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FOREWORD

SUZANNE ALBERS 1 AND PASCAL WEIL 2

1 Institut für Informatik, Universität Freiburg
E-mail address: salbers@informatik.uni-freiburg.de

2 LaBRI, Université de Bordeaux, France
E-mail address: pascal.weil@labri.fr

The Symposium on Theoretical Aspects of Computer Science (STACS) is held alter-
nately in France and in Germany. The conference of February 21-23, 2008, held in Bordeaux,
is the 25th in this series. Previous meetings took place in Paris (1984), Saarbrücken (1985),
Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg
(1991), Cachan (1992), Würzburg (1993), Caen (1994), München (1995), Grenoble (1996),
Lübeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002),
Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006) and Aachen (2007).

The interest in STACS has remained at a high level over the past years. The STACS
2008 call for papers led to approximately 200 submissions from 38 countries. Each was
assigned to at least three program committee members. The program committee held a
2-week long electronic meeting at the end of November, to select 54 papers. As co-chairs
of this committee, we would like to sincerely thank its members and the many external
referees for the valuable work they put into the reviewing process. The overall very high
quality of the papers that were submitted to the conference made this selection a difficult
task.

We would like to express our thanks to the three invited speakers, Maxime Crochemore,
Thomas Schwentick and Mihalis Yannakakis, for their contributions to the proceedings.

Special thanks are due to A. Voronkov for his EasyChair software (www.easychair.org)
which gives the organisers of conferences such as STACS a remarkable level of comfort;
to Ralf Klasing for helping us explore the many possibilities of this brilliant software; to
Emilka Bojańczyk for the design of the STACS poster, proceedings and logo; and to the
members of the Organizing Committee, chaired by David Janin.

An innovation in this year’s STACS is the electronic format of the publication. A
printed version was also available at the conference, with ISBN 978-3-939897-06-4. The
electronic proceedings are available through several portals, and in particular through HAL
and DROPS. HAL is an electronic repository managed by several French research agencies,
and DROPS is the Dagstuhl Research Online Publication Server. We want to thank both
these servers for hosting the proceedings of STACS and guaranteeing them perennial avail-
ability. The rights on the articles in the proceedings are kept with the authors and the papers
are available freely, under a Creative Commons license (see www.stacs-conf.org/faq.html

for more details).

c© S. Albers and P. Weil
CC© Creative Commons Attribution-NoDerivs License
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Christof Löding, RWTH, Aachen
Frédéric Magniez, Paris-11 University, Orsay
Peter Bro Miltersen, Aarhus University
Vahab Mirrokni, Microsoft Research, Redmond
Seth Pettie, University of Michigan, Ann Arbor
Eric Rivals, CNRS and Montpellier University
Nicole Schweikardt, TU Berlin
Christian Sohler, Paderborn University
Howard Straubing, Boston College
Klaus Wagner, Würzburg University
Pascal Weil, CNRS and Bordeaux University, co-chair

Members of the Organizing Committee
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Stephan Kreutzer
Marc van Kreveld
Andrei Krokhin
Manfred Kufleitner
Ravi Kumar
Michal Kunc
Manfred Kunde
Piyush Kurur
Dietrich Kuske
Tomi Kärki
Markku Laine
Christiane Lammersen
Sophie Laplante
S lawomir Lasota
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Prasad Raghavendra
M. Sohel Rahman
Venkatesh Raman
R. Ramanujam
Rudy Raymond
Christian Reitwießner
Eric Rémila

Jochen Renz
Christian Retoré
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Lajos Rónyai
Jörg Rothe
Micha l Rutkowski
Kalle Saari
Kunihiko Sadakane
Mohammad Safari
Lakhdar Sais
Mohammad Reza Salavatipour
Alex Samorodnitsky
Peter Sanders
Miklos Santha
Rahul Santhanam
Luigi Santocanale
Jayalal Sarma
Srinivasa Rao Satti
Thomas Sauerwald
Saket Saurabh
Nitin Saxena
Nicolas Schabanel
Guido Schäfer
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Geodesic Fréchet Distance Inside a Simple Polygon. . . . . . . . . . . . . . . . . . . . . 193
A. F. Cook IV and C. Wenk

Improved Algorithms for the Range Next Value Problem and Applications 205
M. Crochemore, C. Iliopoulos, M. Kubica, M. S. Rahman and T. Waleń
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UNDERSTANDING MAXIMAL REPETITIONS IN STRINGS

MAXIME CROCHEMORE 1 AND LUCIAN ILIE 2

1 King’s College London, Strand, London WC2R 2LS, United Kingdom
and Institut Gaspard-Monge, Université Paris-Est, France
E-mail address: maxime.crochemore@kcl.ac.uk

2 Department of Computer Science, University of Western Ontario
N6A 5B7, London, Ontario, Canada
E-mail address: ilie@csd.uwo.ca

Abstract. The cornerstone of any algorithm computing all repetitions in a string of
length n in O(n) time is the fact that the number of runs (or maximal repetitions) is
O(n). We give a simple proof of this result. As a consequence of our approach, the
stronger result concerning the linearity of the sum of exponents of all runs follows easily.

1. Introduction

Repetitions in strings constitute one of the most fundamental areas of string combina-
torics with very important applications to text algorithms, data compression, or analysis
of biological sequences. One of the most important problems in this area was finding an
algorithm for computing all repetitions in linear time. A major obstacle was encoding all
repetitions in linear space because there can be Θ(n log n) occurrences of squares in a string
of length n (see [1]). All repetitions are encoded in runs (that is, maximal repetitions)
and Main [9] used the s-factorization of Crochemore [1] to give a linear-time algorithm for
finding all leftmost occurrences of runs. What was essentially missing to have a linear-time
algorithm for computing all repetitions, was proving that there are at most linearly many
runs in a string. Iliopoulos et al. [4] showed that this property is true for Fibonacci words.
The general result was achieved by Kolpakov and Kucherov [7] who gave a linear-time
algorithm for locating all runs in [6].

Kolpakov and Kucherov proved that the number of runs in a string of length n is at
most cn but could not provide any value for the constant c. Recently, Rytter [10] proved
that c ≤ 5. The conjecture in [7] is that c = 1 for binary alphabets, as supported by

1998 ACM Subject Classification: F.2.2 Nonnumerical Algorithms and Problems; G.2.1 Combinatorics.
Key words and phrases: combinatorics on words, repetitions in strings, runs, maximal repetitions, maxi-

mal periodicities, sum of exponents.
This work has been done during the second author’s stay at Institut Gaspard-Monge. The same author’s

research was supported in part by NSERC.

c© M. Crochemore and L. Ilie
CC© Creative Commons Attribution-NoDerivs License
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computations for string lengths up to 31. Using the technique of this note, we have proved
[2] that it is smaller than 1.6, which is the best value so far.

Both proofs in [6] and [10] are very intricate and our contribution is a simple proof
of the linearity. On the one hand, the search for a simple proof is motivated by the very
importance of the result – this is the core of the analysis of any optimal algorithm computing
all repetitions in strings. None of the above-mentioned proofs can be included in a textbook.
We believe that the simple proof shows very clearly why the number of runs is linear. On
the other hand, a better understanding of the structure of runs could pave the way for
simpler linear-time algorithms for finding all repetitions. For the algorithm of [6] (and [9]),
relatively complicated and space-consuming data structures are needed, such as suffix trees.

The technical contribution of the paper is based on the notion of δ-close runs (runs
having close centers), which is an improvement on the notion of neighbors (runs having
close starting positions) introduced by Rytter [10].

On top of that, our approach enables us to derive easily the stronger result concerning
the linearity of the sum of exponents of all runs of a string. Clearly this result implies the
first one, but the converse is not obvious. The second result was given another long proof
in [7]; it follows also from [10].

Finally, we strongly believe that our ideas in this paper can be further refined to improve
significantly the upper bound on the number of runs, if not to prove the conjecture. The
latest refinements and computations (December 2007) show a 1.084n bound.

2. Definitions

Let A be an alphabet and A∗ the set of all finite strings over A. We denote by |w| the
length of a string w, by w[i] its ith letter, and by w[i . . j] its factor w[i]w[i + 1] · · ·w[j]. We
say that w has period p iff w[i] = w[i + p], for all 1 ≤ i ≤ |w| − p. The smallest period of w
is called the period of w and the ratio between the length and the period of w is called the
exponent of w.

For a positive integer n, the nth power of w is defined inductively by w1 = w, wn =
wn−1w. A string is primitive if it cannot be written as a proper integer (two or more) power
of another string. Any nonempty string can be uniquely written as an integer power of a
primitive string, called its primitive root. It can also be uniquely written in the form uev
where |u| is its (smallest) period, e is the integral part of its exponent, and v is a proper
prefix of u.

The following well-known synchronization property will be useful: If w is primitive,
then w appears as a factor of ww only as a prefix and as a suffix (not in-between). Another
property we use is Fine and Wilf ’s periodicity lemma: If w has periods p and q and |w| ≥
p+ q, then w has also period gcd(p, q). (This is a bit weaker than the original lemma which
works as soon as |w| ≥ p + q − gcd(p, q), but it is good enough for our purpose.) We refer
the reader to [8] for all concepts used here.

For a string w = w[1 . . n], a run1 (or maximal repetition) is an interval [i . . j], 1 ≤
i < j ≤ n, such that (i) the factor w[i . . j] is periodic (its exponent is 2 at least) and (ii)
both w[i − 1 . . j] and w[i . . j + 1], if defined, have a strictly higher (smallest) period. As
an example, consider w = abbababbaba; [3 . . 7] is a run with period 2 and exponent 2.5; we
have w[3 . . 7] = babab = (ba)2.5. Other runs are [2 . . 3], [7 . . 8], [8 . . 11], [5 . . 10] and [1 . . 11].

1Runs were introduced in [9] under the name maximal periodicities; the are called m-repetitions in [7] and
runs in [4].
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For a run starting at i and having period |x| = p, we shall call w[i . . i + 2p − 1] = x2 the
square of the run (this is the only part of a run we can count on). Note that x is primitive
and the square of a run cannot be extended to the left (with the same period) but may be
extendable to the right. The center of the run is the position c = i + p. We shall denote
the beginning of the run by ix = i, the end of its square by ex = ix + 2p− 1, and its center
by cx = ix + p.

3. Linear number of runs

We describe in this section our proof of the linear number of runs. The idea is to
partition the runs by grouping together those having close centers and similar periods. To
this aim, for any δ > 0, we say that two runs having squares x2 and y2 are δ-close if (i)
|cx − cy| ≤ δ and (ii) 2δ ≤ |x|, |y| ≤ 3δ. We prove that there cannot be more than three
mutually δ-close runs. (There is one exception to this rule – case (vi) below – but then, even
fewer runs are obtained.) This means that the number of runs with the periods between 2δ
and 3δ in a string of length n is at most 3n

δ . Summing up for values δi = 1
2

(
3
2

)i, i ≥ 0, all
periods are considered and we obtain that the number of runs is at most

∞∑
i=0

3n
δi

=
∞∑
i=0

3n
1
2 (3

2)i
= 18n. (3.1)

For this purpose, we start investigating what happens when three runs in a string w are
δ-close. Let us denote their squares by x2, y2, z2, their periods by |x| = p, |y| = q, |z| = r,
and assume p ≤ q ≤ r. We discuss below all the ways in which x2 and y2 can be positioned
relative to each other and see that long factors of both runs have small periods which z 2

has to synchronize. This will restrict the beginning of z2 to only one choice as otherwise
some run would be left extendable. Then a fourth run δ-close to the previous three cannot
exist.

Notice that, for cases (i)-(v) we assume the centers of the runs are different; the case
when they coincide is covered by (vi).

(i) (iy < ix <)cy < cx < ex ≤ ey. Then x and the suffix of length ey − cx of y have
period q − p; see Fig. 1(i). We may assume the string corresponding to this period is a
primitive string as otherwise we can make the same reasoning with its primitive root.

Since z2 is δ-close to both x2 and y2, it must be that cz ∈ [cx − δ . . cy + δ]. Consider
the interval of length q − p that ends at the leftmost possible position for cz, that is,
I = [cx− δ− (q−p) . . cx− δ−1]. It is included in the first period of z2, that is, [iz . . cz −1],
and in [ix . . cy]. Thus w[I] is primitive and equal, due to z2, to w[I + r] which is a factor of
w[cx . . ey]. Therefore, the periods inside the former must synchronize with the ones in the
latter. It follows, in the case iz > ix − (q − p), that w[iz − 1] = w[cz − 1], that is, z2 is left
extendable, a contradiction. If iz < ix−(q−p), then w[cx−1] = w[ix−(q−p)−1] = w[ix−1],
that is, x2 is left extendable, a contradiction. The only possibility is that iz = ix−(q−p) and
r equals q plus a multiple of q − p. Here is an example: w = baabababaababababaab, x2 =
w[5 . . 14] = (ababa)2, y2 = w[1 . . 14] = (baababa)2, and z2 = w[3 . . 20] = (abababaab)2.

We have already, due to z2, that x = ρ`ρ′, where |ρ| = q − p and ρ′ a prefix of ρ. A
fourth run δ-close to the previous three would have to have the same beginning as z2 and
the length of its period would have to be also q plus a multiple of q − p. This would imply
an equation of the form ρmρ′ = ρ′ρm and then ρ and ρ′ are powers of the same string, a
contradiction with the primitivity of x.
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suffix of x

y y

x x

x

z z z z

y y

x x

z z

y y

x x

(i)

y y

x x

x

y y

x x

zz z

x

y y

x x

z z

(ii)

(iii) (iv)

(v) (vi)

prefix of x

Figure 1: Relative position of x2 and y2.

(ii) (iy < ix <)cy < cx < ey ≤ ex; this is similar with (i); see Fig. 1(ii). Here the prefix
of length ey − cx of x is a suffix of y and has period q − p.

(iii) iy < ix < cx < cy(< ex < ey). Here x and the prefix of length cx − iy of y have
period q − p; see Fig. 1(iii). As above, a third δ-close run z2 would have to share the same
beginning with y2, otherwise one of y2 or z2 would be left extendable. A fourth δ-close run
would have to start at the same place and, because of the three-prefix-square lemma2 of [3],
since p is primitive, it would have a period at least q + r, which is impossible.

(iv) ix < iy(< cx < cy < ex < ey); this is similar with (iii); see Fig. 1(iv). A third run
would begin at the same position as y2 and there is no fourth run.

(v) ix = iy; see Fig. 1(v). Here not even a third δ-close run exists because of the
three-square lemma that implies r ≥ p + q.

(vi) cx = cy. This case is significantly different from the other ones, as we can have
many δ-close runs here. However, the existence of many runs with the same center implies
very strong periodicity properties of the string which allow us to count the runs globally
and obtain even fewer runs than before.

In this case both x and y have the same small period ` = q−p; see Fig. 1(vi). If we note
c = cy then we have h runs x

αj

j , 1 ≤ j ≤ h, beginning at positions ixj = c − ((j − 1)` + `′),
where `′ is the length of the suffix of x that is a prefix of the period.

We show that in this case we have less runs than as counted in the sum (3.1). For h ≤ 9
there is nothing to prove as no four of our x

αj

j runs are counted for the same δ. Assume
h ≥ 10. There exists δi such that `

2 ≤ δi ≤ 3`
4 , that is, this δi is considered in (3.1). Then

2For three words u, v, w, it states that if uu is a prefix of vv, vv is a prefix of ww, and u is primitive, then
|u| + |v| ≤ |w|.
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it is not difficult to see that there is no run in w with period between ` and 9
4` and center

inside J = [c + ` + 1 . . c + (h − 2)` + `′]. But ` ≤ 2δi < 3δi ≤ 9
4` and the length of J is

(h − 3)` + `′ ≥ (h + 1)δi. This means that at least h intervals of length δi in the sum (3.1)
are covered by J and therefore at least 3h runs in (3.1) are replaced by our h runs.

We need also mention that these h intervals of length δi are not reused by a different
center with multiple runs since such centers cannot be close to each other. Indeed, if we
have two centers cj with the above parameters hj , `j , j = 1, 2, then, as soon as the longest
runs overlap over `1 + `2 positions, we have `1 = `2, due to Fine and Wilf’s lemma. Then,
the closest positions of J1 and J2 cannot be closer than `1 = `2 ≥ δi as this would make
some of the runs non-primitive, a contradiction. Thus the bound in (3.1) still holds and we
proved

Theorem 3.1. The number of runs in a string of length n is O(n).

4. The sum of exponents

Using the above approach, we show in this section that the sum of exponents of all
runs is also linear. The idea is to prove that the sum of exponents of all runs with the
centers in an interval of length δ and periods between 2δ and 3δ is less than 8. (As in the
previous proof, there are exceptions to this rule, but in those cases we get a smaller sum
of exponents.) Then a computation similar to (3.1) gives that the sum of exponents is at
most 48n.

To start with, Fine and Wilf’s periodicity lemma can be rephrased as follows: For two
primitive strings x and y, any powers xα and yβ cannot have a common factor longer than
|x| + |y| as such a factor would have also period gcd(|x|, |y|), contradicting the primitivity
of x and y.

Next consider two δ-close runs, xα and yβ, α, β ∈ Q. It cannot be that both α and β
are 2.5 or larger, as this would imply an overlap of length at least |x|+ |y| between the two
runs, which is forbidden by Fine and Wilf’s lemma since x and y are primitive. Therefore,
in case we have three mutually δ-close runs, two of them must have their exponents smaller
than 2.5. If the exponent of the third run is less than 3, we obtain the total of 8 we were
looking for. However, the third run, say zγ , γ ∈ Q, may have a larger exponent. If it does,
that affects the runs in the neighboring intervals of length δ. More precisely, if γ ≥ 3, then
there cannot be any center of run with period between 2δ and 3δ in the next (to the right)
interval of length δ. Indeed, the overlap between any such run and zγ would imply, as above,
that their roots are not primitive, a contradiction. In general, the following b2(γ − 2.5)c
intervals of length δ cannot contain any center of such runs. Thus, we obtain a smaller sum
of exponents when this situation is met.

The second exception is given by case (vi) in the previous proof, that is, when many
runs share the same center; we use the same notation as in (vi). We need to be aware of the
exponent of the run xα1

1 , with the smallest period, as α1 can be as large as ` (and unrelated
to h, the number of runs with the same center). We shall count α1 into the appropriate
interval of length δi; notice that xα1

1 and xα2
2 are never δ-close, for any δ, because |x2| > 2|x1|.

For 2 ≤ j ≤ h− 1, the period |xj| cannot be extended by more than ` positions to the right
past the end of the initial square, and thus αj ≤ 2 + 1

j . Therefore, their contribution to the
sum of exponents is less than 3(h− 2). They replace the exponents of the runs with centers
in the interval J and periods between ` and 9

4` which otherwise would contribute at least
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6h to the sum of exponents. The run with the longest period, xαh
h , can have an arbitrarily

high exponent but the replaced runs in J need to account only for a fraction (3 units) of it
since αh ≥ 3 implies new centers with multiple runs and hence new J intervals (precisely
bαh − 2c) that account for the rest. We proved

Theorem 4.1. The sum of exponents of the runs in a string of length n is O(n).
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Finite or infinite strings or trees with labels from a finite alphabet play an important role
in computer science. They can be used to model many interesting objects including system
runs in Automated Verification and XML documents in Database Theory. They allow the
application of formal tools like logical formulas to specify properties and automata for their
implementation. In this framework, many reasoning tasks that are undecidable for general
computational models can be solved algorithmically, sometimes even efficiently.

Nevertheless, the use of finitely labelled structures usually requires an early abstraction
from the real data. For example, theoretical research on XML processing very often con-
centrates on the document structure (including labels) but ignores attribute or text values.
While this abstraction has led to many interesting results, some aspects like key or other
integrity constraints can not be adequately handled.

In Automated Verification of software systems or communication protocols, infinite
domains occur even more naturally, e.g., induced by program data, recursion, time, com-
munication or by unbounded numbers of concurrent processes. Usually one approximates
infinite domains by finite ones in a very early abstraction step.

An alternative approach that has been investigated in recent years is to extend strings
and trees by (a limited amount of) data and to use logical languages with a restricted ex-
pressive power concerning this data. As an example, in the most simple setting, formulas
can only test equality of data values. The driving goal is to identify logical languages and
corresponding automata models which are strong enough to describe interesting proper-
ties of data-enhanced structures while keeping decidability or even feasibility of automatic
reasoning.

The talk gives a basic introduction into data-enhanced finitely labelled structures,
presents examples of their use, and highlights recent decidability and complexity results.
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Abstract. Many models from a variety of areas involve the computation of an equilibrium
or fixed point of some kind. Examples include Nash equilibria in games; market equilibria;
computing optimal strategies and the values of competitive games (stochastic and other
games); stable configurations of neural networks; analysing basic stochastic models for
evolution like branching processes and for language like stochastic context-free grammars;
and models that incorporate the basic primitives of probability and recursion like recursive
Markov chains. It is not known whether these problems can be solved in polynomial time.
There are certain common computational principles underlying different types of equilibria,
which are captured by the complexity classes PLS, PPAD, and FIXP. Representative
complete problems for these classes are respectively, pure Nash equilibria in games where
they are guaranteed to exist, (mixed) Nash equilibria in 2-player normal form games, and
(mixed) Nash equilibria in normal form games with 3 (or more) players. This paper reviews
the underlying computational principles and the corresponding classes.

1. Introduction

Many situations involve the computation of an equilibrium or a stable configuration of
some sort in a dynamic environment. Sometimes it is the result of individual agents acting
on their own noncompetitively but selfishly (e.g., Nash and other economic equilibria),
sometimes it is agents acting competitively against each other (and perhaps nature/chance),
sometimes the equilibrium is the limit of an iterative process that evolves in some direction
until it settles. Often the sought objects can be described mathematically as the fixed points
of an equation x = F (x).

Many models and problems from a broad variety of areas are of this nature. Examples
include: Nash equilibria in games; market equilibria; computation of optimal strategies
and the values of competitive games (stochastic and other games); stable configurations of
neural networks; analysis of basic stochastic models for evolution like branching processes,
and for language like stochastic context-free grammars; and models that incorporate the
basic primitives of probability and recursion like recursive Markov chains. Most of these
models and problems have been studied mathematically for a long time, leading to the
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development of rich theories. Yet, some of their most basic algorithmic questions are still
not resolved, in particular it is not known whether they can be solved in polynomial time.

Despite the broad diversity of these problems, there are certain common computational
principles that underlie many of these different types of problems, which are captured by
the complexity classes PLS, PPAD, and FIXP. In this paper we will review these principles,
the corresponding classes, and the types of problems they contain.

All the problems we will discuss are total search problems. Formally, a search problem
Π has a set of instances, each instance I has a set Ans(I) of acceptable answers; the search
problem is total if Ans(I) 6= ∅ for all instances I. As usual, for computational purposes,
instances are represented by strings over a fixed alphabet Σ, and it is assumed that, given
a string over Σ one can determine in polynomial time if it represents an instance of a
problem. The size |I| of an instance is the length of its string representation. Input numbers
(such as the payoffs of games, input probabilities of stochastic models, etc.) are assumed
to be rationals represented in binary by numerator and denominator. The underlying
solution space from which answers are drawn may be finite and discrete, as in combinatorial
problems, or it may be infinite and continuous. In the former (the finite) case, solutions are
represented also as strings and the problem is: given an instance I, compute a solution in
Ans(I). In the latter (infinite/continuous) case also, if there are rational-valued solutions
(as in Linear Programming for example), then the problem is to compute one of them. In
several problems however, the solutions are inherently irrational, and we cannot compute
them exactly (in the usual Turing machine-based model of computation and complexity).
In these cases we need to specify precisely which information about the solutions is to be
computed; this could be for example a yes/no question, such as, does an event in a stochastic
model occur almost surely (with probability 1) or does the value of a game exceed a given
threshold, or we may want to compute an answer up to a desired precision. In any case,
the computational tasks of interest have to be defined precisely, because different tasks can
have different complexity.

In this paper we will discuss a variety of equilibria and fixed point problems, and the
complexity classes which capture the essential aspects of several types of such problems.
We discuss three classes, PLS, PPAD, and FIXP, which capture different types of equilibria.
Some representative complete problems for these classes are: for PLS pure Nash equilibria
in games where they are guaranteed to exist, for PPAD (mixed) Nash equilibria in 2-player
normal form games, and for FIXP (mixed) Nash equilibria in normal form games with 3
(or more) players.

2. Discrete, Pure Equilibria and the Class PLS

Consider the following neural network model [34]: We have an undirected graph G =
(V,E) with a positive or negative weight w(e) on each edge e ∈ E (we can consider missing
edges as having weight 0) and a threshold t(v) for each node v ∈ V . A configuration of the
network is an assignment of a state s(v) = +1 (‘on’) or −1 (‘off’) to each node v ∈ V . A
node v is stable (or ‘happy’) if s(v) = 1 and

∑
u w(v, u)s(u) + t(v) ≥ 0, or s(v) = −1 and∑

u w(v, u)s(u)+ t(v) ≤ 0, i.e. the state of v agrees with the sign of the weighted sum of its
neighbors plus the threshold. A configuration is stable if all the nodes are stable. A priori it
is not obvious that such a configuration exists; in fact for directed networks there may not
exist any. However, every undirected network has at least one (or more) stable configuration
[34]. In fact, a dynamic process where in each step one node that is unstable (any one)
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switches its state, is guaranteed to eventually converge in a finite number of steps to a stable
configuration, no matter which unstable node is switched in each step. (It is important that
updates be asynchronous, one node at a time; simultaneous updates can lead to oscillations.)
To show the existence of a stable configuration and convergence, Hopfield introduced a value
function (or ‘potential’ or ‘energy’) on configurations, p(s) =

∑
(v,u)∈E w(v, u)s(v)s(u) +∑

v∈V t(v)s(v). If v is an unstable node in configuration s, then switching its state results
in a configuration s′ with strictly higher value p(s′) = p(s)+2|∑u w(v, u)s(u)+t(v)| > p(s).
Since there is a finite number (2|V |) of configurations, the process has to converge to a stable
configuration. The stable configuration problem is the following: Given a neural network,
compute a stable configuration. This is a total search problem, as there may be one or more
stable configurations, and anyone of them is an acceptable output.

Although the stable configuration problem does not call a priori for any optimization,
the problem can be viewed equivalently as one of local optimization: compute a configu-
ration s whose value p(s) cannot be increased by switching the state of any single node.
Local search is a common, general approach for tackling hard optimization problems. In a
combinatorial optimization problem Π, every instance I has an associated finite set S(I)
of solutions, every solution s ∈ S(I) has a rational value or cost pI(s) that is to be max-
imized or minimized. In local search, a solution s ∈ S(I) has in addition an associated
neighborhood NI(s) ⊆ S(I); a solution is locally optimal if it does not have any (strictly)
better neighbor, i.e. one with higher value or lower cost. A standard local search algorithm
starts from an initial solution, and keeps moving to a better neighbor as long as there is
one, until it reaches a local optimum. The complexity class PLS (Polynomial Local Search)
was introduced in [36] to capture the inherent complexity of local optima for usual combi-
natorial problems, where each step of the local search algorithm can be done in polynomial
time. Even though each step takes polynomial time, the number of steps can be potentially
exponential, and in fact for many problems we do not know how to compute even locally
optimal solutions in polynomial time. Formally, a problem Π is in PLS if solutions are
polynomially bounded in the input size, and there are polynomial-time algorithms for the
following tasks: (a) test whether a given string I is an instance of Π and if so compute
a (initial) solution in S(I), (b) given I, s, test whether s ∈ S(I) and if so compute its
value pI(s), (c) given I, s, test whether s is a local optimum and if not, compute a better
neighbor s′ ∈ NI(s). Notions of PLS reduction and completeness were introduced to relate
the problems. A number of well-studied combinatorial optimization problems (e.g. Graph
Partitioning, TSP, Max Cut, Max Sat etc.) with common neighborhood structures (both
simple and sophisticated) have been shown to be PLS-complete by many researchers, and
thus locally optimal solutions can be computed efficiently for anyone of them iff they can
be computed for all PLS problems. For a detailed survey and bibliography see [66]. In
particular, the stable configuration problem is PLS-complete (and is complete even if all
thresholds are 0 and all weights are negative, i.e. all connections are repulsive) [58].

It is worth stressing several points: 1. The search problem asks to compute any local
optimum, not a specific one like the best, which is often NP-hard. 2. Given an instance I,
we can always guess a solution s, and verify in polynomial time that it is indeed a solution
(s ∈ S(I)) and it is locally optimal. Hence PLS is somewhere between P and TFNP (total
search problems in NP). Such problems cannot be NP-hard (under Cook reductions) unless
NP=coNP. 3. We are interested in the inherent complexity of the search probleme itself
by any algorithm whatsoever, not necessarily the standard local search algorithm, which
often has exponential running time. For example, Linear Programming can be viewed as
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a local search problem (where local optima= global optima) with Simplex as the local
search algorithm; we know that Simplex under many pivoting rules is exponential, yet the
problem itself can be solved in polynomial time by completely different methods (Ellipsoid,
Karmakar). In fact, many common local search problems are complete under a type of tight
PLS-reduction which allows us to conclude that the corresponding standard local search
algorithm is exponential. For example, in the neural network model, the dynamic process
where unstable nodes switch iteratively their state until the network stabilizes takes for some
networks and for some (in fact for most) initial configurations exponential time to converge,
no matter which unstable node is switched in each step. Furthermore, the computational
problem: given a network and initial configuration compute a stable configuration (anyone)
that can result from this process is a PSPACE-complete problem.

Another type of equilibrium problems that can be placed in PLS concerns finding pure
Nash equlibria for games where they are guaranteed to exist. A (finite) game has a finite
set k of players, each player i = 1, . . . , k, has a finite set Si of pure strategies and a payoff
(utility) function Ui on the product strategy space S = ΠiSi; we assume for computational
purposes that Ui takes rational values. A pure strategy profile s is a member of S, i.e. a
choice of a pure strategy si ∈ Si for each player. It is a pure Nash equilibrium if no player
can improve his payoff by switching unilaterally to another pure strategy; that is, if (s−i, s

′
i)

denotes the profile where player i plays strategy s′i ∈ Si and the other players play the same
strategy as in s, then Ui(s) ≥ Ui(s−i, s

′
i) for every i and every s′i ∈ Si. Not every game has

a pure Nash equilibrium. A mixed strategy for player i is a probability distribution on Si.
Letting Mi denote the set of mixed strategies for player i, the set of mixed strategy profiles
is their product M = ΠiMi; i.e., a mixed strategy profile is a non-negative vector x of length∑

i |Si| (i.e. its entries are indexed by all the players’ pure strategies) that is a probability
distribution on the set of pure strategies of each player. The (expected) payoff Ui(x) of x
for player i is

∑
x1,j1 . . . xk,jk

Ui(j1, . . . , jk) where the sum is over all tuples (j1, . . . , jk) such
that j1 ∈ S1, . . . , jk ∈ Sk, and xi,j is the entry of x defining the probability with which
player i plays strategy j. A (mixed) Nash equilibrium (NE) is a strategy profile x∗ such
that no player can increase its payoff by switching to another strategy unilaterally. Every
finite game has at least one Nash equilibrium [46].

For example, a neural network can be viewed as a game with one player for each node,
each player has two pure strategies +1,−1 (corresponding to the two states) and its payoff
function has two values 1 (happy) and 0 (unhappy) depending on its state and that of
its adjacent nodes. The stable configurations of the network are exactly the pure Nash
equilibria of the game. This game is a case of a graphical game: players correspond to
nodes of a graph and the payoff function of a player depends only on its own strategy and
that of its neighbors. General graphical games may not have pure Nash equilibria. For an
overview of graphical games see [39].

There is a class of games, congestion games, in which there is always a pure equilibrium.
In a congestion game, there are k players, a finite set R of resources, the pure strategy set
Si ⊆ 2R of each player is a family of subsets of the resources, each resource r ∈ R has an
associated cost function dr : {0, . . . , k} → Z. If s = (s1, . . . , sk) is a pure strategy profile,
the congestion nr(s) of a resource r is the number of players whose strategy contains r;
the cost (negative payoff) of a player i is

∑
r∈si

dr(nr(s)). Rosenthal showed that every
congestion game has a pure equilibrium [54]. In fact, the iterative process where in each
step, if the current pure strategy profile is not at equilibrium, a player with a suboptimal
strategy switches to a strategy with a lower cost (while other players keep the same strategy)
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does not repeat any profile and thus converges in a finite number of steps to an equilibrium.
The proof is by introducing a potential function p(s) =

∑
r∈R

∑nr(s)
i=1 dr(i) and showing

that switching the strategy of a player to a lower cost strategy results in a reduction of
the potential function by the same amount. Thus, the pure equilibria are exactly the local
optima of the potential function p(s) with respect to the neighborhood that switches the
strategy of a single player. Computing a pure equilibrium is a local search problem, and it is
in PLS provided that the costs functions dr of the resources are polynomial time computable,
and the strategy sets Si are given explicitly or at least one can determine efficiently whether
a player can improve his strategy for a given profile. Furthermore, Fabrikant et al. [27]
showed that the problem is PLS-complete. They showed that it is complete even in the case
of network congestion games, where the resources are the edges of a given directed graph,
each player i has an associated source si and target node ti and its set Si of pure strategies is
the set of si− ti paths; the cost function dr of each edge r represents the delay as a function
of the paths that use the edge, and completeness holds even for linear delay functions [1].
As with other PLS-complete problems, a consequence of the reductions, which are tight, is
that the iterative local improvement algorithm can take exponential time to converge. For
more information on congestion games see [64].

There are several other games which are in PLS and not known to be in P, and which
are not known (and not believed to be) PLS-complete. These are not one-shot games, but
they are dynamic games played iteratively over time (like chess, backgammon etc.). There
are two main types of payoffs for the players in such games: in one type, the payoff of a
history is an aggregation of rewards obtained in the individual steps of the history combined
via some aggregation function, such as average reward per step or a discounted sum of the
rewards; in the other type, the payoff obtained depends on the properties of the history.
We will discuss three such games in this section, and some more in the following sections.

A simple stochastic game [13] is a 2-player game played on a directed graph G = (V,E)
whose nodes represent the positions of the game, and the edges represent the possible
moves. The sinks are labelled 1 or 2 and the nonsink nodes are partitioned into three sets,
Vr (random nodes), V1 (max or player 1 nodes), V2 (min or player 2 nodes); the edges
(u, v) out of each random node u are labelled with probabilities puv (assumed to be rational
for computational puposes) that sum to 1. Play starts at some initial node (position) and
then moves in each step along the edges of the graph; at a random node the edge is chosen
randomly, at a node of V1 it is chosen by player 1, and at a node of V2 it is chosen by
player 2. If the play reaches a sink labelled 1, then player 1 is the winner, while if it reaches
a sink labelled 2 or it goes on forever, then player 2 is the winner. The goal of player 1
is to maximize her probability of winning, and the goal of player 2 is to minimize it (i.e.
maximize his own winning probability). These are zero-sum games (what one player wins
the other loses). For every starting node s there is a well-defined value xs of the game, which
is the probability that player 1 wins if they both play optimally. Although the players are
allowed to use randomization in each step and have their choice depend on their entire
history, it is known that there are stationary, pure (deterministic) optimal strategies for
both players. Such a strategy σi for player i = 1, 2 is simply a choice of an outgoing edge
(a successor) for each node in Vi, thus there is a finite number of such pure strategies. For
every pure strategy profile (σ1, σ2) for the two players, the game reduces to a Markov chain
and the values xs(σ1, σ2) can be computed by solving a linear system of equations. If the
edge probabilities are rational then the optimal values xs are also rational, of bit complexity
polynomial in the input size. If there are only two of the three types of nodes in the graph,
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then the optimal strategies and the values xs can be computed in polynomial time. For
example, if there is no player 2, then the game becomes a Markov decision process with the
goal of maximizing the probability of reaching a sink labelled 1, which can be optimized
by Linear Programming. When we have all three types of nodes, the decision problem
xs ≥ 1/2? (does player 1 win with probability at least 1/2 starting from position s) is in
NP ∩ coNP (in fact in UP ∩ coUP ), and it is a well-known open problem whether it is
in P [13]. Two (pure) strategies σ1, σ2 of the two players form an equilibrium if σ1 is a
best response of player 1 to the strategy σ2 of player 2 (i.e. σ1 is a maximizing strategy
in the Markov decision process obtained when the strategy of player 2 is fixed to σ2), and
vice-versa, σ2 is a best response of player 2 to σ1. The equilibria are precisely the optimal
strategy pairs. The problem can be viewed as a local search problem in PLS if we take the
point of view of one player, say player 1: the solution set is the set of pure strategies of
player 1, the value of a strategy σ1 is

∑
s∈V xs(σ1, σ2) where σ2 is a best response of player

2 to σ1, and the neighbors of σ1 are the strategies obtained by switching the choice of a
node in V1. The locally optimal solutions are the (globally) optimal strategies of player 1.

A mean payoff game [18] is a non-stochastic 2-player game played on a directed graph
G = (V,E) with no sinks, whose nodes are partitioned into two sets V1, V2 and whose edges
are labelled by (rational) rewards r(e), e ∈ E. As above, play starts at a node and moves
along the edges, where player 1 chooses the next edge for nodes in V1 and player 2 for nodes
in V2 (there are no random nodes here), and play goes on forever. The payoff to player 1
from player 2 of a history using the sequence of edges e1, e2, . . . is the average reward per
step, lim supn→∞(

∑n
j=1 r(ej))/n. Again there are optimal pure stationary strategies σ1, σ2

for the players, and these form a path followed by a cycle C; the payoff (value of the game)
is the ratio

∑
e∈C r(e)/|C| and is rational of polynomial bit complexity. As shown in [67],

the optimal values and optimal strategies can be computed in pseudopolynomial time (i.e.
polynomial time for unary rewards); furthermore the problem can be reduced to simple
stochastic games, it is thus in PLS and the decision problem is in UP ∩ coUP , but it is
open whether it is in P.

A still simpler, nonstochastic 2-player game, called parity game [20] has been studied
extensively in the verification area; it is an important theoretical question in this area
whether this game can be solved in polynomial time. A parity game is played again on
a directed graph G whose nodes are partitioned into two sets V1, V2 and whose edges are
labelled by positive integers. A history is winning for player 1 (respectively player 2) if the
maximum label that occurs infinitely often in the history is odd (resp. even). In this game,
one of the two players has a pure optimal strategy that wins on every history that results
against every strategy of the other player. Determining who the winner of the game is (and
a winning strategy) reduces to the decision problem for mean payoff games and in turn to
simple stochastic games [51, 38].

3. Fixed Points

Nash’s theorem asserts that every finite game Γ has a (generally, mixed) equilibrium.
Nash proved his theorem in [46] using Brouwer’s fixed point theorem: every continuous
function F from a compact convex body to itself has a fixed point, i.e. a point x such that
x = F (x). Specifically, given a finite game Γ with k players i = 1, . . . , k, a finite set Si of
pure strategies and a payoff function Ui for each player, a mixed strategy profile is a vector
x = (xij |i = 1, . . . , k; j = 1, . . . , |Si|), which lies on the product ∆ of the k unit simplexes
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∆i = {y ∈ R|Si||∑|Si|
j=1 yj = 1; y ≥ 0}. Nash defined the following function from ∆ to itself:

FΓ(x)(i,j)
.= xi,j+max{0,gi,j(x)}

1+
P|Si|

l=1 max{0,gi,l(x)}
, where gi,j(x) is the (positive or negative) “gain” in payoff

of player i if he switches to pure strategy j while the other players continue to play according
to x; gi,j(x) is a (multivariate) polynomial in x. Nash showed that the fixed points of FΓ

are precisely the equilibria of the game Γ. There are several alternative proofs of Nash’s
theorem, all using Brouwer’s theorem (with different functions F ) or the related Kakutani’s
theorem (for fixed points of multivalued maps). Note that the underlying solution space
here, ∆, is continuous, not discrete and finite. Furthermore, even if the payoff functions of
the game are rational-valued, for 3 or more players it may be the case that all equilibria are
irrational.

Market equilibria is another important application of fixed point theorems. Consider
the following exchange model [57]. We have m agents and n commodities. The agents
come to the market with an initial supply of commodities, which they exchange for their
prefered ones; each agent sells his supply at the prevailing prices, and buys his preferred
bundle of commodities. For each vector p of prices for the commodities, each agent ` has
an (positive or negative) ‘excess demand’ (=demand-supply) g`

i (p) for each commodity i.
Standard assumptions are that the functions g`

i (p) (i) are homogeneous of degree 0, thus
the price vectors may be normalized to lie on the unit simplex ∆n, (ii) they satisfy Walras’
law

∑n
i=1 pig

`
i (p) = 0, (iii) they are continuous on the unit simplex. Let gi(p) =

∑
` g`

i (p)
be the (total) market excess demand for each commodity i. The functions gi(p) satisfy
the same constraints. A vector p of prices is an equilibrium if gi(p) ≤ 0 for all i (demand
does not exceed supply), with equality for all commodities i that have pi > 0. Brouwer’s
theorem can be used to show the existence of equilibria. Namely, the equilibria are the fixed
points of the function F : ∆n 7→ ∆n, defined by the formula Fi(p) = pi+max(0,gi(p))

1+
Pn

j=1 max(0,gj(p)) . In
fact, the equilibrium existence theorem can be conversely used to show Brouwer’s theorem:
from a Brouwer function one can construct an economy whose equilibria correspond to the
fixed points of the function [63]. In the classical Arrow-Debreu market model [3], the user
preferences for the commodities are modeled by utility functions, which in turn induce the
excess demand functions (or correspondences, i.e. multivalued maps), and more generally
the model includes also production. Under suitable conditions, the existence of equilibria
is derived again using a fixed point theorem (Kakutani in [3], or Brouwer in alternative
proofs [29]). As shown in a line of work by Sonnenschein, Mantel, Debreu and others (see
e.g. [17]), essentially any function satisfying the standard conditions can arise as the excess
demand function in a market for suitably defined utility functions for the users . Thus,
there is a tight connection between fixed points of general functions and market equilibria.

A number of other problems from various domains can be cast as fixed point computa-
tion problems, i.e., every instance I of a problem is associated with a function FI over some
domain so that the sought objects Ans(I) are fixed points of FI ; in some cases, we may only
want a specific fixed point of the function. We will mention several more examples in this
section. Recall the simple stochastic game from the last section. The vector x = (xs|s ∈ V )
of winning probabilities for Player 1 satisfies the following system of equations x = F (x),
with one equation for each node s: if s is a sink labelled 1 (respectively 2) then xs = 1
(resp. xs = 0); if s ∈ Vr then xs =

∑
(s,v)∈E psvxv; if s ∈ V1 then xs = max{xv|(s, v) ∈ E};

if s ∈ V2 then xs = min{xv |(s, v) ∈ E}. In general there may be multiple solutions, how-
ever the system can be preprocessed so that there is a unique solution in the unit cube
Cn = {x|0 ≤ xs ≤ 1,∀s ∈ V }.
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Stochastic games were originally introduced by Shapley in [59] in a more general form,
where players can move simultaneously. As shown in [13], simple stochastic games can be
reduced to Shapley’s game. In Shapley’s game there is a finite set V of states, each state
u has an associated one-shot zero-sum finite game with a reward (payoff) matrix Au whose
rows (resp. columns) correspond to the actions (pure strategies) of Player 1 (resp. 2).
If the play is in state u and the players choose actions i, j then Player 1 receives reward
Au[i, j] from Player 2, the game stops with probability qu

ij > 0, and it transitions to state
v with probability puv

ij , where qu
ij +

∑
v puv

ij = 1. Since there is at least positive probability
q = min{qu

ij |u, i, j} > 0 of stopping in each step, the game stops a.s. in a finite number
of steps. (Another standard equivalent formulation is as a discounted game, where the
game does not stop but future rewards are discounted by a factor 1 − q per step). The
goal of Player 1 is to maximize (and of Player 2 to minimize) the total expected reward,
which is the value of the game. We want to compute the vector x = (xu|u ∈ V ) of game
values for the different starting states u. As usual all rewards and probabilities are assumed
to be rationals for computational purposes. The values in general may be irrational now
however. The vector x satisfies a fixed point set of equations x = F (x), as follows. For each
state u, let Bu(x) be the matrix, indexed by the actions of the players, whose i, j entry is
Au[i, j] +

∑
v puv

ij xv, and let V al(Bu(x)) be the value of the one-shot zero-sum game with
payoff matrix Bu(x). Then x = F (x) where Fu(x) = V al(Bu(x)), u ∈ V . The function F
is a Banach function (a contraction map) under the L∞ norm with contraction factor 1− q,
and thus it has a unique fixed point, the vector of values of the game.

Branching processes are a basic model of stochastic evolution, introduced first in the
single type case by Galton and Watson in the 19th century to study population dynamics,
and extended later to the multitype case by Kolmogorov and Sevastyanov, motivated by
biology. A branching process has a finite set T of n types, for each type i ∈ T there is a
finite set of ‘reproduction’ rules of the form i

pij→ vij, j = 1, . . . ,mi, where pij ∈ [0, 1] is the
probability of the rule (thus,

∑mi
j=1 pij = 1) and vij ∈ Nn is a vector whose components

specify the number of offsprings of each type that an entity of type i produces in the next
generation. Starting from an initial population, the process evolves from one generation
to the next according to the probabilistic reporuction rules. The basic quantity of interest
is the probability xi of extinction of each type: the probability that if we start with one
individual of type i, the process will eventually die. These can be used to compute the
extinction probability for any initial population and are the basic for more detailed statistics
of the process. As usual, we assume that the probabilities of the rules are rational. However
the extinction probabilities are in general irrational. The vector x satisfies a set of fixed
point equations x = F (x), where Fi(x) is the polynomial

∑mi
j=1 pijΠn

k=1(xk)vij [k]. Note
that Fi(x) has positive coefficients, thus F is a monotone operator on Rn

≥0 and thus has a
Least Fixed Point (LFP); the LFP is precisely the vector of extinction probabilities of the
branching process. For more information on the theory of branching processes and their
applications see [32, 31].

Stochastic context-free grammars (SCFG) are context-free grammars where the pro-
duction rules have associated probabilities. They have been studied extensively in Natural
Language Processing where they are an important model [45], and have been used also in
biological sequence analysis. A basic quantity of interest is the probability of the language
generated by a SCFG; again this may be an irrational number even if all the probabilities
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of the production rules are rational. The analysis of SCFG’s is closely related to that of
branching processes.

A model that encompasses and generalizes both of branching processes and SCFG’s in a
certain precise sense, is the Recursive Markov chains (RMC) model [22] and the equivalent
model of Probabilistic Pushdown machines [21]. Informally, a RMC is a collection of Markov
chains that can call each other in a potentially recursive manner like recursive procedures.
The basic quantities of interest are the termination probabilities. These probabilities obey
again a system of fixed point equations x = F (x), where F is a vector of polynomials with
positive coefficients; the least fixed point of the system gives the termination probabilities of
the RMC. Generalization to a setting where the dynamics are not completely probabilistic
but can be controlled by one or more players leads to recursive Markov decision processes and
games [24, 25, 23]. For example, we may have a branching process, where the reproduction
can be influenced by players who want to bias the process towards extinction or survival.
This results in fixed point systems of equations involving monotone polynomials and the
min and max operators.

All of the above problems are total (single-valued or multi-valued) search problems,
in which the underlying solution space is continuous. In all of these problems we would
ideally like to compute exactly the quantities of interest if possible (if they are rational),
and otherwise, we would like to bound them and answer decision questions about them
(eg. is the value of a stochastic game ≥ 1/2?, does a RMC terminate with probability
1?) or to approximate them within desired precision, i.e. compute a solution x that is
within ε of an/the answer x∗ to the search problem (eg., approximate within additive error
ε the extinction probabilities of a branching process, or compute a mixed strategy profile
for a game that is within ε of a Nash equilibrium). In the approximation problem we
would like ideally polynomial time in the size of the input and in log(1/ε) (the number
of bits of precision). We refer to the approximation of an answer to a search problem
as above as strong approximation (or the ‘near’ problem) to distinguish it from another
notion of approximation, which we call the weak approximation (or the ‘almost’ problem)
that is specific to a fixed point formulation of a search problem via a function F : a weak
ε-approximation is a point x such that |x − F (x)| ≤ ε (say in the L∞ norm). Note that a
search problem may be expressible in different ways as a fixed point problem using different
functions F , and the notion of weak approximation may depend on the function that is used;
the strong approximation notion is intrinsic to the search problem itself (does not depend
on F ). For many common fixed point problems (formally, for polynomially continuous
functions [26]), including all of the above problems, weak approximation reduces to strong,
i.e., given instance I and (rational) ε > 0, we can define a (rational) δ > 0 of bit-size
polynomial in that of ε and in |I| such that every (strong) δ-approximation x to an answer
to the search problem (i.e., approximation to a fixed point of the function FI corresponding
to the instance I) is a weak ε-approximate fixed point (i.e., satisfies |x − FI(x)| ≤ ε). The
converse relation does not hold in general; in particular, it does not hold for Nash equilibria
and the Nash function FΓ.

We discuss briefly now algorithms for such fixed point problems. For a Banach function
FI we can start at any point x0, and apply repeatedly FI . The process will converge to the
unique fixed point. If the contraction factor 1 − q is a constant < 1, then convergence is
polynomial, but if the margin q from 1 is very small, inverse exponential in the size of the
input I (as is generally the case, for example in Shapley’s game), then convergence is slow.
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For a monotone function FI for which we want to compute the least fixed point, as in
many of the examples above (stochastic games, branching processes, RMC etc.), we can
start from x0 = 0 (which is lower than the LFP) and apply repeatedly FI ; the process
will converge to the desired LFP, but again convergence is generally slow. Note that for
many of these problems, obtaining a weak ε-approximation for ε constant or even inverse
polynomial, |I|−c is easy: for example, in a simple stochastic game or a branching process,
the vector x is bounded from above by the all-1 vector and F k

I (0), k = 0, 1, 2, . . . increases
monotonically with k, so after at most n/ε iterations we will get a weak ε-approximate fixed
point x. However, such a point x is of no use in estimating the actual values or probabilities
that we want to compute. Approximating the value of a simple stochastic game even within
additive error 1/2 is an open problem.

For general Brouwer functions F we cannot simply apply iteratively F from some
starting point x0 and hope to converge to a fixed point. There is extensive algorithmic
work on the approximate computation of Brouwer fixed points, starting with Scarf’s funda-
mental algorithm [56], The standard proof of Brouwer’s theorem involves a combinatorial
lemma, Sperner’s lemma, combined with a (generally nonconstructive) compactness argu-
ment. Scarf’s algorithm solves constructively Sperner’s problem, and computes a weak
ε-approximate fixed point for the function. Briefly, it works as follows. Assume wlog
that the domain is the unit simplex ∆n = {x ≥ 0|∑i xi = 1}, and consider a simplicial
subdivision of ∆n into simplices of sufficiently small diameter δ, so that |x − y| ≤ δ im-
plies |F (x) − F (y)| ≤ ε/n. Label (“color”) each vertex v of the subdivision by an index
i = 1, . . . , n such that vi > Fi(v); if v is not a fixed point there is at least one such index,
if v is a fixed point then label v with say argi max(vi). Note that the unit vectors ei at
the n corners of the simplex ∆n are labelled i, and all vertices on the facet xj = 0 are
labelled with an index 6= j. Sperner’s lemma implies then that the subdivision has at least
one panchromatic simplex, i.e. a small simplex S whose vertices have distinct labels. From
the definition of the labels and the choice of δ it follows that any point x ∈ S satisfies
|F (x)−x| ≤ ε. Scarf’s algorithm starts with a suitable subdivision and a boundary simplex
whose vertices have n − 1 distinct indices (all except one), and then keeps moving to an
adjacent simplex through the face with the n − 1 indices; the process cannot repeat any
simplex of the subdivision, so it will end up at a panchromatic simplex S. Note that S may
not contain any actual fixed points, and in fact may be located far from all of them, but any
point x of S is a weak ε-approximation. If we take finer and finer subdivisions letting the
diameter δ go down to 0, then the resulting sequence of weakly approximate fixed points
must contain (by compactness) a subsequence that converges to a point, which must be a
fixed point; this latter part however is nonconstructive in general.

There are several other subsequent methods for computing (approximate) fixed points,
e.g. Newton-based, and homotopy methods (some of these assume differentiability and
use also the derivatives of the function). Scarf’s algorithm, as well other general-purpose
algorithms, treat the function F as a black box. Such black box algorithms must take
exponential time in the worst case to compute a weak approximation [33]. Furthermore,
for strong approximation no finite amount of time is enough in the black box model [60],
and there are also noncomputability results for computing equilibria and fixed points for a
model where the function is given via a Turing machine [40, 53]. However, the restriction
to black box access is a severe one, and the results do not mean that any of the specific
problems we want to solve (for example, Nash equilibria) is necessarily hard.
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4. Rational equilibria, Piecewise Linear Functions and the Class PPAD

Consider a 2-player finite game, with the payoffs given explicitly in terms of the two
payoff matrices A1, A2 of the two players (i.e., the game is presented in normal form).
Computing a specific Nash equilibrium, such as one that maximizes the payoff to one of the
players, or to all the players, is NP-hard [30]. However, the search problem that asks for
any Nash equilibrium is a different, ‘easier’ problem, and is unlikely to be NP-hard.

The 2-player case of the Nash equilibrium problem can be viewed either as a continuous
or as a discrete problem, like Linear Programming: We can consider LP either as having a
continuous solution space, namely all the real-valued points in the feasible polyhedron, or as
having a discrete solution space, namely the vertices of the polyhedron or the feasible bases.
Similarly, for 2-player games which correspond to a Linear Complementarity problem. A
mixed strategy profile is a Nash equilibrium iff every pure strategy of each player is either
at 0 level (not in the support) or is a best response to the strategy of the other player.
Assumming the game is nondegenerate (we can always ensure this by a small perturbation)
the supports of the mixed strategies determine uniquely the equilibrium: we can set up
and solve a linear system of equations which equate the payoffs of the pure strategies in
the support of each player, and check that the solution satisfies the appropriate inequalities
for the pure strategies that are not in the supports. One consequence of this is that if
the payoffs are rational then there are rational equilibria, of polynomial bit complexity in
the input size, and they can be computed exactly. A second consequence is that Nash’s
theorem in this case can be proved directly, without resorting to a fixed point theorem, and
algorithmically, namely by the Lemke-Howson algorithm [42]. The algorithm has similar
flavor to Scarf’s algorithm for fixed points. Mixed profiles can be labelled (‘colored’) by the
set of pure strategies that are not in the support or that are best responses to the other
player’s strategy. The equilibria are the mixed profiles that are panchromatic, i.e., labeled
with all the pure strategies of both players. Briefly, the algorithm starts from an artificial
point that has all the colors except one, and then follows a path through a sequence of LP-
like pivots, until it arrives at a panchromatic point (profile), which must be an equilibrium;
the algorithm cannot repeat any point, because at any point there are only two possible
pivots, one forward and one backward, and there is a finite number of points (supports) so
it terminates. It is known that the algorithm takes exponential time in the worst case [55].

Papadimitriou defined in [49] a complexity class, PPAD, that captures the basic prin-
ciples of these path-following algorithms: There is a finite number of candidate solutions,
and an underlying directed graph of moves between the solutions where each solution has at
most one forward and one backward move, i.e., the graph consists of a set of directed paths,
cycles and isolated nodes; a source of one path is an artificial starting solution, and every
other endpoint (source or sink) of every path is an answer to the problem (eg., an equilib-
rium). Formally, a search problem Π is in PPAD if each instance I has a set S(I) of solutions
which are (strings) polynomially bounded in the input size |I|, and there are polynomial-
time algorithms for the following tasks: (a) test whether a given string I is an instance of
Π and if so compute a initial solution s0 in S(I), (b) given I, s, test whether s ∈ S(I) and
if so compute a successor succI(s) ∈ S(I) and a predecessor predI(s) ∈ S(I), such that
predI(s0) = s0, succI(s0) 6= s0, and predI(succI(s0)) = s0. The pred and succ functions in-
duce a directed graph G = (S(I), E), where E = {(u, v)|u 6= v, succI(u) = v, predI(v) = u},
and the answer set to the instance I of the search problem, Ans(I), is the set of nodes of G,
other than s0 that have indegree + outdegree = 1, i.e., are endpoints of the paths; note that
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Ans(I) 6= ∅ because there must be at least one more endpoint besides s0. As is customary,
the class is closed under polynomial-time reduction, i.e., if a search problem Π ′ reduces to a
problem Π that satisfies the above definition, then Π′ is considered also to belong to PPAD.
Papadimitriou defined two other variants of this class in [49], PPA in which the underlying
graph is undirected, and PPADS in which the graph is directed and the answer set consists
only of the sinks of the paths. However, PPAD is the more interesting and richer of these
classes in terms of natural problems.

The class PPAD lies somewhere between P and TFNP: all search problems in PPAD
are total, and furthermore, for a given instance I, we can guess a solution s and verify that
it is an answer. Thus, as in the case of PLS, problems in PPAD cannot be NP-hard unless
NP=coNP.

By virtue of the Lemke-Howson algorithm, the Nash equilibrium problem for 2-player
(normal form) games is in PPAD. For 3 or more players we cannot say that the Nash problem
is in PPAD; for one thing the equilibria are irrational. But the following approximate ε-
Nash version is in PPAD [15]. An ε-Nash equilibrium of a game is a (mixed) strategy
profile such that no player can improve its payoff by more than ε by switching unilaterally
to another strategy. (Note, this is not the same as being ε-close to a Nash equilibrium.)
The ε-Nash problem is: given a normal form game Γ (with rational payoffs) and a rational
ε > 0, compute an ε-Nash equilibrium of Γ. (Note that ε is given as usual in binary,
so polynomial time means polynomial in |Γ| and log(1/ε).) The complexity of the Nash
problem was one of the main motivations for the original introduction of PPAD. A recent
sequence of papers culminated in showing that the Nash equilibrium problem for 2-player
games is PPAD-complete [15, 8], that is, if the problem can be solved in polynomial time,
then so can all the problems in PPAD. Furthermore, even the ε-Nash equilibrium problem
for ε inverse polynomial, i.e. even with ε given in unary, is also PPAD-complete for 2-player
games [11]. For all constant ε, an ε-Nash equilibrium can be computed in quasipolynomial
time [43].

Another basic PPAD-complete problem is (a formalization of) the Sperner problem.
The 2D case concerns the unit simplex (triangle) ∆3 and its simplicial subdivision (i.e.,
triangulation) with vertices v = (i1/n, i2/n, i3/n) with i1 + i2 + i3 = n. The 2D Sperner
problem is as follows. The input consists of a number n in binary and a Boolean circuit
which takes as input three natural numbers i1, i2, i3 with i1 + i2 + i3 = n and outputs a
color c ∈ {1, 2, 3}, with the restriction that ic 6= 0. The problem is to find a trichromatic
triangle, i.e. three vertices (triples) with pairwise distances 1/n that have distinct colors.
The problem is in PPAD by Scarf’s algorithm. The 3D Sperner problem was shown PPAD-
complete in [49], and the 2D case was shown complete in [9].

The original paper showed PPAD-completeness also for a discretized version of Brouwer
and related theorems (Kakutani, Borsuk-Ulam) in the style of the Sperner problem: a
Brouwer function in 3D is given in terms of a binary number n (the resolution of a regular
grid subdivision of the unit 3-cube) and a Boolean circuit that takes as input three natu-
ral numbers i1, i2, i3 between 0 and n and outputs the value of the function at the point
(i1/n, i2/n, i3/n). The function is then linearly interpolated in the rest of the unit cube
according to a standard simplicial subdivision with the grid points as vertices. The paper
showed also completeness for a discretized version of the market equilibrium problem for
an exchange economy.

In [12] Codenoti et al. show PPAD-completeness of the price equilibrium for a restricted
case of Leontief exchange economies, i.e. economies in which each agent i wants commodities
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in proportion to a specified (nonnegative) vector (ai1, . . . , aik); that is, the utility function
of agent i is ui(x) = min{xij/aij |j = 1, . . . , k; aij 6= 0}. In general, such economies may
not have an equilibrium, and it is NP-hard to determine if there is one [12]. However,
a restricted subclass of Leontief economies has equilibria and is equivalent to the Nash
equilibrium problem for 2-player games. This restricted Leontief class is as follows: the
agents are partitioned into two groups, every agent brings one distinct commodity to the
market, and agents in the first group want commodities only of agents in the second group
and vice-versa.

The class PPAD cannot capture of course general Brouwer functions since many of
them have irrational fixed points as we saw in the last section. (We could discretize such
a function, but then the resulting approximating function has new fixed points, which may
have no relation and can be very far from the fixed points of the original function.) However
there is a natural class of functions that are guaranteed to have rational fixed points, which
are in PPAD and in a sense characterize the class [26]. Consider the search problem Π of
computing a fixed point for a family of Brouwer functions F = {FI |I an instance of Π}. We
say that Π is a polynomial piecewise linear problem if the following hold: For each instance I,
the domain is divided by hyperplanes into polyhedral cells, the function FI is linear in each
cell and is of course continuous over the whole domain. The coefficients of the function in
each cell and of the dividing hyperplanes are rationals of size bounded by a polynomial in |I|.
These are not given explicitly in the input, in fact there may be exponentially many dividing
hyperplanes and cells. Rather, there is an oracle algorithm that runs in time polynomial in
|I| which generates a sequence of queries of the form ax ≤ b? adaptively (i.e., the next query
depends on I and the sequence of previous answers), and at the end either outputs ‘No’
(i.e., x is not in the domain) or identifies the cell of x and outputs the coefficients c, c ′ of the
function FI(x) = cx + c′. As shown in [26], all polynomial piecewise linear problems are in
PPAD (they all have rational fixed points of polynomial size). Examples include the simple
stochastic games, the discretized Brouwer functions obtained from linear interpolation on
a grid, and the Nash equilibrium problem for 2-player games (Nash’s function in nonlinear
even for 2 players, but there is another piecewise linear function whose fixed points are also
exactly the Nash equilibria).

The class PPAD captures also the approximation in the weak (‘almost’) sense for a
broad class of Brouwer functions, and in some cases also the strong approximation (‘near’)
problem [26]. Consider a family of functions F = {FI}. We say F is polynomially computable
if for every instance I and rational vector x in the domain, the image FI(x) is rational and
can be computed in time polynomial in the size of I and of x. F is called polynomially
continuous if there is a polynomial q(z1, z2) such that for all instances I and all rational
ε > 0, there is a rational δ > 0 such that size(δ) ≤ q(|I|, size(ε)) and such that for
all x, y ∈ DI , |x − y| < δ ⇒ |FI(x) − FI(y)| < ε. If F is polynomially computable
and polynomially continuous, then the weak approximation problem (given instance I and
rational ε > 0, compute a weakly ε-approximate fixed point of FI) is in PPAD by virtue
of Scarf’s algorithm. Furthermore, if the functions FI happen to be also contracting with
contraction rate < 1−2−poly(|I|), then strong approximation reduces to weak approximation,
and the strong approximation problem (given I, ε, compute a point x that is within ε
of some fixed point x∗ of FI) is also in PPAD; Shapley’s problem is an example that
satisfies this condition. Moreover, if in addition the functions FI have rational fixed points
of polynomial size, then strongly ε-approximate fixed points with small enough ε can be
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rounded to get exact fixed points, and thus the exact problem is in PPAD; simple stochastic
games, perturbed with a small discount [13], are such an example.

5. Irrational Equilibria, Nonlinear Functions, and the Class FIXP

Games with 3 or more players are quite different from 2-player games: Nash equilibria
are generally irrational; knowing the support of an equilibrium does not help us much, and
there may be many different such equilibria. There are many search problems as we saw
in Section 3, and in particular many problems that can be cast in a fixed point framework,
where the objects that we want to compute (the answers) are irrational. Of course we
cannot compute them exactly in the usual Turing machine model of computation. One can
consider the exact computation and the complexity of such search problems in a real model
of computation [6]. In the usual (discrete) Turing model of computation and complexity,
we have to state carefully and precisely what is the (finite) information about the solution
that we want to compute, as the nature of the desired information can actually affect the
complexity of the problem, i.e., some things may be easier to compute than others. That
is, from a search problem Π with a continuous solution space, another search problem Π ′
is derived with a discrete space. Several types of information are potentially of interest,
leading to different problems Π′.

Consider for example Shapley’s stochastic game. Some relevant questions about the
value of the game are the following: (i) Decision problem: Given game Γ and rational r, is
the value of the game ≥ r?, (ii) Partial computation: Given Γ, integer k, compute the k
most significant bits of the value, (iii) Approximation: Given Γ, rational ε > 0, compute an
ε approximation to the value. Similar questions can be posed about the optimal strategies
of the players. The value of a game is a problem with a unique answer; for multivalued
search problems (e.g., optimal strategy, Nash equilibrium etc.) care must be taken in the
statement of the discrete problems (e.g., the decision problem) so that it does not become
harder than the search problem itself; in general, the requirement in the multivalued case is
that the response returned for the discrete problem should be valid for some answer to the
continuous search problem. As we said in the previous section, the approximation problem
for the value of Shapley’s game is in PPAD (and it is open whether it is P). The decision
(and partial computation) problem however seems to be harder and it is not at all clear that
it is even in NP; in fact showing that it is in NP would answer a well-known longstanding
open problem. The same applies to many other problems. The best upper bound we know
for the decision (and partial computation) problem for Shapley’s games and for many of
the other fixed point problems listed in Section 3 (eg., branching processes, RMCs etc) is
PSPACE.

The Square Root Sum problem (Sqrt-Sum for short) is the following problem: given
positive integers d1, . . . , dn and k, decide whether

∑n
i=1

√
di ≤ k. This problem arises often

for example in geometric computations, where the square root sum represents the sum of
Euclidean distances between given pairs of points with integer (or rational) coordinates; for
example, determining whether the length of a specific spanning tree, or a TSP tour of given
points on the plane is bounded by a given threshold k amounts to answering such a problem.
This problem is solvable in PSPACE, but it has been a major open problem since the 1970’s
(see, e.g., [28, 62]) whether it is solvable even in NP (or better yet, in P). A related, and in
a sense more powerful and fundamental, problem is the PosSLP problem: given a division-
free straight-line program, or equivalently, an arithmetic circuit with operations +,−, ∗ and
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inputs 0 and 1, and a designated output gate, determine whether the integer N that is the
output of the circuit is positive. The importance of this problem was highlighted in [2],
which showed that it is the key problem in understanding the computational power of the
Blum-Shub-Smale model of real computation [6] using rational numbers as constants, in
which all operations on rationals take unit time, no matter their size; importantly, integer
division (the floor function) is not allowed (unit cost models with integer division or logical
bit operations can solve in polynomial time all PSPACE problems, see e.g. [19] for an
overview of machine models and references). This is a powerful model in which the Sqrt-Sum
problem can be decided in polynomial time [62]). Allender et al. [2] showed that the set of
discrete decision problems that can be solved in P-time in this model is equal to P PosSLP,
i.e. problems solvable in P using a subroutine for PosSLP. They showed also that PosSLP
and Sqrt-Sum lie in the Counting Hierarchy (a hierarchy above PP).

The Sqrt-Sum problem can be reduced to the decision version of many problems: the
Shapley problem [26], concurrent reachability games [25], branching processes, Recursive
Markov chains [22], Nash equilibria for 3 or more players [26]. The PosSLP problem reduces
also to several of these. Hence placing any of these problems in NP would imply the
same for Sqrt-Sum and/or PosSLP. Furthermore, for several problems, the approximation
of the desired objects is also at least as hard. In particular, approximating the termination
probability of a Recursive Markov chain within any constant additive error < 1 is at least
as hard as the Sqrt-Sum and the PosSLP problems [26].

A similar result holds for the approximation of Nash equilibria in games with 3 or more
players. Suppose we want to estimate the probability with which a particular pure strategy,
say strategy 1 of player 1, is played in a Nash equilibrium (any one); obviously, the value
1/2 estimates it trivially with error ≤ 1/2. Guaranteeing a constant error < 1/2 is at least
as hard as the Sqrt-Sum and the PosSLP problems [26], i.e. it is hard to tell whether the
strategy will be played with probability very close to 0 or 1.

The constructions illustrate also the difference between strong and weak approximate
fixed points generally, and for specific problems in particular. Recall that for RMCs we can
compute very easily a weak ε-approximate fixed point for any constant ε > 0; however it
is apparently much harder to obtain a strong approximation, i.e. approximate the actual
probabilities within any nontrivial constant. In the RMC case the weak approximation
is irrelevant. However, in the case of Nash equilibria, the weak approximation of Nash’s
function is also very natural and meaningful: it is essentially equivalent to the notion of
ε-Nash equilibrium (there is a small polynomial change in ε in each direction). For every
game Γ and ε > 0, we can choose a δ of bit-size polynomial in the size of Γ and ε so
that every strategy profile that is within distance δ of a Nash equilibrium is ε-Nash (i.e.
all strongly approximate points are also weakly approximate with a ‘small’ change in ε).
However, the converse is not true: For every n there is a 3-player game of size O(n), with
an ε-Nash equilibrium, x′, where ε = 1/22Ω(n)

, such that x′ has distance 1 − 2−poly (i.e.,
almost 1) from every Nash equilibrium [26].

For 2-player games, as we said there is a direct, algorithmic proof of the existence of
Nash equilibria (by the Lemke-Howson algorithm). But for 3 and more players, the only
proofs known are through a fixpoint theorem (and there are several proofs known using
different Brouwer functions or Kakutani’s theorem). In [26] we defined a class of search
problems, FIXP, that can be cast as fixed point problems of functions that use the usual
algebraic operations and max, min, like Nash’s function, and the other functions for the
problems discussed in Section 3. Specifically, FIXP is the class of search problems Π, such
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that there is a polynomial-time algorithm which, given an instance I, constructs an alge-
braic circuit (straight-line program) CI over the basis {+, ∗,−, /,max,min}, with rational
constants, that defines a continuous function FI from a domain to itself (for simplicity, stan-
dardized to be the unit cube, other domains can be embedded into it), with the property
that AnsΠ(I) is the set of fixed points of FI . The class is closed as usual under reductions.
In the usual case of discrete search problems, a reduction from problem A to problem B
consists of two polynomial-time computable functions, a function f that maps instances
I of A to instances f(I) of B, and a second function g that maps solutions y of the in-
stance f(I) of B to solutions x of the instance I of A. The difference here is that the
solutions are real-valued, not discrete, so we have to specify what kind of functions g are
allowed. It is sufficient to restrict the reverse function g to have a particularly simple form:
a separable linear transformation with polynomial-time computable rational coefficients;
that is, x = g(y), where each gi(y) is of the form aiyj + bi for some j, where ai, bi are
rationals computable from I in polynomial time. Examples of problems in FIXP include:
Nash equilibrium for normal form games with any number of players, price equilibrium in
exchange economies with excess demand functions given by algebraic formulas or circuits,
the value (and optimal strategies) for Shapley’s stochastic games, extinction probabilitites
of branching processes, and probability of languages generated by stochastic context-free
grammars.

FIXP is a class of search problems with continuous solution spaces, and corresponding
to each such problem Π, there are the associated discrete problems: decision, approximation
etc. All the accociated discrete problems can be expressed in the existential theory of the
reals, and thus, using decision procedures for this theory [7, 52], it follows that they are
all in PSPACE. As we mentioned, many of these problems are at least as hard as the
Sqrt-Sum and the PosSLP problems, for which the current best upper bounds are barely
below PSPACE. On the other hand, we do not know of any lower bounds, so in principle
they could all be in P (though this is very doubtful). The Nash equilibrium problem for 3
players is complete for FIXP; it is complete in all senses, e.g., its approximation problem is
as hard as the approximation of any other FIXP problem, the decision problem is at least
as hard as the decision problem for any problem in FIXP, etc. [26]. The price equilibrium
problem for algebraic excess demand functions is another complete problem.

A consequence of the completeness results is that the class FIXP stays the same under
several variations. For example, using formulas instead of circuits in the representation
of the functions does not affect the class (because Nash’s function is given by a formula).
Also, FIXP stays the same if we use circuits over {+, ∗,max} and rational constants (i.e., no
division), because there is another function whose fixed points are also the Nash equilibria,
and which can be implemented without division [26].

Of course FIXP contains PPAD, since it contains its complete problems, for example
2-player Nash. Actually, the piecewise linear fragment of FIXP corresponds exactly to
PPAD. Let Linear-FIXP be the class of problems that can be expressed as (reduced to)
exact fixed point problems for functions given by algebraic circuits using {+,−,max,min}
(equivalently, {+,max}) and multiplication with rational constants only; no division or
multiplications of two gates/inputs is allowed. Then Linear-FIXP is equal to PPAD.

In several problems, we want a particular fixed point of a system x = F (x), not just
any one. In particular, in several of the probems discussed in Section 3 for example, the
function F is a monotone operator and we want a Least Fixed Point. To place such a
problem in FIXP, one has to restrict the domain in a suitable, but polynomial, way so that
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only the desired fixed point is left in the domain. For some problems, we know how to
do this (for example, extinction probabilities of branching processes), but for others (e.g.
recursive Markov chains) it is not clear that this can be done in polynomial time. In any
case, the paradigm of a LFP of a monotone operator is one that appears in many common
settings, and which deserves its own separate treatment.

6. Conclusions

Many problems, from a broad, diverse range of areas, involve the computation of an
equilibrium or fixed point of some kind. There is a long line of research (both mathematical
and algorithmic) in each of these areas, but for many of these basic problems we still do
not have polynomial time algorithms, nor do we have hard evidence of intractability (such
as NP-hardness). We reviewed a number of such problems here, and we discussed three
complexity classes, PLS, PPAD and FIXP, that capture essential aspects of several types
of such problems. The classes PLS and PPAD lie somewhere between P and TFNP (total
search problems in NP), and FIXP (more precisely, the associated discrete problems) lie
between P and PSPACE. These, and the obvious containment PPAD ⊆ FIXP, are the only
relationships we currently know between these classes and the other standard complexity
classes. It would be very interesting and important to improve on this state of knowledge.
Furthermore, there are several important problems that are in these classes, but are not
(known to be) complete, so it is possible that one can make progress on them, without
resolving the relation of the classes themselves.
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1 Dept. de Informática e Ingenieŕıa de Sistemas , Universidad de Zaragoza. Edificio Ada Byron, Maŕıa
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Abstract. The pressing need for efficient compression schemes for XML documents has
recently been focused on stack computation [6, 9], and in particular calls for a formulation
of information-lossless stack or pushdown compressors that allows a formal analysis of their
performance and a more ambitious use of the stack in XML compression, where so far it is
mainly connected to parsing mechanisms. In this paper we introduce the model of pushdown
compressor, based on pushdown transducers that compute a single injective function while
keeping the widest generality regarding stack computation.

The celebrated Lempel-Ziv algorithm LZ78 [10] was introduced as a general purpose com-
pression algorithm that outperforms finite-state compressors on all sequences. We compare
the performance of the Lempel-Ziv algorithm with that of the pushdown compressors, or
compression algorithms that can be implemented with a pushdown transducer. This com-
parison is made without any a priori assumption on the data’s source and considering the
asymptotic compression ratio for infinite sequences. We prove that Lempel-Ziv is incompa-
rable with pushdown compressors.

1. Introduction

The celebrated result of Lempel and Ziv [10] that their algorithm is asymptotically better
than any finite-state compressor is one of the major theoretical justifications of this widely
used algorithm. However, until recently the natural extension of finite-state to pushdown com-
pressors has received much less attention, a situation that has changed due to new specialized
compressors.
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In particular, XML is rapidly becoming a standard for the creation and parsing of doc-
uments, however, a significant disadvantage is document size, even more since present day
XML databases are massive. Since 1999 the design of new compression schemes for XML is
an active area where the use of syntax directed compression is specially adequate, that is,
compression centered on the grammar-based generation of XML-texts and performed with
stack memory [6, 9].

On the other hand the work done on stack transducers has been basic and very connected
to parsing mechanisms. Transducers were initially considered by Ginsburg and Rose in [4]
for language generation, further corrected in [5], and summarized in [1]. For these models
the role of nondeterminism is specially useful in the concept of λ-rule, that is a transition in
which a symbol is popped from the stack without reading any input symbol.

In this paper we introduce the concept of pushdown compressor as the most general stack
transducer that is compatible with information-lossless compression. We allow the full power
of λ-rules while having a deterministic (unambiguous) model. The existence of endmarkers
is discussed, since it allows the compressor to move away from mere prefix extension by
exploiting λ-rules.

The widely-used Lempel-Ziv algorithm LZ78 [10] was introduced as a general purpose
compression algorithm that outperforms finite-sate compressors on all sequences when consid-
ering the asymptotic compression ratio. This means that for infinite sequences, the algorithm
attains the (a posteriori) finite state or block entropy. If we consider an ergodic source, the
Lempel-Ziv compression coincides exactly with the entropy of the source with high probabil-
ity on finite inputs. This second result is useful when the data source is known, whereas it is
not informative for arbitrary inputs. We don’t know the performance of Lempel-Ziv on indi-
vidual long or infinite inputs (notice that an infinite sequence is Lempel-Ziv incompressible
with probability one). For the comparison of compression algorithms on general sequences,
either an experimental or a formal approach is needed, such as that used in [8]. In this paper
we follow [8] using a worse case approach, that is, we consider asymptotic performance on
every infinite sequence.

We compare the performance of the Lempel-Ziv algorithm with that of the pushdown-
compressors, or compression algorithms that can be implemented with a pushdown trans-
ducer. This comparison is made without any a priori assumption on the data’s source and
considering the asymptotic compression ratio for infinite sequences.

We prove that Lempel-Ziv compresses optimally a sequence that no pushdown transducer
compresses at all, that is, the Lempel-Ziv and pushdown compression ratios of this sequence
are 0 and 1, respectively. For this result, we develop a powerful nontrivial pumping-lemma,
that has independent interest since it deals with families of pushdown transducers, while
known pumping-lemmas are restricted to recognizing devices [1].

In fact, Lempel-Ziv and pushdown compressing algorithms are incomparable, since we
construct a sequence that is very close to being Lempel-Ziv incompressible while the push-
down compression ratio is at most one half. While Lempel-Ziv is universal for finite-state
compressors, our theorem implies a strong non-universality result for Lempel-Ziv and push-
down compressors.

The paper is organized as follows. Section 2 contains some preliminaries. In section 3, we
present our model of pushdown compressor with its basic properties and notation. In section
4 we show that there is a sequence on which Lempel-Ziv outperforms pushdown compressors
and in section 5 we show that Lempel-Ziv and pushdown compression are incomparable. We
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finish with a brief discussion of connections and consequences of these results for dimension
and prediction algorithms.

2. Preliminaries

We write Z for the set of all integers, N for the set of all nonnegative integers and Z+ for
the set of all positive integers. Let Σ be a finite alphabet, with |Σ| ≥ 2. Σ∗ denotes the set
of finite strings, and Σ∞ the set of infinite sequences. We write |w| for the length of a string
w in Σ∗. The empty string is denoted by λ. For S ∈ Σ∞ and i, j ∈ N, we write S[i..j] for
the string consisting of the ith through jth bits of S, with the convention that S[i..j] = λ if
i > j, and S[0] is the leftmost bit of S. We write S[i] for S[i..i] (the ith bit of S). For w ∈ Σ∗
and S ∈ Σ∞, we write w v S if w is a prefix of S, i.e., if w = S[0..|w| − 1]. Unless otherwise
specified, logarithms are taken in base |Σ|. For a string x, x−1 denotes x written in reverse
order. We use f(x) =⊥ to denote that function f is undefined on x.

Let us give a brief description of the Lempel-Ziv (LZ) algorithm [10]. Given an input
x ∈ Σ∗, LZ parses x in different phrases xi, i.e., x = x1x2 . . . xn (xi ∈ Σ∗) such that every
prefix y < xi, appears before xi in the parsing (i.e. there exists j < i s.t. xj = y). Therefore
for every i, xi = xl(i)bi for l(i) < i and bi ∈ Σ. We sometimes denote the number of phrases
in the parsing of x as P (x). After step i of the algorithm, the i first phrases x1, . . . , xi have
been parsed and stored in what we will call the dictionary. Thus, each step adds one word
to the dictionary.

LZ encodes xi by a prefix free encoding of xl(i) and the symbol bi, that is, if x = x1x2 . . . xn

as before, the output of LZ on input x is

LZ(x) = cl(1)b1cl(2)b2 . . . cl(n)bn

where ci is a prefix-free coding of i (and x0 = λ).
LZ is usually restricted to the binary alphabet, but the description above is valid for any

Σ.
For a sequence S ∈ Σ∞, the LZ infinitely often compression ratio is given by

ρLZ(S) = lim inf
n→∞

|LZ(S[0 . . . n− 1])|
n log2(|Σ|)

.

ρLZ(S) corresponds to the best-case performance of Lempel-Ziv on finite prefixes of sequence
S.

We also consider the almost everywhere compression ratio

RLZ(S) = lim sup
n→∞

|LZ(S[0 . . . n− 1])|
n log2(|Σ|)

.

RLZ(S) corresponds to the worst-case performance of Lempel-Ziv on finite prefixes of sequence
S.

3. Pushdown compression

Definition 3.1. A pushdown compressor (PDC) is a 7-tuple
C = (Q,Σ,Γ, δ, ν, q0, z0)

where
• Σ is the finite input alphabet
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• Q is a finite set of states
• Γ is the finite stack alphabet
• δ : Q× (Σ ∪ {λ}) × Γ → Q× Γ∗ is the transition function
• ν : Q× (Σ ∪ {λ}) × Γ → Σ∗ is the output function
• q0 ∈ Q is the initial state
• z0 ∈ Γ is the start stack symbol

We use δQ and δΓ∗ for the projections of function δ. Note that the transition function
δ accepts λ as an input character in addition to elements of Σ, which means that C has the
option of not reading an input character while altering the stack. In this case δ(q, λ, a) =
(q′, λ), that is, we pop the top symbol of the stack. To enforce determinism, we require that
at least one of the following hold for all q ∈ Q and a ∈ Γ:

• δ(q, λ, a) =⊥
• δ(q, b, a) =⊥ for all b ∈ Σ

We restrict δ so that z0 cannot be removed from the stack bottom, that is, for every q ∈ Q,
b ∈ Σ ∪ {λ}, either δ(q, b, z0) =⊥, or δ(q, b, z0) = (q′, vz0), where q′ ∈ Q and v ∈ Γ∗.

There are several natural variants for the model of pushdown transducer [1], both allowing
different degrees of nondeterminism and computing partial (multi)functions by requiring final
state or empty stack termination conditions. Our purpose is to compute a total and well-
defined (single valued) function in order to consider general-purpose, information-lossless
compressors.

Notice that we have not required here or in what follows that the computation should
be invertible by another pushdown transducer, which is a natural requirement for practical
compression schemes. Nevertheless the unambiguity condition of a single computation per
input gives as a natural upper bound on invertibility.

We first consider the transition function δ as having inputs in Q×(Σ∪{λ})×Γ+, meaning
that only the top symbol of the stack is relevant. Then we use the extended transition function
δ∗ : Q× Σ∗ × Γ+ → Q× Γ∗, defined recursively as follows. For q ∈ Q, v ∈ Γ+, w ∈ Σ∗, and
b ∈ Σ

δ∗(q, λ, v) =
{

δ∗(δQ(q, λ, v), λ, δΓ∗ (q, λ, v)), if δ(q, λ, v) 6=⊥;
(q, v), otherwise.

δ∗(q, wb, v) =


δ∗(δQ(δ∗Q(q, w, v), b, δ∗Γ∗ (q, w, v)), λ, δΓ∗ (δ∗Q(q, w, v), b, δ∗Γ∗ (q, w, v))),

if δ∗(q, w, v) 6=⊥ and δ(δ∗Q(q, w, v), b, δ∗Γ∗ (q, w, v)) 6=⊥;
⊥, otherwise.

That is, λ-rules are inside the definition of δ∗. We abbreviate δ∗ to δ, and δ(q0, w, z0) to
δ(w). We define the output from state q on input w ∈ Σ∗ with z ∈ Γ∗ on the top of the stack
by the recursion ν(q, λ, z) = λ,

ν(q, wb, z) = ν(q, w, z)ν(δQ(q, w, z), b, δΓ∗ (q, w, z)).
The output of the compressor C on input w ∈ Σ∗ is the string C(w) = ν(q0, w, z0).

The input of an information-lossless compressor can be reconstructed from the output
and the final state reached on that input.

Definition 3.2. A PDC C = (Q,Σ,Γ, δ, ν, q0, z0) is information-lossless (IL) if the function
Σ∗ → Σ∗ ×Q

w → (C(w), δQ(w))
is one-to-one. An information-lossless pushdown compressor (ILPDC) is a PDC that is IL.
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Intuitively, a PDC compresses a string w if |C(w)| is significantly less than |w|. Of course,
if C is IL, then not all strings can be compressed. Our interest here is in the degree (if any)
to which the prefixes of a given sequence S ∈ Σ∞ can be compressed by an ILPDC.

Definition 3.3. If C is a PDC and S ∈ Σ∞, then the compression ratio of C on S is

ρC(S) = lim inf
n→∞

|C(S[0..n−1])|
n log2(|Σ|)

Definition 3.4. The pushdown compression ratio of a sequence S ∈ Σ∞ is
ρPD(S) = inf{ρC(S) | C is an ILPDC}

ρPD(S) corresponds to the best-case performance of PD-compressors on S.
We can consider dual concepts RC and RPD by replacing lim inf with lim sup in the

previous definition. RPD(S) corresponds to the worst-case performance of PD-compressors
on S.

3.1. Endmarkers and pushdown compression

Two possibilities occur when dealing with transducers on finite words: should the end of
the input be marked with a particular symbol # or not? As we will see, this is a rather subtle
question. First remark that both approaches are natural: on the one hand, usual finite state
or pushdown acceptors are one-way and do not know (and do not need to know) when they
reach the end of the word; on the other hand, two-way finite state acceptors need to know
it and everyday compression algorithms usually know (or at least are able to know) where
the end of the input file takes place. For a word w, we will denote by C(w) the output of a
transducer C without endmarker, and C(w#) the output with an endmarker.

Unlike acceptors, transducers can take advantage of an endmarker: they can indeed
output more symbols when they reach the end of the input word if it is marked with a
particular symbol. This is therefore a more general model of transducers which, in particular,
does not have the strong restriction of prefix extension: if there is no endmarker and C is
a transducer, then for all words w1, w2, w1 v w2 ⇒ C(w1) v C(w2). Let us see how this
restriction limits the compression ratio.

Lemma 3.5. Let C be an IL pushdown compressor with k states and working with no end-
marker. Then on every word w of size |w| ≥ k, the compression ratio of C is

|C(w)|
|w| ≥ 1

2k
.

Proof. Due to the injectivity condition, we can show that C has to output at least one symbol
every k input symbols. Suppose on the contrary that there are words t, u, with |u| = k, such
that C does not output any symbol when reading u on input w = tu. Then all the k + 1
words t and tu[0..i] for 0 ≤ i ≤ k − 1 have the same output by C, and furthermore two of
them have the same final state because there are only k states. This contradicts injectivity.
Thus C must output at least one symbol every k symbols, which proves the lemma. ut

This limitation does not occur with endmarkers, as the following lemma shows.

