted to the conference made this selection a difficult
task.

We would like to express our thanks to the three invited speakers, Maxime Crochemore,
Thomas Schwentick and Mihalis Yannakakis, for their contributions to the proceedings.

Special thanks are due to A. Voronkov for his EasyChair software (www.easychair.org)
which gives the organisers of conferences such as STACS a remarkable level of comfort;
to Ralf Klasing for helping us explore the many possibilities of this brilliant software; to
Emilka Bojanczyk for the design of the STACS poster, proceedings and logo; and to the
members of the Organizing Committee, chaired by David Janin.

An innovation in this year’s STACS is the electronic format of the publication. A
printed version was also available at the conference, with ISBN 978-3-939897-06-4. The
electronic proceedings are available through several portals, and in particular through HAL
and DROPS. HAL is an electronic repository managed by several French research agencies,
and DROPS is the Dagstuhl Research Online Publication Server. We want to thank both
these servers for hosting the proceedings of STACS and guaranteeing them perennial avail-
ability. The rights on the articles in the proceedings are kept with the authors and the papers
are available freely, under a Creative Commons license (see www.stacs-conf.org/faq.html
for more details).

ASPECTS

§) o computer © S. Albers and P. Weil
@ Creative Commons Attribution-NoDerivs License

R SYMPOSIUM
nv "\ ON THEORETICAL
-

2 S. ALBERS AND P. WEIL

Conference organization

Members of the Program Committee

Manindra Agrawal, IIT Kanpur

Susanne Albers, Freiburg University, co-chair
Daniele Beauquier, Paris-12 University, Créteil
Mikolaj Bojanczyk, Warsaw University

Nadia Creignou, Marseille-3 University

Anna Gal, University of Texas, Austin

Naveen Garg, IIT Delhi

Kazuo Iwama, Kyoto University

Juhani Karhumaki, Turku University

Hartmut Klauck, Frankfurt University

Kamal Lodaya, IMSc, Chennai

Christof Loding, RWTH, Aachen

Frédéric Magniez, Paris-11 University, Orsay
Peter Bro Miltersen, Aarhus University

Vahab Mirrokni, Microsoft Research, Redmond
Seth Pettie, University of Michigan, Ann Arbor
Eric Rivals, CNRS and Montpellier University
Nicole Schweikardt, T'U Berlin

Christian Sohler, Paderborn University
Howard Straubing, Boston College

Klaus Wagner, Wirzburg University

Pascal Weil, CNRS and Bordeauxr University, co-chair

Members of the Organizing Committee

Véronique Bogati
Bruno Courcelle
David Janin (Local chair)
Mamadou Kante
Ralf Klasing
Olivier Ly

Frédéric Mazoit
Anca Muscholl
Géraud Sénizergues
Igor Walukiewicz
Pascal Weil

Marc Zeitoun

External reviewers

Scott Aaronson
Mohammad Ali Abam
Sarmad Abbasi
Luca Aceto

Heiner Ackermann
Marcel Ackermann
Isolde Adler

Pavan Aduri
Tatsuya Akutsu
Laurent Alonso
Helmut Alt

Andris Ambainis
Amihood Amir
Reid Andersen
Daniel Andersson
Takahito Aoto

S. Arun-Kumar

V. Arvind

Arash Asadpour
Eugene Asarin
Yossi Azar

Mohsen Bayati
Srecko Brlek
Amitabha Bagchi
Nikhil Bansal
Vince Bérany
Régis Barbanchon
David Barrington
Surender Baswana
Niel de Beaudrap
Mark De Berg
Vincent Berry

Yves Bertot

Alexis Bes
Stephane Bessy
Olaf Beyersdorft
Jean-Camille Birget
Henrik Bjorklund
Achim Blumensath
Nicolas Bonichon
Glencora Borradaile
Yacine Boufkhad
Mathilde Bouvel
Andreas Brandstadt
Marcus Brazil

Dirk Brendel

Harry Buhrman
Wojciech Buszkowski

FOREWORD

Jin-Yi Cai

Cezar Campeanu
Arnaud Carayol
Olivier Carton

Jorge Castro

Annie Chateau
Jingchao Chen

Yijia Chen

Victor Chepoi
Giorgos Christodoulou
Joélle Cohen

Dave Cohen

David Cohen-Steiner
Thomas Colcombet
Eric Colin de Verdiere
Robert Cori

Gérard Cornuéjols
Bruno Courcelle
Maxime Crochemore
Artur Czumaj
Deepak D’Souza
Ovidiu Daescu

Hervé Daudé
Jean-Paul Delahaye
Gilles Didier

Catalin Dima
Dominique Barth
Michael Drmota
Stefan Droste

Toana Dumitriu
Jacques Duparc
Bruno Durand
Herbert Edelsbrunner
Uwe Egly

Patricia Evans
Jean-Claude Fournier
Rolf Fagerberg

Jittat Fakcharoenphol
Stephen Fenner
Thomas Fernique
Matthias Fischer
Fedor Fomin
Christiane Frougny
Hiroshi Fujiwara
Péter Gacs

Travis Gagie

Vijay Garg

Cyril Gavoille

Hugo Gimbert
Rodolphe Giroudeau
Christian Glafler
Daniel Gongalves
Daniel Gottesman
Chris Gray

Fred Green

Iréne Guessarian
Anupam Gupta
Michel Habib
Mohammad HajiAghayi
Vesa Halava

Yijie Han

Xin Han

Tero Harju

Ishay Haviv
André Hernich
Mika Hirvensalo
John Hitchcock
Juha Honkala
Hendrik Jan Hoogeboom
Joseph Horton
Peter Hgyer
Szczepan Hummel
Ferran Hurtado
Oscar Ibarra
Keiko Imai

Nicole Immorlica
Hiro Ito

Gébor Ivanyos
Alain Jean-Marie
David Jacobs
Sanjay Jain
David Janin
Jesper Jansson
T.S. Jayram
Peter Jeavons
Fan Jianxi
Pushkar Joglekar
Satyen Kale
Mark Kambites
Makoto Kanazawa
Jarkko Kari
Wong Karianto
Akinori Kawachi
Neeraj Kayal
Julia Kempe
Michael Kerber

Tordanis Kerenidis
Majid Khabbazian
Daniel Kirsten
Felix Klaedtke
Adam Klivans
Johannes Kobler
Jochen Kénemann
Eryk Kopczynski
Frédéric Koriche
Artur Kornitowicz
Guy Kortsarz
Michal Koucky
Stephan Kreutzer
Marc van Kreveld
Andrei Krokhin
Manfred Kufleitner
Ravi Kumar
Michal Kunc
Manfred Kunde
Piyush Kurur
Dietrich Kuske
Tomi Karki
Markku Laine

Christiane Lammersen

Sophie Laplante
Stawomir Lasota
Aurélien Lemay
Leonid Levin
Leonid Libkin
Nutan Limaye
Markus Lohrey
Sylvain Lombardy
Zvi Lotker

Martin Lotz

Jack Lutz

P. Madhusudan
Veli Makinen
Johann Makowsky
Andreas Malcher
Amal Dev Manuel
Marc Kaplan
Brian Marcus
Wim Martens
Daniel Marx
Marios Mavronicolas
Elvira Mayordomo
Frédéric Mazoit
Andrew McGregor
Pierre McKenzie
Ingmar Meinecke
Guy Melangon

S. ALBERS AND P. WEIL

Wolfgang Merkle
Antoine Meyer
Friedhelm Meyer auf der Heide
Shuichi Miyazaki
Morteza Monemizadeh
Malika More

Marcin Mucha
Madhavan Mukund
Filip Murlak

Anca Muscholl

Rahul Muthu

S. Muthukrishnan
Phuong Nguyen
Arfst Nickelsen
Francois Nicolas
Joachim Nieren
Harumichi Nishimura
Damian Niwinski
Richard Nock
Gustav Nordh

Zeev Nutov

Jan Obdrzéalek
Yoshio Okamoto
Alexander Okhotin
Nicolas Ollinger
Hirotaka Ono
Friedrich Otto
Jérome Palaysi
Konstantinos Panagiotou
Paritosh Pandya
Pawel Parys

Mihai Patrascu
Christophe Paul
Soumya Paul
Elisabeth Pelz

Mati Pentus

Sylvain Perifel

Ton Petre

Ulrich Pferschy
Fabrice Philippe
Jean-Eric Pin
Marcus Pivato
Alexander Rabinovich
Harald Réacke

Prasad Raghavendra
M. Sohel Rahman
Venkatesh Raman

R. Ramanujam
Rudy Raymond
Christian Reitwiefiner
Eric Rémila

Jochen Renz
Christian Retoré
Pierre-Alain Reynier
Liam Roditty

Heiko Roglin

Lajos Rényai

Jorg Rothe

Michat Rutkowski
Kalle Saari
Kunihiko Sadakane
Mohammad Safari
Lakhdar Sais
Mohammad Reza Salavatipour
Alex Samorodnitsky
Peter Sanders
Miklos Santha,
Rahul Santhanam
Luigi Santocanale
Jayalal Sarma
Srinivasa Rao Satti
Thomas Sauerwald
Saket Saurabh
Nitin Saxena
Nicolas Schabanel
Guido Schéfer
Gilles Schaeffer
Manfred Schmidt-Schaufl
Lutz Schroéder
Patrice Séébold

Luc Segoufin
Helmut Seidl

Victor Selivanov
Olivier Serre

Micha Sharir
Somnath Sikdar
Sunil Simon
Cristina Sirangelo
Anastasias Sidiropoulos
Michiel Smid

Troels Bjerre Sgrensen
Gregory Sorkin
Robert Spalek

Alex Spelten
Magnus Steinby
Bernd Sturmfels
S.P. Suresh

Maxim Sviridenko
Chaitanya Swamy
Antonios Symvonis
Laurent Tichit
Yasuhiko Takenaga

Suguru Tamaki
Hisao Tamaki
Seiichiro Tani
Orestis Telelis
Kavitha Telikepalli
Pascal Tesson
Edouard Thiel
Thomas Thierauf
Wolfgang Thomas
Sebastien Tixeuil
Takeshi Tokuyama
Szymon Torunczyk
Hélene Touzet
Mathieu Tracol
William Trotter

FOREWORD

Mario Valencia-Pabon
Leslie Valiant

Niko Valimaki
Kasturi Varadarajan
Yann Vaxes

Nikolai Vereshchagin
Kumar Neeraj Verma
Daniel Vilenchik
Aymeric Vincent
Berthold Vocking
Heribert Vollmer

Jan Vondrak

Daria Walukiewicz
Ingo Wegener

Udi Wieder

Prudence Wong
Camille Wormser
Masaki Yamamoto
Shigeru Yamashita
Koichi Yamazaki
Hiroki Yanagisawa
Raphael Yuster
Mariette Yvinec
Stathis Zachos
Konrad Zdanowski
Norbert Zeh
Sandra Zilles
Alexander Zvonkin
Pawet Zylinski

S. ALBERS AND P. WEIL

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

TABLE OF CONTENTS

Table of contents

Forewordo
S. Albers and P. Weil

Program Committee........ ..o
External reviewersot

Table of CONtEntSottt

Invited papers

Understanding Maximal Repetitions in Strings.........................
M. Crochemore and L. Ilie

A Little Bit Infinite? On Adding Data to Finitely Labelled Structures .
T. Schwentick

Equilibria, Fixed Points and Complexity Classes
M. Yannakakis

Contributed papers

Pushdown Compressionovuutet ittt i,
P. Albert, E. Mayordomo, P. Moser and S. Perifel

Quantum search with variable times L.
A. Ambainis

Structural aspects of tilingst
A. Ballier, B. Durand and E. Jeandel

Limit complexities revisited....... ...
L. Bienvenu, A. Muchnik, A. Shen and N. Vereshchagin

Trimmed Moebius Inversion and Graphs of Bounded Degree
A. Bjorklund, T. Husfeldt, P. Kaski and M. Koivisto

On the Complexity of the Interlace Polynomial.........................
M. Blaser and C. Hoffmann

Minimizing Flow Time in the Wireless Gathering Problem
V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela and L. Stougie

On Termination for Faulty Channel Machines..........................
P. Bouyer, N. Markey, J. Ouaknine, P. Schnoebelen and J. Worrell

Stackelberg Network Pricing Games............ ..o ...
P. Briest, M. Hoefer and P. Krysta

11

17

19

39

49

61

73

85

8 PROCEEDINGS OF STACS 2008

Sublinear Communication Protocols for Multi-Party Pointer Jumping and a

Related Lower Bound 145
J. Brody and A. Chakrabarti

Finding Irrefutable Certificates for S via Arthur and Merlin........... 157
V. Chakaravarthy and S. Roy

Quantifying Homology Classes ..., 169
C. Chen and D. Freedman

Shortest Vertex-Disjoint Two-Face Paths in Planar Graphs............. 181

E. Colin de Verdiére and A. Schrijver

Geodesic Fréchet Distance Inside a Simple Polygon..................... 193
A. F. Cook IV and C. Wenk

Improved Algorithms for the Range Next Value Problem and Applications 205
M. Crochemore, C. Iliopoulos, M. Kubica, M. S. Rahman and T. Walen

Connecting Polygonizations via Stretches and Twangs.................. 217
M. Damian, R. Flatland, J. O’Rourke and S. Ramaswami

Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs 229
S. Datta, R. Kulkarni and S. Roy

Tight Bounds for Blind Search on the Integers......................... 241
M. Dietzfelbinger, J. E. Rowe, I. Wegener and P. Woelfel

Discrete Jordan Curve Theorem: A Proof Formalized in Coq with

Hypermapso e 253
J.-F. Dufourd
Trimming of Graphs, with Application to Point Labeling............... 265

T. Erlebach, T. Hagerup, K. Jansen, M. Minzlaff and A. Wolff

Computing Minimum Spanning Trees with Uncertainty 277
T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihal’dk and R. Raman

Convergence Thresholds of Newton’s Method for Monotone Polynomial Equa-
BIOMIS . o 289
J. Esparza, S. Kiefer and M. Luttenberger

Model Checking Games for the Quantitative mu-Calculus.............. 301
D. Fischer, E. Grddel and L. Kaiser
Order-Invariant MSO is Stronger than Counting MSO in the Finite.... 313

T. Ganzow and S. Rubin

Succinctness of the Complement and Intersection of Regular Expressions 325
W. Gelade and F. Neven

Efficient Algorithms for Membership in Boolean Hierarchies of Regular Lan-
BUAZES « o et 337
C. Glafser, H. Schmitz and V. Selivanov

TABLE OF CONTENTS 9

On the Complexity of Elementary Modal Logics........................ 349
E. Hemaspaandra and H. Schnoor

Fixed Parameter Polynomial Time Algorithms for Maximum Agreement and
Compatible SUPErtrees.oouui i e 361
V. T. Hoang and W.-K. Sung

Complexity of solutions of equations over sets of natural numbers...... 373
A. Jez and A. Okhotin

Cardinality and counting quantifiers on omega-automatic structures.... 385
L. Kaiser, S. Rubin and V. Bdrdny

On the Induced Matching Problem.................. .o oiiiiiii... 397
1. Kanj, M. J. Pelsmajer, M. Schaefer and G. Xia

On Geometric Spanners of Euclidean and Unit Disk Graphs............ 409
1. Kanj and L. Perkovié

The Frobenius Problem in a Free Monoid 421
J.-Y. Kao, J. Shallit and Z. Xu

Space Hierarchy Results for Randomized Models....................... 433
J. Kinne and D. van Melkebeek

Ehrenfeucht-Fraissé Goes Automatic for Real Addition................. 445
F. Klaedtke

New Combinatorial Complete One-Way Functions...................... 457

A. Kojevnikov and S. Nikolenko
Compatibility of Shelah and Stupp’s and Muchnik’s iterations with fragments

of monadic second order logic..............o i 467
D. Kuske

Geometric Set Cover and Hitting Sets for Polytopes in R3.............. 469
S. Laue

A Theory for Valiant’s Matchcircuits.o.ooo i, 491

A. Li and M. Xia

Rent, Lease or Buy: Randomized Algorithms for Multislope Ski Rental. 503
Z. Lotker, B. Patt-Shamir and D. Rawitz

Lower bounds for adaptive linearity tests............. ... oiiiiin 515
S. Lowvett

An Improved Randomized Truthful Mechanism for Scheduling Unrelated Ma-
RIS .« .o 527
P. Lu and C. Yu

Lagrangian Relaxation and Partial Cover 539
J. Mestre

10 PROCEEDINGS OF STACS 2008

On Dynamic Breadth-First Search in External-Memory 551
U. Meyer

Analytic aspects of the shuffle product 561
M. Mishna and M. Zabrocki

Weak index versus Borel rank........... 573
F. Murlak

A Mabhler’s theorem for functions from words to integers 585

J.-E. Pin and P. Silva

Distinguishing Short Quantum Computations.......................... 597
B. Rosgen

Factoring Polynomials over Finite Fields using Balance Test............ 609
C. Saha

On the decomposition of k-valued rational relations 621

J. Sakarovitch and R. de Souza

The Isomorphism Problem for Planar 3-Connected Graphs is in Unambiguous

Logspace 633
T. Thierauf and F. Wagner
Efficient Minimization of DFAs with Partial Transition Functions 645

A. Valmari and P. Lehtinen
Design by Measure and Conquer - A Faster Exact Algorithm for Dominating

1 P 657
J. van Rooij and H. Bodlaender

Weighted Matching in the Semi-Streaming Model 669
M. Zelke

Author Index. ... 681

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 11-16
www.stacs-conf.org

UNDERSTANDING MAXIMAL REPETITIONS IN STRINGS

MAXIME CROCHEMORE ! AND LUCIAN ILIE 2

! King’s College London, Strand, London WC2R 2LS, United Kingdom
and Institut Gaspard-Monge, Université Paris-Est, France
E-mail address: maxime.crochemore@kcl.ac.uk

2 Department of Computer Science, University of Western Ontario
N6A 5B7, London, Ontario, Canada
E-mail address: ilie@csd.uwo.ca

ABSTRACT. The cornerstone of any algorithm computing all repetitions in a string of
length n in O(n) time is the fact that the number of runs (or maximal repetitions) is
O(n). We give a simple proof of this result. As a consequence of our approach, the
stronger result concerning the linearity of the sum of exponents of all runs follows easily.

1. Introduction

Repetitions in strings constitute one of the most fundamental areas of string combina-
torics with very important applications to text algorithms, data compression, or analysis
of biological sequences. One of the most important problems in this area was finding an
algorithm for computing all repetitions in linear time. A major obstacle was encoding all
repetitions in linear space because there can be ©(nlogn) occurrences of squares in a string
of length n (see [1]). All repetitions are encoded in runs (that is, maximal repetitions)
and Main [9] used the s-factorization of Crochemore [1] to give a linear-time algorithm for
finding all leftmost occurrences of runs. What was essentially missing to have a linear-time
algorithm for computing all repetitions, was proving that there are at most linearly many
runs in a string. Iliopoulos et al. [4] showed that this property is true for Fibonacci words.
The general result was achieved by Kolpakov and Kucherov [7] who gave a linear-time
algorithm for locating all runs in [6].

Kolpakov and Kucherov proved that the number of runs in a string of length n is at
most cn but could not provide any value for the constant c. Recently, Rytter [10] proved
that ¢ < 5. The conjecture in [7] is that ¢ = 1 for binary alphabets, as supported by

1998 ACM Subject Classification: F.2.2 Nonnumerical Algorithms and Problems; G.2.1 Combinatorics.

Key words and phrases: combinatorics on words, repetitions in strings, runs, maximal repetitions, maxi-
mal periodicities, sum of exponents.

This work has been done during the second author’s stay at Institut Gaspard-Monge. The same author’s
research was supported in part by NSERC.

L SYMPOSIUM
V" ON THEORETICAL
) I_' ASPECTS

<4

7 / OF COMPUTER :
S SCIENCE © M. Crochemore and L. llie

@ Creative Commons Attribution-NoDerivs License

12 M. CROCHEMORE AND L. ILIE

computations for string lengths up to 31. Using the technique of this note, we have proved
[2] that it is smaller than 1.6, which is the best value so far.

Both proofs in [6] and [10] are very intricate and our contribution is a simple proof
of the linearity. On the one hand, the search for a simple proof is motivated by the very
importance of the result — this is the core of the analysis of any optimal algorithm computing
all repetitions in strings. None of the above-mentioned proofs can be included in a textbook.
We believe that the simple proof shows very clearly why the number of runs is linear. On
the other hand, a better understanding of the structure of runs could pave the way for
simpler linear-time algorithms for finding all repetitions. For the algorithm of [6] (and [9]),
relatively complicated and space-consuming data structures are needed, such as suffix trees.

The technical contribution of the paper is based on the notion of d-close runs (runs
having close centers), which is an improvement on the notion of neighbors (runs having
close starting positions) introduced by Rytter [10].

On top of that, our approach enables us to derive easily the stronger result concerning
the linearity of the sum of exponents of all runs of a string. Clearly this result implies the
first one, but the converse is not obvious. The second result was given another long proof
in [7]; it follows also from [10].

Finally, we strongly believe that our ideas in this paper can be further refined to improve
significantly the upper bound on the number of runs, if not to prove the conjecture. The
latest refinements and computations (December 2007) show a 1.084n bound.

2. Definitions

Let A be an alphabet and A* the set of all finite strings over A. We denote by |w| the
length of a string w, by wi] its ith letter, and by w[i .. j] its factor w[iJw[i + 1] - - - w[j]. We
say that w has period p iff w[i] = w[i + p|, for all 1 <14 < |w| —p. The smallest period of w
is called the period of w and the ratio between the length and the period of w is called the
exponent of w.

For a positive integer n, the nth power of w is defined inductively by w! = w, w" =
w™ tw. A string is primitive if it cannot be written as a proper integer (two or more) power
of another string. Any nonempty string can be uniquely written as an integer power of a
primitive string, called its primitive root. It can also be uniquely written in the form u°v
where |u| is its (smallest) period, e is the integral part of its exponent, and v is a proper
prefix of wu.

The following well-known synchronization property will be useful: If w is primitive,
then w appears as a factor of ww only as a prefix and as a suffix (not in-between). Another
property we use is Fine and Wilf’s periodicity lemma: If w has periods p and ¢ and |w| >
p+ q, then w has also period ged(p, ¢). (This is a bit weaker than the original lemma which
works as soon as |w| > p + ¢ — ged(p, q), but it is good enough for our purpose.) We refer
the reader to [8] for all concepts used here.

For a string w = w([l..n], a run' (or maximal repetition) is an interval [i..j], 1 <
i < j < n, such that (i) the factor wli..j] is periodic (its exponent is 2 at least) and (ii)
both w[i — 1..j] and w[i..j + 1], if defined, have a strictly higher (smallest) period. As
an example, consider w = abbababbaba; [3..7] is a run with period 2 and exponent 2.5; we
have w[3..7] = babab = (ba)?®. Other runs are [2..3],[7..8],[8..11],[5..10] and [1..11].

IRuns were introduced in [9] under the name mazimal periodicities; the are called m-repetitions in [7] and
runs in [4].

UNDERSTANDING MAXIMAL REPETITIONS IN STRINGS 13

For a run starting at i and having period |z| = p, we shall call w[i..i+ 2p — 1] = x2 the
square of the run (this is the only part of a run we can count on). Note that x is primitive
and the square of a run cannot be extended to the left (with the same period) but may be
extendable to the right. The center of the run is the position ¢ = i + p. We shall denote
the beginning of the run by i, = i, the end of its square by e, = i, + 2p — 1, and its center
by ¢z =i + p.

3. Linear number of runs

We describe in this section our proof of the linear number of runs. The idea is to
partition the runs by grouping together those having close centers and similar periods. To
this aim, for any § > 0, we say that two runs having squares 22 and y? are §-close if (i)
lcz —¢y| < 6 and (ii) 20 < |z|,|y| < 30. We prove that there cannot be more than three
mutually d-close runs. (There is one exception to this rule — case (vi) below — but then, even
fewer runs are obtained.) This means that the number of runs with the periods between 20
and 30 in a string of length n is at most ‘%" Summing up for values §; = %(%)Z, 1 >0, all
periods are considered and we obtain that the number of runs is at most

. 3n . 3n
Z?:Zl(é)i = 18n. (3.1)
i=0 ° i=0 2\2

For this purpose, we start investigating what happens when three runs in a string w are
S-close. Let us denote their squares by x2,42, 22, their periods by |z| = p, |y| = q, |2| = 7,
and assume p < ¢ < r. We discuss below all the ways in which 2 and y? can be positioned
relative to each other and see that long factors of both runs have small periods which z2
has to synchronize. This will restrict the beginning of 22 to only one choice as otherwise
some run would be left extendable. Then a fourth run J-close to the previous three cannot
exist.

Notice that, for cases (i)-(v) we assume the centers of the runs are different; the case
when they coincide is covered by (vi).

(i) (iy < iz <)ey < ¢z < ex < ey. Then x and the suffix of length e, — ¢, of y have
period ¢ — p; see Fig. 1(1). We may assume the string corresponding to this period is a
primitive string as otherwise we can make the same reasoning with its primitive root.

Since 22 is d-close to both 2% and y?, it must be that ¢, € [c; — 0..¢, + §]. Consider
the interval of length ¢ — p that ends at the leftmost possible position for c,, that is,
I=[c;—6—(q—p)..ce —6—1]. It is included in the first period of 22, that is, [i, ..c, — 1],
and in [iz .. cy]. Thus w[l] is primitive and equal, due to 22, to w[I + 7] which is a factor of
w(cg . . €y]. Therefore, the periods inside the former must synchronize with the ones in the
latter. It follows, in the case i, > i, — (¢ — p), that w[i, — 1] = wle, — 1], that is, 22 is left
extendable, a contradiction. If i, < i,—(¢—p), then w[c, —1] = w(iy —(¢—p)—1] = Wiy, —1],
that is, 22 is left extendable, a contradiction. The only possibility is that i, = i, —(¢—p) and
r equals ¢ plus a multiple of ¢ — p. Here is an example: w = baabababaababababaab, x? =
w[5..14] = (ababa)?, y? = w[l..14] = (baababa)?, and 2z? = w[3..20] = (abababaab)?.

We have already, due to 22, that « = p’p/, where |p| = ¢ — p and p’ a prefix of p. A
fourth run d-close to the previous three would have to have the same beginning as z? and
the length of its period would have to be also ¢ plus a multiple of ¢ — p. This would imply
an equation of the form p™p’ = p'p™ and then p and p’ are powers of the same string, a
contradiction with the primitivity of x.

14 M. CROCHEMORE AND L. ILIE

suffivofx

y y
(iii) (iv)

(v) (vi)

Figure 1: Relative position of 22 and 2.

(i) (iy < iz <)cy < €z < €y < €y; this is similar with (i); see Fig. 1(ii). Here the prefix
of length e, — ¢, of z is a suffix of y and has period ¢ — p.

(ili) 4y < iz < cx < ¢y(< g < €y). Here x and the prefix of length ¢, — i, of y have
period g — p; see Fig. 1(iii). As above, a third d-close run 22 would have to share the same
beginning with y?, otherwise one of y? or z? would be left extendable. A fourth é-close run
would have to start at the same place and, because of the three-prefix-square lemma? of 3],
since p is primitive, it would have a period at least ¢ + r, which is impossible.

(iv) iy < iy(< ez < ¢y < €y < €y); this is similar with (iii); see Fig. 1(iv). A third run
would begin at the same position as 2 and there is no fourth run.

(v) iy = iy; see Fig. 1(v). Here not even a third é-close run exists because of the
three-square lemma that implies r > p + q.

(vi) ¢z = ¢,. This case is significantly different from the other ones, as we can have
many J-close runs here. However, the existence of many runs with the same center implies
very strong periodicity properties of the string which allow us to count the runs globally
and obtain even fewer runs than before.

In this case both = and y have the same small period ¢ = ¢ —p; see Fig. 1(vi). If we note
¢ = ¢y then we have h runs x?j, 1 < j < h, beginning at positions iy, = c— ((j — 1){ + ('),
where ¢’ is the length of the suffix of x that is a prefix of the period.

We show that in this case we have less runs than as counted in the sum (3.1). For h <9
there is nothing to prove as no four of our x?j runs are counted for the same §. Assume

h > 10. There exists §; such that g <§; < 3%, that is, this ¢; is considered in (3.1). Then

2For three words u, v, w, it states that if uu is a prefix of vv, vv is a prefix of ww, and u is primitive, then
ul + [v] < |wl.

UNDERSTANDING MAXIMAL REPETITIONS IN STRINGS 15

it is not difficult to see that there is no run in w with period between ¢ and %E and center
inside J = [c+ ¢+ 1..c+ (h—2)0+{']. But £ < 2§; < 35; < 3¢ and the length of J is
(h—3)¢+ ¢ > (h+1)d;. This means that at least h intervals of length §; in the sum (3.1)
are covered by J and therefore at least 3h runs in (3.1) are replaced by our h runs.

We need also mention that these h intervals of length §; are not reused by a different
center with multiple runs since such centers cannot be close to each other. Indeed, if we
have two centers ¢; with the above parameters h;,¢;, j = 1,2, then, as soon as the longest
runs overlap over £1 + 5 positions, we have £1 = 5, due to Fine and Wilf’s lemma. Then,
the closest positions of J; and Jy cannot be closer than ¢1 = #5 > §; as this would make
some of the runs non-primitive, a contradiction. Thus the bound in (3.1) still holds and we
proved

Theorem 3.1. The number of runs in a string of length n is O(n).

4. The sum of exponents

Using the above approach, we show in this section that the sum of exponents of all
runs is also linear. The idea is to prove that the sum of exponents of all runs with the
centers in an interval of length ¢ and periods between 20 and 39 is less than 8. (As in the
previous proof, there are exceptions to this rule, but in those cases we get a smaller sum
of exponents.) Then a computation similar to (3.1) gives that the sum of exponents is at
most 48n.

To start with, Fine and Wilf’s periodicity lemma can be rephrased as follows: For two
primitive strings = and y, any powers % and y® cannot have a common factor longer than
|z| + |y| as such a factor would have also period ged(|z|, |y|), contradicting the primitivity
of z and y.

Next consider two d-close runs, z® and y°, a, 3 € Q. It cannot be that both a and 3
are 2.5 or larger, as this would imply an overlap of length at least |z| + |y| between the two
runs, which is forbidden by Fine and Wilf’s lemma since z and y are primitive. Therefore,
in case we have three mutually J-close runs, two of them must have their exponents smaller
than 2.5. If the exponent of the third run is less than 3, we obtain the total of 8 we were
looking for. However, the third run, say 27, v € Q, may have a larger exponent. If it does,
that affects the runs in the neighboring intervals of length §. More precisely, if v > 3, then
there cannot be any center of run with period between 2§ and 3¢ in the next (to the right)
interval of length . Indeed, the overlap between any such run and z” would imply, as above,
that their roots are not primitive, a contradiction. In general, the following |2(y — 2.5)]
intervals of length § cannot contain any center of such runs. Thus, we obtain a smaller sum
of exponents when this situation is met.

The second exception is given by case (vi) in the previous proof, that is, when many
runs share the same center; we use the same notation as in (vi). We need to be aware of the
exponent of the run z", with the smallest period, as a; can be as large as ¢ (and unrelated
to h, the number of runs with the same center). We shall count oy into the appropriate
interval of length d;; notice that z{"* and 252 are never d-close, for any d, because |xa| > 2|z1].
For 2 < j < h—1, the period |z;| cannot be extended by more than ¢ positions to the right
past the end of the initial square, and thus a; < 2+ % Therefore, their contribution to the
sum of exponents is less than 3(h —2). They replace the exponents of the runs with centers
in the interval J and periods between ¢ and %8 which otherwise would contribute at least

16

M. CROCHEMORE AND L. ILIE

6h to the sum of exponents. The run with the longest period, z3", can have an arbitrarily
high exponent but the replaced runs in J need to account only for a fraction (3 units) of it
since ay, > 3 implies new centers with multiple runs and hence new J intervals (precisely
|an, — 2]) that account for the rest. We proved

Theorem 4.1. The sum of exponents of the runs in a string of length n is O(n).

References
[1] M. Crochemore, An optimal algorithm for computing the repetitions in a string, Inform. Proc. Letters
12 (1981) 244 — 250.
[2] M. Crochemore and L. Ilie. Maximal repetitions in strings. Journal of Computer and System Sciences,
2007. In press.
[3] M. Crochemore and W. Rytter, Squares, cubes, and time-space efficient string searching, Algorithmica
13 (1995) 405 — 425.
[4] C.S. Liopoulos, D. Moore, W.F. Smyth, A characterization of the squares in a Fibonacci string, Theoret.
Comput. Sci. 172 (1997) 281 — 291.
[5] R. Kolpakov and G. Kucherov, On the sum of exponents of maximal repetitions in a word, Tech. Report
99-R-034, LORIA, 1999.
[6] R. Kolpakov and G. Kucherov, Finding maximal repetitions in a word in linear time, Proc. of FOCS’99,
IEEE Computer Society Press, 1999, 596 — 604.
[7] R. Kolpakov and G. Kucherov, On maximal repetitions in words, J. Discrete Algorithms 1(1) (2000)
159 — 186.
[8] M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press, 2002.
[9] M.G. Main, Detecting lefmost maximal periodicities, Discrete Applied Math. 25 (1989) 145 — 153.
[10] W. Rytter, The number of runs in a string: improved analysis of the linear upper bound, in: B. Durand

and W. Thomas (eds.), Proc. of STACS’06, Lecture Notes in Comput. Sci. 3884, Springer-Verlag,
Berlin, 2006, 184 — 195.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 17-18
www.stacs-conf.org

A LITTLE BIT INFINITE?
ON ADDING DATA TO FINITELY LABELLED STRUCTURES
(ABSTRACT)

THOMAS SCHWENTICK

Universitt Dortmund, Lehrstuhl Informatik I, 44221 Dortmund, Germany
FE-mail address: thomas.schwentick@udo.edu

Finite or infinite strings or trees with labels from a finite alphabet play an important role
in computer science. They can be used to model many interesting objects including system
runs in Automated Verification and XML documents in Database Theory. They allow the
application of formal tools like logical formulas to specify properties and automata for their
implementation. In this framework, many reasoning tasks that are undecidable for general
computational models can be solved algorithmically, sometimes even efficiently.

Nevertheless, the use of finitely labelled structures usually requires an early abstraction
from the real data. For example, theoretical research on XML processing very often con-
centrates on the document structure (including labels) but ignores attribute or text values.
While this abstraction has led to many interesting results, some aspects like key or other
integrity constraints can not be adequately handled.

In Automated Verification of software systems or communication protocols, infinite
domains occur even more naturally, e.g., induced by program data, recursion, time, com-
munication or by unbounded numbers of concurrent processes. Usually one approximates
infinite domains by finite ones in a very early abstraction step.

An alternative approach that has been investigated in recent years is to extend strings
and trees by (a limited amount of) data and to use logical languages with a restricted ex-
pressive power concerning this data. As an example, in the most simple setting, formulas
can only test equality of data values. The driving goal is to identify logical languages and
corresponding automata models which are strong enough to describe interesting proper-
ties of data-enhanced structures while keeping decidability or even feasibility of automatic
reasoning.

The talk gives a basic introduction into data-enhanced finitely labelled structures,
presents examples of their use, and highlights recent decidability and complexity results.

L SYMPOSIUM
V' ON THEORETICAL
() l_ ASPECTS

<4

7 |/ OF COMPUTER)
SCIENCE © T. Schwentick

@ Creative Commons Attribution-NoDerivs License

18

T. SCHWENTICK

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 19-38
www.stacs-conf.org

EQUILIBRIA, FIXED POINTS, AND COMPLEXITY CLASSES

MIHALIS YANNAKAKIS

Department of Computer Science, Columbia University, New York City, NY, USA
E-mail address: mihalis@cs.columbia.edu

ABSTRACT. Many models from a variety of areas involve the computation of an equilibrium
or fixed point of some kind. Examples include Nash equilibria in games; market equilibria;
computing optimal strategies and the values of competitive games (stochastic and other
games); stable configurations of neural networks; analysing basic stochastic models for
evolution like branching processes and for language like stochastic context-free grammars;
and models that incorporate the basic primitives of probability and recursion like recursive
Markov chains. It is not known whether these problems can be solved in polynomial time.
There are certain common computational principles underlying different types of equilibria,
which are captured by the complexity classes PLS, PPAD, and FIXP. Representative
complete problems for these classes are respectively, pure Nash equilibria in games where
they are guaranteed to exist, (mixed) Nash equilibria in 2-player normal form games, and
(mixed) Nash equilibria in normal form games with 3 (or more) players. This paper reviews
the underlying computational principles and the corresponding classes.

1. Introduction

Many situations involve the computation of an equilibrium or a stable configuration of
some sort in a dynamic environment. Sometimes it is the result of individual agents acting
on their own noncompetitively but selfishly (e.g., Nash and other economic equilibria),
sometimes it is agents acting competitively against each other (and perhaps nature/chance),
sometimes the equilibrium is the limit of an iterative process that evolves in some direction
until it settles. Often the sought objects can be described mathematically as the fixed points
of an equation z = F(z).

Many models and problems from a broad variety of areas are of this nature. Examples
include: Nash equilibria in games; market equilibria; computation of optimal strategies
and the values of competitive games (stochastic and other games); stable configurations of
neural networks; analysis of basic stochastic models for evolution like branching processes,
and for language like stochastic context-free grammars; and models that incorporate the
basic primitives of probability and recursion like recursive Markov chains. Most of these
models and problems have been studied mathematically for a long time, leading to the

1998 ACM Subject Classification: F.1.3, F.2.
Key words and phrases: Equilibria, Fixed points, Computational Complexity, Game Theory.
Work supported by NSF Grant CCF-0728736.

ASPECTS

7 / OF COMPUTER o)
SCIENCE © Mihalis Yannakakis

© Creative Commons Attribution-NoDerivs License

L SYMPOSIUM
mvl:_ ON THEORETICAL
-l

20 MIHALIS YANNAKAKIS

development of rich theories. Yet, some of their most basic algorithmic questions are still
not resolved, in particular it is not known whether they can be solved in polynomial time.

Despite the broad diversity of these problems, there are certain common computational
principles that underlie many of these different types of problems, which are captured by
the complexity classes PLS, PPAD, and FIXP. In this paper we will review these principles,
the corresponding classes, and the types of problems they contain.

All the problems we will discuss are total search problems. Formally, a search problem
IT has a set of instances, each instance I has a set Ans(I) of acceptable answers; the search
problem is total if Ans(I) # 0 for all instances I. As usual, for computational purposes,
instances are represented by strings over a fixed alphabet ¥, and it is assumed that, given
a string over X one can determine in polynomial time if it represents an instance of a
problem. The size |I| of an instance is the length of its string representation. Input numbers
(such as the payoffs of games, input probabilities of stochastic models, etc.) are assumed
to be rationals represented in binary by numerator and denominator. The underlying
solution space from which answers are drawn may be finite and discrete, as in combinatorial
problems, or it may be infinite and continuous. In the former (the finite) case, solutions are
represented also as strings and the problem is: given an instance I, compute a solution in
Ans(I). In the latter (infinite/continuous) case also, if there are rational-valued solutions
(as in Linear Programming for example), then the problem is to compute one of them. In
several problems however, the solutions are inherently irrational, and we cannot compute
them exactly (in the usual Turing machine-based model of computation and complexity).
In these cases we need to specify precisely which information about the solutions is to be
computed; this could be for example a yes/no question, such as, does an event in a stochastic
model occur almost surely (with probability 1) or does the value of a game exceed a given
threshold, or we may want to compute an answer up to a desired precision. In any case,
the computational tasks of interest have to be defined precisely, because different tasks can
have different complexity.

In this paper we will discuss a variety of equilibria and fixed point problems, and the
complexity classes which capture the essential aspects of several types of such problems.
We discuss three classes, PLS, PPAD, and FIXP, which capture different types of equilibria.
Some representative complete problems for these classes are: for PLS pure Nash equilibria
in games where they are guaranteed to exist, for PPAD (mixed) Nash equilibria in 2-player
normal form games, and for FIXP (mixed) Nash equilibria in normal form games with 3
(or more) players.

2. Discrete, Pure Equilibria and the Class PLS

Consider the following neural network model [34]: We have an undirected graph G =
(V, E) with a positive or negative weight w(e) on each edge e € E (we can consider missing
edges as having weight 0) and a threshold ¢(v) for each node v € V. A configuration of the
network is an assignment of a state s(v) = +1 (‘on’) or —1 (‘off’) to each node v € V. A
node v is stable (or ‘happy’) if s(v) =1 and), w(v,u)s(u) + t(v) > 0, or s(v) = —1 and
Yoy w(v,u)s(u) +t(v) <0, ie. the state of v agrees with the sign of the weighted sum of its
neighbors plus the threshold. A configuration is stable if all the nodes are stable. A priori it
is not obvious that such a configuration exists; in fact for directed networks there may not
exist any. However, every undirected network has at least one (or more) stable configuration
[34]. In fact, a dynamic process where in each step one node that is unstable (any one)

EQUILIBRIA, FIXED POINTS, AND COMPLEXITY CLASSES 21

switches its state, is guaranteed to eventually converge in a finite number of steps to a stable
configuration, no matter which unstable node is switched in each step. (It is important that
updates be asynchronous, one node at a time; simultaneous updates can lead to oscillations.)
To show the existence of a stable configuration and convergence, Hopfield introduced a value
function (or ‘potential or ‘energy’) on configurations, p(s) = >, ,)ep w(v, u)s(v)s(u) +
> vey H(v)s(v). If v is an unstable node in configuration s, then switching its state results
in a configuration s’ with strictly higher value p(s’) = p(s)+2| >, w(v, u)s(uw)+t(v)| > p(s).
Since there is a finite number (2|V|) of configurations, the process has to converge to a stable
configuration. The stable configuration problem is the following: Given a neural network,
compute a stable configuration. This is a total search problem, as there may be one or more
stable configurations, and anyone of them is an acceptable output.

Although the stable configuration problem does not call a priori for any optimization,
the problem can be viewed equivalently as one of local optimization: compute a configu-
ration s whose value p(s) cannot be increased by switching the state of any single node.
Local search is a common, general approach for tackling hard optimization problems. In a
combinatorial optimization problem II, every instance I has an associated finite set S([)
of solutions, every solution s € S(I) has a rational value or cost p;(s) that is to be max-
imized or minimized. In local search, a solution s € S(I) has in addition an associated
neighborhood Njy(s) C S(I); a solution is locally optimal if it does not have any (strictly)
better neighbor, i.e. one with higher value or lower cost. A standard local search algorithm
starts from an initial solution, and keeps moving to a better neighbor as long as there is
one, until it reaches a local optimum. The complexity class PLS (Polynomial Local Search)
was introduced in [36] to capture the inherent complexity of local optima for usual combi-
natorial problems, where each step of the local search algorithm can be done in polynomial
time. Even though each step takes polynomial time, the number of steps can be potentially
exponential, and in fact for many problems we do not know how to compute even locally
optimal solutions in polynomial time. Formally, a problem II is in PLS if solutions are
polynomially bounded in the input size, and there are polynomial-time algorithms for the
following tasks: (a) test whether a given string [is an instance of II and if so compute
a (initial) solution in S(I), (b) given I, s, test whether s € S(I) and if so compute its
value pr(s), (c) given I, s, test whether s is a local optimum and if not, compute a better
neighbor s € Ny(s). Notions of PLS reduction and completeness were introduced to relate
the problems. A number of well-studied combinatorial optimization problems (e.g. Graph
Partitioning, TSP, Max Cut, Max Sat etc.) with common neighborhood structures (both
simple and sophisticated) have been shown to be PLS-complete by many researchers, and
thus locally optimal solutions can be computed efficiently for anyone of them iff they can
be computed for all PLS problems. For a detailed survey and bibliography see [66]. In
particular, the stable configuration problem is PLS-complete (and is complete even if all
thresholds are 0 and all weights are negative, i.e. all connections are repulsive) [58].

It is worth stressing several points: 1. The search problem asks to compute any local
optimum, not a specific one like the best, which is often NP-hard. 2. Given an instance I,
we can always guess a solution s, and verify in polynomial time that it is indeed a solution
(s € S(I)) and it is locally optimal. Hence PLS is somewhere between P and TFNP (total
search problems in NP). Such problems cannot be NP-hard (under Cook reductions) unless
NP=coNP. 3. We are interested in the inherent complexity of the search probleme itself
by any algorithm whatsoever, not necessarily the standard local search algorithm, which
often has exponential running time. For example, Linear Programming can be viewed as

22 MIHALIS YANNAKAKIS

a local search problem (where local optima= global optima) with Simplex as the local
search algorithm; we know that Simplex under many pivoting rules is exponential, yet the
problem itself can be solved in polynomial time by completely different methods (Ellipsoid,
Karmakar). In fact, many common local search problems are complete under a type of tight
PLS-reduction which allows us to conclude that the corresponding standard local search
algorithm is exponential. For example, in the neural network model, the dynamic process
where unstable nodes switch iteratively their state until the network stabilizes takes for some
networks and for some (in fact for most) initial configurations exponential time to converge,
no matter which unstable node is switched in each step. Furthermore, the computational
problem: given a network and initial configuration compute a stable configuration (anyone)
that can result from this process is a PSPACE-complete problem.

Another type of equilibrium problems that can be placed in PLS concerns finding pure
Nash equlibria for games where they are guaranteed to exist. A (finite) game has a finite
set k of players, each player ¢ = 1,...,k, has a finite set S; of pure strategies and a payoff
(utility) function U; on the product strategy space S = II;S;; we assume for computational
purposes that U; takes rational values. A pure strategy profile s is a member of S, i.e. a
choice of a pure strategy s; € S; for each player. It is a pure Nash equilibrium if no player
can improve his payoff by switching unilaterally to another pure strategy; that is, if (s_;, s})
denotes the profile where player ¢ plays strategy s € S; and the other players play the same
strategy as in s, then U;(s) > U;(s_;, s;) for every i and every s; € S;. Not every game has
a pure Nash equilibrium. A mized strategy for player i is a probability distribution on S;.
Letting M; denote the set of mixed strategies for player 7, the set of mixed strategy profiles
is their product M = II;M;; i.e., a mixed strategy profile is a non-negative vector x of length
> ;18| (i.e. its entries are indexed by all the players’ pure strategies) that is a probability
distribution on the set of pure strategies of each player. The (expected) payoff U;(x) of =
for player i is > 15, ... 2, Us(j1, .. ., ji) where the sum is over all tuples (j1, ..., jx) such
that j1 € S1,...,Jr € Sk, and x;; is the entry of x defining the probability with which
player i plays strategy j. A (mixed) Nash equilibrium (NE) is a strategy profile z* such
that no player can increase its payoff by switching to another strategy unilaterally. Every
finite game has at least one Nash equilibrium [46].

For example, a neural network can be viewed as a game with one player for each node,
each player has two pure strategies +1, —1 (corresponding to the two states) and its payoff
function has two values 1 (happy) and 0 (unhappy) depending on its state and that of
its adjacent nodes. The stable configurations of the network are exactly the pure Nash
equilibria of the game. This game is a case of a graphical game: players correspond to
nodes of a graph and the payoff function of a player depends only on its own strategy and
that of its neighbors. General graphical games may not have pure Nash equilibria. For an
overview of graphical games see [39].

There is a class of games, congestion games, in which there is always a pure equilibrium.
In a congestion game, there are k players, a finite set R of resources, the pure strategy set
S; C 27 of each player is a family of subsets of the resources, each resource r € R has an
associated cost function d,. : {0,...,k} — Z. If s = (s1,...,8%) is a pure strategy profile,
the congestion n,(s) of a resource r is the number of players whose strategy contains r;
the cost (negative payoff) of a player i is) .. d;(n.(s)). Rosenthal showed that every
congestion game has a pure equilibrium [54]. In fact, the iterative process where in each
step, if the current pure strategy profile is not at equilibrium, a player with a suboptimal
strategy switches to a strategy with a lower cost (while other players keep the same strategy)

EQUILIBRIA, FIXED POINTS, AND COMPLEXITY CLASSES 23

does not repeat any profile and thus converges in a finite number of steps to an equilibrium.
The proof is by introducing a potential function p(s) = > .p Z?:r(ls) d, (i) and showing
that switching the strategy of a player to a lower cost strategy results in a reduction of
the potential function by the same amount. Thus, the pure equilibria are exactly the local
optima of the potential function p(s) with respect to the neighborhood that switches the
strategy of a single player. Computing a pure equilibrium is a local search problem, and it is
in PLS provided that the costs functions d,. of the resources are polynomial time computable,
and the strategy sets .S; are given explicitly or at least one can determine efficiently whether
a player can improve his strategy for a given profile. Furthermore, Fabrikant et al. [27]
showed that the problem is PLS-complete. They showed that it is complete even in the case
of network congestion games, where the resources are the edges of a given directed graph,
each player ¢ has an associated source s; and target node t; and its set .S; of pure strategies is
the set of s; —t; paths; the cost function d, of each edge r represents the delay as a function
of the paths that use the edge, and completeness holds even for linear delay functions [1].
As with other PLS-complete problems, a consequence of the reductions, which are tight, is
that the iterative local improvement algorithm can take exponential time to converge. For
more information on congestion games see [64].

There are several other games which are in PLS and not known to be in P, and which
are not known (and not believed to be) PLS-complete. These are not one-shot games, but
they are dynamic games played iteratively over time (like chess, backgammon etc.). There
are two main types of payoffs for the players in such games: in one type, the payoff of a
history is an aggregation of rewards obtained in the individual steps of the history combined
via some aggregation function, such as average reward per step or a discounted sum of the
rewards; in the other type, the payoff obtained depends on the properties of the history.
We will discuss three such games in this section, and some more in the following sections.

A simple stochastic game [13] is a 2-player game played on a directed graph G = (V, E)
whose nodes represent the positions of the game, and the edges represent the possible
moves. The sinks are labelled 1 or 2 and the nonsink nodes are partitioned into three sets,
V, (random nodes), Vi (max or player 1 nodes), V5 (min or player 2 nodes); the edges
(u,v) out of each random node u are labelled with probabilities p,, (assumed to be rational
for computational puposes) that sum to 1. Play starts at some initial node (position) and
then moves in each step along the edges of the graph; at a random node the edge is chosen
randomly, at a node of Vj it is chosen by player 1, and at a node of V5 it is chosen by
player 2. If the play reaches a sink labelled 1, then player 1 is the winner, while if it reaches
a sink labelled 2 or it goes on forever, then player 2 is the winner. The goal of player 1
is to maximize her probability of winning, and the goal of player 2 is to minimize it (i.e.
maximize his own winning probability). These are zero-sum games (what one player wins
the other loses). For every starting node s there is a well-defined value z 4 of the game, which
is the probability that player 1 wins if they both play optimally. Although the players are
allowed to use randomization in each step and have their choice depend on their entire
history, it is known that there are stationary, pure (deterministic) optimal strategies for
both players. Such a strategy o; for player ¢ = 1,2 is simply a choice of an outgoing edge
(a successor) for each node in V;, thus there is a finite number of such pure strategies. For
every pure strategy profile (o1, 09) for the two players, the game reduces to a Markov chain
and the values x4(01,09) can be computed by solving a linear system of equations. If the
edge probabilities are rational then the optimal values s are also rational, of bit complexity
polynomial in the input size. If there are only two of the three types of nodes in the graph,

24 MIHALIS YANNAKAKIS

then the optimal strategies and the values xs can be computed in polynomial time. For
example, if there is no player 2, then the game becomes a Markov decision process with the
goal of maximizing the probability of reaching a sink labelled 1, which can be optimized
by Linear Programming. When we have all three types of nodes, the decision problem
xs > 1/27 (does player 1 win with probability at least 1/2 starting from position s) is in
NP NcoNP (in fact in UP N coUP), and it is a well-known open problem whether it is
in P [13]. Two (pure) strategies 01,092 of the two players form an equilibrium if o1 is a
best response of player 1 to the strategy oy of player 2 (i.e. o1 is a maximizing strategy
in the Markov decision process obtained when the strategy of player 2 is fixed to 02), and
vice-versa, o9 is a best response of player 2 to ;. The equilibria are precisely the optimal
strategy pairs. The problem can be viewed as a local search problem in PLS if we take the
point of view of one player, say player 1: the solution set is the set of pure strategies of
player 1, the value of a strategy o1 is >y 2s(01,02) where o3 is a best response of player
2 to o1, and the neighbors of ¢y are the strategies obtained by switching the choice of a
node in Vj. The locally optimal solutions are the (globally) optimal strategies of player 1.

A mean payoff game [18] is a non-stochastic 2-player game played on a directed graph
G = (V, E) with no sinks, whose nodes are partitioned into two sets V7, V5 and whose edges
are labelled by (rational) rewards r(e),e € E. As above, play starts at a node and moves
along the edges, where player 1 chooses the next edge for nodes in V7 and player 2 for nodes
in V5 (there are no random nodes here), and play goes on forever. The payoff to player 1
from player 2 of a history using the sequence of edges e1,eq,... is the average reward per
step, limsup,,_, (37, r(e;))/n. Again there are optimal pure stationary strategies o1,
for the players, and these form a path followed by a cycle C'; the payoff (value of the game)
is the ratio) . 7(e)/|C| and is rational of polynomial bit complexity. As shown in [67],
the optimal values and optimal strategies can be computed in pseudopolynomial time (i.e.
polynomial time for unary rewards); furthermore the problem can be reduced to simple
stochastic games, it is thus in PLS and the decision problem is in UP N coU P, but it is
open whether it is in P.

A still simpler, nonstochastic 2-player game, called parity game [20] has been studied
extensively in the verification area; it is an important theoretical question in this area
whether this game can be solved in polynomial time. A parity game is played again on
a directed graph G whose nodes are partitioned into two sets Vi, Vo and whose edges are
labelled by positive integers. A history is winning for player 1 (respectively player 2) if the
maximum label that occurs infinitely often in the history is odd (resp. even). In this game,
one of the two players has a pure optimal strategy that wins on every history that results
against every strategy of the other player. Determining who the winner of the game is (and
a winning strategy) reduces to the decision problem for mean payoff games and in turn to
simple stochastic games [51, 38].

3. Fixed Points

Nash’s theorem asserts that every finite game I' has a (generally, mixed) equilibrium.
Nash proved his theorem in [46] using Brouwer’s fixed point theorem: every continuous
function F' from a compact convex body to itself has a fixed point, i.e. a point z such that
x = F(x). Specifically, given a finite game I'" with k players ¢ = 1,...,k, a finite set S; of
pure strategies and a payoff function U; for each player, a mixed strategy profile is a vector
x = (x4t =1,...,k;j =1,...,|5;|), which lies on the product A of the k unit simplexes

EQUILIBRIA, FIXED POINTS, AND COMPLEXITY CLASSES 25

A; = {y € RI%| Z';S:Z|1 yj = 1;y > 0}. Nash defined the following function from A to itself:

~ x;j+max{0,g; ;(x)}
Floen = e ast0 g
of player 7 if he switches to pure strategy 7 while the other players continue to play according
to x; g;j(x) is a (multivariate) polynomial in z. Nash showed that the fixed points of Fr
are precisely the equilibria of the game I'. There are several alternative proofs of Nash’s
theorem, all using Brouwer’s theorem (with different functions F') or the related Kakutani’s
theorem (for fixed points of multivalued maps). Note that the underlying solution space
here, A, is continuous, not discrete and finite. Furthermore, even if the payoff functions of
the game are rational-valued, for 3 or more players it may be the case that all equilibria are
irrational.

Market equilibria is another important application of fixed point theorems. Consider
the following exchange model [57]. We have m agents and n commodities. The agents
come to the market with an initial supply of commodities, which they exchange for their
prefered ones; each agent sells his supply at the prevailing prices, and buys his preferred
bundle of commodities. For each vector p of prices for the commodities, each agent ¢ has
an (positive or negative) ‘excess demand’ (=demand-supply) g¢(p) for each commodity 1.
Standard assumptions are that the functions gf(p) (i) are homogeneous of degree 0, thus
the price vectors may be normalized to lie on the unit simplex A,,, (ii) they satisfy Walras’
law Y7, pigf(p) = 0, (iii) they are continuous on the unit simplex. Let gi(p) = >, g/ (p)
be the (total) market excess demand for each commodity i. The functions g;(p) satisfy
the same constraints. A vector p of prices is an equilibrium if g;(p) < 0 for all i (demand
does not exceed supply), with equality for all commodities ¢ that have p; > 0. Brouwer’s
theorem can be used to show the existence of equilibria. Namely, the equilibria are the fixed

points of the function F' : A, — A,,, defined by the formula Fj(p) = 1 +’§:+@Hiar’;(ao);%(§ g)'zp))' In
]: 9,

fact, the equilibrium existence theorem can be conversely used to show Brouwer’s theorem:
from a Brouwer function one can construct an economy whose equilibria correspond to the
fixed points of the function [63]. In the classical Arrow-Debreu market model [3], the user
preferences for the commodities are modeled by utility functions, which in turn induce the
excess demand functions (or correspondences, i.e. multivalued maps), and more generally
the model includes also production. Under suitable conditions, the existence of equilibria
is derived again using a fixed point theorem (Kakutani in [3], or Brouwer in alternative
proofs [29]). As shown in a line of work by Sonnenschein, Mantel, Debreu and others (see
e.g. [17]), essentially any function satisfying the standard conditions can arise as the excess
demand function in a market for suitably defined utility functions for the users . Thus,
there is a tight connection between fixed points of general functions and market equilibria.

A number of other problems from various domains can be cast as fixed point computa-
tion problems, i.e., every instance I of a problem is associated with a function F; over some
domain so that the sought objects Ans(I) are fixed points of F; in some cases, we may only
want a specific fixed point of the function. We will mention several more examples in this
section. Recall the simple stochastic game from the last section. The vector z = (z4|s € V)
of winning probabilities for Player 1 satisfies the following system of equations z = F'(x),
with one equation for each node s: if s is a sink labelled 1 (respectively 2) then z4 = 1
(resp. s = 0); if s € V}. then 5 = Z(s,v)EE Psvy; if s € V7 then zy = max{x,|(s,v) € E};
if s € V5 then x5 = min{z,|(s,v) € E}. In general there may be multiple solutions, how-
ever the system can be preprocessed so that there is a unique solution in the unit cube
Cp={z]0<zs; <1,VseV}.

, where g; j() is the (positive or negative) “gain” in payoff

26 MIHALIS YANNAKAKIS

Stochastic games were originally introduced by Shapley in [59] in a more general form,
where players can move simultaneously. As shown in [13], simple stochastic games can be
reduced to Shapley’s game. In Shapley’s game there is a finite set V' of states, each state
u has an associated one-shot zero-sum finite game with a reward (payoff) matrix A, whose
rows (resp. columns) correspond to the actions (pure strategies) of Player 1 (resp. 2).
If the play is in state u and the players choose actions i,j then Player 1 receives reward
Ayli, j] from Player 2, the game stops with probability ¢;; > 0, and it transitions to state
v with probability p;’’, where ¢;; + Yo pif = 1. Since there is at least positive probability
q= min{q?j\u,i,j} > 0 of stopping in each step, the game stops a.s. in a finite number
of steps. (Another standard equivalent formulation is as a discounted game, where the
game does not stop but future rewards are discounted by a factor 1 — ¢ per step). The
goal of Player 1 is to maximize (and of Player 2 to minimize) the total expected reward,
which is the value of the game. We want to compute the vector x = (z,|u € V) of game
values for the different starting states u. As usual all rewards and probabilities are assumed
to be rationals for computational purposes. The values in general may be irrational now
however. The vector x satisfies a fixed point set of equations x = F'(z), as follows. For each
state u, let By (x) be the matrix, indexed by the actions of the players, whose i, j entry is
Ayl j] + 32, pifww, and let Val(By(z)) be the value of the one-shot zero-sum game with
payoff matrix By (x). Then x = F(z) where F,(z) = Val(By(x)), v € V. The function F
is a Banach function (a contraction map) under the L, norm with contraction factor 1 — g,
and thus it has a unique fixed point, the vector of values of the game.

Branching processes are a basic model of stochastic evolution, introduced first in the
single type case by Galton and Watson in the 19th century to study population dynamics,
and extended later to the multitype case by Kolmogorov and Sevastyanov, motivated by
biology. A branching process has a finite set T of n types, for each type i € T there is a
finite set of ‘reproduction’ rules of the form ¢ by vij,J = 1,...,my, where p;; € [0,1] is the
probability of the rule (thus, E;n:ll pij = 1) and v;; € N is a vector whose components
specify the number of offsprings of each type that an entity of type ¢ produces in the next
generation. Starting from an initial population, the process evolves from one generation
to the next according to the probabilistic reporuction rules. The basic quantity of interest
is the probability x; of extinction of each type: the probability that if we start with one
individual of type i, the process will eventually die. These can be used to compute the
extinction probability for any initial population and are the basic for more detailed statistics
of the process. As usual, we assume that the probabilities of the rules are rational. However
the extinction probabilities are in general irrational. The vector x satisfies a set of fixed
point equations x = F(z), where F;(z) is the polynomial Z;leijﬂzzl(xk)“ij[k]. Note
that Fj(x) has positive coefficients, thus F' is a monotone operator on RZ, and thus has a
Least Fixed Point (LFP); the LFP is precisely the vector of extinction probabilities of the
branching process. For more information on the theory of branching processes and their
applications see [32, 31].

Stochastic context-free grammars (SCFG) are context-free grammars where the pro-
duction rules have associated probabilities. They have been studied extensively in Natural
Language Processing where they are an important model [45], and have been used also in
biological sequence analysis. A basic quantity of interest is the probability of the language
generated by a SCFG; again this may be an irrational number even if all the probabilities

EQUILIBRIA, FIXED POINTS, AND COMPLEXITY CLASSES 27

of the production rules are rational. The analysis of SCFG’s is closely related to that of
branching processes.

A model that encompasses and generalizes both of branching processes and SCFG’s in a
certain precise sense, is the Recursive Markov chains (RMC) model [22] and the equivalent
model of Probabilistic Pushdown machines [21]. Informally, a RMC is a collection of Markov
chains that can call each other in a potentially recursive manner like recursive procedures.
The basic quantities of interest are the termination probabilities. These probabilities obey
again a system of fixed point equations x = F'(z), where F' is a vector of polynomials with
positive coefficients; the least fixed point of the system gives the termination probabilities of
the RMC. Generalization to a setting where the dynamics are not completely probabilistic
but can be controlled by one or more players leads to recursive Markov decision processes and
games [24, 25, 23]. For example, we may have a branching process, where the reproduction
can be influenced by players who want to bias the process towards extinction or survival.
This results in fixed point systems of equations involving monotone polynomials and the
min and max operators.

All of the above problems are total (single-valued or multi-valued) search problems,
in which the underlying solution space is continuous. In all of these problems we would
ideally like to compute exactly the quantities of interest if possible (if they are rational),
and otherwise, we would like to bound them and answer decision questions about them
(eg. is the value of a stochastic game > 1/2?, does a RMC terminate with probability
17) or to approximate them within desired precision, i.e. compute a solution z that is
within e of an/the answer x* to the search problem (eg., approximate within additive error
€ the extinction probabilities of a branching process, or compute a mixed strategy profile
for a game that is within € of a Nash equilibrium). In the approximation problem we
would like ideally polynomial time in the size of the input and in log(1/€) (the number
of bits of precision). We refer to the approximation of an answer to a search problem
as above as strong approximation (or the ‘near’ problem) to distinguish it from another
notion of approximation, which we call the weak approximation (or the ‘almost’ problem)
that is specific to a fixed point formulation of a search problem via a function F: a weak
e-approximation is a point x such that |z — F'(z)| < € (say in the Lo, norm). Note that a
search problem may be expressible in different ways as a fixed point problem using different
functions F', and the notion of weak approximation may depend on the function that is used;
the strong approximation notion is intrinsic to the search problem itself (does not depend
on F). For many common fixed point problems (formally, for polynomially continuous
functions [26]), including all of the above problems, weak approximation reduces to strong,
i.e., given instance I and (rational) e > 0, we can define a (rational) 6 > 0 of bit-size
polynomial in that of € and in || such that every (strong) J-approximation = to an answer
to the search problem (i.e., approximation to a fixed point of the function F; corresponding
to the instance I) is a weak e-approximate fixed point (i.e., satisfies |z — Fr(x)| < €). The
converse relation does not hold in general; in particular, it does not hold for Nash equilibria
and the Nash function Fr.

We discuss briefly now algorithms for such fixed point problems. For a Banach function
Fr we can start at any point x(, and apply repeatedly F;. The process will converge to the
unique fixed point. If the contraction factor 1 — ¢ is a constant < 1, then convergence is
polynomial, but if the margin ¢ from 1 is very small, inverse exponential in the size of the
input I (as is generally the case, for example in Shapley’s game), then convergence is slow.

28 MIHALIS YANNAKAKIS

For a monotone function F; for which we want to compute the least fixed point, as in
many of the examples above (stochastic games, branching processes, RMC etc.), we can
start from xg = 0 (which is lower than the LFP) and apply repeatedly F7; the process
will converge to the desired LFP, but again convergence is generally slow. Note that for
many of these problems, obtaining a weak e-approximation for ¢ constant or even inverse
polynomial, |I|~¢ is easy: for example, in a simple stochastic game or a branching process,
the vector x is bounded from above by the all-1 vector and FIk(O), k=0,1,2,... increases
monotonically with k, so after at most n/e iterations we will get a weak e-approximate fixed
point x. However, such a point x is of no use in estimating the actual values or probabilities
that we want to compute. Approximating the value of a simple stochastic game even within
additive error 1/2 is an open problem.

For general Brouwer functions F' we cannot simply apply iteratively F from some
starting point zg and hope to converge to a fixed point. There is extensive algorithmic
work on the approximate computation of Brouwer fixed points, starting with Scarf’s funda-
mental algorithm [56], The standard proof of Brouwer’s theorem involves a combinatorial
lemma, Sperner’s lemma, combined with a (generally nonconstructive) compactness argu-
ment. Scarf’s algorithm solves constructively Sperner’s problem, and computes a weak
e-approximate fixed point for the function. Briefly, it works as follows. Assume wlog
that the domain is the unit simplex A,, = {& > 0|>_, x; = 1}, and consider a simplicial
subdivision of A, into simplices of sufficiently small diameter ¢, so that |z —y| < 0 im-
plies |F(x) — F(y)| < €/n. Label (“color”) each vertex v of the subdivision by an index
i =1,...,n such that v; > F;(v); if v is not a fixed point there is at least one such index,
if v is a fixed point then label v with say arg, max(v;). Note that the unit vectors e; at
the n corners of the simplex A, are labelled 4, and all vertices on the facet x; = 0 are
labelled with an index # j. Sperner’s lemma implies then that the subdivision has at least
one panchromatic simplex, i.e. a small simplex S whose vertices have distinct labels. From
the definition of the labels and the choice of § it follows that any point x € S satisfies
|F'(z) — x| <e. Scarf’s algorithm starts with a suitable subdivision and a boundary simplex
whose vertices have n — 1 distinct indices (all except one), and then keeps moving to an
adjacent simplex through the face with the n — 1 indices; the process cannot repeat any
simplex of the subdivision, so it will end up at a panchromatic simplex S. Note that S may
not contain any actual fixed points, and in fact may be located far from all of them, but any
point x of S is a weak e-approximation. If we take finer and finer subdivisions letting the
diameter § go down to 0, then the resulting sequence of weakly approximate fixed points
must contain (by compactness) a subsequence that converges to a point, which must be a
fixed point; this latter part however is nonconstructive in general.

There are several other subsequent methods for computing (approximate) fixed points,
e.g. Newton-based, and homotopy methods (some of these assume differentiability and
use also the derivatives of the function). Scarf’s algorithm, as well other general-purpose
algorithms, treat the function F' as a black box. Such black box algorithms must take
exponential time in the worst case to compute a weak approximation [33]. Furthermore,
for strong approximation no finite amount of time is enough in the black box model [60],
and there are also noncomputability results for computing equilibria and fixed points for a
model where the function is given via a Turing machine [40, 53]. However, the restriction
to black box access is a severe one, and the results do not mean that any of the specific
problems we want to solve (for example, Nash equilibria) is necessarily hard.

EQUILIBRIA, FIXED POINTS, AND COMPLEXITY CLASSES 29

4. Rational equilibria, Piecewise Linear Functions and the Class PPAD

Consider a 2-player finite game, with the payoffs given explicitly in terms of the two
payoff matrices Aj, Ay of the two players (i.e., the game is presented in normal form).
Computing a specific Nash equilibrium, such as one that maximizes the payoff to one of the
players, or to all the players, is NP-hard [30]. However, the search problem that asks for
any Nash equilibrium is a different, ‘easier’ problem, and is unlikely to be NP-hard.

The 2-player case of the Nash equilibrium problem can be viewed either as a continuous
or as a discrete problem, like Linear Programming: We can consider LP either as having a
continuous solution space, namely all the real-valued points in the feasible polyhedron, or as
having a discrete solution space, namely the vertices of the polyhedron or the feasible bases.
Similarly, for 2-player games which correspond to a Linear Complementarity problem. A
mixed strategy profile is a Nash equilibrium iff every pure strategy of each player is either
at 0 level (not in the support) or is a best response to the strategy of the other player.
Assumming the game is nondegenerate (we can always ensure this by a small perturbation)
the supports of the mixed strategies determine uniquely the equilibrium: we can set up
and solve a linear system of equations which equate the payoffs of the pure strategies in
the support of each player, and check that the solution satisfies the appropriate inequalities
for the pure strategies that are not in the supports. One consequence of this is that if
the payoffs are rational then there are rational equilibria, of polynomial bit complexity in
the input size, and they can be computed exactly. A second consequence is that Nash’s
theorem in this case can be proved directly, without resorting to a fixed point theorem, and
algorithmically, namely by the Lemke-Howson algorithm [42]. The algorithm has similar
flavor to Scarf’s algorithm for fixed points. Mixed profiles can be labelled (‘colored’) by the
set of pure strategies that are not in the support or that are best responses to the other
player’s strategy. The equilibria are the mixed profiles that are panchromatic, i.e., labeled
with all the pure strategies of both players. Briefly, the algorithm starts from an artificial
point that has all the colors except one, and then follows a path through a sequence of LP-
like pivots, until it arrives at a panchromatic point (profile), which must be an equilibrium;
the algorithm cannot repeat any point, because at any point there are only two possible
pivots, one forward and one backward, and there is a finite number of points (supports) so
it terminates. It is known that the algorithm takes exponential time in the worst case [55].

Papadimitriou defined in [49] a complexity class, PPAD, that captures the basic prin-
ciples of these path-following algorithms: There is a finite number of candidate solutions,
and an underlying directed graph of moves between the solutions where each solution has at
most one forward and one backward move, i.e., the graph consists of a set of directed paths,
cycles and isolated nodes; a source of one path is an artificial starting solution, and every
other endpoint (source or sink) of every path is an answer to the problem (eg., an equilib-
rium). Formally, a search problem II is in PPAD if each instance I has a set S([I) of solutions
which are (strings) polynomially bounded in the input size |I|, and there are polynomial-
time algorithms for the following tasks: (a) test whether a given string I is an instance of
IT and if so compute a initial solution s¢ in S(I), (b) given I, s, test whether s € S(I) and
if so compute a successor succy(s) € S(I) and a predecessor predr(s) € S(I), such that
predr(so) = So, succr(so) # so, and predr(succr(sp)) = so. The pred and succ functions in-
duce a directed graph G = (S(I), E), where E = {(u, v)|u # v, succr(u) = v, predr(v) = u},
and the answer set to the instance I of the search problem, Ans(I), is the set of nodes of G,
other than sg that have indegree + outdegree = 1, i.e., are endpoints of the paths; note that

30 MIHALIS YANNAKAKIS

Ans(I) # () because there must be at least one more endpoint besides sg. As is customary,
the class is closed under polynomial-time reduction, i.e., if a search problem II’ reduces to a
problem II that satisfies the above definition, then II’ is considered also to belong to PPAD.
Papadimitriou defined two other variants of this class in [49], PPA in which the underlying
graph is undirected, and PPADS in which the graph is directed and the answer set consists
only of the sinks of the paths. However, PPAD is the more interesting and richer of these
classes in terms of natural problems.

The class PPAD lies somewhere between P and TFNP: all search problems in PPAD
are total, and furthermore, for a given instance I, we can guess a solution s and verify that
it is an answer. Thus, as in the case of PLS, problems in PPAD cannot be NP-hard unless
NP=coNP.

By virtue of the Lemke-Howson algorithm, the Nash equilibrium problem for 2-player
(normal form) games is in PPAD. For 3 or more players we cannot say that the Nash problem
is in PPAD; for one thing the equilibria are irrational. But the following approximate e-
Nash version is in PPAD [15]. An e-Nash equilibrium of a game is a (mixed) strategy
profile such that no player can improve its payoff by more than e by switching unilaterally
to another strategy. (Note, this is not the same as being e-close to a Nash equilibrium.)
The e-Nash problem is: given a normal form game I' (with rational payoffs) and a rational
e > 0, compute an e-Nash equilibrium of I". (Note that € is given as usual in binary,
so polynomial time means polynomial in |I'| and log(1/€).) The complexity of the Nash
problem was one of the main motivations for the original introduction of PPAD. A recent
sequence of papers culminated in showing that the Nash equilibrium problem for 2-player
games is PPAD-complete [15, 8], that is, if the problem can be solved in polynomial time,
then so can all the problems in PPAD. Furthermore, even the e-Nash equilibrium problem
for € inverse polynomial, i.e. even with € given in unary, is also PPAD-complete for 2-player
games [11]. For all constant €, an e-Nash equilibrium can be computed in quasipolynomial
time [43].

Another basic PPAD-complete problem is (a formalization of) the Sperner problem.
The 2D case concerns the unit simplex (triangle) Ag and its simplicial subdivision (i.e.,
triangulation) with vertices v = (i1/n,i2/n,iz/n) with i; + iz + i3 = n. The 2D Sperner
problem is as follows. The input consists of a number n in binary and a Boolean circuit
which takes as input three natural numbers i1, 19,73 with i1 4+ i9 + i3 = n and outputs a
color ¢ € {1,2,3}, with the restriction that i, # 0. The problem is to find a trichromatic
triangle, i.e. three vertices (triples) with pairwise distances 1/n that have distinct colors.
The problem is in PPAD by Scarf’s algorithm. The 3D Sperner problem was shown PPAD-
complete in [49], and the 2D case was shown complete in [9].

The original paper showed PPAD-completeness also for a discretized version of Brouwer
and related theorems (Kakutani, Borsuk-Ulam) in the style of the Sperner problem: a
Brouwer function in 3D is given in terms of a binary number n (the resolution of a regular
grid subdivision of the unit 3-cube) and a Boolean circuit that takes as input three natu-
ral numbers i1, 19,43 between 0 and n and outputs the value of the function at the point
(i1/n,i2/n,iz/n). The function is then linearly interpolated in the rest of the unit cube
according to a standard simplicial subdivision with the grid points as vertices. The paper
showed also completeness for a discretized version of the market equilibrium problem for
an exchange economy.

In [12] Codenoti et al. show PPAD-completeness of the price equilibrium for a restricted
case of Leontief exchange economies, i.e. economies in which each agent ¢ wants commodities

EQUILIBRIA, FIXED POINTS, AND COMPLEXITY CLASSES 31

in proportion to a specified (nonnegative) vector (a;,...,a;); that is, the utility function
of agent i is u;(x) = min{z;;/a;j|j = 1,...,k;a;; # 0}. In general, such economies may
not have an equilibrium, and it is NP-hard to determine if there is one [12]. However,
a restricted subclass of Leontief economies has equilibria and is equivalent to the Nash
equilibrium problem for 2-player games. This restricted Leontief class is as follows: the
agents are partitioned into two groups, every agent brings one distinct commodity to the
market, and agents in the first group want commodities only of agents in the second group
and vice-versa.

The class PPAD cannot capture of course general Brouwer functions since many of
them have irrational fixed points as we saw in the last section. (We could discretize such
a function, but then the resulting approximating function has new fixed points, which may
have no relation and can be very far from the fixed points of the original function.) However
there is a natural class of functions that are guaranteed to have rational fixed points, which
are in PPAD and in a sense characterize the class [26]. Consider the search problem II of
computing a fixed point for a family of Brouwer functions F = {F7|I an instance of IT}. We
say that II is a polynomial piecewise linear problem if the following hold: For each instance I,
the domain is divided by hyperplanes into polyhedral cells, the function F7 is linear in each
cell and is of course continuous over the whole domain. The coefficients of the function in
each cell and of the dividing hyperplanes are rationals of size bounded by a polynomial in |I|.
These are not given explicitly in the input, in fact there may be exponentially many dividing
hyperplanes and cells. Rather, there is an oracle algorithm that runs in time polynomial in
|| which generates a sequence of queries of the form ax < b? adaptively (i.e., the next query
depends on I and the sequence of previous answers), and at the end either outputs ‘No’
(i.e., z is not in the domain) or identifies the cell of 2 and outputs the coefficients ¢, ¢ of the
function Fj(z) = cx + ¢’. As shown in [26], all polynomial piecewise linear problems are in
PPAD (they all have rational fixed points of polynomial size). Examples include the simple
stochastic games, the discretized Brouwer functions obtained from linear interpolation on
a grid, and the Nash equilibrium problem for 2-player games (Nash’s function in nonlinear
even for 2 players, but there is another piecewise linear function whose fixed points are also
exactly the Nash equilibria).

The class PPAD captures also the approximation in the weak (‘almost’) sense for a
broad class of Brouwer functions, and in some cases also the strong approximation (‘near’)
problem [26]. Consider a family of functions F = {F}. We say F is polynomially computable
if for every instance I and rational vector x in the domain, the image F(z) is rational and
can be computed in time polynomial in the size of I and of x. F is called polynomially
continuous if there is a polynomial ¢(z1,22) such that for all instances I and all rational
e > 0, there is a rational 6 > 0 such that size(d) < ¢(|I], size(e)) and such that for
all x,y € Dy, |zt —y| <0 = |Fr(z) — Fi(y)| < e. If F is polynomially computable
and polynomially continuous, then the weak approximation problem (given instance I and
rational € > 0, compute a weakly e-approximate fixed point of F7) is in PPAD by virtue
of Scarf’s algorithm. Furthermore, if the functions F; happen to be also contracting with
contraction rate < 1—27PW(I) then strong approximation reduces to weak approximation,
and the strong approximation problem (given I,e, compute a point x that is within €
of some fixed point z* of F7) is also in PPAD; Shapley’s problem is an example that
satisfies this condition. Moreover, if in addition the functions F; have rational fixed points
of polynomial size, then strongly e-approximate fixed points with small enough e can be

32 MIHALIS YANNAKAKIS

rounded to get exact fixed points, and thus the exact problem is in PPAD; simple stochastic
games, perturbed with a small discount [13], are such an example.

5. Irrational Equilibria, Nonlinear Functions, and the Class FIXP

Games with 3 or more players are quite different from 2-player games: Nash equilibria
are generally irrational; knowing the support of an equilibrium does not help us much, and
there may be many different such equilibria. There are many search problems as we saw
in Section 3, and in particular many problems that can be cast in a fixed point framework,
where the objects that we want to compute (the answers) are irrational. Of course we
cannot compute them exactly in the usual Turing machine model of computation. One can
consider the exact computation and the complexity of such search problems in a real model
of computation [6]. In the usual (discrete) Turing model of computation and complexity,
we have to state carefully and precisely what is the (finite) information about the solution
that we want to compute, as the nature of the desired information can actually affect the
complexity of the problem, i.e., some things may be easier to compute than others. That
is, from a search problem II with a continuous solution space, another search problem II’
is derived with a discrete space. Several types of information are potentially of interest,
leading to different problems IT'.

Consider for example Shapley’s stochastic game. Some relevant questions about the
value of the game are the following: (i) Decision problem: Given game I' and rational r, is
the value of the game > r?, (ii) Partial computation: Given T', integer k, compute the k
most significant bits of the value, (iii) Approzimation: Given I', rational € > 0, compute an
€ approximation to the value. Similar questions can be posed about the optimal strategies
of the players. The value of a game is a problem with a unique answer; for multivalued
search problems (e.g., optimal strategy, Nash equilibrium etc.) care must be taken in the
statement of the discrete problems (e.g., the decision problem) so that it does not become
harder than the search problem itself; in general, the requirement in the multivalued case is
that the response returned for the discrete problem should be valid for some answer to the
continuous search problem. As we said in the previous section, the approximation problem
for the value of Shapley’s game is in PPAD (and it is open whether it is P). The decision
(and partial computation) problem however seems to be harder and it is not at all clear that
it is even in NP; in fact showing that it is in NP would answer a well-known longstanding
open problem. The same applies to many other problems. The best upper bound we know
for the decision (and partial computation) problem for Shapley’s games and for many of
the other fixed point problems listed in Section 3 (eg., branching processes, RMCs etc) is
PSPACE.

The Square Root Sum problem (Sqrt-Sum for short) is the following problem: given
positive integers di, . ..,d, and k, decide whether Y | \/d; < k. This problem arises often
for example in geometric computations, where the square root sum represents the sum of
Euclidean distances between given pairs of points with integer (or rational) coordinates; for
example, determining whether the length of a specific spanning tree, or a TSP tour of given
points on the plane is bounded by a given threshold £ amounts to answering such a problem.
This problem is solvable in PSPACE, but it has been a major open problem since the 1970’s
(see, e.g., [28, 62]) whether it is solvable even in NP (or better yet, in P). A related, and in
a sense more powerful and fundamental, problem is the PosSLP problem: given a division-
free straight-line program, or equivalently, an arithmetic circuit with operations +, —, * and

EQUILIBRIA, FIXED POINTS, AND COMPLEXITY CLASSES 33

inputs 0 and 1, and a designated output gate, determine whether the integer N that is the
output of the circuit is positive. The importance of this problem was highlighted in [2],
which showed that it is the key problem in understanding the computational power of the
Blum-Shub-Smale model of real computation [6] using rational numbers as constants, in
which all operations on rationals take unit time, no matter their size; importantly, integer
division (the floor function) is not allowed (unit cost models with integer division or logical
bit operations can solve in polynomial time all PSPACE problems, see e.g. [19] for an
overview of machine models and references). This is a powerful model in which the Sqrt-Sum
problem can be decided in polynomial time [62]). Allender et al. [2] showed that the set of
discrete decision problems that can be solved in P-time in this model is equal to PPosSLP,
i.e. problems solvable in P using a subroutine for PosSLP. They showed also that PosSLP
and Sqrt-Sum lie in the Counting Hierarchy (a hierarchy above PP).

The Sqrt-Sum problem can be reduced to the decision version of many problems: the
Shapley problem [26], concurrent reachability games [25], branching processes, Recursive
Markov chains [22], Nash equilibria for 3 or more players [26]. The PosSLP problem reduces
also to several of these. Hence placing any of these problems in NP would imply the
same for Sqrt-Sum and/or PosSLP. Furthermore, for several problems, the approximation
of the desired objects is also at least as hard. In particular, approximating the termination
probability of a Recursive Markov chain within any constant additive error < 1 is at least
as hard as the Sqrt-Sum and the PosSLP problems [26].

A similar result holds for the approximation of Nash equilibria in games with 3 or more
players. Suppose we want to estimate the probability with which a particular pure strategy,
say strategy 1 of player 1, is played in a Nash equilibrium (any one); obviously, the value
1/2 estimates it trivially with error < 1/2. Guaranteeing a constant error < 1/2 is at least
as hard as the Sqrt-Sum and the PosSLP problems [26], i.e. it is hard to tell whether the
strategy will be played with probability very close to 0 or 1.

The constructions illustrate also the difference between strong and weak approximate
fixed points generally, and for specific problems in particular. Recall that for RMCs we can
compute very easily a weak e-approximate fixed point for any constant € > 0; however it
is apparently much harder to obtain a strong approximation, i.e. approximate the actual
probabilities within any nontrivial constant. In the RMC case the weak approximation
is irrelevant. However, in the case of Nash equilibria, the weak approximation of Nash’s
function is also very natural and meaningful: it is essentially equivalent to the notion of
e-Nash equilibrium (there is a small polynomial change in € in each direction). For every
game [' and € > 0, we can choose a § of bit-size polynomial in the size of " and € so
that every strategy profile that is within distance ¢ of a Nash equilibrium is e-Nash (i.e.
all strongly approximate points are also weakly approximate with a ‘small’ change in).
However, the converse is not true: For every n there is a 3-player game of size O(n), with
an e-Nash equilibrium, z’, where € = 1/229(n), such that 2’ has distance 1 — 27P°% (ie.,
almost 1) from every Nash equilibrium [26].

For 2-player games, as we said there is a direct, algorithmic proof of the existence of
Nash equilibria (by the Lemke-Howson algorithm). But for 3 and more players, the only
proofs known are through a fixpoint theorem (and there are several proofs known using
different Brouwer functions or Kakutani’s theorem). In [26] we defined a class of search
problems, FIXP, that can be cast as fixed point problems of functions that use the usual
algebraic operations and max, min, like Nash’s function, and the other functions for the
problems discussed in Section 3. Specifically, FIXP is the class of search problems II, such

34 MIHALIS YANNAKAKIS

that there is a polynomial-time algorithm which, given an instance I, constructs an alge-
braic circuit (straight-line program) C over the basis {+,*, —, /, max, min}, with rational
constants, that defines a continuous function Fr from a domain to itself (for simplicity, stan-
dardized to be the unit cube, other domains can be embedded into it), with the property
that Ansp(7) is the set of fixed points of F;. The class is closed as usual under reductions.
In the usual case of discrete search problems, a reduction from problem A to problem B
consists of two polynomial-time computable functions, a function f that maps instances
I of A to instances f(I) of B, and a second function g that maps solutions y of the in-
stance f(I) of B to solutions z of the instance I of A. The difference here is that the
solutions are real-valued, not discrete, so we have to specify what kind of functions g are
allowed. It is sufficient to restrict the reverse function g to have a particularly simple form:
a separable linear transformation with polynomial-time computable rational coefficients;
that is, x = g(y), where each g;(y) is of the form a;y; + b; for some j, where a;,b; are
rationals computable from I in polynomial time. Examples of problems in FIXP include:
Nash equilibrium for normal form games with any number of players, price equilibrium in
exchange economies with excess demand functions given by algebraic formulas or circuits,
the value (and optimal strategies) for Shapley’s stochastic games, extinction probabilitites
of branching processes, and probability of languages generated by stochastic context-free
grammars.

FIXP is a class of search problems with continuous solution spaces, and corresponding
to each such problem II, there are the associated discrete problems: decision, approximation
etc. All the accociated discrete problems can be expressed in the existential theory of the
reals, and thus, using decision procedures for this theory [7, 52], it follows that they are
all in PSPACE. As we mentioned, many of these problems are at least as hard as the
Sqrt-Sum and the PosSLP problems, for which the current best upper bounds are barely
below PSPACE. On the other hand, we do not know of any lower bounds, so in principle
they could all be in P (though this is very doubtful). The Nash equilibrium problem for 3
players is complete for FIXP; it is complete in all senses, e.g., its approximation problem is
as hard as the approximation of any other FIXP problem, the decision problem is at least
as hard as the decision problem for any problem in FIXP, etc. [26]. The price equilibrium
problem for algebraic excess demand functions is another complete problem.

A consequence of the completeness results is that the class FIXP stays the same under
several variations. For example, using formulas instead of circuits in the representation
of the functions does not affect the class (because Nash’s function is given by a formula).
Also, FIXP stays the same if we use circuits over {+, *, max} and rational constants (i.e., no
division), because there is another function whose fixed points are also the Nash equilibria,
and which can be implemented without division [26].

Of course FIXP contains PPAD, since it contains its complete problems, for example
2-player Nash. Actually, the piecewise linear fragment of FIXP corresponds exactly to
PPAD. Let Linear-FIXP be the class of problems that can be expressed as (reduced to)
exact fixed point problems for functions given by algebraic circuits using {+, —, max, min}
(equivalently, {+,max}) and multiplication with rational constants only; no division or
multiplications of two gates/inputs is allowed. Then Linear-FIXP is equal to PPAD.

In several problems, we want a particular fixed point of a system z = F(z), not just
any one. In particular, in several of the probems discussed in Section 3 for example, the
function F' is a monotone operator and we want a Least Fixed Point. To place such a
problem in FIXP, one has to restrict the domain in a suitable, but polynomial, way so that

EQUILIBRIA, FIXED POINTS, AND COMPLEXITY CLASSES 35

only the desired fixed point is left in the domain. For some problems, we know how to
do this (for example, extinction probabilities of branching processes), but for others (e.g.
recursive Markov chains) it is not clear that this can be done in polynomial time. In any
case, the paradigm of a LFP of a monotone operator is one that appears in many common
settings, and which deserves its own separate treatment.

6. Conclusions

Many problems, from a broad, diverse range of areas, involve the computation of an
equilibrium or fixed point of some kind. There is a long line of research (both mathematical
and algorithmic) in each of these areas, but for many of these basic problems we still do
not have polynomial time algorithms, nor do we have hard evidence of intractability (such
as NP-hardness). We reviewed a number of such problems here, and we discussed three
complexity classes, PLS, PPAD and FIXP, that capture essential aspects of several types
of such problems. The classes PLS and PPAD lie somewhere between P and TFNP (total
search problems in NP), and FIXP (more precisely, the associated discrete problems) lie
between P and PSPACE. These, and the obvious containment PPAD C FIXP, are the only
relationships we currently know between these classes and the other standard complexity
classes. It would be very interesting and important to improve on this state of knowledge.
Furthermore, there are several important problems that are in these classes, but are not
(known to be) complete, so it is possible that one can make progress on them, without
resolving the relation of the classes themselves.

References

[1] H. Ackermann, H. Roglin, B. Vocking. On the impact of combinatorial structure on congestion
games. Proc. 47th IEEE FOCS, 2006.
[2] E. Allender, P. Biirgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity of nu-
merical analysis. Proc. 21st IEEE Comp. Compl. Conf., 2006.
[3] K.J. Arrow, G. Debreu. Existence of an equilibrium for a competitive economy. Econometrica, 22,
pp. 265-290, 1954.
[4] R. M. Anderson. “Almost” implies “Near”. Trans. Am. Math. Soc., 296, pp. 229-237, 1986.
[5] R.J. Aumann, S. Hart (eds.). Handbook of Game Theory, vol. 3, North-Holland, 2002.
[6] L. Blum, F. Cucker, M. Shub, and S. Smale. Complezity and Real Computation. Springer-Verlag,
1998.
[7] J. Canny. Some algebraic and geometric computations in PSPACE. Proc. ACM STOC, pp. 460-467,
1988.
[8] X. Chen and X. Deng. Settling the complexity of two-player Nash equilibrium. Proc. 47th IEEE
FOCS, pp. 261-272, 2006.
[9] X. Chen, X. Deng. On the complexity of 2d discrete fixed point problem. Proc. ICALP, pp. 489-599,
2006.
[10] X. Chen, X. Deng. On algorithms for discrete and approximate Brouwer fixed points. Proc. ACM
STOC, pp. 323-330, 2005.
[11] X. Chen, X. Deng, and S. H. Teng. Computing Nash equilibria: approximation and smoothed
complexity. Proc. 47th IEEE FOCS, pp. 603-612, 2006.
[12] B. Codenotti, A. Saberi, K. Varadarajan, Y. Ye. Leontieff economies encode nonzero sum two-player
games. Proc. SIAM SODA, pp. 659-667, 2006.
[13] A. Condon. The complexity of stochastic games. Inf. & Comp., 96(2):203-224, 1992.
[14] C. Daskalakis, A. Fabrikant, and C. Papadimitriou. The game world is flat: The complexity of Nash
equilibria in succinct games. Proc. ICALP, 2006.

36

(15]

(16]

MIHALIS YANNAKAKIS

C. Daskalakis, P. Goldberg, and C. Papadimitriou. The complexity of computing a Nash equilibrium.
Proc. ACM STOC, pp. 71-78, 2006.

L. de Alfaro, T. A. Henzinger, O. Kupferman. Concurrent reachability games. Proc. IEEE FOCS,
pp. 564-575, 1998.

G. Debreu. Excess demand functions. J. Math. Econ. 1, pp. 15-21, 1974.

A. Ehrenfeucht, J. Mycielski. Positional strategies for mean payoff games. Intl. J. Game Theory, 8,
pp. 109-113, 1979.

P. van Emde Boas. Machine models and simulations. In Handbook of Theoretical Computer Science,
vol. A, J. van Leeuwen ed., MIT Press, pp. 1-66, 1990.

E. A. Emerson, C. Jutla. Tree automata, p-calculus and determinacy. Proc. IEEE FOCS, pp. 368-
377, 1991.

J. Esparza, A. Kucera, and R. Mayr. Model checking probabilistic pushdown automata. Proc. of
19th IEEE LICS’04, 2004.

K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and monotone
systems of non-linear equations. Proc. STACS, 2005. (Full expanded version available from http:
//homepages . inf .ed.ac.uk/kousha).

K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive stochastic
games. Proc. 32nd ICALP, 2005.

K. Etessami and M. Yannakakis. Efficient qualitative analysis of classes of recursive Markov decision
processes and simple stochastic games. Proc. 23rd STACS, Springer, 2006.

K. Etessami and M. Yannakakis. Recursive concurrent stochastic games. Proc. 33rd ICALP, 2006.
K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed points. Proc.
IEEE FOCS, 2007.

A. Fabrikant, C.H. Papadimitriou, K. Talwar. The complexity of pure Nash equilibria. Proc. ACM
STOC, pp. 604-612, 2004.

M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric problems. Proc. 8th
ACM STOC, pp. 10-22, 1976.

J. Geanakoplos. Nash and Walras equilibrium via Brouwer. Fconomic Theory, 21:585-603, 2003.

I. Gilboa and E. Zemel. Nash and correlated equilibria: some complexity considerations. Games
and Economic Behavior, 1:80-93, 1989.

P. Haccou, P. Jagers, V. A Vatutin. Branching Processes: Variation, Growth, and Extinction of
Populations. Cambridge U. Press, 2005.

T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.

M. D. Hirsch, C. H. Papadimitriou, S. A. Vavasis. Exponential lower bounds for finding Brouwer
fixed points. J. Complexity, 5, pp. 379-416, 1989.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational abili-
ties. Proc. Nat. Acad. Sci. 79, pp. 2554-2558, 1982.

D. S. Johnson. The NP-completeness column: Finding needles in haystacks. ACM Trans. Algorithms
3, 2007.

D. S. Johnson, C. H. Papadimitriou, M. Yannakakis. How easy is local search? J. Comp. Sys. Sci.,
37, pp. 79-100, 1988.

B. Juba. On the hardness of simple stochastic games. Master’s thesis, CMU, 2005.

M. Jurdzinski. Deciding the winner in parity games is in UPNcoUP. Inf. Proc. Let. 68, pp. 119-124,
1998.

M. Kearns. Graphical games. In [48], pp. 159-180, 2007.

K.-I. Ko. Computational complexity of fixpoints and intersection points. J. Complexity, 11, pp.
265-292, 1995.

A. N. Kolmogorov and B. A. Sevastyanov. The calculation of final probabilities for branching random
processes. Doklady, 56:783-786, 1947. (Russian).

C. Lemke, J. Howson. Equilibrium points of bimatrix games. J. STAM, pp. 413-423, 1964.

R.J. Lipton, E. Markakis, A. Mehta. Playing large games using simple strategies. Proc. ACM Conf.
Elec. Comm., 36-41, 2003.

R.J. Lipton, E. Markakis. Nash equilibria via polynomial equations. Proc. LATIN, 2004.

C. Manning and H. Schiitze. Foundations of Statistical Natural Language Processing. MIT Press,
1999.

[46]
(47]
(48]
(49]

[

(S

EQUILIBRIA, FIXED POINTS, AND COMPLEXITY CLASSES 37

J. Nash. Non-cooperative games. Annals of Mathematics, 54:289-295, 1951.

A. Neyman and S. Sorin, eds. Stochastic Games and Applications. Kluwer, 2003.

N. Nisan, T. Roughgarden, E. Tardos, V. Vazirani. Algorithmic Game Theory. Cambridge Univ.
Press, 2007.

C. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence.
J. Comput. Syst. Sci., 48(3):498-532, 1994.

C. Papadimitriou. The complexity of finding Nash equilibria. In [48], pp. 29-52, 2007.

A. Puri. Theory of hybrid systems and discrete event systems. PhD Thesis, UC Berkeley, 1995.

J. Renegar. On the computational complexity and geometry of the first-order theory of the reals,
parts I-II1. J. Symb. Comp., 13(3):255-352, 1992.

M. Richter, K.-C. Wong. Non-computability of competitive equilibrium. Economic Theory, 14, pp.
1-27, 1999.

R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Intl. J. Game Theory
2, pp. 65-67, 1973.

R. Savani, B. von Stengel. Hard to solve bimatrix games. Econometrica 74, pp. 397-429, 2006.

H. Scarf. The approximation of fixed points of a continuous mapping. SIAM J. Appl. Math., 15:1328—
1343, 1967.

H. Scarf. The Computation of Economic Equilibria. Yale University Press, 1973.

A. Schaffer, M. Yannakakis. Simple Local Search Problems that are Hard to Solve. SIAM J. Comp.,
20, pp. 56-87, 1991.

L.S. Shapley. Stochastic games. Proc. Nat. Acad. Sci., 39:1095-1100, 1953.

K. Sikorski. Optimal solution of nonlinear equations, Oxford Univ. Press, 2001.

B. von Stengel. Computing equilibria for two-person games. In [5], pp. 1723-1759, 2002.

P. Tiwari. A problem that is easier to solve on the unit-cost algebraic RAM. J. of Complexity, pp.
393-397, 1992.

H. Uzawa. Walras’ existence theorem and Brouwer’s fixpoint theorem. Fcon. Stud. Quart., 13, pp.
59-62, 1962.

B. Vocking. Congestion Games: Optimization in Competition. Proc. 2nd ACiD, pp. 9-20, 2006.
M. Yannakakis. The analysis of local search problems and their heuristics. Proc. STACS, pp. 298-311,
1990.

M. Yannakakis. Computational complexity of local search. In Local Search in Combinatorial Opti-
mization, E.H.L. Aarts, J.K. Lenstra eds., John Wiley, 1997.

U. Zwick, M. S. Paterson. The complexity of mean payoff games on graphs. Theoretical Computer
Science, 158, pp. 343-359, 1996.

38

MIHALIS YANNAKAKIS

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 39-48
www.stacs-conf.org

PUSHDOWN COMPRESSION

P. ALBERT ', E. MAYORDOMO !, P. MOSER 2, AND S. PERIFEL 3

! Dept. de Informaética e Ingenierfa de Sistemas , Universidad de Zaragoza. Edificio Ada Byron, Marfa
de Luna 1 - E-50018 Zaragoza (Spain)
E-mail address: {mpalbert,elvira}@unizar.es

2 Dept. of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland
E-mail address: pmoser@cs.nuim.ie

3 LIP, Ecole Normale Supérieure de Lyon. UMR 5668 ENS Lyon, CNRS, UCBL, INRIA
E-mail address: asylvain.perifel@ens-lyon.fr

ABSTRACT. The pressing need for efficient compression schemes for XML documents has
recently been focused on stack computation [6, 9], and in particular calls for a formulation
of information-lossless stack or pushdown compressors that allows a formal analysis of their
performance and a more ambitious use of the stack in XML compression, where so far it is
mainly connected to parsing mechanisms. In this paper we introduce the model of pushdown
compressor, based on pushdown transducers that compute a single injective function while
keeping the widest generality regarding stack computation.

The celebrated Lempel-Ziv algorithm LZ78 [10] was introduced as a general purpose com-
pression algorithm that outperforms finite-state compressors on all sequences. We compare
the performance of the Lempel-Ziv algorithm with that of the pushdown compressors, or
compression algorithms that can be implemented with a pushdown transducer. This com-
parison is made without any a priori assumption on the data’s source and considering the
asymptotic compression ratio for infinite sequences. We prove that Lempel-Ziv is incompa-
rable with pushdown compressors.

1. Introduction

The celebrated result of Lempel and Ziv [10] that their algorithm is asymptotically better
than any finite-state compressor is one of the major theoretical justifications of this widely
used algorithm. However, until recently the natural extension of finite-state to pushdown com-
pressors has received much less attention, a situation that has changed due to new specialized
COMPressors.

Key words and phrases: Finite-state compression, Lempel-Ziv algorithm, pumping-lemma, pushdown com-
pression, XML document.

Research supported in part by Spanish Government MEC Project TIN 2005-08832-C03-02 and by Aragén
Government Dept. Ciencia, Tecnologia y Universidad, subvencién destinada a la formacién de personal
investigador-B068,/2006.

L SYMPOSIUM
V" ON THEORETICAL
) |_' ASPECTS

<4

) S%FEE%?PUTER © P. Albert, E. Mayordomo, P. Moser, and S. Perifel

© Creative Commons Attribution-NoDerivs License

40 P. ALBERT, E. MAYORDOMO, P. MOSER, AND S. PERIFEL

In particular, XML is rapidly becoming a standard for the creation and parsing of doc-
uments, however, a significant disadvantage is document size, even more since present day
XML databases are massive. Since 1999 the design of new compression schemes for XML is
an active area where the use of syntax directed compression is specially adequate, that is,
compression centered on the grammar-based generation of XML-texts and performed with
stack memory [6, 9].

On the other hand the work done on stack transducers has been basic and very connected
to parsing mechanisms. Transducers were initially considered by Ginsburg and Rose in [4]
for language generation, further corrected in [5], and summarized in [1]. For these models
the role of nondeterminism is specially useful in the concept of A-rule, that is a transition in
which a symbol is popped from the stack without reading any input symbol.

In this paper we introduce the concept of pushdown compressor as the most general stack
transducer that is compatible with information-lossless compression. We allow the full power
of A-rules while having a deterministic (unambiguous) model. The existence of endmarkers
is discussed, since it allows the compressor to move away from mere prefix extension by
exploiting A-rules.

The widely-used Lempel-Ziv algorithm LZ78 [10] was introduced as a general purpose
compression algorithm that outperforms finite-sate compressors on all sequences when consid-
ering the asymptotic compression ratio. This means that for infinite sequences, the algorithm
attains the (a posteriori) finite state or block entropy. If we consider an ergodic source, the
Lempel-Ziv compression coincides exactly with the entropy of the source with high probabil-
ity on finite inputs. This second result is useful when the data source is known, whereas it is
not informative for arbitrary inputs. We don’t know the performance of Lempel-Ziv on indi-
vidual long or infinite inputs (notice that an infinite sequence is Lempel-Ziv incompressible
with probability one). For the comparison of compression algorithms on general sequences,
either an experimental or a formal approach is needed, such as that used in [8]. In this paper
we follow [8] using a worse case approach, that is, we consider asymptotic performance on
every infinite sequence.

We compare the performance of the Lempel-Ziv algorithm with that of the pushdown-
compressors, or compression algorithms that can be implemented with a pushdown trans-
ducer. This comparison is made without any a priori assumption on the data’s source and
considering the asymptotic compression ratio for infinite sequences.

We prove that Lempel-Ziv compresses optimally a sequence that no pushdown transducer
compresses at all, that is, the Lempel-Ziv and pushdown compression ratios of this sequence
are 0 and 1, respectively. For this result, we develop a powerful nontrivial pumping-lemma,
that has independent interest since it deals with families of pushdown transducers, while
known pumping-lemmas are restricted to recognizing devices [1].

In fact, Lempel-Ziv and pushdown compressing algorithms are incomparable, since we
construct a sequence that is very close to being Lempel-Ziv incompressible while the push-
down compression ratio is at most one half. While Lempel-Ziv is universal for finite-state
compressors, our theorem implies a strong non-universality result for Lempel-Ziv and push-
down compressors.

The paper is organized as follows. Section 2 contains some preliminaries. In section 3, we
present our model of pushdown compressor with its basic properties and notation. In section
4 we show that there is a sequence on which Lempel-Ziv outperforms pushdown compressors
and in section 5 we show that Lempel-Ziv and pushdown compression are incomparable. We

PUSHDOWN COMPRESSION 41

finish with a brief discussion of connections and consequences of these results for dimension
and prediction algorithms.

2. Preliminaries

We write Z for the set of all integers, N for the set of all nonnegative integers and Z* for
the set of all positive integers. Let ¥ be a finite alphabet, with |3| > 2. ¥* denotes the set
of finite strings, and X°° the set of infinite sequences. We write |w| for the length of a string
w in ¥*. The empty string is denoted by A. For S € ¥ and i,j € N, we write S[i..j] for
the string consisting of the 7" through ;" bits of S, with the convention that S[i..j] = X if
i > j, and S[0] is the leftmost bit of S. We write S[i] for S[i..i] (the i*" bit of S). For w € ¥*
and S € ¥, we write w C S if w is a prefix of S, i.e., if w = S[0..Jw| — 1]. Unless otherwise
specified, logarithms are taken in base |X|. For a string z, ! denotes written in reverse
order. We use f(x) =L to denote that function f is undefined on z.

Let us give a brief description of the Lempel-Ziv (LZ) algorithm [10]. Given an input
x € ¥*, LZ parses z in different phrases z;, i.e., x = z1x2...z, (x; € ¥*) such that every
prefix y C x;, appears before x; in the parsing (i.e. there exists j < i s.t. x; =y). Therefore
for every i, z; = x;;b; for I(i) < i and b; € 3. We sometimes denote the number of phrases
in the parsing of x as P(x). After step ¢ of the algorithm, the 7 first phrases x1,...,x; have
been parsed and stored in what we will call the dictionary. Thus, each step adds one word
to the dictionary.

LZ encodes z; by a prefix free encoding of x;(;) and the symbol b;, that is, if z = x122 ... 2
as before, the output of LZ on input x is

LZ(.Z‘) = Cl(l)blcl(2)b2 NN Cl(n)bn
where ¢; is a prefix-free coding of i (and xg = \).
LZ is usually restricted to the binary alphabet, but the description above is valid for any

3.
For a sequence S € X°°, the LZ infinitely often compression ratio is given by

. |LZ(8[0...n — 1))
=1 f '
prz(S) = limin nlogy(|%))

prz(S) corresponds to the best-case performance of Lempel-Ziv on finite prefixes of sequence
S.

We also consider the almost everywhere compression ratio
. |LZ(S[0...n—1])]
R;7(S) = limsu
() = s = og (15D
Ry 7(S) corresponds to the worst-case performance of Lempel-Ziv on finite prefixes of sequence

S.

3. Pushdown compression
Definition 3.1. A pushdown compressor (PDC) is a 7-tuple
C= (Q?Zar‘767 v, QO7ZO)
where
e Y is the finite input alphabet

42 P. ALBERT, E. MAYORDOMO, P. MOSER, AND S. PERIFEL

Q is a finite set of states

T" is the finite stack alphabet

§:Q x (BU{A}) xI' = @ x I'* is the transition function
v:Q x (XU{A}) xT' = £* is the output function

go € @ is the initial state

zp € I is the start stack symbol

We use dg and ér+ for the projections of function §. Note that the transition function
d accepts A as an input character in addition to elements of X, which means that C' has the
option of not reading an input character while altering the stack. In this case d(q, \,a) =
(¢', \), that is, we pop the top symbol of the stack. To enforce determinism, we require that
at least one of the following hold for all ¢ € Q) and a € I':

o (g, N\ a) =1

e 6(q,b,a) =L forallbe X
We restrict d so that zp cannot be removed from the stack bottom, that is, for every ¢ € @,
b € X U{\}, either 6(q,b,29) =L, or 6(q,b,20) = (¢',v20), where ¢’ € Q and v € T**.

There are several natural variants for the model of pushdown transducer [1], both allowing
different degrees of nondeterminism and computing partial (multi)functions by requiring final
state or empty stack termination conditions. Our purpose is to compute a total and well-
defined (single valued) function in order to consider general-purpose, information-lossless
COMPressors.

Notice that we have not required here or in what follows that the computation should
be invertible by another pushdown transducer, which is a natural requirement for practical
compression schemes. Nevertheless the unambiguity condition of a single computation per
input gives as a natural upper bound on invertibility.

We first consider the transition function § as having inputs in @ x (XU{\}) x'", meaning
that only the top symbol of the stack is relevant. Then we use the extended transition function
0 :Q x X* xI'T — @Q x I'*, defined recursively as follows. For ¢ € Q, v € '™, w € ¥*, and
be X

5*(q A U) :{ 6*(5Q(q7 >‘7 U)?)‘7 51“‘ (q7)‘7 U))’ if 5(q7)‘7 U) #La
7 (q,v), otherwise.
5*(5@(5&(q,w,v), b, 0t (q, w,v)), A, O+ (522(q,w,v), b, 61+ (g, w,v))),
1, otherwise.

That is, A-rules are inside the definition of 6*. We abbreviate §* to 4, and d(qg, w, zg) to
0(w). We define the output from state ¢ on input w € X* with z € I'* on the top of the stack
by the recursion v(g, A, z) = A,

v(q,wb, z) = v(q, w, 2)v(dq(q, w, 2), b, or=(q, w, 2)).
The output of the compressor C on input w € ¥* is the string C'(w) = v(qo, w, 20).

The input of an information-lossless compressor can be reconstructed from the output
and the final state reached on that input.

Definition 3.2. A PDC C = (Q,%,T,46,v, qo, 20) is information-lossless (IL) if the function
*F -3 xQ
w = (C(w), dg(w))
is one-to-one. An information-lossless pushdown compressor (ILPDC') is a PDC that is IL.

PUSHDOWN COMPRESSION 43

Intuitively, a PDC compresses a string w if |C(w)| is significantly less than |w|. Of course,
if C is IL, then not all strings can be compressed. Our interest here is in the degree (if any)
to which the prefixes of a given sequence S € ¥*° can be compressed by an ILPDC.

Definition 3.3. If C is a PDC and S € X°°, then the compression ratio of C on S is

.. C(S[0.n—1
po(S) = lim inf (53l

Definition 3.4. The pushdown compression ratio of a sequence S € X is
ppp(S) = inf{pc(S) | Cis an ILPDC}

ppp(S) corresponds to the best-case performance of PD-compressors on S.
We can consider dual concepts Rc and Rpp by replacing liminf with limsup in the
previous definition. Rpp(S) corresponds to the worst-case performance of PD-compressors

on S.

3.1. Endmarkers and pushdown compression

Two possibilities occur when dealing with transducers on finite words: should the end of
the input be marked with a particular symbol # or not? As we will see, this is a rather subtle
question. First remark that both approaches are natural: on the one hand, usual finite state
or pushdown acceptors are one-way and do not know (and do not need to know) when they
reach the end of the word; on the other hand, two-way finite state acceptors need to know
it and everyday compression algorithms usually know (or at least are able to know) where
the end of the input file takes place. For a word w, we will denote by C(w) the output of a
transducer C' without endmarker, and C'(w#) the output with an endmarker.

Unlike acceptors, transducers can take advantage of an endmarker: they can indeed
output more symbols when they reach the end of the input word if it is marked with a
particular symbol. This is therefore a more general model of transducers which, in particular,
does not have the strong restriction of prefix extension: if there is no endmarker and C is
a transducer, then for all words wi,wy, w1 C wy = C(w;) E C(wsy). Let us see how this
restriction limits the compression ratio.

Lemma 3.5. Let C' be an IL pushdown compressor with k states and working with no end-
marker. Then on every word w of size |w| > k, the compression ratio of C' is
Clw)l 1
lw] — 2k
Proof. Due to the injectivity condition, we can show that C' has to output at least one symbol
every k input symbols. Suppose on the contrary that there are words ¢, u, with |u| = k, such
that C does not output any symbol when reading v on input w = tu. Then all the &k + 1
words t and tu[0..i] for 0 < i < k — 1 have the same output by C, and furthermore two of
them have the same final state because there are only k states. This contradicts injectivity.
Thus C' must output at least one symbol every k symbols, which proves the lemma. a
This limitation does not occur with endmarkers, as the following lemma shows.

Lemma 3.6. For every k, there exists an IL pushdown compressor C with k states, working
with endmarkers, such that the compression ratio of C' on 0" tends to 1/k* when n tends to
infinity, that is,

com) 1

lim ——— = —.
n—oo MN k2

44 P. ALBERT, E. MAYORDOMO, P. MOSER, AND S. PERIFEL

Proof. (Sketch) On input 0, our compressor outputs (roughly) 0"/ k¥ as follows: by selecting
one symbol out of each k of the input word (counting modulo k thanks to k states), it pushes
0"k on the stack. Then at the end of the word, it pops the stack and outputs one symbol
every k pop. Thus the output is 0™/ k? (in fact, the remainder of n modulo k2 also has to be
taken into account).

To ensure injectivity, if the input word w is not of the form 0™ (that is, if it contains a
1), then C outputs lw. O

It is worth noticing that it is the injectivity condition that makes this computation im-
possible without endmarkers, because one cannot decide a priori whether the input word
contains a 1. Thus pushdown compressors with endmarkers do not have the limitation of
Lemma 3.5. Still, as Corollary 4.5 will show, pushdown compressors with endmarkers are not
universal for finite state compressors, in the sense that a single pushdown compressor cannot
be as good as any finite state compressor.

It is open whether pushdown compressors with endmarkers are strictly better than with-
out, in the sense of the following question.
Open question. Do there exist an infinite sequence S, a constant 0 < o < 1 and an IL
pushdown compressor C' working with endmarkers, such that po(S) < a, but pcr(S) > a, for
every C’ IL pushdown compressor working without endmarkers?

In the rest of the paper we consider both variants of compression: with and without
endmarkers. We use the weakest variant for positive results and the strongest for negative
ones, therefore showing stronger separations.

4. Lempel-Ziv outperforms Pushdown transducers

In this section we show the existence of an infinite sequence S € {0,1}°° compressible
by Lempel-Ziv but not by pushdown compressors. More precisely, we show in Theorem 4.8
the following result: the almost everywhere Lempel-Ziv compression ratio on S is 0 but the
infinitely often IL pushdown compression ratio is 1. Another (weaker) version will be stated
in Theorem 4.9 for pushdown compressors with endmarkers.

The rough idea is that Lempel-Ziv compresses repetitions very well, whereas, if the re-
peated word is well chosen, pushdown compressors perform very poorly. We first show the
claim on Lempel-Ziv and then prove a pumping-lemma for pushdown transducers in order to
deal with the case of pushdown compressors.

4.1. Lempel-Ziv on periodic inputs

The sequence we will build consists of regions where the same pattern is repeated several
times. This ensures that Lempel-Ziv algorithm compresses the sequence, as shown by the
following lemmas.

We begin with finite words: Lempel-Ziv compresses well words of the form tu™. The idea
is that the dictionary remains small during the execution of the algorithm because there are
few different subwords of same length in tu™ due to the period of size |u|. The statement is
slightly more elaborated because we want to use it in the proof of Theorem 4.2 where we will
need to consider the execution of Lempel-Ziv on a possibly nonempty dictionary.

PUSHDOWN COMPRESSION 45

Lemma 4.1. Letn € N and let t,u, € ¥*, where u # X. Define l = 1+ |t|+|u| and w,, = tu".
Consider the execution of Lempel-Ziv on wy starting from a dictionary containing d > 0
phrases. Then we have that

This leads us to the following lemma on a particular infinite sequence.

Theorem 4.2 (LZ compressibility of repetitive sequences). Let (t;)i>1 and (u;)i>1 be se-
quences of words, where u; # A\,Vi > 1. Let (n;);>1 be a sequence of integers. Let S be the
sequence defined by

S = tlu?1t2u32t3ug3 e
If the sequence (n;)i>1 grows sufficiently fast, then

Rrz(S) = 0.

4.2. Pumping-lemma for injective pushdown transducers

This section is devoted to the statement and proof of a pumping-lemma for pushdown
transducers. In the usual setting of recognition of formal languages by pushdown automata,
the pumping-lemma comes from the equivalence between context-free grammars and push-
down automata, see for instance [11]. However, the proof is much less straightforward without
grammars, as is our case since we deal with transducers and not acceptors. Moreover, there
are three further difficulties: first, we have to consider what happens at the end of the word,
after the endmarker (where the transducer can still output symbols when emptying the stack);
second, we need a lowerbound on the size of the pumping part, that is, we need to pump on
a sufficiently large part of the word; third, we need the lemma for an arbitrary finite family
of automata, and not only one automaton. All this makes the statement and the proof much
more involved than in the usual language-recognition framework. The proof consists in find-
ing two similar configurations of the transducer so that we can repeat the input word read
between them. The size of the input word has therefore to be large enough but note that
in the following statement, this restriction is replaced by the possibility of pumping on an
empty word u (as soon as a|w|? < 1 since we take the integer part).

Lemma 4.3 (Pumping-lemma). Let F be a finite family of ILPDC. There exist two constants
a, B > 0 such that Yw, there exist t,u,v € X* such that w = tuv satisfying:

o [u| > |afw|?];

e VC € F, there exist two words x,y such that C(tu") = xy™, Yn € N.

Taking into account endmarkers, we obtain the following corollary:

Corollary 4.4 (Pumping-lemma with endmarkers). Let F be a finite family of ILPDC.
There exist two constants o, 3 > 0 such that every word w can be cut in three pieces w = tuv
satisfying:
(1) |ul = [efw]?];
(2) there is an integer ¢ > 0 such that for all C € F, there exist five words z,x',y,y', 2
such that for all n > ¢, C(tu™v#) = xy"zy™ 2.

46 P. ALBERT, E. MAYORDOMO, P. MOSER, AND S. PERIFEL

Let us state an immediate corollary concerning universality: pushdown compressors,
even with endmarkers, cannot be universal for finite state compressors, in the sense that the
compression ratio of a particular pushdown compressor cannot be always better than the
compression ratio of every finite state compressor.

Corollary 4.5. Let C be an IL pushdown compressor (with endmarkers). Then pc(0°°) > 0.
In particular, no pushdown compressor is universal for finite state compressors.

Proof. By Corollary 4.4, there exist two integers k,k’, (k' > 1), a constant ¢ > 0 and five
words z,2’,y,y, z such that for all n > ¢, C(0F0"#) = zy"zy™z/. By injectivity of C, y
and 3/ cannot be both empty. Hence the size of the compression of 0%0%'™ is linear in n. This
proves the first assertion.

Since for every € > 0 there exists an IL finite state compressor C’ such that Rev(0°) < e,
the pushdown compressor C' cannot be universal for finite state compressors. O

4.3. A pushdown incompressible sequence

We now show that some sequences with repetitions cannot be compressed by pushdown
compressors. We start by analyzing the performance of PDC on the factors of a Kolmogorov-
random word (that is, a word w that contains at least |w| bits of information in the (plain)
Kolmogorov complexity sense, i.e. K(w) > |w|; or, to put it another way, a word that cannot
be compressed by Turing machines). This result is valid even with endmarkers.

Lemma 4.6. For every F finite family of ILPDC' with k states and for every constant € > 0,
there exists Mr . € N such that, for any Kolmogorov random word w = tu, if |u| > Mg log |w|
then the compression ratio for C € F of u on input w is

[Ctuw)| — |C@)

Jul

>1—ce.

We can now build an infinite sequence of the form required in Theorem 4.2 that cannot
be compressed by bounded pushdown automata. The idea of the proof is as follows: by
Corollary 4.4, in any word w we can repeat a big part v of w while ensuring that the behaviour
of the transducer on every copy of u is the same. If w is not compressible, the output will be
of size almost |u|, therefore with a large number of repetitions the compression ratio is almost
1.

Theorem 4.7 (A pushdown incompressible repetitive sequence). Let ¥ be a finite alphabet.
There exist sequences of words (tx)r>1 and (ug)k>1, where ug, # A\, Vk > 1, such that for every
sequence of integers (ng)>1 growing sufficiently fast, the infinite string S defined by

S = tlu?1t2u32t3ug3 e

verifies that

VC € ILPDC (without endmarkers).

Combining it with Theorem 4.2 we obtain the main result of this section, there are
sequences that Lempel-Ziv compresses optimally on almost every prefix, whereas no pushdown
compresses them at all, even on infinitely many prefixes (Theorem 4.8) or using endmarkers
(Theorem 4.9).

PUSHDOWN COMPRESSION 47

Theorem 4.8. There exists a sequence S such that
Rrz(S)=0

and
pc(S) =1
for any C € ILPDC (without endmarkers).

The situation with endmarkers is slightly more complicated, but using Corollary 4.4 (the
pumping lemma with endmarkers) and a similar construction as Theorem 4.7 we obtain the
following result. Note that we now use the limsup of the compression ratio for ILPDC with
endmarkers.

Theorem 4.9. There exists a sequence S such that
RLz(S) =0

and
Ro(S)=1
for any C € ILPDC' (using endmarkers).

5. Lempel-Ziv is not universal for Pushdown compressors

It is well known that LZ [10] yields a lower bound on the finite-state compression of a
sequence [10], ie, LZ is universal for finite-state compressors.

The following result shows that this is not true for pushdown compression, in a strong
sense: we construct a sequence S that is infinitely often iricompressible by LZ, but that has

almost everywhere pushdown compression ratio less than 3.

Theorem 5.1. For every m € N, there is a sequence S € {0,1}°° such that

and

6. Conclusion

The equivalence of compression ratio, effective dimension, and log-loss unpredictability
has been explored in different settings [2, 7, 13]. It is known that for the cases of finite-
state, polynomial-space, recursive, and constructive resource-bounds, natural definitions of
compression and dimension coincide, both in the case of infinitely often compression, related
to effective versions of Hausdorff dimension, and that of almost everywhere compression,
matched with packing dimension. The general matter of transformation of compressors in
predictors and vice versa is widely studied [14].

In this paper we have done a complete comparison of pushdown compression and LZ-
compression. It is straightforward to construct a prediction algorithm based on Lempel-Ziv
compressor that uses similar computing resources, and it is clear that finite-state compres-
sion is always at least pushdown compression. This leaves us with the natural open question

48

P. ALBERT, E. MAYORDOMO, P. MOSER, AND S. PERIFEL

of whether each pushdown compressor can be transformed into a pushdown prediction al-
gorithm, for which the log-loss unpredictability coincides with the compression ratio of the
initial compressor, that is, whether the natural concept of pushdown dimension defined in [3]
coincides with pushdown compressibility. A positive answer would get pushdown computa-
tion closer to finite-state devices, and a negative one would make it closer to polynomial-time
algorithms, for which the answer is likely to be negative [12].

Acknowledgement

The authors thank Victor Poupet for his help on the proof of Lemma 4.3.

References

[

[10]
[11]

[12]

[13]

[14]

J. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown automata. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 1, Word, Language, Grammar, pages
111-174. Springer-Verlag, 1997.

J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension. Theoretical Computer
Science, 310:1-33, 2004.

D. Doty and J. Nichols. Pushdown dimension. Theoretical Computer Science, 381(1-3):105-123, 2007.

S. Ginsburg and G. F. Rose. Preservation of languages by transducers. Information and Control, 9(2):153—
176, 1966.

S. Ginsburg and G. F. Rose. A note on preservation of languages by transducers. Information and Control,
12(5/6):549-552, 1968.

S. Hariharan and P. Shankar. Evaluating the role of context in syntax directed compression of xml docu-
ments. In Proceedings of the 2006 IEEE Data Compression Conference (DCC 2006), page 453, 2006.

J. M. Hitchcock. Effective Fractal Dimension: Foundations and Applications. PhD thesis, lowa State
University, 2003.

J. I. Lathrop and M. J. Strauss. A universal upper bound on the performance of the Lempel-Ziv algorithm
on maliciously-constructed data. In B. Carpentieri, editor, Compression and Complexity of Sequences ’97,
pages 123-135. IEEE Computer Society Press, 1998.

C. League and K. Eng. Type-based compression of xml data. In Proceedings of the 2007 IEEE Data
Compression Conference (DCC 2007), pages 272282, 2007.

A. Lempel and J. Ziv. Compression of individual sequences via variable rate coding. IEEE Transaction
on Information Theory, 24:530-536, 1978.

H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1997.

M. Lépez-Valdés and E. Mayordomo. Dimension is compression. In Proceedings of the 30th International
Symposium on Mathematical Foundations of Computer Science, volume 3618 of Lecture Notes in Computer
Science, pages 676—-685. Springer-Verlag, 2005.

E. Mayordomo. Effective fractal dimension in algorithmic information theory. In New Computational
Paradigms: Changing Conceptions of What is Computable, pages 259-285. Springer-Verlag, 2008.

D. Sculley and C. E. Brodley. Compression and machine learning: A new perspective on feature space
vectors. In Proceedings of the Data Compression Conference (DCC-2006), pages 332-341, 2006.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 49-60
www.stacs-conf.org

QUANTUM SEARCH WITH VARIABLE TIMES

ANDRIS AMBAINIS !

! Department of Computer Science, University of Latvia
Raina bulv. 19, Riga, LV-1586, Latvia
E-mail address: andris.ambainis@lu.lv

ABSTRACT. Since Grover’s seminal work, quantum search has been studied in great detail.
In the usual search problem, we have a collection of n items x1,...,z, and we would like
to find 7 : x; = 1. We consider a new variant of this problem in which evaluating x; for
different ¢ may take a different number of time steps.

Let t; be the number of time steps required to evaluate x;. If the numbers t; are known
in advance, we give an algorithm that solves the problem in O(y/t3 +t2 + ...+ {2) steps.
This is optimal, as we also show a matching lower bound. The case, when ¢; are not known
in advance, can be solved with a polylogarithmic overhead. We also give an application of
our new search algorithm to computing read-once functions.

1. Introduction

Grover’s quantum search algorithm [12] is one of two most important quantum algo-
rithms. It allows to search a collection of n items in O(y/n) quantum steps. This gives a
quadratic speedup over the exhaustive search for a variety of search problems [3].

An implicit assumption is that any two items can be examined in the same number
of time steps. This is not necessarily true when Grover’s algorithm is applied to a specific
search problem. It might be the case that some possible solutions to the search problem
can be checked faster than others.

Let t; be the number of time steps required to check the i*" solution. Classically,
searching for an item ¢ : z; = 1 requires time ©(t1+...41%,). A naive application of Grover’s
search would use O(y/n) steps, with the maximum possible query time ¢,,,, = max;t; in
each step. This gives a O(y/ntpq,) time quantum algorithm.

In this paper, we give a better quantum algorithm. We consider two settings:

(1) The times t; are known in advance and can be used to design the algorithm;
(2) The times t; are not known in advance. The algorithm learns ¢; only if it runs the
computation for checking the i*h item for ¢; (or more) steps.

ASPECTS
7 / OF COMPUTER . o
SCIENCE © Andris Ambainis
@0 Creative Commons Attribution-NoDerivs License

L SYMPOSIUM
ﬂVIL ON THEORETICAL
<4

50 ANDRIS AMBAINIS

For the first setting, we give a quantum algorithm that searches in time O(+/T) where
T =12 +...+t2. For the second, more general setting, we give an O(\/Tlog2 T log? log T)
time quantum algorithm. We show a lower bound of Q(v/T) for the first and, hence, also
the second setting.

To illustrate the usefulness of our search algorithm, we show an application to com-
puting read-once Boolean functions. A Boolean formula (consisting of AND, OR and NOT
operations) f(z1,...,xy) is read-once if each of the variables x1,...,xy appears at most
once in f. We show that any read-once Boolean formula of depth d can be computed using
O(V'N log?~ ! N) queries. The resulting algorithm is weaker than the recent breakthrough
work of [4, 11] but is also much simpler than the algorithms in [4, 11].

This is the first paper to construct quantum algorithms for a model in which queries to
different x; take different time. A similar model, however, has been studied in the context
of quantum lower bounds by Hgyer et al. [14].

Some of the proofs are omitted due to the space constraints. A full version of the paper
is available as arXiv preprint quant-ph/0609168.

2. Model

We would like to model the situation when the variable z; is computed by an algorithm
A; which is initialized in the state |0) and, after ¢; steps, outputs the final state |x;)|1);) for
some unknown [¢;). (For simplicity, we assume that A; always outputs the correct z;.) In
the first t; — 1 steps, A; can be in arbitrary intermediate states.

Our goal is to find 7 : z; = 1. (We sometimes refer to ¢ : x; = 1 as marked items
and 7 : ©; = 0 as unmarked.) Our procedure A can run the algorithms A;, for some
number of steps t, with A; outputting x; if ¢; < t or “the computation is not complete” if
t; > t. The computational cost is the amount of time that is spent running algorithms A;.
Any transformations that do not involve A; are free. This is a generalization of the usual
quantum query model.

For completeness, we include a more formal definition of our model in the appendix
A. Our algorithms, however, can be understood with just the informal description in the
previous two paragraphs.

Known vs. unknown times. We consider two variants of this model. In the “known

times” model, the times ti,...,t, are known in advance and can be used to design the
algorithm. In the “unknown times” model, t1,...,t, are unknown to the designer of the
algorithm.

3. Methods and subroutines

3.1. Amplitude amplification

Amplitude amplification [8] is a generalization of Grover’s quantum search algorithm.

Let
sin a|1)[1)1) + cos a|0)|1g) (3.1)
be the final state of a quantum algorithm A that outputs 1 with probability sin? o = 4.
We would like to increase the probability of the algorithm outputting 1. Brassard et al. [8]

QUANTUM SEARCH WITH VARIABLE TIMES 51

showed that, by repeating A and A~! 2m 4+ 1 times, it is possible to generate the final state
sin(2m + 1)a|1)|¢1) + cos(2m + 1)a|0)|2bo). (3.2)
In particular, taking m = O(%) achieves a constant probability of answer 1.

We use a result by Aaronson and Ambainis [1] who gave a tighter analysis of the same
algorithm:

Lemma 3.1. [1] Let A be a quantum algorithm that outputs a correct answer and a witness
with probability' § < e where € is known. Furthermore, let

m 1
< 3.3
~ 4arcsin/e 2 (3:3)
Then, there is an algorithm A’ which uses 2m + 1 calls to A and A~ and outputs a correct
answer and a witness with probability

5new Z <1 -

m

Mé) (2m + 1)26. (3.4)

The distinction between this lemma and the standard amplitude amplification is as
follows. The standard amplitude amplification increases the probability from 6 to Q(1)
in2m+1 = O(%) repetitions. In other words, 2m + 1 repetitions increase the success

probability Q((2m +1)2) times. Lemma 3.1 achieves an increase of almost (2m + 1) times,
without the big-§2 factor. This is useful if we have an algorithm with & levels of amplitude
amplification nested one inside another. Then, with the usual amplitude amplification, a
big-Q constant of ¢ would result in a c¢* factor in the running time. Using Lemma 3.1 avoids
that.

We also need another fact about amplitude amplification.

Claim 3.2. Let § and &' be such that § < € and ' < € and let m satisfy the constraint (3.3).
Let p(0) be the success probability obtained by applying the procedure of Lemma 3.1 to an
algorithm with success probability 6. If 6" < & < ¢d' for ¢ > 1, then p(d') < p(d) < ep(d).

Proof. Omitted. [

3.2. Amplitude estimation
The second result that we use is a version of quantum amplitude estimation.

Theorem 3.3. [8] There is a procedure Est-Amp (A, M) which, given a quantum algorithm
A and a number M, outputs an estimate € of the probability € that A outputs 1 and, with
probability at least %, we have

. Vmax(e(1 —€),é(1—¢€) n2
—€ <2 — .
le— €l <27 T + 12

The algorithm uses M evaluations of A.

We are interested in a slightly different type of error bound. We would like to have
le — €] < c€ for some small ¢ > 0.

1[1] requires the probability to be exactly € but the proof works without changes if the probability is less
than the given e.

52 ANDRIS AMBAINIS

Theorem 3.4. There is a procedure Estimate(A, ¢, p, k) which, given a constant ¢, 0 <
¢ <1 and a quantum algorithm A (with the promise that the probability € that the algorithm
A outputs 1 is either 0 or at least a given value p) outputs an estimate € of the probability

€ such that, with probability at least 1 — 2%, we have

(i) e —¢€f <céife>p;
(il) €=0 if e =0.
The procedure Estimate(A, ¢, p, k) uses the expected number of

© (kz <1 + log log 1) ¥>
p) \ max(e,p)

Proof. Omitted. [

evaluations of A.

4. Search algorithm: known running times

Theorem 4.1. A collection of n items with times t1,...,t, can be searched in time

O<\/t§+t§+...+tg>.

Proof. The basic idea is to subdivide the items into groups so that all items in one group
have similar times ¢; (e.g. tmz‘”' < t; < tinag for some t,,4,). We can perform the standard

Grover search in a group in time s = O(\/Ztmaw) where [is the size of the group. We then

observe that
s =0(t%,,) =0 (Z t?) ,

with the summation over all items ¢ in the same group. By summing over all groups, we

get
Z s? =0 <Z t?) ,
J i=1

where j on the left ranges over all groups. Let k£ be the number of the groups that we have.
If we have a search algorithm that searches k items in time

O<\/s%+...+si>,

we can then substitute the algorithms for searching the k groups instead of the k items and
obtain a search algorithm for n items that runs in time

O(t%+...+t%>.

We then design a search algorithm for k items in a similar way.
The simplest implementation of this strategy gives an algorithm with log* n levels of
recursion and running time

0] (clog*”\/t% + 13 +...+t%) :

QUANTUM SEARCH WITH VARIABLE TIMES 53

due to the reduction from n items to k items losing a constant factor every time it is used.
The ¢°2" " factor can be avoided, by a more sophisticated implementation of the same idea,
which we describe below.

We first restrict to the case when there is exactly one marked item. The general case
can be reduced to this case with a constant factor overhead, by running the algorithm on all
n elements, a random set of &, a random set of %, etc. As shown in [1], there is a constant
probability that at least one of those sets contains exactly one marked item. The expected
running time increases by at most a constant factor, because of the following lemma.

Lemma 4.2. Let S be a uniformly random set of 5> elements of {1,2,...,n}. Then,

1
2 2
E| > #]< 7 >t
€S ie{l,...,n}

Proof. By concavity of the square root function,

1
E /iezstf < EZt?]—W o

€S ie{l,...,n}
Therefore, the reduction from the general case to one marked item case increases the
bound on the number of queries by a factor of at most

IR I
ﬂ - ... — L .
21/ 2 1 7
Second, we introduce a generalization of the problem in which the algorithm A; for the
marked ¢ returns the correct answer with a probability at least p;, instead of a certainty.

More formally,

o if x; = 0, the final state of the algorithm A; is of the form |0)|¢y).
e if ; = 1, the final state of the algorithm A; is of the form «a|1)]11)+v1 — ?|0)]),
where p; < |a|? < d - p;, for some constant d > 1.

The probabilities p1,...,p, and the constant d are known to us when we design the algo-

rithm, just as the times t¢1,...,t,. (Knowing both the success probability and the running

time may look quite artificial. However, we only use the ”known success probability” model

to design an algorithm for the case when all A; return the correct answer with certainty.)
We claim that, in this case, we can search in time

2 2 12
OlyL+2+...+2
D1 D2 Pn

Our main theorem now follows as the particular case p; = ... = p, = 1. The main part of
our proof is

Lemma 4.3. There exists k = O(log® nloglogn) with the following property. Assume that
there is a search algorithm for k items with some fixed d > 1 that works in time at most

2 2 2
S S S
Cy/2L+2+.. +E
a1 42 dk

54 ANDRIS AMBAINIS

for any given times s1, ..., S and probabilities q1,...,qr. Then, there exists a search algo-
rithm for n items with d’' = (1 -0 (loén)) d instead of d that works in time at most
1 2 t2 t2
C<1+O()) Ly 24 4+
logn p1 o P2 Pn
for any given times tq,...,t, and probabilities p1,...,pp.

Proof. Omitted.
]

To obtain Theorem 4.1, we repeatedly apply Lemma 4.3 until the number of items
becomes less than some constant ng. That happens after O(log* n) applications of Lemma
4.3.

Let t1,...,t, and pq, ..., p, be the times and probabilities for the final n < ng items.
After that, we just amplify the success probability of every item to (1) (which increases

2
each ;7? by at most a constant factor, as discussed in the proof of Lemma 4.3). We then
search n items in time O(y/n max; t;), using the amplitude amplification, with max; t; steps
for evaluating any of the items i. Since p; = (1) and n < ny where ng is a constant, we

have

t? t2
\/ﬁmath-:O(maxti):O< t%—l—...+t%>=0 p—l—l—...+p—"
1 n

O(log* n) applications of Lemma 4.3 increase the time by a factor of at most (14+0(—))"°8" ™ =

logn
1+o(1).]

5. Application: read-once functions

A Boolean function f(x1,...,zy) that depends on all variables x1,...,zy is read-once
if it has a Boolean formula (consisting of ANDs, ORs and NOTSs) in which every variable
appears exactly once. A read-once function can be represented by a tree in which every leaf
contains x; or NOT z; and every internal vertex contains AND or OR.

Barnum and Saks [5] have shown that, for any read-once f, Q(+/N) queries are nec-
essary to compute f in the quantum query model. Hoyer, Mosca and de Wolf [13] have
constructed a O(v/N) query quantum algorithm for balanced AND-OR trees of constant
depth (improving over an earlier O(v/N log?~! N) query algorithm by [10]). In a very re-
cent breakthrough work, [11, 4] showed how to evaluate any AND-OR tree of depth d in
O(V/Nd) queries.

A simple application of our result from the previous section gives a quantum algorithm
for evaluating depth-d AND-OR trees. The algorithm is weaker than the one in [11, 4] but
is also much simpler.

Theorem 5.1. Any read-once function f(x1,...,xn) of depth d can be computed by a
quantum algorithm that uses O(v/N log?~t N) queries.

Proof. We use induction. If f is represented by a depth-d tree with OR at the root, we
express

f(zlv cee 733N) = v?:lfi(xt1+...+tif1+la s ’l‘t1+---+ti)'

QUANTUM SEARCH WITH VARIABLE TIMES 55

(1) Set j = 1. Define B; as the algorithm that just outputs 1 and a uniformly random
ie{l,...,n}.
(2) Repeat:

(a) Use the algorithm B; to generate k = 2log(D(j + 1)) samples i1, ... 4 of
uniformly random elements i € S;. Run 2J+1 steps of the query procedure on
each of i1,...,4,. If z; = 1 for one of samples, output ¢ and stop.

(b) Let B;- 41 be an algorithm that runs B; once and, if the output bit is 1, takes

the output index i and runs 271! steps of the checking procedure on i. If the
result is x; = 0, B;. outputs 0. Otherwise, it outputs 1 and the same index .

(c) Let p = Estimate(B], |, ¢, +,2log(D(j+1))). If p= 0, output “noi:z; = 0.
(d) If p > gz let Bjy1 be Bjy.

(e) If p < @, let Bji1 be the algorithm obtained by amplifying B;H 2m + 1

times, where m is the smallest number for which m <(@2m+1)%p < @.

(Such choice of m always exists, as described in the proof of Lemma 4.3.)
(f) Let j =7+ 1.

Algorithm 1: Search algorithm for unknown tq,...,t,

By inductive assumption, we construct algorithms computing the functions f; in O(y/¢; logd=2 N)
queries. We then combine them into a quantum algorithm computing f by applying Theo-
rem 4.1.

A more detailed proof is given in the arXiv version of the paper. m

6. Search algorithm: unknown running times

In some applications, it may be the case that the times ¢; are not known in advance.
We can also solve this case, with a polylogarithmic overhead.

Theorem 6.1. Let € > 0. There is an algorithm that searches collection of n items with
unknown times tq,...,t, and, with probability at least 1 — €, stops after

0] (T log? T'log? log T)
steps, where T = \/t2 + 13 + ... +12.

Proof. Again, we assume that there is exactly one marked item. (The reduction from the
general case to the one marked item case is similar to one in the proof of Theorem 4.1.)
Let S; be the set of items such that z; = 1 or #; > 2! and let n; = |[S;|. Our main
procedure, algorithm 1, defines a sequence of algorithms By, ..., B;. The algorithm B;, with
some success probability, outputs a bit 1 and, conditional on output bit 1, it also outputs a
uniformly random index ¢ € S;. To avoid the problem with accumulating constant factors
(described after Lemma 3.1), we make the success probability of B; slightly less than 1.

Lemma 6.2. Assume that the constant D in steps 2a and 2c¢ satisfies D < \/% Then,
with probability 1 — €, the following conditions are satisfied:

(a) Estimates p are accurate within an multiplicative factor of (14 c);
(b) If Bj is defined, then t; > 29~ for at least "5+ values i € {1,...,n}.

56 ANDRIS AMBAINIS

Proof. (a) The probability of error for Estimate is at most 3 i By summing over all

1
J+1*
j, the probability of error for some j is at most

1 ifi 117
D& D26’

T

which can be made less than § by choosing D < Ner

(b) By definition, S;_1 is the set of all i with the property that either z; = 1 or t; > 2771
Let S be the set of i with z; = 1 and ¢; < 2771 If [S| < 2n;_1, (c) is true. Otherwise, the
probability that each i; generated in step 2a does not belong to S is less than % If one of
them belongs to S, algorithm 1 stops without defining B;. The probability that this does

not happen (i.e., all i; do not belong to S) is less than (1) = W. We can make this

probability arbitrarily small similarly to part (a). n

For the rest of the proof, we assume that both conditions of Lemma 6.2 are true. Under
this assumption, we bound the running time of algorithm 1. The first step is to bound the
running time of the algorithms B;.

Lemma 6.3. The running time of B; is

2443+ ...+ 12
O(j\/logn\/ iRl i ”)
nj

Proof. Omitted.
]

We now bound the overall running time. To generate a sample from S;, one needs

O(v/log n) invocations of B; (because the success probability of B; is of the order Q(loén)).

Therefore, we need O(y/lognlog j) invocations to generate O(log j) samples in step 2a. By
Lemma 6.3, that can be done in time

B2+t2+. 412
O(jlogjlogn\/1—’_2+ +">.
nj

For each of those samples, we run the checking procedure with 27*! steps. That takes at
most twice the time required by B; (because B; includes the checking procedure with 27
steps). Therefore, the time for the 27! checking procedure is of the same order or less than
the time to generate the samples.

Second, the success probability estimated in step 2c is of order 2 J:Z_“ = Q(n?iggln) By

Theorem 3.4, it can be estimated with
i1
0] (logj loglogn w)
j+1
invocations of Bj, each of which runs in time described by Lemma 6.3.
Thus, the overall number of steps in one loop of algorithm 1 is of order at most

log j1 1og jlog n log]
¢ﬁ+%+nfmicCg“%n+]%j%”og%”>
VI V11

QUANTUM SEARCH WITH VARIABLE TIMES 57

Since n; > 1 and njy1 > 1, this is of order

O (\/t% + 3 +...+t%jlogjlognloglogn> .

Let ¢4, be the maximum of ¢4, .. ., t,,. Then, the maximum value of j is at most [log(t,maz+
1)]. Therefore, the number of steps used by the algorithm 1 is

@) <\/t% + 13+ ... + t2 log nloglog n10g t,q. log logtmm) .

The theorem now follows from n < VT and t,e, < T, where T = t% + t% +... .+ tfl. n

7. Search lower bound

Theorem 7.1. For any positive integersty, ..., t,, searching a collection of n items that can
be checked in times tq,...,t, requires time c\/t% + 15+ ...+ 12, for some constant ¢ > 0.

Proof. Let t; be the minimum positive integer such that t; < [Z./#/]+1 (with ; = 1 if there
is no positive integer satisfying this inequality). We consider searching m =t} + ... + ¢},
elements x1,...,2,;, € {0,1} in the standard model (where every query takes 1 step), with
the promise that there is either 0 or 1 element j : x; = 1. By lower bound on quantum
search, ¢y/m queries are required to distinguish between the case when there are 0 elements
J:x; =1 and the case when there is 1 element j : z; = 1, for some constant ¢’.

We subdivide the inputs x1,...,Z,, into n groups Si, ..., Sy, with ¢},... ¢, elements,
respectively. Let y; = 1 if there exists j € S; with x; = 1. Since there is either 0 or 1
element j : z; = 1, we know that there is either 0 or 1 element ¢ : y; = 1. We have

Lemma 7.2. There is an algorithm that implements the transformation |i) — |i)|y;)|1s)
for some states |1;), using t; queries.

Proof. Omitted.

[

Let A be a search algorithm for search among n items that require times t4,...,t, and
let ¢’ be the number of steps used by A. Then, we can substitute the algorithm of Lemma
7.2 instead of the queries y;. Then, we obtain an algorithm A’ that, given z1,...,z,, asks

t' queries and distinguishes whether there is exactly 1 item i : y; = 1 (and, hence, 1 item
J :x; = 1) or there is no items ¢ : y; = 0 (and, hence, no items j : z; = 1). Hence,

t'>cdVm=d\t)+...+t,.

We now bound ¢} in terms of ¢;. By definition of ¢}, we have

7T T
ti < h\/;;1+1<1\/t7g+2.

This means that ¢; > 13(t; — 2)%. If t; > 3, then t; — 2 > % and ¢} > 2%¢?. If t; < 3, then
th>1> %t?. Therefore,

16 4c
t’2c’\/t’l—l—...—i—t;Zc’\/w(t%—l—...—t—t%):% 24 12,

4c
3

This means that the theorem is true, with ¢ =

58 ANDRIS AMBAINIS

8. Conclusion

In this paper, we gave a quantum algorithm for the generalization of Grover’s search in
which checking different items requires different times. Our algorithm is optimal for the case
when times ¢; are known in advance and nearly optimal (within a polylogarithmic factor)
for the general case. We also gave an application of our algorithm to computing read-once
Boolean functions. It is likely that our algorithms will find other applications.

While we have mostly resolved the complexity of search in this setting, the complexity
of other problems have not been studied at all. Of particular interest are problems which
are frequently used as a subroutines in other quantum algorithms (for such problems, there
is a higher chance that the variable-time query version will be useful). Besides the usual
quantum search, the two most common quantum subroutines are quantum counting [9] and
Ek-item search (a version of search in which one has to find k different i for which z; = 1).
Element distinctness [2, 6] has also been used as a subroutine, to design quantum algorithms
for the triangle problem [16] and verifying matrix identities [7, 15].

Acknowledgements

I would like to thank Robert Spalek and Ronald de Wolf for the discussion that lead
to this paper and several anonymous referees for their useful comments. Most of this work
done at University of Waterloo, supported by NSERC, ARO, MITACS, ARO and IQC
University Professorship.

Currently, my research is supported by University of Latvia Research Grant Y2-ZP01-
100.

References

[1] S. Aaronson, A. Ambainis, Quantum search of spatial regions. Theory of Computing, 1:47-79, 2005.
Also quant-ph/0303041.

[2] A. Ambainis. Quantum walk algorithm for element distinctness. Proceedings of FOCS’04, pp. 22-31.
Also quant-ph/0311001.

[3] A. Ambainis. Quantum search algorithms. SIGACT News, 35 (2004):22-35. Also quant-ph/0504012.

[4] A. Ambainis, A. Childs, B. Reichardt, R. Spalek, S. Zhang. Any AND-OR formula of size N can be
evaluated in time N'/2°()) on a quantum computer. Proceedings of FOCS’07, to appear.

[5] H. Barnum, M. Saks, A lower bound on the quantum complexity of read once functions. Journal of
Computer and System Sciences, 69:244-258, 2004.

[6] H. Buhrman, C. Durr, M. Heiligman, P. Hoyer, F. Magniez, M. Santha, R. de Wolf. Quantum algorithms
for element distinctness. SIAM Journal on Computing, 34(6): 1324-1330, 2005. Also quant-ph/0007016.

[7] H. Buhrman, R. Spalek: Quantum verification of matrix products. Proceedings of SODA 06, pp. 880-889.
Also quant-ph/0409035.

[8] G. Brassard, P. Hgyer, M. Mosca, A. Tapp. Quantum amplitude amplification and estimation. In
Quantum Computation and Quantum Information Science, AMS Contemporary Mathematics Series,
305:53-74, 2002. Also quant-ph/0005055.

[9] G. Brassard, P. Hgyer, A. Tapp. Quantum counting. Proceedings of ICALP’98, pp. 820-831, quant-
ph/9805082.

[10] H. Buhrman, R. Cleve, A. Wigderson, Quantum vs. classical communication and computation. Pro-
ceedings of STOC 98, pages 63-68, quant-ph/9702040.

[11] E. Farhi, J. Goldstone, S. Gutman, A Quantum Algorithm for the Hamiltonian NAND Tree. quant-
ph/0702144.

[12] L. Grover. A fast quantum mechanical algorithm for database search. Proceedings of STOC 96, pp.
212-219.

QUANTUM SEARCH WITH VARIABLE TIMES 59

[13] P. Hgyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error inputs. Proceedings of
ICALP’03, Lecture Notes in Computer Science, 2719:291-299. Also quant-ph/0304052

[14] P. Hgyer, T. Lee, R. Spalek. Tight adversary bounds for composite functions, quant-ph/0509067.

[15] F. Magniez, A. Nayak. Quantum complexity of testing group commutativity. Algorithmica, 48(3): 221-
232, 2007. Also ICALP’05 and quant-ph/0506265.

[16] F. Magniez, M. Santha, M. Szegedy. Quantum algorithms for the triangle problem. SIAM Journal on
Computing, 37(2): 413-424, 2007. Also SODA’05 and quant-ph/0310134.

Appendix A. Formal definition of our model

To define our model formally, let Az(j) be the 4™ step of A;. Then,
Ay = AP 4B A0

)

We define Agt) = [for t > t;. We regard the state space of A; as consisting of two registers,
one of which stores the answer (¢ € {0,1,2}, with 2 representing a computation that has
not been completed) and the other register, z, stores any other information.

The state space of a search algorithm is spanned by basis states of the form |i,¢,¢,, ¢, x, z)
where i € {1,...,n}, t,t, € {0,1,...,T} (with T being the number of the query steps in
the algorithm), ¢ € {0,1,2} and x and z range over arbitrary finite sets. i represents the
index being queried, t represents the number of the time step in which the query for x;
started and ¢, is the number of time steps for which A will run the query algorithm A;. ¢
is the output register of A; and z holds intermediate data of A;. Both of those registers
should be initialized to |0) at the beginning of every computation of a new x;. z contains
any data that is not a part of the current query.

We define a quantum query algorithm A as a tuple (U, ...,Ur) of unitary transfor-
mations that do not depend on z1,...,z,. The actual sequence of transformations that is
applied is

Uo, Q1,U1,Q2,...,Ur—1,Qr, Ur,
where ; are queries which are defined below. This sequence of transformations is applied
to a fixed starting state |1sr¢), which consists of basis states |7,0,0, ¢, z, 2).

Queries @); are defined in a following way. If j < ¢t +t,, we apply Al(-j I to |c) and
|x) registers. Otherwise, we apply I. We call the resulting sequence of queries Q1, Qa, ...
generated by transformations Ag . We call)1, Q2 a valid sequence of queries corresponding
to x1,...,x, if it is generated by Ag satisfying the following constraints:

(1) For t < t;, ALAL"1 ... A}|0) is of the form [2)[¢)) for some [¢)).

(2) For t =t;, ALAL"1 ... A}|0) is of the form |a;) 1) for some [¢)).

U; can be arbitrary transformations that do not depend on x1,...,zy,.
An algorithm (U, ..., Ur) with the starting state |1 4qr¢) computes a function f(x1,...,x,)
if, for every x1,...,z, € {0,1} and every valid query sequence @1, ..., Qr corresponding

to x1,..., Ty, the probability of obtaining f(x1,...,z,) when measuring the first qubit of

UrQrUr—1 ... U1QrUs|¥start)
is at least 2/3.

60

ANDRIS AMBAINIS

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 61-72
www.stacs-conf.org

STRUCTURAL ASPECTS OF TILINGS

ALEXIS BALLIER, BRUNO DURAND, AND EMMANUEL JEANDEL

Laboratoire d’informatique fondamentale de Marseille (LIF) Aix-Marseille Université, CNRS
39 rue Joliot-Curie, 13453 Marseille Cedex 13, France

E-mail address: alexis.ballier@lif.univ-mrs.fr

E-mail address: bruno.durand@lif.univ-mrs.fr

E-mail address: emmanuel.jeandel@lif.univ-mrs.fr

ABSTRACT. In this paper, we study the structure of the set of tilings produced by any
given tile-set. For better understanding this structure, we address the set of finite patterns
that each tiling contains.

This set of patterns can be analyzed in two different contexts: the first one is combi-
natorial and the other topological. These two approaches have independent merits and,
once combined, provide somehow surprising results.

The particular case where the set of produced tilings is countable is deeply investigated
while we prove that the uncountable case may have a completely different structure.

We introduce a pattern preorder and also make use of Cantor-Bendixson rank. Our
first main result is that a tile-set that produces only periodic tilings produces only a finite
number of them. Our second main result exhibits a tiling with exactly one vector of
periodicity in the countable case.

1. Introduction

Tilings are basic models for geometric phenomena of computation: local constraints
they formalize have been of broad interest in the community since they capture geometric
aspects of computation [15, 1, 9, 13, 6]. This phenomenon was discovered in the sixties
when tiling problems happened to be crucial in logic: more specifically, interest shown in
tilings drastically increased when Berger proved the undecidability of the so-called domino
problem [1] (see also [8] and the well known book [2] for logical aspects). Later, tilings were
basic tools for complexity theory (see the nice review of Peter van Emde Boas [16] and some
of Leonid Levin’s paper such as [12]).

Because of growing interest for this very simple model, several research tracks were
aimed directly on tilings: some people tried to generate the most complex tilings with the
most simple constraints (see [15, 9, 13, 6]), while others were most interested in structural
aspects (see [14, 5]).

In this paper we are interested in structural properties of tilings. We choose to focus
on finite patterns tilings contain and thus introduce a natural preorder on tilings: a tiling

1998 ACM Subject Classification: G.2.m.
Key words and phrases: tiling, domino, patterns, tiling preorder, tiling structure.

S SClEnct © A. Ballier, B. Durand, and E. Jeandel
) ©® Creative Commons Attribution-NoDerivs License

62 A. BALLIER, B. DURAND, AND E. JEANDEL

is extracted from another one if all finite patterns that appear in the first one also appear
in the latter. We develop this combinatorial notion in Section 2.1. This approach can be
expressed in terms of topology (subshifts of finite type) and we shall explain the relations
between both these approaches in Section 2.2.

It is important to stress that both these combinatorial and topological approaches have
independent merits. Among the results we present, different approaches are indeed used
for proofs. More specifically, our first main result (Theorem 3.8) states that if a tile-set
produces only periodic tilings then it produces only finitely many of them; despite its
apparent simplicity, we did not find any proof of Theorem 3.8 in the literature. Our other
main result (Theorem 3.11) which states that in the countable case a tiling with exactly
one vector of periodicity exists is proved with a strong help of topology.

Our paper is organized as follows: Section 2 is devoted to definitions (combinatorics,
topology) and basic structural remarks. In Section 3 we prove the existence of minimal and
maximal elements in tilings enforced by a tile-set. Then we present an analysis in terms
of Cantor-Bendixson derivative which provides powerful tools. We study the particular
case where tilings are countable and present our main results. We conclude by some open
problems.

2. Definitions

2.1. Tilings

We present notations and definitions for tilings since several models are used in liter-
ature: Wang tiles, geometric frames of rational coordinates, local constraints. .. All these
models are equivalent for our purposes since we consider very generic properties of them
(see [3] for more details and proofs). We focus our study on tilings of the plane although
our results hold in higher dimensions.

In our definition of tilings, we first associate a state to each cell of the plane. Then we
impose a local constraint on them. More formally, @ is a finite set, called the set of states.
A configuration c consists of cells of the plane with states, thus ¢ is an element of Qz2. We
denote by ¢; j or c(i, j) the state of ¢ at the cell (4, j).

A tiling is a configuration which satisfies a given finite set of finite constraints ev-
erywhere. More specifically we express these constraints as a set of allowed patterns: a
configuration is a tiling if around any of its cells we can see one of the allowed patterns:

Definition 2.1 (patterns). A pattern P is a finite restriction of a configuration i.e., an
element of Q" for some finite domain V of Z2. A pattern appears in a configuration c (resp.
in some other pattern P’) if it can be found somewhere in ¢ (resp. in P’); i.e., if there exists
a vector t € Z? such that c¢(x +t) = P(x) on the domain of P (resp. if P'(z + t) is defined
for z € V and P'(z +t) = P(2)) .

By language extension we say that a pattern is absent or omitted in a configuration if
it does not appear in it.

Definition 2.2 (tile-sets and tilings). A tile-set is a tuple 7 = (Q, P,) where P is a finite
set of patterns on (. All the elements of P, are supposed to be defined on the same domain
denoted by V (P, C QV).

STRUCTURAL ASPECTS OF TILINGS 63

A tiling by T is a configuration ¢ equal to one of the patterns on all cells:
Yz € Z2, ¢y ye € Py
We denote by 7 the set of tilings by 7.

Notice that in the definition of one tile-set we can allow patterns of different definition
domains provided that there are a finite number of them.

An example of a tile-set defined by its allowed patterns is given in Fig. 1. The produced
tilings are given in Fig. 2; the meaning of the edges in the graph will be explained later;
tilings are represented modulo shift. In A; and B;, 4 is an integer that represents the size
of the white stripe.

Bl N BN e
(1] N .

R0 ml

Figure 1: Allowed patterns

€ e

An edge represents a relation @Q < P if P is above Q. Transitivity edges are not depicted. As an example K < E
and K < C.

Figure 2: Hasse diagram of the order < with the tile-set defined in Fig. 1

Throughout the following, it will be more convenient for us to define tile-sets by the set
of their forbidden patterns: a tile-set is then given by a finite set F, of forbidden patterns
(Fr = QY \ P,); a configuration is a tiling if no forbidden pattern appears.

Let us now introduce the following natural preorder, which will play a central role in
our paper:

Definition 2.3 (Preorder). Let x,y be two tilings, we say that < y if any pattern that
appears in z also appears in y.

64 A. BALLIER, B. DURAND, AND E. JEANDEL

We say that two tilings x,y are equivalent if x < y and y < . We denote this relation
by « ~ y. In this case, x and y contain the same patterns. The equivalence class of z is
denoted by (x). We write x <y if z <y and x % y.

Some structural properties of tilings can be seen with the help of this preorder. The
Hasse diagram in Fig. 2 correspond to the relation <.

We choose to distinguish two types of tilings: A tiling x is of type a if any pattern
that appears in x appears infinitely many times; x is of type b if there exists a pattern that
appears only once in x. Note that any tiling is either of type a or of type b: suppose that
there is a pattern that appears only a finite number of times in x; then the pattern which
is the union of those patterns appears only once.

If x is of type b, then the only tilings equivalent to x are its shifted: there is a unique
way in (x) to grow around the unique pattern.

2.2. Topology

In the domain of symbolic dynamics, topology provides both interesting results and
is also a nice condensed way to express some combinatorial proofs [10, 7]. The benefit
of topology is a little more surprising for tilings since they are essentially static objects.
Nevertheless, we can get nice results with topology as will be seen in the sequel.

We see the space of configurations QZ2 as a metric space in the following way: the
distance between two configurations ¢ and ¢’ is 27¢ where i is the minimal offset (for e.g.
the euclidean norm) of a point where ¢ and ¢’ differ:

d(c,c) = o—min{[i|, c(i)#c (9)}

We could also endow @) with the discrete topology and then QZ2 with the product topology,
thus obtaining the same topology as the one induced by d.

In this topology, a basis of open sets is given through the patterns: for each pattern P,
the set Op of all configurations ¢ which contains P in their center (i.e., such that ¢ is equal
to P on its domain) is an open set, usually called a cylinder. Furthermore cylinders such
defined are also closed (their complements are finite unions of Ops where P’ are patterns of
same domain different from P). Thus Op’s are clopen.

Proposition 2.4. QZ2 is a compact perfect metric space (a Cantor space).

We say that a set of configurations S is shift-invariant if any shifted version of any of
its configurations is also in S; i.e., if for every ¢ € S, and every v € Z? the configuration ¢’
defined by ¢/(z) = ¢(z 4 v) is also in S. We denote such a shift by o,.

Remark 2.5. Our definition of pattern preorder 2.3 can be reformulated in a topological
way : x = y if and only if there exists shifts (0;);en such that o;(y) —— . We say that =
1—00

can be extracted from y.

For a given configuration x, we define the topological closure of shifted forms of x:
I'(z) = {oy(z), v € Z?} where o, ; represents a shift of vector v.

We see that © < y if and only if I'(x) C I'(y). Remark that z is minimal for < if and
only if (x) is closed.

STRUCTURAL ASPECTS OF TILINGS 65

As sets of tilings can be defined by a finite number of forbidden patterns, they corre-
spond to subshifts of finite type!. In the sequel, we sometimes use arbitrary subshifts; they
correspond to a set of configurations with a potentially infinite set of forbidden patterns.

3. Main results

3.1. Basic structure

Let us first present a few structural results. First, the existence of minimal classes for
< is well known.

Theorem 3.1 (minimal elements). Every set of tilings contains a minimal class for <.

In the context of tilings, those that belong to minimal classes are often called quasiperi-
odic, while in language theory they are called uniformly recurrent or almost periodic. Those
quasiperiodic configurations admit a nice characterization: any pattern that appears in one
of them can be found in any sufficiently large pattern (placed anywhere in the configuration).

For a combinatorial proof of this theorem see [5]. Alternatively, here is a scheme of a
topological proof: consider a minimal subshift of 7, (such a subshift exists, see e.g. [14])
then every tiling in this set is in a minimal class.

An intensively studied class of tilings is the set of self-similar tilings. These tilings
indeed are minimal elements (quasiperiodic) but one can find other kinds of minimal tilings
(e.g. the nice approach of Kari and Culik in [4]).

The existence of maximal classes of tilings is not trivial and we have to prove it:

Theorem 3.2 (maximal elements). Fvery set of tilings contains a mazimal class for <.

Proof. Let us prove that any increasing chain has a least upper bound. The theorem is then
obtained by Zorn’s lemma.

Consider T; an increasing chain of tiling classes. Consider the set P of all patterns that
this chain contains. As the set of all patterns is countable, P is countable too, P = {p; }ien-

Now consider two tilings T} and 7j, any pattern that appears in T} or 1; appears in
Tinax(k,)- Thus we can construct a sequence of patterns (pl)ien such that p) contains all p;,
j <iand p;_,. Note that p] is correctly tiled by the considered tile-set.

The sequence of patterns p} grows in size. By shift invariance, we can center each p} by
superimposing an instance of p;_; found in p} over p,_;. We can conclude that this sequence
has a limit and this limit is a tiling that contains all p;, hence is an upper bound for the
chain T;. m

Note that this proof also works when the set of states @) and/or the set of forbidden
patterns F. are countably infinite (neither compactness nor finiteness is assumed). However
it is easy to construct examples where @ is infinite and there does not exist a minimal tiling.

Note that we actually prove that every chain has not only a upper bound, but also a
least upper bound. Such a result does not hold for lower bound: We can easily build chains
with lower bounds but no greatest lower bound.

1Subshifts are closed shift-invariant subsets of QZ2

66 A. BALLIER, B. DURAND, AND E. JEANDEL

3.2. Cantor-Bendixson

In this section we use the topological derivative and define Cantor-Bendixson rank; then
we discuss properties of sets of tilings from this viewpoint. Most of the results presented in
this section are direct translations of well known results in topology [11].

A configuration c¢ is said to be isolated in a set of configurations S if there exists
a pattern P (of domain V') such that ¢ is the only configuration in S that contains the
pattern P in its center (Vx € V,c(x) = P(x)). We say that P isolates c. This corresponds
to the topological notion: a point is isolated if there exists an open set that contains only
this point. As an example, in Fig. 3, the tilings A; are isolated, the pattern isolating an A;
is the boundary between red, white, black and green parts of it.

The topological derivative of a set S is formed by its elements that are not isolated.
We denote it by .

If S is a set of tilings, or more generally a subshift, we get some more properties. If
P isolates a configuration in S then a shifted form of P isolates a shifted form of this
configuration. Any configuration of S that contains P is isolated.

As a consequence, if S = 7., then S’ = 7., where 7/ forbids the set
Fr U{P|P isolates some configuration in 7;}.

Note that S’ is not always a set of tilings, but remains a subshift. Let us examine the
example shown in Fig. 3. S is S minus the classes A;. However any set of tilings (subshift
of finite type) that contains C, B; and D also contains A;. Hence S’ is not of finite type in
this example.

We define inductively S®) for any ordinal \ :

e SO =g
o Sletl) — (gle)y
o SN =N,., 5@ when X is a limit ordinal.

Notice that there exists a countable ordinal A such that S**1 = SN Indeed, at each
step of the induction, the set of forbidden patterns increases, and there is at most countably
many patterns. We call the least such ordinal the Cantor-Bendizson rank of S [11].

An element ¢ is of rank X in S if X is the least ordinal such that ¢ ¢ SW. If no
such X\ exists, c is of infinite rank. For instance all strictly quasiperiodic configurations
(quasiperiodic configurations that are not periodic) are of infinite rank. We write p(x) the
rank of x.

An example of what Cantor-Bendixson ranks look like is shown in Fig. 3, the first row
contains the tilings of rank 1, the second row the ones of rank 2 etc.

Ranked tilings have many interesting properties. First of all, as any ’Z'T(’\) is shift-
invariant, a tiling has the same rank as its shifted forms.

Note that at each step of the inductive definition, the set of isolated points is at most
countable (there are less isolated points than patterns). As a consequence, if all tilings are
ranked, 7; is countable, as a countable union (the Cantor-Bendixson rank is countable) of
countable sets.

The converse is also true:

Theorem 3.3. 7, is countable if and only if all tilings are ranked.

Proof. Let A be the Cantor-Bendixson rank of 7. TT()‘) = ’TT()‘H) is a perfect set (no
points are isolated). As a consequence, TT()‘) must be either empty or uncountable (classical

STRUCTURAL ASPECTS OF TILINGS 67

D (
@& «

g K

Figure 3: Cantor-Bendixson ranks

application of Baire’s Theorem : TT()‘) is compact thus has the Baire property and a non
empty perfect set with the Baire property cannot be countable).

As 7. is countable, TT()‘) = (. n

Remark 3.4. Strictly quasiperiodic tilings only appear when the number of possible tilings
is uncountable [5]. As a consequence, if all tilings are ranked, strictly quasiperiodic tilings
do not appear, thus all minimal tilings are periodic. In this case we therefore may expect
all tilings to be somehow simple. We’ll study this case later in this paper.

As the topology of QZ2 has a basis of clopens Op, QZ2 is a 0-dimensional space, thus
any subset of QZ2 is also O-dimensional. As any (non empty) perfect O-dimensional compact
metric space is isomorphic to the Cantor Space we obtain:

Theorem 3.5 (Cardinality of tiling spaces). A set of tilings is either finite, countable or
has the cardinality of continuum.

Note that the proof of this result does not make use of the continuum hypothesis.
We now present the connection between our preorder < and the Cantor-Bendixson
rank.

Proposition 3.6. Let x and y be two ranked tilings such that x <y. Then p(z) > p(y).

Proof. By definition of <, any pattern that appears in x also appears in . As a consequence,
if P isolates z in S™), then x is the only tiling of S that contains P hence y cannot be
in SV, [

Thus tilings of Cantor-Bendixson rank 1 (minimal rank) are maximal tilings for <.
Conversely if all tilings are ranked, tilings of maximal rank exist and are minimal tilings.
These tilings are periodic, see remark 3.4.

Another consequence is that if all tilings are ranked, no infinite increasing chain for <
exists because such chain would induce an infinite decreasing chain of ordinals:

68 A. BALLIER, B. DURAND, AND E. JEANDEL

Theorem 3.7. If T, is countable, there is no infinite increasing chain for <.

3.3. The countable case

In the context of Cantor-Bendixson ranks, the case of countable tilings was revealed as
an important particular case. Let us study this case in more details.

If the number of tilings is finite, the situation is easy: any tiling is periodic. Our aim
is to prove that in the countable case, there exists a tiling ¢ which has exactly one vector
of periodicity (such a tiling is sometimes called weakly periodic in the literature).

We split the proof in three steps :

e There exists a tiling which is not minimal;
e There exists a tiling ¢ which is at level 1, that is such that all tilings less than c are
minimal;
e Such a tiling has exactly one vector of periodicity.
The first step is a result of independent interest. To prove the last two steps we use Cantor-
Bendixson ranks.
Recall that in our case any minimal tiling is periodic (no strictly quasiperiodic tiling
appears in a countable setting [5]). The first step of the proof may thus be reformulated:

Theorem 3.8. If all tilings produced by a tile-set are periodic, then there are only finitely
many of them.

It is important to note that a compactness argument is not sufficient to prove this
theorem, there is no particular reason for a converging sequence of periodic tilings with
strictly increasing period to converge towards a non periodic tiling: there indeed exist such
sequences with a periodic limit.

Proof. We are in debt to an anonymous referee who simplified our original proof.

Suppose that a tile-set produces infinitely many tilings, but only periodic ones.

As the set of tilings is infinite and compact, one of them is obtained as a limit of the
others: There exists a tiling X and a sequence X; of distinct tilings such that X; — X.

Now by assumption X is periodic of period p for some p. We may suppose that no X;
has p as a period. Denote by M the pattern which is repeated periodically.

X; — X means that X; contains in its center a square of size q(i) x ¢(i) of copies of M,
where ¢ is a growing function.

For each i, consider the largest square of X; consisting only of copies of M. Such a
largest square exists, as it is bounded by a period of X;. Let k be the size of this square.
Now, the boundary of this square contains a p x p pattern which is not M (otherwise this
is not the largest square).

By shifting X; so that this pattern is at the center, we obtain a tiling Y; which contains
a p X p pattern at the origin which is not M adjacent to a k/2 x k/2 square consisting of
copies of M in one of the four quarter planes.

By taking a suitable limit of these Y;, we will obtain a tiling which contains a p X p
pattern which is not M in its center adjacent to a quarter plane of copies of M.

Such a tiling cannot be periodic. [

STRUCTURAL ASPECTS OF TILINGS 69

This proof does not assume that the set of forbidden patterns ., is finite, therefore it
is still valid for any shift-invariant closed subset (subshift) of Q%"

Now we prove stronger results about the Cantor-Bendixson rank of 7. Let « be the
Cantor-Bendixson rank of 7;. Since (7;)(® =, o cannot be a limit ordinal: Suppose that
it is indeed a limit ordinal, therefore (;_ (7)) = () is an empty intersection of closed

sets in QZQ therefore by compactness there exists v < « such that) 5 <7(TT)(5) = () and
therefore 7. can not have rank «. Hence « is a successor ordinal, o = 5 + 1.
However, we can refine this result :

Lemma 3.9. The rank of T, cannot be the successor of a limit ordinal.

Proof. Suppose that 8 = U;j<,0;. Since (7;)P*) = 0, (7,)? is finite (otherwise it would
have a non-isolated point by compactness), it contains only periodic tilings.

Let p be the least common multiple of the periods of the tilings in (’Z'T)(m. Let M be
the set of patterns of size 2p x 2p that do not admit p as a period. Let x; be an element
that is isolated in (7;)(%).

As there is only a finite number of p-periodic tilings, we may suppose w.l.o.g. that no
x; admit p as a period.

For any i, there exists a pattern of M that appears in x;. Let 2 be the tiling with this
pattern at its center. By compactness, one can extract a limit 2’ of the sequence (z});en, 2’

is by construction in ﬂi<'];_>(ﬁi) = 7;(’6), However, 2/ does not contain a p—periodic pattern
at its center, that is a contradiction. [

We write o = A + 2 the rank of 7.

We already proved that there exists a non minimal tiling but this is not sufficient to
conclude that there exists a tiling at level 12. However, we achieve this as a corollary of
the previous lemma: (7;)®) is infinite (otherwise (7)1 would be empty) and contains
a non periodic tiling by theorem 3.8. This non periodic tiling ¢ is not minimal (otherwise
it would be strictly quasiperiodic and then 7; would not be countable). Now c is at level 1
. any tiling less than ¢ is in (7;)**1) therefore periodic (hence minimal).

If a tiling x is of type a and is ranked, then it has a vector of periodicity: consider the
pattern P that isolates it in the last topological derivative of 7, that it belongs to. Since x
is of type a, this pattern appears twice in it, therefore there exists a shift o such that o(x)
contains P at its center. x = o(x) because P isolates z.

As any tiling of type a has a vector of periodicity, it remains to prove that c is of type a:

Lemma 3.10. c is of type a.

Proof. Suppose the converse : there exists a pattern P that appears only once in ¢. Con-
sidering the union of this pattern P and a pattern that isolates ¢, we may assume that P
isolates c. ¢ has only a finite number of tilings smaller than itself: they lie in 7-7(/\+1) which
is finite, and are all periodic, say of period p. As P isolates ¢, none of these tilings contain
P.

Consider the patterns of size 2p x 2p of T' that are not p—periodic. If those patterns
can appear arbitrary far from P then one can extract a tiling from c¢ (thus smaller than c)
that is not p—periodic and does not contain P; this is not possible.

2We actually can prove that the level 1 exists: There is no infinite decreasing chain whose lower bound
is a periodic configuration

70 A. BALLIER, B. DURAND, AND E. JEANDEL

Therefore there is a pattern in ¢ that contains P (thus appears only once) and any
other part of ¢ is p—periodic (one can gather all non p—periodic parts of ¢ around P), as
depicted in Fig. 4(a).

(a) What we get : c¢ is periodic everywhere || (b) P can appear at many different places
but at P since ¢ has periodic patterns

Figure 4: What can happen if c is of type b7

This non periodic part could also be inserted at infinitely many different positions in ¢
since the tiling rules are of bounded radius, as depicted in Fig. 4(b). Hence the number of
tilings is not countable. L]

c is of type a, c is not periodic, ¢ has a vector of periodicity, therefore our theorem 3.11
holds :

Theorem 3.11. If 7 is a tile-set that produces a countable number of tilings then it produces
a tiling with exactly one vector of periodicity.

4. Open problems

We are interested in proving more precise results for the order < for a countable set of
tilings: we wonder whether the order < has at most finitely many levels, as it is the case
in Fig. 2. We know how to construct a tile-set so that the maximal level is any arbitrary
integer see e.g. Fig.5 for level 3.

We also intend to prove a similar result for uncountable sets of tilings; the problem is
that we are tempted to think that if the set of tilings is uncountable, then a quasiperiodic
tiling must appear. However, this is not true: imagine a tile-set that admits a vertical
line of white or black cells with red on the left and green on the right. The uncountable
part is due to the vertical line that itself contains a quasiperiodic of dimension 1 but not
of dimension 2. This tile-set produces tilings that looks like H in Fig. 2, except that the
vertical line can have two different colors without any constraint.

A generalization of lemma 3.9 would be to prove that the Cantor-Bendixson rank of a
countable set of tilings cannot be infinite; we know how to construct sets of tilings that have

STRUCTURAL ASPECTS OF TILINGS 71

an arbitrary large but finite Cantor-Bendixson rank, but we do not know how to obtain a
set, of tilings of rank greater than w.

References

(1]

R. Berger. The undecidability of the domino problem. Memoirs American Mathematical Society,
66:1966, 1966.

Egon Borger, Erich Gradel, and Yuri Gurevich. The Classical Decision Problem. Perspectives in Math-
ematical Logic. Springer, 1997.

Julien Cervelle and Bruno Durand. Tilings: recursivity and regularity. Theor. Comput. Sci., 310(1-
3):469-477, 2004.

Karel Culik and Jarkko Kari. On aperiodic sets of Wang tiles. Lecture Notes in Computer Science,
1337:153-77, 1997.

Bruno Durand. Tilings and quasiperiodicity. Theor. Comput. Sci., 221(1-2):61-75, 1999.

Bruno Durand, Leonid A. Levin, and Alexander Shen. Complex tilings. In STOC, pages 732-739, 2001.
Walter Helbig Gottschalk and Gustav Arnold Hedlund. Topological Dynamics. American Mathematical
Society, Providence, Rhode Island, 1955.

Y. Gurevich and I. Koriakov. A remark on Berger’s paper on the domino problem. Siberian Journal of
Mathematics, 13:459-463, 1972. (in Russian).

William P. Hanf. Nonrecursive tilings of the plane. i. J. Symb. Log., 39(2):283-285, 1974.

G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Mathematical Sys-
tems Theory, 3:320-375, 1969.

Kazimierz Kuratowski. Topology, Vol. I, 3rd edition. NY: Academic Press, 1966.

Leonid A. Levin. Average case complete problems. STAM J. Comput., 15(1):285-286, 1986.

Dale Myers. Nonrecursive tilings of the plane. ii. J. Symb. Log., 39(2):286-294, 1974.

C. Radin and M. Wolff. Space tilings and local isomorphism, 1992.

R. M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicae,
12:177-209, 1971.

P. van Embde Boas. Dominoes are forever. Research report 83-04, University of Amsterdam. Department
of Mathematics., 1983.

72 A. BALLIER, B. DURAND, AND E. JEANDEL

Figure 5: An example of a tile-set that produces countably many tilings and a tiling at level
3

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 73-84
www.stacs-conf.org

LIMIT COMPLEXITIES REVISITED

LAURENT BIENVENU !, ANDREJ MUCHNIK 2, ALEXANDER SHEN 32,
AND NIKOLAY VERESHCHAGIN *

! Laboratoire d’Informatique Fondamentale
CNRS & Université de Provence,
39 rue Joliot Curie, F-13453 Marseille cedex 13
E-mail address: Laurent.Bienvenu@lif.univ-mrs.fr

2 Andrej Muchnik (24.02.1958 — 18.03.2007)
worked in the Institute of New Technologies in Education, Moscow

3 Laboratoire d’Informatique Fondamentale,
Poncelet Laboratory, CNRS, IITP RAS, Moscow
FE-mail address: Alexander.Shen@lif.univ-mrs.fr

4 . . .
Moscow State Lomonosov University, Russia
FE-mail address: ver@mccme.ru

ABSTRACT. The main goal of this paper is to put some known results in a common per-
spective and to simplify their proofs.

We start with a simple proof of a result from [7] saying that lim sup,, C(z|n) (here C(z|n)
is conditional (plain) Kolmogorov complexity of when n is known) equals Col(x), the
plain Kolmogorov complexity with 0’-oracle.

Then we use the same argument to prove similar results for prefix complexity (and
also improve results of [4] about limit frequencies), a priori probability on binary tree and
measure of effectively open sets. As a by-product, we get a criterion of 0’ Martin-Lof
randomness (called also 2-randomness) proved in [3]: a sequence w is 2-random if and
only if there exists ¢ such that any prefix z of w is a prefix of some string y such that
C(y) > |yl — ¢ (In the 1960ies this property was suggested in [1] as one of possible
randomness definitions; its equivalence to 2-randomness was shown in [3] while proving
another 2-randomness criterion (see also [5]): w is 2-random if and only if C(z) > |z| — ¢
for some ¢ and infinitely many prefixes x of w.

Finally, we show that the low-basis theorem can be used to get alternative proofs for
these results and to improve the result about effectively open sets; this stronger version
implies the 2-randomness criterion mentioned in the previous sentence.

Key words and phrases: Kolmogorov complexity, limit complexities, limit frequencies, 2-randomness, low
basis.

ASPECTS

! S%FaigEPUTER © L. Bienvenu, An. Muchnik, A. Shen, and N. Vereshchagin

©® Creative Commons Attribution-NoDerivs License

L SYMPOSIUM
mvl'_ ON THEORETICAL
<4

74 L. BIENVENU, AN. MUCHNIK, A. SHEN, AND N. VERESHCHAGIN

1. Plain complexity

By C(z) we mean the plain complexity of a binary string x (the length of the shortest
description of x when an optimal description method is fixed, see [2]; no requirements about
prefixes). By C(z|n) we mean conditional complexity of when n is given [2]. Superscript
0’ in C% means that we consider the relativized (with oracle 0’, the universal enumerable
set) version of complexity.

The following result was proved in [7]. We provide a simple proof for it.

Theorem 1.1.

limsup C(z|n) = C°% (z) + O(1).

n—oo

Proof. We start with the easy part. Let 0,, be the (finite) part of the universal enumerable
set that appeared after n steps. If C’O/(m) < k, then there exists a description (program)
of size at most k that generates z using 0’ as an oracle. Only finite part of the oracle
can be used, so 0’ can be replaced by 0,, for all sufficiently large n, and oracle 0,, can be
reconstructed if n is given as a condition. Therefore, C(z|n) < k + O(1) for all sufficiently
large n, and

limsup C(z|n) < C% (z) + O(1).

n—oo
Now fix k& and assume that limsup C(z|n) < k. This means that for all sufficiently
large n the string = belongs to the set

Up =A{u| C(uln) < k}.

The family U, is an enumerable family of sets (given n and k, we generate U,); each of
these sets has less than 2% elements. We need to construct a 0’-computable process that
given k generates at most 2% elements, and among them all elements that belong to U, for
all sufficiently large n. (Then strings of length k may be assigned as 0’-computable codes
of all generated elements.)

To describe this process, consider the following operation: for some v and N add u to
all U,, such that n > N. (In other terms, we add a horizontal ray starting from (IV,u) to
the set U = {(n,u) | u € U,}.) This operation is acceptable if all U, still have less than 2*
elements after it (i.e., if before this operation all U,, such that n > N either contain u or
have less than 2¥ — 1 elements).

For given u and k we can find out using 0’-oracle whether this operation is acceptable.
Now for all pairs (N,u) (in some computable order) we perform (N, u)-operation if it is
acceptable. (The elements added to some U; remain there and are taken into account when
next operations are attempted.) This process is 0’-computable since after any finite number
of operations the family U/ is enumerable (without any oracle) and its enumeration algorithm
can be 0'-effectively found (uniformly in k).

Therefore the set of all elements u that participate in acceptable operations during this
process is uniformly 0’-enumerable. This set contains less than 2* elements (otherwise U,
would become too big for large n). Finally, this set contains all u such that u belongs to
the (initial) U, for all sufficiently large n. Indeed, the operation is always acceptable if all
added elements are already present. [

LIMIT COMPLEXITIES REVISITED 75

The proof has the following structure. We have an enumerable family of sets U, that
have less than 2% elements. This implies that the set
Uso = liminf U,

n—oo

has less than 2* elements (the lim inf of a sequence of sets is the set of elements that belong
to almost all sets of the sequence). If this set were 0’-enumerable, we would be done.
However, this may be not the case: the criterion

u€ Uy < 3N (Yn = N)[u € U,]

has 3V prefix before an enumerable (not necessarily decidable) relation, that is, one quan-
tifier more than we want (to guarantee that Uy, is 0’-enumerable). However, in our proof
we managed to cover Uy, by a set that is 0’-enumerable and still has less than 2* elements.

2. Prefix complexity and a priori probability

Now we prove similar result for prefix complexity (or, in other terms, for a priori
probability). Let us recall the definition. The function a(z) on binary strings (or integers)
with non-negative real values is called a semimeasure if) a(x) < 1. The function a
is lower semicomputable if there exists a computable total function (z,n) — a(z,n) with
rational values such that for every x the sequence a(z,0),a(z,1),... is a non-decreasing
sequence that has limit a(x).

There exists a maximal (up to a constant factor) lower semicomputable semimeasure
m. The value m(x) is sometimes called the a priori probability of x. In the same way we
can define conditional a priory probability m(x|n) and 0’-relativized a priori probability
m9 (z).

Theorem 2.1.
liminf m(z|n) = m®'(
n—oo

x)
up to a O(1) factor.
(In other terms, two inequalities with O(1) factors hold.)

Proof. If m% (z) is greater that some e, then for some k the increasing sequence m® (z, k)
that has limit m® (z) becomes greater than e. The computation of m% (z,k) uses only
finite amount of information about the oracle, thus for all sufficiently large n we have
mO (z) > m% (z,k) > e. So, similar to the previous theorem, we have

liminf m(z|n) > liminf m° (z) > m® (z)
n—oo n—oo

up to O(1) factors.

In the other direction the proof is also similar to the previous one. Instead of enumer-
able finite sets U, now we have a sequence of (uniformly) lower semicomputable functions
x — mp(r) = m(zn). Each of m, is a semimeasure. We need to construct a lower
0’-semicomputable semimeasure m’ such that

m/(z) > liminf m,,(z)

76 L. BIENVENU, AN. MUCHNIK, A. SHEN, AND N. VERESHCHAGIN

Again, the liminf itself cannot be used as m’: though) liminf, m,(z) < 1if Y mu(z) <
1 for all n, but, unfortunately, the equivalence
r< linniigfan & (3’ >7r)3N)(Vn = N)[r' < ay)

has too many quantifier alternations (one more than needed; note that lower semicom-
putable a,, makes [...] condition enumerable). The similar trick helps. For a triple (r, N, u)
consider an increase operation that increases all values m,(u) such that n > N up to a
given rational number r (not changing them if they were greater than or equal to r). This
operation is acceptable if all m,, remain semimeasures after the increase.

The question whether operation is acceptable is 0’-decidable; if it is, we get a new
(uniformly) lower semicomputable (without any oracle) sequence of semimeasures and can
repeat an attempt to perform an increase operation for some other triple. Doing that for all
triples (in some computable ordering), we can then define m’(u) as the upper bound of r for
all successful (r, N, u) increase operations (for all N'). This gives a 0’-lower semicomputable
function; it is a semimeasure since we verify the semimeasure inequality for every successful
increase attempt; finally, m’(u) > liminf m,(u) since if m,(u) > r for all n > N, then
(r, N, u)-increase does not change anything and is guaranteed to be acceptable. [

The expression —logm(x) equals the so-called prefiz complexity K(x) (up to O(1)
term; see [2]). The same is true for relativized and conditional versions, an we get the
following reformulation of the last theorem:

Theorem 2.2.
limsup K (z|n) = K9 (z) + O(1).
n—oo
Another corollary improves a result of [4]. For any (partial) function f from N to N we
define the limit frequency of an integer = as

#i<nl|f(i) ==}

¢f(x) = liminf
n—oo

In other words, we look at the fraction of x-terms in f(0),..., f(n—1) (undefined values are
also listed) and take lim inf of these frequencies. It is easy to see that for a total computable
f the function gy is a lower 0’-semicomputable semimeasure. The argument above proves
the following result:

Theorem 2.3. For any partial computable f the function q; is upper bounded by a lower
0’-semicomputable semimeasure.

In [4] it is shown that for some total computable f the function ¢y is a maximal lower 0’-
semicomputable semimeasure and therefore 0’-relativized a priori probability can be defined
as maximal limit frequency for total computable functions. Now we see that the same is
true for partial computable functions: allowing them to be partial does not increase the
maximal limit frequency.

The similar argument also is applicable to the so-called a priori complexity defined
as negative logarithm of a maximal lower semicomputable semimeasure on the binary tree
(see [8]). This complexity is sometimes denoted as KA () and we get the following state-
ment:

Theorem 2.4.)
limsup KA (z[n) = KA® (z) + O(1).

n—oo

LIMIT COMPLEXITIES REVISITED 77

(To prove this we define an increase operation in such a way that it increases not only
a(x) but also a(y) for y that are prefixes of x, if necessary. The increase is acceptable if
a(A) still does not exceed 1.)

It would be interesting to find out whether similar results are true for monotone com-
plexity or not (the authors do not know this).

3. Open sets of small measure

We now try to apply the same trick in a slightly different situation, for effectively open
sets. The Cantor space € is a set of all infinite sequence of zeros and ones. An interval €,
(for a binary string z) is formed by all sequences that have prefix . Open sets are unions
of intervals. An effectively open subset of {2 is an enumerable union of intervals, i.e., the
union of intervals €2, where x are takes from some enumerable set of strings.

We consider standard (uniform Bernoulli) measure on : the interval 2, has measure
2=! where [is the length of z.

A classical theorem of measure theory says: if Uy, U1, Us, ... are open sets of measure
at most €, then liminf, U, has measure at most €, and this implies that for every ¢ > ¢
there exists an open set of measure at most €' that covers liminf,, U,.

Indeed,
hnnllo%f U, = U ﬂ Uy,
N n2=N
and the measure of the union of an increasing sequence
Vv =) Un,
n>N

equals the limit of measures of V, and all these measures do not exceed ¢ since Viy C Uy.
It remains to note that for any measurable set X its measure is the infimum of the measures
of open sets that cover X.

We now can try to “effectivize” this statement in the same way as we did before.
First we started with an (evident) statement: if U, are finite sets of at most 2% elements,
then liminf, U, has at most 2% elements and proved its effective version: for a uniformly
enumerable family of open sets U, that have at most 2% elements, the set liminf, U, is
contained in a uniformly 0'-enumerable set that has at most 2% elements. Then we did
similar thing with semimeasures (again, the non-effective version is trivial: it says that if
> . mp(z) <1 for every n, then) liminf, m,(z) < 1).

Now the effective version could look like this. Let € > 0 be a rational number and let
Up,U1,... be an enumerable family of effectively open sets of measure at most € each. Then
for every rational €' > ¢ there exists a 0'-effectively open set of measure at most ' that
contains liminf, . U; = Uy ﬂTL;N U,.

However, the authors do not know whether this is always true. The argument that we
have used can nevertheless be applied do prove the following weaker version:

Theorem 3.1. Let € > 0 be a rational number and let U, be an enumerable family of
effectively open sets of measure at most € each. Then there exists a uniformly 0-effectively
open set of measure at most € that contains

%Jlnt(m Un)

n>N

78 L. BIENVENU, AN. MUCHNIK, A. SHEN, AND N. VERESHCHAGIN

Here Int(X) denotes the interior part of X, i.e., the union of all open subsets of X. In
this case we do not need ¢’ (which one could expect since the union of open sets is open).

Proof. Following the same scheme, for every string = and integer N we consider (x, N)-
operation that adds 2, to all U,, such that n > IN. This operation is acceptable if measures
of all U,, remain at most ¢ for each n. This can be checked using 0’-oracle (if the operation
is not acceptable, it becomes known after a finite number of steps).

We attempt to perform this operation (if acceptable) for all pairs in some computable
order. The union of all added intervals for all accepted pairs is 0’-effectively open. If some
sequence belongs to the union of the interior parts, then it is covered by some interval €2,
that is a subset of U, for all sufficiently large n. Then some (u, N)-operation is acceptable
since it actually does not change anything and therefore €, is a part of an 0’-open set that
we have constructed. [

4. Kolmogorov and 2-randomness

This result has an historically remarkable corollary. When Kolmogorov tried to define
randomness in 1960ies, he started with the following approach. A sequence x of length
n is “random” if its complexity C(z) (or conditional complexity C(z|n); in fact, these
requirements are almost equivalent) is close to n: the randomness deficiency d(x) is defined
as the difference |x| — C(z) (here |z| stands for the length of x). This sounds reasonable, but
if we then define a random sequence as a sequence whose prefixes have deficiencies bounded
by a constant, such a sequence does not exist at all: Martin-Lof showed that every infinite
sequence has prefixes of arbitrarily large deficiency, and suggested a different definition of
randomness using effectively null sets. Later more refined versions of randomness deficiency
(using monotone or prefix complexity) appeared that make the criterion of randomness
in terms of deficiencies possible. But before that, in 1968, Kolmogorov wrote: “The most
natural definition of infinite Bernoulli sequence is the following: z is considered m-Bernoulli
type if m is such that all 2% are initial segments of the finite m-Bernoulli sequences. Martin-
Lof gives another, possibly narrower definition” ([1], p. 663).

Here Kolmogorov speaks about “m-Bernoulli” finite sequence x (this means that C'(z|n, k)
is greater than log (Z) — m where n is the length of z and k is the number of ones in).
For the case of uniform Bernoulli measure (where p = ¢ = 1/2) one would reformulate this
definition as follows. Let us define

d(z) = inf{d(y) | = is a prefix of y}
and require that d(z) is bounded for all prefixes of an infinite sequence w. It is shown by
J. Miller in [3] that this definition is equivalent to Martin-Lo6f randomness relativized to 0’
(called also 2-randomness):

Theorem 4.1. A sequence w is Martin-Lif 0'-random if and only if the quantities d(z) for
all prefizes x of w are bounded by a (common) constant.

In turns out that this result (in one direction) easily follows from the previous theorem.

Proof. Assume that d-deficiencies for prefixes of w are not bounded. According to Martin-
Lof definition, we have to construct for a given ¢ an 0’-effectively open set that covers w
and has measure at most 27¢.

LIMIT COMPLEXITIES REVISITED 79

Fix some c. For each n consider the set D, of all sequences u of length n such that
C(u) < n—c (i.e., sequences u of length n such that d(u) > ¢). It has at most 2"~ elements.
The requirement d(x) > ¢ means that every string extension y of = belongs to D,,, where m
is its length. This implies that €, is contained in every U,, where m > |z| and U, is the
set of all sequences that have prefixes in D,, (this set has measure at most 27¢). Therefore,
in this case the interval € is a subset of (5|, Un and (being open) is a subset of its
interior. Then we conclude (using the result proved above) that Q, (=every sequence with
prefix) is covered by an 0'-effectively open set of measure at most 27¢ constructed as
explained above. So if some w has prefixes of arbitrarily large d-deficiency, then w is not 0/
Martin-Lof random.

Note that this argument works also for conditional complexity (with length as condition)
and gives a slightly stronger result.

For the sake of completeness we reproduce (from [3]) the proof of the reverse impli-
cation (essentially unchanged). Assume that a sequence w is covered (for each c¢) by a
0’-computable sequence of intervals Iy, I, ... of total measure at most 27¢. (We omit ¢ in
our notation, but all these constructions depend on c.)

Using the approximations 0,, instead of full 0’ and performing at most n steps of
computation for each n we get another (now computable) family of intervals I, g, I 1,...
such that I,,; = I; for every i and sufficiently large n. We may assume without loss of
generality that I, ; either has size at least 27" (i.e., is determined by a string of length
at most n) or equals L (a special value that denotes the empty set) since only the limit
behavior is prescribed. Moreover, we may also assume that I, ; = L for i > n and that the
total measure of all I, o, I, 1, ... does not exceed 27¢ for every n (by deleting the excessive
intervals in this order; the stabilization guarantees that all limit intervals will be eventually
let through).

Since I, ; is defined by intervals of size at least 27", we get at most 2" ¢ strings of
length n covered by intervals I, ; for given n and all 4. This set is decidable (recall that
only i not exceeding n are used), therefore each string in this set can be defined (assuming
¢ is known) by a string of length n — ¢, binary representation of its ordinal number in this
set. (Note that this string also determines n if ¢ is known.)

Returning to the sequence w, we note that it is covered by some I; and therefore is
covered by I, ; for this ¢ and all sufficiently large n (after the value is stabilized), say, for
all n > N. Let u be a prefix of w of length N. All continuations of u of any length n are
covered by I, ; and have complexity less than n — ¢+ O(1). In fact, this is a conditional
complexity with condition ¢; we get n — ¢ + 2logc+ O(1), so d(u) > ¢ — 2logc — O(1).

Such a string u can be found for every ¢, therefore w has prefixes of arbitrarily large
d-deficiency. m

In fact a stronger statement than Theorem 4.1 is proved in [3, 5]; our tools are still too
weak to get this statement. However, the low basis theorem helps.

5. The low basis theorem

This is a classical result in recursion theory (see, e.g., [6]). It was used in [5] to prove
2-randomness criterion; analyzing this proof, we get theorems about limit complexities as
byproducts. For the sake of completeness we reproduce the statement and the proof of
low-basis theorem here; they are quite simple.

80 L. BIENVENU, AN. MUCHNIK, A. SHEN, AND N. VERESHCHAGIN

Theorem 5.1. Let U C Q be an effectively open set that does not coincide with 2. Then
there exists a sequence w ¢ U which is low, i.e., w' =0

Here ' is the jump of w; the equation w’ = 0’ means that the universal w-enumerable
set is 0’-decidable.

Theorem 5.1 says that any effectively closed non-empty set contains a low element.
For example, if P, C N are enumerable inseparable sets, then the set of all separating
sequences is an effectively closed set that does not contain computable sequences. We
conclude, therefore, that there exists a non-computable low separating sequence.

Proof. Assume that an oracle machine M and an input x are fixed. The computation of M
with oracle w on x may terminate or not depending on oracle w. Let us consider the set
T(M,z) of all w such that M“(x) terminates (for fixed machine M and input). This set
is an effectively open set (if termination happens, it happens due to finitely many oracle
values). This set together with U may cover the entire €2; this means that M“(x) terminates
for allw ¢ U. If it is not the case, we can add T'(M,z) to U and get a bigger effectively
open set U’ that still has non-empty complement such that M“(z) does not terminate for all
w € U'. This operation guarantees (in one of two ways) that termination of the computation
M*®(z) does not depend on the choice of w (in the remaining non-empty effectively closed
set).

This operation can be performed for all pairs (M, z) sequentially. Note that if U U
T (M, x) covers the entire 2, this happens on some finite stage (compactness), so 0’ is enough
to find out whether it happens or not, and on the next step we have again some effectively
open (without any oracle) set. So 0’-oracle is enough to say which of the computations
M*“(x) terminate (as we have said, this does not depend of the choice of w). Therefore
any such w is low (the universal w-enumerable set is 0’-decidable). And such an w exists
since the intersection of the decreasing sequence of non-empty closed sets is non-empty
(compactness).]

6. Using the low basis theorem

Let us show how Theorem 1.1 can be proved using the low basis theorem. As we
have seen, we have an enumerable family of sets U,, that have at most 2* elements and
need to construct effectively a 0’-enumerable set that has at most 2* elements and contains
Uso = liminf, U,.

If the sets U, are (uniformly) decidable, then Uy, is 0’-enumerable and we do not need
any other set. The low basis theorem allows us to reduce general case to this special one.
Let us consider the family of all “upper bounds” for U,: by an upper bound we mean a
sequence V,, of finite sets that contain U, and still have at most 2% elements each. The
sequence Vp, V1, ... can be encoded as an infinite binary sequence (first we encode Vj, then
Vi etc.; note that each V; can be encoded by a finite number of bits though this number
depends on V).

For a binary sequence the property “to be an encoding of an upper bound for U,”
is effectively closed (the restriction #V;, < 2% is decidable and the restriction U, C V, is
co-enumerable). Therefore the low basis theorem can be applied. We get an upper bound
V that is low. Then Vo = liminfV}, is (uniformly in k) V’-enumerable (as we have said:
with V-oracle the family V;, is uniformly decidable), but since V is low, V’-oracle can be
replaced by 0’-oracle, and we get the desired result.

LIMIT COMPLEXITIES REVISITED 81

This proof though being simple looks rather mysterious: we get something almost out
of nothing! (As far as we know, this idea in a more advanced context appeared in [5].)

The same trick can be used to prove Theorem 2.1: here “upper bounds” are distribu-
tions M,, with rational values and finite support that are greater than m(z|n) but still are
semimeasures. (Technical correction: first we have to assume that m(z|n) = 0 if x is large,
and then we have to weaken the restriction Y M, (z) < 1 replacing 1 by, say, 2; this is
needed since the values m(z|n) may be irrational.)

Theorem 2.4 can be also proved in this way (upper bounds should be semimeasures on
tree with rational values and finite support).

As to Theorem 3.1, here the application of the low basis theorem allows us to get a
stronger result than before (though not the most strong version we mentioned as an open
question):

Theorem 6.1. Let € > 0 be a rational number and let U, be an uniformly enumerable
family of effectively open sets, i.e.,

U, =U{Q; | (n,x) e U}
for some enumerable set U C N x {0,1}*. Assume that U, has measure at most € for
every n. Assume also that U; has “effectively bounded granularity”, i.e., all strings such
that (n,x) € U have length at most c¢(n) where ¢ is a total computable function. Then for
every € > ¢ there exists a 0'-effectively open set W of measure at most €' that contains

liminf U, = U m Uy,
e N n>=N

and this construction is uniform.

Proof. First we use the low basis theorem to reduce the general case to the case where U is
decidable and for every (n,z) € U the length of z is exactly ¢(n).

Indeed, define an “upper bound” as a sequence V of sets V,, where V,, is a set of strings
of length ¢(n) such that U, is covered by the intervals generated by elements of V;,. Again
V' can be encoded as an infinite sequence of zeros and ones, and the property “to be an
upper bound” is effectively closed. Applying the low basis theorem, we choose a low V and
add it is an oracle. Since V' is equivalent to 0’, for our purpose we may assume that V is
decidable.

Now we have to deal with the decidable case. Let us represent the set Uy, as a union
of the disjoint sets

Fo=(\Ui, Fy =(\Ui\Uo, Fo=\Ui\Un,...

i>1 i>2

(for each element = in Uy we consider the last U; that does not contain z). Each of F;

is (in the decidable case) an effectively closed set (recall than U; is open-closed due to the

restriction on ¢(i)). Moreover, the F; are pairwise disjoint and the family F; satisfies
liminf U, = J F,

n—-+00
7

and thus
> w(Fy) = p(liminf Uy,).

- n—-+4oo
)

82 L. BIENVENU, AN. MUCHNIK, A. SHEN, AND N. VERESHCHAGIN

The measure of each of F; is 0’-computable, and using 0’-oracle we can find a finite set of
intervals that covers F; and has measure

u(E) + (€ —) /2!

Putting all these intervals together, we get the desired set W. So the decidable case (and
therefore the general one, thanks to low basis theorem) is completed.]

7. Corollary on 2-randomness

Theorem 6.1 can be used to prove 2-randomness criterion from [3, 5]. In fact, this
gives exactly the proof from [5]; the only thing we did is structuring the proof in two parts
(formulating Theorem 6.1 explicitly and putting it in the context of other results on limits
of complexities).

Theorem 7.1 ([3, 5]). A sequence w is 0" Martin-Léf random if and only if
Clwowy - ..wp—1) Z2n—c
for some ¢ and for infinitely many n.

Proof. Let us first understand the relation between this theorem and Theorem 4.1. If

Cwowy - ..wp—1) Z2n—c

for infinitely many n and given ¢, then d(z) < ¢ for every prefix x of w (indeed, one can
find the required continuation of x among prefixes of w). As we know, this guarantees that
w is 0’ Martin-Lof random.

It remains to prove that if for all ¢ we have

Clwowy -..wp—1) <n—c

for all sufficiently large n, then w is not 0’-random. Using the same notation as in the proof
of Theorem 4.1, we can say that w has a prefix in D,, and therefore belongs to U, for all
sufficiently large n. We can apply then Theorem 6.1 since U, is defined using strings of
length n (so ¢(n) = n) and cover Uy, (and therefore w) by a 0’-effectively open set of small
measure. Since this can be uniformly done for all ¢, the sequence w is not 0’-random. [

Remark. The results above may be considered as special cases of an effective version
of a classical theorem in measure theory: Fatou’s lemma. This lemma guarantees that if
J fu(z)du(z) < e for p-measurable functions fo, f1, f2,. .., then

/lim ig{f fn(z)dp(z) <e.

n—-4

The constructive version assumes that f; are lower semicomputable and satisfy some ad-

ditional conditions; it says that for every &’ > e there exists a lower 0’-semicomputable
/

function ¢ such that liminf f,(z) < ¢(z) for every z and [p(z)du(z) < €'

LIMIT COMPLEXITIES REVISITED 83

References

[1] Kolmogorov A.N., Logical Basis for Information Theory and Probability Theory. IEEE Transactions
on Information Theory, v. IT-14, No. 5, Sept. 1968. (Russian version was published in 1969.)

[2] Li M., Vitanyi P., An Introduction to Kolmogorov Complezity and Its Applications, Second Edition,
Springer, 1997. (638 pp.)

[3] Miller J., Every 2-random real is Kolmogorov random, Journal of Symbolic Logic, 69(2):555-584 (2004).

[4] Muchnik An.A., Lower limits of frequencies in computable sequences and relativized a priori probability,
SIAM Theory Probab. Appl., 1987, vol. 32, p. 513-514.

[5] Nies A., Stephan F., Terwijn S., Randomness, relativization and Turing degrees, Journal of Symbolic
Logic, 70(2):515-535 (2005).

[6] Odifreddi P., Classical recursion theory, North-Holland, 1989.

[7] Vereshchagin N. K. Kolmogorov complexity conditional to large integers. Theoretical Computer Science,
v. 271 (2002), issues 1-2, p. 59-67.

[8] Zvonkin A.K., Levin L. The complexity of finite objects and the development of the concepts of in-

formation and randomness by means of the theory of algorithms. Russian Math. Surveys, 25:6 (1970),
p- 83-124.

84

L. BIENVENU, AN. MUCHNIK, A. SHEN, AND N. VERESHCHAGIN

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 85-96
www.stacs-conf.org

TRIMMED MOEBIUS INVERSION AND
GRAPHS OF BOUNDED DEGREE

ANDREAS BJORKLUND !, THORE HUSFELDT !, PETTERI KASKI 2, AND MIKKO KOIVISTO 2

! Lund University, Department of Computer Science, P.O.Box 118, SE-22100 Lund, Sweden
E-mail address: andreas.bjorklund@logipard.com, thore.husfeldt@cs.lu.se

2 Helsinki Institute for Information Technology HIIT, University of Helsinki, Department of Com-
puter Science, P.O.Box 68, FI-00014 University of Helsinki, Finland
E-mail address: {petteri.kaski,mikko.koivisto}@cs.helsinki.fi

ABSTRACT. We study ways to expedite Yates’s algorithm for computing the zeta and
Moebius transforms of a function defined on the subset lattice. We develop a trimmed
variant of Moebius inversion that proceeds point by point, finishing the calculation at
a subset before considering its supersets. For an mn-element universe U and a family F
of its subsets, trimmed Moebius inversion allows us to compute the number of packings,
coverings, and partitions of U with k sets from F in time within a polynomial factor (in
n) of the number of supersets of the members of F.

Relying on an intersection theorem of Chung et al. (1986) to bound the sizes of set
families, we apply these ideas to well-studied combinatorial optimisation problems on
graphs of maximum degree A. In particular, we show how to compute the Domatic Number
in time within a polynomial factor of (22+! — 2)"/(A*+1D and the Chromatic Number in
time within a polynomial factor of (247! — A — 1)"/(+1_ For any constant A, these
bounds are O((Z — e)”) for € > 0 independent of the number of vertices n.

1. Introduction

Yates’s algorithm from 1937 is a kind of fast Fourier transform that computes for a
function f : {0,1}" — R and another function v : {0,1} x {0,1} — R the values

f(xla"'amn) = Z ’U('rlayl)"'U($n7yn)f(y17"'ayn)‘ (11)
ylv"'vyne{()?l}
simultaneously for all X = (z1,...,2,) € {0,1}" using only O(2"n) operations, instead of

the obvious O(4™n). The algorithm is textbook material in many sciences. Yet, though it
appears in Knuth [13, §3.2], it has received little attention in combinatorial optimisation.

Recently, the authors [3, 4] used Yates’s algorithm in combination with Moebius inver-
sion to give algorithms for a number of canonical combinatorial optimisation problems such
as Chromatic Number and Domatic Number in n-vertex graphs, and n-terminal Minimum
Steiner Tree, in running times within a polynomial factor of 2.

This research was supported in part by the Academy of Finland, Grants 117499 (P.K.) and 109101 (M.K.).
ﬁvl—

S © A. Bjorklund, T. Husfeldt, P. Kaski, and M. Koivisto
© Creative Commons Attribution-NoDerivs License

86 A. BJORKLUND, T. HUSFELDT, P. KASKI, AND M. KOIVISTO

From the way it is normally stated, Yates’s algorithm seems to face an inherent 2"
lower bound, up to a polynomial factor, and it also seems to be oblivious to the structural
properties of the transform it computes.

The motivation of the present investigation is to expedite the running time of Yates’s
algorithm for certain structures so as to get running times with a dominating factor of the
form (2—e¢)™. From the perspective of running times alone, our improvements are modest at
best, but apart from providing evidence that the aesthetically appealing 2™ bound from [4]
can be beaten, the combinatorial framework we present seems to be new and may present
a fruitful direction for exact exponential time algorithms.

1.1. Results

In a graph G = (V, E), a set D C V of vertices is dominating if every vertex not in D
has at least one neighbour in D. The domatic number of G is the largest k for which V can
be partitioned in to k dominating sets. We show how to compute the domatic number of
an n-vertex graph with maximum degree A in time

O* ((2A+1 _ 2)n/(A+1)) ;
the O* notation suppresses factors that are polynomial in n. For constant A, this bound is
always better than 2", though not by much:
A | 3 4 5 6 7 8

(2A+1—2)1/<A+1>‘1.9344 1.9744 1.9895 1.9956 1.9981 1.9992

The chromatic number of a graph is the minimum k for which the vertex set can be
covered with k independent sets; a set I C V is independent if no two vertices in I are
neighbours. We show how to compute the chromatic number of an n-vertex graph with
maximum degree A in time

O*((2A+1 A 1)n/(A+1)))
This is slightly faster than for Domatic Number:
A | 3 4 5 6 7 8

(2A+17A71)1/(A+1)‘1.8613 1.9332 1.9675 1.9840 1.9921 1.9961

One notes that even for moderate A, the improvement over 2" is minute. Moreover,
the colouring results for A < 5 are not even the best known: by Brooks’s Theorem [5],
the chromatic number of a connected graph is bounded by its maximum degree unless
the graph is complete or an odd cycle, both of which are easily recognised. It remains to
decide if the chromatic number is 3, 4, or 5, and with algorithms from the literature, 3-
and 4-colourability can be decided in time O(1.3289") [1] and O(1.7504™) [6], respectively.
However, this approach does stop at A = 5, since we know no o(2") algorithm for 5-
colourability. Other approaches for colouring low-degree graphs are known via pathwidth:
given a path decomposition of width w the k-colourability can be decided in time k*n®®)
[11]; for 6-regular graphs one can find a decomposition with w < n(23 +¢€)/45 for any € > 0
and sufficiently large n [11], and for graphs with m edges one can find w < m/5.769 +
O(logn) [12]. However, even these pathwidth based bounds fall short when k > 5—we are
not aware of any previous o(2") algorithm.

For the general case, it took 30 years and many papers to improve the constant in
the bound for Chromatic Number from 2.4423 [14] via 2.4151 [9], 2.4023 [6], 2.3236 [2],

TRIMMED MOEBIUS INVERSION AND GRAPHS OF BOUNDED DEGREE 87

Figure 1: Trimmed evaluation. Originally, Yates’s algorithm considers

the entire subset lattice (left). We trim the evalation from below by
considering only the supersets of ‘interesting’ points (middle), and from

above by abandoning computation when we reach certain points (right).

to 2 [4], and a similar (if less glacial) story can be told for the Domatic Number. None
of these approaches was sensitive to the density of the graph. Moreover, what interests us
here is not so much the size of the constant, but the fact that it is less than 2, dispelling
the tempting hypothesis that 2" should be a ‘difficult to beat’ bound for computing the
Chromatic Number for sparse graphs. In §4 we present some tailor-made variants for
which the running time improvement from applying the ideas of the present paper are more
striking.

Chromatic Number and Domatic Number are special cases of set partition problems,
where the objective is to partition an n-element set U (here, the vertices of a graph) with
members of a given family F of its subsets (here, the independent or dominating sets of the
graph). In full generality, we show how to compute the covering, packing, and partition
numbers of (U, ¥) in time within a polynomial factor of

{T C U : there exists an S € F such that S C T}, (1.2)

the number of supersets of the members of F. In the worst case, this bound is not better
than 2", and the combinatorial challenge in applying the present ideas is to find good bounds
on the above expression.

1.2. Techniques

The main technical contribution in this paper, sketched in Figure 1, is that Yates’s
algorithm can, for certain natural choices of v : {0,1} x {0,1} — R, be trimmed by
considering in a bottom-up fashion only those X € {0,1}" that we are actually interested
in, for example those X for which f(X) # 0 and their supersets. (We will understand
X as a subset of {1,...,n} whenever this is convenient.) Among the transforms that are
amenable to trimming are the zeta and Moebius transforms on the subset lattice.

We use the trimmed algorithms for zeta and Moebius transforms to expedite Moebius
inversion, a generalisation of the principle of inclusion—exclusion, which allows us to compute
the cover, packing, and partition numbers. The fact that these numbers can be computed
via Moebius inversion was already used in [2, 3, 4], and those parts of the present paper
contain little that is new, except for a somewhat more explicit and streamlined presentation
in the framework of partial order theory.

The fact that we can evaluate both the zeta and Moebius transforms pointwise in such
a way that we are done with X before we proceed to Y for every Y D X also enables us to
further trim computations from what is outlined above. For instance, if we seek a minimum
set partition of sets from a family F of subsets of U, then it suffices to find the minimum
partition of all X such that U\ X = S for some S € F. In particular, we need not consider
how many sets it takes to partition X for X’s large enough for U \ X not to contain any
set from F.

The main combinatorial contribution in this paper is that if F is the family of maximal
independent sets, or the family of dominating sets in a graph, then we show how to bound
(1.2) in terms of the maximum degree A using an intersection theorem of Chung et al.
[8] that goes back to Shearer’s Entropy Lemma. For this we merely need to observe that

88 A. BJORKLUND, T. HUSFELDT, P. KASKI, AND M. KOIVISTO

the intersection of F and the closed neighbourhoods of the input graph excludes certain
configurations.

In summary, via (1.2) the task of bounding the running time for (say) Domatic Number
reduces to a combinatorial statement about the intersections of certain families of sets.

Notation. Yates’s algorithm operates on the lattice of subsets of an n-element universe U,
and we find it convenient to work with notation established in partial order theory.

For a family F of subsets of U, let minJF (respectively, max F) denote the family of
minimal (respectively, maximal) elements of F with respect to subset inclusion. The upper
closure (sometimes called up-set or filter) of F is defined as

1F ={T C U : there exists an S € F such that S CT'}.
For a function f defined on subsets of U, the support of f is defined as

supp(f) ={ X C U : f(X) #0}.

For a graph G, we let D denote the family of dominating sets of G and J the family
of independent sets of G. Also, for a subset W C V of vertices, we let G[W] denote the
subgraph induced by W. For a proposition P, we use Iverson’s bracket notation [P] to
mean 1 if P is true and 0 otherwise.

2. Trimmed Moebius Inversion

For a family F of sets from {0,1}" and a set X € {0,1}" we will consider k-tuples
(S1,...,SK) with S; € F and S; C X. Such a tuple is disjoint if S;; N S;, = (for all
1 <4y <io <k, and covering if S1U---U S, = X. From these concepts we define for fixed
k

(1) the cover number c¢(X), viz. the number of covering tuples,

(2) the packing number p(X), viz. the number of disjoint tuples,

(3) the partition number or disjoint cover number d(X), viz. the number of tuples that
are both disjoint and covering.

In this section we show how to compute these numbers in time |1F|n®™M), rather than
2"n%M) as in [3, 4]. The algorithms are concise but somewhat involved, and we choose
to present them here starting with an explanation of Yates’s algorithm. Thus, the first
two subsections are primarily expository and aim to establish the new ingredients in our
algorithms.

At the heart of our algorithms lie two transforms of functions f : {0,1}" — R on the
subset lattice. The zeta transform f(is defined for all X € {0,1}" by

(fOX) = > f(Y). (2.1)
YCX

(The notation f¢ can be read either as a formal operator or as a product of the 2"-
dimensional vector f and the matrix ¢ with entries ¢y x = [Y C X].) The Moebius transform
f is defined for all X € {0,1}"™ by

(fm)(X) =Y (DFWr(Y). (2.2)

YCX

TRIMMED MOEBIUS INVERSION AND GRAPHS OF BOUNDED DEGREE 89

These transforms are each other’s inverse in the sense that f = f(u = fu(, a fundamental
combinatorial principle called Moebius inversion. We can (just barely) draw an example
in four dimensions for a function f given by f({4}) = f({1,2,4}) =1, f({1,3}) = 2 and
f(X) = 0 otherwise:

the disjoint cover number,
p=dcg, (2.3)
which is easy to verify: By definition,
(dO)(X) = Y d(Y).
YCX
Every disjoint k-tuple (S1,...,Sk) with S; U---U S, € X appears once on the right hand
side, namely for Y = Sy U --- U Sk, so this expression equals the packing number p(X).