Lemma 3.6. For every k, there exists an IL pushdown compressor C with k states, working
with endmarkers, such that the compression ratio of C on 0n tends to 1/k2 when n tends to
infinity, that is,

lim
n→∞

|C(0n)|
n

=
1
k2

.
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Proof. (Sketch) On input 0n, our compressor outputs (roughly) 0n/k2
as follows: by selecting

one symbol out of each k of the input word (counting modulo k thanks to k states), it pushes
0n/k on the stack. Then at the end of the word, it pops the stack and outputs one symbol
every k pop. Thus the output is 0n/k2

(in fact, the remainder of n modulo k2 also has to be
taken into account).

To ensure injectivity, if the input word w is not of the form 0n (that is, if it contains a
1), then C outputs 1w. ut

It is worth noticing that it is the injectivity condition that makes this computation im-
possible without endmarkers, because one cannot decide a priori whether the input word
contains a 1. Thus pushdown compressors with endmarkers do not have the limitation of
Lemma 3.5. Still, as Corollary 4.5 will show, pushdown compressors with endmarkers are not
universal for finite state compressors, in the sense that a single pushdown compressor cannot
be as good as any finite state compressor.

It is open whether pushdown compressors with endmarkers are strictly better than with-
out, in the sense of the following question.
Open question. Do there exist an infinite sequence S, a constant 0 < α ≤ 1 and an IL
pushdown compressor C working with endmarkers, such that ρC(S) < α, but ρC′(S) ≥ α, for
every C ′ IL pushdown compressor working without endmarkers?

In the rest of the paper we consider both variants of compression: with and without
endmarkers. We use the weakest variant for positive results and the strongest for negative
ones, therefore showing stronger separations.

4. Lempel-Ziv outperforms Pushdown transducers

In this section we show the existence of an infinite sequence S ∈ {0, 1}∞ compressible
by Lempel-Ziv but not by pushdown compressors. More precisely, we show in Theorem 4.8
the following result: the almost everywhere Lempel-Ziv compression ratio on S is 0 but the
infinitely often IL pushdown compression ratio is 1. Another (weaker) version will be stated
in Theorem 4.9 for pushdown compressors with endmarkers.

The rough idea is that Lempel-Ziv compresses repetitions very well, whereas, if the re-
peated word is well chosen, pushdown compressors perform very poorly. We first show the
claim on Lempel-Ziv and then prove a pumping-lemma for pushdown transducers in order to
deal with the case of pushdown compressors.

4.1. Lempel-Ziv on periodic inputs

The sequence we will build consists of regions where the same pattern is repeated several
times. This ensures that Lempel-Ziv algorithm compresses the sequence, as shown by the
following lemmas.

We begin with finite words: Lempel-Ziv compresses well words of the form tun. The idea
is that the dictionary remains small during the execution of the algorithm because there are
few different subwords of same length in tun due to the period of size |u|. The statement is
slightly more elaborated because we want to use it in the proof of Theorem 4.2 where we will
need to consider the execution of Lempel-Ziv on a possibly nonempty dictionary.
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Lemma 4.1. Let n ∈ N and let t, u,∈ Σ∗, where u 6= λ. Define l = 1+ |t|+ |u| and wn = tun.
Consider the execution of Lempel-Ziv on wn starting from a dictionary containing d ≥ 0
phrases. Then we have that

|LZ(wn)|
|wn| ≤

√
2l|wn| log(d +

√
2l|wn|)

|wn| .

This leads us to the following lemma on a particular infinite sequence.

Theorem 4.2 (LZ compressibility of repetitive sequences). Let (ti)i≥1 and (ui)i≥1 be se-
quences of words, where ui 6= λ,∀i ≥ 1. Let (ni)i≥1 be a sequence of integers. Let S be the
sequence defined by

S = t1u
n1
1 t2u

n2
2 t3u

n3
3 . . .

If the sequence (ni)i≥1 grows sufficiently fast, then

RLZ(S) = 0.

4.2. Pumping-lemma for injective pushdown transducers

This section is devoted to the statement and proof of a pumping-lemma for pushdown
transducers. In the usual setting of recognition of formal languages by pushdown automata,
the pumping-lemma comes from the equivalence between context-free grammars and push-
down automata, see for instance [11]. However, the proof is much less straightforward without
grammars, as is our case since we deal with transducers and not acceptors. Moreover, there
are three further difficulties: first, we have to consider what happens at the end of the word,
after the endmarker (where the transducer can still output symbols when emptying the stack);
second, we need a lowerbound on the size of the pumping part, that is, we need to pump on
a sufficiently large part of the word; third, we need the lemma for an arbitrary finite family
of automata, and not only one automaton. All this makes the statement and the proof much
more involved than in the usual language-recognition framework. The proof consists in find-
ing two similar configurations of the transducer so that we can repeat the input word read
between them. The size of the input word has therefore to be large enough but note that
in the following statement, this restriction is replaced by the possibility of pumping on an
empty word u (as soon as α|w|β < 1 since we take the integer part).

Lemma 4.3 (Pumping-lemma). Let F be a finite family of ILPDC. There exist two constants
α, β > 0 such that ∀w, there exist t, u, v ∈ Σ∗ such that w = tuv satisfying:

• |u| ≥ bα|w|βc;
• ∀C ∈ F , there exist two words x, y such that C(tun) = xyn, ∀n ∈ N.

Taking into account endmarkers, we obtain the following corollary:

Corollary 4.4 (Pumping-lemma with endmarkers). Let F be a finite family of ILPDC.
There exist two constants α, β > 0 such that every word w can be cut in three pieces w = tuv
satisfying:

(1) |u| ≥ bα|w|βc;
(2) there is an integer c ≥ 0 such that for all C ∈ F , there exist five words x, x′, y, y′, z

such that for all n ≥ c, C(tunv#) = xynzy′n−cx′.
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Let us state an immediate corollary concerning universality: pushdown compressors,
even with endmarkers, cannot be universal for finite state compressors, in the sense that the
compression ratio of a particular pushdown compressor cannot be always better than the
compression ratio of every finite state compressor.

Corollary 4.5. Let C be an IL pushdown compressor (with endmarkers). Then ρC(0∞) > 0.
In particular, no pushdown compressor is universal for finite state compressors.

Proof. By Corollary 4.4, there exist two integers k, k ′, (k′ ≥ 1), a constant c ≥ 0 and five
words x, x′, y, y′, z such that for all n ≥ c, C(0k0k′n#) = xynzy′n−cx′. By injectivity of C, y

and y′ cannot be both empty. Hence the size of the compression of 0k0k′n is linear in n. This
proves the first assertion.

Since for every ε > 0 there exists an IL finite state compressor C ′ such that RC′(0∞) < ε,
the pushdown compressor C cannot be universal for finite state compressors. ut

4.3. A pushdown incompressible sequence

We now show that some sequences with repetitions cannot be compressed by pushdown
compressors. We start by analyzing the performance of PDC on the factors of a Kolmogorov-
random word (that is, a word w that contains at least |w| bits of information in the (plain)
Kolmogorov complexity sense, i.e. K(w) ≥ |w|; or, to put it another way, a word that cannot
be compressed by Turing machines). This result is valid even with endmarkers.

Lemma 4.6. For every F finite family of ILPDC with k states and for every constant ε > 0,
there exists MF ,ε ∈ N such that, for any Kolmogorov random word w = tu, if |u| ≥ MF ,ε log |w|
then the compression ratio for C ∈ F of u on input w is

|C(tu)| − |C(t)|
|u| ≥ 1− ε.

We can now build an infinite sequence of the form required in Theorem 4.2 that cannot
be compressed by bounded pushdown automata. The idea of the proof is as follows: by
Corollary 4.4, in any word w we can repeat a big part u of w while ensuring that the behaviour
of the transducer on every copy of u is the same. If u is not compressible, the output will be
of size almost |u|, therefore with a large number of repetitions the compression ratio is almost
1.

Theorem 4.7 (A pushdown incompressible repetitive sequence). Let Σ be a finite alphabet.
There exist sequences of words (tk)k≥1 and (uk)k≥1, where uk 6= λ,∀k ≥ 1, such that for every
sequence of integers (nk)k≥1 growing sufficiently fast, the infinite string S defined by

S = t1u
n1
1 t2u

n2
2 t3u

n3
3 . . .

verifies that
ρC(S) = 1,

∀C ∈ ILPDC (without endmarkers).

Combining it with Theorem 4.2 we obtain the main result of this section, there are
sequences that Lempel-Ziv compresses optimally on almost every prefix, whereas no pushdown
compresses them at all, even on infinitely many prefixes (Theorem 4.8) or using endmarkers
(Theorem 4.9).



PUSHDOWN COMPRESSION 47

Theorem 4.8. There exists a sequence S such that

RLZ(S) = 0

and
ρC(S) = 1

for any C ∈ ILPDC (without endmarkers).

The situation with endmarkers is slightly more complicated, but using Corollary 4.4 (the
pumping lemma with endmarkers) and a similar construction as Theorem 4.7 we obtain the
following result. Note that we now use the limsup of the compression ratio for ILPDC with
endmarkers.

Theorem 4.9. There exists a sequence S such that

RLZ(S) = 0

and
RC(S) = 1

for any C ∈ ILPDC (using endmarkers).

5. Lempel-Ziv is not universal for Pushdown compressors

It is well known that LZ [10] yields a lower bound on the finite-state compression of a
sequence [10], ie, LZ is universal for finite-state compressors.

The following result shows that this is not true for pushdown compression, in a strong
sense: we construct a sequence S that is infinitely often incompressible by LZ, but that has
almost everywhere pushdown compression ratio less than 1

2 .

Theorem 5.1. For every m ∈ N, there is a sequence S ∈ {0, 1}∞ such that

ρLZ(S) > 1− 1
m

and
RPD(S) ≤ 1

2
.

6. Conclusion

The equivalence of compression ratio, effective dimension, and log-loss unpredictability
has been explored in different settings [2, 7, 13]. It is known that for the cases of finite-
state, polynomial-space, recursive, and constructive resource-bounds, natural definitions of
compression and dimension coincide, both in the case of infinitely often compression, related
to effective versions of Hausdorff dimension, and that of almost everywhere compression,
matched with packing dimension. The general matter of transformation of compressors in
predictors and vice versa is widely studied [14].

In this paper we have done a complete comparison of pushdown compression and LZ-
compression. It is straightforward to construct a prediction algorithm based on Lempel-Ziv
compressor that uses similar computing resources, and it is clear that finite-state compres-
sion is always at least pushdown compression. This leaves us with the natural open question
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of whether each pushdown compressor can be transformed into a pushdown prediction al-
gorithm, for which the log-loss unpredictability coincides with the compression ratio of the
initial compressor, that is, whether the natural concept of pushdown dimension defined in [3]
coincides with pushdown compressibility. A positive answer would get pushdown computa-
tion closer to finite-state devices, and a negative one would make it closer to polynomial-time
algorithms, for which the answer is likely to be negative [12].
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Abstract. Since Grover’s seminal work, quantum search has been studied in great detail.
In the usual search problem, we have a collection of n items x1, . . . , xn and we would like
to find i : xi = 1. We consider a new variant of this problem in which evaluating xi for
different i may take a different number of time steps.

Let ti be the number of time steps required to evaluate xi. If the numbers ti are known

in advance, we give an algorithm that solves the problem in O(
p

t21 + t22 + . . . + t2n) steps.
This is optimal, as we also show a matching lower bound. The case, when ti are not known
in advance, can be solved with a polylogarithmic overhead. We also give an application of
our new search algorithm to computing read-once functions.

1. Introduction

Grover’s quantum search algorithm [12] is one of two most important quantum algo-
rithms. It allows to search a collection of n items in O(

√
n) quantum steps. This gives a

quadratic speedup over the exhaustive search for a variety of search problems [3].
An implicit assumption is that any two items can be examined in the same number

of time steps. This is not necessarily true when Grover’s algorithm is applied to a specific
search problem. It might be the case that some possible solutions to the search problem
can be checked faster than others.

Let ti be the number of time steps required to check the ith solution. Classically,
searching for an item i : xi = 1 requires time Θ(t1+. . .+tn). A naive application of Grover’s
search would use O(

√
n) steps, with the maximum possible query time tmax = maxi ti in

each step. This gives a O(
√
ntmax) time quantum algorithm.

In this paper, we give a better quantum algorithm. We consider two settings:
(1) The times ti are known in advance and can be used to design the algorithm;
(2) The times ti are not known in advance. The algorithm learns ti only if it runs the

computation for checking the ith item for ti (or more) steps.

c© Andris Ambainis
CC© Creative Commons Attribution-NoDerivs License
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For the first setting, we give a quantum algorithm that searches in time O(
√
T ) where

T = t21 + . . .+ t2n. For the second, more general setting, we give an O(
√
T log2 T log2 log T )

time quantum algorithm. We show a lower bound of Ω(
√
T ) for the first and, hence, also

the second setting.
To illustrate the usefulness of our search algorithm, we show an application to com-

puting read-once Boolean functions. A Boolean formula (consisting of AND, OR and NOT
operations) f(x1, . . . , xN ) is read-once if each of the variables x1, . . . , xN appears at most
once in f . We show that any read-once Boolean formula of depth d can be computed using
O(

√
N logd−1N) queries. The resulting algorithm is weaker than the recent breakthrough

work of [4, 11] but is also much simpler than the algorithms in [4, 11].
This is the first paper to construct quantum algorithms for a model in which queries to

different xi take different time. A similar model, however, has been studied in the context
of quantum lower bounds by Høyer et al. [14].

Some of the proofs are omitted due to the space constraints. A full version of the paper
is available as arXiv preprint quant-ph/0609168.

2. Model

We would like to model the situation when the variable xi is computed by an algorithm
Ai which is initialized in the state |0〉 and, after ti steps, outputs the final state |xi〉|ψi〉 for
some unknown |ψi〉. (For simplicity, we assume that Ai always outputs the correct xi.) In
the first ti − 1 steps, Ai can be in arbitrary intermediate states.

Our goal is to find i : xi = 1. (We sometimes refer to i : xi = 1 as marked items
and i : xi = 0 as unmarked.) Our procedure A can run the algorithms Ai, for some
number of steps t, with Ai outputting xi if ti ≤ t or “the computation is not complete” if
ti > t. The computational cost is the amount of time that is spent running algorithms Ai.
Any transformations that do not involve Ai are free. This is a generalization of the usual
quantum query model.

For completeness, we include a more formal definition of our model in the appendix
A. Our algorithms, however, can be understood with just the informal description in the
previous two paragraphs.

Known vs. unknown times. We consider two variants of this model. In the “known
times” model, the times t1, . . . , tn are known in advance and can be used to design the
algorithm. In the “unknown times” model, t1, . . . , tn are unknown to the designer of the
algorithm.

3. Methods and subroutines

3.1. Amplitude amplification

Amplitude amplification [8] is a generalization of Grover’s quantum search algorithm.
Let

sinα|1〉|ψ1〉 + cosα|0〉|ψ0〉 (3.1)
be the final state of a quantum algorithm A that outputs 1 with probability sin2 α = δ.
We would like to increase the probability of the algorithm outputting 1. Brassard et al. [8]
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showed that, by repeating A and A−1 2m+1 times, it is possible to generate the final state

sin(2m+ 1)α|1〉|ψ1〉 + cos(2m+ 1)α|0〉|ψ0〉. (3.2)

In particular, taking m = O( 1√
δ
) achieves a constant probability of answer 1.

We use a result by Aaronson and Ambainis [1] who gave a tighter analysis of the same
algorithm:

Lemma 3.1. [1] Let A be a quantum algorithm that outputs a correct answer and a witness
with probability1 δ ≤ ε where ε is known. Furthermore, let

m ≤ π

4 arcsin
√
ε
− 1

2
. (3.3)

Then, there is an algorithm A′ which uses 2m+1 calls to A and A−1 and outputs a correct
answer and a witness with probability

δnew ≥
(

1 − (2m+ 1)2

3
δ

)
(2m+ 1)2δ. (3.4)

The distinction between this lemma and the standard amplitude amplification is as
follows. The standard amplitude amplification increases the probability from δ to Ω(1)
in 2m + 1 = O( 1√

δ
) repetitions. In other words, 2m + 1 repetitions increase the success

probability Ω((2m+1)2) times. Lemma 3.1 achieves an increase of almost (2m+1)2 times,
without the big-Ω factor. This is useful if we have an algorithm with k levels of amplitude
amplification nested one inside another. Then, with the usual amplitude amplification, a
big-Ω constant of c would result in a ck factor in the running time. Using Lemma 3.1 avoids
that.

We also need another fact about amplitude amplification.

Claim 3.2. Let δ and δ′ be such that δ ≤ ε and δ′ ≤ ε and let m satisfy the constraint (3.3).
Let p(δ) be the success probability obtained by applying the procedure of Lemma 3.1 to an
algorithm with success probability δ. If δ ′ ≤ δ ≤ cδ′ for c ≥ 1, then p(δ′) ≤ p(δ) ≤ cp(δ′).

Proof. Omitted.

3.2. Amplitude estimation

The second result that we use is a version of quantum amplitude estimation.

Theorem 3.3. [8] There is a procedure Est-Amp(A,M) which, given a quantum algorithm
A and a number M , outputs an estimate ε̃ of the probability ε that A outputs 1 and, with
probability at least 8

π2 , we have

|ε− ε̃| ≤ 2π

√
max(ε(1 − ε), ε̃(1 − ε̃))

M
+

π2

M2
.

The algorithm uses M evaluations of A.

We are interested in a slightly different type of error bound. We would like to have
|ε− ε̃| ≤ cε̃ for some small c > 0.

1[1] requires the probability to be exactly ε but the proof works without changes if the probability is less
than the given ε.
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Theorem 3.4. There is a procedure Estimate(A, c, p, k) which, given a constant c, 0 <
c ≤ 1 and a quantum algorithm A (with the promise that the probability ε that the algorithm
A outputs 1 is either 0 or at least a given value p) outputs an estimate ε̃ of the probability
ε such that, with probability at least 1 − 1

2k , we have
(i) |ε− ε̃| < cε̃ if ε ≥ p;
(ii) ε̃ = 0 if ε = 0.

The procedure Estimate(A, c, p, k) uses the expected number of

Θ

(
k

(
1 + log log

1
p

)√
1

max(ε, p)

)
evaluations of A.

Proof. Omitted.

4. Search algorithm: known running times

Theorem 4.1. A collection of n items with times t1, . . . , tn can be searched in time

O

(√
t21 + t22 + . . .+ t2n

)
.

Proof. The basic idea is to subdivide the items into groups so that all items in one group
have similar times ti (e.g. tmax

2 ≤ ti ≤ tmax for some tmax). We can perform the standard
Grover search in a group in time s = O(

√
ltmax) where l is the size of the group. We then

observe that

s2 = O(lt2max) = O

(∑
i

t2i

)
,

with the summation over all items i in the same group. By summing over all groups, we
get ∑

j

s2j = O

(
n∑

i=1

t2i

)
,

where j on the left ranges over all groups. Let k be the number of the groups that we have.
If we have a search algorithm that searches k items in time

O

(√
s21 + . . .+ s2k

)
,

we can then substitute the algorithms for searching the k groups instead of the k items and
obtain a search algorithm for n items that runs in time

O

(√
t21 + . . .+ t2n

)
.

We then design a search algorithm for k items in a similar way.
The simplest implementation of this strategy gives an algorithm with log∗ n levels of

recursion and running time

O

(
clog

∗ n
√
t21 + t22 + . . . + t2n

)
,
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due to the reduction from n items to k items losing a constant factor every time it is used.
The clog

∗ n factor can be avoided, by a more sophisticated implementation of the same idea,
which we describe below.

We first restrict to the case when there is exactly one marked item. The general case
can be reduced to this case with a constant factor overhead, by running the algorithm on all
n elements, a random set of n

2 , a random set of n
4 , etc. As shown in [1], there is a constant

probability that at least one of those sets contains exactly one marked item. The expected
running time increases by at most a constant factor, because of the following lemma.

Lemma 4.2. Let S be a uniformly random set of n
2j elements of {1, 2, . . . , n}. Then,

E

√∑
i∈S

t2i

 ≤ 1
2j/2

√ ∑
i∈{1,...,n}

t2i .

Proof. By concavity of the square root function,

E

√∑
i∈S

t2i

 ≤
√√√√E

[∑
i∈S

t2i

]
=

1
2j/2

√ ∑
i∈{1,...,n}

t2i .

Therefore, the reduction from the general case to one marked item case increases the
bound on the number of queries by a factor of at most

1 +
1

21/2
+

1
2

+ . . . <
1

1 − 1√
2

.

Second, we introduce a generalization of the problem in which the algorithm Ai for the
marked i returns the correct answer with a probability at least pi, instead of a certainty.
More formally,

• if xi = 0, the final state of the algorithm Ai is of the form |0〉|ψ0〉.
• if xi = 1, the final state of the algorithm Ai is of the form α|1〉|ψ1〉+

√
1 − α2|0〉|ψ0〉,

where pi ≤ |α|2 ≤ d · pi, for some constant d > 1.
The probabilities p1, . . . , pn and the constant d are known to us when we design the algo-
rithm, just as the times t1, . . . , tn. (Knowing both the success probability and the running
time may look quite artificial. However, we only use the ”known success probability” model
to design an algorithm for the case when all Ai return the correct answer with certainty.)

We claim that, in this case, we can search in time

O

√ t21
p1

+
t22
p2

+ . . .+
t2n
pn

 .

Our main theorem now follows as the particular case p1 = . . . = pn = 1. The main part of
our proof is

Lemma 4.3. There exists k = O(log3 n log log n) with the following property. Assume that
there is a search algorithm for k items with some fixed d > 1 that works in time at most

C

√
s21
q1

+
s22
q2

+ . . . +
s2k
qk
.
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for any given times s1, . . . , sk and probabilities q1, . . . , qk. Then, there exists a search algo-
rithm for n items with d′ =

(
1−O

(
1

log n

))
d instead of d that works in time at most

C

(
1 +O

(
1

log n

))√
t21
p1

+
t22
p2

+ . . .+
t2n
pn

for any given times t1, . . . , tn and probabilities p1, . . . , pn.

Proof. Omitted.

To obtain Theorem 4.1, we repeatedly apply Lemma 4.3 until the number of items
becomes less than some constant n0. That happens after O(log∗ n) applications of Lemma
4.3.

Let t1, . . . , tn and p1, . . ., pn be the times and probabilities for the final n ≤ n0 items.
After that, we just amplify the success probability of every item to Ω(1) (which increases
each t2i

pi
by at most a constant factor, as discussed in the proof of Lemma 4.3). We then

search n items in time O(
√
nmaxi ti), using the amplitude amplification, with maxi ti steps

for evaluating any of the items i. Since pi = Ω(1) and n ≤ n0 where n0 is a constant, we
have

√
nmax ti = O(max ti) = O

(√
t21 + . . . + t2n

)
= O

√ t21
p1

+ . . .+
t2n
pn

 .

O(log∗ n) applications of Lemma 4.3 increase the time by a factor of at most (1+O( 1
log n))log

∗ n =
1 + o(1).

5. Application: read-once functions

A Boolean function f(x1, . . . , xN ) that depends on all variables x1, . . . , xN is read-once
if it has a Boolean formula (consisting of ANDs, ORs and NOTs) in which every variable
appears exactly once. A read-once function can be represented by a tree in which every leaf
contains xi or NOT xi and every internal vertex contains AND or OR.

Barnum and Saks [5] have shown that, for any read-once f , Ω(
√
N) queries are nec-

essary to compute f in the quantum query model. Hoyer, Mosca and de Wolf [13] have
constructed a O(

√
N) query quantum algorithm for balanced AND-OR trees of constant

depth (improving over an earlier O(
√
N logd−1N) query algorithm by [10]). In a very re-

cent breakthrough work, [11, 4] showed how to evaluate any AND-OR tree of depth d in
O(

√
Nd) queries.
A simple application of our result from the previous section gives a quantum algorithm

for evaluating depth-d AND-OR trees. The algorithm is weaker than the one in [11, 4] but
is also much simpler.

Theorem 5.1. Any read-once function f(x1, . . . , xN ) of depth d can be computed by a
quantum algorithm that uses O(

√
N logd−1N) queries.

Proof. We use induction. If f is represented by a depth-d tree with OR at the root, we
express

f(x1, . . . , xN ) = ∨n
i=1fi(xt1+...+ti−1+1, . . . , xt1+...+ti).
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(1) Set j = 1. Define B1 as the algorithm that just outputs 1 and a uniformly random
i ∈ {1, . . . , n}.

(2) Repeat:
(a) Use the algorithm Bj to generate k = 2 log(D(j + 1)) samples i1, . . . , ik of

uniformly random elements i ∈ Sj. Run 2j+1 steps of the query procedure on
each of i1, . . . , ik. If xi = 1 for one of samples, output i and stop.

(b) Let B′
j+1 be an algorithm that runs Bj once and, if the output bit is 1, takes

the output index i and runs 2j+1 steps of the checking procedure on i. If the
result is xi = 0, B′

j outputs 0. Otherwise, it outputs 1 and the same index i.
(c) Let p = Estimate(B ′

j+1, c,
1
N , 2 log(D(j+1))). If p = 0, output “no i : xi = 0”.

(d) If p ≥ 1
9 log n , let Bj+1 be B′

j+1.
(e) If p < 1

9 log n , let Bj+1 be the algorithm obtained by amplifying B ′
j+1 2m + 1

times, where m is the smallest number for which 1
9 log n ≤ (2m + 1)2p ≤ 1

log n .
(Such choice of m always exists, as described in the proof of Lemma 4.3.)

(f) Let j = j + 1.

Algorithm 1: Search algorithm for unknown t1, . . . , tn

By inductive assumption, we construct algorithms computing the functions fi inO(
√
ti logd−2N)

queries. We then combine them into a quantum algorithm computing f by applying Theo-
rem 4.1.

A more detailed proof is given in the arXiv version of the paper.

6. Search algorithm: unknown running times

In some applications, it may be the case that the times ti are not known in advance.
We can also solve this case, with a polylogarithmic overhead.

Theorem 6.1. Let ε > 0. There is an algorithm that searches collection of n items with
unknown times t1, . . . , tn and, with probability at least 1− ε, stops after

O
(
T log2 T log2 log T

)
steps, where T =

√
t21 + t22 + . . .+ t2n.

Proof. Again, we assume that there is exactly one marked item. (The reduction from the
general case to the one marked item case is similar to one in the proof of Theorem 4.1.)

Let St be the set of items such that xi = 1 or ti ≥ 2t and let nt = |St|. Our main
procedure, algorithm 1, defines a sequence of algorithms B1, . . ., Bl. The algorithm Bj , with
some success probability, outputs a bit 1 and, conditional on output bit 1, it also outputs a
uniformly random index i ∈ Sj. To avoid the problem with accumulating constant factors
(described after Lemma 3.1), we make the success probability of Bj slightly less than 1.

Lemma 6.2. Assume that the constant D in steps 2a and 2c satisfies D ≤ π√
3ε

. Then,
with probability 1 − ε, the following conditions are satisfied:

(a) Estimates p are accurate within an multiplicative factor of (1 + c);
(b) If Bj is defined, then ti > 2j−1 for at least nj−1

2 values i ∈ {1, . . . , n}.
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Proof. (a) The probability of error for Estimate is at most 1
D2(j+1)2 . By summing over all

j, the probability of error for some j is at most

1
D2

∞∑
i=1

1
i2

=
1
D2

π2

6
,

which can be made less than ε
2 by choosing D ≤ π√

3ε
.

(b) By definition, Sj−1 is the set of all i with the property that either xi = 1 or ti > 2j−1.
Let S be the set of i with xi = 1 and ti ≤ 2j−1. If |S| ≤ 1

2nj−1, (c) is true. Otherwise, the
probability that each ij generated in step 2a does not belong to S is less than 1

2 . If one of
them belongs to S, algorithm 1 stops without defining Bj . The probability that this does
not happen (i.e., all ij do not belong to S) is less than ( 1

2)k = 1
D2(j+1)2

. We can make this
probability arbitrarily small similarly to part (a).

For the rest of the proof, we assume that both conditions of Lemma 6.2 are true. Under
this assumption, we bound the running time of algorithm 1. The first step is to bound the
running time of the algorithms Bj .

Lemma 6.3. The running time of Bj is

O

(
j
√

log n

√
t21 + t22 + . . .+ t2n

nj

)
.

Proof. Omitted.

We now bound the overall running time. To generate a sample from Sj , one needs
O(

√
log n) invocations of Bj (because the success probability of Bj is of the order Ω( 1

log n)).
Therefore, we need O(

√
log n log j) invocations to generate O(log j) samples in step 2a. By

Lemma 6.3, that can be done in time

O

(
j log j log n

√
t21 + t22 + . . . + t2n

nj

)
.

For each of those samples, we run the checking procedure with 2j+1 steps. That takes at
most twice the time required by Bj (because Bj includes the checking procedure with 2j

steps). Therefore, the time for the 2j+1 checking procedure is of the same order or less than
the time to generate the samples.

Second, the success probability estimated in step 2c is of order pjnj+1

nj
= Ω( nj+1

nj log n). By
Theorem 3.4, it can be estimated with

O

(
log j log log n

√
nj log n
nj+1

)
invocations of Bj, each of which runs in time described by Lemma 6.3.

Thus, the overall number of steps in one loop of algorithm 1 is of order at most√
t21 + t22 + . . . + t2n

(
j log j log n√

nj
+
j log j log n log log n√

nj+1

)
.
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Since nj ≥ 1 and nj+1 ≥ 1, this is of order

O

(√
t21 + t22 + . . .+ t2nj log j log n log log n

)
.

Let tmax be the maximum of t1, . . ., tn. Then, the maximum value of j is at most dlog(tmax+
1)e. Therefore, the number of steps used by the algorithm 1 is

O

(√
t21 + t22 + . . . + t2n log n log log n log tmax log log tmax

)
.

The theorem now follows from n ≤ √
T and tmax ≤ T , where T = t21 + t22 + . . .+ t2n.

7. Search lower bound

Theorem 7.1. For any positive integers t1, . . . , tn, searching a collection of n items that can
be checked in times t1, . . . , tn requires time c

√
t21 + t22 + . . .+ t2n, for some constant c > 0.

Proof. Let t′i be the minimum positive integer such that ti ≤ dπ
4

√
t′ie+1 (with t′i = 1 if there

is no positive integer satisfying this inequality). We consider searching m = t ′1 + . . . + t′n
elements x1, . . . , xm ∈ {0, 1} in the standard model (where every query takes 1 step), with
the promise that there is either 0 or 1 element j : xj = 1. By lower bound on quantum
search, c′

√
m queries are required to distinguish between the case when there are 0 elements

j : xj = 1 and the case when there is 1 element j : xj = 1, for some constant c′.
We subdivide the inputs x1, . . . , xm into n groups S1, . . ., Sn, with t′1, . . . , t′n elements,

respectively. Let yi = 1 if there exists j ∈ Si with xj = 1. Since there is either 0 or 1
element j : xj = 1, we know that there is either 0 or 1 element i : yi = 1. We have

Lemma 7.2. There is an algorithm that implements the transformation |i〉 → |i〉|yi〉|ψi〉
for some states |ψi〉, using ti queries.

Proof. Omitted.

Let A be a search algorithm for search among n items that require times t1, . . . , tn and
let t′ be the number of steps used by A. Then, we can substitute the algorithm of Lemma
7.2 instead of the queries yi. Then, we obtain an algorithm A′ that, given x1, . . . , xn, asks
t′ queries and distinguishes whether there is exactly 1 item i : yi = 1 (and, hence, 1 item
j : xj = 1) or there is no items i : yi = 0 (and, hence, no items j : xj = 1). Hence,

t′ ≥ c′
√
m = c′

√
t′1 + . . .+ t′n.

We now bound t′i in terms of ti. By definition of t′i, we have

ti ≤
⌈
π

4

√
t′i

⌉
+ 1 ≤ π

4

√
t′i + 2.

This means that t′i ≥ 16
π2 (ti − 2)2. If ti ≥ 3, then ti − 2 ≥ ti

3 and t′i ≥ 16
9π2 t

2
i . If ti < 3, then

t′1 ≥ 1 ≥ 16
9π2 t

2
i . Therefore,

t′ ≥ c′
√
t′1 + . . .+ t′n ≥ c′

√
16
9π2

(t21 + . . . + t2n) =
4c′

3π

√
t21 + . . .+ t2n.

This means that the theorem is true, with c = 4c′
3π .
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8. Conclusion

In this paper, we gave a quantum algorithm for the generalization of Grover’s search in
which checking different items requires different times. Our algorithm is optimal for the case
when times ti are known in advance and nearly optimal (within a polylogarithmic factor)
for the general case. We also gave an application of our algorithm to computing read-once
Boolean functions. It is likely that our algorithms will find other applications.

While we have mostly resolved the complexity of search in this setting, the complexity
of other problems have not been studied at all. Of particular interest are problems which
are frequently used as a subroutines in other quantum algorithms (for such problems, there
is a higher chance that the variable-time query version will be useful). Besides the usual
quantum search, the two most common quantum subroutines are quantum counting [9] and
k-item search (a version of search in which one has to find k different i for which xi = 1).
Element distinctness [2, 6] has also been used as a subroutine, to design quantum algorithms
for the triangle problem [16] and verifying matrix identities [7, 15].
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Appendix A. Formal definition of our model

To define our model formally, let A(j)
i be the jth step of Ai. Then,

Ai = A
(ti)
i A

(ti−1)
i . . . A

(1)
i .

We define A(t)
i = I for t > ti. We regard the state space of Ai as consisting of two registers,

one of which stores the answer (c ∈ {0, 1, 2}, with 2 representing a computation that has
not been completed) and the other register, x, stores any other information.

The state space of a search algorithm is spanned by basis states of the form |i, t, tr, c, x, z〉
where i ∈ {1, . . . , n}, t, tr ∈ {0, 1, . . . , T} (with T being the number of the query steps in
the algorithm), c ∈ {0, 1, 2} and x and z range over arbitrary finite sets. i represents the
index being queried, t represents the number of the time step in which the query for xi

started and tr is the number of time steps for which A will run the query algorithm Ai. c
is the output register of Ai and x holds intermediate data of Ai. Both of those registers
should be initialized to |0〉 at the beginning of every computation of a new xi. z contains
any data that is not a part of the current query.

We define a quantum query algorithm A as a tuple (U0, . . . , UT ) of unitary transfor-
mations that do not depend on x1, . . . , xn. The actual sequence of transformations that is
applied is

U0, Q1, U1, Q2, . . . , UT−1, QT , UT ,

where Qj are queries which are defined below. This sequence of transformations is applied
to a fixed starting state |ψstart〉, which consists of basis states |i, 0, 0, c, x, z〉.

Queries Qj are defined in a following way. If j ≤ t + tr, we apply A
(j−t)
i to |c〉 and

|x〉 registers. Otherwise, we apply I. We call the resulting sequence of queries Q1, Q2, . . .
generated by transformations Aj

i . We call Q1, Q2 a valid sequence of queries corresponding
to x1, . . . , xn if it is generated by Aj

i satisfying the following constraints:
(1) For t < ti, At

iA
t−1
i . . . A1

i |0〉 is of the form |2〉|ψ〉 for some |ψ〉.
(2) For t = ti, At

iA
t−1
i . . . A1

i |0〉 is of the form |xi〉|ψ〉 for some |ψ〉.
Uj can be arbitrary transformations that do not depend on x1, . . . , xn.
An algorithm (U0, . . . , UT ) with the starting state |ψstart〉 computes a function f(x1, . . . , xn)

if, for every x1, . . . , xn ∈ {0, 1} and every valid query sequence Q1, . . ., QT corresponding
to x1, . . . , xn, the probability of obtaining f(x1, . . . , xn) when measuring the first qubit of

UTQTUT−1 . . . U1QTU0|ψstart〉
is at least 2/3.
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Abstract. In this paper, we study the structure of the set of tilings produced by any
given tile-set. For better understanding this structure, we address the set of finite patterns
that each tiling contains.

This set of patterns can be analyzed in two different contexts: the first one is combi-
natorial and the other topological. These two approaches have independent merits and,
once combined, provide somehow surprising results.

The particular case where the set of produced tilings is countable is deeply investigated
while we prove that the uncountable case may have a completely different structure.

We introduce a pattern preorder and also make use of Cantor-Bendixson rank. Our
first main result is that a tile-set that produces only periodic tilings produces only a finite
number of them. Our second main result exhibits a tiling with exactly one vector of
periodicity in the countable case.

1. Introduction

Tilings are basic models for geometric phenomena of computation: local constraints
they formalize have been of broad interest in the community since they capture geometric
aspects of computation [15, 1, 9, 13, 6]. This phenomenon was discovered in the sixties
when tiling problems happened to be crucial in logic: more specifically, interest shown in
tilings drastically increased when Berger proved the undecidability of the so-called domino
problem [1] (see also [8] and the well known book [2] for logical aspects). Later, tilings were
basic tools for complexity theory (see the nice review of Peter van Emde Boas [16] and some
of Leonid Levin’s paper such as [12]).

Because of growing interest for this very simple model, several research tracks were
aimed directly on tilings: some people tried to generate the most complex tilings with the
most simple constraints (see [15, 9, 13, 6]), while others were most interested in structural
aspects (see [14, 5]).

In this paper we are interested in structural properties of tilings. We choose to focus
on finite patterns tilings contain and thus introduce a natural preorder on tilings: a tiling

1998 ACM Subject Classification: G.2.m.
Key words and phrases: tiling, domino, patterns, tiling preorder, tiling structure.
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is extracted from another one if all finite patterns that appear in the first one also appear
in the latter. We develop this combinatorial notion in Section 2.1. This approach can be
expressed in terms of topology (subshifts of finite type) and we shall explain the relations
between both these approaches in Section 2.2.

It is important to stress that both these combinatorial and topological approaches have
independent merits. Among the results we present, different approaches are indeed used
for proofs. More specifically, our first main result (Theorem 3.8) states that if a tile-set
produces only periodic tilings then it produces only finitely many of them; despite its
apparent simplicity, we did not find any proof of Theorem 3.8 in the literature. Our other
main result (Theorem 3.11) which states that in the countable case a tiling with exactly
one vector of periodicity exists is proved with a strong help of topology.

Our paper is organized as follows: Section 2 is devoted to definitions (combinatorics,
topology) and basic structural remarks. In Section 3 we prove the existence of minimal and
maximal elements in tilings enforced by a tile-set. Then we present an analysis in terms
of Cantor-Bendixson derivative which provides powerful tools. We study the particular
case where tilings are countable and present our main results. We conclude by some open
problems.

2. Definitions

2.1. Tilings

We present notations and definitions for tilings since several models are used in liter-
ature: Wang tiles, geometric frames of rational coordinates, local constraints. . . All these
models are equivalent for our purposes since we consider very generic properties of them
(see [3] for more details and proofs). We focus our study on tilings of the plane although
our results hold in higher dimensions.

In our definition of tilings, we first associate a state to each cell of the plane. Then we
impose a local constraint on them. More formally, Q is a finite set, called the set of states.
A configuration c consists of cells of the plane with states, thus c is an element of QZ2

. We
denote by ci,j or c(i, j) the state of c at the cell (i, j).

A tiling is a configuration which satisfies a given finite set of finite constraints ev-
erywhere. More specifically we express these constraints as a set of allowed patterns: a
configuration is a tiling if around any of its cells we can see one of the allowed patterns:

Definition 2.1 (patterns). A pattern P is a finite restriction of a configuration i.e., an
element of QV for some finite domain V of Z2. A pattern appears in a configuration c (resp.
in some other pattern P ′) if it can be found somewhere in c (resp. in P ′); i.e., if there exists
a vector t ∈ Z2 such that c(x+ t) = P (x) on the domain of P (resp. if P ′(x+ t) is defined
for x ∈ V and P ′(x+ t) = P (x)) .

By language extension we say that a pattern is absent or omitted in a configuration if
it does not appear in it.

Definition 2.2 (tile-sets and tilings). A tile-set is a tuple τ = (Q,Pτ ) where Pτ is a finite
set of patterns on Q. All the elements of Pτ are supposed to be defined on the same domain
denoted by V (Pτ ⊆ QV ).
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A tiling by τ is a configuration c equal to one of the patterns on all cells:

∀x ∈ Z2, c|V+x ∈ Pτ
We denote by Tτ the set of tilings by τ .

Notice that in the definition of one tile-set we can allow patterns of different definition
domains provided that there are a finite number of them.

An example of a tile-set defined by its allowed patterns is given in Fig. 1. The produced
tilings are given in Fig. 2; the meaning of the edges in the graph will be explained later;
tilings are represented modulo shift. In Ai and Bi, i is an integer that represents the size
of the white stripe.

Figure 1: Allowed patterns

Ai

BiE F

J K L

C D

G H I

M
An edge represents a relation Q ≺ P if P is above Q. Transitivity edges are not depicted. As an example K ≺ E

and K ≺ C.

Figure 2: Hasse diagram of the order ≺ with the tile-set defined in Fig. 1

Throughout the following, it will be more convenient for us to define tile-sets by the set
of their forbidden patterns: a tile-set is then given by a finite set Fτ of forbidden patterns
(Fτ = QV \ Pτ ); a configuration is a tiling if no forbidden pattern appears.

Let us now introduce the following natural preorder, which will play a central role in
our paper:

Definition 2.3 (Preorder). Let x, y be two tilings, we say that x � y if any pattern that
appears in x also appears in y.
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We say that two tilings x, y are equivalent if x � y and y � x. We denote this relation
by x ≈ y. In this case, x and y contain the same patterns. The equivalence class of x is
denoted by 〈x〉. We write x ≺ y if x � y and x 6≈ y.

Some structural properties of tilings can be seen with the help of this preorder. The
Hasse diagram in Fig. 2 correspond to the relation ≺.

We choose to distinguish two types of tilings: A tiling x is of type a if any pattern
that appears in x appears infinitely many times; x is of type b if there exists a pattern that
appears only once in x. Note that any tiling is either of type a or of type b: suppose that
there is a pattern that appears only a finite number of times in x; then the pattern which
is the union of those patterns appears only once.

If x is of type b, then the only tilings equivalent to x are its shifted: there is a unique
way in 〈x〉 to grow around the unique pattern.

2.2. Topology

In the domain of symbolic dynamics, topology provides both interesting results and
is also a nice condensed way to express some combinatorial proofs [10, 7]. The benefit
of topology is a little more surprising for tilings since they are essentially static objects.
Nevertheless, we can get nice results with topology as will be seen in the sequel.

We see the space of configurations QZ2
as a metric space in the following way: the

distance between two configurations c and c′ is 2−i where i is the minimal offset (for e.g.
the euclidean norm) of a point where c and c′ differ:

d(c, c′) = 2−min{|i|, c(i) 6=c′(i)}

We could also endow Q with the discrete topology and then QZ2
with the product topology,

thus obtaining the same topology as the one induced by d.
In this topology, a basis of open sets is given through the patterns: for each pattern P ,

the set OP of all configurations c which contains P in their center (i.e., such that c is equal
to P on its domain) is an open set, usually called a cylinder. Furthermore cylinders such
defined are also closed (their complements are finite unions of OP ′ where P ′ are patterns of
same domain different from P ). Thus OP ’s are clopen.

Proposition 2.4. QZ2
is a compact perfect metric space (a Cantor space).

We say that a set of configurations S is shift-invariant if any shifted version of any of
its configurations is also in S; i.e., if for every c ∈ S, and every v ∈ Z2 the configuration c′
defined by c′(x) = c(x+ v) is also in S. We denote such a shift by σv.

Remark 2.5. Our definition of pattern preorder 2.3 can be reformulated in a topological
way : x � y if and only if there exists shifts (σi)i∈N such that σi(y) −−−→

i→∞
x. We say that x

can be extracted from y.

For a given configuration x, we define the topological closure of shifted forms of x:
Γ(x) = {σv(x), v ∈ Z2} where σi,j represents a shift of vector v.

We see that x � y if and only if Γ(x) ⊆ Γ(y). Remark that x is minimal for ≺ if and
only if 〈x〉 is closed.
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As sets of tilings can be defined by a finite number of forbidden patterns, they corre-
spond to subshifts of finite type1. In the sequel, we sometimes use arbitrary subshifts; they
correspond to a set of configurations with a potentially infinite set of forbidden patterns.

3. Main results

3.1. Basic structure

Let us first present a few structural results. First, the existence of minimal classes for
≺ is well known.

Theorem 3.1 (minimal elements). Every set of tilings contains a minimal class for ≺.

In the context of tilings, those that belong to minimal classes are often called quasiperi-
odic, while in language theory they are called uniformly recurrent or almost periodic. Those
quasiperiodic configurations admit a nice characterization: any pattern that appears in one
of them can be found in any sufficiently large pattern (placed anywhere in the configuration).

For a combinatorial proof of this theorem see [5]. Alternatively, here is a scheme of a
topological proof: consider a minimal subshift of Tτ (such a subshift exists, see e.g. [14])
then every tiling in this set is in a minimal class.

An intensively studied class of tilings is the set of self-similar tilings. These tilings
indeed are minimal elements (quasiperiodic) but one can find other kinds of minimal tilings
(e.g. the nice approach of Kari and Culik in [4]).

The existence of maximal classes of tilings is not trivial and we have to prove it:

Theorem 3.2 (maximal elements). Every set of tilings contains a maximal class for ≺.

Proof. Let us prove that any increasing chain has a least upper bound. The theorem is then
obtained by Zorn’s lemma.

Consider Ti an increasing chain of tiling classes. Consider the set P of all patterns that
this chain contains. As the set of all patterns is countable, P is countable too, P = {pi}i∈N.

Now consider two tilings Tk and Tl, any pattern that appears in Tk or Tl appears in
Tmax(k,l). Thus we can construct a sequence of patterns (p′i)i∈N such that p′i contains all pj ,
j ≤ i and p′i−1. Note that p′i is correctly tiled by the considered tile-set.

The sequence of patterns p′i grows in size. By shift invariance, we can center each p′i by
superimposing an instance of p′i−1 found in p′i over p′i−1. We can conclude that this sequence
has a limit and this limit is a tiling that contains all pi, hence is an upper bound for the
chain Ti.

Note that this proof also works when the set of states Q and/or the set of forbidden
patterns Fτ are countably infinite (neither compactness nor finiteness is assumed). However
it is easy to construct examples where Q is infinite and there does not exist a minimal tiling.

Note that we actually prove that every chain has not only a upper bound, but also a
least upper bound. Such a result does not hold for lower bound: We can easily build chains
with lower bounds but no greatest lower bound.

1Subshifts are closed shift-invariant subsets of QZ2
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3.2. Cantor-Bendixson

In this section we use the topological derivative and define Cantor-Bendixson rank; then
we discuss properties of sets of tilings from this viewpoint. Most of the results presented in
this section are direct translations of well known results in topology [11].

A configuration c is said to be isolated in a set of configurations S if there exists
a pattern P (of domain V ) such that c is the only configuration in S that contains the
pattern P in its center (∀x ∈ V, c(x) = P (x)). We say that P isolates c. This corresponds
to the topological notion: a point is isolated if there exists an open set that contains only
this point. As an example, in Fig. 3, the tilings Ai are isolated, the pattern isolating an Ai
is the boundary between red, white, black and green parts of it.

The topological derivative of a set S is formed by its elements that are not isolated.
We denote it by S′.

If S is a set of tilings, or more generally a subshift, we get some more properties. If
P isolates a configuration in S then a shifted form of P isolates a shifted form of this
configuration. Any configuration of S that contains P is isolated.

As a consequence, if S = Tτ , then S′ = Tτ ′ where τ ′ forbids the set
Fτ ∪ {P |P isolates some configuration in Tτ}.

Note that S′ is not always a set of tilings, but remains a subshift. Let us examine the
example shown in Fig. 3. S′ is S minus the classes Ai. However any set of tilings (subshift
of finite type) that contains C,Bi and D also contains Ai. Hence S′ is not of finite type in
this example.

We define inductively S(λ) for any ordinal λ :
• S(0) = S
• S(α+1) = (S(α))′

• S(λ) =
⋂
α<λ S

(α) when λ is a limit ordinal.

Notice that there exists a countable ordinal λ such that S(λ+1) = S(λ). Indeed, at each
step of the induction, the set of forbidden patterns increases, and there is at most countably
many patterns. We call the least such ordinal the Cantor-Bendixson rank of S [11].

An element c is of rank λ in S if λ is the least ordinal such that c 6∈ S(λ). If no
such λ exists, c is of infinite rank. For instance all strictly quasiperiodic configurations
(quasiperiodic configurations that are not periodic) are of infinite rank. We write ρ(x) the
rank of x.

An example of what Cantor-Bendixson ranks look like is shown in Fig. 3, the first row
contains the tilings of rank 1, the second row the ones of rank 2 etc.

Ranked tilings have many interesting properties. First of all, as any T (λ)
τ is shift-

invariant, a tiling has the same rank as its shifted forms.
Note that at each step of the inductive definition, the set of isolated points is at most

countable (there are less isolated points than patterns). As a consequence, if all tilings are
ranked, Tτ is countable, as a countable union (the Cantor-Bendixson rank is countable) of
countable sets.

The converse is also true:

Theorem 3.3. Tτ is countable if and only if all tilings are ranked.

Proof. Let λ be the Cantor-Bendixson rank of Tτ . T (λ)
τ = T (λ+1)

τ is a perfect set (no
points are isolated). As a consequence, T (λ)

τ must be either empty or uncountable (classical
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Figure 3: Cantor-Bendixson ranks

application of Baire’s Theorem : T (λ)
τ is compact thus has the Baire property and a non

empty perfect set with the Baire property cannot be countable).
As Tτ is countable, T (λ)

τ = ∅.
Remark 3.4. Strictly quasiperiodic tilings only appear when the number of possible tilings
is uncountable [5]. As a consequence, if all tilings are ranked, strictly quasiperiodic tilings
do not appear, thus all minimal tilings are periodic. In this case we therefore may expect
all tilings to be somehow simple. We’ll study this case later in this paper.

As the topology of QZ2
has a basis of clopens OP , QZ2

is a 0-dimensional space, thus
any subset of QZ2

is also 0-dimensional. As any (non empty) perfect 0-dimensional compact
metric space is isomorphic to the Cantor Space we obtain:

Theorem 3.5 (Cardinality of tiling spaces). A set of tilings is either finite, countable or
has the cardinality of continuum.

Note that the proof of this result does not make use of the continuum hypothesis.
We now present the connection between our preorder ≺ and the Cantor-Bendixson

rank.

Proposition 3.6. Let x and y be two ranked tilings such that x ≺ y. Then ρ(x) > ρ(y).

Proof. By definition of ≺, any pattern that appears in x also appears in y. As a consequence,
if P isolates x in S(λ), then x is the only tiling of S(λ) that contains P hence y cannot be
in S(λ).

Thus tilings of Cantor-Bendixson rank 1 (minimal rank) are maximal tilings for ≺.
Conversely if all tilings are ranked, tilings of maximal rank exist and are minimal tilings.
These tilings are periodic, see remark 3.4.

Another consequence is that if all tilings are ranked, no infinite increasing chain for ≺
exists because such chain would induce an infinite decreasing chain of ordinals:
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Theorem 3.7. If Tτ is countable, there is no infinite increasing chain for ≺.

3.3. The countable case

In the context of Cantor-Bendixson ranks, the case of countable tilings was revealed as
an important particular case. Let us study this case in more details.

If the number of tilings is finite, the situation is easy: any tiling is periodic. Our aim
is to prove that in the countable case, there exists a tiling c which has exactly one vector
of periodicity (such a tiling is sometimes called weakly periodic in the literature).

We split the proof in three steps :
• There exists a tiling which is not minimal;
• There exists a tiling c which is at level 1, that is such that all tilings less than c are

minimal;
• Such a tiling has exactly one vector of periodicity.

The first step is a result of independent interest. To prove the last two steps we use Cantor-
Bendixson ranks.

Recall that in our case any minimal tiling is periodic (no strictly quasiperiodic tiling
appears in a countable setting [5]). The first step of the proof may thus be reformulated:

Theorem 3.8. If all tilings produced by a tile-set are periodic, then there are only finitely
many of them.

It is important to note that a compactness argument is not sufficient to prove this
theorem, there is no particular reason for a converging sequence of periodic tilings with
strictly increasing period to converge towards a non periodic tiling: there indeed exist such
sequences with a periodic limit.

Proof. We are in debt to an anonymous referee who simplified our original proof.
Suppose that a tile-set produces infinitely many tilings, but only periodic ones.
As the set of tilings is infinite and compact, one of them is obtained as a limit of the

others: There exists a tiling X and a sequence Xi of distinct tilings such that Xi → X.
Now by assumption X is periodic of period p for some p. We may suppose that no Xi

has p as a period. Denote by M the pattern which is repeated periodically.
Xi → X means that Xi contains in its center a square of size q(i)× q(i) of copies of M ,

where q is a growing function.
For each i, consider the largest square of Xi consisting only of copies of M . Such a

largest square exists, as it is bounded by a period of Xi. Let k be the size of this square.
Now, the boundary of this square contains a p× p pattern which is not M (otherwise this
is not the largest square).

By shifting Xi so that this pattern is at the center, we obtain a tiling Yi which contains
a p × p pattern at the origin which is not M adjacent to a k/2 × k/2 square consisting of
copies of M in one of the four quarter planes.

By taking a suitable limit of these Yi, we will obtain a tiling which contains a p × p
pattern which is not M in its center adjacent to a quarter plane of copies of M .

Such a tiling cannot be periodic.
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This proof does not assume that the set of forbidden patterns Fτ is finite, therefore it
is still valid for any shift-invariant closed subset (subshift) of QZ2

.
Now we prove stronger results about the Cantor-Bendixson rank of Tτ . Let α be the

Cantor-Bendixson rank of Tτ . Since (Tτ )(α) = ∅, α cannot be a limit ordinal: Suppose that
it is indeed a limit ordinal, therefore

⋂
β<α(Tτ )(β) = ∅ is an empty intersection of closed

sets in QZ2
therefore by compactness there exists γ < α such that

⋂
β<γ(Tτ )(β) = ∅ and

therefore Tτ can not have rank α. Hence α is a successor ordinal, α = β + 1.
However, we can refine this result :

Lemma 3.9. The rank of Tτ cannot be the successor of a limit ordinal.

Proof. Suppose that β = ∪i<ωβi. Since (Tτ )(β+1) = ∅, (Tτ )(β) is finite (otherwise it would
have a non-isolated point by compactness), it contains only periodic tilings.

Let p be the least common multiple of the periods of the tilings in (Tτ )(β). Let M be
the set of patterns of size 2p × 2p that do not admit p as a period. Let xi be an element
that is isolated in (Tτ )(βi).

As there is only a finite number of p-periodic tilings, we may suppose w.l.o.g. that no
xi admit p as a period.

For any i, there exists a pattern of M that appears in xi. Let x′i be the tiling with this
pattern at its center. By compactness, one can extract a limit x′ of the sequence (x′i)i∈N, x’
is by construction in ∩i(Tτ )(βi) = T (β)

τ . However, x′ does not contain a p−periodic pattern
at its center, that is a contradiction.

We write α = λ+ 2 the rank of Tτ .
We already proved that there exists a non minimal tiling but this is not sufficient to

conclude that there exists a tiling at level 12. However, we achieve this as a corollary of
the previous lemma: (Tτ )(λ) is infinite (otherwise (Tτ )(λ+1) would be empty) and contains
a non periodic tiling by theorem 3.8. This non periodic tiling c is not minimal (otherwise
it would be strictly quasiperiodic and then Tτ would not be countable). Now c is at level 1
: any tiling less than c is in (Tτ )(λ+1) therefore periodic (hence minimal).

If a tiling x is of type a and is ranked, then it has a vector of periodicity: consider the
pattern P that isolates it in the last topological derivative of Tτ that it belongs to. Since x
is of type a, this pattern appears twice in it, therefore there exists a shift σ such that σ(x)
contains P at its center. x = σ(x) because P isolates x.

As any tiling of type a has a vector of periodicity, it remains to prove that c is of type a:

Lemma 3.10. c is of type a.

Proof. Suppose the converse : there exists a pattern P that appears only once in c. Con-
sidering the union of this pattern P and a pattern that isolates c, we may assume that P
isolates c. c has only a finite number of tilings smaller than itself: they lie in T (λ+1)

τ which
is finite, and are all periodic, say of period p. As P isolates c, none of these tilings contain
P .

Consider the patterns of size 2p × 2p of T that are not p−periodic. If those patterns
can appear arbitrary far from P then one can extract a tiling from c (thus smaller than c)
that is not p−periodic and does not contain P ; this is not possible.

2We actually can prove that the level 1 exists: There is no infinite decreasing chain whose lower bound
is a periodic configuration
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Therefore there is a pattern in c that contains P (thus appears only once) and any
other part of c is p−periodic (one can gather all non p−periodic parts of c around P ), as
depicted in Fig. 4(a).

(a) What we get : c is periodic everywhere
but at P

(b) P can appear at many different places
since c has periodic patterns

Figure 4: What can happen if c is of type b?

This non periodic part could also be inserted at infinitely many different positions in c
since the tiling rules are of bounded radius, as depicted in Fig. 4(b). Hence the number of
tilings is not countable.

c is of type a, c is not periodic, c has a vector of periodicity, therefore our theorem 3.11
holds :

Theorem 3.11. If τ is a tile-set that produces a countable number of tilings then it produces
a tiling with exactly one vector of periodicity.

4. Open problems

We are interested in proving more precise results for the order ≺ for a countable set of
tilings: we wonder whether the order ≺ has at most finitely many levels, as it is the case
in Fig. 2. We know how to construct a tile-set so that the maximal level is any arbitrary
integer see e.g. Fig.5 for level 3.

We also intend to prove a similar result for uncountable sets of tilings; the problem is
that we are tempted to think that if the set of tilings is uncountable, then a quasiperiodic
tiling must appear. However, this is not true: imagine a tile-set that admits a vertical
line of white or black cells with red on the left and green on the right. The uncountable
part is due to the vertical line that itself contains a quasiperiodic of dimension 1 but not
of dimension 2. This tile-set produces tilings that looks like H in Fig. 2, except that the
vertical line can have two different colors without any constraint.

A generalization of lemma 3.9 would be to prove that the Cantor-Bendixson rank of a
countable set of tilings cannot be infinite; we know how to construct sets of tilings that have
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an arbitrary large but finite Cantor-Bendixson rank, but we do not know how to obtain a
set of tilings of rank greater than ω.
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[2] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives in Math-
ematical Logic. Springer, 1997.

[3] Julien Cervelle and Bruno Durand. Tilings: recursivity and regularity. Theor. Comput. Sci., 310(1-
3):469–477, 2004.

[4] Karel Culik and Jarkko Kari. On aperiodic sets of Wang tiles. Lecture Notes in Computer Science,
1337:153–??, 1997.

[5] Bruno Durand. Tilings and quasiperiodicity. Theor. Comput. Sci., 221(1-2):61–75, 1999.
[6] Bruno Durand, Leonid A. Levin, and Alexander Shen. Complex tilings. In STOC, pages 732–739, 2001.
[7] Walter Helbig Gottschalk and Gustav Arnold Hedlund. Topological Dynamics. American Mathematical

Society, Providence, Rhode Island, 1955.
[8] Y. Gurevich and I. Koriakov. A remark on Berger’s paper on the domino problem. Siberian Journal of

Mathematics, 13:459–463, 1972. (in Russian).
[9] William P. Hanf. Nonrecursive tilings of the plane. i. J. Symb. Log., 39(2):283–285, 1974.

[10] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Mathematical Sys-
tems Theory, 3:320–375, 1969.

[11] Kazimierz Kuratowski. Topology, Vol. I, 3rd edition. NY: Academic Press, 1966.
[12] Leonid A. Levin. Average case complete problems. SIAM J. Comput., 15(1):285–286, 1986.
[13] Dale Myers. Nonrecursive tilings of the plane. ii. J. Symb. Log., 39(2):286–294, 1974.
[14] C. Radin and M. Wolff. Space tilings and local isomorphism, 1992.
[15] R. M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicae,

12:177–209, 1971.
[16] P. van Embde Boas. Dominoes are forever. Research report 83-04, University of Amsterdam. Department

of Mathematics., 1983.



72 A. BALLIER, B. DURAND, AND E. JEANDEL

Figure 5: An example of a tile-set that produces countably many tilings and a tiling at level
3
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Abstract. The main goal of this paper is to put some known results in a common per-
spective and to simplify their proofs.

We start with a simple proof of a result from [7] saying that lim supn C(x|n) (here C(x|n)

is conditional (plain) Kolmogorov complexity of x when n is known) equals C0′
(x), the

plain Kolmogorov complexity with 0′-oracle.
Then we use the same argument to prove similar results for prefix complexity (and

also improve results of [4] about limit frequencies), a priori probability on binary tree and
measure of effectively open sets. As a by-product, we get a criterion of 0′ Martin-Löf
randomness (called also 2-randomness) proved in [3]: a sequence ω is 2-random if and
only if there exists c such that any prefix x of ω is a prefix of some string y such that
C(y) > |y| − c. (In the 1960ies this property was suggested in [1] as one of possible
randomness definitions; its equivalence to 2-randomness was shown in [3] while proving
another 2-randomness criterion (see also [5]): ω is 2-random if and only if C(x) > |x| − c
for some c and infinitely many prefixes x of ω.

Finally, we show that the low-basis theorem can be used to get alternative proofs for
these results and to improve the result about effectively open sets; this stronger version
implies the 2-randomness criterion mentioned in the previous sentence.
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1. Plain complexity

By C(x) we mean the plain complexity of a binary string x (the length of the shortest
description of x when an optimal description method is fixed, see [2]; no requirements about
prefixes). By C(x|n) we mean conditional complexity of x when n is given [2]. Superscript
0′ in C0′ means that we consider the relativized (with oracle 0′, the universal enumerable
set) version of complexity.

The following result was proved in [7]. We provide a simple proof for it.

Theorem 1.1.
lim sup

n→∞
C(x|n) = C0′(x) + O(1).

Proof. We start with the easy part. Let 0n be the (finite) part of the universal enumerable
set that appeared after n steps. If C0′(x) 6 k, then there exists a description (program)
of size at most k that generates x using 0′ as an oracle. Only finite part of the oracle
can be used, so 0′ can be replaced by 0n for all sufficiently large n, and oracle 0n can be
reconstructed if n is given as a condition. Therefore, C(x|n) 6 k + O(1) for all sufficiently
large n, and

lim sup
n→∞

C(x|n) 6 C0′(x) + O(1).

Now fix k and assume that lim sup C(x|n) < k. This means that for all sufficiently
large n the string x belongs to the set

Un = {u | C(u|n) < k}.
The family Un is an enumerable family of sets (given n and k, we generate Un); each of
these sets has less than 2k elements. We need to construct a 0′-computable process that
given k generates at most 2k elements, and among them all elements that belong to Un for
all sufficiently large n. (Then strings of length k may be assigned as 0′-computable codes
of all generated elements.)

To describe this process, consider the following operation: for some u and N add u to
all Un such that n > N . (In other terms, we add a horizontal ray starting from (N,u) to
the set U = {(n, u) | u ∈ Un}.) This operation is acceptable if all Un still have less than 2k

elements after it (i.e., if before this operation all Un such that n > N either contain u or
have less than 2k − 1 elements).

For given u and k we can find out using 0′-oracle whether this operation is acceptable.
Now for all pairs (N,u) (in some computable order) we perform (N,u)-operation if it is
acceptable. (The elements added to some Ui remain there and are taken into account when
next operations are attempted.) This process is 0′-computable since after any finite number
of operations the family U is enumerable (without any oracle) and its enumeration algorithm
can be 0′-effectively found (uniformly in k).

Therefore the set of all elements u that participate in acceptable operations during this
process is uniformly 0′-enumerable. This set contains less than 2k elements (otherwise Un

would become too big for large n). Finally, this set contains all u such that u belongs to
the (initial) Un for all sufficiently large n. Indeed, the operation is always acceptable if all
added elements are already present.
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The proof has the following structure. We have an enumerable family of sets Un that
have less than 2k elements. This implies that the set

U∞ = lim inf
n→∞ Un

has less than 2k elements (the lim inf of a sequence of sets is the set of elements that belong
to almost all sets of the sequence). If this set were 0′-enumerable, we would be done.
However, this may be not the case: the criterion

u ∈ U∞ ⇔ ∃N (∀n > N) [u ∈ Un]

has ∃∀ prefix before an enumerable (not necessarily decidable) relation, that is, one quan-
tifier more than we want (to guarantee that U∞ is 0′-enumerable). However, in our proof
we managed to cover U∞ by a set that is 0′-enumerable and still has less than 2k elements.

2. Prefix complexity and a priori probability

Now we prove similar result for prefix complexity (or, in other terms, for a priori
probability). Let us recall the definition. The function a(x) on binary strings (or integers)
with non-negative real values is called a semimeasure if

∑
x a(x) 6 1. The function a

is lower semicomputable if there exists a computable total function (x, n) 7→ a(x, n) with
rational values such that for every x the sequence a(x, 0), a(x, 1), . . . is a non-decreasing
sequence that has limit a(x).

There exists a maximal (up to a constant factor) lower semicomputable semimeasure
m. The value m(x) is sometimes called the a priori probability of x. In the same way we
can define conditional a priory probability m(x|n) and 0′-relativized a priori probability
m0′(x).

Theorem 2.1.
lim inf
n→∞ m(x|n) = m0′(x)

up to a Θ(1) factor.

(In other terms, two inequalities with O(1) factors hold.)

Proof. If m0′(x) is greater that some ε, then for some k the increasing sequence m0′(x, k)
that has limit m0′(x) becomes greater than ε. The computation of m0′(x, k) uses only
finite amount of information about the oracle, thus for all sufficiently large n we have
m0n(x) > m0n(x, k) > ε. So, similar to the previous theorem, we have

lim inf
n→∞ m(x|n) > lim inf

n→∞ m0n(x) > m0′(x)

up to O(1) factors.
In the other direction the proof is also similar to the previous one. Instead of enumer-

able finite sets Un now we have a sequence of (uniformly) lower semicomputable functions
x 7→ mn(x) = m(x|n). Each of mn is a semimeasure. We need to construct a lower
0′-semicomputable semimeasure m′ such that

m′(x) > lim inf
n→∞ mn(x)
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Again, the lim inf itself cannot be used as m′: though
∑

x lim infn mn(x) < 1 if
∑

x mn(x) 6

1 for all n, but, unfortunately, the equivalence

r < lim inf
n→∞ an ⇔ (∃r′ > r)(∃N) (∀n > N) [r′ < an]

has too many quantifier alternations (one more than needed; note that lower semicom-
putable an makes [. . .] condition enumerable). The similar trick helps. For a triple (r,N, u)
consider an increase operation that increases all values mn(u) such that n > N up to a
given rational number r (not changing them if they were greater than or equal to r). This
operation is acceptable if all mn remain semimeasures after the increase.

The question whether operation is acceptable is 0′-decidable; if it is, we get a new
(uniformly) lower semicomputable (without any oracle) sequence of semimeasures and can
repeat an attempt to perform an increase operation for some other triple. Doing that for all
triples (in some computable ordering), we can then define m′(u) as the upper bound of r for
all successful (r,N, u) increase operations (for all N). This gives a 0′-lower semicomputable
function; it is a semimeasure since we verify the semimeasure inequality for every successful
increase attempt; finally, m′(u) > lim inf mn(u) since if mn(u) > r for all n > N , then
(r,N, u)-increase does not change anything and is guaranteed to be acceptable.

The expression − log m(x) equals the so-called prefix complexity K(x) (up to O(1)
term; see [2]). The same is true for relativized and conditional versions, an we get the
following reformulation of the last theorem:

Theorem 2.2.
lim sup

n→∞
K(x|n) = K0′(x) + O(1).

Another corollary improves a result of [4]. For any (partial) function f from N to N we
define the limit frequency of an integer x as

qf (x) = lim inf
n→∞

#{i < n | f(i) = x}
n

In other words, we look at the fraction of x-terms in f(0), . . . , f(n−1) (undefined values are
also listed) and take lim inf of these frequencies. It is easy to see that for a total computable
f the function qf is a lower 0′-semicomputable semimeasure. The argument above proves
the following result:

Theorem 2.3. For any partial computable f the function qf is upper bounded by a lower
0′-semicomputable semimeasure.

In [4] it is shown that for some total computable f the function qf is a maximal lower 0′-
semicomputable semimeasure and therefore 0′-relativized a priori probability can be defined
as maximal limit frequency for total computable functions. Now we see that the same is
true for partial computable functions: allowing them to be partial does not increase the
maximal limit frequency.

The similar argument also is applicable to the so-called a priori complexity defined
as negative logarithm of a maximal lower semicomputable semimeasure on the binary tree
(see [8]). This complexity is sometimes denoted as KA (x) and we get the following state-
ment:

Theorem 2.4.
lim sup

n→∞
KA (x|n) = KA 0′(x) + O(1).
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(To prove this we define an increase operation in such a way that it increases not only
a(x) but also a(y) for y that are prefixes of x, if necessary. The increase is acceptable if
a(Λ) still does not exceed 1.)

It would be interesting to find out whether similar results are true for monotone com-
plexity or not (the authors do not know this).

3. Open sets of small measure

We now try to apply the same trick in a slightly different situation, for effectively open
sets. The Cantor space Ω is a set of all infinite sequence of zeros and ones. An interval Ωx

(for a binary string x) is formed by all sequences that have prefix x. Open sets are unions
of intervals. An effectively open subset of Ω is an enumerable union of intervals, i.e., the
union of intervals Ωx where x are takes from some enumerable set of strings.

We consider standard (uniform Bernoulli) measure on Ω: the interval Ωx has measure
2−l where l is the length of x.

A classical theorem of measure theory says: if U0, U1, U2, . . . are open sets of measure
at most ε, then lim infn Un has measure at most ε, and this implies that for every ε′ > ε
there exists an open set of measure at most ε′ that covers lim infn Un.

Indeed,
lim inf
n→∞ Un =

⋃
N

⋂
n>N

Un,

and the measure of the union of an increasing sequence

VN =
⋂

n>N

Un,

equals the limit of measures of VN , and all these measures do not exceed ε since VN ⊂ UN .
It remains to note that for any measurable set X its measure is the infimum of the measures
of open sets that cover X.

We now can try to “effectivize” this statement in the same way as we did before.
First we started with an (evident) statement: if Un are finite sets of at most 2k elements,
then lim infn Un has at most 2k elements and proved its effective version: for a uniformly
enumerable family of open sets Un that have at most 2k elements, the set lim infn Un is
contained in a uniformly 0′-enumerable set that has at most 2k elements. Then we did
similar thing with semimeasures (again, the non-effective version is trivial: it says that if∑

x mn(x) 6 1 for every n, then
∑

x lim infn mn(x) 6 1).
Now the effective version could look like this. Let ε > 0 be a rational number and let

U0, U1, . . . be an enumerable family of effectively open sets of measure at most ε each. Then
for every rational ε′ > ε there exists a 0′-effectively open set of measure at most ε′ that
contains lim infn→∞ Ui =

⋃
N

⋂
n>N Un.

However, the authors do not know whether this is always true. The argument that we
have used can nevertheless be applied do prove the following weaker version:

Theorem 3.1. Let ε > 0 be a rational number and let Un be an enumerable family of
effectively open sets of measure at most ε each. Then there exists a uniformly 0 ′-effectively
open set of measure at most ε that contains⋃

N

Int
( ⋂
n>N

Un

)
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Here Int(X) denotes the interior part of X, i.e., the union of all open subsets of X. In
this case we do not need ε′ (which one could expect since the union of open sets is open).

Proof. Following the same scheme, for every string x and integer N we consider (x,N)-
operation that adds Ωx to all Un such that n > N . This operation is acceptable if measures
of all Un remain at most ε for each n. This can be checked using 0′-oracle (if the operation
is not acceptable, it becomes known after a finite number of steps).

We attempt to perform this operation (if acceptable) for all pairs in some computable
order. The union of all added intervals for all accepted pairs is 0′-effectively open. If some
sequence belongs to the union of the interior parts, then it is covered by some interval Ωu

that is a subset of Un for all sufficiently large n. Then some (u,N)-operation is acceptable
since it actually does not change anything and therefore Ωu is a part of an 0′-open set that
we have constructed.

4. Kolmogorov and 2-randomness

This result has an historically remarkable corollary. When Kolmogorov tried to define
randomness in 1960ies, he started with the following approach. A sequence x of length
n is “random” if its complexity C(x) (or conditional complexity C(x|n); in fact, these
requirements are almost equivalent) is close to n: the randomness deficiency d(x) is defined
as the difference |x|−C(x) (here |x| stands for the length of x). This sounds reasonable, but
if we then define a random sequence as a sequence whose prefixes have deficiencies bounded
by a constant, such a sequence does not exist at all: Martin-Löf showed that every infinite
sequence has prefixes of arbitrarily large deficiency, and suggested a different definition of
randomness using effectively null sets. Later more refined versions of randomness deficiency
(using monotone or prefix complexity) appeared that make the criterion of randomness
in terms of deficiencies possible. But before that, in 1968, Kolmogorov wrote: “The most
natural definition of infinite Bernoulli sequence is the following: x is considered m-Bernoulli
type if m is such that all xi are initial segments of the finite m-Bernoulli sequences. Martin-
Löf gives another, possibly narrower definition” ([1], p. 663).

Here Kolmogorov speaks about “m-Bernoulli” finite sequence x (this means that C(x|n, k)
is greater than log

(
n
k

) − m where n is the length of x and k is the number of ones in x).
For the case of uniform Bernoulli measure (where p = q = 1/2) one would reformulate this
definition as follows. Let us define

d̄(x) = inf{d(y) | x is a prefix of y}
and require that d̄(x) is bounded for all prefixes of an infinite sequence ω. It is shown by
J. Miller in [3] that this definition is equivalent to Martin-Löf randomness relativized to 0 ′
(called also 2-randomness):

Theorem 4.1. A sequence ω is Martin-Löf 0′-random if and only if the quantities d̄(x) for
all prefixes x of ω are bounded by a (common) constant.

In turns out that this result (in one direction) easily follows from the previous theorem.

Proof. Assume that d̄-deficiencies for prefixes of ω are not bounded. According to Martin-
Löf definition, we have to construct for a given c an 0′-effectively open set that covers ω
and has measure at most 2−c.



LIMIT COMPLEXITIES REVISITED 79

Fix some c. For each n consider the set Dn of all sequences u of length n such that
C(u) < n−c (i.e., sequences u of length n such that d(u) > c). It has at most 2n−c elements.
The requirement d̄(x) > c means that every string extension y of x belongs to Dm where m
is its length. This implies that Ωx is contained in every Um where m > |x| and Um is the
set of all sequences that have prefixes in Dm (this set has measure at most 2−c). Therefore,
in this case the interval Ωx is a subset of

⋂
m>|x|Um and (being open) is a subset of its

interior. Then we conclude (using the result proved above) that Ωx (=every sequence with
prefix x) is covered by an 0′-effectively open set of measure at most 2−c constructed as
explained above. So if some ω has prefixes of arbitrarily large d̄-deficiency, then ω is not 0′
Martin-Löf random.

Note that this argument works also for conditional complexity (with length as condition)
and gives a slightly stronger result.

For the sake of completeness we reproduce (from [3]) the proof of the reverse impli-
cation (essentially unchanged). Assume that a sequence ω is covered (for each c) by a
0′-computable sequence of intervals I0, I1, . . . of total measure at most 2−c. (We omit c in
our notation, but all these constructions depend on c.)

Using the approximations 0n instead of full 0′ and performing at most n steps of
computation for each n we get another (now computable) family of intervals In,0, In,1, . . .
such that In,i = Ii for every i and sufficiently large n. We may assume without loss of
generality that In,i either has size at least 2−n (i.e., is determined by a string of length
at most n) or equals ⊥ (a special value that denotes the empty set) since only the limit
behavior is prescribed. Moreover, we may also assume that In,i = ⊥ for i > n and that the
total measure of all In,0, In,1, . . . does not exceed 2−c for every n (by deleting the excessive
intervals in this order; the stabilization guarantees that all limit intervals will be eventually
let through).

Since In,i is defined by intervals of size at least 2−n, we get at most 2n−c strings of
length n covered by intervals In,i for given n and all i. This set is decidable (recall that
only i not exceeding n are used), therefore each string in this set can be defined (assuming
c is known) by a string of length n− c, binary representation of its ordinal number in this
set. (Note that this string also determines n if c is known.)

Returning to the sequence ω, we note that it is covered by some Ii and therefore is
covered by In,i for this i and all sufficiently large n (after the value is stabilized), say, for
all n > N . Let u be a prefix of ω of length N . All continuations of u of any length n are
covered by In,i and have complexity less than n − c + O(1). In fact, this is a conditional
complexity with condition c; we get n− c + 2 log c + O(1), so d̄(u) > c− 2 log c−O(1).

Such a string u can be found for every c, therefore ω has prefixes of arbitrarily large
d̄-deficiency.

In fact a stronger statement than Theorem 4.1 is proved in [3, 5]; our tools are still too
weak to get this statement. However, the low basis theorem helps.

5. The low basis theorem

This is a classical result in recursion theory (see, e.g., [6]). It was used in [5] to prove
2-randomness criterion; analyzing this proof, we get theorems about limit complexities as
byproducts. For the sake of completeness we reproduce the statement and the proof of
low-basis theorem here; they are quite simple.
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Theorem 5.1. Let U ⊂ Ω be an effectively open set that does not coincide with Ω. Then
there exists a sequence ω /∈ U which is low, i.e., ω ′ = 0′

Here ω′ is the jump of ω; the equation ω′ = 0′ means that the universal ω-enumerable
set is 0′-decidable.

Theorem 5.1 says that any effectively closed non-empty set contains a low element.
For example, if P,Q ⊂ N are enumerable inseparable sets, then the set of all separating
sequences is an effectively closed set that does not contain computable sequences. We
conclude, therefore, that there exists a non-computable low separating sequence.

Proof. Assume that an oracle machine M and an input x are fixed. The computation of M
with oracle ω on x may terminate or not depending on oracle ω. Let us consider the set
T (M,x) of all ω such that Mω(x) terminates (for fixed machine M and input x). This set
is an effectively open set (if termination happens, it happens due to finitely many oracle
values). This set together with U may cover the entire Ω; this means that M ω(x) terminates
for all ω /∈ U . If it is not the case, we can add T (M,x) to U and get a bigger effectively
open set U ′ that still has non-empty complement such that M ω(x) does not terminate for all
ω ∈ U ′. This operation guarantees (in one of two ways) that termination of the computation
Mω(x) does not depend on the choice of ω (in the remaining non-empty effectively closed
set).

This operation can be performed for all pairs (M,x) sequentially. Note that if U ∪
T (M,x) covers the entire Ω, this happens on some finite stage (compactness), so 0 ′ is enough
to find out whether it happens or not, and on the next step we have again some effectively
open (without any oracle) set. So 0′-oracle is enough to say which of the computations
Mω(x) terminate (as we have said, this does not depend of the choice of ω). Therefore
any such ω is low (the universal ω-enumerable set is 0′-decidable). And such an ω exists
since the intersection of the decreasing sequence of non-empty closed sets is non-empty
(compactness).

6. Using the low basis theorem

Let us show how Theorem 1.1 can be proved using the low basis theorem. As we
have seen, we have an enumerable family of sets Un that have at most 2k elements and
need to construct effectively a 0′-enumerable set that has at most 2k elements and contains
U∞ = lim infn Un.

If the sets Un are (uniformly) decidable, then U∞ is 0′-enumerable and we do not need
any other set. The low basis theorem allows us to reduce general case to this special one.
Let us consider the family of all “upper bounds” for Un: by an upper bound we mean a
sequence Vn of finite sets that contain Un and still have at most 2k elements each. The
sequence V0, V1, . . . can be encoded as an infinite binary sequence (first we encode V0, then
V1 etc.; note that each Vi can be encoded by a finite number of bits though this number
depends on Vi).

For a binary sequence the property “to be an encoding of an upper bound for Un”
is effectively closed (the restriction #Vn < 2k is decidable and the restriction Un ⊂ Vn is
co-enumerable). Therefore the low basis theorem can be applied. We get an upper bound
V that is low. Then V∞ = lim inf Vn is (uniformly in k) V ′-enumerable (as we have said:
with V -oracle the family Vn is uniformly decidable), but since V is low, V ′-oracle can be
replaced by 0′-oracle, and we get the desired result.
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This proof though being simple looks rather mysterious: we get something almost out
of nothing! (As far as we know, this idea in a more advanced context appeared in [5].)

The same trick can be used to prove Theorem 2.1: here “upper bounds” are distribu-
tions Mn with rational values and finite support that are greater than m(x|n) but still are
semimeasures. (Technical correction: first we have to assume that m(x|n) = 0 if x is large,
and then we have to weaken the restriction

∑
Mn(x) 6 1 replacing 1 by, say, 2; this is

needed since the values m(x|n) may be irrational.)
Theorem 2.4 can be also proved in this way (upper bounds should be semimeasures on

tree with rational values and finite support).
As to Theorem 3.1, here the application of the low basis theorem allows us to get a

stronger result than before (though not the most strong version we mentioned as an open
question):

Theorem 6.1. Let ε > 0 be a rational number and let Un be an uniformly enumerable
family of effectively open sets, i.e.,

Un = ∪{Ωx | (n, x) ∈ U}
for some enumerable set U ⊂ N × {0, 1}∗. Assume that Un has measure at most ε for
every n. Assume also that Ui has “effectively bounded granularity”, i.e., all strings x such
that (n, x) ∈ U have length at most c(n) where c is a total computable function. Then for
every ε′ > ε there exists a 0′-effectively open set W of measure at most ε′ that contains

lim inf
n→∞ Un =

⋃
N

⋂
n>N

Un

and this construction is uniform.

Proof. First we use the low basis theorem to reduce the general case to the case where U is
decidable and for every (n, x) ∈ U the length of x is exactly c(n).

Indeed, define an “upper bound” as a sequence V of sets Vn where Vn is a set of strings
of length c(n) such that Un is covered by the intervals generated by elements of Vn. Again
V can be encoded as an infinite sequence of zeros and ones, and the property “to be an
upper bound” is effectively closed. Applying the low basis theorem, we choose a low V and
add it is an oracle. Since V ′ is equivalent to 0′, for our purpose we may assume that V is
decidable.

Now we have to deal with the decidable case. Let us represent the set U∞ as a union
of the disjoint sets

F0 =
⋂
i

Ui, F1 =
⋂
i>1

Ui \ U0, F2 =
⋂
i>2

Ui \ U1, . . .

(for each element x in U∞ we consider the last Ui that does not contain x). Each of Fi

is (in the decidable case) an effectively closed set (recall than Ui is open-closed due to the
restriction on c(i)). Moreover, the Fi are pairwise disjoint and the family Fi satisfies

lim inf
n→+∞ Un =

⋃
i

Fi

and thus ∑
i

µ(Fi) = µ(lim inf
n→+∞ Un).



82 L. BIENVENU, AN. MUCHNIK, A. SHEN, AND N. VERESHCHAGIN

The measure of each of Fi is 0′-computable, and using 0′-oracle we can find a finite set of
intervals that covers Fi and has measure

µ(Fi) + (ε′ − ε)/2i+1

Putting all these intervals together, we get the desired set W . So the decidable case (and
therefore the general one, thanks to low basis theorem) is completed.

7. Corollary on 2-randomness

Theorem 6.1 can be used to prove 2-randomness criterion from [3, 5]. In fact, this
gives exactly the proof from [5]; the only thing we did is structuring the proof in two parts
(formulating Theorem 6.1 explicitly and putting it in the context of other results on limits
of complexities).

Theorem 7.1 ([3, 5]). A sequence ω is 0′ Martin-Löf random if and only if

C(ω0ω1 . . . ωn−1) > n− c

for some c and for infinitely many n.

Proof. Let us first understand the relation between this theorem and Theorem 4.1. If

C(ω0ω1 . . . ωn−1) > n− c

for infinitely many n and given c, then d̄(x) 6 c for every prefix x of ω (indeed, one can
find the required continuation of x among prefixes of ω). As we know, this guarantees that
ω is 0′ Martin-Löf random.

It remains to prove that if for all c we have

C(ω0ω1 . . . ωn−1) < n− c

for all sufficiently large n, then ω is not 0′-random. Using the same notation as in the proof
of Theorem 4.1, we can say that ω has a prefix in Dn and therefore belongs to Un for all
sufficiently large n. We can apply then Theorem 6.1 since Un is defined using strings of
length n (so c(n) = n) and cover U∞ (and therefore ω) by a 0′-effectively open set of small
measure. Since this can be uniformly done for all c, the sequence ω is not 0′-random.

Remark. The results above may be considered as special cases of an effective version
of a classical theorem in measure theory: Fatou’s lemma. This lemma guarantees that if∫

fn(x) dµ(x) 6 ε for µ-measurable functions f0, f1, f2, . . ., then∫
lim inf
n→+∞ fn(x) dµ(x) 6 ε.

The constructive version assumes that fi are lower semicomputable and satisfy some ad-
ditional conditions; it says that for every ε′ > ε there exists a lower 0′-semicomputable
function ϕ such that lim inf fn(x) 6 ϕ(x) for every x and

∫
ϕ(x)dµ(x) 6 ε′.
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Abstract. We study ways to expedite Yates’s algorithm for computing the zeta and
Moebius transforms of a function defined on the subset lattice. We develop a trimmed
variant of Moebius inversion that proceeds point by point, finishing the calculation at
a subset before considering its supersets. For an n-element universe U and a family F

of its subsets, trimmed Moebius inversion allows us to compute the number of packings,
coverings, and partitions of U with k sets from F in time within a polynomial factor (in
n) of the number of supersets of the members of F.

Relying on an intersection theorem of Chung et al. (1986) to bound the sizes of set
families, we apply these ideas to well-studied combinatorial optimisation problems on
graphs of maximum degree ∆. In particular, we show how to compute the Domatic Number
in time within a polynomial factor of (2∆+1 − 2)n/(∆+1) and the Chromatic Number in

time within a polynomial factor of (2∆+1 − ∆ − 1)n/(∆+1). For any constant ∆, these
bounds are O

`
(2− ε)n

´
for ε > 0 independent of the number of vertices n.

1. Introduction

Yates’s algorithm from 1937 is a kind of fast Fourier transform that computes for a
function f : {0, 1}n → R and another function υ : {0, 1} × {0, 1} → R the values

f̂(x1, . . . , xn) =
∑

y1,...,yn∈{0,1}
υ(x1, y1) · · · υ(xn, yn)f(y1, . . . , yn) . (1.1)

simultaneously for all X = (x1, . . . , xn) ∈ {0, 1}n using only O(2nn) operations, instead of
the obvious O(4nn). The algorithm is textbook material in many sciences. Yet, though it
appears in Knuth [13, §3.2], it has received little attention in combinatorial optimisation.

Recently, the authors [3, 4] used Yates’s algorithm in combination with Moebius inver-
sion to give algorithms for a number of canonical combinatorial optimisation problems such
as Chromatic Number and Domatic Number in n-vertex graphs, and n-terminal Minimum
Steiner Tree, in running times within a polynomial factor of 2n.

This research was supported in part by the Academy of Finland, Grants 117499 (P.K.) and 109101 (M.K.).
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From the way it is normally stated, Yates’s algorithm seems to face an inherent 2n

lower bound, up to a polynomial factor, and it also seems to be oblivious to the structural
properties of the transform it computes.

The motivation of the present investigation is to expedite the running time of Yates’s
algorithm for certain structures so as to get running times with a dominating factor of the
form (2−ε)n. From the perspective of running times alone, our improvements are modest at
best, but apart from providing evidence that the aesthetically appealing 2n bound from [4]
can be beaten, the combinatorial framework we present seems to be new and may present
a fruitful direction for exact exponential time algorithms.

1.1. Results

In a graph G = (V,E), a set D ⊆ V of vertices is dominating if every vertex not in D
has at least one neighbour in D. The domatic number of G is the largest k for which V can
be partitioned in to k dominating sets. We show how to compute the domatic number of
an n-vertex graph with maximum degree ∆ in time

O∗
(
(2∆+1 − 2)n/(∆+1)

)
;

the O∗ notation suppresses factors that are polynomial in n. For constant ∆, this bound is
always better than 2n, though not by much:

∆ 3 4 5 6 7 8 · · ·
(2∆+1 − 2)1/(∆+1) 1.9344 1.9744 1.9895 1.9956 1.9981 1.9992 · · ·

The chromatic number of a graph is the minimum k for which the vertex set can be
covered with k independent sets; a set I ⊆ V is independent if no two vertices in I are
neighbours. We show how to compute the chromatic number of an n-vertex graph with
maximum degree ∆ in time

O∗
(
(2∆+1 −∆− 1)n/(∆+1)

)
.

This is slightly faster than for Domatic Number:
∆ 3 4 5 6 7 8 · · ·

(2∆+1 −∆− 1)1/(∆+1) 1.8613 1.9332 1.9675 1.9840 1.9921 1.9961 · · ·
One notes that even for moderate ∆, the improvement over 2n is minute. Moreover,

the colouring results for ∆ ≤ 5 are not even the best known: by Brooks’s Theorem [5],
the chromatic number of a connected graph is bounded by its maximum degree unless
the graph is complete or an odd cycle, both of which are easily recognised. It remains to
decide if the chromatic number is 3, 4, or 5, and with algorithms from the literature, 3-
and 4-colourability can be decided in time O(1.3289n) [1] and O(1.7504n) [6], respectively.
However, this approach does stop at ∆ = 5, since we know no o(2n) algorithm for 5-
colourability. Other approaches for colouring low-degree graphs are known via pathwidth:
given a path decomposition of width w the k-colourability can be decided in time kwnO(1)

[11]; for 6-regular graphs one can find a decomposition with w ≤ n(23 + ε)/45 for any ε > 0
and sufficiently large n [11], and for graphs with m edges one can find w ≤ m/5.769 +
O(log n) [12]. However, even these pathwidth based bounds fall short when k ≥ 5—we are
not aware of any previous o(2n) algorithm.

For the general case, it took 30 years and many papers to improve the constant in
the bound for Chromatic Number from 2.4423 [14] via 2.4151 [9], 2.4023 [6], 2.3236 [2],
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Figure 1: Trimmed evaluation. Originally, Yates’s algorithm considers
the entire subset lattice (left). We trim the evalation from below by
considering only the supersets of ‘interesting’ points (middle), and from
above by abandoning computation when we reach certain points (right).

to 2 [4], and a similar (if less glacial) story can be told for the Domatic Number. None
of these approaches was sensitive to the density of the graph. Moreover, what interests us
here is not so much the size of the constant, but the fact that it is less than 2, dispelling
the tempting hypothesis that 2n should be a ‘difficult to beat’ bound for computing the
Chromatic Number for sparse graphs. In §4 we present some tailor-made variants for
which the running time improvement from applying the ideas of the present paper are more
striking.

Chromatic Number and Domatic Number are special cases of set partition problems,
where the objective is to partition an n-element set U (here, the vertices of a graph) with
members of a given family F of its subsets (here, the independent or dominating sets of the
graph). In full generality, we show how to compute the covering, packing, and partition
numbers of (U,F) in time within a polynomial factor of

|{T ⊆ U : there exists an S ∈ F such that S ⊆ T}| , (1.2)

the number of supersets of the members of F. In the worst case, this bound is not better
than 2n, and the combinatorial challenge in applying the present ideas is to find good bounds
on the above expression.

1.2. Techniques

The main technical contribution in this paper, sketched in Figure 1, is that Yates’s
algorithm can, for certain natural choices of υ : {0, 1} × {0, 1} → R, be trimmed by
considering in a bottom-up fashion only those X ∈ {0, 1}n that we are actually interested
in, for example those X for which f(X) 6= 0 and their supersets. (We will understand
X as a subset of {1, . . . , n} whenever this is convenient.) Among the transforms that are
amenable to trimming are the zeta and Moebius transforms on the subset lattice.

We use the trimmed algorithms for zeta and Moebius transforms to expedite Moebius
inversion, a generalisation of the principle of inclusion–exclusion, which allows us to compute
the cover, packing, and partition numbers. The fact that these numbers can be computed
via Moebius inversion was already used in [2, 3, 4], and those parts of the present paper
contain little that is new, except for a somewhat more explicit and streamlined presentation
in the framework of partial order theory.

The fact that we can evaluate both the zeta and Moebius transforms pointwise in such
a way that we are done with X before we proceed to Y for every Y ⊃ X also enables us to
further trim computations from what is outlined above. For instance, if we seek a minimum
set partition of sets from a family F of subsets of U , then it suffices to find the minimum
partition of all X such that U \X = S for some S ∈ F. In particular, we need not consider
how many sets it takes to partition X for X’s large enough for U \X not to contain any
set from F.

The main combinatorial contribution in this paper is that if F is the family of maximal
independent sets, or the family of dominating sets in a graph, then we show how to bound
(1.2) in terms of the maximum degree ∆ using an intersection theorem of Chung et al.
[8] that goes back to Shearer’s Entropy Lemma. For this we merely need to observe that
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the intersection of F and the closed neighbourhoods of the input graph excludes certain
configurations.

In summary, via (1.2) the task of bounding the running time for (say) Domatic Number
reduces to a combinatorial statement about the intersections of certain families of sets.

Notation. Yates’s algorithm operates on the lattice of subsets of an n-element universe U ,
and we find it convenient to work with notation established in partial order theory.

For a family F of subsets of U , let min F (respectively, max F) denote the family of
minimal (respectively, maximal) elements of F with respect to subset inclusion. The upper
closure (sometimes called up-set or filter) of F is defined as

↑F = {T ⊆ U : there exists an S ∈ F such that S ⊆ T } .
For a function f defined on subsets of U , the support of f is defined as

supp(f) = {X ⊆ U : f(X) 6= 0} .
For a graph G, we let D denote the family of dominating sets of G and I the family

of independent sets of G. Also, for a subset W ⊆ V of vertices, we let G[W ] denote the
subgraph induced by W . For a proposition P , we use Iverson’s bracket notation [P ] to
mean 1 if P is true and 0 otherwise.

2. Trimmed Moebius Inversion

For a family F of sets from {0, 1}n and a set X ∈ {0, 1}n we will consider k-tuples
(S1, . . . , Sk) with Si ∈ F and Si ⊆ X. Such a tuple is disjoint if Si1 ∩ Si2 = ∅ for all
1 ≤ i1 < i2 ≤ k, and covering if S1 ∪ · · · ∪ Sk = X. From these concepts we define for fixed
k

(1) the cover number c(X), viz. the number of covering tuples,
(2) the packing number p(X), viz. the number of disjoint tuples,
(3) the partition number or disjoint cover number d(X), viz. the number of tuples that

are both disjoint and covering.
In this section we show how to compute these numbers in time |↑F|nO(1), rather than

2nnO(1) as in [3, 4]. The algorithms are concise but somewhat involved, and we choose
to present them here starting with an explanation of Yates’s algorithm. Thus, the first
two subsections are primarily expository and aim to establish the new ingredients in our
algorithms.

At the heart of our algorithms lie two transforms of functions f : {0, 1}n → R on the
subset lattice. The zeta transform fζ is defined for all X ∈ {0, 1}n by

(fζ)(X) =
∑
Y⊆X

f(Y ) . (2.1)

(The notation fζ can be read either as a formal operator or as a product of the 2n-
dimensional vector f and the matrix ζ with entries ζY X = [Y ⊆ X].) The Moebius transform
fµ is defined for all X ∈ {0, 1}n by

(fµ)(X) =
∑
Y⊆X

(−1)|X\Y |f(Y ) . (2.2)
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These transforms are each other’s inverse in the sense that f = fζµ = fµζ, a fundamental
combinatorial principle called Moebius inversion. We can (just barely) draw an example
in four dimensions for a function f given by f({4}) = f({1, 2, 4}) = 1, f({1, 3}) = 2 and
f(X) = 0 otherwise:

1

1

2

ζ−→
µ←− 1

1 1 1

2 3 3

2

2

4

Another example that we will use later is the connection between the packing number and
the disjoint cover number,

p = dζ , (2.3)
which is easy to verify: By definition,

(dζ)(X) =
∑
Y⊆X

d(Y ) .

Every disjoint k-tuple (S1, . . . , Sk) with S1 ∪ · · · ∪ Sk ⊆ X appears once on the right hand
side, namely for Y = S1 ∪ · · · ∪ Sk, so this expression equals the packing number p(X).

2.1. Yates’s algorithm

Yates’s algorithm [17] expects the transform in the form of a function υ : {0, 1} ×
{0, 1} → R and computes the transformed values

f̂(X) =
∑

Y ∈{0,1}n
υ(x1, y1) · · · υ(xn, yn)f(Y ) . (2.4)

simultaneously for all X ∈ {0, 1}n. Here, we let (x1, . . . , xn) and (y1, . . . , yn) denote the
binary representations (or, ‘incidence vectors’) of X and Y , so xj = [j ∈ X] and yj = [j ∈
Y ]. To obtain (2.1) set υ(x, y) = [y ≤ x] and to obtain (2.2) set υ(x, y) = [y ≤ x](−1)x−y.

The direct evaluation of (2.4) would take 2n evaluations of f for each X, for a total of
O(2n2nn) = O(4nn) operations. The zeta and Moebius transforms depend only on Y ⊆ X,
so they would require only

∑
X 2|X| =

∑
0≤i≤n

(
n
i

)
2i = 3n evaluations. Yates’s algorithm is

faster still and computes the general form in O(2nn) operations:

Algorithm Y. (Yates’s algorithm.) Computes f̂(X) defined in (2.4) for all X ∈ {0, 1}n given f(Y )
for all Y ∈ {0, 1}n and υ(x, y) for all x, y ∈ {0, 1}.

Y1: For each X ∈ {0, 1}n, set g0(X) =f(X).
Y2: For each j = 1, . . . , n and X ∈ {0, 1}n, set

gj(X) = υ([j ∈ X], 0)gj−1(X \ {j}) + υ([j ∈ X], 1)gj−1(X ∪ {j}) .
Y3: Output gn.

The intuition is to compute f̂(X) ‘coordinate-wise’ by fixing fewer and fewer bits of X
in the sense that, for j = 1, . . . , n,

gj(X) =
∑

y1,...,yj∈{0,1}
υ(x1, y1) · · · υ(xj , yj)f(y1, . . . , yj , xj+1, . . . , xn) . (2.5)
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Indeed, the correctness proof is a straightforward verification (by induction) of the above
expression.

2.2. Trimmed pointwise evaluation

To set the stage for our present contributions, observe that both the zeta and Moebius
transforms ‘grow upwards’ in the subset lattice in the sense that supp(fζ), supp(fµ) ⊆
↑supp(f). Thus, in evaluating the two transforms, one ought to be able to trim off redundant
parts of the lattice and work only with lattice points in ↑supp(f).

We would naturally like trimmed evaluation to occur in O(|↑supp(f)|n) operations, in
the spirit of Algorithm Y. However, to obtain the values at X in Step Y2 of Algorithm Y,
at first sight it appears that we must both ‘look up’ (at X ∪ {j}) and ’look down’ (at
X \{j}). Fortunately, it suffices to only ‘look down’. Indeed, for the zeta transform, setting
υ(x, y) = [y ≤ x] and simplifying Step Y2 yields

gj(X) = [j ∈ X]gj−1(X \ {j}) + gj−1(X) . (2.6)

For the Moebius transform, setting υ(x, y) = [y ≤ x](−1)x−y and simplifying yields

gj(X) = −[j ∈ X]gj−1(X \ {j}) + gj−1(X) . (2.7)

Furthermore, it is not necessary to look ‘too far’ down: for both transforms it is immediate
from (2.5) that

gj(X) = 0 holds for all X /∈ ↑supp(f) and j = 0, . . . , n . (2.8)

In what follows we tacitly employ (2.8) to limit the scope of (2.6) and (2.7) to ↑supp(f).
The next observation is that the lattice points in ↑supp(f) can be evaluated in order of

their rank, using sets L(r) containing the points of rank r. Initially, the sets L(r) contain
only supp(f), but we add elements from ↑supp(f) as we go along. These observations result
in the following algorithm for evaluating the zeta transform; the algorithm for evaluating
the Moebius transform is obtained by replacing (2.6) in Step Z3 with (2.7).
Algorithm Z. (Trimmed pointwise fast zeta transform.) Computes the nonzero part of fζ given the
nonzero part of f . The algorithm maintains n+1 families L(0), . . . ,L(n) of subsets X ∈ {0, 1}n; L(r)
contains only sets of size r. We compute auxiliary values gj(X) for all 1 ≤ j ≤ n and X ∈ ↑supp(f);
it holds that gn(X) = (fζ)(X).

Z1: For each X ∈ supp(f), insert X into L(|X|). Set the current rank r = 0.
Z2: Select any X ∈ L(r) and remove it from L(r).
Z3: Set g0(X) = f(X). For each j = 1, . . . , n, set

gj(X) = [j ∈ X]gj−1(X \ {j}) + gj−1(X) .

[At this point gn(X) = (fζ)(X).]
Z4: If gn(X) 6= 0, then output X and gn(X).
Z5: For each j /∈ X, insert X ∪ {j} into L(r + 1).
Z6: If L(r) is empty then increment r ≤ n until L(r) is nonempty; terminate if r = n and L(n)

is empty.
Z7: Go to Z2.

Observe that the evaluation at X is complete once Step Z3 terminates, which enables
further trimming of the lattice ‘from above’ in case the values at lattice points with higher
rank are not required.
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By symmetry, the present ideas work just as well for transforms that ‘grow downwards’,
in which case one needs to ‘look up’. However, they do not work for transforms that grow
in both directions, such as the Walsh–Hadamard transform.

In the applications that now follow, f will always be the indicator function of a family
F. In this case having supp(f) quickly available translates to F being efficiently listable;
for example, with polynomial delay.

2.3. Covers

The easiest application of the trimmed Moebius inversion computes for each X ∈ ↑F
the cover number c(X). This is a particularly straightforward function of the zeta transform
of the indicator function f : simply raise each element of fζ to the kth power and transform
the result back using µ. To see this, observe that both sides of the equation

(cζ)(Y ) =
(
(fζ)(Y )

)k (2.9)

count the number of ways to choose k-tuples (S1, . . . , Sk) with Si ⊆ Y and Si ∈ F. By
Moebius inversion, we can recover c by applying µ to both sides of (2.9).
Algorithm C. (Cover number.) Computes c(X) for all X ∈ ↑F given F. The sets L(r) and auxiliary
values gj(X) are as in Algorithm Z; also required are auxiliary values hj(X) for Moebius transform.

C1: For each X ∈ F, insert X into L(|X|). Set the current rank r = 0.
C2: Select any X ∈ L(r) and remove it from L(r).
C3: [Zeta transform.] Set g0(X) = [X ∈ F]. For each j = 1, . . . , n, set

gj(X) = [j ∈ X]gj−1(X \ {j}) + gj−1(X) .

[At this point it holds that gn(X) = (fζ)(X).]
C4: [Evaluate zeta transform of c(X).] Set h0(X) = gn(X)k.
C5: [Moebius transform.] For each j = 1, . . . , n, set

hj(X) = −[j ∈ X]hj−1(X \ {j}) + hj−1(X) .

C6: Output X and hn(X).
C7: For each j /∈ X, insert X ∪ {j} into L(r + 1).
C8: If L(r) is empty, then increment r ≤ n until L(r) is nonempty; terminate if r = n and L(n)

is empty.
C9: Go to C2.

2.4. Partitions

What makes the partition problem slightly less transparent is the fact that we need to
use dynamic programming to assemble partitions from sets with different ranks. To this
end, we need to compute for each rank s the ‘ranked zeta transform’

(fζ(s))(X) =
∑

Y⊆X,|Y |=s
f(Y ) .

For rank s, consider the number d(s)(Y ) of tuples (S1, . . . , Sk) with Si ∈ F, Si ⊆ Y ,
S1 ∪ · · · ∪ Sk = Y and |S1| + · · · + |Sk| = s. Then d(Y ) = d(|Y |)(Y ). Furthermore, the



92 A. BJÖRKLUND, T. HUSFELDT, P. KASKI, AND M. KOIVISTO

zeta-transform (d(s)ζ)(X) counts the number of ways to choose (S1, . . . , Sk) with Si ⊆ X,
Si ∈ F, and |S1|+ · · ·+ |Sk| = s. Another way to count the exact same quantity is

q(k, s,X) =
∑

s1+···+sk=s

k∏
i=1

(fζ(si))(X) . (2.10)

Thus we can recover d(s)(Y ) from q(k, s,X) by Moebius inversion.
As it stands, (2.10) is time-consuming to evaluate even given all the ranked zeta trans-

forms, but we can compute it efficiently using dynamic programming based on the recurrence

q(k, s,X) =

{∑s
t=0 q(k − 1, s− t,X)(fζ(t))(X), if k > 1 ,

(fζ(s))(X), if k = 1 .

This happens in Step D4.
Algorithm D. (Disjoint cover number.) Computes d(X) for all X ∈ ↑F given F. The sets L(r) are
as in Algorithm Z; we also need auxiliary values g(s)

j (X) and h(s)
j (X) for all X ∈ ↑F, 1 ≤ j ≤ n, and

0 ≤ s ≤ n; it holds that g(s)
n (X) = (fζ(s))(X) and h

(s)
n (X) = d(s)(X).

D1: For each X ∈ F, insert X into L(|X|). Set the current rank r = 0.
D2: Select any X ∈ L(r) and remove it from L(r).
D3: [Ranked zeta transform.] For each s = 0, . . . , n, set g(s)

0 (X) = [X ∈ F][|X| = s]. For each
j = 1, . . . , n and s = 0, . . . , n, set

g
(s)
j (X) = [j ∈ X]g(s)

j−1(X \ {j}) + g
(s)
j−1(X) .

[At this point it holds that g(s)
n (X) = (fζ(s))(X) for all 0 ≤ s ≤ n.]

D4: [Evaluate zeta transform of d(s).] For each s = 0, . . . , n, set q(1, s) = g
(s)
n (X). For each

i = 2, . . . , k and s = 0, . . . , n, set q(i, s) =
∑s

t=0 q(i− 1, s− t)g(t)
n (X).

D5: [Ranked Moebius transform.] For each s = 0, . . . , n, set h(s)
0 (X) = q(k, s). For each j =

1, . . . , n and s = 0, . . . , n, set

h
(s)
j (X) = −[j ∈ X]h(s)

j−1(X \ {j}) + h
(s)
j−1(X) .

[At this point it holds that h(s)
n (X) = d(s)(X) for all 0 ≤ s ≤ n.]

D6: Output X and h
(|X|)
n (X).

D7: For each j /∈ X, insert X ∪ {j} into L(r + 1).
D8: If L(r) is empty, then increment r ≤ n until L(r) is nonempty; terminate if r = n and L(n)

is empty.
D9: Go to D2.

2.5. Packings

According to (2.3), to compute p(X) it suffices to zeta-transform the partition number.
This amounts to running Algorithm Z after Algorithm D. (For a different approach, see [4].)
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3. Applications

3.1. The number of dominating sets in sparse graphs

This section is purely combinatorial. Let D denote the dominating sets of a graph. A
complete graph has 2n − 1 dominating sets, and sparse graphs can have almost as many:
the n-star graph has 2n−1 dominating sets and average degree less than 2. Thus we ask how
large |D| can be for graphs with bounded maximum degree. An easy example is provided
by the disjoint union of complete graphs of order ∆ + 1: every vertex subset that includes
at least one vertex from each component is dominating, so |D| = (2∆+1 − 1)n/(∆+1). We
shall show that this is in fact the largest possible D for graphs of maximum degree ∆. Our
analysis is based on the following intersection theorem.

Lemma 3.1 (Chung et al. [8]). Let U be a finite set with subsets P1, . . . , Pm such that
every u ∈ U is contained in at least δ subsets. Let F be a family of subsets of U . For each
1 ≤ ` ≤ m, define the projections F` = {F ∩ P` : F ∈ F }. Then

|F|δ ≤
m∏
`=1

|F`| .

Theorem 3.2. The number of dominating sets of an n-vertex graph with maximum degree
∆ is at most (2∆+1 − 1)n/(∆+1).

Proof. Let G = (V,E) be a graph with |V | = n and maximum degree ∆. For each v ∈ V ,
let Av be the closed neighbourhood around vertex v,

Av = {v} ∪ {u ∈ V : uv ∈ E } . (3.1)

Next, for each u ∈ V with degree d(u) < ∆, add u to ∆ − d(u) of the sets Av not already
containing u (it does not matter which). Let av = |Av| and note that

∑
v av = (∆ + 1)n.

We want to apply Lemma 3.1. To this end, let U = V and m = n. By construction,
every u ∈ V belongs to exactly δ = ∆ + 1 subsets Av. To get a nontrivial bound on D

we need to bound the size of Dv = {D ∩ Av : D ∈ D }. Every D ∩ Av is one of the 2av

subsets of Av, but none of the D ∩ Av can be the empty set, because either v or one of its
neighbours must belong to the dominating set D. Thus |Dv| ≤ 2av − 1. By Lemma 3.1, we
have

|D|∆+1 ≤
∏
v

(2av − 1) . (3.2)

Since x 7→ log (2x − 1) is concave, Jensen’s inequality gives
1
n

∑
v

log (2av − 1) ≤ log (2
P

v av/n − 1) = log (2∆+1 − 1) .

Taking exponentials and combining with (3.2) gives |D|∆+1 ≤ (2∆+1 − 1)n.

3.2. Domatic Number

We first observe that a graph can be packed with k dominating sets if and only if it
can be packed with k minimal dominating sets, so we can consider k-packings from min D

instead of D. This has the advantage that min D can be listed faster than 2n.

Lemma 3.3 (Fomin et al. [10]). Any n-vertex graph has at most O∗(1.7170n) minimal
dominating sets, and they can be listed within that time bound.
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Theorem 3.4. For an n-vertex graph G with maximum degree ∆ we can decide in time

O∗
(
(2∆+1 − 2)n/(∆+1)

)
whether G admits a packing with k dominating sets.

Proof. We use Algorithm D with F = min D. By the above lemma, we can complete Step D1
in time O∗(1.7170n). The rest of the algorithm requires time O∗(|↑min D|). Since every
superset of a dominating set is itself dominating, ↑min D is a sub-family of D (in fact, it is
exactly D), so Theorem 3.2 bounds the total running time by

O∗
(
(2∆+1 − 1)n/(∆+1)

)
.

We can do slightly better if we modify Algorithm D in Step D7 to insert X ∪ {j} only
if it excludes at least one vertex for each closed neighbourhood. Put otherwise, we insert
X ∪ {j} only if the set V \ (X ∪ {j}) dominates the graph G. The graph then has Domatic
Number at least k+1 if and only if the algorithm reports some X for which d(X) is nonzero.
The running time can again be bounded as in Theorem 3.2 but now D ∩Av can neither be
the empty set, nor be equal to Av. Thus the application of Lemma 3.1 can be strengthened
to yield the claimed result.

3.3. Chromatic Number

Our first argument for Chromatic Number is similar; we give a stronger and slightly
more complicated argument in §3.4.

We consider the independent sets I of a graph. An independent set is not necessarily
dominating, but it is easy to see that a maximal independent set is dominating. Moreover,
the Moon–Moser bound tells us they are few, and Tsukiyama et al. tell us how to list them
with polynomial delay:

Lemma 3.5 (Moon and Moser [15]; Tsukiyama et al. [16]). Any n-vertex graph has at
most O∗(1.4423n) maximal independent sets, and they can be listed within that bound.

Theorem 3.6. For an n-vertex graph G with maximum degree ∆ we can decide in time

O∗
(
(2∆+1 − 1)n/(∆+1)

)
whether G admits a covering with k independent sets.

Proof. It is easy to see that G can be covered with k independent sets if and only if it can
be covered with k maximal independent sets, so we will use Algorithm C on max I. Step C1
is completed in time O∗(1.4423n), and the rest of the algorithm considers only the points
in ↑max I, which all belong to D. Again, Theorem 3.2 bounds the total running time.

3.4. Chromatic Number via bipartite subgraphs

We can do somewhat better by considering the family B of vertex sets of induced
bipartite subgraphs, that is, the family of sets B ⊆ V for which the induced subgraph G[B]
is bipartite. As before, the literature provides us with a nontrivial listing algorithm:

Lemma 3.7 (Byskov and Eppstein [7]). Any n-vertex graph has at most O∗(1.7724n)
maximal induced bipartite subgraphs, and they can be listed within that bound.

The family max B is more than just dominating, which allows us to use Lemma 3.1 in
a stronger way.
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Theorem 3.8. For an n-vertex graph of maximum degree ∆ it holds that

|↑max B| ≤ (2∆+1 −∆− 1)n/(∆+1) .

Proof. Let G = (V,E) be a graph with |V | = n and maximum degree ∆. Let F = ↑max B.
Let Av be as in (3.1). With the objective of applying Lemma 3.1, we need to bound the
number of sets in Fv = {F ∩Av : F ∈ F }.

Assume first that G is ∆-regular. Let Av = {v, u1, . . . , u∆}. We will rule out ∆ + 1
candidates for F ∩Av, namely

∅, {u1}, . . . , {u∆} /∈ Fv . (3.3)

This then shows that |Fv| ≤ 2∆+1 −∆− 1 and thus the bound follows from Lemma 3.1.
To see that (3.3) holds, observe that F ∈ F contains a B ⊆ F such that the induced

subgraph G[B] is maximal bipartite. To reach a contradiction, assume that there exists a
v ∈ V with F ∩Av ⊆ {u`}. Since B ⊆ F , we have B ∩Av ⊆ {u`}, implying that v does not
belong to B, and that at most one of its neighbours does. Consequently, G[B ∪ {v}] is also
bipartite, and v belongs to a partite set opposite to any of its neighbours. This contradicts
the fact that G[B] is maximal bipartite.

To establish the non-regular case, we can proceed as in the proof of Theorem 3.2,
adding each u ∈ V with d(u) < ∆ to some ∆ − d(u) of the sets Av not already including
u. Note that by adding y new vertices to Av originally containing x vertices, we get
|{F ∩Av : F ∈ F}| ≤ 2y(2x − x− 1). Next, since 2y(2x − x− 1) ≤ 2y+x − (y+ x)− 1 for all
non-negative integers y, x and log (2x − x − 1) is a concave function, the bound follows as
before via Jensen’s inequality.

Theorem 3.9. For an n-vertex graph G with maximum degree ∆ we can decide in time

O
(
(2∆+1 −∆− 1)n/(∆+1)

)
whether G admits a covering with k independent sets.

Proof. When k is even, it is easy to see that G can be covered by k independent sets if and
only if it can be covered by k′ = k/2 maximal bipartite sets, so we will use Algorithm C on
max B and investigate whether c(V ) 6= 0.

When k is odd, we again use Algorithm C with k′ = (k − 1)/2 maximal bipartite sets,
but this time we check whether an X is output such that both c(X) 6= 0 and V \ X is
independent in G.

In both cases the running time bound follows from Theorem 3.8.

4. Concluding Remarks

Since the presented improvements on running time bounds are modest, one can ask
whether this is because of weak bounds or because of inherent limitations of the technique.
We observe that the running time bounds in Theorems 3.4, 3.6, and 3.9 are met by a disjoint
union of complete graphs of order ∆ + 1. Thus, either further trimming or splitting into
connected components is required for improved algorithms in this context.

We chose to demonstrate the technique for Chromatic and Domatic Number since these
are well-known and well-studied. To briefly demonstrate some further application potential,
more artificial problem variants such as determining if a ∆-regular graph has domatic
number at least ∆/2, or if the square of a ∆-regular graph has chromatic number at most
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3∆/2, admit stronger bounds. For example, if G has domatic number at least d, d even,
then its vertices can be partitioned into two sets, both of which contain d/2 dominating
sets. This suggests the following meet-in-the-middle strategy. Run Algorithm D with F

equal to all dominating sets and k = d/2, but modify Step D7 to insert X ∪ {j} only
if |Av \ (X ∪ {j})| ≥ d/2 holds for all vertices v. At termination, we check whether the
algorithm has output two sets X and Y such that X ∪ Y = V and d(X), d(Y ) > 0. (For
example, one can check for duplicates in a table with entry {X,V \X} for each outputX with
d(X) > 0.) This algorithm variant considers only sets with many forbidden intersections
with the neighbourhoods of vertices, which translates into stronger bounds via Lemma 3.1.
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Abstract. We consider the two-variable interlace polynomial introduced by Arratia,
Bollobás and Sorkin (2004). We develop two graph transformations which allow us to
derive point-to-point reductions for the interlace polynomial. Exploiting these reduc-
tions we obtain new results concerning the computational complexity of evaluating the
interlace polynomial at a fixed point. Regarding exact evaluation, we prove that the
interlace polynomial is #P-hard to evaluate at every point of the plane, except at one
line, where it is trivially polynomial time computable, and four lines and two points,
where the complexity mostly is still open. This solves a problem posed by Arratia,
Bollobás and Sorkin (2004). In particular, we observe that three specializations of the
two-variable interlace polynomial, the vertex-nullity interlace polynomial, the vertex-
rank interlace polynomial and the independent set polynomial, are almost everywhere
#P-hard to evaluate, too. For the independent set polynomial, our reductions allow
us to prove that it is even hard to approximate at every point except at −1 and 0.

1. Introduction

The number of Euler circuits in specific graphs and their interlacings turned out to be
a central issue in the solution of a problem related to DNA sequencing by hybridization
[ABCS00]. This led to the definition of a new graph polynomial, the one-variable inter-
lace polynomial [ABS04a]. Further research on this polynomial inspired the definition
of a two-variable interlace polynomial q(G;x, y) containing as special cases the following
graph polynomials: qN (G; y) = q(G; 2, y) is the original one-variable interlace polynomial
which was renamed to “vertex-nullity interlace polynomial”, qR(G;x) = q(G;x, 2) is the
new “vertex-rank interlace polynomial” and I(G;x) = q(G; 1, 1 + x) is the independent
set polynomial1 [ABS04b].

Although the interlace polynomial q(G;x, y) is a different object from the celebrated
Tutte polynomial (also known as dichromatic polynomial, see, for instance, [Tut84]), they
are also similar to each other. While the Tutte polynomial can be defined recursively

Key words and phrases: computational complexity, approximation, interlace polynomial, independent
set polynomial, graph transformation.

1The independent set polynomial of a graph G is defined as I(G; x) =
P

j≥0 i(G; j)xj , where i(G; j)

denotes the number of independent sets of cardinality j of G.

c© M. Bläser and C. Hoffmann
CC© Creative Commons Attribution-NoDerivs License



98 M. BLÄSER AND C. HOFFMANN

by a deletion-contraction identity on edges, the interlace polynomial satisfies recurrence
relations involving several operations on vertices (deletion, pivotization, complementa-
tion).

Besides the deletion-contraction identity, the so called state expansion is a well-
known way to define the Tutte polynomial. Here the similarity to the two-variable
interlace polynomial is especially striking: while the interlace polynomial is defined as a
sum over all vertex subsets of the graph using the rank of adjacency matrices (see (2.1)),
the state expansion of the Tutte polynomial can be interpreted as a sum over all edge
subsets of the graph using the rank of incidence matrices (see (4.1)) [ABS04b, Section 1].

References to further work on the interlace polynomial can be found in [ABS04b]
and [EMS06].

1.1. Previous work

The aim of this paper is to explore the computational complexity of evaluating2 the
two-variable interlace polynomial q(G;x, y). For the Tutte polynomial this problem was
solved in [JVW90]: Evaluating the Tutte polynomial is #P-hard at any algebraical point
of the plane, except on the hyperbola (x − 1)(y − 1) = 1 and at a few special points,
where the Tutte polynomial can be evaluated in polynomial time. For the two-variable
interlace polynomial q(G;x, y), only on a one-dimensional subset of the plane (on the
lines x = 2 and x = 1) some results about the evaluation complexity are known.

A connection between the vertex-nullity interlace polynomial and the Tutte poly-
nomial of planar graphs [ABS04a, End of Section 7], [EMS06, Theorem 3.1] shows that
evaluating q is #P-hard almost everywhere on the line x = 2 (Corollary 4.4).

It has also been noticed that q(G; 1, 2) evaluates to the number of independent sets
of G [ABS04b, Section 5], which is #P-hard to compute [Val79]. Recent work on the
matching generating polynomial [AM07] implies that evaluating q is #P-hard almost
everywhere on the line x = 1 (Corollary 4.10).

A key ingredient of [JVW90] is to apply graph transformations known as stretching
and thickening of edges. For the Tutte polynomial, these graph transformations allow
us to reduce the evaluation at one point to the evaluation at another point. For the
interlace polynomial no such graph transformations have been given so far.

1.2. Our results

We develop two graph transformations which are useful for the interlace polynomial:
cloning and combing of vertices. Applying cloning or combing allows us to reduce the
evaluation of the interlace polynomial at some point to the evaluation of it at another
point, see Theorem 3.3 and Theorem 3.5. We exploit this to obtain the following new
results about the computational complexity of q(G;x, y).

We prove that the two-variable interlace polynomial q(G;x, y) is #P-hard to evaluate
at almost every point of the plane, Theorem 4.12, see also Figure 1. Even though there
are some unknown (gray, in Figure 1) lines left on the complexity map for q, this solves
a challenge posed in [ABS04b, Section 5]. In particular we obtain the new result that

2See Section 2.2 for a precise definition.
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evaluating the vertex-rank interlace polynomial qR(G;x) is #P-hard at almost every
point (Corollary 4.13). Our techniques also give a new proof that the independent set
polynomial is #P-hard to evaluate almost everywhere (Remark 4.11).

Apart from these results on the computational complexity of evaluating the interlace
polynomial exactly, we also show that the values of the independent set polynomial
(which is the interlace polynomial q(G;x, y) on the line x = 1) are hard to approximate
almost everywhere (Theorem 5.4).

2. Preliminaries

2.1. Interlace Polynomials

We consider undirected graphs without multiple edges but with self loops allowed.
Let G = (V,E) be such a graph and A ⊆ V . By G[A] we denote (A, {e|e ∈ E, e ⊆ A}),
the subgraph of G induced by A. The adjacency matrix of G is the symmetric n × n-
matrix M = (mij) over F2 = {0, 1} with mi,j = 1 iff {i, j} ∈ E. The rank of this matrix
is its rank over F2. Slightly abusing notation we write rk(G) for this rank. This allows
us to define the two-variable interlace polynomial.

Definition 2.1 ([ABS04b]). Let G = (V,E) be an undirected graph. The interlace
polynomial q(G;x, y) of G is defined as

q(G;x, y) =
∑
A⊆V

(x− 1)rk(G[A])(y − 1)|A|−rk(G[A]). (2.1)

In Section 3 we will introduce graph transformations (graph cloning and graph
combing) which perform one and the same operation (cloning one single vertex, adding
a comb to one single vertex, resp.) on every vertex of a graph. Instead of relating
the interlace polynomial of the original graph directly to the interlace polynomial of
the transformed graph, we will analyze how, say, cloning one single vertex changes
the interlace polynomial. To express this, we must be able to treat the vertex being
cloned in a particular way, differently from the other vertices. This becomes possible
using a multivariate version of the interlace polynomial, in which each vertex has its
own variable. Once we can express the effect of cloning one vertex by an appropriate
substitution of the vertex variable in the multivariate interlace polynomial, cloning all
the vertices amounts to a simple substitution of all vertex variables and brings us back
to a bivariate interlace polynomial. This procedure has been applied successfully to the
Tutte polynomial [Sok05, BM06].

We choose the following multivariate interlace polynomial, which is similar to the
multivariate Tutte polynomial of Sokal [Sok05] and a specialization of the multivariate
interlace polynomial defined by Courcelle [Cou07].

Definition 2.2. Let G = (V,E) be an undirected graph. For each v ∈ V let xv be an
indeterminate. Writing xA for

∏
v∈A xv, we define the following multivariate interlace

polynomial:
P (G;u,x) =

∑
A⊆V

xAurk(G[A]).
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Substituting each xv in P (G;u,x) by x, we obtain another bivariate interlace polynomial:

P (G;u, x) =
∑
A⊆V

x|A|urk(G[A]).

An easy calculation proves that q and P are closely related:

Lemma 2.3. Let G be a graph. Then we have the polynomial identities q(G;x, y) =
P (G; x−1

y−1 , y − 1) and P (G;u, x) = q(G;ux + 1, x + 1).

2.2. Evaluating Graph Polynomials

Given ξ, υ ∈ Q we want to analyze the following computational problem:
Input: Graph G
Output: q(G; ξ, υ)

This is what we mean by “evaluating the interlace polynomial q at the point (ξ, υ)”. As
an abbreviation for this computational problem we write

q(ξ, υ),

which should not be confused with the expression q(G; ξ, υ) denoting just a value in Q.
Evaluating other graph polynomials such as P , qN , qR and I is defined accordingly.

If P1 and P2 are computational problems we use P1 �T P2 (P1 �m P2) to denote a
polynomial time Turing reduction (polynomial time many-one reduction, resp.) from P1

to P2. For instance, Lemma 2.3 gives

Corollary 2.4. For ξ, υ ∈ Q̃, υ 6= 1, we have q(ξ, υ) �m P ( ξ−1
υ−1 , υ− 1). For µ, ξ ∈ Q̃ we

have P (µ, ξ) �m q(µξ + 1, ξ + 1).

Here Q̃ denotes some finite dimensional field extension Q ⊆ Q̃ ⊆ R, which has a
discrete representation. As

√
2 will play an important role but we are not able to use

arbitrary real numbers as the input for a Turing machine, we use Q̃ instead of Q or R.
We fix some Q̃ for the rest of this paper. This construction is done in the spirit of Jaeger,
Vertigan, and Welsh [JVW90] who also propose to adjoin a finite number of points to Q
in order to talk about the complexity at irrational points. To some extent, this is an ad
hoc construction, but it is sufficient for this work.

3. Graph Transformations for the Interlace Polynomial

Now we describe our graph transformations, the cloning and combing of vertices.
The main results of this section are Theorem 3.3 and Theorem 3.5 which describe the
effect of cloning and combing on the interlace polynomial.

3.1. Cloning

Cloning vertices in the graph yields our first graph transformation.
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Cloning one vertex. Let G = (V,E) be a graph. Let a ∈ V be some vertex (the one
which will be cloned) and N the set of neighbors of a, V ′ = V \ {a} and M = V ′ \ N .
The graph G with a cloned, Gaa, is obtained out of G in the following way: Insert a new
isolated vertex a′. Connect a′ to all vertices in N . If a does not have a self loop, we are
done. Otherwise connect a and a′ and insert a self loop at a′. Thus, adjacency matrices
of the original (cloned, resp.) graph are

B =

a N M
a b 1 0
N 1 A11 A12

M 0 A21 A22

and Baa =

a′ a N M
a′ b b 1 0
a b b 1 0
N 1 1 A11 A12

M 0 0 A21 A22

, resp, (3.1)

where b = 1 if a has a self loop and b = 0 otherwise. As the first column of Baa equals
its second column, as well as the first row equals the second row, we can remove the
first row and the first column of Baa without changing the rank. This also holds when
we consider the adjacency matrices of G[A] (Gaa[A], resp.) instead of G (Gaa resp.) for
A ⊆ V ′. Thus we have for any A ⊆ V ′

rk(Gaa[A]) = rk(G[A]), (3.2)

rk(Gaa[A ∪ {a, a′}]) = rk(Gaa[A ∪ {a}]) = rk(Gaa[A ∪ {a′}]) = rk(G[A ∪ {a}]). (3.3)

Let x = (xv)v∈V (Gaa) be a labeling of the vertices of Gaa by indeterminates. Define
X to denote the following labeling of the vertices of G: Xv := xv for all v ∈ V ′,
Xa := (1 + xa)(1 + xa′)− 1 = xa + xa′ + xaxa′ . Then we have

Lemma 3.1. P (Gaa;u,x) = P (G;u,X).

Proof. On the one hand we have

P (Gaa;u,x)

=
∑

A⊆V ′
xA(urk(Gaa[A]) + xau

rk(Gaa[A∪{a}]) + xa′u
rk(Gaa[A∪{a′}]) + xaxa′u

rk(Gaa[A∪{a,a′}]))

=
∑

A⊆V ′
xA(urk(G[A]) + (xa + xa′ + xaxa′)urk(G[A∪{a}])) by (3.2), (3.3).

On the other hand we have

P (G;u,X) =
∑

A⊆V ′
XA(urk(G[A]) + Xau

rk(G[A∪{a}]))

=
∑

A⊆V ′
xA(urk(G[A]) + (xa + xa′ + xaxa′)urk(G[A∪{a}])).
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Cloning all vertices. Fix some k. Given a graph G, the graph Gk is obtained by cloning
each vertex of G exactly k− 1 times. Note that the result of the cloning is independent
of the order in which the different vertices are cloned. For a ∈ V (G) let a1, . . . , ak be the
corresponding vertices in Gk. For a vertex labeling x of Gk we define the vertex labeling
X of G by Xa = (1 + xa1)(1 + xa2) · · · (1 + xak

)− 1 for a ∈ V (G). Applying Lemma 3.1
repeatedly we obtain

Lemma 3.2. P (Gk;u,x) = P (G;u,X).

Substitution of xv by x for all vertices v gives

Theorem 3.3. Let G be a graph and Gk be obtained out of G by cloning each vertex of
G exactly k − 1 times. Then

P (Gk;u, x) = P (G;u, (1 + x)k − 1). (3.4)

As we will use it in the proof of Theorem 4.12, we note the following identity for q,
which can be derived from Theorem 3.3 using Lemma 2.3:

q(Gk;x, y) = q(G; (x− 1)
yk − 1
y − 1

+ 1, yk). (3.5)

Theorem 3.3 also implies the following reduction for the interlace polynomial, which
is the foundation for our results in Section 4.

Proposition 3.4. Let B2 = {0,−1,−2} and x be an indeterminate. For µ ∈ Q̃, ξ ∈
Q̃ \ B2 we have P (µ, x) �T P (µ, ξ). (For any µ ∈ Q̃, we write P (µ, x) to denote
the following computational problem: given a graph G compute P (G;µ, x), which is a
polynomial in x with coefficients in Q̃.)

Proof. Let µ and ξ be given such that they fulfill the precondition of the proposition.
Given a graph G =: G1 with n vertices, we build G2, G3, . . . , Gn+1, where Gi is obtained
out of G by cloning each vertex i−1 times. This is possible in time polynomial in n. By
Theorem 3.3, a call to an oracle for P (µ, ξ) with input Gi gives us P (G;µ, (1 + ξ)i − 1)
for i = 1, . . . , n+1. The restriction on ξ guarantees that for i = 1, 2, 3, . . . the expression
(1 + ξ)i − 1 evaluates to pairwise different values. Thus, for P (G;µ, x), which is a
polynomial in x of degree ≤ n, we have obtained the values at n + 1 distinct points.
Using Lagrange interpolation we determine the coefficients of P (G;µ, x).

3.2. Combs

The comb transformation sometimes helps, when cloning has not the desired effect.
Let G = (V,E) be a graph and a ∈ V some vertex. Then we define the k-comb of G
at a as Ga,k = (V ∪ {a1, . . . , ak}, E ∪ {{a, a1}, . . . , {a, ak}}), with a1, . . . , ak being new
vertices.

Using similar arguments as with vertex cloning, combing of vertices yields a point-
to-point reduction for the interlace polynomial, too. The proof of the following theorem
can be found in [BH07].
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Figure 1: Complexity of the interlace polynomials P and q. α =
√

2, β = 1/
√

2

Theorem 3.5. Let G be a graph and Gk be obtained out of G by performing a k-comb
operation at every vertex. Then

P (Gk;u, x) = p(k, u, x)|V (G)|P (G;u, x/p(k, u, x)), (3.6)

where p(k, u, x) = (1 + x)k(xu2 + 1)− xu2.

4. Complexity of evaluating the Interlace Polynomial exactly

The goal of this section is to uncover the complexity maps for P and q as indicated
in Figure 1. While the left hand side (complexity map for P ) is intended to follow the
arguments which prove the hardness, the right hand side (complexity map for q) focuses
on presenting the results.

Remark 4.1. P (µ, 0) and P (1, ξ) are trivially solvable in polynomial time for any µ, ξ ∈
Q̃, as P (G;µ, 0) = 1 and P (G; 1, ξ) = (1 + ξ)|V |.

Thus, on the thick black lines x = 0 and u = 1 in the left half of Figure 1, P can
be evaluated in polynomial time. By Lemma 2.3, these lines in the complexity map for
P correspond to the point (1, 1) and the line x = y, resp., in the complexity map for q,
see the right half of Figure 1.

4.1. Identifying hard points

We want to establish Corollary 4.4 and Remark 4.5 which tell us, that P is #P-hard
to evaluate almost everywhere on the dashed hyperbola in Figure 1 and at (0, 1). To
this end we collect known hardness results about the interlace polynomial.
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Let t(G;x, y) denote the Tutte polynomial of an undirected graph G = (V,E). It
may be defined by its state expansion as

t(G;x, y) =
∑

B⊆E(G)

(x− 1)r(E)−r(B)(y − 1)|B|−r(B), (4.1)

where r(B) is the F2-rank of the incidence matrix of G[B] = (V,B), the subgraph of
G induced by B. (Note that r(B) equals the number of vertices of G[B] minus the
number of components of G[B], which is the rank of B in the cycle matriod of G.) For
details about the Tutte polynomial we refer to standard literature [Tut84, BO92, Wel93].
The complexity of the Tutte polynomial has been studied extensively. In particular, the
following result is known.

Theorem 4.2 ([Ver05]). Evaluating the Tutte polynomial of planar graphs at (ξ, ξ) is
#P-hard for all ξ ∈ Q̃ except for ξ ∈ {0, 1, 2, 1 ±√

2}.
We will profit from this by a connection between the interlace polynomial and the

Tutte polynomial of planar graphs. This connection is established via medial graphs. For
any planar graph G one can build the oriented medial graph ~Gm, find an Euler circuit
C in ~Gm and obtain the circle graph H of C. The whole procedure can be performed in
polynomial time. For details we refer to [EMS06]. We will use

Theorem 4.3 ([ABS04a, End of Section 7]; [EMS06, Theorem 3.1]). Let G be a planar
graph, ~Gm be the oriented medial graph of G and H be the circle graph of some Euler
circuit C of ~Gm. Then q(H; 2, y) = t(G; y, y). Thus we have t(υ, υ) �m P ( 1

υ−1 , υ − 1),
where t(υ, υ) denotes the problem of evaluating the Tutte polynomial of a planar graph
at (υ, υ).

Proof. See the references for q(H; 2, y) = t(G; y, y) and use Lemma 2.3.

We set α =
√

2 and β = 1/
√

2. Let B1 = {±1,±β, 0}. Theorem 4.2 and Theo-
rem 4.3 yield

Corollary 4.4. Evaluating the vertex-nullity interlace polynomial qN is #P-hard almost
everywhere. In particular, we have:

• The problem qN (2) is trivially solvable in polynomial time.
• For any υ ∈ Q̃ \ {0, 1, 2, 1 ± α} the problem qN (υ) = q(2, υ) is #P-hard. Or, in

other words, for any µ ∈ Q̃ \ B1 the problem P (µ, 1/µ) is #P-hard.

Remark 4.5. P (0, 1) is #P-hard, as P (G; 0, 1) equals the number of independent sets
of G, which is #P-hard to compute [Val79].

4.2. Reducing to hard points

The cloning reduction allows us to spread the collected hardness over almost the
whole plane: Combining Corollary 4.4 and Remark 4.5 with Proposition 3.4 we obtain

Proposition 4.6. Let B1 = {±1,±β, 0} and B2 = {0,−1,−2} (as defined on Pages 104
and 102, resp.). Let (µ, ξ) ∈ ((Q̃ \B1) ∪ {0}) × (Q̃ \ B2). Then P (µ, ξ) is #P-hard.
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This tells us that P is #P-hard to evaluate at every point in left half of Figure 1 not
lying on one of the seven thick lines (three of which are solid gray ones, two of which
are solid black ones, and two of which are dashed ones). Using the comb reduction we
are able to reveal the hardness of the interlace polynomial P on the lines x = −1 and
x = −2:

Proposition 4.7. For µ ∈ Q̃ \ B1 the problem P (µ,−1) is #P-hard.

Proposition 4.8. For µ ∈ ((Q̃ \B1) \ {1
2}) ∪ {0} the problem P (µ,−2) is #P-hard.

The proofs of the preceding propositions can be found in [BH07].

4.3. Summing up

First we summarize our knowledge about P .

Theorem 4.9. Let β = 1/
√

2.
(1) P (µ, ξ) is computable in polynomial time on the lines µ = 1 and ξ = 0.
(2) For (µ, ξ) ∈ (

(Q̃ \ {−1,−β, β, 1}) × (Q̃ \ {0})) \ {(1/2,−2)} the problem P (µ, ξ)
is #P-hard.

Proof. Summary of Remark 4.1, Proposition 4.6, Proposition 4.7, Proposition 4.8. The
hardness of P (0,−1) follows from Corollary 4.10.

We have not given any argument why P (0,−1) is #P-hard. This follows from
[AM07].

Corollary 4.10. Evaluating the independent set polynomial I(λ) = P (0, λ) = q(1, 1+λ)
is #P-hard at all λ ∈ Q̃ except at λ = 0, where it is computable in polynomial time.

Proof. The matching generating polynomial of a graph G is defined as
∑

k≥0 m(G; k)xk,
where m(G; k) denotes the number of matching of size k in G. [AM07] proves that g(ξ)
is #P-hard for all ξ ∈ R \ {0}. As the matchings of a graph are the independent sets of
its line graph, the result follows.

Remark 4.11. Note that, except for the point (0,−1), the statement of Corollary 4.10 is
also a direct consequence of Proposition 4.6 and Proposition 4.8, without using [AM07].

Now we turn to the complexity of q, see also the right half of Figure 1.

Theorem 4.12. The two-variable interlace polynomial q is #P-hard to evaluate almost
everywhere. In particular, we have:

(1) q(ξ, υ) is computable in polynomial time on the line ξ = υ.
(2) Let ξ ∈ Q̃ \ {1} and x be an indeterminate. Then q(ξ, 1) is as hard as computing

the whole polynomial q(x, 1).
(3) q(ξ, υ) is #P-hard for all

(ξ, υ) ∈ {(ξ, υ) ∈ Q̃2 | υ 6= ±(ξ − 1) + 1 and υ 6= ±
√

2(ξ − 1) + 1 and

υ 6= 1 and (ξ, υ) 6= (0,−1)}.
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Proof of Theorem 4.12 (Sketch). (1) and (3) follow from Remark 4.1 and Theorem 4.9
using Lemma 2.3. For ξ 6= 1, (3.5) gives q(Gk; ξ, 1) = q(G; k(ξ − 1) + 1, 1), which yields
enough points for interpolation in the same way as in Proposition 3.4 using k = 1, 2, 3, . . .
This proves (2).

Theorem 4.12 implies

Corollary 4.13. Let β = 1/
√

2. Evaluating the vertex-rank interlace polynomial qR(G;x)
is #P-hard at all ξ ∈ Q̃ except at ξ = 0, 1− β, 1 + β (complexity open) and ξ = 2 (com-
putable in polynomial time).

5. Inapproximability of the Independent Set Polynomial

Provided we can evaluate the independent set polynomial at some fixed point,
cloning (combing, resp.) of vertices allows us to evaluate it at very large points. In
this section we exploit this to prove that the independent set polynomial is hard to
approximate. Similar results are shown in [GJ07] for the Tutte polynomial.

Definition 5.1. Let λ ∈ Q̃. By a randomized 2nk
-approximation algorithm for I(λ)

we mean a randomized algorithm, that, given a graph G with n nodes, runs in time
polynomial in n and returns Ĩ(G;λ) ∈ Q̃ such that

Pr[2−nk
I(G;λ) ≤ Ĩ(G;λ) ≤ 2nk

I(G;λ)] ≥ 3
4
.

In [GJ07], (non)approximability in the weaker sense of (not) admitting an FPRAS
is considered.

Definition 5.2. Let λ ∈ Q̃. A fully polynomial randomized approximation scheme
(FPRAS) for I(λ) is a randomized algorithm, that given a graph G with n nodes and
an error tolerance ε, 0 < ε < 1, runs in time polynomial in n and 1/ε and returns
Ĩ(G;λ) ∈ Q̃ such that

Pr[2−εI(G;λ) ≤ Ĩ(G;λ) ≤ 2εI(G;λ)] ≥ 3
4
.

Lemma 5.3. For every λ ∈ Q̃, 0 6= |1+λ| 6= 1, and every k ∈ N there is no randomized
polynomial time 2nk

-approximation algorithm for I(λ) unless RP = NP.

Theorem 5.4. For every λ ∈ Q̃ \ {−1, 0} and every k ∈ N there is no randomized
polynomial time 2nk

-approximation algorithm (and thus also no FPRAS) for I(λ) unless
RP = NP.

Proof. Lemma 5.3 gives the inapproximability at λ ∈ Q̃\{−2,−1, 0}. By (3.6) we could
turn an approximation algorithm for I(−2) into an approximation algorithm for I(2)
which would imply RP = NP by Lemma 5.3.
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Proof of Lemma 5.3. Assume we have λ, 0 6= |1 + λ| 6= 1, k ∈ N and a randomized 2nk
-

approximation algorithm A for I(λ). Given a graph G, Theorem 3.3 and Theorem 3.5,
resp., will allow us to evaluate the independent set polynomial at a point ξ with |ξ| that
large, that an approximation of I(G; ξ) can be used to recover the degree of I(G;x), which
is the size of a maximal independent set of G. As computing this number is NP-hard,
a randomized 2nk

-approximation algorithm for I(G;λ) would yield an RP-algorithm for
an NP-hard problem, which implies RP = NP.

Let G = (V,E) be a graph with |V | = n. We distinguish two cases. If |1 + λ| > 1,
we choose a positive integer l such that with ξ := (1 + λ)l − 1 we have

|ξ| ≥ 2nk+1
. (5.1)

This can be achieved by choosing l = poly(n). (Let m be an integer such that |λ + 1| ≥
21/(nm). Then we can choose l = (nk+1 + 1)nm.) If 0 < |1 + λ| < 1, we choose a positive
integer l such that with ξ := λ

(1+λ)l we have (5.1). By Theorem 3.3 (Theorem 3.5, resp.)

we have I(G; ξ) = I(Gl;λ) (I(G; ξ) = (1 + λ)−l|V |I(Gl;λ), resp.). Algorithm A returns
on input Gl within time poly(nl) = poly(n) an approximation Ĩ(Gl;λ), such that with
Ĩ(G; ξ) := Ĩ(Gl;λ) (Ĩ(G; ξ) := Ĩ(Gl;λ)

(1+λ)l|V | , resp.) we have

2−nk
I(G; ξ) ≤ Ĩ(G; ξ) ≤ 2nk

I(G; ξ) (5.2)

with high probability.
Let c be the size of a maximal independent set of G, and let N be the number of

independent sets of maximal size. We have

I(G;x) = Nxc +
∑

0≤j≤c−1

i(G; j)xj

and thus ∣∣∣I(G; ξ)
ξc

−N
∣∣∣ ≤ ∑

0≤j≤c−1

i(G; j)|ξ|j−c

≤ c2n|ξ|−1 ≤ 2log n+n−nk+1
<

1
2

(5.3)

for large n. If we could evaluate I(G; ξ) exactly, we could try all c ∈ {1, . . . , n} to find
the one for which I(G;ξ)

ξc is a good estimation for N , 1 ≤ N ≤ 2n. This c is unique by
(5.1). The following calculation shows that this is also possible using the approximation
algorithm A.

Using A we compute Ñ(c̃) := Ĩ(G;ξ)
ξc̃ for all c̃ ∈ {1, . . . , n}. We claim that c is the

unique c̃ with
2−nk−1 ≤ Ñ(c̃) ≤ 2nk+n+1. (5.4)

Let us prove this claim. As 1 ≤ N ≤ 2n and by (5.3), we know that
1
2
≤ I(G, ξ)

ξc
≤ 2n+1. (5.5)

Thus, by (5.2), c̃ = c fulfills (5.4).



108 M. BLÄSER AND C. HOFFMANN

On the other hand, when c̃ ≤ c− 1 we have

|Ñ(c̃)|
(5.2),(5.5)

≥ 2−nk−1|ξ|
(5.1)

≥ 2nk+1−nk−1 > 2nk+n+1

for large n. When c̃ ≥ c + 1 we have |Ñ(c̃)| < 2−nk−1 by similar arguments. This shows
that any integer c̃, c̃ 6= c, does not fulfill (5.4). Thus, c can be found in randomized
polynomial time using A.
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[ABS04a] Richard Arratia, Béla Bollobás, and Gregory B. Sorkin. The interlace polynomial of a graph.
J. Comb. Theory Ser. B, 92(2):199–233, 2004.
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Abstract. We address the problem of efficient data gathering in a wireless network
through multi-hop communication. We focus on the objective of minimizing the maxi-
mum flow time of a data packet. We prove that no polynomial time algorithm for this
problem can have approximation ratio less than Ω(m1/3) when m packets have to be
transmitted, unless P = NP. We then use resource augmentation to assess the perfor-
mance of a FIFO-like strategy. We prove that this strategy is 5-speed optimal, i.e., its
cost remains within the optimal cost if we allow the algorithm to transmit data at a
speed 5 times higher than that of the optimal solution we compare to.

1. Introduction

Wireless networks are used in many areas of practical interest, such as mobile phone
communication, ad-hoc networks, and radio broadcasting. Moreover, recent advances in
miniaturization of computing devices equipped with short range radios have given rise to
strong interest in sensor networks for their relevance in many practical scenarios (environ-
ment control, accident monitoring etc.) [1, 16].

In many applications of wireless networks data gathering is a critical operation for
extracting useful information from the operating environment: information collected from
multiple nodes in the network should be transmitted to a sink that may process the data, or
act as a gateway to other networks. We remark that in the case of wireless sensor networks
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sensor nodes have limited computation capabilities, thus implying that data gathering is
an even more crucial operation. For this reasons, data gathering in sensor networks has
received significant attention in the last few years; we cite just a few contributions [1, 10].
The problem finds also applications in Wi-Fi networks when many users need to access a
gateway using multi-hop wireless relay-routing [5].

In this paper we focus on the problem of designing and analysing simple distributed
algorithms that have good approximation guarantees in realistic scenarios. Namely, we
are interested in algorithms that are not only distributed but that are fast and can be
implemented with limited overhead: sophisticated algorithms that require solving complex
combinatorial optimization problems are impractical for implementations and have mainly
theoretical interest.

In order to formally assess the performance of the proposed algorithms we focus on the
minimization of the maximum flow, i.e. minimizing the maximum time spent in the system
by a packet. Almost all of the previous literature considered the objective of minimizing
the completion time (see for example [3–5, 10, 11, 13, 17]). Flow minimization is a largely
used criterion in scheduling theory that more suitably allows to assess the quality of service
provided when multiple requests occur over time [7, 8, 12, 15].

The problem of modelling realistic scenarios of wireless sensor networks is complicated
by the many parameters that define the communication among nodes and influence the
performance of transmissions (see for example [1, 18]). In the sequel we assume that
stations have a common clock, hence time can be divided into rounds. Each node is
equipped with a half-duplex interface; as a result it cannot send and receive during the
same round. Typically, not all nodes in the network can communicate with each other
directly, hence packets have to be sent through several nodes before they can be gathered
at the sink; this is called multi-hop routing.

The key issue in our setting is interference. A radio signal has a transmission radius,
the distance over which the signal is strong enough to send data, and an interference
radius, the distance over which the radio signal is strong enough to interfere with other
radio signals. If node i is transmitting data to node j we have interference (or collision)
in communication if j also receives signals from other stations at the same time. Following
Bermond et al. [5], we model the wireless network using a graph and a parameter dI . An
edge between nodes i and j represents the fact that stations i and j are within transmission
range of each other. The parameter dI models the interference radius: a node j successfully
receives a signal if one of his neighbors is transmitting, and no other node within distance
dI from j is transmitting in the same round. The case dI = 1 has been extensively
considered earlier (see e.g. [4, 10, 11]); but we remark that assuming dI = 1 or assuming
that interferences/transmissions are modeled according to the well known unit disk graph
model does not adequately represent interferences as they occur in practice [18].

Kumar et al. [14] give an overview of other interference models, including the so-
called distance-2 interference model. The distance-2 interference model is similar to our
interference model with dI = 1, plus the extra constraint that no two transmitting nodes
should be adjacent; we observe that this requirement might pose unnecessary conditions.

The Wireless Gathering Problem. An instance of the Wireless Gathering Problem
(Wgp) is given by a static wireless network which consists of several stations (nodes) and
one base station (the sink), modeled as a graph, together with the interference radius dI ;
over time data packets arrive at stations that have to be gathered at the base station.
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A feasible solution of an instance of Wgp is a schedule without interference which
determines for each packet both route and times at which it is sent. As we will see in
Section 2 this can be modeled as a clean combinatorial optimization problem. We consider
two different objectives. One is to minimize completion time, i.e., the time needed to gather
all the packets. Another, perhaps more natural, objective is minimization of maximum
flow time of packets, i.e., the maximum difference between release time and arrival time
at the sink of a packet. We call these two problems C-Wgp and F-Wgp, respectively.

Related work. The Wireless Gathering Problem was introduced by Bermond et al.
[5] in the context of wireless access to the Internet in villages. The authors proved that the
problem of minimizing the completion time is NP-hard and presented a greedy algorithm
with asymptotic approximation ratio at most 4. In [6] we considered arbitrary release
times and proposed an on-line greedy algorithm with the same approximation ratio.

Bar-Yehuda et al. [4] considered distributed algorithms for C-Wgp. Their model
is a special case of our model, where dI = 1 and there are no release dates. Kumar et
al. [13] studied the more general end-to-end transmission problem, where each of the pack-
ets may have a different source and destination in the network. Under the assumption
of a distance-2 interference model, Kumar et al. considered the objective of minimizing
the maximum completion time of the schedule, and presented hardness results and ap-
proximation algorithms for arbitrary graphs and disk graphs. They presented distributed
algorithms for packet scheduling over fixed routing paths, and used a linear program in
order to determine the paths. By contrast, we use a shortest paths tree to fix the routing
paths, which is easier to implement in a distributed setting.

Florens et al. [10] considered the minimization of the completion time of data gathering
in a setting with unidirectional antennas. They provided a 2-approximation algorithm for
tree networks and an optimal algorithm for line networks. Gargano and Rescigno [11] gave
a polynomial time algorithm for the special case of the same model in which each node
has exactly one packet to send.

Another related problem is to compute the throughput of a wireless network. This has
been studied for example in [14]. We also observe that many papers study broadcasting
in wireless networks [3, 17]. However, we stress that data gathering and broadcasting are
substantially different tasks in the context of packet networks. In particular, the idea of
reversing a broadcast schedule to obtain a gathering schedule (which works when data can
be aggregated) cannot be used.

Main results. In Section 3 we give inapproximability results for F-Wgp. We prove
that F-Wgp on m packets cannot be approximated within Ω(m1/3), unless P = NP. We
also show that any algorithm using shortest paths in order to route the packets to the sink
is no better than an Ω(m)-approximation.

In Section 4 we present a polynomial time resource augmented approximation algo-
rithm for F-Wgp which is in fact an on-line algorithm. We use resource augmentation
because F-Wgp is hard to approximate within a reasonable factor.

Resource augmentation was introduced in the context of machine scheduling in [12]:
the idea is to study the performance of on-line algorithms which are given processors faster
than the adversary. Intuitively, this has been done to compensate an on-line scheduler for
its lack of future information. Such an approach has led to a number of interesting results
showing that moderately faster processors are sufficient to attain satisfactory performance
guarantee for various scheduling problems, e.g. [8, 12]
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Surprisingly, in the case of F-Wgp a modest resource augmentation allows to com-
pensate not only the lack of future information but also the approximation hardness of
the problem: we present a σ-speed optimal algorithm for F-Wgp and C-Wgp; σ depends
on dI and is at most 5.

We remark that our algorithm can be implemented using local information only: in
particular, it suffices that a node is informed about the state of nodes within distance
dI + 1. On the other hand, our lower bounds hold for centralized algorithms as well.

2. Mathematical preliminaries

We formulate Wgp as a graph optimization problem. The model we use can be seen
as a generalization of a well-known model for packet radio networks [3, 4].

An instance of Wgp consists of a graph G = (V,E), a sink node s ∈ V , a positive
integer dI , and a set of data packets J = {1, 2, . . . ,m}. Each packet j ∈ J has an origin
oj ∈ V and a release date rj ∈ Z+.

We assume that time is discrete; we call a time unit a round. The rounds are numbered
0, 1, 2, . . .. During each round a node may either be sending a packet, be receiving a packet
or be inactive. If two nodes u and v are adjacent, then u can send a packet to v during a
round. If node u sends a packet j to v in some round, then the pair (u, v) is said to be a
call from u to v. For each pair of nodes u, v ∈ V , the distance between u and v, denoted
by d(u, v), is the length of a shortest path from u to v in G. Two calls (u, v) and (u ′, v′)
interfere if they occur in the same round and either d(u′, v) ≤ dI or d(u, v′) ≤ dI ; otherwise
the calls are compatible. For this reason, the parameter dI is called the interference radius.
The special case of a unit interference radius corresponds to the above cited model of Bar-
Yehuda et al. [3].

For every packet j ∈ J , the release date rj specifies the time at which the packet
enters the network, i.e. packet j cannot be sent before round rj. In the off-line version the
entire instance is completely known at time 0; in the on-line version information about a
packet becomes known only at its release date.

A solution for a Wgp instance is a schedule of compatible calls such that all packets
are ultimately sent to the sink. Notice that while in principle each radio transmission can
broadcast the same packet to multiple destinations, in the gathering problem having more
than one copy of the same packet does not help, as it suffices to keep the one that will
arrive first at the sink. Thus, we assume that at any time there is a unique copy of each
packet. Also, in the model we consider, packets cannot be aggregated.

Given a schedule, let xt
j be the unique node holding packet j at time t. The integer

Cj := min{t : xt
j = s} is called the completion time of packet j, while Fj := Cj − rj is the

flow time of packet j. In this paper we are interested in the minimization of maxj Fj (F-

Wgp). As an intermediate step in the analysis of F-Wgp, we also study the minimization
of maxj Cj (C-Wgp).

Some auxiliary notation, we denote by δj := d(oj , s) the minimum number of calls
required for packet j to reach s. We also define γ := dI + 2, and γ0 :=

⌊
(dI + 1)/2

⌋
.

We analyze the performance of our algorithms using the standard worst case analysis
techniques of approximation ratio analysis, as well as resource augmentation. Given a
Wgp instance I and an algorithm ALG, we define C(I) as the cost of ALG and C∗(I)
as the cost of the optimal solution on I. A polynomial-time algorithm is called an α-
approximation if for any instance I we have C(I) ≤ α · C∗(I).
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Figure 1: The construction in the proof of Theorem 3.2

In the resource augmentation paradigm, the algorithm is allowed to use more resources
than the adversary. We consider resource augmentation based on speed, in which we as-
sume that the algorithm can schedule compatible calls with higher speed than the optimal
algorithm. For any σ ≥ 1, we call an algorithm a σ-speed algorithm if the time used by
the algorithm to schedule a set of compatible calls is 1/σ time units. See [2] for more
information on approximation algorithms, and [12] for more on resource augmentation.

3. Inapproximability

In this section we prove an inapproximability result for F-Wgp. To prove this result
we consider the so-called induced matching problem. A matching M in a graph G is
an induced matching if no two edges in M are joined by an edge of G. The following
rather straightforward relation between compatible calls in a bipartite graph and induced
matchings will be crucial in the following.

Proposition 3.1. Let G = (U, V,E) be a bipartite graph with node sets (U, V ) and edge
set E. Then, a set M ⊆ E is an induced matching if and only if the calls corresponding
to edges of M , directed from U to V , are all pairwise compatible, assuming dI = 1.

Induced Bipartite Matching (IBM)
Instance: a bipartite graph G and an integer k.
Question: does G have an induced matching of size at least k?

We will use the fact that the optimization version of IBM is hard to approximate:
there exists an α > 1 such that it is NP-hard to distinguish between graphs with induced
matchings of size k and graphs in which all induced matchings are of size at most k/α.
The current best bound for α is 6600/6599 [9].

Theorem 3.2. Unless P = NP, no polynomial-time algorithm can approximate F-Wgp

within a ratio better than Ω(m1/3).

Proof. Let (G, k) be an instance of IBM, G = (U, V,E). We construct a 4-layer network
with a unique source o (first layer), a clique on U and a clique on V (middle layers), and a
sink s (last layer). Source o is adjacent to each node in U , and s to each node in V . The
edges between U and V are the same as in G (see Figure 1). We set dI = 1.

The F-Wgp instance consists of m := (1−1/α)−1(1+k/α)(2k+1)k = Θ(k3) packets
with origin o. They are divided into m/k groups of size k. Each packet in the hth group
has release date (k + 1)h, h = 0, . . . ,m/k − 1. Rounds (k + 1)h till (k + 1)(h + 1) − 1
together are a phase.

We prove that if G has an induced matching of size k, there is a gathering schedule
of cost 2k + 1, while if G has no induced matching of size more than k/α, every schedule
has cost at least (2k + 1)k = (2k + 1)Θ(m1/3). The theorem then follows directly.
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Assume G has an induced matching M of size k, say (ui, vi), i = 0 . . . k − 1. Then
consider the following gathering schedule. In each phase, the k new packets at o are
transmitted, necessarily one-by-one, to layer U while old packets at layer V (if any) are
absorbed at the sink; then, in a single round, the k new packets move from U to V via the
matching edges. More precisely, each phase can be scheduled in k + 1 rounds as follows:
1. for i = 0, . . . , k − 1 execute in the ith round the two calls (o, ui) and (vi+1 mod k, s);
2. in the kth round, execute simultaneously all the calls (ui, vi), i = 0, . . . , k − 1.
The maximum flow time of the schedule is 2k+ 1, as a packet released in phase h reaches
the sink before the end of phase h+ 1.

In the other direction, assume that each induced matching of G is of size at most k/α.
By Proposition 3.1, at most k/α calls can be scheduled in any round from layer U to layer
V . We ignore potential interference between calls from o to U and calls from V to s; doing
so may only decrease the cost of a schedule. As a consequence, we can assume that each
packet follows a shortest path from o to s. Notice however that, due to the cliques on the
layers U and V , no call from U to V is compatible with a call from o to U , or with a call
from V to s.

Let mo and mU be the number of packets at o and U , respectively, at the beginning
of a given phase. Also, let β := 1 + k/α. We associate to the phase a potential value
ψ := βmo+mU , and we show that at the end of the phase the potential will have increased
proportionally to k. Let co and cU denote the number of calls from o to U and from U
to V , respectively, during the phase. Since a phase consists of k + 1 rounds, and in each
round at most k/α calls are scheduled from U to V , we have co + cU/(k/α) ≤ k + 1, or,
equivalently since k/α = β − 1,

(β − 1)co + cU ≤ (β − 1)(k + 1). (3.1)

If m′
o, m′

U are the number of packets at o and U at the beginning of the next phase, and
ψ′ = βm′

o +m′
U is the new potential, we have

m′
o = mo + k − co

m′
U = mU + co − cU

ψ′ − ψ = β(m′
o −mo) +m′

U −mU

= β(k − co) + co − cU

= βk − (β − 1)co − cU

≥ βk − (β − 1)(k + 1)
= k − (β − 1)
= (1− 1/α)k

where the inequality uses (3.1).
Thus, consider the situation after m/k phases. The potential has become at least

Ψ := (1 − 1/α)m. By definition of the potential, this implies that at least Ψ/β = (1 −
1/α)(1+k/α)−1m = (2k+1)k packets reside at either o or U ; in particular, they have been
released but not yet absorbed at the sink. Since the sink cannot receive more than one
packet per round, this clearly implies a maximum flow time of (2k+1)k = (2k+1)Θ(m1/3)
for one of these packets.

In cases where the packets are routed via shortest paths to the sink – a behavior
common to many gathering protocols – the result of Theorem 3.2 can be strengthened
further.
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Theorem 3.3. No algorithm that routes packets along shortest paths can approximate
F-Wgp within a ratio better than Ω(m).

Proof. Consider the instance in Figure 2. The adversary releases a message at each of the
nodes u1, u2, u3 at times 5i, i = 0, . . . ,m/3. Any shortest paths following algorithm sends
all messages via u, yielding maxj Cj ≥ 3m. As rj ≤ 5m/3 for each message j, we have
maxj Fj ≥ 3m− 5m/3 = 4m/3.

The adversary sends each message over the path which does not contain u. We claim
that it is possible to do this so that all messages released at time 5i arrive at the sink in
round 5(i+1)+1 latest. If the claim holds, then we have maxj F

∗
j ≤ 5(i+1)+1− 5i = 6,

from which the theorem will follow.
We prove the claim by induction. Suppose the claim holds for messages released in

round 5(i − 1). Then, the last message released at time 5(i − 1) latest is sent to the sink
in round 5i. This message does not block any message released in round 5i. Now, the
adversary sends the messages released in round 5i to a node adjacent to s in 3 rounds,
i.e. in the rounds 5i, 5i + 1 and 5i + 2. Then, it requires another 3 rounds to send all 3
messages to the sink, i.e. the rounds 5i+ 3, 5i+ 4, and 5(i+ 1). This proves the theorem,
since maxj Fj/maxj F

∗
j ≥ (4m/3)/6 = 2m/9.

su
u1

u2

u3

Figure 2: No shortest path based algorithm is better than Ω(m)-approximate (dI = 1).

4. Approximation Algorithms

In this section we present and analyze a FIFO algorithm for Wgp. First, we show
that FIFO is a 5-approximation for C-Wgp. Note that the best approximation algorithm
known is 4-approximate; the main interest in analyzing FIFO is that we use it as a
subroutine in an algorithm for F-Wgp which uses resource augmentation. Next, we prove
that this algorithm with resource augmentation is a σ-speed optimal algorithm, for any
σ ≥ 5, for both C-Wgp and F-Wgp.

4.1. An approximation algorithm for C-WGP

We will present an approximation algorithm for C-Wgp. The algorithm we consider
is actually a special case of a general scheme for which we can prove an upper bound on
the completion time [6]. In this scheme, called Priority Greedy, each packet is assigned
a unique priority based on some algorithm-specific rules. Then, in each round, packets are
considered in order of decreasing priority and are sent towards the sink as long as there is
no interference with higher priority packets.

Algorithm 4.1 (Priority Greedy). In every round, consider the available packets in
order of decreasing priority, and send each next packet along a shortest path from its
current node to s, as long as this causes no interference with any higher-priority packet.
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We first derive upper bounds on the completion time Cj of each packet j in a Priority

Greedy solution.
We say that packet j is blocked in round t if t ≥ rj but j is not sent in round t. Note

that in a Priority Greedy algorithm a packet can only be blocked due to interference
with a higher priority packet. We define the following blocking relation on a Priority

Greedy schedule: k ≺ j if in the last round in which j is blocked, k is the packet closest
to j that is sent in that round and has a priority higher than j (ties broken arbitrarily).
The blocking relation induces a directed graph F = (J,A) on the packet set J with an
arc (k, j) for each k, j ∈ J such that k ≺ j. Observe that, for any Priority Greedy

schedule, F is a directed forest and the root of each tree of F is a packet which is never
blocked. For each j let T (j) ⊆ F be the tree of F containing j, b(j) ∈ J be the root
of T (j), and P (j) the set of packets along the path in F from b(j) to j. Finally, define
πj := min{δj , γ0} and Rj := rj + δj − πj .

We have upper and lower bounds on the completion time of a packet.

Lemma 4.2 ([6]). For each packet j ∈ J , Cj ≤ Rb(j) + (γ/γ0) ·
∑

i∈P (j) πi.

Lemma 4.3 ([6]). Let S ⊆ J be a nonempty set of packets, and let C ∗
i denote the

completion time of packet i in some feasible schedule. Then there is k ∈ S such that
maxi∈S C

∗
i ≥ Rk +

∑
i∈S πi.

Our algorithm is based on a version of the Priority Greedy scheme, in which a
higher priority is given to packets with earlier release dates (ties broken arbitrarily). We
call this algorithm FIFO after the famous first-in-first-out algorithm in scheduling and
service systems, though in our case packets do not necessarily arrive in order of their
priority at the sink.

Theorem 4.4. FIFO is a (1 + γ/γ0)-approximation algorithm for C-Wgp.

Proof. Let j be the packet having maximum Cj, and consider T (j), the tree containing j
in the forest induced by the blocking relation. We can apply Lemma 4.3 with S = T (j)
to obtain

max
i∈T (j)

C∗
i ≥ rk + δk +

∑
i∈T (j)

i6=k

πi (4.1)

where k is some packet in T (j). On the other hand, by using Lemma 4.2,

Cj ≤ Rb(j) +
γ

γ0

∑
i∈P (j)

πi (4.2)

= rb(j) + δb(j) − πb(j) +
γ

γ0

∑
i∈P (j)

πi

≤ rb(j) +
γ

γ0
min{δk, γ0}+

γ

γ0

∑
i∈P (j)

i6=k

πi + δb(j)

≤ γ

γ0

(
rk + δk +

∑
i∈T (j)

i6=k

πi

)
+ δb(j).

where we used the fact that, by definition of FIFO, we have rb(j) ≤ rk. Equations (4.1)
and (4.2), and observation maxi∈T (j)C

∗
i ≥ δb(j) prove the theorem.
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It is straightforward to verify that 2 ≤ γ/γ0 ≤ 4 for all dI , while γ/γ0 = 3 for dI = 1.

Corollary 4.5. FIFO is a 5-approximation algorithm for C-Wgp. When dI = 1, FIFO

is a 4-approximation for C-Wgp.

The bound on the approximation ratio of FIFO is slightly worse than that of a
Priority Greedy algorithm based on Rj, which is a γ/γ0-approximation. In fact, we
also have an example on which FIFO is strictly worse than a γ/γ0-approximation (we
omit the example here due to space limitations). However, we remark that FIFO is both
natural and simple; and, perhaps more importantly, Theorem 4.4 will be instrumental in
proving good bounds for the minimization of maximum flow time, where we will use FIFO

as a subroutine of our algorithm.

4.2. A resource augmentation bound for F-WGP

Motivated by the hardness result of Section 3, we study algorithms under resource
augmentation. In this context we study σ-speed algorithms, in which data packets are
sent at a speed that is σ times faster than the solution we compare to.

Algorithm 4.6 (σ-FIFO).
1. Create a new instance I ′ by multiplying release dates: r′j := σrj;
2. Run FIFO on I ′;
3. Speed up the schedule thus obtained by a factor of σ.

The schedule constructed by σ-FIFO is a feasible σ-speed solution to the original
problem because of step 1. We will show that σ-FIFO is optimal for both C-Wgp and
F-Wgp, if σ ≥ γ/γ0 + 1. The following Lemma is crucial.

Lemma 4.7. If σ-FIFO is a σ-speed optimal algorithm for C-Wgp, then it is also a
σ-speed optimal algorithm for F-Wgp.

Proof. Let F ∗
j and Fj,σ be the flow time of data packet j in an optimal solution and in a

σ-FIFO solution, respectively, to F-Wgp and let C ∗
j and Cj,σ be the completion time of

data packet j in the same solutions. Suppose σ-FIFO is a σ-speed optimal algorithm for
C-Wgp, hence we have maxj∈J Cj,σ ≤ maxj∈J C

∗
j . We show that this inequality implies,

for any time t,

max
j∈J, rj=t

Cj,σ ≤ max
j∈J, rj≤t

C∗
j . (4.3)

We prove inequality (4.3) by contradiction. Suppose it is false, then there is an instance
I of minimum size (number of data packets) for which it is false. Also, let t0 be the first
round in such an instance for which it is false. By definition, σ-FIFO schedules each data
packet j definitively in round rj; no data packet is rescheduled in a later round. I.e.,
the algorithm determines the completion time Cj,σ of data packet j in round rj . If the
inequality is false, then we must have

Ci,σ > max
j∈J, rj≤t0

C∗
j , (4.4)

for some data packet i with ri = t0, and because I is a minimum size instance the instance
does not contain any data packets released after round t0. But then (4.4) contradicts
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maxj∈J Cj,σ ≤ maxj∈J C
∗
j . Using (4.3) we have

max
j∈J

Fj,σ = max
t

(
max

j∈J, rj=t
Cj,σ − t

)
≤ max

t

(
max

j∈J, rj≤t
C∗

j − t

)
≤ max

t

(
max

j∈J, rj≤t
F ∗

j

)
= max

j∈J
F ∗

j .

Theorem 4.8. For σ ≥ γ/γ0+1, σ-FIFO is a σ-speed optimal algorithm for both C-Wgp

and F-Wgp.

Proof. By Lemma 4.7, it suffices to prove that σ-FIFO is σ-speed optimal for C-Wgp.
Let Cj be the completion time of any data packet j in the σ-FIFO solution on instance

I, and let C ′
j be the completion time of j in the FIFO solution on the instance I ′ (see the

algorithm description). By construction Cj = C ′
j/σ. Let R′

j := σrj + δj − πj . Then the
upper bound of Lemma 4.2 applied to instance I ′ implies C ′

j ≤ R′
b(j) + (σ− 1)

∑
i∈P (j) πi.

Hence,

Cj = C ′
j/σ ≤

1
σ
R′

b(j) +
σ − 1
σ

∑
i∈P (j)

πi ≤ rb(j) +
1
σ
δb(j) +

σ − 1
σ

∑
i∈P (j)

πi. (4.5)

Since in any solution b(j) has to reach the sink we clearly have

max
i∈P (j)

C∗
i ≥ C∗

b(j) ≥ rb(j) + δb(j). (4.6)

Also, by Lemma 4.3, for some k ∈ P (j),

max
i∈P (j)

C∗
i ≥ Rk +

∑
i∈P (j)

πi ≥ rk +
∑

i∈P (j)

πi ≥ rb(j) +
∑

i∈P (j)

πi, (4.7)

where the last inequality follows from b(j) having lowest release time in P (j), by definition
of FIFO. Combining (4.5), (4.6) and (4.7), we obtain

max
i∈P (j)

C∗
i =

1
σ

max
i∈P (j)

C∗
i +

σ − 1
σ

max
i∈P (j)

C∗
i

≥ 1
σ

(
rb(j) + δb(j)

)
+
σ − 1
σ

(
rb(j) +

∑
i∈P (j)

πi

)
= rb(j) +

1
σ
δb(j) +

σ − 1
σ

∑
i∈P (j)

πi ≥ Cj .

Corollary 4.9. 5-FIFO is a 5-speed optimal algorithm for C-Wgp and F-Wgp.

4.3. Another upper bound for FIFO

As we have seen in Section 3, F-Wgp is extremely hard to approximate without
resource augmentation – no bound better than Ω(m1/3) is possible. Moreover, algorithms
that route along shortest paths cannot do better than Ω(m) (recall Theorem 3.3). In this
section we show that FIFO is in fact an O(m)-approximation for F-Wgp. Thus, apart
from constant factors, FIFO is best possible among algorithms that use shortest paths.
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Theorem 4.10. FIFO is an O(m)-approximation for F-Wgp.

Proof. Since every packet must be gathered at the sink, clearly maxj F
∗
j ≥ maxj δj ≥

maxj πj. Now let j be the packet incurring the maximum flow time in the schedule
obtained by FIFO. Since rj ≥ rb(j) (by definition of FIFO), we have

Rb(j) − rj = rb(j) + δb(j) − πb(j) − rj ≤ δb(j) (4.8)

Using Lemma 4.2 and (4.8), we get

Fj = Cj − rj ≤ Rb(j) − rj +
γ

γ0

∑
i∈P (j)

πi

≤ δb(j) +
γ

γ0

∑
i∈P (j)

πi

≤ max
i
F ∗

i +
γ

γ0
· |P (j)| ·max

i
F ∗

i

≤
(

1 +
γ

γ0
m

)
max

i
F ∗

i .

5. Conclusion

We considered the wireless gathering problem with the objective of minimizing the
maximum flow time of data packets (F-Wgp). We showed that the simple on-line algo-
rithm FIFO has favorable behavior: although the problem is extremely hard to approxi-
mate in general, augmenting the transmission rate by a factor of 5 allows FIFO to remain
within the cost of an optimal solution for the problem without augmentation.

It is an open question whether optimality can be achieved by augmenting the trans-
mission rate by a factor smaller than 5, and whether an efficient algorithm exists that
matches the Ω(m1/3) lower bound on the approximability of F-Wgp.

Another interesting set of questions concerns resource augmentation by allowing the
algorithms to use extra frequencies, meaning that more than one data packet can be sent
simultaneously over the same channel. For instance, does there exist a 5-frequency optimal
FIFO-type algorithm?

For the minimization of the completion time (C-Wgp), the existence of a polynomial
time approximation scheme is still open. It is known that no algorithm that uses shortest
paths to route the data packets to the sink can give an improvement over the currently
best approximation ratio [6]. It is a challenge to design and analyze congestion avoiding
algorithms with better ratios.
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Abstract. A channel machine consists of a finite controller together with several fifo
channels; the controller can read messages from the head of a channel and write messages
to the tail of a channel. In this paper, we focus on channel machines with insertion
errors, i.e., machines in whose channels messages can spontaneously appear. Such devices
have been previously introduced in the study of Metric Temporal Logic. We consider the
termination problem: are all the computations of a given insertion channel machine finite?
We show that this problem has non-elementary, yet primitive recursive complexity.

1. Introduction

Many of the recent developments in the area of automated verification, both theoretical
and practical, have focussed on infinite-state systems. Although such systems are not, in
general, amenable to fully algorithmic analysis, a number of important classes of models
with decidable problems have been identified. Several of these classes, such as Petri nets,
process algebras, process rewrite systems, faulty channel machines, timed automata, and
many more, are instances of well-structured transition systems, for which various problems
are decidable—see [7] for a comprehensive survey.

Well-structured transition systems are predicated on the existence of ‘compatible well-
quasi orders’, which guarantee, for example, that certain fixed-point computations will
terminate, etc. Unfortunately, these properties are often non-constructive in nature, so
that although convergence is guaranteed, the rate of convergence is not necessarily known.
As a result, the computational complexity of problems involving well-structured transition
systems often remains open.
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In this paper, we are interested in a particular kind of well-structured transition systems,
known as faulty channel machines. A channel machine (also known as a queue automaton)
consists of a finite-state controller equipped with several unbounded fifo channels (queues,
buffers). Transitions of the machine can write messages (letters) to the tail of a channel
and read messages from the head of a channel. Channel machines can be used, for example,
to model distributed protocols that communicate asynchronously.