2.1. Yates’s algorithm

Yates’s algorithm [17] expects the transform in the form of a function v : {0,1} x
{0,1} — R and computes the transformed values

F) = 3 w(eng) - v(mnm) V). (2.4)

Ye{0,1}m

simultaneously for all X € {0,1}". Here, we let (z1,...,2,) and (y1,...,yn) denote the
binary representations (or, ‘incidence vectors’) of X and Y, so z; = [j € X] and y; = [j €
Y']. To obtain (2.1) set v(z,y) = [y < z] and to obtain (2.2) set v(z,y) = [y < z](—1)"Y.
The direct evaluation of (2.4) would take 2™ evaluations of f for each X, for a total of
0O(2"2"n) = O(4™n) operations. The zeta and Moebius transforms depend only on Y C X,
so they would require only 3" 21 =37 . (7)2" = 3" evaluations. Yates’s algorithm is
faster still and computes the general form in O(2"n) operations:

~

Algorithm Y. (Yates’s algorithm.) Computes f(X) defined in (2.4) for all X € {0,1}"™ given f(Y)
for all Y € {0,1}"™ and v(x,y) for all z,y € {0,1}.

Y1: For each X € {0,1}", set go(X) = f(X).
Y2: Foreach j=1,...,nand X € {0,1}", set

9;(X) =v([j € X],0)g; -1 (X \ {j}) + v(lj € X],1)g; -1 (X U{j}).
Y3: Output g,.

The intuition is to compute f(X) ‘coordinate-wise’ by fixing fewer and fewer bits of X
in the sense that, for j =1,...,n,

gi(X) = D wlwny) - o@ny) Y, Ta) (2.5)
y17...,yj€{0,1}

~

90 A. BJORKLUND, T. HUSFELDT, P. KASKI, AND M. KOIVISTO

Indeed, the correctness proof is a straightforward verification (by induction) of the above
expression.

2.2. Trimmed pointwise evaluation

To set the stage for our present contributions, observe that both the zeta and Moebius
transforms ‘grow upwards’ in the subset lattice in the sense that supp(f(),supp(fu) C
Tsupp(f). Thus, in evaluating the two transforms, one ought to be able to trim off redundant
parts of the lattice and work only with lattice points in Tsupp(f).

We would naturally like trimmed evaluation to occur in O(|Tsupp(f)|n) operations, in
the spirit of Algorithm Y. However, to obtain the values at X in Step Y2 of Algorithm Y,
at first sight it appears that we must both ‘look up’ (at X U {j}) and ’look down’ (at
X \{j}). Fortunately, it suffices to only ‘look down’. Indeed, for the zeta transform, setting
v(x,y) = [y < z] and simplifying Step Y2 yields

9;(X) = [j € X]gj—1 (X \{j}) + gj-1(X). (2.6)
For the Moebius transform, setting v(z,y) = [y < z](—1)""Y and simplifying yields
9;(X) = —[j € X]gj-1(X\ {j}) + gj—1(X). (2.7)

Furthermore, it is not necessary to look ‘too far’ down: for both transforms it is immediate
from (2.5) that

gj(X) = 0 holds for all X ¢ Tsupp(f) and j =0,...,n. (2.8)

In what follows we tacitly employ (2.8) to limit the scope of (2.6) and (2.7) to {supp(f).

The next observation is that the lattice points in Tsupp(f) can be evaluated in order of
their rank, using sets L(r) containing the points of rank r. Initially, the sets L(r) contain
only supp(f), but we add elements from Tsupp(f) as we go along. These observations result
in the following algorithm for evaluating the zeta transform; the algorithm for evaluating
the Moebius transform is obtained by replacing (2.6) in Step Z3 with (2.7).

Algorithm Z. (Trimmed pointwise fast zeta transform.) Computes the nonzero part of f{ given the
nonzero part of f. The algorithm maintains n+1 families £(0),...,L(n) of subsets X € {0,1}"; L(r)
contains only sets of size . We compute auxiliary values g;(X) for all 1 < j < n and X € Tsupp(f);
it holds that g, (X) = (fO)(X).
Z1: For each X € supp(f), insert X into L(]X]). Set the current rank r = 0.
Z2: Select any X € L(r) and remove it from L(r).
Z3: Set go(X) = f(X). For each j =1,...,n, set
9;(X) =[j € X]g; -1 (X \ {j}) + gj—1(X).
(At this point g, (X) = (£€)(X).
Z4: If g,(X) # 0, then output X and g,(X).
Z5: For each j ¢ X, insert X U {j} into L(r + 1).
Z6: If L(r) is empty then increment r < n until L(r) is nonempty; terminate if » = n and L(n)
is empty.
Z7: Go to Z2.
Observe that the evaluation at X is complete once Step Z3 terminates, which enables
further trimming of the lattice ‘from above’ in case the values at lattice points with higher
rank are not required.

TRIMMED MOEBIUS INVERSION AND GRAPHS OF BOUNDED DEGREE 91

By symmetry, the present ideas work just as well for transforms that ‘grow downwards’,
in which case one needs to ‘look up’. However, they do not work for transforms that grow
in both directions, such as the Walsh—-Hadamard transform.

In the applications that now follow, f will always be the indicator function of a family
F. In this case having supp(f) quickly available translates to F being efficiently listable;
for example, with polynomial delay.

2.3. Covers

The easiest application of the trimmed Moebius inversion computes for each X € 1F
the cover number ¢(X). This is a particularly straightforward function of the zeta transform
of the indicator function f: simply raise each element of f{ to the kth power and transform
the result back using p. To see this, observe that both sides of the equation

k
(€)(¥) = ((fOI)) (2.9)
count the number of ways to choose k-tuples (Si,...,S;) with S; C Y and S; € F. By
Moebius inversion, we can recover ¢ by applying p to both sides of (2.9).
Algorithm C. (Cover number.) Computes ¢(X) for all X € 1F given F. The sets L(r) and auxiliary
values g;(X) are as in Algorithm Z; also required are auxiliary values h;(X) for Moebius transform.

C1: For each X € F, insert X into £(]X|). Set the current rank r = 0.
C2: Select any X € L(r) and remove it from L(r).
C3: [Zeta transform.] Set go(X) = [X € F]. For each j =1,...,n, set

9;(X) = [7 € X]g; (X \ {j}) + g;-1(X) .

[At this point it holds that ¢, (X) = (f{)(X).]
C4: [Evaluate zeta transform of ¢(X).] Set ho(X) = g,,(X)*.
C5: [Moebius transform.] For each j =1,...,n, set

hi(X) = —[j € X]hj—1 (X \ {j}) + hj—1(X).

C6: Output X and h,(X).
C7: For each j ¢ X, insert X U {j} into L(r + 1).
C8: If L(r) is empty, then increment r < n until L(r) is nonempty; terminate if » = n and L(n)

is empty.
C9: Go to C2.

2.4. Partitions

What makes the partition problem slightly less transparent is the fact that we need to
use dynamic programming to assemble partitions from sets with different ranks. To this
end, we need to compute for each rank s the ‘ranked zeta transform’

(FCNX) = > ().
YCX,|Y|=s

For rank s, consider the number d®)(Y) of tuples (Si,...,S;) with S; € F, S; C Y,
SiU---US, =Y and |Si| + --- + |Sk| = 5. Then d(Y) = d¥D(Y). Furthermore, the

92 A. BJORKLUND, T. HUSFELDT, P. KASKI, AND M. KOIVISTO

zeta-transform (d®)¢)(X) counts the number of ways to choose (S, ...,S;) with S; C X,
S; € F, and |S1]| + -+ +|Sk| = s. Another way to count the exact same quantity is

k
ab,s,X) = S L x). (2.10)
s1+Fsp=s i=1
Thus we can recover d®)(Y) from ¢(k, s, X) by Moebius inversion.
As it stands, (2.10) is time-consuming to evaluate even given all the ranked zeta trans-
forms, but we can compute it efficiently using dynamic programming based on the recurrence

(k. 5, X) = S galk—1,s —t, X)(fCD)(X), ifk>1,
TR e x), k=1,
This happens in Step D4.

Algorithm D. (Disjoint cover number.) Computes d(X) for all X € 1F given F. The sets L(r) are
as in Algorithm Z; we also need auxiliary values gj(-s) (X) and hg.s)(X) forall X € 1,1 < j <n, and
0 < s < m; it holds that ¢{ (X) = (f¢®)(X) and A (X) = d®(X).

D1: For each X € ¥, insert X into £(|X|). Set the current rank r = 0.

D2: Select any X € L(r) and remove it from L(r).

D3: [Ranked zeta transform.] For each s = 0,...,n, set g(()s)(X) = [X € F][|X| = s]. For each
j=1,...,nand s =0,...,n, set

9, (X) = i € Xlgi, (X \ 7)) + 9,21 (X).
[At this point it holds that gfls)(X) = (f¢H)(X) for all 0 < s < n.]
D4: [Evaluate zeta transform of d®).] For each s = 0,...,n, set q(1,s) = gff)(X). For each
i=2,...,kand s =0,...,n,set q(i,s) = >;_,q(i — 1,s—t)g7(f)(X).
D5: [Ranked Moebius transform.] For each s = 0,...,n, set hés)(X) = q(k,s). For each j =
1,...,nand s =0,...,n, set
B (X) = —1j € XInG2, (X \ {5}) + b2, (X).

[At this point it holds that h{ (X) = d(®)(X) for all 0 < s < n.]

D6: Output X and hﬁJX')(X).

D7: For each j ¢ X, insert X U {j} into L(r + 1).

D8: If L(r) is empty, then increment r < n until £(r) is nonempty; terminate if = n and L(n)
is empty.

D9: Go to D2.

2.5. Packings

According to (2.3), to compute p(X) it suffices to zeta-transform the partition number.
This amounts to running Algorithm Z after Algorithm D. (For a different approach, see [4].)

TRIMMED MOEBIUS INVERSION AND GRAPHS OF BOUNDED DEGREE 93

3. Applications
3.1. The number of dominating sets in sparse graphs

This section is purely combinatorial. Let D denote the dominating sets of a graph. A
complete graph has 2 — 1 dominating sets, and sparse graphs can have almost as many:
the n-star graph has 2"~! dominating sets and average degree less than 2. Thus we ask how
large |D| can be for graphs with bounded maximum degree. An easy example is provided
by the disjoint union of complete graphs of order A + 1: every vertex subset that includes
at least one vertex from each component is dominating, so |D| = (2811 — 1)?/(A+1) We
shall show that this is in fact the largest possible D for graphs of maximum degree A. Our
analysis is based on the following intersection theorem.

Lemma 3.1 (Chung et al. [8]). Let U be a finite set with subsets Pi,..., Py such that
every u € U is contained in at least § subsets. Let F be a family of subsets of U. For each
1 < ¢ < m, define the projections Fp={ F NP, : F € F}. Then

71 <[] 1%
=1

Theorem 3.2. The number of dominating sets of an n-vertex graph with mazimum degree
A is at most (2811 — 1)/ (A+1),

Proof. Let G = (V, E) be a graph with |V| = n and maximum degree A. For each v € V,
let A, be the closed neighbourhood around vertex v,
Ay={v}U{ueV:wekE}. (3.1)

Next, for each u € V' with degree d(u) < A, add u to A — d(u) of the sets A, not already
containing u (it does not matter which). Let a, = |A,| and note that) a, = (A + 1)n.

We want to apply Lemma 3.1. To this end, let U = V and m = n. By construction,
every u € V belongs to exactly 6 = A + 1 subsets A,. To get a nontrivial bound on D
we need to bound the size of D, = {DN A, : D € D}. Every DN A, is one of the 2%
subsets of A,, but none of the D N A, can be the empty set, because either v or one of its
neighbours must belong to the dominating set D. Thus |D,| < 2% — 1. By Lemma 3.1, we
have

DA < JJ™ - 1). (3.2)
v
Since = +— log (2 — 1) is concave, Jensen’s inequality gives

1
— g log (2% _ 1) < log (2ZU ay/n _ 1) — log (2A+1 o 1))
n

v

Taking exponentials and combining with (3.2) gives |D|A! < (28+! — 1), "

3.2. Domatic Number

We first observe that a graph can be packed with k dominating sets if and only if it
can be packed with k minimal dominating sets, so we can consider k-packings from min D
instead of D. This has the advantage that min D can be listed faster than 2™.

Lemma 3.3 (Fomin et al. [10]). Any n-vertex graph has at most O*(1.7170™) minimal
dominating sets, and they can be listed within that time bound.

94 A. BJORKLUND, T. HUSFELDT, P. KASKI, AND M. KOIVISTO

Theorem 3.4. For an n-vertex graph G with maximum degree A we can decide in time
O* ((2A+1 _ 2>n/(A+1)>
whether G admits a packing with k dominating sets.

Proof. We use Algorithm D with ¥ = min D. By the above lemma, we can complete Step D1
in time O*(1.7170™). The rest of the algorithm requires time O*(|TminD|). Since every
superset of a dominating set is itself dominating, Tmin D is a sub-family of D (in fact, it is
exactly D), so Theorem 3.2 bounds the total running time by

O*((2A+1 o 1)TL/(A+1)) .

We can do slightly better if we modify Algorithm D in Step D7 to insert X U {j} only
if it excludes at least one vertex for each closed neighbourhood. Put otherwise, we insert
X U{j} only if the set V'\ (X U{j}) dominates the graph G. The graph then has Domatic
Number at least k+1 if and only if the algorithm reports some X for which d(X) is nonzero.
The running time can again be bounded as in Theorem 3.2 but now D N A, can neither be
the empty set, nor be equal to A,. Thus the application of Lemma 3.1 can be strengthened
to yield the claimed result. [

3.3. Chromatic Number

Our first argument for Chromatic Number is similar; we give a stronger and slightly
more complicated argument in §3.4.

We consider the independent sets J of a graph. An independent set is not necessarily
dominating, but it is easy to see that a mazimal independent set is dominating. Moreover,
the Moon—Moser bound tells us they are few, and Tsukiyama et al. tell us how to list them
with polynomial delay:

Lemma 3.5 (Moon and Moser [15]; Tsukiyama et al. [16]). Any n-vertex graph has at
most O*(1.4423™) mazimal independent sets, and they can be listed within that bound.

Theorem 3.6. For an n-vertex graph G with mazimum degree A we can decide in time
O*((2A+1 _ 1)n/(A+1))
whether G admits a covering with k independent sets.

Proof. It is easy to see that G can be covered with k£ independent sets if and only if it can
be covered with k& maximal independent sets, so we will use Algorithm C on maxJ. Step C1
is completed in time O*(1.4423™), and the rest of the algorithm considers only the points
in TmaxJ, which all belong to D. Again, Theorem 3.2 bounds the total running time. =

3.4. Chromatic Number via bipartite subgraphs

We can do somewhat better by considering the family B of vertex sets of induced
bipartite subgraphs, that is, the family of sets B C V for which the induced subgraph G|[B]
is bipartite. As before, the literature provides us with a nontrivial listing algorithm:

Lemma 3.7 (Byskov and Eppstein [7]). Any n-vertex graph has at most O*(1.7724™)
maximal induced bipartite subgraphs, and they can be listed within that bound.

The family max B is more than just dominating, which allows us to use Lemma 3.1 in
a stronger way.

TRIMMED MOEBIUS INVERSION AND GRAPHS OF BOUNDED DEGREE 95

Theorem 3.8. For an n-vertex graph of mazimum degree A it holds that
[Tmax B| < (2871 — A — 1)/ (A+1D)

Proof. Let G = (V, E) be a graph with |V| = n and maximum degree A. Let ¥ = Tmax B.
Let A, be as in (3.1). With the objective of applying Lemma 3.1, we need to bound the
number of sets in F, ={FNA,: FeJF}.

Assume first that G is A-regular. Let A, = {v,uy,...,ua}. We will rule out A + 1
candidates for F' N A,, namely

0, {ur}, ..., {ual & 5, . (3.3)

This then shows that |F,| < 22+ — A — 1 and thus the bound follows from Lemma 3.1.

To see that (3.3) holds, observe that F' € F contains a B C F such that the induced
subgraph G[B] is maximal bipartite. To reach a contradiction, assume that there exists a
v eV with FN A, C{us}. Since B C F, we have BN A, C {u,}, implying that v does not
belong to B, and that at most one of its neighbours does. Consequently, G[B U {v}] is also
bipartite, and v belongs to a partite set opposite to any of its neighbours. This contradicts
the fact that G[B] is maximal bipartite.

To establish the non-regular case, we can proceed as in the proof of Theorem 3.2,
adding each u € V with d(u) < A to some A — d(u) of the sets A, not already including
u. Note that by adding y new vertices to A, originally containing = vertices, we get
HFNA,: FeJ} <2Y(2% —x—1). Next, since 2Y(2* —z — 1) < 2Y"% — (y +x) — 1 for all
non-negative integers y,x and log (2* — x — 1) is a concave function, the bound follows as
before via Jensen’s inequality. [

Theorem 3.9. For an n-vertex graph G with maximum degree A we can decide in time
O((2A+1 _A— 1)n/(A+1))
whether G admits a covering with k independent sets.

Proof. When £k is even, it is easy to see that G can be covered by k independent sets if and
only if it can be covered by k' = k/2 maximal bipartite sets, so we will use Algorithm C on
max B and investigate whether ¢(V') # 0.

When £ is odd, we again use Algorithm C with ¥’ = (k — 1)/2 maximal bipartite sets,
but this time we check whether an X is output such that both ¢(X) # 0 and V \ X is
independent in G.

In both cases the running time bound follows from Theorem 3.8. [

4. Concluding Remarks

Since the presented improvements on running time bounds are modest, one can ask
whether this is because of weak bounds or because of inherent limitations of the technique.
We observe that the running time bounds in Theorems 3.4, 3.6, and 3.9 are met by a disjoint
union of complete graphs of order A + 1. Thus, either further trimming or splitting into
connected components is required for improved algorithms in this context.

We chose to demonstrate the technique for Chromatic and Domatic Number since these
are well-known and well-studied. To briefly demonstrate some further application potential,
more artificial problem variants such as determining if a A-regular graph has domatic
number at least A/2, or if the square of a A-regular graph has chromatic number at most

96

A. BJORKLUND, T. HUSFELDT, P. KASKI, AND M. KOIVISTO

3A/2, admit stronger bounds. For example, if G has domatic number at least d, d even,
then its vertices can be partitioned into two sets, both of which contain d/2 dominating
sets. This suggests the following meet-in-the-middle strategy. Run Algorithm D with &F
equal to all dominating sets and & = d/2, but modify Step D7 to insert X U {j} only
if |4, \ (X U {j})| > d/2 holds for all vertices v. At termination, we check whether the
algorithm has output two sets X and Y such that X UY =V and d(X),d(Y) > 0. (For
example, one can check for duplicates in a table with entry {X, V\ X'} for each output X with
d(X) > 0.) This algorithm variant considers only sets with many forbidden intersections
with the neighbourhoods of vertices, which translates into stronger bounds via Lemma 3.1.

References

(1]
2]

8]

[11]

[12]

[13]
[14]

[15]
[16]

[17]

R. Beigel and D. Eppstein, 3-coloring in time O(1.3289™), J. Algorithms 54 (2005), 168—204.

A. Bjorklund and T. Husfeldt, Ezact algorithms for exact satisfiability and number of perfect matchings,
Algorithmica, to appear. Prelim. version in Proc. 33rd International Colloquium on Automata, Lan-
guages and Programming, Lect. Notes in Comp. Science, Vol. 4051, Springer, Berlin, 2006, pp. 548-559.
A. Bjorklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets Mobius: fast subset convolution,
Proc. 39th ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, NY, 2007, pp. 67-74.

A. Bjorklund, T. Husfeldt, and M. Koivisto, Set partitioning via inclusion—exclusion, SIAM J. Comput.,
to appear. Prelim. versions in Proc. 47th IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Los Alamitos, CA, 2006, pp. 575-582, 583-590.

R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941), 194-197.
J. M. Byskov, Enumerating maximal independent sets with applications to graph colouring, Oper. Res.
Lett. 32 (2004), 547-556.

, Exact algorithms for graph colouring and exact satisfiability, Ph.D. Thesis, Univ. Aarhus, 2004.
F. R. K. Chung, P. Frankl, R. L. Graham, and J. B. Shearer, Some intersection theorems for ordered
sets and graphs, J. Combin. Theory Ser. A 43 (1986), 23-37.

D. Eppstein, Small mazximal independent sets and faster exact graph coloring, J. Graph Algorithms
Appl. 7 (2003), 131-140.

F. V. Fomin, F. Grandoni, A. V. Pyatkin, and A. A. Stepanov, Bounding the number of minimal
dominating sets: a measure and conquer approach, Proc. 16th Intern. Symposium on Algorithms and
Computation, Lect. Notes in Comp. Science, Vol. 3827, Springer, Berlin, 2005, pp. 573-582.

F. V. Fomin, S. Gaspers, S. Saurabh, and A. A. Stepanov, On two techniques of combining branching
and treewidth, Algorithmica, to appear. Reports in Informatics, no. 337, Department of Informatics,
University of Bergen, 2006.

J. Kneis, D. Mdlle, S. Richter, and P. Rossmanith, Algorithms based on the treewidth of sparse graphs,
Revised Selected Papers from the 31st Intern. Workshop on Graph-Theoretic Concepts in Computer
Science, Lect. Notes in Comp. Science, Vol. 3787, Springer, Berlin, 2005, pp. 385-396.

D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed., Addison—
Wesley, Reading, MA, 1997.

E. L. Lawler, A note on the complexity of the chromatic number problem, Inform. Process. Lett. 5
(1976), 66-67.

J. W. Moon and L. Moser, On cliques in graphs, Israel J. Math. 3 (1965), 23-28.

S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, A new algorithm for generating all the maximal
independent sets, STAM J. Comput. 6 (1977), 505-517.

F. Yates, The design and analysis of factorial erperiments, Technical Communication 35, Common-
wealth Bureau of Soils, Harpenden, U.K., 1937.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http:/creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 97-108
www.stacs-conf.org

ON THE COMPLEXITY OF THE INTERLACE POLYNOMIAL

MARKUS BLASER ' AND CHRISTIAN HOFFMANN !

1 Saarland University, Computer Science, Postfach 151150, 66041 Saarbriicken, Germany
E-mail address, Markus Blaser: mblaeser@cs.uni-sb.de

E-mail address, Christian Hoffmann: hoffmann@cs.uni-sb.de

ABSTRACT. We consider the two-variable interlace polynomial introduced by Arratia,
Bollobas and Sorkin (2004). We develop two graph transformations which allow us to
derive point-to-point reductions for the interlace polynomial. Exploiting these reduc-
tions we obtain new results concerning the computational complexity of evaluating the
interlace polynomial at a fixed point. Regarding ezxact evaluation, we prove that the
interlace polynomial is #P-hard to evaluate at every point of the plane, except at one
line, where it is trivially polynomial time computable, and four lines and two points,
where the complexity mostly is still open. This solves a problem posed by Arratia,
Bollobds and Sorkin (2004). In particular, we observe that three specializations of the
two-variable interlace polynomial, the vertex-nullity interlace polynomial, the vertex-
rank interlace polynomial and the independent set polynomial, are almost everywhere
#P-hard to evaluate, too. For the independent set polynomial, our reductions allow
us to prove that it is even hard to approrimate at every point except at —1 and 0.

1. Introduction

The number of Euler circuits in specific graphs and their interlacings turned out to be
a central issue in the solution of a problem related to DNA sequencing by hybridization
[ABCS00]. This led to the definition of a new graph polynomial, the one-variable inter-
lace polynomial [ABS04a]. Further research on this polynomial inspired the definition
of a two-variable interlace polynomial ¢(G;x,y) containing as special cases the following
graph polynomials: qn(G;y) = q(G;2,y) is the original one-variable interlace polynomial
which was renamed to “vertex-nullity interlace polynomial”, ¢r(G;x) = q(G;x,2) is the
new “vertex-rank interlace polynomial” and I(G;x) = ¢(G;1,1 + x) is the independent
set polynomial® [ABS04b].

Although the interlace polynomial ¢(G; z,y) is a different object from the celebrated
Tutte polynomial (also known as dichromatic polynomial, see, for instance, [Tut84]), they
are also similar to each other. While the Tutte polynomial can be defined recursively

Key words and phrases: computational complexity, approximation, interlace polynomial, independent
set polynomial, graph transformation.

IThe independent set polynomial of a graph G is defined as I(G;z) = 20 i(G;)z’ , where i(G;§)
denotes the number of independent sets of cardinality j of G.

L SYMPOSIUM

" \ ON THEORETICAL
) Y =) aspecs
47 / OF COMPUTER ©

SCIENCE M. Bléser and C. Hoffmann

€ Creative Commons Attribution-NoDerivs License

98 M. BLASER AND C. HOFFMANN

by a deletion-contraction identity on edges, the interlace polynomial satisfies recurrence
relations involving several operations on vertices (deletion, pivotization, complementa-
tion).

Besides the deletion-contraction identity, the so called state expansion is a well-
known way to define the Tutte polynomial. Here the similarity to the two-variable
interlace polynomial is especially striking: while the interlace polynomial is defined as a
sum over all vertex subsets of the graph using the rank of adjacency matrices (see (2.1)),
the state expansion of the Tutte polynomial can be interpreted as a sum over all edge
subsets of the graph using the rank of incidence matrices (see (4.1)) [ABS04b, Section 1].

References to further work on the interlace polynomial can be found in [ABS04b]
and [EMS06].

1.1. Previous work

The aim of this paper is to explore the computational complexity of evaluating? the
two-variable interlace polynomial ¢(G;x,y). For the Tutte polynomial this problem was
solved in [JVW90]: Evaluating the Tutte polynomial is #P-hard at any algebraical point
of the plane, except on the hyperbola (x — 1)(y — 1) = 1 and at a few special points,
where the Tutte polynomial can be evaluated in polynomial time. For the two-variable
interlace polynomial ¢(G;z,y), only on a one-dimensional subset of the plane (on the
lines © = 2 and = = 1) some results about the evaluation complexity are known.

A connection between the vertex-nullity interlace polynomial and the Tutte poly-
nomial of planar graphs [ABS04a, End of Section 7], [EMS06, Theorem 3.1] shows that
evaluating ¢ is #P-hard almost everywhere on the line z = 2 (Corollary 4.4).

It has also been noticed that ¢(G;1,2) evaluates to the number of independent sets
of G [ABS04b, Section 5], which is #P-hard to compute [Val79]. Recent work on the
matching generating polynomial [AMO7] implies that evaluating ¢ is #P-hard almost
everywhere on the line z = 1 (Corollary 4.10).

A key ingredient of [JVWO0] is to apply graph transformations known as stretching
and thickening of edges. For the Tutte polynomial, these graph transformations allow
us to reduce the evaluation at one point to the evaluation at another point. For the
interlace polynomial no such graph transformations have been given so far.

1.2. Our results

We develop two graph transformations which are useful for the interlace polynomial:
cloning and combing of vertices. Applying cloning or combing allows us to reduce the
evaluation of the interlace polynomial at some point to the evaluation of it at another
point, see Theorem 3.3 and Theorem 3.5. We exploit this to obtain the following new
results about the computational complexity of ¢(G;x,y).

We prove that the two-variable interlace polynomial ¢(G; z, y) is #P-hard to evaluate
at almost every point of the plane, Theorem 4.12; see also Figure 1. Even though there
are some unknown (gray, in Figure 1) lines left on the complexity map for ¢, this solves
a challenge posed in [ABS04b, Section 5]. In particular we obtain the new result that

2See Section 2.2 for a precise definition.

COMPLEXITY OF THE INTERLACE POLYNOMIAL 99

evaluating the vertex-rank interlace polynomial qr(G;x) is #P-hard at almost every
point (Corollary 4.13). Our techniques also give a new proof that the independent set
polynomial is #P-hard to evaluate almost everywhere (Remark 4.11).

Apart from these results on the computational complexity of evaluating the interlace
polynomial ezxactly, we also show that the values of the independent set polynomial
(which is the interlace polynomial ¢(G;z,y) on the line z = 1) are hard to approzimate
almost everywhere (Theorem 5.4).

2. Preliminaries

2.1. Interlace Polynomials

We consider undirected graphs without multiple edges but with self loops allowed.
Let G = (V, E) be such a graph and A C V. By G[A] we denote (A,{ele € E,e C A}),
the subgraph of G induced by A. The adjacency matrix of G is the symmetric n x n-
matrix M = (m;) over Fo = {0,1} with m; ; = 1 iff {7, j} € E. The rank of this matrix
is its rank over Fo. Slightly abusing notation we write rk(G) for this rank. This allows
us to define the two-variable interlace polynomial.

Definition 2.1 ([ABS04b]). Let G = (V, E) be an undirected graph. The interlace
polynomial ¢(G;x,y) of G is defined as

((Giwy) = 3 (o = 1)MOAD (- ARG, 21)
ACV

In Section 3 we will introduce graph transformations (graph cloning and graph
combing) which perform one and the same operation (cloning one single vertex, adding
a comb to one single vertex, resp.) on every vertex of a graph. Instead of relating
the interlace polynomial of the original graph directly to the interlace polynomial of
the transformed graph, we will analyze how, say, cloning one single vertex changes
the interlace polynomial. To express this, we must be able to treat the vertex being
cloned in a particular way, differently from the other vertices. This becomes possible
using a multivariate version of the interlace polynomial, in which each vertex has its
own variable. Once we can express the effect of cloning one vertex by an appropriate
substitution of the vertex variable in the multivariate interlace polynomial, cloning all
the vertices amounts to a simple substitution of all vertex variables and brings us back
to a bivariate interlace polynomial. This procedure has been applied successfully to the
Tutte polynomial [Sok05, BM06].

We choose the following multivariate interlace polynomial, which is similar to the
multivariate Tutte polynomial of Sokal [Sok05] and a specialization of the multivariate
interlace polynomial defined by Courcelle [Cou07].

Definition 2.2. Let G = (V, E) be an undirected graph. For each v € V let z, be an
indeterminate. Writing x4 for [[,c4 2, we define the following multivariate interlace

polynomial:
P(G5u,x) = Z x qu"F(GAD,
ACV

100 M. BLASER AND C. HOFFMANN

Substituting each z,, in P(G;u,x) by x, we obtain another bivariate interlace polynomial:

P(G;u,x) = Z g Alyrk(GIAD,
ACV

An easy calculation proves that ¢ and P are closely related:

Lemma 2.3. Let G be a graph. Then we have the polynomial identities q(G;x,y) =
P(G;’y”—j,yfl) and P(G;u,x) = q(Gyux + 1,z + 1).]

2.2. Evaluating Graph Polynomials

Given £, v € Q we want to analyze the following computational problem:
Input: Graph G
Output: ¢(G;&,v)
This is what we mean by “evaluating the interlace polynomial ¢ at the point (£,v)”. As
an abbreviation for this computational problem we write

q(&,v),

which should not be confused with the expression ¢(G; &, v) denoting just a value in Q.
Evaluating other graph polynomials such as P, qn, qr and [is defined accordingly.

If P; and P, are computational problems we use P; <7 P, (P; <™ P;) to denote a
polynomial time Turing reduction (polynomial time many-one reduction, resp.) from P;
to P,. For instance, Lemma 2.3 gives

Corollary 2.4. For &, v e Q, v# 1, we have q(&,v) <™ P(%,U —1). For pu,& € Q we
have P(p, &) 2" q(u€ + 1,6+ 1). m

Here Q denotes some finite dimensional field extension Q C @ C R, which has a
discrete representation. As v/2 will play an important role but we are not able to use
arbitrary real numbers as the input for a Turing machine, we use Q instead of Q or R.
We fix some Q for the rest of this paper. This construction is done in the spirit of J aeger,
Vertigan, and Welsh [JVW90] who also propose to adjoin a finite number of points to Q
in order to talk about the complexity at irrational points. To some extent, this is an ad
hoc construction, but it is sufficient for this work.

3. Graph Transformations for the Interlace Polynomial

Now we describe our graph transformations, the cloning and combing of vertices.
The main results of this section are Theorem 3.3 and Theorem 3.5 which describe the
effect of cloning and combing on the interlace polynomial.

3.1. Cloning

Cloning vertices in the graph yields our first graph transformation.

COMPLEXITY OF THE INTERLACE POLYNOMIAL 101

Cloning one vertex. Let G = (V, E) be a graph. Let a € V be some vertex (the one
which will be cloned) and N the set of neighbors of a, V' =V \ {a} and M = V' \ N.
The graph G with a cloned, G4, is obtained out of G in the following way: Insert a new
isolated vertex a’. Connect a’ to all vertices in N. If a does not have a self loop, we are
done. Otherwise connect a and a’ and insert a self loop at a’. Thus, adjacency matrices
of the original (cloned, resp.) graph are

|a’ a N M
- |Z Jf A(f d1b b 1 0
B = N1 A A and By= a|b b 1 0 , resp, (3.1)
o A” A” N1 1 Ay Ap
2 22 M|0 0 Ay Ao

where b = 1 if @ has a self loop and b = 0 otherwise. As the first column of B, equals
its second column, as well as the first row equals the second row, we can remove the
first row and the first column of B,, without changing the rank. This also holds when
we consider the adjacency matrices of G[A] (G44[A], resp.) instead of G' (G, resp.) for
A CV'. Thus we have for any A C V'

rk(GaalA]) = rk(G[A]), (3.2)
rk(Gaa[AU{a,a'}]) = rk(Gaa[A U {a}]) = rk(Gaa[A U {a'}]) = rk(G[AU{a}]). (3.3)
Let X = (%4)pev(Ga,) b€ @ labeling of the vertices of G, by indeterminates. Define
X to denote the following labeling of the vertices of G: X, := =z, for all v € V/,
Xo=14+2,)1+2y) — 1 =24+ 2y + xe2xy. Then we have
Lemma 3.1. P(Gy,;u,x) = P(G;u, X).
Proof. On the one hand we have
P(Gaa;u x)
= Z (GaalAl) 4 g gy K (GaalA{a}]) 4 o g 7k(GaalAU{a'}]) 4 maxa,urk(Gaa[AU{a,a’}]))
ACV!
= wa@M 4 (2, + 34 + 200)urMEANN) by (3.2), (3.3).
ACV!
On the other hand we have
P(G:u,X) = Z X4 (urMGIAD) 4 X,y rH(GlAU a}])
ACV!
= Z ;EA(U"‘k(G[A]) + (Tq + T + xaxa,)urk(G[AU{a}])).
ACV!

102 M. BLASER AND C. HOFFMANN

Cloning all vertices. Fix some k. Given a graph G, the graph G}, is obtained by cloning
each vertex of GG exactly k — 1 times. Note that the result of the cloning is independent
of the order in which the different vertices are cloned. For a € V(G) let ay, ..., a; be the
corresponding vertices in G. For a vertex labeling x of Gj we define the vertex labeling
Xof Gby Xg= (1424,)(1+24,) - (14+24,)—1for a € V(G). Applying Lemma 3.1
repeatedly we obtain
Lemma 3.2. P(Gy;u,x) = P(G;u,X). [
Substitution of x, by x for all vertices v gives
Theorem 3.3. Let G be a graph and Gy, be obtained out of G by cloning each vertex of
G exactly k — 1 times. Then
P(Gy;u,z) = P(Gyu, (1 +2)F —1). (3.4)
[

As we will use it in the proof of Theorem 4.12, we note the following identity for g,
which can be derived from Theorem 3.3 using Lemma 2.3:

k
-1
0(Griz,y) = q(G; (x — 1)2

Theorem 3.3 also implies the following reduction for the interlace polynomial, which
is the foundation for our results in Section 4.

1Ly"). (3.5)

Proposition 3.4. Let By = {0,—1,—2} and z be an indeterminate. For yu € Q,& €
Q\ By we have P(u,x) <7 P(u,). (For any p € Q, we write P(u,x) to denote
the following computational problem: given a graph G compute P(G;p,x), which is a
polynomial in x with coefficients in @)

Proof. Let p and £ be given such that they fulfill the precondition of the proposition.
Given a graph G =: G1 with n vertices, we build Go, G35, ..., G411, where G; is obtained
out of G by cloning each vertex ¢ — 1 times. This is possible in time polynomial in n. By
Theorem 3.3, a call to an oracle for P(u, &) with input G; gives us P(G;u, (1 +&)F — 1)
fori=1,...,n+1. The restriction on £ guarantees that for ¢ = 1,2, 3, ... the expression
(14 €)* — 1 evaluates to pairwise different values. Thus, for P(G;p,z), which is a
polynomial in = of degree < n, we have obtained the values at n + 1 distinct points.
Using Lagrange interpolation we determine the coefficients of P(G; pu, x).]

3.2. Combs

The comb transformation sometimes helps, when cloning has not the desired effect.
Let G = (V,E) be a graph and a € V some vertex. Then we define the k-comb of G
at a as Gop = (V U{a1,...,ar}, EU{{a,a1},...,{a,ax}}), with a1,...,a; being new
vertices.

Using similar arguments as with vertex cloning, combing of vertices yields a point-
to-point reduction for the interlace polynomial, too. The proof of the following theorem
can be found in [BHOT].

COMPLEXITY OF THE INTERLACE POLYNOMIAL 103

2 1 P|gq
\\ y A qu
\ | |
\ | :
le 3 N “l+a ! :
o T qk _______ o S B E_ _____ : ______
12 | 172 ! !
18 B u 1 ; 5
Sy 1 1
————— s - -\
1 | : | |
\ -1 18 11 1+B x
) Ta |
_________ - - i :
\ -1 : |
1 1 1
#P-hardby #P-hard by in P '
Tutte or #IS comb reduction
Tte. @ e inP

Figure 1: Complexity of the interlace polynomials P and q. a = v/2, 8 = 1/v/2

Theorem 3.5. Let G be a graph and G be obtained out of G by performing a k-comb
operation at every vertex. Then

P(Gpu,z) = p(k,u,w)IV(G)IP(G;u,a:/p(k,u,x)), (3.6)
where p(k,u,) = (1 + 2)*(2u? + 1) — zu?.

4. Complexity of evaluating the Interlace Polynomial exactly

The goal of this section is to uncover the complexity maps for P and ¢ as indicated
in Figure 1. While the left hand side (complexity map for P) is intended to follow the
arguments which prove the hardness, the right hand side (complexity map for ¢) focuses
on presenting the results.

Remark 4.1. P(u,0) and P(1,§) are trivially solvable in polynomial time for any p,§ €
Q, as P(G;p1,0) = 1 and P(G;1,€) = (14 &)V .

Thus, on the thick black lines x = 0 and v = 1 in the left half of Figure 1, P can
be evaluated in polynomial time. By Lemma 2.3, these lines in the complexity map for
P correspond to the point (1,1) and the line z = y, resp., in the complexity map for ¢,
see the right half of Figure 1.

4.1. Identifying hard points

We want to establish Corollary 4.4 and Remark 4.5 which tell us, that P is #P-hard
to evaluate almost everywhere on the dashed hyperbola in Figure 1 and at (0,1). To
this end we collect known hardness results about the interlace polynomial.

104 M. BLASER AND C. HOFFMANN

Let t(G;x,y) denote the Tutte polynomial of an undirected graph G = (V, E). It
may be defined by its state expansion as

HGiz,y) = Y (x— 1) BBy - lFr)] (4.1)
BCE(G)

where 7(B) is the Fa-rank of the incidence matrix of G[B] = (V, B), the subgraph of
G induced by B. (Note that r(B) equals the number of vertices of G[B]| minus the
number of components of G[B], which is the rank of B in the cycle matriod of G.) For
details about the Tutte polynomial we refer to standard literature [Tut84, BO92, Wel93].
The complexity of the Tutte polynomial has been studied extensively. In particular, the
following result is known.

Theorem 4.2 ([Ver05]). Evaluating the Tutte polynomial of planar graphs at (&,€) is
#P-hard for all € € Q except for & € {0,1,2,1 & /2}.

We will profit from this by a connection between the interlace polynomial and the
Tutte polynomial of planar graphs. This connection is established via medial graphs. For
any planar graph G one can build the oriented medial graph ém, find an Euler circuit
C in G,, and obtain the circle graph H of C'. The whole procedure can be performed in
polynomial time. For details we refer to [EMS06]. We will use

Theorem 4.3 ([ABS04a, End of Section 7]; [EMS06, Theorem 3.1]). Let G be a planar
graph, G be the oriented medial graph of G and H be the circle graph of some Euler
circuit C of Gy,. Then q(H;2,y) = t(G;y,y). Thus we have t(v,v) <" Pt v—1),
where t(v,v) denotes the problem of evaluating the Tutte polynomial of a planar graph
at (v,v).

Proof. See the references for q(H;2,y) = t(G;y,y) and use Lemma 2.3. [

We set o = v/2 and 8 = 1/v/2. Let By = {#1,£3,0}. Theorem 4.2 and Theo-
rem 4.3 yield

Corollary 4.4. Evaluating the vertex-nullity interlace polynomial qn is #P-hard almost
everywhere. In particular, we have:

e The problem qn(2) is trivially solvable in polynomial time.
e For anyv € Q\{0,1,2, 1+ a} the problem gy (v) = q(2,v) is #P-hard. Or, in

other words, for any p € Q\ By the problem P(u,1/u) is #P-hard. [
Remark 4.5. P(0,1) is #P-hard, as P(G;0,1) equals the number of independent sets
of G, which is #P-hard to compute [Val79]. L]

4.2. Reducing to hard points

The cloning reduction allows us to spread the collected hardness over almost the
whole plane: Combining Corollary 4.4 and Remark 4.5 with Proposition 3.4 we obtain
Proposition 4.6. Let B = {j:~1, 43,0} and Bs = {0,—1,—2} (as defined on Pages 104
and 102, resp.). Let (u,&) € (Q\ B1) U{0}) x (Q\ Bz2). Then P(u,&) is #P-hard. =

COMPLEXITY OF THE INTERLACE POLYNOMIAL 105

This tells us that P is #P-hard to evaluate at every point in left half of Figure 1 not
lying on one of the seven thick lines (three of which are solid gray ones, two of which
are solid black ones, and two of which are dashed ones). Using the comb reduction we
are able to reveal the hardness of the interlace polynomial P on the lines x = —1 and
T =—2

Proposition 4.7. For € Q \ B the problem P(u,—1) is #P-hard.
Proposition 4.8. For u e (Q\ By)\ {1}) U {0} the problem P(u,—2) is #P-hard.
The proofs of the preceding propositions can be found in [BH07].

4.3. Summing up
First we summarize our knowledge about P.

Theorem 4.9. Let 3 =1//2.
(1) P(u,&) is computable in polynomial time on the lines p =1 and £ = 0.

(2) For (1,€) € ((Q\{~1,-6,6,1}) x (Q\ {0})) \ {(1/2,~2)} the problem P(u,¢)
is #P-hard.

Proof. Summary of Remark 4.1, Proposition 4.6, Proposition 4.7, Proposition 4.8. The
hardness of P(0,—1) follows from Corollary 4.10.]

We have not given any argument why P(0,—1) is #P-hard. This follows from
[AMO7].

Corollary 4.10. Evaluating the independent set polynomial I(A) = P(0,A) = q(1,1+A)
18 #P-hard at all A € Q except at A = 0, where it is computable in polynomial time.

Proof. The matching generating polynomial of a graph G is defined as Y, -, m(G; k)x*,
where m(G; k) denotes the number of matching of size k in G. [AMO7] proves that g(€)
is #P-hard for all { € R\ {0}. As the matchings of a graph are the independent sets of
its line graph, the result follows. [

Remark 4.11. Note that, except for the point (0, —1), the statement of Corollary 4.10 is
also a direct consequence of Proposition 4.6 and Proposition 4.8, without using [AMO07]. m

Now we turn to the complexity of ¢, see also the right half of Figure 1.
Theorem 4.12. The two-variable interlace polynomial q is #P-hard to evaluate almost
everywhere. In particular, we have:

(1) q(&,v) is computable in polynomial time on the line § = v.

(2) Let £ € Q\ {1} and x be an indeterminate. Then q(&,1) is as hard as computing

the whole polynomial q(x,1).
(3) q(&,v) is #P-hard for all
Ev)e{Ev)eQ®|v#+(E-1)+1and v#+V2(E—1)+1 and
v 7& 1 and (‘Sav) 7& (O? _1)}

106 M. BLASER AND C. HOFFMANN

Proof of Theorem 4.12 (Sketch). (1) and (3) follow from Remark 4.1 and Theorem 4.9

using Lemma 2.3. For £ # 1, (3.5) gives ¢(Gg; €, 1) = q(G; k(€ — 1) + 1,1), which yields

enough points for interpolation in the same way as in Proposition 3.4 using k = 1,2,3, ...

This proves (2). L]
Theorem 4.12 implies

Corollary 4.13. Let ﬂ~ = 1//2. Ewvaluating the vertes-rank interlace polynomial qr(G;)
is #P-hard at all § € Q except at £ =0,1— 3,1+ B (complexity open) and & =2 (com-
putable in polynomial time). [

5. Inapproximability of the Independent Set Polynomial

Provided we can evaluate the independent set polynomial at some fixed point,
cloning (combing, resp.) of vertices allows us to evaluate it at very large points. In
this section we exploit this to prove that the independent set polynomial is hard to
approximate. Similar results are shown in [GJ07] for the Tutte polynomial.

Definition 5.1. Let A € Q. By a randomized Q"k—approximation algorithm for I(\)
we mean a randomized algorithm, that, given a graph G with n nodes, runs in time
polynomial in n and returns I(G;\) € Q such that
Pr27" (G5 \) < T(G3A) < 27" I(G; \)] > Z.
In [GJOT7], (non)approximability in the weaker sense of (not) admitting an FPRAS
is considered.

Definition 5.2. Let A € Q. A fully polynomial randomized approximation scheme
(FPRAS) for I()) is a randomized algorithm, that given a graph G with n nodes and
an error tolerance €,0 < ¢ < 1, runs in time polynomial in n and 1/¢ and returns
I(G; \) € Q such that

Pr27°I(G;\) < I(G; M) < 2°1(G; M) > Z.

Lemma 5.3. For every A € Q, 0# |1+ N # 1, and every k € N there is no randomized
polynomial time 2"k—appr0ximation algorithm for I(\) unless RP = NP.

Theorem 5.4. For every A € Q\ {—1,0} and every k € N there is no randomized

polynomial time 2”k—approximation algorithm (and thus also no FPRAS) for I(\) unless
RP = NP.

Proof. Lemma 5.3 gives the inapproximability at A € Q\ {—2,—1,0}. By (3.6) we could
turn an approximation algorithm for I(—2) into an approximation algorithm for 7(2)
which would imply RP = NP by Lemma 5.3.]

COMPLEXITY OF THE INTERLACE POLYNOMIAL 107

Proof of Lemma 5.3. Assume we have \,0 # |1 + A| # 1, k € N and a randomized 2nt.
approximation algorithm A for I(\). Given a graph G, Theorem 3.3 and Theorem 3.5,
resp., will allow us to evaluate the independent set polynomial at a point £ with |£| that
large, that an approximation of I(G; &) can be used to recover the degree of I(G; z), which
is the size of a maximal independent set of G. As computing this number is NP-hard,
a randomized 2”k—approximation algorithm for I(G; \) would yield an RP-algorithm for
an NP-hard problem, which implies RP = NP.

Let G = (V, E) be a graph with |V| = n. We distinguish two cases. If |1 + A| > 1,
we choose a positive integer [such that with & := (1 4+ \)! — 1 we have

€| > 2m " (5.1)

This can be achieved by choosing | = poly(n). (Let m be an integer such that |\ + 1| >
21/("™) Then we can choose | = (kL 1)n™.) If 0 < [1 + A| < 1, we choose a positive
integer [such that with £ := e)\)l we have (5.1). By Theorem 3.3 (Theorem 3.5, resp.)
we have I(G;€) = I(G;; \) (I(G;€) = (1 + N)MVII(G N, resp.). Algorithm A returns
on input G; within time poly(nl) = poly(n) an approximation I(Gy;), such that with
1(G;€) = 1(Gis \) (1(G5€) 1= 250 vesp.) we have

27" 1(G;€) < 1(Gs€) < 2" 1(Gs¢€) (5.2)

with high probability.
Let ¢ be the size of a maximal independent set of GG, and let N be the number of
independent sets of maximal size. We have

I(G;x) = N2+ Z
0<j<c-1
and thus
I(G;¢)
€C

-N| < Y Gl
0<j<c—1 (5.3)
1
< 2n -1 < 210gn+n—nk+1 < =
< el < ;
for large n. If we could evaluate I(G;¢&) exactly, we could try all ¢ € {1,...,n} to find
the one for which % is a good estimation for N, 1 < N < 2". This ¢ is unique by
(5.1). The following calculation shows that this is also possible using the approximation
algorithm A.
Using A we compute N (&) := (G 9 for all ¢ € {1,...,n}. We claim that c is the

unique ¢ with

277" 1 < N (@) < 2n (5.4)
Let us prove this claim. As 1 < N < 2™ and by (5.3), we know that
1 _1(G.¢)
= < 2mtl 5.5
T (5.5)

Thus, by (5.2), ¢ = ¢ fulfills (5.4).

108

M. BLASER AND C. HOFFMANN

On the other hand, when ¢ < ¢ — 1 we have

(5.2),(5.5)

. (5.1)
N@] 2 2 lg s g

for large n. When & > ¢+ 1 we have |N(¢)| < 277"~ by similar arguments. This shows
that any integer ¢,¢é # ¢, does not fulfill (5.4). Thus, ¢ can be found in randomized
polynomial time using A. [

Acknowledgement

We would like to thank Johann A. Makowsky for valuable comments on an earlier
version of this work and for drawing our attention to [AMOT].

References

[ABCS00] Richard Arratia, Béla Bollobds, Don Coppersmith, and Gregory B. Sorkin. Euler circuits and

[ABS04a)
[ABS04b)
[AMO7]
[BHO7]
[BMOG6]
[BOY2]
[Cou07]
[EMS06]

[GJ07)

[IVW90]
[Sok05]
[Tuts4]
[Val79]
[Ver05]

[Wel93]

DNA sequencing by hybridization. Discrete Applied Mathematics, 104(1-3):63-96, 2000.
Richard Arratia, Béla Bollobds, and Gregory B. Sorkin. The interlace polynomial of a graph.
J. Comb. Theory Ser. B, 92(2):199-233, 2004.

Richard Arratia, Béla Bollobds, and Gregory B. Sorkin. A two-variable interlace polynomial.
Combinatorica, 24(4):567-584, 2004.

Ilia Averbouch and J. A. Makowsky. The complexity of multivariate matching polynomials,
February 2007. Preprint.

Markus Blaser and Christian Hoffmann. On the complexity of the interlace polynomial, 2007.
Preprint, arXiv:cs.CC/0707.4565.

Markus Blaser and Johann Makowsky. Hip hip hooray for Sokal, 2006. Unpublished note.
Thomas Brylawski and James Oxley. The Tutte polynomial and its applications. In Neil
White, editor, Matroid Applications, Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, 1992.

Bruno Courcelle. A multivariate interlace polynomial, 2007. Preprint, arXiv:cs.L0/
0702016v2.

Joanna A. Ellis-Monaghan and Irasema Sarmiento. Distance hereditary graphs and the inter-
lace polynomial, 2006. Preprint, arXiv:math.CO /0604088 v2.

Leslie Ann Goldberg and Mark Jerrum. Inapproximability of the Tutte polynomial. In STOC
’07: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pages 459—
468, New York, NY, USA, 2007. ACM Press.

F. Jaeger, D. L. Vertigan, and D. J. A. Welsh. On the computational complexity of the Jones
and the Tutte polynomials. Math. Proc. Cambridge Philos. Soc., 108:35-53, 1990.

Alan D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and ma-
troids. In Bridget S. Webb, editor, Surveys in Combinatorics 2005. Cambridge University
Press, 2005.

W. T. Tutte. Graph Theory. Addison Wesley, 1984.

Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410-421, 1979.

Dirk Vertigan. The computational complexity of Tutte invariants for planar graphs. STAM
Journal on Computing, 35(3):690-712, 2005.

D. J. A. Welsh. Complexity: knots, colourings and counting. Cambridge University Press,
New York, NY, USA, 1993.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 109-120
www.stacs-conf.org

MINIMIZING FLOW TIME IN THE WIRELESS GATHERING
PROBLEM

VINCENZO BONIFACI!?, PETER KORTEWEG ?, ALBERTO MARCHETTI-SPACCAMELA 3,
AND LEEN STOUGIE %

! Technische Universitit Berlin, Institut fiir Mathematik, Berlin, Germany

2 Eindhoven University of Technology, Dept of Mathematics and Computer Science, Eindhoven,
The Netherlands
E-mail address: p.korteweg@tue.nl,1l.stougie@tue.nl

3 University of Rome “La Sapienza”, Dept of Computer and Systems Science, Rome, Italy
E-mail address: bonifaci@dis.uniromal.it,alberto@dis.uniromal.it

4 CWI, Amsterdam, The Netherlands
E-mail address: stougie@cwi.nl

ABSTRACT. We address the problem of efficient data gathering in a wireless network
through multi-hop communication. We focus on the objective of minimizing the maxi-
mum flow time of a data packet. We prove that no polynomial time algorithm for this
problem can have approximation ratio less than Q(ml/g) when m packets have to be
transmitted, unless P = NP. We then use resource augmentation to assess the perfor-
mance of a FIFO-like strategy. We prove that this strategy is 5-speed optimal, i.e., its
cost remains within the optimal cost if we allow the algorithm to transmit data at a
speed 5 times higher than that of the optimal solution we compare to.

1. Introduction

Wireless networks are used in many areas of practical interest, such as mobile phone
communication, ad-hoc networks, and radio broadcasting. Moreover, recent advances in
miniaturization of computing devices equipped with short range radios have given rise to
strong interest in sensor networks for their relevance in many practical scenarios (environ-
ment control, accident monitoring etc.) [1, 10].

In many applications of wireless networks data gathering is a critical operation for
extracting useful information from the operating environment: information collected from
multiple nodes in the network should be transmitted to a sink that may process the data, or
act as a gateway to other networks. We remark that in the case of wireless sensor networks

1998 ACM Subject Classification: C.2.2: Computer-Communication Networks — Network Protocols;
F.2.2: Analysis of Algorithms and Problem Complexity — Nonnumerical Algorithms and Problems. General
terms: Algorithms, Design, Theory.

Key words and phrases: wireless networks, data gathering, approximation algorithms, distributed

algorithms.
SYMPOSIUM

“V" ON THEORETICAL
) l_ ASPECTS
<4

) S%FEE%?PUTER © V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela, and L. Stougie

€© Creative Commons Attribution-NoDerivs License

110 V. BONIFACI, P. KORTEWEG, A. MARCHETTI-SPACCAMELA, AND L. STOUGIE

sensor nodes have limited computation capabilities, thus implying that data gathering is
an even more crucial operation. For this reasons, data gathering in sensor networks has
received significant attention in the last few years; we cite just a few contributions [1, 10].
The problem finds also applications in Wi-Fi networks when many users need to access a
gateway using multi-hop wireless relay-routing [5].

In this paper we focus on the problem of designing and analysing simple distributed
algorithms that have good approximation guarantees in realistic scenarios. Namely, we
are interested in algorithms that are not only distributed but that are fast and can be
implemented with limited overhead: sophisticated algorithms that require solving complex
combinatorial optimization problems are impractical for implementations and have mainly
theoretical interest.

In order to formally assess the performance of the proposed algorithms we focus on the
minimization of the maximum flow, i.e. minimizing the maximum time spent in the system
by a packet. Almost all of the previous literature considered the objective of minimizing
the completion time (see for example [3—5, 10, 11, 13, 17]). Flow minimization is a largely
used criterion in scheduling theory that more suitably allows to assess the quality of service
provided when multiple requests occur over time [7, &, 12 15].

The problem of modelling realistic scenarios of wireless sensor networks is complicated
by the many parameters that define the communication among nodes and influence the
performance of transmissions (see for example [I, 18]). In the sequel we assume that
stations have a common clock, hence time can be divided into rounds. Each node is
equipped with a half-duplex interface; as a result it cannot send and receive during the
same round. Typically, not all nodes in the network can communicate with each other
directly, hence packets have to be sent through several nodes before they can be gathered
at the sink; this is called multi-hop routing.

The key issue in our setting is interference. A radio signal has a transmission radius,
the distance over which the signal is strong enough to send data, and an interference
radius, the distance over which the radio signal is strong enough to interfere with other
radio signals. If node i is transmitting data to node j we have interference (or collision)
in communication if j also receives signals from other stations at the same time. Following
Bermond et al. [5], we model the wireless network using a graph and a parameter d;. An
edge between nodes ¢ and j represents the fact that stations ¢ and j are within transmission
range of each other. The parameter d; models the interference radius: a node j successfully
receives a signal if one of his neighbors is transmitting, and no other node within distance
dy from j is transmitting in the same round. The case d;f = 1 has been extensively
considered earlier (see e.g. [1, 10, 11]); but we remark that assuming d; = 1 or assuming
that interferences/transmissions are modeled according to the well known unit disk graph
model does not adequately represent interferences as they occur in practice [18].

Kumar et al. [14] give an overview of other interference models, including the so-
called distance-2 interference model. The distance-2 interference model is similar to our
interference model with d; = 1, plus the extra constraint that no two transmitting nodes
should be adjacent; we observe that this requirement might pose unnecessary conditions.

The Wireless Gathering Problem. An instance of the Wireless Gathering Problem
(WaP) is given by a static wireless network which consists of several stations (nodes) and
one base station (the sink), modeled as a graph, together with the interference radius dy;
over time data packets arrive at stations that have to be gathered at the base station.

MINIMIZING FLOW TIME IN THE WIRELESS GATHERING PROBLEM 111

A feasible solution of an instance of WGP is a schedule without interference which
determines for each packet both route and times at which it is sent. As we will see in
Section 2 this can be modeled as a clean combinatorial optimization problem. We consider
two different objectives. One is to minimize completion time, i.e., the time needed to gather
all the packets. Another, perhaps more natural, objective is minimization of maximum
flow time of packets, i.e., the maximum difference between release time and arrival time
at the sink of a packet. We call these two problems C-WaP and F-WaP, respectively.

Related work. The Wireless Gathering Problem was introduced by Bermond et al.
[5] in the context of wireless access to the Internet in villages. The authors proved that the
problem of minimizing the completion time is NP-hard and presented a greedy algorithm
with asymptotic approximation ratio at most 4. In [6] we considered arbitrary release
times and proposed an on-line greedy algorithm with the same approximation ratio.

Bar-Yehuda et al. [1] considered distributed algorithms for C-Wap. Their model
is a special case of our model, where d; = 1 and there are no release dates. Kumar et
al. [13] studied the more general end-to-end transmission problem, where each of the pack-
ets may have a different source and destination in the network. Under the assumption
of a distance-2 interference model, Kumar et al. considered the objective of minimizing
the maximum completion time of the schedule, and presented hardness results and ap-
proximation algorithms for arbitrary graphs and disk graphs. They presented distributed
algorithms for packet scheduling over fixed routing paths, and used a linear program in
order to determine the paths. By contrast, we use a shortest paths tree to fix the routing
paths, which is easier to implement in a distributed setting.

Florens et al. [10] considered the minimization of the completion time of data gathering
in a setting with unidirectional antennas. They provided a 2-approximation algorithm for
tree networks and an optimal algorithm for line networks. Gargano and Rescigno [11] gave
a polynomial time algorithm for the special case of the same model in which each node
has exactly one packet to send.

Another related problem is to compute the throughput of a wireless network. This has
been studied for example in [14]. We also observe that many papers study broadcasting
in wireless networks [3, 17]. However, we stress that data gathering and broadcasting are
substantially different tasks in the context of packet networks. In particular, the idea of
reversing a broadcast schedule to obtain a gathering schedule (which works when data can
be aggregated) cannot be used.

Main results. In Section 3 we give inapproximability results for F-Wap. We prove
that F-WGP on m packets cannot be approximated within Q(ml/ 3), unless P = NP. We
also show that any algorithm using shortest paths in order to route the packets to the sink
is no better than an Q(m)-approximation.

In Section 4 we present a polynomial time resource augmented approximation algo-
rithm for F-WaP which is in fact an on-line algorithm. We use resource augmentation
because F-WGP is hard to approximate within a reasonable factor.

Resource augmentation was introduced in the context of machine scheduling in [12]:
the idea is to study the performance of on-line algorithms which are given processors faster
than the adversary. Intuitively, this has been done to compensate an on-line scheduler for
its lack of future information. Such an approach has led to a number of interesting results
showing that moderately faster processors are sufficient to attain satisfactory performance
guarantee for various scheduling problems, e.g. [3, 12]

112 V. BONIFACI, P. KORTEWEG, A. MARCHETTI-SPACCAMELA, AND L. STOUGIE

Surprisingly, in the case of F-WGP a modest resource augmentation allows to com-
pensate not only the lack of future information but also the approximation hardness of
the problem: we present a o-speed optimal algorithm for F-Wap and C-WaP; o depends
on dy and is at most 5.

We remark that our algorithm can be implemented using local information only: in
particular, it suffices that a node is informed about the state of nodes within distance
d; + 1. On the other hand, our lower bounds hold for centralized algorithms as well.

2. Mathematical preliminaries

We formulate WGP as a graph optimization problem. The model we use can be seen
as a generalization of a well-known model for packet radio networks [3, 4].

An instance of WGP consists of a graph G = (V, E), a sink node s € V, a positive
integer dy, and a set of data packets J = {1,2,...,m}. Each packet j € J has an origin
oj € V and a release date rj € Z..

We assume that time is discrete; we call a time unit a round. The rounds are numbered
0,1,2,.... During each round a node may either be sending a packet, be receiving a packet
or be inactive. If two nodes v and v are adjacent, then u can send a packet to v during a
round. If node u sends a packet j to v in some round, then the pair (u,v) is said to be a
call from u to v. For each pair of nodes u,v € V, the distance between v and v, denoted
by d(u,v), is the length of a shortest path from u to v in G. Two calls (u,v) and (u’,v")
interfere if they occur in the same round and either d(u’,v) < dj or d(u,v") < dr; otherwise
the calls are compatible. For this reason, the parameter d; is called the interference radius.
The special case of a unit interference radius corresponds to the above cited model of Bar-
Yehuda et al. [3].

For every packet j € J, the release date r; specifies the time at which the packet
enters the network, i.e. packet j cannot be sent before round r;. In the off-line version the
entire instance is completely known at time 0; in the on-line version information about a
packet becomes known only at its release date.

A solution for a WGP instance is a schedule of compatible calls such that all packets
are ultimately sent to the sink. Notice that while in principle each radio transmission can
broadcast the same packet to multiple destinations, in the gathering problem having more
than one copy of the same packet does not help, as it suffices to keep the one that will
arrive first at the sink. Thus, we assume that at any time there is a unique copy of each
packet. Also, in the model we consider, packets cannot be aggregated.

Given a schedule, let a:; be the unique node holding packet j at time ¢. The integer
Cj := min{t : 333 = s} is called the completion time of packet j, while Fj := C; —r; is the
flow time of packet j. In this paper we are interested in the minimization of max; F; (F-
WaP). As an intermediate step in the analysis of F-WaPp, we also study the minimization
of max; C; (C-WGP).

Some auxiliary notation, we denote by d; := d(0;,s) the minimum number of calls
required for packet j to reach s. We also define v := dj + 2, and g := L(d; + 1)/2J.

We analyze the performance of our algorithms using the standard worst case analysis
techniques of approximation ratio analysis, as well as resource augmentation. Given a
Wecp instance Z and an algorithm ALG, we define C(Z) as the cost of ALG and C*(Z)
as the cost of the optimal solution on Z. A polynomial-time algorithm is called an a-
approximation if for any instance Z we have C(Z) < o - C*(Z).

MINIMIZING FLOW TIME IN THE WIRELESS GATHERING PROBLEM 113

Figure 1: The construction in the proof of Theorem 3.2

In the resource augmentation paradigm, the algorithm is allowed to use more resources
than the adversary. We consider resource augmentation based on speed, in which we as-
sume that the algorithm can schedule compatible calls with higher speed than the optimal
algorithm. For any o > 1, we call an algorithm a o-speed algorithm if the time used by
the algorithm to schedule a set of compatible calls is 1/o time units. See [2] for more
information on approximation algorithms, and [12] for more on resource augmentation.

3. Inapproximability

In this section we prove an inapproximability result for F-WGp. To prove this result
we consider the so-called induced matching problem. A matching M in a graph G is
an induced matching if no two edges in M are joined by an edge of G. The following
rather straightforward relation between compatible calls in a bipartite graph and induced
matchings will be crucial in the following.

Proposition 3.1. Let G = (U,V, E) be a bipartite graph with node sets (U, V') and edge
set . Then, a set M C E is an induced matching if and only if the calls corresponding
to edges of M, directed from U to V, are all pairwise compatible, assuming d;y = 1. [

INDUCED BIPARTITE MATCHING (IBM)
Instance: a bipartite graph G and an integer k.
Question: does G have an induced matching of size at least k7

We will use the fact that the optimization version of IBM is hard to approximate:
there exists an a > 1 such that it is NP-hard to distinguish between graphs with induced
matchings of size k and graphs in which all induced matchings are of size at most k/a.
The current best bound for « is 6600/6599 [9].

Theorem 3.2. Unless P = NP, no polynomial-time algorithm can approximate F-WGpP
within a ratio better than Q(m1/3).

Proof. Let (G, k) be an instance of IBM, G = (U, V, E). We construct a 4-layer network
with a unique source o (first layer), a clique on U and a clique on V' (middle layers), and a
sink s (last layer). Source o is adjacent to each node in U, and s to each node in V. The
edges between U and V are the same as in G (see Figure 1). We set dy = 1.

The F-WGP instance consists of m := (1—1/a)" (1 +k/a)(2k + 1)k = O(k?) packets
with origin o. They are divided into m/k groups of size k. Each packet in the hth group
has release date (k + 1)h, h = 0,...,m/k — 1. Rounds (k+ 1)h till (k+1)(h+1) —1
together are a phase.

We prove that if G has an induced matching of size k, there is a gathering schedule
of cost 2k + 1, while if G has no induced matching of size more than k/a, every schedule
has cost at least (2k + 1)k = (2k + 1)©(m!/?). The theorem then follows directly.

114 V. BONIFACI, P. KORTEWEG, A. MARCHETTI-SPACCAMELA, AND L. STOUGIE

Assume G has an induced matching M of size k, say (u;,v;), i = 0...k — 1. Then
consider the following gathering schedule. In each phase, the £ new packets at o are
transmitted, necessarily one-by-one, to layer U while old packets at layer V (if any) are
absorbed at the sink; then, in a single round, the k new packets move from U to V via the
matching edges. More precisely, each phase can be scheduled in k£ + 1 rounds as follows:
1. for i =0,...,k — 1 execute in the ith round the two calls (0, u;) and (v;11 mod ks S);

2. in the kth round, execute simultaneously all the calls (u;,v;), ¢ =0,...,k— 1.
The maximum flow time of the schedule is 2k + 1, as a packet released in phase h reaches
the sink before the end of phase h + 1.

In the other direction, assume that each induced matching of G is of size at most k/cv.
By Proposition 3.1, at most k/« calls can be scheduled in any round from layer U to layer
V. We ignore potential interference between calls from o to U and calls from V to s; doing
so may only decrease the cost of a schedule. As a consequence, we can assume that each
packet follows a shortest path from o to s. Notice however that, due to the cliques on the
layers U and V, no call from U to V is compatible with a call from o to U, or with a call
from V to s.

Let m, and my be the number of packets at o and U, respectively, at the beginning
of a given phase. Also, let 5 := 1+ k/a. We associate to the phase a potential value
¥ = Bm,+my, and we show that at the end of the phase the potential will have increased
proportionally to k. Let ¢, and ¢y denote the number of calls from o to U and from U
to V, respectively, during the phase. Since a phase consists of k£ 4+ 1 rounds, and in each
round at most k/a calls are scheduled from U to V', we have ¢, + cy/(k/a) < k+ 1, or,
equivalently since k/a = —1,

(B—=1)co+cy < (B—-1)(k+1). (3.1)

If m],, my; are the number of packets at o and U at the beginning of the next phase, and
Y = pm], + my; is the new potential, we have

m'o = mot+tk—co
m'U = my-+c,—Ccy
W=y = B(my, —me) +my —my

Bk —co) +co—cu
Bk —(B—1)c, —cu

> Pk—(B-1)(k+1)
— k-(3-1)
= (1-1/a)k

where the inequality uses (3.1).

Thus, consider the situation after m/k phases. The potential has become at least
U := (1 — 1/a)m. By definition of the potential, this implies that at least ¥ /3 = (1 —
1/a)(1+k/a)~tm = (2k+1)k packets reside at either o or U; in particular, they have been
released but not yet absorbed at the sink. Since the sink cannot receive more than one
packet per round, this clearly implies a maximum flow time of (2k+1)k = (2k+1)0(m!/3)
for one of these packets. u

In cases where the packets are routed via shortest paths to the sink — a behavior
common to many gathering protocols — the result of Theorem 3.2 can be strengthened
further.

MINIMIZING FLOW TIME IN THE WIRELESS GATHERING PROBLEM 115

Theorem 3.3. No algorithm that routes packets along shortest paths can approximate
F-WGP within a ratio better than Q(m).

Proof. Consider the instance in Figure 2. The adversary releases a message at each of the
nodes u1, ug, ug at times 5i, i = 0,...,m/3. Any shortest paths following algorithm sends
all messages via u, yielding max; C; > 3m. As r; < 5m/3 for each message j, we have
max; F; > 3m — 5m/3 = 4m/3.

The adversary sends each message over the path which does not contain u. We claim
that it is possible to do this so that all messages released at time 5¢ arrive at the sink in
round 5(i +1) +1 latest. If the claim holds, then we have max; F' <5(i+1)+1—5i =6,
from which the theorem will follow.

We prove the claim by induction. Suppose the claim holds for messages released in
round 5(i — 1). Then, the last message released at time 5(i — 1) latest is sent to the sink
in round 5i. This message does not block any message released in round 5i. Now, the
adversary sends the messages released in round 5:¢ to a node adjacent to s in 3 rounds,
i.e. in the rounds 57, 57 + 1 and 57 + 2. Then, it requires another 3 rounds to send all 3
messages to the sink, i.e. the rounds 5i 4 3, 5i + 4, and 5(i + 1). This proves the theorem,
since max; F;/ max; F; > (4m/3)/6 = 2m/9. (]

Figure 2: No shortest path based algorithm is better than (m)-approximate (d; = 1).

4. Approximation Algorithms

In this section we present and analyze a FIFO algorithm for Wap. First, we show
that FIFO is a 5-approximation for C-WaP. Note that the best approximation algorithm
known is 4-approximate; the main interest in analyzing FIFO is that we use it as a
subroutine in an algorithm for F-WGP which uses resource augmentation. Next, we prove
that this algorithm with resource augmentation is a o-speed optimal algorithm, for any
o > 5, for both C-WaGP and F-WGP.

4.1. An approximation algorithm for C-WGP

We will present an approximation algorithm for C-Wap. The algorithm we consider
is actually a special case of a general scheme for which we can prove an upper bound on
the completion time [6]. In this scheme, called PRIORITY GREEDY, each packet is assigned
a unique priority based on some algorithm-specific rules. Then, in each round, packets are
considered in order of decreasing priority and are sent towards the sink as long as there is
no interference with higher priority packets.

Algorithm 4.1 (PRIORITY GREEDY). In every round, consider the available packets in
order of decreasing priority, and send each next packet along a shortest path from its
current node to s, as long as this causes no interference with any higher-priority packet.

116 V. BONIFACI, P. KORTEWEG, A. MARCHETTI-SPACCAMELA, AND L. STOUGIE

We first derive upper bounds on the completion time C; of each packet j in a PRIORITY
GREEDY solution.

We say that packet j is blocked in round t if £ > r; but j is not sent in round ¢. Note
that in a PRIORITY GREEDY algorithm a packet can only be blocked due to interference
with a higher priority packet. We define the following blocking relation on a PRIORITY
GREEDY schedule: k£ < j if in the last round in which j is blocked, k is the packet closest
to j that is sent in that round and has a priority higher than j (ties broken arbitrarily).
The blocking relation induces a directed graph F' = (J, A) on the packet set J with an
arc (k,j) for each k,j € J such that £ < j. Observe that, for any PRIORITY GREEDY
schedule, F' is a directed forest and the root of each tree of F' is a packet which is never
blocked. For each j let T'(j) C F be the tree of F' containing j, b(j) € J be the root
of T(j), and P(j) the set of packets along the path in F from b(j) to j. Finally, define
mj = min{d;,v} and R; :=r; + §; — 7;.

We have upper and lower bounds on the completion time of a packet.

Lemma 4.2 ([0]). For each packet j € J, Cj < Ry(jy + (v/70) - 2ie p(j) Ti-

Lemma 4.3 ([0]). Let S C J be a nonempty set of packets, and let C; denote the
completion time of packet i in some feasible schedule. Then there is k € S such that
maxies C’L* Z Rk + ZZES TG

Our algorithm is based on a version of the PRIORITY GREEDY scheme, in which a
higher priority is given to packets with earlier release dates (ties broken arbitrarily). We
call this algorithm FIFO after the famous first-in-first-out algorithm in scheduling and
service systems, though in our case packets do not necessarily arrive in order of their
priority at the sink.

Theorem 4.4. FIFO is a (1 + 7v/v0)-approzimation algorithm for C-WGp.

Proof. Let j be the packet having maximum C}, and consider T'(j), the tree containing j
in the forest induced by the blocking relation. We can apply Lemma 4.3 with S = T'(j)
to obtain

max C; > ry + 0 + i (4.1)
ier(j) ;T%) Z
i£k

where k is some packet in T'(j). On the other hand, by using Lemma 4.2,

Cj < Rb(j) + l Z T (4.2)
705EP0)
.
= 7o) %) ~ o) T2 D
1€P(5)

< Ty T 7 min{dx, Y0} + X Z i + Op(j)

o i€P(j)

ik
< X (rk Fot Y m) + 8y(5)-
0 i€1)

where we used the fact that, by definition of FIFO, we have ry;y < r. Equations (4.1)
and (4.2), and observation max;er(;) C;' > dy(j) prove the theorem. [

MINIMIZING FLOW TIME IN THE WIRELESS GATHERING PROBLEM 117

It is straightforward to verify that 2 < ~/v¢ < 4 for all d;, while /vy = 3 for df = 1.

Corollary 4.5. FIFO is a 5-approzimation algorithm for C-WGp. When df = 1, FIFO
s a 4-approximation for C-WGaP.

The bound on the approximation ratio of FIFO is slightly worse than that of a
PRIORITY GREEDY algorithm based on Rj, which is a vy/yo-approximation. In fact, we
also have an example on which FIFO is strictly worse than a 7/yp-approximation (we
omit the example here due to space limitations). However, we remark that FIFO is both
natural and simple; and, perhaps more importantly, Theorem 4.4 will be instrumental in
proving good bounds for the minimization of maximum flow time, where we will use FIFO
as a subroutine of our algorithm.

4.2. A resource augmentation bound for F-WGP

Motivated by the hardness result of Section 3, we study algorithms under resource
augmentation. In this context we study o-speed algorithms, in which data packets are
sent at a speed that is ¢ times faster than the solution we compare to.

Algorithm 4.6 (0-FIFO).

1. Create a new instance Z’ by multiplying release dates: r
2. Run FIFO on 7’;

3. Speed up the schedule thus obtained by a factor of o.

!/

§ = oy

The schedule constructed by o-FIFO is a feasible o-speed solution to the original
problem because of step 1. We will show that o-FIFO is optimal for both C-WaGP and
F-Wgap, if ¢ > v/~9 + 1. The following Lemma is crucial.

Lemma 4.7. If 0-FIFO s a o-speed optimal algorithm for C-WGP, then it is also a
o-speed optimal algorithm for F-WaPp.

Proof. Let F ;‘ and F} , be the flow time of data packet j in an optimal solution and in a
o-FIFO solution, respectively, to F-WGP and let C; and Cj, be the completion time of
data packet j in the same solutions. Suppose o-FIFO is a o-speed optimal algorithm for
C-WaP, hence we have max;c; Cj, < maxjcs C; . We show that this inequality implies,
for any time t,
max Cj, < max Cf. (4.3)
jEJ,Tth jEJﬂ”jSt
We prove inequality (4.3) by contradiction. Suppose it is false, then there is an instance
Z of minimum size (number of data packets) for which it is false. Also, let to be the first
round in such an instance for which it is false. By definition, o-FIFO schedules each data
packet j definitively in round r;; no data packet is rescheduled in a later round. Le.,
the algorithm determines the completion time C;, of data packet j in round r;. If the
inequality is false, then we must have
Ci;v > max C7F, 4.4
Y77 e, r]-};to J (4.4)
for some data packet i with r; = ¢y, and because Z is a minimum size instance the instance
does not contain any data packets released after round to. But then (4.4) contradicts

118 V. BONIFACI, P. KORTEWEG, A. MARCHETTI-SPACCAMELA, AND L. STOUGIE

max;je) Cj o < maxje; C7 . Using (4.3) we have

max Fj, = max| max Cj,—1t) <max| max C’*—t
JjeJ t jeJ, ri=t t jeJ,ri <t

< max| max F f = max F;‘.
t o\ jed,r<t jeT
n

Theorem 4.8. Foro > v/v+1, 0-FIFO is a o-speed optimal algorithm for both C-WGp
and F-Wap.

Proof. By Lemma 4.7, it suffices to prove that o-FIFO is o-speed optimal for C-WGP.

Let C; be the completion time of any data packet j in the o-FIFO solution on instance
Z, and let C]’~ be the completion time of j in the FIFO solution on the instance Z’ (see the
algorithm description). By construction C; = C}/o. Let R} := or; 4+ 6; — m;. Then the
upper bound of Lemma 4.2 applied to instance Z' implies C; < Rg(j) +(oc—1) ZieP(j) .
Hence,

oc—1 1 o—1
C; = C’/J < Rb(]) Y Z T < Tp) + ;(Sb(j) + . Z . (4.5)
i€P() €P()

Since in any solution b(j) has to reach the sink we clearly have

Ci>Cyny 2 + 0, 4.6
Jax CF > Gy 2 1) + Ougy)- (4.6)
Also, by Lemma 4.3, for some k € P(j),
max C] > Ry + Z w >+ Z i 2> Ty + Z T, (4.7)
il 1€P(j4) 1€P(j5) 1€P(5

where the last inequality follows from b(j) having lowest release time in P(j), by definition
of FIFO. Combining (4.5), (4.6) and (4.7), we obtain

max C; = 1 max C; + max C;
ieP(j) 0 i€P(j) o i€P(j)
1 -1
=~ <7"b(j> + 5b<j>> e <7“b<j) + 2 ”i)
i€P(j)
= Tpy) + 51, ; > Cj.
1€P(j)

Corollary 4.9. 5-FIFO is a 5-speed optimal algorithm for C-WGP and F-WGP.

4.3. Another upper bound for FIFO

As we have seen in Section 3, F-WGP is extremely hard to approximate without
resource augmentation — no bound better than Q(m'/3) is possible. Moreover, algorithms
that route along shortest paths cannot do better than Q(m) (recall Theorem 3.3). In this
section we show that FIFO is in fact an O(m)-approximation for F-WaGp. Thus, apart
from constant factors, FIFO is best possible among algorithms that use shortest paths.

MINIMIZING FLOW TIME IN THE WIRELESS GATHERING PROBLEM 119

Theorem 4.10. FIFO is an O(m)-approximation for F-WaPp.

Proof. Since every packet must be gathered at the sink, clearly max; Fj* > max; ; >
max; 7;. Now let j be the packet incurring the maximum flow time in the schedule
obtained by FIFO. Since 7; > ry(;) (by definition of FIFO), we have

Ryjy =15 = 7o) + 0e(3) = Toi) = 75 < Oe(s) (4.8)
Using Lemma 4.2 and (4.8), we get
v
Fj=Cj—rj < Ryy—mj+—) m

IA
s
t/,
|
|
3

IN
/:\
+
|
3
N
2
5
-3

5. Conclusion

We considered the wireless gathering problem with the objective of minimizing the
maximum flow time of data packets (F-WaP). We showed that the simple on-line algo-
rithm FIFO has favorable behavior: although the problem is extremely hard to approxi-
mate in general, augmenting the transmission rate by a factor of 5 allows FIFO to remain
within the cost of an optimal solution for the problem without augmentation.

It is an open question whether optimality can be achieved by augmenting the trans-
mission rate by a factor smaller than 5, and whether an efficient algorithm exists that
matches the Q(m'/3) lower bound on the approximability of F-WGP.

Another interesting set of questions concerns resource augmentation by allowing the
algorithms to use extra frequencies, meaning that more than one data packet can be sent
simultaneously over the same channel. For instance, does there exist a 5-frequency optimal
FIFO-type algorithm?

For the minimization of the completion time (C-WaP), the existence of a polynomial
time approximation scheme is still open. It is known that no algorithm that uses shortest
paths to route the data packets to the sink can give an improvement over the currently
best approximation ratio [6]. It is a challenge to design and analyze congestion avoiding
algorithms with better ratios.

Acknowledgments

Research supported by EU FET Integrated Project AEOLUS IST-15964, by FET EC
6th FP Research Project ARRIVAL FP6-021235-2, by the Dutch BSIK-BRICKS project,
and by MIUR-FIRB Italy-Israel project RBINO47TMH9.

120 V. BONIFACI, P. KORTEWEG, A. MARCHETTI-SPACCAMELA, AND L. STOUGIE
References
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a

2]

survey. Computer Networks, 38(4):393-422, 2002.

G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and V. Kann.
Complexity and Approximation: Combinatorial Optimization Problems and Their Approxima-
bility Properties. Springer-Verlag, 1999.

R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in multi-
hop radio networks: an exponential gap between determinism and randomization. Journal of
Computer and Systems Sciences, 45(1):104-126, 1992.

R. Bar-Yehuda, A. Israeli, and A. Itai. Multiple communication in multihop radio networks.
SIAM Journal on Computing, 22(4):875-887, 1993.

J. Bermond, J. Galtier, R. Klasing, N. Morales, and S. Pérennes. Hardness and approximation
of gathering in static radio networks. Parallel Processing Letters, 16(2):165-183, 2006.

V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela, and L. Stougie. An approximation algo-
rithm for the wireless gathering problem. In Proc. 10th Scandinavian Workshop on Algorithm
Theory, pages 328-338, 2006.

H.-L. Chan, T. W. Lam, and K.-S. Liu. Extra unit-speed machines are almost as powerful
as speedy machines for competitive flow time scheduling. In Proc. 17th Symp. on Discrete
Algorithms, pages 334-343, 2006.

C. Chekuri, A. Goel, S. Khanna, and A. Kumar. Multi-processor scheduling to minimize flow
time with epsilon resource augmentation. In Proc. 36th Symp. on Theory of Computing, pages
363-372, 2004.

W. Duckworth, D. Manlove, and M. Zito. On the approximability of the maximum induced
matching problem. Journal of Discrete Algorithms, 3(1):79-91, 2005.

C. Florens, M. Franceschetti, and R. J. McEliece. Lower bounds on data collection time in
sensory networks. IEEE Journal on Selected Areas in Communications, 22:1110— 1120, 2004.
L. Gargano and A. A. Rescigno. Optimally fast data gathering in sensor networks. In Proc.
81st Symp. on Mathematical Foundations of Computer Science, pages 399-411, 2006.

B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the
ACM, 47(4):617-643, 2000.

V. S. Anil Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan. End-to-end packet-
scheduling in wireless ad-hoc networks. In J. I. Munro, editor, Proc. 15th Symp. on Discrete
Algorithms, pages 1021-1030, 2004.

V. S. Anil Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan. Algorithmic aspects
of capacity in wireless networks. In Measurement and Modeling of Computer Systems, pages
133-144, 2005.

J. McCullough and E. Torng. SRPT optimally utilizes faster machines to minimize flow time.
In J. I. Munro, editor, Proc. 15th Symp. on Discrete Algorithms, pages 350-358, 2004.

K. Pahlavan and A. H. Levesque. Wireless information networks. Wiley, New York, 1995.
A. Pelc. Broadcasting in radio networks. In Handbook of Wireless Networks and Mobile
Computing, pages 509-528. Wiley and Sons, 2002.

S. Schmid and R. Wattenhofer. Algorithmic models for sensor networks. In Proc. 20th Int.
Parallel and Distributed Processing Symposium, 2006.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 121-132
www.stacs-conf.org

ON TERMINATION FOR FAULTY CHANNEL MACHINES

PATRICIA BOUYER !, NICOLAS MARKEY !, JOEL OUAKNINE 2, PHILIPPE SCHNOEBELEN !,
AND JAMES WORRELL ?

1 LSV, ENS Cachan, CNRS
61 Av. Pdt. Wilson, F-94230 Cachan, France
{bouyer ,markey,phs}@lsv.ens-cachan.fr

2 Oxford University Computing Laboratory
Wolfson Bldg., Parks Road, Oxford OX1 3QD, UK
{joel, jbw}@comlab.ox.ac.uk

ABSTRACT. A channel machine consists of a finite controller together with several fifo
channels; the controller can read messages from the head of a channel and write messages
to the tail of a channel. In this paper, we focus on channel machines with insertion
errors, i.e., machines in whose channels messages can spontaneously appear. Such devices
have been previously introduced in the study of Metric Temporal Logic. We consider the
termination problem: are all the computations of a given insertion channel machine finite?
We show that this problem has non-elementary, yet primitive recursive complexity.

1. Introduction

Many of the recent developments in the area of automated verification, both theoretical
and practical, have focussed on infinite-state systems. Although such systems are not, in
general, amenable to fully algorithmic analysis, a number of important classes of models
with decidable problems have been identified. Several of these classes, such as Petri nets,
process algebras, process rewrite systems, faulty channel machines, timed automata, and
many more, are instances of well-structured transition systems, for which various problems
are decidable—see [7] for a comprehensive survey.

Well-structured transition systems are predicated on the existence of ‘compatible well-
quasi orders’, which guarantee, for example, that certain fixed-point computations will
terminate, etc. Unfortunately, these properties are often non-constructive in nature, so
that although convergence is guaranteed, the rate of convergence is not necessarily known.
As a result, the computational complexity of problems involving well-structured transition
systems often remains open.

Key words and phrases: Automated Verification, Computational Complexity.
Thanks: Patricia Bouyer is also affiliated with the Oxford University Computing Laboratory and is
partially supported by a Marie Curie Fellowship.

L SYMPOSIUM
V' ON THEORETICAL
() l_ ASPECTS

<4

-
S%FEE%EPUTER © P. Bouyer, N. Markey, J. Ouaknine, Ph. Schnoebelen, and J. Worrell

© Creative Commons Attribution-NoDerivs License

122 P. BOUYER, N. MARKEY, J. OUAKNINE, PH. SCHNOEBELEN, AND J. WORRELL

In this paper, we are interested in a particular kind of well-structured transition systems,
known as faulty channel machines. A channel machine (also known as a queue automaton)
consists of a finite-state controller equipped with several unbounded fifo channels (queues,
buffers). Transitions of the machine can write messages (letters) to the tail of a channel
and read messages from the head of a channel. Channel machines can be used, for example,
to model distributed protocols that communicate asynchronously.

Channel machines, unfortunately, are easily seen to be Turing powerful [3], and all
non-trivial verification problems concerning them are therefore undecidable. In [1, 6, 4, 2],
Abdulla and Jonsson, and Finkel et al. independently introduced lossy channel machines
as channel machines operating over an unreliable medium; more precisely, they made the
assumption that messages held in channels could at any point vanish nondeterministically.
Not only was this a compelling modelling assumption, more adequately enabling the rep-
resentation of fault-tolerant protocols, for example, but it also endowed the underlying
transition systems of lossy channel machines with a well-structure, thanks to Higman’s
lemma [8]. As a result, several non-trivial problems, such as control-state reachability, are
decidable for lossy channel machines.

Abdulla and Jonsson admitted in [1] that they were unable to determine the complexity
of the various problems they had shown to be decidable. Such questions remained open
for almost a decade, despite considerable research interest in the subject from the scientific
community. Finally, Schnoebelen showed in [16] that virtually all non-trivial decidable
problems concerning lossy channel machines have non-primitive recursive complexity. This
result, in turn, settled the complexity of a host of other problems, usually via reduction
from reachability for lossy channel machines. Recently, the relevance of the lossy channel
model was further understood when it was linked to a surprisingly complex variant of Post’s
correspondence problem [5].

Other models of unreliable media in the context of channel machines have also been
studied in the literature. In [4], for example, the effects of various combinations of insertion,
duplication, and lossiness errors are systematically examined. Although insertion errors are
well-motivated (as former users of modems over telephone lines can attest!), they were
surprisingly found in [4] to be theoretically uninteresting: channels become redundant,
since read- and write-transitions are continuously enabled (the former because of potential
insertion errors, the latter by assumption, as channels are unbounded). Consequently, most
verification problems trivially reduce to questions on finite automata.

Recently, however, slightly more powerful models of channel machines with insertion
errors have appeared as key tools in the study of Metric Temporal Logic (MTL). In [13, 14],
the authors showed that MTL formulas can capture the computations of insertion channel
machines equipped with primitive operations for testing channel emptiness. This new class
of faulty channel machines was in turn shown to have a non-primitive recursive reachability
problem and an undecidable recurrent control-state reachability problem. Consequently,
MTL satisfiability and model checking were established to be non-primitive recursive over
finite words [13], and undecidable over infinite words [14].

Independently of Metric Temporal Logic, the notion of emptiness testing, broadly con-
strued, is a rather old and natural one. Counter machines, for instance, are usually assumed
to incorporate primitive zero-testing operations on counters, and likewise pushdown au-
tomata are able to detect empty stacks. Variants of Petri nets have also explored emptiness
testing for places, usually resulting in a great leap in computational power. In the context
of channel machines, a slight refinement of emptiness testing is occurrence testing, checking

ON TERMINATION FOR FAULTY CHANNEL MACHINES 123

that a given channel contains no occurrence of a particular message, as defined and studied
in [14]. Emptiness and occurrence testing provide some measure of control over insertion
errors, since once a message has been inserted into a channel, it remains there until it is
read off it.

Our main focus in this paper is the complexity of the termination problem for insertion
channel machines: given such a machine, are all of its computations finite? We show that
termination is non-elementary, yet primitive recursive. This result is quite surprising, as
the closely related problems of reachability and recurrent reachability are respectively non-
primitive recursive and undecidable. Moreover, the mere decidability of termination for
insertion channel machines follows from the theory of well-structured transition systems,
in a manner quite similar to that for lossy channel machines. In the latter case, however,
termination is non-primitive recursive, as shown in [16]. Obtaining a primitive recursive
upper bound for insertion channel machines has therefore required us to abandon the well-
structure and pursue an entirely new approach.

On the practical side, one of the main motivations for studying termination of insertion
channel machines arises from the safety fragment of Metric Temporal Logic. Safety MTL
was shown to be decidable in [15], although no non-trivial bounds on the complexity could
be established at the time. It is not difficult, however, to show that (non-)termination for
insertion channel machines reduces (in polynomial time) to satisfiability for Safety MTL; the
latter, therefore, is also non-elementary. We note that in a similar vein, a lower bound for
the complexity of satisfiability of an extension of Linear Temporal Logic was given in [10],
via a reduction from the termination problem for counter machines with incrementation
errors.

2. Decision Problems for Faulty Channel Machines: A Brief Survey

In this section, we briefly review some key decision problems for lossy and insertion
channel machines (the latter equipped with either emptiness or occurrence testing). Apart
from the results on termination and structural termination for insertion channel machines,
which are presented in the following sections, all results that appear here are either known or
follow easily from known facts. Our presentation is therefore breezy and terse. Background
material on well-structured transition systems can be found in [7].

The reachability problem asks whether a given distinguished control state of a channel
machine is reachable. This problem was shown to be non-primitive recursive for lossy
channel machines in [16]; it is likewise non-primitive recursive for insertion channel machines
via a straightforward reduction from the latter [13].

The termination problem asks whether all computations of a channel machine are
finite, starting from the initial control state and empty channel contents. This problem
was shown to be non-primitive recursive for lossy channel machines in [16]. For insertion
channel machines, we prove that termination is non-elementary in Section 4 and primitive
recursive in Section 5.

The structural termination problem asks whether all computations of a channel machine
are finite, starting from the initial control state but regardless of the initial channel contents.
This problem was shown to be undecidable for lossy channel machines in [12]. For insertion
channel machines, it is easy to see that termination and structural termination coincide, so
that the latter is also non-elementary primitive-recursive decidable.

124 P. BOUYER, N. MARKEY, J. OUAKNINE, PH. SCHNOEBELEN, AND J. WORRELL

Lossy Channel Machines Insertion Channel Machines
Reachability non-primitive recursive non-primitive recursive
Termination non-primitive recursive non-elementary / primitive recursive
Struct. term. undecidable non-elementary / primitive recursive
Response undecidable non-primitive recursive
Recurrence undecidable undecidable
CTL / LTL undecidable undecidable

Figure 1: Complexity of decision problems for faulty channel machines.

Given a channel machine § and two distinguished control states p and ¢ of S, a response
property is an assertion that every p state is always eventually followed by a ¢ state in
any infinite computation of §. Note that a counterexample to a response property is a
computation that eventually visits p and forever avoids g afterwards. The undecidability
of response properties for lossy channel machines follows easily from that of structural
termination, as the reader may wish to verify.

In the case of insertion channel machines, response properties are decidable, albeit at
non-primitive recursive cost (by reduction from reachability). For decidability one first
shows using the theory of well-structured transition systems that the set of all reachable
configurations, the set of p-configurations, and the set of configurations that have infinite
g-avoiding computations are all effectively computable. It then suffices to check whether
their mutual intersection is empty.

The recurrence problem asks, given a channel machine and a distinguished control state,
whether the machine has a computation that visits the distinguished state infinitely often.
It is undecidable for lossy channel machines by reduction from response, and was shown to
be undecidable for insertion channel machines in [14].

Finally, CTL and LTL model checking for both lossy and insertion channel machines
are undecidable, which can be established along the same lines as the undecidability of
recurrence.

These results are summarised in Figure 1.

3. Definitions

A channel machine is a tuple S = (Q, init, X, C, A), where @ is a finite set of control
states, init € () is the initial control state, X is a finite channel alphabet, C is a finite set of
channel names, and A C @ x L x @ is the transition relation, where L = {cla, ¢?a, c=0, a¢c :
c € C,a € ¥} is the set of transition labels. Intuitively, label cla denotes the writing of
message a to tail of channel ¢, label c¢?a denotes the reading of message a from the head
of channel ¢, label ¢=() tests channel ¢ for emptiness, and label a¢c tests channel ¢ for the
absence (non-occurrence) of message a.

We first define an error-free operational semantics for channel machines. Given S as
above, a configuration of S is a pair (¢, U), where ¢ € Q is the control state and U € (£*)¢
gives the contents of each channel. Let us write Conf for the set of possible configurations
of §. The rules in A induce an L-labelled transition relation on Conf, as follows:

(1) (g,cla,q") € A yields a transition (g,U) e, (¢',U"), where U'(c) = U(c)-a and
U'(d) = U(d) for d # c. In other words, the channel machine moves from control

ON TERMINATION FOR FAULTY CHANNEL MACHINES 125

state q to control state q', writing message a to the tail of channel ¢ and leaving all
other channels unchanged.

(2) (g,c?a,q") € A yields a transition (q,U) <a, (¢',U"), where U(c) = a-U'(c) and
U'(d) =U(d) for d # c. In other words, the channel machine reads message a from
the head of channel ¢ while moving from control state q to control state q’, leaving
all other channels unchanged.

(3) (g,c=0,q") € A yields a transition (q,U) = (¢',U), provided U(c) is the empty
word. In other words, the transition is only enabled if channel c is empty; all channel
contents remain the same.

(4) (q,a¢c,q") € A yields a transition (q,U) afs (¢',U), provided a does not occur
in U(c). In other words, the transition is only enabled if channel ¢ contains no
occurrence of message a; all channels remain unchanged.

If the only transitions allowed are those listed above, then we call S an error-free
channel machine. This machine model is easily seen to be Turing powerful [3]. As discussed
earlier, however, we are interested in channel machines with (potential) insertion errors;
intuitively, such errors are modelled by postulating that channels may at any time acquire
additional messages interspersed throughout their current contents.

For our purposes, it is convenient to adopt the lazy model of insertion errors, given
next. Slightly different models, such as those of [4, 14], have also appeared in the literature.
As the reader may easily check, all these models are equivalent insofar as reachability and
termination properties are concerned.

The lazy operational semantics for channel machines with insertion errors simply aug-
ments the transition relation on Conf with the following rule:

(5) (q,c?a,q’) € A yields a transition (g, U) e, (¢',U). In other words, insertion errors
occur ‘gust in time’, immediately prior to a read operation; all channel contents
remain unchanged.

The channel machines defined above are called insertion channel machines with occur-
rence testing, or ICMOTs. We will also consider insertion channel machines with emptiness
testing, or ICMETs. The latter are simply ICMOTs without any occurrence-testing tran-
sitions (i.e., transitions labelled with a¢c).

A run of an insertion channel machine is a finite or infinite sequence of transitions of

l !
the form o9 —— o1 —— ... that is consistent with the lazy operational semantics. The run

is said to start from the initial configuration if the first control state is init and all channels
are initially empty.

Our main focus in this paper is the study of the complexity of the termination problem:
given an insertion channel machine §, are all runs of § starting from the initial configuration
finite?

4. Termination is Non-Elementary

In this section, we show that the termination problem for insertion channel machines—
ICMETSs and ICMOTs—is non-elementary. More precisely, we show that the termination
problem for ICMETS of size n in the worst case requires time at least 2Q(logn).! Note
that the same immediately follows for ICMOTs.

IThe expression 29tm, known as tetration, denotes an exponential tower of 2s of height m.

126 P. BOUYER, N. MARKEY, J. OUAKNINE, PH. SCHNOEBELEN, AND J. WORRELL

Our proof proceeds by reduction from the termination problem for two-counter ma-
chines in which the counters are tetrationally bounded; the result then follows from standard
facts in complexity theory (see, e.g., [9]).

Without insertion errors, it is clear that a channel machine can directly simulate a
two-counter machine simply by storing the values of the counters on one of its channels.
To simulate a counter machine in the presence of insertion errors, however, we require
periodic integrity checks to ensure that the representation of the counter values has not
been corrupted. Below we give a simulation that follows the ‘yardstick’ construction of
Meyer and Stockmeyer [17, 11]: roughly speaking, we use an m-bounded counter to check
the integrity of a 2"*-bounded counter.

Theorem 4.1. The termination problem for ICMETs and ICMOTs is non-elementary.

Proof. Let us say that a counter is m-bounded if it can take values in {0,1,...,m—1}. We
assume that such a counter u comes equipped with procedures INC(u), DEC(u), RESET(u),
and ISZERO(u), where INC and DEC operate modulo m, and increment, resp. decrement, the
counter. We show how to simulate a deterministic counter machine M of size n equipped
with two 2fn-bounded counters by an ICMET S of size 2°("). We use this simulation to
reduce the termination problem for M to the termination problem for S.

By induction, assume that we have constructed an ICMET Sj that can simulate the
operations of a 2{tk-bounded counter uy. We assume that Sp correctly implements the
operations INC(uy), DEC(ug), RESET(uy), and ISZERO(uy) (in particular, we assume that
the simulation of these operations by Sy is guaranteed to terminate). We describe an
ICMET Sj; that implements a 2f}(k + 1)-bounded counter uj41. Sky1 incorporates S,
and thus can use the above-mentioned operations on the counter uj; as subroutines. In
addition, Sk11 has two extra channels ¢ and d on which the value of counter ug 1 is stored
in binary. We give a high-level description.

We say that a configuration of Spi1 is clean if channel ¢ has size 29tk and channel d
is empty. We ensure that all procedures on counter ujy1 operate correctly when they are
invoked in clean configurations of Sy11, and that they also yield clean configurations upon
completion. In fact, we only give details for the procedure INC(uj41)—see Figure 2; the
others should be clear from this example.

Since the counter uy is assumed to work correctly, the above procedure is guaranteed
to terminate, having produced the correct result, in the absence of any insertion errors on
channels ¢ or d. On the other hand, insertion errors on either of these channels will be
detected by one of the two emptiness tests, either immediately or in the next procedure to
act on them.

The initialisation of the induction is handled using an ICMET S§; with no channel (in
other words, a finite automaton) of size 2, which can simulate a 2-bounded counter (i.e., a
single bit). The finite control of the counter machine, likewise, is duplicated using a further
channel-less ICMET.

Using a product construction, it is straightforward to conflate these various ICMETSs
into a single one, S, of size exponential in n (more precisely: of size 20(™). As the reader
can easily check, M has an infinite computation iff S has an infinite run. The result follows
immediately.]

ON TERMINATION FOR FAULTY CHANNEL MACHINES 127

Procedure INC(ugy1)
RESET(ug)
repeat
c?x;dl(l —x) /* Increment counter ugy; while transferring ¢ to d */
INC(ug)
until ISZERO(uy) or x =0
while not ISZERO(uy) do
clx; dlx /* Transfer remainder of ¢ to d */
INC(uyg)
endwhile
test(c=0) /* Check that there were no insertion errors on ¢, otherwise halt */
repeat
d?z; clx /* Transfer d back to ¢ */
INC(uk)
until ISZERO(uy,)
test(d=0) /* Check that there were no insertion errors on d, otherwise halt */
return

Figure 2: Procedure to increment counter ugyi. Initially, this procedure assumes that
counter ug41 is encoded in binary on channel ¢, with least significant bit at
the head of the channel; moreover, c is assumed to comprise exactly 21k bits
(using padding Os if need be). In addition, channel d is assumed to be initially
empty. Upon exiting, channel ¢ will contain the incremented value of counter
ug+1 (modulo 2f(k + 1)) in binary, again using 21tk bits, and channel d will be
empty. We regularly check that no insertion errors have occurred on channels c
or d by making sure that they contain precisely the right number of bits. This
is achieved using counter wuy, (which can count up to 21tk and is assumed to work
correctly) together with emptiness tests on ¢ and d. If an insertion error does
occur during execution, the procedure will either halt, or the next procedure to
handle channels ¢ and d (i.e., any command related to counter uy1) will halt.

5. Termination is Primitive Recursive
The central result of our paper is the following:

Theorem 5.1. The termination problem for ICMOTs and ICMETs is primitive recursive.
More precisely, when restricting to the class of ICMOTs or ICMETs that have at most k
channels, the termination problem is in (k+1)-EXPSPACE.

Proof. In what follows, we sketch the proof for ICMOTSs, ICMETSs being a special case of
ICMOTs. Let us also assume that our ICMOTs do not make use of any emptiness tests;
this restriction is harmless since any emptiness test can always be replaced by a sequence
of occurrence tests, one for each letter of the alphabet, while preserving termination.

Let S = (Q, init, 3, C, A) be a fixed ICMOT without emptiness tests; in other words,
S’s set of transition labels is L = {cla,c?a,a¢c: c € C,a € ¥}. Our strategy is as follows:
we suppose that S has no infinite runs, and then derive an upper bound on the length of the
longest possible finite run. The result follows by noting that the total number of possible
runs is exponentially bounded by this maximal length.

128 P. BOUYER, N. MARKEY, J. OUAKNINE, PH. SCHNOEBELEN, AND J. WORRELL

For a subset D C C' of channels, we define an equivalence =p over the set Conf of
configurations of S as follows:

(q,U) =p (¢',U") iff ¢=¢q and U(d) = U'(d) for every d € D.

Let us write Conf p to denote the set Conf/=p of equivalence classes of Conf with
respect to =p. Furthermore, given f : D — N a ‘bounding function’ for the channels in D,
let

ConffD ={l(q,U)]p € Confp :|U(d)| < f(d) for every d € D}
be the subset of Conf consisting of those equivalence classes of configurations whose D-
channels are bounded by f. As the reader can easily verify, we have the following bound
on the cardinality 'nyj of Conf fD:

b<lQI TT (=l + 1/@. (5.1)

deD

. . l l In—1
Consider a finite run oy —= 0, — ... - g, of S (with n > 1), where each o; € Conf

is a configuration and each [; € L is a transition label. We will occasionally write oq :)‘> On
to denote such a run, where A = lgly...l,—1 € LT.

We first state a pumping lemma of sorts, whose straightforward proof is left to the
reader:

Lemma 5.2. Let D C C be given, and assume that o 2 5 (with X\ € L") is a run of S
such that o =p o'. Suppose further that, for every label ag¢c occurring in X\, either ¢ € D,
or the label cla does not occur in \. Then X is repeatedly firable from o, i.e., there exists

L Ao, Ay A
an infinite run 0 = o' = " =

Note that the validity of Lemma 5.2 rests crucially on (the potential for) insertion
errors.

Let (w;)1<i<n be a finite sequence, and let 0 < o < 1 be a real number. A set S is said
to be a-frequent in the sequence (w;) if the set {i : w; € S} has cardinality at least an.

The next result we need is a technical lemma guaranteeing a certain density of repeated
elements in an a-frequent sequence:

Lemma 5.3. Let (w;)1<i<n be a finite sequence, and assume that S is a finite a-frequent

set in (w;). Then there exists a sequence of pairs of indices ((ij,i})>1<j< such that,

2(1S[+1)
«

2(\SH-1)

for all j < we have i; <z < 4j41, 1 —i; < , and wi; = wy € 5.
J

an
2(]S|+1)’
Proof. By assumption, (w;) has a subsequence of length at least an consisting exclusively of
elements of S. This subsequence, in turn, contains at least SES] S‘ +1 disjoint ‘blocks’ of length

|S| + 1. By the pigeonhole principle, each of these blocks contains at least two identical
elements from S, yielding a sequence of pairs of indices ((ij,i’))1< having all the

=) S 2(‘8;“)

required properties apart, possibly, from the requirement that z; . Note also
that there are, for now, twice as many pairs as required.
Consider therefore the half of those pairs whose difference is smallest, and let p be the

largest such difference. Since the other half of pairs in the sequence ((i;, %)> have difference

at least p, and since there is no overlap between indices, we have %
2(\S|+1)

\S|+1 -p < n, from

which we immediately derive that p is bounded by , as required. This concludes the
proof of Lemma 5.3. u

ON TERMINATION FOR FAULTY CHANNEL MACHINES 129

. . . l l lnfl
Recall our assumption that S has no infinite run, and let 7 = 09 —= 01 — ... — o,

be any finite run of S, starting from the initial configuration; we seek to obtain an upper
bound on n.

Given a set D C C of channels, it will be convenient to consider the sequence [7]p =
(loilp)o<i<n of equivalence classes of configurations in 7 modulo =p (ignoring the inter-
spersed labelled transitions for now).

Let f: C — Nand 0 < a <1 be given, and suppose that Confé is a-frequent in [7]c,
so that there are at least an occurrences of configuration equivalence classes in Conf é along
[7]c. Recall that Conf é contains vé elements. Observe, by Lemma 5.2, that no member of
Conf é can occur twice along [r]p, otherwise S would have an infinite run. Consequently,

f
Jc
< = 5.2
n<X (52)
We will now inductively build an increasing sequence) = Dy C Dy C ... C Dic) = C,
as well as functions f; : D; — N and real numbers 0 < a; < 1, for 0 < i < |C], such that
Conf gi is ay-frequent in [r]p, for every i < |C|.
The base case is straightforward: the set Conf 50 = Confy is clearly 1-frequent in [7]y.

Let us therefore assume that Conf é is a-frequent in [7]p for some strict subset D of
C and some f : D — N and a > 0. We now compute D’ C C strictly containing D,
f': D' — N, and o/ > 0 such that C’onff/, is o/-frequent in [7]pr.