Channel machines, unfortunately, are easily seen to be Turing powerful [3], and all
non-trivial verification problems concerning them are therefore undecidable. In [1, 6, 4, 2],
Abdulla and Jonsson, and Finkel et al. independently introduced lossy channel machines
as channel machines operating over an unreliable medium; more precisely, they made the
assumption that messages held in channels could at any point vanish nondeterministically.
Not only was this a compelling modelling assumption, more adequately enabling the rep-
resentation of fault-tolerant protocols, for example, but it also endowed the underlying
transition systems of lossy channel machines with a well-structure, thanks to Higman’s
lemma [8]. As a result, several non-trivial problems, such as control-state reachability, are
decidable for lossy channel machines.

Abdulla and Jonsson admitted in [1] that they were unable to determine the complexity
of the various problems they had shown to be decidable. Such questions remained open
for almost a decade, despite considerable research interest in the subject from the scientific
community. Finally, Schnoebelen showed in [16] that virtually all non-trivial decidable
problems concerning lossy channel machines have non-primitive recursive complexity. This
result, in turn, settled the complexity of a host of other problems, usually via reduction
from reachability for lossy channel machines. Recently, the relevance of the lossy channel
model was further understood when it was linked to a surprisingly complex variant of Post’s
correspondence problem [5].

Other models of unreliable media in the context of channel machines have also been
studied in the literature. In [4], for example, the effects of various combinations of insertion,
duplication, and lossiness errors are systematically examined. Although insertion errors are
well-motivated (as former users of modems over telephone lines can attest!), they were
surprisingly found in [4] to be theoretically uninteresting: channels become redundant,
since read- and write-transitions are continuously enabled (the former because of potential
insertion errors, the latter by assumption, as channels are unbounded). Consequently, most
verification problems trivially reduce to questions on finite automata.

Recently, however, slightly more powerful models of channel machines with insertion
errors have appeared as key tools in the study of Metric Temporal Logic (MTL). In [13, 14],
the authors showed that MTL formulas can capture the computations of insertion channel
machines equipped with primitive operations for testing channel emptiness. This new class
of faulty channel machines was in turn shown to have a non-primitive recursive reachability
problem and an undecidable recurrent control-state reachability problem. Consequently,
MTL satisfiability and model checking were established to be non-primitive recursive over
finite words [13], and undecidable over infinite words [14].

Independently of Metric Temporal Logic, the notion of emptiness testing, broadly con-
strued, is a rather old and natural one. Counter machines, for instance, are usually assumed
to incorporate primitive zero-testing operations on counters, and likewise pushdown au-
tomata are able to detect empty stacks. Variants of Petri nets have also explored emptiness
testing for places, usually resulting in a great leap in computational power. In the context
of channel machines, a slight refinement of emptiness testing is occurrence testing, checking
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that a given channel contains no occurrence of a particular message, as defined and studied
in [14]. Emptiness and occurrence testing provide some measure of control over insertion
errors, since once a message has been inserted into a channel, it remains there until it is
read off it.

Our main focus in this paper is the complexity of the termination problem for insertion
channel machines: given such a machine, are all of its computations finite? We show that
termination is non-elementary, yet primitive recursive. This result is quite surprising, as
the closely related problems of reachability and recurrent reachability are respectively non-
primitive recursive and undecidable. Moreover, the mere decidability of termination for
insertion channel machines follows from the theory of well-structured transition systems,
in a manner quite similar to that for lossy channel machines. In the latter case, however,
termination is non-primitive recursive, as shown in [16]. Obtaining a primitive recursive
upper bound for insertion channel machines has therefore required us to abandon the well-
structure and pursue an entirely new approach.

On the practical side, one of the main motivations for studying termination of insertion
channel machines arises from the safety fragment of Metric Temporal Logic. Safety MTL
was shown to be decidable in [15], although no non-trivial bounds on the complexity could
be established at the time. It is not difficult, however, to show that (non-)termination for
insertion channel machines reduces (in polynomial time) to satisfiability for Safety MTL; the
latter, therefore, is also non-elementary. We note that in a similar vein, a lower bound for
the complexity of satisfiability of an extension of Linear Temporal Logic was given in [10],
via a reduction from the termination problem for counter machines with incrementation
errors.

2. Decision Problems for Faulty Channel Machines: A Brief Survey

In this section, we briefly review some key decision problems for lossy and insertion
channel machines (the latter equipped with either emptiness or occurrence testing). Apart
from the results on termination and structural termination for insertion channel machines,
which are presented in the following sections, all results that appear here are either known or
follow easily from known facts. Our presentation is therefore breezy and terse. Background
material on well-structured transition systems can be found in [7].

The reachability problem asks whether a given distinguished control state of a channel
machine is reachable. This problem was shown to be non-primitive recursive for lossy
channel machines in [16]; it is likewise non-primitive recursive for insertion channel machines
via a straightforward reduction from the latter [13].

The termination problem asks whether all computations of a channel machine are
finite, starting from the initial control state and empty channel contents. This problem
was shown to be non-primitive recursive for lossy channel machines in [16]. For insertion
channel machines, we prove that termination is non-elementary in Section 4 and primitive
recursive in Section 5.

The structural termination problem asks whether all computations of a channel machine
are finite, starting from the initial control state but regardless of the initial channel contents.
This problem was shown to be undecidable for lossy channel machines in [12]. For insertion
channel machines, it is easy to see that termination and structural termination coincide, so
that the latter is also non-elementary primitive-recursive decidable.
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Lossy Channel Machines Insertion Channel Machines
Reachability non-primitive recursive non-primitive recursive
Termination non-primitive recursive non-elementary / primitive recursive
Struct. term. undecidable non-elementary / primitive recursive

Response undecidable non-primitive recursive
Recurrence undecidable undecidable
CTL / LTL undecidable undecidable

Figure 1: Complexity of decision problems for faulty channel machines.

Given a channel machine S and two distinguished control states p and q of S, a response
property is an assertion that every p state is always eventually followed by a q state in
any infinite computation of S. Note that a counterexample to a response property is a
computation that eventually visits p and forever avoids q afterwards. The undecidability
of response properties for lossy channel machines follows easily from that of structural
termination, as the reader may wish to verify.

In the case of insertion channel machines, response properties are decidable, albeit at
non-primitive recursive cost (by reduction from reachability). For decidability one first
shows using the theory of well-structured transition systems that the set of all reachable
configurations, the set of p-configurations, and the set of configurations that have infinite
q-avoiding computations are all effectively computable. It then suffices to check whether
their mutual intersection is empty.

The recurrence problem asks, given a channel machine and a distinguished control state,
whether the machine has a computation that visits the distinguished state infinitely often.
It is undecidable for lossy channel machines by reduction from response, and was shown to
be undecidable for insertion channel machines in [14].

Finally, CTL and LTL model checking for both lossy and insertion channel machines
are undecidable, which can be established along the same lines as the undecidability of
recurrence.

These results are summarised in Figure 1.

3. Definitions

A channel machine is a tuple S = (Q, init ,Σ, C,∆), where Q is a finite set of control
states, init ∈ Q is the initial control state, Σ is a finite channel alphabet, C is a finite set of
channel names, and ∆ ⊆ Q×L×Q is the transition relation, where L = {c!a, c?a, c=∅, a/∈c :
c ∈ C, a ∈ Σ} is the set of transition labels. Intuitively, label c!a denotes the writing of
message a to tail of channel c, label c?a denotes the reading of message a from the head
of channel c, label c=∅ tests channel c for emptiness, and label a/∈c tests channel c for the
absence (non-occurrence) of message a.

We first define an error-free operational semantics for channel machines. Given S as
above, a configuration of S is a pair (q, U), where q ∈ Q is the control state and U ∈ (Σ∗)C
gives the contents of each channel. Let us write Conf for the set of possible configurations
of S. The rules in ∆ induce an L-labelled transition relation on Conf , as follows:

(1) (q, c!a, q′) ∈ ∆ yields a transition (q, U) c!a−→ (q′, U ′), where U ′(c) = U(c)·a and
U ′(d) = U(d) for d 6= c. In other words, the channel machine moves from control
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state q to control state q′, writing message a to the tail of channel c and leaving all
other channels unchanged.

(2) (q, c?a, q′) ∈ ∆ yields a transition (q, U) c?a−→ (q′, U ′), where U(c) = a·U ′(c) and
U ′(d) = U(d) for d 6= c. In other words, the channel machine reads message a from
the head of channel c while moving from control state q to control state q ′, leaving
all other channels unchanged.

(3) (q, c=∅, q′) ∈ ∆ yields a transition (q, U) c=∅−→ (q′, U), provided U(c) is the empty
word. In other words, the transition is only enabled if channel c is empty; all channel
contents remain the same.

(4) (q, a/∈c, q′) ∈ ∆ yields a transition (q, U) a/∈c−→ (q′, U), provided a does not occur
in U(c). In other words, the transition is only enabled if channel c contains no
occurrence of message a; all channels remain unchanged.

If the only transitions allowed are those listed above, then we call S an error-free
channel machine. This machine model is easily seen to be Turing powerful [3]. As discussed
earlier, however, we are interested in channel machines with (potential) insertion errors;
intuitively, such errors are modelled by postulating that channels may at any time acquire
additional messages interspersed throughout their current contents.

For our purposes, it is convenient to adopt the lazy model of insertion errors, given
next. Slightly different models, such as those of [4, 14], have also appeared in the literature.
As the reader may easily check, all these models are equivalent insofar as reachability and
termination properties are concerned.

The lazy operational semantics for channel machines with insertion errors simply aug-
ments the transition relation on Conf with the following rule:

(5) (q, c?a, q′) ∈ ∆ yields a transition (q, U) c?a−→ (q′, U). In other words, insertion errors
occur ‘just in time’, immediately prior to a read operation; all channel contents
remain unchanged.

The channel machines defined above are called insertion channel machines with occur-
rence testing, or ICMOT s. We will also consider insertion channel machines with emptiness
testing, or ICMET s. The latter are simply ICMOTs without any occurrence-testing tran-
sitions (i.e., transitions labelled with a/∈c).

A run of an insertion channel machine is a finite or infinite sequence of transitions of
the form σ0

l0−→ σ1
l1−→ . . . that is consistent with the lazy operational semantics. The run

is said to start from the initial configuration if the first control state is init and all channels
are initially empty.

Our main focus in this paper is the study of the complexity of the termination problem:
given an insertion channel machine S, are all runs of S starting from the initial configuration
finite?

4. Termination is Non-Elementary

In this section, we show that the termination problem for insertion channel machines—
ICMETs and ICMOTs—is non-elementary. More precisely, we show that the termination
problem for ICMETs of size n in the worst case requires time at least 2⇑Ω(log n).1 Note
that the same immediately follows for ICMOTs.

1The expression 2⇑m, known as tetration, denotes an exponential tower of 2s of height m.
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Our proof proceeds by reduction from the termination problem for two-counter ma-
chines in which the counters are tetrationally bounded; the result then follows from standard
facts in complexity theory (see, e.g., [9]).

Without insertion errors, it is clear that a channel machine can directly simulate a
two-counter machine simply by storing the values of the counters on one of its channels.
To simulate a counter machine in the presence of insertion errors, however, we require
periodic integrity checks to ensure that the representation of the counter values has not
been corrupted. Below we give a simulation that follows the ‘yardstick’ construction of
Meyer and Stockmeyer [17, 11]: roughly speaking, we use an m-bounded counter to check
the integrity of a 2m-bounded counter.

Theorem 4.1. The termination problem for ICMETs and ICMOTs is non-elementary.

Proof. Let us say that a counter is m-bounded if it can take values in {0, 1, . . . ,m− 1}. We
assume that such a counter u comes equipped with procedures Inc(u), Dec(u), Reset(u),
and IsZero(u), where Inc and Dec operate modulo m, and increment, resp. decrement, the
counter. We show how to simulate a deterministic counter machine M of size n equipped
with two 2⇑n-bounded counters by an ICMET S of size 2O(n). We use this simulation to
reduce the termination problem for M to the termination problem for S.

By induction, assume that we have constructed an ICMET Sk that can simulate the
operations of a 2⇑k-bounded counter uk. We assume that Sk correctly implements the
operations Inc(uk), Dec(uk), Reset(uk), and IsZero(uk) (in particular, we assume that
the simulation of these operations by Sk is guaranteed to terminate). We describe an
ICMET Sk+1 that implements a 2⇑(k + 1)-bounded counter uk+1. Sk+1 incorporates Sk,
and thus can use the above-mentioned operations on the counter uk as subroutines. In
addition, Sk+1 has two extra channels c and d on which the value of counter uk+1 is stored
in binary. We give a high-level description.

We say that a configuration of Sk+1 is clean if channel c has size 2⇑k and channel d
is empty. We ensure that all procedures on counter uk+1 operate correctly when they are
invoked in clean configurations of Sk+1, and that they also yield clean configurations upon
completion. In fact, we only give details for the procedure Inc(uk+1)—see Figure 2; the
others should be clear from this example.

Since the counter uk is assumed to work correctly, the above procedure is guaranteed
to terminate, having produced the correct result, in the absence of any insertion errors on
channels c or d. On the other hand, insertion errors on either of these channels will be
detected by one of the two emptiness tests, either immediately or in the next procedure to
act on them.

The initialisation of the induction is handled using an ICMET S1 with no channel (in
other words, a finite automaton) of size 2, which can simulate a 2-bounded counter (i.e., a
single bit). The finite control of the counter machine, likewise, is duplicated using a further
channel-less ICMET.

Using a product construction, it is straightforward to conflate these various ICMETs
into a single one, S, of size exponential in n (more precisely: of size 2O(n)). As the reader
can easily check, M has an infinite computation iff S has an infinite run. The result follows
immediately.
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Procedure Inc(uk+1)
Reset(uk)
repeat

c?x ; d!(1− x) /* Increment counter uk+1 while transferring c to d */
Inc(uk)

until IsZero(uk) or x = 0
while not IsZero(uk) do

c?x ; d!x /* Transfer remainder of c to d */
Inc(uk)

endwhile
test(c=∅) /* Check that there were no insertion errors on c, otherwise halt */
repeat

d?x ; c!x /* Transfer d back to c */
Inc(uk)

until IsZero(uk)
test(d=∅) /* Check that there were no insertion errors on d, otherwise halt */
return

Figure 2: Procedure to increment counter uk+1. Initially, this procedure assumes that
counter uk+1 is encoded in binary on channel c, with least significant bit at
the head of the channel; moreover, c is assumed to comprise exactly 2⇑k bits
(using padding 0s if need be). In addition, channel d is assumed to be initially
empty. Upon exiting, channel c will contain the incremented value of counter
uk+1 (modulo 2⇑(k + 1)) in binary, again using 2⇑k bits, and channel d will be
empty. We regularly check that no insertion errors have occurred on channels c
or d by making sure that they contain precisely the right number of bits. This
is achieved using counter uk (which can count up to 2⇑k and is assumed to work
correctly) together with emptiness tests on c and d. If an insertion error does
occur during execution, the procedure will either halt, or the next procedure to
handle channels c and d (i.e., any command related to counter uk+1) will halt.

5. Termination is Primitive Recursive

The central result of our paper is the following:

Theorem 5.1. The termination problem for ICMOTs and ICMETs is primitive recursive.
More precisely, when restricting to the class of ICMOTs or ICMETs that have at most k
channels, the termination problem is in (k+1)-EXPSPACE.

Proof. In what follows, we sketch the proof for ICMOTs, ICMETs being a special case of
ICMOTs. Let us also assume that our ICMOTs do not make use of any emptiness tests;
this restriction is harmless since any emptiness test can always be replaced by a sequence
of occurrence tests, one for each letter of the alphabet, while preserving termination.

Let S = (Q, init ,Σ, C,∆) be a fixed ICMOT without emptiness tests; in other words,
S’s set of transition labels is L = {c!a, c?a, a/∈c : c ∈ C, a ∈ Σ}. Our strategy is as follows:
we suppose that S has no infinite runs, and then derive an upper bound on the length of the
longest possible finite run. The result follows by noting that the total number of possible
runs is exponentially bounded by this maximal length.
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For a subset D ⊆ C of channels, we define an equivalence ≡D over the set Conf of
configurations of S as follows:

(q, U) ≡D (q′, U ′) iff q = q′ and U(d) = U ′(d) for every d ∈ D.

Let us write Conf D to denote the set Conf /≡D of equivalence classes of Conf with
respect to ≡D. Furthermore, given f : D → N a ‘bounding function’ for the channels in D,
let

Conf f
D = {[(q, U)]D ∈ Conf D : |U(d)| ≤ f(d) for every d ∈ D}

be the subset of Conf D consisting of those equivalence classes of configurations whose D-
channels are bounded by f . As the reader can easily verify, we have the following bound
on the cardinality γf

D of Conf f
D:

γf
D ≤ |Q|

∏
d∈D

(|Σ|+ 1)f(d). (5.1)

Consider a finite run σ0
l0−→ σ1

l1−→ . . .
ln−1−→ σn of S (with n ≥ 1), where each σi ∈ Conf

is a configuration and each li ∈ L is a transition label. We will occasionally write σ0
λ=⇒ σn

to denote such a run, where λ = l0l1 . . . ln−1 ∈ L+.
We first state a pumping lemma of sorts, whose straightforward proof is left to the

reader:

Lemma 5.2. Let D ⊆ C be given, and assume that σ
λ=⇒ σ′ (with λ ∈ L+) is a run of S

such that σ ≡D σ′. Suppose further that, for every label a/∈c occurring in λ, either c ∈ D,
or the label c!a does not occur in λ. Then λ is repeatedly firable from σ, i.e., there exists
an infinite run σ

λ=⇒ σ′ λ=⇒ σ′′ λ=⇒ . . ..

Note that the validity of Lemma 5.2 rests crucially on (the potential for) insertion
errors.

Let 〈wi〉1≤i≤n be a finite sequence, and let 0 < α ≤ 1 be a real number. A set S is said
to be α-frequent in the sequence 〈wi〉 if the set {i : wi ∈ S} has cardinality at least αn.

The next result we need is a technical lemma guaranteeing a certain density of repeated
elements in an α-frequent sequence:

Lemma 5.3. Let 〈wi〉1≤i≤n be a finite sequence, and assume that S is a finite α-frequent
set in 〈wi〉. Then there exists a sequence of pairs of indices 〈(ij , i′j)〉1≤j≤ αn

2(|S|+1)
such that,

for all j < αn
2(|S|+1) , we have ij < i′j < ij+1, i′j − ij ≤ 2(|S|+1)

α , and wij = wi′j ∈ S.

Proof. By assumption, 〈wi〉 has a subsequence of length at least αn consisting exclusively of
elements of S. This subsequence, in turn, contains at least αn

|S|+1 disjoint ‘blocks’ of length
|S| + 1. By the pigeonhole principle, each of these blocks contains at least two identical
elements from S, yielding a sequence of pairs of indices 〈(ij , i

′
j)〉1≤j≤ αn

|S|+1
having all the

required properties apart, possibly, from the requirement that i′j − ij ≤ 2(|S|+1)
α . Note also

that there are, for now, twice as many pairs as required.
Consider therefore the half of those pairs whose difference is smallest, and let p be the

largest such difference. Since the other half of pairs in the sequence 〈(ij , i
′
j)〉 have difference

at least p, and since there is no overlap between indices, we have 1
2 · αn

|S|+1 · p < n, from

which we immediately derive that p is bounded by 2(|S|+1)
α , as required. This concludes the

proof of Lemma 5.3.
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Recall our assumption that S has no infinite run, and let π = σ0
l0−→ σ1

l1−→ . . .
ln−1−→ σn

be any finite run of S, starting from the initial configuration; we seek to obtain an upper
bound on n.

Given a set D ⊆ C of channels, it will be convenient to consider the sequence [π]D =
〈[σi]D〉0≤i≤n of equivalence classes of configurations in π modulo ≡D (ignoring the inter-
spersed labelled transitions for now).

Let f : C → N and 0 < α ≤ 1 be given, and suppose that Conf f
C is α-frequent in [π]C ,

so that there are at least αn occurrences of configuration equivalence classes in Conf f
C along

[π]C . Recall that Conf f
C contains γf

C elements. Observe, by Lemma 5.2, that no member of
Conf f

C can occur twice along [π]D, otherwise S would have an infinite run. Consequently,

n ≤ γf
C

α
. (5.2)

We will now inductively build an increasing sequence ∅ = D0 ⊂ D1 ⊂ . . . ⊂ D|C| = C,
as well as functions fi : Di → N and real numbers 0 < αi ≤ 1, for 0 ≤ i ≤ |C|, such that
Conf fi

Di
is αi-frequent in [π]Di for every i ≤ |C|.

The base case is straightforward: the set Conf f0

∅ = Conf ∅ is clearly 1-frequent in [π]∅.
Let us therefore assume that Conf f

D is α-frequent in [π]D for some strict subset D of
C and some f : D → N and α > 0. We now compute D ′ ⊆ C strictly containing D,
f ′ : D′ → N, and α′ > 0 such that Conf f ′

D′ is α′-frequent in [π]D′ .
Thanks to our induction hypothesis and Lemma 5.3, we obtain a sequence of pairs of

configurations 〈(θj , θ
′
j)〉1≤j≤h, where h = αn

2(γf
D+1)

, [θj]D = [θ′j]D ∈ Conf f
D, and such that

π = σ0 =⇒ θ1
λ1=⇒ θ′1 =⇒ θ2

λ2=⇒ θ′2 =⇒ . . . =⇒ θh
λh=⇒ θ′h =⇒ σn

with each λj ∈ L+ having length no greater than 2(γf
D+1)
α , for 1 ≤ j ≤ h.

For each λj , let OT j be the set of occurrence-test labels that occur at least once in
λj . Among these sets, let OT denote the one that appears most often. Note that there are
2|Σ|·|C| different possible sets of occurrence-test labels, and therefore at least h

2|Σ|·|C| of the
OT j are equal to OT .

Following a line of reasoning entirely similar to that used in Lemma 5.32, we can deduce
that π contains at least h

4·2|Σ|·|C| = αn

8(γf
D+1)2|Σ|·|C| non-overlapping patterns of the form

θ
λ=⇒ θ′ δ=⇒ θ̄

λ̄=⇒ θ̄′,

where:
• [θ]D = [θ′]D ∈ Conf f

D and [θ̄]D = [θ̄′]D ∈ Conf f
D,

• λ, λ̄ ∈ L+ each have length no greater than 2(γf
D+1)
α ,

• δ ∈ L+ has length no greater than 8(γf
D+1)2|Σ|·|C|

α , and
• the set of occurrence-test labels occurring in λ and λ̄ in both cases is OT .

2Formally, we could directly invoke Lemma 5.3, as follows. Write the sequence of transition labels of π as
δ0λ1δ1λ2 · · ·λhδh, with the λi as above. Next, formally replace each instance of λi whose set of occurrence-
test labels is OT by a new symbol O; if needed, add dummy non-O symbols to the end of the sequence to
bring its length up to n, and call the resulting sequence 〈wi〉. Finally, note that the singleton set {O} is

h

2|Σ|·|C|·n -frequent in 〈wi〉.
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Consider such a pattern. Observe that λ must contain at least one occurrence-test label
a/∈c with c /∈ D and such that the label c!a occurs in λ, otherwise S would have an infinite
run according to Lemma 5.2. Pick any such occurrence-test label and let us denote it a/∈c.

We now aim to bound the size of channel c in the θ̄ configuration of our patterns. Note
that since λ and λ̄ contain the same set of occurrence-test labels, the label a/∈c occurs in λ̄.
That is to say, somewhere between configurations θ̄ and θ̄′, we know that channel c did not
contain any occurrence of a. On the other hand, an a was written to the tail of channel c
at some point between configurations θ and θ ′, since λ contains the label c!a. For that a to
be subsequently read off the channel, the whole contents of channel c must have been read
from the time of the c!a transition in λ to the time of the a/∈c transition in λ̄. Finally, note
that, according to our lazy operational semantics, the size of a channel changes by at most
1 with each transition. It follows that the size of channel c in configuration θ̄ is at most

|λ|+ |δ|+ |λ′| ≤ (γf
D+1)(4+8·2|Σ|·|C|)

α .
Let D′ = D∪{c}, and define the bounding function f ′ : D′ → N such that f ′(d) = f(d)

for all d ∈ D, and f ′(c) = (γf
D+1)(4+8·2|Σ|·|C|)

α . From our lower bound on the number of special
patterns, we conclude that the set Conf f ′

D′ is α′-frequent in [π]D′ , where α′ = α

8(γf
D+1)2|Σ|·|C| .

We now string everything together to obtain a bound on n, the length of our original
arbitrary run π. For convenience, let c1, c2, . . . , c|C| be an enumeration of the channel names
in C in the order in which they are picked in the course of our proof; thus Di = Di−1 ∪{ci}
for 1 ≤ i ≤ |C|. Correspondingly, let Mi = fi(ci), for 0 ≤ i ≤ |C|, with the convention that
M0 = 1; it is easy to see that Mi is the maximum value of fi over Di, since the sequences
〈γfi

Di
〉 and 〈αi〉 are monotonically increasing and decreasing respectively.
From Equation 5.1, we easily get that γfi

Di
∈ O(|S||S|Mi), where |S| is any reasonable

measure of the size of our ICMOT S. Combining this with our expressions for f ′ and α′

above, we obtain that Mi+1,
1

αi+1
∈ O

(
|S||S|2Mi

αi

)
for 0 ≤ i ≤ |C| − 1. This, in turns, lets

us derive bounds for γ
f|C|
C and α|C|, which imply, together with Equation 5.2, that

n ≤ 22·
··2

P (|S|)

,

where P is some polynomial (independent of S), and the total height of the tower of expo-
nentials is |C|+ 2.

The ICMOT S therefore has an infinite run iff it has a run whose length exceeds the
above bound. Since the lazy operational semantics is finitely branching (bounded, in fact, by
the size of the transition relation), this can clearly be determined in (|C|+1)-EXPSPACE,
which concludes the proof of Theorem 5.1.

Theorems 4.1 and 5.1 immediately entail the following:

Corollary 5.4. The structural termination problem—are all computations of the machine
finite, starting from the initial control state but regardless of the initial channel contents?—is
decidable for ICMETs and ICMOTs, with non-elementary but primitive-recursive complex-
ity.
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6. Conclusion

The main result of this paper is that termination for insertion channel machines with
emptiness or occurrence testing has non-elementary, yet primitive recursive complexity.
This result is in sharp contrast with the equivalent problem for lossy channel machines,
which has non-primitive recursive complexity.

We remark that the set of configurations from which a given insertion channel machine
has at least one infinite computation is finitely representable (thanks to the theory of well-
structured transition systems), and is in fact computable as the greatest fixed point of the
pre-image operator. The proof of Theorem 5.1, moreover, shows that this fixed point will be
reached in primitive-recursively many steps. The set of configurations from which there is
an infinite computation is therefore primitive-recursively computable, in contrast with lossy
channel machines for which it is not even recursive (as can be seen from the undecidability
of structural termination).

Finally, another interesting difference with lossy channel machines can be highlighted
by quoting a slogan from [16]: “Lossy systems with k channels can be [polynomially] encoded
into lossy systems with one channel.” We can deduce from Theorems 4.1 and 5.1 that any
such encoding, in the case of insertion channels machines, would require non-elementary
resources to compute, if it were to preserve termination properties.
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Abstract. We study a multi-player one-round game termed Stackelberg Network Pricing
Game, in which a leader can set prices for a subset of m priceable edges in a graph. The
other edges have a fixed cost. Based on the leader’s decision one or more followers optimize
a polynomial-time solvable combinatorial minimization problem and choose a minimum
cost solution satisfying their requirements based on the fixed costs and the leader’s prices.
The leader receives as revenue the total amount of prices paid by the followers for priceable
edges in their solutions, and the problem is to find revenue maximizing prices. Our model
extends several known pricing problems, including single-minded and unit-demand pricing,
as well as Stackelberg pricing for certain follower problems like shortest path or minimum
spanning tree. Our first main result is a tight analysis of a single-price algorithm for the
single follower game, which provides a (1+ε) log m-approximation for any ε > 0. This can
be extended to provide a (1+ ε)(log k +log m)-approximation for the general problem and
k followers. The latter result is essentially best possible, as the problem is shown to be
hard to approximate within O(logε k+logε m). If followers have demands, the single-price
algorithm provides a (1 + ε)m2-approximation, and the problem is hard to approximate
within O(mε) for some ε > 0. Our second main result is a polynomial time algorithm for
revenue maximization in the special case of Stackelberg bipartite vertex cover, which is
based on non-trivial max-flow and LP-duality techniques. Our results can be extended to
provide constant-factor approximations for any constant number of followers.

1. Introduction

Algorithmic pricing problems model the task of assigning revenue maximizing prices
to a retailer’s set of products given some estimate of the potential customers’ preferences
in purely computational [14], as well as strategic [3] settings. Previous work in this area
has mostly focused on settings in which these preferences are rather restricted, in the sense
that products are either pure complements [2, 7, 15, 16] and every customer is interested in
exactly one subset of products or pure substitutes [1, 8, 10, 14, 15, 16], in which case each
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customer seeks to buy only a single product out of some set of alternatives. A customer’s
real preferences, however, are often significantly more complicated than that and therefore
pose some additional challenges.

The modelling of consumer preferences has received considerable attention in the con-
text of algorithmic mechanism design [18] and combinatorial auctions [12]. The established
models range from relatively simple bidding languages to bidders that are represented by or-
acles allowing certain types of queries, e.g., revealing the desired bundle of items given some
fixed set of prices. The latter would be a somewhat problematic assumption in the theory
of pricing algorithms, where we usually assume to have access to a rather large number of
potential customers through some sort of sampling procedure and, thus, are interested in
preferences that allow for a compact kind of representation.

In this paper we focus on customers that have non-trivial preferences, yet can be fully
described by their types and budgets and do not require any kind of oracles. Assume that a
company owns a subset of the links in a given network. The remaining edges are owned by
other companies and have fixed publicly known prices and some customer needs to purchase
a path between two terminals in the network. Since she is acting rational, she is going to buy
the shortest path connecting her terminals. How should we set the prices on the priceable
edges in order to maximize the company’s revenue? What if there is another customer, who
needs to purchase, e.g., a minimum cost spanning tree?

This type of pricing problem, in which preferences are implicitly defined in terms of some
optimization problem, is usually referred to as Stackelberg pricing [23]. In the standard 2-
player form we are given a leader setting the prices on a subset of the network and a follower
seeking to purchase a min-cost network satisfying her requirements. We proceed by formally
defining the model before stating our results.

1.1. Model and Notation

In this paper we consider the following class of multi-player one-round games. Let
G = (V,E) be a multi-graph. There are two types of players in the game, one leader and
one or more followers. We consider two classes of edge and vertex games, in which either
the edges or the vertices have costs. For most of the paper, we will consider edge games, but
the definitions and results for vertex games follow analogously. In an edge game, the edge
set E is partitioned into two sets E = Ep ∪Ef with Ep ∩Ef = ∅. For each fixed-price edge
e ∈ Ef there is a fixed cost c(e) ≥ 0. For each priceable edge e ∈ Ep the leader can specify
a price p(e) ≥ 0. We denote the number of priceable edges by m = |Ep|. Each follower
i = 1, . . . , k has a set Si ⊂ 2E of feasible subnetworks. The weight w(S) of a subnetwork
S ∈ Si is given by the costs of fixed-price edges and the price of priceable edges,

w(S) =
∑

e∈S∩Ef

c(e) +
∑

e∈S∩Ep

p(e).

The revenue r(S) of the leader from subnetwork S is given by the prices of the priceable
edges that are included in S, i.e.,

r(S) =
∑

e∈S∩Ep

p(e).

Throughout the paper we assume that for any price function p every follower i can in
polynomial time find a subnetwork S∗

i (p) of minimum weight. Our interest is to find the
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pricing function p∗ for the leader that generates maximum revenue, i.e.,

p∗ = arg max
p

k∑
i=1

r(S∗
i (p)).

We denote the value of this maximum revenue by r∗. To guarantee that the revenue is
bounded and the optimization problem is non-trivial, we assume that there is at least one
feasible subnetwork for each follower i that is composed only of fixed-price edges. In order
to avoid technicalities, we assume w.l.o.g. that among subnetworks of identical weight the
follower always chooses the one with higher revenue for the leader. It is not difficult to see
that in the 2-player case we also need followers with a large number of feasible subnetworks
in order to make the problem interesting.

Proposition 1.1. Given follower j and a fixed subnetwork Sj ∈ Sj, we can compute prices
p with w(Sj) = minS∈Sj w(S) maximizing r(Sj) or decide that such prices do not exist in
polynomial time. In the 2-player game, if |S| = O(poly(m)), revenue maximization can be
done in polynomial time.

The proof of Proposition 1.1 will appear in the full version. In general we will refer to
the revenue optimization problem by Stack. Note that our model extends the previously
considered pricing models and is essentially equivalent to pricing with general valuation
functions, a problem that has independently been considered in [4]. Every general valuation
function can be expressed in terms of Stackelberg network pricing on graphs, and our
algorithmic results apply in this setting as well.

1.2. Previous Work and New Results

The single-follower shortest path Stackelberg pricing problem (StackSP) has first been
considered by Labbé et al. [17], who derive a bilevel LP formulation of the problem and prove
NP-hardness. Roch et al. [19] present a first polynomial time approximation algorithm with
a provable performance guarantee, which yields logarithmic approximation ratios. Bouhtou
et al. [5] extend the problem to multiple (weighted) followers and present algorithms for a
restricted shortest path problem on parallel links. For an overview of most of the initial
work on Stackelberg network pricing the reader is referred to [22]. A different line of research
has been investigating the application of Stackelberg pricing to network congestion games
in order to obtain low congestion Nash equilibria for sets of selfish followers [11, 20, 21].

More recently, Cardinal et al. [9] initiated the investigation of the corresponding mini-
mum spanning tree (StackMST) game, again obtaining a logarithmic approximation guar-
antee and proving APX-hardness. Their single-price algorithm, which assigns the same price
to all priceable edges, turns out to be even more widely applicable and yields similar ap-
proximation guarantees for any matroid based Stackelberg game.

The first result of our paper is a generalization of this result to general Stackelberg
games. The previous limitation to matroids stems from the difficulty to determine the
necessarily polynomial number of candidate prices that can be tested by the algorithm.
We develop a novel characterization of the small set of threshold prices that need to be
tested and obtain a polynomial time (1+ε)Hm-approximation (where Hm denotes the m’th
harmonic number) for arbitrary ε > 0, which turns out to be perfectly tight for shortest
path as well as minimum spanning tree games. This result is found in Section 2.
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We then extend the analysis to multiple followers, in which case the approximation
ratio becomes (1 + ε)(Hk + Hm). This can be shown to be essentially best possible by an
approximation preserving reduction from single-minded combinatorial pricing [13]. Extend-
ing the problem even further, we also look at the case of multiple weighted followers, which
arises naturally in network settings where different followers come with different routing
demands. It has been conjectured before that no approximation essentially better than the
number of followers is possible in this scenario. We disprove this conjecture by presenting
an alternative analysis of the single-price algorithm resulting in an approximation ratio of
(1 + ε)m2. Additionally, we derive a lower bound of O(mε) for the weighted player case.
This resolves a previously open problem from [5]. The results on multiple followers are
found in Section 3.

The generic reduction from single-minded to Stackelberg pricing yields a class of net-
works in which we can price the vertices on one side of a bipartite graph and players aim
to purchase minimum cost vertex covers for their sets of edges. This motivates us to return
to the classical Stackelberg setting and consider the 2-player bipartite vertex cover game
(StackVC). As it turns out, this variation of the game allows polynomial-time algorithms
for exact revenue maximization using non-trivial algorithmic techniques. We first present
an upper bound on the possible revenue in terms of the min-cost vertex cover not using
any priceable vertices and the minimum portion of fixed cost in any possible cover. Us-
ing iterated max-flow computations, we then determine a pricing with total revenue that
eventually coincides with our upper bound. These results are found in Section 4.

Finally, Section 5 concludes and presents several intriguing open problems for further
research. Some of the proofs have been omitted due to space limitations.

2. A Single-Price Algorithm for a Single Follower

Let us assume that we are faced with a single follower and let c0 denote the cost of
a cheapest feasible subnetwork for the follower not containing any of the priceable edges.
Clearly, we can compute c0 by assigning price +∞ to all priceable edges and simulating
the follower on the resulting network. The single-price algorithm proceeds as follows. For
j = 0, . . . , dlog c0e it assigns price pj = (1 + ε)j to all priceable edges and determines
the resulting revenue r(pj). It then simply returns the pricing that results in maximum
revenue. We present a logarithmic bound on the approximation guarantee of the single-
price algorithm.

Theorem 2.1. Given any ε > 0, the single-price algorithm computes an (1 + ε)Hm-
approximation with respect to r∗, the revenue of an optimal pricing.

2.1. Analysis

The single-price algorithm has previously been applied to a number of different com-
binatorial pricing problems [1, 15]. The main issue in analyzing its performance guarantee
for Stackelberg pricing is to determine the right set of candidate prices. We first derive a
precise characterization of these candidates and then argue that the geometric sequence of
prices tested by the algorithm is a good enough approximation. Slightly abusing notation,
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we let p refer to both price p and the assignment of this price to all priceable edges. If there
exists a feasible subnetwork for the follower that uses at least j priceable edges, we let

θj = max
{
p

∣∣∣ |S?(p) ∩Ep| ≥ j
}

be the largest price at which such a subnetwork is chosen. If no feasible subnetwork with
at least j priceable edges exists, we set θj = 0. As we shall see, these thresholds are the key
to prove Theorem 2.1.

We want to derive an alternative characterization of the values of θj . For each 1 ≤ j ≤ m
we let cj refer to the minimum sum of prices of fixed-price edges in any feasible subnetwork
containing at most j priceable edges, formally

cj = min
{ ∑

e∈S∩Ef

fe

∣∣∣S ∈ S : |S ∩Ep| ≤ j
}

,

and ∆j = c0 − cj. For ease of notation let ∆0 = 0. Consider the set of points (0,∆0),
(1,∆1), . . . , (m,∆m) on the plane. By H we refer to a minimum selection of points spanning
the upper convex hull of the point set. It is a straightforward geometric observation that
we can define H as follows:

Fact 1. Point (j,∆j) belongs to H if and only if mini<j
∆j−∆i

j−i > maxj<k
∆k−∆j

k−j .

We now return to the candidate prices. By definition we have that θ1 ≥ θ2 ≥ · · · ≥ θm.
We say that θj is true threshold value if θj > θj+1, i.e., if at price θj the subnetwork chosen
by the follower contains exactly j priceable edges. Let i1 < i2 < · · · < i` denote the indices,
such that θik are true threshold values and for ease of notation define i0 = 0. For an
example, see Figure 1.

Lemma 2.2. θj is true threshold value if and only if (j,∆j) belongs to H.

Proof. ”⇒” Let θj be true threshold value, i.e., at price θj the chosen subnetwork contains
exactly j priceable edges. We observe that at any price p the cheapest subnetwork containing
j priceable edges has cost cj + j · p = c0 −∆j + j · p. Thus, at price θj it must be the case
that ∆j − j · θj ≥ ∆i− i · θj for all i < j and ∆j − j · θj > ∆k− k · θj for all j < k. It follows
that

min
i<j

∆j −∆i

j − i
≥ θj > max

j<k

∆k −∆j

k − j
,

and, thus, we have that (j,∆j) belongs to H.
”⇐” Assume now that (j,∆j) belongs to H and let

p = min
i<j

∆j −∆i

j − i
.

Consider any k < j. It follows that ∆k−k ·p = ∆j− j ·p− (∆j−∆k)+(j−k)p ≤ ∆j− j ·p,
since p ≤ (∆j −∆k)/(j − k) and, thus, the network chosen at price p cannot contain less
than j priceable edges. Analogously, let k > j. Using p > (∆k − ∆j)/(k − j) we obtain
∆k− k · p = ∆j− j · p+(∆k−∆j)− (k− j)p < ∆j − j · p, and, thus, the subnetwork chosen
at price p contains exactly j priceable edges. We conclude that θj is a true threshold.
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Figure 1: A geometric interpretation of (true) threshold values θj. The follower seeks to
purchase a shortest path from s to t, dashed edges are fixed-cost.

It is not difficult to see that the price p defined in the second part of the proof of
Lemma 2.2 is precisely the threshold value θj. Let θik be any true threshold. Since points
(i0,∆i0), . . . , (i`,∆i`) define the convex hull we can write that mini<ik(∆ik −∆i)/(ik − i) =
(∆ik −∆ik−1

)/(ik − ik−1). We state this important fact again in the following lemma.

Lemma 2.3. For all 1 ≤ k ≤ ` it holds that θik =
∆ik

−∆ik−1

ik−ik−1
.

From the fact that points (i0,∆i0), . . . , (i`,∆i`) define the convex hull we know that
∆i` = ∆m, i.e., ∆i` is the largest of all ∆-values. On the other hand, each ∆j describes the
maximum revenue that can be made from a subnetwork with at most j priceable edges and,
thus, ∆m is clearly an upper bound on the revenue made by an optimal price assignment.

Fact 2. It holds that r∗ ≤ ∆i` .

By definition of the θj’s it is clear that at any price below θik the subnetwork chosen by
the follower contains no less than ik priceable edges. Furthermore, for each θik the single-
price algorithm tests a candidate price that is at most a factor (1+ ε) smaller than θik . Let
r(pik), r(θik) denote the revenue that results from assigning price pik or θik to all priceable
edges, respectively.

Fact 3. For each θik there exists a price pik with (1 + ε)−1θik ≤ pik ≤ θik that is tested by
the single-price algorithm. Especially, it holds that r(pik) ≥ (1 + ε)−1r(θik)

Finally, we know that the revenue made by assigning price θik to all priceable edges
is r(θik) = ik · θik . Let r denote the revenue of the single-price solution returned by the
algorithm. We have:

(1 + ε) ·Hm · r = (1 + ε)
m∑

j=1

r

j
≥ (1 + ε)

∑̀
k=1

ik∑
j=ik−1+1

r

j
≥ (1 + ε)

∑̀
k=1

ik∑
j=ik−1+1

r(pik)
j

≥
∑̀
k=1

ik∑
j=ik−1+1

r(θik)
j

≥
∑̀
k=1

ik∑
j=ik−1+1

ik · θik

j

≥
∑̀
k=1

(ik − ik−1)
ik · θik

ik
=

∑̀
k=1

(∆ik −∆ik−1
) , by Lemma 2.3

= ∆i` −∆0 = ∆i` ≥ r∗.
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Figure 2: An instance of Stackelberg Shortest Path, on which the analysis of the approxi-
mation guarantee of the single-price algorithm is tight. Bold edges are priceable,
vertex labels of regular edges indicate cost. The instance yields tightness of the
analysis also for Stackelberg Minimum Spanning Tree.

This concludes the proof of Theorem 2.1.

2.2. Tightness

The example in Figure 2 shows that our analysis of the single-price algorithm’s approx-
imation guarantee is tight. The follower wants to buy a path connecting vertices s and
t. In an optimal solution we set the price of edge ej to m/j. Then edges e1, . . . , em form
a shortest path of cost mHm. On the other hand, assume that all edges e1, . . . , em are
assigned the same price p. Every choice will lead to a revenue of at most m. Similar results
apply if the follower purchases a minimum spanning tree instead of a shortest path.

The best known lower bound for 2-player Stackelberg pricing is found in [9], where
APX-hardness is shown for the minimum spanning tree case. To the authors’ best knowl-
edge, up to now no non-constant inapproximability results have been proven. We proceed
by extending our results to multiple followers, in which case previous results on other com-
binatorial pricing problems yield strong lower bounds.

3. Extension to Multiple Followers

In this section we extend our results on general Stackelberg network pricing to scenarios
with multiple followers. Recall that each follower j is characterized by her own collection
Sj of feasible subnetworks and k denotes the number of followers. Section 3.1 extends the
analysis from the single follower case to prove a tight bound of (1 + ε)(Hk + Hm) on the
approximation guarantee of the single-price algorithm. In addition, it presents an alterna-
tive analysis that applies even in the case of weighted followers and yields approximation
guarantees that do not depend on the number of followers. Section 3.2 derives (near) tight
inapproximability results based on known hardness results for combinatorial pricing. Proofs
are omitted due to space limitations.

3.1. Guarantees of the Single-Price Algorithm

Let an instance of Stackelberg network pricing with some number k ≥ 1 of followers be
given. We obtain a similar bound on the single-price algorithm’s approximation guarantee.

Theorem 3.1. The single-price algorithm computes an (1 + ε)(Hk + Hm)-approximation
with respect to r∗, the revenue of an optimal pricing, for Stack with multiple followers.
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The proof of Theorem 3.1 reduces the problem to the single player case. However, it
relies essentially on the fact that we are considering the single-price algorithm. It does not
imply anything about the relation of these two cases in general.

An even more general variation of Stackelberg pricing, in which we allow multiple
weighted followers, arises naturally in the context of network pricing games with different
demands for each player. This model has been previously considered in [5]. Formally,
for each follower j we are given her demand dj ∈ R+

0 . Given followers buying subnetworks
S1, . . . , Sk, the leader’s revenue is defined as

∑k
j=1 dj

∑
e∈Sj∩Ep

p(e). It has been conjectured
before that in the weighted case no approximation guarantee essentially beyond O(k · log m)
is possible [19]. We show that an alternative analysis of the single-price algorithm yields
ratios that do not depend on the number of followers.

Theorem 3.2. The single-price algorithm computes an (1 + ε)m2-approximation with re-
spect to r∗, the revenue of an optimal pricing, for Stack with multiple weighted followers.

3.2. Lower Bounds

Hardness of approximation of Stackelberg pricing with multiple followers follows imme-
diately from known results about other combinatorial pricing models. Theorem 3.3 is based
on a reduction from the (weighted) unit-demand envy-free pricing problem with uniform
budgets, which is known to be inapproximable within O(mε) (m denotes the number of
products) [6]. Here we are given a universe of products and a collection of (weighted) cus-
tomers, each of which buys the cheapest product out of some set of alternatives with a price
not exceeding her budget. The resulting Stackelberg game is an instance of the so-called
river tariffication problem. Each player needs to route her demand along one out of a num-
ber of parallel links connecting her respective source and sink pair. One direct fixed price
connection determines her maximum budget for purchasing a priceable link. Theorem 3.3
resolves an open problem from [5]. The construction is depicted in Figure 3(a).

Theorem 3.3. The Stackelberg network pricing problem with multiple weighted followers
is hard to approximate within O(mε) for some ε > 0, unless NP ⊆ ⋂

δ>0 BPTIME(2nδ
).

The same holds for the river tariffication problem.

Theorem 3.4 is based on a reduction from the single-minded combinatorial pricing
problem, in which each customer is interested in a subset of products and purchases the
whole set if the sum of prices does not exceed her budget. Single-minded pricing is hard to
approximate within O(logε k+logε m) [13], where k and m denote the numbers of customers
and products, respectively. Theorem 3.4 shows that the single-price algorithm is essentially
best possible for multiple unweighted followers.

Theorem 3.4. The Stackelberg network pricing problem with multiple unweighted follow-
ers is hard to approximate within O(logε k + logε m) for some ε > 0, unless NP ⊆ ⋂

δ>0

BPTIME(2nδ
). The same holds for bipartite Stackelberg Vertex Cover Pricing (StackVC).

The idea for the proof of Theorem 3.4 is illustrated in Figure 3(b). We define an instance
of StackVC in bipartite graphs. Vertices on one side of the bipartition are priceable and
represent the universe of products, vertices on the other side encode customers and have
fixed prices corresponding to the respective budgets. For each customer we define a follower
in the Stackelberg game with edges connecting the customer vertex and all product vertices
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(a) (b)

Figure 3: Reductions from pricing problems to Stackelberg pricing. (a) Unit-demand re-
duces to directed StackSP. Bold edges are priceable, edge labels indicate cost.
Regular edges without labels have cost 0. Vertex labels indicate source-sink pairs
for the followers. (b) Single-minded pricing reduces to bipartite StackVC. Filled
vertices are priceable, vertex labels indicate cost. For each customer there is one
follower, who strives to cover all incident edges.

the customer wishes to purchase. Now every follower seeks to buy a min-cost vertex cover
for her set of edges. We proceed by taking a closer look at this special type of Stackelberg
pricing game and especially focus on the interesting case of a single follower.

4. Stackelberg Vertex Cover

Stackelberg Vertex Cover Pricing is a vertex game, however, the approximation results
for the single-price algorithm continue to hold. Note that in general the vertex cover problem
is hard, hence we focus on settings, in which the problem can be solved in polynomial time.
In bipartite graphs the problem can be solved optimally by using a classic and fundamental
max-flow/min-cut argumentation. If all priceable vertices are in one side of the partition,
then for multiple followers there is evidence that the single-price algorithm is essentially best
possible. Our main theorem in this section states that the setting with a single follower can
be solved exactly. As a consequence, general bipartite StackVC can be approximated by
a factor of 2.

Theorem 4.1. If for a bipartite graph G = (A ∪ B,E) we have Vp ⊆ A, then there is a
polynomial time algorithm computing an optimal price function p∗ for StackVC.

Before we prove the theorem, we mention that the standard problem of minimum vertex
cover in a bipartite graph G with disjoint vertex sets A, B and edges E ⊆ A × B can be
solved by the following application of LP-duality. The LP-dual is interpreted as a maximum
flow problem on an adjusted flow network Gd. In particular, Gd is constructed by adding a
source s and a sink t to G and connecting s to all vertices v ∈ A with directed edges (s, v),
and t to all vertices v ∈ B with directed edges (v, t). Each such edge gets as capacity the
cost of the involved original vertex - i.e. p(v) for v ∈ Vp or c(v) if v ∈ Vf . Furthermore, all
original edges of the graph are directed from A to B and their capacity is set to infinity.
The value of a maximum s-t-flow equals the cost of a minimum cut, and in addition the
cost of a minimum cost vertex cover of the graph G (for an example see Figure 4). To
obtain such a cover consider an augmenting s-t-path in Gd, which is a path traversing only
forward edges with slack capacity and backward edges with non-zero flow. The maximum
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(a) (b) (c)

Figure 4: Construction to solve bipartite StackVC with priceable vertices in one partition
and a single follower. Filled vertices are priceable, vertex labels indicate cost. (a)
A graph G; (b) The flow network Gd obtained from G. Grey parts are source and
sink added by the transformation. Edge labels indicate a suboptimal s-t-flow; (c)
An augmenting path P indicated by bold edges and the resulting flow. Every
such path P starts with a priceable vertex, and all priceable vertices remain in
the optimum cover at all times.

flow can be computed by iteratively increasing flow along such paths. The vertices in the
minimum vertex cover then correspond to incident edges in a minimum cut. In particular,
the minimum vertex cover includes a vertex v ∈ A if the flow allows no augmenting s-v-path
from s to v, i.e. if every path from s to v has at least one backward edge with no flow, or
at least one forward edge without slack capacity.

We use a similar idea to obtain the optimal pricing for StackVC. Let n = |Vp| and
the values cj for 1 ≤ j ≤ n denote the minimum sum of prices of fixed-price vertices in any
feasible subnetwork containing at most j priceable vertices. Then, ∆j = c0 − cj are again
upper bounds on the revenue that can be extracted from a network that includes at most
j priceable vertices. We thus have r∗ ≤ ∆n.

Algorithm 1: Solving StackVC in bipartite graphs with Vp ⊆ A

Construct the flow network Gd by adding nodes s and t1

Set p(v) = 0 for all v ∈ Vp2

Compute a maximum s-t-flow φ in Gd3

while there is v ∈ Vp s.t. increasing p(v) yields an augmenting s-t-path P do4

Increase p(v) and φ along P as much as possible5

Suppose all priceable vertices are located in one partition Vp ⊆ A and consider Algo-
rithm 1. We denote by CALG the cover calculated by Algorithm 1. At first, when computing
the maximum flow on Gd holding all p(v) = 0, the algorithm obtains a flow of cn. We first
note that in the following while-loop we will never face a situation, in which there is an
augmenting s-t-path (traversing forward edges with slack capacity and backward edges with
non-zero flow) starting with a fixed-price vertex. We call such a path a fixed path, while an
augmenting s-t-path starting with a priceable vertex is called a price path.

Lemma 4.2. Every augmenting path considered in the while-loop of Algorithm 1 is a price
path.

Proof. We prove the lemma by induction on the while-loop and by contradiction. Suppose
that in the beginning of the current iteration there is no fixed path. In particular, this is
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true for the first iteration of the while-loop. Then, suppose that after we have increased the
flow over a price path Pp, a fixed path Pf is created. Pf must include some of the edges of
Pp. Consider the vertex w at which Pf hits Pp. By following Pf from s to w and Pp from
w to t there is a fixed path, which must have been present before flow was increased on Pp.
This is a contradiction and proves the lemma.

Recall from above that the optimum cover contains a vertex v ∈ A if there is no
augmenting s-v-path from s to v. In particular, this means that for a vertex v ∈ A ∩ C the
following two properties are fulfilled: (1) there is no slack capacity on edge (s, v); (2) there
is no augmenting s-v-path from s over a different vertex v ′ ∈ A. As the algorithm always
adjusts the price of a vertex v to equal the current flow on (s, v), only the violation of
property (2) can force a vertex v ∈ Vp to leave the cover. In particular, such an augmenting
s-v-path must start with a fixed-price vertex, and it must reach v by decreasing flow over
one of the original edges (v, w) for w ∈ B. We call such a path a fixed v-path.

Lemma 4.3. Algorithm 1 creates no fixed v-path for any priceable vertex v ∈ Vp.

The proof of Lemma 4.3 is similar to the proof of Lemma 4.2 and will appear in the
full version. As there is no augmenting path from s to any priceable vertex at any time,
the following lemma is now obvious.

Lemma 4.4. CALG includes all priceable vertices.

Proof of Theorem 4.1. Finally, we can proceed to argue that the computed pricing is
optimal. Suppose that after executing Algorithm 1 we increase p(v) over φ(s, v) for any
priceable vertex v. As we are at the end of the algorithm, it does not allow us to increase
the flow in the same way. Thus, the adjustment creates slack capacity on all the edges (s, v)
for any v ∈ Vp and causes every priceable vertex to leave CALG. The new cover must be
the cheapest cover that excludes every priceable vertex, i.e. it must be C0 and have cost
c0. As we have not increased the flow, we know that the cost of CALG is also c0. Note
that before starting the while-loop the cover was Cn of cost cn. As all flow increase in the
while-loop was made over price paths and all the priceable vertices stay in the cover, the
revenue of CALG must be c0 − cn = ∆n. This is an upper bound on the optimum revenue,
and hence the price function pALG derived with the algorithm is optimal. Finally, notice
that adjusting the price of the priceable vertices in each iteration is not necessary. We can
start with computing Cn and for the remaining while-loop set all prices to +∞. This will
result in the desired flow, which directly generates the final price for every vertex v as flow
on (s, v). Hence, we can get optimal prices with an adjusted run of the standard polynomial
time algorithm for maximum flow in Gd. This proves Theorem 4.1.

Theorem 4.5. There is a polynomial time 2-approximation algorithm for bipartite StackVC.

In Theorem 4.5 we use the previous analysis to get a 2-approximation of the optimum
revenue for general bipartite StackVC. This results in a 2k-approximation for any number
of k followers. In contrast, the analysis of the single-price algorithm is tight even for one
follower and all priceable vertices in one partition. Moreover, bipartite StackVC for at
least two followers is NP-hard by a reduction from the highway pricing problem [7].

5. Open problems

There are a number of important open problems that arise from our work. We believe
that the single-price algorithm is essentially best possible even for a single follower and



144 P. BRIEST, M. HOEFER, AND P. KRYSTA

general Stackelberg pricing games. However, there is no matching logarithmic lower bound,
and the best lower bound remains APX-hardness from [9]. In addition, we believe that for
weighted followers a better upper bound than m2 is possible, which would decrease the gap
to the Ω(mε) lower bound we observed. More generally, extending other algorithm design
techniques to cope with pricing problems is a major open problem.
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Abstract. We study the one-way number-on-the-forehead (NOF) communication com-
plexity of the k-layer pointer jumping problem with n vertices per layer. This classic
problem, which has connections to many aspects of complexity theory, has seen a recent
burst of research activity, seemingly preparing the ground for an Ω(n) lower bound, for
constant k. Our first result is a surprising sublinear — i.e., o(n) — upper bound for the
problem that holds for k ≥ 3, dashing hopes for such a lower bound.

A closer look at the protocol achieving the upper bound shows that all but one of the
players involved are collapsing, i.e., their messages depend only on the composition of the
layers ahead of them. We consider protocols for the pointer jumping problem where all
players are collapsing. Our second result shows that a strong n − O(log n) lower bound
does hold in this case. Our third result is another upper bound showing that nontrivial
protocols for (a non-Boolean version of) pointer jumping are possible even when all players
are collapsing.

Our lower bound result uses a novel proof technique, different from those of earlier
lower bounds that had an information-theoretic flavor. We hope this is useful in further
study of the problem.

1. Introduction

Multi-party communication complexity in general, and the pointer jumping problem
(also known as the pointer chasing problem) in particular, has been the subject of plenty
of recent research. This is because the model, and sometimes the specific problem, bears
on several aspects of computational complexity: among them, circuit complexity [Yao90,
HG91, BT94], proof size lower bounds [BPS05] and space lower bounds for streaming al-
gorithms [AMS99, GM07, CJP08]. The most impressive known consequence of a strong
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multi-party communication lower bound would be to exhibit non-membership in the com-
plexity class ACC0; details can be found in Beigel and Tarui [BT94] or in the textbook by
Arora and Barak [AB07]. Vexingly, it is not even known whether or not ACC0 = NEXP.

The setting of multi-party communication is as follows. There are k players (for some
k ≥ 2), whom we shall call plr1,plr2, . . . ,plrk, who share an input k-tuple (x1, x2, . . . , xk).
The goal of the players is to compute some function f(x1, x2, . . . , xk). There are two well-
studied sharing models: the number-in-hand model, where plri sees xi, and the number-
on-the-forehead (NOF) model, where plri sees all xjs such that j 6= i. Our focus in
this paper will be on the latter model, which was first introduced by Chandra, Furst and
Lipton [CFL83]. It is in this model that communication lower bounds imply lower bounds
against ACC0. We shall use C(f) to denote the deterministic communication complexity
of f in this model. Also of interest are randomized protocols that only compute f(x)
correctly with high probability: we let Rε(f) denote the ε-error randomized communication
complexity of f . Our work here will stick to deterministic protocols, which is a strength for
our upper bounds. Moreover, it is not a serious weakness for our lower bound, because the
ACC0 connection only calls for a deterministic lower bound.

Notice that the NOF model has a feature not seen elsewhere in communication com-
plexity: the players share plenty of information. In fact, for large k, each individual player
already has “almost” all of the input. This intuitively makes lower bounds especially hard
to prove and indeed, to this day, no nontrivial lower bound is known in the NOF model
for any explicit function with k = ω(log n) players, where n is the total input size. The
pointer jumping problem is widely considered to be a good candidate for such a lower bound.
As noted by Damm, Jukna and Sgall [DJS98], it has many natural special cases, such as
shifting, addressing, multiplication and convolution. This motivates our study.

1.1. The Pointer Jumping Problem and Previous Results

There are a number of variants of the pointer jumping problem. Here we study two
variants: a Boolean problem, mpjn

k , and a non-Boolean problem, m̂pj
n
k (henceforth, we shall

drop the superscript n). In both variants, the input is a subgraph of a fixed layered graph
that has k + 1 layers of vertices, with layer 0 consisting of a single vertex, v0, and layers 1
through k−1 consisting of n vertices each (we assume k ≥ 2). Layer k consists of 2 vertices
in the case of mpjk and n vertices in the case of m̂pjk. The input graph is a subgraph of the
fixed layered graph in which every vertex (except those in layer k) has outdegree 1. The
desired output is the name of the unique vertex in layer k reachable from v0, i.e., the final
result of “following the pointers” starting at v0. The output is therefore a single bit in the
case of mpjk or a dlog ne-bit string in the case of m̂pjk.1

The functions mpjk and m̂pjk are made into NOF communication problems as follows:
for each i ∈ [k], a description of the ith layer of edges (i.e., the edges pointing into the ith
layer of vertices) is written on plri’s forehead. In other words, plri sees every layer of edges
except the ith. The players are allowed to write one message each on a public blackboard
and must do so in the fixed order plr1,plr2, . . . ,plrk. The final player’s message must be
the desired output. Notice that the specific order of speaking — plr1,plr2, . . . ,plrk —
is important to make the problem nontrivial. Any other order of speaking allows an easy
deterministic protocol with only O(log n) communication.

1Throughout this paper we use “log” to denote logarithm to the base 2.
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Consider the case k = 2. The problem mpj2 is equivalent to the two-party communica-
tion problem index, where Alice holds a bit-vector x ∈ {0, 1}n, Bob holds an index i ∈ [n],
and Alice must send Bob a message that enables him to output xi. It is easy to show that
C(mpj2) = n. In fact, Ablayev [Abl96] shows the tight tradeoff Rε(mpj2) = (1 − H(ε))n,
where H is the binary entropy function. It is tempting to conjecture that this lower bound
generalizes as follows.

Conjecture 1.1. There is a nondecreasing function ξ : Z+ → R+ such that, ∀ k : C(mpjk) =
Ω(n/ξ(k)).

Note that, by the results of Beigel and Tarui [BT94], in order to show that mpjk /∈ ACC0

it would suffice, for instance, to prove the following (possibly weaker) conjecture.

Conjecture 1.2. There exist constants α, β > 0 such that, for k = nα, C(mpjk) = Ω(nβ).

Conjecture 1.1 is consistent with (and to an extent motivated by) research prior to
this work. In weaker models of information sharing than the NOF model, an equivalent
statement is known to be true, even for randomized protocols. For instance, Damm, Jukna
and Sgall [DJS98] show an Ω(n/k2) communication lower bound in the so-called conservative
model, where plri has only a limited view of the layers of the graph behind her: she only
sees the result of following the first i− 1 pointers. Chakrabarti [Cha07] extends this bound
to randomized protocols and also shows an Ω(n/k) lower bound in the so-called myopic
model, where plri has only a limited view of the layers ahead of her: she cannot see layers
i + 2, . . . , k.

For the full NOF model, Wigderson, building on the work of Nisan and Wigder-
son [NW93], showed that C(mpj3) = Ω(

√
n). This result is unpublished, but an exposition

can be found in Babai, Hayes and Kimmel [BHK01]. Very recently, Viola and Wigder-
son [VW07] generalized this result and extended it to randomized protocols, showing that
R1/3(mpjk) = Ω(n1/(k−1)/kO(k)). Of course, this bound falls far short of that in Conjec-
ture 1.1 and does nothing for Conjecture 1.2. However, it is worth noting that the Viola-
Wigderson bound in fact applies to the much smaller subproblem of tree pointer jumping
(denoted tpjk), where the underlying layered graph is a height-k tree, with every vertex in
layers 0 through k − 2 having n1/(k−1) children and every vertex in layer k − 1 having two
children. It is easy to see that C(tpjk) = O(n1/(k−1)). Thus, one might hope that the more
general problem mpjk has a much stronger lower bound, as in Conjecture 1.1.

On the upper bound side, Damm et al. [DJS98] show that C(m̂pjk) = O(n log(k−1) n),
where log(i) n is the ith iterated logarithm of n. This improves on the trivial upper bound
of O(n log n). Their technique does not yield anything nontrivial for the Boolean problem
mpjk, though. However, Pudlak, Rödl and Sgall [PRS97] obtain a sublinear upper bound
of O(n log log n/ log n) for a special case of mpj3. Their protocol works only when every
vertex in layer 2 has indegree 1, or equivalently, when the middle layer of edges in the input
describes a permutation of [n].

1.2. Our Results

The protocol of Pudlak et al. [PRS97] did not rule out Conjecture 1.1, but it did suggest
caution. Our first result is the following upper bound — in fact the first nontrivial upper
bound on C(mpjk) — that falsifies the conjecture.
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Theorem 1.3. For k ≥ 3, we have

C(mpjk) = O

(
n

(
k log log n

log n

)(k−2)/(k−1)
)

.

In particular, C(mpj3) = O(n
√

log log n/ log n).

A closer look at the protocol that achieves the upper bound above reveals that all
players except for plr1 behave in the following way: the message sent by plri depends
only on layers 1 through i − 1 and the composition of layers i + 1 through k. We say that
plri is collapsing. This notion is akin to that of the aforementioned conservative protocols
considered by Damm et al. Whereas a conservative player composes the layers behind hers,
a collapsing player does so for layers ahead of hers.

We consider what happens if we require all players in the protocol to be collapsing. We
prove a strong linear lower bound, showing that even a single non-collapsing player makes
an asymptotic difference in the communication complexity.

Theorem 1.4. In a protocol for mpjk where every player is collapsing, some player must
communicate at least n− 1

2 log n− 2 = n−O(log n) bits.

Finally, one might wonder whether the collapsing requirement is so strong that nothing
nontrivial is possible anyway. The same question can be raised for the conservative and
myopic models where Ω(n/k2) and Ω(n/k) lower bounds were proven in past work. It turns
out that the upper bound on C(m̂pjk) due to Damm et al. [DJS98] (see Section 1.1) is
achievable by a protocol that is both conservative and myopic. We can show a similar
upper bound via a different protocol where every player is collapsing.

Theorem 1.5. For k ≥ 3, there is an O(n log(k−1) n)-communication protocol for m̂pj
perm
k

in which every player is collapsing. Here m̂pj
perm
k denotes the subproblem of m̂pjk in which

layers 2 through k of the input graph are permutations of [n].

The requirement that layers be permutations is a natural one and is not new. The pro-
tocol of Pudlak et al. also had this requirement; i.e., it gave an upper bound on C(mpj

perm
3 ).

Theorem 1.5 can in fact be strengthened slightly by allowing one of the layers from 2 through
k to be arbitrary; we formulate and prove this stronger version in Section 4.

1.3. Organization

The rest of the paper is organized as follows. Theorems 1.3, 1.4 and 1.5 are proven
in Sections 2, 3 and 4 respectively. Section 2.1 introduces some notation that is used in
subsequent sections.

2. A Sublinear Upper Bound

2.1. Preliminaries, Notation and Overall Plan

For the rest of the paper, “protocols” will be assumed to be deterministic one-way NOF
protocols unless otherwise qualified. We shall use cost(P ) to denote the total number of
bits communicated in P , for a worst case input.
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Let us formally define the problems mpjk and m̂pjk. We shall typically write the input
k-tuple for mpjk as (i, f2, . . . , fk−1, x) and that for m̂pjk as (i, f2, . . . , fk), where i ∈ [n],
each fj ∈ [n][n] and x ∈ {0, 1}n. We then define mpjk : [n] × ([n][n]

)k−2 × {0, 1}n → {0, 1}
and m̂pjk : [n]× ([n][n]

)k−1 → [n] as follows.

mpj2(i, x) := xi ; mpjk(i, f2, f3, . . . , fk−1, x) := mpjk−1(f2(i), f3, . . . , fk−1, x) , for k ≥ 3

m̂pj2(i, f) := f(i) ; m̂pjk(i, f2, f3, . . . , fk) := m̂pjk−1(f2(i), f3, . . . , fk) , for k ≥ 3 .

Here, xi denotes the ith bit of the string x. It will be helpful, at times, to view strings in
{0, 1}n as functions from [n] to {0, 1} and use functional notation accordingly. It is often
useful to discuss the composition of certain subsets of the inputs. Let î2 := i, and for
3 ≤ j ≤ k, let îj := fj−1 ◦ · · · ◦ f2(i). Similarly, let x̂k−1 := x, and for 1 ≤ j ≤ k − 2, let
x̂j := x ◦ fk−1 ◦ · · · ◦ fj+1. Unrolling the recursion in the definitions, we see that, for k ≥ 2,

mpjk(i, f2, . . . , fk−1, x) = x ◦ fk−1 ◦ · · · ◦ f2(i) = x̂1(i) = xîk
; (2.1)

m̂pjk(i, f2, . . . , fk) = fk ◦ · · · ◦ f2(i) = fk(̂ik) . (2.2)

We also consider the subproblems mpj
perm
k and m̂pj

perm
k where each fj above is a bi-

jection from [n] to [n] (equivalently, a permutation of [n]). We let Sn denote the set of all
permutations of [n].

Here is a rough plan of the proof of our sublinear upper bound. We leverage the fact
that a protocol P for mpj

perm
3 with sublinear communication is known. To be precise:

Fact 2.1 (Pudlak, Rödl and Sgall [PRS97, Corollary 4.8]). C(mpj
perm
3 ) = O(n log log n/ log n).

The exact structure of P will not matter; we shall only use P as a black box. To get a
sense for why P might be useful for, say, mpj3, note that the players could replace f2 with
a permutation π and just simulate P , and this would work if π(i) = f(i). Of course, there
is no way for plr1 and plr3 to agree on a suitable π without communication. However, as
we shall see below, it is possible for them to agree on a small enough set of permutations
such that either some permutation in the set is suitable, or else only a small amount of side
information conveys the desired output bit to plr3.

This idea eventually gives us a sublinear protocol for mpj3. Clearly, whatever upper
bound we obtain for mpj3 applies to mpjk for all k ≥ 3. However, we can decrease the
upper bound as k increases, by embedding several instances of mpj3 into mpjk. For clarity,
we first give a complete proof of Theorem 1.3 for the case k = 3.

2.2. A 3-Player Protocol

Following the plan outlined above, we prove Theorem 1.3 for the case k = 3 by plugging
Fact 2.1 into the following lemma, whose proof is the topic of this section.

Lemma 2.2. Suppose φ : Z+ → (0, 1] is a function such that C(mpj
perm
3 ) = O(nφ(n)).

Then C(mpj3) = O(n
√

φ(n)).

Definition 2.3. A set A ⊆ Sn of permutations is said to d-cover a function f : [n] → [n]
if, for each r ∈ [n], at least one of the following conditions holds:

(i) ∃π ∈ A such that π(r) = f(r), or
(ii) |f−1(f(r))| > d.
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Lemma 2.4. Let f : [n] → [n] be a function and d be a positive integer. There exists a set
Ad(f) ⊆ Sn, with |Ad(f)| ≤ d, that d-covers f .

Proof. We give an explicit algorithm to construct Ad(f). Our strategy is to partition the
domain and codomain of f (both of which equal [n]) into parts of matching sizes and then
define bijections between the corresponding parts. To be precise, suppose Range(f) =
{s1, s2, . . . , st}. Let Ai = f−1(si) be the corresponding fibers of f . Clearly, {Ai}t

i=1 is a
partition of [n]. It is also clear that there exists a partition {Bi}t

i=1 of [n] such that, for
all i ∈ [t], Bi ∩ Range(f) = {si} and |Bi| = |Ai|. We shall now define certain bijections
πi,` : Ai → Bi, for each i ∈ [t] and ` ∈ [d].

Let ai,1 < ai,2 < · · · < ai,|Ai| be the elements of Ai arranged in ascending order.
Similarly, let bi,1 < · · · < bi,|Bi| be those of Bi. We define

πi,`(ai,j) := bi,(j−`) mod |Bi| , for i ∈ [t], ` ∈ [d] ,

where, for convenience, we require “α mod β” to return values in [β], rather than {0, 1, . . . , β−
1}. It is routine to verify that πi,` is a bijection. Notice that this construction ensures that
for all i ∈ [t] and j ∈ [|Ai|] we have

|{πi,`(ai,j) : ` ∈ [d]}| = min{d, |Bi|} . (2.3)

Let π` : [n] → [n] be the bijection given by taking the “disjoint union” of π1,`, . . . , πt,`. We
claim that Ad(f) = {π1, . . . , πd} satisfies the conditions of the lemma.

It suffices to verify that this choice of Ad(f) d-covers f , i.e., to verify that every r ∈ [n]
satisfies at least one of the two conditions in Definition 2.3. Pick any r ∈ [n]. Suppose r ∈ Ai,
so that f(r) ∈ Bi and π`(r) = πi,`(r). If |Bi| > d, then |f−1(f(r))| = |Ai| = |Bi| > d, so
condition (ii) holds. Otherwise, from Eq. (2.3), we conclude that {πi,`(r) : ` ∈ [d]} = Bi.
Therefore, for each s ∈ Bi — in particular, for s = f(r) — there exists an ` ∈ [d] such that
π`(r) = πi,`(r) = s, so condition (i) holds.

Proof of Lemma 2.2. Let (i, π, x) ∈ [n] × Sn × {0, 1}n denote an input for the problem
mpj

perm
3 . Then the desired output is xπ(i). The existence of a protocol P for mpj

perm
3 with

cost(P ) = O(nφ(n)) means that there exist functions

α : Sn × {0, 1}n → {0, 1}m , β : [n]× {0, 1}n × {0, 1}m → {0, 1}m , and

γ : [n]× Sn × {0, 1}m × {0, 1}m → {0, 1} ,

where m = O(nφ(n)), such that γ(i, π, α(π, x), β(i, x, α(π, x))) = xπ(i). The functions α, β
and γ yield the messages in P of plr1,plr2 and plr3 respectively.

To design a protocol for mpj3, we first let plr1 and plr3 agree on a parameter d, to
be fixed below, and a choice of Ad(f) for each f : [n] → [n], as guaranteed by Lemma 2.4.
Now, let (i, f, x) ∈ [n]× [n][n]×{0, 1}n be an input for mpj3. Our protocol works as follows.

• plr1 sends a two-part message. The first part consists of the strings {α(π, x)}π

for all π ∈ Ad(f). The second part consists of the bits xs for s ∈ [n] such that
|f−1(s)| > d.

• plr2 sends the strings {β(i, x, α)}α for all strings α in the first part of plr1’s
message.

• plr3 can now output xf(i) as follows. If |f−1(f(i))| > d, then she reads xf(i) off
from the second part of plr1’s message. Otherwise, since Ad(f) d-covers f , there
exists a π0 ∈ Ad(f) such that f(i) = π0(i). She uses the string α0 := α(π0, x) from
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the first part of plr1’s message and the string β0 := β(i, x, α0) from plr2’s message
to output γ(i, π0, α0, β0).

To verify correctness, we only need to check that plr3’s output in the “otherwise” case
indeed equals xf(i). By the correctness of P , the output equals xπ0(i) and we are done, since
f(i) = π0(i).

We now turn to the communication cost of the protocol. By the guarantees in Lemma 2.4,
|Ad(f)| ≤ d, so the first part of plr1’s message is at most dm bits long, as is plr2’s mes-
sage. Since there can be at most n/d values s ∈ [n] such that |f−1(s)| > d, the second part
of plr2’s message is at most n/d bits long. Therefore the communication cost is at most
2dm + n/d = O(dnφ(n) + n/d). Setting d = d1/√φ(n)e gives us a bound of O(n

√
φ(n)),

as desired.

2.3. A k-Player Protocol

We now show how to prove Theorem 1.3 by generalizing the protocol from Lemma 2.2
into a protocol for k players. It will help to view an instance of mpjk as incorporating
several “embedded” instances of mpj3. The following lemma makes this precise.

Lemma 2.5. Let (i, f2, . . . , fk−1, x) be input for mpjk. Then, for all 1 < j < k,

mpjk(i, f2, . . . , x) = mpj3(fj−1 ◦ · · · ◦ f2(i), fj , x ◦ fk−1 ◦ · · · ◦ fj+1).

In our protocol for mpjk, for 2 ≤ j ≤ k− 1, the players plr1,plrj , and plrk will use a
modified version of the protocol from Lemma 2.2 for mpj3 on input (fj−1 ◦ · · · ◦ f2(i), fj , x ◦
· · · ◦ fj+1). Before we get to the protocol, we need to generalize the technical definition and
lemma from the previous subsection.

Definition 2.6. Let S ⊆ [n] and let d be a positive integer. A set A ⊆ Sn of permutations
is said to (S, d)-cover a function f : [n] → [n] if, for each r ∈ S, at least one of the following
conditions holds:

(i) ∃π ∈ A such that π(r) = f(r), or
(ii) |S ∩ f−1(f(r))| > d.

Lemma 2.7. Let f : [n] → [n] be a function, S ⊆ [n], and d be a positive integer. There
exists a set AS,d(f) ⊆ Sn, with |AS,d(f)| ≤ d, that (S, d)-covers f .

Proof. This proof closely follows that of Lemma 2.4. As before, we give an explicit algorithm
to construct AS,d(f). Suppose Range(f) = {s1, s2, . . . , st}, and let {Ai} and {Bi} be defined
as in Lemma 2.4. Let ai,1 < · · · < ai,z be the elements of Ai ∩ S arranged in ascending
order, and let ai,z+1 < · · · < ai,|Ai| be the elements of Ai \ S arranged in ascending order.
Similarly, let bi,1 < · · · < bi,|Bi|−1 be the elements of Bi \ {si} arranged in ascending order,
and let bi,|Bi| = si. For i ∈ [t], ` ∈ [d], we define πi,`(ai,j) := bi,(j−`) mod |Bi|. As before,
it is routine to verify that πi,` is a bijection. Let π` : [n] → [n] be the bijection given by
taking the “disjoint union” of π1,`, . . . , πt,`. We claim that AS,d(f) = {π1, . . . , πd} satisfies
the conditions of the lemma.

It suffices to verify that this choice of AS,d(f) (S, d)-covers f , i.e., to verify that every
r ∈ S satisfies at least one of the two conditions in Definition 2.6. Pick any r ∈ S.
Suppose r ∈ Ai, and fix j such that r = ai,j. If |S ∩ f−1(f(r))| > d, then condition (ii)
holds. Otherwise, setting ` = j < |S ∩ f−1(f(i))| ≤ d, we conclude that π`(r) = πi,`(r) =
πi,`(ai,j) = bi,|Bi| = si = f(r), so condition (i) holds.
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Proof of Theorem 1.3. To design a protocol for mpjk, we first let plr1 and plrk agree on a
parameter d, to be fixed below. They also agree on a choice of AS,d(f) for all S ⊆ [n] and
f : [n] → [n]. Let (i, f2, . . . , fk−1, x) denote an input for mpjk. Also, let S1 = [n], and for
all 2 ≤ j ≤ k − 1, let Sj = {s ∈ [n] : |Sj−1 ∩ f−1

j (s)| > d}. Our protocol works as follows:
• plr1 sends a (k−1)-part message. For 1 ≤ j ≤ k−2, the jth part of plr1’s message

consists of the strings {α(π, x̂j+1)}π for each π ∈ ASj ,d(fj+1). The remaining part
consists of the bits xs for s ∈ Sk−1.

• For 2 ≤ j ≤ k − 1, plrj sends the strings {β(̂ij , x̂j , α)}α for all strings α in the
(j − 1)th part of plr1’s message.

• plrk can now output xîk
as follows. If |S1 ∩ f−1

2 (f2(i))| ≤ d, then, because
AS1,d(f2) (S1, d)-covers f2, there exists π0 ∈ AS1,d(f2) such that f2(i) = π0(i).
She uses the string α0 = α(π0, x̂2) from the first part of plr1’s message and the
string β0 = β(i, x̂2, α0) from plr2’s message to output γ0 = γ(i, π0, α0, β0). Sim-
ilarly, if there is a j such that 2 ≤ j ≤ k − 2 and |Sj ∩ f−1

j+1(fj+1(̂ij+1))| ≤ d,
then since ASj ,d(fj+1) (Sj , d)-covers fj+1, there exists a π0 ∈ ASj ,d(fj+1) such that
fj+1(̂ij+1) = π0(̂ij+1). She uses the string α0 = α(π0, x̂j+1) from the jth part
of plr1’s message and the string β0 = β(̂ij+1, x̂j+1, α0) from plrj+1’s message to
output γ0 = γ(̂ij+1, π0, α0, β0). Otherwise, |Sk−2 ∩ f−1

k−1(fk−1(̂ik−1))| > d, hence
îk ∈ Sk−1, and she reads xîk

off from the last part of plr1’s message.
To verify correctness, we need to ensure that plrk always outputs x ◦ fk−1 ◦ · · · ◦ f2(i).

In the following argument, we repeatedly use Lemma 2.5. We proceed inductively. If
|S1 ∩ f−1

2 (f2(i))| ≤ d then there exists π0 ∈ AS1,d(f2) such that f2(i) = π0(i), α0 =
α(π0, x̂2), and β0 = β(i, x̂2, α0), and plrk outputs γ0 = γ(i, π0, α0, β0) = x̂2(π0(i)) =
x ◦ fk−1 ◦ · · · ◦ f2(i). Otherwise, |S1 ∩ f−1

2 (f2(i))| > d, hence f2(i) ∈ S2. Inductively, if
îj ∈ Sj−1, then either |Sj−1 ∩ f−1

j (fj (̂ij))| ≤ d, or |Sj−1 ∩ f−1
j (fj (̂ij))| > d. In the former

case, there is π0 ∈ ASj−1,d(fj) such that fj (̂ij) = π0(̂ij); α0(π0, x̂j), and β0 = β(̂ij , x̂j, α0),
and plrk outputs γ0 = γ(̂ij , π0, α0, β0) = x̂j(fj (̂ij)) = x ◦ fk−1 ◦ · · · ◦ f2(i). In the latter
case, fj (̂ij) ∈ Sj. By induction, we have that either plrk outputs x ◦ fk−1 ◦ · · · ◦ f2(i), or
îk ∈ Sk−1. But in this case, plrk outputs x(̂ik) = x ◦ fk−1 ◦ · · · ◦ f2(i) directly from the last
part of plr1’s message. Therefore, plrk always outputs x ◦ fk−1 ◦ · · · ◦ f2(i) correctly.

We now turn to the communication cost of the protocol. By Lemma 2.7, |ASj ,d(fj)| ≤ d
for each 2 ≤ j ≤ k − 1, hence the first k − 2 parts of plr1’s message each are at most dm
bits long, as is plrj ’s message for all 2 ≤ j ≤ k − 1. Also, since for all 2 ≤ j ≤ k − 1, there
are at most |Sj−1|/d elements s ∈ Sj such that |Sj−1 ∩ f−1

j (s)| > d, we must have that
|S2| ≤ |S1|/d = n/d, |S3| ≤ |S2|/d ≤ n/d2, etc., and |Sk−1| ≤ n/dk−2. Therefore, the final
part of plr1’s message is at most n/dk−2 bits long, and the total communication cost is at
most 2(k−2)dm+n/dk−2 = O((k−2)dnφ(n)+n/dk−2). Setting d = d1/((k−2)φ(n))1/(k−1)e
gives us a bound of O(n(kφ(n))(k−2)/(k−1)) as desired.

Note that, in the above protocol, except for the first and last players, the remaining
players access very limited information about their input. Specifically, for all 2 ≤ j ≤ k−1,
plrj needs to see only îj and x̂j, i.e., plrj is both conservative and collapsing. Despite
this severe restriction, we have a sublinear protocol for mpjk. As we shall see in the next
section, further restricting the input such that plr1 is also collapsing yields very strong
lower bounds.
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3. Collapsing Protocols: A Lower Bound

Let F : A1 × A2 × · · · × Ak → B be a k-player NOF communication problem and P
be a protocol for F . We say that plrj is collapsing in P if her message depends only on
x1, . . . , xj−1 and the function gx,j : A1 × A2 × · · · × Aj → B given by gx,j(z1, . . . , zj) =
F (z1, . . . , zj , xj+1, . . . , xk). For pointer jumping, this amounts to saying that plrj sees all
layers 1, . . . , j − 1 of edges (i.e., the layers preceding the one on her forehead), but not layers
j + 1, . . . , k; however, she does see the result of following the pointers from each vertex in
layer j. Still more precisely, if the input to mpjk (or m̂pjk) is (i, f2, . . . , fk), then the only
information plrj gets is i, f2, . . . , fj−1 and the composition fk ◦ fk−1 ◦ · · · ◦ fj+1.

We say that a protocol is collapsing if every player involved is collapsing. We shall
prove Theorem 1.4 by contradiction. Assume that there is a collapsing protocol P for mpjk

in which every player sends less than n − 1
2 log n − 2 bits. We shall construct a pair of

inputs that differ only in the last layer (i.e., the Boolean string on plrk’s forehead) and
that cause players 1 through k − 1 to send the exact same sequence of messages. This will
cause plrk to give the same output for both these inputs. But our construction will ensure
that the desired outputs are unequal, a contradiction. To aid our construction, we need
some definitions and preliminary lemmas.

Definition 3.1. A string x ∈ {0, 1}n is said to be consistent with (f1, . . . , fj, α1, . . . , αj) if,
in protocol P , for all h ≤ j, plrh sends the message αh on seeing input (i = f1, . . . , fh−1, x◦
fj ◦ fj−1 ◦ · · · ◦ fh+1) and previous messages α1, . . . , αh−1.2 A subset T ⊆ {0, 1}n is said to
be consistent with (f1, . . . , fj , α1, . . . , αj) if x is consistent with (f1, . . . , fj, α1, . . . , αj) for
all x ∈ T .

Definition 3.2. For strings x, x′ ∈ {0, 1}n and a, b ∈ {0, 1}, define the sets

Iab(x, x′) := {j ∈ [n] : (xj, x
′
j) = (a, b)} .

A pair of strings (x, x′) is said to be a crossing pair if for all a, b ∈ {0, 1}, Iab(x, x′) 6= ∅. A
set T ⊆ {0, 1}n is said to be crossed if it contains a crossing pair and uncrossed otherwise.
The weight of a string x ∈ {0, 1}n is defined to be the number of 1s in x, and denoted |x|.

For the rest of this section, we assume (without loss of generality) that n is large enough
and even.

Lemma 3.3. If T ⊆ {0, 1}n is uncrossed, then |{x ∈ T : |x| = n/2}| ≤ 2.

Proof. Let x and x′ be distinct elements of T with |x| = |x′| = n/2. For a, b ∈ {0, 1},
define tab = |Iab(x, x′)|. Since x 6= x′, we must have t01 + t10 > 0. An easy counting
argument shows that t01 = t10 and t00 = t11. Since T is uncrossed, (x, x′) is not a crossing
pair, so at least one of the numbers tab must be zero. It follows that t00 = t11 = 0, so
x and x′ are bitwise complements of each other. Since this holds for any two strings in
{x ∈ T : |x| = n/2}, that set can have size at most 2.

Lemma 3.4. Suppose t ≤ n− 1
2 log n−2. If {0, 1}n is partitioned into 2t disjoint sets, then

one of those sets must be crossed.

2It is worth noting that, in Definition 3.1, x is not to be thought of as an input on plrk’s forehead.
Instead, in general, it is the composition of the rightmost k − j layers of the input graph.
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Proof. Let {0, 1}n = T1tT2t· · ·tTm be a partition of {0, 1}n into m uncrossed sets. Define
X := {x ∈ {0, 1}n : |x| = n/2}. Then X =

⋃m
i=1(Ti ∩X). By Lemma 3.3,

|X| ≤
m∑

i=1

|Ti ∩X| ≤ 2m.

Using Stirling’s approximation, we can bound |X| > 2n/(2
√

n). Therefore, m > 2n− 1
2

log n−2.

Proof of Theorem 1.4. Set t = n− 1
2 log n− 2. Recall that we have assumed that there is a

collapsing protocol P for mpjk in which every player sends at most t bits. We shall prove
the following statement by induction on j, for j ∈ [k − 1].

(*) There exists a partial input (i = f1, f2, . . . , fj) ∈ [n] × ([n][n]
)j−1

, a
sequence of messages (α1, . . . , αj) and a crossing pair of strings (x, x′) ∈
({0, 1}n)2 such that both x and x′ are consistent with (f1, . . . , fj , α1, . . . , αj),
whereas x ◦ fj ◦ · · · ◦ f2(i) = 0 and x′ ◦ fj ◦ · · · ◦ f2(i) = 1.

Considering (*) for j = k − 1, we see that plrk must behave identically on the two inputs
(i, f2, . . . , fk−1, x) and (i, f2, . . . , fk−1, x

′). Therefore, she must err on one of these two
inputs. This will give us the desired contradiction.

To prove (*) for j = 1, note that plr1’s message, being at most t bits long, partitions
{0, 1}n into at most 2t disjoint sets. By Lemma 3.4, one of these sets, say T , must be
crossed. Let (x, x′) be a crossing pair in T and let α1 be the message that plr1 sends on
seeing a string in T . Fix i = f1 such that i ∈ I01(x, x′). These choices are easily seen to
satisfy the conditions in (*). Now, suppose (*) holds for a particular j ≥ 1. Fix the partial
input (f1, . . . , fj) and the message sequence (α1, . . . , αj) as given by (*). We shall come up
with appropriate choices for fj+1, αj+1 and a new crossing pair (y, y′) to replace (x, x′), so
that (*) is satisfied for j + 1. Since plrj+1 sends at most t bits, she partitions {0, 1}n into
at most 2t subsets (the partition might depend on the choice of (f1, . . . , fj , α1, . . . , αj)).

As above, by Lemma 3.4, she sends a message αj+1 on some crossing pair (y, y′). Choose
fj+1 so that it maps Iab(x, x′) to Iab(y, y′) for all a, b ∈ {0, 1}; this is possible because
Iab(y, y′) 6= ∅. Then, for all i ∈ [n], xi = yfj+1(i) and x′

i = y′
fj+1(i)

. Hence, x = y ◦ fj+1

and x′ = y′ ◦ fj+1. Applying the inductive hypothesis and the definition of consistency, it
is straightforward to verify the conditions of (*) with these choices for fj+1, αj+1, y and y′.
This completes the proof.

4. Collapsing Protocols: An Upper Bound

We now turn to proving Theorem 1.5 by constructing an appropriate collapsing protocol
for m̂pj

perm
k . Our protocol uses what we call bucketing schemes, which have the flavor of the

conservative protocol of Damm et al. [DJS98]. For any function f ∈ [n][n] and any S ⊆ [n],
let 1S denote the indicator function for S; that is, 1S(i) = 1 ⇔ i ∈ S. Also, let f |S denote
the function f restricted to S; this can be seen as a list of numbers {is}, one for each s ∈ S.
Players will often need to send 1S and f |S together in a single message. This is because
later players might not know S, and will therefore be unable to interpret f |S without 1S .
Let 〈m1, . . . ,mt〉 denote the concatenation of messages m1, . . . ,mt.

Definition 4.1. A bucketing scheme on a set X is an ordered partition B = (B1, . . . , Bt) of
X into buckets. For x ∈ X, we write B[x] to denote the unique integer j such that Bj 3 x.
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We actually prove our upper bound for problems slightly more general than m̂pj
perm
k .

To be precise, for an instance (i, f2, . . . , fk) of m̂pjk, we allow any one of f2, . . . , fk to be an
arbitrary function in [n][n]. The rest of the fjs are required to be permutations, i.e., in Sn.

Theorem 4.2 (Slight generalization of Theorem 1.5). There is an O(n log(k−1) n) collapsing
protocol for instance (i, f2, . . . , fk) of m̂pjk when all but one of f2, . . . , fk are permutations.
In particular, there is such a protocol for m̂pj

perm
k .

Proof. We prove this for m̂pj
perm
k only. For 1 ≤ t ≤ dlog ne, define the bucketing scheme

Bt = (B1, . . . , B2t) on [n] by Bj := {r ∈ [n] : d2tr/ne = j}. Note that each |Bj| ≤ dn/2te
and that a bucket can be described using t bits. For 1 ≤ j ≤ k, let bj = dlog(k−j) ne. In the
protocol, most players will use two bucketing schemes, B and B ′. On input (i, f2, . . . , fk):

• plr1 sees f̂1, computes B′ := Bb1 , and sends 〈B′[f̂1(1)], . . . ,B′[f̂1(n)]〉.
• plr2 sees î2, f̂2, and plr1’s message. plr2 computes B := Bb1 and B′ := Bb2 . She

recovers b := B[f̂2(f2(̂i2))] and hence Bb. Let S2 := {s ∈ [n] : f̂2(s) ∈ Bb}. Note
that f2(̂i2) ∈ S2. plr2 sends 〈1S2 , {B′[f̂2(s)] : s ∈ S2}〉.

...
• plrj sees îj , f̂j, and plrj−1’s message. plrj computes B := Bbj−1

and B′ := Bbj
. She

recovers b := B[f̂j(fj (̂ij))] and hence Bb. Let Sj := {s ∈ [n] : f̂j(s) ∈ Bb}. Note that
the definitions guarantee that fj (̂ij) ∈ Sj. plrj sends 〈1Sj , {B′[f̂j(s)] : s ∈ Sj}〉.

...
• plrk sees îk and plrk−1’s message and outputs fk(̂ik).

We claim that this protocol costs O(n log(k−1) n) and correctly outputs m̂pjk(i, f2, . . . , fk).
For each 2 ≤ j ≤ k − 1, plrj uses bucketing scheme Bbj−1

to recover the bucket Bb con-
taining f̂j(fj (̂ij)). She then encodes each element in Bb in the bucketing scheme Bbj

. Each
bucket in Bbj

has size at most dn/bj+1e. In particular, each bucket in scheme Bk−1 has
size at most dn/bke = 1, and the unique element in the bucket (if present) is precisely
fk(̂ik). Turning to the communication cost, plr1 sends b1 = dlog(k−1) ne bits to identify
the bucket for each i ∈ [n], giving a total of ndlog(k−1) ne bits. For 1 < j < k, plrj uses
n + bj(n/bj) = O(n) bits. Thus, the total cost is O(n log(k−1) n + kn) bits.

For k ≤ log∗ n players, we are done. For larger k, we can get an O(n) protocol by
doubling the size of each bj and stopping the protocol when the buckets have size ≤ 1.

5. Concluding Remarks

We have presented the first nontrivial upper bound on the NOF communication com-
plexity of the Boolean problem mpjk, showing that C(mpjk) = o(n). A lower bound of Ω(n)
had seemed a priori reasonable, but we show that this is not the case. One plausible line of
attack on lower bounds for mpjk is to treat it as a direct sum problem: at each player’s turn,
it seems that n different paths need to be followed in the input graph, so it seems that an
information theoretic approach (as in Bar-Yossef et al. [BJKS02] or Chakrabarti [Cha07])
could lower bound C(mpjk) by n times the complexity of some simpler problem. However, it
appears that such an approach would naturally yield a lower bound of the form Ω(n/ξ(k)),
as in Conjecture 1.1, which we have explicitly falsified.
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The most outstanding open problem regarding mpjk is to resolve Conjecture 1.2. A
less ambitious, but seemingly difficult, goal is to get tight bounds on C(mpj3), closing the
gap between our O(n

√
log log n/ log n) upper bound and Wigderson’s Ω(

√
n) lower bound.

A still less ambitious question is prove that mpj3 is harder than its very special subproblem
tpj3 (defined in Section 1.1). Our n − O(log n) lower bound for collapsing protocols is a
step in the direction of improving the known lower bounds. We hope our technique provides
some insight about the more general problem.
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Abstract. We show that Sp
2 ⊆ PprAM, where Sp

2 is the symmetric alternation class and
prAM refers to the promise version of the Arthur-Merlin class AM. This is derived as a
consequence of our main result that presents an FPprAM algorithm for finding a small set
of “collectively irrefutable certificates” of a given S2-type matrix. The main result also
yields some new consequences of the hypothesis that NP has polynomial size circuits. It
is known that the above hypothesis implies a collapse of the polynomial time hierarchy
(PH) to Sp

2 ⊆ ZPPNP [5, 14]. Under the same hypothesis, we show that PH collapses to
PprMA. We also describe an FPprMA algorithm for learning polynomial size circuits for
SAT, assuming such circuits exist. For the same problem, the previously best known result
was a ZPPNP algorithm [4].

1. Introduction

We consider the problem of finding irrefutable certificates for the symmetric alternation
class Sp

2. The class Sp
2 was introduced by Russell and Sundaram [17] and independently, by

Canetti [6]. A language L in the class Sp
2 is characterized by an interactive proof system of

the following type. The proof system consists of two computationally all-powerful provers
called the Yes-prover and the No-prover, and a polynomial time verifier. The verifier
interacts with the two provers to ascertain whether or not an input string x belongs to the
language L. The Yes-prover and the No-prover make contradictory claims: x ∈ L and
x 6∈ L, respectively. Of course, only one of them is honest. To substantiate their claims,
the provers provide strings y and z as certificates. The verifier analyzes the input x and
the two certificates and votes in favor of one of the provers. If the Yes-prover wins the
vote, we say that y beats z and we say that z beats y, otherwise. The requirement is that,
if x ∈ L, then the Yes-prover must have a certificate y that beats any certificate z given
by the No-prover. Similarly, if x 6∈ L, the No-prover must have a certificate z that
beats any certificate y given by the Yes-prover. We call certificates satisfying the above
requirements as irrefutable certificates (written IC). Clearly, for any input string, only the
honest prover has an IC.

Cai [5] showed that Sp
2 ⊆ ZPPNP. Let us rephrase this result: for any language L ∈ Sp

2,
we have a ZPPNP algorithm that takes an input string and decides whether the Yes-prover

Key words and phrases: Symmetric alternation, promise-AM, Karp–Lipton theorem, learning circuits.
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has an IC or the No-prover has an IC. The main purpose of this paper is to study the
problem of finding IC’s for an input string.

The above problem and the related issues regarding Sp
2 can conveniently be described in

terms of Boolean matrices. Let L be a language in Sp
2 and x be an input string. Let n and m,

denote the length of the certificates of the Yes-prover and No-prover, respectively. We
model the behaviour of the verifier on the input x in the form of a 2n × 2m Boolean matrix
M . In the matrix M , the rows correspond to the certificates of the Yes-prover and the
columns correspond to the certificates of the No-prover. For certificates y ∈ {0, 1}n and
z ∈ {0, 1}m, if y beats z, then we set M [y, z] = 1 and if z beats y, then we set M [y, z] = 0.
Notice that the matrix M has either a row full of 1’s or a column full of 0’s. The first
scenario happens, when x ∈ L (here, the row full of 1’s corresponds to an IC of the Yes-

prover). Similarly, the second scenario happens, when x 6∈ L (here, the column full of 0’s
corresponds to an IC of the No-prover). We call any Boolean matrix satisfying the above
condition as an S2-type matrix. A row full of 1’s is called a row-side IC and a column full of
0’s is called a column-side IC. (Notice that a Boolean matrix cannot have both.) Though
the matrix M is exponentially large in the size of the input |x|, it can be succinctly encoded
in the form of a Boolean circuit C having size polynomial in |x|. The circuit C takes as
input y ∈ {0, 1}n and z ∈ {0, 1}m and outputs C(y, z) = M [y, z]. The circuit achieves this
by simulating the verifier’s algorithm on the input x. Using standard techniques, we can
construct the desired circuit C in time polynomial in |x|.

Problems regarding Sp
2 can now be expressed as problems on S2-type matrices, presented

succinctly in the form of circuits. First, let us consider the basic problem of membership
testing for a language L ∈ Sp

2: given a string x, determine whether x ∈ L or not. This is
equivalent to following problem on S2-type matrices.

Membership Testing. Given an S2-type matrix M , presented succinctly in the form
of a circuit, distinguish between the two cases: (i) there exists a row-side IC; (ii) there exists
a column-side IC.

Cai [5] showed that Sp
2 ⊆ ZPPNP. Equivalently, this result presents a ZPPNP algorithm

for the Membership Testing problem. We consider the more general problem of finding
an IC for a given S2-type matrix.

Problem FindIC: Given an S2-type matrix M , presented succinctly in the form of a
circuit, output an IC either on the row side or on the column side.

Via a simple observation, we show that if there exists a ZPPNP algorithm for the
FindIC problem, then the polynomial time hierarchy (PH) collapses. In summary, we can
determine in ZPPNP whether an IC is found among the rows or among the columns; but,
we cannot find an IC in ZPPNP, unless PH collapses. So, we study the easier problem of
finding a set of collectively irrefutable certificates (written CIC).

We say that a set of rows Y collectively beats a column z, if some row y ∈ Y beats
z. The set Y is said to be a row-side CIC, if Y collectively beats every z. The notion
of column-side CIC is defined analogously. Notice that an arbitrary Boolean matrix may
have both a row-side CIC and a column-side CIC. However, the existence of a row-side CIC
precludes there being a column-side IC. Thus, in the case of S2-type matrices, a row-side CIC
shows that there exists a row-side IC (which in turn, means that the input string x ∈ L).
Therefore, a row-side CIC is as useful as a row-side IC, in certifying that x ∈ L. Our main
result provides an algorithm for finding a CIC of small size (logarithmic in the size of the
input matrix).
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Problem FindCIC. Given an S2-type matrix M of size 2n×2m, presented succinctly in
the form of a circuit, output either a row-side CIC or a column-side CIC of size max{n,m}.

Our main result presents an FPprAM algorithm for the FindCICproblem, i.e., the al-
gorithm runs in (deterministic) polynomial time making queries to an prAM oracle; prAM
refers to the promise version of the Arthur-Merlin class AM.

Main Result. We present an FPprAM algorithm for the FindCIC problem.
We note that the problem FindCIC can also be solved by a ZPPNP algorithm; such

an algorithm is implicit in the work of Cai [5] and Fortnow et al. [9]. The containment
relationships between FPprAM and ZPPNP are not known. This issue is discussed in more
detail below.

An immediate corollary of the main result is that Sp
2 ⊆ PprAM. This gives a nice

counterpart to Cai’s result [5] that Sp
2 ⊆ ZPPNP. The containment relationships between

PprAM and ZPPNP are unknown. (In fact, it has been a long standing open problem to put
AM in Σp

2). However, we can show that PprAM ⊆ BPPNP. Moreover, Cai’s result can also
be derived from the main result.

It is known that PNP ⊆ Sp
2 [17] and one of the most challenging open problems regarding

Sp
2 asks whether Sp

2 is contained in PNP. Working under a larger framework, Shaltiel and
Umans [19] also studied this issue and derived the result Sp

2 = PNP, under a suitable
hardness hypothesis. This was achieved by derandomizing Cai’s construction for Sp

2 ⊆
ZPPNP. The above-mentioned hardness hypothesis was the one used by Miltersen and
Vinodchandran [15] to derandomize AM to get AM = NP: there exists a language L in
NE ∩ coNE so that for all but finitely many n, L ∩ {0, 1}n has SV-nondeterministic circuit
complexity at least 2εn. Thus, under the above hypothesis, Shaltiel and Umans showed that
Sp

2 = PNP. Our claim that Sp
2 ⊆ PprAM yields an alternative proof of the above result. This

is obtained by appealing to the hitting set generator of Miltersen and Vinodchandran [15].
The details will be included in the full version of the paper.

The main result yields two new consequences of the assumption that NP has polynomial
size circuits. Under the above assumption, Karp and Lipton [13] showed that the polynomial
time hierarchy (PH) collapses to Σp

2. Subsequently, their result has been strengthened:
Köbler and Watanabe [14] derived the collapse PH = ZPPNP; Sengupta observed that
PH = Sp

2 ⊆ ZPPNP (see [5]); recently, the collapse was improved to PH = Op
2 ⊆ Sp

2 [7]. It
has been a challenging open problem to get the collapse down to PNP. We derive a weaker
result: if NP has polynomial size circuits, then PH = PprMA. It is worthwhile to compare
this new collapse result with the earlier ones. Though it is known that PMA ⊆ Sp

2 [17], it is
not clear whether PprMA is contained in Sp

2. However, we can show that PprMA ⊆ ZPPNP

(by extending the known result that MA ⊆ ZPPNP [1, 11]).
One implication of the new collapse result is that PprMA cannot have SIZE(nk) cir-

cuits, for any fixed k. However, a stronger result is known: in a recent breakthrough,
Santhanam [18] proved the above circuit lowerbound for the class prMA.

In the above context, our next result deals with the problem of learning polynomial size
circuits for SAT. Under the assumption that NP has polynomial size circuits, Bshouty et
al. [4] designed a ZPPNP algorithm that finds a correct circuit for SAT at a given length.
We improve their result by presenting a FPprMA algorithm for the same task.

Finally, we show how to generalize our main result to the case of arbitrary Boolean
matrices (that may not necessarily be of S2-type). For this, we make use of a nice and
interesting lemma by Goldreich and Wigderson [10]: they showed that any 2n×2m Boolean
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matrix M contains a row-side CIC of size m or a column-side CIC of size n (or both). We
consider the scenario where the matrix M is presented succinctly in the form of a circuit
and describe an FPprAM algorithm for finding such a CIC; but, our algorithm suffers a small
blow-up in the size of the output CIC. The algorithm finds a row-side CIC of size m2 or a
column-side CIC of size n2.

For lack of space, the details of the above generalization and proofs for some of the
results are omitted in this paper. These will be included in the full version of the paper.

Proof Techniques. The proof of our main result has a flavor similar to that of
Cai’s result [5]. The proof involves a variant of self-reduction and the tools of approximate
counting and testing whether a set is “large” or ”small”. For the latter two tasks, we borrow
ideas from the work of Jerrum et al. [12], Stockmeyer [21] and Sipser [20]. We put together
all these ideas and show how to solve our problem using a prAM oracle. Our exposition is
largely self-contained.

2. Preliminaries

In this section, we develop definitions and notations used throughout the paper.
Symmetric Alternation. A language L is said to be in the class Sp

2, if there exists a
polynomial time computable Boolean predicate V (·, ·, ·) and polynomials p(·) and q(·) such
that for any x, we have

x ∈ L =⇒ (∃y ∈ {0, 1}n)(∀z ∈ {0, 1}m)[V (x, y, z) = 1], and
x 6∈ L =⇒ (∃z ∈ {0, 1}m)(∀y ∈ {0, 1}n)[V (x, y, z) = 0],

where n = p(|x|) and m = q(|x|). We refer to the y’s and z’s above as certificates. The
predicate V is called the verifier.

Matrix representation of the verifier’s computation. Let L be a language in Sp
2

via a verifier predicate V . Fix an input string x. It is convenient to represent the behaviour
of the verifier on various certificates in the form of a matrix. Define a Boolean 2n × 2m

matrix M , such that for y ∈ {0, 1}n and z ∈ {0, 1}m, M [y, z] = V (x, y, z). Thus, any row
or column in M corresponds to a certificate. We call M as the matrix corresponding to the
input x. Matrices constructed in the above fashion have some special properties that are
derived the from the definition of Sp

2.
S2-type matrices and irrefutable certificates. Let M be a 2n × 2m Boolean

matrix. For a row y ∈ {0, 1}n and a column z ∈ {0, 1}m, if M [y, z] = 1, then y is said to
beat z; similarly, z is said to beat y, if M [y, z] = 0. A row y is called a row-side IC, if y
beats every column z ∈ {0, 1}m; a column z is called a column-side IC if z beats every row
y ∈ {0, 1}m. Notice that a matrix cannot have both a row-side IC and a column-side IC.
The matrix M is said to be an S2-type matrix, if it has either a row-side IC or a column-side
IC. A set of rows Y is called a row-side CIC, if for every column z, there exists a row y ∈ Y
such that y beats z. Similarly, a set of columns Z is called a column-side CIC, if for every
row y, there exists a column z ∈ Z such that z beats y.

Remark. Let us put the above discussion in the context of a language L ∈ Sp
2 and make

some simple observations. For any input string x, the matrix M corresponding to x is an
S2-type matrix. The matrix M will have a row-side IC, if and only if x ∈ L; similarly, M
will have a column-side IC, if and only if x 6∈ L.

Succinct encoding of matrices and sets. A Boolean circuit C : {0, 1}n×{0, 1}m →
{0, 1} is said to succinctly encode a Boolean 2n × 2m matrix M , if for all y ∈ {0, 1}n and
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z ∈ {0, 1}m, we have C(y, z) = M [y, z]. A Boolean circuit C : {0, 1}m → {0, 1} is said to
succinctly encode a set X ⊆ {0, 1}m, if for all x ∈ {0, 1}m, x ∈ X ⇐⇒ C(x) = 1.

Remark. Let L be a language in Sp
2 via a verifier V . Let x be an input string with

the corresponding matrix M . Using standard techniques, we can obtain a Boolean circuit
C : {0, 1}n × {0, 1}m → {0, 1} such that C(y, z) = V (x, y, z). Given the input x, the above
task can be performed in time polynomial in |x|. The size of the circuit is also polynomial
in |x|. Notice that the above circuit C succinctly encodes the matrix M .

Complexity classes. We use standard definitions for complexity classes such as P,
NP, P/poly, MA, AM, ZPPNP and BPPNP [8, 16]. Below, we present definitions for promise
and function classes, that are central to our paper.

Promise languages. A promise language Π is a pair (Π1,Π2), where Π1,Π2 ⊆ Σ∗,
such that Π1 ∩ Π2 = ∅. The elements of Π1 are called the positive instances and those of
Π2 are called the negative instances.

Promise MA (prMA). A promise language Π = (Π1,Π2) is said to be in the promise
class prMA, if there exists a polynomial time computable Boolean predicate A(·, ·, ·) and
polynomials p(·) and q(·) such that, for all x, we have

x ∈ Π1 =⇒ (∃y ∈ {0, 1}n)(∀z ∈ {0, 1}m)[A(x, y, z) = 1], and

x ∈ Π2 =⇒ (∀y ∈ {0, 1}n) Pr
z∈{0,1}m

[A(x, y, z) = 1] ≤ 1
2
,

where n = p(|x|) and m = q(|x|). The predicate A is called Arthur’s predicate.
Promise AM (prAM). A promise language Π = (Π1,Π2) is said to be in the promise

class prAM, if there exists a polynomial time computable Boolean predicate A(·, ·, ·) and
polynomials p(·) and q(·) such that, for all x, we have

x ∈ Π1 =⇒ (∀y ∈ {0, 1}n)(∃z ∈ {0, 1}m)[A(x, y, z) = 1], and

x ∈ Π2 =⇒ Pr
y∈{0,1}n

[(∃z ∈ {0, 1}m)A(x, y, z) = 1] ≤ 1
2
,

where n = p(|x|) and m = q(|x|). The predicate A is called Arthur’s predicate.
Oracle access to promise languages. Let A be an algorithm and Π = (Π1,Π2) be

a promise language. When the algorithm A asks a query q, the oracle behaves as follows:
if q ∈ Π1, the oracle replies “yes”; if q ∈ Π2, the oracle replies “no”; if q is neither in Π1

nor in Π2, the oracle may reply “yes” or “no”. We allow the algorithm to ask queries of the
third type. The requirement is that the algorithm should be able to produce the correct
answer, regardless of the answers given by the oracle to the queries of the third type.

Function classes. For a promise language Π, the notation FPΠ refers to the class
of functions that are computable by a polynomial time machine, given oracle access to Π.
For a promise class C, we denote by FPC , the union of FPΠ, for all Π ∈ C. Regarding
ZPPNP, we slightly abuse the notation and use this to mean both the standard complexity
class and the function class. The function class ZPPNP contains functions computable by a
zero-error probabilistic polynomial time algorithm given oracle access to NP; the algorithm
either outputs a correct value of the function or “?”, the latter with a small probability.
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3. Main Result: Finding Collectively Irrefutable Certificates

In this section, we study the problem of finding irrefutable certificates for S2-type
matrices. As discussed in the introduction, finding a single IC in ZPPNP would collapse
polynomial time hierarchy (PH).

Theorem 3.1. If there exists a ZPPNP algorithm for the FindIC problem then PH =
BPPNP.

Here, we focus on finding “small” CIC’s. We present an FPprAM algorithm for the
FindCIC problem.

Theorem 3.2. There exists a polynomial time algorithm which solves the following problem,
given oracle access to prAM. The algorithm takes as input a circuit C succinctly encoding
a S2-type matrix M of size 2n × 2m and produces either a row-side CIC of size m or a
column-side CIC of size n.

For ease of exposition, we have divided the proof into multiple small steps; in each
step, the given problem is reduced (in the Turing sense) to a simpler problem. The final
algorithm is obtained by composing these reductions. The various steps are grouped into
two phases. The first phase reduces the given problem to a problem that we call Prefix
Ratio Goodness Testing (PRGT). The second phase describes an algorithm for PRGT.

3.1. Reduction to Prefix Ratio Goodness Testing

We are given an S2-type matrix M . By definition, M is guaranteed to have either a
row-side IC or a column-side IC. Our goal is to find a small CIC. This problem reduces to the
problem addressed in Lemma 3.3, given below. The lemma presents an FPprAM algorithm
for finding a small row-side CIC for matrices that are guaranteed to have a row-side IC. Via
an easy transformation, we can obtain an analogous algorithm for finding a small column
side CIC for matrices guaranteed to have a column-side IC. We run both these algorithms
on the given S2-type matrix M . Notice that one of these runs must output a CIC. The
other run would output some arbitrary result, because the input matrix does not satisfy
the requirements of the concerned algorithm. We check which of the two outputs is indeed
a CIC and output the same. This check can be performed by making a single NP query.
Thus, we get the FPprAM algorithm claimed in Theorem 3.2.

Lemma 3.3. There exists an FPprAM algorithm that takes as input a circuit C succinctly
encoding a 2n×2m matrix M that is guaranteed to have a row-side IC and outputs a row-side
CIC of size m.

The algorithm computes the required CIC using a standard iterative approach: in each
iteration, we find a row y that beats at least half of the columns that are as yet un-
beaten by the rows found in the previous iterations. Formally, we start with an empty
set Y and proceed iteratively, adding a row to Y in each iteration. Consider the k th it-
eration. Let Uk be the set of columns as yet unbeaten by any row in Y (i.e., Uk = {z ∈
{0, 1}m| no y ∈ Y beats z}). We find a row y∗ such that y∗ beats at least half the columns
in Uk and add y∗ to Y . Notice that such a y∗ exists, since we are guaranteed that M has
a row-side IC. Clearly, the algorithm terminates in m steps and produces a row-side CIC of
size m. Of course, the main step lies in finding the required y∗ in each iteration. This task
is accomplished by the algorithm described in Lemma 3.4, given below. The algorithm, in
fact, solves a more general problem: given any set of columns X ⊆ {0, 1}m, it produces a
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row beating at least half of the columns in X. In each iteration, we invoke the algorithm
by setting X = Uk. There is one minor issue that needs to be addressed: the set Uk could
be exponentially large. So, we represent the set Uk in the form of a circuit C ′ succinctly
encoding it. For this, given any column z ∈ {0, 1}m, C ′ has to test whether z is beaten by
any of the rows in Y . This test involves a simulation of C(y, z), for all y ∈ Y . Since Y
contains at most m rows, we can succinctly encode Uk by a circuit of size polynomial in the
size of C. We have proved Lemma 3.3, modulo Lemma 3.4.

Lemma 3.4. There exists an FPprAM algorithm that takes two inputs: (i) a 2n×2m Boolean
matrix M that is guaranteed to have a row-side IC; (ii) a set of columns X ⊆ {0, 1}m. It
outputs a row y∗ that beats at least half the columns in X. The matrix M and the set X
are presented succinctly in the form of circuits.

We build the required string y∗ (of length n) in n iterations using an approach similar
to self-reduction. We maintain a prefix of y∗ and add one suitable bit in each iteration.
However, we cannot directly employ self-reduction, since a query of the form “does there
exist a row that beats at least half the columns in X” is a PP query and we cannot hope
to find the answer using a prAM oracle. Nevertheless, we show how to converge on a y∗ by
performing self-reduction that incurs a small amount of “loss” in the “goodness” of the final
y∗, in each iteration. We formalize the notion of goodness and then describe the algorithm.

Consider a 2p × 2q Boolean matrix A and let Q ⊆ {0, 1}q be a subset of the columns of
A. For a row y ∈ {0, 1}p, define µ(y,Q) to be the fraction of columns in Q that y beats:
µ(y,Q) = |{z ∈ Q : y beats z}|/|Q|. Let α be a string of length at most p. We say that a
row y ∈ {0, 1}p extends α, if α is a prefix of y. For ρ ≤ 1, we say that α is ρ–good for Q, if
there exists a row y extending α such that µ(y,Q) ≥ ρ.

The algorithm claimed in Lemma 3.4 constructs the string y∗ in n iterations. Starting
with the empty string, we keep building a prefix of y∗. At the end of the (k− 1)st iteration,
we have a prefix αk−1 of length k− 1. In the kth iteration, we extend αk−1 by one more bit
b to get a prefix αk of length k. To start with, we are guaranteed the existence of a row-side
IC in M , meaning a row with goodness=1. Consider the kth iteration. Suppose the prefix
αk−1 is ρ–good with respect to X, for some ρ. Below, we describe a mechanism for finding
a bit b such that the string αk−1b is (ρ − ε)–good. The value ε is a parameter to be fixed
suitably later. Thus, in each iteration, we suffer a loss of ε and so, the accumulated loss at
the end of n iterations is nε. Choosing ε suitably small, we get a string y∗ having goodness
at least 1/2.

The main step lies in choosing a suitable bit b in each iteration. Consider the k th

iteration. At the end of (k − 1)st iteration, we have prefix α of length k − 1. Write
ρ = 1 − (k − 1)ε. By induction, assume that α is ρ-good. Our task is to find a bit b such
that αb is (ρ−ε)-good. This is accomplished by invoking the algorithm given in Lemma 3.5,
which solves the Prefix Ratio Goodness Testing problem (PRGT), defined below. The main
observation is that at least one of α0 or α1 is ρ-good, because α is ρ-good. We run the
algorithm given in Lemma 3.5 twice with β = α0 and β = α1 as inputs, respectively. By
the above observation, at least one these two runs must output “yes”. Let b be a bit such
that the algorithm outputs “yes” on input αb. We choose b as the required bit. It is easy
to see that αb is (ρ− ε)-good; otherwise, the algorithm should have output “no” on αb.

Proceeding this way for n iterations, we end up with a string y∗ which is (1−nε)-good.
Setting ε = 1/n2, we see that y∗ beats at least a fraction of (1− 1/n) ≥ 1/2 columns in X.
We have proved Lemma 3.4, modulo Lemma 3.5.
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Prefix Ratio Goodness Testing (PRGT): The instances of this promise language have
four components: (i) a 2n × 2m Boolean matrix M ; (ii) a set of columns X ⊆ {0, 1}m; (iii)
a prefix β of length at most n. (iv) parameters ρ > 0 and ε > 0. The matrix M and the
set X are represented succinctly in the form of circuits.
Positive Instances: There exists a row y extending β such that µ(y,X) ≥ ρ.
Negative Instances: For all rows y extending β, it is the case that µ(y,X) ≤ ρ− ε.

Lemma 3.5. There exists an FPprAM that solves the PRGT problem. Namely, for positive
instances, the output is “yes”; for negative instances, the output is “no”; for other instances,
the output can be arbitrary. The running time of the algorithm has a polynomial dependence
on 1/ε.

3.2. Prefix Ratio Goodness Testing: Proof of Lemma 3.5

In this section, we prove Lemma 3.5. One of the hurdles in trying to construct the
desired algorithm is that the gap between the two cases we need to distinguish is small. So,
as a first step, we amplify the gap using standard techniques.

The amplification process involves a parameter t, which we will fix suitably. Construct a
matrix M from M as follows. Each row in M corresponds to a row in M and each column z
in M corresponds to a sequence 〈z1, z2, . . . , zt〉 of t columns from M . Thus, the matrix M is
of size 2n×2m, where m = mt. Consider a row y ∈ {0, 1}n and a column z = 〈z1, z2, . . . , zt〉,
where each zi is a column in M . Set the entry M [y, z] = 1, if y beats at least (ρ− ε

2) fraction
of the zi’s (with respect to M); otherwise, set it to 0. Analogously, denote by X the t-wise
cartesian product of X with itself, i.e., X = {〈z1, z2, . . . , zt〉 : zi ∈ X}. We fix t = 16m/ε2.
An application of Chernoff bounds yields the following claim.

Lemma 3.6. For any y ∈ {0, 1}n, we have the following.
• If µ(y,X) ≥ ρ in M then µ(y,X) ≥ 1/2 in M .
• If µ(y,X) ≤ ρ− ε in M then µ(y,X) ≤ 1/m4 in M .

Given the above amplification, the problem considered in Lemma 3.5 reduces to the
problem addressed in Lemma 3.7. Formally, the algorithm claimed in Lemma 3.5 works
as follows. Given a circuit C succinctly encoding the matrix M , a circuit CX succintly
encoding a set of columns X, prefix β and parameters ρ and ε, we consider the matrix
M and the set X, as described above. Notice that we can construct in polynomial time
a circuit C succinctly encoding M such that |C| is polynomial in |C| and 1/ε. Similarly,
we can construct a polynomial size circuit CX succinctly encoding the set X. Then, we
invoke the algorithm given in Lemma 3.7 with C, CX and β as inputs. We output “yes”,
if the algorithm outputs “yes” and output “no”, otherwise. This completes the proof of
Lemma 3.5, modulo Lemma 3.7.

Lemma 3.7. There exists an FPprAM algorithm that takes three inputs: (i) a 2n × 2m

Boolean matrix M ; (ii) a set of columns X ⊆ {0, 1}m. (iii) a prefix β of length at most n.
The matrix M and the set X are presented succinctly in the form of circuits. The algorithm
has the following property:

• Case (a) : If there exists a row y extending β such that µ(y,X) ≥ 1/2, then it
outputs “yes”.

• Case (b) : If all rows y extending β are such that µ(y,X) ≤ 1/m4, then it outputs
“no”.
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If neither of the above conditions is true, then the output of the algorithm is arbitrary.

There are two main stages in the algorithm. In the first stage we get an estimate on the
size of X. And in the second stage, we use the above estimate to distinguish between the
cases (a) and (b) in the lemma. Both the stages make queries to a prAM language given as
oracle. A lemma, due to Sipser [20], is useful in establishing that the concerned language
indeed lies in the class prAM. The following notation is needed for describing the lemma.

Let H be a family of functions mapping {0, 1}m to {0, 1}k . Recall that H is said to
be 2-universal, if for any z, z ′ ∈ {0, 1}m, with z 6= z′, and x, x′ ∈ {0, 1}k , Prh∈H[h(z) =
x and h(z′) = x′] = 1/22k. It is well known that such a family can easily be constructed.
For instance, the set of all m×k Boolean matrices yield such a family; a matrix B represents
the function h given by h(z) = zB (modulo 2).

For a function h ∈ H and a string z ∈ {0, 1}m, we say that z has a collision under h, if
there exists a z′ ∈ {0, 1}m such that z 6= z′ and h(z) = h(z′). For a set of hash functions
H ⊆ H, we say that z has a collision under H, if for all h ∈ H, z has a collision under h. A
set S ⊆ {0, 1}m is said to have a collision under H, if there exists a z ∈ S such that z has
a collision under H.

Lemma 3.8 ([20]). Let S ⊆ {0, 1}m and k ≤ m. Let H be a 2-universal family of hash
functions from {0, 1}m to {0, 1}k. Uniformly and independently pick a set of hash functions
h1, h2, . . . , hk from H and let H = {h1, h2, . . . , hk}. Then,

• If |S| > k2k, then PrH [S has a collision under H] = 1.
• If |S| ≤ 2k−1, then PrH [S has a collision under H] ≤ 1/2.

We define a promise language called set largeness testing (SLT) and then use Lemma 3.8
to show that it lies in the class prAM.
Set Largeness Testing (SLT): The instances in this language consist of a set X ⊆ {0, 1}m,
presented succinctly in the form of a circuit, and an integer k ≤ m.
Positive instances: |X| > k2k.
Negative instances: |X| ≤ 2k−1.

Lemma 3.9. The promise language SLT belongs to the class prAM.

Proof. Let H be a 2-universal family of hash functions from {0, 1}m to {0, 1}k . The proof
is based on the observation that for a given set H ⊆ H, testing whether X has a collision
under H is an NP predicate.

The AM protocol proceeds as follows. Arthur picks a set of hash functions H =
{h1, h2, . . . , hk} uniformly and independently at random from H. Merlin must exhibit an
element z ∈ X and prove that z has a collision under H. Arthur accepts, if Merlin proves
that such a collision exists; otherwise, Arthur rejects. 2

The following lemma provides an algorithm for estimating the size of a set, given SLT
as oracle.

Lemma 3.10. There exists an FPprAM that takes a set X ⊆ {0, 1}m, presented succinctly
in the form of a circuit, and outputs an estimate U such that |U |

4m ≤ |X| ≤ |U |.
Proof. The algorithm takes the promise language SLT as the oracle. We iteratively consider
every integer k in the range 1 through m and ask the query (X, k) to the oracle. Let ke be
the first time, we get a “no” answer from the oracle. Compute |U | = m2ke . We shall argue
that U satisfies the stated bounds.
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Let k0 be the largest integer such that |X| > k02k0 and let k1 be the smallest integer
such that |X| ≤ 2k1−1. Notice that k0 + 1 ≤ ke ≤ k1. By the property of k0, ke satisfies
|X| ≤ ke2ke ≤ m2ke . By the property of k1, we have that 2k1−2 < |X| ≤ 2k1−1. It follows
that 2ke ≤ 2k1 < 4|X|. The claimed bounds on |U | follow from the above inequalities. 2

Returning to Lemma 3.7, the first stage of the algorithm (finding an estimate on |X|)
can now be performed using Lemma 3.10. We turn to the second stage that involves
distinguishing between the two cases in Lemma 3.7. For this, we will make use of the
following promise language as an oracle.
Prefix Cardinality Goodness Testing (PCGT): The instances of this language consist
of four components: (i) a 2n× 2m Boolean matrix M ; (ii) a set X ⊆ {0, 1}m; (iii) a prefix β
of length at most n; (iv) a number k. The matrix M and the set X are presented succinctly
in the form of circuits.
Positive instances: There exists a row y extending β such that y beats at least k2k columns
in X.
Negative instances: For all rows y extending β, y beats at most 2k−1 columns in X.

Lemma 3.11. The promise language PCGT belongs to the class prAM.

Proof. The proof is similar to that of Lemma 3.9 and makes use of Lemma 3.8. We present
an MAM protocol. It is well known that such a protocol can be converted to an AM
protocol [3].

Merlin claims that a given instance is of the positive type. To prove this, he provides
a row y extending β. Let Z ⊆ X be the set of columns from X that are beaten by y.
Arthur needs to distinguish between the cases of |Z| > k2k and |Z| ≤ 2k−1. This situation
is the same as that of Lemma 3.9. By repeating the argument from there, we get an MAM
protocol. 2

Proof of Lemma 3.7: Our algorithm will make use of both SLT and PCGT as oracles. Let
us rephrase the two cases that we wish to distinguish:

• Case (a): There exists a row y extending β such that y beats at least |X|/2 columns
from X.

• Case (b) : For any row y extending β, y beats at most |X|/m4 columns from X.
We first run the algorithm claimed in Lemma 3.10 to get an estimate U such that |U |/4m ≤
|X| ≤ |U |. Our next goal is to reduce the task of distinguishing the above two cases to a
PCGT query. Consider any row y. Let Z be the number of columns from X that y beats.
We wish to choose a number k satisfying two conditions: (i) if Z ≥ |X|/2 then Z > k2k; (ii)
if Z ≤ |X|/m4 then Z ≤ 2k−1. A simple calculation reveals that it suffices for k to satisfy
the following inequalities in terms of U :

2U
m4

≤ 2k ≤ U

8m2
.

Clearly, we can choose k = blog U
8m2 c. Then, we call the PCGT oracle with the parameters

M , X, β and k. We output “yes”, if the oracle says “yes”; and output “no”, if the oracle
says “no”. 2

4. Applications of the Main Result

In this section, we apply Theorem 3.2 in two different settings and derive some corol-
laries. The first deals with upperbounds on the power of Sp

2. The second is about the
consequences of NP having polynomial size circuits.
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4.1. Upperbounds for Sp
2

Theorem 4.1. Sp
2 ⊆ PprAM.

Proof. The claim follows directly from Theorem 3.2. Let L be a language in Sp
2. Let x

be the input string. Consider the S2-type matrix M corresponding to x. As discussed in
Section 2, we can obtain a circuit C succinctly encoding the matrix M in time polynomial
in |x|. Invoking the algorithm given in Theorem 3.2 on C, we get either a row-side CIC or
a column-side CIC. Notice that in the former case x ∈ L and in the latter case x 6∈ L. 2

Having proven the above theorem, it is natural to ask how large the class PprAM is. By
definition, AM is contained in BPPNP and so, PAM is also contained in the same class. We
observe the above claim extends to the case where the oracle is a prAM oracle, instead of
an AM oracle.

Theorem 4.2. PprAM ⊆ BPPNP.

Cai [5] showed that Sp
2 is contained in ZPPNP, whereas our result puts Sp

2 in the class
PprAM. The containment relationships between ZPPNP and PprAM are unknown. In this
context, we observe that an alternative proof of Cai’s result can be derived using our tech-
niques. This cannot be achieved by simply combining Theorem 4.1 and 4.2; this would only
yield Sp

2 ⊆ BPPNP. We obtain the alternative proof by directly appealing to Theorem 3.2.

Theorem 4.3 ([5]). Sp
2 ⊆ ZPPNP.

4.2. Consequences of NP having small circuits

A body of prior work has dealt with the implication of the assumption that NP has
polynomial size circuits. Our main theorem yields some new results in this context, which
are described in this section.

Suppose NP is contained in P/poly. Karp and Lipton [13] showed that, under this
assumption, the polynomial time hierarchy (PH) collapses to Σp

2 ∩Πp
2, i.e., PH = Σp

2 ∩Πp
2.

Köbler and Watanabe [14] improved the collapse to ZPPNP. Sengupta (see [5]) observed
that the collapse can be brought down to Sp

2. This has been further improved via a collapse
to Op

2, the oblivious version of Sp
2 [7]. It has been an interesting open problem to obtain a

collapse to the class PNP. Here, we show a collapse to PprMA.

Theorem 4.4. If NP ⊆ P/poly, then PH = PprMA.

Proof. By Sengupta’s observation [5], the assumption implies that PH = Sp
2. Combining

this with Theorem 4.1, we get PH = PprAM. Arvind et al. [2] showed that if NP ⊆ P/poly
then AM = MA. We observe that this result carries over to the promise versions, namely
the same assumption implies prAM = prMA. The claim follows. 2

Though the above theorem yields a new consequence, we note that it is not clear
whether this is an improvement over the previously best known collapse. It is known that
MA ⊆ ZPPNP [11, 1] and MA ⊆ Sp

2 [17]. Extending the former claim, we can show that
PprMA ⊆ ZPPNP. However, we do not know how to accomplish the same for the second
claim. Namely, it remains open whether PprMA is contained in Sp

2.
Under the assumption NP has polynomial size circuits, Bshouty et al. [4] studied the

problem of learning a correct circuit for SAT and designed a ZPPNP algorithm. Using
Theorem 3.2, we derive the following claim which improves the above result, as we can
show that FPprMA ⊆ ZPPNP.
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Theorem 4.5. If NP ⊆ P/poly, then there exists an FPprMA algorithm that outputs a
correct polynomial size circuit for SAT at a given input length.

Acknowledgments: We thank the anonymous referees for their useful comments.
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Abstract. We develop a method for measuring homology classes. This involves three
problems. First, we define the size of a homology class, using ideas from relative homology.
Second, we define an optimal basis of a homology group to be the basis whose elements’
size have the minimal sum. We provide a greedy algorithm to compute the optimal basis
and measure classes in it. The algorithm runs in O(β4n3 log2 n) time, where n is the size
of the simplicial complex and β is the Betti number of the homology group. Third, we
discuss different ways of localizing homology classes and prove some hardness results.

1. Introduction

The problem of computing the topological features of a space has recently drawn much
attention from researchers in various fields, such as high-dimensional data analysis [3, 15],
graphics [13, 5], networks [10] and computational biology [1, 8]. Topological features are
often preferable to purely geometric features, as they are more qualitative and global, and
tend to be more robust. If the goal is to characterize a space, therefore, features which
incorporate topology seem to be good candidates.

Once we are able to compute topological features, a natural problem is to rank the
features according to their importance. The significance of this problem can be justified
from two perspectives. First, unavoidable errors are introduced in data acquisition, in the
form of traditional signal noise, and finite sampling of continuous spaces. These errors may
lead to the presence of many small topological features that are not “real”, but are simply
artifacts of noise or of sampling [19]. Second, many problems are naturally hierarchical.
This hierarchy – which is a kind of multiscale or multi-resolution decomposition – implies
that we want to capture the large scale features first. See Figure 1(a) and 1(b) for examples.

The topological features we use are homology groups over Z2, due to their ease of
computation. (Thus, throughout this paper, all the additions are mod 2 additions.) We
would then like to quantify or measure homology classes, as well as collections of classes.
Specifically, there are three problems we would like to solve:

(1) Measuring the size of a homology class: We need a way to quantify the size
of a given homology class, and this size measure should agree with intuition. For
example, in Figure 1(a), the measure should be able to distinguish the one large class
(of the 1-dimensional homology group) from the two smaller classes. Furthermore,
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Key words and phrases: Computational Topology, Computational Geometry, Homology, Persistent Ho-

mology, Localization, Optimization.

c© Chao Chen and Daniel Freedman
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(a) (b) (c) (d)

Figure 1: (a,b) A disk with three holes and a 2-handled torus are really more like an annulus and
a 1-handled torus, respectively, because the large features are more important. (c) A
topological space formed from three circles. (d) In a disk with three holes, cycles z1 and
z2 are well-localized; z3 is not.

the measure should be easy to compute, and applicable to homology groups of any
dimension.

(2) Choosing a basis for a homology group: We would like to choose a “good”
set of homology classes to be the generators for the homology group (of a fixed
dimension). Suppose that β is the dimension of this group, and that we are using
Z2 coefficients; then there are 2β − 1 nontrivial homology classes in total. For a
basis, we need to choose a subset of β of these classes, subject to the constraint
that these β generate the group. The criterion of goodness for a basis is based
on an overall size measure for the basis, which relies in turn on the size measure
for its constituent classes. For instance, in Figure 1(c), we must choose three from
the seven nontrivial 1-dimensional homology classes: {[z1], [z2], [z3], [z1] + [z2], [z1] +
[z3], [z2] + [z3], [z1] + [z2] + [z3]}. In this case, the intuitive choice is {[z1], [z2], [z3]},
as this choice reflects the fact that there is really only one large cycle.

(3) Localization: We need the smallest cycle to represent a homology class, given a
natural criterion of the size of a cycle. The criterion should be deliberately chosen
so that the corresponding smallest cycle is both mathematically natural and intu-
itive. Such a cycle is a “well-localized” representative of its class. For example, in
Figure 1(d), the cycles z1 and z2 are well-localized representatives of their respective
homology classes; whereas z3 is not.

Furthermore, we make two additional requirements on the solution of aforementioned prob-
lems. First, the solution ought to be computable for topological spaces of arbitrary dimen-
sion. Second the solution should not require that the topological space be embedded, for
example in a Euclidean space; and if the space is embedded, the solution should not make
use of the embedding. These requirements are natural from the theoretical point of view,
but may also be justified based on real applications. In machine learning, it is often assumed
that the data lives on a manifold whose dimension is much smaller than the dimension of
the embedding space. In the study of shape, it is common to enrich the shape with other
quantities, such as curvature, or color and other physical quantities. This leads to high
dimensional manifolds (e.g, 5-7 dimensions) embedded in high dimensional ambient spaces
[4].

Although there are existing techniques for approaching the problems we have laid out,
to our knowledge, there are no definitions and algorithms satisfying the two requirements.
Ordinary persistence [12, 20, 6] provides a measure of size, but only for those inessential



QUANTIFYING HOMOLOGY CLASSES 171

classes, i.e. classes which ultimately die. More recent work [7] attempts to remedy this
situation, but not in an intuitive way. Zomorodian and Carlsson [21] use advanced algebraic
topological machinery to solve the basis computation and localization problems. However,
both the quality of the result and the complexity depend strongly on the choice of the given
cover; there is, as yet, no suggestion of a canonical cover. Other works like [14, 19, 11] are
restricted to low dimension.

Contributions. In this paper, we solve these problems. Our contributions include:
• Definitions of the size of homology classes and the optimal homology basis.
• A provably correct greedy algorithm to compute the optimal homology basis and

measure its classes. This algorithm uses the persistent homology.
• An improvement of the straightforward algorithm using finite field linear algebra.
• Hardness results concerning the localization of homology classes.

2. Defining the Problem

In this section, we provide a technique for ranking homology classes according to their
importance. Specifically, we solve the first two problems mentioned in Section 1 by formally
defining (1) a meaningful size measure for homology classes that is computable in arbitrary
dimension; and (2) an optimal homology basis which distinguishes large classes from small
ones effectively.

Since we restrict our work to homology groups over Z2, when we talk about a d-
dimensional chain, c, we refer to either a collection of d-simplices, or a nd-dimensional
vector over Z2 field, whose non-zero entries corresponds to the included d-simplices. nd is
the number of d-dimensional simplces in the given complex, K. The relevant background
in homology and relative homology can be found in [16].

The Discrete Geodesic Distance. In order to measure the size of homology classes, we
need a notion of distance. As we will deal with a simplicial complex K, it is most natural
to introduce a discrete metric, and corresponding distance functions. We define the discrete
geodesic distance from a vertex p ∈ vert(K), fp : vert(K) → Z, as follows. For any vertex
q ∈ vert(K), fp(q) = dist(p, q) is the length of the shortest path connecting p and q, in
the 1-skeleton of K; it is assumed that each edge length is one, though this can easily be
changed. We may then extend this distance function from vertices to higher dimensional
simplices naturally. For any simplex σ ∈ K, fp(σ) is the maximal function value of the
vertices of σ, fp(σ) = maxq∈vert(σ) fp(q). Finally, we define a discrete geodesic ball Br

p,
p ∈ vert(K), r ≥ 0, as the subset of K, Br

p = {σ ∈ K | fp(σ) ≤ r}. It is straightforward
to show that these subsets are in fact subcomplexes, namely, subsets that are still simplicial
complexes.

2.1. Measuring the Size of a Homology Class

We start this section by introducing notions from relative homology. Given a simplicial
complex K and a subcomplex L ⊆ K, we may wish to study the structure of K by ignoring
all the chains in L. We study the group of relative chain as a quotient group, Cd(K,L) =
Cd(K)/Cd(L), whose elements are relative chains. Analogous to the way we define the group
of cycles Zd(K), the group of boundaries Bd(K) and the homology group Hd(K) in Cd(K), we
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(a) (b)

Figure 2: (a) On a disk with three holes, the three shaded regions are the three smallest geodesic
balls measuring the three corresponding classes. (b) On a tube, the smallest geodesic ball
is centered at q2, not q1.

define the group of relative cycles, the group of relative boundaries and the relative homology
group in Cd(K,L), denoted as Zd(K,L), Bd(K,L) and Hd(K,L), respectively. We denote
φL : Cd(K) → Cd(K,L) as the homomorphism mapping d-chains to their corresponding
relative chains, φ∗L : Hd(K)→ Hd(K,L) as the induced homomorphism mapping homology
classes of K to their corresponding relative homology classes.

Using these notions, we define the size of a homology class as follows. Given a simplicial
complex K, assume we are given a collection of subcomplexes L = {L ⊆ K}. Furthermore,
each of these subcomplexes is endowed with a size. In this case, we define the size of
a homology class h as the size of the smallest L carrying h. Here we say a subcomplex
L carries h if h has a trivial image in the relative homology group Hd(K,L), formally,
φ∗L(h) = Bd(K,L). Intuitively, this means that h disappears if we delete L from K, by
contracting it into a point and modding it out.

Definition 2.1. The size of a class h, S(h), is the size of the smallest measurable subcom-
plex carrying h, formally, S(h) = minL∈L size(L) such that φ∗L(h) = Bd(K,L).

We say a subcomplex L carries a chain c if L contains all the simplices of the chain,
formally, c ⊆ L. Using standard facts from algebraic topology, it is straightforward to see
that L carries h if and only if it carries a cycle of h. This gives us more intuition behind
the measure definition.

In this paper, we take L to be the set of discrete geodesic balls, L = {Br
p | p ∈

vert(K), r ≥ 0}.1 The size of a geodesic ball is naturally its radius r. The smallest geodesic
ball carrying h is denoted as Bmin(h) for convenience, whose radius is S(h). In Figure 2(a),
the three geodesic balls centered at p1, p2 and p3 are the smallest geodesic balls carrying
nontrivial homology classes [z1], [z2] and [z3], respectively. Their radii are the size of the
three classes. In Figure 2(b), the smallest geodesic ball carrying a nontrivial homology class
is the pink one centered at q2, not the one centered at q1. Note that these geodesic balls
may not look like Euclidean balls in the embedding space.

2.2. The Optimal Homology Basis

For the d-dimensional Z2 homology group whose dimension (Betti number) is βd, there
are 2βd − 1 nontrivial homology classes. However, we only need βd of them to form a basis.

1The idea of growing geodesic discs has been used in [19]. However, this work depends on low dimensional
geometric reasoning, and hence is restricted to 1-dimensional homology classes in 2-manifold.
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The basis should be chosen wisely so that we can easily distinguish important homology
classes from noise. See Figure 1(c) for an example. There are 23−1 = 7 nontrivial homology
classes; we need three of them to form a basis. We would prefer to choose {[z1], [z2], [z3]}
as a basis, rather than {[z1] + [z2] + [z3], [z2] + [z3], [z3]}. The former indicates that there is
one big cycle in the topological space, whereas the latter gives the impression of three large
classes.

In keeping with this intuition, the optimal homology basis is defined as follows.

Definition 2.2. The optimal homology basis is the basis for the homology group whose
elements’ size have the minimal sum, formally,

Hd = argmin
{h1,...,hβd}

βd∑
i=1

S(hi), s.t.dim({h1, ..., hβd}) = βd.

This definition guarantees that large homology classes appear as few times as possible
in the optimal homology basis. In Figure 1(c), the optimal basis will be {[z1], [z2], [z3]},
which has only one large class.

For each class in the basis, we need a cycle representing it. As we has shown, Bmin(h),
the smallest geodesic ball carrying h, carries at least one cycle of h. We localize each class
in the optimal basis by its localized-cycles, which are cycles of h carried by Bmin(h). This
is a fair choice because it is consistent to the size measure of h and it is computable in
polynomial time. See Section 5 for further discussions.

3. The Algorithm

In this section, we introduce an algorithm to compute the optimal homology basis as
defined in Definition 2.2. For each class in the basis, we measure its size, and represent it
with one of its localized-cycles. We first introduce an algorithm to compute the smallest
homology class, namely, Measure-Smallest(K). Based on this procedure, we provide the
algorithm Measure-All(K), which computes the optimal homology basis. The algorithm
takes O(β4

dn
4) time, where βd is the Betti number for d-dimensional homology classes and

n is the cardinality of the input simplicial complex K.

Persistent Homology. Our algorithm uses the persistent homology algorithm. In persis-
tent homology, we filter a topological space with a scalar function, and capture the birth
and death times of homology classes of the sublevel set during the filtration course. Classes
with longer persistences are considered important ones. Classes with infinite persistences
are called essential homology classes and corresponds to the intrinsic homology classes of
the given topological space. Please refer to [12, 20, 6] for theory and algorithms of persistent
homology.

3.1. Computing the Smallest Homology Class

The procedure Measure-Smallest(K) measures and localizes, hmin, the smallest non-
trivial homology class, namely, the one with the smallest size. The output of this procedure
will be a pair (Smin, zmin), namely, the size and a localized-cycle of hmin. According to
the definitions, this pair is determined by the smallest geodesic ball carrying hmin, namely,
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Bmin(hmin). We first present the algorithm to compute this ball. Second, we explain how
to compute the pair (Smin, zmin) from the computed ball.

Procedure Bmin(K): Computing Bmin(hmin). It is straightforward to see that the ball
Bmin(hmin) is also the smallest geodesic ball carrying any nontrivial homology class of K. It
can be computed by computing Br(p)

p for all vertices p, where Br(p)
p is the smallest geodesic

ball centered at p which carries any nontrivial homology class. When all the Br(p)
p ’s are

computed, we compare their radii, r(p)’s, and pick the smallest ball as Bmin(hmin).
For each vertex p, we compute Br(p)

p by applying the persistent homology algorithm to
K with the discrete geodesic distance from p, fp, as the filter function. Note that a geodesic
ball Br

p is the sublevel set f−1
p (−∞, r] ⊆ K. Nontrivial homology classes of K are essential

homology classes in the persistent homology algorithm. (In the rest of this paper, we may
use “essential homology classes” and “nontrivial homology classes of K” interchangable.)
Therefore, the birth time of the first essential homology class is r(p), and the subcomplex
f−1
p (−∞, r(p)] is Br(p)

p .

Computing (Smin, zmin). We compute the pair from the computed ball Bmin(hmin). For
simplicity, we denote pmin and rmin as the center and radius of the ball. According to the
definition, rmin is exactly the size of hmin, Smin. Any nonbounding cycle (a cycle that is not
a boundary) carried by Bmin(hmin) is a localized-cycle of hmin.2 We first computes a basis
for all cycles carried by Bmin(hmin), using a reduction algorithm. Next, elements in this
basis are checked one by one until we find one which is nounbounding in K. This checking
uses the algorithm of Wiedemann[18] for rank computation of sparse matrices over Z2 field.

3.2. Computing the Optimal Homology Basis

In this section, we present the algorithm for computing the optimal homology basis
defined in Definition 2.2, namely, Hd. We first show that the optimal homology basis can
be computed in a greedy manner. Second, we introduce an efficient greedy algorithm.

3.2.1. Computing Hd in a Greedy Manner. Recall that the optimal homology basis is the
basis for the homology group whose elements’ size have the minimal sum. We use matroid
theory [9] to show that we can compute the optimal homology basis with a greedy method.
Let H be the set of nontrivial d-dimensional homology classes (i.e. the homology group
minus the trivial class). Let L be the family of sets of linearly independent nontrivial
homology classes. Then we have the following theorem, whose proof is omitted due to
space limitations. The same result has been mentioned in [14].

Theorem 3.1. The pair (H,L) is a matroid when βd > 0.

We construct a weighted matroid by assigning each nontrivial homology class its size
as the weight. This weight function is strictly positive because a nontrivial homology class
can not be carried by a geodesic ball with radius zero. According to matroid theory, we
can compute the optimal homology basis with a naive greedy method: check the smallest
nontrivial homology classes one by one, until βd linearly independent ones are collected.

2This is true assuming that Bmin(hmin) carries one and only one nontrivial class, i.e. hmin itself. However,
it is straightforward to relax this assumption.
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The collected βd classes {hi1 , hi2 , ..., hiβd} form the optimal homology basis Hd. (Note that
the h’s are ordered by size, i.e. S(hik) ≤ S(hik+1

).) However, this method is exponential in
βd. We need a better solution.

3.2.2. Computing Hd with a Sealing Technique. In this section, we introduce a polynomial
greedy algorithm for computing Hd. Instead of computing the smallest classes one by one,
our algorithm uses a sealing technique and takes time polynomial in βd. Intuitively, when
the smallest l classes in Hd are picked, we make them trivial by adding new simplices to the
given complex. In the augmented complex, any linear combinations of these picked classes
becomes trivial, and the smallest nontrivial class is the (l + 1)’th one in Hd.

The algorithm starts by measuring and localizing the smallest homology class of the
given simplicial complex K (using the procedure Measure-Smallest(K) introduced in Sec-
tion 3.1), which is also the first class we choose for Hd. We make this class trivial by sealing
one of its cycles – i.e. the localized-cycle we computed – with new simplices. Next, we
measure and localize the smallest homology class of the augmented simplicial complex K ′.
This class is the second smallest homology class in Hd. We make this class trivial again and
proceed for the third smallest class in Hd. This process is repeated for βd rounds, yielding
Hd.

We make a homology class trivial by sealing the class’s localized-cycle, which we have
computed. To seal this cycle z, we add (a) a new vertex v; (b) a (d + 1)-simplex for each
d-simplex of z, with vertex set equal to the vertex set of the d-simplex together with v; (c)
all of the faces of these new simplices. In Figure 3(a) and 3(b), a 1-cycle with four edges,
z1, is sealed up with one new vertex, four new triangles and four new edges.

It is essential to make sure the new simplices does not influence our measurement. We
assign the new vertices +∞ geodesic distance from any vertex in the original complex K.
Furthermore, in the procedure Measure-Smallest(K ′), we will not consider any geodesic
ball centered at these new vertices. In other words, the geodesic distance from these new
vertices will never be used as a filter function. Whenever we run the persistent homology
algorithm, all of the new simplices have +∞ filter function values, formally, fp(σ) = +∞
for all p ∈ vert(K) and σ ∈ K ′\K.

The algorithm is illustrated in Figure 3(a) and 3(b). The 4-edge cycle, z1, and the
8-edge cycle, z2, are the localized-cycles of the smallest and the second smallest homology
classes (S([z1]) = 2,S([z2]) = 4). The nonbounding cycle z3 = z1 + z2 corresponds to the
largest nontrivial homology class [z3] = [z1] + [z2] (S([z3]) = 5). After the first round, we
choose [z1] as the smallest class in H1. Next, we destroy [z1] by sealing z1, which yields the
augmented complex K ′. This time, we choose [z2], giving H1 = {[z1], [z2]}.
Correctness. We prove in Theorem 3.3 the correctness of our greedy method. We begin by
proving a lemma that destroying the smallest nontrivial class will neither destroy any other
classes nor create any new classes. Please note that this is not a trivial result. The lemma
does not hold if we seal an arbitrary class instead of the smallest one. See Figure 3(c) and
3(d) for examples. Our proof is based on the assumption that the smallest nontrivial class
hmin is the only one carried by Bmin(hmin).

Lemma 3.2. Given a simplicial complex K, if we seal its smallest homology class hmin(K),
any other nontrivial homology class of K, h, is still nontrivial in the augmented simplicial
complex K ′. In other words, any cycle of h is still nonbounding in K ′.
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(a) (b) (c) (d)

Figure 3: (a,b) the original complex K and the augmented complex K ′ after destroying the smallest
class, [z1]. (c) If the original complex K consists of the two cycles z1 and z2, destroying a
larger class [z1] + [z2] will make all other classes trivial too. (d) The original complex K
consists of the two cycles and an edge connecting them. Destroying [z1] + [z2] will make
all other classes trivial and create a new class.

This lemma leads to the correctness of our algorithm, namely, Theorem 3.3. We prove
this theorem by showing that the procedure Measure-All(K) produces the same result as
the naive greedy algorithm.

Theorem 3.3. The procedure Measure-All(K) computes Hd.

4. An Improvement Using Finite Field Linear Algebra

In this section, we present an improvement on the algorithm presented in the previous
section, more specifically, an improvement on computing the smallest geodesic ball carrying
any nontrivial class (the procedure Bmin). The idea is based on the finite field linear algebra
behind the homology.

We first observe that for neighboring vertices, p1 and p2, the birth times of the first
essential homology class using fp1 and fp2 as filter functions are close (Theorem 4.1). This
observation suggests that for each p, instead of computing Br(p)

p , we may just test whether
the geodesic ball centered at p with a certain radius carries any essential homology class.
Second, with some algebraic insight, we reduce the problem of testing whether a geodesic ball
carries any essential homology class to the problem of comparing dimensions of two vector
spaces. Furthermore, we use Theorem 4.2 to reduce the problem to rank computations
of sparse matrices on the Z2 field, for which we have ready tools from the literature. In
what follows, we assume that K has a single component; multiple components can be
accommodated with a simple modification.

Complexity. In doing so, we improve the complexity to O(β4
dn

3 log2 n). More detailed
complexity analysis is omitted due to space limitations.3

Next, we present details of the improvement. In Section 4.1, we prove Theorem 4.1 and
provide details of the improved algorithm. In Section 4.2, we explain how to test whether
a certain subcomplex carries any essential homology class of K. For convenience, in this
section, we use “carrying nonbounding cycles” and “carrying essential homology classes”

3This complexity is close to that of the persistent homology algorithm, whose complexity is O(n3). Given
the nature of the problem, it seems likely that the persistence complexity is a lower bound. If this is the
case, the current algorithm is nearly optimal. Cohen-Steiner et al.[8] provided a linear algorithm to maintain
the persistences while changing the filter function. While interesting, this algorithm is not applicable in our
case.
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interchangeably, because a geodesic ball carries essential homology classes of K if and only
if it carries nonbounding cycles of K.

4.1. The Stability of Persistence Leads to An Improvement

Cohen-Steiner et al.[6] proved that the change, suitably defined, of the persistence of
homology classes is bounded by the changes of the filter functions. Since the filter functions
of two neighboring vertices, fp1 and fp2 , are close to each other, the birth times of the first
nonbounding cycles in both filters are close as well. This leads to Theorem 4.1. A simple
proof is provided.

Theorem 4.1. If two vertices p1 and p2 are neighbors, the birth times of the first non-
bounding cycles for filter functions fp1 and fp2 differ by no more than 1.

Proof. p1 and p2 are neighbors implies that for any point q, fp2(q) ≤ fp2(p1) + fp1(q) =
1 + fp1(q), in which the inequality follows the triangular inequality. Therefore, Br(p1)

p1 is a
subset of Br(p1)+1

p2 . The former carries nonbounding cycles implies that the latter does too,
and thus r(p2) ≤ r(p1) + 1. Similarly, we have r(p1) ≤ r(p2) + 1.

This theorem suggests a way to avoid computing B
r(p)
p for all p ∈ vert(K) in the

procedure Bmin. Since our objective is to find the minimum of the r(p)’s, we do a breadth-
first search through all the vertices with global variables rmin and pmin recording the smallest
r(p) we have found and its corresponding center p, respectively. We start by applying the
persistent homology algorithm on K with filter function fp0 , where p0 is an arbitrary vertex
of K. Initialize rmin as the birth time of the first nonbounding cycle of K, r(p0), and pmin
as p0. Next, we do a breadth-first search through the rest vertices. For each vertex pi, i 6= 0,
there is a neighbor pj we have visited (the parent vertex of pi in the breath-first search tree).
We know that r(pj) ≥ rmin and r(pi) ≥ r(pj)−1 (Theorem 4.1). Therefore, r(pi) ≥ rmin−1.
We only need to test whether the geodesic ball Brmin−1

pi carries any nonbounding cycle of
K. If so, rmin is decremented by one, and pmin is updated to pi. After all vertices are
visited, pmin and rmin give us the ball we want.

However, testing whether the subcomplex Brmin−1
pi carries any nonbounding cycle of K

is not as easy as computing nonbounding cycles of the subcomplex. A nonbounding cycle
of Brmin−1

p may not be nonbounding in K as we require. For example, in Figure 4(a) and
4(b), the simplicial complex K is a torus with a tail. The pink geodesic ball in the first
figure does not carry any nonbounding cycle of K, although it carries its own nonbounding
cycles. The geodesic ball in the second figure is the one that carries nonbounding cycles of
K. Therefore, we need algebraic tools to distinguish nonbounding cycles of K from those
of the subcomplex Brmin−1

pi .

4.2. Procedure Contain-Nonbounding-Cycle: Testing Whether a Subcomplex Car-
ries Nonbounding Cycles of K

In this section, we present the procedure for testing whether a subcomplex K0 carries
any nonbounding cycle of K. A chain in K0 is a cycle if and only if it is a cycle of K.
However, solely from K0, we are not able to tell whether a cycle carried by K0 bounds or
not in K. Instead, we write the set of cycles of K carried by K0, ZK0

d (K), and the set of
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(a) (b) (c) (d)

Figure 4: (a,b) In a torus with a tail, only the ball in the second figure carries nonbounding cycles
of K, although in both figures the balls have nontrivial topology. (c,d) The cycles with
the minimal radius and the minimal diameter, zr and zd (Used in Section 5).

boundaries of K carried by K0, BK0
d (K), as sets of linear combinations with certain con-

straints. Consequently, we are able to test whether any cycle carried by K0 is nonbounding
in K by comparing their dimensions. Formally, we define BK0

d (K) = Bd(K) ∩ Cd(K0) and
ZK0
d (K) = Zd(K) ∩ Cd(K0).

Let Ĥd = [z1, ..., zβd ] be the matrix whose column vectors are arbitrary βd nonbounding
cycles of K which are not homologous to each other. The boundary group and the cycle
group of K are column spaces of the matrices ∂d+1 and Ẑd = [∂d+1, Ĥd], respectively. Using
finite field linear algebra, we have the following theorem, whose proof is omitted due to
space limitations.

Theorem 4.2. K0 carries nonbounding cycles of K if and only if

rank(ẐK\K0

d )− rank(∂K\K0

d+1 ) 6= βd.

where ∂id+1 and Ẑid are the i-th rows of the matrices ∂d+1 and Ẑd, respectively.

We use the algorithm of Wiedemann[18] for the rank computation. In our algorithm,
the boundary matrix ∂d+1 is given. The matrix Ĥd can be precomputed as follows. We
perform a column reduction on the boundary matrix ∂d to compute a basis for the cycle
group Zd(K). We check elements in this basis one by one until we collect βd of them forming
Ĥd. For each cycle z in this cycle basis, we check whether z is linearly independent of the
d-boundaries and the nonbounding cycles we have already chosen. More details are omitted
due to space limitations.

5. Localizing Classes

In this section, we address the localization problem. We formalize the localization
problem as a combinatorial optimization problem: Given a simplcial complex K, compute
the representative cycle of a given homology class minimizing a certain objective function.
Formally, given an objective function defined on all the cycles, cost : Zd(K)→ R, we want
to localize a given class with its optimally localized cycle, zopt(h) = argminz∈h cost(z). In
general, we assume the class h is given by one of its representative cycles, z0.

We explore three options of the objective function cost(z), i.e. the volume, diameter and
radius of a given cycle z. We show that the cycle with the minimal volume and the cycle
with the minimal diameter are NP-hard to compute. The cycle with the minimal radius,
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which is the localized-cycle we defined and computed in previous sections, is a fair choice.
Due to space limitations, we omit proofs of theorems in this section.

Definition 5.1 (Volume). The volume of z is the number of its simplices, vol(z) = card(z).

For example, the volume of a 1-dimensional cycle, a 2-dimensional cycle and a 3-
dimensional cycle are the numbers of their edges, triangles and tetrahedra, respectively.
A cycle with the smallest volume, denoted as zv, is consistent to a “well-localized” cycle
in intuition. Its 1-dimensional version, the shortest cycle of a class, has been studied by
researchers [14, 19, 11]. However, we prove in Theorem 5.2 that computing zv of h is NP-
hard.4 The proof is by reduction from the NP-hard problem MAX-2SAT-B [17]. More
generally, we can extend the the volume to be the sum of the weights assigned to simplices
of the cycle, given an arbitrary weight function defined on all the simplices of K. The
corresponding smallest cycle is still NP-hard to compute.

Theorem 5.2. Computing zv for a given h is NP-hard.

When it is NP-hard to compute zv, one may resort to the geodesic distance between
elements of z. The second choice of the objective function is the diameter.

Definition 5.3 (Diameter). The diameter of a cycle is the diameter of its vertex set,
diam(z) = diam(vert(z)), in which the diameter of a set of vertices is the maximal geodesic
distance between them, formally, diam(S) = maxp,q∈S dist(p, q).

Intuitively, a representative cycle of h with the minimal diameter, denoted zd, is the
cycle whose vertices are as close to each other as possible. The intuition will be further
illustrated by comparison against the radius criterion. We prove in Theorem 5.4 that com-
puting zd of h is NP-hard, by reduction from the NP-hard Multiple-Choice Cover Problem
(MCCP) of Arkin and Hassin [2].

Theorem 5.4. Computing zd for a given h is NP-hard.

The third option of the objective function is the radius.

Definition 5.5 (Radius). The radius of a cycle is the radius of the smallest geodesic ball
carrying it, formally, rad(z) = minp∈vert(K) maxq∈vert(z) dist(p, q), where vert(K) and vert(z)
are the sets of vertices of the given simplicial complex K and the cycle z, respectively.

The representative cycle with the minimal radius, denoted as zr, is the same as the
localized-cycle defined and computed in previous sections. Intuitively, zr is the cycle whose
vertices are as close to a vertex of K as possible. However, zr may not necessarily be
localized in intuition. It may wiggle a lot while still being carried by the smallest geodesic
ball carrying the class. See Figure 4(c), in which we localize the only nontrivial homology
class of an annulus (the light gray area). The dark gray area is the smallest geodesic ball
carrying the class, whose center is p. Besides, the cycle with the minimal diameter (Figure
4(d)) avoids this wiggling problem and is concise in intuition. This in turn justifies the
choice of diameter.5 We can prove that zr can be computed in polynomial time and is a
2-approximation of zd.

4Erickson and Whittlesey [14] localized 1-dimensional classes with their shortest representative cycles.
Their polynomial algorithm can only localize classes in the shortest homology basis, not arbitrary given
classes.

5This figure also illustrates that the radius and the diameter of a cycle are not strictly related. For the
cycle zr in the left, its diameter is twice of its radius. For the cycle zd in the center, its diameter is equal to
its radius.
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Theorem 5.6. We can compute zr in polynomial time.

Theorem 5.7. diam(zr) ≤ 2 diam(zd).

This bound is a tight bound. In Figure 4(c) and 4(d), the diameter of the cycle zr is
twice of the radius of the dark gray geodesic ball. The diameter of the cycle zd is the same
as the radius of the ball. We have diam(zr) = 2 diam(zd).
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Abstract. Let G be a directed planar graph of complexity n, each arc having a non-
negative length. Let s and t be two distinct faces of G; let s1, . . . , sk be vertices incident
with s; let t1, . . . , tk be vertices incident with t. We give an algorithm to compute k pair-
wise vertex-disjoint paths connecting the pairs (si, ti) in G, with minimal total length, in
O(kn log n) time.

1. Introduction

The vertex-disjoint paths problem is described as follows: given any (directed or undi-
rected) graph and k pairs (s1, t1), . . . , (sk, tk) of vertices, find k pairwise vertex-disjoint
paths connecting the pairs (si, ti), if they exist. This problem is well-known also because of
its motivation by VLSI-design.

For a fixed number k of pairs of terminals, this problem is polynomial-time solvable in
a directed planar graph, as shown by Schrijver [Sch94], and in any undirected graph, as
shown by Robertson and Seymour [RS95]. However, Raghavan [Rag86] and Kramer and van
Leeuwen [KvL84] proved that it is NP-hard when k is not fixed, even on a planar undirected
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Figure 1: An instance of the problem and a solution (in bold lines).

graph; it belongs to the more general class of integer multicommodity flow problems [Sch03,
Chapter 70], many variants of which are NP-hard.

If the graph is planar, two special cases are solvable in time linear in the complexity of
the graph, even if k is not fixed:

(a) if all terminals lie on the outer face, as proved by Suzuki et al. [SAN90];
(b) if the terminals s1, . . . , sk are incident with a common face s, the terminals t1, . . . , tk

are incident with a common face t, and the faces s and t are distinct, as proved by
Ripphausen-Lipa et al. [RLWW96].

In this paper, we consider a graph where each edge has a nonnegative length, and we
wish to solve the vertex-disjoint paths problem using paths with minimal total length. Of
course, this is harder than the vertex-disjoint paths problem. In case (a), the problem is
known to be solvable in polynomial time (even if k is not fixed) if the cyclic order of the
terminals is s1, . . . , sk, tk, . . . , t1 (by reduction to the max-flow problem, after replacing each
vertex by two vertices connected by an arc, so that the problem is to find arc-disjoint paths
in this new graph) [vdHdP02]. Our goal is to solve the vertex-disjoint paths problem with
minimal total length in case (b). We give an algorithm to do this in O(kn log n) time (see
Figure 1):

Theorem 1.1. Let G be a planar directed graph with n vertices and arcs, each arc having a
nonnegative length. Let s and t be two distinct faces of G; let s1, . . . , sk be vertices incident
with s; let t1, . . . , tk be vertices incident with t. Then we can compute k pairwise vertex-
disjoint paths connecting the pairs (si, ti) in G, with minimal total length, in O(kn log n)
time.

The value of k is not fixed in this result. Note that this theorem also holds if G is
an undirected graph: simply replace every edge of this graph by two oppositely directed
arcs and apply the previous result to this new graph. The same problem for non-crossing
shortest paths, that is, paths that are allowed to overlap along vertices and edges but not
to cross in the plane, is solvable in O(n log n) time, as shown by Takahashi et al. [TSN96].
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Figure 2: Construction of the graph D = (W,A) from the graph G. The thin arcs on the
rings have length zero.

The high-level approach of our algorithm is the following. We first show that we may
assume without loss of generality that G satisfies some additional properties and trans-
form G into another planar directed graph D; in this graph, it suffices to solve the same
problem for arc-disjoint instead of vertex-disjoint paths (Section 2). Then we translate our
problem in terms of flows in the graph D (Section 3). In Section 4, we introduce the residual
graph and state some of its properties that we will use. In Section 5, we explain how to
increase the value of an integer flow. By repeated applications of this algorithm, we obtain
vertex-disjoint paths in G between the terminals, but they may fail to connect the pairs
(si, ti). We show that it suffices to “rotate” the flow a few times to change the connections
between the terminals (Section 6) and explain how to do that efficiently (Section 7). A
generalization of the notion of potential allows us to assume that all lengths in the residual
graph are nonnegative, which makes the algorithm efficient.

2. Preliminaries

We assume that we are given an embedding of the directed graph G in the plane. More
precisely, only a combinatorial embedding of G is necessary, which means that the cyclic
order of the arcs around a vertex is known.

We can assume that G is connected and that t is the outer face of the embedding of
G. Up to re-indexing the pairs (si, ti), we may assume that s1, . . . , sk and t1, . . . , tk are
in clockwise order: indeed, if such a reordering does not exist, then there cannot exist
vertex-disjoint paths connecting the pairs (si, ti).

We may assume that each terminal vertex has degree one as follows: to each terminal
vertex si (resp. ti), attach an arc (of length zero, for example) (s′i, si) (resp. (ti, t′i)) inside
s (resp. t), where s′i (resp. t′i) is a new vertex; use the s′i and the t′i as terminals, instead
of the si and the ti. Clearly, any solution to the problem in this augmented graph yields a
solution in the original graph G.

We transform G into another directed planar graph D = (W,A) by replacing each non-
terminal vertex v of G by a small clockwise “ring” of arcs; see Figure 2. Every arc a of D
that is on no ring corresponds to an arc of G and its length, λ(a), is the length of this arc
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in G; it is thus nonnegative. The length λ(a) of an arc a on a ring is zero. The function λ
is fixed in this whole paper.

An (s, t)-path in D or G is a path from some vertex in {s1, . . . , sk} to some vertex
in {t1, . . . , tk}; an (si, ti)-path is a path connecting some pair of terminals (si, ti).

Proposition 2.1. Let P be a minimum-length set of k vertex-disjoint (si, ti)-paths in D.
Then P gives, in O(n) time, a minimum-length set of k vertex-disjoint (si, ti)-paths in G.
If no such set P exists, then the original problem in G has no solution.

Proof. Consider such a set of (si, ti)-paths P in D. We claim that a given ring r of D can
be used by at most one path in P . Indeed, since s and t are distinct faces, R2 \ {s ∪ t} is
an annulus. Since the paths in P are vertex-disjoint and connect s to t, every point of the
annulus that does not belong to a path in P is on the left of exactly one path and on the
right of exactly one path in P . In particular, the center c of r is on the right of exactly
one path in P . But every path using r has c on its right, because the arcs of r are oriented
clockwise. This proves the claim.

Thus, P corresponds, in G, to k pairwise vertex-disjoint (si, ti)-walks. Removing the
loops from these walks in O(n) time does not increase the total length and gives a set of k
vertex-disjoint (si, ti)-paths in G.

Conversely, any solution of the original vertex-disjoint problem in G gives a set of k
vertex-disjoint paths in D, of the same length, connecting the appropriate pairs of terminals.
So the paths obtained in the previous paragraph have minimal total length; furthermore, if
no such set of paths P exists, then the problem in G admits no solution.

So we reduced the problem in G to the same problem in the graph D. The point
now is that the vertices of D have degree three, except the terminals, which have degree
one; because of these degree conditions, a set of arc-disjoint (s, t)-paths or circuits in D
is actually a set of vertex -disjoint (s, t)-paths or circuits in D, so we now have to solve a
problem on arc-disjoint paths. This enables a flow approach on D, which we will develop
in the next section.

3. Flows and winding numbers

In this paper, a flow in D = (W,A) is an element x ∈ RA such that:
(1) for each arc a ∈ A, 0 ≤ x(a) ≤ 1;
(2) for each non-terminal vertex v, the following flow conservation law holds:∑

a | v=source(a)

x(a) =
∑

a | v=target(a)

x(a).

The value of a flow x equals the total flow leaving the vertices s1, . . . , sk: if ai is the arc
incident with si, then the value of x equals

∑k
i=1 x(ai). A circulation is a flow of value zero.

A length function (or cost function) κ on D is an element of RA; λ is a length function.
The length (or cost) of a flow x with respect to κ is defined to be κ>x.

An integer flow is a flow in {0, 1}A; it is a set of arc-disjoint (s, t)-paths and circuits
in D. Actually, by the degree conditions on D, it is a set of vertex-disjoint (s, t)-paths and
circuits.

Let A−1 be the set of arcs in A with reverse orientation. If κ ∈ RA is a length function,
we define the length of an arc a−1 ∈ A−1 to be κ(a−1) = −κ(a).
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Figure 3: The path U in the dual graph D∗ and the corresponding value of u on the arcs
of D. Only the non-zero values of u are indicated, on the arcs in bold lines. Here
m = ms −mt = 3− 1 = 2.

Let X ∈ RA∪A−1
; we define zX ∈ RA by zX(a) = X(a) − X(a−1). If γ is a walk

in (W,A ∪ A−1), by a slight abuse of notation, we define zγ to be zX , where X(a) (resp.
X(a−1)) is the number of times γ travels through the arc a (resp. a−1). The length of γ
with respect to a length function κ is thus κ>zγ .

We now want to take into account how a flow “turns around” the inner face s of G. To
do this, consider the (undirected) dual graph D∗ of D, that is, the planar graph that has
one vertex f ∗ inside each face f of D and such that f ∗

1 and f∗2 are connected by an edge
e∗ if and only if f1 and f2 are separated by an arc e in D; in that case, e∗ crosses e but no
other arc of D. Let U be a path (fixed in this whole paper) from s∗ to t∗ in D∗ (Figure 3).
For each arc a in A, define u(a) to be 0 if a does not cross U , +1 if a crosses U from left to
right, and −1 if a crosses U from right to left. This defines an element u ∈ RA. The winding
number of a flow x equals u>x, the value of the flow through u counted algebraically. Also,
for any X ∈ RA∪A−1

, the winding number of X is u>zX .
Let ms ∈ [1, k] be such that the first arc of U is, in the cyclic order around the face s,

between sms and sms+1 mod k. Similarly, let mt be such that the last arc of U is between
tmt and tmt+1 mod k. Let m = ms −mt.

The following lemma will be used repeatedly.

Lemma 3.1. Let γ be any circuit in (W,A ∪A−1). Then the winding number of γ belongs
to {−1, 0,+1}. If γ encloses s in the plane, then it has winding number +1 if it is clockwise
and −1 if it is counter-clockwise. Otherwise, γ has winding number 0.

Proof. This is a consequence of the Jordan curve theorem. The winding number of γ is
the number of times the path U crosses γ from the right to the left, minus the number of
times U crosses γ from the left to the right. Assume γ is clockwise, the other case being
analogous. The winding number of γ is the number of times U exits the region enclosed
by γ minus the number of times it enters this region.

If γ does not enclose s, then both endpoints of U are outside γ, so the winding number
is zero. If γ encloses s, the source of U is inside the region enclosed by γ while its target is
outside, so the winding number is +1.
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We can now reformulate our arc-disjoint paths problem in D in terms of flows in D:

Proposition 3.2. Let x be an integer flow in D of value k with minimal cost subject to
the condition that its winding number, modulo k, equals m. Then x gives, in O(n) time, k
vertex-disjoint (si, ti)-paths in D of minimal total length. If there exists no such flow, then
there does not exist k vertex-disjoint (si, ti)-paths in D.

Proof. As noted above, the degree conditions on D imply that the flow x is a set of vertex -
disjoint (s, t)-paths or circuits in D. Let γ be a circuit in x. If γ has non-zero winding
number, then γ separates s and t, which implies that x has value zero, a contradiction.
If γ has winding number zero, then removing it from x yields another flow with the same
properties. Since we can remove such circuits in O(n) time, we may assume that x contains
only (s, t)-paths. By the assumption on the winding number, these paths connect the pairs
(si, ti), for i = 1, . . . , k.

Furthermore, any k vertex-disjoint (si, ti)-paths in D correspond to a flow in D of
value k and of winding number equal, modulo k, to m. It follows that the paths obtained
have minimal total length.

By Propositions 2.1 and 3.2, to prove Theorem 1.1, it suffices to show that we can, in
O(kn log n) time, find an integer flow in D of value k and with minimal cost subject to the
condition that its winding number, modulo k, equals m.

4. The residual graph

In this section, we introduce the residual graph of D in the special case of integer
flows; it is a classical tool for dealing with maximal flows and flows of minimal cost [Sch03,
Chapters 10–12].

Let x be an integer flow on D = (W,A). Let Ax be the subset of A ∪A−1 defined by

Ax = {a | x(a) = 0} ∪ {a−1 | x(a) = 1}.
The residual graph of D with respect to x is the directed graph Dx = (W,Ax); it is thus
the graph obtained from D by reversing the sign of the length and winding number and the
orientation of the arcs a such that x(a) = 1.

The following lemma explains the interest of the residual graph; the first two assertions
are well-known.

Lemma 4.1. Let x be an integer flow in D.
(i) Dx has no (s, t)-path if and only if x has maximal value in D among all flows.
(ii) Assume that x has maximal value in D; let κ be a length function. Then Dx has no

negative-length directed circuit with respect to κ if and only if x has minimal cost,
with respect to κ, among all flows in D with the same value.

(iii) Assume x has maximal value in D. Then Dx has no directed circuit with winding
number one if and only if x has maximal winding number among all flows in D with
the same value.

Proof. In these three assertions, the “if” part is easy: If Dx has an (s, t)-path or circuit γ,
then, by construction of Dx, y := x + zγ is an integer flow in D; its cost equals the cost
of x in D plus the cost of γ in Dx; its winding number equals the winding number of x plus
the winding number of γ; and its value equals the value of x plus one if γ is a path, or the
value of x if γ is a circuit.
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Conversely, let x be an integer flow in D and let y be any flow in D. Consider y − x
in the graph D. By construction of Dx, this is a flow in Dx, in the sense that the flow
conservation law holds at each vertex of D (except at the terminals) and that, for each arc
a ∈ A, we have (y − x)(a) ≥ 0 if a ∈ Ax and (y − x)(a) ≤ 0 if a−1 ∈ Ax. In particular,
y−x can be written as

∑
γ∈Z αγzγ , where Z is a set of (s, t)-paths, (t, s)-paths, and circuits

in Dx, and the αγ are positive real numbers.
Now, to prove the “only if” part of (i), simply note that, if Dx has no (s, t)-path, then

there is no (s, t)-path in Z; thus, the value of y cannot be greater than the value of x. To
prove the “only if” part of (ii) and (iii), assume that x and y both have maximal value in D.
Then, by (i), Z contains no (s, t)-path, hence also no (t, s)-path, hence only circuits. If Dx

has no negative-length directed circuit, the cost of y is at least the cost of x; this proves (ii).
If Dx has no directed circuit with winding number one, then y cannot have winding number
higher than x, for otherwise y − x would contain at least one circuit with positive winding
number, hence with winding number one (Lemma 3.1). This proves (iii).