Thanks to our induction hypothesis and Lemma 5.3, we obtain a sequence of pairs of

configurations ((6,0%))1<;j<n, where h = %, 010 = [05]p € ConffD, and such that
D

A A An
T=09= 01 =2 0] = 0 =2 0, — ... = 0;, =5 0}, = 0,

f
with each A\; € L* having length no greater than 2(7%%1), for1 <j<h.

For each A;, let OT; be the set of occurrence-test labels that occur at least once in
Aj. Among these sets, let OT denote the one that appears most often. Note that there are
2/=11CT Qifferent possible sets of occurrence-test labels, and therefore at least W of the
OT; are equal to OT'.

Following a line of reasoning entirely similar to that used in Lemma 5.32, we can deduce
that 7w contains at least 4.2@'_'0' = non-overlapping patterns of the form

an
8(vh+1)2I=11Cl
A S. 7 A 5
=60 =0=10,
where:

6]p = [0']p € Conf}, and 0] = [¢'] € Conf?,

_ 7
A, A € LT each have length no greater than w,

f [Z]-[C]
d € L™ has length no greater than %, and

the set of occurrence-test labels occurring in A and A in both cases is OT.

2F0rmally, we could directly invoke Lemma 5.3, as follows. Write the sequence of transition labels of 7 as
SoA101A2 - - - Apdn, with the \; as above. Next, formally replace each instance of A\; whose set of occurrence-
test labels is OT by a new symbol O; if needed, add dummy non-O symbols to the end of the sequence to
bring its length up to n, and call the resulting sequence (w;). Finally, note that the singleton set {O} is
M’T‘%-frequent in (w;).

130 P. BOUYER, N. MARKEY, J. OUAKNINE, PH. SCHNOEBELEN, AND J. WORRELL

Consider such a pattern. Observe that A must contain at least one occurrence-test label
a¢c with ¢ ¢ D and such that the label cla occurs in A, otherwise S would have an infinite
run according to Lemma 5.2. Pick any such occurrence-test label and let us denote it a¢c.

We now aim to bound the size of channel ¢ in the 6 configuration of our patterns. Note
that since A and A contain the same set of occurrence-test labels, the label a¢c occurs in .
That is to say, somewhere between configurations 6 and #’, we know that channel ¢ did not
contain any occurrence of a. On the other hand, an a was written to the tail of channel ¢
at some point between configurations 6 and #’, since X\ contains the label cla. For that a to
be subsequently read off the channel, the whole contents of channel ¢ must have been read
from the time of the cla transition in A to the time of the a¢c transition in A. Finally, note
that, according to our lazy operational semantics, the size of a channel changes by at most
1 with each transition. It follows that the size of channel ¢ in configuration 6 is at most
AL+ 18] + V| < QpHE+82Po)

Let D' = DU{c}, ané define the bounding function f’': D’ — N such that f'(d) = f(d)
f 2lZlIC]
foralld € D, and f'(c) = (vh+1)(a+8-21E1Cl

«
patterns, we conclude that the set Conf I s o -frequent in [7]pr, where o =

. From our lower bound on the number of special
[0}

We now string everything together to obtain a bound on n, the length of our original
arbitrary run 7. For convenience, let c1,ca, ..., ¢|c| be an enumeration of the channel names
in C in the order in which they are picked in the course of our proof; thus D; = D;_1 U{¢;}
for 1 <i <|C|. Correspondingly, let M; = fi(¢;), for 0 < i < |C|, with the convention that
My = 1; it is easy to see that M; is the maximum value of f; over D;, since the sequences

<fy{)"i> and (o) are monotonically increasing and decreasing respectively.

From Equation 5.1, we easily get that ’ygi € O(|S|ISIM:) where |S| is any reasonable
measure of the size of our ICMOT S. Combining this with our expressions for f’ and o’

. 1512 M; . ..
above, we obtain that M; L 0 (ST> for 0 < i < |C|—1. This, in turns, lets

oy

us derive bounds for ’yé‘c‘ and «)¢|, which imply, together with Equation 5.2, that
SP(IS)
n < 22: ,
where P is some polynomial (independent of S), and the total height of the tower of expo-
nentials is |C| + 2.
The ICMOT S therefore has an infinite run iff it has a run whose length exceeds the
above bound. Since the lazy operational semantics is finitely branching (bounded, in fact, by

the size of the transition relation), this can clearly be determined in (|C|+1)-EXPSPACE,
which concludes the proof of Theorem 5.1.]

Theorems 4.1 and 5.1 immediately entail the following;:

Corollary 5.4. The structural termination problem—are all computations of the machine
finite, starting from the initial control state but regardless of the initial channel contents?—is
decidable for ICMETs and ICMOTs, with non-elementary but primitive-recursive complex-
1ty.

ON TERMINATION FOR FAULTY CHANNEL MACHINES 131

6. Conclusion

The main result of this paper is that termination for insertion channel machines with
emptiness or occurrence testing has non-elementary, yet primitive recursive complexity.
This result is in sharp contrast with the equivalent problem for lossy channel machines,
which has non-primitive recursive complexity.

We remark that the set of configurations from which a given insertion channel machine
has at least one infinite computation is finitely representable (thanks to the theory of well-
structured transition systems), and is in fact computable as the greatest fixed point of the
pre-image operator. The proof of Theorem 5.1, moreover, shows that this fixed point will be
reached in primitive-recursively many steps. The set of configurations from which there is
an infinite computation is therefore primitive-recursively computable, in contrast with lossy
channel machines for which it is not even recursive (as can be seen from the undecidability
of structural termination).

Finally, another interesting difference with lossy channel machines can be highlighted
by quoting a slogan from [16]: “Lossy systems with k channels can be [polynomially] encoded
into lossy systems with one channel.” We can deduce from Theorems 4.1 and 5.1 that any
such encoding, in the case of insertion channels machines, would require non-elementary
resources to compute, if it were to preserve termination properties.

References

[1] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. In Proc. 8th
Annual Symposium on Logic in Computer Science (LICS’93), pages 160-170. IEEE Computer Society
Press, 1993.

[2] Parosh Aziz Abdulla and Bengt Jonsson. Undecidable verification problems for programs with unreliable
channels. Information and Computation, 130(1):71-90, 1996.

[3] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of the ACM,
30(2):323-342, 1983.

[4] Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to verify than
perfect channels. Information and Computation, 124(1):20-31, 1996.

[5] Pierre Chambart and Philippe Schnoebelen. Post embedding problem is not primitive recursive, with
applications to channel systems. In Proc. 27th International Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’07), volume 4855 of Lecture Notes in Computer
Science, pages 265—276. Springer, 2007.

[6] Alain Finkel. Decidability of the termination problem for completely specificied protocols. Distributed
Computing, 7(3):129-135, 1994.

[7] Alain Finkel and Philippe Schnoebelen. Well structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63-92, 2001.

[8] Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical
Society, 2:326-336, 1952.

[9] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley, 1979.

[10] Ranko Lazié. Safely freezing LTL. In Proc. 26th International Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’06), volume 4337 of Lecture Notes in Computer
Science, pages 381-392. Springer, 2006.

[11] Ranko Lazié¢, Thomas C. Newcomb, Joél Ouaknine, A. W. Roscoe, and James Worrell. Nets with
tokens which carry data. In Proc. 28th International Conference on Application and Theory of Petri
Nets (ICATPN’07), volume 4546 of Lecture Notes in Computer Science, pages 301-320. Springer, 2007.

[12] Richard Mayr. Undecidable problems in unreliable computations. Theoretical Computer Science,
297(1):35-65, 2003.

132

(13]

(14]

(15]

[16]

(17]

P. BOUYER, N. MARKEY, J. OUAKNINE, PH. SCHNOEBELEN, AND J. WORRELL

Joél Ouaknine and James Worrell. On the decidability of Metric Temporal Logic. In Proc. 19th Annual
Symposium on Logic in Computer Science (LICS’05), pages 188-197. IEEE Computer Society Press,
2005.

Joél Ouaknine and James Worrell. On metric temporal logic and faulty Turing machines. In Proc. 9th In-
ternational Conference on Foundations of Software Science and Computation Structures (FoSSaCS’06),
volume 3921 of Lecture Notes in Computer Science, pages 217-230. Springer, 2006.

Joél Ouaknine and James Worrell. Safety metric temporal logic is fully decidable. In Proc. 12th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’06),
volume 3920 of Lecture Notes in Computer Science, pages 411-425. Springer, 2006.

Philippe Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity. Informa-
tion Processing Letters, 83(5):251-261, 2002.

Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time: Preliminary
report. In Proc. 5th AMS Symposium on Theory of Computing, 1973.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 133-142
www.stacs-conf.org

STACKELBERG NETWORK PRICING GAMES

PATRICK BRIEST !, MARTIN HOEFER 2, AND PIOTR KRYSTA !

! Department of Computer Science, The University of Liverpool, United Kingdom.
Supported by DFG grant Kr 2332/1-2 within Emmy Noether program.
E-mail address: {patrick.briest,p.krysta}@liverpool.ac.uk

2 Department of Computer Science, RWTH Aachen University, Germany.
Supported by DFG Graduiertenkolleg 1298 “AlgoSyn”.
E-mail address: mhoefer@informatik.rwth-aachen.de

ABSTRACT. We study a multi-player one-round game termed Stackelberg Network Pricing
Game, in which a leader can set prices for a subset of m priceable edges in a graph. The
other edges have a fixed cost. Based on the leader’s decision one or more followers optimize
a polynomial-time solvable combinatorial minimization problem and choose a minimum
cost solution satisfying their requirements based on the fixed costs and the leader’s prices.
The leader receives as revenue the total amount of prices paid by the followers for priceable
edges in their solutions, and the problem is to find revenue maximizing prices. Our model
extends several known pricing problems, including single-minded and unit-demand pricing,
as well as Stackelberg pricing for certain follower problems like shortest path or minimum
spanning tree. Our first main result is a tight analysis of a single-price algorithm for the
single follower game, which provides a (1+ ¢) log m-approximation for any ¢ > 0. This can
be extended to provide a (1 + ¢)(log k 4 log m)-approximation for the general problem and
k followers. The latter result is essentially best possible, as the problem is shown to be
hard to approximate within O(log® k+1log® m). If followers have demands, the single-price
algorithm provides a (1 + E)mz—approximation, and the problem is hard to approximate
within O(m?) for some £ > 0. Our second main result is a polynomial time algorithm for
revenue maximization in the special case of Stackelberg bipartite vertex cover, which is
based on non-trivial max-flow and LP-duality techniques. Our results can be extended to
provide constant-factor approximations for any constant number of followers.

1. Introduction

Algorithmic pricing problems model the task of assigning revenue maximizing prices
to a retailer’s set of products given some estimate of the potential customers’ preferences
in purely computational [14], as well as strategic [3] settings. Previous work in this area
has mostly focused on settings in which these preferences are rather restricted, in the sense
that products are either pure complements [2, 7, 15, 16] and every customer is interested in
exactly one subset of products or pure substitutes [1, 8, 10, 14, 15, 16], in which case each

1998 ACM Subject Classification: F.2 Analysis of Algorithms and Problem Complexity.
Key words and phrases: Stackelberg Games, Algorithmic Pricing, Approximation Algorithms,
Inapproximability.

ASPECTS

-
S s%FEESEPUTER © P Briest, M. Hoefer, and P. Krysta

© Creative Commons Attribution-NoDerivs License

i SYMPOSIUM
mvr_ ON THEORETICAL
<4

134 P. BRIEST, M. HOEFER, AND P. KRYSTA

customer seeks to buy only a single product out of some set of alternatives. A customer’s
real preferences, however, are often significantly more complicated than that and therefore
pose some additional challenges.

The modelling of consumer preferences has received considerable attention in the con-
text of algorithmic mechanism design [18] and combinatorial auctions [12]. The established
models range from relatively simple bidding languages to bidders that are represented by or-
acles allowing certain types of queries, e.g., revealing the desired bundle of items given some
fixed set of prices. The latter would be a somewhat problematic assumption in the theory
of pricing algorithms, where we usually assume to have access to a rather large number of
potential customers through some sort of sampling procedure and, thus, are interested in
preferences that allow for a compact kind of representation.

In this paper we focus on customers that have non-trivial preferences, yet can be fully
described by their types and budgets and do not require any kind of oracles. Assume that a
company owns a subset of the links in a given network. The remaining edges are owned by
other companies and have fixed publicly known prices and some customer needs to purchase
a path between two terminals in the network. Since she is acting rational, she is going to buy
the shortest path connecting her terminals. How should we set the prices on the priceable
edges in order to maximize the company’s revenue? What if there is another customer, who
needs to purchase, e.g., a minimum cost spanning tree?

This type of pricing problem, in which preferences are implicitly defined in terms of some
optimization problem, is usually referred to as Stackelberg pricing [23]. In the standard 2-
player form we are given a leader setting the prices on a subset of the network and a follower
seeking to purchase a min-cost network satisfying her requirements. We proceed by formally
defining the model before stating our results.

1.1. Model and Notation

In this paper we consider the following class of multi-player one-round games. Let
G = (V, E) be a multi-graph. There are two types of players in the game, one leader and
one or more followers. We consider two classes of edge and vertex games, in which either
the edges or the vertices have costs. For most of the paper, we will consider edge games, but
the definitions and results for vertex games follow analogously. In an edge game, the edge
set F is partitioned into two sets E = E, U Ey with E, N Ef = (). For each fized-price edge
e € Iy there is a fixed cost c(e) > 0. For each priceable edge e € E,, the leader can specify
a price p(e) > 0. We denote the number of priceable edges by m = |E,|. Each follower
i=1,...,k has a set S; C 2F of feasible subnetworks. The weight w(S) of a subnetwork
S € §; is given by the costs of fixed-price edges and the price of priceable edges,

w(S)= Y e+ Y ple)
e€SNEy e€SNE,

The revenue r(S) of the leader from subnetwork S is given by the prices of the priceable
edges that are included in S, i.e.,

e€SNE,

Throughout the paper we assume that for any price function p every follower ¢ can in
polynomial time find a subnetwork S;(p) of minimum weight. Our interest is to find the

STACKELBERG NETWORK PRICING GAMES 135

pricing function p* for the leader that generates maximum revenue, i.e.,
k
p’=argmaxy (S} (p)).

=1
We denote the value of this maximum revenue by r*. To guarantee that the revenue is
bounded and the optimization problem is non-trivial, we assume that there is at least one
feasible subnetwork for each follower ¢ that is composed only of fixed-price edges. In order
to avoid technicalities, we assume w.l.o.g. that among subnetworks of identical weight the
follower always chooses the one with higher revenue for the leader. It is not difficult to see
that in the 2-player case we also need followers with a large number of feasible subnetworks
in order to make the problem interesting.

Proposition 1.1. Given follower j and a fized subnetwork S; € S;, we can compute prices
p with w(S;) = minges; w(S) mazimizing v(S;) or decide that such prices do not exist in
polynomial time. In the 2-player game, if |S| = O(poly(m)), revenue mazimization can be
done in polynomial time.

The proof of Proposition 1.1 will appear in the full version. In general we will refer to
the revenue optimization problem by STACK. Note that our model extends the previously
considered pricing models and is essentially equivalent to pricing with general valuation
functions, a problem that has independently been considered in [4]. Every general valuation
function can be expressed in terms of Stackelberg network pricing on graphs, and our
algorithmic results apply in this setting as well.

1.2. Previous Work and New Results

The single-follower shortest path Stackelberg pricing problem (STACKSP) has first been
considered by Labbé et al. [17], who derive a bilevel LP formulation of the problem and prove
NP-hardness. Roch et al. [19] present a first polynomial time approximation algorithm with
a provable performance guarantee, which yields logarithmic approximation ratios. Bouhtou
et al. [5] extend the problem to multiple (weighted) followers and present algorithms for a
restricted shortest path problem on parallel links. For an overview of most of the initial
work on Stackelberg network pricing the reader is referred to [22]. A different line of research
has been investigating the application of Stackelberg pricing to network congestion games
in order to obtain low congestion Nash equilibria for sets of selfish followers [11, 20, 21].

More recently, Cardinal et al. [9] initiated the investigation of the corresponding mini-
mum spanning tree (STACKMST) game, again obtaining a logarithmic approximation guar-
antee and proving APX-hardness. Their single-price algorithm, which assigns the same price
to all priceable edges, turns out to be even more widely applicable and yields similar ap-
proximation guarantees for any matroid based Stackelberg game.

The first result of our paper is a generalization of this result to general Stackelberg
games. The previous limitation to matroids stems from the difficulty to determine the
necessarily polynomial number of candidate prices that can be tested by the algorithm.
We develop a novel characterization of the small set of threshold prices that need to be
tested and obtain a polynomial time (1+¢)H,,-approximation (where H,, denotes the m’th
harmonic number) for arbitrary € > 0, which turns out to be perfectly tight for shortest
path as well as minimum spanning tree games. This result is found in Section 2.

136 P. BRIEST, M. HOEFER, AND P. KRYSTA

We then extend the analysis to multiple followers, in which case the approximation
ratio becomes (1 + €)(Hy + H,,). This can be shown to be essentially best possible by an
approximation preserving reduction from single-minded combinatorial pricing [13]. Extend-
ing the problem even further, we also look at the case of multiple weighted followers, which
arises naturally in network settings where different followers come with different routing
demands. It has been conjectured before that no approximation essentially better than the
number of followers is possible in this scenario. We disprove this conjecture by presenting
an alternative analysis of the single-price algorithm resulting in an approximation ratio of
(1 +e)m?. Additionally, we derive a lower bound of O(m?) for the weighted player case.
This resolves a previously open problem from [5]. The results on multiple followers are
found in Section 3.

The generic reduction from single-minded to Stackelberg pricing yields a class of net-
works in which we can price the vertices on one side of a bipartite graph and players aim
to purchase minimum cost vertex covers for their sets of edges. This motivates us to return
to the classical Stackelberg setting and consider the 2-player bipartite vertex cover game
(STACKVC). As it turns out, this variation of the game allows polynomial-time algorithms
for exact revenue maximization using non-trivial algorithmic techniques. We first present
an upper bound on the possible revenue in terms of the min-cost vertex cover not using
any priceable vertices and the minimum portion of fixed cost in any possible cover. Us-
ing iterated max-flow computations, we then determine a pricing with total revenue that
eventually coincides with our upper bound. These results are found in Section 4.

Finally, Section 5 concludes and presents several intriguing open problems for further
research. Some of the proofs have been omitted due to space limitations.

2. A Single-Price Algorithm for a Single Follower

Let us assume that we are faced with a single follower and let ¢y denote the cost of
a cheapest feasible subnetwork for the follower not containing any of the priceable edges.
Clearly, we can compute cg by assigning price +o0o to all priceable edges and simulating
the follower on the resulting network. The single-price algorithm proceeds as follows. For
j = 0,...,[logco] it assigns price p; = (1 + €)’ to all priceable edges and determines
the resulting revenue r(p;). It then simply returns the pricing that results in maximum
revenue. We present a logarithmic bound on the approximation guarantee of the single-
price algorithm.

Theorem 2.1. Given any € > 0, the single-price algorithm computes an (1 + €)H,,-
approximation with respect to r*, the revenue of an optimal pricing.

2.1. Analysis

The single-price algorithm has previously been applied to a number of different com-
binatorial pricing problems [1, 15]. The main issue in analyzing its performance guarantee
for Stackelberg pricing is to determine the right set of candidate prices. We first derive a
precise characterization of these candidates and then argue that the geometric sequence of
prices tested by the algorithm is a good enough approximation. Slightly abusing notation,

STACKELBERG NETWORK PRICING GAMES 137

we let p refer to both price p and the assignment of this price to all priceable edges. If there
exists a feasible subnetwork for the follower that uses at least j priceable edges, we let

;= max{p‘ |S*(p) N Ep| > j}

be the largest price at which such a subnetwork is chosen. If no feasible subnetwork with
at least j priceable edges exists, we set §; = 0. As we shall see, these thresholds are the key
to prove Theorem 2.1.

We want to derive an alternative characterization of the values of 6. For each 1 < j <m
we let ¢; refer to the minimum sum of prices of fixed-price edges in any feasible subnetwork
containing at most j priceable edges, formally

cj:min{ Z fe‘SES : |SﬂEp|§j}7

eESﬁEf

and A; = ¢y — ¢j. For ease of notation let Ag = 0. Consider the set of points (0,A),
(1,Ay),...,(m,Ay,) on the plane. By H we refer to a minimum selection of points spanning
the upper convex hull of the point set. It is a straightforward geometric observation that
we can define H as follows:

Ap—A;
> max; <k B J

Fact 1. Point (j, A;) belongs to H if and only if min;; A;:fi

We now return to the candidate prices. By definition we have that 61 > 05 > --- > 0,,.
We say that 0; is true threshold value if 0; > 641, i.e., if at price 6; the subnetwork chosen
by the follower contains exactly j priceable edges. Let i1 < is < --- < iy denote the indices,
such that 0;, are true threshold values and for ease of notation define ip = 0. For an

example, see Figure 1.
Lemma 2.2. 0; is true threshold value if and only if (j, Aj;) belongs to H.

Proof. "=" Let 0; be true threshold value, i.e., at price f; the chosen subnetwork contains
exactly j priceable edges. We observe that at any price p the cheapest subnetwork containing
J priceable edges has cost ¢; + j-p = cy — Aj + j - p. Thus, at price 6; it must be the case
that Aj—j-0; > A;—i-0; foralli <jand Aj—j5-0; > A —k-0; for all j <k. It follows
that

A

A An — A
min ———° > 0; > max —2_—J

i<y j—1 j<k k—3j
and, thus, we have that (j, A;) belongs to H.
7«" Assume now that (j,A;) belongs to H and let
A=A
p = min ——-—.
1<) J—1
Consider any k < j. It follows that Ay, —k-p=A;—j-p—(A;—Ap)+(—k)p < A;—7-p,
since p < (A; — Ag)/(j — k) and, thus, the network chosen at price p cannot contain less
than j priceable edges. Analogously, let k& > j. Using p > (A — A;)/(k — j) we obtain
Ap—k-p=Aj—j-p+(Ar—A;)—(k—Jj)p < Aj—j-p, and, thus, the subnetwork chosen
at price p contains exactly j priceable edges. We conclude that 6; is a true threshold. m

138 P. BRIEST, M. HOEFER, AND P. KRYSTA

Figure 1: A geometric interpretation of (true) threshold values 6;. The follower seeks to
purchase a shortest path from s to t, dashed edges are fixed-cost.

It is not difficult to see that the price p defined in the second part of the proof of
Lemma 2.2 is precisely the threshold value 6;. Let 6;, be any true threshold. Since points
(t0,Ddg), - -+, (ig, A,) define the convex hull we can write that min;«;, (A;, — A;)/(ix —1) =

(A, — Ay,)/ (i — ir—1). We state this important fact again in the following lemma.
Ay —A
Lemma 2.3. For all 1 < k < { it holds that 0;, = ﬁ

From the fact that points (ig, Aiy), ..., (ir, A;,) define the convex hull we know that
A, = Ay, de., Ay, is the largest of all A-values. On the other hand, each A; describes the
maximum revenue that can be made from a subnetwork with at most j priceable edges and,

thus, A,, is clearly an upper bound on the revenue made by an optimal price assignment.
Fact 2. It holds that r* < A;,.

By definition of the §;’s it is clear that at any price below 6;, the subnetwork chosen by
the follower contains no less than i, priceable edges. Furthermore, for each 6;, the single-
price algorithm tests a candidate price that is at most a factor (14 ¢) smaller than §;, . Let
r(pi,), 7(0;),) denote the revenue that results from assigning price p;, or 6;, to all priceable
edges, respectively.

Fact 3. For each 0;, there exists a price p;, with (1 + 8)_19,-k < pi, < 0;, that is tested by
the single-price algorithm. Especially, it holds that r(p;,) > (1+¢)~'r(6;,)

Finally, we know that the revenue made by assigning price ;, to all priceable edges
is 7(0;,) = i - 0;,. Let r denote the revenue of the single-price solution returned by the
algorithm. We have:

m
(49 Hr = (49372049 Y Tz049Y Y rib)
]:1‘7 k=1j=t)_ 1+1‘7 k=1j=t_1+1
V4 ik V4 ik .
T(sz) Zk"gik
Sy Y My y ol
k=1j=ip_1+1 k=1j=ip_1+1
0 i 0 l
> > (i —ig-1) 2 =Y (A;, — Ay,_,) , by Lemma 2.3
23

STACKELBERG NETWORK PRICING GAMES 139

Figure 2: An instance of Stackelberg Shortest Path, on which the analysis of the approxi-
mation guarantee of the single-price algorithm is tight. Bold edges are priceable,
vertex labels of regular edges indicate cost. The instance yields tightness of the
analysis also for Stackelberg Minimum Spanning Tree.

This concludes the proof of Theorem 2.1.

2.2. Tightness

The example in Figure 2 shows that our analysis of the single-price algorithm’s approx-
imation guarantee is tight. The follower wants to buy a path connecting vertices s and
t. In an optimal solution we set the price of edge e; to m/j. Then edges ey,..., e, form
a shortest path of cost mH,,. On the other hand, assume that all edges ey,...,e, are
assigned the same price p. Every choice will lead to a revenue of at most m. Similar results
apply if the follower purchases a minimum spanning tree instead of a shortest path.

The best known lower bound for 2-player Stackelberg pricing is found in [9], where
APX-hardness is shown for the minimum spanning tree case. To the authors’ best knowl-
edge, up to now no non-constant inapproximability results have been proven. We proceed
by extending our results to multiple followers, in which case previous results on other com-
binatorial pricing problems yield strong lower bounds.

3. Extension to Multiple Followers

In this section we extend our results on general Stackelberg network pricing to scenarios
with multiple followers. Recall that each follower j is characterized by her own collection
§; of feasible subnetworks and k denotes the number of followers. Section 3.1 extends the
analysis from the single follower case to prove a tight bound of (1 + ¢)(Hy + H,,) on the
approximation guarantee of the single-price algorithm. In addition, it presents an alterna-
tive analysis that applies even in the case of weighted followers and yields approximation
guarantees that do not depend on the number of followers. Section 3.2 derives (near) tight
inapproximability results based on known hardness results for combinatorial pricing. Proofs
are omitted due to space limitations.

3.1. Guarantees of the Single-Price Algorithm

Let an instance of Stackelberg network pricing with some number k& > 1 of followers be
given. We obtain a similar bound on the single-price algorithm’s approximation guarantee.

Theorem 3.1. The single-price algorithm computes an (1 + €)(Hy + H,,)-approximation
with respect to r*, the revenue of an optimal pricing, for STACK with multiple followers.

140 P. BRIEST, M. HOEFER, AND P. KRYSTA

The proof of Theorem 3.1 reduces the problem to the single player case. However, it
relies essentially on the fact that we are considering the single-price algorithm. It does not
imply anything about the relation of these two cases in general.

An even more general variation of Stackelberg pricing, in which we allow multiple
weighted followers, arises naturally in the context of network pricing games with different
demands for each player. This model has been previously considered in [5]. Formally,
for each follower j we are given her demand d; € R{. Given followers buying subnetworks
S1,...,Sk, the leader’s revenue is defined as Z?Zl d; ZeeS]ﬂEp p(e). It has been conjectured
before that in the weighted case no approximation guarantee essentially beyond O(k-logm)
is possible [19]. We show that an alternative analysis of the single-price algorithm yields
ratios that do not depend on the number of followers.

Theorem 3.2. The single-price algorithm computes an (1 + €)m?-approzimation with re-
spect to r*, the revenue of an optimal pricing, for STACK with multiple weighted followers.

3.2. Lower Bounds

Hardness of approximation of Stackelberg pricing with multiple followers follows imme-
diately from known results about other combinatorial pricing models. Theorem 3.3 is based
on a reduction from the (weighted) unit-demand envy-free pricing problem with uniform
budgets, which is known to be inapproximable within O(m®) (m denotes the number of
products) [6]. Here we are given a universe of products and a collection of (weighted) cus-
tomers, each of which buys the cheapest product out of some set of alternatives with a price
not exceeding her budget. The resulting Stackelberg game is an instance of the so-called
river tariffication problem. Each player needs to route her demand along one out of a num-
ber of parallel links connecting her respective source and sink pair. One direct fixed price
connection determines her maximum budget for purchasing a priceable link. Theorem 3.3
resolves an open problem from [5]. The construction is depicted in Figure 3(a).

Theorem 3.3. The Stackelberg network pricing problem with multiple weighted followers
is hard to approvimate within O(m*) for some € > 0, unless NP C (5 BPTIME(2"6).
The same holds for the river tariffication problem.

Theorem 3.4 is based on a reduction from the single-minded combinatorial pricing
problem, in which each customer is interested in a subset of products and purchases the
whole set if the sum of prices does not exceed her budget. Single-minded pricing is hard to
approximate within O(log® k+1log® m) [13], where k and m denote the numbers of customers
and products, respectively. Theorem 3.4 shows that the single-price algorithm is essentially
best possible for multiple unweighted followers.

Theorem 3.4. The Stackelberg network pricing problem with multiple unweighted follow-
ers is hard to approzimate within O(log®k + log®m) for some ¢ > 0, unless NP C (55

BPTIME(Q”‘S). The same holds for bipartite Stackelberg Vertex Cover Pricing (STACKVC).

The idea for the proof of Theorem 3.4 is illustrated in Figure 3(b). We define an instance
of STACKVC in bipartite graphs. Vertices on one side of the bipartition are priceable and
represent the universe of products, vertices on the other side encode customers and have
fixed prices corresponding to the respective budgets. For each customer we define a follower
in the Stackelberg game with edges connecting the customer vertex and all product vertices

STACKELBERG NETWORK PRICING GAMES 141

Figure 3: Reductions from pricing problems to Stackelberg pricing. (a) Unit-demand re-
duces to directed STACKSP. Bold edges are priceable, edge labels indicate cost.
Regular edges without labels have cost 0. Vertex labels indicate source-sink pairs
for the followers. (b) Single-minded pricing reduces to bipartite STACKVC. Filled
vertices are priceable, vertex labels indicate cost. For each customer there is one
follower, who strives to cover all incident edges.

the customer wishes to purchase. Now every follower seeks to buy a min-cost vertex cover
for her set of edges. We proceed by taking a closer look at this special type of Stackelberg
pricing game and especially focus on the interesting case of a single follower.

4. Stackelberg Vertex Cover

Stackelberg Vertex Cover Pricing is a vertex game, however, the approximation results
for the single-price algorithm continue to hold. Note that in general the vertex cover problem
is hard, hence we focus on settings, in which the problem can be solved in polynomial time.
In bipartite graphs the problem can be solved optimally by using a classic and fundamental
max-flow /min-cut argumentation. If all priceable vertices are in one side of the partition,
then for multiple followers there is evidence that the single-price algorithm is essentially best
possible. Our main theorem in this section states that the setting with a single follower can
be solved exactly. As a consequence, general bipartite STACKVC can be approximated by
a factor of 2.

Theorem 4.1. If for a bipartite graph G = (AU B, E) we have V,, C A, then there is a
polynomial time algorithm computing an optimal price function p* for STACKVC.

Before we prove the theorem, we mention that the standard problem of minimum vertex
cover in a bipartite graph G with disjoint vertex sets A, B and edges F C A X B can be
solved by the following application of LP-duality. The LP-dual is interpreted as a maximum
flow problem on an adjusted flow network GG4. In particular, G4 is constructed by adding a
source s and a sink ¢ to G and connecting s to all vertices v € A with directed edges (s, v),
and ¢ to all vertices v € B with directed edges (v,t). Each such edge gets as capacity the
cost of the involved original vertex - i.e. p(v) for v € V,, or ¢(v) if v € V. Furthermore, all
original edges of the graph are directed from A to B and their capacity is set to infinity.
The value of a maximum s-t-flow equals the cost of a minimum cut, and in addition the
cost of a minimum cost vertex cover of the graph G (for an example see Figure 4). To
obtain such a cover consider an augmenting s-t-path in G4, which is a path traversing only
forward edges with slack capacity and backward edges with non-zero flow. The maximum

142 P. BRIEST, M. HOEFER, AND P. KRYSTA

Figure 4: Construction to solve bipartite STACKVC with priceable vertices in one partition
and a single follower. Filled vertices are priceable, vertex labels indicate cost. (a)
A graph G; (b) The flow network G4 obtained from G. Grey parts are source and
sink added by the transformation. Edge labels indicate a suboptimal s-t-flow; (c)
An augmenting path P indicated by bold edges and the resulting flow. Every
such path P starts with a priceable vertex, and all priceable vertices remain in
the optimum cover at all times.

flow can be computed by iteratively increasing flow along such paths. The vertices in the
minimum vertex cover then correspond to incident edges in a minimum cut. In particular,
the minimum vertex cover includes a vertex v € A if the flow allows no augmenting s-v-path
from s to v, i.e. if every path from s to v has at least one backward edge with no flow, or
at least one forward edge without slack capacity.

We use a similar idea to obtain the optimal pricing for STACKVC. Let n = |V}| and
the values ¢ for 1 < j < n denote the minimum sum of prices of fixed-price vertices in any
feasible subnetwork containing at most j priceable vertices. Then, A; = ¢y — ¢; are again
upper bounds on the revenue that can be extracted from a network that includes at most
j priceable vertices. We thus have r* < A,,.

Algorithm 1: Solving STACKVC in bipartite graphs with V,, C A

1 Construct the flow network G4 by adding nodes s and ¢

2 Set p(v) =0 for all v € V),

3 Compute a maximum s-t-flow ¢ in Gy

4 while there is v € V), s.t. increasing p(v) yields an augmenting s-t-path P do
5 L Increase p(v) and ¢ along P as much as possible

Suppose all priceable vertices are located in one partition V,, C A and consider Algo-
rithm 1. We denote by Carg the cover calculated by Algorithm 1. At first, when computing
the maximum flow on G4 holding all p(v) = 0, the algorithm obtains a flow of ¢,,. We first
note that in the following while-loop we will never face a situation, in which there is an
augmenting s-t-path (traversing forward edges with slack capacity and backward edges with
non-zero flow) starting with a fixed-price vertex. We call such a path a fized path, while an
augmenting s-t-path starting with a priceable vertex is called a price path.

Lemma 4.2. FEvery augmenting path considered in the while-loop of Algorithm 1 is a price
path.

Proof. We prove the lemma by induction on the while-loop and by contradiction. Suppose
that in the beginning of the current iteration there is no fixed path. In particular, this is

STACKELBERG NETWORK PRICING GAMES 143

true for the first iteration of the while-loop. Then, suppose that after we have increased the
flow over a price path P,, a fixed path Py is created. Py must include some of the edges of
P,. Consider the vertex w at which P; hits P,. By following Py from s to w and P, from
w to ¢ there is a fixed path, which must have been present before flow was increased on P,,.
This is a contradiction and proves the lemma. [

Recall from above that the optimum cover contains a vertex v € A if there is no
augmenting s-v-path from s to v. In particular, this means that for a vertex v € ANC the
following two properties are fulfilled: (1) there is no slack capacity on edge (s,v); (2) there
is no augmenting s-v-path from s over a different vertex v’ € A. As the algorithm always
adjusts the price of a vertex v to equal the current flow on (s,v), only the violation of
property (2) can force a vertex v € V), to leave the cover. In particular, such an augmenting
s-v-path must start with a fixed-price vertex, and it must reach v by decreasing flow over
one of the original edges (v, w) for w € B. We call such a path a fized v-path.

Lemma 4.3. Algorithm 1 creates no fized v-path for any priceable vertex v € V.

The proof of Lemma 4.3 is similar to the proof of Lemma 4.2 and will appear in the
full version. As there is no augmenting path from s to any priceable vertex at any time,
the following lemma is now obvious.

Lemma 4.4. Ca;q includes all priceable vertices.

Proof of Theorem 4.1. Finally, we can proceed to argue that the computed pricing is
optimal. Suppose that after executing Algorithm 1 we increase p(v) over ¢(s,v) for any
priceable vertex v. As we are at the end of the algorithm, it does not allow us to increase
the flow in the same way. Thus, the adjustment creates slack capacity on all the edges (s, v)
for any v € V), and causes every priceable vertex to leave Carg. The new cover must be
the cheapest cover that excludes every priceable vertex, i.e. it must be Cy and have cost
co. As we have not increased the flow, we know that the cost of Car¢ is also ¢g. Note
that before starting the while-loop the cover was C,, of cost ¢,. As all flow increase in the
while-loop was made over price paths and all the priceable vertices stay in the cover, the
revenue of Carg must be ¢g — ¢, = A,,. This is an upper bound on the optimum revenue,
and hence the price function parg derived with the algorithm is optimal. Finally, notice
that adjusting the price of the priceable vertices in each iteration is not necessary. We can
start with computing C,, and for the remaining while-loop set all prices to +oc. This will
result in the desired flow, which directly generates the final price for every vertex v as flow
on (s,v). Hence, we can get optimal prices with an adjusted run of the standard polynomial
time algorithm for maximum flow in G4. This proves Theorem 4.1.]

Theorem 4.5. There is a polynomial time 2-approximation algorithm for bipartite STACKVC.

In Theorem 4.5 we use the previous analysis to get a 2-approximation of the optimum
revenue for general bipartite STACKVC. This results in a 2k-approximation for any number
of k followers. In contrast, the analysis of the single-price algorithm is tight even for one
follower and all priceable vertices in one partition. Moreover, bipartite STACKVC for at
least two followers is NP-hard by a reduction from the highway pricing problem [7].

5. Open problems

There are a number of important open problems that arise from our work. We believe
that the single-price algorithm is essentially best possible even for a single follower and

144

P. BRIEST, M. HOEFER, AND P. KRYSTA

general Stackelberg pricing games. However, there is no matching logarithmic lower bound,
and the best lower bound remains APX-hardness from [9]. In addition, we believe that for
weighted followers a better upper bound than m? is possible, which would decrease the gap
to the Q(m?) lower bound we observed. More generally, extending other algorithm design
techniques to cope with pricing problems is a major open problem.

References

1]
2]
3]

[4]

[5]

(6]
[7]

8]
[9]

(10]

G. Aggarwal, T. Feder, R. Motwani, and A. Zhu. Algorithms for Multi-Product Pricing. In Proc.
of 31st ICALP, 2004.

N. Balcan and A. Blum. Approximation Algorithms and Online Mechanisms for Item Pricing. In
Proc. of 7th EC, 2006.

N. Balcan, A. Blum, J. Hartline, and Y. Mansour. Mechanism Design via Machine Learning. In
Proc. of 46th FOCS, 2005.

M. Balcan, A. Blum, and Y. Mansour. Single Price Mechanisms for Revenue Maximization in
Unlimited Supply Combinatorial Auctions. Technical Report CMU-CS-07-111, Carnegie Mellon
University, 2007.

M. Bouhtou, A. Grigoriev, S. van Hoesel, A. van der Kraaij, F. Spicksma, and M. Uetz. Pricing
Bridges to Cross a River. Naval Research Logistics, 54(4): 411-420, 2007.

P. Briest. Towards Hardness of Envy-Free Pricing. ECCC Technical Report TR06-150, 2006.

P. Briest and P. Krysta. Single-Minded Unlimited-Supply Pricing on Sparse Instances. In Proc. of
17th SODA, 2006.

P. Briest and P. Krysta. Buying Cheap is Expensive: Hardness of Non-Parametric Multi-Product
Pricing. In Proc. of 18th SODA, 2007.

J. Cardinal, E. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and O. Weimann. The
Stackelberg Minimum Spanning Tree Game. In Proc. of 10th WADS, 2007.

S. Chawla, J. Hartline, and R. Kleinberg. Algorithmic Pricing via Virtual Valuations. In Proc. of
8th EC, 2007.

R. Cole, Y. Dodis, and T. Roughgarden. Pricing Network Edges for Heterogeneous Selfish Users. In
Proc. of 35th STOC, 2003.

P. Cramton, Y. Shoham, and R. Steinberg (Editors). Combinatorial Auctions. MIT Press, 2006.
E.D. Demaine, U. Feige, M.T. Hajiaghayi, and M.R. Salavatipour. Combination Can Be Hard:
Approximability of the Unique Coverage Problem. In Proc. of 17th SODA, 2006.

P. Glynn, P. Rusmevichientong, and B. Van Roy. A Non-Parametric Approach to Multi-Product
Pricing. Operations Research, 54(1):82-98, 2006.

V. Guruswami, J.D. Hartline, A.R. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On Profit-
Maximizing Envy-Free Pricing. In Proc. of 16th SODA, 2005.

J. Hartline and V. Koltun. Near-Optimal Pricing in Near-Linear Time. In Proc. of 8th WADS, 2005.
M. Labbé, P. Marcotte, and G. Savard. A Bilevel Model of Taxation and its Application to Optimal
Highway Pricing. Management Science, 44(12): 1608-1622, 1998.

N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proc. of 31st STOC, 1999.

S. Roch, G. Savard, and P. Marcotte. An Approximation Algorithm for Stackelberg Network Pricing.
Networks, 46(1): 57-67, 2005.

T. Roughgarden. Stackelberg Scheduling Strategies. SIAM J. on Computing, 33(2): 332-350, 2004.
C. Swamy. The Effectiveness of Stackelberg Strategies and Tolls for Network Congestion Games. In
Proc. of 18th SODA, 2007.

S. van Hoesel. An Overview of Stackelberg Pricing in Networks. Research Memoranda 042, ME-
TEOR, Maastricht, 2006.

H. von Stackelberg. Marktform und Gleichgewicht (Market and Equilibrium). Verlag von Julius
Springer, Vienna, 1934.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 145-156
www.stacs-conf.org

SUBLINEAR COMMUNICATION PROTOCOLS FOR MULTI-PARTY
POINTER JUMPING AND A RELATED LOWER BOUND

JOSHUA BRODY ' AND AMIT CHAKRABARTI !
! Department of Computer Science

Dartmouth College
Hanover, NH 03755, USA

ABSTRACT. We study the one-way number-on-the-forehead (NOF) communication com-
plexity of the k-layer pointer jumping problem with n vertices per layer. This classic
problem, which has connections to many aspects of complexity theory, has seen a recent
burst of research activity, seemingly preparing the ground for an Q(n) lower bound, for
constant k. Our first result is a surprising sublinear — i.e., o(n) — upper bound for the
problem that holds for k > 3, dashing hopes for such a lower bound.

A closer look at the protocol achieving the upper bound shows that all but one of the
players involved are collapsing, i.e., their messages depend only on the composition of the
layers ahead of them. We consider protocols for the pointer jumping problem where all
players are collapsing. Our second result shows that a strong n — O(logn) lower bound
does hold in this case. Our third result is another upper bound showing that nontrivial
protocols for (a non-Boolean version of) pointer jumping are possible even when all players
are collapsing.

Our lower bound result uses a novel proof technique, different from those of earlier
lower bounds that had an information-theoretic flavor. We hope this is useful in further
study of the problem.

1. Introduction

Multi-party communication complexity in general, and the pointer jumping problem
(also known as the pointer chasing problem) in particular, has been the subject of plenty
of recent research. This is because the model, and sometimes the specific problem, bears
on several aspects of computational complexity: among them, circuit complexity [Yao90,
HG91, BT94], proof size lower bounds [BPS05] and space lower bounds for streaming al-
gorithms [AMS99, GM07, CJP08|. The most impressive known consequence of a strong

1998 ACM Subject Classification: F.1.3, F.2.2.

Key words and phrases: Communication complexity, pointer jumping, number on the forehead.

Work supported in part by an NSF CAREER Award CCF-0448277, NSF grants CCF-0514870 and EIA-
98-02068. Work partly done while the authors were visiting the University of Washington, Seattle, WA.

ASPECTS

-
S(S\FE%EMPUTER © J.Brody and A. Chakrabarti

© Creative Commons Attribution-NoDerivs License

R SYMPOSIUM
mvl'_ ON THEORETICAL
<4

146 J. BRODY AND A. CHAKRABARTI

multi-party communication lower bound would be to exhibit non-membership in the com-
plexity class ACCY; details can be found in Beigel and Tarui [BT94] or in the textbook by
Arora and Barak [ABO7]. Vexingly, it is not even known whether or not ACC® = NEXP.

The setting of multi-party communication is as follows. There are k players (for some
k > 2), whom we shall call PLR1, PLRg, ..., PLRg, who share an input k-tuple (z1, z9, ..., zg).
The goal of the players is to compute some function f(z1,x2,...,2x). There are two well-
studied sharing models: the number-in-hand model, where PLR; sees x;, and the number-
on-the-forehead (NOF) model, where PLR; sees all x;s such that j # 4. Our focus in
this paper will be on the latter model, which was first introduced by Chandra, Furst and
Lipton [CFL83]. It is in this model that communication lower bounds imply lower bounds
against ACCY. We shall use C(f) to denote the deterministic communication complexity
of f in this model. Also of interest are randomized protocols that only compute f(x)
correctly with high probability: we let R.(f) denote the e-error randomized communication
complexity of f. Our work here will stick to deterministic protocols, which is a strength for
our upper bounds. Moreover, it is not a serious weakness for our lower bound, because the
ACC® connection only calls for a deterministic lower bound.

Notice that the NOF model has a feature not seen elsewhere in communication com-
plexity: the players share plenty of information. In fact, for large k, each individual player
already has “almost” all of the input. This intuitively makes lower bounds especially hard
to prove and indeed, to this day, no nontrivial lower bound is known in the NOF model
for any explicit function with k& = w(logn) players, where n is the total input size. The
pointer jumping problem is widely considered to be a good candidate for such a lower bound.
As noted by Damm, Jukna and Sgall [DJS98], it has many natural special cases, such as
shifting, addressing, multiplication and convolution. This motivates our study.

1.1. The Pointer Jumping Problem and Previous Results

There are a number of variants of the pointer jumping problem. Here we study two
variants: a Boolean problem, MPJ}!, and a non-Boolean problem, I\TP\JZ (henceforth, we shall
drop the superscript 7). In both variants, the input is a subgraph of a fixed layered graph
that has k 4 1 layers of vertices, with layer 0 consisting of a single vertex, vg, and layers 1
through k£ — 1 consisting of n vertices each (we assume k > 2). Layer k consists of 2 vertices
in the case of MPJj, and n vertices in the case of MPJ;. The input graph is a subgraph of the
fixed layered graph in which every vertex (except those in layer k) has outdegree 1. The
desired output is the name of the unique vertex in layer k reachable from v, i.e., the final
result of “following the pointers” starting at vg. The output is therefore a single bit in the
case of MPJj, or a [logn]-bit string in the case of MPJj.!

The functions MPJ; and MPJ;, are made into NOF communication problems as follows:
for each i € [k], a description of the ith layer of edges (i.e., the edges pointing into the ith
layer of vertices) is written on PLR;’s forehead. In other words, PLR; sees every layer of edges
except the ith. The players are allowed to write one message each on a public blackboard
and must do so in the fixed order PLR1, PLRg, ..., PLRg. The final player’s message must be
the desired output. Notice that the specific order of speaking — PLR1, PLRg,...,PLRg —
is important to make the problem nontrivial. Any other order of speaking allows an easy
deterministic protocol with only O(logn) communication.

1Throughout this paper we use “log” to denote logarithm to the base 2.

SUBLINEAR PROTOCOLS FOR POINTER JUMPING 147

Consider the case k = 2. The problem MPJs is equivalent to the two-party communica-
tion problem INDEX, where Alice holds a bit-vector x € {0,1}", Bob holds an index i € [n],
and Alice must send Bob a message that enables him to output z;. It is easy to show that
C(MPJ3) = n. In fact, Ablayev [Abl96] shows the tight tradeoff R.(MPJy) = (1 — H(e))n,
where H is the binary entropy function. It is tempting to conjecture that this lower bound
generalizes as follows.

Conjecture 1.1. There is a nondecreasing function ¢ : Z* — R* such that, V& : C(MPJy) =
Qn/E(k)).

Note that, by the results of Beigel and Tarui [BT94], in order to show that MpJj, ¢ ACCO
it would suffice, for instance, to prove the following (possibly weaker) conjecture.

Conjecture 1.2. There exist constants a, 3 > 0 such that, for k = n®, C(MPJ;) = Q(n?).

Conjecture 1.1 is consistent with (and to an extent motivated by) research prior to
this work. In weaker models of information sharing than the NOF model, an equivalent
statement is known to be true, even for randomized protocols. For instance, Damm, Jukna
and Sgall [DJS98] show an Q(n/k?) communication lower bound in the so-called conservative
model, where PLR; has only a limited view of the layers of the graph behind her: she only
sees the result of following the first i — 1 pointers. Chakrabarti [Cha07] extends this bound
to randomized protocols and also shows an (n/k) lower bound in the so-called myopic
model, where PLR; has only a limited view of the layers ahead of her: she cannot see layers
1+2,... k.

For the full NOF model, Wigderson, building on the work of Nisan and Wigder-
son [NW93], showed that C'(MPJ3) = Q(y/n). This result is unpublished, but an exposition
can be found in Babai, Hayes and Kimmel [BHKO1]. Very recently, Viola and Wigder-
son [VWO07] generalized this result and extended it to randomized protocols, showing that
Ry/3(MPJy) = Q(nt/ k=1 /EOK)) - Of course, this bound falls far short of that in Conjec-
ture 1.1 and does nothing for Conjecture 1.2. However, it is worth noting that the Viola-
Wigderson bound in fact applies to the much smaller subproblem of tree pointer jumping
(denoted TPJ), where the underlying layered graph is a height-k tree, with every vertex in
layers 0 through k — 2 having n'/(*=1) children and every vertex in layer k — 1 having two
children. It is easy to see that C(TPJ;) = O(n'/(*~1). Thus, one might hope that the more
general problem MPJ; has a much stronger lower bound, as in Conjecture 1.1.

On the upper bound side, Damm et al. [DJS98] show that C(MPJ;) = O(nlog®~ n),
where log(i) n is the ith iterated logarithm of n. This improves on the trivial upper bound
of O(nlogn). Their technique does not yield anything nontrivial for the Boolean problem
MPJg, though. However, Pudlak, Rédl and Sgall [PRS97] obtain a sublinear upper bound
of O(nloglogn/logn) for a special case of MPJ3. Their protocol works only when every
vertex in layer 2 has indegree 1, or equivalently, when the middle layer of edges in the input
describes a permutation of [n].

1.2. Our Results

The protocol of Pudlak et al. [PRS97] did not rule out Conjecture 1.1, but it did suggest
caution. Our first result is the following upper bound — in fact the first nontrivial upper
bound on C(MPJ) — that falsifies the conjecture.

148 J. BRODY AND A. CHAKRABARTI

Theorem 1.3. For k > 3, we have

log1 (k—2)/(k—1)
Cors) = O ((u) |

logn

In particular, C(MPJ3) = O(n+/loglogn/logn).

A closer look at the protocol that achieves the upper bound above reveals that all
players except for PLR; behave in the following way: the message sent by PLR; depends
only on layers 1 through ¢ — 1 and the composition of layers ¢ 4+ 1 through k. We say that
PLR; is collapsing. This notion is akin to that of the aforementioned conservative protocols
considered by Damm et al. Whereas a conservative player composes the layers behind hers,
a collapsing player does so for layers ahead of hers.

We consider what happens if we require all players in the protocol to be collapsing. We
prove a strong linear lower bound, showing that even a single non-collapsing player makes
an asymptotic difference in the communication complexity.

Theorem 1.4. In a protocol for MPJ;, where every player is collapsing, some player must
communicate at least n — logn — 2 =n — O(logn) bits.

Finally, one might wonder whether the collapsing requirement is so strong that nothing
nontrivial is possible anyway. The same question can be raised for the conservative and
myopic models where 2(n/k?) and Q(n/k) lower bounds were proven in past work. It turns
out that the upper bound on C(MPJ;) due to Damm et al. [DJS98] (see Section 1.1) is
achievable by a protocol that is both conservative and myopic. We can show a similar
upper bound via a different protocol where every player is collapsing.

Theorem 1.5. For k > 3, there is an O(n log(k_l) n)-commaunication protocol for MP\JZerm

in which every player is collapsing. Here I\TP\Jzerm denotes the subproblem of MPJy, in which
layers 2 through k of the input graph are permutations of [n].

The requirement that layers be permutations is a natural one and is not new. The pro-
tocol of Pudlak et al. also had this requirement; i.e., it gave an upper bound on C'(MPJ germ).
Theorem 1.5 can in fact be strengthened slightly by allowing one of the layers from 2 through

k to be arbitrary; we formulate and prove this stronger version in Section 4.

1.3. Organization

The rest of the paper is organized as follows. Theorems 1.3, 1.4 and 1.5 are proven
in Sections 2, 3 and 4 respectively. Section 2.1 introduces some notation that is used in
subsequent sections.

2. A Sublinear Upper Bound

2.1. Preliminaries, Notation and Overall Plan

For the rest of the paper, “protocols” will be assumed to be deterministic one-way NOF
protocols unless otherwise qualified. We shall use cost(P) to denote the total number of
bits communicated in P, for a worst case input.

SUBLINEAR PROTOCOLS FOR POINTER JUMPING 149

Let us formally define the problems MPJ; and MPJ;,. We shall typically write the input
k-tuple for MPJy as (i, fa,..., fe_1,2) and that for MPJ as (4, fo,..., fx), where i € [n],

each f; € [n]" and 2 € {0,1}". We then define MPJy, : [n] x ([n][”])k_2 x {0,1}" — {0,1}
_ k—1
and MPJy, : [n] x ([n] [”]) — [n] as follows.

MPJa(i,x) == x;; MPIL(i, fa, f3,.. ., fe—1, @) := MPI_1(f2(), f3,. .., fr—1,2), for K>3
I\mQ(Z?f) = f(z)a I\ZP\Jk(ian)fé)' e 7fk‘) = @k_l(fQ(i),fg, . '7fk‘)7 for k >3.

Here, x; denotes the ith bit of the string x. It will be helpful, at times, to view strings in
{0,1}" as functions from [n] to {0,1} and use functional notation accordingly. It is often
useful to discuss the composition of certain subsets of the inputs. Let iy := 4, and for
3<j <k, let %j = fj—10---0 fo(i). Similarly, let 1 := 2, and for 1 < j < k — 2, let
Zj:=x0 fr_10---0 fj41. Unrolling the recursion in the definitions, we see that, for k > 2,

MPIg(4, f2, .o fe—1,@) = o fr_r0---0 fo(i) = &1(i) = @ ; (2.1)

’Lk7

MPI(iy fos ooy fu) = fuo-- o0 fa(i) = fulin)- (2.2)

perm m

We also consider the subproblems MpPJ,™ and MPIL ™ where each f; above is a bi-
jection from [n] to [n] (equivalently, a permutation of [n]). We let S,, denote the set of all
permutations of [n].

Here is a rough plan of the proof of our sublinear upper bound. We leverage the fact

that a protocol P for MPJ5*™ with sublinear communication is known. To be precise:

Fact 2.1 (Pudlak, Rodl and Sgall [PRS97, Corollary 4.8]). C(MpI5“™) = O(nloglogn/logn).

The exact structure of P will not matter; we shall only use P as a black box. To get a
sense for why P might be useful for, say, MPJ3, note that the players could replace fo with
a permutation 7 and just simulate P, and this would work if 7(i) = f(7). Of course, there
is no way for PLR; and PLRg3 to agree on a suitable m without communication. However, as
we shall see below, it is possible for them to agree on a small enough set of permutations
such that either some permutation in the set is suitable, or else only a small amount of side
information conveys the desired output bit to PLRg3.

This idea eventually gives us a sublinear protocol for MpJ3. Clearly, whatever upper
bound we obtain for MPJ3 applies to MPJ, for all £k > 3. However, we can decrease the
upper bound as k increases, by embedding several instances of MPJ3 into MPJ;. For clarity,
we first give a complete proof of Theorem 1.3 for the case k = 3.

2.2. A 3-Player Protocol

Following the plan outlined above, we prove Theorem 1.3 for the case k = 3 by plugging
Fact 2.1 into the following lemma, whose proof is the topic of this section.

Lemma 2.2. Suppose ¢ : ZT — (0,1] is a function such that C(MPIS*™) = O(n¢p(n)).
Then C(MPJ3) = O(n\/¢(n)).
Definition 2.3. A set A C S,, of permutations is said to d-cover a function f : [n] — [n]
if, for each r € [n], at least one of the following conditions holds:

(i) 37 € A such that n(r) = f(r), or

(ii) [f7H(f ()] > d.

150 J. BRODY AND A. CHAKRABARTI

Lemma 2.4. Let f: [n] — [n] be a function and d be a positive integer. There exists a set

Aq(f) C S,, with |Aq(f)| < d, that d-covers f.

Proof. We give an explicit algorithm to construct Ag4(f). Our strategy is to partition the
domain and codomain of f (both of which equal [n]) into parts of matching sizes and then
define bijections between the corresponding parts. To be precise, suppose Range(f) =
{s1,82,...,8t}. Let A; = f~1(s;) be the corresponding fibers of f. Clearly, {4;}_; is a
partition of [n]. It is also clear that there exists a partition {B;}!_; of [n] such that, for
all i € [t], B; N Range(f) = {s;} and |B;| = |4;|]. We shall now define certain bijections
mie: Ai — Bj, for each i € [t] and ¢ € [d].

Let a;1 < a;2 < -+ < a4, be the elements of A; arranged in ascending order.
Similarly, let b; 1 < --- < b;p, be those of B;. We define

Tio(aij) = bi(j—tymod |Bi|» fori € [t],£€[d],

where, for convenience, we require “a mod 3” to return values in [3], rather than {0, 1,..., 5—
1}. It is routine to verify that m; s is a bijection. Notice that this construction ensures that
for all i € [t] and j € [|A;|] we have

{mie(ai;) : £ €[d}f = min{d, |Bi[}. (2.3)
Let 7y : [n] — [n] be the bijection given by taking the “disjoint union” of 7 4,...,m . We
claim that Agq(f) = {m1,...,mq} satisfies the conditions of the lemma.

It suffices to verify that this choice of A4(f) d-covers f, i.e., to verify that every r € [n]
satisfies at least one of the two conditions in Definition 2.3. Pick any r € [n]. Supposer € A;,
so that f(r) € B; and m(r) = me(r). If |B;| > d, then |f~1(f(r))| = |Ai| = |Bi| > d, so
condition (ii) holds. Otherwise, from Eq. (2.3), we conclude that {m; (r) : ¢ € [d]} = B;.
Therefore, for each s € B; — in particular, for s = f(r) — there exists an ¢ € [d] such that
me(r) = m;¢(r) = s, so condition (i) holds.]

Proof of Lemma 2.2. Let (i,m,z) € [n] x S, x {0,1}" denote an input for the problem
MPJL“™. Then the desired output is Tr(;)- The existence of a protocol P for MPJE™™ with

cost(P) = O(n¢(n)) means that there exist functions
a: S, x{0,1}" — {0,1}™, B :[n] x{0,1}" x {0,1}"" — {0,1}"", and
v [n] x 8y x {0,1}" x {0,1}™ — {0,1},

where m = O(n¢(n)), such that v(i, 7, a(m, x), B(i,z,a(m, z))) = Tr4). The functions a, 8
and « yield the messages in P of PLR1, PLRy and PLRg3 respectively.

To design a protocol for MPJ3, we first let PLR; and PLR3 agree on a parameter d, to
be fixed below, and a choice of A4(f) for each f : [n] — [n], as guaranteed by Lemma 2.4.
Now, let (i, f,x) € [n] x [n]" x {0,1}" be an input for MPJ3. Our protocol works as follows.

e PLR; sends a two-part message. The first part consists of the strings {a(m,x)}
for all m € Ay4(f). The second part consists of the bits x4 for s € [n] such that
()| > d

e PLRy sends the strings {((i,z,a)}, for all strings « in the first part of PLR;’s
message.

e PLR3 can now output z) as follows. If [f~1(f(i))] > d, then she reads x(; off
from the second part of PLR;’s message. Otherwise, since Ay(f) d-covers f, there
exists a mg € Ag(f) such that f(i) = mo(7). She uses the string o := a(mp, z) from

SUBLINEAR PROTOCOLS FOR POINTER JUMPING 151

the first part of PLR;’s message and the string 5y := ((i, x, ag) from PLR2’s message
to output (i, mo, g, Bo)-

To verify correctness, we only need to check that PLR3’s output in the “otherwise” case
indeed equals x ;). By the correctness of P, the output equals ;) and we are done, since
£(0) = o).

We now turn to the communication cost of the protocol. By the guarantees in Lemma 2.4,
|Aq(f)| < d, so the first part of PLR;’s message is at most dm bits long, as is PLRy’s mes-
sage. Since there can be at most n/d values s € [n] such that |f~1(s)| > d, the second part
of PLRo’s message is at most n/d bits long. Therefore the communication cost is at most
2dm +n/d = O(dn¢(n) + n/d). Setting d = [1/+/¢(n)] gives us a bound of O(n+/¢(n)),
as desired. [

o (2

2.3. A k-Player Protocol

We now show how to prove Theorem 1.3 by generalizing the protocol from Lemma 2.2
into a protocol for k players. It will help to view an instance of MPJj as incorporating
several “embedded” instances of MPJ3. The following lemma makes this precise.

Lemma 2.5. Let (i, fo, ..., fx—1,x) be input for MPJi. Then, for all 1 < j < k,
MPJg(4, f2,..., o) = MPI3(fj_1 00 fa(i), fj,x 0 fr—10--- 0 fiy1).

In our protocol for MpPJy, for 2 < j < k — 1, the players PLR1, PLR;, and PLRy will use a
modified version of the protocol from Lemma 2.2 for MPJ3 on input (fj—10---o fa(i), fj, 0
---0 fj4+1). Before we get to the protocol, we need to generalize the technical definition and
lemma from the previous subsection.

Definition 2.6. Let S C [n] and let d be a positive integer. A set A C S,, of permutations
is said to (S, d)-cover a function f : [n] — [n] if, for each r € S, at least one of the following
conditions holds:

(i) 3w € A such that «(r) = f(r), or

(i) [SN 1) > d.
Lemma 2.7. Let f : [n] — [n] be a function, S C [n], and d be a positive integer. There
exists a set Agq(f) C Syn, with |Agq(f)| < d, that (S,d)-covers f.

Proof. This proof closely follows that of Lemma 2.4. As before, we give an explicit algorithm
to construct Ag 4(f). Suppose Range(f) = {s1, s2,...,5:}, and let {A4;} and {B;} be defined
as in Lemma 2.4. Let a;; < --- < a;. be the elements of A; NS arranged in ascending
order, and let a; .41 < --- < ;| Ay be the elements of A; \ S arranged in ascending order.
Similarly, let b;1 < -+ < b; g, -1 be the elements of B; \ {s;} arranged in ascending order,
and let b; |p,| = s;. For i € [t],£ € [d], we define m;¢(ai;) = bj(j—r)mod |B|- As before,
it is routine to verify that m; , is a bijection. Let 7, : [n] — [n] be the bijection given by
taking the “disjoint union” of 7y ¢,..., 7. We claim that Ag4(f) = {m1,..., 74} satisfies
the conditions of the lemma.

It suffices to verify that this choice of Ag4(f) (S,d)-covers f, i.e., to verify that every
r € S satisfies at least one of the two conditions in Definition 2.6. Pick any r € S.
Suppose r € A;, and fix j such that r = a;;. If [SN f71(f(r))| > d, then condition (ii)
holds. Otherwise, setting £ = j < |S N f~1(f(i))| < d, we conclude that m(r) = m;¢(r) =
mi(aij) = by, = si = f(r), so condition (i) holds.]

152 J. BRODY AND A. CHAKRABARTI

Proof of Theorem 1.3. To design a protocol for MPJg, we first let PLR; and PLRg agree on a
parameter d, to be fixed below. They also agree on a choice of Ag4(f) for all S C [n] and
f:[n] — [n]. Let (4, fo,..., fk—1,z) denote an input for MPJ;. Also, let S; = [n], and for
all2<j<k—1,1et S;={se[n]:|S;-1N fj_l(s)\ > d}. Our protocol works as follows:

e PLR; sends a (k—1)-part message. For 1 < j < k—2, the jth part of PLR;’s message
consists of the strings {a(m,2;11)}x for each ™ € Ag; 4(fj+1). The remaining part
consists of the bits x4 for s € Si_1.

e For 2 < j < k — 1, PLR; sends the strings {((i;,2;,®)}q for all strings o in the
(7 — 1)th part of PLR;’s message.

e PLR; can now output z; as follows. If [S1 N f5 1 (f2(d))] < d, then, because
As, a(f2) (S1,d)-covers fo, there exists m9 € Ag, q(f2) such that fo(i) = mo(i).
She uses the string ag = a(mp, Z2) from the first part of PLR;’s message and the
string By = [(i, &2, ap) from PLRy’s message to output vo = (4,79, o, fp). Sim-
ilarly, if there is a j such that 2 < j < k—2 and [S; N f]i,’_ll(fj+1(%j+1))| < d,
then fince ./45’]-7d(]fj+1) (Sj,d)-covers fji1, there exists a mo € Ag; a(fj+1) such that
fi+1(tj41) = mo(2j41). She uses the string oy = (mp,Zj41) from the jth part
of PLR;’s message and the string Gy = B(%j+1,ij+1,a0) from PLR;;1’s message to
output vg = fy(gjﬂ,wo,ao,ﬁo). Otherwise, |Si_2 N f,:l(fk,l(%k,l))] > d, hence
ik € Sk_1, and she reads T off from the last part of PLR{’s message.

To verify correctness, we need to ensure that PLRy always outputs z o fy_10---0 fo(i).
In the following argument, we repeatedly use Lemma 2.5. We proceed inductively. If
1S1 N 1 (f2(4))] < d then there exists Ty € Ag, a(f2) such that fo(i) = mo(i), ag =
a(mo, 22), and By = B(i,%2,0), and PLR; outputs 7o = 7(i, 7, 20, 50) = Z2(mo(7)) =
x0 fr_10---0 foi). Otherwise, |S1 N f51(f2(i))] > d, hence fo(i) € Sp. Inductively, if
ij € S;_1, then either |S;_; N fj_l(fj(%j))] <d,or |S;—1N fj_l(fj(%j))| > d. In the former
case, there is mo € Ag,_; 4(f;) such that £i(ij) = mo(i)); Oéo(ﬂ'o,{f?j), and By = B(i;, 24, x),
and PLRy, outputs vo = (i;, 0, 20, 50) = 2;(f;(ij)) = x 0 fr_10---0 fa(i). In the latter
case, fi(i;) € S;. By induction, we have that either PLRy outputs z o f_1 0--- o fa(i), or
ix € Si_1. But in this case, PLR, outputs x(zk) =zofr_10---0 foi) dlrectly from the last
part of PLR;’s message. Therefore, PLR; always outputs x o fk—l o---o0 fy(i) correctly.

We now turn to the communication cost of the protocol. By Lemma 2.7, [Ag; a(f;)| < d
for each 2 < 7 < k — 1, hence the first £ — 2 parts of PLR1’s message each are at most dm
bits long, as is PLR;’s message for all 2 < j < k — 1. Also, since for all 2 < j <k — 1, there
are at most |S;_1|/d elements s € S; such that [S;_1 N fjf1(5)| > d, we must have that
|Sa| < [S1]/d = n/d,|Ss| < |Sa|/d < n/d?, etc., and |Sy_1| < n/d*~2. Therefore, the final
part of PLR;’s message is at most n/d*~? bits long, and the total communication cost is at
most 2(k—2)dm+n/d*=? = O((k—2)dn¢(n)+n/d*2). Setting d = [1/((k—2)¢(n))"/ =]
gives us a bound of O(n(k¢(n))#=2/k=1)) a5 desired.]

Note that, in the above protocol, except for the first and last players, the remaining
players access very limited information about their input. Specifically, for all 2 < j < k—1,
PLR; needs to see only %j and Zj, i.e., PLR; is both conservative and collapsing. Despite
this severe restriction, we have a sublinear protocol for MPJ;. As we shall see in the next
section, further restricting the input such that PLR; is also collapsing yields very strong
lower bounds.

SUBLINEAR PROTOCOLS FOR POINTER JUMPING 153

3. Collapsing Protocols: A Lower Bound

Let F':) X op X -+ X &), — B be a k-player NOF communication problem and P
be a protocol for F'. We say that PLR; is collapsing in P if her message depends only on
x1,...,2j—1 and the function g, ; : & X @h X --- x o — A given by g5 j(z1,...,25) =

F(z1,...,2j,%j41,...,2). For pointer jumping, this amounts to saying that PLR; sees all
layers 1,...,7 — 1 of edges (i.e., the layers preceding the one on her forehead), but not layers
j+1,...,k; however, she does see the result of following the pointers from each vertex in
layer j. Still more precisely, if the input to MPJy (or MPJ.) is (4, fo, ..., fx), then the only
information PLR; gets is ¢, f2,..., fj—1 and the composition fr o fr_10---0 fj41.

We say that a protocol is collapsing if every player involved is collapsing. We shall
prove Theorem 1.4 by contradiction. Assume that there is a collapsing protocol P for MPJy
in which every player sends less than n — %logn — 2 bits. We shall construct a pair of
inputs that differ only in the last layer (i.e., the Boolean string on PLRy’s forehead) and
that cause players 1 through k — 1 to send the exact same sequence of messages. This will
cause PLRg to give the same output for both these inputs. But our construction will ensure
that the desired outputs are unequal, a contradiction. To aid our construction, we need
some definitions and preliminary lemmas.

Definition 3.1. A string « € {0,1}" is said to be consistent with (f1,..., fj,0q,...,q;) if,

in protocol P, for all h < j, PLR}, sends the message oy, on seeing input (i = f1,..., fp_1,2z0
fjofj—10---0 fry1) and previous messages az, . .. ,ap_1.2 A subset T C {0,1}" is said to
be consistent with (f1,..., fj,0q,...,a;) if « is consistent with (f1,..., fj,u,...,a;) for
alz eT.

Definition 3.2. For strings x,2’ € {0,1}" and a,b € {0, 1}, define the sets
Ip(z,2") = {jeln]: (xj,2;) = (a,b)}.
A pair of strings (z, ') is said to be a crossing pair if for all a,b € {0,1}, Tp(z,2") £ 0. A

set T' C {0,1}" is said to be crossed if it contains a crossing pair and uncrossed otherwise.
The weight of a string x € {0,1}" is defined to be the number of 1s in z, and denoted |z|.

For the rest of this section, we assume (without loss of generality) that n is large enough
and even.

Lemma 3.3. If T C {0,1}" is uncrossed, then |{z € T : |x| =n/2}| < 2.

Proof. Let x and 2’ be distinct elements of T" with |z| = |2/| = n/2. For a,b € {0,1},
define ty, = |[Igp(z,2’)|. Since z # ', we must have tg; + t10 > 0. An easy counting
argument shows that tg; = t19 and tgp = t11. Since T is uncrossed, (x, ') is not a crossing
pair, so at least one of the numbers t,, must be zero. It follows that tg9 = t11 = 0, so
x and 2’ are bitwise complements of each other. Since this holds for any two strings in
{z € T : |z| =n/2}, that set can have size at most 2.]

Lemma 3.4. Supposet <n— % logn —2. If {0,1}" is partitioned into 2¢ disjoint sets, then
one of those sets must be crossed.

21t is worth noting that, in Definition 3.1, x is not to be thought of as an input on PLR’s forehead.
Instead, in general, it is the composition of the rightmost k — j layers of the input graph.

154 J. BRODY AND A. CHAKRABARTI

Proof. Let {0,1}" = T1UT5U---UT,, be a partition of {0, 1}" into m uncrossed sets. Define
X :={zx€{0,1}" : || =n/2}. Then X =J*,(T; N X). By Lemma 3.3,

m
X| < Y ILNX| < 2m.
=1

1
5 logn—2_

Using Stirling’s approximation, we can bound | X| > 2"/(2y/n). Therefore, m > 2"~
"

Proof of Theorem 1.4. Sett=n — %logn — 2. Recall that we have assumed that there is a
collapsing protocol P for MPJ; in which every player sends at most ¢ bits. We shall prove
the following statement by induction on j, for j € [k — 1].

(*) There exists a partial input (i = f1, f2,..., f;) € [n] X ([n]["})kl, a
sequence of messages (v, . .., ;) and a crossing pair of strings (z,2’) €
({0,1}™)? such that both x and 2’ are consistent with (f1,. .. o, a),
whereas z o fjo--- 0 fa(i) :()and:v’ofjo---on(i) =1.
Considering (*) for j = k — 1, we see that PLRj, must behave identically on the two inputs
(iy fo, .oy fk—1,2) and (i, fo,..., fr—1,2"). Therefore, she must err on one of these two
inputs. This will give us the desired contradiction.

To prove (*) for 7 = 1, note that PLR;’s message, being at most ¢ bits long, partitions
{0,1}" into at most 2! disjoint sets. By Lemma 3.4, one of these sets, say T, must be
crossed. Let (x,2’) be a crossing pair in T and let a; be the message that PLR; sends on
seeing a string in 7. Fix ¢ = f1 such that ¢ € Ip1(x,2’). These choices are easily seen to
satisfy the conditions in (*). Now, suppose (*) holds for a particular j > 1. Fix the partial
input (f1,..., f;) and the message sequence (ayq, ..., ;) as given by (*). We shall come up
with appropriate choices for fj;1, aj+1 and a new crossing pair (y,y’) to replace (x,z’), so
that (*) is satisfied for j 4+ 1. Since PLR;;1 sends at most ¢ bits, she partitions {0,1}" into
at most 2’ subsets (the partition might depend on the choice of (f1,..., fj,a1,...,q;)).

As above, by Lemma 3.4, she sends a message «;+1 on some crossing pair (y,y’). Choose
fj+1 so that it maps I(z,2") to In(y,y’) for all a,b € {0,1}; this is possible because
Lp(y,y') # 0. Then, for all i € [n], z; = yy, ;) and z; = y}j+l(i). Hence, x = yo fj11
and 2’ = y' o fj11. Applying the inductive hypothesis and the definition of consistency, it
is straightforward to verify the conditions of (*) with these choices for fji1, 41,y and y/'.
This completes the proof. [

4. Collapsing Protocols: An Upper Bound

We now turn to proving Theorem 1.5 by constructing an appropriate collapsing protocol
for @zerm. Our protocol uses what we call bucketing schemes, which have the flavor of the
conservative protocol of Damm et al. [DJS98]. For any function f € [n]!™ and any S C [n],
let 15 denote the indicator function for S; that is, 15(i) = 1 < i € S. Also, let f|s denote
the function f restricted to S; this can be seen as a list of numbers {is}, one for each s € S.
Players will often need to send 1g and f|gs together in a single message. This is because
later players might not know S, and will therefore be unable to interpret f|g without 1g.
Let (mq,...,my) denote the concatenation of messages mi,...,m.

Definition 4.1. A bucketing scheme on a set X is an ordered partition B = (Bj, ..., B) of
X into buckets. For x € X, we write B[z] to denote the unique integer j such that B; > .

SUBLINEAR PROTOCOLS FOR POINTER JUMPING 155

We actually prove our upper bound for problems slightly more general than Mﬁgem‘
To be precise, for an instance (4, fa, ..., fx) of MPJ;, we allow any one of fa, ..., fi to be an

arbitrary function in [n](. The rest of the fjs are required to be permutations, i.e., in S,,.

Theorem 4.2 (Slight generalization of Theorem 1.5). There is an O(nlog* =" n) collapsing
protocol for instance (i, fa, ..., fr) of MPJx when all but one of fa, ..., fx are permutations.

In particular, there is such a protocol for I\TP\Jgerm

Proof. We prove this for MpJ, " only. For 1 < t < [logn], define the bucketing scheme
Bi = (Bi,...,Bgt) on [n] by Bj := {r € [n] : [2'r/n] = j}. Note that each |B;| < [n/2"]
and that a bucket can be described using ¢ bits. For 1 < j <k, let b; = [log(k_j) n]. In the
protocol, most players will use two bucketing schemes, B and B’. On input (i, fa, ..., fx):
e PLR; sees f1, computes B’ := By, , and sends (B'[f1(1)],...,B/[fi(n)]).
e PLRy sees %2,]?2, and PLR;’s message. PLRy computes B := By, and B’ := Bp,. She
recovers b := B[fa(f2(i2))] and hence By. Let Sy := {s € [n] : fao(s) € By}. Note
that fo(i2) € Sg. PLRg sends (1g,, {B'[f2(s)] : s € Sa}).

® PLR; sees %j, fj, and PLR;_’s message. PLR; computes B := By, , and B = By,. She
recovers b := B[f;(f;(1;))] and hence By. Let S; := {s € [n] : f;(s) € B,}. Note that
the definitions guarantee that f;(i;) € S;. PLR; sends (1s;, {B'[fi(s)] : s € S;}).

e PLRy, sees iy and PLR;_1’s message and outputs fk(ik)

We claim that this protocol costs O(n log =1 n) and correctly outputs MPJx (i, fo, .. ., fx)-
For each 2 < j < k — 1, PLR; uses bucketing scheme By, , to recover the bucket By con-

taining fj(£i(i;)). She then encodes each element in By in the bucketing scheme By,. Each
bucket in By, has size at most [n/bj11]. In particular, each bucket in scheme Bj_; has
size at most [n/bx| = 1, and the unique element in the bucket (if present) is precisely
fr(i). Turning to the communication cost, PLR; sends by = [log®* ™" n] bits to identify
the bucket for each i € [n], giving a total of n[log®~Y n] bits. For 1 < j < k, PLR; uses
n+bj(n/bj) = O(n) bits. Thus, the total cost is O(n log =Y 1 + kn) bits.

For k < log*n players, we are done. For larger k, we can get an O(n) protocol by
doubling the size of each b; and stopping the protocol when the buckets have size <1. =

5. Concluding Remarks

We have presented the first nontrivial upper bound on the NOF communication com-
plexity of the Boolean problem MPJ, showing that C'(MPJ;) = o(n). A lower bound of (n)
had seemed a priori reasonable, but we show that this is not the case. One plausible line of
attack on lower bounds for MPJy, is to treat it as a direct sum problem: at each player’s turn,
it seems that n different paths need to be followed in the input graph, so it seems that an
information theoretic approach (as in Bar-Yossef et al. [BJKS02] or Chakrabarti [Cha07])
could lower bound C(MPJy) by n times the complexity of some simpler problem. However, it
appears that such an approach would naturally yield a lower bound of the form Q(n/¢(k)),
as in Conjecture 1.1, which we have explicitly falsified.

156

J. BRODY AND A. CHAKRABARTI

The most outstanding open problem regarding MPJj is to resolve Conjecture 1.2. A
less ambitious, but seemingly difficult, goal is to get tight bounds on C(MPJ3), closing the
gap between our O(n+/loglogn/logn) upper bound and Wigderson’s Q(1/n) lower bound.
A still less ambitious question is prove that MPJ3 is harder than its very special subproblem
TPJ3 (defined in Section 1.1). Our n — O(logn) lower bound for collapsing protocols is a
step in the direction of improving the known lower bounds. We hope our technique provides
some insight about the more general problem.

References

[ABO7]
[Ab196]

[AMS99)]

[BHKO1]

[BJKS02]
[BPS05]
[BT94]
[CFL83)

[Cha07]

[CIPOS]

[DJS98]

[GMO7]

[HG91]

[NW93]

[PRS97]

[VWO07]

[Yao90]

Sanjeev Arora and Boaz Barak. Complexity Theory: A Modern Approach. Available online at
(http://www.cs.princeton.edu/theory /complexity /), 2007.

Farid Ablayev. Lower bounds for one-way probabilistic communication complexity and their ap-
plication to space complexity. Theoretical Computer Science, 175(2):139-159, 1996.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the fre-
quency moments. J. Comput. Syst. Sci., 58(1):137-147, 1999. Preliminary version in Proc. 28th
Annu. ACM Symp. Theory Comput.., pages 20—29, 1996.

Léaszl6 Babai, Thomas P. Hayes, and Peter G. Kimmel. The cost of the missing bit: Communica-
tion complexity with help. Combinatorica, 21(4):455-488, 2001.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics ap-
proach to data stream and communication complexity. In Proc. 43rd Annual IEEE Symposium
on Foundations of Computer Science, pages 209-218, 2002.

Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovéasz-Schrijver systems
and beyond follow from multiparty communication complexity. In Proc. 32nd International Col-
loquium on Automata, Languages and Programming, pages 1176-1188, 2005.

Richard Beigel and Jun Tarui. On ACC. Comput. Complezity, 4:350-366, 1994.

Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-party protocols. In Proc. 15th
Annual ACM Symposium on the Theory of Computing, pages 94-99, 1983.

Amit Chakrabarti. Lower bounds for multi-player pointer jumping. In Proc. 22nd Annual IEEE
Conference on Computational Complexity, pages 33-45, 2007.

Amit Chakrabarti, T. S. Jayram, and Mihai Patrascu. Tight lower bounds for selection in ran-
domly ordered streams. In Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms,
2008. to appear.

Carsten Damm, Stasys Jukna, and Jifi Sgall. Some bounds on multiparty communication com-
plexity of pointer jumping. Comput. Complexity, 7(2):109-127, 1998. Preliminary version in Proc.
18th International Symposium on Theoretical Aspects of Computer Science, pages 643-654, 1996.
Sudipto Guha and Andrew McGregor. Lower bounds for quantile estimation in random-order
and multi-pass streaming. In Proc. 8jth International Colloquium on Automata, Languages and
Programming, pages 704-715, 2007.

Johan Hastad and Mikael Goldmann. On the power of small-depth threshold circuits. Comput.
Complezxity, 1:113-129, 1991.

Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SICOMP,
22(1):211-219, 1993. Preliminary version in Proc. 23rd Annu. ACM Symp. Theory Comput., pages
419-429, 1991.

Pavel Pudldk, Vojtéch Rodl, and Jifi Sgall. Boolean circuits, tensor ranks and communication
complexity. SIAM J. Comput., 26(3):605-633, 1997.

Emanuele Viola and Avi Wigderson. One-way multi-party communication lower bound for pointer
jumping with applications. In Proc. 48th Annual IEEE Symposium on Foundations of Computer
Science, pages 427-437, 2007.

Andrew C. Yao. On ACC and threshold circuits. In Proc. 31st Annual IEEE Symposium on
Foundations of Computer Science, pages 619-627, 1990.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 157-168
www.stacs-conf.org

FINDING IRREFUTABLE CERTIFICATES FOR S VIA
ARTHUR AND MERLIN

VENKATESAN T. CHAKARAVARTHY AND SAMBUDDHA ROY

IBM India Research Lab, New Delhi.
E-mail address: {vechakra, sambuddha}@in.ibm.com

ABSTRACT. We show that S5 C PP™M where S} is the symmetric alternation class and
prAM refers to the promise version of the Arthur-Merlin class AM. This is derived as a
consequence of our main result that presents an FPP™M algorithm for finding a small set
of “collectively irrefutable certificates” of a given Sz-type matrix. The main result also
yields some new consequences of the hypothesis that NP has polynomial size circuits. It
is known that the above hypothesis implies a collapse of the polynomial time hierarchy
(PH) to S5 C ZPPNF [5, 14]. Under the same hypothesis, we show that PH collapses to
PP*™MA - We also describe an FPP™A algorithm for learning polynomial size circuits for
SAT, assuming such circuits exist. For the same problem, the previously best known result
was a ZPP™T algorithm [4].

1. Introduction

We consider the problem of finding irrefutable certificates for the symmetric alternation
class Sh. The class Sh was introduced by Russell and Sundaram [17] and independently, by
Canetti [6]. A language L in the class S} is characterized by an interactive proof system of
the following type. The proof system consists of two computationally all-powerful provers
called the YES-PROVER and the NO-PROVER, and a polynomial time verifier. The verifier
interacts with the two provers to ascertain whether or not an input string x belongs to the
language L. The YES-PROVER and the NO-PROVER make contradictory claims: z € L and
x ¢ L, respectively. Of course, only one of them is honest. To substantiate their claims,
the provers provide strings y and z as certificates. The verifier analyzes the input = and
the two certificates and votes in favor of one of the provers. If the YES-PROVER wins the
vote, we say that y beats z and we say that z beats y, otherwise. The requirement is that,
if x € L, then the YES-PROVER must have a certificate y that beats any certificate z given
by the NO-PROVER. Similarly, if z ¢ L, the NO-PROVER must have a certificate z that
beats any certificate y given by the YES-PROVER. We call certificates satisfying the above
requirements as irrefutable certificates (written IC). Clearly, for any input string, only the
honest prover has an IC.

Cai [5] showed that S C ZPPNP . Let us rephrase this result: for any language L € St
we have a ZPPNF algorithm that takes an input string and decides whether the YES-PROVER

Key words and phrases: Symmetric alternation, promise-AM, Karp-Lipton theorem, learning circuits.

ASPECTS

! s%FErigEPUTER © V.Chakaravarthy and S. Roy

© Creative Commons Attribution-NoDerivs License

R SYMPOSIUM
ﬁVIL ON THEORETICAL
<

158 V. CHAKARAVARTHY AND S. ROY

has an IC or the NO-PROVER has an IC. The main purpose of this paper is to study the
problem of finding IC’s for an input string.

The above problem and the related issues regarding S can conveniently be described in
terms of Boolean matrices. Let L be a language in S and 2 be an input string. Let n and m,
denote the length of the certificates of the YES-PROVER and NO-PROVER, respectively. We
model the behaviour of the verifier on the input z in the form of a 2™ x 2™ Boolean matrix
M. In the matrix M, the rows correspond to the certificates of the YES-PROVER and the
columns correspond to the certificates of the NO-PROVER. For certificates y € {0,1}" and
z € {0,1}™, if y beats z, then we set My, z] =1 and if z beats y, then we set M|y, z] = 0.
Notice that the matrix M has either a row full of 1’s or a column full of 0’s. The first
scenario happens, when z € L (here, the row full of 1’s corresponds to an IC of the YES-
PROVER). Similarly, the second scenario happens, when z ¢ L (here, the column full of 0’s
corresponds to an IC of the NO-PROVER). We call any Boolean matrix satisfying the above
condition as an So-type matrix. A row full of 1’s is called a row-side IC and a column full of
0’s is called a column-side IC. (Notice that a Boolean matrix cannot have both.) Though
the matrix M is exponentially large in the size of the input |z|, it can be succinctly encoded
in the form of a Boolean circuit C' having size polynomial in |z|. The circuit C takes as
input y € {0,1}" and z € {0,1}™ and outputs C(y, z) = M|y, z]. The circuit achieves this
by simulating the verifier’s algorithm on the input x. Using standard techniques, we can
construct the desired circuit C' in time polynomial in |x|.

Problems regarding S, can now be expressed as problems on Ss-type matrices, presented
succinctly in the form of circuits. First, let us consider the basic problem of membership
testing for a language L € Sb: given a string x, determine whether z € L or not. This is
equivalent to following problem on So-type matrices.

MEMBERSHIP TESTING. Given an So-type matrix M, presented succinctly in the form
of a circuit, distinguish between the two cases: (i) there exists a row-side IC; (ii) there exists
a column-side IC.

Cai [5] showed that S5 C ZPPNY. Equivalently, this result presents a ZPPNY algorithm
for the MEMBERSHIP TESTING problem. We consider the more general problem of finding
an IC for a given Ss-type matrix.

Problem FINDIC: Given an So-type matrix M, presented succinctly in the form of a
circuit, output an IC either on the row side or on the column side.

Via a simple observation, we show that if there exists a ZP algorithm for the
FINDIC problem, then the polynomial time hierarchy (PH) collapses. In summary, we can
determine in ZPPNY whether an IC is found among the rows or among the columns; but,
we cannot find an IC in ZPPNP| unless PH collapses. So, we study the easier problem of
finding a set of collectively irrefutable certificates (written CIC).

We say that a set of rows Y collectively beats a column z, if some row y € Y beats
z. The set Y is said to be a row-side CIC, if Y collectively beats every z. The notion
of column-side CIC is defined analogously. Notice that an arbitrary Boolean matrix may
have both a row-side CIC and a column-side CIC. However, the existence of a row-side CIC
precludes there being a column-side IC. Thus, in the case of So-type matrices, a row-side CIC
shows that there exists a row-side IC (which in turn, means that the input string = € L).
Therefore, a row-side CIC is as useful as a row-side IC, in certifying that x € L. Our main
result provides an algorithm for finding a CIC of small size (logarithmic in the size of the
input matrix).

PNP

FINDING IRREFUTABLE CERTIFICATES FOR S} 159

Problem FINDCIC. Given an So-type matrix M of size 2" x 2™, presented succinctly in
the form of a circuit, output either a row-side CIC or a column-side CIC of size max{n, m}.

Our main result presents an FPP"M algorithm for the FINDCICproblem, i.e., the al-
gorithm runs in (deterministic) polynomial time making queries to an prAM oracle; prAM
refers to the promise version of the Arthur-Merlin class AM.

Main Result. We present an FPP™M algorithm for the FINDCIC problem.

We note that the problem FINDCIC can also be solved by a ZPPN' algorithm; such
an algorithm is implicit in the work of Cai [5] and Fortnow et al. [9]. The containment
relationships between FPP"M and ZPPNP are not known. This issue is discussed in more
detail below.

An immediate corollary of the main result is that S5 C PPrAM - This gives a nice
counterpart to Cai’s result [5] that S5 C ZPPNP. The containment relationships between
prrAM and ZPPNP are unknown. (In fact, it has been a long standing open problem to put
AM in ¥5). However, we can show that PP™AM C BPPNF. Moreover, Cai’s result can also
be derived from the main result.

It is known that PN C S [17] and one of the most challenging open problems regarding
SE asks whether S is contained in PNP. Working under a larger framework, Shaltiel and
Umans [19] also studied this issue and derived the result S5 = PNP_ under a suitable
hardness hypothesis. This was achieved by derandomizing Cai’s construction for S5 C
ZPPNP. The above-mentioned hardness hypothesis was the one used by Miltersen and
Vinodchandran [15] to derandomize AM to get AM = NP: there exists a language L in
NE N coNE so that for all but finitely many n, L N {0,1}" has SV-nondeterministic circuit
complexity at least 2¢". Thus, under the above hypothesis, Shaltiel and Umans showed that
SE = PNP. Our claim that Sh C PPrAM vields an alternative proof of the above result. This
is obtained by appealing to the hitting set generator of Miltersen and Vinodchandran [15].
The details will be included in the full version of the paper.

The main result yields two new consequences of the assumption that NP has polynomial
size circuits. Under the above assumption, Karp and Lipton [13] showed that the polynomial
time hierarchy (PH) collapses to X5. Subsequently, their result has been strengthened:
Kébler and Watanabe [14] derived the collapse PH = ZPPNP. Sengupta observed that
PH = S5 C ZPPYF (see [5]); recently, the collapse was improved to PH = O} C S5 [7]. Tt
has been a challenging open problem to get the collapse down to PNP. We derive a weaker
result: if NP has polynomial size circuits, then PH = PP™A Tt is worthwhile to compare
this new collapse result with the earlier ones. Though it is known that PMA C SE[17], it is
not clear whether PP"™M4 ig contained in SE. However, we can show that prrMA C 7ppNP
(by extending the known result that MA C ZPPNP [1, 11]).

One implication of the new collapse result is that PP™A cannot have SIZE(n*) cir-
cuits, for any fixed k. However, a stronger result is known: in a recent breakthrough,
Santhanam [18] proved the above circuit lowerbound for the class prMA.

In the above context, our next result deals with the problem of learning polynomial size
circuits for SAT. Under the assumption that NP has polynomial size circuits, Bshouty et
al. [4] designed a ZPPN? algorithm that finds a correct circuit for SAT at a given length.
We improve their result by presenting a FPP™MA algorithm for the same task.

Finally, we show how to generalize our main result to the case of arbitrary Boolean
matrices (that may not necessarily be of So-type). For this, we make use of a nice and
interesting lemma by Goldreich and Wigderson [10]: they showed that any 2™ x 2™ Boolean

160 V. CHAKARAVARTHY AND S. ROY

matrix M contains a row-side CIC of size m or a column-side CIC of size n (or both). We
consider the scenario where the matrix M is presented succinctly in the form of a circuit
and describe an FPP™M algorithm for finding such a CIC; but, our algorithm suffers a small

blow-up in the size of the output CIC. The algorithm finds a row-side CIC of size m? or a

column-side CIC of size n?.

For lack of space, the details of the above generalization and proofs for some of the
results are omitted in this paper. These will be included in the full version of the paper.

Proof Techniques. The proof of our main result has a flavor similar to that of
Cai’s result [5]. The proof involves a variant of self-reduction and the tools of approximate
counting and testing whether a set is “large” or ”"small”. For the latter two tasks, we borrow
ideas from the work of Jerrum et al. [12], Stockmeyer [21] and Sipser [20]. We put together
all these ideas and show how to solve our problem using a prAM oracle. Our exposition is
largely self-contained.

2. Preliminaries

In this section, we develop definitions and notations used throughout the paper.

Symmetric Alternation. A language L is said to be in the class S, if there exists a
polynomial time computable Boolean predicate V (-, -,) and polynomials p(-) and ¢(-) such
that for any =, we have

rel = (Fye{0,1}")(Vze{0,1}")[V(z,y,2z) =1],and
v L = (F2€{0,1}")(Vy € {0,1}")[V(z,y,2) = 0],

where n = p(|z|) and m = ¢(|z|). We refer to the y’s and z’s above as certificates. The
predicate V is called the verifier.

Matrix representation of the verifier’s computation. Let L be a language in S
via a verifier predicate V. Fix an input string x. It is convenient to represent the behaviour
of the verifier on various certificates in the form of a matrix. Define a Boolean 2" x 2™
matrix M, such that for y € {0,1}" and z € {0,1}", M|y, z] = V(x,y, z). Thus, any row
or column in M corresponds to a certificate. We call M as the matrix corresponding to the
input z. Matrices constructed in the above fashion have some special properties that are
derived the from the definition of S5.

So-type matrices and irrefutable certificates. Let M be a 2" x 2™ Boolean
matrix. For a row y € {0,1}" and a column z € {0,1}™, if My, z] = 1, then y is said to
beat z; similarly, z is said to beat y, if M[y,z] = 0. A row y is called a row-side IC, if y
beats every column z € {0,1}™; a column z is called a column-side IC if z beats every row
y € {0,1}™. Notice that a matrix cannot have both a row-side IC and a column-side IC.
The matrix M is said to be an So-type matrix, if it has either a row-side IC or a column-side
IC. A set of rows Y is called a row-side CIC, if for every column z, there exists a row y € Y
such that y beats z. Similarly, a set of columns Z is called a column-side CIC, if for every
row y, there exists a column z € Z such that z beats y.

Remark. Let us put the above discussion in the context of a language L € S} and make
some simple observations. For any input string z, the matrix M corresponding to x is an
So-type matrix. The matrix M will have a row-side IC, if and only if z € L; similarly, M
will have a column-side IC, if and only if x & L.

Succinct encoding of matrices and sets. A Boolean circuit C': {0,1}" x {0,1}"" —
{0,1} is said to succinctly encode a Boolean 2™ x 2™ matrix M, if for all y € {0,1}" and

FINDING IRREFUTABLE CERTIFICATES FOR S} 161

z € {0,1}", we have C(y,z) = Mly,z|. A Boolean circuit C : {0,1}"" — {0,1} is said to
succinctly encode a set X C {0,1}™, if for all z € {0,1}"™, 2 € X <— C(x) = 1.

Remark. Let L be a language in Sb via a verifier V. Let z be an input string with
the corresponding matrix M. Using standard techniques, we can obtain a Boolean circuit
C:{0,1}" x {0,1}"™ — {0, 1} such that C(y, z) = V(z,y,z). Given the input z, the above
task can be performed in time polynomial in |x|. The size of the circuit is also polynomial
in |z|. Notice that the above circuit C' succinctly encodes the matrix M.

Complexity classes. We use standard definitions for complexity classes such as P,
NP, P/poly, MA, AM, ZPPN? and BPPYF [8, 16]. Below, we present definitions for promise
and function classes, that are central to our paper.

Promise languages. A promise language II is a pair (II1,II3), where IT;, I, C 3%,
such that II; NIIy = (). The elements of II; are called the positive instances and those of
II5 are called the negative instances.

Promise MA (prMA). A promise language II = (II;,II) is said to be in the promise
class prMA, if there exists a polynomial time computable Boolean predicate A(,-,-) and
polynomials p(-) and ¢(-) such that, for all x, we have

velll = (3ye{0,1}")(Vz € {0,1}")[A(z,y,2) = 1],and
1
vell = (vwe{0,1}") Pr [A(zy2)=1<3,
z€{0,1}™m 2
where n = p(|z|) and m = ¢(|z|). The predicate A is called Arthur’s predicate.
Promise AM (prAM). A promise language IT = (IIy,Il2) is said to be in the promise
class prAM, if there exists a polynomial time computable Boolean predicate A(,-,-) and
polynomials p(-) and ¢(-) such that, for all 2, we have

zelll = (Vye{0,1}")(3z € {0,1}")[A(z,y, z) = 1],and
1
S m =1l < =
x €1l ye{Po,rl}"[(Elz €{0,1}""A(z,y,2) =1] < 5

where n = p(|z|) and m = ¢(|z|). The predicate A is called Arthur’s predicate.

Oracle access to promise languages. Let A be an algorithm and IT = (IIy, II5) be
a promise language. When the algorithm A asks a query ¢, the oracle behaves as follows:
if ¢ € 111, the oracle replies “yes”; if ¢ € Ils, the oracle replies “no”; if ¢ is neither in II;
nor in Iy, the oracle may reply “yes” or “no”. We allow the algorithm to ask queries of the
third type. The requirement is that the algorithm should be able to produce the correct
answer, regardless of the answers given by the oracle to the queries of the third type.

Function classes. For a promise language II, the notation FP!! refers to the class
of functions that are computable by a polynomial time machine, given oracle access to II.
For a promise class C, we denote by FPC, the union of FP™, for all IT € C. Regarding
ZPPNP | we slightly abuse the notation and use this to mean both the standard complexity
class and the function class. The function class ZPPNY contains functions computable by a
zero-error probabilistic polynomial time algorithm given oracle access to NP; the algorithm
either outputs a correct value of the function or “?”, the latter with a small probability.

162 V. CHAKARAVARTHY AND S. ROY

3. Main Result: Finding Collectively Irrefutable Certificates

In this section, we study the problem of finding irrefutable certificates for So-type
matrices. As discussed in the introduction, finding a single IC in ZPPNY would collapse
polynomial time hierarchy (PH).

Theorem 3.1. If there exists a ZPPNY algorithm for the FINDIC problem then PH =
BPPNP.

prAM

Here, we focus on finding “small” CIC’s. We present an FP algorithm for the

FiNnDCIC problem.

Theorem 3.2. There exists a polynomial time algorithm which solves the following problem,
given oracle access to prAM. The algorithm takes as input a circuit C' succinctly encoding
a So-type matriz M of size 2™ x 2™ and produces either a row-side CIC of size m or a
column-side CIC of size n.

For ease of exposition, we have divided the proof into multiple small steps; in each
step, the given problem is reduced (in the Turing sense) to a simpler problem. The final
algorithm is obtained by composing these reductions. The various steps are grouped into
two phases. The first phase reduces the given problem to a problem that we call Prefix
Ratio Goodness Testing (PRGT). The second phase describes an algorithm for PRGT.

3.1. Reduction to Prefix Ratio Goodness Testing

We are given an So-type matrix M. By definition, M is guaranteed to have either a
row-side IC or a column-side IC. Our goal is to find a small CIC. This problem reduces to the
problem addressed in Lemma 3.3, given below. The lemma presents an FppraM algorithm
for finding a small row-side CIC for matrices that are guaranteed to have a row-side IC. Via
an easy transformation, we can obtain an analogous algorithm for finding a small column
side CIC for matrices guaranteed to have a column-side IC. We run both these algorithms
on the given So-type matrix M. Notice that one of these runs must output a CIC. The
other run would output some arbitrary result, because the input matrix does not satisfy
the requirements of the concerned algorithm. We check which of the two outputs is indeed
a CIC and output the same. This check can be performed by making a single NP query.
Thus, we get the FPP*AM algorithm claimed in Theorem 3.2.

Lemma 3.3. There exists an FPP™ M qglgorithm that takes as input a circuit C succinctly
encoding a 2™ x 2™ matriz M that is guaranteed to have a row-side IC and outputs a row-side
CIC of size m.

The algorithm computes the required CIC using a standard iterative approach: in each
iteration, we find a row y that beats at least half of the columns that are as yet un-
beaten by the rows found in the previous iterations. Formally, we start with an empty
set Y and proceed iteratively, adding a row to Y in each iteration. Consider the k" it-
eration. Let Uy be the set of columns as yet unbeaten by any row in Y (i.e., Uy = {z €
{0,1}| no y € Y beats z}). We find a row y* such that y* beats at least half the columns
in U and add y* to Y. Notice that such a y* exists, since we are guaranteed that M has
a row-side IC. Clearly, the algorithm terminates in m steps and produces a row-side CIC of
size m. Of course, the main step lies in finding the required y* in each iteration. This task
is accomplished by the algorithm described in Lemma 3.4, given below. The algorithm, in
fact, solves a more general problem: given any set of columns X C {0,1}™, it produces a

FINDING IRREFUTABLE CERTIFICATES FOR S} 163

row beating at least half of the columns in X. In each iteration, we invoke the algorithm
by setting X = Up. There is one minor issue that needs to be addressed: the set Uy could
be exponentially large. So, we represent the set Uy in the form of a circuit C’ succinctly
encoding it. For this, given any column z € {0,1}™, C’ has to test whether z is beaten by
any of the rows in Y. This test involves a simulation of C(y, z), for all y € Y. Since YV
contains at most m rows, we can succinctly encode Uy by a circuit of size polynomial in the
size of C. We have proved Lemma 3.3, modulo Lemma 3.4.

Lemma 3.4. There exists an FPP™M algorithm that takes two inputs: (i) a 2" x 2™ Boolean
matriz M that is guaranteed to have a row-side IC; (i) a set of columns X C {0,1}™. It
outputs a row y* that beats at least half the columns in X. The matriz M and the set X
are presented succinctly in the form of circuits.

We build the required string y* (of length n) in n iterations using an approach similar
to self-reduction. We maintain a prefix of y* and add one suitable bit in each iteration.
However, we cannot directly employ self-reduction, since a query of the form “does there
exist a row that beats at least half the columns in X” is a PP query and we cannot hope
to find the answer using a prAM oracle. Nevertheless, we show how to converge on a y* by
performing self-reduction that incurs a small amount of “loss” in the “goodness” of the final
y*, in each iteration. We formalize the notion of goodness and then describe the algorithm.

Consider a 2P x 27 Boolean matrix A and let @ C {0,1}7 be a subset of the columns of
A. For arow y € {0,1}?, define u(y, Q) to be the fraction of columns in @ that y beats:
wly, Q) =|{z € Q : y beats z}|/|Q|. Let a be a string of length at most p. We say that a
row y € {0,1}? extends «, if v is a prefix of y. For p < 1, we say that « is p—good for @, if
there exists a row y extending a such that u(y, Q) > p.

The algorithm claimed in Lemma 3.4 constructs the string y* in n iterations. Starting
with the empty string, we keep building a prefix of y*. At the end of the (k — 1)%! iteration,
we have a prefix ay_; of length k — 1. In the k" iteration, we extend a;_; by one more bit
b to get a prefix oy, of length k. To start with, we are guaranteed the existence of a row-side
IC in M, meaning a row with goodness=1. Consider the k" iteration. Suppose the prefix
ap_1 is p—good with respect to X, for some p. Below, we describe a mechanism for finding
a bit b such that the string ay_1b is (p — €)—good. The value € is a parameter to be fixed
suitably later. Thus, in each iteration, we suffer a loss of € and so, the accumulated loss at
the end of n iterations is ne. Choosing e suitably small, we get a string y* having goodness
at least 1/2.

The main step lies in choosing a suitable bit b in each iteration. Consider the k*
iteration. At the end of (k — 1)st iteration, we have prefix a of length &k — 1. Write
p =1—(k —1)e. By induction, assume that « is p-good. Our task is to find a bit b such
that ab is (p—e€)-good. This is accomplished by invoking the algorithm given in Lemma 3.5,
which solves the Prefix Ratio Goodness Testing problem (PRGT), defined below. The main
observation is that at least one of a0 or al is p-good, because « is p-good. We run the
algorithm given in Lemma 3.5 twice with § = a0 and 3 = a1 as inputs, respectively. By
the above observation, at least one these two runs must output “yes”. Let b be a bit such
that the algorithm outputs “yes” on input ab. We choose b as the required bit. It is easy
to see that ab is (p — €)-good; otherwise, the algorithm should have output “no” on ab.

Proceeding this way for n iterations, we end up with a string y* which is (1 — ne)-good.
Setting € = 1/n?, we see that y* beats at least a fraction of (1 —1/n) > 1/2 columns in X.
We have proved Lemma 3.4, modulo Lemma 3.5.

164 V. CHAKARAVARTHY AND S. ROY

Prefix Ratio Goodness Testing (PRGT): The instances of this promise language have
four components: (i) a 2™ x 2™ Boolean matrix M; (ii) a set of columns X C {0, 1}™; (iii)
a prefix § of length at most n. (iv) parameters p > 0 and € > 0. The matrix M and the
set X are represented succinctly in the form of circuits.

Positive Instances: There exists a row y extending [such that p(y, X) > p.
Negative Instances: For all rows y extending f3, it is the case that u(y, X) < p —e.

Lemma 3.5. There exists an FPP"™M that solves the PRGT problem. Namely, for positive
instances, the output is “yes”; for negative instances, the output is “no”; for other instances,
the output can be arbitrary. The running time of the algorithm has a polynomial dependence
on 1/e.

3.2. Prefix Ratio Goodness Testing: Proof of Lemma 3.5

In this section, we prove Lemma 3.5. One of the hurdles in trying to construct the
desired algorithm is that the gap between the two cases we need to distinguish is small. So,
as a first step, we amplify the gap using standard techniques.

The amplification process involves a parameter ¢, which we will fix suitably. Construct a
matrix M from M as follows. Each row in M corresponds to a row in M and each column Z
in M corresponds to a sequence (z1, 22, . . ., 2;) of t columns from M. Thus, the matrix M is
of size 2" x 2™ where m = mt. Consider a row y € {0,1}" and a column z = (21, 29, ..., 2),
where each z; is a column in M. Set the entry M|y, z] = 1, if y beats at least (p— §) fraction
of the z;’s (with respect to M); otherwise, set it to 0. Analogously, denote by X the t-wise
cartesian product of X with itself, i.e., X = {(21,20,...,2) : 2 € X}. We fix t = 16m /2.
An application of Chernoff bounds yields the following claim.

Lemma 3.6. For any y € {0,1}", we have the following.
o If u(y,X) > pin M then u(y, X) >1/2in M. o
o If u(y,X) < p—ein M then u(y,X) < 1/m* in M.

Given the above amplification, the problem considered in Lemma 3.5 reduces to the
problem addressed in Lemma 3.7. Formally, the algorithm claimed in Lemma 3.5 works
as follows. Given a circuit C' succinctly encoding the matrix M, a circuit C'x succintly
encoding a set of columns X, prefix 0 and parameters p and e, we consider the matrix
M and the set X, as described above. Notice that we can construct in polynomial time
a circuit C succinctly encoding M such that |C| is polynomial in |C| and 1/e. Similarly,
we can construct a polynomial size circuit C'y succinctly encoding the set X. Then, we
invoke the algorithm given in Lemma 3.7 with C, C'x and 3 as inputs. We output “yes”,
if the algorithm outputs “yes” and output “no”, otherwise. This completes the proof of
Lemma 3.5, modulo Lemma 3.7.

Lemma 3.7. There exists an FPP™ M algorithm that takes three inputs: (i) a 2™ x 2™
Boolean matriz M; (i) a set of columns X C {0,1}™. (iii) a prefiz B of length at most n.
The matrix M and the set X are presented succinctly in the form of circuits. The algorithm
has the following property:

e Case (a) : If there exists a row y extending [such that u(y,X) > 1/2, then it
outputs “yes”.
e Case (b) : If all rows y extending B are such that u(y, X) < 1/m?, then it outputs

¢, ”

no-.