A length function κ is nonnegative on Dx if κ is nonnegative on every arc in Ax; that
is, for each a ∈ A, κ(a) ≥ 0 if x(a) = 0 and κ(a) ≤ 0 if x(a) = 1.

5. Increasing the flow in D

In this section, we explain how to compute a minimum-cost flow in D in O(kn log n)
time. The algorithm uses only very classical minimum-cost flow techniques, but we indicate
it for completeness and because Section 7 will use some similar ideas.

Let p ∈ Z. A p-flow is an integer flow in D of value p. Let κ and κ′ be two length
functions on D; we write κ ' κ′ if κ>zγ = κ′>zγ for each closed walk γ in (W,A ∪ A−1).
(This notion is equivalent to the notion of potential.)

Lemma 5.1. Let κ ' κ′. Then any minimum-cost k-flow with respect to κ is also a
minimum-cost k-flow with respect to κ′.

Proof. By Lemma 4.1(ii), a k-flow x has minimum cost with respect to κ if and only if Dx

has no negative-length circuit with respect to κ. Since κ ' κ′, circuits in Dx have the same
length with respect to κ and to κ′.

The following result follows from classical minimum-cost flow techniques.

Lemma 5.2. Let x be a p-flow in D and let κ be a length function that is nonnegative
on Dx. Then, in O(n log n) time, we can find a (p+1)-flow x′ and a length function κ′ ' κ
that is nonnegative on Dx′ , unless x has maximal value.

Proof. We temporarily add to Dx two vertices s and t, and arcs (s, si) and (ti, t) of length
zero, for i = 1, . . . , k. Let D′

x be the resulting graph. We compute a shortest path tree
of D′

x with root s, with respect to κ, in O(n log n) time using Dijkstra’s algorithm [Dij59]
speeded up with Fibonacci heaps [FT87], because all lengths are nonnegative1. If there
is no path from s to t in D′

x, then Dx has no (s, t)-path, hence, by Lemma 4.1(i), x has
maximal value.

Otherwise, for each vertex v of D′
x, let d(v) be the distance from s to v with respect

to κ, as computed by Dijkstra’s algorithm above. For each arc a = (u, v) of Ax, we have

1We could do that in O(n) time using the algorithm by Henzinger et al. [HKRS97], but that would not
change the asymptotic complexity of the entire algorithm.
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d(v) ≤ d(u)+κ(a) by the triangle inequality, with equality if a is on the shortest path tree.
For each arc a = (u, v) of Ax, let κ′(a) = κ(a) + d(u) − d(v); clearly, κ′ ' κ. We have
κ′(a) ≥ 0, and κ′(a) = 0 if a is on the shortest path tree. Let γ be the (s, t)-path in Dx

corresponding to the path from s to t in D ′
x in the shortest path tree. Now, let x′ = x+ zγ ;

since κ′ is nonnegative on the arcs of Dx and is zero on the arcs of γ, it is nonnegative
on Dx′ .

Starting with the zero flow x (for which Dx = D) and the length function κ = λ, we
repeatedly apply Lemma 5.2. We obtain a flow x0 with maximal value p and a length
function κ0 ' λ such that κ0 is nonnegative on Dx0 . This takes O(pn log n) = O(kn log n)
time. If p < k, then the original problem has no solution, hence we stop here. Otherwise,
Lemmas 4.1(i) and 5.1 imply that x0 is a minimum-cost k-flow with respect to λ. Let w0

be the winding number of x0. If w0 ≡ m (mod k), then we are done by Propositions 2.1
and 3.2; so we henceforth assume w0 6≡ m (mod k).

6. Finding the winding number

A (k,w)-flow is an integer flow in D of value k and winding number w. Let w1 and w2

be the integers equal, modulo k, to m that are the closest to w0 and satisfy w1 < w0 < w2.
The following proposition states that the problem boils down to finding minimum-cost
(k,w)-flows, for w = w1 and w = w2:

Proposition 6.1. There is a minimum-cost integer flow in D (with respect to λ) of value k
and winding number equal, modulo k, to m that is either a (k,w1)-flow or a (k,w2)-flow.

Proof. For every integer w, let µw be the minimal cost of the (k,w)-flows. (It is infinite if
no (k,w)-flow exists.) By Lemma 4.1(iii), the set {w | µw < ∞} is an interval of integers.

We show that for every integer w such that µw−1, µw, and µw+1 are finite, we have

2µw ≤ µw−1 + µw+1. (6.1)

Indeed, let x and x′ be minimum-cost (k,w − 1)- and (k,w + 1)-flows, respectively. Then
x′ − x gives a nonnegative integer circulation in Dx of winding number 2, i.e., a flow y of
value zero in D such that, for each a ∈ A, y(a) ≥ 0 if a ∈ Ax and y(a) ≤ 0 if a−1 ∈ Ax.
So the support of x′ − x contains a directed circuit γ in Dx of positive winding number,
hence 1. Then x + zγ and x′ − zγ are both (k,w)-flows. Thus

2µw ≤ λ>(x + zγ) + λ>(x′ − zγ) = λ>x + λ>x′ = µw−1 + µw+1,

which proves (6.1).
So µw is monotonically non-increasing for w ≤ w0 and monotonically non-decreasing

for w ≥ w0. Thus Proposition 6.1 holds.

7. Rotating the flow in D

Let κ and κ′ be two length functions on D; we write κ ∼ κ′ if κ>zγ = κ′>zγ for each
closed walk γ with winding number zero in (W,A ∪A−1). Clearly, κ ' κ′ implies κ ∼ κ′.

Proposition 7.1. Let κ ∼ κ′. Then any minimum-cost (k,w)-flow with respect to κ is also
a minimum-cost (k,w)-flow with respect to κ′.
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Figure 4: Illustration of Lemma 7.2: A minimal cut in H ∗ corresponds to a circuit with
winding number one in H. The primal graph H is depicted in black lines, with
thicker lines for the arcs of the circuit. The dual graph H ∗ is depicted in light
color, with thicker lines for the arcs of the cut.

Proof. Let x and y be two (k,w)-flows in D. Then y − x is a circulation in (W,A ∪ A−1),
i.e., a sum of terms of the form zγ , where γ is a circuit in (W,A∪A−1). Furthermore, there
are as many circuits with winding number +1 as with winding number −1 in this sum.

We have (κ′ − κ)>zγ = 0 for every such circuit with winding number zero. Moreover,
if γ has winding number +1 and γ ′ has winding number −1, it follows from the definition
of “∼” that κ>(zγ + zγ′) = κ′>(zγ + zγ′). We thus have κ>(y − x) = κ′>(y − x), implying
the result.

We view D as an undirected planar graph H; s and t are two faces of H. Let H ∗ be
its dual graph. If e is an oriented edge of H, then e∗ is the dual edge oriented so that e∗
crosses e from right to left.

A cut of H∗ is a set X∗ of oriented edges of H∗ such that any directed path from s∗
to t∗ uses at least one oriented edge of X∗. The following lemma is inspired by Reif [Rei83,
Propositions 1 and 2]. See Figure 4.

Lemma 7.2. Let X be a set of oriented edges of H. Then X contains the oriented edges
of some circuit with winding number one in H if and only if X ∗ is a cut of H∗.

Proof. If we have a directed circuit γ with winding number one, then its dual is a cut.
Indeed, consider an (s∗, t∗)-path π in H∗. The face s belongs to the interior of γ, while the
face t belongs to the exterior of γ; let e∗ be the first oriented edge of π that crosses γ; its
source is inside γ while its target is outside γ. By our choice of orientation, e belongs to γ.

Conversely, let X∗ be a cut of H∗; we will prove that X contains a circuit with winding
number one. Without loss of generality, we may assume that X ∗ is a cut that is minimal
with respect to inclusion.

First, label “S” a face f of H if there is, in H∗, a path from s∗ to f∗ that does not
use any oriented edge of X∗. Similarly, label “T” a face f of H if there is, in H ∗, a path
from f∗ to t∗ that does not use any oriented edge of X∗. Since X∗ is a cut, no face of H
is labeled both “S” and “T”. We claim that X is precisely the set of oriented edges of H
whose right face is labeled “S” and whose left face is labeled “T”. Clearly, such edges must
belong to X. Conversely, let e be an oriented edge of X; by minimality of X, there is an
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(s∗, t∗)-path in H∗ that avoids (X \ e)∗ and uses e∗ exactly once. Thus the source of e∗
is reachable from s∗ without using any oriented edge of X∗, and t∗ is reachable from the
target of e∗ without using any oriented edge of X∗. This proves the claim. In particular,
every face of H is labeled either “S” or “T”.

Let S be the subset of the plane made of the faces labeled “S”, together with the open
edges whose both incident faces are labeled “S”. Similarly, let T be the union of the faces
labeled “T” together with the open edges whose both incident faces are labeled “T”. By
the previous paragraph, S and T are disjoint subsets of the plane, and they are connected.
Let v be a vertex of H. We claim that there cannot be four faces incident with v, in this
cyclic order around v, that belong respectively to S, T , S, and T . This follows from the
Jordan curve theorem: assume that we have such faces. Then, by connectivity of S, there
is a simple closed curve in S ∪ {v} that goes through v and has faces of T on both sides of
it at v. This curve does not intersect T and separates T , contradicting its connectivity.

The two previous paragraphs together imply that either X has no edge incident with v,
or X has exactly one oriented edge whose target is v and one oriented edge whose source
is v. Thus X is a union of vertex-disjoint circuits. Let γ be such a circuit; since S and T
are connected, and since the faces on the left (resp. right) of γ are in T (resp. S), γ has
winding number one. Hence X contains a circuit with winding number one.

Proposition 7.3. Let x be a (k,w)-flow in D and let κ be a length function that is non-
negative on Dx. Then, in O(n log n) time, we can find a (k,w + 1)-flow x′ and a length
function κ′ ∼ κ that is nonnegative on Dx′, unless there is no (k,w′)-flow with w′ > w.

Proof. Let e be an oriented edge of H; if e corresponds to an arc a of Ax, then we define
the length of e in H to be κ(a) ≥ 0; otherwise, we define the length of e to be ∞. So a
walk in Dx corresponds to a walk in H of the same length, and a walk in H corresponds
to a walk in Dx if and only if it has finite length. Define the capacity c(e∗) of an oriented
edge e∗ of H∗ to be the length of e.

We can detect in O(n) time whether the oriented edges of finite capacity constitute a cut
in H∗. If this is not the case, then every cut must use an oriented edge of infinite capacity,
hence, by Lemma 7.2, Dx has no circuit of winding number one. It follows that x has
maximal winding number among all k-flows, by Lemma 4.1(iii). Otherwise, we compute a
minimal cut in H∗, which corresponds to a shortest circuit with winding number one in Dx,
as follows.

A flow in H∗ is a function ϕ that associates, to each oriented edge e∗ of H∗, a real
number that is nonnegative and no greater than c(e∗), such that the flow conservation law
holds at each vertex of H∗ except at s∗ and t∗. The value of ϕ is the total flow leaving s∗.

In O(n log n) time, we compute a flow ϕ of maximal value in H ∗ with respect to these
capacities, using the algorithm by Borradaile and Klein [BK06]. It is well-known, by the
“max-flow min-cut” theorem [Sch03, Theorem 10.3], that ϕ corresponds to a cut of minimal
cost in H∗: the cut is the set of oriented edges that leave the set of vertices reachable from s∗
by using only oriented edges e∗ of H∗ such that ϕ(e∗) < c(e∗) or ϕ(e∗−1) > 0.

Such a cut X∗ can be computed in O(n) time. Moreover, by replacing all the zero
capacities in H∗ by infinitesimally small capacities before applying the maximal flow al-
gorithm, we may assume that X∗ is a cut that is minimal with respect to inclusion. By
Lemma 7.2, we thus obtain a circuit γ of winding number one that has minimal length
in Dx.
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For each arc a of A∪A−1, let κ′(a) = κ(a)−ϕ(a∗)+ϕ(a∗−1); we have κ′(a) = −κ′(a−1),
hence this defines a length function. If a ∈ Ax, we have ϕ(a∗) ≤ κ(a), so κ′(a) ≥ 0. If a
belongs to γ, we have ϕ(a∗) = κ(a) and ϕ(a∗−1) = 0, so κ′(a) = 0.

We claim that κ′ ∼ κ. By the flow conservation law in H∗, κ′−κ is a linear combination
of functions of the form zγ , where γ∗ is an (s∗, t∗)-path or a circuit in H∗; so it suffices to
prove that zγ>δ = 0 for each closed walk δ with winding number zero. But zγ>δ equals the
number of times δ crosses γ∗ from left to right minus the number of times δ crosses γ∗ from
right to left. This always equals zero if γ is a circuit; if γ is an (s∗, t∗)-path, this equals zero
because δ has winding number zero (as in the proof of Lemma 3.1). This proves κ ′ ∼ κ.

Now, let x′ = x + zγ . The length function κ′ is nonnegative on the arcs of Dx and is
zero on the arcs of γ, so it is nonnegative on Dx′ .

To conclude, recall that the k-flow x0 and the length function κ0 have been computed
in Section 5; κ0 ∼ λ is nonnegative on Dx0 ; the integer w0 is the winding number of x0 and
we have

w0 − k < w1 < w0 < w2 < w0 + k.

Applying iteratively Proposition 7.3, we can find a (k,w2)-flow x2 and a length function
κ2 ∼ λ that is nonnegative on Dx2 ; thus, x2 is a (k,w2)-flow of minimal cost with respect
to λ, by Lemma 4.1(ii) and Proposition 7.1; if no such flow exists, we detect it during
the course of the algorithm. Similarly, we can find a minimum-cost (k,w1)-flow. This
takes O(kn log n) time. By Propositions 6.1, 2.1, and 3.2, the cheapest of these two flows
corresponds to the solution. This concludes the proof of Theorem 1.1.

Conclusion

We have given an algorithm to compute minimum-length vertex-disjoint paths con-
necting prescribed pairs (si, ti) of terminals in a planar graph, where the si and the ti are
incident, respectively, with given faces s and t. The running time is O(kn log n), where k is
the number of pairs of terminals and n is the complexity of the graph.

We note that the techniques developed above allow to solve the same problem, but
fixing, in addition, the winding number of the set of paths (or, equivalently, the homotopy
classes of the paths in the annulus R2\{s∪t}). This can be done by computing a minimum-
cost flow in the directed graph D and by rotating the flow until achieving the correct
winding number. Since the absolute value of the winding number of a flow is at most n,
the complexity of the algorithm is O(n2 log n).

Finally, the result of this paper suggests some open questions. How hard is it to solve
the minimum-length vertex-disjoint paths in case (a) of the introduction, namely, if all
terminals lie on the outer face (not necessarily in the order s1, . . . , sk, tk, . . . , t1)? And in
the case where all the terminals lie on two faces, but a path may have its two endpoints
on the same face? The problem extends to vertex-disjoint trees whose leaves are fixed on
two faces of the graph (such trees, not necessarily of minimal length, can be computed
efficiently [SAN90]). Also, does our problem remain polynomial-time solvable if each of the
terminals has to be incident with one of p prescribed faces of the graph, if p is fixed? What
about the same problem for a graph embedded on a surface of fixed genus?
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Abstract. We unveil an alluring alternative to parametric search that applies to both
the non-geodesic and geodesic Fréchet optimization problems. This randomized approach
is based on a variant of red-blue intersections and is appealing due to its elegance and
practical efficiency when compared to parametric search.

We present the first algorithm for the geodesic Fréchet distance between two polygonal
curves A and B inside a simple bounding polygon P . The geodesic Fréchet decision
problem is solved almost as fast as its non-geodesic sibling and requires O(N 2 log k) time
and O(k + N) space after O(k) preprocessing, where N is the larger of the complexities
of A and B and k is the complexity of P . The geodesic Fréchet optimization problem is
solved by a randomized approach in O(k +N 2 log kN log N) expected time and O(k +N2)
space. This runtime is only a logarithmic factor larger than the standard non-geodesic
Fréchet algorithm [4]. Results are also presented for the geodesic Fréchet distance in a
polygonal domain with obstacles and the geodesic Hausdorff distance for sets of points or
sets of line segments inside a simple polygon P .

1. Introduction

The comparison of geometric shapes is essential in various applications including com-
puter vision, computer aided design, robotics, medical imaging, and drug design. The
Fréchet distance is a similarity metric for continuous shapes such as curves or surfaces
which is defined using reparametrizations of the shapes. Since it takes the continuity of the
shapes into account, it is generally a more appropriate distance measure than the often used
Hausdorff distance. The Fréchet distance for curves is commonly illustrated by a person
walking a dog on a leash [4]. The person walks forward on one curve, and the dog walks
forward on the other curve. As the person and dog move along their respective curves, a
leash is maintained to keep track of the separation between them. The Fréchet distance is
the length of the shortest leash that makes it possible for the person and dog to walk from
beginning to end on their respective curves without breaking the leash. See section 2 for a
formal definition of the Fréchet distance.
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Most previous work assumes an obstacle-free environment where the leash connecting
the person to the dog has its length defined by an Lp metric. In [4] the Fréchet distance
between polygonal curves A and B is computed in arbitrary dimensions for obstacle-free
environments in O(N 2 log N) time, where N is the larger of the complexities of A and B.
Rote [23] computes the Fréchet distance between piecewise smooth curves. Buchin et al. [7]
show how to compute the Fréchet distance between two simple polygons. Fréchet distance
has also been used successfully in the practical realm of map matching [26]. All these works
assume a leash length that is defined by an Lp metric.

This paper’s contribution is to measure the leash length by its geodesic distance inside
a simple polygon P (instead of by its Lp distance). To our knowledge, there are only two
other works that employ such a leash. One is a workshop article [18] that computes the
Fréchet distance for polygonal curves A and B on the surface of a convex polyhedron in
O(N3k4 log(kN)) time. The other paper [12] applies the Fréchet distance to morphing by
considering the polygonal curves A and B to be obstacles that the leash must go around.
Their method works in O(N 2 log2 N) time but only applies when A and B both lie on the
boundary of a simple polygon. Our work can handle both this case and more general cases.
We consider a simple polygon P to be the only obstacle and the curves, which may intersect
each other or self-intersect, both lie inside P .

A core insight of this paper is that the free space in a geodesic cell (see section 2) is
x-monotone, y-monotone, and connected. We show how to quickly compute a cell boundary
and how to propagate reachability through a cell in constant time. This is sufficient to
solve the geodesic Fréchet decision problem. To solve the geodesic Fréchet optimization
problem, we replace the standard parametric search approach by a novel and asymptotically
faster (in the expected case) randomized algorithm that is based on red-blue intersection
counting. We show that the geodesic Fréchet distance between two polygonal curves inside
a simple bounding polygon can be computed in O(k + N 2 log kN log N) expected time and
O(k + N3 log kN) worst-case time, where N is the larger of the complexities of A and B
and k is the complexity of the simple polygon. The expected runtime is almost a quadratic
factor in k faster than the straightforward approach, similar to [12], of partitioning each
cell into O(k2) subcells. Briefly, these subcells are simple combinatorial regions based on
pairs of hourglass intervals. It is notable that the randomized algorithm also applies to
the non-geodesic Fréchet distance in arbitrary dimensions. We also present algorithms to
compute the geodesic Fréchet distance in a polygonal domain with obstacles and the geodesic
Hausdorff distance for sets of points or sets of line segments inside a simple polygon.

2. Preliminaries

Let k be the complexity of a simple polygon P that contains polygonal curves A and
B in its interior. In general, a geodesic is a path that avoids all obstacles and cannot be
shortened by slight perturbations [20]. However, a geodesic inside a simple polygon is simply
a unique shortest path between two points. Let π(a, b) denote the geodesic inside P between
points a and b. The geodesic distance d(a, b) is the length of a shortest path between a and
b that avoids all obstacles, where length is measured by L2 distance.

Let ↓, ↑, and ↓↑ denote decreasing, increasing, and decreasing then increasing functions,
respectively. For example, “H is ↓↑-bitonic” means that H is a function that decreases
monotonically then increases monotonically. A bitonic function has at most one change in
monotonicity.
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Figure 1: Shortest paths in the hourglass Hab,cd define Hab, cd.

The Fréchet distance for two curves A,B : [0, 1] → Rl is defined as

δF (A,B) = inf
f,g:[0,1]→[0,1]

sup
t∈[0,1]

d′( A(f(t)), B(g(t)) )

where f and g range over continuous non-decreasing reparametrizations and d ′ is a distance
metric for points, usually the L2 distance, and in our setting the geodesic distance. For a
given ε > 0 the free space is defined as FSε(A,B) = {(s, t) | d′(A(s), B(t)) ≤ ε} ⊆ [0, 1]2. A
free space cell C ⊆ [0, 1]2 is the parameter space defined by two line segments ab ∈ A and
cd ∈ B, and the free space inside the cell is FSε(ab, cd) = FSε(A,B) ∩ C.

The decision problem to check whether the Fréchet distance is at most a given ε > 0 is
solved by Alt and Godau [4] using a free space diagram which consists of all free space cells
for all pairs of line segments of A and B. Their dynamic programming algorithm checks
for the existence of a monotone path in the free space from (0, 0) to (1, 1) by propagating
reachability information cell by cell through the free space.

2.1. Funnels and Hourglasses

Geodesics in a free space cell C can be described by either the funnel or hourglass
structure of [14]. A funnel describes all shortest paths between a point and a line segment,
so it represents a horizontal (or vertical) line segment in C. An hourglass describes all
shortest paths between two line segments and represents all distances in C.

The funnel Fp,cd describes all shortest paths between an apex point p and a line segment
cd. The boundary of Fp,cd is the union of the line segment cd and the shortest path chains
π(p, c) and π(p, d). The hourglass Hab,cd describes all shortest paths between two line
segments ab and cd. The boundary of Hab,cd is composed of the two line segments ab,
cd and at most four shortest path chains involving a, b, c, and d. See Figure 1. Funnel and
hourglass boundaries have O(k) complexity because shortest paths inside a simple polygon
P are acyclic, polygonal, and only have corners at vertices of P [15].

Any horizontal or vertical line segment in a geodesic free space cell is associated with
a funnel’s distance function Fp, cd : [c, d] → R with Fp, cd(q) = d(p, q). The below three
results are generalizations of Euclidean properties and are omitted. See [10] for details.

Lemma 2.1. Fp, cd is ↓↑-bitonic.

Corollary 2.2. Any horizontal (or vertical) line segment in a free space cell has at most
one connected set of free space values.

Consider the hourglass Hab, cd in Figure 1. Let the shortest distance from a to any point
on cd occur at Ma ∈ cd. Define Mb similarly. As p varies from a to b, the minimum distance
from p to cd traces out a function Hab, cd : [a, b] → R with Hab, cd(p) = minq∈[c,d] d(p, q).
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Lemma 2.3. Hab, cd is ↓↑-bitonic.

3. Geodesic Cell Properties

Consider a geodesic free space cell C for polygonal curves A and B inside a simple
polygon. Let ab ∈ A and cd ∈ B be the two line segments defining C.

Lemma 3.1. For any ε, cell C contains at most one free space region R, and R is x-
monotone, y-monotone, and connected.

Proof. The monotonicity of R follows from Corollary 2.2. For connectedness, choose any two
free space points (p1, q1), (p2, q2), and construct a path connecting them in the free space
as follows: move vertically from (p1, q1) to the minimum point on its vertical. Do the same
for (p2, q2). By Lemma 2.1, this movement causes the distance to decrease monotonically.
By Lemma 2.3, any two minimum points are connected by a ↓↑-bitonic distance function
Hab, cd (cf. section 2.1), but as the starting points are in the free space – and therefore have
distance at most ε – all points on this constructed path lie in the free space.

Given C’s boundaries, it is possible to propagate reachability information (see section
2) through C in constant time. This follows from the monotonicity and connectedness of
the free space in C and is useful for solving the geodesic decision problem.

4. Red-Blue Intersections

This section shows how to efficiently count and report a certain type of red-blue inter-
sections in the plane. This problem is interesting both from theoretical and applied stances
and will prove useful in section 5.3 for the Fréchet optimization problem.

Let R be a set of m “red” curves in the plane such that every red curve is continuous,
x-monotone, and monotone decreasing. Let B be a set of n “blue” curves in the plane where
each blue curve is continuous, x-monotone, and monotone increasing. Assume that the
curves are defined in the slab [α, β] × R, and let I(k) be the time to find the at most one
intersection of any red and blue curve.1

Theorem 4.1. The number of red-blue intersections between R and B in the slab [α, β]×R
can be counted in O(N log N) total time, where N = max(m,n). These intersections can be
reported in O(N log N + K · I(k)) total time, where K is the total number of intersections
reported. After O(N log N) preprocessing time, a random red-blue intersection in [α, β]×R
can be returned in O(log N + I(k)) time, and the red curve involved in the most red-blue
intersections can be returned in O(1) time. All operations require O(N) space.2

Proof Sketch. Figure 2 illustrates the key idea. Suppose a red curve r3(x) lies above a blue
curve b2(x) at x = α. If it is also true that r3(x) lies below b2(x) at x = β, then these
monotone curves must intersect in [α, β]× R. Two sorted lists Lα, Lβ of curve values store
how many blue curves lie below each red curve at x = α and x = β. Subtracting the values
in Lα and Lβ yields the number of actual intersections for each red curve in [α, β]×R (and

1There is at most one intersection due to the monotonicities of the red and blue curves.
2Palazzi and Snoeyink [21] also count and report red-blue intersections using a slab-based approach.

However, their work is for line segments instead of curves, and they require that all red segments are disjoint
and all blue segments are disjoint. We have no such disjointness requirement.
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Figure 2: r3(x) lies above two blue curves at x = α but only lies above one blue curve at
x = β. Subtraction reveals that r3(x) has one intersection in the slab [α, β] × R.

also reveals the red curve that is involved in the most intersections). Intersection counting
simply sums up these values. Intersection reporting builds a balanced tree from Lα and Lβ.

To find a random red-blue intersection in [α, β] × R, precompute the number κ of red-
blue intersections in [α, β]×R. Pick a random integer between 1 and κ and use the number
of intersections stored for each red curve to locate the particular red curve ri(x) that is
involved in the randomly selected intersection. By searching a persistent version of the
reporting structure [24], ri(x)’s jth red-blue intersection can be returned in O(log N + I(k))
query time after O(N log N) preprocessing time.

5. Geodesic Fréchet Algorithm

5.1. Computing One Cell’s Boundaries in O(log k) Time

A boundary of a free space cell is a horizontal (or vertical) line segment. This boundary
can be associated with a funnel Fp,cd that has a ↓↑-bitonic distance function Fp, cd (cf.
Lemma 2.1). Given ε ≥ 0, computing the free space on a cell boundary requires finding the
(at most two) values t1, t2 such that Fp, cd(t1) = Fp, cd(t2) = ε (see Figure 3).
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Figure 3: a & b) A funnel Fp, cd is associated with a cell boundary and has a bitonic dis-
tance function Fp, cd. c) The (at most two) values t1, t2 such that Fp, cd(t1) =
Fp, cd(t2) = ε define the free space on a cell boundary.

Lemma 5.1. Both the minimum value of Fp, cd and the (at most two) values t1, t2 such that
Fp, cd(t1) = Fp, cd(t2) = ε can be found for any ε ≥ 0 in O(log k) time (after preprocessing).

Proof Sketch. After O(k) shortest path preprocessing [13, 16], a binary search is performed
on the O(k) arcs of Fp, cd in O(log k) time. See our full paper [10] for details.
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Corollary 5.2. The free space on all four boundaries of a free space cell can be found in
O(log k) time by computing t1 and t2 for each boundary.

5.2. Geodesic Fréchet Decision Problem

Theorem 5.3. After preprocessing a simple polygon P for shortest path queries in O(k)
time [13], the geodesic Fréchet decision problem for polygonal curves A and B inside P can
be solved for any ε ≥ 0 in O(N 2 log k) time and O(k + N) space.

Proof. Following the standard dynamic programming approach of [4], compute all cell bound-
aries in O(N 2 log k) time (cf. Corollary 5.2), and propagate reachability information through
all cells in O(N 2) time. O(k) space is needed for the preprocessing structures of [13], and
only O(N) space is needed for dynamic programming if two rows of the free space diagram
are stored at a time.

5.3. Geodesic Fréchet Optimization Problem

Let ε∗ be the minimum value of ε such that the Fréchet decision problem returns true.
That is, ε∗ equals the Fréchet distance δF (A,B). Parametric search is a technique commonly
used to find ε∗ (see [3, 4, 9, 25]).3 The typical approach to find ε∗ is to sort all the cell
boundary functions based on the unknown parameter ε∗. The comparisons performed during
the sort guarantee that the result of the decision problem is known for all “critical values”
[4] that could potentially define ε∗. Traditionally, such a sort operates on cell boundaries
of constant complexity. The geodesic case is different because each cell boundary has O(k)
complexity. As a result, a straightforward parametric search based on sorting these values
would require O(kN 2 log kN) time even when using Cole’s [9] optimization.4

We present a randomized algorithm with expected runtime O(k +N 2 log kN log N) and
worst-case runtime O(k + N 3 log kN). This algorithm is an order of magnitude faster than
parametric search in the expected case.

Each cell boundary has at most one free space interval (cf. Lemma 2.1). The upper
boundary of this interval is a function bij(ε), and the lower boundary of this interval is a
function aij(ε). See Figure 4a. The seminal work of Alt and Godau [4] defines three types

3An easier to implement alternative to parametric search is to run the decision problem once for every
bit of accuracy that is desired. This approach runs in O(BN 2 log k) time and O(k + N) space, where B is
the desired number of bits of accuracy [25].

4A variation of the general sorting problem called the “nuts and bolts” problem (see [17]) is tantalizingly
close to an acceptable O(N2 log N) sort but does not apply to our setting.
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of critical values that are useful for computing the exact geodesic Fréchet distance. There
are exactly two type (a) critical values associated with distances between the starting points
of A and B and the ending points of A and B. Type (b) critical values occur O(N 2) times
when aij(ε) = bij(ε). See Figure 4b. Type (a) and (b) critical values occur O(N 2) times
and are easily handled in O(N 2 log k log N) time. This process involves computing values in
O(N2 log k) time, sorting in O(N 2 log N) time, and running the decision problem in binary
search fashion O(log N) times. Resolving the type (a) and (b) critical values as a first step
will simplify the randomized algorithm for the type (c) critical values.

Alt and Godau [4] show that type (c) critical values occur when the position of aij(ε)
in cell Cij equals the position of bkj(ε) in cell Ckj in the free space diagram. See Figure
4a. As ε increases, by Lemma 2.1, aij(ε) is ↓-monotone on the cell boundary and bij(ε) is
↑-monotone (see Figure 4b). As illustrated in Figure 4c, aij(ε) and bkj(ε) intersect at most
once. This follows from the monotonicities of aij(ε) and bkj(ε). Hence, there are O(N 2)
intersections of aij(ε) and bkj(ε) in row j and a total of O(N 3) type (c) critical values over
all rows. There are also O(N 2) intersections of aij(ε) and bik(ε) in column i and a total of
O(N3) additional type (c) critical values over all columns.

Lemma 5.4. The intersection of aij(ε) and bkl(ε) can be found for any ε ≥ 0 in O(log k)
time after preprocessing.

Proof Sketch. Build binary search trees for aij(ε) and bkl(ε) and perform a binary search.
See our full paper [10] for details.

Theorem 4.1 requires that all aij(ε) and bkl(ε) are defined in the slab [α, β] × R that
contains ε∗. Precomputing the type (a) and type (b) critical values of [4] shrinks the slab
such that no left endpoint of any relevant aij(ε), bkl(ε) appears in [α, β]×R when processing
the type (c) critical values. In addition, aij(ε), bkl(ε) can be extended horizontally so that no
right endpoint appears in [α, β]×R. These changes do not affect the asymptotic number of
intersections and allow Theorem 4.1 to count and report type (c) critical values in [α, β]×R.

The below randomized algorithm solves the geodesic Fréchet optimization problem in
O(k + N2 log kN log N) expected time. This is faster than the standard parametric search
approach which requires O(kN 2 log kN) time.

Randomized Optimization Algorithm
(1) Precompute and sort all type (a) and type (b) critical values in O(N 2 log kN) time

(cf. Lemma 5.1). Run the decision problem O(log N) times to resolve these values
and shrink the potential slab for ε∗ down to [α, β] ×R in O(N 2 log k log N) time.

(2) Count the number κj of type (c) critical values for each row j in the slab [α, β]×R
using Theorem 4.1. Let Cj be the resulting counting data structure for row j.

(3) To achieve a fast expected runtime, pick a random intersection ϑj for each row using
Cj.5 See Theorem 4.1.

(4) To achieve a fast worst-case runtime, use Cj to find the aMj(ε) curve in each row that
has the most intersections (see Theorem 4.1). Add all intersections in [α, β]×R that
involve aMj(ε) to a global pool P of unresolved critical values6 and delete aMj(ε)
from any future consideration.

5Picking a critical value at random is related to the distance selection problem [6] and is mentioned in [2],
but to our knowledge, this alternative to parametric search has never been applied to the Fréchet distance.

6The idea of a global pool is similar to Cole’s optimization for parametric search [9].
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(5) Find the median Ξ of the values in P in O(N 2) time using the standard median
algorithm mentioned in [17]. Also find the median Ψ of the O(N) randomly selected
ϑj in O(N) time using a weighted median algorithm based on the number of critical
values κj for each row j.

(6) Run the decision problem twice: once on Ξ and once on Ψ. This shrinks the search
slab [α, β] × R and at least halves the size of P. Repeat steps 2 through 6 until all
row -based type (c) critical values have been resolved.

(7) Resolve all column-based type (c) critical values in the same spirit as steps 2 through
6 and return the smallest critical value that satisfied the decision problem as the value
of the geodesic Fréchet distance.

Theorem 5.5. The exact geodesic Fréchet distance between two polygonal curves A and B
inside a simple bounding polygon P can be computed in O(k + N 2 log kN log N) expected
time and O(k + N 3 log kN) worst-case time, where N is the larger of the complexities of A
and B and k is the complexity of P . O(k + N 2) space is required.

Proof. Preprocess P once for shortest path queries in O(k) time [13]. In the expected case,
each execution of the decision problem will eliminate a constant fraction of the remaining
type (c) critical values due to the proof of Quicksort’s expected runtime and the median of
medians approach for Ψ. Consequently, the expected number of iterations of the algorithm
is O(log N 3) = O(log N).

In the worst-case, each of the O(N) aij(ε) in a row will be picked as aMj(ε). Therefore,
each row can require at most O(N) iterations. Since all rows are processed each iteration,
the entire algorithm requires at most O(N) iterations for row -based critical values. By a
similar argument, column-based critical values also require at most O(N) iterations.

The size of the pool P is expressed by the inequality S(x) ≤ S(x−1)+O(N2)
2 , where x

is the current step number, and S(0) = 0. Intuitively, each step adds O(N 2) values to P
and then at least half of the values in P are always resolved using the median Ξ. It is not
difficult to show that S(x) ∈ O(N 2) for any step number x.

Each iteration of the algorithm requires intersection counting and intersection calcula-
tions for O(N) rows (or columns) at a cost of O(N 2 log kN) time. In addition, the global
pool P has its median calculated in O(N 2) time, and the decision problem is executed in
O(N2 log k) time. Consequently, the expected runtime is O(k + N 2 log kN log N) and the
worst-case runtime is O(k+N 3 log kN) including O(k) preprocessing time [13] for geodesics.
The preprocessing structures use O(k) space that must remain allocated throughout the al-
gorithm, and the pool P uses O(N 2) additional space.

Although the exact non-geodesic Fréchet distance is normally found in O(N 2 log N) time
using parametric search (see [4]), parametric search is often regarded as impractical because
it is difficult to implement7 and involves enormous constant factors [9]. To the best of our
knowledge, the randomized algorithm in section 5.3 provides the first practical alternative
to parametric search for solving the exact non-geodesic Fréchet optimization problem in R l.

Theorem 5.6. The exact non-geodesic Fréchet distance between two polygonal curves A
and B in Rl can be computed in O(N 2 log2 N) expected time, where N is the larger of the
complexities of A and B. O(N 2) space is required.

7Quicksort-based parametric search has been implemented by van Oostrum and Veltkamp [25] using a
complex framework.
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Figure 5: a) A funnel for a δC -cell can be found by extending a cell’s initial leash along one
segment to create a path sketch and then b) snapping this sketch into a homotopic
shortest path. c) A funnel Fo, cd has O(kN) complexity, but the distance function
Fo, cd has only O(k) complexity because d(o, p) is a constant.

Proof. The argument is very similar to the proof of Theorem 5.5. The main difference is
that non-geodesic distances can be computed in O(1) time (instead of O(log k) time).

6. Geodesic Fréchet Distance in a Polygonal Domain with Obstacles

Consider the real-life situation of a person walking a dog in a park. If the person and
dog walk on opposite sides of a group of trees, then the leash must go around the trees. More
formally, suppose the two polygonal curves A and B lie in a planar polygonal domain D [19]
of complexity k. The leash is required to change continuously, i.e., it must stay inside D and
may not pass through or jump over an obstacle. It may, however, cross itself. Let δC be the
geodesic Fréchet distance for this scenario when the leash length is measured geodesically.8

Due to the continuity of the leash’s motion, the free space inside a geodesic cell is
represented by an hourglass – just as it was for the geodesic Fréchet distance inside a simple
polygon. Hence, free space in a cell is x-monotone, y-monotone, and connected (cf. Lemma
3.1), and reachability information can be propagated through a cell in constant time.

The main task in computing δC is to construct all cell boundaries. Once the cell bound-
aries are known, the decision and optimization problems can be solved by the algorithms
for the geodesic Fréchet distance inside a simple polygon (cf. Theorems 5.3 and 5.5). We
use Hershberger and Snoeyink’s homotopic shortest paths algorithm [16] to incrementally
construct all cell boundary funnels needed to compute δC . To use the homotopic algorithm,
the polygonal domain D should be triangulated in O(k log k) time [19], and all obstacles
should be replaced by their vertices. A shortest path map [19] can find an initial geodesic
leash LI between the start points of the polygonal curves A and B in O(k log k) time.

Lemma 6.1. Given the initial leash for the bottom-left corner of a δC -cell C, all four funnel
boundaries of C and the initial leashes for cells adjacent to C can be computed in O(k) time.

Proof. The funnels representing cell boundaries are constructed incrementally. The idea is
to extend the initial leash into a homotopic “sketch” that describes how the shortest path
should wind through the obstacles and then to “snap” this sketch into a shortest path (see
Figures 5a and 5b).

8We recently learned that this topic has been independently explored in [8].
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Homotopic shortest paths have increased complexity over normal shortest paths because
they can loop around obstacles. For example, if the person walks in a triangular path
around all the obstacles, then the leash follows a homotopic shortest path that can have
O(k) complexity in a single cycle around the obstacles. By repeatedly winding around the
obstacles O(N) times, a path achieves O(kN) complexity.

To avoid spending O(kN) time per cell, we extend a previous homotopic shortest path
into a sketch by appending a single line segment to the previous path (see Figure 5a). Adding
this single segment can unwind at most one loop over a subset of obstacles, so only the most
recent O(k) vertices of the sketch will need to be updated when the sketch is snapped into
the true homotopic shortest path. A turning angle is used to identify these O(k) vertices by
backtracking on the sketch until the angle is at least 2π different from the final angle.

Putting all this together, a boundary for a free space cell can be computed in O(k)
time by starting with an initial leash LI of O(kN) complexity, constructing a homotopic
sketch by appending a single segment to LI , backtracking with a turning angle to find O(k)
vertices that are eligible to be changed, and finally “snapping” these O(k) vertices to the
true homotopic shortest path using Hershberger and Snoeyink’s algorithm [16]. The result
is a funnel that describes one cell boundary.

By extending LI in four combinatorially distinct ways, all four cell boundaries can be
defined. Specifically, we can extend LI along the current ab ∈ A segment to form the first
funnel or along the cd ∈ B segment to form the second funnel. The third funnel is created
by extending LI along ab ∈ A and then cd ∈ B. The fourth funnel is created by extending
LI along cd ∈ B and then ab ∈ A. These cell boundaries conveniently define the initial leash
for cells that are adjacent to C.

Theorem 6.2. The δC decision problem can be solved in O(kN 2) time and O(k+N) space.

Proof. Each cell boundary is a funnel Fo, cd with O(kN) complexity [11]. However, this high
complexity is a result of looping over obstacles, and most of these points do not affect the
funnel’s distance function Fo, cd. As illustrated in Figure 5c, Fo, cd has only O(k) complexity
because only vertices π(p, c) ∪ π(p, d) contribute arcs to Fo, cd.

Construct all cell boundary funnels in O(kN 2) time (cf. Lemma 6.1), intersect each
funnel’s distance function with y = ε in O(N 2 log k) time, and propagate reachability in-
formation in O(N 2) time. Only O(k + N) space is needed for dynamic programming when
storing only two rows at a time.

Theorem 6.3. The δC optimization problem can be solved in O(kN 2 + N2 log kN log N)
expected time and O(kN 2) space.9

Proof. The δC optimization problem can be solved using red-blue intersections. O(log N)
steps are performed in the expected case by Theorem 5.5. Each step has to perform in-
tersection counting in O(N 2 log kN) time and solve the decision problem. If the funnels
are precomputed in O(kN 2) time and space, then the decision problem can be solved in
O(N2 log k) time. Hence, after O(kN 2) time and space preprocessing, δC can be found in
O(log N) expected steps where each step takes O(N 2 log kN) time.

9If space is at a premium, the algorithm can also run with O(k + N 2) space and O(kN2 log N +
N2 log kN log N) expected time by recomputing the funnels each time the decision problem is computed.
Note that O(N2) storage is required for the red-blue intersections algorithm (cf. Theorem 5.5).
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7. Geodesic Hausdorff Distance

Hausdorff distance is a similarity metric commonly used to compare sets of points or
sets of line segments. The directed geodesic Hausdorff distance can be formally defined
as δ̃H(A,B) = supa∈A infb∈B d(a, b), where A and B are sets and d(a, b) is the geodesic
distance between a and b (see [4, 5]). The undirected geodesic Hausdorff distance is the
larger of the two directed distances: δH(A,B) = max(δ̃H(A,B), δ̃H(B,A)).

Theorem 7.1. δH(A,B) for point sets A,B inside a simple polygon P can be computed in
O((k + N) log(k + N)) time and O(k + N) space, where N is the larger of the complexities
of A and B and k is the complexity of P . If A and B are sets of line segments, δH(A,B)
can be computed in O(kN 2α(kN) log kN) time and O(kNα(kN) log kN) space.

Proof Sketch. A geodesic Voronoi diagram [22] finds nearest neighbors when A and B are
point sets. When A and B are sets of line segments, all nearest neighbors for a line segment
can be found by computing a lower envelope [1] of O(N) hourglass distance functions. The
largest nearest neighbor distance over all line segments is δH(A,B).

8. Conclusion

To compute the geodesic Fréchet distance between two polygonal curves inside a simple
polygon, we have proven that the free space inside a geodesic cell is x-monotone, y-monotone,
and connected. By extending the shortest path algorithms of [13, 16], the boundaries of a
single free space cell can be computed in logarithmic time, and this leads to an efficient
algorithm for the geodesic Fréchet decision problem.

A randomized algorithm based on red-blue intersections solves the geodesic Fréchet
optimization problem in lieu of the standard parametric search approach. The randomized
algorithm is also a practical alternative to parametric search for the non-geodesic Fréchet
distance in arbitrary dimensions.

We can compute the geodesic Fréchet distance between two polygonal curves A and B
inside a simple bounding polygon P in O(k+N 2 log kN log N) expected time, where N is the
larger of the complexities of A and B and k is the complexity of P . In the expected case, the
randomized optimization algorithm is an order of magnitude faster than a straightforward
parametric search that uses Cole’s [9] optimization to sort O(kN 2) values.

The geodesic Fréchet distance in a polygonal domain with obstacles enforces a homotopy
on the leash. It can be computed in the same manner as the geodesic Fréchet distance inside
a simple polygon after computing cell boundary funnels using Hershberger and Snoeyink’s
homotopic shortest paths algorithm [16]. Future work could attempt to compute these
funnels in O(log k) time instead of O(k) time. The geodesic Hausdorff distance for point
sets inside a simple polygon can be computed using geodesic Voronoi diagrams. The geodesic
Hausdorff distance for line segments can be computed using lower envelopes; future work
could speed up this algorithm by developing a geodesic Voronoi diagram for line segments.
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Abstract. The Range Next Value problem (Problem RNV) is a recent interesting variant
of the range search problems, where the query is for the immediate next (or equal) value
of a given number within a given interval of an array. Problem RNV was introduced and
studied very recently by Crochemore et. al [Finding Patterns In Given Intervals, MFCS
2007]. In this paper, we present improved algorithms for Problem RNV. We also show
how this problem can be used to achieve optimal query time for a number of interesting
variants of the classic pattern matching problems.

1. Introduction

We study the Range Next Value (RNV) problem, which is defined as follows:

Problem 1.1. Range Next Value (Problem RNV). We are given an array A[1..n],
which is a permutation of [1..n]. We need to preprocess A to answer queries of the following
form:
Query: Given an integer K ∈ [1..n], and an interval [`..r], 1 ≤ ` ≤ r ≤ n, the goal is
to return the value A[k] of the immediate higher or equal number (‘next value’) than K
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from A[`..r] if there exists one. More formally, we need to return such A[k], that A[k] =
min{A[q] | A[q] ≥ K and ` ≤ q ≤ r}. If there is no such k, then we return −1.

We use RNVA([`..r],K) to denote the range next value query on array A[`..r] for the
value K. Problem RNV was introduced, very recently, in [4], to solve an interesting variant
of the classic pattern matching problem, namely Pattern Matching in a Query Interval
(Problem PMQI) [8]. In problem PMQI, we are given a text, which we can preprocess for
subsequent queries and each query has a query interval in addition to a pattern to search
for. The goal is to find only those occurrences of the pattern in the text that start in the
given query interval. This problem is interesting, because, in many text search situations,
one may want to search only in a part of the text, e.g. restricting the search to only parts
of a long DNA sequence. To achieve an optimal query time, in [4], Problem PMQI was
reduced to Problem RNV and the latter was solved with a constant query time against a
data structure requiring O(n2) preprocessing time and space. It was left as an open problem
to devise a better data structure without losing the constant time query capability. The
goal of this paper is to present such a data structure. Notably, Problem RNV turns out to
be useful in a number of other problems as well. As we will show in Section 5, Problem
RNV can be used to get optimal query times for a number interesting problems studied
in [7] and related to string statistics problem [3, 1].

It is worth-mentioning here that, despite extensive results on various range searching
problems, we are not aware of any result from the literature that directly addresses Problem
RNV. It seems to be possible to get a query time of O(log log n) by using an efficient data
structure for the much studied “3-sided Query” problem along with a ‘persistent’ data
structure to ‘select’ the appropriate answer from the answer set of a “3-sided Query” [9].
However, our goal is to facilitate constant time query capability with a data structure
requiring o(n2) time and space. In the rest of this paper, we follow the following convention
adopted from [2]: if an algorithm has preprocessing time f(n) and query time g(n), we will
say that the algorithm has complexity 〈f(n), g(n)〉.

The rest of the paper is organized as follows. In Section 2, we review the 〈O(n2), O(1)〉
algorithm presented in [4]. In Sections 3 and 4, we present two different algorithms to
solve Problem RNV with complexity 〈O(n1.5), O(1)〉 and 〈O(n1+ε), O(1)〉 respectively. In
Section 5, we discuss their possible applications.

2. The 〈O(n2), O(1)〉 Algorithm

In this section, we briefly review the algorithm for Problem RNV (referred to as Algo-
rithm CIR henceforth) presented in [4]. First, we formally define the much studied Range
Minimum Query Problem, which is used by the CIR algorithm.

Problem 2.1. Range Minimum Query (Problem RMQ). We are given an array
A[1..n] of numbers. We need to preprocess A to answer the following form of queries:
Query: Given an interval [`..r], 1 ≤ ` ≤ r ≤ n, the goal is to find the minimum (maximum,
in the case of Range Maximum Query) value A[k] for ` ≤ k ≤ r.

We use RMQA([`..r]) to denote the range minimum query on array A for the inter-
val [`..r]. Problem RMQ has received much attention in the literature and Bender and
Farach-Colton presented an algorithm with complexity 〈O(n), O(1)〉, using O(n log n)-bits
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of space [2]1. Recently, Sadakane [10] presented a succinct data structure, which achieves
the same time complexity using O(n) bits of space. Very recently, Fischer and Heun [5]
presented an algorithm with the same time complexity requiring optimal 2n + o(n) bits of
additional space.

2.1. Algorithm CIR

Algorithm CIR maintains n arrays Bi, 1 ≤ i ≤ n. Each array Bi has n elements. So, B
could be viewed as a two dimensional array. Algorithm CIR fills each array Bi depending
on A as follows. For each 1 ≤ i ≤ n it stores in Bi the difference between i and the
corresponding element of A, and then replace all negative entries of Bi with ∞. More
formally, for each 1 ≤ i ≤ n and for each 1 ≤ j ≤ n, algorithm CIR sets Bi[j] = A[j] − i, if
A[j] ≥ i; otherwise it sets Bi[j] = ∞. Then, each Bi, 1 ≤ i ≤ n, is preprocessed for the RMQ
problem. This completes the construction of the data structure. It is clear that, Algorithm
CIR requires O(n2) preprocessing time. The query processing is as follows. Consider the
query RNVA([`..r],K). Then, we simply need to apply range minimum query in BK for
the interval [`..r], i.e., we need to execute the query: RMQBK([`..r]). This gives us the
following theorem.

Theorem 2.2. [4]. For Problem RNV, we can construct a data structure in O(n2) time
and space to answer the relevant queries in O(1) time per query.

3. An Improved Algorithm with Complexity 〈O(n1.5), O(1)〉
In this section, we present an algorithm that improves on Algorithm CIR. In what fol-

lows, we use the following notations. Given an array A[1..n], we denote by Â, the underlying
set comprising of all the (distinct) elements of A. In other words, Â = {A[i] | 1 ≤ i ≤ n}. We
define min(A) = A[i], such that A[i] ≤ A[j] for all j in [1..n]. Given a sub-array A[`..r], 1 ≤
` ≤ r ≤ n, of the array A, we further define left(A[`..r]) = ` and right(A[`..r]) = r. We
say that, a range [`..r] is nonexistent, if ` > r; otherwise, [`..r] is said to be existent. Fur-
thermore, given a range [`..r], 1 ≤ ` ≤ r ≤ n, and a sub-array A[i..j], 1 ≤ i ≤ j ≤ n of an
array A[1..n], we say that the range [`..r] is confined in the sub-array A[i..j], if, and only if,
we have i ≤ ` ≤ r ≤ j. Now, recall that, our goal is to construct a data structure requiring
o(n2) time and space without losing the constant time query capability. Below we present
the idea we employ.

In this section, we will assume that, we are looking for the immediate higher value
(instead of ‘equal or higher’) than the given value K in Problem RNV. It is easy to realize
that, it doesn’t really create any problem for the actual case.

In the first phase, we divide the array A[1..n] into dn/℘e = q sub-arrays Dj , 1 ≤ j ≤ q.
Now, we add the number 0 to the beginning of each Dj , 1 ≤ j ≤ q. It is easy to realize that,
each Dj has exactly ℘+1 elements except possibly the last one, which may have less. Now,
we apply a slight variation of Algorithm CIR on each Dj , 1 ≤ j ≤ q as follows. For each
Dj , we maintain |Dj | arrays, B`

j [1..|Dj |], ` ∈ Dj . Notably, the naming convention followed

1The same result was achieved in [6], albeit with a more complex data structure.
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for the B`
j arrays are for better exposition. For example, if Dj = 〈0, 1, 9, 2, 6〉, then we have

B0
j , B1

j , B9
j , B2

j and B6
j . Now, we fill each such B`

j [1..|Dj |] as follows:

B`
j [i] =

{
Dj [i] If Dj [i] > `

∞ Otherwise
(3.1)

In the second phase, we construct q arrays Ei[0..n], 1 ≤ i ≤ q. Ei is filled up as follows:

Ei[j] =

{
j If j ∈ Di

Ei[j − 1] Otherwisea (3.2)

aRecall that 0 ∈ Di for all 1 ≤ i ≤ q.

In the third phase, we construct n arrays Fk[1..q], 1 ≤ k ≤ n, where we fill:

Fk[i] = min{Di[j] : Di[j] > k and 1 ≤ j ≤ |Di|} = RNVDi([1..|Di|], k)

Please note, that all the Fk arrays can be computed in O(nq) time. Finally, we prepro-
cess each Fk (1 ≤ k ≤ n) and all B`

j arrays for the RMQ problem. This completes the
construction of our data structure. In what follows, we use RNV DS1 to refer to this data
structure.

Algorithm 1 Function RNV Query(A[`..r],K))
1: let `′ = (i1 − 1) · ℘ < ` ≤ i1 · ℘
2: let r′ = (i2 − 1) · ℘ < r ≤ i2 · ℘
3: if i1 = i2 then
4: {` and r are in the same block}
5: Set j = i1, u = Ei1 [K]
6: return RMQBu

j
([(` − `′)..(r − r′)])

7: else
8: Set val1 = val2 = val3 = ∞.
9: Set u1 = Ei1 [K], u2 = Ei2 [K].
10: Set val1 = RMQB

u1
i1

([(` − `′)..|Du|]){Executing RNVDi1
([(` − `′)..|Di1 |],K}

11: Set val3 = RMQ
B

u2
i2

([1..(r − r′)]){Executing RNVDi2
([1..(r − r′)],K}

12: if i2 − i1 > 1 then
13: Set val2 = RMQFK([(i1 + 1)..(i2 − 1)])
14: end if
15: return min{val1 , val2 , val3}
16: end if

3.1. Query Processing

In this section, we discuss the query processing. Suppose, we are considering the follow-
ing query: RNVA([`..r],K). We compute, `′, r′, i1 and i2, such that, `′ = (i1−1)·℘ < ` ≤ i1·℘
and r′ = (i2 − 1) · ℘ < r ≤ i2 · ℘. Then, we can divide the range [`..r] into 3 consecutive
ranges, namely [`..i1 × ℘], [i1 × ℘ + 1..(i2 − 1)× ℘] and [(i2 − 1)× ℘ + 1..r] (See Figure 1).
Now, we proceed with the query processing as follows. We have the following cases.

Case 1: i1 = i2: In this case, the range [`..r] is in the same sub-array Di1 . So, we only
perform the following RMQ query, the answer of which is returned as the desired
result: RNVDi1

([(`− `′)..(r − r′)],K) = RMQ
B

Ei1
[K]

i1

([(`− `′)..(r − r′)]).
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A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16{ { { {

D1 D2 D3 D4

l r

{ { {

val1 val2 val3

Figure 1: The situation of an RNV query

Case 2: i2 > i1: In this case, we first initialize val1, val2 and val3 to ∞ and then we
proceed with the query processing as follows. We first perform the following RMQ
queries:

val1 = RNVDi1
([(`− `′)..|Di1 |],K) = RMQ

B
Ei1

[K]

i1

([(`− `′)..|Di1 |]) (3.3)

val3 = RNVDi2
([1..(r − r′)],K) = RMQ

B
Ei2

[K]

i1

([1..(r − r′)]) (3.4)

Then, if we have i2 − i1 > 1, then we perform the following RMQ query:

val2 = RMQFK([(i1 + 1)..(i2 − 1)]) (3.5)

Finally, we return the minimum of val1, val3 and val2 as the final result.

3.2. Correctness and Running Time

In this section, we discuss the correctness of the above algorithm and its running time.

Lemma 3.1. With the data structure RNV DS1, we can correctly answer any queries of
the form RNVDi([`..r],K), 1 ≤ ` ≤ r ≤ |Di|, 1 ≤ K ≤ n, 1 ≤ i ≤ q.

Proof. Recall that, RNVDi([`..r],K) is executed by calculating RNVDi([`..r], Ei[K]), which
in turn, is executed by performing the query RMQ

B
Ei[K]
i

([`..r]). From the correctness of

Algorithm CIR, it is clear that, RNVDi([`..r], Ei[K]) ≡ RMQ
B

Ei[K]
i

([`..r]). So it remains

to show that RNVDi([`..r],K) ≡ RNVDi([`..r], Ei[K]). This is shown as follows. Recall
that, by definition, if K ∈ Di then Ei[K] = K. So, if K ∈ Di, we are done. Therefore,
assume otherwise. Now, in this case, Ei[K] is the nearest smaller value of K in Di. For
the values v < min(D̂i \ 0), this is ensured by the addition of 0 in each Di. Therefore,
it is easy to realize that, RNVDi([`..r], Ei[K]) would return the same value as returned by
RNVDi([`..r],K) and hence, the lemma follows.

Theorem 3.2 (Correctness). With the data structure RNV DS1, we can correctly answer
any query of the form RNVA([`..r],K), 1 ≤ ` ≤ r ≤ n, 1 ≤ K ≤ n.

Proof. Recall that, the range [`..r] is transformed into (up to) 3 consecutive ranges, namely
r1 ≡ [`..i1 × ℘], r2 ≡ [i1 × ℘ + 1..(i2 − 1) × ℘] and r3 ≡ [(i2 − 1) × ℘ + 1..r]. Now,
the range r1 (resp. r3) is confined within the sub-array Di1 (resp. Di2). On the other
hand, if r2 is existent, then it can span over one or more sub-arrays, Di1+1, . . . , Di2−1

and, in that case, it completely contains those sub-arrays, i.e. i1 ×℘ + 1 = left(Di1+1) and
(i2−1)×℘ = right(Di2−1). It is clear that, the minimum of the results of the corresponding
RNV queries in the three ranges, namely, r1, r2 and r3, is the final result. Now, recall that,
we have the following two cases.
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case 1: i1 = i2: It is easy to verify that, this case arises when the range [`..r] is con-
fined in the sub-array Di1 . Therefore, it is easy to verify that, we have RNVA([`..r],K) ≡
RNVDi1

([(`− `′)..(r − r′)],K), and by Lemma 3.1, we get the correct result.
case 2: i2 > i1: It is easy to see that, if we have i2 − i1 > 1, then all 3 intervals are

existent; otherwise, r2 is non-existent. Now, recall that, we initialize val1, val3 and
val2 to ∞. Since, both the ranges r1 and r3 are confined in the sub-arrays Di1 and
Di2 respectively, by Lemma 3.1, the two corresponding queries, namely, Queries 3.3
and 3.4 are correctly executed and the results are stored in val1 and val3.

Now, assume that the range r3 is existent and that, vi = RNVDi([1..|Di|],K), i ∈
[i1 + 1..i2 − 1]. Then, it is easy to verify that:

RNVA([`..r],K) = min(val1, val3, min
i∈[i1+1..i2−1]

(vi)).

Now, we return min(val1, val3, val2) as the answer. Hence, it suffices to show that
val2 = mini∈[i1+1..i2−1](vi). Recall that, val2 is evaluated according to Equation 3.5.
By definition, each entry of FK correctly (Lemma 3.1) stores the result of the RNV
query for the value K and for the whole range for the corresponding sub-array.
Therefore, the range minimum query does provide us with the desired value.

Finally, if r2 is nonexistent, then val2 remains assigned to ∞. Therefore, the
result returned, i.e., the minimum of val1, val3 and val2, is correct.

Theorem 3.3. The data structure RNV DS1 can be constructed in O(n℘ + n2/℘) time.

Proof. We deduce the construction time of RNV DS1 phase by phase as follows.
Phase 1: Each sub-array Dj, 1 ≤ j ≤ q = dn/℘e has at most ℘+1 elements. It is easy

to see that, the application of the (slight variation of) Algorithm CIR requires O(℘2)
time per sub array. Therefore, in total, time required by Phase 1 is O(℘2) × q =
O(℘2)× dn/℘e = O(n℘) in the worst case.

Phase 2: Initializing and filling up the arrays Ei[0..n], 1 ≤ i ≤ q requires O(n)× q =
O(n2/℘) time.

Phase 3: In this phase, we construct the arrays Fk[1..q], for 1 ≤ k ≤ n. This can
easily be done in O(nq) = O(n2/℘) time. We also preprocess arrays Fk and Bl

j for
the RMQ queries, what requires also O(nq) = O(n2/℘) time.

Therefore, in total, the time required for the construction of RNV DS1 is O(n℘)+O(n2/℘)+
O(n2/℘) = O(n℘ + n2/℘).

Corollary 3.4. The data structure RNV DS1 can be constructed in O(n1.5) time.

Proof. This can be achieved if we assume that ℘ =
√

n.

Theorem 3.5. Given the data structure RNV DS1, we can answer the RNV queries in
O(1) time per query.

Proof. It is clear that, given RNV DS1, an RNV query is answered by executing up to 2
RNV queries on the sub-arrays and possibly 1 RMQ queries on the appropriate F array.
Each of these queries requires O(1) time. Therefore, the theorem follows.
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4. An Improved Algorithm with Complexity 〈O(n1+ε), O(1)〉
In this section, we present a different algorithm for problem RNV by taking a slightly

different approach. We start with a slightly different 〈O(n2), O(1)〉 algorithm and present
a new algorithm built on top it. This algorithm follows a similar strategy as algorithm CIR
and is referred to as the base algorithm henceforth.

4.1. The Base Algorithm:

We define arrays Bj, 1 ≤ j ≤ n as follows:

Bj [i] =

{
A[i] if A[i] ≥ j

∞ if A[i] < j

Now, the preprocessing is done as follows.
1: for j = 1, . . . , n do
2: Preprocess sequence Bj for Problem RMQ
3: end for

After the above data structure is constructed, we can perform the queries as follows.
Similar to what was done in algorithm CIR, given the query RNVA([`..r],K), we just return
RMQBK([l..r]). It is easy to see that the base algorithm is correct and its running time is
〈O(n2), O(1)〉. In the rest of this section, we present an improved algorithm based on the
base algorithm.

4.2. Improved algorithm

In this section we describe a method for improving preprocessing time of any RNV
algorithm, the cost paid for the improvement is slight (namely O(1)) increase of the RNV
query time. Suppose, we are given the array A of length n, the parameter ℘, and an
algorithm RNVALG for Problem RNV with complexity 〈f(n), g(n)〉. We will show how to
improve the preprocessing time of RNVALG.

In the first phase we divide possible values of parameter K, into dn/℘e = q interval sets
Kj , where Kj = {i : (j − 1) · ℘ < i ≤ j · ℘}. For each j (1 ≤ j ≤ q) we compute following
arrays:

• array B′
j (|B′

j | = n) — containing information about elements of array A strictly
larger than (j − 1) · ℘

B′
j[i] =

{
A[i] if A[i] > (j − 1) · ℘
∞ otherwise

• set Cj = {i : A[i] ∈ Kj} — containing indices of the elements of array A with values
from the range Kj ; by Cj we will denote the array consisting of elements of Cj sorted
in the ascending order, |Cj | ≤ ℘,

• array Dj (|Dj | ≤ ℘) — contains the elements of array A from the range Kj , in the
order as they appear in A; each element is decreased by (j − 1) · ℘, to ensure that
the array Dj is a permutation of {1..|Dj |}:

Dj [i] = A[Cj [i]] − (j − 1) · ℘, for 1 ≤ i ≤ |Cj|
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• array Ej (|Ej | = n+1) — containing indices used for translating queries from array
Aj to array Dj ; Ej [i] denotes the number of elements from A[1..i] from the range
Kj:

Ej [i] =


Ej [i− 1] + 1 if A[i] ∈ Kj and i > 0
Ej [i− 1] if A[i] 6∈ Kj and i > 0
0 if i = 0

A 4 1 2 7 10 3 5 15 8 13 14 11 6 9 12

D2 3 1 4 2

E2 0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4
{ { { {

Figure 2: Example of computing arrays Dj and Ej , for n = 15, ℘ = 4, j = 2, Kj = [5..8]

Then the algorithm preprocesses each array B ′
j for range minimum queries, and each array

Dj for range next value queries (using RNVALG).

Algorithm 2 Construction of RNV DS2(℘,RNVALG)
1: for j = 1, . . . , dn/℘e do
2: compute arrays B′j , Cj , Dj , Ej ,

3: preprocess sequence B′j for RMQ (Range Minimum Queries)

4: preprocess sequence Dj for RNV (Range Next Value Queries) using RNVALG
5: end for

The B′
j arrays will be used for answering the range next value queries if the answer is

outside of the range Kj. The Dj will be used if the answer is within the range Kj . Since
we do not know in the advance which case is valid, the algorithm tries both cases, and then
chooses the smaller result.

Algorithm 3 Query Processing of RNV DS2(℘,RNVALG)
1: Set a1 = a2 = ∞
2: Set j, such that: x = (j − 1) · ℘ < K ≤ j · ℘
3: if j < q then
4: a1 = RMQB′

j+1
([`..r])

5: end if
6: Set `′ = Ej [`− 1] + 1; r′ = Ej [r]
7: if `′ ≤ r′ then
8: a2 = RNVDj

([`′..r′]],K− x) + x {using algorithm RNVALG}
9: end if
10: return min(a1, a2)

Theorem 4.1. If we are given the 〈f(n), g(n)〉 RNV algorithm, then using the RNV DS2,
we can construct 〈O((n2 + nf(℘))/℘), g(℘) + O(1)〉 algorithm for RNV.

Proof. The preprocessing of the RNV DS2 requires:
• computing n/℘ arrays B ′

j (each of length n), this step requires O(n2/℘) time,
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A 4 1 2 7 10 3 5 15 8 13 14 11 6 9 12

{RNV (5, 12, 6) = min(a1, a2) = 8

B′
3 ∞ ∞ ∞ ∞ 10 ∞ ∞ 15 ∞ 13 14 11 ∞ ∞ 12

{a1 = RMQ(5, 12) = 10

E2 0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4

{ {

l′ = E2[5] + 1 = 2 r′ = E2[12] = 3

D2 3 1 4 2{

a2 = RNV (2, 3, 2) + 4 = 8

Figure 3: RNV DS2 processing query RNV (5, 12, 6) (assuming ℘ = 4)

• preprocessing n/℘ arrays B ′
j for the Range Minimum Queries, this step also requires

O(n2/℘) time,
• computing n/℘ arrays Dj (each of length ℘), clearly this step requires O(n) time,
• preprocessing n/℘ arrays Dj for the Range Next Value Queries using 〈f(n), g(n)〉

algorithm, this step requires O(f(℘) · n/℘) time,
• computing n/℘ arrays Ej (each of length n + 1), this step requires O(n2/℘) time.

The total preprocessing time is O((n2 + nf(℘))/℘).
Answering the Range Next Value queries requires:

• one range minimum query on the B ′
j array, what can be done in O(1) time,

• one recursive call of the range next value query for Dj array using 〈f(n), g(n)〉 RNV
algorithm, requiring g(℘) time,

• constant number of additional operations (i.e. accessing arrays Ej)
Clearly the total query time is g(℘) + O(1).

Corollary 4.2. RNV DS2 can be constructed in O(n1.5) running time and space.

Proof. This can be achieved if we use the RNV DS2 construction method, with ℘ =
√

n,
and using as RNVALG, the base algorithm (with complexity 〈O(n2), O(1)〉).
We can obtain even more efficient algorithm, carefully iterating RNV DS2 construction.

Theorem 4.3. For any given positive constant ε > 0, we can construct 〈O(n1+ε, O(1)〉
algorithm form RNV using the RNV DS2.

Proof. Let RNV DS2(0) denote the base algorithm for RNV (with the complexity 〈O(n2), O(1)〉).
For any i > 0, let RNV DS2(i) denote the algorithm obtained using RNV DS2 with
RNVALG = RNV DS2(i−1) and ℘ = n

i
i+1 . From the theorem 4.1 the RNV DS2(1) has the

complexity 〈O(n1.5), O(1)〉, the RNV DS2(2) has the complexity 〈O(n1+ 1
3 ), O(1)〉. By sim-

ple induction, one can easily prove, that the RNV DS2(i) has the complexity 〈O(n1+ 1
i ), O(i)〉.

5. Applications

In this section, we discuss possible applications of Problem RNV. As has already been
mentioned in Section 1, the study of the RNV problem in [4] was motivated by Problem
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PMQI, a variant of the classic pattern matching problem. Problem PMQI is formally defined
as follows (We use OccPT to denote the occurrence set for the classic pattern matching
problem):

Problem 5.1. Pattern Matching in a Query Interval (Problem PMQI). Suppose
we are given a text T of length n. Preprocess T to answer queries of the following form.
Query: We are given a pattern P of length m and a query interval [`..r], with 1 ≤ ` ≤ r ≤ n.
Let us denote by OccPT the set of all occurrences of P in T . We are to construct the set:

OccPT [`..r] = {i | i ∈ OccPT and i ∈ [`..r]}
Using the reduction of [4] from Problem PMQI to Problem RNV, we obtain the following

theorem.

Theorem 5.2. We can construct a data structure for Problem PMQI in O(max(n1+ε, n log σ))
time and O(n1+ε) space, and we can answer the relevant queries in the optimal O(m +
|OccPT [`..r]|) time per query.

A more general problem called PMI was also handled in [4].

Problem 5.3. Generalized Pattern Matching with Intervals (Problem PMI). Sup-
pose we are given a text T of length n and a set of intervals π = {[s1..f1], [s2..f2],
. . . , [s|π|..f|π|]}, such that si, fi ∈ [1..n] and si ≤ fi, for all 1 ≤ i ≤ |π|. Preprocess T to
answer queries of the following form.
Query: Given a pattern P and a query interval [`..r], such that `, r ∈ [1..n] and ` ≤ r,
construct the set

OccPT [`..r],π = {i | i ∈ OccPT and i ∈ [`, r] ∩$ for some $ ∈ π}
To solve Problem PMI, a data structure with O(n log3 n) time, O(n log2 n) space was

constructed in [4]; the query time achieved was O(m+log log n+ |OccPT [`..r],π|). It was left as
an open problem to achieve the optimal query time for Problem PMI [4]. Interestingly, using
Problem RNV, we can get the optimal query time for Problem PMI as well. The details
are left for the journal version; but we report the new result in the following theorem.

Theorem 5.4. For problem PMI, we can construct a data structure in O(max(n1+ε, n log σ))
time and O(n1+ε) space, and we can answer the relevant queries in the optimal O(m +
|OccPT [`..r],π|) time per query.

In the rest of this section, we consider three recent variants of the classic pattern
matching problem, which we define below after defining some related concepts. Given two
occurrences i, j ∈ [1..n − m + 1], j > i of a pattern P[1..m] in a text T [1..n], we say that
j is minimal with respect to i, if, and only if, there exists no occurrence of P in T in the
range [i + 1..j − 1]. And, two occurrences i, j ∈ [1..n − m + 1] of P in T are said to be
non-overlapping, if, and only if, |j − i| ≥ m. Otherwise, they are said to be overlapping.

Problem 5.5. Suppose we are given a text T of length n. Preprocess T to answer the
following form of queries:
Query: Given a pattern P of length m, and an index i, we want to find out an occurrence
i′ ≥ i of P in T , such that i′ is minimal with respect to i.

Problem 5.6. Suppose we are given a text T of length n. Preprocess T to answer the
following form of queries:
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Query: Given a pattern P of length m, and a list of indices U = 〈i1, . . . , i`〉, our goal is to
construct the list V = 〈j1, . . . , j`〉, such that, for all k ∈ [1..`], jk is an occurrence of P in
T and jk ∈ V is, either minimal with respect to ik ∈ U or equal to Nill. The latter case
means that there doesn’t exist any occurrence to the right of ik.

Problem 5.7. Suppose we are given a text T of length n. Preprocess T to answer the
following form of queries:
Query: Given a pattern P of length m, and an interval [i..j], we want to find an ascending
sequence U = 〈i1, . . . , i`〉 of non-overlapping occurrences of P in T , such that i ≤ i1 ≤ i` ≤ j
and ` is maximal.

Problems 5.5 to 5.7 were handled very recently in [7]. The corresponding data structures
presented in [7] for the above problems requires O(n log n) storage and O(n log n log log n)
expected preprocessing time each. The query time achieved in [7], for Problem 5.6 and 5.7 is
O(m+ ` log log n) and for Problem 5.5 is O(m+log log n). Notably, none of the query times
achieved in [7] are optimal. In the rest of this section, we briefly show, how Problem RNV
can be used to achieve optimal query times for the above problems. We remark however
that, we omit many of the details for space constraint and left them for the journal version.

5.1. Problems 5.5 and 5.6

It is clear that, Problem 5.5 is a simpler version of the Problem 5.6. Interestingly, we
can use Problem RNV to solve both the problems efficiently. We first consider Problem 5.5.
Following the techniques of [4], we construct a suffix tree and do some preprocessing on it
to get OccPT implicitly in the form of an array L and an interval [a..b]. More specifically,
using the techniques of [4], after the preprocessing, we can implicitly have OccPT in L[a..b]
in O(m) time. Now, it is easy to see that to solve the query of problem 5.5, we simply need
to get the answer of the following query:

RNVL([a..b], i) (5.1)

Therefore, we have the following result.

Theorem 5.8. For Problem 5.5, we can construct a data structure in O(max(n1+ε, n log σ))
time and O(n1+ε) space, and we can answer the relevant queries in the optimal O(m) time
per query.

Proof. For the preprocessing, we first construct the suffix tree and do the preprocessing
of [4], requiring O(n log σ) time, where σ = min(n, |Σ|). Then we preprocess L for Problem
RNV. Total construction time and space complexity is, O(max(n1+ε, n log σ)) and O(n1+ε)
respectively. As for the query, we require O(m) time to get OccPT implicitly [4]. Then, we
just need to perform the Query 5.1 requiring constant time. Hence, the result follows.

We can easily extend the above result for Problem 5.6, simply by executing RNV
queries, RNVL([a..b], i) for all i ∈ U . Therefore, we get the following theorem.

Theorem 5.9. For Problem 5.6, we can construct a data structure in O(max(n1+ε, n log σ))
time and O(n1+ε) space, and we can answer the relevant queries in the optimal O(m + `)
time per query.
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5.2. Problem 5.7

To solve Problem 5.7, we follow the greedy strategy of [7] as follows. Suppose, we have
the set OccPT in the list W = 〈i1, . . . , i|OccPT |〉 in ascending order. Now, we construct another
list Y as follows. We first put i1 in Y. We use last(Y) to denote the most recently put
index in Y. Now we scan the list W from left to right and put ik ∈ W in Y, only if ik and
last(Y) are non-overlapping. It was proved in [7] that, |Y| is maximal. Therefore, we have
the following theorem.

Theorem 5.10. For Problem 5.7, we can construct a data structure in O(max(n1+ε, n log σ))
time and O(n1+ε) space, and we can answer the relevant queries in the optimal O(m + `)
time per query.

Proof. We do the same preprocessing as we did for Problems 5.5 and 5.6 and hence achieve
the same preprocessing time and space complexity. Now, we consider the query. We start
with the query RNVL([a..b], i + 1). Now suppose, the query returns q. Now, if q ≤ j, then
we put q in U and perform the query RNVL([a..b], q + m) and continue as before. We stop
when we get a query result q′ such that q′ > j. It is easy to verify that this would correctly
construct a maximal list U . Finally, since each of the queries require constant time, the
result follows.
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Abstract. We show that the space of polygonizations of a fixed planar point set S of n
points is connected by O(n2) “moves” between simple polygons. Each move is composed
of a sequence of atomic moves called “stretches” and “twangs”. These atomic moves walk
between weakly simple “polygonal wraps” of S. These moves show promise to serve as a
basis for generating random polygons.

1. Introduction

This paper studies polygonizations of a fixed planar point set S of n points. Let the
n points be labeled pi, i = 0, 1, . . . , n−1. A polygonization of S is a permutation σ of
{0, 1, . . . , n−1} that determines a polygon: P = Pσ = (pσ(0), . . . , pσ(n−1)) is a simple (non-
self-intersecting) polygon. We will abbreviate “simple polygon” to polygon throughout. We
do not make any general position assumptions about S, except to assume the points do
not lie in one line so that there is at least one polygon whose vertex set is S. A point set
S may have as few as 1 polygonization, if S is in convex position,1 and as many as 2Θ(n)

polygonizations. For the latter, see Fig. 1a and [CHUZ01] for additional details.
Our goal in this work is to develop a computationally natural and efficient method to

explore all polygonizations of a fixed set S. One motivation is the generation of “random
polygons” by first generating a random S and then selecting uniformly at random a poly-
gonization of S. Generating random polygons efficiently is a long unsolved problem; only
heuristics [AH96] or algorithms for special cases [ZSSM96], [HHH02] are known. Our work
can be viewed as following a suggestion in [ZSSM96]:

1998 ACM Subject Classification: Nonnumerical Algorithms: F.2.2; Discrete Mathematics: G.2.
Key words and phrases: polygons, polygonization, random polygons, connected configuration space.
1S is in convex position if every point in S is on the hull of S.
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“start with a ... simple polygon and apply some simplicity-preserving, re-
versible operations ... with the property that any simple polygon is reachable
by a sequence of operations”

Our two operations are called stretch and twang (defined in Sec. 2.2). Neither is simplicity
preserving, but they are nearly so in that they produce polygonal wraps defined as follows.

Definition 1.1. A polygonal wrap Pσ is determined by a sequence σ of point indices that
includes every index in {0, 1, . . . , n−1} at least once, such that there is a perturbation of
the points in multiple contact that renders Pσ a simple closed curve through the perturbed
points in σ order.

Thus polygonal wraps disallow proper crossings2 but permit self-touching. This notion is
called a “weakly simple polygon” in the literature, but we choose to use our terminology
to emphasize the underlying fixed point set and the nature of our twang operation. Fig. 1b
shows a polygonal wrap with five double-contacts (p1, p4, p5, p8 and p9).

Stretches and twangs take one polygonal wrap to another. A stretch followed by a
natural sequence of twangs, which we call a cascade, constitutes a forward move. Forward
moves (described in Sec. 2.3) take a polygon to a polygon, i.e., they are simplicity preserving.
Reverse moves will be introduced in Sec. 6. A move is either a forward or a reverse move.
We call a stretch or twang an atomic move to distinguish it from the more complex forward
and reverse moves.

Our main result is that the configuration space of polygonizations for a fixed S is
connected by forward/reverse moves, each of which is composed of a number of stretches
and twangs, and that the diameter of the space isO(n2) moves. We can bound the worst-case
number of atomic moves constituting a particular forward/reverse move by the geometry
of the point set. Experimental results on random point sets show that, in the practical
situation that is one of our motivations, the bound is small, perhaps even constant. We
have also established loose bounds on the worst-case number of atomic operations as a
function of n: an exponential upper bound and a quadratic lower bound. Tightening these
bounds has so far proven elusive and is an open problem.

One can view our work as in the tradition of connecting discrete structures (e.g., trian-
gulations, matchings) via local moves (e.g., edge flips, edge swaps). Our result is comparable
to that in [vLS82], which shows connectivity of polygonizations in O(n3) edge-edge swap
moves through intermediate self-crossing polygons, and to that in [HHH02], which estab-
lished noncrossing connectivity within special classes of polygonizations. The main novelty
of our work is that we avoid proper crossings but achieve connectivity via polygonal wraps.
We explore the possible application to random polygons briefly in Sec. 8. For the majority
of this paper, we concentrate on defining the moves and establishing connectivity.

We begin by defining pockets, which play a central role in our algorithms for polygonal
transformations. Then in Sec. 2.1 we describe two natural operations that transform one
polygon into another but fail to achieve connectivity of the configuration space of polygo-
nizations, which motivates our definitions of stretches and twangs in Sec. 2.2. Following
these preliminaries, we establish connectivity and compute the diameter in Secs. 3–7. We
conclude with open problems in Sec. 9. Omitted proofs are in [DFOR07].

2Two segments properly cross if they share a point x in the relative interior of both, and cross transversely
at x.



CONNECTING POLYGONIZATIONS 219

p
0

p
1

p
2

p
3

p
5

p
8

p
7

p
4

p
6

p
9 vk

v1

a

b

v2

v3

v4
0 0 01 1

(a) (b) (c)

Figure 1: Examples. (a) A set of n = 3k + 2 points that admits 2k polygonizations. (b)
Polygonal wrap Pσ with σ = (0, 8, 6, 8, 1, 5, 9, 2, 9, 4, 5, 1, 4, 3, 7) (c) A polygoniza-
tion with one pocket with lid ab.

1.1. Pockets and Canonical Polygonization

Let P be a polygonization of S. A hull edge ab that is not on ∂P is called a pocket lid.
The polygon external to P bounded by P and ab is a pocket of P . For a fixed hull edge
ab, we define the canonical polygonization of S to be a polygon with a single pocket with
lid ab in which the pocket vertices are ordered by angle about vertex a, and from closest to
farthest from a if along the same line through a. We call this ordering the canonical order
of the pocket vertices; see Fig. 1c. The existence of this canonical polygonization for any
point set S not in convex position was established in [CHUZ01].

2. Polygonal Transformations

Let P be a polygon defined by a circular index sequence σ. We examine operations that
permute this sequence, transforming P into a new polygon with the same set of vertices
linked in a different order. Throughout the paper we use 4abc to denote the closed triangle
with corners a, b and c.

2.1. Local Transformations

The systematic study of constant-sized transformations that alter one simple polygon to
another was initiated in [HHH02]. They defined a k-flip as an alteration of k (not necessarily
consecutive) edges, and established a number of results, including showing that 3-flips are
sufficient to connect polygonizations among several subclasses of polygons based on various
visibility properties. But no constant k-flip move is known to be sufficient for connecting all
simple polygonizations, and they conclude that “the connectivity of general simple polygons
remains a challenging open problem.” Although we do not resolve this open problem by a
“local transformation” in their sense, we do resolve it by stepping outside their paradigm
in two regards: (1) We permit polygonal wraps as intermediate structures; and (2) Our
atomic moves are local and constant-sized, but they cascade into sequences of as many as
Ω(n2) atomic moves.

The most natural local transformation is a swap transposition of two consecutive ver-
tices of P that results in a new (non-self-intersecting) polygon. A swap is a particular
2-flip. Because this is easily seen as insufficient for polygonization connectivity, 3-flips were
explored in [HHH02]. Much less obviously, even these were shown to be insufficient for
connectivity, except within various polygon subclasses. We review one of their 3-flips, the
“planar VE-flip,” which we call a Hop, because our Stretch operation is a generalization
of this.
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The hop operation generalizes the swap by allowing a vertex to hop to any position in
the permutation, as long as the resulting polygon is simple. Fig. 2 shows the stretching of
the edge ab down to vertex v, effectively “hopping” v between a and b in the permutation.
We denote this operation by Hop(e, v), where e = ab (note the first argument is from and
the second to).

To specify the conditions under which a hop operation is valid, we introduce some
definitions, which will be used subsequently as well. A polygon P has two sides, the interior
of P and the exterior of P . Let abc = (a, b, c) be three noncollinear vertices consecutive in
the polygonization P . We call vertex b a true corner vertex since the boundary of P takes
a turn at b. We distinguish between the convex side of b, that side of P with angle ∠abc
smaller than π, and the reflex side of b, the side of P with angle ∠abc larger than π. Note
that this definition ignores which side is the interior and which side is the exterior of P , and
so is unrelated to whether b is a convex or a reflex vertex in P . Every true corner vertex
has a convex and a reflex side (collinear vertices will be discussed in Sec. 2.2). To ensure
that the resulting polygon is simple, Hop(e, v) is valid iff the following two conditions hold:
(1) the triangle induced by the two edges incident to v is empty of other polygon vertices
and (2) the triangle induced by e and v lies on the reflex side of v and is empty of other
polygon vertices.

Although more powerful than a swap, there also exist polygons that do not admit any
hops, as was established in [HHH02], and so hops do not suffice to connect all polygoniza-
tions.

HOP(ab,v)

a
b

c d

a
b

c d

v

v

Figure 2: Hop(ab, v) illustrated.

The limited transformation capabilities
of these 2- and 3-flip operations motivate
our introduction of two new operations,
stretch and twang. The former operation
relaxes the two hop conditions and allows
the creation of a polygonal wrap. The lat-
ter operation restores the polygonal wrap to
a polygon. We show that together they are
capable of transforming any polygon into a canonical form (Secs. 3-5), and from there to
any other polygon (Secs. 6-7).

2.2. Stretches and Twangs

Unlike the Hop(e, v) operation, which requires v to fully see the edge e into which it
is hopping, the Stretch(e, v) operation only requires that v see a point x in the interior3

of e. The stretch is accomplished in two stages: (i) temporarily introduce two new “pseu-
dovertices” on e in a small neighborhood of x (this is what we call Stretch0 below), and
(ii) remove the pseudovertices immediately using twangs.

Stretch0. Let v see a point x in the interior of an edge e of P . By see we mean “clear
visibility”, i.e., the segment vx shares no points with ∂P other than v and x (see Fig. 3a).
Note that every vertex v of P sees such an x (in fact, infinitely many x) on some e. Let
x− and x+ be two points to either side of x on e, both in the interior of e, such that v
can clearly see both x− and x+. Two such points always exist in a neighborhood of x. We
call these points pseudovertices. Let e = ab, with x− closer to the endpoint a of e. Then

3By “interior” we mean “relative interior,” i.e., not an endpoint.
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Stretch0(e, v) alters the polygon to replace e with (a, x−, v, x+, b), effectively “stretching”
e out to reach v by inserting a narrow triangle 4x−vx+ that sits on e (see Fig. 3b).

x

x- x+

v v v

(a) (b) (c)

x

STRETCH   (e,v)0

TWANG(      v)x-a

TWANG(v      )x+ b

a b
e

a ba b

Figure 3: Stretch(e, v) illustrated (a) v sees x ∈ e (b) Stretch0(e, v) (c) Stretch(e, v).

To complete the definition of Stretch(e, v), which removes the pseudovertices x+ and
x−, we first define the twang operation.
Twang. Informally, if one views the polygon boundary as an elastic band, a twang operation
detaches the boundary from a vertex v and snaps it to v’s convex side.

Definition 2.1. The operation Twang(abc) is defined for any three consecutive vertices
abc ∈ σ such that

(1) {a, b, c} are not collinear.
(2) b is either a pseudovertex, or a vertex in double contact. If b is a vertex in double

contact, then 4abc does not contain a nested double contact at b. By this we mean
the following: Slightly perturb the vertices of P to separate each double-contact into
two or more points, so that P becomes simple. Then 4abc does not contain any
other occurrence of b in σ. (E.g., in Fig. 4a, 4a′bc′ contains a second occurrence
of b which prevents snapping a′bc′ to b’s convex side.)