FINDING IRREFUTABLE CERTIFICATES FOR S} 165

If neither of the above conditions is true, then the output of the algorithm is arbitrary.

There are two main stages in the algorithm. In the first stage we get an estimate on the
size of X. And in the second stage, we use the above estimate to distinguish between the
cases (a) and (b) in the lemma. Both the stages make queries to a prAM language given as
oracle. A lemma, due to Sipser [20], is useful in establishing that the concerned language
indeed lies in the class prAM. The following notation is needed for describing the lemma.

Let H be a family of functions mapping {0,1}™ to {0,1}*. Recall that H is said to
be 2-universal, if for any 2,2’ € {0,1}", with z # 2/, and z,2’ € {0,1}*, Prpen[h(z) =
x and h(z') = 2'] = 1/22. It is well known that such a family can easily be constructed.
For instance, the set of all m x k Boolean matrices yield such a family; a matrix B represents
the function h given by h(z) = 2B (modulo 2).

For a function h € H and a string z € {0, 1}, we say that z has a collision under h, if
there exists a 2’ € {0,1}" such that z # 2’ and h(z) = h(z’). For a set of hash functions
H C 'H, we say that z has a collision under H, if for all h € H, z has a collision under h. A
set S C {0,1}™ is said to have a collision under H, if there exists a z € S such that z has
a collision under H.

Lemma 3.8 ([20]). Let S C {0,1}™ and k < m. Let H be a 2-universal family of hash
functions from {0,1}™ to {0,1}*. Uniformly and independently pick a set of hash functions
hi,ha, ... hg from H and let H = {hy,ha,...,hx}. Then,

o If|S| > k2, then Pry[S has a collision under H) = 1.
o If|S| < 2F71, then Pry[S has a collision under H] < 1/2.

We define a promise language called set largeness testing (SLT) and then use Lemma 3.8
to show that it lies in the class prAM.
Set Largeness Testing (SLT): The instances in this language consist of a set X C {0,1}™,
presented succinctly in the form of a circuit, and an integer £ < m.
Positive instances: | X| > k2F.
Negative instances: | X| < 2+F~1.

Lemma 3.9. The promise language SLT belongs to the class prAM.

Proof. Let H be a 2-universal family of hash functions from {0,1}™ to {0,1}*. The proof
is based on the observation that for a given set H C H, testing whether X has a collision
under H is an NP predicate.

The AM protocol proceeds as follows. Arthur picks a set of hash functions H =
{h1,h2, ..., hi} uniformly and independently at random from H. Merlin must exhibit an
element z € X and prove that z has a collision under H. Arthur accepts, if Merlin proves
that such a collision exists; otherwise, Arthur rejects. O

The following lemma provides an algorithm for estimating the size of a set, given SLT
as oracle.

Lemma 3.10. There exists an FPP™AM that takes a set X C {0,1}™, presented succinctly
in the form of a circuit, and outputs an estimate U such that % < |X| < |U|.

Proof. The algorithm takes the promise language SLT as the oracle. We iteratively consider
every integer k in the range 1 through m and ask the query (X, k) to the oracle. Let k. be

the first time, we get a “no” answer from the oracle. Compute |U| = m2¥¢. We shall argue
that U satisfies the stated bounds.

166 V. CHAKARAVARTHY AND S. ROY

Let ko be the largest integer such that |X| > ko2 and let k; be the smallest integer
such that |X| < 2¥1~1. Notice that kg + 1 < k., < k1. By the property of kg, k. satisfies
|X| < k2% < m2Fe. By the property of ki, we have that 2172 < |X| < 2M~1, Tt follows
that 2F < 281 < 4|X|. The claimed bounds on |U| follow from the above inequalities. O

Returning to Lemma 3.7, the first stage of the algorithm (finding an estimate on |X|)
can now be performed using Lemma 3.10. We turn to the second stage that involves
distinguishing between the two cases in Lemma 3.7. For this, we will make use of the
following promise language as an oracle.

Prefix Cardinality Goodness Testing (PCGT): The instances of this language consist
of four components: (i) a 2™ x 2™ Boolean matrix M; (i) a set X C {0, 1}"; (iii) a prefix
of length at most n; (iv) a number k. The matrix M and the set X are presented succinctly
in the form of circuits.

Positive instances: There exists a row y extending /3 such that y beats at least k2% columns
in X.

Negative instances: For all rows y extending 3, y beats at most 2571

columns in X.
Lemma 3.11. The promise language PCGT belongs to the class prAM.

Proof. The proof is similar to that of Lemma 3.9 and makes use of Lemma 3.8. We present
an MAM protocol. It is well known that such a protocol can be converted to an AM
protocol [3].

Merlin claims that a given instance is of the positive type. To prove this, he provides
a row y extending 3. Let Z C X be the set of columns from X that are beaten by y.
Arthur needs to distinguish between the cases of |Z| > k2 and |Z| < 28~!. This situation
is the same as that of Lemma 3.9. By repeating the argument from there, we get an MAM
protocol. O
Proof of Lemma 3.7: Our algorithm will make use of both SLT and PCGT as oracles. Let
us rephrase the two cases that we wish to distinguish:

e Case (a): There exists a row y extending (3 such that y beats at least | X|/2 columns
from X.
e Case (b) : For any row y extending 3, y beats at most |X|/m* columns from X.

We first run the algorithm claimed in Lemma 3.10 to get an estimate U such that |U|/4m <
|X| < |UJ]. Our next goal is to reduce the task of distinguishing the above two cases to a
PCGT query. Consider any row y. Let Z be the number of columns from X that y beats.
We wish to choose a number k satisfying two conditions: (i) if Z > |X|/2 then Z > k2F; (ii)
if Z < |X|/m* then Z < 2¥=1. A simple calculation reveals that it suffices for k to satisfy

the following inequalities in terms of U:
2U <2k < v)
m? 8m?

Clearly, we can choose k = |log 8% |. Then, we call the PCGT oracle with the parameters

M, X, B and k. We output “yes”, if the oracle says “yes”; and output “no”, if the oracle

says ‘no”. |

4. Applications of the Main Result

In this section, we apply Theorem 3.2 in two different settings and derive some corol-
laries. The first deals with upperbounds on the power of S5. The second is about the
consequences of NP having polynomial size circuits.

FINDING IRREFUTABLE CERTIFICATES FOR S} 167

4.1. Upperbounds for S
Theorem 4.1. S§ C PPrAM,

Proof. The claim follows directly from Theorem 3.2. Let L be a language in S5. Let z
be the input string. Consider the Ss-type matrix M corresponding to x. As discussed in
Section 2, we can obtain a circuit C' succinctly encoding the matrix M in time polynomial
in |z|. Invoking the algorithm given in Theorem 3.2 on C, we get either a row-side CIC or
a column-side CIC. Notice that in the former case x € L and in the latter case x ¢ L. O

Having proven the above theorem, it is natural to ask how large the class PP"AM is. By
definition, AM is contained in BPPNY and so, PAM is also contained in the same class. We
observe the above claim extends to the case where the oracle is a prAM oracle, instead of
an AM oracle.

Theorem 4.2. PP'AM C BppNP,

Cai [5] showed that SE is contained in ZPPNP | whereas our result puts SE in the class
PPAM " The containment relationships between ZPPNY and PP™AM are unknown. In this
context, we observe that an alternative proof of Cai’s result can be derived using our tech-
niques. This cannot be achieved by simply combining Theorem 4.1 and 4.2; this would only
yield SE C BPPNF. We obtain the alternative proof by directly appealing to Theorem 3.2.

Theorem 4.3 ([5]). S5 C ZPPNF.

4.2. Consequences of NP having small circuits

A body of prior work has dealt with the implication of the assumption that NP has
polynomial size circuits. Our main theorem yields some new results in this context, which
are described in this section.

Suppose NP is contained in P/poly. Karp and Lipton [13] showed that, under this
assumption, the polynomial time hierarchy (PH) collapses to X5 N1II5, i.e., PH = X5 N 1IIE.
Kobler and Watanabe [14] improved the collapse to ZPPNY. Sengupta (see [5]) observed
that the collapse can be brought down to S5. This has been further improved via a collapse
to OL, the oblivious version of S§ [7]. It has been an interesting open problem to obtain a
collapse to the class PNP. Here, we show a collapse to PPrMA,

Theorem 4.4. If NP C P/poly, then PH = PP™MA,

Proof. By Sengupta’s observation [5], the assumption implies that PH = S8. Combining
this with Theorem 4.1, we get PH = PP*AM_ Arvind et al. [2] showed that if NP C P/poly
then AM = MA. We observe that this result carries over to the promise versions, namely
the same assumption implies prAM = prMA. The claim follows. O

Though the above theorem yields a new consequence, we note that it is not clear
whether this is an improvement over the previously best known collapse. It is known that
MA C ZPPNP [11, 1] and MA C S5 [17]. Extending the former claim, we can show that
prrMA 7PPNP - However, we do not know how to accomplish the same for the second
claim. Namely, it remains open whether PP"™M4 is contained in Sh.

Under the assumption NP has polynomial size circuits, Bshouty et al. [4] studied the
problem of learning a correct circuit for SAT and designed a ZPPNP algorithm. Using
Theorem 3.2, we derive the following claim which improves the above result, as we can
show that FPP™MA C ZppNP,

168

V. CHAKARAVARTHY AND S. ROY

Theorem 4.5. If NP C P/poly, then there exists an FPPMA gigorithm that outputs a
correct polynomial size circuit for SAT at a given input length.

Acknowledgments: We thank the anonymous referees for their useful comments.

References
[1] V. Arvind and J. Kébler. On pseudorandomness and resource-bounded measure. In Proceedings of the
17th Conference on Foundations of Software Technology and Theoretical Computer Science, 1997.
[2] V. Arvind, J. Kobler, U. Schoning, and R. Schuler. If NP has polynomial-size circuits, then MA=AM.
Theoretical Computer Science, 137(2):279-282, 1995.
[3] L. Babai and S. Moran. Arthur-merlin games: A randomized proof system, and a hierarchy of complexity
classes. Journal of Computer and System Sciences, 36(2):254-276, 1988.
[4] N. Bshouty, R. Cleve, R. Gavalda, S. Kannan, and C. Tamon. Oracles and queries that are sufficient
for exact learning. Journal of Computer and System Sciences, 52(3):421-433, 1996.
[5] J. Cai. S2 C ZPPNF. Journal of Computer and System Sciences, 73(1), 2007.
[6] R. Canetti. More on BPP and the polynomial-time hierarchy. Information Processing Letters, 57(5):237—
241, 1996.
[7] V. Chakaravarthy and S. Roy. Oblivious symmetric alternation. In Proceedings of the 23rd Annual
Symposium on Theoretical Aspects of Computer Science, 2006.
[8] D. Du and K. Ko. Computational Complexity. John Wiley and sons, 2000.
[9] L. Fortnow, R. Impagliazzo, V. Kabanets, and C. Umans. On the complexity of succinct zero-sum
games. In Proceedings of the 20th Annual IEEE Conference on Computational Complexity, 2005.
[10] O. Goldreich and A. Wigderson. Improved derandomization of BPP using a hitting set generator. In
RANDOM-APPROX, 1999.
[11] O. Goldreich and D. Zuckerman. Another proof that BPP C PH (and more). Technical Report TR97—
045, ECCC, 1997.
[12] M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial structures from a uniform
distribution. Theoretical Computer Science, 43, 1986.
[13] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In
Proceedings of the 12th ACM Symposium on Theory of Computing, 1980.
[14] J. Kobler and O. Watanabe. New collapse consequences of NP having small circuits. STAM Journal on
Computing, 28(1):311-324, 1998.
[15] P. Miltersen and N. Vinodchandran. Derandomizing Arthur-Merlin games using hitting sets. In Pro-
ceedings of the 40th IEEE Symposium on Foundations of Computer Science, 1999.
[16] C. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.
[17] A. Russell and R. Sundaram. Symmetric alternation captures BPP. Computational Complexity,
7(2):152-162, 1998.
[18] R. Santhanam. Circuit lower bounds for Merlin-Arthur classes. In Proceedings of the 39th ACM Sym-
posium on Theory of Computing, 2007.
[19] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. Computational
Complezity, 15(4), 2007.
[20] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th ACM Symposium
on Theory of Computing, 1983.
[21] L. Stockmeyer. The complexity of approximate counting. In Proceedings of the 15th ACM Symposium

on Theory of Computing, 1983.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 169-180
www.stacs-conf.org

QUANTIFYING HOMOLOGY CLASSES

CHAO CHEN ! AND DANIEL FREEDMAN !

! Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
E-mail address, {C. Chen, D. Freedman}: {chenc3, freedman}@cs.rpi.edu

ABSTRACT. We develop a method for measuring homology classes. This involves three
problems. First, we define the size of a homology class, using ideas from relative homology.
Second, we define an optimal basis of a homology group to be the basis whose elements’
size have the minimal sum. We provide a greedy algorithm to compute the optimal basis
and measure classes in it. The algorithm runs in O(8*n®log® n) time, where n is the size
of the simplicial complex and (is the Betti number of the homology group. Third, we
discuss different ways of localizing homology classes and prove some hardness results.

1. Introduction

The problem of computing the topological features of a space has recently drawn much
attention from researchers in various fields, such as high-dimensional data analysis [3, 15],
graphics [13, 5], networks [10] and computational biology [1, 8]. Topological features are
often preferable to purely geometric features, as they are more qualitative and global, and
tend to be more robust. If the goal is to characterize a space, therefore, features which
incorporate topology seem to be good candidates.

Once we are able to compute topological features, a natural problem is to rank the
features according to their importance. The significance of this problem can be justified
from two perspectives. First, unavoidable errors are introduced in data acquisition, in the
form of traditional signal noise, and finite sampling of continuous spaces. These errors may
lead to the presence of many small topological features that are not “real”, but are simply
artifacts of noise or of sampling [19]. Second, many problems are naturally hierarchical.
This hierarchy — which is a kind of multiscale or multi-resolution decomposition — implies
that we want to capture the large scale features first. See Figure 1(a) and 1(b) for examples.

The topological features we use are homology groups over Zo, due to their ease of
computation. (Thus, throughout this paper, all the additions are mod 2 additions.) We
would then like to quantify or measure homology classes, as well as collections of classes.
Specifically, there are three problems we would like to solve:

(1) Measuring the size of a homology class: We need a way to quantify the size
of a given homology class, and this size measure should agree with intuition. For
example, in Figure 1(a), the measure should be able to distinguish the one large class
(of the 1-dimensional homology group) from the two smaller classes. Furthermore,

1998 ACM Subject Classification: F.2.2, G.2.1.
Key words and phrases: Computational Topology, Computational Geometry, Homology, Persistent Ho-
mology, Localization, Optimization.

ﬁVF—
S © Chao Chen and Daniel Freedman
€0 Creative Commons Attribution-NoDerivs License

170 CHAO CHEN AND DANIEL FREEDMAN

, 5
@
i <;>

(a) (b)

Figure 1: (a,b) A disk with three holes and a 2-handled torus are really more like an annulus and
a 1-handled torus, respectively, because the large features are more important. (c) A
topological space formed from three circles. (d) In a disk with three holes, cycles z; and
z9 are well-localized; z3 is not.

the measure should be easy to compute, and applicable to homology groups of any
dimension.

(2) Choosing a basis for a homology group: We would like to choose a “good”
set of homology classes to be the generators for the homology group (of a fixed
dimension). Suppose that g is the dimension of this group, and that we are using
7o coefficients; then there are 2% — 1 nontrivial homology classes in total. For a
basis, we need to choose a subset of 3 of these classes, subject to the constraint
that these [generate the group. The criterion of goodness for a basis is based
on an overall size measure for the basis, which relies in turn on the size measure
for its constituent classes. For instance, in Figure 1(c), we must choose three from
the seven nontrivial 1-dimensional homology classes: {[z1], [22], [23], [21] + [22], [21] +
[23], [22] + [23], [21] + [#2] + [23]}- In this case, the intuitive choice is {[z1], [22], [23]},
as this choice reflects the fact that there is really only one large cycle.

(3) Localization: We need the smallest cycle to represent a homology class, given a
natural criterion of the size of a cycle. The criterion should be deliberately chosen
so that the corresponding smallest cycle is both mathematically natural and intu-
itive. Such a cycle is a “well-localized” representative of its class. For example, in
Figure 1(d), the cycles z; and 2o are well-localized representatives of their respective
homology classes; whereas z3 is not.

Furthermore, we make two additional requirements on the solution of aforementioned prob-
lems. First, the solution ought to be computable for topological spaces of arbitrary dimen-
sion. Second the solution should not require that the topological space be embedded, for
example in a Euclidean space; and if the space is embedded, the solution should not make
use of the embedding. These requirements are natural from the theoretical point of view,
but may also be justified based on real applications. In machine learning, it is often assumed
that the data lives on a manifold whose dimension is much smaller than the dimension of
the embedding space. In the study of shape, it is common to enrich the shape with other
quantities, such as curvature, or color and other physical quantities. This leads to high
dimensional manifolds (e.g, 5-7 dimensions) embedded in high dimensional ambient spaces
[4].

Although there are existing techniques for approaching the problems we have laid out,
to our knowledge, there are no definitions and algorithms satisfying the two requirements.
Ordinary persistence [12, 20, 6] provides a measure of size, but only for those inessential

QUANTIFYING HOMOLOGY CLASSES 171

classes, i.e. classes which ultimately die. More recent work [7] attempts to remedy this
situation, but not in an intuitive way. Zomorodian and Carlsson [21] use advanced algebraic
topological machinery to solve the basis computation and localization problems. However,
both the quality of the result and the complexity depend strongly on the choice of the given
cover; there is, as yet, no suggestion of a canonical cover. Other works like [14, 19, 11] are
restricted to low dimension.

Contributions. In this paper, we solve these problems. Our contributions include:

e Definitions of the size of homology classes and the optimal homology basis.

e A provably correct greedy algorithm to compute the optimal homology basis and
measure its classes. This algorithm uses the persistent homology.

e An improvement of the straightforward algorithm using finite field linear algebra.

e Hardness results concerning the localization of homology classes.

2. Defining the Problem

In this section, we provide a technique for ranking homology classes according to their
importance. Specifically, we solve the first two problems mentioned in Section 1 by formally
defining (1) a meaningful size measure for homology classes that is computable in arbitrary
dimension; and (2) an optimal homology basis which distinguishes large classes from small
ones effectively.

Since we restrict our work to homology groups over Zs, when we talk about a d-
dimensional chain, ¢, we refer to either a collection of d-simplices, or a ng-dimensional
vector over Zs field, whose non-zero entries corresponds to the included d-simplices. ng is
the number of d-dimensional simplces in the given complex, K. The relevant background
in homology and relative homology can be found in [16].

The Discrete Geodesic Distance. In order to measure the size of homology classes, we
need a notion of distance. As we will deal with a simplicial complex K, it is most natural
to introduce a discrete metric, and corresponding distance functions. We define the discrete
geodesic distance from a vertex p € vert(K), f, : vert(K) — Z, as follows. For any vertex
q € vert(K), fp(q) = dist(p,q) is the length of the shortest path connecting p and ¢, in
the 1-skeleton of K; it is assumed that each edge length is one, though this can easily be
changed. We may then extend this distance function from vertices to higher dimensional
simplices naturally. For any simplex o € K, f,(o) is the maximal function value of the
vertices of o, fp(0) = maxgevert(o) fp(q). Finally, we define a discrete geodesic ball By,
p € vert(K), r > 0, as the subset of K, B) = {0 € K | fy(0) < r}. It is straightforward
to show that these subsets are in fact subcomplexes, namely, subsets that are still simplicial
complexes.

2.1. Measuring the Size of a Homology Class

We start this section by introducing notions from relative homology. Given a simplicial
complex K and a subcomplex L C K, we may wish to study the structure of K by ignoring
all the chains in L. We study the group of relative chain as a quotient group, C4(K, L) =
Ca(K)/Cyq(L), whose elements are relative chains. Analogous to the way we define the group
of cycles Z;(K), the group of boundaries B;(K) and the homology group Hy(K) in C4(K), we

172 CHAO CHEN AND DANIEL FREEDMAN

By
9

(a) (b)

Figure 2: (a) On a disk with three holes, the three shaded regions are the three smallest geodesic
balls measuring the three corresponding classes. (b) On a tube, the smallest geodesic ball
is centered at g, not q;.

define the group of relative cycles, the group of relative boundaries and the relative homology
group in C4(K, L), denoted as Z4(K, L), Bg(K, L) and Hy(K, L), respectively. We denote
or » Cy(K) — Cy4(K, L) as the homomorphism mapping d-chains to their corresponding
relative chains, ¢} : Hg(K) — Hg(K, L) as the induced homomorphism mapping homology
classes of K to their corresponding relative homology classes.

Using these notions, we define the size of a homology class as follows. Given a simplicial
complex K, assume we are given a collection of subcomplexes £ = {L C K}. Furthermore,
each of these subcomplexes is endowed with a size. In this case, we define the size of
a homology class h as the size of the smallest L carrying h. Here we say a subcomplex
L carries h if h has a trivial image in the relative homology group Hg(K, L), formally,
¢7(h) = Bg(K,L). Intuitively, this means that h disappears if we delete L from K, by
contracting it into a point and modding it out.

Definition 2.1. The size of a class h, S(h), is the size of the smallest measurable subcom-
plex carrying h, formally, S(h) = minge, size(L) such that ¢ (h) = B4(K, L).

We say a subcomplex L carries a chain ¢ if L contains all the simplices of the chain,
formally, ¢ C L. Using standard facts from algebraic topology, it is straightforward to see
that L carries h if and only if it carries a cycle of A. This gives us more intuition behind
the measure definition.

In this paper, we take £ to be the set of discrete geodesic balls, L = {B; | p €
vert(K),r > 0}. The size of a geodesic ball is naturally its radius . The smallest geodesic
ball carrying h is denoted as Byy,in(h) for convenience, whose radius is S(h). In Figure 2(a),
the three geodesic balls centered at pi, po and ps are the smallest geodesic balls carrying
nontrivial homology classes [z1], [22] and [z3], respectively. Their radii are the size of the
three classes. In Figure 2(b), the smallest geodesic ball carrying a nontrivial homology class
is the pink one centered at g2, not the one centered at ¢q;. Note that these geodesic balls
may not look like Euclidean balls in the embedding space.

2.2. The Optimal Homology Basis

For the d-dimensional Zs homology group whose dimension (Betti number) is 3,4, there
are 2% — 1 nontrivial homology classes. However, we only need 34 of them to form a basis.

1The idea of growing geodesic discs has been used in [19]. However, this work depends on low dimensional
geometric reasoning, and hence is restricted to 1-dimensional homology classes in 2-manifold.

QUANTIFYING HOMOLOGY CLASSES 173

The basis should be chosen wisely so that we can easily distinguish important homology
classes from noise. See Figure 1(c) for an example. There are 23 —1 = 7 nontrivial homology
classes; we need three of them to form a basis. We would prefer to choose {[z1], [22], [23]}
as a basis, rather than {[z1] 4 [22] + [23], [22] + [23], [23]}. The former indicates that there is
one big cycle in the topological space, whereas the latter gives the impression of three large
classes.

In keeping with this intuition, the optimal homology basis is defined as follows.

Definition 2.2. The optimal homology basis is the basis for the homology group whose
elements’ size have the minimal sum, formally,

Hy = argmin ZS), s.t.dim({ha, ..., hg,}) = Ba.
{h1sshpy} =1

This definition guarantees that large homology classes appear as few times as possible
in the optimal homology basis. In Figure 1(c), the optimal basis will be {[z1], [22], [23]},
which has only one large class.

For each class in the basis, we need a cycle representing it. As we has shown, By, (h),
the smallest geodesic ball carrying h, carries at least one cycle of h. We localize each class
in the optimal basis by its localized-cycles, which are cycles of h carried by Byin(h). This
is a fair choice because it is consistent to the size measure of A and it is computable in
polynomial time. See Section 5 for further discussions.

3. The Algorithm

In this section, we introduce an algorithm to compute the optimal homology basis as
defined in Definition 2.2. For each class in the basis, we measure its size, and represent it
with one of its localized-cycles. We first introduce an algorithm to compute the smallest
homology class, namely, Measure-Smallest(K). Based on this procedure, we provide the
algorithm Measure-All(K), which computes the optimal homology basis. The algorithm
takes O(ﬁ§n4) time, where (34 is the Betti number for d-dimensional homology classes and
n is the cardinality of the input simplicial complex K.

Persistent Homology. Our algorithm uses the persistent homology algorithm. In persis-
tent homology, we filter a topological space with a scalar function, and capture the birth
and death times of homology classes of the sublevel set during the filtration course. Classes
with longer persistences are considered important ones. Classes with infinite persistences
are called essential homology classes and corresponds to the intrinsic homology classes of
the given topological space. Please refer to [12, 20, 6] for theory and algorithms of persistent
homology.

3.1. Computing the Smallest Homology Class

The procedure Measure-Smallest(K) measures and localizes, h,in, the smallest non-
trivial homology class, namely, the one with the smallest size. The output of this procedure
will be a pair (Spin, Zmin), namely, the size and a localized-cycle of hyipn. According to
the definitions, this pair is determined by the smallest geodesic ball carrying A, namely,

174 CHAO CHEN AND DANIEL FREEDMAN

Biin(hmin). We first present the algorithm to compute this ball. Second, we explain how
to compute the pair (Spin, Zmin) from the computed ball.

Procedure Bmin(K): Computing B (hmin). It is straightforward to see that the ball

Biin (hmin) is also the smallest geodesic ball carrying any nontrivial homology class of K. It

((p)

can be computed by computing B; P) for all vertices p, where B; is the smallest geodesic

)

ball centered at p which carries any nontrivial homology class. When all the B;(p 's are

computed, we compare their radii, r(p)’s, and pick the smallest ball as Byin (hmin)-

For each vertex p, we compute B;(p) by applying the persistent homology algorithm to
K with the discrete geodesic distance from p, f,,, as the filter function. Note that a geodesic
ball By is the sublevel set [!(—o0,r] € K. Nontrivial homology classes of K are essential
homology classes in the persistent homology algorithm. (In the rest of this paper, we may
use “essential homology classes” and “nontrivial homology classes of K” interchangable.)
Therefore, the birth time of the first essential homology class is 7(p), and the subcomplex

fy (=00, r(p)] is By

Computing (Spin, Zmin). We compute the pair from the computed ball Byin (hmin). For
simplicity, we denote P, and rp;, as the center and radius of the ball. According to the
definition, 7,y is exactly the size of hyin, Smin. Any nonbounding cycle (a cycle that is not
a boundary) carried by Bin(hmin) is a localized-cycle of hyi,.2 We first computes a basis
for all cycles carried by Byin(hmin), using a reduction algorithm. Next, elements in this
basis are checked one by one until we find one which is nounbounding in K. This checking
uses the algorithm of Wiedemann[18] for rank computation of sparse matrices over Zs field.

3.2. Computing the Optimal Homology Basis

In this section, we present the algorithm for computing the optimal homology basis
defined in Definition 2.2, namely, H,. We first show that the optimal homology basis can
be computed in a greedy manner. Second, we introduce an efficient greedy algorithm.

3.2.1. Computing Hq in a Greedy Manner. Recall that the optimal homology basis is the
basis for the homology group whose elements’ size have the minimal sum. We use matroid
theory [9] to show that we can compute the optimal homology basis with a greedy method.
Let H be the set of nontrivial d-dimensional homology classes (i.e. the homology group
minus the trivial class). Let L be the family of sets of linearly independent nontrivial
homology classes. Then we have the following theorem, whose proof is omitted due to
space limitations. The same result has been mentioned in [14].

Theorem 3.1. The pair (H, L) is a matroid when 34 > 0.

We construct a weighted matroid by assigning each nontrivial homology class its size
as the weight. This weight function is strictly positive because a nontrivial homology class
can not be carried by a geodesic ball with radius zero. According to matroid theory, we
can compute the optimal homology basis with a naive greedy method: check the smallest
nontrivial homology classes one by one, until Gy linearly independent ones are collected.

2This is true assuming that Biin (Amin) carries one and only one nontrivial class, i.e. hmin itself. However,
it is straightforward to relax this assumption.

QUANTIFYING HOMOLOGY CLASSES 175

The collected G, classes {h;,, hiy, ..., hi ﬁd} form the optimal homology basis Hy. (Note that
the h’s are ordered by size, i.e. S(h;,) < S(hi,_,).) However, this method is exponential in
B4. We need a better solution.

3.2.2. Computing Hyq with a Sealing Technique. In this section, we introduce a polynomial
greedy algorithm for computing H,. Instead of computing the smallest classes one by one,
our algorithm uses a sealing technique and takes time polynomial in §;. Intuitively, when
the smallest [classes in Hy are picked, we make them trivial by adding new simplices to the
given complex. In the augmented complex, any linear combinations of these picked classes
becomes trivial, and the smallest nontrivial class is the (I + 1)’th one in H,.

The algorithm starts by measuring and localizing the smallest homology class of the
given simplicial complex K (using the procedure Measure-Smallest(K) introduced in Sec-
tion 3.1), which is also the first class we choose for H,;. We make this class trivial by sealing
one of its cycles — i.e. the localized-cycle we computed — with new simplices. Next, we
measure and localize the smallest homology class of the augmented simplicial complex K’.
This class is the second smallest homology class in H;. We make this class trivial again and
proceed for the third smallest class in Hy. This process is repeated for G; rounds, yielding
Hg.

We make a homology class trivial by sealing the class’s localized-cycle, which we have
computed. To seal this cycle z, we add (a) a new vertex v; (b) a (d 4 1)-simplex for each
d-simplex of z, with vertex set equal to the vertex set of the d-simplex together with v; (c)
all of the faces of these new simplices. In Figure 3(a) and 3(b), a 1-cycle with four edges,
z1, is sealed up with one new vertex, four new triangles and four new edges.

It is essential to make sure the new simplices does not influence our measurement. We
assign the new vertices 400 geodesic distance from any vertex in the original complex K.
Furthermore, in the procedure Measure-Smallest(K’), we will not consider any geodesic
ball centered at these new vertices. In other words, the geodesic distance from these new
vertices will never be used as a filter function. Whenever we run the persistent homology
algorithm, all of the new simplices have 4oc filter function values, formally, f,(c) = 400
for all p € vert(K) and o € K'\K.

The algorithm is illustrated in Figure 3(a) and 3(b). The 4-edge cycle, 21, and the
8-edge cycle, zo, are the localized-cycles of the smallest and the second smallest homology
classes (S([z1]) = 2,5([22]) = 4). The nonbounding cycle z3 = z; + 2z corresponds to the
largest nontrivial homology class [z3] = [z1] + [22] (S([z3]) = 5). After the first round, we
choose [z1] as the smallest class in H;. Next, we destroy [z1] by sealing z1, which yields the
augmented complex K'. This time, we choose [29], giving H1 = {[21], [22]}

Correctness. We prove in Theorem 3.3 the correctness of our greedy method. We begin by
proving a lemma that destroying the smallest nontrivial class will neither destroy any other
classes nor create any new classes. Please note that this is not a trivial result. The lemma
does not hold if we seal an arbitrary class instead of the smallest one. See Figure 3(c) and
3(d) for examples. Our proof is based on the assumption that the smallest nontrivial class
Rmin is the only one carried by Byin(hmin)-

Lemma 3.2. Given a simplicial complex K, if we seal its smallest homology class hpyin(K),
any other nontrivial homology class of K, h, is still nontrivial in the augmented simplicial
complex K'. In other words, any cycle of h is still nonbounding in K'.

176 CHAO CHEN AND DANIEL FREEDMAN

Z, Z, Z, Z,
71 Z2 7y V4] \ / o \ ,’

R S<l 0~ N Lo

(a) (b) (c) (d)

Figure 3: (a,b) the original complex K and the augmented complex K’ after destroying the smallest
class, [z1]. (c¢) If the original complex K consists of the two cycles z; and z, destroying a
larger class [z1] + [22] will make all other classes trivial too. (d) The original complex K
consists of the two cycles and an edge connecting them. Destroying [21] + [22] will make
all other classes trivial and create a new class.

This lemma leads to the correctness of our algorithm, namely, Theorem 3.3. We prove
this theorem by showing that the procedure Measure-All(K) produces the same result as
the naive greedy algorithm.

Theorem 3.3. The procedure Measure-All(K) computes Hy.

4. An Improvement Using Finite Field Linear Algebra

In this section, we present an improvement on the algorithm presented in the previous
section, more specifically, an improvement on computing the smallest geodesic ball carrying
any nontrivial class (the procedure Bmin). The idea is based on the finite field linear algebra
behind the homology.

We first observe that for neighboring vertices, p; and ps, the birth times of the first
essential homology class using f,, and f,, as filter functions are close (Theorem 4.1). This

observation suggests that for each p, instead of computing B;(p), we may just test whether
the geodesic ball centered at p with a certain radius carries any essential homology class.
Second, with some algebraic insight, we reduce the problem of testing whether a geodesic ball
carries any essential homology class to the problem of comparing dimensions of two vector
spaces. Furthermore, we use Theorem 4.2 to reduce the problem to rank computations
of sparse matrices on the Zo field, for which we have ready tools from the literature. In
what follows, we assume that K has a single component; multiple components can be
accommodated with a simple modification.

Complexity. In doing so, we improve the complexity to O(3jn? log?n). More detailed
complexity analysis is omitted due to space limitations.?

Next, we present details of the improvement. In Section 4.1, we prove Theorem 4.1 and
provide details of the improved algorithm. In Section 4.2, we explain how to test whether
a certain subcomplex carries any essential homology class of K. For convenience, in this
section, we use “carrying nonbounding cycles” and “carrying essential homology classes”

3This complexity is close to that of the persistent homology algorithm, whose complexity is O(n?). Given
the nature of the problem, it seems likely that the persistence complexity is a lower bound. If this is the
case, the current algorithm is nearly optimal. Cohen-Steiner et al.[8] provided a linear algorithm to maintain
the persistences while changing the filter function. While interesting, this algorithm is not applicable in our
case.

QUANTIFYING HOMOLOGY CLASSES 177

interchangeably, because a geodesic ball carries essential homology classes of K if and only
if it carries nonbounding cycles of K.

4.1. The Stability of Persistence Leads to An Improvement

Cohen-Steiner et al.[6] proved that the change, suitably defined, of the persistence of
homology classes is bounded by the changes of the filter functions. Since the filter functions
of two neighboring vertices, f,, and f,,, are close to each other, the birth times of the first
nonbounding cycles in both filters are close as well. This leads to Theorem 4.1. A simple
proof is provided.

Theorem 4.1. If two vertices p1 and po are neighbors, the birth times of the first non-
bounding cycles for filter functions f,, and fp, differ by no more than 1.

Proof. p1 and py are neighbors implies that for any point g, fp,(q) < fp(P1) + fpi (@) =
1+ fp,(q), in which the inequality follows the triangular inequality. Therefore, Bﬁp Vs a

subset of B;gp U+ The former carries nonbounding cycles implies that the latter does too,
and thus r(p2) < r(p1) + 1. Similarly, we have r(p1) < r(p2) + 1. "

This theorem suggests a way to avoid computing B;(p) for all p € vert(K) in the
procedure Bmin. Since our objective is to find the minimum of the r(p)’s, we do a breadth-
first search through all the vertices with global variables r,,;, and p,.;» recording the smallest
r(p) we have found and its corresponding center p, respectively. We start by applying the
persistent homology algorithm on K with filter function f,,, where pg is an arbitrary vertex
of K. Initialize r,,;, as the birth time of the first nonbounding cycle of K, r(po), and ppin
as pg. Next, we do a breadth-first search through the rest vertices. For each vertex p;,i # 0,
there is a neighbor p; we have visited (the parent vertex of p; in the breath-first search tree).
We know that r(pj) > 7min and 7(p;) > r(p;)—1 (Theorem 4.1). Therefore, 7(p;) > rmin—1.
We only need to test whether the geodesic ball BT"“"*]L carries any nonbounding cycle of
K. If so, Tmin is decremented by one, and pmin 1s updated to p;. After all vertices are
visited, pmin and 7, give us the ball we want.

However, testing whether the subcomplex Bym~" carries any nonbounding cycle of K
is not as easy as computing nonbounding Cycles of the subcomplex. A nonbounding cycle
of Bgmm_l may not be nonbounding in K as we require. For example, in Figure 4(a) and
4(b), the simplicial complex K is a torus with a tail. The pink geodesic ball in the first
figure does not carry any nonbounding cycle of K, although it carries its own nonbounding
cycles. The geodesic ball in the second figure is the one that carries nonbounding cycles of
K. Therefore, we need algebraic tools to distinguish nonbounding cycles of K from those
of the subcomplex B;;"i"_l.

1

4.2. Procedure Contain-Nonbounding-Cycle: Testing Whether a Subcomplex Car-
ries Nonbounding Cycles of K

In this section, we present the procedure for testing whether a subcomplex K carries
any nonbounding cycle of K. A chain in Ky is a cycle if and only if it is a cycle of K.
However, solely from Ky, we are not able to tell whether a cycle carried by Ky bounds or
not in K. Instead, we write the set of cycles of K carried by Kj, Zé(o (K), and the set of

178 CHAO CHEN AND DANIEL FREEDMAN

< X
;
(b) (d)

(c)
Figure 4: (a,b) In a torus with a tail, only the ball in the second figure carries nonbounding cycles
of K, although in both figures the balls have nontrivial topology. (¢,d) The cycles with
the minimal radius and the minimal diameter, z, and z4 (Used in Section 5).

(a)

boundaries of K carried by Ko, Bfl(o(K), as sets of linear combinations with certain con-
straints. Consequently, we are able to test whether any cycle carried by Ky is nonbounding
in K by comparing their dimensions. Formally, we define Bfl{o (K) = B4(K)NCy(Kp) and
Z;°(K) = Za(K) N Ca(Ko).

Let Hy = [#1, ..., 23,] be the matrix whose column vectors are arbitrary 3 nonbounding
cycles of K which are not homologous to each other. The boundary group and the cycle
group of K are column spaces of the matrices 0441 and Zg= (0441, Hd] respectively. Using
finite field linear algebra, we have the following theorem, whose proof is omitted due to
space limitations.

Theorem 4.2. Ky carries nonbounding cycles of K if and only if
rank(Z, \KO) — rank(éi\lKo) # Ba.
where %H and Z& are the i-th rows of the matrices 0441 and Zd, respectively.

We use the algorithm of Wiedemann[18] for the rank computation. In our algorithm,
the boundary matrix 041 is given. The matrix Hy can be precomputed as follows. We
perform a column reduction on the boundary matrix dy to compute a basis for the cycle
group Z,(K). We check elements in this basis one by one until we collect 34 of them forming
Hy. For each cycle z in this cycle basis, we check whether z is linearly independent of the
d-boundaries and the nonbounding cycles we have already chosen. More details are omitted
due to space limitations.

5. Localizing Classes

In this section, we address the localization problem. We formalize the localization
problem as a combinatorial optimization problem: Given a simplcial complex K, compute
the representative cycle of a given homology class minimizing a certain objective function.
Formally, given an objective function defined on all the cycles, cost : Z4(K) — R, we want
to localize a given class with its optimally localized cycle, zopt(h) = argmin,j, cost(z). In
general, we assume the class h is given by one of its representative cycles, zg.

We explore three options of the objective function cost(z), i.e. the volume, diameter and
radius of a given cycle z. We show that the cycle with the minimal volume and the cycle
with the minimal diameter are NP-hard to compute. The cycle with the minimal radius,

QUANTIFYING HOMOLOGY CLASSES 179

which is the localized-cycle we defined and computed in previous sections, is a fair choice.
Due to space limitations, we omit proofs of theorems in this section.

Definition 5.1 (Volume). The volume of z is the number of its simplices, vol(z) = card(z).

For example, the volume of a 1-dimensional cycle, a 2-dimensional cycle and a 3-
dimensional cycle are the numbers of their edges, triangles and tetrahedra, respectively.
A cycle with the smallest volume, denoted as z,, is consistent to a “well-localized” cycle
in intuition. Its 1-dimensional version, the shortest cycle of a class, has been studied by
researchers [14, 19, 11]. However, we prove in Theorem 5.2 that computing z, of h is NP-
hard.* The proof is by reduction from the NP-hard problem MAX-2SAT-B [17]. More
generally, we can extend the the volume to be the sum of the weights assigned to simplices
of the cycle, given an arbitrary weight function defined on all the simplices of K. The
corresponding smallest cycle is still NP-hard to compute.

Theorem 5.2. Computing z, for a given h is NP-hard.

When it is NP-hard to compute z,, one may resort to the geodesic distance between
elements of z. The second choice of the objective function is the diameter.

Definition 5.3 (Diameter). The diameter of a cycle is the diameter of its vertex set,
diam(z) = diam(vert(z)), in which the diameter of a set of vertices is the maximal geodesic
distance between them, formally, diam(S) = max,, 4es dist(p, q).

Intuitively, a representative cycle of h with the minimal diameter, denoted z4, is the
cycle whose vertices are as close to each other as possible. The intuition will be further
illustrated by comparison against the radius criterion. We prove in Theorem 5.4 that com-
puting zg of h is NP-hard, by reduction from the NP-hard Multiple-Choice Cover Problem
(MCCP) of Arkin and Hassin [2].

Theorem 5.4. Computing zq for a given h is NP-hard.
The third option of the objective function is the radius.

Definition 5.5 (Radius). The radius of a cycle is the radius of the smallest geodesic ball
carrying it, formally, rad(z) = min,eyer(x) MaXgevert(z) dist(p, ¢), where vert(K) and vert(z)
are the sets of vertices of the given simplicial complex K and the cycle z, respectively.

The representative cycle with the minimal radius, denoted as z,, is the same as the
localized-cycle defined and computed in previous sections. Intuitively, z, is the cycle whose
vertices are as close to a vertex of K as possible. However, z. may not necessarily be
localized in intuition. It may wiggle a lot while still being carried by the smallest geodesic
ball carrying the class. See Figure 4(c), in which we localize the only nontrivial homology
class of an annulus (the light gray area). The dark gray area is the smallest geodesic ball
carrying the class, whose center is p. Besides, the cycle with the minimal diameter (Figure
4(d)) avoids this wiggling problem and is concise in intuition. This in turn justifies the
choice of diameter.” We can prove that z. can be computed in polynomial time and is a
2-approximation of zg.

4Erickson and Whittlesey [14] localized 1-dimensional classes with their shortest representative cycles.
Their polynomial algorithm can only localize classes in the shortest homology basis, not arbitrary given
classes.

5This figure also illustrates that the radius and the diameter of a cycle are not strictly related. For the
cycle z, in the left, its diameter is twice of its radius. For the cycle z4 in the center, its diameter is equal to
its radius.

180

CHAO CHEN AND DANIEL FREEDMAN

Theorem 5.6. We can compute z, in polynomial time.

Theorem 5.7. diam(z,) < 2diam(zg).

This bound is a tight bound. In Figure 4(c) and 4(d), the diameter of the cycle z, is

twice of the radius of the dark gray geodesic ball. The diameter of the cycle z; is the same
as the radius of the ball. We have diam(z,) = 2 diam(zy).

Acknowledgements

The authors wish to acknowledge constructive comments from anonymous reviewers

and fruitful discussions on persistent homology with Professor Herbert Edelsbrunner.

References

1]

P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang. Extreme elevation on a 2-manifold. Discrete
& Computational Geometry, 36:553-572, 2006.

E. M. Arkin and R. Hassin. Minimum-diameter covering problems. Networks, 36(3):147-155, 2000.

G. Carlsson. Persistent homology and the analysis of high dimensional data. Symposium on the Geom-
etry of Very Large Data Sets, Febrary 2005. Fields Institute for Research in Mathematical Sciences.
G. Carlsson, T. Ishkhanov, V. de Silva, and L. J. Guibas. Persistence barcodes for shapes. International
Journal of Shape Modeling, 11(2):149-188, 2005.

C. Carner, M. Jin, X. Gu, and H. Qin. Topology-driven surface mappings with robust feature alignment.
In IEEFE Visualization, p. 69, 2005.

D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete € Com-
putational Geometry, 37:103-120, 2007.

D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending persistent homology using Poincaré and
Lefschetz duality. Foundations of Computational Mathematics, to appear.

D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov. Vines and vineyards by updating persistence in
linear time. In Symposium on Computational Geometry, pp. 119-126, 2006.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2001.
V. de Silva and R. Ghrist. Coverage in sensor networks via persistent homology. Algebraic & Geometric
Topology, 2006.

T. K. Dey, K. Li, and J. Sun. On computing handle and tunnel loops. In IEEE Proc. NASAGEM, 2007.
H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete
& Computational Geometry, 28(4):511-533, 2002.

J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. Discrete & Computational Ge-
ometry, 31(1):37-59, 2004.

J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology generators. In SODA, pp.
1038-1046, 2005.

R. Ghrist. Barcodes: the persistent topology of data. Amer. Math. Soc Current Events Bulletin.

J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwook City, California, 1984.

C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. In Proc.
20th ACM Symposium on Theory of computing, pp. 229-234, New York, NY, USA, 1988. ACM Press.
D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information
Theory, 32(1):54-62, 1986.

Z. J. Wood, H. Hoppe, M. Desbrun, and P. Schréder. Removing excess topology from isosurfaces. ACM
Trans. Graph., 23(2):190-208, 2004.

A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete & Computational Geometry,
33(2):249-274, 2005.

A. Zomorodian and G. Carlsson. Localized homology. In Shape Modeling International, pp. 189—198,
2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 181-192
www.stacs-conf.org

SHORTEST VERTEX-DISJOINT TWO-FACE PATHS
IN PLANAR GRAPHS

ERIC COLIN DE VERDIERE ! AND ALEXANDER SCHRIJVER 2

! Laboratoire d’informatique
Ecole normale supérieure, CNRS
45, rue d’Ulm
75005 Paris
France
E-mail address: Eric.Colin.de.Verdiere@ens.fr
URL: http://www.di.ens.fr/"colin/

2 Centrum voor Wiskunde en Informatica
Kruislaan 413
1098 SJ Amsterdam
Netherlands
E-mail address: lex@cwi.nl
URL: http://homepages.cwi.nl/"lex/

ABSTRACT. Let G be a directed planar graph of complexity n, each arc having a non-
negative length. Let s and ¢t be two distinct faces of G; let s1,. .., si be vertices incident
with s; let t1, ..., tr be vertices incident with ¢. We give an algorithm to compute k pair-
wise vertex-disjoint paths connecting the pairs (s;,¢;) in G, with minimal total length, in
O(knlogn) time.

1. Introduction

The vertez-disjoint paths problem is described as follows: given any (directed or undi-
rected) graph and k pairs (s1,t1),...,(Sk,tx) of vertices, find k pairwise vertex-disjoint
paths connecting the pairs (s;,t;), if they exist. This problem is well-known also because of
its motivation by VLSI-design.

For a fixed number k of pairs of terminals, this problem is polynomial-time solvable in
a directed planar graph, as shown by Schrijver [Sch94], and in any undirected graph, as
shown by Robertson and Seymour [RS95]. However, Raghavan [Rag86] and Kramer and van
Leeuwen [KvL84] proved that it is NP-hard when & is not fixed, even on a planar undirected

1998 ACM Subject Classification: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical
algorithms and problems—Computations on discrete structures; routing and layout; G.2.2 [Mathematics of
Computing]: Graph theory— Graph algorithms; network problems; path and circuit problems.

Key words and phrases: algorithm, planar graph, disjoint paths, shortest path.

Most of this work was done while the first author was visiting the second author at CWI Amsterdam.

SYMPOSIUM
(WLVIL ON THEORETICAL
ASPECTS
47 / OF COMPUTER -) N "
SCIENCE © Eric Colin de Verdiére and Alexander Schrijver
@ Creative Commons Attribution-NoDerivs License

182 ERIC COLIN DE VERDIERE AND ALEXANDER SCHRIJVER

Figure 1: An instance of the problem and a solution (in bold lines).

graph; it belongs to the more general class of integer multicommodity flow problems [Sch03,
Chapter 70], many variants of which are NP-hard.

If the graph is planar, two special cases are solvable in time linear in the complexity of
the graph, even if k is not fixed:

(a) if all terminals lie on the outer face, as proved by Suzuki et al. [SAN9O];

(b) if the terminals s1, ..., si are incident with a common face s, the terminals ¢4, . .., tx
are incident with a common face ¢, and the faces s and ¢ are distinct, as proved by
Ripphausen-Lipa et al. [RLWW96].

In this paper, we consider a graph where each edge has a nonnegative length, and we
wish to solve the vertex-disjoint paths problem using paths with minimal total length. Of
course, this is harder than the vertex-disjoint paths problem. In case (a), the problem is
known to be solvable in polynomial time (even if k is not fixed) if the cyclic order of the
terminals is s1,. .., Sk, tk, ..., t1 (by reduction to the max-flow problem, after replacing each
vertex by two vertices connected by an arc, so that the problem is to find arc-disjoint paths
in this new graph) [vdHdP02]. Our goal is to solve the vertex-disjoint paths problem with
minimal total length in case (b). We give an algorithm to do this in O(knlogn) time (see
Figure 1):

Theorem 1.1. Let G be a planar directed graph with n vertices and arcs, each arc having a
nonnegative length. Let s and t be two distinct faces of G; let s, ..., S, be vertices incident
with s; let t1,...,t; be vertices incident with t. Then we can compute k pairwise vertex-
disjoint paths connecting the pairs (s;,t;) in G, with minimal total length, in O(knlogn)
time.

The value of k is not fixed in this result. Note that this theorem also holds if G is
an undirected graph: simply replace every edge of this graph by two oppositely directed
arcs and apply the previous result to this new graph. The same problem for non-crossing
shortest paths, that is, paths that are allowed to overlap along vertices and edges but not
to cross in the plane, is solvable in O(nlogn) time, as shown by Takahashi et al. [TSN96].

SHORTEST VERTEX-DISJOINT TWO-FACE PATHS IN PLANAR GRAPHS 183

Figure 2: Construction of the graph D = (W, A) from the graph G. The thin arcs on the
rings have length zero.

The high-level approach of our algorithm is the following. We first show that we may
assume without loss of generality that G satisfies some additional properties and trans-
form G into another planar directed graph D; in this graph, it suffices to solve the same
problem for arc-disjoint instead of vertez-disjoint paths (Section 2). Then we translate our
problem in terms of flows in the graph D (Section 3). In Section 4, we introduce the residual
graph and state some of its properties that we will use. In Section 5, we explain how to
increase the value of an integer flow. By repeated applications of this algorithm, we obtain
vertex-disjoint paths in G between the terminals, but they may fail to connect the pairs
(si,ti). We show that it suffices to “rotate” the flow a few times to change the connections
between the terminals (Section 6) and explain how to do that efficiently (Section 7). A
generalization of the notion of potential allows us to assume that all lengths in the residual
graph are nonnegative, which makes the algorithm efficient.

2. Preliminaries

We assume that we are given an embedding of the directed graph G in the plane. More
precisely, only a combinatorial embedding of G is necessary, which means that the cyclic
order of the arcs around a vertex is known.

We can assume that G is connected and that ¢ is the outer face of the embedding of
G. Up to re-indexing the pairs (s;,t;), we may assume that sq,...,s; and tq,...,t; are
in clockwise order: indeed, if such a reordering does not exist, then there cannot exist
vertex-disjoint paths connecting the pairs (s;,t;).

We may assume that each terminal vertex has degree one as follows: to each terminal
vertex s; (resp. t;), attach an arc (of length zero, for example) (s/,s;) (vesp. (¢;,t;)) inside
s (resp. t), where s} (resp. t}) is a new vertex; use the s, and the ¢ as terminals, instead
of the s; and the ¢;. Clearly, any solution to the problem in this augmented graph yields a
solution in the original graph G.

We transform G into another directed planar graph D = (W, A) by replacing each non-
terminal vertex v of G by a small clockwise “ring” of arcs; see Figure 2. Every arc a of D
that is on no ring corresponds to an arc of G' and its length, A(a), is the length of this arc

184 ERIC COLIN DE VERDIERE AND ALEXANDER SCHRIJVER

in G; it is thus nonnegative. The length A(a) of an arc a on a ring is zero. The function A
is fixed in this whole paper.

An (s,t)-path in D or G is a path from some vertex in {si,...,sx} to some vertex
in {t1,...,t}; an (s;,t;)-path is a path connecting some pair of terminals (s;, ;).

Proposition 2.1. Let P be a minimum-length set of k vertez-disjoint (s;,t;)-paths in D.
Then P gives, in O(n) time, a minimum-length set of k vertez-disjoint (s;,t;)-paths in G.
If no such set P exists, then the original problem in G has no solution.

Proof. Consider such a set of (s;,t;)-paths P in D. We claim that a given ring r of D can
be used by at most one path in P. Indeed, since s and t are distinct faces, R?\ {s Ut} is
an annulus. Since the paths in P are vertex-disjoint and connect s to t, every point of the
annulus that does not belong to a path in P is on the left of exactly one path and on the
right of exactly one path in P. In particular, the center ¢ of r is on the right of exactly
one path in P. But every path using r has ¢ on its right, because the arcs of r are oriented
clockwise. This proves the claim.

Thus, P corresponds, in G, to k pairwise vertex-disjoint (s;,t;)-walks. Removing the
loops from these walks in O(n) time does not increase the total length and gives a set of k
vertex-disjoint (s;,t;)-paths in G.

Conversely, any solution of the original vertex-disjoint problem in G gives a set of k
vertex-disjoint paths in D, of the same length, connecting the appropriate pairs of terminals.
So the paths obtained in the previous paragraph have minimal total length; furthermore, if
no such set of paths P exists, then the problem in G admits no solution. [

So we reduced the problem in G to the same problem in the graph D. The point
now is that the vertices of D have degree three, except the terminals, which have degree
one; because of these degree conditions, a set of arc-disjoint (s, t)-paths or circuits in D
is actually a set of vertez-disjoint (s,t)-paths or circuits in D, so we now have to solve a
problem on arc-disjoint paths. This enables a flow approach on D, which we will develop
in the next section.

3. Flows and winding numbers

In this paper, a flow in D = (W, A) is an element 2 € R4 such that:

(1) for each arca € A, 0 < z(a) <1,
(2) for each non-terminal vertex v, the following flow conservation law holds:

Z z(a) = Z x(a).

a | v=source(a) a | v=target(a)
The value of a flow x equals the total flow leaving the vertices si,...,sg: if a; is the arc
incident with s;, then the value of x equals Z?Zl x(a;). A circulation is a flow of value zero.
A length function (or cost function) k on D is an element of R4;) is a length function.
The length (or cost) of a flow x with respect to & is defined to be ' x.

An integer flow is a flow in {0,1}4; it is a set of arc-disjoint (s,)-paths and circuits
in D. Actually, by the degree conditions on D, it is a set of vertex-disjoint (s,t)-paths and
circuits.

Let A~! be the set of arcs in A with reverse orientation. If K € R* is a length function,
we define the length of an arc a=! € A~! to be k(a™!) = —k(a).

SHORTEST VERTEX-DISJOINT TWO-FACE PATHS IN PLANAR GRAPHS 185

t3

ty

Figure 3: The path U in the dual graph D* and the corresponding value of u on the arcs
of D. Only the non-zero values of u are indicated, on the arcs in bold lines. Here
m=mgs—m;y=3—1=2.

Let X € RAYA™; we define 2¥ € RA by 2¥(a) = X(a) — X(a™'). If v is a walk
in (W,AU A~1Y), by a slight abuse of notation, we define 27 to be X, where X (a) (resp.
X(a~1)) is the number of times 7 travels through the arc a (resp. a~!). The length of v
with respect to a length function & is thus & 27.

We now want to take into account how a flow “turns around” the inner face s of G. To
do this, consider the (undirected) dual graph D* of D, that is, the planar graph that has
one vertex f* inside each face f of D and such that f{ and f5 are connected by an edge
e* if and only if f; and f5 are separated by an arc e in D; in that case, e* crosses e but no
other arc of D. Let U be a path (fixed in this whole paper) from s* to t* in D* (Figure 3).
For each arc a in A, define u(a) to be 0 if a does not cross U, +1 if a crosses U from left to
right, and —1 if a crosses U from right to left. This defines an element u € R4, The winding
number of a flow z equals vz, the value of the flow through u counted algebraically. Also,
for any X € RAUA_l7 the winding number of X is u ' 2.

Let mg4 € [1, k] be such that the first arc of U is, in the cyclic order around the face s,
between s;,, and Sp,,+1 mod k- Similarly, let m; be such that the last arc of U is between
tm, and ;41 mod k- Let m = mg — my.

The following lemma will be used repeatedly.

Lemma 3.1. Let «y be any circuit in (W, AU A™'). Then the winding number of ~y belongs
to {—1,0,+1}. If v encloses s in the plane, then it has winding number +1 if it is clockwise
and —1 if it is counter-clockwise. Otherwise, ~v has winding number 0.

Proof. This is a consequence of the Jordan curve theorem. The winding number of ~ is
the number of times the path U crosses v from the right to the left, minus the number of
times U crosses « from the left to the right. Assume v is clockwise, the other case being
analogous. The winding number of v is the number of times U exits the region enclosed
by v minus the number of times it enters this region.

If v does not enclose s, then both endpoints of U are outside -, so the winding number
is zero. If v encloses s, the source of U is inside the region enclosed by ~ while its target is
outside, so the winding number is +1. [

186 ERIC COLIN DE VERDIERE AND ALEXANDER SCHRIJVER

We can now reformulate our arc-disjoint paths problem in D in terms of flows in D:

Proposition 3.2. Let x be an integer flow in D of value k with minimal cost subject to
the condition that its winding number, modulo k, equals m. Then x gives, in O(n) time, k
vertex-disjoint (s;,t;)-paths in D of minimal total length. If there exists no such flow, then
there does not exist k vertex-disjoint (s;,t;)-paths in D.

Proof. As noted above, the degree conditions on D imply that the flow x is a set of vertez-
disjoint (s, t)-paths or circuits in D. Let 7 be a circuit in z. If o has non-zero winding
number, then v separates s and ¢, which implies that = has value zero, a contradiction.
If 4+ has winding number zero, then removing it from x yields another flow with the same
properties. Since we can remove such circuits in O(n) time, we may assume that = contains
only (s,t)-paths. By the assumption on the winding number, these paths connect the pairs
(siyti), fori=1,... k.

Furthermore, any k vertex-disjoint (s;,¢;)-paths in D correspond to a flow in D of
value k£ and of winding number equal, modulo k, to m. It follows that the paths obtained
have minimal total length. [

By Propositions 2.1 and 3.2, to prove Theorem 1.1, it suffices to show that we can, in
O(knlogn) time, find an integer flow in D of value k and with minimal cost subject to the
condition that its winding number, modulo k, equals m.

4. The residual graph

In this section, we introduce the residual graph of D in the special case of integer
flows; it is a classical tool for dealing with maximal flows and flows of minimal cost [Sch03,
Chapters 10-12].

Let z be an integer flow on D = (W, A). Let A, be the subset of AU A~! defined by

Ay ={a | z(a)=0yU{a"! | z(a) = 1}.

The residual graph of D with respect to x is the directed graph D, = (W, A,); it is thus
the graph obtained from D by reversing the sign of the length and winding number and the
orientation of the arcs a such that x(a) = 1.

The following lemma explains the interest of the residual graph; the first two assertions
are well-known.

Lemma 4.1. Let x be an integer flow in D.

(i) Dy has no (s,t)-path if and only if © has maximal value in D among all flows.

(ii) Assume that x has mazimal value in D; let k be a length function. Then D, has no
negative-length directed circuit with respect to k if and only if x has minimal cost,
with respect to k, among all flows in D with the same value.

(iii) Assume x has mazimal value in D. Then D, has no directed circuit with winding
number one if and only if x has maximal winding number among all flows in D with
the same value.

Proof. In these three assertions, the “if” part is easy: If D, has an (s,t)-path or circuit -,
then, by construction of D,, y := x 4+ 27 is an integer flow in D; its cost equals the cost
of in D plus the cost of v in D, ; its winding number equals the winding number of x plus
the winding number of ~; and its value equals the value of x plus one if 7 is a path, or the
value of x if ~y is a circuit.

SHORTEST VERTEX-DISJOINT TWO-FACE PATHS IN PLANAR GRAPHS 187

Conversely, let « be an integer flow in D and let y be any flow in D. Consider y — x
in the graph D. By construction of D,, this is a flow in D, in the sense that the flow
conservation law holds at each vertex of D (except at the terminals) and that, for each arc
a € A, we have (y —x)(a) > 0if a € A, and (y — 2)(a) < 0 if a=! € A,. In particular,
y —x can be written as nyeZ a,27, where Z is a set of (s, t)-paths, (¢, s)-paths, and circuits
in D,, and the o, are positive real numbers.

Now, to prove the “only if” part of (i), simply note that, if D, has no (s, t)-path, then
there is no (s, t)-path in Z; thus, the value of y cannot be greater than the value of z. To
prove the “only if” part of (ii) and (iii), assume that = and y both have maximal value in D.
Then, by (i), Z contains no (s, t)-path, hence also no (¢, s)-path, hence only circuits. If D,
has no negative-length directed circuit, the cost of y is at least the cost of x; this proves (ii).
If D, has no directed circuit with winding number one, then y cannot have winding number
higher than x, for otherwise y — x would contain at least one circuit with positive winding
number, hence with winding number one (Lemma 3.1). This proves (iii). (]

A length function k is nonnegative on D, if k is nonnegative on every arc in A,; that
is, for each a € A, k(a) > 0 if z(a) =0 and k(a) < 0 if z(a) = 1.

5. Increasing the flow in D

In this section, we explain how to compute a minimum-cost flow in D in O(knlogn)
time. The algorithm uses only very classical minimum-cost flow techniques, but we indicate
it for completeness and because Section 7 will use some similar ideas.

Let p € Z. A p-flow is an integer flow in D of value p. Let x and " be two length
functions on D; we write k ~ &’ if K727 = &'T27 for each closed walk v in (W, AU A~1).
(This notion is equivalent to the notion of potential.)

Lemma 5.1. Let k ~ k'. Then any minimum-cost k-flow with respect to k is also a
minimum-cost k-flow with respect to k'.

Proof. By Lemma 4.1(ii), a k-flow 2 has minimum cost with respect to « if and only if D,
has no negative-length circuit with respect to x. Since k ~ &/, circuits in D, have the same
length with respect to x and to x’. [

The following result follows from classical minimum-cost flow techniques.

Lemma 5.2. Let xz be a p-flow in D and let k be a length function that is nonnegative
on D,. Then, in O(nlogn) time, we can find a (p+1)-flow =’ and a length function k' ~ K
that is nonnegative on Dy, unless x has mazximal value.

Proof. We temporarily add to D, two vertices s and ¢, and arcs (s, s;) and (¢;,t) of length
zero, for i = 1,...,k. Let D! be the resulting graph. We compute a shortest path tree
of D! with root s, with respect to k, in O(nlogn) time using Dijkstra’s algorithm [Dij59]
speeded up with Fibonacci heaps [FT87], because all lengths are nonnegativel. If there
is no path from s to ¢ in D/, then D, has no (s,t)-path, hence, by Lemma 4.1(i), = has
maximal value.

Otherwise, for each vertex v of D! let d(v) be the distance from s to v with respect
to k, as computed by Dijkstra’s algorithm above. For each arc a = (u,v) of A,, we have

IWe could do that in O(n) time using the algorithm by Henzinger et al. [HKRS97], but that would not
change the asymptotic complexity of the entire algorithm.

188 ERIC COLIN DE VERDIERE AND ALEXANDER SCHRIJVER

d(v) < d(u)+ k(a) by the triangle inequality, with equality if a is on the shortest path tree.
For each arc a = (u,v) of A,, let x'(a) = k(a) + d(u) — d(v); clearly, " ~ k. We have
k'(a) > 0, and £/'(a) = 0 if a is on the shortest path tree. Let v be the (s,t)-path in D,
corresponding to the path from s to ¢ in D/, in the shortest path tree. Now, let 2/ = z+ 27;
since x’/ is nonnegative on the arcs of D, and is zero on the arcs of ~, it is nonnegative
on D,. [

Starting with the zero flow z (for which D, = D) and the length function k = A, we
repeatedly apply Lemma 5.2. We obtain a flow zy with maximal value p and a length
function kg ~ A such that kg is nonnegative on D,,. This takes O(pnlogn) = O(knlogn)
time. If p < k, then the original problem has no solution, hence we stop here. Otherwise,
Lemmas 4.1(i) and 5.1 imply that xo is a minimum-cost k-flow with respect to A. Let wy
be the winding number of xg. If wg = m (mod k), then we are done by Propositions 2.1
and 3.2; so we henceforth assume wy # m (mod k).

6. Finding the winding number

A (k,w)-flow is an integer flow in D of value k and winding number w. Let wy and wy
be the integers equal, modulo &, to m that are the closest to wq and satisfy w; < wy < wo.
The following proposition states that the problem boils down to finding minimum-cost
(k,w)-flows, for w = w; and w = wy:

Proposition 6.1. There is a minimum-cost integer flow in D (with respect to A\) of value k
and winding number equal, modulo k, to m that is either a (k,w1)-flow or a (k,w3)-flow.

Proof. For every integer w, let p,, be the minimal cost of the (k,w)-flows. (It is infinite if
no (k,w)-flow exists.) By Lemma 4.1(iii), the set {w | p, < 00} is an interval of integers.
We show that for every integer w such that py,—1, fhw, and g1 are finite, we have

2Nw < Hw—1 + Haw+1- (61)
Indeed, let x and 2’ be minimum-cost (k,w — 1)- and (k,w + 1)-flows, respectively. Then
x' — x gives a nonnegative integer circulation in D, of winding number 2, i.e., a flow y of
value zero in D such that, for each a € A, y(a) > 0if a € A, and y(a) < 0if a=! € A,.
So the support of 2/ — z contains a directed circuit v in D, of positive winding number,
hence 1. Then z + 27 and 2’ — 27 are both (k,w)-flows. Thus

2ty <)\T(ac +27)+)\T(a:’ —27) = Mz + A2 = p_1 + fwtts

which proves (6.1).
So iy, is monotonically non-increasing for w < wp and monotonically non-decreasing
for w > wp. Thus Proposition 6.1 holds. [

7. Rotating the flow in D

Let x and &’ be two length functions on D; we write x ~ &’ if k' 27 = /T 27 for each
closed walk v with winding number zero in (W, AU A~1). Clearly, k ~ / implies k ~ &'.

Proposition 7.1. Let k ~ k'. Then any minimum-cost (k,w)-flow with respect to k is also
a minimum-cost (k,w)-flow with respect to k'

SHORTEST VERTEX-DISJOINT TWO-FACE PATHS IN PLANAR GRAPHS 189

Figure 4: Illustration of Lemma 7.2: A minimal cut in H* corresponds to a circuit with
winding number one in H. The primal graph H is depicted in black lines, with
thicker lines for the arcs of the circuit. The dual graph H™* is depicted in light
color, with thicker lines for the arcs of the cut.

Proof. Let z and y be two (k,w)-flows in D. Then y — x is a circulation in (W, AU A~1),
i.e., a sum of terms of the form 27, where « is a circuit in (W, AU A~1). Furthermore, there
are as many circuits with winding number +1 as with winding number —1 in this sum.
We have (k' — k)27 = 0 for every such circuit with winding number zero. Moreover,
if v has winding number +1 and 4" has winding number —1, it follows from the definition
of “~” that k' (27 4 27") = &7 (27 4 27"). We thus have ' (y — x) = ' (y —), implying
the result. [

We view D as an undirected planar graph H; s and t are two faces of H. Let H* be
its dual graph. If e is an oriented edge of H, then e* is the dual edge oriented so that e*
crosses e from right to left.

A cut of H* is a set X™* of oriented edges of H* such that any directed path from s*
to t* uses at least one oriented edge of X*. The following lemma is inspired by Reif [Rei83,
Propositions 1 and 2]. See Figure 4.

Lemma 7.2. Let X be a set of oriented edges of H. Then X contains the oriented edges
of some circuit with winding number one in H if and only if X* is a cut of H*.

Proof. If we have a directed circuit v with winding number one, then its dual is a cut.
Indeed, consider an (s*,t*)-path 7 in H*. The face s belongs to the interior of -, while the
face t belongs to the exterior of 7; let e* be the first oriented edge of 7 that crosses ~; its
source is inside v while its target is outside . By our choice of orientation, e belongs to ~.

Conversely, let X* be a cut of H*; we will prove that X contains a circuit with winding
number one. Without loss of generality, we may assume that X* is a cut that is minimal
with respect to inclusion.

First, label “S” a face f of H if there is, in H*, a path from s* to f* that does not
use any oriented edge of X*. Similarly, label “T” a face f of H if there is, in H*, a path
from f* to t* that does not use any oriented edge of X*. Since X™* is a cut, no face of H
is labeled both “S” and “I”. We claim that X is precisely the set of oriented edges of H
whose right face is labeled “S” and whose left face is labeled “T”. Clearly, such edges must
belong to X. Conversely, let e be an oriented edge of X; by minimality of X, there is an

190 ERIC COLIN DE VERDIERE AND ALEXANDER SCHRIJVER

(s*,t*)-path in H* that avoids (X \ e)* and uses e* exactly once. Thus the source of e*
is reachable from s* without using any oriented edge of X*, and t* is reachable from the
target of e* without using any oriented edge of X*. This proves the claim. In particular,
every face of H is labeled either “S” or “T”.

Let S be the subset of the plane made of the faces labeled “S”, together with the open
edges whose both incident faces are labeled “S”. Similarly, let T" be the union of the faces
labeled “T” together with the open edges whose both incident faces are labeled “T”. By
the previous paragraph, S and T are disjoint subsets of the plane, and they are connected.
Let v be a vertex of H. We claim that there cannot be four faces incident with v, in this
cyclic order around v, that belong respectively to S, T', S, and T. This follows from the
Jordan curve theorem: assume that we have such faces. Then, by connectivity of S, there
is a simple closed curve in S U {v} that goes through v and has faces of T on both sides of
it at v. This curve does not intersect T" and separates 7', contradicting its connectivity.

The two previous paragraphs together imply that either X has no edge incident with v,
or X has exactly one oriented edge whose target is v and one oriented edge whose source
is v. Thus X is a union of vertex-disjoint circuits. Let v be such a circuit; since S and T
are connected, and since the faces on the left (resp. right) of v are in T' (resp. S), 7 has
winding number one. Hence X contains a circuit with winding number one.]

Proposition 7.3. Let x be a (k,w)-flow in D and let k be a length function that is non-
negative on D,. Then, in O(nlogn) time, we can find a (k,w + 1)-flow 2’ and a length
function k' ~ K that is nonnegative on Dy, unless there is no (k,w’)-flow with w' > w.

Proof. Let e be an oriented edge of H; if e corresponds to an arc a of A,, then we define
the length of e in H to be k(a) > 0; otherwise, we define the length of e to be co. So a
walk in D, corresponds to a walk in H of the same length, and a walk in H corresponds
to a walk in D, if and only if it has finite length. Define the capacity c(e*) of an oriented
edge e* of H* to be the length of e.

We can detect in O(n) time whether the oriented edges of finite capacity constitute a cut
in H*. If this is not the case, then every cut must use an oriented edge of infinite capacity,
hence, by Lemma 7.2, D, has no circuit of winding number one. It follows that x has
maximal winding number among all k-flows, by Lemma 4.1(iii). Otherwise, we compute a
minimal cut in H*, which corresponds to a shortest circuit with winding number one in D,
as follows.

A flow in H* is a function ¢ that associates, to each oriented edge e* of H*, a real
number that is nonnegative and no greater than c(e*), such that the flow conservation law
holds at each vertex of H* except at s* and t*. The wvalue of ¢ is the total flow leaving s*.

In O(nlogn) time, we compute a flow ¢ of maximal value in H* with respect to these
capacities, using the algorithm by Borradaile and Klein [BK06]. It is well-known, by the
“max-flow min-cut” theorem [Sch03, Theorem 10.3], that ¢ corresponds to a cut of minimal
cost in H*: the cut is the set of oriented edges that leave the set of vertices reachable from s*
by using only oriented edges e* of H* such that ¢(e*) < c(e*) or ¢(e*~1) > 0.

Such a cut X* can be computed in O(n) time. Moreover, by replacing all the zero
capacities in H* by infinitesimally small capacities before applying the maximal flow al-
gorithm, we may assume that X* is a cut that is minimal with respect to inclusion. By
Lemma 7.2, we thus obtain a circuit v of winding number one that has minimal length
in D,.

SHORTEST VERTEX-DISJOINT TWO-FACE PATHS IN PLANAR GRAPHS 191

For each arc a of AUA™! let k/(a) = k(a) — p(a*)+@(a*"1); we have k/(a) = —k(a™ 1),
hence this defines a length function. If a € A,, we have p(a*) < k(a), so &'(a) > 0. If a
belongs to 7, we have ¢(a*) = k(a) and p(a*~1) =0, so #'(a) = 0.

We claim that x’ ~ k. By the flow conservation law in H*, x’ — & is a linear combination
of functions of the form z7, where v* is an (s*,¢*)-path or a circuit in H*; so it suffices to
prove that 277§ = 0 for each closed walk § with winding number zero. But 277§ equals the
number of times § crosses v* from left to right minus the number of times § crosses v* from
right to left. This always equals zero if vy is a circuit; if 7 is an (s*,¢*)-path, this equals zero
because § has winding number zero (as in the proof of Lemma 3.1). This proves k' ~ k.

Now, let ' = o + 27. The length function x’ is nonnegative on the arcs of D, and is
zero on the arcs of 7y, so it is nonnegative on D,.]

To conclude, recall that the k-flow xg and the length function xg have been computed
in Section 5; kg ~ A is nonnegative on Dy, ; the integer wy is the winding number of zy and
we have

wy —k < wp <wy < we < wy+ k.

Applying iteratively Proposition 7.3, we can find a (k, wy)-flow 29 and a length function
Ko ~ A that is nonnegative on D,,; thus, z2 is a (k,ws)-flow of minimal cost with respect
to A, by Lemma 4.1(ii) and Proposition 7.1; if no such flow exists, we detect it during
the course of the algorithm. Similarly, we can find a minimum-cost (k,w;)-flow. This
takes O(knlogn) time. By Propositions 6.1, 2.1, and 3.2, the cheapest of these two flows
corresponds to the solution. This concludes the proof of Theorem 1.1.

Conclusion

We have given an algorithm to compute minimum-length vertex-disjoint paths con-
necting prescribed pairs (s;,¢;) of terminals in a planar graph, where the s; and the ¢; are
incident, respectively, with given faces s and ¢. The running time is O(knlogn), where k is
the number of pairs of terminals and n is the complexity of the graph.

We note that the techniques developed above allow to solve the same problem, but
fixing, in addition, the winding number of the set of paths (or, equivalently, the homotopy
classes of the paths in the annulus R?\ {sUt}). This can be done by computing a minimum-
cost flow in the directed graph D and by rotating the flow until achieving the correct
winding number. Since the absolute value of the winding number of a flow is at most n,
the complexity of the algorithm is O(n?logn).

Finally, the result of this paper suggests some open questions. How hard is it to solve
the minimum-length vertex-disjoint paths in case (a) of the introduction, namely, if all
terminals lie on the outer face (not necessarily in the order si,...,sg,tg,...,t1)? And in
the case where all the terminals lie on two faces, but a path may have its two endpoints
on the same face? The problem extends to vertex-disjoint trees whose leaves are fixed on
two faces of the graph (such trees, not necessarily of minimal length, can be computed
efficiently [SAN90]). Also, does our problem remain polynomial-time solvable if each of the
terminals has to be incident with one of p prescribed faces of the graph, if p is fixed? What
about the same problem for a graph embedded on a surface of fixed genus?

192 ERIC COLIN DE VERDIERE AND ALEXANDER SCHRIJVER
Acknowledgements
We would like to thank Dion Gijswijt and Glinter Rote for stimulating discussions.

References

[BKO6] G. Borradaile and P. Klein. An O(nlogn) algorithm for maximum st-flow in a directed pla-
nar graph. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 524-533, 2006.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik 1,
pages 269-271, 1959.

[FT87] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved netweok optimiza-
tion algorithms. Journal of the Association for Computing Machinery, 34:596-615, 1987.

[HKRS97] M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar
graphs. Journal of Computer and System Sciences, 55(1, part 1):3-23, 1997.

[KvL&4] M. R. Kramer and J. van Leeuwen. The complexity of wire-routing and finding minimum area
layouts for arbitrary VLSI circuits. In F. P. Preparata, editor, VLSI-Theory, volume 2 of Ad-
vances in Computing Research, pages 129-146. JAI Press, Greenwich, Connecticut, 1984.

[Rag86] P. Raghavan. Randomized rounding and discrete ham-sandwich theorems: provably good algo-
rithms for routing and packing problems. PhD thesis, University of California, Berkeley, Califor-
nia, 1986. Report No. UCB/CSD 87/312.

[Rei83] J. H. Reif. Minimum s—t cut of a planar undirected network in O(n log?(n)) time. SIAM Journal
on Computing, 12(1):71-81, 1983.

[RLWW96] H. Ripphausen-Lipa, D. Wagner, and K. Weihe. Linear-time algorithms for disjoint two-face
paths problems in planar graphs. International Journal of Foundations of Computer Science,
7(2):95-110, 1996.

[RS95] N. Robertson and P. D. Seymour. Graph minors. XIII: the disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63(1):65-110, 1995.

[SAN90] H. Suzuki, T. Akama, and T. Nishizeki. Finding Steiner forests in planar graphs. In Proceedings
of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 444-453, 1990.

[Sch94] A. Schrijver. Finding & disjoint paths in a directed planar graph. SIAM Journal on Computing,
23(4):780-788, 1994.

[Sch03] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency, volume 24 of Algorithms and
Combinatorics. Springer-Verlag, 2003.

[TSN96] J. Takahashi, H. Suzuki, and T. Nishizeki. Shortest noncrossing paths in plane graphs. Algo-
rithmica, 16:339-357, 1996.

[vdHdP02] H. van der Holst and J. C. de Pina. Length-bounded disjoint paths in planar graphs. Discrete

Applied Mathematics, 120(1-3):251-261, August 2002.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 193-204
www.stacs-conf.org

GEODESIC FRECHET DISTANCE INSIDE A SIMPLE POLYGON

ATLAS F. COOK IV AND CAROLA WENK

Department of Computer Science, University of Texas at San Antonio
One UTSA Circle, San Antonio, TX 78249-0667
FE-mail address: {acook, carola}@cs.utsa.edu

ABSTRACT. We unveil an alluring alternative to parametric search that applies to both
the non-geodesic and geodesic Fréchet optimization problems. This randomized approach
is based on a variant of red-blue intersections and is appealing due to its elegance and
practical efficiency when compared to parametric search.

We present the first algorithm for the geodesic Fréchet distance between two polygonal
curves A and B inside a simple bounding polygon P. The geodesic Fréchet decision
problem is solved almost as fast as its non-geodesic sibling and requires O(N? log k) time
and O(k + N) space after O(k) preprocessing, where N is the larger of the complexities
of A and B and k is the complexity of P. The geodesic Fréchet optimization problem is
solved by a randomized approach in O(k + N?1log kN log N) expected time and O(k 4+ N?)
space. This runtime is only a logarithmic factor larger than the standard non-geodesic
Fréchet algorithm [4]. Results are also presented for the geodesic Fréchet distance in a
polygonal domain with obstacles and the geodesic Hausdorff distance for sets of points or
sets of line segments inside a simple polygon P.

1. Introduction

The comparison of geometric shapes is essential in various applications including com-
puter vision, computer aided design, robotics, medical imaging, and drug design. The
Fréchet distance is a similarity metric for continuous shapes such as curves or surfaces
which is defined using reparametrizations of the shapes. Since it takes the continuity of the
shapes into account, it is generally a more appropriate distance measure than the often used
Hausdorff distance. The Fréchet distance for curves is commonly illustrated by a person
walking a dog on a leash [4]. The person walks forward on one curve, and the dog walks
forward on the other curve. As the person and dog move along their respective curves, a
leash is maintained to keep track of the separation between them. The Fréchet distance is
the length of the shortest leash that makes it possible for the person and dog to walk from
beginning to end on their respective curves without breaking the leash. See section 2 for a
formal definition of the Fréchet distance.

1998 ACM Subject Classification: Computational Geometry.

Key words and phrases: Fréchet Distance, Geodesic, Parametric Search, Simple Polygon.

The full version of this paper is available as a technical report [10].

This work has been supported by the National Science Foundation grant NSF CAREER CCF-0643597.

ASPECTS

“
S%FErigEPUTER © A.F.Cook and C. Wenk

© Creative Commons Attribution-NoDerivs License

R SYMPOSIUM
mvl'__ ON THEORETICAL
<4

194 A.F. COOK AND C. WENK

Most previous work assumes an obstacle-free environment where the leash connecting
the person to the dog has its length defined by an L, metric. In [4] the Fréchet distance
between polygonal curves A and B is computed in arbitrary dimensions for obstacle-free
environments in O(N?log N) time, where N is the larger of the complexities of A and B.
Rote 23] computes the Fréchet distance between piecewise smooth curves. Buchin et al. |7]
show how to compute the Fréchet distance between two simple polygons. Fréchet distance
has also been used successfully in the practical realm of map matching [26]. All these works
assume a leash length that is defined by an L, metric.

This paper’s contribution is to measure the leash length by its geodesic distance inside
a simple polygon P (instead of by its L, distance). To our knowledge, there are only two
other works that employ such a leash. One is a workshop article [18]| that computes the
Fréchet distance for polygonal curves A and B on the surface of a convex polyhedron in
O(N3k*log(kN)) time. The other paper [12] applies the Fréchet distance to morphing by
considering the polygonal curves A and B to be obstacles that the leash must go around.
Their method works in O(N?1log? N) time but only applies when A and B both lie on the
boundary of a simple polygon. Our work can handle both this case and more general cases.
We consider a simple polygon P to be the only obstacle and the curves, which may intersect
each other or self-intersect, both lie inside P.

A core insight of this paper is that the free space in a geodesic cell (see section 2) is
z-monotone, y-monotone, and connected. We show how to quickly compute a cell boundary
and how to propagate reachability through a cell in constant time. This is sufficient to
solve the geodesic Fréchet decision problem. To solve the geodesic Fréchet optimization
problem, we replace the standard parametric search approach by a novel and asymptotically
faster (in the expected case) randomized algorithm that is based on red-blue intersection
counting. We show that the geodesic Fréchet distance between two polygonal curves inside
a simple bounding polygon can be computed in O(k + N?log kN log N) expected time and
O(k 4+ N3log kN) worst-case time, where N is the larger of the complexities of A and B
and k is the complexity of the simple polygon. The expected runtime is almost a quadratic
factor in k faster than the straightforward approach, similar to [12]|, of partitioning each
cell into O(k?) subcells. Briefly, these subcells are simple combinatorial regions based on
pairs of hourglass intervals. It is notable that the randomized algorithm also applies to
the non-geodesic Fréchet distance in arbitrary dimensions. We also present algorithms to
compute the geodesic Fréchet distance in a polygonal domain with obstacles and the geodesic
Hausdorff distance for sets of points or sets of line segments inside a simple polygon.

2. Preliminaries

Let k£ be the complexity of a simple polygon P that contains polygonal curves A and
B in its interior. In general, a geodesic is a path that avoids all obstacles and cannot be
shortened by slight perturbations [20]. However, a geodesic inside a simple polygon is simply
a unique shortest path between two points. Let m(a,b) denote the geodesic inside P between
points a and b. The geodesic distance d(a,b) is the length of a shortest path between a and
b that avoids all obstacles, where length is measured by Lo distance.

Let |, T, and |T denote decreasing, increasing, and decreasing then increasing functions,
respectively. For example, “H is |]-bitonic” means that H is a function that decreases
monotonically then increases monotonically. A bitonic function has at most one change in
monotonicity.

GEODESIC FRECHET DISTANCE INSIDE A SIMPLE POLYGON 195

Figure 1: Shortest paths in the hourglass H_; — define H; —.

The Fréchet distance for two curves A, B : [0,1] — R' is defined as

A B) = inf (A B
or(4,B) = oo Sup d'(A(f(t), B(g()))
where f and g range over continuous non-decreasing reparametrizations and d’ is a distance
metric for points, usually the Lo distance, and in our setting the geodesic distance. For a
given ¢ > 0 the free space is defined as FS.(A, B) = {(s,t) | d'(A(s), B(t)) < e} C[0,1]%. A
free space cell C' C [0,1]? is the parameter space defined by two line segments ab € A and
cd € B, and the free space inside the cell is F'S.(ab,cd) = FS.(A,B) N C.

The decision problem to check whether the Fréchet distance is at most a given € > 0 is
solved by Alt and Godau [4] using a free space diagram which consists of all free space cells
for all pairs of line segments of A and B. Their dynamic programming algorithm checks
for the existence of a monotone path in the free space from (0,0) to (1,1) by propagating
reachability information cell by cell through the free space.

2.1. Funnels and Hourglasses

Geodesics in a free space cell C' can be described by either the funnel or hourglass
structure of [14]. A funnel describes all shortest paths between a point and a line segment,
so it represents a horizontal (or vertical) line segment in C'. An hourglass describes all
shortest paths between two line segments and represents all distances in C.

The funnel]:p,a describes all shortest paths between an apex point p and a line segment

cd. The boundary of fpa is the union of the line segment cd and the shortest path chains
7(p,c) and w(p,d). The hourglass H_; — describes all shortest paths between two line

segments ab and c¢d. The boundary of H—;— is composed of the two line segments ab,

cd and at most four shortest path chains involving a, b, ¢, and d. See Figure 1. Funnel and
hourglass boundaries have O(k) complexity because shortest paths inside a simple polygon
P are acyclic, polygonal, and only have corners at vertices of P [15].

Any horizontal or vertical line segment in a geodesic free space cell is associated with
a funnel’s distance function F, 7 : [c,d] — R with F Z(¢q) = d(p,q). The below three
results are generalizations of Euclidean properties and are omitted. See [10] for details.

Lemma 2.1. pr -5 s [T-bitonic.

Corollary 2.2. Any horizontal (or vertical) line segment in a free space cell has at most
one connected set of free space values.

Consider the hourglass H_; — in Figure 1. Let the shortest distance from a to any point
on ed occur at M, € cd. Define M, similarly. As p varies from a to b, the minimum distance

from p to ed traces out a function He — i [a,b] — R with Hz; —(p) = mingee g d(p; q)-

C

196 A.F. COOK AND C. WENK

Lemma 2.3. H@ — s | T-bitonic.

3. Geodesic Cell Properties

Consider a geodesic free space cell C' for polygonal curves A and B inside a simple
polygon. Let ab € A and c¢d € B be the two line segments defining C.

Lemma 3.1. For any e, cell C contains at most one free space region R, and R is x-
monotone, y-monotone, and connected.

Proof. The monotonicity of R follows from Corollary 2.2. For connectedness, choose any two
free space points (p1,q1), (p2,q2), and construct a path connecting them in the free space
as follows: move vertically from (p1, ;) to the minimum point on its vertical. Do the same
for (p2,q2). By Lemma 2.1, this movement causes the distance to decrease monotonically.
By Lemma 2.3, any two minimum points are connected by a |T-bitonic distance function
H_ — (cf. section 2.1), but as the starting points are in the free space — and therefore have
distance at most ¢ — all points on this constructed path lie in the free space. [

Given C’s boundaries, it is possible to propagate reachability information (see section
2) through C in constant time. This follows from the monotonicity and connectedness of
the free space in C' and is useful for solving the geodesic decision problem.

4. Red-Blue Intersections

This section shows how to efficiently count and report a certain type of red-blue inter-
sections in the plane. This problem is interesting both from theoretical and applied stances
and will prove useful in section 5.3 for the Fréchet optimization problem.

Let R be a set of m ‘“red” curves in the plane such that every red curve is continuous,
z-monotone, and monotone decreasing. Let B be a set of n “blue” curves in the plane where
each blue curve is continuous, z-monotone, and monotone increasing. Assume that the
curves are defined in the slab [a, 5] X R, and let I(k) be the time to find the at most one
intersection of any red and blue curve.!

Theorem 4.1. The number of red-blue intersections between R and B in the slab [, B] X R
can be counted in O(N log N) total time, where N = max(m,n). These intersections can be
reported in O(Nlog N + K - I(k)) total time, where K is the total number of intersections
reported. After O(N log N) preprocessing time, a random red-blue intersection in [a, §] x R
can be returned in O(log N + I(k)) time, and the red curve involved in the most red-blue
intersections can be returned in O(1) time. All operations require O(N) space.?

Proof Sketch. Figure 2 illustrates the key idea. Suppose a red curve r3(z) lies above a blue
curve bo(x) at * = «. If it is also true that r3(x) lies below by(z) at x = 3, then these
monotone curves must intersect in [a, 3] x R. Two sorted lists Lo, Lg of curve values store
how many blue curves lie below each red curve at * = a and x = 3. Subtracting the values
in L, and Lg yields the number of actual intersections for each red curve in [a, 5] x R (and

IThere is at most one intersection due to the monotonicities of the red and blue curves.

2palazzi and Snoeyink [21] also count and report red-blue intersections using a slab-based approach.
However, their work is for line segments instead of curves, and they require that all red segments are disjoint
and all blue segments are disjoint. We have no such disjointness requirement.

GEODESIC FRECHET DISTANCE INSIDE A SIMPLE POLYGON 197

Ymax Index | Lo | Ly
3 2 | bP)
by () nP) 1

(o) 1 r1(B) 1
r(a) 1 r3(B) 1
by (o) bi(B)

Ymin

— N WA W

Figure 2: r3(x) lies above two blue curves at x = « but only lies above one blue curve at
x = (3. Subtraction reveals that r3(x) has one intersection in the slab [«, 5] x R.

also reveals the red curve that is involved in the most intersections). Intersection counting
simply sums up these values. Intersection reporting builds a balanced tree from L, and Lg.

To find a random red-blue intersection in [a, §] X R, precompute the number x of red-
blue intersections in [a,] X R. Pick a random integer between 1 and x and use the number
of intersections stored for each red curve to locate the particular red curve r;(x) that is
involved in the randomly selected intersection. By searching a persistent version of the
reporting structure [24], r;(x)’s jth red-blue intersection can be returned in O(log N + I(k))
query time after O(N log N) preprocessing time. n

5. Geodesic Fréchet Algorithm
5.1. Computing One Cell’s Boundaries in O(log k) Time

A boundary of a free space cell is a horizontal (or vertical) line segment. This boundary
can be associated with a funnel Fpad that has a |T-bitonic distance function F v, o (cf.
Lemma 2.1). Given ¢ > 0, computing the free space on a cell boundary requires finding the
(at most two) values t1, t such that F, -(t1) = F, (t2) = ¢ (see Figure 3).

b) c)

Figure 3: a & b) A funnel 7, _; is associated with a cell boundary and has a bitonic dis-
tance function F, . ¢) The (at most two) values ¢1, ¢ such that F, Z(t1) =

F, -4(t2) = € define the free space on a cell boundary.

Lemma 5.1. Both the minimum value of F, 5 and the (at most two) values t, to such that

E, —(t1) = E, —(t2) = € can be found for any € > 0 in O(log k) time (after preprocessing).

Proof Sketch. After O(k) shortest path preprocessing [13, 16], a binary search is performed
on the O(k) arcs of F, ;5 in O(logk) time. See our full paper [10] for details. (]

198 A.F. COOK AND C. WENK

ajj(e) byj(e)

aji(e) bij(e)

.. Critical value
Critical value

€ | |
l | l !
0.0 1.0 0.0 1.0
Position on cell boundary Position on cell boundary
a) Free Space Diagram b) Distance function with a c) Distance function with a
type (b) critical value type (c) critical value

Figure 4: Critical values of the Fréchet distance

Corollary 5.2. The free space on all four boundaries of a free space cell can be found in
O(log k) time by computing t1 and ty for each boundary.

5.2. Geodesic Fréchet Decision Problem

Theorem 5.3. After preprocessing a simple polygon P for shortest path queries in O(k)
time [13], the geodesic Fréchet decision problem for polygonal curves A and B inside P can
be solved for any ¢ > 0 in O(N?logk) time and O(k + N) space.

Proof. Following the standard dynamic programming approach of [4], compute all cell bound-
aries in O(N?log k) time (cf. Corollary 5.2), and propagate reachability information through
all cells in O(N?) time. O(k) space is needed for the preprocessing structures of [13], and
only O(N) space is needed for dynamic programming if two rows of the free space diagram
are stored at a time. [

5.3. Geodesic Fréchet Optimization Problem

Let €* be the minimum value of ¢ such that the Fréchet decision problem returns true.
That is, £* equals the Fréchet distance 0 (A, B). Parametric search is a technique commonly
used to find * (see [3, 4, 9, 25]).> The typical approach to find £* is to sort all the cell
boundary functions based on the unknown parameter £*. The comparisons performed during
the sort guarantee that the result of the decision problem is known for all “critical values”
[4] that could potentially define *. Traditionally, such a sort operates on cell boundaries
of constant complexity. The geodesic case is different because each cell boundary has O(k)
complexity. As a result, a straightforward parametric search based on sorting these values
would require O(kN?log kN) time even when using Cole’s [9] optimization.*

We present a randomized algorithm with expected runtime O(k + N2 log kN log N) and
worst-case runtime O(k + N3log kN). This algorithm is an order of magnitude faster than
parametric search in the expected case.

Each cell boundary has at most one free space interval (cf. Lemma 2.1). The upper
boundary of this interval is a function b;;(e), and the lower boundary of this interval is a
function a;;(e). See Figure 4a. The seminal work of Alt and Godau [4] defines three types

3An easier to implement alternative to parametric search is to run the decision problem once for every
bit of accuracy that is desired. This approach runs in O(BN?log k) time and O(k + N) space, where B is
the desired number of bits of accuracy [25].

4A variation of the general sorting problem called the “nuts and bolts” problem (see [17]) is tantalizingly
close to an acceptable O(N?log N) sort but does not apply to our setting.

GEODESIC FRECHET DISTANCE INSIDE A SIMPLE POLYGON 199

of critical values that are useful for computing the exact geodesic Fréchet distance. There
are exactly two type (a) critical values associated with distances between the starting points
of A and B and the ending points of A and B. Type (b) critical values occur O(N?2) times
when a;;(e) = b;j(e). See Figure 4b. Type (a) and (b) critical values occur O(N?) times
and are easily handled in O(N?log klog N) time. This process involves computing values in
O(N?log k) time, sorting in O(N?1log N) time, and running the decision problem in binary
search fashion O(log N) times. Resolving the type (a) and (b) critical values as a first step
will simplify the randomized algorithm for the type (c) critical values.

Alt and Godau [4] show that type (c) critical values occur when the position of a;;(e)
in cell Cj; equals the position of byj(e) in cell Ck; in the free space diagram. See Figure
4a. As ¢ increases, by Lemma 2.1, a;;(¢) is |-monotone on the cell boundary and b;;(e) is
T-monotone (see Figure 4b). As illustrated in Figure 4c, a;;(¢) and by;(e) intersect at most
once. This follows from the monotonicities of a;;(¢) and by;(). Hence, there are O(N?)
intersections of a;;(¢) and bg;(¢) in row j and a total of O(N?) type (c) critical values over
all rows. There are also O(N?) intersections of a;;(¢) and bx(¢) in column i and a total of
O(N?) additional type (c) critical values over all columns.

Lemma 5.4. The intersection of a;j(€) and by () can be found for any € > 0 in O(log k)
time after preprocessing.

Proof Sketch. Build binary search trees for a;;(e) and by(e) and perform a binary search.
See our full paper [10] for details.]

Theorem 4.1 requires that all a;;(¢) and by;(e) are defined in the slab [a, 5] X R that
contains €*. Precomputing the type (a) and type (b) critical values of [4] shrinks the slab
such that no left endpoint of any relevant a;;(¢), by(¢) appears in [, 3] x R when processing
the type (c) critical values. In addition, a;j(¢), bxi(e) can be extended horizontally so that no
right endpoint appears in [«, 3] x R. These changes do not affect the asymptotic number of
intersections and allow Theorem 4.1 to count and report type (c) critical values in [a,] X R.

The below randomized algorithm solves the geodesic Fréchet optimization problem in
O(k + N?log kN log N) expected time. This is faster than the standard parametric search
approach which requires O(kN?log kN) time.

Randomized Optimization Algorithm

(1) Precompute and sort all type (a) and type (b) critical values in O(N?log kN) time
(cf. Lemma 5.1). Run the decision problem O(log N) times to resolve these values
and shrink the potential slab for £* down to [, 3] x R in O(N?log klog N) time.

(2) Count the number k; of type (c) critical values for each row j in the slab [a, 5] x R
using Theorem 4.1. Let C; be the resulting counting data structure for row j.

(3) To achieve a fast expected runtime, pick a random intersection 1; for each row using
C;.%> See Theorem 4.1.

(4) To achieve a fast worst-case runtime, use C; to find the apz;(e) curve in each row that
has the most intersections (see Theorem 4.1). Add all intersections in [a, 3] X R that
involve apr;(g) to a global pool P of unresolved critical values® and delete apy;(e)
from any future consideration.

SPicking a critical value at random is related to the distance selection problem [6] and is mentioned in [2],
but to our knowledge, this alternative to parametric search has never been applied to the Fréchet distance.
6The idea of a global pool is similar to Cole’s optimization for parametric search [9].

200 A.F. COOK AND C. WENK

(5) Find the median = of the values in P in O(N?) time using the standard median
algorithm mentioned in [17]|. Also find the median ¥ of the O(N) randomly selected
¥ in O(N) time using a weighted median algorithm based on the number of critical
values k; for each row j.

(6) Run the decision problem twice: once on = and once on W. This shrinks the search
slab [, 5] x R and at least halves the size of P. Repeat steps 2 through 6 until all
row-based type (c) critical values have been resolved.

(7) Resolve all column-based type (c) critical values in the same spirit as steps 2 through
6 and return the smallest critical value that satisfied the decision problem as the value
of the geodesic Fréchet distance.

Theorem 5.5. The exact geodesic Fréchet distance between two polygonal curves A and B
inside a simple bounding polygon P can be computed in O(k + N?logkNlog N) expected
time and O(k + N3log kN) worst-case time, where N is the larger of the complezities of A
and B and k is the complexity of P. O(k + N?) space is required.

Proof. Preprocess P once for shortest path queries in O(k) time [13]|. In the expected case,
each execution of the decision problem will eliminate a constant fraction of the remaining
type (c) critical values due to the proof of Quicksort’s expected runtime and the median of
medians approach for W. Consequently, the expected number of iterations of the algorithm
is O(log N3) = O(log N).

In the worst-case, each of the O(N) a;j(¢) in a row will be picked as aps;(g). Therefore,
each row can require at most O(N) iterations. Since all rows are processed each iteration,
the entire algorithm requires at most O(N) iterations for row-based critical values. By a
similar argument, column-based critical values also require at most O(V) iterations.

The size of the pool P is expressed by the inequality S(z) < w, where x
is the current step number, and S(0) = 0. Intuitively, each step adds O(N?) values to P
and then at least half of the values in P are always resolved using the median =. It is not
difficult to show that S(z) € O(N?) for any step number .

Each iteration of the algorithm requires intersection counting and intersection calcula-
tions for O(N) rows (or columns) at a cost of O(N?logkN) time. In addition, the global
pool P has its median calculated in O(N?) time, and the decision problem is executed in
O(N?logk) time. Consequently, the expected runtime is O(k + N2log kN log N) and the
worst-case runtime is O(k+ N3 log kN) including O(k) preprocessing time [13] for geodesics.
The preprocessing structures use O(k) space that must remain allocated throughout the al-
gorithm, and the pool P uses O(N?) additional space. [

Although the exact non-geodesic Fréchet distance is normally found in O(N?2log N) time
using parametric search (see [4]), parametric search is often regarded as impractical because
it is difficult to implement” and involves enormous constant factors [9]. To the best of our
knowledge, the randomized algorithm in section 5.3 provides the first practical alternative
to parametric search for solving the exact non-geodesic Fréchet optimization problem in RY.

Theorem 5.6. The exact non-geodesic Fréchet distance between two polygonal curves A
and B in R' can be computed in O(N? log? N) expected time, where N is the larger of the
complezities of A and B. O(N?) space is required.

7Quicksort—based parametric search has been implemented by van Oostrum and Veltkamp [25] using a
complex framework.

GEODESIC FRECHET DISTANCE INSIDE A SIMPLE POLYGON 201

Funnel

SRRy

m\\\\m«q

%%Y

a) b)

Figure 5: a) A funnel for a dc-cell can be found by extending a cell’s initial leash along one
segment to create a path sketch and then b) snapping this sketch into a homotopic
shortest path. c¢) A funnel 7, —; has O(kN) complexity, but the distance function

F, 5 has only O(k) complexity because d(o, p) is a constant.

Proof. The argument is very similar to the proof of Theorem 5.5. The main difference is

that non-geodesic distances can be computed in O(1) time (instead of O(log k) time). (]

6. Geodesic Fréchet Distance in a Polygonal Domain with Obstacles

Consider the real-life situation of a person walking a dog in a park. If the person and
dog walk on opposite sides of a group of trees, then the leash must go around the trees. More
formally, suppose the two polygonal curves A and B lie in a planar polygonal domain D [19]
of complexity k. The leash is required to change continuously, i.e., it must stay inside D and
may not pass through or jump over an obstacle. It may, however, cross itself. Let d¢ be the
geodesic Fréchet distance for this scenario when the leash length is measured geodesically.®

Due to the continuity of the leash’s motion, the free space inside a geodesic cell is
represented by an hourglass — just as it was for the geodesic Fréchet distance inside a simple
polygon. Hence, free space in a cell is z-monotone, y-monotone, and connected (cf. Lemma
3.1), and reachability information can be propagated through a cell in constant time.

The main task in computing ¢ is to construct all cell boundaries. Once the cell bound-
aries are known, the decision and optimization problems can be solved by the algorithms
for the geodesic Fréchet distance inside a simple polygon (cf. Theorems 5.3 and 5.5). We
use Hershberger and Snoeyink’s homotopic shortest paths algorithm [16] to incrementally

construct all cell boundary funnels needed to compute d¢. To use the homotopic algorithm,
the polygonal domain D should be triangulated in O(klogk) time [19], and all obstacles
should be replaced by their vertices. A shortest path map [19] can find an initial geodesic
leash L; between the start points of the polygonal curves A and B in O(klog k) time.

Lemma 6.1. Given the initial leash for the bottom-left corner of a §c-cell C, all four funnel
boundaries of C and the initial leashes for cells adjacent to C can be computed in O(k) time.

Proof. The funnels representing cell boundaries are constructed incrementally. The idea is
to extend the initial leash into a homotopic “sketch” that describes how the shortest path

should wind through the obstacles and then to “snap” this sketch into a shortest path (see
Figures 5a and 5b).

SWe recently learned that this topic has been independently explored in [8].

202 A.F. COOK AND C. WENK

Homotopic shortest paths have increased complexity over normal shortest paths because
they can loop around obstacles. For example, if the person walks in a triangular path
around all the obstacles, then the leash follows a homotopic shortest path that can have
O(k) complexity in a single cycle around the obstacles. By repeatedly winding around the
obstacles O(NN) times, a path achieves O(kN) complexity.

To avoid spending O(kN) time per cell, we extend a previous homotopic shortest path
into a sketch by appending a single line segment to the previous path (see Figure 5a). Adding
this single segment can unwind at most one loop over a subset of obstacles, so only the most
recent O(k) vertices of the sketch will need to be updated when the sketch is snapped into
the true homotopic shortest path. A turning angle is used to identify these O(k) vertices by
backtracking on the sketch until the angle is at least 27 different from the final angle.

Putting all this together, a boundary for a free space cell can be computed in O(k)
time by starting with an initial leash L; of O(kN) complexity, constructing a homotopic
sketch by appending a single segment to Ly, backtracking with a turning angle to find O(k)
vertices that are eligible to be changed, and finally “snapping” these O(k) vertices to the
true homotopic shortest path using Hershberger and Snoeyink’s algorithm [16]. The result
is a funnel that describes one cell boundary.

By extending L in four combinatorially distinct ways, all four cell boundaries can be
defined. Specifically, we can extend L along the current ab € A segment to form the first
funnel or along the cd € B segment to form the second funnel. The third funnel is created
by extending L along ab € A and then c¢d € B. The fourth funnel is created by extending
L; along cd € B and then ab € A. These cell boundaries conveniently define the initial leash
for cells that are adjacent to C.]

Theorem 6.2. The 6¢ decision problem can be solved in O(kN?) time and O(k+ N) space.

Proof. Each cell boundary is a funnel 7, — with O(kN) complexity [11]. However, this high
complexity is a result of looping over oBstacles, and most of these points do not affect the
funnel’s distance function F o, cd" As illustrated in Figure 5c, F' o, cd has only O(k) complexity
because only vertices mw(p, c) Um(p,d) contribute arcs to F o, ad-

Construct all cell boundary funnels in O(kN?) time (cf. Lemma 6.1), intersect each
funnel’s distance function with y = & in O(N?logk) time, and propagate reachability in-
formation in O(N?) time. Only O(k + N) space is needed for dynamic programming when
storing only two rows at a time. [

Theorem 6.3. The d¢ optimization problem can be solved in O(kN? + N?log kN log N)
expected time and O(kN?) space.”

Proof. The d¢ optimization problem can be solved using red-blue intersections. O(log N)
steps are performed in the expected case by Theorem 5.5. Each step has to perform in-
tersection counting in O(N?log kN) time and solve the decision problem. If the funnels
are precomputed in O(kN?) time and space, then the decision problem can be solved in
O(N?logk) time. Hence, after O(kN?) time and space preprocessing, dc can be found in
O(log N) expected steps where each step takes O(N?log kN) time. [

o1f space is at a premium, the algorithm can also run with O(k + N?) space and O(kEN?log N +
N?log kNlog N) expected time by recomputing the funnels each time the decision problem is computed.
Note that O(N?) storage is required for the red-blue intersections algorithm (cf. Theorem 5.5).

GEODESIC FRECHET DISTANCE INSIDE A SIMPLE POLYGON 203

7. Geodesic Hausdorff Distance

Hausdorff distance is a similarity metric commonly used to compare sets of points or
sets of line segments. The directed geodesic Hausdorff distance can be formally defined
as 0p(A, B) = sup,e, infyepd(a,b), where A and B are sets and d(a,b) is the geodesic
distance between a and b (see [4, 5|). The undirected geodesic Hausdorff distance is the
larger of the two directed distances: 0z (A, B) = max(dg (A, B), du(B,A)).

Theorem 7.1. §g (A, B) for point sets A, B inside a simple polygon P can be computed in
O((k+ N)log(k + N)) time and O(k + N) space, where N is the larger of the complexities
of A and B and k is the complexity of P. If A and B are sets of line segments, (A, B)
can be computed in O(kN2a(kN)log kN) time and O(kNa(kN)log kN) space.

Proof Sketch. A geodesic Voronoi diagram [22| finds nearest neighbors when A and B are
point sets. When A and B are sets of line segments, all nearest neighbors for a line segment
can be found by computing a lower envelope [1| of O(NN) hourglass distance functions. The
largest nearest neighbor distance over all line segments is 67 (A, B).]

8. Conclusion

To compute the geodesic Fréchet distance between two polygonal curves inside a simple
polygon, we have proven that the free space inside a geodesic cell is z-monotone, y-monotone,
and connected. By extending the shortest path algorithms of [13, 16], the boundaries of a
single free space cell can be computed in logarithmic time, and this leads to an efficient
algorithm for the geodesic Fréchet decision problem.

A randomized algorithm based on red-blue intersections solves the geodesic Fréchet
optimization problem in lieu of the standard parametric search approach. The randomized
algorithm is also a practical alternative to parametric search for the non-geodesic Fréchet
distance in arbitrary dimensions.

We can compute the geodesic Fréchet distance between two polygonal curves A and B
inside a simple bounding polygon P in O(k+N?1log kN log N) expected time, where N is the
larger of the complexities of A and B and k is the complexity of P. In the expected case, the
randomized optimization algorithm is an order of magnitude faster than a straightforward
parametric search that uses Cole’s [9] optimization to sort O(kN?) values.

The geodesic Fréchet distance in a polygonal domain with obstacles enforces a homotopy
on the leash. It can be computed in the same manner as the geodesic Fréchet distance inside
a simple polygon after computing cell boundary funnels using Hershberger and Snoeyink’s
homotopic shortest paths algorithm [16]. Future work could attempt to compute these
funnels in O(logk) time instead of O(k) time. The geodesic Hausdorff distance for point
sets inside a simple polygon can be computed using geodesic Voronoi diagrams. The geodesic
Hausdorff distance for line segments can be computed using lower envelopes; future work
could speed up this algorithm by developing a geodesic Voronoi diagram for line segments.

References

[1] P. K. Agarwal and M. Sharir. Davenport—Schinzel sequences and their geometric applications. Technical
Report Technical report DUKE-TR-1995-21, 1995.

204

2]
3]
[4]
[5]
[6]
7]
18]
9]
[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]
18]
[19]
[20]
[21]
22]
23]
[24]
[25]

[26]

A.F. COOK AND C. WENK

P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Comput. Surv.,
30(4):412-458, 1998.

P. K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching in geometric optimization.
volume 17, pages 292-318, Duluth, MN, USA, 1994. Academic Press, Inc.

H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. International
Journal of Computational Geometry and Applications, 5:75-91, 1995.

H. Alt, C. Knauer, and C. Wenk. Comparison of distance measures for planar curves. Algorithmica,
38(1):45-58, 2003.

S. Bespamyatnikh and M. Segal. Selecting distances in arrangements of hyperplanes spanned by points.
volume 2, pages 333-345, September 2004.

K. Buchin, M. Buchin, and C. Wenk. Computing the Fréchet distance between simple polygons in
polynomial time. SoCG: 22nd Symposium on Computational Geometry, pages 80-87, 2006.

E. W. Chambers, E. C. de Verdiére, J. Erickson, S. Lazard, F. Lazarus, and S. Thite. Walking your dog
in the woods in polynomial time. 17th Fall Workshop on Computational Geometry, 2007.

R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM, 34(1):200-208,
1987.

A.F. Cook IV and C. Wenk. Geodesic Fréchet and Hausdorff distance inside a simple polygon. Technical
Report CS-TR-2007-004, University of Texas at San Antonio, August 2007.

C. A. Duncan, A. Efrat, S. G. Kobourov, and C. Wenk. Drawing with fat edges. Int. J. Found. Comput.
Sci., 17(5):1143-1164, 2006.

A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali. New similarity measures
between polylines with applications to morphing and polygon sweeping. Discrete & Computational
Geometry, 28(4):535-569, 2002.

L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J. Comput. Syst.
Sci., 39(2):126-152, 1989.

L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear time algorithms for visibility
and shortest path problems inside simple polygons. pages 1-13, 1986.

L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms for visibility
and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209-233, 1987.

J. Hershberger. A new data structure for shortest path queries in a simple polygon. Inf. Process. Lett.,
38(5):231-235, 1991.

J. Komlés, Y. Ma, and E. Szemerédi. Matching nuts and bolts in O(n log n) time. SODA: 7th ACM-
SIAM Symposium on Discrete Algorithms, pages 232-241, 1996.

A. Maheshwari and J. Yi. On computing Fréchet distance of two paths on a convex polyhedron. EWCG
2005, pages 41-4, 2005.

J. S. B. Mitchell. Geometric shortest paths and network optimization. Handbook of Computational
Geometry, 1998.

J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem. SIAM J.
Comput., 16(4):647-668, 1987.

L. Palazzi and J. Snoeyink. Counting and reporting red/blue segment intersections. CVGIP: Graph.
Models Image Process., 56(4):304-310, 1994.

E. Papadopoulou and D. T. Lee. A new approach for the geodesic Voronoi diagram of points in a simple
polygon and other restricted polygonal domains. Algorithmica, 20(4):319-352, 1998.

G. Rote. Computing the Fréchet distance between piecewise smooth curves. Technical Report ECG-
TR-241108-01, May 2005.

N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Commun. ACM,
29(7):669-679, 1986.

R. van Oostrum and R. C. Veltkamp. Parametric search made practical. SoCG: 18th Symposium on
Computational Geometry, pages 1-9, 2002.

C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching speed: Localizing global
curve-matching algorithms. 18th Int’l Conf. on Sci. and Statistical Database Mgmt (SSDBM), pages
379-388, 2006.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 205-216
www.stacs-conf.org

IMPROVED ALGORITHMS FOR THE RANGE NEXT VALUE
PROBLEM AND APPLICATIONS

MAXIME CROCHEMORE %! COSTAS S. ILIOPOULOS 2, MARCIN KUBICA 3,
M. SOHEL RAHMAN 2, AND TOMASZ WALEN 3

! Institut Gaspard-Monge, Université de Marne-la-Vallée, France

2 Algorithm Design Group, Department of Computer Science
Kings College London, Strand, London WC2R 2LS, England
E-mail address: Maxime.Crochemore@kcl.ac.uk,{csi,sohel}@dcs.kcl.ac.uk
URL: http://wuw.dcs.kcl.ac.uk/adg

3 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
E-mail address: {kubica,walen}@mimuw.edu.pl

ABSTRACT. The Range Next Value problem (Problem RNV) is a recent interesting variant
of the range search problems, where the query is for the immediate next (or equal) value
of a given number within a given interval of an array. Problem RNV was introduced and
studied very recently by Crochemore et. al [Finding Patterns In Given Intervals, MFCS
2007]. In this paper, we present improved algorithms for Problem RNV. We also show
how this problem can be used to achieve optimal query time for a number of interesting
variants of the classic pattern matching problems.

1. Introduction
We study the Range Next Value (RNV) problem, which is defined as follows:

Problem 1.1. Range Next Value (Problem RNV). We are given an array A[l..n],
which is a permutation of [1..n]. We need to preprocess A to answer queries of the following
form:

Query: Given an integer K € [l..n], and an interval [(..r],1 < ¢ < r < n, the goal is
to return the value A[k] of the immediate higher or equal number (‘next value’) than K

Key words and phrases: Algorithms, Data structures.

Part of this research work was done when the authors were visiting McMaster University, Canada to
attend StringMasters @ McMaster (2007). C.S. Iliopoulos is partially supported by the EPSRC and Royal
Society grants. M. Kubica and T. Waleri are supported by the grant of the Polish Ministry of Science
and Higher Education N206 004 32/0806. M.S. Rahman is supported by the Commonwealth Scholarship
Commission in the UK and is on leave from the Department of CSE, BUET, Dhaka-1000, Bangladesh.

ASPECTS
-
SS‘FE%EMPUTER © M. Crochemore, C. S. lliopoulos, M. Kubica, M. S. Rahman, and T. Walen
© Creative Commons Attribution-NoDerivs License

R SYMPOSIUM
mvl'_ ON THEORETICAL
<

206 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEN

from A[{..r] if there exists one. More formally, we need to return such A[k], that A[k] =
min{A[q] | Alg] > K and ¢ < g < r}. If there is no such k, then we return —1.

We use RNVy4([¢..r],K) to denote the range next value query on array A[l..r] for the
value K. Problem RNV was introduced, very recently, in [4], to solve an interesting variant
of the classic pattern matching problem, namely Pattern Matching in a Query Interval
(Problem PMQI) [8]. In problem PMQI, we are given a text, which we can preprocess for
subsequent queries and each query has a query interval in addition to a pattern to search
for. The goal is to find only those occurrences of the pattern in the text that start in the
given query interval. This problem is interesting, because, in many text search situations,
one may want to search only in a part of the text, e.g. restricting the search to only parts
of a long DNA sequence. To achieve an optimal query time, in [4], Problem PMQI was
reduced to Problem RNV and the latter was solved with a constant query time against a
data structure requiring O(n?) preprocessing time and space. It was left as an open problem
to devise a better data structure without losing the constant time query capability. The
goal of this paper is to present such a data structure. Notably, Problem RNV turns out to
be useful in a number of other problems as well. As we will show in Section 5, Problem
RNV can be used to get optimal query times for a number interesting problems studied
in [7] and related to string statistics problem [3, 1].

It is worth-mentioning here that, despite extensive results on various range searching
problems, we are not aware of any result from the literature that directly addresses Problem
RNV. It seems to be possible to get a query time of O(loglogn) by using an efficient data
structure for the much studied “3-sided Query” problem along with a ‘persistent’ data
structure to ‘select’ the appropriate answer from the answer set of a “3-sided Query” [9].
However, our goal is to facilitate constant time query capability with a data structure
requiring o(n?) time and space. In the rest of this paper, we follow the following convention
adopted from [2]: if an algorithm has preprocessing time f(n) and query time g(n), we will
say that the algorithm has complexity (f(n), g(n)).

The rest of the paper is organized as follows. In Section 2, we review the (O(n?), O(1))
algorithm presented in [4]. In Sections 3 and 4, we present two different algorithms to
solve Problem RNV with complexity (O(n!®),O(1)) and (O(n'*€),O(1)) respectively. In
Section 5, we discuss their possible applications.

2. The (O(n?),0(1)) Algorithm

In this section, we briefly review the algorithm for Problem RNV (referred to as Algo-
rithm CIR henceforth) presented in [4]. First, we formally define the much studied Range
Minimum Query Problem, which is used by the CIR algorithm.

Problem 2.1. Range Minimum Query (Problem RMQ). We are given an array
A[l..n] of numbers. We need to preprocess A to answer the following form of queries:
Query: Given an interval [¢..r],1 < ¢ <r < n, the goal is to find the minimum (maximum,
in the case of Range Maximum Query) value A[k| for £ < k <.

We use RMQ([¢..r]) to denote the range minimum query on array A for the inter-
val [(..r]. Problem RMQ has received much attention in the literature and Bender and
Farach-Colton presented an algorithm with complexity (O(n),O(1)), using O(nlogn)-bits

IMPROVED ALGORITHMS FOR PROBLEM RNV AND APPLICATIONS 207

of space [2]'. Recently, Sadakane [10] presented a succinct data structure, which achieves
the same time complexity using O(n) bits of space. Very recently, Fischer and Heun [5]
presented an algorithm with the same time complexity requiring optimal 2n + o(n) bits of
additional space.

2.1. Algorithm CIR

Algorithm CIR maintains n arrays B;,1 < i < n. Each array B; has n elements. So, B
could be viewed as a two dimensional array. Algorithm CIR fills each array B; depending
on A as follows. For each 1 < i < n it stores in B; the difference between i and the
corresponding element of A, and then replace all negative entries of B; with co. More
formally, for each 1 < i < n and for each 1 < j < n, algorithm CIR sets B;[j|] = A[j] — 1, if
Alj] > i; otherwise it sets B;[j] = co. Then, each B;,1 < i < n, is preprocessed for the RMQ
problem. This completes the construction of the data structure. It is clear that, Algorithm
CIR requires O(n?) preprocessing time. The query processing is as follows. Consider the
query RNVy([¢..r],K). Then, we simply need to apply range minimum query in By for
the interval [(..r], i.e., we need to execute the query: RMQp ([¢..r]). This gives us the
following theorem.

Theorem 2.2. [4]. For Problem RNV, we can construct a data structure in O(n?) time
and space to answer the relevant queries in O(1) time per query.

3. An Improved Algorithm with Complexity (O(n'%),O(1))

In this section, we present an algorithm that improves on Algorithm CIR. In what fol-
lows, we use the following notations. Given an array A[l..n], we denote by ﬁ, the underlying
set comprising of all the (distinct) elements of A. In other words, A = {A[i] |1 <i <n}. We
define min(A) = A[i], such that A[i] < A[j] for all j in [1..n]. Given a sub-array A[(..r],1 <
¢ < r < n, of the array A, we further define left(A[l..r]) = ¢ and right(A[(..r]) = r. We
say that, a range [(..r] is nonexistent, if ¢ > r; otherwise, [(..r] is said to be ezistent. Fur-
thermore, given a range [(..r],1 < ¢ < r < n, and a sub-array Afi..j],1 <i < j < n of an
array A[l..n], we say that the range [¢..r] is confined in the sub-array A[i..j], if, and only if,
we have ¢ < ¢ <r < j. Now, recall that, our goal is to construct a data structure requiring
o(n?) time and space without losing the constant time query capability. Below we present
the idea we employ.

In this section, we will assume that, we are looking for the immediate higher value
(instead of ‘equal or higher’) than the given value K in Problem RNV. It is easy to realize
that, it doesn’t really create any problem for the actual case.

In the first phase, we divide the array A[l..n] into [n/p]| = ¢ sub-arrays D;,1 < j <.
Now, we add the number 0 to the beginning of each D;,1 < j < ¢. It is easy to realize that,
each D; has exactly p+ 1 elements except possibly the last one, which may have less. Now,
we apply a slight variation of Algorithm CIR on each D;,1 < j < ¢ as follows. For each
Dj, we maintain |D;| arrays, Bf[l..|Dj|],£ € D;. Notably, the naming convention followed

IThe same result was achieved in [6], albeit with a more complex data structure.

208 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEN

for the Bf arrays are for better exposition. For example, if D; = (0,1,9,2,6), then we have
B?,le, B?, B]z and B?. Now, we fill each such Bf[l..\Dj]] as follows:

B = {Dj[i] If D;[i] > ¢

| (3.1)
00 Otherwise

In the second phase, we construct ¢ arrays E;[0..n],1 <i < ¢. F; is filled up as follows:

Eifj] =4’ fyeD (3.2)
E;[j —1] Otherwise®

%Recall that 0 € D; for all 1 <i < gq.
In the third phase, we construct n arrays Fy[l..q],1 < k < n, where we fill:

Fili] = min{D;[j] : D;[j] > k and 1 < j <|D;|} = RNVp,([1..|D;|], k)
Please note, that all the F} arrays can be computed in O(ng) time. Finally, we prepro-
cess each Fj, (1 < k < n) and all Bf arrays for the RMQ problem. This completes the

construction of our data structure. In what follows, we use RNV _DS1 to refer to this data
structure.

Algorithm 1 Function RNV _Query(A[l..r],K))

1:1et£’:(il—1)-p<6§i1~p

2:letr' =(ia—1) - p<r<iz-p

3: if i1 = i2 then

4: {¢ and r are in the same block}

5: Set j =41, u= Eil [IC]

6: return RMQB;L([(E—E’)..(T—T’)])

7: else

8: Set vali = vals = valg = co.

9: Set u1 = FEy, [K], uz = Ey, [K].

10: Set val; = RMQB;q ([(¢ = £")..| Du|]){Executing RNVp, ([(£— 2)..|Dy,], K}
11: Set valz = RMQB;; ([1..(r — r")]){Executing RNVp,, ([1.(r —)], K}
12: if i —41 >1 then2
13: Set vala = RMQFr, ([(i1 + 1)..(i2 — 1)])
14: end if
15: return min{valy,valz,val3}
16: end if

3.1. Query Processing

In this section, we discuss the query processing. Suppose, we are considering the follow-
ing query: RNVy4([..r],). We compute, ¢/, i1 and i9, such that, ¢ = (i1—1)-p < £ <'i1-p
and ' = (ia — 1) - p < r < iy - p. Then, we can divide the range [(..r] into 3 consecutive
ranges, namely [(..i1 X @], [i1 X p+ 1..(ia — 1) X p| and [(ia — 1) x p + 1..r] (See Figure 1).
Now, we proceed with the query processing as follows. We have the following cases.

Case 1: i) = io: In this case, the range [(..r] is in the same sub-array D;,. So, we only
perform the following RMQ query, the answer of which is returned as the desired
result: RNVp, ([(€—£)..(r —1")],K) = RMQBEH[K]([(K =) .(r=1"))).

i1

IMPROVED ALGORITHMS FOR PROBLEM RNV AND APPLICATIONS 209

l T

A [1]2]3]4]5]6]7]8]9[10[11]12]13]14]15]16]
—_—— ——
Dy Dy D3 Dy
—— —~ ———

valy valsy vals

Figure 1: The situation of an RNV query

Case 2: iy > i71: In this case, we first initialize vali,vals and vals to oo and then we
proceed with the query processing as follows. We first perform the following RMQ
queries:

valy = RNVp, ([(¢ = €).[Dy,[], K) = RMQ g, iy ([(£ = £)..[D3y []) (3-3)

valy = RNVp, ([1..(r — M, K) = RMQB@2 w ([L..(r =)]) (3.4)
i1
Then, if we have io — i1 > 1, then we perform the following RMQ query:
valy = RMQp ([(i1 + 1)..(i2 — 1)]) (3.5)

Finally, we return the minimum of valy,vals and valy as the final result.

3.2. Correctness and Running Time
In this section, we discuss the correctness of the above algorithm and its running time.

Lemma 3.1. With the data structure RNV_DS1, we can correctly answer any queries of
the form RNVp, ([0.r],K), 1 <l <r <|D;|, 1<K <n,1<i<gq.

Proof. Recall that, RNVp,([¢..r],K) is executed by calculating RNVp, ([¢..r], E;[K]), which
in turn, is executed by performing the query RMQ B_El.[;q([(..r]). From the correctness of

Algorithm CIR, it is clear that, RNVp,([(..r], E;[K]) = RMQ i) ([¢-.r]). So it remains

to show that RNVp,([(..r],K) = RNVp,([¢..r], E;[K]). This is shown as follows. Recall
that, by definition, if L € D; then E;[K] = K. So, if £ € D,;, we are done. Therefore,
assume otherwise. Now, in this case, F;[K] is the nearest smaller value of K in D;. For
the values v < min(b\i \ 0), this is ensured by the addition of 0 in each D;. Therefore,
it is easy to realize that, RNVp,([¢..r], E;[K]) would return the same value as returned by
RNVp,([¢..r], K) and hence, the lemma follows. n

Theorem 3.2 (Correctness). With the data structure RNV_DS1, we can correctly answer
any query of the form RNV ([0.r],K),1 <{<r <n,1 <K <n.

Proof. Recall that, the range [¢..r] is transformed into (up to) 3 consecutive ranges, namely
rr = [li1 X pl,re = i1 X p+ 1..(ia — 1) X p] and r3 = [(i2 — 1) X p + 1..r]. Now,
the range r; (resp. r3) is confined within the sub-array D;, (resp. D;,). On the other
hand, if ry is existent, then it can span over one or more sub-arrays, D; 41,...,D;,—1
and, in that case, it completely contains those sub-arrays, i.e. i1 X p 4+ 1 = left(D;,+1) and
(t9—1) X p = right(D;,_1). It is clear that, the minimum of the results of the corresponding
RNV queries in the three ranges, namely, 1,72 and rs, is the final result. Now, recall that,
we have the following two cases.

210 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEN

case 1: i; = i9: It is easy to verify that, this case arises when the range [¢..r] is con-
fined in the sub-array D;,. Therefore, it is easy to verify that, we have RNV 4([(..r],K) =
RNVp, ([(£ = £)..(r —r")],K), and by Lemma 3.1, we get the correct result.
case 2: i9 > iq: It is easy to see that, if we have i — 77 > 1, then all 3 intervals are
existent; otherwise, ro is non-existent. Now, recall that, we initialize vali, vals and
vala to co. Since, both the ranges r; and rs are confined in the sub-arrays D;, and
D;, respectively, by Lemma 3.1, the two corresponding queries, namely, Queries 3.3
and 3.4 are correctly executed and the results are stored in val; and wvals.
Now, assume that the range r3 is existent and that, v; = RNVp,([1..|D;|],K),i €
[i1 + 1..ig — 1]. Then, it is easy to verify that:
RNV4([0..r], K) = min(valy,valy, min (v;)).
i€lir+1..i2—1]
Now, we return min(valy, vals,valy) as the answer. Hence, it suffices to show that
valy = Mg, 41,5, —1] (vi). Recall that, vals is evaluated according to Equation 3.5.
By definition, each entry of Fi correctly (Lemma 3.1) stores the result of the RNV
query for the value K and for the whole range for the corresponding sub-array.
Therefore, the range minimum query does provide us with the desired value.
Finally, if ro is nonexistent, then valo remains assigned to co. Therefore, the
result returned, i.e., the minimum of valy,valz and vals, is correct.

Theorem 3.3. The data structure RNV_DSI1 can be constructed in O(ngp +n?/p) time.

Proof. We deduce the construction time of RNV _DS1 phase by phase as follows.

Phase 1: Each sub-array D;,1 < j < ¢ = [n/p] has at most p+1 elements. It is easy
to see that, the application of the (slight variation of) Algorithm CIR requires O(p?)
time per sub array. Therefore, in total, time required by Phase 1 is O(p?) x ¢ =
O(p?) x [n/p] = O(np) in the worst case.

Phase 2: Initializing and filling up the arrays E;[0..n],1 < i < g requires O(n) X ¢ =
O(n?/p) time.

Phase 3: In this phase, we construct the arrays F[l..q|, for 1 < k < n. This can
easily be done in O(ng) = O(n?/p) time. We also preprocess arrays F}, and Bé- for
the RMQ queries, what requires also O(nq) = O(n?/p) time.

Therefore, in total, the time required for the construction of RNV _DS1 is O(ng)+0(n?/p)+
O(n*/p) = O(np +n*/p). =
Corollary 3.4. The data structure RNV_DS1 can be constructed in O(n'-5) time.

Proof. This can be achieved if we assume that p = \/n. (]

Theorem 3.5. Given the data structure RNV_DS1, we can answer the RNV queries in
O(1) time per query.

Proof. 1t is clear that, given RNV _DS1, an RNV query is answered by executing up to 2
RNV queries on the sub-arrays and possibly 1 RM(Q queries on the appropriate F' array.
Each of these queries requires O(1) time. Therefore, the theorem follows. (]

IMPROVED ALGORITHMS FOR PROBLEM RNV AND APPLICATIONS 211

4. An Improved Algorithm with Complexity (O(n'*),O(1))

In this section, we present a different algorithm for problem RNV by taking a slightly
different approach. We start with a slightly different (O(n?),O(1)) algorithm and present
a new algorithm built on top it. This algorithm follows a similar strategy as algorithm CIR
and is referred to as the base algorithm henceforth.

4.1. The Base Algorithm:

We define arrays Bj,1 < j < n as follows:

Now, the preprocessing is done as follows.
1: for j=1,...,ndo
2: Preprocess sequence B; for Problem RMQ
3: end for

After the above data structure is constructed, we can perform the queries as follows.
Similar to what was done in algorithm CIR, given the query RNVy4([¢..r],K), we just return
RMQp,([l..r]). It is easy to see that the base algorithm is correct and its running time is
(O(n?),0(1)). In the rest of this section, we present an improved algorithm based on the
base algorithm.

4.2. Improved algorithm

In this section we describe a method for improving preprocessing time of any RNV
algorithm, the cost paid for the improvement is slight (namely O(1)) increase of the RNV
query time. Suppose, we are given the array A of length n, the parameter p, and an
algorithm RNVALG for Problem RNV with complexity (f(n),g(n)). We will show how to
improve the preprocessing time of RNVALG.

In the first phase we divide possible values of parameter K, into [n/p] = ¢ interval sets
K;, where Kj ={i: (j—1)-p <i<j-p} Foreach j (1 <j<gq) we compute following
arrays:

e array B (|B}| = n) — containing information about elements of array A strictly
larger than (j — 1) - p

Bl = {Am if Ali] > (j—1)-p

00 otherwise

e set C; = {i: A[i] € K;} — containing indices of the elements of array A with values
from the range K;; by C; we will denote the array consisting of elements of C; sorted
in the ascending order, |C}| < g,

e array D; (|D;| < p) — contains the elements of array A from the range K, in the
order as they appear in A; each element is decreased by (j — 1) - g, to ensure that
the array D; is a permutation of {1..|D;|}:

Djli] = A[Gy[i]] = (G —1) - p, for 1 <i <|CY

212 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEN

e array IJ; (|Ej| = n+1) — containing indices used for translating queries from array
A; to array D;; Ej;[i] denotes the number of elements from A[l..i] from the range
Kji

Ejli—1]+1 if Alij € Kj and i >0

il = < Byli — 1] if A[i] ¢ K; and i > 0

0 ifi=0

A [4]1]2]7]0]3] 5 15[8 [13[14]11] 6] 9 [12]

Dy [3]1]4]2]
SN T

—t————
By [ofofofof[1]u]1]2]2]3]3]3]3]4]4]4]

Figure 2: Example of computing arrays D; and Ej, for n =15, p =4, j =2, K; = [5..8]

Then the algorithm preprocesses each array B; for range minimum queries, and each array
D; for range next value queries (using RNVALG).

Algorithm 2 Construction of RNV_DS2(p,RNVALG)

1l: for j=1,...,[n/p] do
2: compute arrays B;, Cj, D;, Ej,

3: preprocess sequence B; for RMQ (Range Minimum Queries)
4: preprocess sequence D; for RNV (Range Next Value Queries) using RNVALG
5: end for

The B} arrays will be used for answering the range next value queries if the answer is
outside of the range K;. The D; will be used if the answer is within the range K;. Since
we do not know in the advance which case is valid, the algorithm tries both cases, and then
chooses the smaller result.

Algorithm 3 Query Processing of RNV_DS2(p,RNVALG)

: Set a1 = ag = 00
: Set j,such that: = (j—1)-p<K<j-p
if j < q then
a1 = RMQpg: ([£..1])
j+1
end if
Set ¢/ = E;[¢ — 1]+ 1; v’ = Ej[r]
if ¢/ <r’ then
az = RNVp, ([¢.r"]], K —) + = {using algorithm RNVALG}
end if
: return min(ai,a2)

—_
o

Theorem 4.1. If we are given the (f(n),g(n)) RNV algorithm, then using the RNV _DSZ2,
we can construct (O((n? +nf(p))/p), g(p) + O(1)) algorithm for RNV.

Proof. The preprocessing of the RNV _DS2 requires:
e computing n/p arrays B’ (each of length n), this step requires O(n?/p) time,

IMPROVED ALGORITHMS FOR PROBLEM RNV AND APPLICATIONS 213

RNV(5,12,6) = min(ai,az2) = 8

A [a]1]2]710]3] 5 15[8 [13[14]11] 6] 9 [12]

a1 = RMQ(5,12) = 10

— -~

By [oo]oc] oo oo]10] oo o[15 o[13[14] 1] 0 0 [12]

By [oJoJoJoJt[1]1]2]2]3]3]3]8]4]4]4]
== "
I'=Eyf5] +1=2 ¥ = E,[12] = 3

.

——
ay=RNV(2,3,2) +4=38

Figure 3: RNV_DS2 processing query RNV (5,12,6) (assuming o = 4)

e preprocessing n/p arrays B]’» for the Range Minimum Queries, this step also requires
O(n?/p) time,

e computing n/p arrays D; (each of length p), clearly this step requires O(n) time,

e preprocessing n/p arrays D; for the Range Next Value Queries using (f(n), g(n))
algorithm, this step requires O(f(p) - n/p) time,

e computing n/p arrays E; (each of length n + 1), this step requires O(n?/p) time.

The total preprocessing time is O((n? + nf(p))/p).
Answering the Range Next Value queries requires:

e one range minimum query on the B;- array, what can be done in O(1) time,
e one recursive call of the range next value query for D; array using (f(n), g(n)) RNV
algorithm, requiring g(p) time,
e constant number of additional operations (i.e. accessing arrays E;)
Clearly the total query time is g(p) + O(1). "

Corollary 4.2. RNV_DS2 can be constructed in O(n'-%) running time and space.

Proof. This can be achieved if we use the RNV_DS2 construction method, with p = /n,
and using as RNVALG, the base algorithm (with complexity (O(n?),O(1))). (]

We can obtain even more efficient algorithm, carefully iterating RNV _DS2 construction.

Theorem 4.3. For any given positive constant € > 0, we can construct (O(n'T¢, O(1))
algorithm form RNV using the RNV_DS2.

Proof. Let RNV_DS2(0) denote the base algorithm for RNV (with the complexity (O(n?),0(1))).
For any i > 0, let RNV_DS2(i) denote the algorithm obtained using RNV _DS2 with
RNVALG = RNV_DS2(i—1) and p = n+1. From the theorem 4.1 the RNV _DS2(1) has the
complexity (O(n'®),0(1)), the RNV_DS2(2) has the complexity (O(n”%), O(1)). By sim-
ple induction, one can easily prove, that the RNV _DS2(4) has the complexity <O(n1+%), O(7)).

"

5. Applications

In this section, we discuss possible applications of Problem RNV. As has already been
mentioned in Section 1, the study of the RNV problem in [4] was motivated by Problem

214 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEN

PMQI, a variant of the classic pattern matching problem. Problem PMQI is formally defined
as follows (We use Occ? to denote the occurrence set for the classic pattern matching
problem):

Problem 5.1. Pattern Matching in a Query Interval (Problem PMQI). Suppose
we are given a text 7 of length n. Preprocess 7 to answer queries of the following form.
Query: We are given a pattern P of length m and a query interval [(..r], with 1 < ¢ <7 < n.
Let us denote by Occ%j— the set of all occurrences of P in 7. We are to construct the set:

OCC%E..T] = {i| i€ Occ and i€ [(.r]}

Using the reduction of [4] from Problem PMQI to Problem RNV, we obtain the following
theorem.

Theorem 5.2. We can construct a data structure for Problem PMQI in O(max(n'*¢ nlog o))
time and O(n'*€) space, and we can answer the relevant queries in the optimal O(m +
\Occ%br]]) time per query.

A more general problem called PMI was also handled in [4].

Problem 5.3. Generalized Pattern Matching with Intervals (Problem PMI). Sup-
pose we are given a text 7 of length n and a set of intervals 7 = {[s1..f1], [s2..f2],

<5 [S|x|--fix|]}, such that s;, f; € [1.n] and s; < f;, for all 1 <4 < |7|. Preprocess 7 to
answer queries of the following form.

Query: Given a pattern P and a query interval [(..r], such that ¢,r € [1..n] and ¢ < 7,
construct the set

Occ%fur]’7r ={i|i€Occk and i € [{,r]Nw for some w € 7}

To solve Problem PMI, a data structure with O(nlog®n) time, O(nlog?n) space was
constructed in [4]; the query time achieved was O(m-+loglogn+ \Occ?—[en]). It was left as
an open problem to achieve the optimal query time for Problem PMI [4]. Interestingly, using
Problem RNV, we can get the optimal query time for Problem PMI as well. The details
are left for the journal version; but we report the new result in the following theorem.

,TT

Theorem 5.4. For problem PMI, we can construct a data structure in O(max(n'*¢, nlog o))
time and O(n'*t€) space, and we can answer the relevant queries in the optimal O(m +
|Occ7;[£”r]ﬂr|) time per query.

In the rest of this section, we consider three recent variants of the classic pattern
matching problem, which we define below after defining some related concepts. Given two
occurrences i,j € [l.n —m + 1],j > i of a pattern P[1l..m] in a text 7[l..n]|, we say that
j is minimal with respect to i, if, and only if, there exists no occurrence of P in 7 in the
range [i + 1.5 — 1]. And, two occurrences i,j € [1.n —m + 1] of P in T are said to be
non-overlapping, if, and only if, |j — i| > m. Otherwise, they are said to be overlapping.

Problem 5.5. Suppose we are given a text 7 of length n. Preprocess 7 to answer the
following form of queries:

Query: Given a pattern P of length m, and an index ¢, we want to find out an occurrence
i > of P in 7, such that i’ is minimal with respect to .

Problem 5.6. Suppose we are given a text 7 of length n. Preprocess 7 to answer the
following form of queries:

IMPROVED ALGORITHMS FOR PROBLEM RNV AND APPLICATIONS 215

Query: Given a pattern P of length m, and a list of indices U = (i1, ..., 1y), our goal is to
construct the list V = (j1,...,J¢), such that, for all & € [1..4], ji is an occurrence of P in
T and jp € V is, either minimal with respect to iy € U or equal to Nill. The latter case
means that there doesn’t exist any occurrence to the right of i.

Problem 5.7. Suppose we are given a text 7 of length n. Preprocess 7 to answer the
following form of queries:

Query: Given a pattern P of length m, and an interval [i..j], we want to find an ascending
sequence U = (iy,. .., i) of non-overlapping occurrences of P in 7, such that i < i; <i, < j
and ¢ is maximal.

Problems 5.5 to 5.7 were handled very recently in [7]. The corresponding data structures
presented in [7] for the above problems requires O(nlogn) storage and O(nlognloglogn)
expected preprocessing time each. The query time achieved in [7], for Problem 5.6 and 5.7 is
O(m+¢loglogn) and for Problem 5.5 is O(m +loglogn). Notably, none of the query times
achieved in [7] are optimal. In the rest of this section, we briefly show, how Problem RNV
can be used to achieve optimal query times for the above problems. We remark however
that, we omit many of the details for space constraint and left them for the journal version.

5.1. Problems 5.5 and 5.6

It is clear that, Problem 5.5 is a simpler version of the Problem 5.6. Interestingly, we
can use Problem RNV to solve both the problems efficiently. We first consider Problem 5.5.
Following the techniques of [4], we construct a suffix tree and do some preprocessing on it
to get Occ? implicitly in the form of an array £ and an interval [a..b]. More specifically,
using the techniques of [4], after the preprocessing, we can implicitly have Occ? in L]a..b]
in O(m) time. Now, it is easy to see that to solve the query of problem 5.5, we simply need
to get the answer of the following query:

RNV, ([a..b], %) (5.1)

Therefore, we have the following result.

Theorem 5.8. For Problem 5.5, we can construct a data structure in O(max(n'T¢ nlog o))
time and O(n'*¢) space, and we can answer the relevant queries in the optimal O(m) time
per query.

Proof. For the preprocessing, we first construct the suffix tree and do the preprocessing
of [4], requiring O(nlog o) time, where 0 = min(n, |X|). Then we preprocess £ for Problem
RNV. Total construction time and space complexity is, O(max(n'*¢ nlog o)) and O(n'*c)
respectively. As for the query, we require O(m) time to get OccZ implicitly [4]. Then, we
just need to perform the Query 5.1 requiring constant time. Hence, the result follows. =

We can easily extend the above result for Problem 5.6, simply by executing RNV
queries, RNV, ([a..b],q) for all i € U. Therefore, we get the following theorem.

Theorem 5.9. For Problem 5.6, we can construct a data structure in O(max(n'™¢ nlogo))
time and O(n'™¢) space, and we can answer the relevant queries in the optimal O(m + /)
time per query.

216 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEN

5.2. Problem 5.7

To solve Problem 5.7, we follow the greedy strategy of [7] as follows. Suppose, we have
the set Occl in the list W = (i1, ... :i\occg ‘> in ascending order. Now, we construct another

list Y as follows. We first put i1 in). We use last())) to denote the most recently put
index in Y. Now we scan the list W from left to right and put i € W in), only if ¢; and
last()) are non-overlapping. It was proved in [7] that, |)| is maximal. Therefore, we have
the following theorem.

Theorem 5.10. For Problem 5.7, we can construct a data structure in O(max(n'T¢ nlog o))
time and O(n'*€) space, and we can answer the relevant queries in the optimal O(m + £)
time per query.

Proof. We do the same preprocessing as we did for Problems 5.5 and 5.6 and hence achieve
the same preprocessing time and space complexity. Now, we consider the query. We start
with the query RNV, ([a..b],i + 1). Now suppose, the query returns ¢q. Now, if ¢ < j, then
we put ¢ in U and perform the query RNV, ([a..b],q +m) and continue as before. We stop
when we get a query result ¢’ such that ¢’ > j. It is easy to verify that this would correctly
construct a maximal list /. Finally, since each of the queries require constant time, the
result follows. [

References

[1] A. Apostolico and F. P. Preparata. Data structures and algorithms for the string statistics problem.
Algorithmica, 15(5):481-494, 1996.

[2] M. A. Bender and M. Farach-Colton. The lca problem revisited. In G. H. Gonnet, D. Panario, and
A. Viola, editors, Latin American Theoretical INformatics (LATIN), volume 1776 of Lecture Notes in
Computer Science, pages 88—94. Springer, 2000.

[3] G.S. Brodal, R. B. Lyngsg, A. Ostlin, and C. N. S. Pedersen. Solving the string statistics problem in
time O(nlogn). In P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz, and R. Conejo,
editors, ICALP, volume 2380 of Lecture Notes in Computer Science, pages 728-739. Springer, 2002.

[4] M. Crochemore, C. S. Iliopoulos, and M. S. Rahman. Finding patterns in given intervals. In A. Kucera
and L. Kucera, editors, MFCS, volume 4708 of Lecture Notes in Computer Science, pages 645—656.
Springer, 2007.

[5] J. Fischer and V. Heun. A new succinct representation of rmg-information and improvements in the
enhanced suffix array. In B. Chen, M. Paterson, and G. Zhang, editors, ESCAPE, volume 4614 of
Lecture Notes in Computer Science, pages 459-470. Springer, 2007.

[6] H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geometry problems. In Sym-
posium on the Theory of Computing (STOC), pages 135-143, 1984.

[7] O. Keller, T. Kopelowitz, and M. Lewenstein. Range non-overlapping indexing and successive list in-
dexing. In F. K. H. A. Dehne, J.-R. Sack, and N. Zeh, editors, WADS, volume 4619 of Lecture Notes
in Computer Science, pages 625—636. Springer, 2007.

[8] V. Maikinen and G. Navarro. Position-restricted substring searching. In J. R. Correa, A. Hevia, and M. A.
Kiwi, editors, LATIN, volume 3887 of Lecture Notes in Computer Science, pages 703-714. Springer,
2006.

[9] E. Porat. Private communication.

[10] K. Sadakane. Succinct data structures for flexible text retrieval systems. Journal of Discrete Algorithms,
5(1):12-22, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 217-228
www.stacs-conf.org

CONNECTING POLYGONIZATIONS VIA STRETCHES AND TWANGS

MIRELA DAMIAN !, ROBIN FLATLAND 2, JOSEPH O’ROURKE 3,
AND SUNEETA RAMASWAMI *

! Dept. of Computer Science, Villanova Univ., Villanova, PA 19085, USA.
E-mail address: mirela.damian@villanova.edu

2 Dept. of Computer Science, Siena College, Loudonville, NY 12211, USA.
E-mail address: flatland@siena.edu

3 Dept. of Computer Science, Smith College, Northampton, MA 01063, USA.
E-mail address: orourke@cs.smith.edu

4 Dept. of Computer Science, Rutgers University, Camden, NJ 08102, USA.
E-mail address: rsuneeta@camden.rutgers.edu

ABSTRACT. We show that the space of polygonizations of a fixed planar point set .S of n
points is connected by O(n?) “moves” between simple polygons. Each move is composed
of a sequence of atomic moves called “stretches” and “twangs”. These atomic moves walk
between weakly simple “polygonal wraps” of S. These moves show promise to serve as a
basis for generating random polygons.

1. Introduction

This paper studies polygonizations of a fixed planar point set S of n points. Let the
n points be labeled p;, i = 0,1,...,n—1. A polygonization of S is a permutation o of
{0,1,...,n—1} that determines a polygon: P = P, = (Py(0); - - - s Po(n—1)) is @ simple (non-
self-intersecting) polygon. We will abbreviate “simple polygon” to polygon throughout. We
do not make any general position assumptions about S, except to assume the points do
not lie in one line so that there is at least one polygon whose vertex set is S. A point set
S may have as few as 1 polygonization, if S is in convex position,! and as many as 20
polygonizations. For the latter, see Fig. 1la and [CHUZO01] for additional details.

Our goal in this work is to develop a computationally natural and efficient method to
explore all polygonizations of a fixed set S. One motivation is the generation of “random
polygons” by first generating a random .S and then selecting uniformly at random a poly-
gonization of S. Generating random polygons efficiently is a long unsolved problem; only
heuristics [AH96] or algorithms for special cases [ZSSM96], [HHH02] are known. Our work
can be viewed as following a suggestion in [ZSSM96]:

1998 ACM Subject Classification: Nonnumerical Algorithms: F.2.2; Discrete Mathematics: G.2.
Key words and phrases: polygons, polygonization, random polygons, connected configuration space.
1S is in convex position if every point in .S is on the hull of S.

N -

© M. Damian, R. Flatland, J. O’'Rourke, and S. Ramaswami
© Creative Commons Attribution-NoDerivs License

218 M. DAMIAN, R. FLATLAND, J. O’'ROURKE, AND S. RAMASWAMI

“start with a ... simple polygon and apply some simplicity-preserving, re-
versible operations ... with the property that any simple polygon is reachable
by a sequence of operations”

Our two operations are called stretch and twang (defined in Sec. 2.2). Neither is simplicity
preserving, but they are nearly so in that they produce polygonal wraps defined as follows.

Definition 1.1. A polygonal wrap P, is determined by a sequence o of point indices that
includes every index in {0,1,...,n—1} at least once, such that there is a perturbation of
the points in multiple contact that renders P, a simple closed curve through the perturbed
points in o order.

Thus polygonal wraps disallow proper crossings? but permit self-touching. This notion is
called a “weakly simple polygon” in the literature, but we choose to use our terminology
to emphasize the underlying fixed point set and the nature of our twang operation. Fig. 1b
shows a polygonal wrap with five double-contacts (p1, p4, ps, ps and pg).

Stretches and twangs take one polygonal wrap to another. A stretch followed by a
natural sequence of twangs, which we call a cascade, constitutes a forward move. Forward
moves (described in Sec. 2.3) take a polygon to a polygon, i.e., they are simplicity preserving.
Reverse moves will be introduced in Sec. 6. A move is either a forward or a reverse move.
We call a stretch or twang an atomic move to distinguish it from the more complex forward
and reverse moves.

Our main result is that the configuration space of polygonizations for a fixed S is
connected by forward/reverse moves, each of which is composed of a number of stretches
and twangs, and that the diameter of the space is O(n?) moves. We can bound the worst-case
number of atomic moves constituting a particular forward/reverse move by the geometry
of the point set. Experimental results on random point sets show that, in the practical
situation that is one of our motivations, the bound is small, perhaps even constant. We
have also established loose bounds on the worst-case number of atomic operations as a
function of n: an exponential upper bound and a quadratic lower bound. Tightening these
bounds has so far proven elusive and is an open problem.

One can view our work as in the tradition of connecting discrete structures (e.g., trian-
gulations, matchings) via local moves (e.g., edge flips, edge swaps). Our result is comparable
to that in [vLS82], which shows connectivity of polygonizations in O(n?®) edge-edge swap
moves through intermediate self-crossing polygons, and to that in [HHHO02], which estab-
lished noncrossing connectivity within special classes of polygonizations. The main novelty
of our work is that we avoid proper crossings but achieve connectivity via polygonal wraps.
We explore the possible application to random polygons briefly in Sec. 8. For the majority
of this paper, we concentrate on defining the moves and establishing connectivity.

We begin by defining pockets, which play a central role in our algorithms for polygonal
transformations. Then in Sec. 2.1 we describe two natural operations that transform one
polygon into another but fail to achieve connectivity of the configuration space of polygo-
nizations, which motivates our definitions of stretches and twangs in Sec. 2.2. Following
these preliminaries, we establish connectivity and compute the diameter in Secs. 3—7. We
conclude with open problems in Sec. 9. Omitted proofs are in [DFORO07].

2Two segments properly cross if they share a point z in the relative interior of both, and cross transversely
at x.

CONNECTING POLYGONIZATIONS 219

Figure 1: Examples. (a) A set of n = 3k + 2 points that admits 2* polygonizations. (b)
Polygonal wrap P, with o = (0,8,6,8,1,5,9,2,9,4,5,1,4,3,7) (c) A polygoniza-
tion with one pocket with lid ab.

1.1. Pockets and Canonical Polygonization

Let P be a polygonization of S. A hull edge ab that is not on 9P is called a pocket lid.
The polygon external to P bounded by P and ab is a pocket of P. For a fixed hull edge
ab, we define the canonical polygonization of S to be a polygon with a single pocket with
lid ab in which the pocket vertices are ordered by angle about vertex a, and from closest to
farthest from a if along the same line through a. We call this ordering the canonical order
of the pocket vertices; see Fig. 1c. The existence of this canonical polygonization for any
point set S not in convex position was established in [CHUZO01].

2. Polygonal Transformations

Let P be a polygon defined by a circular index sequence o. We examine operations that
permute this sequence, transforming P into a new polygon with the same set of vertices
linked in a different order. Throughout the paper we use Aabc to denote the closed triangle
with corners a, b and c.

2.1. Local Transformations

The systematic study of constant-sized transformations that alter one simple polygon to
another was initiated in [HHHO02]. They defined a k-flip as an alteration of k (not necessarily
consecutive) edges, and established a number of results, including showing that 3-flips are
sufficient to connect polygonizations among several subclasses of polygons based on various
visibility properties. But no constant k-flip move is known to be sufficient for connecting all
simple polygonizations, and they conclude that “the connectivity of general simple polygons
remains a challenging open problem.” Although we do not resolve this open problem by a
“local transformation” in their sense, we do resolve it by stepping outside their paradigm
in two regards: (1) We permit polygonal wraps as intermediate structures; and (2) Our
atomic moves are local and constant-sized, but they cascade into sequences of as many as
Q(n?) atomic moves.

The most natural local transformation is a swap transposition of two consecutive ver-
tices of P that results in a new (non-self-intersecting) polygon. A swap is a particular
2-flip. Because this is easily seen as insufficient for polygonization connectivity, 3-flips were
explored in [HHHO02]. Much less obviously, even these were shown to be insufficient for
connectivity, except within various polygon subclasses. We review one of their 3-flips, the
“planar VE-flip,” which we call a HOP, because our STRETCH operation is a generalization
of this.

220 M. DAMIAN, R. FLATLAND, J. O’'ROURKE, AND S. RAMASWAMI

The hop operation generalizes the swap by allowing a vertex to hop to any position in
the permutation, as long as the resulting polygon is simple. Fig. 2 shows the stretching of
the edge ab down to vertex v, effectively “hopping” v between a and b in the permutation.
We denote this operation by Hop(e,v), where e = ab (note the first argument is from and
the second to).

To specify the conditions under which a hop operation is valid, we introduce some
definitions, which will be used subsequently as well. A polygon P has two sides, the interior
of P and the exterior of P. Let abc = (a, b, c) be three noncollinear vertices consecutive in
the polygonization P. We call vertex b a true corner verter since the boundary of P takes
a turn at b. We distinguish between the convex side of b, that side of P with angle Zabc
smaller than 7, and the reflex side of b, the side of P with angle Zabc larger than 7w. Note
that this definition ignores which side is the interior and which side is the exterior of P, and
so is unrelated to whether b is a convex or a reflex vertex in P. Every true corner vertex
has a convex and a reflex side (collinear vertices will be discussed in Sec. 2.2). To ensure
that the resulting polygon is simple, HOP(e, v) is valid iff the following two conditions hold:
(1) the triangle induced by the two edges incident to v is empty of other polygon vertices
and (2) the triangle induced by e and v lies on the reflex side of v and is empty of other
polygon vertices.

Although more powerful than a swap, there also exist polygons that do not admit any
hops, as was established in [HHHO02], and so hops do not suffice to connect all polygoniza-
tions.

The limited transformation capabilities
of these 2- and 3-flip operations motivate

our introduction of two new operations, | N o Hor(abs) | \ 2
stretch and twang. The former operation X —_— /
relaxes the two hop conditions and allows ¢ d ¢ d
the creation of a polygonal wrap. The lat-

ter operation restores the polygonal wrap to Figure 2: Hop(ab, v) illustrated.

a polygon. We show that together they are
capable of transforming any polygon into a canonical form (Secs. 3-5), and from there to
any other polygon (Secs. 6-7).

2.2. Stretches and Twangs

Unlike the HoP(e, v) operation, which requires v to fully see the edge e into which it
is hopping, the STRETCH(e, v) operation only requires that v see a point z in the interior®
of e. The stretch is accomplished in two stages: (i) temporarily introduce two new “pseu-
dovertices” on e in a small neighborhood of x (this is what we call STRETCH(below), and
(ii) remove the pseudovertices immediately using twangs.

STRETCHg. Let v see a point x in the interior of an edge e of P. By see we mean “clear
visibility”, i.e., the segment vx shares no points with P other than v and = (see Fig. 3a).
Note that every vertex v of P sees such an z (in fact, infinitely many x) on some e. Let
2~ and 2T be two points to either side of 2 on e, both in the interior of e, such that v
can clearly see both = and 2. Two such points always exist in a neighborhood of z. We
call these points pseudovertices. Let e = ab, with ™ closer to the endpoint a of e. Then

3By “interior” we mean “relative interior,” i.e., not an endpoint.

CONNECTING POLYGONIZATIONS 221

STRETCHy (e, v) alters the polygon to replace e with (a,z~,v, 21, b), effectively “stretching”
e out to reach v by inserting a narrow triangle Az~ vz ™ that sits on e (see Fig. 3b).

TWANG(a x"v) v

STRETCH, (e,v) TWANG(vx'D)

]]

(b) ©

Figure 3: STRETCH(e, v) illustrated (a) v sees z € e (b) STRETCHg(e, v) (¢) STRETCH(e, v).

To complete the definition of STRETCH(e, v), which removes the pseudovertices z and
x~, we first define the twang operation.

TwANG. Informally, if one views the polygon boundary as an elastic band, a twang operation
detaches the boundary from a vertex v and snaps it to v’s convex side.

Definition 2.1. The operation TWANG(abc) is defined for any three consecutive vertices
abc € o such that

(1) {a,b,c} are not collinear.

(2) b is either a pseudovertex, or a vertex in double contact. If b is a vertex in double
contact, then Aabe does not contain a nested double contact at b. By this we mean
the following: Slightly perturb the vertices of P to separate each double-contact into
two or more points, so that P becomes simple. Then Aabc does not contain any
other occurrence of b in o. (E.g., in Fig. 4a, Aa’bc’ contains a second occurrence
of b which prevents snapping a’bc’ to b’s convex side.)

Under these conditions, the operation TWANG(abc) replaces the sequence abc in P by
sp(abc), where sp(abc) indicates the shortest path from a to c that stays inside Aabe and
does not cross OP. We call b the twang vertex. Whenever a and c are irrelevant to the
discussion, we denote the twang operation by TWANG(D).

—

ATVIAN AT

Figure 4: TWANG(abc) illustrated (a) TWANG(abe) replaces abe by sp(abe) (b) TWANG (abe)
creates the hairpin vertex a and three doubled edges abi, b1bs and babs.

TWANG(abc)

Informally, TWANG (abc) “snaps” the boundary to wrap around the hull of the points in
Aabe, excluding b (see Fig. 4a). A twang operation can be viewed as taking a step toward
simplicity by removing either a pseudovertex or a point of double contact. We should note

222 M. DAMIAN, R. FLATLAND, J. O’'ROURKE, AND S. RAMASWAMI

that sp(abc) includes every vertex along this path, even collinear vertices. If there are no
points inside Aabe, then sp(abc) = ac, and TWANG(abc) can be viewed as the reverse of
Hor(ac,b). If a=c (i.e., ab and be overlap in P), we call b a hairpin vertex of P; in this
case, TWANG(aba) replaces aba in P by a. Hairpin vertices and “doubled edges” arise
naturally from twangs. In Fig. 4b for instance, TWANG(abc) produces a hairpin vertex at a
and doubled edges aby, b1bs, babs. So we must countenance such degeneracies. In general,
there are points interior to the triangle, and the twang creates new points of double contact.
Below, we will apply twangs repeatedly to remove all double contacts.

STRETCH. We can now complete the definition of STRETCH(e,v), with e = ab. First
execute STRETCHg(e,v), which picks the two pseudovertices x+ and z~. Then execute
TWANG(ax~v) and TWANG(vzb), which detach the boundary from z* and x~ and return
to a polygonal wrap of S (see Fig. 3c). We refer to e (v) as the stretch edge (vertex).

2.3. Twang Cascades

A twang in general removes one double contact and creates perhaps several others. A
TwANGCASCADE applied on a polygonal wrap P removes all points of double contact from
P:

TWANGCASCADE(P)

Loop for as long as P has a point of double contact b:

1. Find a vertex sequence abc in P that satisfies the twang conditions (cf. Def. 2.1).
2. TWANG(abc).

Note that for any point b of double contact, there always exists a vertex sequence abc
that satisfies the twang conditions and therefore the twang cascade loop never gets stuck.
That a twang cascade eventually terminates is not immediate. The lemma below shows
that TWANG(abc) shortens the perimeter of the polygonal wrap (because it replaces abc by
sp(abc)) by at least a constant depending on the geometry of the point set. Therefore, any
twang cascade must terminate in a finite number of steps.

Lemma 2.2. A single twang TWANG (abc) decreases the perimeter of the polygonal wrap by
at least 2dpyin (1 — sin(amax/2)), where dyiy is the smallest pairwise point distance and oumax
is the mazimum conver angle formed by any triple of non-collinear points.

Supplementing this geometric bound, we establish in [DFOR07, App. 3] a combinatorial
upper bound of O(n™) on the number of twangs in any twang cascade. An impediment to
establishing a better bound is that a point can twang more than once in a cascade. Indeed
we present an example in which Q(n) points each twang 2(n) times in one cascade, providing
an Q(n?) lower bound.

2.3.1. Forward Move. We define a forward move on a polygonization P of a set S as a
stretch (with the additional requirement that the pseudovertices on the stretch edge lie on
the reflex side of the stretch vertex), followed by a twang and then a twang cascade, as
described below:

CONNECTING POLYGONIZATIONS 223

FORWARDMOVE(P, e, v)

Preconditions: (i) P is a simple polygon, (ii) e and v satisfy the conditions of STRETCH(e, v), and
(iii) v is a noncollinear vertex such that pseudovertices z+ and 2~ on e lie on the reflex side of v.
{Let u, v, w be the vertex sequence containing v in P (necessarily unique, since P is simple).}

1. P < STRETCH(e,v).
2. P «— TWANG(uvw).
3. P’ «— TwWANGCASCADE(P).

A FORWARDMOVE takes one polygonization P to another P’ (see Fig. 5), as follows
from Lemma 2.2. Note that 27 and x~ must lie on the reflex side of v (i.e., precondition
(7i) of FORWARDMOVE) so that STRETCH(e, v) does not introduce a nested double contact
in Auvw which would prevent the subsequent TWANG (uvw). Next we discuss an important
phenomenon that can occur during a forward move.

Stretch Vertex Placement. We note that the initial stretch that starts a move might be
“undone” by cycling of the cascade. This phenomenon is illustrated in Fig. 5, where the
initial STRETCH(ab, v) inserts v between a and b in the polygonal wrap (Fig. 5b), but v ends
up between ¢ and b in the final polygonization (Fig. 5f). Thus any attempt to specifically
place v in the polygonization sequence between two particular vertices might be canceled
by the subsequent cascade. This phenomenon presents a challenge to reducing a polygon
to canonical form (discussed in Sec. 5).

; w=¢ (©)

Figure 5: Forward move illustrated. (a) Initial polygon P (b) After STRETCH(ab, v) (c) Af-
ter TWANG(a1bic1) (d) After TWANG(agbaca) (e) After TWANG(asbscs) (f) After
TWANG(a4b4C4).

3. Single Pocket Reduction Algorithm

Now that the basic properties of the moves are established, we aim to show that our
moves suffice to connect any two polygonizations of a point set S. The plan is to reduce
an arbitrary polygonization to the canonical polygonization. En route to explaining this
reduction algorithm, we show how to remove any particular pocket by redistributing its
vertices to other pockets. This method will be applied repeatedly in Sec. 4 to move all
pockets to one particular pocket.

In this section we assume that P has two or more pockets. We use H(P) to refer to
the closed region defined by the convex hull of P, and 0H(P) for its boundary. For a fixed
hull edge e that is the lid of a pocket A, the goal is to reduce A to e by redistributing the
vertices of A among the other pockets, using forward moves only. This is accomplished by
the SINGLE POCKET REDUCTION algorithm, which repeatedly picks a hull vertex v of A
and attaches v to a pocket other than A; see Fig. 6 for an example run.

224 M. DAMIAN, R. FLATLAND, J. O’'ROURKE, AND S. RAMASWAMI

SINGLE POCKET REDUCTION(P, e) Algorithm

Loop for as long as the pocket A of P with lid e contains three or more vertices:
1. Pick an edge-vertex pair (e, v) such that
e is an edge of P on 0B for some pocket B # A
v € A is a non-lid true corner vertex on OH(A) that sees e
2. P «— FORWARDMOVE(P, e, v).

We now establish that the SINGLE POCKET REDUCTION algorithm terminates in a
finite number of iterations. First we prove a more general lemma showing that a twang
operation can potentially reduce, but never expand, the hull of a pocket.

Lemma 3.1 (Hull Nesting under Twangs). Let A be a pocket of a polygonal wrap P and
let vertex b & OH(P) satisfy the twang conditions. Let A’ be the pocket with the same lid as
A after TWANG(b). Then A" C H(A).

Proof: Let abc be the vertex sequence involved in the twang operation. Then TWANG (abc)
replaces the path abc by sp(abe). If abe does not belong to JA, then TWANG(abc) does not
affect A and therefore A’ = A. So assume that abc belongs to dA. This implies that b is a
vertex of A. Note that b is a non-lid vertex, since b € OH(P). Then Aabc C H(A), and the
claim follows from the fact that sp(abc) C Aabe.
ag b a, b ag

s

1 1

Figure 6: SINGLE POCKET REDUCTION(P,ajas) illustrated: (a) Initial P; (b) After
STRETCH(b1ba,a2); (c) After TWANG(ajasasz); (d) After TwANG(asagas); (e) Af-
ter STRETCH(agby,as3); (f) After TWANG(agasas); (g) After STRETCH(asas,as) +
TWANG(aja4as).

Lemma 3.2. The SINGLE POCKET REDUCTION algorithm terminates in O(n) forward
moves.

4. Multiple Pocket Reduction Algorithm

For a given hull edge e, the goal is to transform P to a polygon with a single pocket
with lid e, using forward moves only. If e is an edge of the polygon, for the purpose of the
algorithm discussed here we treat e as a (degenerate) target pocket 7. We assume that, in
addition to 7', P has one or more other pockets, otherwise there is nothing to do. Then we
can use the SINGLE POCKET REDUCTION algorithm to eliminate all pockets of P but T', as
described in the POCKET REDUCTION algorithm below.

POCKET REDUCTION (P, e) Algorithm

If e is an edge of P, set T' <+ e, otherwise set T+ the pocket with lid e
(in either case, we treat T as a pocket).

For each pocket lid e’ # ¢
Call SINGLE POCKET REDUCTION(P, ¢')

CONNECTING POLYGONIZATIONS 225

Observe that the POCKET REDUCTION algorithm terminates in O(n?) forward moves:
there are O(n) pockets each of which gets reduced to its lid edge in O(n) forward moves
(cf. Lemma 3.2).

Fig. 7 illustrates the POCKET REDUCTION algorithm on a 17-vertex polygon with three
pockets A, B and C, each of which has 3 non-lid vertices, and target pocket T with lid edge
e = tyty. The algorithm first calls SINGLE POCKET REDUCTION(P, ajas), which transfers to
B all non-lid vertices of A, so B ends up with 6 non-lid vertices (this reduction is illustrated
in detail in Fig. 6). Similarly, SINGLE POCKET REDUCTION(P,b1bs) transfers to C' all
non-lid vertices of B, so C' ends up with 9 non-lid vertices, and finally SINGLE POCKET
REDUCTION(P, ¢i¢5) transfers all these vertices to 7.

© b

Figure 7: (a-e) POCKET REDUCTION(P, titp): (a) Initial P; (b) After SINGLE POCKET
REDUCTION(P, ajas); (c) After SINGLE POCKET REDUCTION(P, b1b5); (d) After SIN-
GLE POCKET REDUCTION(P, ¢1¢5); (e) After CANONICAL POLYGONIZATION(P, t1ts3).

4 (a) Lot (b) Lot () L

This example shows that the O(n?) bound on the number of forward moves is tight:
an n-vertex polygon with a structure similar to the one in Fig. 7a has O(n) pockets. The
number of forward moves performed by the POCKET REDUCTION algorithm is therefore
3+6+9+...3 =0(n?), so we have the following lemma:

Lemma 4.1. The POCKET REDUCTION algorithm employs ©(n?) forward moves.

5. Single Pocket to Canonical Polygonization

Let P(e) denote an arbitrary one-pocket polygonization of S with pocket lid e = ab.
Here we give an algorithm to transform P(e) into the canonical polygonization P.(e). This,
along with the algorithms discussed in Secs. 3 and 4, gives us a method to transform any
polygonization of S into the canonical form P.(e). Our canonical polygonization algorithm
incrementally arranges pocket vertices in canonical order (cf. Sec. 1.1) along the pocket
boundary by applying a series of forward moves to P(e).

CANONICAL POLYGONIZATION(P, ¢) ALGORITHM

Let e = ab. Let a = vg,v1,v2, ..., 0%, Uk+1 = b be the canonical order of the vertices of pocket P(e).
Foreachi=1,2,...,k

1. Set ¢; < line passing through a and v;

2. Set e;_1 « pocket edge v;_1v;, with 7 > ¢ —1

3. If e;_1 is not identical to v;_qv;, apply FORWARDMOVE(e;_1, v;).

226 M. DAMIAN, R. FLATLAND, J. O’'ROURKE, AND S. RAMASWAMI

We now show that the one-pocket polygonization resulting after the i-th iteration of the
loop above has the points v, ...,v; in canonical order along the pocket boundary. (Note
that this invariant ensures there is an edge (v;—1,v;) with j > i — 1 in Step 2.) This,
in turn, is established by showing that the FORWARDMOVE in the ¢-th iteration involves
only points in the set {v;, vit+1,...,v}. These observations are formalized in the following
lemmas [DFORO07, App. 1]:

Lemma 5.1. The i-th iteration of the CANONICAL POLYGONIZATION loop produces a poly-
gonization of S with one pocket with lid e and with vertices vy, .. .,v; consecutive along the
pocket boundary.

Lemma 5.2. The CANONICAL POLYGONIZATION algorithm constructs P.(e) in O(n) for-
ward moves.

6. Reverse Moves

Connectivity of the space of polygonizations will follow by reducing two given polygo-
nizations P; and P, to a common canonical form P, and then reversing the moves from P,
to P5. Although we could just define a reverse move as a time-reversal of a forward move, it
must be admitted that such reverse moves are less natural than their forward counterparts.
So we concentrate on establishing that reverse moves can be achieved by a sequence of
atomic stretches and twangs.

Reverse Stretch. The reverse of STRETCH(e,v) may be achieved by a sequence of one or
more twangs, as illustrated in Fig. 8a. This result follows from the fact that the “funnel”
created by the stretch is empty, and so the twangs reversing the stretch do not cascade.

TWANG (V) (b) b b TWANG (X,) b

TWANG (¢;) Y i\ TWANG (X;)

TWANG (c;) "‘x..ASTRETCH(X2%3,b) TWANG (X;)

TWANG (¢3) > |

—— ke 1 %, Xy x .
a a

Figure 8: Reverse atomic moves: (a) STRETCH(ab, v) is reversed by TWANG (v), TWANG(c1),
TWANG(c2), TWANG(c3). (b) TWANG(b) is reversed by STRETCH(z2x3,b),
TWANG(z2), TWANG(z1) and TWANG(x3).

Reverse Twang. An “untwang” can be accomplished by one stretch followed by a series of
twangs. Fig. 8b illustrates how TWANG(abc) may be reversed by one STRETCH(e, b), for
any edge e of sp(abc), followed by zero or more twangs. Observe that the initial stretch in
the reverse twang operation is not restricted to the reflex side of the stretch vertex, as it is
in a FORWARDMOVE. If b is a hairpin vertex (i.e., a and ¢ coincide), we view ac as an edge
of length zero and the reverse of TWANG(b) is simply STRETCH(e, b).

We have shown that the total effect of any forward move, consisting of one stretch
and a twang cascade, can be reversed by a sequence of stretches and twangs. We call this
sequence a reverse move. One way to view the consequence of the above two results can
be expressed via regular expressions. Let the symbols s and ¢ represent a STRETCH and
TWANG respectively. Then a forward move can be represented by the expression st*: a
stretch followed by one or more twangs. A reverse stretch, s~ can be achieved by one or

CONNECTING POLYGONIZATIONS 227

more twangs: tT. And a reverse twang ¢! can be achieved by st*. Thus the reverse of the
forward move stt is (t71)Ts7! = (st*)*tT | a sequence of stretches and twangs, at least
one of each.

7. Connectivity and Diameter of Polygonization Space

We begin with a summary the algorithm which, given two polygonizations P; and P»
of a fixed point set, transforms P; into P» using stretches and twangs only.

POLYGON TRANSFORMATION(P, P5) Algorithm

1. Select an arbitrary edge e of OH(Py).
2. P, — POCKET REDUCTION(Py, e); M; «— atomic moves of [P, <« POCKET REDUCTION(P;,e)].
3. P. «— CANONICAL POLYGONIZATION(P, e);
M5 «— atomic moves of [CANONICAL POLYGONIZATION(P, €).]
4. Reverse the order of the moves in M; @ M, (@ represents concatenation).
5. For each stretch s (twang t) in M; @ M in order,
execute reverse stretch s~!(reverse twang ¢t~!) on P..

This algorithm, along with Lemmas 4.1 and 5.2, establishes our main theorem:

Theorem 7.1. The space of polygonizations of a fixed set of n points is connected via a
sequence of forward and reverse moves. FEach node of the space has degree in Q(n) and
O(n?), and the diameter of the polygonization space is O(n?) moves.

This diameter bound is tight for our specific algorithm but might not be for other algorithms.
Each twang operation can be carried out in O(n) time using a hull routine on the sorted
points inside Aabc; and €(n) might be needed, because sp() might hit O(n) vertices. So
the running time of a single forward/reverse move is 7' - O(n), where T' is an upper bound
on the number of twangs in a move.

8. Random Polygons

We have implemented a version of random polygon generation. After creating an initial
polygonization, we move from polygonization to polygonization via a sequence of forward
moves, where additional stretches are permitted in the cascade to simulate reverse moves.
Here we report on one experiment that investigates the speed with which the exponential
space of polygonizations is explored. We use a variant of the example in Fig. 1a, which has
at least 2F polygonizations. The variant is shown in Fig. 9a, which breaks collinearities by
distributing the vertices onto top, middle, and bottom circular arcs. We map each polygo-
nization of this point set to a k-bit binary number, where the k" bit indicates whether the
shortest path from the k" middle vertex is to a top (1) or bottom (0) vertex.? (Note this
map is many-to-one, as there are more than 2 polygonizations.) Starting from an arbi-
trary polygonization, we then repeatedly select a random stretch, and twang to quiescence.
Figs. 9b,c display the range of the random walk in two formats: (b) shows the number of
the 256 bit patterns reached over the 5000 stretches—91% of the patterns were visited by
the end of the trial; (c) shows when each bit pattern was reached (dark), with time growing
downwards. By the final stretch, 22 patterns (light) were yet to be visited. In this trial,
the average length of a twang cascade was 1.2; more precisely, the 5000 stretches invoked
5960 twangs, for a total of 10,960 atomic moves.

4path length is measured by the number of edges, with Euclidean length breaking ties.

228 M. DAMIAN, R. FLATLAND, J. O'ROURKE, AND S. RAMASWAMI

number visited

2501 934919

200

stretches

150 -
2500

. . . ' 5000
0 1000 2000 3000 4000 5000 N 0 visited 255

stretches

(a) ‘{1,0,6,0,1,1,1‘,1}:14‘-” | (b) (©)

Figure 9: k=8, 2¥=256. (a) Polygonization—bits map. (b) Numbers visited vs. stretches.
(c) Dark: numbers visited with increasing stretches; light: not yet visited.

9. Open Problems

Our work leaves many interesting problems open. One unresolved question is whether
the number of twangs 7" in a twang cascade is exponential or if there is a polynomial bound,
thereby resolving the computational complexity of the polygon transformation algorithm.
We have shown that 7" is Q(n?) and O(n™), leaving a large gap to be closed. We would also
like to establish a lower bound on the diameter.

In Sec. 7 we established connectivity with forward moves and their reverse, and although
both moves are composed of atomic stretches and twangs, the forward moves seem more
naturally determined. This suggests the question of whether forward moves suffice to ensure
connectivity.

It remains to be seen if the polygonization moves explored in this paper will be effective
tools for generating random polygons. One possibility is to start from a doubled random
noncrossing spanning tree, which is a polygonal wrap. Finally, we are extending our work
to 3D polyhedralizations of a fixed 3D point set.

References

[AH96] T. Auer and M. Held. Heuristics for the generation of random polygons. In Proc. 8th Canad.
Conf. Comput. Geom., pages 38—43, 1996.

[CHUZ01] J. Czyzowicz, F. Hurtado, J. Urrutia, and N. Zaguia. On polygons enclosing point sets. Geombi-
natorics, XI (1):21-28, 2001.

[DFOR07] M. Damian, R. Flatland, J. O’'Rourke, and S. Ramaswami. Connecting polygonizations via
stretches and twangs. arxiv.org, arXiv:0709.1942v1 [cs.CG], 2007.

[HHHO02] C. Hernando, M. Houle, and F. Hurtado. On local transformation of polygons with visibility
properties. Theoretical Computer Science, 289(2):919-937, 2002.

[vLS82] J. van Leeuwen and A. A. Schoone. Untangling a travelling salesman tour in the plane. In J. R.
Miihlbacher, editor, Proc. 7th Internat. Workshop Graph-Theoret. Concepts Comput. Sci., pages
8798, Miinchen, 1982. Hanser.

[ZSSM96] C. Zhu, G. Sundaram, J. Snoeyink, and J. S. B. Mitchell. Generating random polygons with
given vertices. Comput. Geom. Theory Appl., 6:277-290, 1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 229-240
www.stacs-conf.org

DETERMINISTICALLY ISOLATING A PERFECT MATCHING IN
BIPARTITE PLANAR GRAPHS

SAMIR DATTA !, RAGHAV KULKARNI 2, AND SAMBUDDHA ROY 3

! Chennai Mathematical Institute, Chennai, India.
E-mail address: sdatta@cmi.ac.in

2 University of Chicago, Chicago, USA.
FE-mail address: raghav@cs.uchicago.edu

3 IBM Research Laboratory, New Delhi, India.
E-mail address: sambuddha@in.ibm.com

ABSTRACT. We present a deterministic way of assigning small (log bit) weights to the edges
of a bipartite planar graph so that the minimum weight perfect matching becomes unique.
The isolation lemma as described in [MVV8T7] achieves the same for general graphs using
a randomized weighting scheme, whereas we can do it deterministically when restricted
to bipartite planar graphs. As a consequence, we reduce both decision and construction
versions of the matching problem to testing whether a matrix is singular, under the promise
that its determinant is 0 or 1, thus obtaining a highly parallel SPL algorithm for bipartite
planar graphs. This improves the earlier known bounds of non-uniform SPL by [ARZ99]
and NC? by [MN95, MV00]. It also rekindles the hope of obtaining a deterministic parallel
algorithm for constructing a perfect matching in non-bipartite planar graphs, which has
been open for a long time. Our techniques are elementary and simple.

1. Introduction

The Matching Problem is one of the most well-studied in the field of parallel complexity.
Attempts to solve this problem have led to the development of a variety of combinatorial,
algebraic and probabilistic tools which have applications even outside the field. Since the
problem is still open, researchers linger around it in search of new techniques, if not to solve
it in its whole generality, then at least under various natural restrictions. In this paper,
we will focus on the deterministic complexity of the Matching Problem under its planar
restrictions.

This work was done while the second author was visiting Chennai Mathematical Institute.

ASPECTS

T [
S%FEEgE e © S. Datta, R. Kulkarni, and S. Roy

@0 Creative Commons Attribution-NoDerivs License

L SYMPOSIUM
mvl"__ ON THEORETICAL
<4

230 S. DATTA, R. KULKARNI, AND S. ROY

1.1. The Matching Problem

Definition 1.1. A matching in an undirected graph is a collection of edges which have no
endpoint in common.

Such a collection of edges is called “independent”. See [LP86] for an excellent survey
on matchings.

The computational question one can ask here is, given a graph, to find a matching of
the maximum cardinality.

Definition 1.2. A perfect matching in a graph is a collection of independent edges which
cover all the vertices.

One may ask various computational questions about perfect matchings in graphs. We
will consider the following three questions:
Question 1: (Decision) Is there a perfect matching in a given graph ?
Question 2: (Search) Construct a perfect matching in a graph, if it exists.
Question 3: (Uniqueness Testing or UPM) Does a given graph have exactly one perfect
matching?
There are polynomial time algorithms for the above graph matching problems and his-
torically people have been interested in studying the parallel complexity of all the three
questions above. The UPM question for bipartite graphs is deterministically parallelizable
[KVVS85] (i.e. it lies in the complexity class NC; see any standard complexity text for a
formal definition, say [V99]). Intuitively, NC is a complexity class consisting of the problems
having a parallel algorithm which runs in polylogarithmic time using polynomially many
processors which have access to a common memory.

It is the class consisting of so called “well parallelizable” problems. NC is inside P -
problems having a sequential polynomial time algorithm. Whether the Matching Problem
is deterministically parallelizable remains a major open question in parallel complexity.

Open Problem 1.3. Is Matching in NC ?

The best we know till now is that Matching is in Randomized NC. See for example,
[KUWS86, MVV8T7]. Several restrictions of the matching problem are known to be in NC, for
example, bipartite planar graphs [MN95, MV00], graphs with polynomially bounded number
of perfect matchings [GK87] etc. Whether the search version reduces to the decision version
has also not been answered yet.

1.2. Randomized Isolation Lemma

Lemma 1.4. [MVV87] One can randomly assign polynomially bounded weights to the edges
of a graph so that with high probability the minimum weight perfect matching becomes unique.

Using the isolation lemma, [MVV87] obtained a simple Randomized NC algorithm for
finding a perfect matching in arbitrary graphs.

1.3. Matching in SPL/poly

Allender et al [ARZ99] proved a non-uniform bound for matching problem which allows
us to replace the randomization by a polynomial length advice string. Hence, we know that
matching is parallelizable with polynomial bit advice.

DETERMINISTICALLY ISOLATING A PERFECT MATCHING IN BIPARTITE PLANAR GRAPHS 231

Definition 1.5. SPL is a promise class that is characterized by the problem of checking
whether a a matrix is singular under the promise that its determinant is either 0 or 1. The
corresponding non-uniform class SPL/poly is SPL with a polynomial bit advice.

SPL is inside &L and inside @,L for all p. While UL (unambiguous Logspace) is inside
SPL, NL (nondeterministic Logspace) is incomparable with SPL. Both NL and SPL are
known to lie inside NC?2.

Definition 1.6. A language is said to be in SPL/poly if for every positive integer n there
exists an advice string A,, such that:

e length of A, is polynomially bounded in n
e once A, is given, the membership of any input of size n can be decided in SPL.

Theorem 1.7. [ARZ99] Matching is in SPL/poly.

1.4. Matchings in Planar Graphs and Deterministic Isolation

The situation for planar graphs is interesting because of the fact that counting the
number of perfect matchings in planar graph is in NC ([K67, V88]) whereas constructing
one perfect matching is not yet known to be parallelizable. However, for bipartite planar
graphs, people have found NC algorithms [MN95, MV00].

The isolation lemma crucially uses randomness in order to isolate a minimum weight set
in an arbitrary set system. It is conceivable, however, to exploit some additional structure
in the set system to eliminate this randomness. Indeed, recently [BTV07] building upon a
technique from [ADRO5] were able to isolate a directed path in a planar graph by assigning
small deterministic weights to the edges. The lemma that sits at the heart of that result
says that there is a simple deterministic way to assign weights so that each directed cycle
(in a grid graph) gets a non-zero weight. This is shown to imply that if two paths get the
same weight neither of them is a min-weight path.

Motivated by their result we explore the possibility of such an isolation for perfect
matchings in planar graphs. Our attempt is to assign weights so that the alternating sum
is non-zero for each alternating cycle - here alternating sum is the signed sum of weights
where the sign is opposite for successive edges. Since alternating cycle result from the
super-imposition of two matchings, we are able to isolate a min-weight matching.

Therefore, we are able to devise an NC algorithm for bipartite planar graphs which is
conceptually simple, different from the other known algorithms and tightens its complexity
to the smaller class SPL. The search problem for matching in non-bipartite planar graphs
still remains open even though the corresponding decision and counting versions are known
to be in NC. Our algorithm rekindles the hope for solving general planar matching in NC.

2. Preliminaries

Here we describe the technical tools that we need in the rest of the paper. Refer to any
standard text (e.g. [V99]) for definitions of the complexity classes ®L, @,L, NL, UL, NC? .
For graph-theoretic concepts, for instance, planar graph, outerplanar graph, spanning trees,
adjacency matriz, Laplacian matriz of a graph, we refer the reader to any standard text in
graph theory (e.g. [D05]).

232 S. DATTA, R. KULKARNI, AND S. ROY

Figure 1: A Grid Graph

Figure 2: An Almost Grid Graph

2.1. Definitions and Facts

We will view an n x n grid as a graph simply by putting the nodes at the grid points
and letting the grid edges act as the edges of the graph.

Definition 2.1. Grid graphs are simply subgraphs of an n x n grid for some n. See Figure 1
for an example. We call each unit square of the grid a block.

Definition 2.2. We call a graph an almost grid graph if it consists of a grid graph and
possibly some additional diagonal edges which all lie in some single row of the grid. Moreover
all the diagonal edges are parallel to each other. See Figure 2.

In this paper we will consider weighted grid graphs where each edge is assigned an
integer weight.

“.”

Definition 2.3. (1) Given a grid, assign a “+” sign to all the vertical edges and a
sign to all the horizontal edges.
(2) Assign a sign of (—1)"7 to the block in the i*h row and %8 column (adjacent blocks
get opposite signs).

Definition 2.4. Given a weighted grid graph G, the circulation of a block B(denoted
circ(B)) in G is the signed sum of weights of the edges of it: circ(B) =) . sign(e)weight(e).

Definition 2.5. Given a weighted grid graph G and a simple cycle C = (eg,e1,...,€26_1)
in it, where eq is, say, the leftmost topmost vertical edge of C; we define the circulation of
a cycle C as circ(C) = Zfﬁal (—1) weight(e;).

The following lemma plays a crucial role in constructing non-vanishing circulations in
grid graphs as will be described in the next section.

DETERMINISTICALLY ISOLATING A PERFECT MATCHING IN BIPARTITE PLANAR GRAPHS 233

+5 -6 +7 -8
- - - - 0 0 0 0
+ _ 1 + + +
* * —4 +5 -6 +7
J I R o, 0 0 0 0 0
+ - + -
+3 —4 +5 -6
{1 _ N _ vy R 0 0 0 0
-2 +3 —4 +5
d oL 1 R . . 0 0 0 0
- - - - +1 -2 +3 -4

Figure 3: Signs and Weights of the blocks and the edges of a grid

Lemma 2.6. Block Decomposition of Circulations: The absolute value of the circulation
of a simple cycle C in a grid graph G is equal to the signed sum of the circulations of the
blocks of the grid which lie in the interior of C.

‘CZ.TC(C)’ = ZBGintem’or(C) szgn(B)czrc(B)

Proof. Consider the summation on the right hand side. The weight of any edge in the
interior of C' will get cancelled in the summation because that edge will occur in exactly
two blocks which are adjacent and hence with opposite signs. Now what remains are the
boundary edges. Call two boundary edges adjacent if they appear consecutively on the cycle

C.

Claim 2.7. Adjacent boundary edges get opposite signs in the summation on the right hand
side above.

Proof. We have to consider two cases, either the adjacent boundary edges lie on adjacent
blocks, in which case since adjacent blocks have opposite signs, these edges will also get
opposite signs as they are both vertical or horizontal edges. See Figure 3. In the other case,
when adjacent boundary edges do not lie on adjacent blocks, they lie on two blocks which
are diagonally next to each other. In this case, both blocks will have the same sign but
since one edge is vertical and the other is horizontal, the effective sign of the edges will be
opposite. See Figure 3. Hence, the adjacent boundary edges will get opposite sign in the
summation. This completes the proof that the right hand side summation is precisely +
cire(C) or - cire(C).]

[
We will also have occasion to employ the following lemma and we record it here:

Lemma 2.8. Temperley’s Bijection: The spanning trees of a planar graph are in one
to one correspondence with perfect matchings in a bipartite planar graph. Moreover the
correspondence is weight preserving.

This bijection was first observed by Temperley around 1967. Recently [KPWO00] have
found a Generalized Temperley Bijection which gives a one-to-one weight preserving map-
ping between directed rooted spanning trees or arborescences in a directed planar graph
and perfect matchings in an associated bipartite planar graph.

234 S. DATTA, R. KULKARNI, AND S. ROY

2.2. Planar Matching and Grid Graphs

Grid graphs have turned out to be useful for solving the reachability question in directed
planar graphs, cf. [ABCDR06, BTV07]. Motivated by this fact we explore the possibility
of reducing planar matching problem to that of grid graphs. Non-bipartiteness becomes an
obstacle here which leaves us with the following observations:

Lemma 2.9. One can convert any bipartite planar graph into a grid graph such that the
perfect matchings remain in one-to-one correspondence.

Proof. This is described in [DKLMO7]. It follows closely the procedure for embedding a
planar graph into a grid, described by [ABCDROG6].]

Though non-bipartiteness is an issue, we can get rid of it to a certain extent, though
as expected, not completely .

Lemma 2.10. Any planar graph, not necessarily bipartite, can be converted to an almost
grid graph while maintaining the one to one correspondence between the perfect matchings.

Proof. This procedure is analogous to the previous one except that we can observe that the
edges which are causing non bipartiteness can be elongated into a long path and placed in
a grid so that only in a single row one needs to use a diagonal edge. [

3. Bipartite Planar Perfect Matching in SPL

In this section, we will give a simple algorithm for finding a perfect matching in bipartite
planar graphs, also improving over its complexity by putting it in SPL. Earlier the best
known bound was NC2. See for example [MN95, MV00]. At the core of our algorithm, lies
a procedure to deterministically assign the small (logarithmic bit long) weights to the edges
of a bipartite planar graph, so that the minimum weight perfect matching becomes unique.
A simple observation about non-vanishing circulations in bipartite planar graphs makes it
possible to isolate a perfect matching in the graph, which can be further extracted out using
an SPL query.

3.1. Non-vanishing Circulations in Grid Graphs

We are interested in assigning the small weights to the edges of a grid so that any cycle
in it will have non-zero circulation. This weighting scheme is at the heart of the isolation
of perfect matchings in grid graphs. The procedure runs in Logspace.

Lemma 3.1. One can assign, in Logspace, small (logarithmic bit) weights to the edges of
a grid so that circulation of any cycle becomes non-zero. (One weighting scheme which
guarantees non-zero circulation for every cycle in the grid is shown in the Figure 3.)

Proof. We assign all vertical edges weight 0 and horizontal edge from grid point (7,j) to
(i+1,7) is assigned a weight of (—1)**7(i+j + 1) as shown in figure 3. Thus the circulation
of the block with diagonally opposite vertices (i,7) and (i +1,541) is), sign(e)weight(e)
=(-D(-D)HGE+5+ 1)+ D0+ (-1 (=) HG + 5+ 2) + (+1)0 = (—1)H

Thus, the weighting scheme makes sure that the circulation of any block is either +1 or
- 1. Moreover, the circulation of a block is positive if and only if its sign is positive. Now,

DETERMINISTICALLY ISOLATING A PERFECT MATCHING IN BIPARTITE PLANAR GRAPHS 235

using the Block Decomposition of Circulations (Lemma 2.6), we have that the circulation
of any cycle in absolute value is precisely the number of blocks in the interior of it, and
hence is never zero. n

3.2. Non-vanishing Circulations: A Direct Method

One can think of the procedure of assigning the weights to the edges of bipartite planar
graph without having to convert it to a grid graph. The procedure is as follows:

e Step 1: Make the graph Eulerian (every vertex has an even degree): add spurious
edges to it without disturbing the bipartiteness.

— Step 1.1: Perform an Euler traversal on a spanning tree in the dual graph.

— Step 1.2: While performing the traversal, make sure that when you leave the
face, all the vertices in the face, except for the end points of the edge through
which we go to the next face, are of even degree. To guarantee this we can do
the following:

x Step 1.2 a) : Start with one end point say u of the edge (u,v) through
which we go to the next face. Visit all the vertices of the face in a cyclic
ordering, every time connect an odd degree vertex to the next vertex by
a spurious edge.

x Step 1.2 b) : If the next vertex is also of odd degree then go to its next
vertex. If the next vertex is of even degree then we have pushed the
oddness one step further.

* Step 1.2 ¢) : Continue the same procedure till we remove all the oddness
or push it to v.

* Step 1.2 d) : In the process, the graph might become a multi-graph i.e.
between two nodes we may have multiple edges, but this can be taken care
of by replacing every multi-edge by a path of length 3. The bipartiteness
is preserved in the process.

e Step 2:Fix the signs: After Step 1, the graph has become Eulerian, and hence the
dual graph is bipartite.

— Step 2 a) Assign alternating signs to adjacent faces: Form a bipartition of the
dual, and fix all the faces in one bipartition to have + sign and the others to
have - sign. Any two adjacent faces will have opposite signs. Here, faces will
act as blocks.

— Step 2 b) Assign alternating signs to adjacent edges of every face: Consider
an auxiliary graph obtained from the bipartite planar graph as follows: Every
new vertex corresponds to an edge in the graph. Join two new vertices by a
new edge iff the corresponding edges in the original graph are adjacent along
some face. Now since both the original graph and its dual are bipartite , the
auxiliary graph will also be bipartite - hence edges in the two bipartitions get
opposite signs ensuring that around every face the signs are alternating.

e Step 3: Assign small weights to the edges: Now make another Euler traversal on
the dual tree everytime assigning the weight to the dual tree edge through which
you traverse to the next face so that the circulation of the face you leave is exactly
same as the sign of the face. All non-tree edges will be assigned zero weight. It is
easy to see that all the weights assigned are small (logarithmic bit).

236 S. DATTA, R. KULKARNI, AND S. ROY

Block Decomposition of Circulations: Again, the circulation of a cycle will decompose into
signed sum of circulations of the faces in the interior of it and since the sign and the
circulation for any face is the same, we will have non-vanishing circulations in the graph.
The details are analogous to the case of a grid. We leave the details to the reader.

3.3. Deterministic Isolation

The non-vanishing circulations immediately give us the isolation for the perfect match-
ings.

Lemma 3.2. If all the cycles in a bipartite graph have mon-zero circulations, then the
minimum weight perfect matching in it is unique.

Proof. If not, then we have two minimum weight perfect matchings M and My which will
contain some alternating cycles, and each such cycle is of even length. Consider any one
such cycle. Since the circulation of an even cycle is nonzero either the part of it which is in
My is lighter or the part of it which is in M is lighter, in either case, we can form another
perfect matching which is lighter than the minimum weight perfect matching, which is a
contradiction. [

Thus we have a deterministic way of isolating a perfect matching in bipartite planar
graphs, and it is easy to check that the procedure of assigning the weights to the edges
works in deterministic Logspace.

3.4. Extracting the Unique Matching

Once we have isolated a perfect matching, one can extract it out easily as follows:

e Step 1: Construct an n x n matrix M associated with a planar graph on n vertices
as follows: Find a Pfaffian orientation ([K67]) of the planar graph and put the
(4,7)th entry of the matrix M to be x"(»9) where z is a variable and wy; ;) is the
weight of the edge (4,7) which is directed from i to j in the Pfaffian orientation. If
the edge is directed from j to ¢ then put —x"“(9) as (i, j)th entry of the matrix.

e Step 2: If ¢ is the weight of the minimum weight perfect matching, then the
coefficient of 2% in determinant of M will be the number of perfect matchings
of weight ¢. Now, as shown in [MV97, V99] this coefficient can be written as a
determinant of another matrix.

e Step 3: Now start querying from i = —n? to +n? whether the coefficient of % is
zero or not and the first time you find that it is nonzero; stop. The first nonzero
value will occur when ¢ = ¢t and it will be 1 since the minimum weight perfect
matching is unique. Hence, during the process, every time we have a promise that if
the determinant is non-zero, it is 1. This procedure gives the weight of the minimum
weight perfect matching.

e Step 4: Now once we know the procedure to find the weight of the minimum
weight perfect matching, then one can find out which edges are in the matching
by simply deleting the edge and again finding the weight of the minimum weight
perfect matching in the remaining graph. If the edge is in the the isolated minimum
weight perfect matching then after its deletion the weight of the new minimum
weight perfect matching will increase. Otherwise we can conclude that the edge is

DETERMINISTICALLY ISOLATING A PERFECT MATCHING IN BIPARTITE PLANAR GRAPHS 237

not in the isolated minimum weight perfect matching. Note that the isolation holds
even after deleting an edge from the graph.

Theorem 3.3. Bipartite Planar Perfect Matching is in SPL.

Proof. The Logspace procedure in Lemma 3.1 assigns the small weights to the edges of the
graph so that the minimum weight perfect matching is unique and the above procedure

extracts it out in LSPL = SPL. [
We obtain the following corollaries.
Corollary 3.4. UPM in bipartite planar graphs is in SPL.

Proof. To check whether the graph has unique perfect matching, one can construct one
perfect matching and check that after removing any edge of it there is no other perfect
matching.]

Corollary 3.5. Minimum weight perfect matching in planar graphs with polynomially
bounded weights is computable in SPL.

Proof. One can first scale the polynomially bounded weights by some large multiplicative
factor, say n* and then perturb them using the weighting scheme described above so that
some minimum weight matching with original weights remains minimum weight matching
with new weights and is unique. Then extraction can be done in SPL. [

Corollary 3.6. Minimum weight spanning tree in planar graphs is computable in SPL
if the weights are polynomially bounded. (The same is true for directed rooted spanning
trees (arborescences) in planar graphs due to Generalized Temperley’s bijection shown in
[KPWO00].)

Proof. This follows from Temperley’s bijection.]

Restricting the family of planar graphs, yields better upper bounds for Matching ques-
tions. Notably, we prove that:

Corollary 3.7. (of Theorem 3.3) Perfect Matching in outerplanar graphs is in SPL.

Proof. 1If we have an outerplanar(1-page) graph on n vertices with vertices labelled from 1
to n along the spine, then observe that the edges between two odd labelled vertices can not
be part of any perfect matching. This is because the number of vertices below that edge is
odd. Similarly edges between two even labelled vertices can not participate in any perfect
matching. Hence, by removing such edges we can make the graph bipartite and then we
can apply the previous theorem. [

We use the lemma below in order to prove the theorem that follows it.

Lemma 3.8. The parity of the number of perfect matchings in an outerplanar graph can
be computed in Logspace.

Proof. Tt is not hard to observe that the parity of the determinant of the adjacency matrix
of a graph is the same as the parity of number of perfect matchings in it. Finding the parity
of the adjacency matrix of an outerplanar graph can be reduced to finding the parity of the
number of spanning trees in an auxiliary planar graph which is constructed by adding a
new vertex and connecting it to all the odd degree vertices of the original graph. The new
graph has all the vertices of even degree. Hence the adjacency matrix of the new graph is

238 S. DATTA, R. KULKARNI, AND S. ROY

the same as its Laplacian modulo 2. Now the minor obtained by removing the row and the
column corresponding to the new vertex, is precisely the adjacency matrix of the original
outerplanar graph modulo 2. Also the determinant(mod 2) of this minor is precisely the
parity of the spanning trees in new graph. As shown in [BKRO07], the parity of spanning
trees modulo 2 in planar graphs can be computed in Logspace. Hence, the parity of the
determinant of the adjacency matrix of an outerplanar graph can be obtained in Logspace
which in turn gives the parity of the number of perfect matchings in it.]

Theorem 3.9. UPM in outerplanar graphs is in Logspace.

Proof. If the perfect matching in an outerplanar graph is unique, one can obtain one perfect
matching in Logspace. For every edge, one just needs to compute the parity of the number
of perfect matchings in the graph with that particular edge removed. If this parity is 1
then don’t include this edge in the perfect matching, otherwise do. Now we just need to
verify that the perfect matching thus constructed is unique. As seen in Corollary 3.7 we can
assume that the outerplanar graph is bipartite. Now, if we consider an auxiliary directed
graph obtained from this outerplanar graph by putting a directed edge starting from a
vertex and ending in another vertex after following a matching edge starting at the vertex
and then a non-matching edge from there, then, this auxiliary graph will have a directed
cycle if and only if the matching we start with is not unique. It is possible to show that the
auxiliary graph is outerplanar. Finally, since the reachability in directed outerplanar graphs
is in Logspace ([ABCDRO6]), we have that UPM in outerplanar graphs is in Logspace. m

4. Discussion

We saw in Section 3.3 that a perfect matching in bipartite planar graphs can be iso-
lated by assigning small weights to the edges. In this section we discuss the possibility of
generalizing this result in two orthogonal directions. For non-bipartite planar graphs and
for bipartite but non-planar graphs. The motivation is to isolate a perfect matching in a
graph by having non-zero circulation on it.

4.1. Non-bipartite Planar Matching

Though non-bipartiteness is an issue, we can get rid of it to a certain extent, though
as expected, not completely .

Lemma 4.1. Perfect Matching problem in general planar graphs reduces to that of almost
grid graphs.

Now it suffices to get a non-vanishing circulations in almost grid graphs to solve planar
matching question. Unfortunately we don’t yet know any way of achieving this though we
have some observations which might be helpful.

Lemma 4.2. One can have non-zero circulations for all the even cycles in the graph in the
Figure 4. (The graph is simply one row of the grid with diagonals.)

Proof. Observe that any even cycle in such a graph will either fall in the grid or will fall in
the grid formed by horizontal edge together with diagonal edges. Now, its easy to assign
the weights as shown in the Figure 4 so that all the horizontal edges get weight 0 while
vertical and diagonal edges get weights so that any cycle in vertical or diagonal grid has
non-vanishing circulation.]

DETERMINISTICALLY ISOLATING A PERFECT MATCHING IN BIPARTITE PLANAR GRAPHS 239

0 0 0 0
+1| +1 2| =2 +3 | +3 -4 | -4 +5
0 0 0 0

Figure 4: Non-vanishing circulation in a non-bipartite graph

In summary, non-bipartiteness seems to be an issue which is difficult to get around.
Hence, we keep the bipartiteness and next we explore the possibility of generalizing our
result for non-planar graphs.

4.2. Bipartite Non-planar Matching

Instead of looking at two dimensional grid we now consider three dimensional grids. The
matching problem remains as hard as that for general bipartite graphs in this restriction as
well.

Lemma 4.3. One can embed any bipartite graph in a three dimensional grid while preserving
matchings.

Proof. Firstly, one can make the degree of the graph bounded by 3. Then one can use the
third dimension to make the space for crossings in the graph. [

Open Problem 4.4. Is the perfect matching problem for subgraphs of a three dimensional
grid of height 2 (constant height in general) in NC ?

The deterministic isolation of perfect matching is possible through non-vanishing cir-
culations as seen in Section 3.3.

Open Problem 4.5. Is small (log bit) weight non-vanishing circulation possible in every
bipartite graph?

4.3. Other Variations

We know that the reachability in directed planar graphs reduces to bipartite planar
matching while the reachability in layered grid graphs reduces to the UPM question in the
same [DKLMO7]. Note that the isolation step in our algorithm works in Logspace. Solving
the perfect matching question in bipartite planar graphs in Logspace might be too strong
to expect but at least one can ask the question about UPM which would put layered grid
graph reachability in Logspace or giving an orthogonal bound for the same.

Open Problem 4.6. Is bipartite planar UPM in L?

We saw how to isolate a perfect matching in bipartite planar graph. The isolation holds
for maximum matching in bipartite planar graphs. However, we do not know how to extract
out the maximum weight perfect matching in NC.

Open Problem 4.7. Is it possible to extract out the isolated maximum matching in NC
even for bipartite planar graphs?

Finally, the question of constructing a perfect matching in planar graphs in NC still
remains open.

240

S. DATTA, R. KULKARNI, AND S. ROY

5. Acknowledgements

We thank Meena Mahajan for useful discussion and comments on the preprint.

References

[ABCDRO6]

[ADRO5]
[ARZ99]
[BKRO7]
[BTVO7]
[DKLMO7]
[DO5]
[GK87)
[K67]
[KPWOO]
[KUWS6]
[KVV85]

[LPS6]
[MN95]

[MV97]

[MV00]

[MVV87]
[V88]

[V99]

FEric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, Sambuddha
Roy: Grid Graph Reachability Problems. IEEE Conference on Computational Complexity
2006: 299-313

Eric Allender, Samir Datta, Sambuddha Roy: The Directed Planar Reachability Problem.
FSTTCS 2005: 238-249

Eric Allender, Klaus Reinhardt, Shiyu Zhou: Isolation, Matching, and Counting: Uniform
and Nonuniform Upper Bounds. J. Comput. Syst. Sci. 59(2): 164-181 (1999)

Mark Braverman, Raghav Kulkarni, Sambuddha Roy: Parity Problems in Planar Graphs.
IEEE Conference on Computational Complexity 2007: 222-235

Chris Bourke, Raghunath Tewari, N. V. Vinodchandran: Directed Planar Reachability is in
Unambiguous Log-Space. IEEE Conference on Computational Complexity 2007: 217-221
Samir Datta, Raghav Kulkarni, Nutan Limaye, Meena Mahajan: Planarity, Determinants,
Permanents, and (Unique) Matchings. CSR 2007: 115-126

Reinhard Diestel. Graph Theory. Springer, 2005

D. Grigoriev and M. Karpinski. The matching problem for bipartite graphs with polynomially
bounded permanent is in NC. In Proceedings of 28th IEEE Conference on Foundations of
Computer Science, pages 166-172. IEEE Computer Society Press, 1987.

P. W. Kasteleyn. Graph theory and crystal physics. In F. Harary, editor, Graph Theory and
Theoretical Physics, page 43-110, Academic Press, 1967.

Richard W. Kenyon, James G. Propp, David B. Wilson, Trees and Matchings, Electronic
Journal of Combinatorics, 7(1)

Richard Karp, Eli Upfal, Avi Wigderson. Constructing a perfect matching is in random NC.
Combinatorica, 6:35-48, 1986.

Dexter Kozen, Umesh V. Vazirani, Vijay V. Vazirani. NC Algorithms for Comparability
Graphs, Interval Graphs, and Testing for Unique Perfect Matching. FSTTCS 1985: 496-503
L. Lovasz, M. Plummer, Matching Theory, North-Holland, 1986.

Gary Miller and Joseph Naor. Flow in planar graphs with multiple sources and sinks. STAM
Journal of Computing, 24:1002-1017, 1995.

Meena Mahajan, V. Vinay: A Combinatorial Algorithm for the Determinant. SODA 1997:
730-738

Meena Mahajan, Kasturi Varadarajan. A new NC algorithm to find a perfect matching in pla-
nar and bounded genus graphs. In Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing (STOC), pages 351-357, 2000.

Ketan Mulmuley, Umesh Vazirani, Vijay Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1): 105-131, 1987.

Vijay Vazirani. NC Algorithms for Computing the Number of Perfect Matchings in K3 3—free
Graphs and Related Problems. SWAT 1988: 233-242

Heribert Vollmer, Introduction to Circuit Complexity - A Uniform Approach; Texts in Theo-
retical Computer Science. An EATCS Series. Springer Verlag, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 241-252
www.stacs-conf.org

TIGHT BOUNDS FOR BLIND SEARCH ON THE INTEGERS

MARTIN DIETZFELBINGER !, JONATHAN E. ROWE 2, INGO WEGENER 3,
AND PHILIPP WOELFEL *

! Fakultét fiir Informatik und Automatisierung, Technische Univ. Ilmenau, 98684 Ilmenau, Germany
E-mail address: martin.dietzfelbinger@tu-ilmenau.de

2 School of Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
E-mail address: J.E.Rowe@cs.bham.ac.uk

3 FB Informatik, LS2, Universitat Dortmund, 44221 Dortmund, Germany
E-mail address: ingo.wegenerQuni-dortmund.de

4 Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
E-mail address: woelfel@cpsc.ucalgary.ca

ABSTRACT. We analyze a simple random process in which a token is moved in the interval
A = {0,...,n}: Fix a probability distribution p over {1,...,n}. Initially, the token is
placed in a random position in A. In round ¢, a random value d is chosen according to p.
If the token is in position a > d, then it is moved to position a — d. Otherwise it stays
put. Let T be the number of rounds until the token reaches position 0. We show tight
bounds for the expectation of T' for the optimal distribution p. More precisely, we show
that min,{E,(T)} = © ((logn)?). For the proof, a novel potential function argument is
introduced. The research is motivated by the problem of approximating the minimum of
a continuous function over [0, 1] with a “blind” optimization strategy.

1. Introduction

For a positive integer n, assume a probability distribution g on X = {1,...,n} is given.
Consider the following random process. A token moves in A = {0,...,n}, as follows:
e Initially, place the token in some position in A.
e In round ¢: The token is at position a € A. Choose an element d from X at random,
according to p. If d < a, move the token to position a — d (the step is “accepted”),
otherwise leave it where it is (the step is “rejected”).

Work of the first author was done in part while visiting ETH Ziirich, Switzerland. The third author was
supported in part by the DFG collaborative research project SFB 531. Work of the last author was done in
part while at the University of Toronto, supported by DFG grant W01232/1-1 and by SUN Microsystems.
Joint work on this topic was initiated during Dagstuhl Seminar 06111 on Complexity of Boolean Functions
(2006).

ﬁV}—
) S e © M. Dietzfelbinger, J.E. Rowe, |. Wegener, and P. Woelfel
‘ €9 Creative Commons Attribution-NoDerivs License

242 M. DIETZFELBINGER, J.E. ROWE, I. WEGENER, AND P. WOELFEL

When the token has reached position 0, no further moves are possible, and we regard the
process as finished.

At the beginning the token is placed at a position chosen uniformly at random from
{1,...,n} = A—{0}. (For simplicity of notation, we prefer this initial distribution over
the possibly more natural uniform distribution on {0,...,n}. Of course, there is no real
difference between the two starting conditions.) Let 7" be the number of rounds needed
until position 0 is reached. A basic performance parameter for the process is E,(T'). As
p varies, the value E,(T") will vary. The probability distribution ¢ may be regarded as a
strategy. We ask: How should p be chosen so that E,(T) is as small as possible?

It is easy to exhibit distributions p such that E,(T) = O((logn)?). (All asymptotic
notation in this paper refers to n — o0.) In particular, we will see that the “harmonic
distribution” given by

1
Nhar(d) = ﬁ, for 1 < d < n, (11)

where H,, = 21§dgn$ is the nth harmonic number, satisfies E,, (7)) = O((log n)?). As
the main result of the paper, we will show that this upper bound is optimal up to constant
factors: E,(T) = Q((logn)?), for every distribution p. For the proof of this lower bound,
we introduce a novel potential function technique, which may be useful in other contexts.

1.1. Motivation and Background: Blind Optimization Strategies

Consider the problem of minimizing a function f : [0,1] — R, in which the definition of
f is unknown: the only information we can gain about f is through trying sample points.
This is an instance of a black box optimization problem [1]. One algorithmic approach to
such problems is to start with an initial random point, and iteratively attempt to improve it
by making random perturbations. That is, if the current point is = € [0, 1], then we choose
some distance d € [0, 1] according to some probability distribution u on [0, 1], and move to
x + d or x — d if this is an improvement. The distribution @ may be regarded as a “search
strategy”. Such a search is “blind” in the sense that it does not try to estimate how close
to the minimum it is and to adapt the distribution p accordingly. The problem is how to
specify p. Of course, an optimal distribution p depends on details of the function f.

The difficulty the search algorithm faces is that for general functions f there is no infor-
mation about the scale of perturbations which are necessary to get close to the minimum.
This leads us to the idea that the distribution might be chosen so that it is scale invariant,
meaning that steps of all “orders of magnitude” occur with about the same probability.
Such a distribution is described in [4]. One starts by specifying a minimum perturbation
size €. Then one chooses the probability density function h(t) = 1/(pt) for e <t < 1, and
h(t) = 0 otherwise, where p = In(1/¢) is the precision of the algorithm. (A random number
distributed according to this density function may be generated by taking d = exp(—pu),
where v is uniformly random in [0, 1].)

For general functions f, no analysis of this search strategy is known, but in experi-
ments on standard benchmark functions it (or higher dimensional variants) exhibits a good
performance. (For details see [4].) From here on, we focus on the simple case where f is
unimodal, meaning that it is strictly decreasing in [0, z¢] and strictly increasing in [xg, 1],
where xg is the unknown minimum point.

Remark 1.1. If one is given the information that f is unimodal, one will use other, de-
terministic search strategies, which approximate the optimum up to ¢ within O(log(1/¢))

TIGHT BOUNDS FOR BLIND SEARCH ON THE INTEGERS 243

steps. As early as 1953, in [3], “Fibonacci search” was proposed and analyzed, which for a
given tolerance € uses the optimal number of steps in a very strong sense.

The “blind search” strategy from [4] can be applied to more general functions f, but
the following analysis is valid only for unimodal functions. If the distance of the current
point z from the optimum ¢ is 7 > 2¢ then every distance d with § < d < 7 will lead to a
new point with distance at most 7/2. Thus, the probability of at least halving the distance
to xg in one step is at least % f:/Q % = lg‘—;, which is independent of the current state .
Obviously, then, the expected number of steps before the distance to 2y has been halved is
2p/In2. We regard the algorithm to be successful if the current point has distance smaller
than 2e from z¢. To reach this goal, the initial distance has to be halved at most log(1/¢)
times, leading to a bound of O(log(1/¢)?) for the expected number of steps.

The question then arises whether this is the best that can be achieved. Is there perhaps
a choice for p that works even better on unimodal functions? To investigate this question,
we consider a discrete version of the situation. The domain of f is A = {0,...,n}, and
f is strictly increasing, so that f takes its minimum at xg = 0. In this case, the search
process is very simple: the actual values of f are irrelevant; going from a to a+d is never an
improvement. Actually, the search process is fully described by the simple random process
from Section 1. How long does it take to reach the optimal point 0, for a x chosen as cleverly
as possible? For y = pipar, we will show an upper bound of O((logn)?), with an argument
very similar to that one leading to the bound O(log(1/¢)?) in the continuous case. The
main result of this paper is that the bound for the discrete case is optimal.

1.2. Formalization as a Markov chain

For the sake of simplicity, we let from now on [a, b] denote the discrete interval {a, ..., b}
if a and b are integers. Given a probability distribution p on [1,n], the Markov chain
R = (Ry, Ry, ...) is defined over the state space A = [0,n] by the transition probabilities

pla—a) for a’ < a;
Paa =4 1= 1<qcqit(d) for a = a;
0 for ' > a.

Clearly, 0 is an absorbing state. We define the random variable T = min{¢ | R; = 0}. Let
us write E,(T) for the expectation of T" if Ry is uniformly distributed in A — {0} = [1,n].
We study E,(T) in dependence on p. In particular, we wish to identify distributions p that
make E,(T") as small as possible (up to constant factors, where n is growing).

Observation 1.2. If y(1) = 0 then E,(T") = oc.