Under these conditions, the operation Twang(abc) replaces the sequence abc in P by
sp(abc), where sp(abc) indicates the shortest path from a to c that stays inside 4abc and
does not cross ∂P. We call b the twang vertex. Whenever a and c are irrelevant to the
discussion, we denote the twang operation by Twang(b).

a

b

c a c

a'

c'

b

a'
c'

(a)

a

b

c

b1

b2
b3

a

b

c

(b)

b1

b2
b3

TWANG(abc)TWANG(abc)

Figure 4: Twang(abc) illustrated (a) Twang(abc) replaces abc by sp(abc) (b) Twang(abc)
creates the hairpin vertex a and three doubled edges ab1, b1b2 and b2b3.

Informally, Twang(abc) “snaps” the boundary to wrap around the hull of the points in
4abc, excluding b (see Fig. 4a). A twang operation can be viewed as taking a step toward
simplicity by removing either a pseudovertex or a point of double contact. We should note
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that sp(abc) includes every vertex along this path, even collinear vertices. If there are no
points inside 4abc, then sp(abc) = ac, and Twang(abc) can be viewed as the reverse of
Hop(ac, b). If a=c (i.e., ab and bc overlap in P), we call b a hairpin vertex of P; in this
case, Twang(aba) replaces aba in P by a. Hairpin vertices and “doubled edges” arise
naturally from twangs. In Fig. 4b for instance, Twang(abc) produces a hairpin vertex at a
and doubled edges ab1, b1b2, b2b3. So we must countenance such degeneracies. In general,
there are points interior to the triangle, and the twang creates new points of double contact.
Below, we will apply twangs repeatedly to remove all double contacts.

Stretch. We can now complete the definition of Stretch(e, v), with e = ab. First
execute Stretch0(e, v), which picks the two pseudovertices x+ and x−. Then execute
Twang(ax−v) and Twang(vx+b), which detach the boundary from x+ and x− and return
to a polygonal wrap of S (see Fig. 3c). We refer to e (v) as the stretch edge (vertex ).

2.3. Twang Cascades

A twang in general removes one double contact and creates perhaps several others. A
TwangCascade applied on a polygonal wrap P removes all points of double contact from
P:

TwangCascade(P)

Loop for as long as P has a point of double contact b:

1. Find a vertex sequence abc in P that satisfies the twang conditions (cf. Def. 2.1).
2. Twang(abc).

Note that for any point b of double contact, there always exists a vertex sequence abc
that satisfies the twang conditions and therefore the twang cascade loop never gets stuck.
That a twang cascade eventually terminates is not immediate. The lemma below shows
that Twang(abc) shortens the perimeter of the polygonal wrap (because it replaces abc by
sp(abc)) by at least a constant depending on the geometry of the point set. Therefore, any
twang cascade must terminate in a finite number of steps.

Lemma 2.2. A single twang Twang(abc) decreases the perimeter of the polygonal wrap by
at least 2dmin(1− sin(αmax/2)), where dmin is the smallest pairwise point distance and αmax

is the maximum convex angle formed by any triple of non-collinear points.

Supplementing this geometric bound, we establish in [DFOR07, App. 3] a combinatorial
upper bound of O(nn) on the number of twangs in any twang cascade. An impediment to
establishing a better bound is that a point can twang more than once in a cascade. Indeed
we present an example in which Ω(n) points each twang Ω(n) times in one cascade, providing
an Ω(n2) lower bound.

2.3.1. Forward Move. We define a forward move on a polygonization P of a set S as a
stretch (with the additional requirement that the pseudovertices on the stretch edge lie on
the reflex side of the stretch vertex), followed by a twang and then a twang cascade, as
described below:
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ForwardMove(P, e, v)

Preconditions: (i) P is a simple polygon, (ii) e and v satisfy the conditions of Stretch(e, v), and
(iii) v is a noncollinear vertex such that pseudovertices x+ and x− on e lie on the reflex side of v.
{Let u, v, w be the vertex sequence containing v in P (necessarily unique, since P is simple).}

1. P ← Stretch(e, v).
2. P ← Twang(uvw).
3. P ′ ← TwangCascade(P).

A ForwardMove takes one polygonization P to another P ′ (see Fig. 5), as follows
from Lemma 2.2. Note that x+ and x− must lie on the reflex side of v (i.e., precondition
(iii) of ForwardMove) so that Stretch(e, v) does not introduce a nested double contact
in 4uvw which would prevent the subsequent Twang(uvw). Next we discuss an important
phenomenon that can occur during a forward move.
Stretch Vertex Placement. We note that the initial stretch that starts a move might be
“undone” by cycling of the cascade. This phenomenon is illustrated in Fig. 5, where the
initial Stretch(ab, v) inserts v between a and b in the polygonal wrap (Fig. 5b), but v ends
up between c and b in the final polygonization (Fig. 5f). Thus any attempt to specifically
place v in the polygonization sequence between two particular vertices might be canceled
by the subsequent cascade. This phenomenon presents a challenge to reducing a polygon
to canonical form (discussed in Sec. 5).

v =b1

(d) (e) (f)

e

b2

a2

c2
b3

a3

c3

=a4

c4

a b a b a b a b 4a=b b a b

cc c c
c c=

u

w

v

a1u==

v v v v

(a) (b) (c)c1w=

a1u=

Figure 5: Forward move illustrated. (a) Initial polygon P (b) After Stretch(ab, v) (c) Af-
ter Twang(a1b1c1) (d) After Twang(a2b2c2) (e) After Twang(a3b3c3) (f) After
Twang(a4b4c4).

3. Single Pocket Reduction Algorithm

Now that the basic properties of the moves are established, we aim to show that our
moves suffice to connect any two polygonizations of a point set S. The plan is to reduce
an arbitrary polygonization to the canonical polygonization. En route to explaining this
reduction algorithm, we show how to remove any particular pocket by redistributing its
vertices to other pockets. This method will be applied repeatedly in Sec. 4 to move all
pockets to one particular pocket.

In this section we assume that P has two or more pockets. We use H(P ) to refer to
the closed region defined by the convex hull of P , and ∂H(P ) for its boundary. For a fixed
hull edge e that is the lid of a pocket A, the goal is to reduce A to e by redistributing the
vertices of A among the other pockets, using forward moves only. This is accomplished by
the Single Pocket Reduction algorithm, which repeatedly picks a hull vertex v of A
and attaches v to a pocket other than A; see Fig. 6 for an example run.
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Single Pocket Reduction(P, e) Algorithm

Loop for as long as the pocket A of P with lid e contains three or more vertices:
1. Pick an edge-vertex pair (e, v) such that

e is an edge of P on ∂B for some pocket B 6= A
v ∈ A is a non-lid true corner vertex on ∂H(A) that sees e

2. P ← ForwardMove(P, e, v).

We now establish that the Single Pocket Reduction algorithm terminates in a
finite number of iterations. First we prove a more general lemma showing that a twang
operation can potentially reduce, but never expand, the hull of a pocket.

Lemma 3.1 (Hull Nesting under Twangs). Let A be a pocket of a polygonal wrap P and
let vertex b 6∈ ∂H(P) satisfy the twang conditions. Let A′ be the pocket with the same lid as
A after Twang(b). Then A′ ⊆ H(A).

Proof: Let abc be the vertex sequence involved in the twang operation. Then Twang(abc)
replaces the path abc by sp(abc). If abc does not belong to ∂A, then Twang(abc) does not
affect A and therefore A′ ≡ A. So assume that abc belongs to ∂A. This implies that b is a
vertex of A. Note that b is a non-lid vertex, since b 6∈ ∂H(P). Then 4abc ⊂ H(A), and the
claim follows from the fact that sp(abc) ⊂ 4abc.
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Figure 6: Single Pocket Reduction(P, a1a5) illustrated: (a) Initial P ; (b) After
Stretch(b1b2, a2); (c) After Twang(a1a2a3); (d) After Twang(a3a4a5); (e) Af-
ter Stretch(a2b1, a3); (f) After Twang(a4a3a5); (g) After Stretch(a2a3, a4) +
Twang(a1a4a5).

Lemma 3.2. The Single Pocket Reduction algorithm terminates in O(n) forward
moves.

4. Multiple Pocket Reduction Algorithm

For a given hull edge e, the goal is to transform P to a polygon with a single pocket
with lid e, using forward moves only. If e is an edge of the polygon, for the purpose of the
algorithm discussed here we treat e as a (degenerate) target pocket T . We assume that, in
addition to T , P has one or more other pockets, otherwise there is nothing to do. Then we
can use the Single Pocket Reduction algorithm to eliminate all pockets of P but T , as
described in the Pocket Reduction algorithm below.

Pocket Reduction (P, e) Algorithm

If e is an edge of P , set T ← e, otherwise set T ← the pocket with lid e
(in either case, we treat T as a pocket).

For each pocket lid e′ 6= e
Call Single Pocket Reduction(P, e′)
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Observe that the Pocket Reduction algorithm terminates in O(n2) forward moves:
there are O(n) pockets each of which gets reduced to its lid edge in O(n) forward moves
(cf. Lemma 3.2).

Fig. 7 illustrates the Pocket Reduction algorithm on a 17-vertex polygon with three
pockets A, B and C, each of which has 3 non-lid vertices, and target pocket T with lid edge
e = t1t2. The algorithm first calls Single Pocket Reduction(P, a1a5), which transfers to
B all non-lid vertices of A, so B ends up with 6 non-lid vertices (this reduction is illustrated
in detail in Fig. 6). Similarly, Single Pocket Reduction(P, b1b5) transfers to C all
non-lid vertices of B, so C ends up with 9 non-lid vertices, and finally Single Pocket
Reduction(P, c1c5) transfers all these vertices to T .
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Figure 7: (a-e) Pocket Reduction(P, t1t2): (a) Initial P ; (b) After Single Pocket
Reduction(P, a1a5); (c) After Single Pocket Reduction(P, b1b5); (d) After Sin-
gle Pocket Reduction(P, c1c5); (e) After Canonical Polygonization(P, t1t2).

This example shows that the O(n2) bound on the number of forward moves is tight:
an n-vertex polygon with a structure similar to the one in Fig. 7a has O(n) pockets. The
number of forward moves performed by the Pocket Reduction algorithm is therefore
3 + 6 + 9 + . . . 3n

5 = Θ(n2), so we have the following lemma:

Lemma 4.1. The Pocket Reduction algorithm employs Θ(n2) forward moves.

5. Single Pocket to Canonical Polygonization

Let P (e) denote an arbitrary one-pocket polygonization of S with pocket lid e = ab.
Here we give an algorithm to transform P (e) into the canonical polygonization Pc(e). This,
along with the algorithms discussed in Secs. 3 and 4, gives us a method to transform any
polygonization of S into the canonical form Pc(e). Our canonical polygonization algorithm
incrementally arranges pocket vertices in canonical order (cf. Sec. 1.1) along the pocket
boundary by applying a series of forward moves to P (e).

Canonical Polygonization(P, e) Algorithm

Let e = ab. Let a = v0, v1, v2, . . . , vk, vk+1 = b be the canonical order of the vertices of pocket P (e).
For each i = 1, 2, . . . , k

1. Set `i ← line passing through a and vi

2. Set ei−1 ← pocket edge vi−1vj , with j > i− 1
3. If ei−1 is not identical to vi−1vi, apply ForwardMove(ei−1, vi).
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We now show that the one-pocket polygonization resulting after the i-th iteration of the
loop above has the points v0, . . . , vi in canonical order along the pocket boundary. (Note
that this invariant ensures there is an edge (vi−1, vj) with j > i − 1 in Step 2.) This,
in turn, is established by showing that the ForwardMove in the i-th iteration involves
only points in the set {vi, vi+1, . . . , vk}. These observations are formalized in the following
lemmas [DFOR07, App. 1]:

Lemma 5.1. The i-th iteration of the Canonical Polygonization loop produces a poly-
gonization of S with one pocket with lid e and with vertices v0, . . . , vi consecutive along the
pocket boundary.

Lemma 5.2. The Canonical Polygonization algorithm constructs Pc(e) in O(n) for-
ward moves.

6. Reverse Moves

Connectivity of the space of polygonizations will follow by reducing two given polygo-
nizations P1 and P2 to a common canonical form Pc, and then reversing the moves from Pc
to P2. Although we could just define a reverse move as a time-reversal of a forward move, it
must be admitted that such reverse moves are less natural than their forward counterparts.
So we concentrate on establishing that reverse moves can be achieved by a sequence of
atomic stretches and twangs.
Reverse Stretch. The reverse of Stretch(e, v) may be achieved by a sequence of one or
more twangs, as illustrated in Fig. 8a. This result follows from the fact that the “funnel”
created by the stretch is empty, and so the twangs reversing the stretch do not cascade.

v

a
b a b

c1 c2c3

(a)

c

b

a

x1 x3
x2 x1

x3
x2

c

b

a

c

b

a

TWANG (    )c1

TWANG (    )c2

TWANG (    )c3
c1 c2c3

TWANG (    )

STRETCH( , )x2x3

TWANG (    )x2

TWANG (    )x1

TWANG (    )x3

x1
x3

x2

(b)

b
v

v

Figure 8: Reverse atomic moves: (a) Stretch(ab, v) is reversed by Twang(v), Twang(c1),
Twang(c2), Twang(c3). (b) Twang(b) is reversed by Stretch(x2x3, b),
Twang(x2), Twang(x1) and Twang(x3).

Reverse Twang. An “untwang” can be accomplished by one stretch followed by a series of
twangs. Fig. 8b illustrates how Twang(abc) may be reversed by one Stretch(e, b), for
any edge e of sp(abc), followed by zero or more twangs. Observe that the initial stretch in
the reverse twang operation is not restricted to the reflex side of the stretch vertex, as it is
in a ForwardMove. If b is a hairpin vertex (i.e., a and c coincide), we view ac as an edge
of length zero and the reverse of Twang(b) is simply Stretch(e, b).

We have shown that the total effect of any forward move, consisting of one stretch
and a twang cascade, can be reversed by a sequence of stretches and twangs. We call this
sequence a reverse move. One way to view the consequence of the above two results can
be expressed via regular expressions. Let the symbols s and t represent a Stretch and
Twang respectively. Then a forward move can be represented by the expression st+: a
stretch followed by one or more twangs. A reverse stretch, s−1 can be achieved by one or
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more twangs: t+. And a reverse twang t−1 can be achieved by st∗. Thus the reverse of the
forward move st+ is (t−1)+s−1 = (st∗)+t+ , a sequence of stretches and twangs, at least
one of each.

7. Connectivity and Diameter of Polygonization Space

We begin with a summary the algorithm which, given two polygonizations P1 and P2

of a fixed point set, transforms P1 into P2 using stretches and twangs only.

Polygon Transformation(P1, P2) Algorithm

1. Select an arbitrary edge e of ∂H(P1).
2. P1 ← Pocket Reduction(P1, e); M1 ← atomic moves of [P2 ← Pocket Reduction(P2, e)].
3. Pc ← Canonical Polygonization(P1, e);

M2 ← atomic moves of [Canonical Polygonization(P2, e).]
4. Reverse the order of the moves in M1 ⊕M2 (⊕ represents concatenation).
5. For each stretch s (twang t) in M1 ⊕M2 in order,

execute reverse stretch s−1(reverse twang t−1) on Pc.

This algorithm, along with Lemmas 4.1 and 5.2, establishes our main theorem:

Theorem 7.1. The space of polygonizations of a fixed set of n points is connected via a
sequence of forward and reverse moves. Each node of the space has degree in Ω(n) and
O(n2), and the diameter of the polygonization space is O(n2) moves.

This diameter bound is tight for our specific algorithm but might not be for other algorithms.
Each twang operation can be carried out in O(n) time using a hull routine on the sorted
points inside 4abc; and Ω(n) might be needed, because sp() might hit O(n) vertices. So
the running time of a single forward/reverse move is T ·O(n), where T is an upper bound
on the number of twangs in a move.

8. Random Polygons

We have implemented a version of random polygon generation. After creating an initial
polygonization, we move from polygonization to polygonization via a sequence of forward
moves, where additional stretches are permitted in the cascade to simulate reverse moves.
Here we report on one experiment that investigates the speed with which the exponential
space of polygonizations is explored. We use a variant of the example in Fig. 1a, which has
at least 2k polygonizations. The variant is shown in Fig. 9a, which breaks collinearities by
distributing the vertices onto top, middle, and bottom circular arcs. We map each polygo-
nization of this point set to a k-bit binary number, where the kth bit indicates whether the
shortest path from the kth middle vertex is to a top (1) or bottom (0) vertex.4 (Note this
map is many-to-one, as there are more than 2k polygonizations.) Starting from an arbi-
trary polygonization, we then repeatedly select a random stretch, and twang to quiescence.
Figs. 9b,c display the range of the random walk in two formats: (b) shows the number of
the 256 bit patterns reached over the 5000 stretches—91% of the patterns were visited by
the end of the trial; (c) shows when each bit pattern was reached (dark), with time growing
downwards. By the final stretch, 22 patterns (light) were yet to be visited. In this trial,
the average length of a twang cascade was 1.2; more precisely, the 5000 stretches invoked
5960 twangs, for a total of 10, 960 atomic moves.

4Path length is measured by the number of edges, with Euclidean length breaking ties.
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9. Open Problems

Our work leaves many interesting problems open. One unresolved question is whether
the number of twangs T in a twang cascade is exponential or if there is a polynomial bound,
thereby resolving the computational complexity of the polygon transformation algorithm.
We have shown that T is Ω(n2) and O(nn), leaving a large gap to be closed. We would also
like to establish a lower bound on the diameter.

In Sec. 7 we established connectivity with forward moves and their reverse, and although
both moves are composed of atomic stretches and twangs, the forward moves seem more
naturally determined. This suggests the question of whether forward moves suffice to ensure
connectivity.

It remains to be seen if the polygonization moves explored in this paper will be effective
tools for generating random polygons. One possibility is to start from a doubled random
noncrossing spanning tree, which is a polygonal wrap. Finally, we are extending our work
to 3D polyhedralizations of a fixed 3D point set.

References

[AH96] T. Auer and M. Held. Heuristics for the generation of random polygons. In Proc. 8th Canad.
Conf. Comput. Geom., pages 38–43, 1996.

[CHUZ01] J. Czyzowicz, F. Hurtado, J. Urrutia, and N. Zaguia. On polygons enclosing point sets. Geombi-
natorics, XI (1):21–28, 2001.

[DFOR07] M. Damian, R. Flatland, J. O’Rourke, and S. Ramaswami. Connecting polygonizations via
stretches and twangs. arxiv.org, arXiv:0709.1942v1 [cs.CG], 2007.

[HHH02] C. Hernando, M. Houle, and F. Hurtado. On local transformation of polygons with visibility
properties. Theoretical Computer Science, 289(2):919-937, 2002.

[vLS82] J. van Leeuwen and A. A. Schoone. Untangling a travelling salesman tour in the plane. In J. R.
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Abstract. We present a deterministic way of assigning small (log bit) weights to the edges
of a bipartite planar graph so that the minimum weight perfect matching becomes unique.
The isolation lemma as described in [MVV87] achieves the same for general graphs using
a randomized weighting scheme, whereas we can do it deterministically when restricted
to bipartite planar graphs. As a consequence, we reduce both decision and construction
versions of the matching problem to testing whether a matrix is singular, under the promise
that its determinant is 0 or 1, thus obtaining a highly parallel SPL algorithm for bipartite
planar graphs. This improves the earlier known bounds of non-uniform SPL by [ARZ99]
and NC2 by [MN95, MV00]. It also rekindles the hope of obtaining a deterministic parallel
algorithm for constructing a perfect matching in non-bipartite planar graphs, which has
been open for a long time. Our techniques are elementary and simple.

1. Introduction

The Matching Problem is one of the most well-studied in the field of parallel complexity.
Attempts to solve this problem have led to the development of a variety of combinatorial,
algebraic and probabilistic tools which have applications even outside the field. Since the
problem is still open, researchers linger around it in search of new techniques, if not to solve
it in its whole generality, then at least under various natural restrictions. In this paper,
we will focus on the deterministic complexity of the Matching Problem under its planar
restrictions.

This work was done while the second author was visiting Chennai Mathematical Institute.
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1.1. The Matching Problem

Definition 1.1. A matching in an undirected graph is a collection of edges which have no
endpoint in common.

Such a collection of edges is called “independent”. See [LP86] for an excellent survey
on matchings.

The computational question one can ask here is, given a graph, to find a matching of
the maximum cardinality.

Definition 1.2. A perfect matching in a graph is a collection of independent edges which
cover all the vertices.

One may ask various computational questions about perfect matchings in graphs. We
will consider the following three questions:
Question 1: (Decision) Is there a perfect matching in a given graph ?
Question 2: (Search) Construct a perfect matching in a graph, if it exists.
Question 3: (Uniqueness Testing or UPM) Does a given graph have exactly one perfect
matching?
There are polynomial time algorithms for the above graph matching problems and his-
torically people have been interested in studying the parallel complexity of all the three
questions above. The UPM question for bipartite graphs is deterministically parallelizable
[KVV85] (i.e. it lies in the complexity class NC; see any standard complexity text for a
formal definition, say [V99]). Intuitively, NC is a complexity class consisting of the problems
having a parallel algorithm which runs in polylogarithmic time using polynomially many
processors which have access to a common memory.

It is the class consisting of so called “well parallelizable” problems. NC is inside P -
problems having a sequential polynomial time algorithm. Whether the Matching Problem
is deterministically parallelizable remains a major open question in parallel complexity.

Open Problem 1.3. Is Matching in NC ?

The best we know till now is that Matching is in Randomized NC. See for example,
[KUW86, MVV87]. Several restrictions of the matching problem are known to be in NC, for
example, bipartite planar graphs [MN95, MV00], graphs with polynomially bounded number
of perfect matchings [GK87] etc. Whether the search version reduces to the decision version
has also not been answered yet.

1.2. Randomized Isolation Lemma

Lemma 1.4. [MVV87] One can randomly assign polynomially bounded weights to the edges
of a graph so that with high probability the minimum weight perfect matching becomes unique.

Using the isolation lemma, [MVV87] obtained a simple Randomized NC algorithm for
finding a perfect matching in arbitrary graphs.

1.3. Matching in SPL/poly

Allender et al [ARZ99] proved a non-uniform bound for matching problem which allows
us to replace the randomization by a polynomial length advice string. Hence, we know that
matching is parallelizable with polynomial bit advice.
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Definition 1.5. SPL is a promise class that is characterized by the problem of checking
whether a a matrix is singular under the promise that its determinant is either 0 or 1. The
corresponding non-uniform class SPL/poly is SPL with a polynomial bit advice.

SPL is inside ⊕L and inside ⊕pL for all p. While UL (unambiguous Logspace) is inside
SPL, NL (nondeterministic Logspace) is incomparable with SPL. Both NL and SPL are
known to lie inside NC2.

Definition 1.6. A language is said to be in SPL/poly if for every positive integer n there
exists an advice string An such that:

• length of An is polynomially bounded in n
• once An is given, the membership of any input of size n can be decided in SPL.

Theorem 1.7. [ARZ99] Matching is in SPL/poly.

1.4. Matchings in Planar Graphs and Deterministic Isolation

The situation for planar graphs is interesting because of the fact that counting the
number of perfect matchings in planar graph is in NC ([K67, V88]) whereas constructing
one perfect matching is not yet known to be parallelizable. However, for bipartite planar
graphs, people have found NC algorithms [MN95, MV00].

The isolation lemma crucially uses randomness in order to isolate a minimum weight set
in an arbitrary set system. It is conceivable, however, to exploit some additional structure
in the set system to eliminate this randomness. Indeed, recently [BTV07] building upon a
technique from [ADR05] were able to isolate a directed path in a planar graph by assigning
small deterministic weights to the edges. The lemma that sits at the heart of that result
says that there is a simple deterministic way to assign weights so that each directed cycle
(in a grid graph) gets a non-zero weight. This is shown to imply that if two paths get the
same weight neither of them is a min-weight path.

Motivated by their result we explore the possibility of such an isolation for perfect
matchings in planar graphs. Our attempt is to assign weights so that the alternating sum
is non-zero for each alternating cycle - here alternating sum is the signed sum of weights
where the sign is opposite for successive edges. Since alternating cycle result from the
super-imposition of two matchings, we are able to isolate a min-weight matching.

Therefore, we are able to devise an NC algorithm for bipartite planar graphs which is
conceptually simple, different from the other known algorithms and tightens its complexity
to the smaller class SPL. The search problem for matching in non-bipartite planar graphs
still remains open even though the corresponding decision and counting versions are known
to be in NC. Our algorithm rekindles the hope for solving general planar matching in NC.

2. Preliminaries

Here we describe the technical tools that we need in the rest of the paper. Refer to any
standard text (e.g. [V99]) for definitions of the complexity classes ⊕L, ⊕pL, NL, UL, NC2 .
For graph-theoretic concepts, for instance, planar graph, outerplanar graph, spanning trees,
adjacency matrix, Laplacian matrix of a graph, we refer the reader to any standard text in
graph theory (e.g. [D05]).
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Figure 1: A Grid Graph

Figure 2: An Almost Grid Graph

2.1. Definitions and Facts

We will view an n× n grid as a graph simply by putting the nodes at the grid points
and letting the grid edges act as the edges of the graph.

Definition 2.1. Grid graphs are simply subgraphs of an n×n grid for some n. See Figure 1
for an example. We call each unit square of the grid a block.

Definition 2.2. We call a graph an almost grid graph if it consists of a grid graph and
possibly some additional diagonal edges which all lie in some single row of the grid. Moreover
all the diagonal edges are parallel to each other. See Figure 2.

In this paper we will consider weighted grid graphs where each edge is assigned an
integer weight.

Definition 2.3. (1) Given a grid, assign a “+” sign to all the vertical edges and a “-”
sign to all the horizontal edges.

(2) Assign a sign of (−1)i+j to the block in the ith row and jth column (adjacent blocks
get opposite signs).

Definition 2.4. Given a weighted grid graph G, the circulation of a block B(denoted
circ(B)) in G is the signed sum of weights of the edges of it: circ(B) =

∑
e∈B sign(e)weight(e).

Definition 2.5. Given a weighted grid graph G and a simple cycle C = (e0, e1, . . . , e2k−1)
in it, where e0 is, say, the leftmost topmost vertical edge of C; we define the circulation of
a cycle C as circ(C) =

∑2k−1
i=0 (−1)iweight(ei).

The following lemma plays a crucial role in constructing non-vanishing circulations in
grid graphs as will be described in the next section.
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Figure 3: Signs and Weights of the blocks and the edges of a grid

Lemma 2.6. Block Decomposition of Circulations: The absolute value of the circulation
of a simple cycle C in a grid graph G is equal to the signed sum of the circulations of the
blocks of the grid which lie in the interior of C.
|circ(C)| = ∑

B∈interior(C) sign(B)circ(B)

Proof. Consider the summation on the right hand side. The weight of any edge in the
interior of C will get cancelled in the summation because that edge will occur in exactly
two blocks which are adjacent and hence with opposite signs. Now what remains are the
boundary edges. Call two boundary edges adjacent if they appear consecutively on the cycle
C.

Claim 2.7. Adjacent boundary edges get opposite signs in the summation on the right hand
side above.

Proof. We have to consider two cases, either the adjacent boundary edges lie on adjacent
blocks, in which case since adjacent blocks have opposite signs, these edges will also get
opposite signs as they are both vertical or horizontal edges. See Figure 3. In the other case,
when adjacent boundary edges do not lie on adjacent blocks, they lie on two blocks which
are diagonally next to each other. In this case, both blocks will have the same sign but
since one edge is vertical and the other is horizontal, the effective sign of the edges will be
opposite. See Figure 3. Hence, the adjacent boundary edges will get opposite sign in the
summation. This completes the proof that the right hand side summation is precisely +
circ(C) or - circ(C).

We will also have occasion to employ the following lemma and we record it here:

Lemma 2.8. Temperley’s Bijection: The spanning trees of a planar graph are in one
to one correspondence with perfect matchings in a bipartite planar graph. Moreover the
correspondence is weight preserving.

This bijection was first observed by Temperley around 1967. Recently [KPW00] have
found a Generalized Temperley Bijection which gives a one-to-one weight preserving map-
ping between directed rooted spanning trees or arborescences in a directed planar graph
and perfect matchings in an associated bipartite planar graph.
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2.2. Planar Matching and Grid Graphs

Grid graphs have turned out to be useful for solving the reachability question in directed
planar graphs, cf. [ABCDR06, BTV07]. Motivated by this fact we explore the possibility
of reducing planar matching problem to that of grid graphs. Non-bipartiteness becomes an
obstacle here which leaves us with the following observations:

Lemma 2.9. One can convert any bipartite planar graph into a grid graph such that the
perfect matchings remain in one-to-one correspondence.

Proof. This is described in [DKLM07]. It follows closely the procedure for embedding a
planar graph into a grid, described by [ABCDR06].

Though non-bipartiteness is an issue, we can get rid of it to a certain extent, though
as expected, not completely .

Lemma 2.10. Any planar graph, not necessarily bipartite, can be converted to an almost
grid graph while maintaining the one to one correspondence between the perfect matchings.

Proof. This procedure is analogous to the previous one except that we can observe that the
edges which are causing non bipartiteness can be elongated into a long path and placed in
a grid so that only in a single row one needs to use a diagonal edge.

3. Bipartite Planar Perfect Matching in SPL

In this section, we will give a simple algorithm for finding a perfect matching in bipartite
planar graphs, also improving over its complexity by putting it in SPL. Earlier the best
known bound was NC2. See for example [MN95, MV00]. At the core of our algorithm, lies
a procedure to deterministically assign the small (logarithmic bit long) weights to the edges
of a bipartite planar graph, so that the minimum weight perfect matching becomes unique.
A simple observation about non-vanishing circulations in bipartite planar graphs makes it
possible to isolate a perfect matching in the graph, which can be further extracted out using
an SPL query.

3.1. Non-vanishing Circulations in Grid Graphs

We are interested in assigning the small weights to the edges of a grid so that any cycle
in it will have non-zero circulation. This weighting scheme is at the heart of the isolation
of perfect matchings in grid graphs. The procedure runs in Logspace.

Lemma 3.1. One can assign, in Logspace, small (logarithmic bit) weights to the edges of
a grid so that circulation of any cycle becomes non-zero. (One weighting scheme which
guarantees non-zero circulation for every cycle in the grid is shown in the Figure 3.)

Proof. We assign all vertical edges weight 0 and horizontal edge from grid point (i, j) to
(i+1, j) is assigned a weight of (−1)i+j(i+ j +1) as shown in figure 3. Thus the circulation
of the block with diagonally opposite vertices (i, j) and (i+1, j +1) is

∑
e sign(e)weight(e)

= (−1)(−1)i+j(i + j + 1) + (+1)0 + (−1)(−1)i+j+1(i + j + 2) + (+1)0 = (−1)i+j

Thus, the weighting scheme makes sure that the circulation of any block is either +1 or
- 1. Moreover, the circulation of a block is positive if and only if its sign is positive. Now,
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using the Block Decomposition of Circulations (Lemma 2.6), we have that the circulation
of any cycle in absolute value is precisely the number of blocks in the interior of it, and
hence is never zero.

3.2. Non-vanishing Circulations: A Direct Method

One can think of the procedure of assigning the weights to the edges of bipartite planar
graph without having to convert it to a grid graph. The procedure is as follows:

• Step 1: Make the graph Eulerian (every vertex has an even degree): add spurious
edges to it without disturbing the bipartiteness.

– Step 1.1: Perform an Euler traversal on a spanning tree in the dual graph.
– Step 1.2: While performing the traversal, make sure that when you leave the

face, all the vertices in the face, except for the end points of the edge through
which we go to the next face, are of even degree. To guarantee this we can do
the following:

∗ Step 1.2 a) : Start with one end point say u of the edge (u, v) through
which we go to the next face. Visit all the vertices of the face in a cyclic
ordering, every time connect an odd degree vertex to the next vertex by
a spurious edge.

∗ Step 1.2 b) : If the next vertex is also of odd degree then go to its next
vertex. If the next vertex is of even degree then we have pushed the
oddness one step further.

∗ Step 1.2 c) : Continue the same procedure till we remove all the oddness
or push it to v.

∗ Step 1.2 d) : In the process, the graph might become a multi-graph i.e.
between two nodes we may have multiple edges, but this can be taken care
of by replacing every multi-edge by a path of length 3. The bipartiteness
is preserved in the process.

• Step 2:Fix the signs: After Step 1, the graph has become Eulerian, and hence the
dual graph is bipartite.

– Step 2 a) Assign alternating signs to adjacent faces: Form a bipartition of the
dual, and fix all the faces in one bipartition to have + sign and the others to
have - sign. Any two adjacent faces will have opposite signs. Here, faces will
act as blocks.

– Step 2 b) Assign alternating signs to adjacent edges of every face: Consider
an auxiliary graph obtained from the bipartite planar graph as follows: Every
new vertex corresponds to an edge in the graph. Join two new vertices by a
new edge iff the corresponding edges in the original graph are adjacent along
some face. Now since both the original graph and its dual are bipartite , the
auxiliary graph will also be bipartite - hence edges in the two bipartitions get
opposite signs ensuring that around every face the signs are alternating.

• Step 3: Assign small weights to the edges: Now make another Euler traversal on
the dual tree everytime assigning the weight to the dual tree edge through which
you traverse to the next face so that the circulation of the face you leave is exactly
same as the sign of the face. All non-tree edges will be assigned zero weight. It is
easy to see that all the weights assigned are small (logarithmic bit).
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Block Decomposition of Circulations: Again, the circulation of a cycle will decompose into
signed sum of circulations of the faces in the interior of it and since the sign and the
circulation for any face is the same, we will have non-vanishing circulations in the graph.
The details are analogous to the case of a grid. We leave the details to the reader.

3.3. Deterministic Isolation

The non-vanishing circulations immediately give us the isolation for the perfect match-
ings.

Lemma 3.2. If all the cycles in a bipartite graph have non-zero circulations, then the
minimum weight perfect matching in it is unique.

Proof. If not, then we have two minimum weight perfect matchings M1 and M2 which will
contain some alternating cycles, and each such cycle is of even length. Consider any one
such cycle. Since the circulation of an even cycle is nonzero either the part of it which is in
M1 is lighter or the part of it which is in M2 is lighter, in either case, we can form another
perfect matching which is lighter than the minimum weight perfect matching, which is a
contradiction.

Thus we have a deterministic way of isolating a perfect matching in bipartite planar
graphs, and it is easy to check that the procedure of assigning the weights to the edges
works in deterministic Logspace.

3.4. Extracting the Unique Matching

Once we have isolated a perfect matching, one can extract it out easily as follows:
• Step 1: Construct an n×n matrix M associated with a planar graph on n vertices

as follows: Find a Pfaffian orientation ([K67]) of the planar graph and put the
(i, j)th entry of the matrix M to be xw(i,j) where x is a variable and w(i,j) is the
weight of the edge (i, j) which is directed from i to j in the Pfaffian orientation. If
the edge is directed from j to i then put −xw(i,j) as (i, j)th entry of the matrix.

• Step 2: If t is the weight of the minimum weight perfect matching, then the
coefficient of x2t in determinant of M will be the number of perfect matchings
of weight t. Now, as shown in [MV97, V99] this coefficient can be written as a
determinant of another matrix.

• Step 3: Now start querying from i = −n2 to +n2 whether the coefficient of x2i is
zero or not and the first time you find that it is nonzero; stop. The first nonzero
value will occur when i = t and it will be 1 since the minimum weight perfect
matching is unique. Hence, during the process, every time we have a promise that if
the determinant is non-zero, it is 1. This procedure gives the weight of the minimum
weight perfect matching.

• Step 4: Now once we know the procedure to find the weight of the minimum
weight perfect matching, then one can find out which edges are in the matching
by simply deleting the edge and again finding the weight of the minimum weight
perfect matching in the remaining graph. If the edge is in the the isolated minimum
weight perfect matching then after its deletion the weight of the new minimum
weight perfect matching will increase. Otherwise we can conclude that the edge is
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not in the isolated minimum weight perfect matching. Note that the isolation holds
even after deleting an edge from the graph.

Theorem 3.3. Bipartite Planar Perfect Matching is in SPL.

Proof. The Logspace procedure in Lemma 3.1 assigns the small weights to the edges of the
graph so that the minimum weight perfect matching is unique and the above procedure
extracts it out in LSPL = SPL.

We obtain the following corollaries.

Corollary 3.4. UPM in bipartite planar graphs is in SPL.

Proof. To check whether the graph has unique perfect matching, one can construct one
perfect matching and check that after removing any edge of it there is no other perfect
matching.

Corollary 3.5. Minimum weight perfect matching in planar graphs with polynomially
bounded weights is computable in SPL.

Proof. One can first scale the polynomially bounded weights by some large multiplicative
factor, say n4 and then perturb them using the weighting scheme described above so that
some minimum weight matching with original weights remains minimum weight matching
with new weights and is unique. Then extraction can be done in SPL.

Corollary 3.6. Minimum weight spanning tree in planar graphs is computable in SPL
if the weights are polynomially bounded. (The same is true for directed rooted spanning
trees (arborescences) in planar graphs due to Generalized Temperley’s bijection shown in
[KPW00].)

Proof. This follows from Temperley’s bijection.

Restricting the family of planar graphs, yields better upper bounds for Matching ques-
tions. Notably, we prove that:

Corollary 3.7. (of Theorem 3.3) Perfect Matching in outerplanar graphs is in SPL.

Proof. If we have an outerplanar(1-page) graph on n vertices with vertices labelled from 1
to n along the spine, then observe that the edges between two odd labelled vertices can not
be part of any perfect matching. This is because the number of vertices below that edge is
odd. Similarly edges between two even labelled vertices can not participate in any perfect
matching. Hence, by removing such edges we can make the graph bipartite and then we
can apply the previous theorem.

We use the lemma below in order to prove the theorem that follows it.

Lemma 3.8. The parity of the number of perfect matchings in an outerplanar graph can
be computed in Logspace.

Proof. It is not hard to observe that the parity of the determinant of the adjacency matrix
of a graph is the same as the parity of number of perfect matchings in it. Finding the parity
of the adjacency matrix of an outerplanar graph can be reduced to finding the parity of the
number of spanning trees in an auxiliary planar graph which is constructed by adding a
new vertex and connecting it to all the odd degree vertices of the original graph. The new
graph has all the vertices of even degree. Hence the adjacency matrix of the new graph is
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the same as its Laplacian modulo 2. Now the minor obtained by removing the row and the
column corresponding to the new vertex, is precisely the adjacency matrix of the original
outerplanar graph modulo 2. Also the determinant(mod 2) of this minor is precisely the
parity of the spanning trees in new graph. As shown in [BKR07], the parity of spanning
trees modulo 2 in planar graphs can be computed in Logspace. Hence, the parity of the
determinant of the adjacency matrix of an outerplanar graph can be obtained in Logspace
which in turn gives the parity of the number of perfect matchings in it.

Theorem 3.9. UPM in outerplanar graphs is in Logspace.

Proof. If the perfect matching in an outerplanar graph is unique, one can obtain one perfect
matching in Logspace. For every edge, one just needs to compute the parity of the number
of perfect matchings in the graph with that particular edge removed. If this parity is 1
then don’t include this edge in the perfect matching, otherwise do. Now we just need to
verify that the perfect matching thus constructed is unique. As seen in Corollary 3.7 we can
assume that the outerplanar graph is bipartite. Now, if we consider an auxiliary directed
graph obtained from this outerplanar graph by putting a directed edge starting from a
vertex and ending in another vertex after following a matching edge starting at the vertex
and then a non-matching edge from there, then, this auxiliary graph will have a directed
cycle if and only if the matching we start with is not unique. It is possible to show that the
auxiliary graph is outerplanar. Finally, since the reachability in directed outerplanar graphs
is in Logspace ([ABCDR06]), we have that UPM in outerplanar graphs is in Logspace.

4. Discussion

We saw in Section 3.3 that a perfect matching in bipartite planar graphs can be iso-
lated by assigning small weights to the edges. In this section we discuss the possibility of
generalizing this result in two orthogonal directions. For non-bipartite planar graphs and
for bipartite but non-planar graphs. The motivation is to isolate a perfect matching in a
graph by having non-zero circulation on it.

4.1. Non-bipartite Planar Matching

Though non-bipartiteness is an issue, we can get rid of it to a certain extent, though
as expected, not completely .

Lemma 4.1. Perfect Matching problem in general planar graphs reduces to that of almost
grid graphs.

Now it suffices to get a non-vanishing circulations in almost grid graphs to solve planar
matching question. Unfortunately we don’t yet know any way of achieving this though we
have some observations which might be helpful.

Lemma 4.2. One can have non-zero circulations for all the even cycles in the graph in the
Figure 4. (The graph is simply one row of the grid with diagonals.)

Proof. Observe that any even cycle in such a graph will either fall in the grid or will fall in
the grid formed by horizontal edge together with diagonal edges. Now, its easy to assign
the weights as shown in the Figure 4 so that all the horizontal edges get weight 0 while
vertical and diagonal edges get weights so that any cycle in vertical or diagonal grid has
non-vanishing circulation.
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0                     0                       0                     0

0                     0                      0                       0

+1      +1       −2      −2          +3      +3         −4       −4           +5

Figure 4: Non-vanishing circulation in a non-bipartite graph

In summary, non-bipartiteness seems to be an issue which is difficult to get around.
Hence, we keep the bipartiteness and next we explore the possibility of generalizing our
result for non-planar graphs.

4.2. Bipartite Non-planar Matching

Instead of looking at two dimensional grid we now consider three dimensional grids. The
matching problem remains as hard as that for general bipartite graphs in this restriction as
well.

Lemma 4.3. One can embed any bipartite graph in a three dimensional grid while preserving
matchings.

Proof. Firstly, one can make the degree of the graph bounded by 3. Then one can use the
third dimension to make the space for crossings in the graph.

Open Problem 4.4. Is the perfect matching problem for subgraphs of a three dimensional
grid of height 2 (constant height in general) in NC ?

The deterministic isolation of perfect matching is possible through non-vanishing cir-
culations as seen in Section 3.3.

Open Problem 4.5. Is small (log bit) weight non-vanishing circulation possible in every
bipartite graph?

4.3. Other Variations

We know that the reachability in directed planar graphs reduces to bipartite planar
matching while the reachability in layered grid graphs reduces to the UPM question in the
same [DKLM07]. Note that the isolation step in our algorithm works in Logspace. Solving
the perfect matching question in bipartite planar graphs in Logspace might be too strong
to expect but at least one can ask the question about UPM which would put layered grid
graph reachability in Logspace or giving an orthogonal bound for the same.

Open Problem 4.6. Is bipartite planar UPM in L?

We saw how to isolate a perfect matching in bipartite planar graph. The isolation holds
for maximum matching in bipartite planar graphs. However, we do not know how to extract
out the maximum weight perfect matching in NC.

Open Problem 4.7. Is it possible to extract out the isolated maximum matching in NC
even for bipartite planar graphs?

Finally, the question of constructing a perfect matching in planar graphs in NC still
remains open.
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Abstract. We analyze a simple random process in which a token is moved in the interval
A = {0, . . . , n}: Fix a probability distribution µ over {1, . . . , n}. Initially, the token is
placed in a random position in A. In round t, a random value d is chosen according to µ.
If the token is in position a ≥ d, then it is moved to position a − d. Otherwise it stays
put. Let T be the number of rounds until the token reaches position 0. We show tight
bounds for the expectation of T for the optimal distribution µ. More precisely, we show
that minµ{Eµ(T )} = Θ

`
(logn)2

´
. For the proof, a novel potential function argument is

introduced. The research is motivated by the problem of approximating the minimum of
a continuous function over [0, 1] with a “blind” optimization strategy.

1. Introduction

For a positive integer n, assume a probability distribution µ on X = {1, . . . , n} is given.
Consider the following random process. A token moves in A = {0, . . . , n}, as follows:

• Initially, place the token in some position in A.
• In round t: The token is at position a ∈ A. Choose an element d from X at random,

according to µ. If d ≤ a, move the token to position a− d (the step is “accepted”),
otherwise leave it where it is (the step is “rejected”).
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When the token has reached position 0, no further moves are possible, and we regard the
process as finished.

At the beginning the token is placed at a position chosen uniformly at random from
{1, . . . , n} = A − {0}. (For simplicity of notation, we prefer this initial distribution over
the possibly more natural uniform distribution on {0, . . . , n}. Of course, there is no real
difference between the two starting conditions.) Let T be the number of rounds needed
until position 0 is reached. A basic performance parameter for the process is Eµ(T ). As
µ varies, the value Eµ(T ) will vary. The probability distribution µ may be regarded as a
strategy. We ask: How should µ be chosen so that Eµ(T ) is as small as possible?

It is easy to exhibit distributions µ such that Eµ(T ) = O((log n)2). (All asymptotic
notation in this paper refers to n → ∞.) In particular, we will see that the “harmonic
distribution” given by

µhar(d) =
1

d ·Hn
, for 1 ≤ d ≤ n, (1.1)

where Hn =
∑

1≤d≤n
1
d is the nth harmonic number, satisfies Eµhar

(T ) = O((log n)2). As
the main result of the paper, we will show that this upper bound is optimal up to constant
factors: Eµ(T ) = Ω((log n)2), for every distribution µ. For the proof of this lower bound,
we introduce a novel potential function technique, which may be useful in other contexts.

1.1. Motivation and Background: Blind Optimization Strategies

Consider the problem of minimizing a function f : [0, 1]→ R, in which the definition of
f is unknown: the only information we can gain about f is through trying sample points.
This is an instance of a black box optimization problem [1]. One algorithmic approach to
such problems is to start with an initial random point, and iteratively attempt to improve it
by making random perturbations. That is, if the current point is x ∈ [0, 1], then we choose
some distance d ∈ [0, 1] according to some probability distribution µ on [0, 1], and move to
x+ d or x− d if this is an improvement. The distribution µ may be regarded as a “search
strategy”. Such a search is “blind” in the sense that it does not try to estimate how close
to the minimum it is and to adapt the distribution µ accordingly. The problem is how to
specify µ. Of course, an optimal distribution µ depends on details of the function f .

The difficulty the search algorithm faces is that for general functions f there is no infor-
mation about the scale of perturbations which are necessary to get close to the minimum.
This leads us to the idea that the distribution might be chosen so that it is scale invariant,
meaning that steps of all “orders of magnitude” occur with about the same probability.
Such a distribution is described in [4]. One starts by specifying a minimum perturbation
size ε. Then one chooses the probability density function h(t) = 1/(pt) for ε ≤ t ≤ 1, and
h(t) = 0 otherwise, where p = ln(1/ε) is the precision of the algorithm. (A random number
distributed according to this density function may be generated by taking d = exp(−pu),
where u is uniformly random in [0, 1].)

For general functions f , no analysis of this search strategy is known, but in experi-
ments on standard benchmark functions it (or higher dimensional variants) exhibits a good
performance. (For details see [4].) From here on, we focus on the simple case where f is
unimodal, meaning that it is strictly decreasing in [0, x0] and strictly increasing in [x0, 1],
where x0 is the unknown minimum point.

Remark 1.1. If one is given the information that f is unimodal, one will use other, de-
terministic search strategies, which approximate the optimum up to ε within O(log(1/ε))
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steps. As early as 1953, in [3], “Fibonacci search” was proposed and analyzed, which for a
given tolerance ε uses the optimal number of steps in a very strong sense.

The “blind search” strategy from [4] can be applied to more general functions f , but
the following analysis is valid only for unimodal functions. If the distance of the current
point x from the optimum x0 is τ ≥ 2ε then every distance d with τ

2 ≤ d ≤ τ will lead to a
new point with distance at most τ/2. Thus, the probability of at least halving the distance
to x0 in one step is at least 1

2

∫ τ
τ/2

dt
pt = ln 2

2p , which is independent of the current state x.
Obviously, then, the expected number of steps before the distance to x0 has been halved is
2p/ ln 2. We regard the algorithm to be successful if the current point has distance smaller
than 2ε from x0. To reach this goal, the initial distance has to be halved at most log(1/ε)
times, leading to a bound of O(log(1/ε)2) for the expected number of steps.

The question then arises whether this is the best that can be achieved. Is there perhaps
a choice for µ that works even better on unimodal functions? To investigate this question,
we consider a discrete version of the situation. The domain of f is A = {0, . . . , n}, and
f is strictly increasing, so that f takes its minimum at x0 = 0. In this case, the search
process is very simple: the actual values of f are irrelevant; going from a to a+d is never an
improvement. Actually, the search process is fully described by the simple random process
from Section 1. How long does it take to reach the optimal point 0, for a µ chosen as cleverly
as possible? For µ = µhar, we will show an upper bound of O((log n)2), with an argument
very similar to that one leading to the bound O(log(1/ε)2) in the continuous case. The
main result of this paper is that the bound for the discrete case is optimal.

1.2. Formalization as a Markov chain

For the sake of simplicity, we let from now on [a, b] denote the discrete interval {a, . . . , b}
if a and b are integers. Given a probability distribution µ on [1, n], the Markov chain
R = (R0, R1, . . .) is defined over the state space A = [0, n] by the transition probabilities

pa,a′ =


µ(a− a′) for a′ < a;
1−∑1≤d≤a µ(d) for a′ = a;
0 for a′ > a.

Clearly, 0 is an absorbing state. We define the random variable T = min{t | Rt = 0}. Let
us write Eµ(T ) for the expectation of T if R0 is uniformly distributed in A − {0} = [1, n].
We study Eµ(T ) in dependence on µ. In particular, we wish to identify distributions µ that
make Eµ(T ) as small as possible (up to constant factors, where n is growing).

Observation 1.2. If µ(1) = 0 then Eµ(T ) =∞.
This is because with probability 1

n position 1 is chosen as the starting point, and from
state 1, the process will never reach 0 if µ(1) = 0. As a consequence, for the whole paper
we assume that all distributions µ that are considered satisfy

µ(1) > 0. (1.2)

Next we note that it is not hard to derive a “closed expression” for Eµ(T ). Fix µ. For
a ∈ A, let F (a) = µ([1, a]) =

∑
1≤d≤a µ(d). We note recursion formulas for the expected

travel time Ta = Eµ(T | R0 = a ) when starting from position a ∈ A. It is not hard to
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obtain (details are omitted due to space constraints)

Eµ(T ) =
1
n
·

∑
1≤a1<···<a`≤n

µ(a2 − a1) · · ·µ(a` − a`−1)
F (a1) · · ·F (a`)

, (1.3)

where the sum ranges over all 2n − 1 nonempty subintervals [a1, a`] of [1, n]. By definition
of F (a), we see that Eµ(T ) is a rational function of (µ(1), . . . , µ(n)). By compactness, there
is some µ that minimizes Eµ(T ). Unfortunately, there does not seem to be an obvious way
to use (1.3) to gain information about the way Eµ(T ) depends on µ or what a distribution
µ that minimizes Eµ(T ) looks like.

2. Upper bound

In this section, we establish upper bounds on Eµ(T ). We split the state space A and
the set X of possible distances into “orders of magnitude”, arbitrarily choosing 2 as the
base.1 Let L = blog nc, and define Ii = [2i, 2i+1), for 0 ≤ i < L, and IL = [2L, n]. Define

pi =
∑
d∈Ii

µ(d), for 0 ≤ i ≤ L.

Clearly, then, p0 + p1 + · · · + pL = 1. To simplify notation, we do not exclude terms that
mean pi for i < 0 or i > L. Such terms are always meant to have value 0. Consider the
process R = (R0, R1, . . .). Assume t ≥ 1 and i ≥ 1. If Rt−1 ≥ 2i then all numbers d ∈ Ii−1

will be accepted as steps and lead to a progress of at least 2i−1. Hence

Pr(Rt ≤ Rt−1 − 2i−1 | Rt−1 ≥ 2i) ≥ pi−1.

Further, if Rt−1 ∈ Ii, we need to choose step sizes from Ii−1 at most twice to get below 2i.
Since the expected waiting time for the random distances to hit Ii−1 twice is 2/pi−1, the
expected time process R remains in Ii is not larger than 2/pi−1.

Adding up over 1 ≤ i ≤ L, the expected time process R spends in the interval [2, a],
where a ∈ Ij is the starting position, is not larger than

2
pj−1

+
2

pj−2
+ . . .+

2
p1

+
2
p0

.

After the process has left I1 = [2, 3], it has reached position 0 or position 1, and the expected
time before we hit 0 is not larger than 1/p0 = 1/µ(1). Thus, the expected number Ta of
steps to get from a ∈ Ij to 0 satisfies Ta ≤ 2

pj−1
+ 2

pj−2
+ . . . + 2

p1
+ 3

p0
. This implies the

bound
Eµ(T ) ≤ 2

pL−1
+

2
pL−2

+ . . .+
2
p1

+
3
p0

,

for arbitrary µ. If we arrange that

p0 = · · · = pL−1 =
1
L
, (2.1)

we will have Ta ≤ (2j + 1)L ≤ (2(log a) + 1)(log n) = O((log a)(log n)) = O((log n)2).
Clearly, then, Eµ(T ) = O((log n)2) as well. The simplest distribution µ with (2.1) is the
one that distributes the weight evenly on the powers of 2 below 2L:

µpow2(d) =
{

1/L, if d = 2i, 0 ≤ i < L,
0, otherwise.

1log means “logarithm to the base 2” throughout.
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Thus, Eµpow2
(T ) = O((log n)2). The “harmonic distribution” defined by (1.1) satisfies pi ≈

(ln(2i+1)− ln(2i))/Hn ≈ ln 2/ ln(n) = 1/ log2 n, and we also get Ta = O((log a)(log n)) and
Eµhar

(T ) = O((log n)2). More generally, all distributions µ with p0, . . . , pL−1 ≥ α/L, where
α > 0 is constant, satisfy Eµ(T ) = O((log n)2).

3. Lower bound

We show, as the main result of this paper, that the upper bound of Section 2 is optimal
up to a constant factor.

Theorem 3.1. Eµ(T ) = Ω((log n)2) for all distributions µ.

This theorem is proved in the remainder of this section. The distribution µ is fixed
from here on; we suppress µ in the notation. Recall that we may assume that µ(1) > 0. We
continue to use the intervals I0, I1, I2, . . . , IL that partition [1, n], as well as the probabilities
pi, 0 ≤ i ≤ L.

3.1. Intuition

The basic idea for the lower bound is the following. For the majority of the starting
positions, the process has to traverse all intervals IL−2, IL−3, . . . , I1, I0. Consider an interval
Ii. If the process reaches interval Ii+1, then afterwards steps of size 2i+2 and larger are
rejected, and so do not help at all for crossing Ii. Steps of size from Ii+1, Ii, Ii−1, Ii−2 may
be of significant help. Smaller step sizes will not help much. So, very roughly, the expected
time to traverse interval Ii completely when starting in Ii+1 will be bounded from below by

1
pi+1 + pi + pi−1 + pi−2

,

since 1/(pi+1 + pi + pi−1 + pi−2) is the waiting time for the first step with a “significant”
size to appear. If it were the case that there is a constant β > 0 with the property that for
each 0 ≤ i < L − 1 the probability that interval Ii+1 is visited is at least β then it would
not be hard to show that the expected travel time is bounded below by∑

1≤j<L/2

β

p2j+1 + p2j + p2j−1 + p2j−2
. (3.1)

(We picked out only the even i = 2j to avoid double counting.) Now the sum of the
denominators in the sum in (3.1) is at most 2, and the sum is minimal when all denominators
are equal, so the sum is bounded below by β · (L/2) · (L/2)/2 = β ·L2/8, hence the expected
travel time would be Ω(L2) = Ω((log n)2).

It turns out that it is not straightforward to turn this informal argument into a rig-
orous proof. First, there are (somewhat strange) distributions µ for which it is not the
case that each interval is visited with constant probability. (For example, let µ(d) =
Bd−1 · (B − 1)/(Bn − 1), for a large base B like B = n3. Then the “correct” jump directly
to 0 has an overwhelming probability to be chosen first.2) Even for reasonable distributions
µ, it may happen that some intervals or even blocks of intervals are jumped over with high
probability. This means that the analysis of the cost of traversing Ii has to take into account
that this traversal might happen in one big jump starting from an interval Ij with j much

2The authors thank Uri Feige for pointing this out.
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larger than i. Second, in a formal argument, the contribution of the steps of size smaller
than 2i−2 must be taken into account.

In the remainder of this section, we give a rigorous proof of the lower bound. For this,
some machinery has to be developed. The crucial components are a reformulation of process
R as another process, which as long as possible defers decisions about what the (randomly
chosen) starting position is, and a potential function to measure how much progress the
process has made in direction to its goal, namely reaching position 0.

3.2. Reformulation of the process

We change our point of view on the process R (with initial distribution uniform in
[1, n]). The idea is that we do not have to fix the starting position right at the beginning, but
rather make partial decisions on what the starting position is as the process advances. The
information we hold on for step t is a random variable St, with the following interpretation:
if St > 0 then Rt is uniformly distributed in [1, St]; if St = 0 then Rt = 0.

What properties should the random process S = (S0, S1, . . .) on [0, n] have to be a
proper model of the Markov chain R from Section 1.2? We first give an intuitive description
of process S, and later formally define the corresponding Markov chain. Clearly, S0 = n:
the starting position is uniformly distributed in [1, n]. Given s = St−1 ∈ [0, n], we choose a
step length d from X, according to distribution µ. Then there are two cases.

Case 1: d > s. — If s ≥ 1, this step cannot be used for any position in [1, s], thus we
reject it and let St = s. If s = 0, no further move is possible at all, and we also reject.

Case 2: d ≤ s. — Then s ≥ 1, and the token is at some position in [1, s]. What
happens now depends on the position of the token relative to d, for which we only have a
probability distribution. We distinguish three subcases:

(i) The position of the token is larger than d. — This happens with probability (s−d)/s.
In this case we “accept” the step, and now know that the token is in [1, s − d],
uniformly distributed; thus, we let St = s− d.

(ii) The position of the token equals d. — This happens with probability 1/s. In this
case we “finish” the process, and let St = 0.

(iii) The position of the token is smaller than d. — This happens with probability d−1
s .

In this case we “reject” the step, and now know that the token is in [1, d − 1],
uniformly distributed; thus, we let St = d− 1.

Clearly, once state 0 is reached, all further steps are rejected via Case 1.
We formalize this idea by defining a new Markov chain S = (S0, S1, . . .), as follows. The

state space is A = [0, n]. For a state s′, we collect the total probability that we get from s
to s′. If s′ > s, this probability is 0; if s′ = s, this probability is

∑
s<d≤n µ(d) = 1 − F (s);

if s′ = 0, this probability is
∑

1≤d≤s µ(d)/s = F (s)/s; if 1 ≤ s′ < s, this probability is
(µ(s′ + 1) + µ(s− s′)) · s′/s, since d could be s′ + 1 or s− s′. Thus, we have the following
transition probabilities:

ps,s′ =

 F (s)/s if s > s′ = 0;
(µ(s′ + 1) + µ(s− s′)) · s′/s if s > s′ ≥ 1;
1− F (s) if s = s′.

Again, several initial distributions are possible for process S. The version with initial
distribution with Pr(S0 = n) = 1 is meant to describe process R. Define the stopping time

TS = min{t | St = 0}.
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We note that it is sufficient to analyze process S (with the standard initial distribution).

Lemma 3.2. E(T ) = E(TS).

Proof. For 0 ≤ s ≤ n, consider the version R(s) of process R induced by choosing the
uniform distribution on [1, s] (for s ≥ 1) resp. {0} (for s = 0) as the initial distribution.
We let

A(s) = E(min{t | R(s)
t = 0}).

Clearly, A(n) = E(T ) and A(0) = 0. We derive a recurrence for (A(0), . . . , A(n)). Let s ≥ 1,
and assume the starting point R0 is chosen uniformly at random from [1, s]. We carry out
the first step of R(s), which starts with choosing d. The following situations may arise.

(i) d > s. — This happens with probability 1−F (s) < 1. This distance will be rejected
for all starting points in [1, s], so the expected remaining travel time is A(s) again.

(ii) 1 ≤ d ≤ s. For each d, the probability for this to happen is µ(d). For the starting
point R0 there are three possibilities:

- R0 ∈ [1, d− 1] (only possible if d > 1). — This happens with probability d−1
s .

The remaining expected travel time is A(d−1).
- R0 = d. — This happens with probability 1

s . The remaining travel time is 0.
- R0 ∈ [d+ 1, s] (only possible if d < s). — This happens with probability s−d

s .
The remaining expected travel time in this case is A(s−d).

We obtain:

A(s) = 1 + (1− F (s))A(s) +
∑

1≤d≤s
µ(d)

(
d− 1
s
·A(d−1) +

s− d
s
·A(s−d)

)
.

We rename d− 1 into s′ in the first sum and s− d into s′ in the second sum and rearrange
to obtain

A(s) =
1

F (s)
·
1 +

∑
1≤s′<s

(µ(s′ + 1) + µ(s− s′)) · (s′/s) ·A(s′)

 . (3.2)

Next, we consider process S. For 0 ≤ s ≤ n, let S(s) be the process obtained from S by
choosing s as the starting point. Clearly, S(0) always sits in 0, and S(n) is just S. Let

B(s) = E(min{t | S(s)
t = 0}),

the expected number of steps process S needs to reach 0 when starting in s. Then B(0) = 0
and B(n) = E(TS). We derive a recurrence for (B(0), . . . , B(n)). Let s ≥ 1. Carry out the
first step of S(s), which leads to state s′. The following situations may arise.

(i) s = s′ ≥ 1. — This occurs with probability 1 − F (s), and the expected remaining
travel time is B(s) again.

(ii) s′ = 0. — In this case the expected remaining travel time is B(0) = 0.
(iii) s > s′ ≥ 1. — This occurs with probability (µ(s′+1)+µ(s−s′)) ·s′/s. The expected

remaining travel time is B(s′).
Summing up, we obtain

B(s) = 1 + (1− F (s))B(s) +
∑

1≤s′<s
(µ(s′ + 1) + µ(s− s′)) · (s′/s) ·B(s′).
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Solving for B(s) yields:

B(s) =
1

F (s)
·
1 +

∑
1≤s′<s

(µ(s′ + 1) + µ(s− s′)) · (s′/s) ·B(s′)

 . (3.3)

Since A(0) = 0 = B(0) and the recurrences (3.2) and (3.3) are identical, we have E(T ) =
A(n) = B(n) = E(TS), as claimed.

3.3. Potential function: Definition and application

We introduce a potential function Φ on the state space A = [0, n] to bound the progress
of process S. Our main lemma states that for any s ∈ A, for a random transition from
Si = s to Si+1 the expected loss in potential is at most constant (i.e., E(Φ(Si+1)− Φ(Si) |
Si = s) = O(1)). This implies that E(TS) = Ω(Φ(S0)). Since the potential function will
satisify Φ(S0) = Ω(log2 n), the lower bound follows.

We start by trying to give intuition for the definition. A rough approximation to the
potential function we use would be the following: For interval Ii there is a term

ψi =
1∑

0≤j≤L pj · c|j−i|
, (3.4)

for some constant c with 1
2 < c < 1, e. g., c = 1/

√
2. For later use we note that∑

1≤i<L
ψ−1
i =

∑
1≤i<L

∑
0≤j≤L

pj · c|j−i| =
∑

0≤j≤L
pj
∑

1≤i<L
c|j−i| = O(1), (3.5)

since
∑

0≤j≤L pj = 1 and
∑

k≥0 c
k = 1

1−c . The term ψi tries to give a rough lower bound
for the expected number of steps needed to cross Ii in the following sense: The summands
pj · c|j−i| reflect the fact that step sizes that are close to Ii will be very helpful for crossing
Ii, and step sizes far away from Ii might help a little in crossing Ii, but they do so only to
a small extent (j � i) or with small probability (j � i). The idea is then to arrange that
a state s ∈ Ik has potential about

Ψk =
∑
i≤k

ψi. (3.6)

It turns out that analyzing process S on the basis of a potential function that refers to the
intervals Ii is possible but leads to messy calculations and numerous cases. The calculations
become cleaner if one avoids the use of the intervals in the definition and in applying the
potential function. The following definition derives from (3.4) and (3.6) by splitting up the
summands ψi into contributions from all positions a ∈ Ii and smoothing out the factors
c|j−i| = 2|j−i|/2, for a ∈ Ii and d ∈ Ij , into 2−| log a−log d|/2, which is

√
a/d for a ≤ d and√

d/a for d ≤ a. This leads to the following3. Assumption (1.2) guarantees that in the
formulas to follow all denominators are nonzero.

Definition 3.3. For 1 ≤ a ≤ n let

σa =
∑

1≤d≤n
µ(d) · 2−| log a−log d|/2 =

∑
1≤d≤a

µ(d)

√
d

a
+
∑

a<d≤n
µ(d)

√
a

d

3Whenever in the following we use letters a, b, d, the range [1, n] is implicitly understood.
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and ϕa = 1/(aσa). For 0 ≤ s ≤ n define Φ(s) =
∑

1≤a≤s ϕa. The random variable Φt,
t = 0, 1, 2, . . ., is defined as Φt = Φ(St).

We note some easy observations and one fundamental fact about Φt, t ≥ 0.

Lemma 3.4.
(a) Φt, t ≥ 0, is nonincreasing for t increasing.
(b) Φt = 0 ⇔ St = 0.
(c) Φ0 = Ω((log n)2) (Φ0 is a number that depends on n and µ).

Proof. (a) is clear since St, t ≥ 0, is nonincreasing and the terms ϕa are positive. — (b) is
obvious since Φt = 0 if and only if Φ(St) is the empty sum, which is the case if and only
if St = 0. — We prove (c). In this proof we use the intervals Ii and the probabilities pi,
0 ≤ i ≤ L, from Section 2. We use the notation i(a) = blog ac = max{i | 2i ≤ a}. We
start with finding an upper bound for σa by grouping the summands in σa according to the
intervals. Let c = 1/

√
2.

σa =
∑

1≤d≤n
µ(d) · 2−| log a−log d|/2

≤
∑
j≤i(a)

∑
d∈Ij

µ(d) · 2(j+1−i(a))/2 +
∑
j>i(a)

∑
d∈Ij

µ(d) · 2(i(a)+1−j)/2

=
∑
j≤i(a)

pj · 2(j+1−i(a))/2 +
∑
j>i(a)

pj · 2(i(a)+1−j)/2 = 2c ·
 ∑

0≤j≤L
pj · c|j−i(a)|

 .

Hence ∑
a∈Ii

ϕa =
∑
a∈Ii

1
aσa
≥ 2i

2c · 2i+1 ·
( ∑

0≤j≤L pj · c|j−i|
) =

ψi
4c
,

with ψi from (3.4). Thus,

Φ0 ≥
∑

0≤i<L

ψi
4c
. (3.7)

Let ui = 4c/ψi be the reciprocal of the summand for i in (3.7), 0 ≤ i < L. From (3.5) we
read off that

∑
0≤i<L ui ≤ k, for some constant k. Now

∑
0≤i<L

1
ui

with
∑

0≤i<L ui ≤ k is
minimal if all ui are equal to k/L. Together with (3.7) this entails Φ0 ≥ L · (L/k) = L2/k =
Ω((log n)2), which proves part (c) of Lemma 3.4.

The crucial step in the lower bound proof is to show that the progress made by process
S in one step, measured in terms of the potential, is bounded:

Lemma 3.5 (Main Lemma). There is a constant C such that for 0 ≤ s ≤ n, we have
E(Φt−1 − Φt | St−1 = s) ≤ C.

The proof of Lemma 3.5 is the core of the analysis. It will be given in Section 3.4. To
prove Theorem 3.1, we need the following lemma, which is stated and proved (as Lemma
12) in [2]. (It is a one-sided variant of Wald’s identity.)

Lemma 3.6. Let X1, X2, . . . denote random variables with bounded range, let g > 0 and
let T = min{t | X1 + · · · + Xt ≥ g}. If E(T ) < ∞ and E(Xt | T ≥ t) ≤ C for all t ∈ N,
then E(T ) ≥ g/C.
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Proof of 3.1: Since St = 0 if and only if Φt = 0 (Lemma 3.4(b)), the stopping time TΦ =
min{t | Φt = 0} of the potential reaching 0 satisfies TΦ = TS . Thus, to prove Theorem 3.1,
it is sufficient to show that E(TΦ) = Ω((log n)2). For this, we let Xt = Φt−1 − Φt, the
progress made in step t in terms of the potential. By Lemma 3.5, E(Xt | St−1 = s) ≤ C,
for all s ≥ 1, and hence

E(Xt | T ≥ t) = E(Xt | Φ(St−1) > 0) ≤ C .

Observe that X1+· · ·+Xt = Φ0−Φt and hence TΦ = min{t | X1+· · ·+Xt ≥ Φ0}. Applying
Lemma 3.6, and combining with Lemma 3.4, we get that E(TΦ) ≥ Φ0/C = Ω((log n)2),
which proves Theorem 3.1.

The only missing part to fill in is the proof of Lemma 3.5.

3.4. Proof of the Main Lemma (Lemma 3.5)

Fix s ∈ [1, n], and assume St−1 = s. Our aim is to show that the “expected potential
loss” is constant, i. e., that

E(Φt − Φt−1 | St−1 = s) = O(1).

Clearly, E(Φt − Φt−1 | St−1 = s) =
∑

0≤x≤s∆(s, x), where

∆(s, x) =
(
Φ(s)− Φ(x)

) ·Pr(St = x | St−1 = s). (3.8)

We show that
∑

0≤x≤s ∆(s, x) is bounded by a constant, by considering ∆(s, s), ∆(s, 0),
and

∑
1≤x<s ∆(s, x) separately.

For x = s, the potential difference Φ(s)− Φ(x) is 0, and thus

∆(s, s) = 0. (3.9)

Bounding ∆(s, 0): According to the definition of the process S, a step from St−1 = s to
St = 0 has probability F (s)/s. Since Φ(0) = 0, the potential difference is Φ(s). Thus, we
obtain

∆(s, 0) =
1
s
·
∑
d≤s

µ(d)

 ·
∑
a≤s

ϕa

 =
1
s
·
∑
a≤s

∑
d≤s

µ(d)∑
b≤a

µ(b)
√
ab+

∑
a<b≤n

µ(b)a3/2/
√
b

≤ 1
s
·
∑
a≤s

δ(a), where δ(a) =

∑
b≤s

µ(b)∑
b≤a

µ(b)
√
ab+

∑
a<b≤s

µ(b)a3/2/
√
b
.

We bound δ(a). For b ≤ a and µ(b) 6= 0, the quotient of the summands in the numerator
and denominator of δ(a) that correspond to b is 1/

√
ab ≤ √a/a ≤ √s/a. For a < b and

µ(b) 6= 0, the quotient is
√
b/a3/2 ≤ √s/a. Thus, δ(a) ≤

√
s
a . This implies (recall that

Hs =
∑

a≤d≤s
1
a):

∆(s, 0) ≤ 1
s
·
∑
a≤s

√
s/a ≤ Hs√

s
≤ ln(s) + 1√

s
< 2. (3.10)
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Bounding
∑

1≤x<s ∆(s, x): Assume 1 ≤ x < s. According to the definition of the process
S,

Pr(St−1 = x | St = s) =
x

s
· (µ(x+ 1) + µ(s− x)

)
.

The potential difference is Φ(s)− Φ(x) =
∑

x<a≤s ϕa. Thus we have∑
1≤x<s

∆(s, x) =
∑

1≤x<s

∑
x<a≤s

ϕa · x
s
· (µ(x+ 1) + µ(s− x)

)
=

1
s
·
∑

1<a≤s
(λa + γa), (3.11)

where λa = ϕa ·
∑

1≤x<a µ(x+ 1)x and γa = ϕa ·
∑

1≤x<a µ(s− x)x. We bound λa and γa
separately. Observe first that

λa = ϕa ·
∑

2≤x≤a
µ(x)(x− 1)

≤

∑
1≤x≤a

µ(x)(x− 1)∑
1≤b≤a

µ(b) ·
√
ab+

∑
a<b≤n

µ(b)a3/2/
√
b
≤

∑
1≤b≤a

µ(b)(b− 1)∑
1≤b≤a

µ(b)
√
ab .

(3.12)

(We used the definition of ϕa, and omitted some summands in the denominator.) Recall
that µ(1) > 0, so the denominator is not zero. For each b ≤ a we clearly have µ(b)(b −
1) ≤ µ(b)

√
ab, thus the sum in the numerator in (3.12) is smaller than the sum in the

denominator, and we get λa < 1.
Next, we bound γa for a ≤ s:

γa = ϕa ·
∑

1≤x<a
µ(s− x)x = ϕa ·

∑
s−a<x<s

µ(x) (s− x)

=

∑
s−a<x≤a

µ(x)(s− x) +
∑

max{a,s−a}<x<s
µ(x)(s− x)

∑
1≤b≤a

µ(b)
√
ab+

∑
a<b≤n

µ(b)a3/2/
√
b

.

The denominator is not zero because µ(1) > 0. Hence, if µ(x) = 0 for all s − a < x < s,
then γa = 0. Otherwise, by omitting some of the summands in the denominator we obtain

γa ≤

∑
s−a<b≤a

µ(b) (s− b) +
∑

max{a,s−a}<b<s
µ(b) (s− b)

∑
s−a<b≤a

µ(b)
√
ab+

∑
max{a,s−a}<b<s

µ(b)a3/2/
√
b

(If a ≤ s/2, the first sum in both numerator and denominator is empty.) Now consider
the quotient of the summands for each b with µ(b) > 0. For s− a < b ≤ a, this quotient is

µ(b) (s− b)
µ(b)
√
ab
≤ a− 1√

a · (s− a+ 1)
<

√
a

s− a+ 1
≤
√

s

s− a+ 1
.

For max{a, s− a} < b < s, the quotient of the corresponding summands is

µ(b)(s− b)
µ(b)a3/2/

√
b
≤ min{a, s− a} · √b

a3/2
≤ a · √s

a3/2
=
√
s

a
.
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Hence, γa ≤
√
s/(s− a+ 1) +

√
s/a. Plugging this bound on γa and the bound λa < 1 into

(3.11), and using that∑
1≤a≤s

1√
a

= 1 +
∑

2≤a≤s

1√
a
< 1 +

∫ s

1

dx√
x

= 1 + [2
√
x]s1 = 1 + 2

√
s− 2 < 2

√
s,

we obtain∑
1≤x<s

∆(s, x) <
1
s
·
∑

1<a≤s

(
1 +

√
s

a
+
√

s

s− a+ 1

)

< 1 +
1√
s

 ∑
1<a≤s

√
1
a

+
∑

1≤a<s

√
1
a

 < 1 +
2√
s

∑
1≤a≤s

1√
a
< 1 +

2√
s
· 2√s = 5. (3.13)

Summing up the bounds from (3.9), (3.10), and (3.13), we obtain

E(Φt − Φt−1 | St−1 = s) ≤ ∆(s, 0) +
∑

1≤x<s
∆(s, x) + ∆(s, s) < 2 + 5 + 0 = 7.

Thus Lemma 3.5 is proved.

4. Open problems

1. We conjecture that the method can be adapted to the continuous case to prove a
lower bound of Ω((log(1/ε)2) for approximating the minimum of some unimodal function
f by a scale-invariant search strategy (see Section 1.1).

2. It is an open problem whether our method can be used to prove a lower bound of
Ω((log n)2) for finding the minimum of an arbitrary unimodal function f : {0, . . . , n} → R

by a scale invariant search strategy.
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DISCRETE JORDAN CURVE THEOREM:
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Abstract. This paper presents a formalized proof of a discrete form of the Jordan Curve
Theorem. It is based on a hypermap model of planar subdivisions, formal specifications
and proofs assisted by the Coq system. Fundamental properties are proven by structural
or noetherian induction: Genus Theorem, Euler’s Formula, constructive planarity criteria.
A notion of ring of faces is inductively defined and a Jordan Curve Theorem is stated and
proven for any planar hypermap.

Introduction

This paper presents a formal statement and an assisted proof of a Jordan Curve The-
orem (JCT) discrete version. In its common form, the theorem says that the complement
of a continuous simple closed curve (a Jordan curve) C in an affine real plane is made of
two connected components whose border is C, one being bounded and the other not. The
discrete form of JCT we deal with states that in a finite subdivision of the plane, breaking
a ring R of faces increases by 1 the connectivity of the subdivision. It is a weakened version
of the original theorem where the question of bound is missing. However, it is widely used
in computational geometry and discrete geometry for imaging, where connection is the es-
sential information (14; 9). In fact, we only are in a combinatoric framework, where any
embedding is excluded, and where bounding does not make sense.

In computational topology, subdivisions are best described by map models, the most
general being hypermaps (15; 4). We propose a purely combinatorial proof of JCT based
on this structure. The hypermap framework is entirely formalized and the proofs are de-
veloped interactively and verified by the Coq proof assistant (3). Using an original way
to model, build and destruct hypermaps, the present work brings new simple constructive
planarity and connectivity criteria. It proposes a new direct expression of JCT and a simple
constructive proof with algorithmic extensions. It is also a large benchmark for the software
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specification framework we have been developing in the last fifteen years for map models
used in geometric modeling and computer imagery (2; 7; 8).

The useful Coq features are reminded and the whole process is described, but the full
details of the proofs are omitted. Section 1 summarizes related work. Section 2 recalls some
mathematical materials. Section 3 proposes basic hypermap specifications. Section 4 proves
constructive criteria of hypermap planarity and connectivity. Section 5 inductively specifies
the rings and their properties. Section 6 proves the discrete JCT. Section 7 concludes.

1. Related work

The JCT is a result of classical plane topology, first stated by C. Jordan in 1887,
but of which O. Veblen gives the first correct proof in 1905. In 1979, W.T. Tutte proposes
operations and properties of combinatorial maps, e.g. planarity and Euler’s Formula, defines
rings and proves a discrete JCT (15). Our theorem statement is comparable, but our
framework is modeled differently and all our proofs are formalized and computer-assisted.

In 2003, G. Bauer and T. Nipkow specify planar graphs and triangulations in Is-
abelle/Isar to carry out interactive proofs of Euler’s Formula and of the Five Colour The-
orem (1). However, they do not approach the JCT. In 2005, A. Kornilowicz designs for
the MIZAR project a semi-automated classical proof of a continuous form of JCT in an
Euclidean space (13). In 2005 also, on his way towards the proof of the Kepler conjecture
in the Flyspeck projet, T. Hales proves the JCT for planar rectangular grids with the HOL
Light system, following the Kuratowski characterization of planarity (12).

In 2005 always, G. Gonthier et al. prove the Four Colour Theorem using Coq. Plane
subdivisions are described by hypermaps, and Euler’s Formula is used as a global planarity
criterion (10). A local criterion, called hypermap Jordan property, is proven equivalent. The
main part of this work is the gigantic proof of the Four Colour Theorem with hypermaps
and sophisticated proof techniques. The hypermap formalization is very different from ours
and it seems that JCT is not explicitly proven there. Finally, since 1999, we carry out
experiments with Coq for combinatorial map models of space subdivisions (5; 7; 8).

2. Mathematical Aspects

Definition 2.1 (Hypermap). A hypermap is an algebraic structure M = (D,α0, α1), where
D is a finite set whose elements are called darts, and α0, α1 are permutations on D.

If y = αk(x), y is the k-successor of x, x is the k-predecessor of y, and x and y are said
to be k-linked.

In Fig. 1, as functions α0 and α1 on D = {1, . . . , 15} are permutations, M = (D,α0, α1)
is a hypermap. It is drawn on the plane by associating to each dart a curved arc oriented
from a bullet to a small stroke: 0-linked (resp. 1-linked) darts share the same small stroke
(resp. bullet). By convention, in the drawings of hypermaps on surfaces, k-successors turn
counterclockwise around strokes and bullets. Let M = (D,α0, α1) be a hypermap.

Definition 2.2. (Orbits and hypermap cells)
(1) Let f1, . . . , fn be n functions in D. The orbit of x ∈ D for f1, . . . , fn is the subset of D
denoted by 〈f1, . . . , fn〉(x), the elements of which are accessible from x by any composition
of f1, . . . , fn.
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Figure 1: An example of hypermap.

(2) In M , 〈α0〉(x) is the 0-orbit or edge of dart x, 〈α1〉(x) its 1-orbit or vertex, 〈φ〉(x) its
face for φ = α−1

1 ◦ α−1
0 , and 〈α0, α1〉(x) its (connected) component.

In Fig. 1 the hypermap contains 7 edges (strokes), 6 vertices (bullets), 6 faces and 3
components. For instance, 〈α0〉(3) = {3, 5, 4} is the edge of dart 3, 〈α1〉(3) = {3, 4, 1, 2} its
vertex. Faces are defined, through φ, for a dart traversal in counterclockwise order, when
the hypermap is drawn on a surface. Then, every face which encloses a bounded (resp.
unbounded) region on its left is called internal (resp. external). In Fig. 1, the (internal)
face of 8 is 〈φ〉(8) = {8, 10} and the (external) face of 13 is 〈φ〉(13) = {13}. Let d, e, v, f
and c be the numbers of darts, edges, vertices, faces and components of M .

Definition 2.3. (Euler characteristic, genus, planarity)
(1) The Euler characteristic of M is χ = v + e + f − d.
(2) The genus of M is g = c− χ/2.
(3) When g = 0, M is said to be planar.

For instance, in Fig. 1, χ = 6 + 6 + 7− 15 = 4 and g = 3−χ/2 = 1. Consequently, the
hypermap is non planar. These values satisfy the following results:

Theorem 2.4 (of the Genus). χ is an even integer and g is a natural number.

Corollary 2.5 (Euler Formula). A non empty connected − i.e. with c = 1 − planar
hypermap satisfies v + e + f − d = 2.

When D 6= ∅, the representation of M on an orientable closed surface is a mapping of
edges and vertices onto points, darts onto open oriented Jordan arcs, and faces onto open
connected regions. It is an embedding when every component of M realizes a partition of
the surface. Then, the genus of M is the minimum number of holes in an orientable closed
surface where such an embedding is possible, thus drawing a subdivision, or a polyhedron,
by hypermap component (11). For instance, all the components of the hypermap in Fig. 1
can be embedded on a torus (1 hole) but not on a sphere or on a plane (0 hole). When a
(planar) hypermap component is embedded on a plane, the corresponding subdivision has
exactly one unbounded (external) face. But a non planar hypermap can never be embedded
on a plane: in a drawing on a plane, some of its faces are neither internal nor external, e.g.
〈φ〉(1) = {1, 5, 2, 11, 12, 7, 6, 4, 9} in Fig. 1. Conversely, any subdivision of an orientable
closed surface can be modeled by a hypermap. In fact, the formal presentation which
follows is purely combinatorial, i.e without any topological or geometrical consideration.

2.1. Rings of faces and Jordan Curve Theorem

To state the version of JCT we will prove, we need the concepts of double-link, adjacent
faces and ring of faces in a hypermap M = (D,α0, α1).
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Figure 2: Break of M along a ring R of length n = 4 giving M ′.

Definition 2.6. (Double-link and adjacent faces)
(1) A double-link is a pair of darts (y, y ′) where y and y′ belong to the same edge.
(2) The faces F and F ′ of M are said to be adjacent by the double-link (y, y ′) if y is a dart
of F and y′ a dart of F ′.

We choose a face adjacency by an edge rather than by a vertex as does W.T. Tutte (15).
In fact, due to the homogeneity of dimensions 0 and 1 in a hypermap, both are equivalent.

Definition 2.7. (Ring of faces)
A ring of faces R of length n in M is a non empty sequence of double-links (yi, y

′
i), for

i = 1, . . . , n, with the following properties, where Ei and Fi are the edge and face of yi:
(0) Unicity: Ei and Ej are distinct, for i, j = 1, . . . , n and i 6= j;
(1) Continuity: Fi and Fi+1 are adjacent by the double-link (yi, y

′
i), for i = 1, . . . , n− 1;

(2) Circularity, or closure: Fn and F1 are adjacent by the double-link (yn, y′n);
(3) Simplicity: Fi and Fj are distinct, for i, j = 1, . . . , n and i 6= j.

This notion simulates a Jordan curve represented in dotted lines in Fig. 2 on the left
for n = 4. Then, we define the break along a ring, illustrated in Fig. 2 on the right.

Definition 2.8. (Break along a ring)
Let R be a ring of faces of length n in M . Let Mi = (D,α0,i, α1), for i = 0, . . . , n, be a
hypermap sequence, where the α0,i are recursively defined by:
(1) i = 0: α0,0 = α0;
(2) 1 ≤ i ≤ n: for each dart z of D: α0,i(z) = if α0,i−1(z) = yi then y′i else if α0,i−1(z) = y′i
then yi else α0,i−1(z).
Then, Mn = (D,α0,n, α1) is said to be obtained from M by a break along R.

Finally, the theorem we will prove in Coq mimics the behaviour of a cut along a simple
Jordan curve of the plane (or of the sphere) into two components:

Theorem 2.9 (Discrete Jordan Curve Theorem). Let M be a planar hypermap with c
components, R be a ring of faces in M , and M ′ be the break of M along R. The number c′
of components of M ′ is such that c′ = c + 1.

3. Hypermap specifications

3.1. Preliminary specifications

In Coq, we first define an inductive type dim for the two dimensions at stake:
Inductive dim:Set:= zero: dim | one: dim.
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Figure 3: A hypermap with its incompletely linked orbits.

All objects being typed in Coq, dim has the type Set of all concrete types. Its constructors
are the constants zero and one. In each inductive type, the generic equality predicate = is
built-in but its decidability is not, because Coq’s logic is intuitionistic. For dim, the latter
can be established as the lemma:
Lemma eq_dim_dec: forall i j : dim, {i=j}+{~i=j}.

Once it is made, its proof is an object of the sum type {i=j}+{~i=j}, i.e. a function, named
eq dim dec, that tests whenever its two arguments are equal. The lemma is interactively
proven with some tactics, the reasoning being merely a structural induction on both i and
j, here a simple case analysis. Indeed, from each inductive type definition, Coq generates
an induction principle, usable either to prove propositions or to build total functions on the
type. We identify the type dart and its equality decidability eq dart dec with the built-in
nat and eq nat dec. Finally, to manage exceptions, a nil dart is a renaming of 0:
Definition dart:= nat.
Definition eq_dart_dec:= eq_nat_dec.
Definition nil:= 0.

3.2. Free maps

The hypermaps are now approached by a general notion of free map, thanks to a free
algebra of terms of inductive type fmap with 3 constructors, V, I and L, respectively for the
empty (or void) map, the insertion of a dart, and the linking of two darts:
Inductive fmap:Set:=

V : fmap | I : fmap->dart->fmap | L : fmap->dim->dart->dart->fmap.

For instance, the hypermap in Fig. 1 can be modeled by the free map represented in Fig.3
where the 0- and 1-links by L are represented by arcs of circle, and where the orbits remain
open. Again, Coq generates an induction principle on free maps.

Next, observers of free maps can be defined. The predicate exd express that a dart
exists in a hypermap. Its definition is recursive, which is indicated by Fixpoint, thanks
to a pattern matching on m written match m with.... The attribute {struct m} allows
Coq to verify that the recursive calls are performed on smaller fmap terms, thus ensuring
termination. The result is False or True, basic constants of Prop, the built-in type of
propositions. Note that terms are in prefix notation and that is a place holder:
Fixpoint exd(m:fmap)(z:dart){struct m}:Prop:=
match m with

V => False | I m0 x => z=x \/ exd m0 z | L m0 _ _ _ => exd m0 z
end.
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The decidability exd dec of exd directly derives, thanks to a proof by induction on m. Then,
a version, denoted A, of operation αk of Definition 2.1 completed with nil for convenience
is written as follows, the inverse A 1 being similar:
Fixpoint A(m:fmap)(k:dim)(z:dart){struct m}:dart:=
match m with

V => nil | I m0 x => A m0 k z | L m0 k0 x y =>
if eq_dim_dec k k0 then if eq_dart_dec z x then y else A m0 k z
else A m0 k z

end.