This is because with probability % position 1 is chosen as the starting point, and from
state 1, the process will never reach 0 if x(1) = 0. As a consequence, for the whole paper
we assume that all distributions p that are considered satisfy

(1) > 0. (1.2)

Next we note that it is not hard to derive a “closed expression” for E,(7T"). Fix u. For
a € A, let F(a) = p([1,a]) = 32 <4<, 1(d). We note recursion formulas for the expected
travel time T, = E,(T | Ry = a) when starting from position a € A. It is not hard to

244 M. DIETZFELBINGER, J.E. ROWE, I. WEGENER, AND P. WOELFEL

obtain (details are omitted due to space constraints)

n-l R Eesmes

1<a;<-<ag<n

where the sum ranges over all 2” — 1 nonempty subintervals [a1, as] of [1,n]. By definition
of F(a), we see that E,(T) is a rational function of (u(1),...,u(n)). By compactness, there
is some p that minimizes E,(7"). Unfortunately, there does not seem to be an obvious way
to use (1.3) to gain information about the way E,(7") depends on p or what a distribution
p that minimizes E,(T) looks like.

2. Upper bound

In this section, we establish upper bounds on E,(7"). We split the state space A and
the set X of possible distances into “orders of magnitude”, arbitrarily choosing 2 as the
base.! Let L = |logn|, and define I; = [2¢,2!*!), for 0 < i < L, and I, = [2¥,n]. Define

pi:Zu(d), for 0 <3 <L.
del;
Clearly, then, pog +p1 + --- + pr = 1. To simplify notation, we do not exclude terms that
mean p; for ¢ < 0 or ¢ > L. Such terms are always meant to have value 0. Consider the
process R = (Ro, Ry,...). Assume t > 1 and i > 1. If R;_; > 2/ then all numbers d € I;_;
will be accepted as steps and lead to a progress of at least 2=, Hence

Pr(Ry <R 1 -2 | R1>2) >pi 1.

Further, if R;_1 € I;, we need to choose step sizes from I;_; at most twice to get below 2¢.
Since the expected waiting time for the random distances to hit I;_; twice is 2/p;_1, the
expected time process R remains in I; is not larger than 2/p;_1.

Adding up over 1 < i < L, the expected time process R spends in the interval [2,a],
where a € I; is the starting position, is not larger than

2 2 2 2
e T T
Pj-1 Pj-2 P11 Po
After the process has left Iy = [2, 3], it has reached position 0 or position 1, and the expected
time before we hit 0 is not larger than 1/pg = 1/p(1). Thus, the expected number 7, of

steps to get from a € I; to 0 satisfies T,, < 24+ _2 4+ p% + p% . This implies the

Pj—1 pj—2
bound 5 5 9 3
E (T)< —+ +oo =+ —,
br-1 PL-2 b1 Po
for arbitrary p. If we arrange that
1
Po=- " =PL-1= 7, (2.1)

we will have T, < (2j + 1)L < (2(loga) + 1)(logn) = O((loga)(logn)) = O((logn)?).
Clearly, then, E,(T) = O((logn)?) as well. The simplest distribution p with (2.1) is the
one that distributes the weight evenly on the powers of 2 below 2

_ [L, ifd=2,0<i<L,
Npow2(d) - { 0, otherwise.

1log means “logarithm to the base 2” throughout.

TIGHT BOUNDS FOR BLIND SEARCH ON THE INTEGERS 245

Thus, Ey o (T) = O((logn)?). The “harmonic distribution” defined by (1.1) satisfies p; ~
(In(2°+1) — In(2))/H,, =~ In2/In(n) = 1/logy n, and we also get T, = O((loga)(logn)) and
E, . (T) = O((log n)?). More generally, all distributions p with po,...,pr_1 > «/L, where
a > 0 is constant, satisfy E,(T) = O((logn)?).

3. Lower bound

We show, as the main result of this paper, that the upper bound of Section 2 is optimal
up to a constant factor.

Theorem 3.1. E,(T) = Q((logn)?) for all distributions pu.

This theorem is proved in the remainder of this section. The distribution p is fixed
from here on; we suppress p in the notation. Recall that we may assume that (1) > 0. We
continue to use the intervals Iy, I1, Is, . .., I, that partition [1,n], as well as the probabilities
Pi, 0 S) S L.

3.1. Intuition

The basic idea for the lower bound is the following. For the majority of the starting
positions, the process has to traverse all intervals I;,_o, 15 _3,..., 11, Iy. Consider an interval
I;. If the process reaches interval I;,q, then afterwards steps of size 2'*? and larger are
rejected, and so do not help at all for crossing I;. Steps of size from I;11, I;, I;_1, I;_o may
be of significant help. Smaller step sizes will not help much. So, very roughly, the expected
time to traverse interval I; completely when starting in I;; will be bounded from below by

1
Pi+1 +pi +pi-1 +pi-2’
since 1/(pi+1 + pi + pi—1 + pi—2) is the waiting time for the first step with a “significant”
size to appear. If it were the case that there is a constant 3 > 0 with the property that for
each 0 < i < L — 1 the probability that interval 1,11 is visited is at least 8 then it would
not be hard to show that the expected travel time is bounded below by

B
P2j+1 + D2j + P2j—1 + P2j—2

(3.1)
1<j<L/2

(We picked out only the even i = 2j to avoid double counting.) Now the sum of the
denominators in the sum in (3.1) is at most 2, and the sum is minimal when all denominators
are equal, so the sum is bounded below by 3-(L/2)-(L/2)/2 = 3-L?/8, hence the expected
travel time would be Q(L?) = Q((logn)?).

It turns out that it is not straightforward to turn this informal argument into a rig-
orous proof. First, there are (somewhat strange) distributions p for which it is not the
case that each interval is visited with constant probability. (For example, let p(d) =
B¥1.(B —1)/(B™ — 1), for a large base B like B = n®. Then the “correct” jump directly
to 0 has an overwhelming probability to be chosen first.?) Even for reasonable distributions
1, it may happen that some intervals or even blocks of intervals are jumped over with high
probability. This means that the analysis of the cost of traversing I; has to take into account
that this traversal might happen in one big jump starting from an interval I; with j much

2The authors thank Uri Feige for pointing this out.

246 M. DIETZFELBINGER, J.E. ROWE, I. WEGENER, AND P. WOELFEL

larger than 4. Second, in a formal argument, the contribution of the steps of size smaller
than 2°~2 must be taken into account.

In the remainder of this section, we give a rigorous proof of the lower bound. For this,
some machinery has to be developed. The crucial components are a reformulation of process
R as another process, which as long as possible defers decisions about what the (randomly
chosen) starting position is, and a potential function to measure how much progress the
process has made in direction to its goal, namely reaching position 0.

3.2. Reformulation of the process

We change our point of view on the process R (with initial distribution uniform in
[1,n]). The idea is that we do not have to fix the starting position right at the beginning, but
rather make partial decisions on what the starting position is as the process advances. The
information we hold on for step ¢ is a random variable S, with the following interpretation:
if S; > 0 then R; is uniformly distributed in [1, S¢]; if Sy = 0 then R; = 0.

What properties should the random process S = (S, S1,...) on [0,n] have to be a
proper model of the Markov chain R from Section 1.27 We first give an intuitive description
of process S, and later formally define the corresponding Markov chain. Clearly, Sy = n:
the starting position is uniformly distributed in [1,n]. Given s = S;_1 € [0, n], we choose a
step length d from X, according to distribution p. Then there are two cases.

Case 1: d > s. — If s > 1, this step cannot be used for any position in [1, s], thus we
reject it and let S; = s. If s = 0, no further move is possible at all, and we also reject.
Case 2: d < s. — Then s > 1, and the token is at some position in [1,s]. What

happens now depends on the position of the token relative to d, for which we only have a
probability distribution. We distinguish three subcases:

(i) The position of the token is larger than d. — This happens with probability (s—d)/s.
In this case we “accept” the step, and now know that the token is in [1,s — d],
uniformly distributed; thus, we let Sy = s — d.

(ii) The position of the token equals d. — This happens with probability 1/s. In this
case we “finish” the process, and let S; = 0.

(iii) The position of the token is smaller than d. — This happens with probability %.
In this case we “reject” the step, and now know that the token is in [1,d — 1],
uniformly distributed; thus, we let S; =d — 1.

Clearly, once state 0 is reached, all further steps are rejected via Case 1.

We formalize this idea by defining a new Markov chain S = (Sp, Si,...), as follows. The
state space is A = [0,n]. For a state s’, we collect the total probability that we get from s
to s'. If s’ > s, this probability is 0; if s" = s, this probability is >° ., pu(d) =1 — F(s);
if s = 0, this probability is >, <, p(d)/s = F(s)/s; if 1 < s’ < s, this probability is
(u(s' +1) + p(s — ")) - ' /s, since d could be s’ + 1 or s — s'. Thus, we have the following
transition probabilities:

F(s)/s if s > ¢ =0;
Pss = (s +1)+p(s—¢))-s/s ifs>s>1;
1—F(s) if s =4

Again, several initial distributions are possible for process S. The version with initial
distribution with Pr(Sy = n) = 1 is meant to describe process R. Define the stopping time

Ts = min{t | S; = 0}.

TIGHT BOUNDS FOR BLIND SEARCH ON THE INTEGERS 247

We note that it is sufficient to analyze process S (with the standard initial distribution).
Lemma 3.2. E(T) =E(Ts).

Proof. For 0 < s < n, consider the version R®®) of process R induced by choosing the
uniform distribution on [1,s] (for s > 1) resp. {0} (for s = 0) as the initial distribution.
We let
A®) = E(min{t | R = 0}).
Clearly, A™ = E(T) and A®) = 0. We derive a recurrence for (A©, ..., A™). Let s > 1,
and assume the starting point Ry is chosen uniformly at random from [1, s]. We carry out
the first step of R(®), which starts with choosing d. The following situations may arise.
(i) d > s. — This happens with probability 1 —F(s) < 1. This distance will be rejected
for all starting points in [1, s], so the expected remaining travel time is A®) again.
(ii) 1 < d < s. For each d, the probability for this to happen is u(d). For the starting
point Ry there are three possibilities:
- Ry € [1,d — 1] (only possible if d > 1). — This happens with probability =1
The remaining expected travel time is A1),
- Ry = d. — This happens with probability % The remaining travel time is 0.
- Ry € [d+ 1, 5] (only possible if d < s). — This happens with probability =4
The remaining expected travel time in this case is AG~%,
We obtain:

d—1 s—d
A =14+ (1 - F(s))A® A L 2 T p=d))
A= FEAY+ 3) (5 + 2

We rename d — 1 into ' in the first sum and s — d into s’ in the second sum and rearrange
to obtain

Al —

L+ > (s + 1)+ pls —) - (5')s) - A] (3.2)

1<s'<s

8

Next, we consider process S. For 0 < s < n, let S® be the process obtained from S by
choosing s as the starting point. Clearly, S(©) always sits in 0, and S is just S. Let

B®) = E(min{t | 5 = 0}),

the expected number of steps process S needs to reach 0 when starting in s. Then B(Y) =0
and B(™ = E(Ts). We derive a recurrence for (B®, ... B(™). Let s > 1. Carry out the
first step of $(®), which leads to state s’. The following situations may arise.
(i) s = s’ > 1. — This occurs with probability 1 — F(s), and the expected remaining
travel time is B(®) again.
(ii) s’ = 0. — In this case the expected remaining travel time is B(®) = 0.
(iii) s > ¢ > 1. — This occurs with probability (u(s’'4+1)+u(s—s"))-s’/s. The expected
remaining travel time is B®".

Summing up, we obtain

B® =14 (1= F()BY + 3 (uls + 1) + (s — &) - (s//s) - B)

1<s’'<s

248 M. DIETZFELBINGER, J.E. ROWE, I. WEGENER, AND P. WOELFEL

Solving for B®) yields:

1 /
BY = = {1+ Y (u(s' + 1) +uls =) - (s'/s) - B®) | . (3-3)
F(S) 1<s'<s
Since A = 0 = B© and the recurrences (3.2) and (3.3) are identical, we have E(T) =
A = B = E(Tj), as claimed. "

3.3. Potential function: Definition and application

We introduce a potential function ® on the state space A = [0, n| to bound the progress
of process S. Our main lemma states that for any s € A, for a random transition from
S; = s to Si+1 the expected loss in potential is at most constant (i.e., E(®(S;11) — ®(S5;) |
S; = s) = O(1)). This implies that E(Ts) = Q(®(Sp)). Since the potential function will
satisify ®(Sg) = Q(log?n), the lower bound follows.

We start by trying to give intuition for the definition. A rough approximation to the
potential function we use would be the following: For interval I; there is a term

1
P = —
>0<j<r pj el
for some constant ¢ with % <c<l,eg,c= 1/\/5 For later use we note that

R S S T S CUTNCE

1<i<L 1<i<L 0<j<L 0<j<L 1<i<L

(3.4)

since Zogng pj = 1 and Zkzo = ﬁ The term 1; tries to give a rough lower bound
for the expected number of steps needed to cross I; in the following sense: The summands
Dj - ¢l =l reflect the fact that step sizes that are close to I; will be very helpful for crossing
I;, and step sizes far away from I; might help a little in crossing I;, but they do so only to
a small extent (j < i) or with small probability (j >). The idea is then to arrange that
a state s € I has potential about
Up =) v (3.6)
i<k
It turns out that analyzing process S on the basis of a potential function that refers to the
intervals I; is possible but leads to messy calculations and numerous cases. The calculations
become cleaner if one avoids the use of the intervals in the definition and in applying the
potential function. The following definition derives from (3.4) and (3.6) by splitting up the
summands ; into contributions from all positions @ € I; and smoothing out the factors
ci=il = 9li=il/2 for ¢ € I; and d € I;, into 9~ Iloga—logd|/2 " yhich ig va/d for a < d and
\/d/a for d < a. This leads to the following®. Assumption (1.2) guarantees that in the
formulas to follow all denominators are nonzero.

Definition 3.3. For 1 <a <n let

0a=) p(d)27Ioeerioed/z =y u(d)ﬁ + u(d>\/§

1<d<n 1<d<a a<d<n

3Whenever in the following we use letters a, b, d, the range [1,n] is implicitly understood.

TIGHT BOUNDS FOR BLIND SEARCH ON THE INTEGERS 249

and ¢, = 1/(ao,). For 0 < s < n define ®(s) = Zlgags ©0q. The random variable @y,
t=0,1,2,..., is defined as ®; = ®(S;).

We note some easy observations and one fundamental fact about ®;, ¢ > 0.

Lemma 3.4.
(a) @y, t >0, is nonincreasing for t increasing.
(c) @9 = Q((logn)?) (P is a number that depends on n and).

Proof. (a) is clear since S, t > 0, is nonincreasing and the terms ¢, are positive. — (b) is
obvious since ®; = 0 if and only if ®(S;) is the empty sum, which is the case if and only
if S = 0. — We prove (c). In this proof we use the intervals I; and the probabilities p;,
0 < i < L, from Section 2. We use the notation i(a) = |loga] = max{i | 2! < a}. We
start with finding an upper bound for o, by grouping the summands in ¢, according to the
intervals. Let ¢ = 1//2.

P Z pi(d) - 2~ Nogalogdl/2

1<d<n
< Z Z p(d) - o(i+1=i(a))/2 | Z Z pu(d) - 9(i(a)+1-7)/2
j<i(a) del; j>i(a) del;
- Z D) o(i+1=i(a))/2 | Z D; - o(i(a)+1-5)/2 _ 9., Z ;- cli—ia)]
j<i(a) j>i(a) 0<j<L
Hence)
1 2° P;
2 pa=D oz P
acl; acl; ¢ 2¢- 2070 <Zogngpj - Z)
with 1; from (3.4). Thus,
¥
dy > —. .
0= Z 4c (3.7)
0<i<L

Let u; = 4¢/v; be the reciprocal of the summand for ¢ in (3.7), 0 <14 < L. From (3.5) we
read off that » ., u; < k, for some constant k. Now >, u% with Y oc;opui <k is
minimal if all u; are equal to k/L. Together with (3.7) this entails ®g > L-(L/k) = L?/k =
Q((logn)?), which proves part (c) of Lemma 3.4. "

The crucial step in the lower bound proof is to show that the progress made by process
S in one step, measured in terms of the potential, is bounded:

Lemma 3.5 (Main Lemma). There is a constant C' such that for 0 < s < n, we have
E(q)t—l — (I’t ’ St—l = 8) S C.

The proof of Lemma 3.5 is the core of the analysis. It will be given in Section 3.4. To
prove Theorem 3.1, we need the following lemma, which is stated and proved (as Lemma
12) in [2]. (It is a one-sided variant of Wald’s identity.)

Lemma 3.6. Let X1, Xo,... denote random variables with bounded range, let g > 0 and
let T=min{t | X1+ -+ Xt >g}. IfE(T) <ooand E(X; |T >1t) <C forallt € N,
then E(T) > g/C.

250 M. DIETZFELBINGER, J.E. ROWE, I. WEGENER, AND P. WOELFEL

Proof of 3.1: Since S; = 0 if and only if ®; = 0 (Lemma 3.4(b)), the stopping time Tg =
min{¢ | &; = 0} of the potential reaching 0 satisfies T = T)g. Thus, to prove Theorem 3.1,
it is sufficient to show that E(Tg) = Q((logn)?). For this, we let X; = ®; 1 — ®;, the
progress made in step ¢ in terms of the potential. By Lemma 3.5, E(X; | Si—1 = s) < C,
for all s > 1, and hence

E(X, |T>1t) =EX, | 8(S1)>0)<C.

Observe that X;+---+X; = ®g—®; and hence Tp = min{t | X1+ - -+ Xy > $g}. Applylng
Lemma 3.6, and combining with Lemma 3.4, we get that E(Tp) > ®¢/C = Q((logn)?),
which proves Theorem 3.1. [

The only missing part to fill in is the proof of Lemma 3.5.
3.4. Proof of the Main Lemma (Lemma 3.5)

Fix s € [1,n], and assume S;_; = s. Our aim is to show that the “expected potential
loss” is constant, i.e., that

E((I)t - (I)tfl | St,1 = S) = O(l)
Clearly, E(®; — ®y_1 | S;—1 = s) = ZOSISSA(s,x), where
A(s,z) = (B(s) — ®(x)) - Pr(Sy =z | Si—1 = s). (3.8)
We show that > o, ., A(s,z) is bounded by a constant, by considering A(s, s), A(s,0),

and) ., A(s, x) separately.
For x = s, the potential difference ®(s) — ®(x) is 0, and thus

A(s,s) = 0. (3.9)

Bounding A(s,0): According to the definition of the process S, a step from S;_1 = s to
St = 0 has probability F'(s)/s. Since ®(0) = 0, the potential difference is ®(s). Thus, we
obtain

1 > u(d)
B . ' _ 1. d<s
A(s,0) = . Zﬂ(d) Z% S Z Zu(b)\/@%— Z u(0)a®2 /b

d<s a<s a<s
b<a a<b<n
> ()
1 b<s
<=+ 4(a), whered(a) = = .
s ; Zu(b)\/cg—l— Z w(b)a®? /b
b<a a<b<s

We bound d(a). For b < a and u(b) # 0, the quotient of the summands in the numerator
and denominator of d(a) that correspond to b is 1/vab < y/a/a < \/s/a. For a < b and
p(b) # 0, the quotient is vb/a*? < \/s/a. Thus, d(a) < % This implies (recall that
Hs = zagdgs é):

Asog Zf/a< <o+l (3.10)

a<s \/> a \/g

TIGHT BOUNDS FOR BLIND SEARCH ON THE INTEGERS 251

Bounding } ., , A(s,x): Assume 1 <z < 5. According to the definition of the process
S, B
x
Pr(Sio1=z|Si=s) = 3 (n(z +1) + p(s — x)).
The potential difference is ®(s) — ®(z) = >_, <, ¥a- Thus we have
x 1
DA =Y Y (pet D tus—a) =2 D (et (311)
1<z<s 1<z<sz<a<ls 1<a<s

where Ao = 0o+ Y 1cpeq (@ + 1)@ and Y4 = 9o - D 1<y #(s —) 2. We bound A, and g
separately. Observe first that

X = ¢a- Yy, pla)(z—1)

2<z<a
S)@ - 1) S ub)b-1)
< 1<z<a < 1<b<a (312)
T) Vab+ Y p®d)a®Ne T p(b)Vab.
1<b<a a<b<n 1<b<a

(We used the definition of ¢,, and omitted some summands in the denominator.) Recall
that p(1) > 0, so the denominator is not zero. For each b < a we clearly have u(b)(b —
1) < u(b)Vab, thus the sum in the numerator in (3.12) is smaller than the sum in the
denominator, and we get A\, < 1.

Next, we bound 7, for a < s:

Ya=t¢ar Y ws—2)z = ¢a- Y plx)(s—z)

1<z<a s—a<r<s
Y ou@e-n+ Y e
_ s—a<z<a max{a,s—a}<z<s
> p)WVab+ Y ub)a®?/vVb
1<b<a a<b<n

The denominator is not zero because p(1) > 0. Hence, if u(x) =0 for all s —a < x < s,
then ~, = 0. Otherwise, by omitting some of the summands in the denominator we obtain

S o) s-v+ S a)(s-b)

< s—a<b<la max{a,s—a}<b<s
Ya =
> wVas Y bV
s—a<b<a max{a,s—a}<b<s

(If a < s/2, the first sum in both numerator and denominator is empty.) Now consider
the quotient of the summands for each b with pu(b) > 0. For s —a < b < a, this quotient is

w(b) (s —b) a—1 a \/ s
< < < .
p(d)Vab ~ \Ja-(s—a+1) s—a+1 s—a+1
For max{a,s —a} < b < s, the quotient of the corresponding summands is
w(b)(s —b) <min{a,s—a}-\/5<a-\/§_ s
u(b)ad2 Vb a

a3/2 = 43/2

252 M. DIETZFELBINGER, J.E. ROWE, I. WEGENER, AND P. WOELFEL

Hence, v, < v/s/(s —a+ 1)+ /s/a. Plugging this bound on 7, and the bound A, < 1 into
(3.11), and using that

Z —1+Zi<1+ Ty + 2V =1+ 25 — 2 < 245,

1<a<s 2<a<s \F

we obtain

1
E A(s,z) < —- < \/7 + 4/ >
S s—a+1
1<z<s 1<a<s

<1+i8 Z\[Z\[<1+—Z\[<1+\7 2v/s=5. (3.13)

1<a<s 1<a<s 1<a<s

Summing up the bounds from (3.9), (3.10), and (3.13), we obtain
E(® — 01| S =5) SA(5,00+ > As,z) + A(s,8) <2+ 5+0="T.

1<z<s
Thus Lemma 3.5 is proved. m

4. Open problems

1. We conjecture that the method can be adapted to the continuous case to prove a
lower bound of Q((log(1/¢)?) for approximating the minimum of some unimodal function
f by a scale-invariant search strategy (see Section 1.1).

2. It is an open problem whether our method can be used to prove a lower bound of
Q((logn)?) for finding the minimum of an arbitrary unimodal function f: {0,...,n} — R
by a scale invariant search strategy.

Acknowledgement

The authors thank two anonymous referees for their careful reading of the manuscript
and for providing several helpful comments.

References

[1] Droste, S., Jansen, T., and Wegener, 1., Upper and lower bounds for randomized search heuristics in
black-box optimization, Theory Comput. Syst. 39(4) 525-544 (2006).

[2] Jagerskipper, J., Algorithmic analysis of a basic evolutionary algorithm for continuous optimization,
Theor. Comput. Sci. 379(3) 329-347 (2007).

[3] Kiefer, J., Sequential minimal search for a maximum, Proc. Amer. Math. Soc. 4 502-506 (1953).

[4] Rowe, J.E., and Hidovié¢, D., An evolution strategy using a continuous version of the Gray-code neigh-
bourhood distribution, in: K. Deb et al., Fds., Proc. GECCO 2004, Part 1, LNCS Vol. 3102, Springer-
Verlag, pp. 725-736.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 253-264
www.stacs-conf.org

DISCRETE JORDAN CURVE THEOREM:
A PROOF FORMALIZED IN COQ WITH HYPERMAPS

JEAN-FRANCOIS DUFOURD *

! Université Louis-Pasteur de Strasbourg, UFR de Mathématique et d’Informatique,
Labo. des Sciences de 'Image, de 'Informatique et de la Télédétection (UMR CNRS-ULP 7005),
Pole API, Boulevard Sébastien Brant, 67400 Illkirch, France
FE-mail address: dufourd@dpt-info.u-strasbg.fr

ABSTRACT. This paper presents a formalized proof of a discrete form of the Jordan Curve
Theorem. It is based on a hypermap model of planar subdivisions, formal specifications
and proofs assisted by the Coq system. Fundamental properties are proven by structural
or noetherian induction: Genus Theorem, Euler’s Formula, constructive planarity criteria.
A notion of ring of faces is inductively defined and a Jordan Curve Theorem is stated and
proven for any planar hypermap.

Introduction

This paper presents a formal statement and an assisted proof of a Jordan Curve The-
orem (JCT) discrete version. In its common form, the theorem says that the complement
of a continuous simple closed curve (a Jordan curve) C' in an affine real plane is made of
two connected components whose border is C, one being bounded and the other not. The
discrete form of JCT we deal with states that in a finite subdivision of the plane, breaking
a ring R of faces increases by 1 the connectivity of the subdivision. It is a weakened version
of the original theorem where the question of bound is missing. However, it is widely used
in computational geometry and discrete geometry for imaging, where connection is the es-
sential information (14; 9). In fact, we only are in a combinatoric framework, where any
embedding is excluded, and where bounding does not make sense.

In computational topology, subdivisions are best described by map models, the most
general being hypermaps (15; 4). We propose a purely combinatorial proof of JCT based
on this structure. The hypermap framework is entirely formalized and the proofs are de-
veloped interactively and verified by the Coq proof assistant (3). Using an original way
to model, build and destruct hypermaps, the present work brings new simple constructive
planarity and connectivity criteria. It proposes a new direct expression of JCT and a simple
constructive proof with algorithmic extensions. It is also a large benchmark for the software

1998 ACM Subject Classification: 1.3.5, E1, D.2.4.

Key words and phrases: Formal specifications - Computational topology - Computer-aided proofs - Coq
- Planar subdivisions - Hypermaps - Jordan Curve Theorem.

Acknowledgements: This research is supported by the ”white” project GALAPAGOS, French ANR, 2007.

L SYMPOSIUM
V' ON THEORETICAL
() l_ ASPECTS

<4

7 / OF COMPUTER © J.-F. Dufourd
SCIENCE e
@ Creative Commons Attribution-NoDerivs License

254 J.-F. DUFOURD

specification framework we have been developing in the last fifteen years for map models
used in geometric modeling and computer imagery (2; 7; 8).

The useful Coq features are reminded and the whole process is described, but the full
details of the proofs are omitted. Section 1 summarizes related work. Section 2 recalls some
mathematical materials. Section 3 proposes basic hypermap specifications. Section 4 proves
constructive criteria of hypermap planarity and connectivity. Section 5 inductively specifies
the rings and their properties. Section 6 proves the discrete JCT. Section 7 concludes.

1. Related work

The JCT is a result of classical plane topology, first stated by C. Jordan in 1887,
but of which O. Veblen gives the first correct proof in 1905. In 1979, W.T. Tutte proposes
operations and properties of combinatorial maps, e.g. planarity and Euler’s Formula, defines
rings and proves a discrete JCT (15). Our theorem statement is comparable, but our
framework is modeled differently and all our proofs are formalized and computer-assisted.

In 2003, G. Bauer and T. Nipkow specify planar graphs and triangulations in Is-
abelle/Isar to carry out interactive proofs of Euler’s Formula and of the Five Colour The-
orem (1). However, they do not approach the JCT. In 2005, A. Kornilowicz designs for
the MIZAR project a semi-automated classical proof of a continuous form of JCT in an
Euclidean space (13). In 2005 also, on his way towards the proof of the Kepler conjecture
in the Flyspeck projet, T. Hales proves the JCT for planar rectangular grids with the HOL
Light system, following the Kuratowski characterization of planarity (12).

In 2005 always, G. Gonthier et al. prove the Four Colour Theorem using Coq. Plane
subdivisions are described by hypermaps, and Euler’s Formula is used as a global planarity
criterion (10). A local criterion, called hypermap Jordan property, is proven equivalent. The
main part of this work is the gigantic proof of the Four Colour Theorem with hypermaps
and sophisticated proof techniques. The hypermap formalization is very different from ours
and it seems that JCT is not explicitly proven there. Finally, since 1999, we carry out
experiments with Coq for combinatorial map models of space subdivisions (5; 7; 8).

2. Mathematical Aspects

Definition 2.1 (Hypermap). A hypermap is an algebraic structure M = (D, ag, 1), where
D is a finite set whose elements are called darts, and «q, a; are permutations on D.

If y = ag(x), y is the k-successor of x, x is the k-predecessor of y, and x and y are said
to be k-linked.

In Fig. 1, as functions ag and oy on D = {1,...,15} are permutations, M = (D, o, 1)
is a hypermap. It is drawn on the plane by associating to each dart a curved arc oriented
from a bullet to a small stroke: O-linked (resp. 1-linked) darts share the same small stroke
(resp. bullet). By convention, in the drawings of hypermaps on surfaces, k-successors turn
counterclockwise around strokes and bullets. Let M = (D, ag, 1) be a hypermap.

Definition 2.2. (Orbits and hypermap cells)
(1) Let f1,..., fn be n functions in D. The orbit of x € D for f1,..., f, is the subset of D
denoted by (f1,..., fn)(z), the elements of which are accessible from x by any composition

of fi,..., fn.

JORDAN CURVE THEOREM IN COQ WITH HYPERMAPS 255

D [1]2[3]a]s5]6]7]8]9f10]n]12]13]14]15
9 o0 [6|95 [3]a]1]7012[10] 2] s]11]14[13[15
1 al |2]3]al1]e6]7]8]9]s]n]10]12]14]1315

7
" /
15

1

Figure 1: An example of hypermap.

(2) In M, {(ap)(x) is the 0-orbit or edge of dart z, (a1)(z) its l-orbit or vertex, (¢)(x) its
face for ¢ = a7 o ayt, and (ag, a1)(2) its (connected) component.

In Fig. 1 the hypermap contains 7 edges (strokes), 6 vertices (bullets), 6 faces and 3
components. For instance, (ao)(3) = {3,5,4} is the edge of dart 3, (a1)(3) = {3,4,1,2} its
vertex. Faces are defined, through ¢, for a dart traversal in counterclockwise order, when
the hypermap is drawn on a surface. Then, every face which encloses a bounded (resp.
unbounded) region on its left is called internal (resp. external). In Fig. 1, the (internal)
face of 8 is (¢)(8) = {8,10} and the (external) face of 13 is (¢)(13) = {13}. Let d,e,v, f
and ¢ be the numbers of darts, edges, vertices, faces and components of M.

Definition 2.3. (Euler characteristic, genus, planarity)
(1) The Euler characteristic of M is x =v+e+ f —d.
(2) The genus of M is g = ¢ — x/2.

(3) When g =0, M is said to be planar.

For instance, in Fig. 1, x =6+6+7—15=4 and g = 3 — x/2 = 1. Consequently, the
hypermap is non planar. These values satisfy the following results:

Theorem 2.4 (of the Genus). x is an even integer and g is a natural number.

Corollary 2.5 (Euler Formula). A non empty connected — i.e. with ¢ = 1 — planar
hypermap satisfies v+e+ f—d = 2.

When D # (), the representation of M on an orientable closed surface is a mapping of
edges and vertices onto points, darts onto open oriented Jordan arcs, and faces onto open
connected regions. It is an embedding when every component of M realizes a partition of
the surface. Then, the genus of M is the minimum number of holes in an orientable closed
surface where such an embedding is possible, thus drawing a subdivision, or a polyhedron,
by hypermap component (11). For instance, all the components of the hypermap in Fig. 1
can be embedded on a torus (1 hole) but not on a sphere or on a plane (0 hole). When a
(planar) hypermap component is embedded on a plane, the corresponding subdivision has
exactly one unbounded (external) face. But a non planar hypermap can never be embedded
on a plane: in a drawing on a plane, some of its faces are neither internal nor external, e.g.
(py(1) = {1,5,2,11,12,7,6,4,9} in Fig. 1. Conversely, any subdivision of an orientable
closed surface can be modeled by a hypermap. In fact, the formal presentation which
follows is purely combinatorial, i.e without any topological or geometrical consideration.

2.1. Rings of faces and Jordan Curve Theorem

To state the version of JCT we will prove, we need the concepts of double-link, adjacent
faces and ring of faces in a hypermap M = (D, ag, o).

256 J.-F. DUFOURD

Figure 2: Break of M along a ring R of length n = 4 giving M.

Definition 2.6. (Double-link and adjacent faces)

(1) A double-link is a pair of darts (y,y’) where y and y’ belong to the same edge.

(2) The faces F and F’ of M are said to be adjacent by the double-link (y,y’) if y is a dart
of F and 3’ a dart of F”.

We choose a face adjacency by an edge rather than by a vertez as does W.T. Tutte (15).
In fact, due to the homogeneity of dimensions 0 and 1 in a hypermap, both are equivalent.

Definition 2.7. (Ring of faces)
A ring of faces R of length n in M is a non empty sequence of double-links (y;,y}), for
i =1,...,n, with the following properties, where E; and F; are the edge and face of y;:
(0) Unicity: E; and E; are distinct, for 4,5 = 1,...,n and i # j;
(1) Continuity: F; and F;1; are adjacent by the double-link (y;,y}), fori=1,...,n —1;
(2) Circularity, or closure: F, and Fj are adjacent by the double-link (v, y.,);
(3) Simplicity: F; and F} are distinct, for ¢,j =1,...,n and i # j.

This notion simulates a Jordan curve represented in dotted lines in Fig. 2 on the left
for n = 4. Then, we define the break along a ring, illustrated in Fig. 2 on the right.

Definition 2.8. (Break along a ring)

Let R be a ring of faces of length n in M. Let M; = (D, ag,,0q), for i = 0,...,n, be a
hypermap sequence, where the ag; are recursively defined by:

(1) i =0: agp = ao;

(2) 1 <i < n: for each dart z of D: g ;(z) = if agi—1(z) = y; then y/ else if ap,;—1(2) =y,
then y; else api—1(2).

Then, M,, = (D, agn,aq) is said to be obtained from M by a break along R.

Finally, the theorem we will prove in Coq mimics the behaviour of a cut along a simple
Jordan curve of the plane (or of the sphere) into two components:

Theorem 2.9 (Discrete Jordan Curve Theorem). Let M be a planar hypermap with c
components, R be a ring of faces in M, and M’ be the break of M along R. The number ¢/
of components of M’ is such that ¢ = c+ 1.

3. Hypermap specifications
3.1. Preliminary specifications

In Coq, we first define an inductive type dim for the two dimensions at stake:

Inductive dim:Set:= zero: dim | one: dim.

JORDAN CURVE THEOREM IN COQ WITH HYPERMAPS 257

Figure 3: A hypermap with its incompletely linked orbits.

All objects being typed in Coq, dim has the type Set of all concrete types. Its constructors
are the constants zero and one. In each inductive type, the generic equality predicate = is
built-in but its decidability is not, because Coq’s logic is intuitionistic. For dim, the latter
can be established as the lemma:
Lemma eq_dim_dec: forall i j : dim, {i=j}+{"i=j}.

Once it is made, its proof is an object of the sum type {i=j}+{~i=j}, i.e. a function, named
eq-dim dec, that tests whenever its two arguments are equal. The lemma is interactively
proven with some tactics, the reasoning being merely a structural induction on both i and
j, here a simple case analysis. Indeed, from each inductive type definition, Coq generates
an induction principle, usable either to prove propositions or to build total functions on the
type. We identify the type dart and its equality decidability eq.dart dec with the built-in
nat and eqnat_dec. Finally, to manage exceptions, a nil dart is a renaming of 0:

Definition dart:= nat.
Definition eq_dart_dec:= eq_nat_dec.
Definition nil:= O.

3.2. Free maps

The hypermaps are now approached by a general notion of free map, thanks to a free
algebra of terms of inductive type fmap with 3 constructors, V, I and L, respectively for the
empty (or void) map, the insertion of a dart, and the linking of two darts:

Inductive fmap:Set:=
V : fmap | I : fmap->dart->fmap | L : fmap->dim->dart->dart->fmap.
For instance, the hypermap in Fig. 1 can be modeled by the free map represented in Fig.3
where the 0- and 1-links by L are represented by arcs of circle, and where the orbits remain
open. Again, Coq generates an induction principle on free maps.

Next, observers of free maps can be defined. The predicate exd express that a dart
exists in a hypermap. Its definition is recursive, which is indicated by Fixpoint, thanks
to a pattern matching on m written match m with.... The attribute {struct m} allows
Coq to verify that the recursive calls are performed on smaller fmap terms, thus ensuring
termination. The result is False or True, basic constants of Prop, the built-in type of
propositions. Note that terms are in prefix notation and that _is a place holder:

Fixpoint exd(m:fmap) (z:dart){struct m}:Prop:=
match m with
V=>False | ImOx=>2=x\/exdmOz | LmO _ _ _ =>exdmz
end.

258 J.-F. DUFOURD

The decidability exd_dec of exd directly derives, thanks to a proof by induction on m. Then,
a version, denoted A, of operation «ay, of Definition 2.1 completed with nil for convenience
is written as follows, the inverse A_1 being similar:
Fixpoint A(m:fmap) (k:dim) (z:dart){struct m}:dart:=
match m with
V=>nil | TmO0Ox=>AmO0kz|LmOkOxy=>
if eq_dim_dec k kO then if eq_dart_dec z x then y else A mO k z
else AmO k z
end.

Predicates succ and pred express that a dart has a k-successor and a k-predecessor (not
nil), with the decidabilities succ_dec and pred_dec. In hypermap m of Fig. 3, A m zero 4
=3, Am zero 5 = nil, succ m zero 4 = True, succ m zero 5 = False, A.1 m one
2 = 1. In fact, when a k-orbit remains open, which will be required in the following, we
can obtain its top and bottom from one of its dart z. Then, we can do as if the k-orbit
were closed, thanks to the operations cA and cA_1 which close A and A_1, in a way similar
to operation K of W.T. Tutte (15). For instance, in Fig. 3, top m one 1 = 3, bottom m
one 1 =4, cAmone 3 =4, cA.1 mone 4 = 3.

Finally, destructors are also recursively defined. First, D:fmap->dart->fmap deletes
the latest insertion of a dart by I. Second, B, B_:fmap->dim->dart->fmap break the latest
k-link inserted for a dart by L, forward and backward respectively.

3.3. Hypermaps

Preconditions written as predicates are introduced for I and L:
Definition prec_I(m:fmap) (x:dart):= x <> nil /\ 7 exd m x.
Definition prec_L(m:fmap) (k:dim) (x y:dart):=
exdmx /\exdmy /\ “succmkx /\ " predmky /\ cAmkzx<>y.
If T and L are used under these conditions, the free map built necessarily has open orbits.
In fact, thanks to the closures cA and cA_1, it can always be considered as a true hypermap
exactly equipped with operations oy of Definition 2.1. It satisfies the invariant:
Fixpoint inv_hmap(m:fmap) :Prop:=
match m with
V =>True | I m0O x => inv_hmap mO /\ prec_I m0 x
| L m0 k0 x y => inv_hmap mO /\ prec_L mO kO x y
end.
Such a hypermap was already drawn in Fig. 3. Fundamental proven properties are that,
for anymand k, (A m k) and (A_1 m k) are injections inverse of each other, and (cA m k)
and (cA_1 m k) are permutations inverse of each other, and are closures. Finally, traversals
of faces are based on function F and its closure cF, which correspond to ¢ (Definition 2.2).
So,in Fig. 3, F m 1 = nil, cF m 1 = 5. Properties similar to the ones of A, cA are proven
for F, cF and their inverses F_1, cF_1.

3.4. Orbits

Testing if there exists a path from a dart to another in an orbit for a hypermap permu-
tation is of prime importance, for instance to determine the number of orbits. The problem
is exactly the same for ag, o or ¢ (Definitions 2.1 and 2.2). That is why a signature Sigf
with formal parameters £, £_1 and their properties is first defined.

JORDAN CURVE THEOREM IN COQ WITH HYPERMAPS 259

DWIQ. Ol s

Lmzeroxy Lmzeroxy

Planar O-linking inside a face F giving 2 faces F* and F*’. Non planar O-linking between 2 faces F and F* giving face F’.
Figure 4: Linking at dimension 0.

Next, a generic module (or functor) Mf (M:Sigf), the formal parameter M being a module
of type Sigf, is written in Coq to package generic definitions and proven properties about
f and £_1. Among them, we have that each f-orbit of m is periodic with a positive smallest
uniform period for any dart z of the orbit. The predicate expo m z t asserts the existence
of a path in an f-orbit of m from a dart z to another t, which is proven to be a decidable
equivalence. Note that most of the properties are obtained by noetherian induction on the
length of iterated sequences of f-successors, bounded by the period.

Appropriate modules, called MAO, MA1 and MF, are written to instantiate for (cA m
zero), (cA m one) and (cF m) definitions and properties of £. So, a generic definition or
property in Mf (M) has to be prefixed by the module name to be concretely applied. For
instance, MF.expo m z t is the existence of a path from z to t in a face. In the following,
MF.expo is abbreviated into expf. For instance, in Fig. 3, expf m 1 5 = True, expf m
5 3 = False. Finally, a binary relation eqc stating that two darts belong to the same
component is easily defined by induction. For instance, in Fig. 3, we have eqc m 1 5 =
True, eqc m 1 13 = False. We quickly prove that (eqc m) is a decidable equivalence.

3.5. Characteristics, Genus Theorem and Euler Formula

We now count cells and components of a hypermap using the Coq library module ZArith
containing all the features of Z, the integer ring, including tools to solve linear systems in
Presburger’s arithmetics. The numbers nd, ne, nv, nf and nc of darts, edges, vertices, faces
and components are easily defined by induction. Euler’s characteristic ec and genus derive.
The Genus Theorem and the Euler Formula (for any number (nc m) of components) are
obtained as corollaries of the fact that ec is even and satisfies 2 * (nc m) >= (ec m) (8).
Remark that -> denotes a functional type in Set as well as an implication in Prop:

Definition ec(m:fmap): Z:= nvm + nem + nf m - nd m.

Definition genus(m:fmap): Z:= (nc m) - (ec m)/2.

Definition planar(m:fmap): Prop:= genus m = 0.

Theorem Genus_Theorem: forall m:fmap, inv_hmap m -> genus m >= O.

Theorem Euler_Formula: forall m:fmap, inv_hmap m -> planar m ->
ecm / 2 = nc nm.

4. Planarity and connectivity criteria

A consequence of the previous theorems is a completely constructive criterion of pla-
narity, when one correctly links with L at dimensions 0 or 1, e.g. for 0:
Theorem planarity_crit_0: forall (m:fmap) (x y:dart),
inv_hmap m -> prec_L m zero x y -> (planar (L m zero x y) <->
(planar m /\ (" eqc m x y \/ expf m (cA_1 m one x) y))).

260 J.-F. DUFOURD

g X

a. Double-link coded by (x, true) : face F contains y. b. Double-link coded by (x, false) : face F contains x0.

y

Figure 5: Coding a double-link and identifying a face.

So, the planarity of m is preserved for (L m zero x y) iff one of the following two conditions
holds: (1) x and y are not in the same component of m; (2) x.1 = (cA1l m one x) and
y are in the same face of m, i.e. the linking operates inside the face containing y. Fig. 4
illustrates 0-linking inside a face, giving two new faces, and between two (connected) faces,
giving a new face, thus destroying planarity. Finally, after a long development, we prove
the expected planarity criterion, when breaking a link with B, at any dimension, e.g. for O:

Lemma planarity_crit_BO: forall (m:fmap)(x:dart), inv_hmap m ->

succ m zero x -> let mO := B m zero x in let y := A m zero x in
(planar m <-> (planar mO /\ (7 eqc mO x y \/ expf mO (cA_1 mO one x) y))).

Such a lemma is easy to write/understand as a mirror form of the 0-linking criterion, but it
is much more difficult to obtain. It would be fruitful to relate these constructive/destructive
criteria with the static one of G. Gonthier (10). Finally, some useful results quickly char-
acterize the effect of a link break on the connectivity of a planar hypermap. For instance,
when 0-breaking x, a disconnection occurs iff expf m y xO:

Lemma disconnect_planar_criterion_BO:forall (m:fmap) (x:dart),
inv_hmap m -> planar m -> succ m zero x —>
let y := A m zero x in let x0 := bottom m zero x in
(expf m y x0 <-> “eqc (B m zero x) x y).

5. Rings of faces
5.1. Coding a double-links and identifying a face

Since an edge is always open in our specification, when doing the backward break of a
unique 0-link from y or y’, we in fact realize a double-link break, as in Definition 2.8. So,
we choose to identify a double-link by the unique dart, we called x, where the 0-link to be
broken begins. In fact, with respect to the face F on the left of the double-link in the ring,
there are two cases, depending on the position of x and its forward 0-link, as shown in Fig.
5 (a) and (b). We decided to distinguish them by a Boolean b. Then, a double-link is coded
by a pair (x, b). So, we implicitely identify each ring face F by the double-link coding on
its right in the ring. In Fig. 5 (a), face F is identified by (x, true) and contains y:= A m
zero x, whereas in Fig. 5 (b), face F is identified by (x, false) and contains x0:= bottom
m zero x. These modeling choices considerably simplify the problems. Indeed, in closed
orbits, a true double-link break would entail 2 applications of B followed by 2 applications
of L, and would be much more complicated to deal with in proofs.

JORDAN CURVE THEOREM IN COQ WITH HYPERMAPS 261

5.2. Modeling a ring of faces

First, we inductively define linear lists of pairs of booleans and darts, with the two
classical constructors lam and cons, and usual observers and destructors, which we do not
give, because their effect is directly comprehensible:

Inductive list:Set := lam: list | cons: dart*bool -> list -> list.

Such a list is composed of couples (x, b), each identifying a face F: if b is true, F is
represented by y:= A m zero x, otherwise by x0:= bottom m zero x (Fig. 5). In the
following, B1 m 1 breaks all the 0-links starting from the darts of list 1 in a hypermap
m. Now, we have to model the conditions required for list 1 to be a ring of hypermap m.
Translating Definition 2.7, we have four conditions, called pre ringk m 1, fork =0,...,3,
which we explain in the following sections. Finally, a predicate ring is defined by:
Definition ring(m:fmap) (1:1ist) :Prop:= “emptyl 1 /\
pre_ring0 m 1 /\ pre_ringl m 1 /\ pre_ring2 m 1 /\ pre_ring3 m 1.

5.3. Ring Condition (0): unicity

The predicate distinct edge list m x 10 saying that the edges of 10 are distinct in
m from a given edge of x, pre ring0 m 1 is defined recursively on 1 to impose that all edges
in 1 are distinct: Condition (0) of Definition 2.7. It also imposes that each dart in 1 has
a (-successor, in order to have well defined links, which is implicit in the mathematical
definition, but not in our specification whith open orbits.

Fixpoint pre_ringO(m:fmap) (1:1ist){struct 1}:Prop:=
match 1 with
lam => True | cons (x,_) 10 =>
pre_ring0 m 10 /\ distinct_edge_list m x 10 /\ succ m zero x
end.

5.4. Ring Condition (1): continuity

Then, we define adjacency between two faces identified by xb = (x, b) and xb’ =
(x’, b’), along the link corresponding to xb:

Definition adjacent_faces(m:fmap) (xb xb’:dart*bool):=
match xb with (x,b) => match xb’ with (x’,b’) =>
let y := Am zero x in let y’:= A m zero x’ in
let x0 := bottom m zero x in let x’0:= bottom m zero x’ in
if eq_bool_dec b true
then if eq_bool_dec b’ true then expf m x0 y’ else expf m x0 x’0
else if eq_bool_dec b’ true then expf m y y’ else expf m y x’0
end end.

This definition is illustrated in Fig. 6 for the four possible cases of double-link codings.
So, the predicate pre_ringl m 1 recursively specifies that two successive faces in 1 are
adjacent: Condition (1) in Definition 2.7:

Fixpoint pre_ringl(m:fmap) (1:1ist){struct 1}:Prop:=

match 1 with

lam => True | cons xb 10 => pre_ringl m 10 /\
match 10 with lam => True | cons xb’ 1’ => adjacent_faces m xb xb’ end
end.

262 J.-F. DUFOURD

a. Case b = true A\ b’= true. b. Case b = true A\ b’= false. c. Case b = false A b’= true. d. Case b = false A\ b’= false.

Figure 6: Four cases of face adjacency.

5.5. Ring Condition (2): circularity, or closure

The predicate pre_ring2 m 1 specifies that the last and first faces in 1 are adjacent:
Condition (2) of circularity in Definition 2.7:
Definition pre_ring2(m:fmap) (1:1ist) :Prop:=
match 1 with
lam => True | cons xb 10 =>
match xb with (x,b) => let y := A m zero x in match 10 with

lam => let x0 := bottom m zero x in expf m y x0
| cons _ 1’ => let xb’:= last 10 in adjacent_faces m xb’ xb
end end

end.
5.6. Ring Condition (3): simplicity

The predicate specifiying that the faces of m identified by xb and xb’ are distinct is
easy to write by cases on the Booleans in xb and xb’. The predicate distinct face_ list
m xb 10 expressing that the face identified by xb is distinct from all faces of list 10 entails.
Then, the predicate pre_ring3 m 1 says that all faces of 1 are distinct: Condition (3) in
Definition 2.7:

Fixpoint pre_ring3(m:fmap) (1:1ist){struct 1}:Prop:=

match 1 with

lam => True | cons xb 10 => pre_ring3 m 10 /\ distinct_face_list m xb 10

end.

6. Discrete Jordan Curve Theorem

The general principle of the JCT proof for a hypermap m and a ring 1 is a structural
induction on 1. The case where 1 is empty is immediatly excluded because 1 is not a ring
by definition. Thus the true first case is when 1 is reduced to one element, i.e. is of the
form cons (x, b) lam. Then, we prove the following lemma as a direct consequence of the
planarity criterion planarity_crit B0 and the criterion face_cut_join_criterion BO:

Lemma Jordanl:forall(m:fmap) (x:dart) (b:bool), inv_hmap m -> planar m ->
let 1:= cons (x,b) lam in ringm 1 -> nc (Bl m 1) = nc m + 1.
When a ring 11 contains at least two elements, we prove that the condition “expf m y
x0 must hold with the first element (x,b) of 11 (in fact, conditions (1) and (3) are enough):

JORDAN CURVE THEOREM IN COQ WITH HYPERMAPS 263

Lemma ringl_ring3_connect:
forall(m:fmap) (x x’:dart) (b b’:bool)(1:1list), inv_hmap m ->
let 11:= cons (x,b) (cons (x’,b’) 1) in
let y:=A m zero x in let x0:= bottom m zero x in
planar m -> pre_ringl m 11 -> pre_ring3 m 11 -> "expf m y xO.
In this case, thanks to disconnect_planar _criterionBO (Section 4), the lemma entails
that the break of the first ring link does never disconnect the hypermap. Then, after
examining the behavior of pre ringk, for k = 0,...,3, we are able to prove the following
lemma which states that the four ring properties are preserved after the first break in 1:
Lemma pre_ring_ B: forall(m:fmap) (1:1list), inv_hmap m -> planar m ->
let x := fst (first 1) in let y := A m zero x in
let x0 := bottom m zero x in let ml1 := B m zero x in
“expf m y x0 -> ring m 1 -> (pre_ring0 ml (tail 1) /\ pre_ringl ml (tail 1)
/\ pre_ring2 ml (tail 1) /\ pre_ring3 ml (tail 1)).
The most difficult is to prove the part of the result concerning pre ringk, for k =0,...,3.
The four proofs are led by induction on 1 in separate lemmas. For pre_ring0, the proof is
rather simple. But, for the other three, the core is a long reasoning where 2, 3 or 4 links are
involved in input. Since each link contains a Boolean, sometimes appearing also in output,
until 24 = 16 cases are to be considered to combine the Boolean values.
Finally, from Jordanl and pre ring B above, we have the expected result by a quick
reasoning by induction on 1, where links are broken one by one from the first:

Theorem Jordan: forall(l:list) (m:fmap),
inv_hmap m -> planar m -> ringm 1 -> nc (Bl m 1) = nc m + 1.
It is clear that, provided a mathematical hypermap M and a mathematical ring R conform to
Definitions 2.1 and 2.7, we can always describe them as terms of our specification framework
in order to apply our JCT. Conversely, given a hypermap term, some mathematical rings
cannot directly be written as terms. To do it, our ring description and our JCT proof have
to be slightly extended. However, that is not necessary for the combinatorial maps (where
ag is an involution) terms, for which our ring specification and our JCT formalization are
complete. This is more than enough to affirm the value of our results.

7. Conclusion

We have presented a new discrete statement of the JCT based on hypermaps and
rings, and a formalized proof assisted by the Coq system. Our hypermap modeling with
open orbits simplifies and precises most of known facts. It also allows to obtain some new
results, particularly about hypermap construction/destruction, connection/disconnection
and planarity. This work involves a substantial framework of hypermap specification, which
is built from scratch, i.e. exempt from any proper axiom. It is basically the same as the
one we have designed to develop geometric modelers via algebraic specifications (2). So, we
know how to efficiently implement all the notions we formally deal with.

The Coq system turned out to be a precious auxiliary to guide and check all the process
of specification and proof. The preexistent framework of hypermap specification represents
about 15,000 lines of Coq, and the JCT development about 5,000 lines, including about 25
new definitions, and 400 lemmas and theorems. Note that all results about the dimension 0

264 J.-F. DUFOURD

were actually proven, but some planarity properties about dimension 1, which are perfectly
symmetrical, have just been admitted. However, the JCT formal proof is complete.

So, we have a solid foundation to tackle any topological problem involving orientable
surface subdivisions. Extensions are in 2D or 3D computational geometry and geometric
modeling by introducing embeddings (6; 2), and computer imagery by dealing with pixels
(7) or voxels.

References

[1] Bauer, G., Nipkow, T.: The 5 Colour Theorem in Isabelle/Isar. In Theorem Proving
in HOL Conf. (2002). LNCS 2410, Springer-Verlag, 67-82.
[2] Bertrand, Y., Dufourd, J.-F.: Algebraic specification of a 3D-modeler based on hyper-
maps. Graphical Models and Image Processing 56:1 (1994), 29-60.
[3] The Coq Team Development-LogiCal Project: The Coq Proof Assistant Reference
Manual - Version 8.1, INRIA, France (2007). http://coq.inria.fr/doc/main.html.
[4] Cori, R.: Un Code pour les Graphes Planaires et ses Applications. Astérisque 27
(1970), Société Math. de France.
[5] Dehlinger, C., Dufourd, J.-F.: Formalizing the trading theorem in Coq. Theoretical
Computer Science 323 (2004), 399-442.
[6] Dufourd, J.-F., Puitg, F.: Fonctional specification and prototyping with combinatorial
oriented maps. Comp. Geometry - Th. and Appl. 16 (2000), 129-156.
[7] Dufourd, J.-F.: Design and certification of a new optimal segmentation program with
hypermaps. Pattern Recognition 40 (2007), 2974-2993.
[8] Dufourd, J.-F.: A hypermap framework for computer-aided proofs in surface subdivi-
sions: Genus theorem and Euler’s formula. In: 22nd ACM SAC (2007), 757-761.
[9] Frangon, J.: Discrete Combinatorial Surfaces. CVGIP : Graphical Models and Image
Processing 57:1, (1995), 20-26.
[10] Gonthier, G.: A computer-checked proof of the Four Colour Theorem. Microsoft Re-
search, Cambridge, http://coq.inria.fr/doc/main.html (2005), 57 pages.
[11] Griffiths, H.: Surfaces. Cambridge University Press (1981).
[12] Hales, T.: A verified proof of the Jordan curve theorem. Seminar Talk. Dep. of Math.,
University of Toronto (2005), http://www.math.pitt.edu/~thales.
[13] Kornilowicz A.: Jordan Curve Theorem. In: Formalized Mathematics 13:4 (2005),
Univ. of Bialystock, 481-491.
[14] Rosenfeld, A.: Picture Languages - Formal Models for Picture Recognition. In: Comp.
Science and Appl. Math. series. Academic Press, New-York (1979).
[15] Tutte, W.T.: Combinatorial oriented maps. Can. J. Math., XXXI:5 (1979), 986-1004.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 265-276
www.stacs-conf.org

TRIMMING OF GRAPHS,
WITH APPLICATION TO POINT LABELING

THOMAS ERLEBACH !, TORBEN HAGERUP 2, KLAUS JANSEN 2 MORITZ MINZLAFF 4,
AND ALEXANDER WOLFF °

! Department of Computer Science, University of Leicester, Leicester LE1 7RH, England.
E-mail address: t.erlebach@mcs.le.ac.uk

2 Institut fiir Informatik, Universitiit Augsburg, 86135 Augsburg, Germany.
E-mail address: hagerup@informatik.uni-augsburg.de

3 Institut fiir Informatik und Praktische Mathematik, Universitat Kiel, 24098 Kiel, Germany.
E-mail address: kj@informatik.uni-kiel.de

4 Institut fiir Mathematik, Technische Universitit Berlin, 10623 Berlin, Germany.
E-mail address: minzlaff@math.tu-berlin.de

® Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, the Netherlands.
URL: www.win.tue.nl/"awolff

ABSTRACT. For t,g > 0, a vertex-weighted graph of total weight W is (¢, g)-trimmable
if it contains a vertex-induced subgraph of total weight at least (1 — 1/t)W and with no
simple path of more than g edges. A family of graphs is trimmable if for each constant
t > 0, there is a constant g = g(¢) such that every vertex-weighted graph in the family
is (¢, g)-trimmable. We show that every family of graphs of bounded domino treewidth is
trimmable. This implies that every family of graphs of bounded degree is trimmable if the
graphs in the family have bounded treewidth or are planar. Based on this result, we derive
a polynomial-time approximation scheme for the problem of labeling weighted points with
nonoverlapping sliding labels of unit height and given lengths so as to maximize the total
weight of the labeled points. This settles one of the last major open questions in the theory
of map labeling.

1998 ACM Subject Classification: G.2.2 Graph Theory, 1.1.2 Algorithms.
Key words and phrases: Trimming weighted graphs, domino treewidth, planar graphs, point-feature label

placement, map labeling, polynomial-time approximation schemes.
Work supported by grant WO 758/4-2 of the German Research Foundation (DFG).

L SYMPOSIUM
V' ON THEORETICAL
) }‘_ ASPECTS

<4

K SSFEEQEMPUTER © T. Erlebach, T. Hagerup, K. Jansen, M. Minzlaff, and A. Wolff

© Creative Commons Attribution-NoDerivs License

266 T. ERLEBACH, T. HAGERUP, K. JANSEN, M. MINZLAFF, AND A. WOLFF

1. Introduction

1.1. Graph Trimming

In this paper we investigate the problem of deleting vertices from a given graph so as to
ensure that all simple paths in the remaining graph are short. We assume that each vertex
has a nonnegative weight, and we want to delete vertices of small total weight. Whereas
there is an extensive literature on separators, which can be viewed as serving to destroy all
large connected components, we are not aware of previous work on vertex sets that destroy
all long simple paths. Let us make our notions precise.

Definition 1.1. For t > 0 and g > 0, a (¢, g)-trimming of a vertex-weighted graph G =
(V, E) of total weight W is a set U C V of weight at most W/t such that every simple path
in G of more than g edges contains a vertex in U. If G has a (¢, g)-trimming, we also say
that G is (¢, g)-trimmable.

We say that a family of graphs is trimmable if, for every constant ¢ > 0, there is a
constant g > 0 (that depends only on t) such that every vertex-weighted graph in the
family is (¢, g)-trimmable. Of course, it suffices to demonstrate this for ¢ larger than an
arbitrary constant. Not every family of graphs is trimmable. For example, if n,t > 2 and
we delete a (1/t)-fraction of the vertices in an unweighted n-clique K,,, the remaining graph
still has a simple path of n(1 —1/t) — 1 edges. This expression is not bounded by a function
of t alone, so the family of complete graphs is not trimmable.

With a little effort, one can show the family of trees to be trimmable. One popular
generalization of trees is based on the definition below. Given a graph G = (V, E) and a
set U C V, we denote by G[U] the subgraph of G induced by U. The union of graphs
G, = (Vi, E;), for i = 1,...,m, is the graph U;~, G; = (U=, Vi, Ui~ E;).

Definition 1.2. A tree decomposition of an undirected graph G = (V, E) is a pair (T, B),
where T = (X, Er) is a tree and B : X — 2" maps each node = of T to a subset of V,
called the bag of =, such that

¢ U,ex G[B(z)] = G, and

o for all z,y,z € X, if y is on the path from z to z in T, then B(z) N B(z) C B(y).
The width of the tree decomposition (7', B) is max,cx |B(z)| — 1, and the treewidth of G is
the smallest width of any tree decomposition of G.

This standard definition is given, e.g., by Bodlaender [Bod98]. The family of graphs
of treewidth at most 1 coincides with the family of forests. By analogy with several other
generalizations from the family of trees to families of graphs of bounded treewidth, it seems
natural to ask whether every family of graphs of bounded treewidth is trimmable. At present
we cannot answer this question; we need a concept stronger than bounded treewidth alone.

Definition 1.3. The elongation of a tree decomposition (7, B) is the maximum number of
edges on a simple path in 7" between two nodes with intersecting bags. For every s > 0,
let the s-elongation treewidth of an undirected graph G be the smallest width of a tree
decomposition of G with elongation at most s.

Since every graph has a trivial tree decomposition of elongation 0, the s-elongation
treewidth of every graph is well-defined for every s > 0. The 1-elongation treewidth is the
domino treewidth studied, e.g., by Bodlaender [Bod99].

TRIMMING OF GRAPHS 267

Our main result about graph trimming, proved in Section 2, is that for all fixed
s > 0, every family of graphs of bounded s-elongation treewidth is trimmable. Ding and
Oporowski [DO95] proved that the domino treewidth of a graph can be bounded by a
function of its usual treewidth and its maximum degree. It follows that every family of
graphs of bounded treewidth and bounded degree is also trimmable. We derive from this
that all families of planar graphs of bounded degree are trimmable as well. This result has
applications described below.

1.2. Label Placement

Our main motivation for investigating trimmable graph families arose in the context
of labeling maps with sliding labels. Generally speaking, map labeling is the problem of
placing a set of labels, each in the vicinity of the object that it labels, while meeting certain
conditions. For an overview, see the map-labeling bibliography [WS96]. First of all, labels
are not allowed to overlap. As a consequence, it may not be possible to label all objects in
a map, and the goal is to make an optimal selection according to some criterion. When a
point feature such as a town or a mountain top is to be labeled, the label can usually be
approximated without much loss by an axes-parallel rectangular shape and must be placed
in the plane without rotation so that its boundary touches the point. One distinguishes
between fized-position models and slider models. In fixed-position models, each label has
a predetermined finite set of anchor points on its boundary (e.g., the four corner points),
and the label must be placed so that one of its anchor points coincides with the point to be
labeled. In slider models, the anchor points form anchor segments on the boundary of the
label (e.g., its bottom edge).

Van Kreveld et al. [vKSW99] introduced a taxonomy of fixed-position and slider models,
which was later refined by Poon et al. [PSST03]. We use the slider models 1SH, 2SH and 4S
of Poon et al., which define the anchor segments of a label to be its bottom edge, its top and
bottom edges, and its entire boundary, respectively. We always require labels to be unit-
height rectangles. This models the case in which all labels contain single text lines of the
same character height. Fig. 1 illustrates the 1SH model. We assume that each point to be
labeled comes equipped with a nonnegative weight, which may be used to express priorities
among the points. If points represent villages, towns and cities on a map, priorities may
correspond to the number of inhabitants, for example. Our objective is to label points with
nonoverlapping labels so as to maximize the sum of the weights of those points that actually
receive a label. This objective function causes points with large weights (e.g., large cities)
to be likely to be labeled. We refer to the specific map-labeling problems described in this
paragraph as weighted unit-height 1SH-labeling, etc. Since the qualifiers “weighted” and
“unit-height” apply throughout the paper, we may occasionally omit them.

Recall that for p < 1, a p-approzimation algorithm for a maximization problem is an
algorithm that always outputs a solution of value at least p times the optimal objective
value. An algorithm that takes an additional parameter € > 0 and, for each fixed ¢, is a
polynomial-time (1 — ¢)-approximation algorithm is called a polynomial-time approzimation
scheme (PTAS). If the running time depends polynomially on € as well, the algorithm is a
fully polynomial-time approzimation scheme (FPTAS).

Poon et al. [PSST03] show that finding an optimal weighted unit-height 1SH-labeling
is NP-hard, even if all points lie on a horizontal line and the weight of each point equals
the length of its label. For the one-dimensional case, in which all points lie on a horizontal

268 T. ERLEBACH, T. HAGERUP, K. JANSEN, M. MINZLAFF, AND A. WOLFF

Nl

Figure 1: A 1SH-labeling L

line, they give an FPTAS, which yields an O(n?/¢)-time (1/2 — ¢)-approximation algorithm
for the two-dimensional case for arbitrary ¢ > 0. Poon et al. also describe a PTAS for
unit-square labels. They raise the question of whether a PTAS exists for rectangular labels
of arbitrary length and unit height. This is known to be the case for fixed-position models
[AvKS98] and for sliding labels of unit weight [vKSW99]. The corresponding (1 — ¢)-
approximation algorithms run in n®1/¢) and @1/ e%) time, respectively, for arbitrary € >
0. The question of whether the combination of both sliding labels and arbitrary weights
allows a PTAS has been one of the last major open problems in (theoretical point-feature)
map labeling. In a preliminary version of this paper [EHJT06], we made some progress
in answering this question. We gave a (2/3 — ¢)-approximation for weighted unit-height
1SH-labeling with running time n9(/ 52), for arbitrary € > 0, and showed that the same
approach yields a PTAS if the ratio of longest to shortest label length is bounded.

In Section 3 we settle the open question of Poon et al. by presenting a PTAS for
weighted unit-height 1SH-labeling. There are no restrictions on label weights and lengths.
Our approach is to discretize a given instance I of the weighted unit-height 1SH-labeling
problem, i.e., to turn it into a fixed-position instance I’, after which we can apply a known
fixed-position algorithm to I’. The main difficulty is to find a “suitable” set of discrete label
positions for each point. “Suitable” means that the weight of an optimal labeling of I’ must
be close enough to the weight of an optimal labeling of I. Dependencies between labels
can be modeled via a graph, and long simple paths in this graph translate into large sets
of anchor points that cannot be left out of consideration. Here our results from Section 2
come into play. We prove that the family of dependency graphs, if carefully defined, is
trimmable, and we show how this may be used to bound the number of anchor points by a
polynomial. We also show how to extend our PTAS for (weighted unit-weight) 1SH-labeling
to the related 2SH-labeling and 4S-labeling problems.

2. Trimming of Graphs

In this section we show that for every constant s, every family of graphs of bounded
s-elongation treewidth is trimmable. This implies that every family of graphs of bounded
degree is trimmable if the graphs in the family have bounded treewidth or are planar.

Theorem 2.1. Let k,s > 0 and suppose that a vertex-weighted undirected graph G has a
tree decomposition D of width k and elongation s. Take a =k+1if s > 2 and a = [k/2] if
s < 1. Then, for every integert > 2, G has a (t, g)-trimming, where g = (2(s+1)t—3)(k+1)
ifa <1 and

g = (@ D2(a 4 1) — 9k +1)/(a—1)

TRIMMING OF GRAPHS 269

if a > 2. Therefore, for every constant s, every family of graphs of bounded s-elongation
treewidth is trimmable.

Proof. Let D = (T, B), root T at an arbitrary node and let U be the set of vertices in bags
whose depth d in T satisfies d mod (s 4+ 1)t = i, with the integer i chosen to minimize the
weight of U. We show that U is a (¢, g)-trimming of G.

Let G = (V, E) and denote the total weight of the vertices in V by W. Since each vertex
in V occurs in bags on at most s+ 1 levels in T, the sum, over all levels, of the weight of the
vertices occurring in bags on the level under consideration is at most (s + 1)W. Therefore,
by the choice of 4, the weight of U is at most (s + 1)W /((s + 1)t) = W/t, as desired.

Let m = (vg, ..., vn) be a simple path in G of m > 1 edges and, for i = 1,...,m, choose
a node z; in T whose bag contains both v;_; and v;. Because T is connected, there is a
path from z; to ;41 (or they coincide), for i = 1,...,m —1, so 7w can be viewed as inducing

a walk ' in T. The walk 7’ may visit a node x in T several times. However, each visit to
“uses” a vertex in B(x) that cannot be reused later, so no node of 7' occurs more than k+ 1
times on 7’. If s < 1, we can strengthen this statement as follows: For ¢ = 1,...,m — 1,
the nodes x; and z;,1 must coincide or be adjacent, so each visit by 7’ to a node x “uses”
two vertices in B(x), rather than just one, and the number of such visits is bounded by
[(k+1)/2] = [k/2]. In either case, therefore, the nodes on 7’ span a subtree 7" of T' in
which no node has more than a children, except that the root may have a4+ 1 children. The
number of nodes at depth d in such a tree is bounded by (a + 1)a®"!, for all d > 0, and
therefore the number of nodes at depth at most d is bounded by 2d + 1 if ¢ = 1 and by
1+ (a+1D(a?=1)/(a—1)=((a+1)a? - 2)/(a —1) ifa > 2.

Suppose that 7 contains no vertex in U. Then, by the choice of U, the depth of T"
is at most (s + 1)t — 2, and the number of nodes in 77 is at most 2(s + 1)t — 3 if a = 1
and at most (aCtV2(q + 1) — 2)/(a — 1) if @ > 2. Since each bag contains at most
kE + 1 vertices, it follows that m +1 < (2(s + 1)t — 3)(k + 1) if a = 1 and that m + 1 <
(Gt 2(g +1) = 2)(k+1)/(a—1) ifa > 2. .
Corollary 2.2. For all integers k > 0, d > 1 and t > 2, every verter-weighted undirected
graph of treewidth k with mazimum degree d has a (t, [K/2]?")-trimming, where K = (9k +

7)d(d+ 1) — 1. Hence, every family of graphs with bounded degree and bounded treewidth is
trimmable.

Proof. According to Bodlaender [Bod99, Theorem 3.1], every such graph has a domino tree
decomposition of width at most K. Except in the trivial case k = 0, we have K > 31. By
Theorem 2.1, used with s = 1, the graph has a (¢, g)-trimming, where

g=([K/21*72([K/2] +1) = 2)(K + 1)/([K/2] = 1) < [K/2]*.

We can extend this result to planar graphs of bounded degree.

Corollary 2.3. For all integers d,t > 1, every vertex-weighted undirected planar graph of
mazimum degree d has a (t,[K/2]%)-trimming, where K = (54t — 29)d(d + 1) — 1. Hence
every family of planar graphs of bounded degree is trimmable.

Proof. Let G = (V, E) be a planar graph with maximum degree d and denote the total
weight of the vertices in V' by W. We first follow the approach of Baker [Bak94] to obtain
a (2t — 1)-outerplanar subgraph of G by deleting vertices of total weight at most W/(2t).

270 T. ERLEBACH, T. HAGERUP, K. JANSEN, M. MINZLAFF, AND A. WOLFF

Consider an arbitrary planar embedding of G. Partition the vertices of G into layers by re-
peatedly deleting the vertices on the boundary of the outer face until no vertex remains. The
vertices deleted in one iteration of this process form a layer. Number the layers R1, Ro, ...
in the order of their deletion. For every j € {0,1,...,2t — 1}, consider the set V; of vertices
in layers R; with i mod (2t) = j, choose j such that the total weight of V; is at most W/(2t)
and consider the subgraph H; of G induced by V' \ V.

Hj is (2t — 1)-outerplanar and thus has treewidth at most 6¢ — 4 [Bod98, Theorem 83].
By Corollary 2.2, H; has a (2t, [K/2]*)-trimming U. The set V; UU has weight at most
W/(2t) + W/(2t) = W/t and is therefore a (¢, [K/2]%)-trimming of G. "

Remark 2.4. A better dependence of the bound in Corollary 2.3 on ¢ can be achieved by
deleting less than 1/(2t) of the weight of the graph in the first step, so that more than 1/(2t)
of the weight can be deleted when Corollary 2.2 is applied. In this way, the treewidth of H;
and thus the value of K increases, but the exponent of the bound becomes smaller than 4¢.
More precisely, if we delete 1/(at) of the weight in the first step, for some o > 2, then the
resulting bound is [K/2]2[*/(e=D1 with K = (27at — 29)d(d 4+ 1) — 1. For each pair (d, t),
there is a value of o that optimizes the resulting bound.

3. Labeling Weighted Points with Sliding Labels

In this section we define the labeling problems of relevance to us formally and show that
there are polynomial-time approximation schemes for weighted unit-height 1SH-labeling,
2SH-labeling and 4S-labeling. We use R, R+ and R>(to denote the sets of real numbers,
of positive real numbers and of nonnegative real numbers, respectively, and R? is the two-
dimensional Euclidean plane.

Definition 3.1. An instance of the weighted unit-height 1SH-labeling problem is a triple
I = (P,l,w), where P is a finite subset of R? and [: P — Ryg and w : P — Rxq are
functions defined on P. |P| is called the size of I.

In the definition of 1SH-labeling, P represents the set of points to be labeled, and for
each p € P, I(p) is the length of the label of p and w(p) is the weight of p. When (P, [, w) is
an instance of the 1SH-labeling problem and @ C P, we call w(Q) = ZpeQ w(p) the weight

of Q.

Definition 3.2. A feasible solution or labeling of an instance I = (P,l,w) of the weighted
unit-height 1SH-labeling problem is a pair L = (Q, z), where @ C P and z : Q — Ris a
function with p, —I(p) < z(p) < p, for all p = (ps, py) € @ such that for all p = (p,, p,) and
q = (¢z,qy) in Q with p # g and |py —qy| < 1, either z(p)+1(p) < 2(q) or 2(q) +1(q) < z(p).
The weight of L is the weight of Q, and L is optimal if no labeling of I has greater weight
than L.

Informally, @ is the set of points in P that receive a label, and for each p € Q, z(p)
denotes the z-coordinate of the left edge of the label of p. The condition p,—I(p) < z(p) < px
for all p = (pa,py) € Q expresses that p lies on the bottom edge of its label. Let us say
that two points p = (ps,p,) and ¢ = (gz, gy) in R? y-overlap if |p, — q,| < 1. The condition
z(p) + U(p) < 2(q) or z(q) + 1(q) < z(p) for each pair (p,q) of distinct y-overlapping points
in () expresses that labels are not allowed to overlap.

TRIMMING OF GRAPHS 271

We define an instance of the weighted unit-height multi-position labeling or 1MH-labeling
problem as a pair (I, M), where I = (P,l,w) is an instance of the weighted unit-height 1SH-
labeling problem and M is a function that maps each point in P to a finite subset of R. A
labeling of (I, M) is a labeling (Q, z) of I such that z(p) € M(p) for all p € Q. If M maps
all p € P to the same set M C R, we may write (I, M) as (I, M). The principal technical
contribution of this section is a reduction of 1SH-labeling to 1MH-labeling. Before giving a
precise description of the reduction, we provide an informal overview.

The reduction maps an instance I of 1SH-labeling to an instance of 1MH-labeling
of the form (I, M), where M C R. It therefore suffices to show that a suitable set M
exists and can be computed sufficiently fast. As a step towards this goal, we describe a
normalization procedure that transforms an arbitrary given labeling of I into one of (I, M).
The normalization is introduced for the sake of argument only and is not actually carried
out as part of the reduction.

The top-level idea behind the normalization is to process the labels of the given labeling
in the order from left to right, pushing each label as far to the left as it can go without
bumping into another label or being separated from the point that it labels. It is easy
to observe that in every normalized labeling, the position of each label (taken to be the
x-coordinate of its left edge) is the sum of the z-coordinate of some labeled point and some
number of label lengths, minus its own length. This still leaves too many possibilities,
however, since essentially every selection of points to receive labels may give rise to a
different position of a given label.

The dependencies between labels can be modeled in a natural way through a directed
dependency graph G: If the label of a point ¢, moving left, may bump into that of a point p,
then G includes the edge (p,q). The problem identified above stems from the fact that G
may have very long paths, corresponding to chains of many labels that may touch and
influence each other. Our defense against this is trimming, so we must ensure that G is
trimmable. Assuming that this is so, we can break all paths with more than a constant
number of edges by dropping labels of small total weight, which reduces the number of
possible label positions to a polynomial. Afterwards we must re-normalize, however, since
otherwise the trimming buys us nothing. This gives rise to another problem, in that the
re-normalization may create new long paths. In order to counter this, we introduce vertical
stopping lines and modify the normalization to never push the left edge of a label past
a stopping line. As long as at least one stopping line passes through each dropped label
(including its boundary), we can be sure that the re-normalization creates no new paths.
Fairly arbitrarily, for every label, we choose to put stopping lines through the left and right
edges of the area occupied by the label in its leftmost position (if no other labels obstruct
its movement). This also ensures in a simple way that no label gets separated from the
point that it labels. Now labels with their right edge to the left of or on a stopping line ¢
cannot influence labels with their left edge to the right of or on £, so we can remove all edges
from G that cross a stopping line. This turns out to have the beneficial effect of making G
planar and of bounded degree, which implies that it is trimmable, as needed above.

By attaching real-valued lengths to the edges of G and adding an additional vertex O
with incident edges described below to GG, we can obtain the position of the label of each
point p as the length of a path from O to p. Every edge (p, q¢) between two points p and ¢ is
given a length equal to that of the label of p, since that is the distance that the left edge of
the label of ¢ must keep from that of p. Every stopping line ¢, passing through (z,0), say,
and every point p give rise to an edge from O (which can be thought of as representing the

272 T. ERLEBACH, T. HAGERUP, K. JANSEN, M. MINZLAFF, AND A. WOLFF

y-axis) to p of length x, since x is the distance that the left edge of the label of p, because
of ¢, must keep from the y-axis if it begins its movement to the right of £ or on £. Now the
label of each point p will move to a position that is precisely the largest length of a path
from O to p no larger than the original position of the label.

Every stopping line adds to the number of possible label positions in a normalized
labeling, but the dependence on the number of stopping lines is only linear. In fact, because
of a later need for this added flexibility, Lemma 3.3 below allows the specification of an
arbitrary set S of x-coordinates of additional stopping lines. The fact that the left edge of
a label crosses no additional stopping line as it moves left can be expressed by saying that
the movement leaves the rank in S of the position of the label invariant.

Lemma 3.3. Given an instance I = (P,w,l) of the weighted unit-height 1SH-labeling prob-
lem of size n, a finite set S C R and an e € R with 0 < e < 1, in O((n + |S|)n9) time,
where g = (1/e)°0/2) we can compute a set M C R with |M| < (2n + |S|)n? such that
for every labeling (Q, z) of I, the instance (I, M) of the weighted unit-height 1MH-labeling
problem has a labeling (Q', 2") with Q" C Q of weight at least (1 — e)w(Q) such that for all
pe @, 2 (p) < z(p) and 2'(p) and z(p) have the same rank in S.

Proof. Take S’ = SU U(p%py)ep{pm —I(p),p:} and let G = (Q, E) be the directed graph with

edge lengths on the vertex set @ that, for all p = (p,,py) and ¢ = (¢z,qy) in @, contains
the edge (p, q) with length [(p) exactly if p, < ¢z, |py — ¢y| < 1 and there is no x € S’ with
z(p) + U(p) < x < z(q). Moreover, let H be the undirected graph on the vertex set @) that
contains an edge {p, ¢}, for all p,q € Q with p # ¢, exactly if p and ¢ y-overlap.

Let us say that two points p = (py,py) and r = (ry,7y) in Q x-surround a point
q = (G qy) f pr < qp <rporry < qp <py. Let p, ¢ = (gs,qy) and r be three points
in @, every two of which y-overlap, and suppose that z(p) < z(¢) < z(r). Then we must
clearly have z(p) + I(p) < 2(q) < q» < 2(q) +1(q) < z(r), which, since ¢, € S’, implies
that (p,r) ¢ E. This proves the following triangle property: If (p,q) € E, then p and ¢
z-surround no neighbor of both in H.

If p = (pz,py) € Q, then all in- and out-neighbors of p in G lie in the open horizontal
strip of height 2 centered on the line y = y,. Therefore, if p has in- or out-degree 3 or
more, two in-neighbors or two out-neighbors of p are neighbors in H, which contradicts the
triangle property. Thus all in- and out-degrees of G are bounded by 2.

We next prove that G is planar. Consider an embedding of G that maps each point in @
to itself and each edge in E to a straight line segment and assume to the contrary that for
two edges (p1,q1) and (p2,q2) in E with |{p1,q1,p2,q2}| = 4, the corresponding closed line
segments p1qr and pags intersect in a point u = (uy,uy). Call p; and ¢; as well as pp and g2
partners and let Hy be the subgraph of H spanned by the vertex set Q4 = {p1,q1,p2,q2}-

All points in @4 lie in the open horizontal strip of height 2 centered on the line £
defined by y = u,. If there are a topmost point in @4 (one of maximal y-coordinate) and
a bottommost point in ()4 that are partners, then, since these y-overlap, all pairs of points
in Q4 y-overlap, and H,4 is a complete graph. Otherwise there is a unique topmost point
and a unique bottommost point in @4, these extreme points are not partners, and each of
the two other points in Q4 lies on £ or on the opposite side of £ with respect to its extreme
partner. Each nonextreme point in)4 y-overlaps both extreme points, and hence also the
fourth point in @4, either by virtue of lying on ¢ or because one extreme point is its partner,
while the other extreme point lies on the same side of ¢ as itself. This means that H4 is a
complete graph, except that the two extreme points may not be neighbors.

TRIMMING OF GRAPHS 273

Figure 2: a and d lie in distinct gray areas and are therefore on opposite sides of bc.

Because the two line segments between partners intersect, some two points in Q4 that
are partners, say, a and b, must xz-surround another point in @4, say, c¢. By the triangle
property, H lacks one of the edges {a,c} and {b, c}, say, {b,c}, so H is not complete and b
and c are extreme. The partner of ¢, say, d, is not extreme, so it is not z-surrounded by a
and b. This implies that ¢ and d x-surround a or b and, in fact, since a is not extreme, that
they z-surround b. The two extreme points b and ¢ can now be seen to be z-surrounded by
a and d. But then it is geometrically clear that a and d belong to opposite open halfspaces
bounded by the line through b and ¢ (see Fig. 2), a contradiction to the fact that ab and cd
intersect.

We have demonstrated that G is planar and of bounded degree and therefore trimmable.
With ¢t = 2/e, let U be a (t, g)-trimming set of G for some integer g > 0 with g = o)
this is possible by Corollary 2.3—and take Q' = Q \ U. Let G be the multigraph obtained
from G by adding a new vertex O and, for each x € S’ and each p € @, an edge from O
to p of length x.

For all p € @', let a p-path be a path in G[{O} U Q'] from O to p and define the
length of a p-path as the sum of the lengths of its edges. For all p = (pg,py) € @', let
Z'(p) be the largest length of a p-path that does not exceed z(p)—this is well-defined since
z(p) > ps — I(p), while there is an edge, and hence a path, in G from O to p of length
Pz — l(p). We will show that (Q’,2) is a labeling of I. First, for each p = (ps,py) € @', the
relation p, —I(p) < 2/(p) < 2(p) < p, was essentially argued above. Second, we must show,
informally speaking, that the labels of the points in @', if placed as indicated by z’, do not
overlap.

Let p = (pe,py) and g = (¢, qy) be y-overlapping points in @’ and assume, without
loss of generality, that z(p) < z(q) and therefore that z(p) + l(p) < z(q). If G contains the
edge (p, q), then, since 2'(p) is the length of a p-path, 2/(p) + I(p) is the length of a ¢g-path
and, by definition of 2/, we have 2'(q) > 2/(p) + I(p). If G does not contain the edge (p,q),
there is an x € ' with z(p) +I(p) < = < z(q). Again by definition of 2/, since G contains
an edge from O to ¢ of length z, it follows that 2'(¢) > x > z(p) + I(p) > 2'(p) + I(p). In
either case, the labels of p and ¢, placed according to z’, do not overlap.

We have w(Q') > (1 — 1/t)w(Q), and for each p € Q', 2/(p) is the length of a p-path.
The length of every p-path belongs to the set M of all sums of an element of S’ and at
most g elements of {I(p) | p € P}. The set M is of size at most (2n + |S|)n? and can be
computed in O((n + |S|)nY) time. Let p € Q. Since for each x € S there is a p-path of
length x, it is easy to see that stepping from z(p) to z’(p) does not descend strictly below
any x € S, i.e., 2/(p) has the same rank in S as z(p).]

274 T. ERLEBACH, T. HAGERUP, K. JANSEN, M. MINZLAFF, AND A. WOLFF

We need to show how to solve the instance of the 1MH-labeling problem obtained
using Lemma 3.3. Agarwal et al. [AvKS98] have given a PTAS that finds near-maximum
independent sets in any given set of axes-aligned unit-height rectangles. They assume
that rectangles are topologically closed. Under this assumption it is easy to argue that
their PTAS for maximum independent set at the same time is a PTAS for maximizing the
number of points labeled with unit-height rectangular labels in some fixed-position model.
The reason is simply that, by definition, any two label candidates of the same point must
touch this point. If label candidates are closed, one label candidate automatically excludes
the other from the solution. Unfortunately, this is not the case if we consider labels to be
open; e.g., in the 1SH-model the leftmost and the rightmost label candidate of a point do
not intersect, so an algorithm for maximum independent set would not automatically yield
feasible solutions for multi-position labeling. However, we can adapt the PTAS of Agarwal
et al. to this case. In fact, the adapted PTAS can deal with the weighted unit-height
generalized multi-position labeling or 4M-labeling problem, in which each label specifies an
arbitrary finite set of anchor points on its boundary. If a point is labeled, its label must be
placed so that one of its anchor points coincides with the point to be labeled.

Lemma 3.4. There is a PTAS for the weighted unit-height 4M-labeling problem. The
running time for computing a (1—¢)-approzimate solution is nOW/e) | for alle with0 < e < 1.

Clearly, a PTAS for 4M-labeling is also a PTAS for the more restricted 1MH-labeling
problem.

Theorem 3.5. Given an instance I of the weighted unit-height 1SH-labeling problem of size
n and an € € R with 0 < ¢ < 1, a labeling of I of weight at least (1 — ¢) times the weight

of an optimal labeling of I can be computed in nto" time, where t = 2/e. The weighted
unit-height 1SH-labeling problem therefore admits a PTAS.

Proof. Let W* be the weight of an optimal labeling of I. Use the algorithm of Lemma 3.3
with S = () to compute a set M C R with |M| < 2n9"! where g = t9®) guch that the
instance I’ = (I, M) of the weighted unit-height 1MH-labeling problem has a labeling of
weight at least (1 — 1/¢t)W*. Applying the PTAS of Lemma 3.4 to I, we obtain a labeling
of I, and therefore of I, of weight at least (1 — 1/t)?W* > (1 —2/t)W* = (1 — e)W* in
time (n9+2)0®) = nt”" which dominates the time needed by the first step. "

This result can be extended without much effort to the slightly more general labeling
model 2SH, where a label must touch the point labeled with either its top or bottom edge.

Corollary 3.6. There is a PTAS for weighted unit-height 2SH-labeling.

Proof. 2SH-labeling can be reduced to 1SH-labeling—imagine adding to each original input
point a copy at a distance of 1 below it. Then we use the reduction from 1SH-labeling
to 1MH-labeling described in Lemma 3.3. In the resulting instance of 1MH-labeling, we
discard the copies of points and view each label of a copy of a point as labeling the original
point. Now we can apply the PTAS of Lemma 3.4 to the resulting instance of 4M-labeling. m

A further generalization allows us to deal also with the most general slider model, 4S,
in which a label may have the point that it labels anywhere on its boundary.

Corollary 3.7. There is a PTAS for weighted unit-height 4S-labeling.

TRIMMING OF GRAPHS 275

Proof sketch. Let an instance I = (P,l,w) of the 4S-labeling problem (which is the same
as an instance of the 1SH-labeling problem) be given. Each point p € P can be labeled
with a horizontally sliding label that touches p with its bottom edge (or top edge), or by
a vertically sliding label that touches p with its left edge (or right edge). This means that
there are four types of rectangles that can potentially label p, all of which are taken into
account in the following. Applying Lemma 3.3 twice (once horizontally and once vertically),
we compute an instance [, of the 1IMH-labeling problem for the positions of horizontally
sliding labels, specifying vertical stopping lines at z-positions p, — I(p), p, and p, + I(p) for
all p = (ps,py) in P, and another instance I, for the positions of vertically sliding labels,
specifying horizontal stopping lines at y-positions p, — 1, p, and p, + 1 for all p = (ps, py)
in P. Consider an optimal labeling L of I and let @ be the set of points that it labels. Let
Qn and @y be the sets of points in @) that are labeled with a horizontally sliding label and
with a vertically sliding label, respectively. By Lemma 3.3, there is a solution Lj, for I, that
labels points @}, € @y, and a solution L, for I, that labels points Q! C Qy, of weights at
least (1—¢e)w(Qp) and (1 —e)w(Qy), respectively. Furthermore, the labels in @}, reach their
positions in L from their position in L by sliding horizontally without crossing a vertical
stopping line. Thus, they do not interfere with the vertical movement that vertically sliding
labels undergo in the transition from L to L/, and vice versa. Consequently, the union of Lj
and L/, (defined in the obvious way) is a labeling of I of weight at least (1 —) times the
optimum. Applying the PTAS of Lemma 3.4 to I;, U I, we obtain a solution of I of weight
at least (1 —e)w(Q} UQY) > (1 —£)?w(Q), which completes the proof.]

4. Open Problems

Corollary 2.2 states that a family of graphs is trimmable if it is of bounded treewidth
and bounded degree. We cannot exclude, however, that the bounded-degree condition is
superfluous. In other words, with N = {1,2,...}, is there a function g : NxN — N such that
for all k,t € N, every weighted undirected graph of treewidth k has a (t, g(k,t))-trimming?
The answer is yes in the unweighted case, i.e., if all weights are the same. If the answer
were generally yes, it would follow by the argument in the proof of Corollary 2.3 that the
family of planar graphs is also trimmable. More generally, the question of which families of
graphs are trimmable deserves further study.

Acknowledgments

We thank Hans Bodlaender for pointing us to the concept of domino treewidth.

References

[AvKS98] Pankaj K. Agarwal, Marc van Kreveld, and Subhash Suri. Label placement by maximum inde-
pendent set in rectangles. Comput. Geom. Theory Appl., 11:209-218, 1998.

[Bak94] Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J.
ACM, 41:153-180, 1994.

[Bod98] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput.
Sci., 209(1-2):1-45, 1998.

[Bod99] Hans L. Bodlaender. A note on domino treewidth. Discrete Math. Theor. Comput. Sci., 3(4):141—
150, 1999.

276

[DOYS)

[EHJ*06]

[PSSt03)
[VKSW99]

[WS96]

T. ERLEBACH, T. HAGERUP, K. JANSEN, M. MINZLAFF, AND A. WOLFF

Guoli Ding and Bogdan Oporowski. Some results on tree decomposition of graphs. J. Graph
Theory, 20:481-499, 1995.

Thomas Erlebach, Torben Hagerup, Klaus Jansen, Moritz Minzlaff, and Alexander Wolff. A new
approximation algorithm for labeling weighted points with sliding labels. In Proc. 22nd European
Workshop on Computational Geometry (EWCG’06), pages 137-140, Delphi, 2006.
Sheung-Hung Poon, Chan-Su Shin, Tycho Strijk, Takeaki Uno, and Alexander Wolff. Labeling
points with weights. Algorithmica, 38(2):341-362, 2003.

Marc van Kreveld, Tycho Strijk, and Alexander Wolff. Point labeling with sliding labels. Comput.
Geom. Theory Appl., 13:21-47, 1999.

Alexander Wolff and Tycho Strijk. The Map-Labeling Bibliography.
http://illwww.ira.uka.de/map-labeling/bibliography, 1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/ .

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 277-288
www.stacs-conf.org

COMPUTING MINIMUM SPANNING TREES WITH UNCERTAINTY

THOMAS ERLEBACH ', MICHAEL HOFFMANN ', DANNY KRIZANC 2, MATUS MIHAL’'AK 2,
AND RAJEEV RAMAN !

! Department of Computer Science, University of Leicester, UK.
FE-mail address: {tel7,mh55,rr29}@mcs.le.ac.uk

2 Department of Mathematics and Computer Science, Wesleyan University, USA.
E-mail address: dkrizanc@wesleyan.edu

3 Institut fiir Theoretische Informatik, ETH Ziirich, Switzerland.
E-mail address: matus.mihalak@inf.ethz.ch

ABSTRACT. We consider the minimum spanning tree problem in a setting where informa-
tion about the edge weights of the given graph is uncertain. Initially, for each edge e of
the graph only a set A., called an uncertainty area, that contains the actual edge weight
we is known. The algorithm can ‘update’ e to obtain the edge weight w. € A.. The task
is to output the edge set of a minimum spanning tree after a minimum number of updates.
An algorithm is k-update competitive if it makes at most k& times as many updates as the
optimum. We present a 2-update competitive algorithm if all areas A, are open or trivial,
which is the best possible among deterministic algorithms. The condition on the areas A,
is to exclude degenerate inputs for which no constant update competitive algorithm can
exist.

Next, we consider a setting where the vertices of the graph correspond to points in
Euclidean space and the weight of an edge is equal to the distance of its endpoints. The
location of each point is initially given as an uncertainty area, and an update reveals the
exact location of the point. We give a general relation between the edge uncertainty and
the vertex uncertainty versions of a problem and use it to derive a 4-update competitive
algorithm for the minimum spanning tree problem in the vertex uncertainty model. Again,
we show that this is best possible among deterministic algorithms.

Key words and phrases: Algorithms and data structures; Current challenges: mobile and net computing.

Part of the presented research was undertaken while the second and fifth author were on study leave from
the University of Leicester and the second author was visiting the University of Queensland. The authors
would like to thank these institutions for their support.

ASPECTS

! S%nggEPUTER © T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihal’ak, and R. Raman

€ Creative Commons Attribution-NoDerivs License

L SYMPOSIUM
mvl'_ ON THEORETICAL
<4

278 T. ERLEBACH, M. HOFFMANN, D. KRIZANC, M. MIHAL’AK, AND R. RAMAN

1. Introduction

In many applications one has to deal with computational problems where some parts of
the input data are imprecise or uncertain. For example, in a geometric problem involving
sets of points, the locations of the points might be known only approximately; effectively
this means that instead of the location of a point, only a region or area containing that point
is known. In other applications, only estimates of certain input parameters may be known,
for example in form of a probability distribution. There are many different approaches
to dealing with problems of this type, including e.g. stochastic optimization and robust
optimization.

Pursuing a different approach, we consider a setting in which the algorithm can obtain
exact information about an input data item using an update operation, and we are interested
in the update complexity of an algorithm, i.e., our goal is to compute a correct solution using
a minimum number of updates. The updates are adaptive, i.e., one selects the next item
to update based on the result of the updates performed so far, so we refer to the algorithm
as an on-line algorithm. There are a number of application areas where this setting is
meaningful. For example, in a mobile ad-hoc network an algorithm may have knowledge
about the approximate locations of all nodes, and it is possible (but expensive) to find
out the exact current location of a node by communicating to that node and requesting
that information. To assess the performance of an algorithm, we compare the number of
updates that the algorithm makes to the optimal number of updates. Here, optimality is
defined in terms of an adversary, who, knowing the values of all input parameters, makes
the fewest updates needed to present a solution to the problem that is provably correct,
in that no additional areas need to be updated to verify the correctness of the solution
claimed by the adversary. We say that an algorithm is k-update competitive if, for each
input instance, the algorithm makes at most k times as many updates as the optimum
number of updates for that input instance. The notions of update complexity and k-update
competitive algorithms were implicit in Kahan’s model for data in motion [6] and studied
further for two-dimensional geometric problems by Bruce et al. [2].

In this paper, we consider the classical minimum spanning tree (MST) problem in two
settings with uncertain information. In the first setting, the edge weights are initially given
as uncertainty areas, and the algorithm can obtain the exact weight of an edge by updating
the edge. If the uncertainty areas are trivial (i.e., contain a single number) or (topologically)
open, we give a 2-update competitive algorithm and show that this is best possible for deter-
ministic algorithms. Without this restriction on the areas, it is easy to construct degenerate
inputs for which there is no constant update competitive algorithm. Although degeneracy
could also be excluded by other means (similar to the “general position” assumption in
computational geometry), our condition is much cleaner.

In the second setting that we consider, the vertices of the graph correspond to points
in Euclidean space, and the locations of the points are initially given as uncertainty areas.
The weight of an edge equals the distance between the points corresponding to its vertices.
The algorithm can update a vertex to reveal its exact location. We give a general relation
between the edge uncertainty version and the vertex uncertainty version of a problem.
For trivial or open uncertainty areas we obtain a 4-update competitive algorithm for the
MST problem with vertex uncertainty and show again that this is optimal for deterministic
algorithms.

COMPUTING MINIMUM SPANNING TREES WITH UNCERTAINTY 279

Related Work. We do not attempt to survey the vast literature dealing with problems
on uncertain data, but focus on work most closely related to ours. Kahan [6] studied the
problem of finding the maximum, the median and the minimum gap of a set of n real values
constrained to fall in a given set of n real intervals. In the spirit of competitive analysis, he
defined the lucky ratio of an update strategy as the worst-case ratio between the number
of updates made by the strategy and the optimal number of updates of a non-deterministic
strategy. In our terminology, a strategy with lucky ratio k is k-update competitive. Kahan
gave strategies with optimal lucky ratios for the problems considered [6].

Bruce et al. studied the problems of computing maximal points or the points on the
convex hull of a set of uncertain points [2] and presented 3-update competitive algorithms.
They introduced a general method, called the witness algorithm, for dealing with problems
involving uncertain data, and derived their 3-update competitive algorithms using that
method. The algorithms we present in this paper are based on the method of the witness
algorithm of [2], but the application to the MST problem is non-trivial.

Feder et al. [5, 4], consider two problems in a similar framework to ours. Firstly, they
consider the problem of computing the median of n numbers to within a given tolerance.
FEach input number lies in an interval, and an update reveals the exact value, but different
intervals have different update costs. They consider off-line algorithms, which must decide
the sequence of updates prior to seeing the answers, as well as on-line ones, aiming to
minimize the total update cost. In [4], off-line algorithms for computing the length of a
shortest path from a source s to a given vertex t are considered. Again, the edge lengths
lie in intervals with different update costs, and they study the computational complexity of
minimizing the total update cost.

One difference between the framework of Feder et al. and ours is that they require the
computation of a specific numeric value (the value of the median, the length of a shortest
path). We, on the other hand, aim to obtain a subset of edges that form an MST. In general,
our version of the problem may require far fewer updates. Indeed, for the MST with vertex
uncertainties, it is obvious that one must update all non-trivial areas to compute the cost
of the MST exactly. However, the cost of the MST may not be needed in many cases: if
the MST is to be used as a routing structure in a wireless ad-hoc network, then it suffices
to determine the edge set. Also, our algorithms aim towards on-line optimality against an
adversary, whereas their off-line algorithms aim for static optimality.

Further work in this vein attempts to compute other aggregate functions to a given
degree of tolerance, and establishes tradeoffs between update costs and error tolerance or
presents complexity results for computing optimal strategies, see e.g. [10, 8].

Another line of work considers the robust spanning tree problem with interval data. For
a given graph with weight intervals specified for its edges, the goal is to compute a spanning
tree that minimizes the worst-case deviation from the minimum spanning tree (also called
the regret), over all realizations of the edge weights. This is an off-line problem, and no
update operations are involved. The problem is proved N'P-hard in [1]. A 2-approximation
algorithm is given in [7]. Further work has considered heuristics or exact algorithms for the
problem, see e.g. [12].

In the setting of geometric problems with imprecise points, Loffler and van Kreveld
have studied the problem of computing the largest or smallest convex hull over all possible
locations of the points inside their uncertainty areas [9]. Here, the option of updating
a point does not exist, and the goal is to design fast algorithms computing an extremal
solution over all possible choices of exact values of the input data.

280 T. ERLEBACH, M. HOFFMANN, D. KRIZANC, M. MIHAL’AK, AND R. RAMAN

The remainder of the paper is organized as follows. In Section 2, we define our problems
and introduce the witness algorithm of [2] in general form. Sections 3 and 4 give our results
for MSTs with edge and vertex uncertainty, respectively.

2. Preliminaries

The MST-EDGE-UNCERTAINTY problem is defined as follows: Let G = (V,E) be a
connected, undirected, weighted graph. Initially the edge weights w, are unknown; instead,
for each edge e an area A, is given with w, € A.. When updating an edge e, the value of
we is revealed. The aim is to find (the edge set of) an MST for G with the least number of
updates.

In applications such as mobile ad-hoc networks it is natural to assume the vertices of
our graph are embedded in two or three dimensional space. This leads to the MST-VERTEX-
UNCERTAINTY problem defined as follows: Let G = (V,E) be a connected, undirected,
weighted graph. The vertices correspond to points in Euclidean space. We refer to the
point p, corresponding to a vertex v as its location. The weight of an edge is the Euclidean
distance between the locations of its vertices. Initially the locations of the vertices are not
known; instead, for each vertex v an area A, is given with p, € A,,, where p, is the actual
location of vertex v. When a vertex v is updated, the location p, is revealed. The aim is to
find an MST for G with the least number of updates.

Formally we are interested in on-line update problems of the following type: Each
problem instance P = (C, A, ¢) consists of an ordered set of data C = {e¢1,...,¢,}, also
called a configuration, and a function ¢ such that ¢(C) is the set of solutions for P. (The
function ¢ is the same for all instances of a problem and can thus be taken to represent the
problem.) At the beginning the set C' is not known to the algorithm; instead, an ordered
set of areas A = {A;,..., A, } is given, such that ¢; € C is an element of A;. The sets A;
are called areas of uncertainty or uncertainty areas for C. We say that an uncertainty area
A; that consists of a single element is trivial. For example, in the MST-EDGE-UNCERTAINTY
problem, C' consists of the given graph G = (V, E) and its |E| actual edge weights. The
ordered set of areas A specifies the graph G exactly (so we assume complete knowledge of
G3) and, for each edge e € F, contains an area A, giving the possible values the weight of e
may take. Then ¢(C) is the set of MSTs of the graph with edge weights given by C, each
tree represented as a set of edges.

For a given set of uncertainty areas A = {41, ..., A, }, an area A; can be updated, which
reveals the exact value of ¢;. After updating A;, the new ordered set of areas of uncertainty
for Cis {A1,..., Ai—1,{ci}, Ait1, ..., An}. Updating all non-trivial areas would reveal the
configuration C' and would obviously allow us to calculate an element of ¢(C) (under the
natural assumption that ¢ is computable). The aim of the on-line algorithm is to minimize
the number of updates needed in order to compute an element of ¢(C).

An algorithm is k-update competitive for a given problem ¢ if for every problem instance
P = (C, A, ¢) the algorithm needs at most k- OPT + ¢ updates, where ¢ is a constant and
OPT is the minimum number of updates needed to verify an element of ¢(C). (For our
algorithms we can take ¢ = 0, but our lower bounds apply also to the case where ¢ can be
an arbitrary constant.) Note that the primary aim is to minimize the number of updates
needed to calculate a solution. We do not consider running time or space requirements in
detail, but note that our algorithms are clearly polynomial, provided that one can obtain

COMPUTING MINIMUM SPANNING TREES WITH UNCERTAINTY 281

(a) (b)

Figure 1: (a) Instance of MST-EDGE-UNCERTAINTY (b) Updating the edge {x,y} suffices
to verify an MST

if an element of ¢(C') can not be calculated from A then
find a witness set W
update all areas in W
let A’ be the areas of uncertainty after updating W
restart the algorithm with P’ = (C, A’, ¢)

end if

return an element of ¢(C) that can be calculated from A

Figure 2: The general witness algorithm

the infimum and supremum of an area in O(1) time, an assumption which holds e.g. if areas
are open intervals.

As an example, consider the instance of MST-EDGE-UNCERTAINTY shown in Figure 1(a),
where each edge is labeled with its actual weight (in bold) and its uncertainty area (an open
interval). Updating the edge {z,y} leads to the situation shown in Figure 1(b) and suffices
to verify that the edges {u, y}, {u,v} and {z,y} form an MST regardless of the exact weights
of the edges that have not yet been updated. If no edge is updated, one cannot exclude that
an MST includes the edge {v,z} instead of {x,y}, as the former could have weight 3.3 and
the latter weight 3.9, for example. Therefore, for the instance of MST-EDGE-UNCERTAINTY
in Figure 1(a) the minimum number of updates is 1.

2.1. The Witness Algorithm

The witness algorithm for problems with uncertain input was first introduced in [2].
This section describes the witness algorithm in a more general setting and notes some of
its properties. We call W C A a witness set of (A, ¢) if for every possible configuration
C (where ¢; € A;) no element of ¢(C) can be verified without updating an element of W.
In other words, any set of updates that suffices to verify a solution must update at least
one area of W. The witness algorithm for a problem instance P = (C, A, ¢) is shown in
Figure 2.

For two ordered sets of areas A = {41, As,...,A,} and B = {By, By, ..., B,} we say
that B is at least as narrow as A if B; C A; for all 1 <4 < n. The following lemma is easy
to prove.

Lemma 2.1. Let P = (C, A, ¢) be a problem instance and B be a narrower set of areas
than A. Further let W be a witness set of (B,). Then W is also a witness set of (A,).

282 T. ERLEBACH, M. HOFFMANN, D. KRIZANC, M. MIHAL’AK, AND R. RAMAN

Theorem 2.2. If there is a global bound k on the size of any witness set used by the witness
algorithm, then the witness algorithm is k-update competitive.

Theorem 2.2 was proved in a slightly different setting in [2], but the proof carries over
to the present setting in a straightforward way by using Lemma 2.1.

3. Minimum Spanning Trees with Edge Uncertainty

In this section we present an algorithm U-RED for the problem MST-EDGE-UNCERTAINTY.
In the case that all areas of uncertainty are either open or trivial, algorithm U-RED is 2-
update competitive, which we show is optimal. Furthermore, we show that for arbitrary
areas of uncertainty there is no constant update competitive algorithm.

First, let us recall a well known property, usually referred to as the red rule [11], of
MSTs:

Proposition 3.1. Let G be a weighted graph and let C' be a cycle in G. If there exists an
edge e € C with we > we for all € € C — {e}, then e is not in any MST of G.

We will use the following notations and definitions: A graph U = (V, E) with an area
A, for each edge e € FE is called an edge-uncertainty graph. We say a weighted graph
G = (V, E) with edge weights we is a realization of U if w, € A, for every e € E. Note that
we is associated with G and A, with U. We also say that an edge e is trivial if the area A,
is trivial.

For an edge e in an edge-uncertainty graph we denote the upper limit of A, by U, =
sup A, and the lower limit of A, by L. = inf A..

We extend the notion of an MST to edge-uncertainty graphs in the following way: Let U
be an edge-uncertainty graph. We say T is an MST of U if T is an MST of every realization
of U. Clearly not every edge-uncertainty graph has an MST.

Let C be a cycle in Y. We say the edge e € C' is an always mazimal edge in C' if
L. > U, for all ¢ € C' — {e}. Therefore in every realization G of U we have w, > w, for all
ceC —{e}.

Note that a cycle can have more than one always maximal edge and not every cycle
has an always maximal edge. The following lemma deals with cycles of the latter kind:

Lemma 3.2. Let U be an edge-uncertainty graph. Let C be a cycle in U. Let C not have
an always maximal edge. Then for any f € C with Uy = max{U, | c € C} we have that f
is non-trivial and there exists an edge g € C' — {f} with Uy > Ly.

Proof. Let f € C be an edge with Uy = max{U. | c € C'}. If Ly = Uy the edge f would
be always maximal. Hence Ly must be strictly smaller than Uy and f is non-trivial. Since
there is no always maximal edge in C, we have that L < max{U, | ¢ € C'—{f}}. Therefore
there exists at least one edge g in C' — {f} with Ly < U,,. [

Proposition 3.3. Let U be an edge-uncertainty graph with an MST T. Let f = {u,v} be
an edge of U such that f € T'. Let P be the path in T connecting u and v, then U, < Ly
forallp € P.

Proof. Assume there exists a p € P with U, > L;. Then there exists a realization G of
U with w, > wy. Hence by removing the edge p and adding the edge f to T" we obtain a
spanning tree that is cheaper than 7. So T is not an MST for G. This is a contradiction
since T" is an MST of I/ and therefore of any realization of U. [

COMPUTING MINIMUM SPANNING TREES WITH UNCERTAINTY 283

01 Index all edges such that e; < ey <--- < epy.
02 Let I be U without any edge
03 for ¢ from 1 to m do

04 add e; to T’

05 if T has a cycle C then

06 if C contains an always maximal edge e then
07 delete e from I’

08 else

09 let f € C such that Uy = max{U.|c € C}
10 let g € C' — {f} such that Uy, > Ly

11 update f and g

12 restart the algorithm

13 end if

14 end if

15 end for

16 return I'

Figure 3: Algorithm U-RED

Our algorithm U-RED applies the red rule to the given uncertainty graph, but we have
to be careful about the order in which edges are considered. The order we use is as follows:
Let U be an edge-uncertainty graph and let e, f be two edges in U. We say

e< fif Le < Ly or (L. = Ly and U, < Uy),
e< fife< for (Le =Ly and U, = Uy).
Edges with the same upper and lower weight limit are ordered arbitrarily.

Algorithm U-RED is shown in Figure 3. Observe that:

e In case no update is made the algorithm U-RED will perform essentially Kruskal’s
algorithm [3]. When a cycle is created there will be an always maximal edge in that
cycle. Due to the order in which the algorithm adds the edges to I' the edge e; that
closes a cycle C must be an always maximal edge in C. So where Kruskal’s algorithm
does not add an edge to I' when it would close a cycle, the U-RED algorithm adds
this edge to I' but then deletes it or an equally weighted edge in the cycle from T'.

e By Lemma 3.2 the edges f, g in line 9 and 10 exist and f is non-trivial.

e The algorithm will terminate. The algorithm either updates at least one non-trivial
edge f and restarts, or does not perform any updates. Hence the algorithm U-RED
will eventually return an MST of G.

e During the run of the algorithm the graph I' is either a forest or contains one cycle.
In case the most recently added edge closes a cycle either one edge of the cycle will
be deleted or after some updates the algorithm restarts and I' has no edges. Hence
at any given time there is at most one cycle in I'.

As the algorithm may restart itself, we say a run is completed if the algorithm restarts
or returns the MST. In case of a restart, another run of the algorithm starts.

Before showing that the algorithm U-RED is 2-update competitive under the restriction
to open or trivial areas, we discuss some technical preliminaries. In each run the algorithm
considers all edges in a certain order eq,...,e,. During the run of the algorithm we refer
to the currently considered edge as e;. Let u and v be two distinct vertices. In case u
and v are in the same connected component of the subgraph with edges e1,...,e;_1, then

284 T. ERLEBACH, M. HOFFMANN, D. KRIZANC, M. MIHAL’AK, AND R. RAMAN

they are also connected in the current I'. Furthermore, we need some properties of a path
connecting u and v in I' under certain conditions. The next two lemmas establish these
properties. They are technical and are solely needed in the proof of Lemma 3.6.

Lemma 3.4. Let h = {u,v} and e be two edges in U. Let h # e and Ly, < U.. Let the
algorithm be in a state such that h has been considered. Then u and v are connected in the
current T' — {e}.

Proof. 1If the edge h is in the current I' then clearly u and v are connected in I" — {e}, so
assume that h is no longer in I'. Therefore it must have been an always maximal edge in a
cycle C. In order for h to be an always maximal edge in C' we must have that L. < U, < Ly,
for all c € C' — {h}. So since L}, < U, we have that L. < U.. Also the edge h can not be an
always maximal edge in C if C contains e.

Clearly C' — {h} is a path in U connecting u and v and does not contain e. Since the
edges in C' — {h} might have been deleted from the current I" themselves we have to use
this argument repeatedly, but eventually we get a path in the current I' — {e} connecting u
and v. [

The next lemma follows directly from Lemma 3.4.

Lemma 3.5. Let u,v be vertices and e be an edge in U. Let P be a path in U — {e}
connecting u and v with L, < U, for all p € P. Let the algorithm be in a state such that
all edges of P have been considered, then there exists a path P’ in the current I' connecting
u and v with e ¢ P’.

Lemma 3.6. Assume that all uncertainty areas are open or trivial. The edges f and g as
described in the algorithm U-RED at line 9 and 10 form a witness set.

Proof. We have the following situation: There exist a cycle C' in I with no always maximal
edge. Let m = max{U. | ¢ € C'}. The edges f and g are in C' with Uy =m and U, > Ly.
By Lemma 3.2 the area Ay is non-trivial.

We now assume that the set {f, g} is not a witness set. So we can update some edges,
but not f or g such that the resulting edge-uncertainty graph U’ has an MST T. Let U,
and L/ denote the upper and lower limit of an area for an edge e with regard to U’. Since
both edges f and g are not updated we note that

Ly =1L} U =U}, Ly =Ly, U, = U,

Since all areas in U’ and U are either trivial or open, and C has no always maximal
edge, the weight of every edge in C' must be less than m. In particular we have that for all
ceC

U/ <mor L, <U.=m.
Since Uy = m there exists a realization G’ of Y’ and U, where the weight of f is greater
than the weight of any other edge in C. By Proposition 3.1 the edge f is not in any MST
of G’ and therefore also not in 7.

Let v and v be the vertices of f. By Proposition 3.3 there exists a path P in U’
connecting u and v with U[’, < Ly for all p € P. Since U, > Ly and neither f nor g are
updated the edge g is not in the path P. We now argue that all edges of P must have been
already considered by the algorithm. For this we look at the following two cases:

Case 1) Let p € P and L, < Ly. Since L, < L;, we have that L, < Ly.

COMPUTING MINIMUM SPANNING TREES WITH UNCERTAINTY 285

Case 2) Let p € P and L;, = Ly. Since U, < Ly we have that Lj, = U, = Ly. Either the
area Ay is also trivial (L, = U, = L}, = U}, = Ly) or A, is open and contains the point L,
in this case L, < Lj,.

So for all p € P we have L, < Ly or L, = U, = Ly < Uy. Therefore all edges of P will
be considered before f. We also note that L, < L; <Ly < U, forall pe P. By Lemma 3.5
there exists a path P’ in I' connecting u and v and g € P’. Hence I has two cycles, which
is a contradiction. =

Using Theorem 2.2, this leads directly to the following result.

Theorem 3.7. Under the restriction to open and trivial areas the algorithm U-RED is 2-
update competitive.

We remark that the analysis of algorithm U-RED actually works also in the more general
setting where it is only required that every area is trivial or satisfies the following condition:
the area contains neither its infimum nor its supremum. It remains to show that under the
restriction to open and trivial areas there is no algorithm for the MST-EDGE-UNCERTAINTY
problem that is (2 — €)-update competitive.

1 1 1 1
b c
3,7 (5,9
a
1

Figure 4: Lower bound construction

Example 3.8. The graph G displayed in Figure 4 consists of a path and, for each vertex
of the path, a gadget connected to that vertex. Each gadget is a triangle with sides a, b and
c and areas A, = {1}, Ay, = (3,7) and A. = (5,9). In each gadget a and either b or ¢ are
part of the minimum spanning tree. If the algorithm updates b we let the weight of b be
6. So ¢ needs to be updated, which reveals a weight for ¢ of 8. However, by updating only
¢ the edge b would be part of the minimum spanning tree regardless of its exact weight.
If the algorithm updates c first, we let the weight of ¢ be 6. The necessary update of b
reveals a weight of 4, and updating only b would have been enough. So in each gadget every
algorithm makes two updates where only one is needed by OPT. Hence no deterministic
algorithm is (2 — €)-update competitive.

The following example shows that without restrictions on the areas there is no algorithm
for the MST-EDGE-UNCERTAINTY problem that is constant update competitive.

Example 3.9. Figure 5(a) shows an example of an edge-uncertainty graph for which no
algorithm can be constant update competitive. The minimum spanning tree consists of all
edges incident with u and all edges incident with v plus one more edge. Let us assume the
weight of one of the remaining k = (n — 2)/2 edges is 2 and the weight of the others is 3.
Any algorithm would need to update these edges until it finds the edge with weight 2. This
in the worst case could be the last edge and k updates were made. However OPT will only
update the edge with weight 2 and therefore OPT = 1.

286 T. ERLEBACH, M. HOFFMANN, D. KRIZANC, M. MIHAL’AK, AND R. RAMAN

(2,4]

(2.4]
(2.4]
[2.4]

(2.4]

(2.4]
(2.4]

(2,4]

(241
(a) (b)

Figure 5: Non-existence of constant update competitive algorithms

Note that this example actually shows that there is no algorithm that is better then
(n — 2)/2-update competitive, where n is the number of vertices of the given graph. By
adding edges with uncertainty area [2,4] such that the neighbors of u and the neighbors of
v form a complete bipartite graph, we even get a lower bound of Q(n?).

The construction in Example 3.9 works also if the intervals [2,4] are replaced by half-
open intervals [2,4). Thus, the example demonstrates that with closed lower limits on the
areas there is no constant update competitive algorithm for the MST-EDGE-UNCERTAINTY
problem. The following example does the same for closed upper limits.

Example 3.10. The graph shown in Figure 5(b) is one big cycle with k edges and the
uncertainty area of each edge is (2,4]. Let us assume exactly one edge e has weight 4 and
the others are of weight 3. In the worst case any algorithm has to update all k edges before
finding e. However OPT is 1 by just updating e.

4. Minimum Spanning Tree with Vertex Uncertainty

In this section we consider the model of vertex-uncertainty graphs. The models of
vertex-uncertainty and edge-uncertainty are closely related. Clearly a vertex uncertainty
graph U has an associated edge-uncertainty graph U where the area for each edge e = {u, v}
is determined by the combinations of possible locations of u and v in I, i.e., the areas A in
U are defined as Ay, = {d(u/,v')|u/ € Ay,v" € Ay}

An update of an edge e = {u,v} in U can be performed (simulated) by updating u and
v in U; these two vertex updates might also reveal additional information about the weights
of other edges incident with v or v. Furthermore, note that if neither of the two vertices u
and v in U is updated, no information about the weight of e can be obtained. Thus, we get:

Lemma 4.1. Let ¢ be a graph problem such that the set of solutions for a given edge-
weighted graph G = (V, E) depends only on the graph and the edge weights (but not the
locations of the vertices). Let U be a vertex-uncertainty graph that is an instance of ¢. If
W C E is a witness set for U, then W = Uguorew {u, v} is a witness set for U.

Using Theorem 2.2 we obtain the following result.

Theorem 4.2. Let ¢ be a graph problem such that the set of solutions for a given edge-
weighted graph depends only on the graph and the edge weights (but not the locations of

COMPUTING MINIMUM SPANNING TREES WITH UNCERTAINTY 287

the vertices). Let A be a k-update competitive algorithm for the problem ¢ with respect to
edge-uncertainty graphs. If A is a witness algorithm, then by simulating an edge update by
updating both its endpoints the algorithm A is 2k-update competitive for vertex-uncertainty
graphs.

By standard properties of Euclidean topology, the following lemma clearly holds.

Lemma 4.3. Let U be a vertex uncertainty graph with only trivial or open areas. Then U
also has only trivial or open areas.

Theorem 4.4. Under the restriction to trivial or open areas the algorithm U-RED is 4-
update competitive for the MST-VERTEX-UNCERTAINTY problem, which is optimal.

Proof. Combining Theorems 3.7 and 4.2 together with Lemma 4.3, we get that U-RED is
4-update competitive for the MST-VERTEX-UNCERTAINTY problem when restricted to trivial
or open areas. It remains to show that this is optimal.

. : : : . =
T] T T]
. .
. .
. .
. .
¢ C D ¢ C
. e o o o
2 4 2 2 4 2

(a) (b)

Figure 6: (a) Lower bound construction (b) Edges that are in any minimum spanning tree

We show that no algorithm can be better than 4-update competitive. In Figure 6(a) we
give a construction in the Euclidean plane for which any algorithm can be forced to make 4
updates, while OPT is 1. The black dots on the left and right represent trivial areas. The
distance between two neighboring trivial areas is 1. There are four non-trivial areas A, B, C
and D. Each of these areas is a long, thin open area of length 2 and small positive width.
The distance between each non-trivial area and its closest trivial area is 1 as well. Let G
be the complete graph with one vertex for each of the trivial and non-trivial areas.

Independent of the exact locations of the vertices in the non-trivial areas A, B, C' and
D, the edges indicated in Figure 6(b) must be part of any MST. Note that the distance
between the vertex of a non-trivial area and its trivial neighbor is in (1,3) and thus less
than 3.

We now consider the distances between the non-trivial areas. We let d(X,Y") be the
area of all possible distances between two vertex areas X and Y. So d(A,B) = (7,11),
d(C,D) = (4,8). Note that the distance between the vertices in A and D and the distance
between the vertices in B and C are greater than 8, so either the edge AB or the edge C'D
is part of the minimum spanning tree.

Every algorithm will update the areas A, B,C' and D in a certain order until it is clear
that either the distance between the vertices of A and B is smaller or equal to the distance
between the vertices of C and D, or vice versa. In order to force the algorithm to update
all four areas, we let the locations of the vertices revealed in any of the first 3 updates made
by the algorithm be as follows:

288 T. ERLEBACH, M. HOFFMANN, D. KRIZANC, M. MIHAL’AK, AND R. RAMAN

e A or D: the vertex will be located far to the right,
e B or C: the vertex will be located far to the left.

Here, ‘far to the right’ or ‘far to the left’ means that the location is very close (distance
e > 0, for some small ¢) to the right or left end of the area, respectively.

We show that it is impossible for the algorithm to output a correct minimum spanning
tree after only three updates. Consider the situation after the algorithm has updated three
of the four non-trivial areas. Since the choice of the locations of the vertices in the areas
is independent of the sequence of updates, we have to consider four cases depending on
which of the four areas has not yet been updated. We use A’, B’,C’ and D’ to refer to
the areas A, B,C and D after they have been updated. If the area A is the only area that
has not yet been updated, we have that d(A, B") = (7 +¢,94 ¢) and d(C’, D) = {8 — 2¢}.
Clearly the area A needs to be updated. By having the vertex of area A on the far left,
updating only area A instead of the areas B,C, D results in d(A’, B) = (9 —¢,11 — €) and
d(C,D) = (4,8). Hence OPT would only update the area A and know that the edge AB
is not part of the minimum spanning tree. The other three cases are similar. So for the
construction in Figure 6(a), no algorithm can guarantee to make less than 4 updates even
though a single update is enough for the optimum. Furthermore, we can create k disjoint
copies of the construction and connect them using lines of trivial areas spaced 1 apart. As
long as the copies are sufficiently far apart, they will not interfere with each other. Hence,
for a graph with k copies there is no algorithm that can guarantee less than 4k updates
when at the same time OPT = k. [

References

[1] I. Aron and P. Van Hentenryck. On the complexity of the robust spanning tree problem with interval
data. Operations Research Letters, 32(1):36-40, 2004.
[2] R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for geometric computing
with uncertainty. Theory of Computing Systems, 38(4):411-423, 2005.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms. MIT Press, 2001.
[4] T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing shortest paths with
uncertainty. Journal of Algorithms, 62(1):1-18, 2007.
[5] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the median with uncertainty.
SIAM Journal on Computing, 32(2):538-547, 2003.
[6] S. Kahan. A model for data in motion. In Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing (STOC’91), pp. 267-277, 1991.
[7] A. Kasperski and P. Zieliiski. An approximation algorithm for interval data minmax regret combina-
torial optimization problems. Information Processing Letters, 97(5):177-180, 2006.
[8] S. Khanna and W.-C. Tan. On computing functions with uncertainty. In Proceedings of the 20th Sym-
posium on Principles of Database Systems (PODS’01), pp. 171-182, 2001.
[9] M. Loffler and M. J. van Kreveld. Largest and smallest tours and convex hulls for imprecise points. In
10th Scand. Workshop on Algorithm Theory (SWAT’06), LNCS 4059, pp. 375-387. Springer, 2006.
[10] C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation queries over repli-
cated data. In Proc. 26th Intern. Conference on Very Large Data Bases (VLDB’00), pp. 144-155, 2000.
[11] R. E. Tarjan. Data structures and network algorithms. STAM, Philadelphia, PA, 1983.
[12] H. Yaman, O. Karasan, and M. Pinar. The robust spanning tree problem with interval data. Operations
Research Letters, 29(1):31-40, 2001.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 289-300
www.stacs-conf.org

CONVERGENCE THRESHOLDS OF NEWTON’S METHOD
FOR MONOTONE POLYNOMIAL EQUATIONS

JAVIER ESPARZA, STEFAN KIEFER, AND MICHAEL LUTTENBERGER

Institut fiir Informatik
Technische Universitdt Miinchen, Germany
E-mail address: {esparza,kiefer,luttenbe}@in.tum.de

ABSTRACT. Monotone systems of polynomial equations (MSPEs) are systems of fixed-
point equations X1 = f1(X1,...,Xn), ..., Xn = fn(X1,...,Xn) where each f; is a poly-
nomial with positive real coefficients. The question of computing the least non-negative
solution of a given MSPE X = f(X) arises naturally in the analysis of stochastic models
such as stochastic context-free grammars, probabilistic pushdown automata, and back-
button processes. Etessami and Yannakakis have recently adapted Newton’s iterative
method to MSPEs. In a previous paper we have proved the existence of a threshold k¢
for strongly connected MSPEs, such that after kf iterations of Newton’s method each
new iteration computes at least 1 new bit of the solution. However, the proof was purely
existential. In this paper we give an upper bound for kf as a function of the minimal com-
ponent of the least fixed-point pf of f(X). Using this result we show that kz is at most
single exponential resp. linear for strongly connected MSPEs derived from probabilistic
pushdown automata resp. from back-button processes. Further, we prove the existence of
a threshold for arbitrary MSPEs after which each new iteration computes at least 1/ w2h
new bits of the solution, where w and h are the width and height of the DAG of strongly
connected components.

1. Introduction

A monotone system of polynomial equations (MSPE for short) has the form
X1 = Xy, Xp)

Xn = fn(Xla cee 7Xn)

where f1,..., f, are polynomials with positive real coefficients. In vector form we denote an
MSPE by X = f(X). We call MSPEs “monotone” because < &’ implies f(x) < f(a')

1998 ACM Subject Classification: G.1.5, Mathematics of Computing, Numerical Analysis.
Key words and phrases: Newton’s Method, Fixed-Point Equations, Formal Verification of Software, Prob-
abilistic Pushdown Systems.
This work was supported by the project Algorithms for Software Model Checking of the Deutsche
Forschungsgemeinschaft (DFG). Part of this work was done at the Universitat Stuttgart.

ASPECTS

7 / OF COMPUTER)
SCIENCE © J. Esparza, S. Kiefer, and M. Luttenberger

@ Creative Commons Attribution-NoDerivs License

R SYMPOSIUM
ﬁVIL ON THEORETICAL
<4

290 J. ESPARZA, S. KIEFER, AND M. LUTTENBERGER

for every x,x’ € RZ,. MSPEs appear naturally in the analysis of many stochastic models,
such as context-free grammars (with numerous applications to natural language processing
[19, 15], and computational biology [21, 4, 3, 17]), probabilistic programs with procedures
6, 2, 10, 8, 7, 9, 11], and web-surfing models with back buttons [13, 14].

By Kleene’s theorem, a feasible MSPE X = f(X) (i.e., an MSPE with at least one
solution) has a least solution pf; this solution can be irrational and non-expressible by
radicals. Given an MSPE and a vector v encoded in binary, the problem whether uf < v
holds is in PSPACE and at least as hard as the SQUARE-ROOT-SUM problem, a well-
known problem of computational geometry (see [10, 12] for more details).

For the applications mentioned above the most important question is the efficient nu-
merical approximation of the least solution. Finding the least solution of a feasible system
X = f(X) amounts to finding the least solution of F(X) = 0 for F(X) = f(X) — X.
For this we can apply (the multivariate version of) Newton’s method [20]: starting at some
z(0) ¢ R" (we use uppercase to denote variables and lowercase to denote values), compute
the sequence

2® D) = 2B _ (F (2®)) "1 F(z®)
where F'(X) is the Jacobian matrix of partial derivatives.

While in general the method may not even be defined (F'(x*)) may be singular for
some k), Etessami and Yannakakis proved in [10, 12] that this is not the case for the
Decomposed Newton’s Method (DNM), that decomposes the MSPE into strongly connected
components (SCCs) and applies Newton’s method to them in a bottom-up fashion?.

The results of [10, 12] provide no information on the number of iterations needed to
compute ¢ valid bits of uf, i.e., to compute a vector v such that ‘ufj — Vj‘ / ‘,ufj’ <27t
for every 1 < j < n. In a former paper [16] we have obtained a first positive result on this
problem. We have proved that for every strongly connected MSPE X = f(X) there exists
a threshold kg such that for every i > 0 the (kg + i)-th iteration of Newton’s method has
at least ¢ valid bits of pf. So, loosely speaking, after k¢ iterations DNM is guaranteed to
compute at least 1 new bit of the solution per iteration; we say that DNM converges linearly
with rate 1.

The problem with this result is that its proof provides no information on k¢ other than
its existence. In this paper we show that the threshold k¢ can be chosen as

ky= 3n%m + 2n? [10g fimin|

where n is the number of equations of the MSPE, m is such that all coefficients of the
MSPE can be given as ratios of m-bit integers, and gy, is the minimal component of the
least solution pf.

It can be objected that ky depends on pf, which is precisely what Newton’s method
should compute. However, for MSPEs coming from stochastic models, such as the ones
listed above, we can do far better. The following observations and results help to deal with
Hmin*

e We obtain a syntactic bound on ppi, for probabilistic programs with procedures
(having stochastic context-free grammars and back-button stochastic processes as
special instances) and prove that in this case kp < n2"+2m.

LA subset of variables and their associated equations form an SCC, if the value of any variable in the
subset influences the value of all variables in the subset, see Section 2 for details.

CONVERGENCE THRESHOLDS OF NEWTON’S METHOD 291

e We show that if every procedure has a non-zero probability of terminating, then
ky < 3nm. This condition always holds in the special case of back-button pro-
cesses [13, 14]. Hence, our result shows that i valid bits can be computed in time
O((nm + i) -n3) in the unit cost model of Blum, Shub and Smale [1], where each
single arithmetic operation over the reals can be carried out exactly and in constant
time. It was proved in [13, 14] by a reduction to a semidefinite programming prob-
lem that 7 valid bits can be computed in poly(é,n, m)-time in the classical (Turing-
machine based) computation model. We do not improve this result, because we
do not have a proof that round-off errors (which are inevitable on Turing-machine
based models) do not crucially affect the convergence of Newton’s method. But our
result sheds light on the convergence of a practical method to compute uf.

e Finally, since) < x**1 < ,f holds for every k > 0, as Newton’s method
proceeds it provides better and better lower bounds for fiy,in and thus for kg. In the
paper we exhibit a MSPE for which, using this fact and our theorem, we can prove
that no component of the solution reaches the value 1. This cannot be proved by
just computing more iterations, no matter how many.

The paper contains two further results concerning non-strongly-connected MSPEs: Firstly,
we show that DNM still converges linearly even if the MSPE has more than one SCC, albeit
the convergence rate is poorer. Secondly, we prove that Newton’s method is well-defined
also for non-strongly-connected MSPEs. Thus, it is not necessary to decompose an MSPE
into its SCCs — although decomposing the MSPE may be preferred for efficiency reasons.

The paper is structured as follows. In Section 2 we state preliminaries and give some
background on Newton’s method applied to MSPEs. Sections 3, 5, and 6 contain the three
results of the paper. Section 4 contains applications of our main result. We conclude in
Section 7. Missing proofs can be found in a technical report [5].

2. Preliminaries

In this section we introduce our notation and formalize the concepts mentioned in the
introduction.

2.1. Notation

R and N denote the sets of real, respectively natural numbers. We assume 0 € N. R"
denotes the set of n-dimensional real valued column vectors and RZ the subset of vectors
with non-negative components. We use bold letters for vectors, e.g. x € R™, where we
assume that = has the components z1,...,z,. Similarly, the i component of a function
f:R®” — R" is denoted by f;.

R™*™ denotes the set of matrices having m rows and n columns. The transpose of a
vector or matrix is indicated by the superscript . The identity matrix of R?*™ is denoted
by Id.

The formal Neumann series of A € R"*™ is defined by A* = ", Ak Tt is well-known
that A* exists if and only if the spectral radius of A is less than 1, i.e. max{|\| | C >
A is an eigenvalue of A} < 1. If A* exists, we have A* = (Id — A)~%.

The partial order < on R™ is defined as usual by setting * < y if z; < y; for all
1<i<n. By <ywemean x <y and « # y. Finally, we write x < y if x; < y; in every
component.

292 J. ESPARZA, S. KIEFER, AND M. LUTTENBERGER

We use X1,...,X,, as variable identifiers and arrange them into the vector X. In the
following n always denotes the number of variables, i.e. the dimension of X. While x,y, . ..
denote arbitrary elements in R", resp. R%,, we write X if we want to emphasize that a
function is given w.r.t. these variables. Hence, f (X)) represents the function itself, whereas
f(x) denotes its value for € R".

If Y is a set of variables and @ a vector, then by oy we mean the vector obtained by
restricting « to the components in Y.

The Jacobian of a differentiable function f(X) with f : R" — R™ is the matrix f'(X)
given by

oh of1
0X1 Tt 0Xn
ff(xX)=1|: :
Ofm Ofm
8—)(1 o 3%,

2.2. Monotone Systems of Polynomials

Definition 2.1. A function f(X) with f : RY, — RY, is a monotone system of polyno-
mials (MSP), if every component f;(X) is a polynomial in the variables Xy,..., X, with
coefficients in R>q. We call an MSP f(X) feasible if y = f(y) for some y € R,

Fact 2.2. Every MSP f is monotone on RY,, i.e. for 0 <x <y we have f(x) < f(y).

Since every MSP is continuous, Kleene’s fixed-point theorem (see e.g. [18]) applies.

Theorem 2.3 (Kleene’s fixed-point theorem). Every feasible MSP f(X) has a least fized
point pf in RY, i.e., uf = f(uf) and, in addition, y = f(y) implies pf <y. Moreover,

the sequence (’fgck))keN with f@?) =0, and &(Jfﬂ) = f(m(]f)) = f**1(0) is monotonically

increasing with respect to < (i.e. &(Jf) < msckﬂ))

and converges to uf.
In the following we call (K'Sck))keN the Kleene sequence of f(X), and drop the subscript
whenever f is clear from the context. Similarly, we sometimes write p instead of uf.

A variable X; of an MSP f(X) is productive if /iz('k) > 0 for some £ € N. An MSP is

clean if all its variables are productive. It is easy to see that /ﬁl(-n) = 0 implies K,l(-k) = 0 for

all k € N. As for context-free grammars we can determine all productive variables in time
linear in the size of f.

Notation 2.4. In the following, we always assume that an MSP f is clean and feasible.
Le., whenever we write “MSP”, we mean “clean and feasible MSP”, unless explicitly stated
otherwise.

For the formal definition of the Decomposed Newton’s Method (DNM) (see also Section 1)
we need the notion of dependence between variables.

Definition 2.5. Let f(X) be an MSP. X, depends directly on Xy, denoted by X; <9 Xy,
if aa)];lk (X)) is not the zero-polynomial. X; depends on Xy if X; <* X, where <* is the
reflexive transitive closure of <. An MSP is strongly connected (short: an scMSP) if all its

variables depend on each other.

CONVERGENCE THRESHOLDS OF NEWTON’S METHOD 293

Any MSP can be decomposed into strongly connected components (SCCs), where an SCC
S is a maximal set of variables such that each variable in S depends on each other variable
in S. The following result for strongly connected MSPs was proved in [10, 12]:

Theorem 2.6. Let f(X) be an scMSP and define the Newton operator N¢ as follows
Np(X) =X + (Id - (X)) (f(X) - X).

We have: (1) Ng(zx) is defined for all 0 < x < pf (i.e., (Id — f'(x))~! exists). Moreover,

fl(@)* =3 en F(@)F exists for all0 < @ < pf, and so Np(X) = X+ f/(X)*(f(X)—X).

(2) The Newton sequence (l/.(;j;))keN with v*) = ./\/]’E(O) s monotonically increasing, bounded

from above by uf (i.e. v < fFW®) <p*+H) < 4f) and converges to pf.

DNM works by substituting the variables of lower SCCs by corresponding Newton approx-
imations that were obtained earlier.

3. A Threshold for scMSPs

In this section we obtain a threshold after which DNM is guaranteed to converge linearly
with rate 1.

We showed in [16] that for worst-case results on the convergence of Newton’s method it is
enough to consider quadratic MSPs, i.e., MSPs whose monomials have degree at most 2. The
reason is that any MSP (resp. scMSP) f can be transformed into a quadratic MSP (resp.
scMSP) f by introducing auxiliary variables. This transformation is very similar to the
transformation of a context-free grammar into Chomsky normal form. The transformation
does not accelerate DNM, i.e., DNM on f is at least as fast (in a formal sense) as DNM on

f, and so for a worst-case analysis, it suffices to consider quadratic systems. We refer the
reader to [16] for details.
We start by defining the notion of “valid bits”.

Definition 3.1. Let f(X) be an MSP. A vector v has i valid bits of the least fixed point
uf if },ufj — Vj} / ‘,ufj‘ < 27" for every 1 < j < n.

In the rest of the section we prove the following:

Theorem 3.2. Let f(X) be a quadratic scMSP. Let ¢pin be the smallest nonzero coefficient
of f and let pimin and pimqy be the minimal and mazimal component of uf, respectively. Let

kf:n~log< Hmaz >
Cmin * Mmin * min{,umim 1}

Then vT*s149 has i valid bits of puf for every i > 0.

Loosely speaking, the theorem states that after ky iterations of Newton’s method, every
subsequent iteration guarantees at least one more valid bit. It may be objected that kg
depends on the least fixed point upf, which is precisely what Newton’s method should
compute. However, in the next section we show that there are important classes of MSPs
(in fact, those which motivated our investigation), for which bounds on g, can be easily
obtained.

The following corollary is weaker than Theorem 3.2, but less technical in that it avoids
a dependence on fimax and cpin-

294 J. ESPARZA, S. KIEFER, AND M. LUTTENBERGER

Corollary 3.3. Let f(X) be a quadratic scMSP of dimension n whose coefficients are
given as ratios of m-bit integers. Let [ipmin be the minimal component of uf. Let ky =
3n2m + 2n? 10g fimin| - Then (5140 has at least i valid bits of pf for every i > 0.

Corollary 3.3 follows from Theorem 3.2 by a suitable bound on piyax in terms of ¢y and
Umin [5] (notice that, since ¢y is the quotient of two m-bit integers, we have ¢y > 1/2™).

In the rest of the section we sketch the proof of Theorem 3.2. The proof makes crucial
use of vectors d = 0 such that d > f'(uf)d. We call a vector satisfying these two conditions
a cone vector of f or, when f is clear from the context, just a cone vector.

In a previous paper we have shown that if the matrix (Id — f/(uf)) is singular, then f
has a cone vector ([16], Lemmata 4 and 8). As a first step towards the proof of Theorem 3.2
we show the following stronger proposition.

Proposition 3.4. Any scMSP has a cone vector.

To a cone vector d = (dy,...,d,) we associate two parameters, namely the maximum and
the minimum of the ratios pf,/d, ufy/da, ..., puf,/dn, which we denote by Amax and Amin,
respectively. The second step consists of showing (Proposition 3.6) that given a cone vector
d, the threshold ks g = log(Amax/Amin) satisfies the same property as kg in Theorem 3.2,
ie., vkr.dl+) hag 4 valid bits of uf for every ¢ > 0. This follows rather easily from the
following fundamental property of cone vectors: a cone vector leads to an upper bound on
the error of Newton’s method.

Lemma 3.5. Let d be a cone vector of an MSP f and let e = max{“d—]:i}. Then
:u'.f - V(k) < 2_k)\max d.

Proof Idea. Consider the ray g(t) = uf — td starting in uf and headed in the direction —d
(the dashed line in the picture below). It is easy to see that g(Amax) is the intersection of g
with an axis which is located farthest from pf. One can then prove g(%)\max) < v where
9(3Amax) is the point of the ray equidistant from g(Amax) and pf. By repeated application
of this argument one obtains g(2 %\ yax) < v®) for all k € N.

The following picture shows the Newton iterates v for 0 < k <2 (shape: X) and
the corresponding points g(2 *Anax) (shape: +) located on the ray g. Notice that v*) >
9(27F M pax)-]

CONVERGENCE THRESHOLDS OF NEWTON’S METHOD 295

Now we easily obtain:

Proposition 3.6. Let f(X) be an scMSP and let d be a cone vector of f. Let kpq =

log Az where Apay = max % and Apin = min; % Then v ks.a17) has at least i valid

>\min,

bits of uf for every i > 0.

We now proceed to the third and final step. We have the problem that kf g depends on the
cone vector d, about which we only know that it exists (Proposition 3.4). We now sketch
how to obtain the threshold k; claimed in Theorem 3.2, which is independent of any cone
vectors.

Consider Proposition 3.6 and let M. = “d—J:" and Apgn = % We have kfgq =

log (% . Z?) The idea is to bound kg g in terms of cyin. We show that if k¢ 4 is very
v J
large, then there must be variables X,Y such that X depends on Y only via a monomial

that has a very small coefficient, which implies that ¢y, is very small.

4. Stochastic Models

As mentioned in the introduction, several problems concerning stochastic models can be
reduced to problems about the least solution puf of an MSPE f. In these cases, uf is a
vector of probabilities, and so pmax < 1. Moreover, we can obtain information on fmin,
which leads to bounds on the threshold k.

4.1. Probabilistic Pushdown Automata

Our study of MSPs was initially motivated by the verification of probabilistic pushdown
automata. A probabilistic pushdown automaton (pPDA) is a tuple P = (Q, T, §, Prob) where
Q is a finite set of control states, I' is a finite stack alphabet, § C Q x I' x @ x I'* is a finite
transition relation (we write pX <— qa instead of (p, X, q,«) € §), and Prob is a function
which to each transition pX — g« assigns its probability Prob(pX — qa) € (0,1] so that
for all p € Q and X € I' we have sz<—>qa Prob(pX — qa) = 1. We write pX < qo
instead of Prob(pX — qa) = z. A configuration of P is a pair qw, where ¢ is a control state
and w € I'* is a stack content. A probabilistic pushdown automaton P naturally induces
a possibly infinite Markov chain with the configurations as states and transitions given by:
pXS N qap for every 0 € I'* iff pX R qa. We assume w.l.o.g. that if pX < qois a
transition then |af < 2.

pPDAs and the equivalent model of recursive Markov chains have been very thoroughly
studied [6, 2, 10, 8, 7, 9, 11]. These papers have shown that the key to the analysis of pPDAs
are the termination probabilities [pXq|, where p and ¢ are states, and X is a stack letter,
defined as follows (see e.g. [6] for a more formal definition): [pXgq] is the probability that,
starting at the configuration pX, the pPDA eventually reaches the configuration ge (empty
stack). It is not difficult to show that the vector of termination probabilities is the least
fixed point of the MSPE containing the equation

pXql= Y x> [YY-[tZg + D x-[Yq + D
pX"—TM"YZ te@ pX‘iM*Y pX"—T>q€
for each triple (p, X, q). Call this quadratic MSPE the termination MSPE of the pPDA
(we assume that termination MSPEs are clean, and it is easy to see that they are always

296 J. ESPARZA, S. KIEFER, AND M. LUTTENBERGER

feasible). We immediately have that if X = f(X) is a termination MSP, then pimax < 1.
We also obtain a lower bound on fiyip,:

Lemma 4.1. Let X = f(X) be a termination MSPE with n variables. Then iy >
(2rtt-1)
min

Together with Theorem 3.2 we get the following exponential bound for £ g.

Proposition 4.2. Let f be a strongly connected termination MSP with n variables and
whose coefficients are expressed as ratios of m-bit numbers. Then ky < n2"2m.

We conjecture that there is a lower bound on k¢ which is exponential in n for the following

reason. We know a family (f (”))n:1’375’m of strongly connected MSPs with n variables and

gl‘l)n — % for all n and Mfsl)n

n. Experiments suggest that ©(2") iterations are needed for the first bit of pf ™). but we
do not have a proof.

irrational coefficients such that ¢ is double-exponentially small in

4.2. Strict pPDAs and Back-Button Processes

A pPDA is strict if for every pX € @ x I the transition relation contains a pop-rule pX ik qe
for some ¢ € Q and some x > 0. Essentially, strict pPDAs model programs in which every
procedure has at least one terminating execution that does not call any other procedure.
The termination MSP of a strict pPDA is of the form b(X, X) 4+ 1X + ¢ for ¢ = 0. So we
have pf > ¢, which implies pimin > Cmin- Together with Theorem 3.2 we get:

Proposition 4.3. Let f be a strongly connected termination MSP with n variables and
whose coefficients are expressed as ratios of m-bit numbers. If f is derived from a strict
pPDA, then kg < 3nm.

Since in most applications m is small, we obtain an excellent convergence threshold.
In [13, 14] Fagin et al. introduce a special class of strict pPDAs called back-button
processes: in a back-button process there is only one control state p , and any rule is of the

b l
form pA A pe or pA A5, pBA. So the stack corresponds to a path through a finite graph

with I' as set of nodes and edges A — B for pA LB, pBA.

In [13, 14] back-button processes are used to model the behaviour of web-surfers: I" is
the set of web-pages, [4p is the probability that a web-surfer uses a link from page A to page
B, and b4 is the probability that the surfer pushes the “back”-button of the web-browser
while visiting A. Thus, the termination probability [pAp] is simply the probability that, if A
is on top of the stack, A is eventually popped from the stack. The termination probabilities
are the least solution of the MSPE consisting of the equations

pApl = ba+ > laslpBpllpAp] = ba+[pAp] Y laglpBpl.

laB laB
pA——pBA pA——pBA

CONVERGENCE THRESHOLDS OF NEWTON’S METHOD 297

4.3. An Example
As an example of application of Theorem 3.2 consider the following scMSPE X = f(X).

X1 0.4X5X; 4+ 0.6
Xo| = [03X1 Xy +0.4X3X5+0.3
X3 0.3X; X3 +0.7

The least solution of the system gives the revocation probabilities of a back-button process
with three web-pages. For instance, if the surfer is at page 2 it can choose between following
links to pages 1 and 3 with probabilities 0.3 and 0.4, respectively, or pressing the back button
with probability 0.3.

We wish to know if any of the revocation probabilities is equal to 1. Performing 14 New-
ton steps (e.g. with Maple) yields an approximation v to the termination probabilities
with

0.98 0.99
097 | <v™ < | 0.98
0.992 0.993

We have cpin = 0.3. In addition, since Newton’s method converges to uf from below,
we know fimin > 0.97. Moreover, fimax < 1, as 1 = f(1) and so puf < 1. Hence kp <
3 -1og gy < 6. Theorem 3.2 then implies that (1% has (at least) 8 valid bits of yf.
As pf < 1, the absolute errors are bounded by the relative errors, and since 278 < 0.004

we know:

28 0.994 1
pf <M 4|28 <0984 | < |1
28 0.997 1

So Theorem 3.2 gives a proof that all 3 revocation probabilities are strictly smaller than 1.

5. Linear Convergence of the Decomposed Newton’s Method

Given a strongly connected MSP f, Theorem 3.2 states that, if we have computed kp
preparatory iterations of Newton’s method, then after ¢ additional iterations we can be sure
to have computed at least ¢ bits of puf. We call this linear convergence with rate 1. Now we
show that DNM, which handles non-strongly-connected MSPs, converges linearly as well.
We also give an explicit convergence rate.

Let f(X) be any quadratic MSP (again we assume quadratic MSPs throughout this
section), and let h(f) denote the height of the DAG of strongly connected components
(SCCs). The convergence rate of DNM crucially depends on this height: In the worst
case one needs asymptotically ©(2"f)) iterations in each component per bit, assuming one
performs the same number of iterations in each component.

To get a sharper result, we suggest to perform a different number of iterations in each
SCC, depending on its depth. The depth of an SCC S is the length of the longest path in
the DAG of SCCs from S to a top SCC.

In addition, we use the following notation. For a depth ¢, we denote by comp(t) the
set of SCCs of depth ¢. Furthermore we define C(t) := |J comp(t) and Cs(t) := Uy, C(t)
and, analogously, C(t). We will sometimes write v; for v () and vsy for ve, () and vy
for veo_ (), where v is any vector.

Figure 1 shows the Decomposed Newton’s Method (DNM) for computing an approx-
imation v for pf, where f(X) is any quadratic MSP. The authors of [10] recommend to

298 J. ESPARZA, S. KIEFER, AND M. LUTTENBERGER

run Newton’s Method in each SCC S until “approximate solutions for S are considered
‘good enough’ ”. Here we suggest to run Newton’s Method in each SCC S for a number of
steps that depends (exponentially) on the depth of S and (linearly) on a parameter j that
controls the number of iterations (see Figure 1).

function DNM (f, j)
/* The parameter j controls the number of iterations. */
for t from h(f) downto 0

forall S € comp(t) /* all SCCs S of depth t */

vg = N]jc:t (0) /* j-2! iterations */
/* apply vg in the depending SCCs */
f<t(X) = f(X)[Xs/vs]

return v

Figure 1: Decomposed Newton’s Method (DNM) for computing an approximation v of puf

Recall that h(f) was defined as the height of the DAG of SCCs. Similarly we define the
width w(f) to be max; |[comp(t)|. Notice that f has at most (h(f) + 1) - w(f) SCCs. We
have the following bound on the number of iterations run by DNM.

Proposition 5.1. The function DNM(f,7) of Fig. 1 runs at most j-w(f)-2MH+1 iterations
of Newton’s method.

We will now analyze the convergence behavior of DNM asymptotically (for large j) Let

A(]) denote the error in S when running DNM with parameter j, i.e., A(J)= = pg g).

Observe that the error A(7) can be understood as the sum of two errors:
A(J) _ = u, (J) = (kg — ﬁ/t(j)) + (ﬁ;(j) _ u?)) :

where 11, = M(.ft(X)[X>t/V>t])a i.e., ;) is the least fixed point of f, after the ap-
©)

proximations from the lower SCCs have been applied. So, A}’ consists of the propagation

error (p; — ;Tt(j)) and the newly inflicted approxzimation error (;Tt(j) - ng)).
The following lemma, technically non-trivial to prove, gives a bound on the propagation
error.

Lemma 5.2 (Propagation error). Let v~; be some approzimation of p~,, i.e., 0 < vy <
oo Let oy = p(f(X)[X 5¢/vsi]). Then there is a constant ¢ > 0 such that

e =l < e \fllpsy —vsell -

Intuitively, Lemma 5.2 states that if v~ has k valid bits of g, then p; has roughly k/2
valid bits of p,. In other words, (at most) one half of the valid bits are lost on each level of
the DAG due to the propagation error.

The following theorem assures that after combining the propagation error and the
approximation error, DNM still converges linearly.

Theorem 5.3. Let f be a quadratic MSP. Let v\9) denote the result of calling DNM(F,)
(see Figure 1). Then there is a kg € N such that v 58+ has at least i valid bits of uf for
every © > 0.

CONVERGENCE THRESHOLDS OF NEWTON’S METHOD 299

We conclude that increasing ¢ by one gives us asymptotically at least one additional bit in
each component and, by Proposition 5.1, costs w(f) - 2f)+1 additional Newton iterations.

In the technical report [5] we give an example that shows that the bound above is
essentially optimal in the sense that an exponential (in A(f)) number of iterations is in
general needed to obtain an additional bit.

6. Newton’s Method for General MSPs

Etessami and Yannakakis [10] introduced DNM because they could show that the matrix
inverses used by Newton’s method exist if Newton’s method is run on each SCC separately
(see Theorem 2.6).

It may be surprising that the matrix inverses used by Newton’s method exist even if
the MSP is not decomposed. More precisely one can show the following theorem, see [5].

Theorem 6.1. Let f(X) be any MSP, not necessarily strongly connected. Let the Newton
operator Ny be defined as before:

Np(X) =X +(1d - (X)) (f(X) - X)
Then the Newton sequence (V‘(fk))k;eN with v = N}“(O) is well-defined (i.e., the matriz

inverses exist), monotonically increasing, bounded from above by uf (i.e. vk < 1) -
wf), and converges to f.

By exploiting Theorem 5.3 and Theorem 6.1 one can show the following theorem which
addresses the convergence speed of Newton’s Method in general.

Theorem 6.2. Let f be any quadratic MSP. Then the Newton sequence (V(k))keN 18
well-defined and converges linearly to pf. More precisely, there is a ky € N such that

p ks i ((HFD2"D) poe ot least i valid bits of puf for every i > 0.

Again, the 2" factor cannot be avoided in general as shown by an example in [5].

7. Conclusions

We have proved a threshold k ¢ for strongly connected MSPEs. After k g+i Newton iterations
we have 4 bits of accuracy. The threshold k; depends on the representation size of f and
on the least solution puf. Although this latter dependence might seem to be a problem,
lower and upper bounds on uf can be easily derived for stochastic models (probabilistic
programs with procedures, stochastic context-free grammars and back-button processes).
In particular, this allows us to show that k¢ depends linearly on the representation size for
back-button processes. We have also shown by means of an example that the threshold & ¢
improves when the number of iterations increases.

In [16] we left the problem whether DNM converges linearly for non-strongly-connected
MSPESs open. We have proven that this is the case, although the convergence rate is poorer:
if h and w are the height and width of the graph of SCCs of f, then there is a threshold
k:f such that & Fti-w- 2M+1 jterations of DNM compute at least i valid bits of pf, where
the exponential factor cannot be avoided in general.

Finally, we have shown that the Jacobian of the whole MSPE is guaranteed to exist,
whether the MSPE is strongly connected or not.

300 J. ESPARZA, S. KIEFER, AND M. LUTTENBERGER
Acknowledgments.
The authors wish to thank Kousha Etessami and anonymous referees for very valuable
comments.
References

[1] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers:

NP-completeness, recursive functions and universal machines. Bulletin of the Amer. Math. Society,
21(1):1-46, 1989.

T. Brazdil, A. Kucera, and O. Strazovsky. On the decidability of temporal properties of probabilistic
pushdown automata. In Proceedings of STACS’2005, volume 3404 of LNCS, pages 145-157. Springer,
2005.

R.D. Dowell and S.R. Eddy. Evaluation of several lightweight stochastic context-free grammars for RNA
secondary structure prediction. BMC Bioinformatics, 5(71), 2004.

R. Durbin, S.R. Eddy, A. Krogh, and G.J. Michison. Biological Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids. Cambridge University Press, 1998.

J. Esparza, S. Kiefer, and M. Luttenberger. Convergence thresholds of Newton’s method for monotone
polynomial equations. Technical report, Technische Universitdt Miinchen, 2007.

J. Esparza, A. Kucera, and R. Mayr. Model-checking probabilistic pushdown automata. In Proceedings
of LICS 2004, pages 1221, 2004.

J. Esparza, A. Kuéera, and R. Mayr. Quantitative analysis of probabilistic pushdown automata: Ex-
pectations and variances. In Proceedings of LICS 2005, pages 117-126. IEKEE Computer Society Press,
2005.

K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic systems. In Proceed-
ings of TACAS 2005, LNCS 3440, pages 253-270. Springer, 2005.

K. Etessami and M. Yannakakis. Checking LTL properties of recursive Markov chains. In Proceedings
of 2nd Int. Conf. on Quantitative Evaluation of Systems (QEST’05), 2005.

K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and monotone systems
of nonlinear equations. In STACS, pages 340-352, 2005.

K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive stochastic games.
In Proceedings of ICALP 2005, volume 3580 of LNCS, pages 891-903. Springer, 2005.

K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations, 2006. Draft journal submission,
http://homepages.inf.ed.ac.uk/kousha/bib_index.html.

R. Fagin, A.R. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Sudan, and
A. Tomkins. Random walks with “back buttons” (extended abstract). In STOC, pages 484-493, 2000.
R. Fagin, A.R. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Sudan, and
A. Tomkins. Random walks with “back buttons”. Annals of Applied Probability, 11(3):810-862, 2001.
S. Geman and M. Johnson. Probabilistic grammars and their applications, 2002.

S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s method for monotone
systems of polynomial equations. In Proceedings of STOC, pages 217-226. ACM, 2007.

B. Knudsen and J. Hein. Pfold: RNA secondary structure prediction using stochastic context-free
grammars. Nucleic Acids Research, 31(13):3423-3428, 2003.

W. Kuich. Handbook of Formal Languages, volume 1, chapter 9: Semirings and Formal Power Series:
Their Relevance to Formal Languages and Automata, pages 609 — 677. Springer, 1997.

C. Manning and H. Schiitze. Foundations of Statistical Natural Language Processing. MIT Press, 1999.
J.M. Ortega and W.C. Rheinboldt. Iterative solution of nonlinear equations in several variables. Aca-
demic Press, 1970.

Y. Sakabikara, M. Brown, R. Hughey, I.S. Mian, K. Sjolander, R.C. Underwood, and D. Haussler.
Stochastic context-free grammars for tRNA. Nucleic Acids Research, 22:5112-5120, 1994.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 301-312
www.stacs-conf.org

MODEL CHECKING GAMES FOR THE QUANTITATIVE p-CALCULUS

DIANA FISCHER !, ERICH GRADEL ', AND LUKASZ KAISER !

! Mathematische Grundlagen der Informatik, RWTH Aachen
E-mail address: {fischer, graedel,kaiser}@logic.rwth-aachen.de

ABSTRACT. We investigate quantitative extensions of modal logic and the modal p-calculus,
and study the question whether the tight connection between logic and games can be lifted
from the qualitative logics to their quantitative counterparts. It turns out that, if the
quantitative p-calculus is defined in an appropriate way respecting the duality properties
between the logical operators, then its model checking problem can indeed be characterised
by a quantitative variant of parity games. However, these quantitative games have quite
different properties than their classical counterparts, in particular they are, in general, not
positionally determined. The correspondence between the logic and the games goes both
ways: the value of a formula on a quantitative transition system coincides with the value of
the associated quantitative game, and conversely, the values of quantitative parity games
are definable in the quantitative u-calculus.

1. Introduction

There have been a number of recent proposals to extend the common qualitative, i.e.
two-valued, logical formalisms for specifying the behaviour of concurrent systems, such as
propositional modal logic ML, the temporal logics LTL and CTL, and the modal p-calculus
L, to quantitative formalisms. In quantitative logics, the formulae can take, at a given state
of a system, not just the values true and false, but quantitative values, for instance from
the (non-negative) real numbers. There are several scenarios and applications where it is
desirable to replace purely qualitative statements by quantitative ones, which can be of very
different nature: we may be interested in the probability of an event, the value that we assign
to an event may depend on how late it occurs, we can ask for the number of occurrences
of an event in a play, and so on. We can consider transition structures, where already the
atomic propositions take numeric values, or we can ask about the ‘degree of satisfaction’
of a property. There are several papers that deal with either of these topics, resulting
in different specification formalisms and in different notions of transition structures. In
particular, due to the prominence and importance of the modal u-calculus in verification,
there have been several attempts to define a quantitative p-calculus. In some of these,
the term quantitative refers to probability, i.e. the logic is interpreted over probabilistic
transition systems [11], or used to describe winning conditions in stochastic games [5, 1, 8.
Other variants introduce quantities by allowing discounting in the respective version of

Key words and phrases: games, logic, model checking, quantitative logics.
SYMPOSIUM

‘V' ON THEORETICAL
() l_ ASPECTS
<4

7) OF COMPUTER)))
SCIENCE © D. Fischer, E. Grédel, and t. Kaiser

@ Creative Commons Attribution-NoDerivs License

302 D. FISCHER, E. GRADEL, AND L. KAISER

a “next”-operator for qualitative transition systems [1], Markov decision processes and
Markov chains [2], and for stochastic games [4].

While there certainly is ample motivation to extend qualitative specification formalisms
to quantitative ones, there also are problems. As has been observed in many areas of mathe-
matics, engineering and computer science where logical formalisms are applied, quantitative
formalisms in general lack the clean and clear mathematical theory of their qualitative coun-
terparts, and many of the desirable mathematical and algorithmic properties tend to get
lost. Also, the definitions of quantitative formalisms are often ad hoc and do not always
respect the properties that are required for logical methodologies. In this paper we have
a closer look at quantitative modal logic and the quantitative p-calculus in terms of their
description by appropriate semantic games. The close connection to games is a fundamen-
tal aspect of logics. The evaluation of logical formulae can be described by model checking
games, played by two players on an arena which is formed as the product of a structure IC
and a formula ¢. One player (Verifier) attempts to prove that v is satisfied in IC while the
other (Falsifier) tries to refute this.

For the modal p-calculus L,, model checking is described by parity games, and this
connection is of crucial importance for the model theory, the algorithmic evaluation and
the applications of the p-calculus. Indeed, most competitive model checking algorithms for
L, are based on algorithms to solve the strategy problem in parity games [10]. Further-
more, parity games enjoy nice properties like positional determinacy and can be intuitively
understood: often, the best way to make sense of a p-calculus formula is to look at the
associated game. In the other direction, winning regions of parity games (for any fixed
number of priorities) are definable in the modal p-calculus.

In this paper, we explore the question to what extent the relationship between the
p-calculus and parity games can be extended to a quantitative p-calculus and appropriate
quantitative model checking games. The extension is not straightforward, and requires that
one defines the quantitative p-calculus in the ‘right’ way, so as to ensure that it has appro-
priate closure and duality properties (such as closure under negation, De Morgan equalities,
quantifier and fixed point dualities) to make it amenable to a game-based approach. Once
this is done, we can indeed construct a quantitative variant of parity games, and prove that
they are the appropriate model checking games for the quantitative u-calculus. As in the
classical setting the correspondence goes both ways: the value of a formula in a structure
coincides with the value of the associated model checking game, and conversely, the values
of quantitative parity games (with a fixed number of priorities) are definable in the quan-
titative p-calculus. However, the mathematical properties of quantitative parity games are
different from their qualitative counterparts. In particular, they are, in general, not posi-
tionally determined, not even up to approximation. The proof that the quantitative model
checking games correctly describe the value of the formulae is considerably more difficult
than for the classical case.

As in the classical case, model checking games lead to a better understanding of the
semantics and expressive power of the quantitative p-calculus. Further, the game-based
approach also sheds light on the consequences of different choices in the design of the
quantitative formalism, which are far less obvious than for classical logics.

MODEL CHECKING GAMES FOR THE QUANTITATIVE p-CALCULUS 303

2. Quantitative pu-calculus

In [3], de Alfaro, Faella, and Stoelinga introduce a quantitative p-calculus, that is
interpreted over metric transition systems, where predicates can take values in arbitrary
metric spaces. Furthermore, their u-calculus allows discounting in modalities and is studied
in connection with quantitative versions of basic system relations such as bisimulation.

We base our calculus on the one proposed in [3] but modify it in the following ways.

(1) We decouple discounts from the modal operators.
(2) We allow discount factors to be greater than one.
(3) In the definition of transition systems we allow additional discounts on the edges.

These changes make the logic more robust and more general, and, as we will show in
the next section, will permit us to introduce a negation operator with the desired duality
properties that are fundamental to a game-based analysis.

Quantitative transition systems, similar to the ones introduced in [3] are directed graphs
equipped with quantities at states and discounts on edges. In the sequel, R is the set of
non-negative real numbers, and R} := R* U {cc}.

Definition 2.1. A quantitative transition system (QTS) is a tuple
K= (V7 Ea 57 {Pi}ief)a

consisting of a directed graph (V, F), a discount function ¢ : £ — R* \ {0} and functions
P; .V — RL | that assign to each state the values of the predicates at that state.

A transition system is qualitative if all functions P; assign only the values 0 or oo, i.e.
P, : V. — {0,00}, where 0 stands for false and oo for true, and it is non-discounted if
d(e) =1forallec E.

We now introduce a quantitative version of the modal u-calculus to describe properties
of quantitative transition systems.

Definition 2.2. Given a set V of variables X, predicate functions {P; };cs, discount factors
d € R™ and constants ¢ € RT, the formulae of quantitative p-calculus (Qu) can be built in
the following way:

(1) |P; — | is a Qu-formula,

(2) X is a Qu-formula,

(3) if ¢,1 are Qu-formulae, then so are (p A1) and (¢ V),

(4) if ¢ is a Qu-formula, then so are Oy and Oy,

(5) if ¢ is a Qu-formula, then so is d - ¢,

(6) if ¢ is a formula of Qu, then uX.¢ and vX.p are formulae of Qu.

Formulae of Qu are interpreted over quantitative transition systems. Let F be the set
of functions f : V. — R, with f1 < fo if f1(v) < fo(v) for all v. Then (F, <) forms a
complete lattice with the constant functions f = oo as top element and f = 0 as bottom
element.

Given an interpretation € : YV — F, a variable X € V, and a function f € F, we denote
by €[X < f] the interpretation ', such that £(X) = f and /(Y) = (V) for all Y # X.

Definition 2.3. Given a QTS K = (V, E,0,{P;}icr) and an interpretation ¢, a Qu-formula
yields a valuation function [¢]% : V' — RZ defined as follows:

(1) [P~ llE@) = [P(0) — o],) -

(2) lpr Aol = min{[pa]2, [po] o} and [1 V o] = max{[w1]z, [2]™},

304 D. FISCHER, E. GRADEL, AND L. KAISER

)
4) [d- o]F(v) =d-[¢]E(v),
; [X]E = e(X),

For formulae without free variables, we can simply write [¢]* rather than [o]~.

We call the fragment of Qu consisting of formulae without fixed-point operators quanti-
tative modal logic QML. If Qu is interpreted over qualitative transition systems, it coincides
with the classical p-calculus and we say that K, v is a model of ¢, K,v | ¢ if [¢] < (v) = co.
Over non-discounted quantitative transition systems, the definition above coincides with
the one in [3]. For discounted systems we take the natural definition for ¢ and use the dual
one for [, thus the % factor. As we will show, this is the only definition for which there is
a well-behaved negation operator and with a close relation to model checking games.

We always assume the formulae to be well-named, i.e. each fixed-point variable is bound
only once and no variable appears both free and bound and we use the notions of alternation
level and alternation depth in the usual way, as defined in e.g. [9].

Note that all operators in Qu are monotone, thus guaranteeing the existence of the
least and greatest fixed points, and their inductive definition according to the Knaster-
Tarski Theorem stated below.

Proposition 2.4. The least and greatest fixed points exist and can be computed inductively:
[nX.]% = g, with go(v) =0 (and [vX.¢]% = g, with go(v) = c0) for allv € V where

] leleix —ga_n for a successor ordinal,
o = limgcalplepxeygy for o limit ordinal,

and v is such that gy = gy41.

3. Negation and Duality

So far, the quantitative logics Qu and QML lack a negation operator and the associated
dualities between A and V, ¢ and [, and between least and greatest fixed points. Let us
clarify in the following definition what we expect from such an operator.

Definition 3.1. A negation operator f- for Qu is a function RY, — RZ | such that when
we define [-¢] = f-([¢]), the following equivalences hold for every ¢ € Qu:
(1) —p=¢
(2) ~(pAY) =0V and 2(pVY) =—p A
3) =O¢ = 0—p and Q¢ = Oy
4) —d- ¢ = B(d) - —p for some [independent of ¢
5) “uX.o =vX.—p[X/-X] and vX.p = puX.—p[X/-X]

P

A straightforward calculation shows that the function

1/z for x # 0,2 # oo,
fi:RL R 2 oo forz=0,
’ 0 for x = oo,
is a negation operator for Qu. Hence, we can safely include negation into the definition
of Qu. If we do so, we of course have to demand that the fixed-point variables in the

MODEL CHECKING GAMES FOR THE QUANTITATIVE p-CALCULUS 305

definition of least and greatest fixed point formulae, see Definition 2.2, only occur under an
even number of negations, so as to preserve monotonicity.
Moreover, we show that fi is the only negation operator with the required properties.

You should note that this is the case even for non-discounted transition systems, and thus
it motivates our definition of the semantics of Qu, in particular of the modal operators, on
quantitative transition systems.

Theorem 3.2. fi is the only negation operator for Qu, even for non-discounted systems.

4. Quantitative Parity Games

Quantitative parity games are an extension of classical parity games. The two main
differences are the possibility to assign real values in final positions to denote the payoff for
Player 0 and the possibility to discount payoff values on edges.

Definition 4.1. A quantitative parity game is a tuple G = (V, Vy, Vi, E,§, A\, Q) where V is
a disjoint union of V4 and Vi, i.e. positions belong to either Player 0 or 1. The transition
relation E C V x V describes possible moves in the game and 6 : V x V — RT maps
every move to a positive real value representing the discount factor. The payoff function
A:{v eV :vE =0} — RE assigns values to all terminal positions and the priority function
Q:V —{0,...,n} assigns a priority to every position.

How to play. Every play starts at some vertex v € V. For every vertex in V;, Player
1 chooses a successor vertex, and the play proceeds from that vertex. If the play reaches
a terminal vertex, it ends. We denote by m = vgv; ... the (possibly infinite) play through
vertices vovy ..., given that (vy,v,11) € E for every n. The outcome p(7) of a finite play
T =1g...v can be computed by multiplying all discount factors seen throughout the play
with the value of the final node,

p(vovy ... vg) = 8(vo,v1) - 6(v1,v2) - ... - I (Vk—1,Vk) - A(Vg).

The outcome of an infinite play depends only on the lowest priority seen infinitely often.
We will assign the value 0 to every infinite play, where the lowest priority seen infinitely
often is odd, and oo to those, where it is even.
Goals. The two players have opposing objectives regarding the outcome of the play.
Player 0 wants to maximise the outcome, while Player 1 wants to minimise it.
Strategies. A strategy for player i € 0,1 is a function s : V*V; — V with (v, s(v)) € E. A
play m = vgvy ... is consistent with a strategy s for player i, if v,11 = s(vg...v,) for every
n such that v,, € Vj. For strategies o, p for the two players, we denote by 7, ,(v) the unique
play starting at node v which is consistent with both ¢ and p.
Determinacy. A game is determined if, for each position v, the highest outcome Player 0
can assure from this position and the lowest outcome Player 1 can assure converge,

sup inf p(ms,(v)) = inf sup p(7s,,(v)) =: valG(v),

oelg pely pel'r o€l
where ['g,I'; are the sets of all possible strategies for Player 0, Player 1 and the achieved
outcome is called the value of G at v.

Classical parity games can be seen as a special case of quantitative parity games when

we map winning to payoff co and losing to payoff 0. Formally, we say that a quantitative
parity game G = (V, Vy, V4, E, 5, \, Q) is qualitative when A\(v) = 0 or A(v) = oo forallv € V

306 D. FISCHER, E. GRADEL, AND L. KAISER

with vE = (. In qualitative games, we denote by W; € V the winning region of player 1, i.e.
Wy is the region where player 0 has a strategy to guarantee payoff oo and W is the region
where player 1 can guarantee payoff 0. Note that there is no need for the discount function
0 in the qualitative case as the payoff can not be changed by discounting.

Qualitative parity games have been extensively studied in the past. One of their funda-
mental properties is positional determinacy. In every parity game, the set of positions can
be partitioned into the winning regions Wy and Wi for the two players, and each player has
a positional winning strategy on her winning region (which means that the moves selected
by the strategy only depend on the current position, not on the history of the play).

Unfortunately, this result does not generalise to quantitative parity games. Example
4.2 shows that there are simple quantitative games where no player has a positional winning
strategy. In the depicted game there is no optimal strategy for Player 0, and even if one
fixes an approximation of the game value, Player 0 needs infinite memory to reach this
approximation, because she needs to loop in the second position as long as Player 1 looped
in the first one to make up for the discounts. (By convention, we depict positions of Player 0
with a circle and of Player 1 with a square and the number inside is the priority for non-
terminal positions and the payoff in terminal ones.)

Example 4.2.

4.1. Model Checking Games for Qu

A game (G,v) is a model checking game for a formula ¢ and a structure K,v’, if the
value of the game starting from v is exactly the value of the formula evaluated on K at v’.
In the qualitative case, that means, that ¢ holds in K, v’ if Player 0 wins in G from v.

Definition 4.3. For a quantitative transition system K = (S,T,dg, P;) and a Qu-formula
¢ in negation normal form, the quantitative parity game MC[KC, o] = (V, Vy, V1, E, §, A\, Q),
which we call the model checking game for K and ¢, is constructed in the following way.
Positions. The positions of the game are the pairs (1, s), where v is a subformula of ¢,
and s € S is a state of the QTS K, and the two special positions (0) and (co). Positions
(1, s) where the top operator of ¥ is (J, A, or v belong to Player 1 and all other positions
belong to Player 0.

Moves. Positions of the form (|P; — ¢|,s),(0), and (co) are terminal positions. From
positions of the form () A6, s), resp. (¢pV 0, s), one can move to (1, s) or to (6, s). Positions
of the form (0, s) have either a single successor (0), in case s is a terminal state in K, or one
successor (1, s") for every s’ € sT. Analogously, positions of the form (v, s) have a single
successor (00), if sT' = (), or one successor (¢, s’) for every s’ € sT otherwise. Positions
of the form (d - 1, s) have a unique successor (1, s’). Fixed-point positions (uX.1), s), resp.
(vX .1, s) have a single successor (1, s). Whenever one encounters a position where the fixed-
point variable stands alone, i.e. (X, s’), the play goes back to the corresponding definition,
namely (¢, s').

Discounts. The discount of an edge is d for transitions from positions (d-1, s), it is dg(s,)
for transitions from (O, s) to (¢, s’), it is 1/dg(s, ') for transitions from (O, s) to (v, s’),
and 1 for all outgoing transitions from other positions.

MODEL CHECKING GAMES FOR THE QUANTITATIVE p-CALCULUS 307

Payoffs. The payoff function A\ assigns [[P;](s) — ¢| to all positions (|P; — ¢|,s), oo to
position (c0), and 0 to position (0).

Priorities. The priority function €2 is defined as in the classical case using the alternation
level of the fixed-point variables, see e.g. [9]. Positions (X,s) get a lower priority than
positions (X', s") if X has a lower alternation level than X’. The priorities are then adjusted
to have the right parity, so that an even value is assigned to all positions (X, s) where X
is a v-variable and an odd value to those where X is a p-variable. The maximum priority,
equal to the alternation depth of the formula, is assigned to all other positions.

It is well-known that qualitative parity games are model checking games for the classical
p-calculus, see e.g. [6] or [12]. A proof that uses the unfolding technique can be found in
[9]. We generalise this connection to the quantitative setting as follows.

Theorem 4.4. For every formula ¢ in Qu, a quantitative transition system K, and v € IC,
the game MCIKC, o] is determined and

valMC[K, ¢](p,v) = [¢]*(v).

4.2. Unfolding Quantitative Parity Games

To prove the model checking theorem in the quantitative case, we start with games
with one priority, known as reachability and safety games. The construction of e-optimal
strategies is obtained by a generalisation of backwards induction. At first, we fix the notation
and show a few basic properties.

Definition 4.5. A number k € R is called e-close to p € R}, when either p is finite and
|k—p|<ecorp=ocand k> % A strategy o in a determined game G is e-optimal from v if
it assures a payoff e-close to valG(v). Furthermore, we say that k is e-above p (or e-below),
if k> p' (or k <p’) for some p’ that is e-close to p.

We slightly abuse the word “close” as e-closeness is not symmetric, since % is e-close to
00, but oo is not e-close to any number » € R, Still, the following lemmas should convince
you that our definition suits our considerations well.

Definition 4.6. For every history h = vy ... vy of a play, let A(h) = II;-¢d(v;, vi+1) be the
product of all discount factors seen in h, and let D(h) = max(A(h), A%h)). Note that for
every play m = vgvq ... and every k,

p(m) = A(vg ... vg) - p(VEVE4T - -).
Lemma 4.7. Let z,y € R, e € (0,1), A € R\ {0}, and D = max{A, £}.
(1) If x is €/D-close to y, then A -z is e-close to A -y. This holds in particular when
A = A(h) and D = D(h) for a history h.
(2) If x is €/2-close to y and y is €/2-close to z, then x is e-close to z.

This lemma remains valid if we replace the close-relation by the above- or below-relation.

Proposition 4.8. Reachability and Safety games are determined, for every position v there
exist strategies o° and p° that guarantee payoffs e-above (or respectively e-below) valG(v).

The next step is to prove the determinacy of quantitative parity games. For this
purpose, we present a method to unfold a quantitative parity game into a sequence of games
with a smaller number of priorities. This technique is inspired by the proof of correctness

308 D. FISCHER, E. GRADEL, AND L. KAISER

of the model checking games for L, in [9]. We can extend this method to prove Theorem
4.4 by showing that, as in the classical case, the unfolding of MC[K, ¢] is closely related to
the inductive evaluation of fixed points in ¢ on K.

From now on, we assume that the minimal priority in G is even and call it m. This is
no restriction, since, if the minimal priority is odd, we can always consider the dual game,
where the roles of the players are switched and all priorities are decreased by one.

Definition 4.9. We define the truncated game G- = (V,E~,X\,Q7) for a quantitative
parity game G = (V, E,;\,). We assume without loss of generality that all nodes with
minimal priority in G have unique successors with a discount of 1. In G~ we remove the
outgoing edge from each of these nodes. Since these nodes are terminal positions in G,
their priority does not matter any more for the outcome of a play and €2~ assigns them a
higher priority, e.g. m 4+ 1. Formally,

B = B\ {(v,) : Q) = m}
_ Qv if Q(v) # m,
Q™ (v) :{ m(+)1 ifQEv; = m.

The unfolding of G is a sequence of games G, for ordinals «, which all coincide with G,
except for the valuation functions \,. Below we give the construction of the \,’s.
For all terminal nodes v of the original game G we have A\, (v) = A(v) for all a. For

the new terminal nodes, i.e. all v € V, such that vE~ = () and vE = {w}, the valuation is
given by:
00 for a =0,
Ao(v) = valG, (w) for a successor ordinal,

limgeq valGy (w) for a limit ordinal.

The intuition behind the definition of A, is to give an incentive for Player 0 to reach the
new terminal nodes by first giving them the best possible valuation, and later by updating
them to values of their successor in a previous game gﬁ—, 0 < a.

To determine the value of the original game G, we inductively compute the values
for each game in G,, until they do not change any more. Let 7 be an ordinal for which
valgl" = valg ;. Such an ordinal exists, since the values of the games in the unfolding are
monotonically decreasing (which follows from determinacy of these games and definition).
We set g(v) = g,(v) = valG; (v) and show that g is the value function of the original game G.

To prove this, we need to introduce strategies for Player 1 and Player 0, which are
inductively constructed from the strategies in the unfolding. To give an intuition for the
construction, we view a play in G as a play in the unfolding of G. Let us look more closely
at the situation of each player.

The Strategy of Player 0

Player 0 wants to achieve the value g-(vp) or to come e-close. To reach this goal, she
imagines to play in G; and uses her e-optimal strategies o5 for that game. Between every
two occurrences of nodes of minimal priority throughout the play, she plays a strategy o5

MODEL CHECKING GAMES FOR THE QUANTITATIVE p-CALCULUS 309

Player 0’s strategy after having seen ¢ nodes of priority m.

Initially, &; will be 5, € being the approximation value she wants to attain in the end.

Then she chooses a lower ;41 every time she passes an edge outside of G~. She will adjust
the approximation value not only by cutting it in half every time she changes the strategy,
but also according to the discount factors seen so far, since they also can dramatically alter
the value of the approximation.

For a history h or a full play =, let L(h) (resp. L(w)) be the number of nodes with
minimal priority m occurring in h (or).

Definition 4.10. The strategy o° for Player 0 in the game G, after history h = vg ... v, is
given as follows. In the case that L(h) = 0 (i.e., no position of minimal priority has been
seen), let &/ :=¢/2, and o¢(h) := af/(h). Otherwise, let vy be the last node of priority m in
the history h = vg ... vy,

€
/
g = .
2L+ D(vg . . .)
and
oc(h) == o7, (Vkg1 - - - vp).
Now let us consider a play m = vg...vgUg11 - .., consistent with a strategy o°, where

vy is the first node with minimal priority. The following property about values g.(vo) and
G (vg+1) in such case (and an analogous, but more tedious one for Player 1) is the main
technical point in proving e-optimality.

Lemma 4.11. A(vg...vx) - gy(vry1) s §5-above gy (vo).

With the above lemma we prove the e-optimality of the strategies o€, as stated in the
proposition below.

Proposition 4.12. The strategy o is e-optimal, i.e. for every v € V and every strategy p
for Player 1, p(my< ,(v)) is e-above g(v).

The Strategy of Player 1

Now we look at the situation of Player 1. The problem of Player 1 is that he cannot just
combine his strategies for G5 . If he did so, he would risk going infinitely often through nodes
with minimal priority which is his worst case scenario. Intuitively speaking, he needs a way
to count down, so that will be able to come close enough to his desired value, but will stop
going through the nodes with minimal priority after a finite number of times. To achieve
that, he utilises the strategy index as a counter. Like Player 0, he starts with a strategy for
g, , but with every strategy change at the nodes of minimal priority he not only adjusts the
approximation value according to the previous one and the discount factors seen so far, but
also lowers the strategy index in the following way. If the current game index is a successor
ordinal, he just changes the index to its predecessor and adjusts the approximation value
in the same way Player 0 does. If the current game index is a limit value, he uses the fact,
that there is a game index belonging to a game which has an outcome close enough to still

310 D. FISCHER, E. GRADEL, AND L. KAISER

reach his desired outcome. In the situation depicted below he would choose an « such that
valG (vg,4+1) is §-below A, (v,).

£ _€

w P Uk Vgt pEP Vs

O A) O AN (s
G- G;

Player 1’s strategy at the beginning of the play for a limit ordinal ~.

Finally, after a finite number of changes, as the ordinals are well-founded, he will be
playing some version of pg' and keep on playing this strategy for the rest of the play.

Now we formally describe Player 1’s strategy. Let us first fix some notation considering
game indices. For a limit ordinal «, a node v € V' of priority m, and for € € (0, 1), we denote
by a [€,v the index for which the value valG_ (v) is e-below A, (w), where {w} = vE.

Definition 4.13. For a given approximation value ¢, a starting ordinal ¢, and a history
h =wg...v, we define game indices a(h, "), approximation values (h,e’), and a strategy
pa, for Player 1 in the following way.

If L(h) =0, we fix a¢(h,e’) = ¢ and e(h,e") = ¢’

For h = vg...v0k41 ... v, where vy is the last node with minimal priority in h, let
h =wvgy...v5—1 and put

ac(W,e')—1 for (R, €") successor ordinal,
ag(h,el) — Oé((h’,gf) I (Wll)(h’)’vk) for Oég(h”g’) limit ordinal,
0 for o (B, €") =0,
and e(h, &) = 7@%)5(;0...%)'

The &’-optimal strategy for Player 1 is given by:

5(v0.4.vl,sl)
4

pe (vo...vp) = Pac(vo...v,e")"
Proposition 4.14. The strategy pz is e-optimal, i.e. for every e € (0,1), for all v € V,
and strategies o of Player 0: p(ﬂgﬂpz (v)) is e-below g¢(v).
Having defined the e-optimal strategies o and pS, we can formulate the conclusion.
Proposition 4.15. For a QPG G = (V,E,\,Q), for allv €V,

sup inf p(7ms,(v)) = inf sup p(7s,p(v)) = valG(v) = g(v).
oel'g pely pel'r o€l

4.3. Quantitative p-calculus and Games

After establishing determinacy for quantitative parity games we are ready to prove
Theorem 4.4. In the proof, we first use structural induction to show that MCIK, ¢] is a
model checking game for QML formulae. Further, we only need to inductively consider
formulae of the form ¢ = v .X.4.

MODEL CHECKING GAMES FOR THE QUANTITATIVE p-CALCULUS 311

Note that in the game MC[Q, ¢|, the positions with minimal priority are of the form
(X,v) each with a unique successor (p,v). Our induction hypothesis states that for every
interpretation g of the fixed-point variable X, it holds that:

[e]5 . g = vaIMC[Q, 9 [X/g]]. (4.1)

By Theorem 2.4, we know that we can compute v X.1 inductively in the following way:
[vX]& = g, with go(v) = oo for all v € V and

_ [[w]]&[x«—ga_l] for « successor ordinal,
o = limgea[t]eix gy for a limit ordinal,

and where g, = gy11.

Now we want to prove that the games MC[Q, ¥[X/g]] coincide with the unfolding of
MCIQ, ¢]. We say that two games coincide if the game graph is essentially the same, except
for some additional moves where neither player has an actual choice and there is no discount
that could change the outcome. In our case these are the moves from ¢ = v X.4 to ¥, which
allows us to show the following lemma.

Lemma 4.16. The games MC[Q,[X/g4]] and MC[Q,], coincide for all a.

From the above and Proposition 4.15, we conclude that the value of the game MC[Q, ¢]
is the limit of the values MC|Q, ¢];, whose value functions coincide with the stages of the
fixed-point evaluation g, for all «, and thus

valMC|[Q, ¢] = valMC[Q, ¢]; = g, = [¢]°.

5. Describing Game Values in Qu

Having model checking games for the quantitative u-calculus is just one direction in
the relation between games and logic. The other direction concerns the definability of the
winning regions in a game by formulae in the corresponding logic. For the classical u-
calculus such formulae have been constructed by Walukiewicz and it has been shown that
for any parity game of fixed priority they define the winning region for Player 0, see e.g.
[9]. We extend this theorem to the quantitative case in the following way. We represent
quantitative parity games (V,Vy, V1, E, d¢, A, Q) with priorities Q(V) € {0,...d — 1} by
a quantitative transition system Qg = (V, E, 4§, Vp, V1, A, Q), where V;(v) = oo when v € V;
and Vj(v) = 0 otherwise, Q(v) = Q¢ (v) when vE # () and Q(v) = d otherwise,

dg(v,w) when v € Vj,
s(ww) = {

1
m when v € Vl,

and payoff predicate A(v) = Ag(v) when vE =) and A(v) = 0 otherwise.
We then build the formula Wing and formulate the theorem
d-1
Wing = vXo.uX1.0Xs.... AXq-1 \/ (Vo A Py AOX;) V (Vi APy ADX;)) VA,
§=0
where A = v if d is odd, and A = u otherwise, and P; := =(uX.(2- X V| — 1])).

Theorem 5.1. For every d € N, the value of any quantitative parity game G with priorities
in {0,...d — 1} coincides with the value of Wing on the associated transition system Qg.

312 D. FISCHER, E. GRADEL, AND L. KAISER

6. Conclusions and Future Work

In this work, we showed how the close connection between the modal p-calculus and
parity games can be lifted to the quantitative setting, provided that the quantitative exten-
sions of the logic and the games are defined in an appropriate manner. This is just a first
step in a systematic investigation of what connections between logic and games survive in
the quantitative setting. These investigations should as well be extended to quantitative
variants of other logics, in particular LTL, CTL, CTL*, and PDL.

Following [3] we work with games where discounts are multiplied along edges and values
range over the non-negative reals with infinity. Another natural possibility is to use addition
instead of multiplication and let the values range over the reals with —oo and 4o00. Crash
games, recently introduced in [7], are defined in such a way, but with values restricted to
integers. Gawlitza and Seidl present an algorithm for crash games over finite graphs which
is based on strategy improvement [7]. It is possible to translate back and forth between
quantitative parity games and crash games with real values by taking logarithms of the
discount values on edges as payoffs for moves in the crash game. The exponent of the value
of such a crash game is then equal to the value of the original quantitative parity game.
This suggests that the methods from [7] can be applied to quantitative parity games as
well. This could lead to efficient model-checking algorithms for Qu and would thus further
justify the game-based approach to model checking modal logics.

References

[1] Luca de Alfaro. Quantitative verification and control via the mu-calculus. In Roberto M. Amadio and
Denis Lugiez, editors, CONCUR, volume 2761 of LNCS, pages 102-126. Springer, 2003.

[2] Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and Mariélle Stoelinga. Model
checking discounted temporal properties. Theoretical Computer Science, 345(1):139-170, 2005.

[3] Luca de Alfaro, Marco Faella, and Mariélle Stoelinga. Linear and branching system metrics. Technical
Report ucsc-crl-05-01, School of Engineering, University of California, Santa Cruz, 2005.

[4] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Discounting the future in systems theory.
In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, I[CALP,
volume 2719 of Lecture Notes in Computer Science, pages 1022-1037. Springer, 2003.

[5] Luca de Alfaro and Rupak Majumdar. Quantitative solution of omega-regular games. J. Comput. Syst.
Sci., 68(2):374-397, 2004.

[6] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model-checking for fragments of u-
calculus. In CAV 93, volume 697 of Lecture Notes in Computer Science, pages 385-396. Springer, 1993.

[7] Thomas Gawlitza and Helmut Seidl. Computing game values for crash games. In Kedar S. Namjoshi et
al., eds, ATVA, Lect. Notes in Comp. Science 4762, pp. 177-191. Springer, 2007.

[8] Hugo Gimbert and Wieslaw Zielonka. Perfect information stochastic priority games. In Lars Arge et
al., eds, ICALP, Lect. Notes in Comp. Science 4596, pp. 850-861. Springer, 2007.

[9] Erich Grédel. Finite model theory and descriptive complexity. In Finite Model Theory and Its Applica-
tions, pages 125-230. Springer-Verlag, 2007.

[10] Marcin Jurdzidiski. Small progress measures for solving parity games. In Horst Reichel and Sophie Tison,
editors, STACS, volume 1770 of Lecture Notes in Computer Science, pages 290-301. Springer, 2000.

[11] Annabelle Mclver and Carroll Morgan. Results on the quantitative p-calculus gMpu. ACM Trans. Com-
put. Log., 8(1), 2007.

[12] Colin Stirling. Games and modal mu-calculus. In Tiziana Margaria and Bernhard Steffen, editors,
TACAS, volume 1055 of Lecture Notes in Computer Science, pages 298-312. Springer, 1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 313-324
www.stacs-conf.org

ORDER-INVARIANT MSO IS STRONGER THAN COUNTING MSO
IN THE FINITE

TOBIAS GANZOW ! AND SASHA RUBIN 2

! Mathematische Grundlagen der Informatik, RWTH Aachen, Germany
E-mail address: ganzow@logic.rwth-aachen.de

2 Department of Computer Science, University of Auckland, New Zealand
E-mail address: rubin@cs.auckland.ac.nz

ABSTRACT. We compare the expressiveness of two extensions of monadic second-order
logic (MSO) over the class of finite structures. The first, counting monadic second-order
logic (CMSO), extends MSO with first-order modulo-counting quantifiers, allowing the
expression of queries like “the number of elements in the structure is even”. The second
extension allows the use of an additional binary predicate, not contained in the signature of
the queried structure, that must be interpreted as an arbitrary linear order on its universe,
obtaining order-invariant MSO.

While it is straightforward that every CMSO formula can be translated into an equiva-
lent order-invariant MSO formula, the converse had not yet been settled. Courcelle showed
that for restricted classes of structures both order-invariant MSO and CMSO are equally
expressive, but conjectured that, in general, order-invariant MSO is stronger than CMSO.

We affirm this conjecture by presenting a class of structures that is order-invariantly
definable in MSO but not definable in CMSO.

1. Introduction

Linear orders play an important role in descriptive complexity theory since certain re-
sults relating the expressive power of logics to complexity classes, e.g., the Immerman-Vardi
Theorem that LFP captures PTIME, only hold for classes of linearly ordered structures.
Usually, the order only serves to systematically access all elements of the structure, and
consequently to encode the configurations of a step-wise advancing computation of a Tur-
ing machine by tuples of elements of the structure. In these situations we do not actually
want to make statements about the properties of the order, but merely want to have an
arbitrary linear order available to express the respective coding techniques.

Furthermore, when actually working with finite structures in an algorithmic context,
e.g., when evaluating queries in a relational database, we are in fact working on an implicitly
ordered structure since, although relations in a database are modelled as sets of tuples, the
relations are nevertheless stored as ordered sequences of tuples in memory or on a disk. As

1998 ACM Subject Classification: F.4.1 Mathematical Logic.
Key words and phrases: MSO, Counting MSO, order-invariance, expressiveness, Ehrenfeucht-Fraissé

game.
SYMPOSIUM

‘V' ON THEORETICAL
(@] l_ ASPECTS
<4

7 / OF COMPUTER)
SCIENCE © T.Ganzow and S. Rubin

@ Creative Commons Attribution-NoDerivs License

314 T. GANZOW AND S. RUBIN

this linear order is always available (though, as in the case of databases, it is implementation-
dependent and may even change over time as tuples are inserted or deleted), we could allow
queries to make use of an additional binary predicate that is interpreted as a linear order
on the universe of the structure, but require the outcome of the query not to depend on the
actual ordering, but to be order-invariant. Precisely, given a 7-structure 2, we allow queries
built over an expanded vocabulary 7U{<}, and say that a query ¢ is order-invariant if
(A, <1) E e <= (A, <2) | ¢ for all possible relations <; and <5 linearly ordering A.

Using Ehrenfeucht-Fraissé-games for MSO, one can see that MSO on sets (i.e., struc-
tures over an empty vocabulary) is too weak to express that the universe contains an even
number of elements. However, this is possible if the universe is linearly ordered: simply
use the MSO sentence stating that the maximal element should be contained in the set of
elements on even positions in the ordering. Obviously, such a sentence is order-invariant
since rearranging the elements does not affect its truth value. Gurevich uses this observation
to show that the property of Boolean algebras having an even number of atoms, although
not definable in FO, is order-invariantly definable in FO (simulating the necessary MSO-
quantification over sets of atoms by FO-quantification over the elements of the Boolean
algebra).

If we explicitly add modulo-counting to MSO, e.g., via modulo-counting first-order
quantifiers such as “there exists an even number of elements z such that ...”, we ob-
tain counting monadic second-order logic (CMSO), and the question naturally arises as
to whether there are properties not expressible in CMSO that can be expressed order-
invariantly in MSO.

In fact, a second separation example due to Otto gives a hint in that direction. The
class of structures presented in [Ott00] even separates order-invariant FO from FO extended
by arbitrary unary generalised quantifiers, i.e., especially modulo-counting quantifiers, and
exploits the idea of “hiding” a part of the structure such that it is only meaningfully usable
for queries in presence of a linear order (or, as actually proven in the paper, in presence of
an arbitrary choice function).

The expressiveness of CMSO has been studied, e.g., in [Cou90], where it is mainly
compared to MSO, and in [Cou96] it is shown that, on the class of forests, order-invariant
MSO is no more expressive than CMSO. As pointed out in [BS05], this can be generalised
using results in [Lap98] to classes of structures of bounded tree-width. But still, this left
open Courcelle’s conjecture: that order-invariant MSO is strictly stronger than CMSO for
general graphs [Cou96, Conjecture 7.3].

In this paper, we present a suitable characterisation of CMSO-definability in terms of
an Ehrenfeucht-Fraissé game, and later, as the main contribution, we present a separating
example showing that a special class of graphs is indeed definable by an order-invariant
MSO sentence but not by a counting MSO sentence.

2. Preliminaries

Throughout the paper N denotes the set of non-negative integers and N* := N — {0}.
Given a non-empty finite set M = {mq,...,mg} Can NT, let lem(M) := lem(my,. .., mg)
denote the least common multiple of all elements in M; additionally, we define lem()) = 1.
For sets X and Y as well as M as before, we abbreviate that |X| = |Y| (mod m) for all
m € M by using the shorthand |X| = |Y| (mod M).

ORDER-INVARIANT MSO IS STRONGER THAN COUNTING MSO 315

We restrict our attention to finite 7-structures with a nonempty universe over a count-
able relational vocabulary 7, possibly with constants, and we will mainly deal with monadic
second-order logic and some of its extensions. For more details concerning finite model the-
ory, we refer to [EF95] or [Lib04].

When comparing the expressiveness of two logics £ and £, we say that £ is at least
as expressive as L, denoted £ C L', if for every ¢ € L[7] there exists a ¢’ € L'[r] such that
Mod(yp) = Mod(¢'), where Mod(p) denotes the class of all finite T-structures satisfying ¢.

2.1. Counting MSO

The notion of (modulo-)counting monadic second-order logic (CMSO) can be intro-
duced in two different, but nonetheless equivalent, ways. The first view of CMSO is via an
extension of MSO by modulo-counting first-order quantifiers.

Definition 2.1. Let 7 be a signature and M C NT a set of moduli, then

— every formula ¢ € MSO[r] is also a formula in CMSO™)[7], and

— if p(x) € CMSOM)[r] and m € M, then 3™ z.p(z) € CMSOM)[7].
If we do not restrict the set of modulo-counting quantifiers being used, we get the full
language CMSO[7]| = CMSO(N+)[T]. The semantics of MSO formulae is as expected, and
we have 2 = 3™ z.o(x) if and only if [{a € A: A = p(a)}| = 0 (mod m). The quantifier
rank qr(y) of a CMSO[r| formula 1 is defined as for MSO-formulae with the additional
rule that qr (El(m)x.go(a?)) = 1+4qr(y), i.e., we do not distinguish between different kinds of
quantifiers.

In this paper we use an alternative but equivalent definition of CMSO, namely the
extension of the MSO language by monadic second-order predicates C'(™) which hold true
of a set X if and only if |[X| = 0 (mod m). As in the definition above, formulae of the
fragment CMSO™M) [7] may only use predicates C(™) where m € M. The back-and-forth
translation can be carried out along the following equivalences which increase the quantifier
rank by at most one in each step:

Iz o(z) = IX(C(X) AVz(Xz < o(z)) and
cM(xX)= 3z X,

Furthermore, the introduction of additional predicates C (") (or, equivalently, addi-
tional modulo-counting quantifiers 3(™7")) stating for a set X that [X| = r (mod m) does
not increase the expressive power since they can be simulated as follows (with only a con-
stant increase of quantifier rank):

C(m,r)(X) = E]XO(LLXO C XA “’XO‘ — A uc(m) (X\Xo)”),

where all subformulae are easily expressible in MSO.
Later, we will introduce an Ehrenfeucht-Fraissé game capturing the expressiveness of
CMSO with this extended set of second-order predicates.

316 T. GANZOW AND S. RUBIN

2.2. Order-invariance

Let 7 be a relational vocabulary and ¢ € MSO[r U {<}], i.e., ¢ may contain an addi-
tional relation symbol <. Then ¢ is called order-invariant on a class C of T-structures if,
and only if, (A, <1) F ¢ <= (A, <2) | ¢ for all A € C and all linear orders <; and <s
on A.

Although, in general, it is undecidable whether a given MSO-formula is order-invariant
in the finite, we will speak of the order-invariant fragment of MSO, denoted by MSO[<] iny,
that contains all formulae that are order-invariant on the class of all finite structures.

It is an easy observation that every CMSO formula is equivalent over the class of all
finite structures to an order-invariant MSO formula by translating counting quantifiers in
the following way:

FDy.o(z) = IX3X,... 34X,
Vo (Xz — p(x)) N “{Xo,...,X4-1} is a partition of X
A Fz(Xoz AVy(Xy — = < y)) A Jo (X2 AVy(Xy — x> y))

q—1
A VaVy <S¢7<(x,y) — (/\ Xit < Xi1 (mod q)y>>

i=0
where S, - defines the successor relation induced by an arbitrary order < on the universe
of the structure restricted to the set X of elements for which ¢ holds.
Note that the quantifier rank of the translated formula is not constant but bounded by
the parameter in the counting quantifier.

3. An Ehrenfeucht-Fraissé game for CMSO

The Ehrenfeucht-Fraissé game capturing expressiveness of MSO parameterised by the
quantifier-rank (cf. [EF95, Lib04]) can be naturally extended to a game capturing the ex-
pressiveness of CMSO parameterised by the quantifier rank and the set of moduli being
used in the cardinality predicates or counting quantifiers.

Viewing CMSO as MSO with additional quantifiers 3™ z.p(z) for all m in a fixed set
M leads to a new type of move described, e.g., in the context of extending FO by modulo-
counting quantifiers in [Nur00]. Since a modulo-counting quantifier actually combines no-
tions of a first-order and a monadic second-order quantifier in the sense that it makes a
statement about the cardinality of a certain set of elements, but on the other hand, it be-
haves like a first-order quantifier binding an element variable and making a statement about
that particular element, the move capturing modulo-counting quantification consists of two
phases. First, Spoiler and Duplicator select sets of elements S and D in the structures such
that |S| = |D| (mod M), and in the second phase, Spoiler and Duplicator select elements a
and b such that a € S if and only if b € D. After the move, reflecting the first-order nature
of the quantifier, only the two selected elements a and b are remembered and contribute to
the next position in the game, whereas the information about the chosen sets is discarded.

We prefer viewing CMSO via second-order cardinality predicates, yielding an Ehren-
feucht-Fraissé game that allows a much clearer description of winning strategies. Since
we do not have additional quantifiers, we have exactly the same types of moves as in the
Ehrenfeucht-Fraissé game for MSO, and we merely modify the winning condition to take
the new predicates into account.

ORDER-INVARIANT MSO IS STRONGER THAN COUNTING MSO 317

Towards this end, we first introduce a suitable concept of partial isomorphisms between
structures.

Definition 3.1. With any structure 21 and any set M Cg, Nt we associate the (first-
order) power set structure AM := (P(A), (C™") ,enr), where the predicates C(™") are
0<r<m

interpreted in the obvious way. (Note that first-order predicates in the power set structure
AM naturally correspond to second-order predicates in 2.)

Let 2 and B be 7-structures, and let M Cgq, Nt be a fixed set of moduli. Then the
mapping (41,...,A4s,a1,...,a;) — (B1,...,Bs,b1,...,b) is called a twofold partial isomor-
phism between A and B with respect to M if

(i) (a1,...,a¢) — (b1,...,by) is a partial isomorphism between (2, Aq,...,As) and
(%,Bl, .. .,BS) and
(ii) (Aq,...,As) — (By,...,Bs) is a partial isomorphism between A and B,

We propose the following Ehrenfeucht-Fraissé game to capture the expressiveness of
CMSO where the use of moduli is restricted to a (finite) set M and formulae of quantifier
rank at most r.

Definition 3.2 (Ehrenfeucht-Fraissé game for CMSO). Let M Cg, NT and r € N. The
r-round (mod M) Ehrenfeucht-Fraissé game GM (21,) is played by Spoiler and Duplicator
on 7-structures 2 and B. In each turn, Spoiler can choose between the following types of
moves:

— point move: Spoiler selects an element in one of the structures, and Duplicator
answers by selecting an element in the other structure.

— set mowve: Spoiler selects a set of elements X in one of the structures, and Duplicator
responds by choosing a set of elements Y in the other structure.

After r = s+t rounds, when the players have chosen sets Aq,..., As and By, ..., Bs as well
as elements aq,...,a; and by,...,b; in an arbitrary order, Duplicator wins the game if, and
only if, (Ay,...,A4s,a1,...,a¢) — (B1,...,Bs,b1,...,b) is a twofold partial isomorphism
between 2l and B with respect to M.

First note that, although Duplicator is required to answer a set move X by a set Y
such that | X| = |Y| (mod M) in order to win, we do not have to make this explicit in the
rules of the moves since these cardinality constraints are already imposed by the winning
condition (X and Y would not define a twofold partial isomorphism if they did not satisfy
the same cardinality predicates). Furthermore, for M = () or M = {1}, the resulting game
GM(21,9) corresponds exactly to the usual Ehrenfeucht-Fraissé game for MSO.

Theorem 3.3. Let 2 and B be 7-structures, r € N, and M Cg, N. Then the following are
equivalent:

(i) A=M B, ie., A= @ if and only if B = ¢ for all ¢ € CMSOM) 7] with qr(p) < r.
(ii) Duplicator has a winning strategy in the r-round (mod M) Ehrenfeucht-Fraissé game
GM(A,B). -
To prove non-definability results, we can make use of the following standard argument.
Proposition 3.4. A class C of T-structures is not definable in CMSO if, for every r € N

and every M Cg, N*, there are T-structures Anr, and Bar, such that Unr, € C, By € C,
and Apz Ef,\/f By

318 T. GANZOW AND S. RUBIN

The following lemma, stating that the CMSO-theory of disjoint unions can be deduced
from the CMSO-theories of the components, can either be proved, as carried out in [Cou90,
Lemma 4.5], by giving an effective translation of sentences talking about the disjoint union
of two structures into a Boolean combination of sentences each talking about the individual
structures, or by using a game-oriented view showing that winning strategies for Duplicator
in the games on two pairs of structures can be combined into a winning strategy on the pair
of disjoint unions of the structures.

Lemma 3.5. Let 1,25, B1, and By be T-structures such that Ay 57{\/[B and Ay =M B,
Then A1 UAy =M B UB,.

Proof. Consider the game on 2 := A; Uy and B := B; UBy. A Spoiler’s point move
in 2 (resp., in B) is answered by Duplicator according to her winning strategy in either
GM (A1, B1) or GM(Ay,B3). A set move S C A (analogous for S C B) is decomposed into
two subsets S; := SN Ay and Sy := SN As, and is answered by Duplicator by the set
D := Dy U Dy consisting of the sets Dy and Dy chosen according to her winning strategies
as responses to S and Sy in the respective games GM (2, B1) and GM (Az, By).

Since Ay and Ay as well as By and Bs are disjoint, we have |S| = |S1]| 4 |S2| and
|D| = |Dy1| 4 |D2|. Furthermore, |Si| = |D;| (mod M) and |Se| = |D2| (mod M) as the
sets Dy and Dy are chosen according to Duplicator’s winning strategies in the games on
2, and B1, and 2y and By, respectively. Since = (mod M) is a congruence relation with
respect to addition, we have that |S| = |D| (mod M). It is easily verified that the sets
and elements chosen according to this strategy indeed define a twofold partial isomorphism
between 2 and ‘8.]

As a direct corollary we obtain the following result that will be used in the inductive
step in the forthcoming proofs.

Corollary 3.6. Let 21,205,871, and By be T-structures, such that A1 =M By and Ay =M
%2. Then (Qll UQ[Q, Al) Ey (%1 U%Q, Bl).

Proof. We consider the following 7 U { P}-expansions of the given structures: 2 := (1, A1),
L= (B1,B1), Ay := (A, 0), and B, := (Bo, D). It is immediate that
(i) Ay =M B, implies (A1, A1) =M (B4, By), and
(ii) Ao =M By implies (An, 0) =M (B, 0)
since Duplicator can obviously win the respective Ehrenfeucht-Fraissé games on the ex-
panded structures using the same strategies as in the games proving the equivalences on

the left-hand side. The claim follows by applying the previous lemma to the 7 U{P}-
expansions. -

It is well known that MSO exhibits a certain weakness regarding the ability to specify
cardinality constraints on sets, i.e., structures over an empty vocabulary. A proof of this
fact using Ehrenfeucht-Fraissé games can be found in [Lib04]. By adapting this proof, we
show that this is still the case for CMSO.

Lemma 3.7. Let A and B be 0-structures, M C5, Nt and r € N. Then 2 Eﬁ\/l B if
|A|,|B| > (27! — 4)lem (M) and |A| = |B| (mod M).

Proof. We prove by induction on the number of rounds that Duplicator wins the (mod M)
r-round Ehrenfeucht-Fraissé game GM (A, B). For r = 0 and r = 1 the claim is obviously

ORDER-INVARIANT MSO IS STRONGER THAN COUNTING MSO 319

true. Let r > 1, assume that the claim holds for » — 1, and consider the first move of the

r-round game. We assume that Spoiler makes his move in 2 since the reasoning in the other

case is completely symmetric.
If Spoiler makes a set move S C A, we consider the following cases:

(1) 1S < (2" —=4) -lem(M) (or |[A =S| < (2" —4) - lem(M)). Then Duplicator selects
a set D C B such that |D| = |S| (or |B — D| = |A — S]), and hence S = D and
A-S=2 . B-D(or A-S=B-Dand S=M, D).

(2) |S],]A=S| > (2" —4)-lem(M). Then Duplicator selects a set D C B such that |D| = |S]|
(mod M) and |D|,|B — D| > (2" — 2) - lem(M). In fact, she chooses for D half of the
elements and chooses ¢ < lem(M) additional ones to fulfil the cardinality constraints
|D| = |S| (mod M). Then, for the set B — D of non-selected elements, we have

B—D|> %((27"+1 ~ 4 lem(M)) — €3 (2" — 2)lem(M) — lem(M)
> (2" —4)lem(M)

for all ¢ satisfying 0 < ¢ < lem(M). Since |D| = |B — D| + 2¢, obviously |D| >

(2" — 4)lem(M) as well.

Thus, in both cases, by the induction hypothesis we get S =, D and A— S =, B-D.
Hence, by Corollary 3.6 (A4, S) E% 1 (B, D), i.e., Duplicator has a winning strategy in the
remaining (r — 1)-round game from position (5, D).

If Spoiler makes a point move s € A, Duplicator answers by choosing an arbitrary ele-
ment d € B. Similar to Case 1 above, we observe that ({s},s) = ({d},d) and A — {s} =M,
B — {d} by the induction hypothesis. Thus, by Lemma 3.5, (4,s) =, (B,d) implying
that Duplicator has a winning strategy for the remaining r — 1 rounds from position (s,d). m

4. The Separating Example

We will first give a brief description of our example showing that MSO[<];y, is strictly
more expressive than CMSO. We consider a property of two-dimensional grids, namely
that the vertical dimension divides the horizontal dimension. This property is easily defin-
able in MSO for grids that are given as directed graphs with two edge relations, one for
the horizontal edges pointing rightwards, and one for the vertical edges pointing upwards,
by defining a new relation of diagonal edges combining one step rightwards and one step
upwards wrapping around from the top border to the bottom border but not from the right
to the left border. Note that there is a path following those diagonal edges starting from
the bottom-left corner of the grid and ending in the top-right corner if, and only if, the
vertical dimension divides the horizontal dimension of the grid. Thus, for our purposes, we
have to weaken the structure in the sense that we hide information that remains accessible
to MSO[<]inp-formulae but not to CMSO formulae.

An appropriate loss of information is achieved by replacing the two edge relations with
their reflexive symmetric transitive closure, i.e., we consider grids as structures with two
equivalence relations which provide a notion of rows and columns of the grid. Obviously,
notions like corner and border vertices as well as the notion of an order on the rows and
columns that were important for the MSO-definition of the divisibility property are lost,
but clearly, all these notions can be regained in presence of an order. First, the order allows
us to uniquely define an element (e.g. the <-least element) to be the bottom-left corner of

320 T. GANZOW AND S. RUBIN

the grid, and second, the order induces successor relations on the set of columns and the
set of rows, from which both horizontal and vertical successor vertices of any vertex can be
deduced. Since the divisibility property is obviously invariant with respect to the ordering
of the rows or columns, this allows for expressing it in MSO[<];n,. In the course of this
section we will develop the arguments showing that CMSO fails to express this property on
the following class of grid-like structures.

Definition 4.1. A cliquey (k,¢)-grid is a {~},, ~ }-structure that is isomorphic to Gy :=
({0,...,k—1} x{0,...,£ — 1}, ~p, ~,), where

~n = {((z,y), (@', y)) 12 =2'} and

~y = {((:I:ay)v (CC/,y/)) ‘Y= yl}’
i.e., ~y consists of exactly k equivalence classes (called rows), each containing ¢ elements,
and ~,, consists of exactly ¢ equivalence classes (called columns), each containing k elements,
such that every equivalence class of ~} intersects every equivalence class of ~, in exactly
one element and vice versa.

A horizontally coloured cliquey (k,¢)-grid, denoted 052%1, is the expansion of the {~,}-
reduct of the cliquey grid B, by unary predicates { P, ..., Py}, where the information of ~,
is retained in the k& new predicates (in the following referred to as colours) such that each
set P; corresponds to exactly one former equivalence class.

Note that the same class of grid-like structures has already been used by Otto in a proof
showing that the number of monadic second-order quantifiers gives rise to a strict hierarchy
over finite structures [Ott95].

The class is first-order definable by a sentence t4iq stating that

— ~, and ~p, are equivalence relations, and
— every pair consisting of one equivalence class of ~j; and ~, each has exactly one
element in common
as these properties are sufficient to enforce the desired grid-like structure. Note that even the
second property is first-order definable since every equivalence class is uniquely determined
by each of its elements.

The following two lemmata justify the introduction of the notion of horizontally coloured

cliquey grids for use in the forthcoming proofs.

Lemma 4.2. Let (’52‘211, 62%12, &l and (’52‘; be horizontally coloured cliquey grids such
2

ke’
col —M gscol col —M gscol col —M gscol
Proof. Note that, since there are no horizontal edges in horizontally coloured cliquey grids
col

and the vertical dimension of all grids is k, &% ., is the disjoint union of the two smaller
horizontally coloured cliquey grids (‘52%11 and 62%12, and of course, the same holds for (’52‘}1 o

Thus, the claim follows by Lemma 3.5.]
Lemma 4.3. Let &' =M &L, Then Sy =M &y
Proof. For each fixed horizontal dimension k, there exists a one-dimensional quantifier-free

interpretation of a cliquey grid in its respective horizontally coloured counterpart since we
can define the horizontal equivalence relation ~y in terms of the colours as follows:

k
TopyY = \/szv/\sz
i=1

ORDER-INVARIANT MSO IS STRONGER THAN COUNTING MSO 321

Actually, the argument implies that Duplicator wins a game on cliquey grids using the
same strategy that is winning in the corresponding game on coloured grids since a strategy
preserving the colours of selected elements especially preserves the equivalence relation ~,.

Before stating the main lemma, we will first prove a combinatorial result which will later
help Duplicator in synthesising her winning strategy and introduce the following weakened
notion of equality between numbers.

Definition 4.4. Two numbers a,b € N are called threshold t equal (mod M), denoted
a="b, if

(i) a=bor

(ii) a,b >t and a = b (mod M).
Intuitively, @ =M b means that the numbers are equal if they are small, or that they are at
least congruent modulo all m € M if they are both at least as large as the threshold t¢.

Lemma 4.5. For every p,t € N, and M C5, N, we can choose an arbitrary T > p - (t +
lem(M) — 1) such that for all sets A and B with |A| =¥ |B| and for every equivalence
relation =4 on A of index at most p there exists an equivalence relation ~p on B and a
bijection g: A/~, — B/~, satisfying |{a’ € A:a=ad'}| =M |g({d € A:a=yd'})| for
all a € A.

Proof. We let {ai,...,a,}, where p’ < p denotes the index of ~4, be the set of class
representatives of A/~ ,, and we let [a]~, := {a’ € A : a’ =4 a} denote the equivalence
class of a in A. Note that we will usually omit the subscript &4 if it is clear from the
context and instead reserve the letters a and b for elements denoting equivalence classes in
A and B, respectively. Furthermore, a set will be called small in the following if it contains
less than ¢ elements and large otherwise.

The equivalence relation ~pg on B is constructed by partitioning the set into p’ disjoint
non-empty subsets {B1,...,By} as follows. If |A| = |B|, for each class [a;], we choose a
set B; with exactly |[a;]| many elements. If |A],|B| > T, we have to distinguish between
the treatment of small and large classes. Since |A| > T > p- (t+lem(M) —1), lem(M) > 1,
and the index of ~ 4 is at most p, at least one of the equivalence classes contains at least ¢
elements, i.e., it is large, and without loss of generality, it is assumed that this is the case
for [a1]. For each small class [a;], we choose a set B; with exactly |[a;]| many elements.
If [a;] is large, we choose a set B; containing ¢ 4+ ¢ many elements where ¢ is the smallest
non-negativ