Predicates succ and pred express that a dart has a k-successor and a k-predecessor (not
nil), with the decidabilities succ dec and pred dec. In hypermap m of Fig. 3, A m zero 4
= 3, A m zero 5 = nil, succ m zero 4 = True, succ m zero 5 = False, A 1 m one
2 = 1. In fact, when a k-orbit remains open, which will be required in the following, we
can obtain its top and bottom from one of its dart z. Then, we can do as if the k-orbit
were closed, thanks to the operations cA and cA 1 which close A and A 1, in a way similar
to operation K of W.T. Tutte (15). For instance, in Fig. 3, top m one 1 = 3, bottom m
one 1 = 4, cA m one 3 = 4, cA 1 m one 4 = 3.

Finally, destructors are also recursively defined. First, D:fmap->dart->fmap deletes
the latest insertion of a dart by I. Second, B, B :fmap->dim->dart->fmap break the latest
k-link inserted for a dart by L, forward and backward respectively.

3.3. Hypermaps

Preconditions written as predicates are introduced for I and L:
Definition prec_I(m:fmap)(x:dart):= x <> nil /\ ~ exd m x.
Definition prec_L(m:fmap)(k:dim)(x y:dart):=
exd m x /\ exd m y /\ ~ succ m k x /\ ~ pred m k y /\ cA m k x <> y.

If I and L are used under these conditions, the free map built necessarily has open orbits.
In fact, thanks to the closures cA and cA 1, it can always be considered as a true hypermap
exactly equipped with operations αk of Definition 2.1. It satisfies the invariant:
Fixpoint inv_hmap(m:fmap):Prop:=
match m with

V => True | I m0 x => inv_hmap m0 /\ prec_I m0 x
| L m0 k0 x y => inv_hmap m0 /\ prec_L m0 k0 x y

end.

Such a hypermap was already drawn in Fig. 3. Fundamental proven properties are that,
for any m and k, (A m k) and (A 1 m k) are injections inverse of each other, and (cA m k)
and (cA 1 m k) are permutations inverse of each other, and are closures. Finally, traversals
of faces are based on function F and its closure cF, which correspond to φ (Definition 2.2).
So, in Fig. 3, F m 1 = nil, cF m 1 = 5. Properties similar to the ones of A, cA are proven
for F, cF and their inverses F 1, cF 1.

3.4. Orbits

Testing if there exists a path from a dart to another in an orbit for a hypermap permu-
tation is of prime importance, for instance to determine the number of orbits. The problem
is exactly the same for α0, α1 or φ (Definitions 2.1 and 2.2). That is why a signature Sigf
with formal parameters f, f 1 and their properties is first defined.
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Figure 4: Linking at dimension 0.

Next, a generic module (or functor) Mf(M:Sigf), the formal parameter M being a module
of type Sigf, is written in Coq to package generic definitions and proven properties about
f and f 1. Among them, we have that each f-orbit of m is periodic with a positive smallest
uniform period for any dart z of the orbit. The predicate expo m z t asserts the existence
of a path in an f-orbit of m from a dart z to another t, which is proven to be a decidable
equivalence. Note that most of the properties are obtained by noetherian induction on the
length of iterated sequences of f-successors, bounded by the period.

Appropriate modules, called MA0, MA1 and MF, are written to instantiate for (cA m
zero), (cA m one) and (cF m) definitions and properties of f. So, a generic definition or
property in Mf(M) has to be prefixed by the module name to be concretely applied. For
instance, MF.expo m z t is the existence of a path from z to t in a face. In the following,
MF.expo is abbreviated into expf. For instance, in Fig. 3, expf m 1 5 = True, expf m
5 3 = False. Finally, a binary relation eqc stating that two darts belong to the same
component is easily defined by induction. For instance, in Fig. 3, we have eqc m 1 5 =
True, eqc m 1 13 = False. We quickly prove that (eqc m) is a decidable equivalence.

3.5. Characteristics, Genus Theorem and Euler Formula

We now count cells and components of a hypermap using the Coq library module ZArith
containing all the features of Z, the integer ring, including tools to solve linear systems in
Presburger’s arithmetics. The numbers nd, ne, nv, nf and nc of darts, edges, vertices, faces
and components are easily defined by induction. Euler’s characteristic ec and genus derive.
The Genus Theorem and the Euler Formula (for any number (nc m) of components) are
obtained as corollaries of the fact that ec is even and satisfies 2 * (nc m) >= (ec m) (8).
Remark that -> denotes a functional type in Set as well as an implication in Prop:
Definition ec(m:fmap): Z:= nv m + ne m + nf m - nd m.
Definition genus(m:fmap): Z:= (nc m) - (ec m)/2.
Definition planar(m:fmap): Prop:= genus m = 0.
Theorem Genus_Theorem: forall m:fmap, inv_hmap m -> genus m >= 0.
Theorem Euler_Formula: forall m:fmap, inv_hmap m -> planar m ->

ec m / 2 = nc m.

4. Planarity and connectivity criteria

A consequence of the previous theorems is a completely constructive criterion of pla-
narity, when one correctly links with L at dimensions 0 or 1, e.g. for 0:
Theorem planarity_crit_0: forall (m:fmap)(x y:dart),

inv_hmap m -> prec_L m zero x y -> (planar (L m zero x y) <->
(planar m /\ (~ eqc m x y \/ expf m (cA_1 m one x) y))).
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So, the planarity of m is preserved for (L m zero x y) iff one of the following two conditions
holds: (1) x and y are not in the same component of m; (2) x 1 = (cA 1 m one x) and
y are in the same face of m, i.e. the linking operates inside the face containing y. Fig. 4
illustrates 0-linking inside a face, giving two new faces, and between two (connected) faces,
giving a new face, thus destroying planarity. Finally, after a long development, we prove
the expected planarity criterion, when breaking a link with B, at any dimension, e.g. for 0:
Lemma planarity_crit_B0: forall (m:fmap)(x:dart), inv_hmap m ->

succ m zero x -> let m0 := B m zero x in let y := A m zero x in
(planar m <-> (planar m0 /\ (~ eqc m0 x y \/ expf m0 (cA_1 m0 one x) y))).

Such a lemma is easy to write/understand as a mirror form of the 0-linking criterion, but it
is much more difficult to obtain. It would be fruitful to relate these constructive/destructive
criteria with the static one of G. Gonthier (10). Finally, some useful results quickly char-
acterize the effect of a link break on the connectivity of a planar hypermap. For instance,
when 0-breaking x, a disconnection occurs iff expf m y x0:
Lemma disconnect_planar_criterion_B0:forall (m:fmap)(x:dart),

inv_hmap m -> planar m -> succ m zero x ->
let y := A m zero x in let x0 := bottom m zero x in

(expf m y x0 <-> ~eqc (B m zero x) x y).

5. Rings of faces

5.1. Coding a double-links and identifying a face

Since an edge is always open in our specification, when doing the backward break of a
unique 0-link from y or y’, we in fact realize a double-link break, as in Definition 2.8. So,
we choose to identify a double-link by the unique dart, we called x, where the 0-link to be
broken begins. In fact, with respect to the face F on the left of the double-link in the ring,
there are two cases, depending on the position of x and its forward 0-link, as shown in Fig.
5 (a) and (b). We decided to distinguish them by a Boolean b. Then, a double-link is coded
by a pair (x, b). So, we implicitely identify each ring face F by the double-link coding on
its right in the ring. In Fig. 5 (a), face F is identified by (x, true) and contains y:= A m
zero x, whereas in Fig. 5 (b), face F is identified by (x, false) and contains x0:= bottom
m zero x. These modeling choices considerably simplify the problems. Indeed, in closed
orbits, a true double-link break would entail 2 applications of B followed by 2 applications
of L, and would be much more complicated to deal with in proofs.
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5.2. Modeling a ring of faces

First, we inductively define linear lists of pairs of booleans and darts, with the two
classical constructors lam and cons, and usual observers and destructors, which we do not
give, because their effect is directly comprehensible:
Inductive list:Set := lam: list | cons: dart*bool -> list -> list.

Such a list is composed of couples (x, b), each identifying a face F: if b is true, F is
represented by y:= A m zero x, otherwise by x0:= bottom m zero x (Fig. 5). In the
following, Bl m l breaks all the 0-links starting from the darts of list l in a hypermap
m. Now, we have to model the conditions required for list l to be a ring of hypermap m.
Translating Definition 2.7, we have four conditions, called pre ringk m l, for k = 0, . . . , 3,
which we explain in the following sections. Finally, a predicate ring is defined by:
Definition ring(m:fmap)(l:list):Prop:= ~emptyl l /\

pre_ring0 m l /\ pre_ring1 m l /\ pre_ring2 m l /\ pre_ring3 m l.

5.3. Ring Condition (0): unicity

The predicate distinct edge list m x l0 saying that the edges of l0 are distinct in
m from a given edge of x, pre ring0 m l is defined recursively on l to impose that all edges
in l are distinct: Condition (0) of Definition 2.7. It also imposes that each dart in l has
a 0-successor, in order to have well defined links, which is implicit in the mathematical
definition, but not in our specification whith open orbits.
Fixpoint pre_ring0(m:fmap)(l:list){struct l}:Prop:=
match l with

lam => True | cons (x,_) l0 =>
pre_ring0 m l0 /\ distinct_edge_list m x l0 /\ succ m zero x

end.

5.4. Ring Condition (1): continuity

Then, we define adjacency between two faces identified by xb = (x, b) and xb’ =
(x’, b’), along the link corresponding to xb:
Definition adjacent_faces(m:fmap)(xb xb’:dart*bool):=
match xb with (x,b) => match xb’ with (x’,b’) =>
let y := A m zero x in let y’:= A m zero x’ in
let x0 := bottom m zero x in let x’0:= bottom m zero x’ in

if eq_bool_dec b true
then if eq_bool_dec b’ true then expf m x0 y’ else expf m x0 x’0
else if eq_bool_dec b’ true then expf m y y’ else expf m y x’0

end end.

This definition is illustrated in Fig. 6 for the four possible cases of double-link codings.
So, the predicate pre ring1 m l recursively specifies that two successive faces in l are
adjacent: Condition (1) in Definition 2.7:
Fixpoint pre_ring1(m:fmap)(l:list){struct l}:Prop:=
match l with
lam => True | cons xb l0 => pre_ring1 m l0 /\
match l0 with lam => True | cons xb’ l’ => adjacent_faces m xb xb’ end

end.
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5.5. Ring Condition (2): circularity, or closure

The predicate pre ring2 m l specifies that the last and first faces in l are adjacent:
Condition (2) of circularity in Definition 2.7:
Definition pre_ring2(m:fmap)(l:list):Prop:=
match l with

lam => True | cons xb l0 =>
match xb with (x,b) => let y := A m zero x in match l0 with

lam => let x0 := bottom m zero x in expf m y x0
| cons _ l’ => let xb’:= last l0 in adjacent_faces m xb’ xb
end end

end.

5.6. Ring Condition (3): simplicity

The predicate specifiying that the faces of m identified by xb and xb’ are distinct is
easy to write by cases on the Booleans in xb and xb’. The predicate distinct face list
m xb l0 expressing that the face identified by xb is distinct from all faces of list l0 entails.
Then, the predicate pre ring3 m l says that all faces of l are distinct: Condition (3) in
Definition 2.7:
Fixpoint pre_ring3(m:fmap)(l:list){struct l}:Prop:=
match l with
lam => True | cons xb l0 => pre_ring3 m l0 /\ distinct_face_list m xb l0

end.

6. Discrete Jordan Curve Theorem

The general principle of the JCT proof for a hypermap m and a ring l is a structural
induction on l. The case where l is empty is immediatly excluded because l is not a ring
by definition. Thus the true first case is when l is reduced to one element, i.e. is of the
form cons (x, b) lam. Then, we prove the following lemma as a direct consequence of the
planarity criterion planarity crit B0 and the criterion face cut join criterion B0:
Lemma Jordan1:forall(m:fmap)(x:dart)(b:bool), inv_hmap m -> planar m ->

let l:= cons (x,b) lam in ring m l -> nc (Bl m l) = nc m + 1.

When a ring l1 contains at least two elements, we prove that the condition ~expf m y
x0 must hold with the first element (x,b) of l1 (in fact, conditions (1) and (3) are enough):
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Lemma ring1_ring3_connect:
forall(m:fmap)(x x’:dart)(b b’:bool)(l:list), inv_hmap m ->
let l1:= cons (x,b) (cons (x’,b’) l) in
let y:=A m zero x in let x0:= bottom m zero x in

planar m -> pre_ring1 m l1 -> pre_ring3 m l1 -> ~expf m y x0.

In this case, thanks to disconnect planar criterion B0 (Section 4), the lemma entails
that the break of the first ring link does never disconnect the hypermap. Then, after
examining the behavior of pre ringk, for k = 0, . . . , 3, we are able to prove the following
lemma which states that the four ring properties are preserved after the first break in l:
Lemma pre_ring_B: forall(m:fmap)(l:list), inv_hmap m -> planar m ->
let x := fst (first l) in let y := A m zero x in
let x0 := bottom m zero x in let m1 := B m zero x in

~expf m y x0 -> ring m l -> (pre_ring0 m1 (tail l) /\ pre_ring1 m1 (tail l)
/\ pre_ring2 m1 (tail l) /\ pre_ring3 m1 (tail l)).

The most difficult is to prove the part of the result concerning pre ringk, for k = 0, . . . , 3.
The four proofs are led by induction on l in separate lemmas. For pre ring0, the proof is
rather simple. But, for the other three, the core is a long reasoning where 2, 3 or 4 links are
involved in input. Since each link contains a Boolean, sometimes appearing also in output,
until 24 = 16 cases are to be considered to combine the Boolean values.

Finally, from Jordan1 and pre ring B above, we have the expected result by a quick
reasoning by induction on l, where links are broken one by one from the first:
Theorem Jordan: forall(l:list)(m:fmap),

inv_hmap m -> planar m -> ring m l -> nc (Bl m l) = nc m + 1.

It is clear that, provided a mathematical hypermap M and a mathematical ring R conform to
Definitions 2.1 and 2.7, we can always describe them as terms of our specification framework
in order to apply our JCT. Conversely, given a hypermap term, some mathematical rings
cannot directly be written as terms. To do it, our ring description and our JCT proof have
to be slightly extended. However, that is not necessary for the combinatorial maps (where
α0 is an involution) terms, for which our ring specification and our JCT formalization are
complete. This is more than enough to affirm the value of our results.

7. Conclusion

We have presented a new discrete statement of the JCT based on hypermaps and
rings, and a formalized proof assisted by the Coq system. Our hypermap modeling with
open orbits simplifies and precises most of known facts. It also allows to obtain some new
results, particularly about hypermap construction/destruction, connection/disconnection
and planarity. This work involves a substantial framework of hypermap specification, which
is built from scratch, i.e. exempt from any proper axiom. It is basically the same as the
one we have designed to develop geometric modelers via algebraic specifications (2). So, we
know how to efficiently implement all the notions we formally deal with.

The Coq system turned out to be a precious auxiliary to guide and check all the process
of specification and proof. The preexistent framework of hypermap specification represents
about 15,000 lines of Coq, and the JCT development about 5,000 lines, including about 25
new definitions, and 400 lemmas and theorems. Note that all results about the dimension 0
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were actually proven, but some planarity properties about dimension 1, which are perfectly
symmetrical, have just been admitted. However, the JCT formal proof is complete.

So, we have a solid foundation to tackle any topological problem involving orientable
surface subdivisions. Extensions are in 2D or 3D computational geometry and geometric
modeling by introducing embeddings (6; 2), and computer imagery by dealing with pixels
(7) or voxels.
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1. Introduction

1.1. Graph Trimming

In this paper we investigate the problem of deleting vertices from a given graph so as to
ensure that all simple paths in the remaining graph are short. We assume that each vertex
has a nonnegative weight, and we want to delete vertices of small total weight. Whereas
there is an extensive literature on separators, which can be viewed as serving to destroy all
large connected components, we are not aware of previous work on vertex sets that destroy
all long simple paths. Let us make our notions precise.

Definition 1.1. For t > 0 and g ≥ 0, a (t, g)-trimming of a vertex-weighted graph G =
(V,E) of total weight W is a set U ⊆ V of weight at most W/t such that every simple path
in G of more than g edges contains a vertex in U . If G has a (t, g)-trimming, we also say
that G is (t, g)-trimmable.

We say that a family of graphs is trimmable if, for every constant t > 0, there is a
constant g ≥ 0 (that depends only on t) such that every vertex-weighted graph in the
family is (t, g)-trimmable. Of course, it suffices to demonstrate this for t larger than an
arbitrary constant. Not every family of graphs is trimmable. For example, if n, t ≥ 2 and
we delete a (1/t)-fraction of the vertices in an unweighted n-clique Kn, the remaining graph
still has a simple path of n(1−1/t)−1 edges. This expression is not bounded by a function
of t alone, so the family of complete graphs is not trimmable.

With a little effort, one can show the family of trees to be trimmable. One popular
generalization of trees is based on the definition below. Given a graph G = (V,E) and a
set U ⊆ V , we denote by G[U ] the subgraph of G induced by U . The union of graphs
Gi = (Vi, Ei), for i = 1, . . . ,m, is the graph

⋃m
i=1 Gi = (

⋃m
i=1 Vi,

⋃m
i=1 Ei).

Definition 1.2. A tree decomposition of an undirected graph G = (V,E) is a pair (T,B),
where T = (X,ET ) is a tree and B : X → 2V maps each node x of T to a subset of V ,
called the bag of x, such that

• ⋃
x∈X G[B(x)] = G, and

• for all x, y, z ∈ X, if y is on the path from x to z in T , then B(x) ∩B(z) ⊆ B(y).
The width of the tree decomposition (T,B) is maxx∈X |B(x)| − 1, and the treewidth of G is
the smallest width of any tree decomposition of G.

This standard definition is given, e.g., by Bodlaender [Bod98]. The family of graphs
of treewidth at most 1 coincides with the family of forests. By analogy with several other
generalizations from the family of trees to families of graphs of bounded treewidth, it seems
natural to ask whether every family of graphs of bounded treewidth is trimmable. At present
we cannot answer this question; we need a concept stronger than bounded treewidth alone.

Definition 1.3. The elongation of a tree decomposition (T,B) is the maximum number of
edges on a simple path in T between two nodes with intersecting bags. For every s ≥ 0,
let the s-elongation treewidth of an undirected graph G be the smallest width of a tree
decomposition of G with elongation at most s.

Since every graph has a trivial tree decomposition of elongation 0, the s-elongation
treewidth of every graph is well-defined for every s ≥ 0. The 1-elongation treewidth is the
domino treewidth studied, e.g., by Bodlaender [Bod99].
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Our main result about graph trimming, proved in Section 2, is that for all fixed
s ≥ 0, every family of graphs of bounded s-elongation treewidth is trimmable. Ding and
Oporowski [DO95] proved that the domino treewidth of a graph can be bounded by a
function of its usual treewidth and its maximum degree. It follows that every family of
graphs of bounded treewidth and bounded degree is also trimmable. We derive from this
that all families of planar graphs of bounded degree are trimmable as well. This result has
applications described below.

1.2. Label Placement

Our main motivation for investigating trimmable graph families arose in the context
of labeling maps with sliding labels. Generally speaking, map labeling is the problem of
placing a set of labels, each in the vicinity of the object that it labels, while meeting certain
conditions. For an overview, see the map-labeling bibliography [WS96]. First of all, labels
are not allowed to overlap. As a consequence, it may not be possible to label all objects in
a map, and the goal is to make an optimal selection according to some criterion. When a
point feature such as a town or a mountain top is to be labeled, the label can usually be
approximated without much loss by an axes-parallel rectangular shape and must be placed
in the plane without rotation so that its boundary touches the point. One distinguishes
between fixed-position models and slider models. In fixed-position models, each label has
a predetermined finite set of anchor points on its boundary (e.g., the four corner points),
and the label must be placed so that one of its anchor points coincides with the point to be
labeled. In slider models, the anchor points form anchor segments on the boundary of the
label (e.g., its bottom edge).

Van Kreveld et al. [vKSW99] introduced a taxonomy of fixed-position and slider models,
which was later refined by Poon et al. [PSS+03]. We use the slider models 1SH, 2SH and 4S
of Poon et al., which define the anchor segments of a label to be its bottom edge, its top and
bottom edges, and its entire boundary, respectively. We always require labels to be unit-
height rectangles. This models the case in which all labels contain single text lines of the
same character height. Fig. 1 illustrates the 1SH model. We assume that each point to be
labeled comes equipped with a nonnegative weight, which may be used to express priorities
among the points. If points represent villages, towns and cities on a map, priorities may
correspond to the number of inhabitants, for example. Our objective is to label points with
nonoverlapping labels so as to maximize the sum of the weights of those points that actually
receive a label. This objective function causes points with large weights (e.g., large cities)
to be likely to be labeled. We refer to the specific map-labeling problems described in this
paragraph as weighted unit-height 1SH-labeling, etc. Since the qualifiers “weighted” and
“unit-height” apply throughout the paper, we may occasionally omit them.

Recall that for ρ ≤ 1, a ρ-approximation algorithm for a maximization problem is an
algorithm that always outputs a solution of value at least ρ times the optimal objective
value. An algorithm that takes an additional parameter ε > 0 and, for each fixed ε, is a
polynomial-time (1−ε)-approximation algorithm is called a polynomial-time approximation
scheme (PTAS ). If the running time depends polynomially on ε as well, the algorithm is a
fully polynomial-time approximation scheme (FPTAS ).

Poon et al. [PSS+03] show that finding an optimal weighted unit-height 1SH-labeling
is NP-hard, even if all points lie on a horizontal line and the weight of each point equals
the length of its label. For the one-dimensional case, in which all points lie on a horizontal
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Figure 1: A 1SH-labeling L

line, they give an FPTAS, which yields an O(n2/ε)-time (1/2−ε)-approximation algorithm
for the two-dimensional case for arbitrary ε > 0. Poon et al. also describe a PTAS for
unit-square labels. They raise the question of whether a PTAS exists for rectangular labels
of arbitrary length and unit height. This is known to be the case for fixed-position models
[AvKS98] and for sliding labels of unit weight [vKSW99]. The corresponding (1 − ε)-
approximation algorithms run in nO(1/ε) and nO(1/ε2) time, respectively, for arbitrary ε >
0. The question of whether the combination of both sliding labels and arbitrary weights
allows a PTAS has been one of the last major open problems in (theoretical point-feature)
map labeling. In a preliminary version of this paper [EHJ+06], we made some progress
in answering this question. We gave a (2/3 − ε)-approximation for weighted unit-height
1SH-labeling with running time nO(1/ε2), for arbitrary ε > 0, and showed that the same
approach yields a PTAS if the ratio of longest to shortest label length is bounded.

In Section 3 we settle the open question of Poon et al. by presenting a PTAS for
weighted unit-height 1SH-labeling. There are no restrictions on label weights and lengths.
Our approach is to discretize a given instance I of the weighted unit-height 1SH-labeling
problem, i.e., to turn it into a fixed-position instance I ′, after which we can apply a known
fixed-position algorithm to I ′. The main difficulty is to find a “suitable” set of discrete label
positions for each point. “Suitable” means that the weight of an optimal labeling of I ′ must
be close enough to the weight of an optimal labeling of I. Dependencies between labels
can be modeled via a graph, and long simple paths in this graph translate into large sets
of anchor points that cannot be left out of consideration. Here our results from Section 2
come into play. We prove that the family of dependency graphs, if carefully defined, is
trimmable, and we show how this may be used to bound the number of anchor points by a
polynomial. We also show how to extend our PTAS for (weighted unit-weight) 1SH-labeling
to the related 2SH-labeling and 4S-labeling problems.

2. Trimming of Graphs

In this section we show that for every constant s, every family of graphs of bounded
s-elongation treewidth is trimmable. This implies that every family of graphs of bounded
degree is trimmable if the graphs in the family have bounded treewidth or are planar.

Theorem 2.1. Let k, s ≥ 0 and suppose that a vertex-weighted undirected graph G has a
tree decomposition D of width k and elongation s. Take a = k +1 if s ≥ 2 and a = dk/2e if
s ≤ 1. Then, for every integer t ≥ 2, G has a (t, g)-trimming, where g = (2(s+1)t−3)(k+1)
if a ≤ 1 and

g = (a(s+1)t−2(a + 1)− 2)(k + 1)/(a− 1)
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if a ≥ 2. Therefore, for every constant s, every family of graphs of bounded s-elongation
treewidth is trimmable.

Proof. Let D = (T,B), root T at an arbitrary node and let U be the set of vertices in bags
whose depth d in T satisfies d mod (s + 1)t = i, with the integer i chosen to minimize the
weight of U . We show that U is a (t, g)-trimming of G.

Let G = (V,E) and denote the total weight of the vertices in V by W . Since each vertex
in V occurs in bags on at most s+1 levels in T , the sum, over all levels, of the weight of the
vertices occurring in bags on the level under consideration is at most (s + 1)W . Therefore,
by the choice of i, the weight of U is at most (s + 1)W/((s + 1)t) = W/t, as desired.

Let π = (v0, . . . , vm) be a simple path in G of m ≥ 1 edges and, for i = 1, . . . ,m, choose
a node xi in T whose bag contains both vi−1 and vi. Because T is connected, there is a
path from xi to xi+1 (or they coincide), for i = 1, . . . ,m−1, so π can be viewed as inducing
a walk π′ in T . The walk π′ may visit a node x in T several times. However, each visit to x
“uses” a vertex in B(x) that cannot be reused later, so no node of T occurs more than k+1
times on π′. If s ≤ 1, we can strengthen this statement as follows: For i = 1, . . . ,m − 1,
the nodes xi and xi+1 must coincide or be adjacent, so each visit by π ′ to a node x “uses”
two vertices in B(x), rather than just one, and the number of such visits is bounded by
b(k + 1)/2c = dk/2e. In either case, therefore, the nodes on π ′ span a subtree T ′ of T in
which no node has more than a children, except that the root may have a+1 children. The
number of nodes at depth d in such a tree is bounded by (a + 1)ad−1, for all d ≥ 0, and
therefore the number of nodes at depth at most d is bounded by 2d + 1 if a = 1 and by
1 + (a + 1)(ad − 1)/(a− 1) = ((a + 1)ad − 2)/(a − 1) if a ≥ 2.

Suppose that π contains no vertex in U . Then, by the choice of U , the depth of T ′
is at most (s + 1)t − 2, and the number of nodes in T ′ is at most 2(s + 1)t − 3 if a = 1
and at most (a(s+1)t−2(a + 1) − 2)/(a − 1) if a ≥ 2. Since each bag contains at most
k + 1 vertices, it follows that m + 1 ≤ (2(s + 1)t − 3)(k + 1) if a = 1 and that m + 1 ≤
(a(s+1)t−2(a + 1)− 2)(k + 1)/(a− 1) if a ≥ 2.

Corollary 2.2. For all integers k ≥ 0, d ≥ 1 and t ≥ 2, every vertex-weighted undirected
graph of treewidth k with maximum degree d has a (t, dK/2e2t)-trimming, where K = (9k +
7)d(d + 1)− 1. Hence, every family of graphs with bounded degree and bounded treewidth is
trimmable.

Proof. According to Bodlaender [Bod99, Theorem 3.1], every such graph has a domino tree
decomposition of width at most K. Except in the trivial case k = 0, we have K ≥ 31. By
Theorem 2.1, used with s = 1, the graph has a (t, g)-trimming, where

g = (dK/2e2t−2(dK/2e + 1)− 2)(K + 1)/(dK/2e − 1) ≤ dK/2e2t .

We can extend this result to planar graphs of bounded degree.

Corollary 2.3. For all integers d, t ≥ 1, every vertex-weighted undirected planar graph of
maximum degree d has a (t, dK/2e4t)-trimming, where K = (54t − 29)d(d + 1) − 1. Hence
every family of planar graphs of bounded degree is trimmable.

Proof. Let G = (V,E) be a planar graph with maximum degree d and denote the total
weight of the vertices in V by W . We first follow the approach of Baker [Bak94] to obtain
a (2t − 1)-outerplanar subgraph of G by deleting vertices of total weight at most W/(2t).



270 T. ERLEBACH, T. HAGERUP, K. JANSEN, M. MINZLAFF, AND A. WOLFF

Consider an arbitrary planar embedding of G. Partition the vertices of G into layers by re-
peatedly deleting the vertices on the boundary of the outer face until no vertex remains. The
vertices deleted in one iteration of this process form a layer. Number the layers R1, R2, . . .
in the order of their deletion. For every j ∈ {0, 1, . . . , 2t− 1}, consider the set Vj of vertices
in layers Ri with i mod (2t) = j, choose j such that the total weight of Vj is at most W/(2t)
and consider the subgraph Hj of G induced by V \ Vj.

Hj is (2t− 1)-outerplanar and thus has treewidth at most 6t− 4 [Bod98, Theorem 83].
By Corollary 2.2, Hj has a (2t, dK/2e4t)-trimming U . The set Vj ∪ U has weight at most
W/(2t) + W/(2t) = W/t and is therefore a (t, dK/2e4t)-trimming of G.

Remark 2.4. A better dependence of the bound in Corollary 2.3 on t can be achieved by
deleting less than 1/(2t) of the weight of the graph in the first step, so that more than 1/(2t)
of the weight can be deleted when Corollary 2.2 is applied. In this way, the treewidth of Hj

and thus the value of K increases, but the exponent of the bound becomes smaller than 4t.
More precisely, if we delete 1/(αt) of the weight in the first step, for some α > 2, then the
resulting bound is dK/2e2dαt/(α−1)e with K = (27αt− 29)d(d + 1)− 1. For each pair (d, t),
there is a value of α that optimizes the resulting bound.

3. Labeling Weighted Points with Sliding Labels

In this section we define the labeling problems of relevance to us formally and show that
there are polynomial-time approximation schemes for weighted unit-height 1SH-labeling,
2SH-labeling and 4S-labeling. We use R, R>0 and R≥0 to denote the sets of real numbers,
of positive real numbers and of nonnegative real numbers, respectively, and R2 is the two-
dimensional Euclidean plane.

Definition 3.1. An instance of the weighted unit-height 1SH-labeling problem is a triple
I = (P, l, w), where P is a finite subset of R2 and l : P → R>0 and w : P → R≥0 are
functions defined on P . |P | is called the size of I.

In the definition of 1SH-labeling, P represents the set of points to be labeled, and for
each p ∈ P , l(p) is the length of the label of p and w(p) is the weight of p. When (P, l, w) is
an instance of the 1SH-labeling problem and Q ⊆ P , we call w(Q) =

∑
p∈Q w(p) the weight

of Q.

Definition 3.2. A feasible solution or labeling of an instance I = (P, l, w) of the weighted
unit-height 1SH-labeling problem is a pair L = (Q, z), where Q ⊆ P and z : Q → R is a
function with px− l(p) ≤ z(p) ≤ px for all p = (px, py) ∈ Q such that for all p = (px, py) and
q = (qx, qy) in Q with p 6= q and |py−qy| < 1, either z(p)+ l(p) ≤ z(q) or z(q)+ l(q) ≤ z(p).
The weight of L is the weight of Q, and L is optimal if no labeling of I has greater weight
than L.

Informally, Q is the set of points in P that receive a label, and for each p ∈ Q, z(p)
denotes the x-coordinate of the left edge of the label of p. The condition px−l(p) ≤ z(p) ≤ px

for all p = (px, py) ∈ Q expresses that p lies on the bottom edge of its label. Let us say
that two points p = (px, py) and q = (qx, qy) in R2 y-overlap if |py − qy| < 1. The condition
z(p) + l(p) ≤ z(q) or z(q) + l(q) ≤ z(p) for each pair (p, q) of distinct y-overlapping points
in Q expresses that labels are not allowed to overlap.
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We define an instance of the weighted unit-height multi-position labeling or 1MH-labeling
problem as a pair (I,M), where I = (P, l, w) is an instance of the weighted unit-height 1SH-
labeling problem and M is a function that maps each point in P to a finite subset of R. A
labeling of (I,M) is a labeling (Q, z) of I such that z(p) ∈M(p) for all p ∈ Q. If M maps
all p ∈ P to the same set M ⊆ R, we may write (I,M) as (I,M). The principal technical
contribution of this section is a reduction of 1SH-labeling to 1MH-labeling. Before giving a
precise description of the reduction, we provide an informal overview.

The reduction maps an instance I of 1SH-labeling to an instance of 1MH-labeling
of the form (I,M), where M ⊆ R. It therefore suffices to show that a suitable set M
exists and can be computed sufficiently fast. As a step towards this goal, we describe a
normalization procedure that transforms an arbitrary given labeling of I into one of (I,M).
The normalization is introduced for the sake of argument only and is not actually carried
out as part of the reduction.

The top-level idea behind the normalization is to process the labels of the given labeling
in the order from left to right, pushing each label as far to the left as it can go without
bumping into another label or being separated from the point that it labels. It is easy
to observe that in every normalized labeling, the position of each label (taken to be the
x-coordinate of its left edge) is the sum of the x-coordinate of some labeled point and some
number of label lengths, minus its own length. This still leaves too many possibilities,
however, since essentially every selection of points to receive labels may give rise to a
different position of a given label.

The dependencies between labels can be modeled in a natural way through a directed
dependency graph G: If the label of a point q, moving left, may bump into that of a point p,
then G includes the edge (p, q). The problem identified above stems from the fact that G
may have very long paths, corresponding to chains of many labels that may touch and
influence each other. Our defense against this is trimming, so we must ensure that G is
trimmable. Assuming that this is so, we can break all paths with more than a constant
number of edges by dropping labels of small total weight, which reduces the number of
possible label positions to a polynomial. Afterwards we must re-normalize, however, since
otherwise the trimming buys us nothing. This gives rise to another problem, in that the
re-normalization may create new long paths. In order to counter this, we introduce vertical
stopping lines and modify the normalization to never push the left edge of a label past
a stopping line. As long as at least one stopping line passes through each dropped label
(including its boundary), we can be sure that the re-normalization creates no new paths.
Fairly arbitrarily, for every label, we choose to put stopping lines through the left and right
edges of the area occupied by the label in its leftmost position (if no other labels obstruct
its movement). This also ensures in a simple way that no label gets separated from the
point that it labels. Now labels with their right edge to the left of or on a stopping line `
cannot influence labels with their left edge to the right of or on `, so we can remove all edges
from G that cross a stopping line. This turns out to have the beneficial effect of making G
planar and of bounded degree, which implies that it is trimmable, as needed above.

By attaching real-valued lengths to the edges of G and adding an additional vertex O
with incident edges described below to G, we can obtain the position of the label of each
point p as the length of a path from O to p. Every edge (p, q) between two points p and q is
given a length equal to that of the label of p, since that is the distance that the left edge of
the label of q must keep from that of p. Every stopping line `, passing through (x, 0), say,
and every point p give rise to an edge from O (which can be thought of as representing the
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y-axis) to p of length x, since x is the distance that the left edge of the label of p, because
of `, must keep from the y-axis if it begins its movement to the right of ` or on `. Now the
label of each point p will move to a position that is precisely the largest length of a path
from O to p no larger than the original position of the label.

Every stopping line adds to the number of possible label positions in a normalized
labeling, but the dependence on the number of stopping lines is only linear. In fact, because
of a later need for this added flexibility, Lemma 3.3 below allows the specification of an
arbitrary set S of x-coordinates of additional stopping lines. The fact that the left edge of
a label crosses no additional stopping line as it moves left can be expressed by saying that
the movement leaves the rank in S of the position of the label invariant.

Lemma 3.3. Given an instance I = (P,w, l) of the weighted unit-height 1SH-labeling prob-
lem of size n, a finite set S ⊆ R and an ε ∈ R with 0 < ε ≤ 1, in O((n + |S|)ng) time,
where g = (1/ε)O(1/ε), we can compute a set M ⊆ R with |M | ≤ (2n + |S|)ng such that
for every labeling (Q, z) of I, the instance (I,M) of the weighted unit-height 1MH-labeling
problem has a labeling (Q′, z′) with Q′ ⊆ Q of weight at least (1 − ε)w(Q) such that for all
p ∈ Q′, z′(p) ≤ z(p) and z′(p) and z(p) have the same rank in S.

Proof. Take S ′ = S∪⋃
(px,py)∈P {px−l(p), px} and let G = (Q,E) be the directed graph with

edge lengths on the vertex set Q that, for all p = (px, py) and q = (qx, qy) in Q, contains
the edge (p, q) with length l(p) exactly if px < qx, |py − qy| < 1 and there is no x ∈ S ′ with
z(p) + l(p) ≤ x ≤ z(q). Moreover, let H be the undirected graph on the vertex set Q that
contains an edge {p, q}, for all p, q ∈ Q with p 6= q, exactly if p and q y-overlap.

Let us say that two points p = (px, py) and r = (rx, ry) in Q x-surround a point
q = (qx, qy) if px ≤ qx ≤ rx or rx ≤ qx ≤ px. Let p, q = (qx, qy) and r be three points
in Q, every two of which y-overlap, and suppose that z(p) ≤ z(q) ≤ z(r). Then we must
clearly have z(p) + l(p) ≤ z(q) ≤ qx ≤ z(q) + l(q) ≤ z(r), which, since qx ∈ S′, implies
that (p, r) 6∈ E. This proves the following triangle property : If (p, q) ∈ E, then p and q
x-surround no neighbor of both in H.

If p = (px, py) ∈ Q, then all in- and out-neighbors of p in G lie in the open horizontal
strip of height 2 centered on the line y = yp. Therefore, if p has in- or out-degree 3 or
more, two in-neighbors or two out-neighbors of p are neighbors in H, which contradicts the
triangle property. Thus all in- and out-degrees of G are bounded by 2.

We next prove that G is planar. Consider an embedding of G that maps each point in Q
to itself and each edge in E to a straight line segment and assume to the contrary that for
two edges (p1, q1) and (p2, q2) in E with |{p1, q1, p2, q2}| = 4, the corresponding closed line
segments p1q1 and p2q2 intersect in a point u = (ux, uy). Call p1 and q1 as well as p2 and q2

partners and let H4 be the subgraph of H spanned by the vertex set Q4 = {p1, q1, p2, q2}.
All points in Q4 lie in the open horizontal strip of height 2 centered on the line `

defined by y = uy. If there are a topmost point in Q4 (one of maximal y-coordinate) and
a bottommost point in Q4 that are partners, then, since these y-overlap, all pairs of points
in Q4 y-overlap, and H4 is a complete graph. Otherwise there is a unique topmost point
and a unique bottommost point in Q4, these extreme points are not partners, and each of
the two other points in Q4 lies on ` or on the opposite side of ` with respect to its extreme
partner. Each nonextreme point in Q4 y-overlaps both extreme points, and hence also the
fourth point in Q4, either by virtue of lying on ` or because one extreme point is its partner,
while the other extreme point lies on the same side of ` as itself. This means that H4 is a
complete graph, except that the two extreme points may not be neighbors.
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Figure 2: a and d lie in distinct gray areas and are therefore on opposite sides of bc.

Because the two line segments between partners intersect, some two points in Q4 that
are partners, say, a and b, must x-surround another point in Q4, say, c. By the triangle
property, H lacks one of the edges {a, c} and {b, c}, say, {b, c}, so H is not complete and b
and c are extreme. The partner of c, say, d, is not extreme, so it is not x-surrounded by a
and b. This implies that c and d x-surround a or b and, in fact, since a is not extreme, that
they x-surround b. The two extreme points b and c can now be seen to be x-surrounded by
a and d. But then it is geometrically clear that a and d belong to opposite open halfspaces
bounded by the line through b and c (see Fig. 2), a contradiction to the fact that ab and cd
intersect.

We have demonstrated that G is planar and of bounded degree and therefore trimmable.
With t = 2/ε, let U be a (t, g)-trimming set of G for some integer g ≥ 0 with g = tO(t)—
this is possible by Corollary 2.3—and take Q′ = Q \ U . Let G be the multigraph obtained
from G by adding a new vertex O and, for each x ∈ S ′ and each p ∈ Q, an edge from O
to p of length x.

For all p ∈ Q′, let a p-path be a path in G[{O} ∪ Q′] from O to p and define the
length of a p-path as the sum of the lengths of its edges. For all p = (px, py) ∈ Q′, let
z′(p) be the largest length of a p-path that does not exceed z(p)—this is well-defined since
z(p) ≥ px − l(p), while there is an edge, and hence a path, in G from O to p of length
px − l(p). We will show that (Q′, z′) is a labeling of I. First, for each p = (px, py) ∈ Q′, the
relation px − l(p) ≤ z′(p) ≤ z(p) ≤ px was essentially argued above. Second, we must show,
informally speaking, that the labels of the points in Q′, if placed as indicated by z ′, do not
overlap.

Let p = (px, py) and q = (qx, qy) be y-overlapping points in Q′ and assume, without
loss of generality, that z(p) ≤ z(q) and therefore that z(p) + l(p) ≤ z(q). If G contains the
edge (p, q), then, since z ′(p) is the length of a p-path, z ′(p) + l(p) is the length of a q-path
and, by definition of z′, we have z′(q) ≥ z′(p) + l(p). If G does not contain the edge (p, q),
there is an x ∈ S ′ with z(p) + l(p) ≤ x ≤ z(q). Again by definition of z ′, since G contains
an edge from O to q of length x, it follows that z ′(q) ≥ x ≥ z(p) + l(p) ≥ z′(p) + l(p). In
either case, the labels of p and q, placed according to z ′, do not overlap.

We have w(Q′) ≥ (1 − 1/t)w(Q), and for each p ∈ Q′, z′(p) is the length of a p-path.
The length of every p-path belongs to the set M of all sums of an element of S ′ and at
most g elements of {l(p) | p ∈ P}. The set M is of size at most (2n + |S|)ng and can be
computed in O((n + |S|)ng) time. Let p ∈ Q′. Since for each x ∈ S there is a p-path of
length x, it is easy to see that stepping from z(p) to z ′(p) does not descend strictly below
any x ∈ S, i.e., z′(p) has the same rank in S as z(p).
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We need to show how to solve the instance of the 1MH-labeling problem obtained
using Lemma 3.3. Agarwal et al. [AvKS98] have given a PTAS that finds near-maximum
independent sets in any given set of axes-aligned unit-height rectangles. They assume
that rectangles are topologically closed. Under this assumption it is easy to argue that
their PTAS for maximum independent set at the same time is a PTAS for maximizing the
number of points labeled with unit-height rectangular labels in some fixed-position model.
The reason is simply that, by definition, any two label candidates of the same point must
touch this point. If label candidates are closed, one label candidate automatically excludes
the other from the solution. Unfortunately, this is not the case if we consider labels to be
open; e.g., in the 1SH-model the leftmost and the rightmost label candidate of a point do
not intersect, so an algorithm for maximum independent set would not automatically yield
feasible solutions for multi-position labeling. However, we can adapt the PTAS of Agarwal
et al. to this case. In fact, the adapted PTAS can deal with the weighted unit-height
generalized multi-position labeling or 4M-labeling problem, in which each label specifies an
arbitrary finite set of anchor points on its boundary. If a point is labeled, its label must be
placed so that one of its anchor points coincides with the point to be labeled.

Lemma 3.4. There is a PTAS for the weighted unit-height 4M-labeling problem. The
running time for computing a (1−ε)-approximate solution is nO(1/ε), for all ε with 0 < ε ≤ 1.

Clearly, a PTAS for 4M-labeling is also a PTAS for the more restricted 1MH-labeling
problem.

Theorem 3.5. Given an instance I of the weighted unit-height 1SH-labeling problem of size
n and an ε ∈ R with 0 < ε ≤ 1, a labeling of I of weight at least (1 − ε) times the weight
of an optimal labeling of I can be computed in ntO(t)

time, where t = 2/ε. The weighted
unit-height 1SH-labeling problem therefore admits a PTAS.

Proof. Let W ∗ be the weight of an optimal labeling of I. Use the algorithm of Lemma 3.3
with S = ∅ to compute a set M ⊆ R with |M | ≤ 2ng+1, where g = tO(t), such that the
instance I ′ = (I,M) of the weighted unit-height 1MH-labeling problem has a labeling of
weight at least (1− 1/t)W ∗. Applying the PTAS of Lemma 3.4 to I ′, we obtain a labeling
of I ′, and therefore of I, of weight at least (1 − 1/t)2W ∗ ≥ (1 − 2/t)W ∗ = (1 − ε)W ∗ in
time (ng+2)O(t) = ntO(t)

, which dominates the time needed by the first step.

This result can be extended without much effort to the slightly more general labeling
model 2SH, where a label must touch the point labeled with either its top or bottom edge.

Corollary 3.6. There is a PTAS for weighted unit-height 2SH-labeling.

Proof. 2SH-labeling can be reduced to 1SH-labeling—imagine adding to each original input
point a copy at a distance of 1 below it. Then we use the reduction from 1SH-labeling
to 1MH-labeling described in Lemma 3.3. In the resulting instance of 1MH-labeling, we
discard the copies of points and view each label of a copy of a point as labeling the original
point. Now we can apply the PTAS of Lemma 3.4 to the resulting instance of 4M-labeling.

A further generalization allows us to deal also with the most general slider model, 4S,
in which a label may have the point that it labels anywhere on its boundary.

Corollary 3.7. There is a PTAS for weighted unit-height 4S-labeling.
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Proof sketch. Let an instance I = (P, l, w) of the 4S-labeling problem (which is the same
as an instance of the 1SH-labeling problem) be given. Each point p ∈ P can be labeled
with a horizontally sliding label that touches p with its bottom edge (or top edge), or by
a vertically sliding label that touches p with its left edge (or right edge). This means that
there are four types of rectangles that can potentially label p, all of which are taken into
account in the following. Applying Lemma 3.3 twice (once horizontally and once vertically),
we compute an instance Ih of the 1MH-labeling problem for the positions of horizontally
sliding labels, specifying vertical stopping lines at x-positions px− l(p), px and px + l(p) for
all p = (px, py) in P , and another instance Iv for the positions of vertically sliding labels,
specifying horizontal stopping lines at y-positions py − 1, py and py + 1 for all p = (px, py)
in P . Consider an optimal labeling L of I and let Q be the set of points that it labels. Let
Qh and Qv be the sets of points in Q that are labeled with a horizontally sliding label and
with a vertically sliding label, respectively. By Lemma 3.3, there is a solution L′

h for Ih that
labels points Q′

h ⊆ Qh, and a solution L′
v for Iv that labels points Q′

v ⊆ Qv, of weights at
least (1−ε)w(Qh) and (1−ε)w(Qv), respectively. Furthermore, the labels in Q′

h reach their
positions in L′

h from their position in L by sliding horizontally without crossing a vertical
stopping line. Thus, they do not interfere with the vertical movement that vertically sliding
labels undergo in the transition from L to L′

v, and vice versa. Consequently, the union of L′
h

and L′
v (defined in the obvious way) is a labeling of I of weight at least (1 − ε) times the

optimum. Applying the PTAS of Lemma 3.4 to Ih ∪ Iv, we obtain a solution of I of weight
at least (1− ε)w(Q′

h ∪Q′
v) ≥ (1− ε)2w(Q), which completes the proof.

4. Open Problems

Corollary 2.2 states that a family of graphs is trimmable if it is of bounded treewidth
and bounded degree. We cannot exclude, however, that the bounded-degree condition is
superfluous. In other words, with N = {1, 2, . . .}, is there a function g : N×N → N such that
for all k, t ∈ N, every weighted undirected graph of treewidth k has a (t, g(k, t))-trimming?
The answer is yes in the unweighted case, i.e., if all weights are the same. If the answer
were generally yes, it would follow by the argument in the proof of Corollary 2.3 that the
family of planar graphs is also trimmable. More generally, the question of which families of
graphs are trimmable deserves further study.
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Next, we consider a setting where the vertices of the graph correspond to points in
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1. Introduction

In many applications one has to deal with computational problems where some parts of
the input data are imprecise or uncertain. For example, in a geometric problem involving
sets of points, the locations of the points might be known only approximately; effectively
this means that instead of the location of a point, only a region or area containing that point
is known. In other applications, only estimates of certain input parameters may be known,
for example in form of a probability distribution. There are many different approaches
to dealing with problems of this type, including e.g. stochastic optimization and robust
optimization.

Pursuing a different approach, we consider a setting in which the algorithm can obtain
exact information about an input data item using an update operation, and we are interested
in the update complexity of an algorithm, i.e., our goal is to compute a correct solution using
a minimum number of updates. The updates are adaptive, i.e., one selects the next item
to update based on the result of the updates performed so far, so we refer to the algorithm
as an on-line algorithm. There are a number of application areas where this setting is
meaningful. For example, in a mobile ad-hoc network an algorithm may have knowledge
about the approximate locations of all nodes, and it is possible (but expensive) to find
out the exact current location of a node by communicating to that node and requesting
that information. To assess the performance of an algorithm, we compare the number of
updates that the algorithm makes to the optimal number of updates. Here, optimality is
defined in terms of an adversary, who, knowing the values of all input parameters, makes
the fewest updates needed to present a solution to the problem that is provably correct,
in that no additional areas need to be updated to verify the correctness of the solution
claimed by the adversary. We say that an algorithm is k-update competitive if, for each
input instance, the algorithm makes at most k times as many updates as the optimum
number of updates for that input instance. The notions of update complexity and k-update
competitive algorithms were implicit in Kahan’s model for data in motion [6] and studied
further for two-dimensional geometric problems by Bruce et al. [2].

In this paper, we consider the classical minimum spanning tree (MST) problem in two
settings with uncertain information. In the first setting, the edge weights are initially given
as uncertainty areas, and the algorithm can obtain the exact weight of an edge by updating
the edge. If the uncertainty areas are trivial (i.e., contain a single number) or (topologically)
open, we give a 2-update competitive algorithm and show that this is best possible for deter-
ministic algorithms. Without this restriction on the areas, it is easy to construct degenerate
inputs for which there is no constant update competitive algorithm. Although degeneracy
could also be excluded by other means (similar to the “general position” assumption in
computational geometry), our condition is much cleaner.

In the second setting that we consider, the vertices of the graph correspond to points
in Euclidean space, and the locations of the points are initially given as uncertainty areas.
The weight of an edge equals the distance between the points corresponding to its vertices.
The algorithm can update a vertex to reveal its exact location. We give a general relation
between the edge uncertainty version and the vertex uncertainty version of a problem.
For trivial or open uncertainty areas we obtain a 4-update competitive algorithm for the
MST problem with vertex uncertainty and show again that this is optimal for deterministic
algorithms.
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Related Work. We do not attempt to survey the vast literature dealing with problems
on uncertain data, but focus on work most closely related to ours. Kahan [6] studied the
problem of finding the maximum, the median and the minimum gap of a set of n real values
constrained to fall in a given set of n real intervals. In the spirit of competitive analysis, he
defined the lucky ratio of an update strategy as the worst-case ratio between the number
of updates made by the strategy and the optimal number of updates of a non-deterministic
strategy. In our terminology, a strategy with lucky ratio k is k-update competitive. Kahan
gave strategies with optimal lucky ratios for the problems considered [6].

Bruce et al. studied the problems of computing maximal points or the points on the
convex hull of a set of uncertain points [2] and presented 3-update competitive algorithms.
They introduced a general method, called the witness algorithm, for dealing with problems
involving uncertain data, and derived their 3-update competitive algorithms using that
method. The algorithms we present in this paper are based on the method of the witness
algorithm of [2], but the application to the MST problem is non-trivial.

Feder et al. [5, 4], consider two problems in a similar framework to ours. Firstly, they
consider the problem of computing the median of n numbers to within a given tolerance.
Each input number lies in an interval, and an update reveals the exact value, but different
intervals have different update costs. They consider off-line algorithms, which must decide
the sequence of updates prior to seeing the answers, as well as on-line ones, aiming to
minimize the total update cost. In [4], off-line algorithms for computing the length of a
shortest path from a source s to a given vertex t are considered. Again, the edge lengths
lie in intervals with different update costs, and they study the computational complexity of
minimizing the total update cost.

One difference between the framework of Feder et al. and ours is that they require the
computation of a specific numeric value (the value of the median, the length of a shortest
path). We, on the other hand, aim to obtain a subset of edges that form an MST. In general,
our version of the problem may require far fewer updates. Indeed, for the MST with vertex
uncertainties, it is obvious that one must update all non-trivial areas to compute the cost
of the MST exactly. However, the cost of the MST may not be needed in many cases: if
the MST is to be used as a routing structure in a wireless ad-hoc network, then it suffices
to determine the edge set. Also, our algorithms aim towards on-line optimality against an
adversary, whereas their off-line algorithms aim for static optimality.

Further work in this vein attempts to compute other aggregate functions to a given
degree of tolerance, and establishes tradeoffs between update costs and error tolerance or
presents complexity results for computing optimal strategies, see e.g. [10, 8].

Another line of work considers the robust spanning tree problem with interval data. For
a given graph with weight intervals specified for its edges, the goal is to compute a spanning
tree that minimizes the worst-case deviation from the minimum spanning tree (also called
the regret), over all realizations of the edge weights. This is an off-line problem, and no
update operations are involved. The problem is proved NP-hard in [1]. A 2-approximation
algorithm is given in [7]. Further work has considered heuristics or exact algorithms for the
problem, see e.g. [12].

In the setting of geometric problems with imprecise points, Löffler and van Kreveld
have studied the problem of computing the largest or smallest convex hull over all possible
locations of the points inside their uncertainty areas [9]. Here, the option of updating
a point does not exist, and the goal is to design fast algorithms computing an extremal
solution over all possible choices of exact values of the input data.
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The remainder of the paper is organized as follows. In Section 2, we define our problems
and introduce the witness algorithm of [2] in general form. Sections 3 and 4 give our results
for MSTs with edge and vertex uncertainty, respectively.

2. Preliminaries

The mst-edge-uncertainty problem is defined as follows: Let G = (V,E) be a
connected, undirected, weighted graph. Initially the edge weights we are unknown; instead,
for each edge e an area Ae is given with we ∈ Ae. When updating an edge e, the value of
we is revealed. The aim is to find (the edge set of) an MST for G with the least number of
updates.

In applications such as mobile ad-hoc networks it is natural to assume the vertices of
our graph are embedded in two or three dimensional space. This leads to the mst-vertex-

uncertainty problem defined as follows: Let G = (V,E) be a connected, undirected,
weighted graph. The vertices correspond to points in Euclidean space. We refer to the
point pv corresponding to a vertex v as its location. The weight of an edge is the Euclidean
distance between the locations of its vertices. Initially the locations of the vertices are not
known; instead, for each vertex v an area Av is given with pv ∈ Av, where pv is the actual
location of vertex v. When a vertex v is updated, the location pv is revealed. The aim is to
find an MST for G with the least number of updates.

Formally we are interested in on-line update problems of the following type: Each
problem instance P = (C,A, φ) consists of an ordered set of data C = {c1, . . . , cn}, also
called a configuration, and a function φ such that φ(C) is the set of solutions for P . (The
function φ is the same for all instances of a problem and can thus be taken to represent the
problem.) At the beginning the set C is not known to the algorithm; instead, an ordered
set of areas A = {A1, . . . , An} is given, such that ci ∈ C is an element of Ai. The sets Ai

are called areas of uncertainty or uncertainty areas for C. We say that an uncertainty area
Ai that consists of a single element is trivial. For example, in the mst-edge-uncertainty

problem, C consists of the given graph G = (V,E) and its |E| actual edge weights. The
ordered set of areas A specifies the graph G exactly (so we assume complete knowledge of
G) and, for each edge e ∈ E, contains an area Ae giving the possible values the weight of e
may take. Then φ(C) is the set of MSTs of the graph with edge weights given by C, each
tree represented as a set of edges.

For a given set of uncertainty areas A = {A1, . . . , An}, an area Ai can be updated, which
reveals the exact value of ci. After updating Ai, the new ordered set of areas of uncertainty
for C is {A1, . . . , Ai−1, {ci}, Ai+1, . . . , An}. Updating all non-trivial areas would reveal the
configuration C and would obviously allow us to calculate an element of φ(C) (under the
natural assumption that φ is computable). The aim of the on-line algorithm is to minimize
the number of updates needed in order to compute an element of φ(C).

An algorithm is k-update competitive for a given problem φ if for every problem instance
P = (C,A, φ) the algorithm needs at most k ·OPT + c updates, where c is a constant and
OPT is the minimum number of updates needed to verify an element of φ(C). (For our
algorithms we can take c = 0, but our lower bounds apply also to the case where c can be
an arbitrary constant.) Note that the primary aim is to minimize the number of updates
needed to calculate a solution. We do not consider running time or space requirements in
detail, but note that our algorithms are clearly polynomial, provided that one can obtain
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Figure 1: (a) Instance of mst-edge-uncertainty (b) Updating the edge {x, y} suffices
to verify an MST

if an element of φ(C) can not be calculated from A then
find a witness set W
update all areas in W
let A′ be the areas of uncertainty after updating W
restart the algorithm with P ′ = (C,A′, φ)

end if
return an element of φ(C) that can be calculated from A

Figure 2: The general witness algorithm

the infimum and supremum of an area in O(1) time, an assumption which holds e.g. if areas
are open intervals.

As an example, consider the instance of mst-edge-uncertainty shown in Figure 1(a),
where each edge is labeled with its actual weight (in bold) and its uncertainty area (an open
interval). Updating the edge {x, y} leads to the situation shown in Figure 1(b) and suffices
to verify that the edges {u, y}, {u, v} and {x, y} form an MST regardless of the exact weights
of the edges that have not yet been updated. If no edge is updated, one cannot exclude that
an MST includes the edge {v, x} instead of {x, y}, as the former could have weight 3.3 and
the latter weight 3.9, for example. Therefore, for the instance of mst-edge-uncertainty

in Figure 1(a) the minimum number of updates is 1.

2.1. The Witness Algorithm

The witness algorithm for problems with uncertain input was first introduced in [2].
This section describes the witness algorithm in a more general setting and notes some of
its properties. We call W ⊆ A a witness set of (A,φ) if for every possible configuration
C (where ci ∈ Ai) no element of φ(C) can be verified without updating an element of W .
In other words, any set of updates that suffices to verify a solution must update at least
one area of W . The witness algorithm for a problem instance P = (C,A, φ) is shown in
Figure 2.

For two ordered sets of areas A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bn} we say
that B is at least as narrow as A if Bi ⊆ Ai for all 1 ≤ i ≤ n. The following lemma is easy
to prove.

Lemma 2.1. Let P = (C,A, φ) be a problem instance and B be a narrower set of areas
than A. Further let W be a witness set of (B,φ). Then W is also a witness set of (A,φ).
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Theorem 2.2. If there is a global bound k on the size of any witness set used by the witness
algorithm, then the witness algorithm is k-update competitive.

Theorem 2.2 was proved in a slightly different setting in [2], but the proof carries over
to the present setting in a straightforward way by using Lemma 2.1.

3. Minimum Spanning Trees with Edge Uncertainty

In this section we present an algorithm u-red for the problem mst-edge-uncertainty.
In the case that all areas of uncertainty are either open or trivial, algorithm u-red is 2-
update competitive, which we show is optimal. Furthermore, we show that for arbitrary
areas of uncertainty there is no constant update competitive algorithm.

First, let us recall a well known property, usually referred to as the red rule [11], of
MSTs:

Proposition 3.1. Let G be a weighted graph and let C be a cycle in G. If there exists an
edge e ∈ C with we > we′ for all e′ ∈ C − {e}, then e is not in any MST of G.

We will use the following notations and definitions: A graph U = (V,E) with an area
Ae for each edge e ∈ E is called an edge-uncertainty graph. We say a weighted graph
G = (V,E) with edge weights we is a realization of U if we ∈ Ae for every e ∈ E. Note that
we is associated with G and Ae with U . We also say that an edge e is trivial if the area Ae

is trivial.
For an edge e in an edge-uncertainty graph we denote the upper limit of Ae by Ue =

supAe and the lower limit of Ae by Le = inf Ae.
We extend the notion of an MST to edge-uncertainty graphs in the following way: Let U

be an edge-uncertainty graph. We say T is an MST of U if T is an MST of every realization
of U . Clearly not every edge-uncertainty graph has an MST.

Let C be a cycle in U . We say the edge e ∈ C is an always maximal edge in C if
Le ≥ Uc for all c ∈ C − {e}. Therefore in every realization G of U we have we ≥ wc for all
c ∈ C − {e}.

Note that a cycle can have more than one always maximal edge and not every cycle
has an always maximal edge. The following lemma deals with cycles of the latter kind:

Lemma 3.2. Let U be an edge-uncertainty graph. Let C be a cycle in U . Let C not have
an always maximal edge. Then for any f ∈ C with Uf = max{Uc | c ∈ C} we have that f
is non-trivial and there exists an edge g ∈ C − {f} with Ug > Lf .

Proof. Let f ∈ C be an edge with Uf = max{Uc | c ∈ C}. If Lf = Uf the edge f would
be always maximal. Hence Lf must be strictly smaller than Uf and f is non-trivial. Since
there is no always maximal edge in C, we have that Lf < max{Uc | c ∈ C−{f}}. Therefore
there exists at least one edge g in C − {f} with Lf < Ug.

Proposition 3.3. Let U be an edge-uncertainty graph with an MST T . Let f = {u, v} be
an edge of U such that f 6∈ T . Let P be the path in T connecting u and v, then Up ≤ Lf

for all p ∈ P .

Proof. Assume there exists a p ∈ P with Up > Lf . Then there exists a realization G of
U with wp > wf . Hence by removing the edge p and adding the edge f to T we obtain a
spanning tree that is cheaper than T . So T is not an MST for G. This is a contradiction
since T is an MST of U and therefore of any realization of U .
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01 Index all edges such that e1 ≤ e2 ≤ · · · ≤ em.
02 Let Γ be U without any edge
03 for i from 1 to m do
04 add ei to Γ
05 if Γ has a cycle C then
06 if C contains an always maximal edge e then
07 delete e from Γ
08 else
09 let f ∈ C such that Uf = max{Uc|c ∈ C}
10 let g ∈ C − {f} such that Ug > Lf

11 update f and g
12 restart the algorithm
13 end if
14 end if
15 end for
16 return Γ

Figure 3: Algorithm u-red

Our algorithm u-red applies the red rule to the given uncertainty graph, but we have
to be careful about the order in which edges are considered. The order we use is as follows:
Let U be an edge-uncertainty graph and let e, f be two edges in U . We say

e < f if Le < Lf or (Le = Lf and Ue < Uf ),
e ≤ f if e < f or (Le = Lf and Ue = Uf ).

Edges with the same upper and lower weight limit are ordered arbitrarily.
Algorithm u-red is shown in Figure 3. Observe that:
• In case no update is made the algorithm u-red will perform essentially Kruskal’s

algorithm [3]. When a cycle is created there will be an always maximal edge in that
cycle. Due to the order in which the algorithm adds the edges to Γ the edge ei that
closes a cycle C must be an always maximal edge in C. So where Kruskal’s algorithm
does not add an edge to Γ when it would close a cycle, the u-red algorithm adds
this edge to Γ but then deletes it or an equally weighted edge in the cycle from Γ.

• By Lemma 3.2 the edges f, g in line 9 and 10 exist and f is non-trivial.
• The algorithm will terminate. The algorithm either updates at least one non-trivial

edge f and restarts, or does not perform any updates. Hence the algorithm u-red

will eventually return an MST of G.
• During the run of the algorithm the graph Γ is either a forest or contains one cycle.

In case the most recently added edge closes a cycle either one edge of the cycle will
be deleted or after some updates the algorithm restarts and Γ has no edges. Hence
at any given time there is at most one cycle in Γ.

As the algorithm may restart itself, we say a run is completed if the algorithm restarts
or returns the MST. In case of a restart, another run of the algorithm starts.

Before showing that the algorithm u-red is 2-update competitive under the restriction
to open or trivial areas, we discuss some technical preliminaries. In each run the algorithm
considers all edges in a certain order e1, . . . , em. During the run of the algorithm we refer
to the currently considered edge as ei. Let u and v be two distinct vertices. In case u
and v are in the same connected component of the subgraph with edges e1, . . . , ei−1, then
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they are also connected in the current Γ. Furthermore, we need some properties of a path
connecting u and v in Γ under certain conditions. The next two lemmas establish these
properties. They are technical and are solely needed in the proof of Lemma 3.6.

Lemma 3.4. Let h = {u, v} and e be two edges in U . Let h 6= e and Lh < Ue. Let the
algorithm be in a state such that h has been considered. Then u and v are connected in the
current Γ− {e}.
Proof. If the edge h is in the current Γ then clearly u and v are connected in Γ − {e}, so
assume that h is no longer in Γ. Therefore it must have been an always maximal edge in a
cycle C. In order for h to be an always maximal edge in C we must have that Lc ≤ Uc ≤ Lh

for all c ∈ C −{h}. So since Lh < Ue we have that Lc < Ue. Also the edge h can not be an
always maximal edge in C if C contains e.

Clearly C − {h} is a path in U connecting u and v and does not contain e. Since the
edges in C − {h} might have been deleted from the current Γ themselves we have to use
this argument repeatedly, but eventually we get a path in the current Γ−{e} connecting u
and v.

The next lemma follows directly from Lemma 3.4.

Lemma 3.5. Let u, v be vertices and e be an edge in U . Let P be a path in U − {e}
connecting u and v with Lp < Ue for all p ∈ P . Let the algorithm be in a state such that
all edges of P have been considered, then there exists a path P ′ in the current Γ connecting
u and v with e 6∈ P ′.

Lemma 3.6. Assume that all uncertainty areas are open or trivial. The edges f and g as
described in the algorithm u-red at line 9 and 10 form a witness set.

Proof. We have the following situation: There exist a cycle C in Γ with no always maximal
edge. Let m = max{Uc | c ∈ C}. The edges f and g are in C with Uf = m and Ug > Lf .
By Lemma 3.2 the area Af is non-trivial.

We now assume that the set {f, g} is not a witness set. So we can update some edges,
but not f or g such that the resulting edge-uncertainty graph U ′ has an MST T . Let U ′

e

and L′
e denote the upper and lower limit of an area for an edge e with regard to U ′. Since

both edges f and g are not updated we note that

Lf = L′
f , Uf = U ′

f , Lg = L′
g, Ug = U ′

g.

Since all areas in U ′ and U are either trivial or open, and C has no always maximal
edge, the weight of every edge in C must be less than m. In particular we have that for all
c ∈ C

U ′
c < m or L′

c < Uc = m.

Since Uf = m there exists a realization G′ of U ′ and U , where the weight of f is greater
than the weight of any other edge in C. By Proposition 3.1 the edge f is not in any MST
of G′ and therefore also not in T .

Let u and v be the vertices of f . By Proposition 3.3 there exists a path P in U ′
connecting u and v with U ′

p ≤ Lf for all p ∈ P . Since Ug > Lf and neither f nor g are
updated the edge g is not in the path P . We now argue that all edges of P must have been
already considered by the algorithm. For this we look at the following two cases:
Case 1) Let p ∈ P and L′

p < Lf . Since Lp ≤ L′
p we have that Lp < Lf .
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Case 2) Let p ∈ P and L′
p = Lf . Since U ′

p ≤ Lf we have that L′
p = U ′

p = Lf . Either the
area Ap is also trivial (Lp = Up = L′

p = U ′
p = Lf ) or Ap is open and contains the point L′

p,
in this case Lp < L′

p.
So for all p ∈ P we have Lp < Lf or Lp = Up = Lf < Uf . Therefore all edges of P will

be considered before f . We also note that Lp ≤ L′
p ≤ Lf < Ug for all p ∈ P . By Lemma 3.5

there exists a path P ′ in Γ connecting u and v and g 6∈ P ′. Hence Γ has two cycles, which
is a contradiction.

Using Theorem 2.2, this leads directly to the following result.

Theorem 3.7. Under the restriction to open and trivial areas the algorithm u-red is 2-
update competitive.

We remark that the analysis of algorithm u-red actually works also in the more general
setting where it is only required that every area is trivial or satisfies the following condition:
the area contains neither its infimum nor its supremum. It remains to show that under the
restriction to open and trivial areas there is no algorithm for the mst-edge-uncertainty

problem that is (2− ε)-update competitive.

b c

a
1

(3,7) (5,9)

1 1 1 1

Figure 4: Lower bound construction

Example 3.8. The graph G displayed in Figure 4 consists of a path and, for each vertex
of the path, a gadget connected to that vertex. Each gadget is a triangle with sides a, b and
c and areas Aa = {1}, Ab = (3, 7) and Ac = (5, 9). In each gadget a and either b or c are
part of the minimum spanning tree. If the algorithm updates b we let the weight of b be
6. So c needs to be updated, which reveals a weight for c of 8. However, by updating only
c the edge b would be part of the minimum spanning tree regardless of its exact weight.
If the algorithm updates c first, we let the weight of c be 6. The necessary update of b
reveals a weight of 4, and updating only b would have been enough. So in each gadget every
algorithm makes two updates where only one is needed by OPT . Hence no deterministic
algorithm is (2− ε)-update competitive.

The following example shows that without restrictions on the areas there is no algorithm
for the mst-edge-uncertainty problem that is constant update competitive.

Example 3.9. Figure 5(a) shows an example of an edge-uncertainty graph for which no
algorithm can be constant update competitive. The minimum spanning tree consists of all
edges incident with u and all edges incident with v plus one more edge. Let us assume the
weight of one of the remaining k = (n − 2)/2 edges is 2 and the weight of the others is 3.
Any algorithm would need to update these edges until it finds the edge with weight 2. This
in the worst case could be the last edge and k updates were made. However OPT will only
update the edge with weight 2 and therefore OPT = 1.
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Figure 5: Non-existence of constant update competitive algorithms

Note that this example actually shows that there is no algorithm that is better then
(n − 2)/2-update competitive, where n is the number of vertices of the given graph. By
adding edges with uncertainty area [2, 4] such that the neighbors of u and the neighbors of
v form a complete bipartite graph, we even get a lower bound of Ω(n2).

The construction in Example 3.9 works also if the intervals [2, 4] are replaced by half-
open intervals [2, 4). Thus, the example demonstrates that with closed lower limits on the
areas there is no constant update competitive algorithm for the mst-edge-uncertainty

problem. The following example does the same for closed upper limits.

Example 3.10. The graph shown in Figure 5(b) is one big cycle with k edges and the
uncertainty area of each edge is (2, 4]. Let us assume exactly one edge e has weight 4 and
the others are of weight 3. In the worst case any algorithm has to update all k edges before
finding e. However OPT is 1 by just updating e.

4. Minimum Spanning Tree with Vertex Uncertainty

In this section we consider the model of vertex-uncertainty graphs. The models of
vertex-uncertainty and edge-uncertainty are closely related. Clearly a vertex uncertainty
graph U has an associated edge-uncertainty graph Ū where the area for each edge e = {u, v}
is determined by the combinations of possible locations of u and v in U , i.e., the areas Ā in
Ū are defined as Ā{u,v} = {d(u′, v′)|u′ ∈ Au, v′ ∈ Av}.

An update of an edge e = {u, v} in Ū can be performed (simulated) by updating u and
v in U ; these two vertex updates might also reveal additional information about the weights
of other edges incident with u or v. Furthermore, note that if neither of the two vertices u
and v in U is updated, no information about the weight of e can be obtained. Thus, we get:

Lemma 4.1. Let φ be a graph problem such that the set of solutions for a given edge-
weighted graph G = (V,E) depends only on the graph and the edge weights (but not the
locations of the vertices). Let U be a vertex-uncertainty graph that is an instance of φ. If
W̄ ⊆ E is a witness set for Ū , then W =

⋃
{u,v}∈W̄ {u, v} is a witness set for U .

Using Theorem 2.2 we obtain the following result.

Theorem 4.2. Let φ be a graph problem such that the set of solutions for a given edge-
weighted graph depends only on the graph and the edge weights (but not the locations of
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the vertices). Let A be a k-update competitive algorithm for the problem φ with respect to
edge-uncertainty graphs. If A is a witness algorithm, then by simulating an edge update by
updating both its endpoints the algorithm A is 2k-update competitive for vertex-uncertainty
graphs.

By standard properties of Euclidean topology, the following lemma clearly holds.

Lemma 4.3. Let U be a vertex uncertainty graph with only trivial or open areas. Then Ū
also has only trivial or open areas.

Theorem 4.4. Under the restriction to trivial or open areas the algorithm u-red is 4-
update competitive for the mst-vertex-uncertainty problem, which is optimal.

Proof. Combining Theorems 3.7 and 4.2 together with Lemma 4.3, we get that u-red is
4-update competitive for the mst-vertex-uncertainty problem when restricted to trivial
or open areas. It remains to show that this is optimal.

C

A

2

2 4

B

2

2

D

7

C

A

2

2 4

B

2

2

D

7

(a) (b)

Figure 6: (a) Lower bound construction (b) Edges that are in any minimum spanning tree

We show that no algorithm can be better than 4-update competitive. In Figure 6(a) we
give a construction in the Euclidean plane for which any algorithm can be forced to make 4
updates, while OPT is 1. The black dots on the left and right represent trivial areas. The
distance between two neighboring trivial areas is 1. There are four non-trivial areas A,B,C
and D. Each of these areas is a long, thin open area of length 2 and small positive width.
The distance between each non-trivial area and its closest trivial area is 1 as well. Let G
be the complete graph with one vertex for each of the trivial and non-trivial areas.

Independent of the exact locations of the vertices in the non-trivial areas A,B,C and
D, the edges indicated in Figure 6(b) must be part of any MST. Note that the distance
between the vertex of a non-trivial area and its trivial neighbor is in (1, 3) and thus less
than 3.

We now consider the distances between the non-trivial areas. We let d(X,Y ) be the
area of all possible distances between two vertex areas X and Y . So d(A,B) = (7, 11),
d(C,D) = (4, 8). Note that the distance between the vertices in A and D and the distance
between the vertices in B and C are greater than 8, so either the edge AB or the edge CD
is part of the minimum spanning tree.

Every algorithm will update the areas A,B,C and D in a certain order until it is clear
that either the distance between the vertices of A and B is smaller or equal to the distance
between the vertices of C and D, or vice versa. In order to force the algorithm to update
all four areas, we let the locations of the vertices revealed in any of the first 3 updates made
by the algorithm be as follows:
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• A or D: the vertex will be located far to the right,
• B or C: the vertex will be located far to the left.

Here, ‘far to the right’ or ‘far to the left’ means that the location is very close (distance
ε > 0, for some small ε) to the right or left end of the area, respectively.

We show that it is impossible for the algorithm to output a correct minimum spanning
tree after only three updates. Consider the situation after the algorithm has updated three
of the four non-trivial areas. Since the choice of the locations of the vertices in the areas
is independent of the sequence of updates, we have to consider four cases depending on
which of the four areas has not yet been updated. We use A′, B′, C ′ and D′ to refer to
the areas A,B,C and D after they have been updated. If the area A is the only area that
has not yet been updated, we have that d(A,B ′) = (7 + ε, 9 + ε) and d(C ′, D′) = {8 − 2ε}.
Clearly the area A needs to be updated. By having the vertex of area A on the far left,
updating only area A instead of the areas B,C,D results in d(A′, B) = (9 − ε, 11 − ε) and
d(C,D) = (4, 8). Hence OPT would only update the area A and know that the edge AB
is not part of the minimum spanning tree. The other three cases are similar. So for the
construction in Figure 6(a), no algorithm can guarantee to make less than 4 updates even
though a single update is enough for the optimum. Furthermore, we can create k disjoint
copies of the construction and connect them using lines of trivial areas spaced 1 apart. As
long as the copies are sufficiently far apart, they will not interfere with each other. Hence,
for a graph with k copies there is no algorithm that can guarantee less than 4k updates
when at the same time OPT = k.
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Abstract. Monotone systems of polynomial equations (MSPEs) are systems of fixed-
point equations X1 = f1(X1, . . . , Xn), . . . , Xn = fn(X1, . . . , Xn) where each fi is a poly-
nomial with positive real coefficients. The question of computing the least non-negative
solution of a given MSPE X = f(X) arises naturally in the analysis of stochastic models
such as stochastic context-free grammars, probabilistic pushdown automata, and back-
button processes. Etessami and Yannakakis have recently adapted Newton’s iterative
method to MSPEs. In a previous paper we have proved the existence of a threshold kf

for strongly connected MSPEs, such that after kf iterations of Newton’s method each
new iteration computes at least 1 new bit of the solution. However, the proof was purely
existential. In this paper we give an upper bound for kf as a function of the minimal com-
ponent of the least fixed-point µf of f(X). Using this result we show that kf is at most
single exponential resp. linear for strongly connected MSPEs derived from probabilistic
pushdown automata resp. from back-button processes. Further, we prove the existence of
a threshold for arbitrary MSPEs after which each new iteration computes at least 1/w2h

new bits of the solution, where w and h are the width and height of the DAG of strongly
connected components.

1. Introduction

A monotone system of polynomial equations (MSPE for short) has the form

X1 = f1(X1, . . . , Xn)
...

Xn = fn(X1, . . . , Xn)

where f1, . . . , fn are polynomials with positive real coefficients. In vector form we denote an
MSPE by X = f(X). We call MSPEs “monotone” because x ≤ x′ implies f(x) ≤ f(x′)
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for every x,x′ ∈ Rn
≥0. MSPEs appear naturally in the analysis of many stochastic models,

such as context-free grammars (with numerous applications to natural language processing
[19, 15], and computational biology [21, 4, 3, 17]), probabilistic programs with procedures
[6, 2, 10, 8, 7, 9, 11], and web-surfing models with back buttons [13, 14].

By Kleene’s theorem, a feasible MSPE X = f(X) (i.e., an MSPE with at least one
solution) has a least solution µf ; this solution can be irrational and non-expressible by
radicals. Given an MSPE and a vector v encoded in binary, the problem whether µf ≤ v

holds is in PSPACE and at least as hard as the SQUARE-ROOT-SUM problem, a well-
known problem of computational geometry (see [10, 12] for more details).

For the applications mentioned above the most important question is the efficient nu-
merical approximation of the least solution. Finding the least solution of a feasible system
X = f(X) amounts to finding the least solution of F (X) = 0 for F (X) = f(X) − X.
For this we can apply (the multivariate version of) Newton’s method [20]: starting at some
x(0) ∈ Rn (we use uppercase to denote variables and lowercase to denote values), compute
the sequence

x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))
where F ′(X) is the Jacobian matrix of partial derivatives.

While in general the method may not even be defined (F ′(x(k)) may be singular for
some k), Etessami and Yannakakis proved in [10, 12] that this is not the case for the
Decomposed Newton’s Method (DNM), that decomposes the MSPE into strongly connected
components (SCCs) and applies Newton’s method to them in a bottom-up fashion1.

The results of [10, 12] provide no information on the number of iterations needed to
compute i valid bits of µf , i.e., to compute a vector ν such that

∣∣µf j − νj

∣∣ /
∣∣µf j

∣∣ ≤ 2−i

for every 1 ≤ j ≤ n. In a former paper [16] we have obtained a first positive result on this
problem. We have proved that for every strongly connected MSPE X = f(X) there exists
a threshold kf such that for every i ≥ 0 the (kf + i)-th iteration of Newton’s method has
at least i valid bits of µf . So, loosely speaking, after kf iterations DNM is guaranteed to
compute at least 1 new bit of the solution per iteration; we say that DNM converges linearly
with rate 1.

The problem with this result is that its proof provides no information on kf other than
its existence. In this paper we show that the threshold kf can be chosen as

kf = 3n2m + 2n2 |log µmin|
where n is the number of equations of the MSPE, m is such that all coefficients of the
MSPE can be given as ratios of m-bit integers, and µmin is the minimal component of the
least solution µf .

It can be objected that kf depends on µf , which is precisely what Newton’s method
should compute. However, for MSPEs coming from stochastic models, such as the ones
listed above, we can do far better. The following observations and results help to deal with
µmin:

• We obtain a syntactic bound on µmin for probabilistic programs with procedures
(having stochastic context-free grammars and back-button stochastic processes as
special instances) and prove that in this case kf ≤ n2n+2m.

1A subset of variables and their associated equations form an SCC, if the value of any variable in the
subset influences the value of all variables in the subset, see Section 2 for details.
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• We show that if every procedure has a non-zero probability of terminating, then
kf ≤ 3nm. This condition always holds in the special case of back-button pro-
cesses [13, 14]. Hence, our result shows that i valid bits can be computed in time
O((nm + i) · n3) in the unit cost model of Blum, Shub and Smale [1], where each
single arithmetic operation over the reals can be carried out exactly and in constant
time. It was proved in [13, 14] by a reduction to a semidefinite programming prob-
lem that i valid bits can be computed in poly(i, n,m)-time in the classical (Turing-
machine based) computation model. We do not improve this result, because we
do not have a proof that round-off errors (which are inevitable on Turing-machine
based models) do not crucially affect the convergence of Newton’s method. But our
result sheds light on the convergence of a practical method to compute µf .

• Finally, since x(k) ≤ x(k+1) ≤ µf holds for every k ≥ 0, as Newton’s method
proceeds it provides better and better lower bounds for µmin and thus for kf . In the
paper we exhibit a MSPE for which, using this fact and our theorem, we can prove
that no component of the solution reaches the value 1. This cannot be proved by
just computing more iterations, no matter how many.

The paper contains two further results concerning non-strongly-connected MSPEs: Firstly,
we show that DNM still converges linearly even if the MSPE has more than one SCC, albeit
the convergence rate is poorer. Secondly, we prove that Newton’s method is well-defined
also for non-strongly-connected MSPEs. Thus, it is not necessary to decompose an MSPE
into its SCCs – although decomposing the MSPE may be preferred for efficiency reasons.

The paper is structured as follows. In Section 2 we state preliminaries and give some
background on Newton’s method applied to MSPEs. Sections 3, 5, and 6 contain the three
results of the paper. Section 4 contains applications of our main result. We conclude in
Section 7. Missing proofs can be found in a technical report [5].

2. Preliminaries

In this section we introduce our notation and formalize the concepts mentioned in the
introduction.

2.1. Notation

R and N denote the sets of real, respectively natural numbers. We assume 0 ∈ N. Rn

denotes the set of n-dimensional real valued column vectors and Rn
≥0 the subset of vectors

with non-negative components. We use bold letters for vectors, e.g. x ∈ Rn, where we
assume that x has the components x1, . . . , xn. Similarly, the ith component of a function
f : Rn → Rn is denoted by fi.

Rm×n denotes the set of matrices having m rows and n columns. The transpose of a
vector or matrix is indicated by the superscript >. The identity matrix of Rn×n is denoted
by Id.

The formal Neumann series of A ∈ Rn×n is defined by A∗ =
∑

k∈N Ak. It is well-known
that A∗ exists if and only if the spectral radius of A is less than 1, i.e. max{|λ| | C 3
λ is an eigenvalue of A} < 1. If A∗ exists, we have A∗ = (Id−A)−1.

The partial order ≤ on Rn is defined as usual by setting x ≤ y if xi ≤ yi for all
1 ≤ i ≤ n. By x < y we mean x ≤ y and x 6= y. Finally, we write x ≺ y if xi < yi in every
component.
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We use X1, . . . , Xn as variable identifiers and arrange them into the vector X. In the
following n always denotes the number of variables, i.e. the dimension of X. While x,y, . . .
denote arbitrary elements in Rn, resp. Rn

≥0, we write X if we want to emphasize that a
function is given w.r.t. these variables. Hence, f(X) represents the function itself, whereas
f(x) denotes its value for x ∈ Rn.

If Y is a set of variables and x a vector, then by xY we mean the vector obtained by
restricting x to the components in Y .

The Jacobian of a differentiable function f(X) with f : Rn → Rm is the matrix f ′(X)
given by

f ′(X) =


∂f1

∂X1
. . . ∂f1

∂Xn
...

...
∂fm

∂X1
. . . ∂fm

∂Xn

 .

2.2. Monotone Systems of Polynomials

Definition 2.1. A function f(X) with f : Rn
≥0 → Rn

≥0 is a monotone system of polyno-
mials (MSP), if every component fi(X) is a polynomial in the variables X1, . . . , Xn with
coefficients in R≥0. We call an MSP f(X) feasible if y = f(y) for some y ∈ Rn

≥0.

Fact 2.2. Every MSP f is monotone on Rn
≥0, i.e. for 0 ≤ x ≤ y we have f(x) ≤ f(y).

Since every MSP is continuous, Kleene’s fixed-point theorem (see e.g. [18]) applies.

Theorem 2.3 (Kleene’s fixed-point theorem). Every feasible MSP f(X) has a least fixed
point µf in Rn

≥0 i.e., µf = f(µf) and, in addition, y = f(y) implies µf ≤ y. Moreover,

the sequence (κ(k)
f )k∈N with κ

(0)
f := 0, and κ

(k+1)
f := f(κ(k)

f ) = fk+1(0) is monotonically

increasing with respect to ≤ (i.e. κ
(k)
f ≤ κ

(k+1)
f ) and converges to µf .

In the following we call (κ(k)
f )k∈N the Kleene sequence of f(X), and drop the subscript

whenever f is clear from the context. Similarly, we sometimes write µ instead of µf .
A variable Xi of an MSP f(X) is productive if κ

(k)
i > 0 for some k ∈ N. An MSP is

clean if all its variables are productive. It is easy to see that κ
(n)
i = 0 implies κ

(k)
i = 0 for

all k ∈ N. As for context-free grammars we can determine all productive variables in time
linear in the size of f .

Notation 2.4. In the following, we always assume that an MSP f is clean and feasible.
I.e., whenever we write “MSP”, we mean “clean and feasible MSP”, unless explicitly stated
otherwise.

For the formal definition of the Decomposed Newton’s Method (DNM) (see also Section 1)
we need the notion of dependence between variables.

Definition 2.5. Let f(X) be an MSP. Xi depends directly on Xk, denoted by Xi E Xk,
if ∂fi

∂Xk
(X) is not the zero-polynomial. Xi depends on Xk if Xi E∗ Xk, where E∗ is the

reflexive transitive closure of E. An MSP is strongly connected (short: an scMSP) if all its
variables depend on each other.
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Any MSP can be decomposed into strongly connected components (SCCs), where an SCC
S is a maximal set of variables such that each variable in S depends on each other variable
in S. The following result for strongly connected MSPs was proved in [10, 12]:

Theorem 2.6. Let f(X) be an scMSP and define the Newton operator Nf as follows

Nf (X) = X + (Id− f ′(X))−1(f (X)−X) .

We have: (1) Nf (x) is defined for all 0 ≤ x ≺ µf (i.e., (Id− f ′(x))−1 exists). Moreover,
f ′(x)∗ =

∑
k∈N f ′(x)k exists for all 0 ≤ x ≺ µf , and so Nf (X) = X+f ′(X)∗(f(X)−X).

(2) The Newton sequence (ν (k)
f )k∈N with ν(k) = N k

f (0) is monotonically increasing, bounded
from above by µf (i.e. ν (k) ≤ f(ν(k)) ≤ ν(k+1) ≺ µf), and converges to µf .

DNM works by substituting the variables of lower SCCs by corresponding Newton approx-
imations that were obtained earlier.

3. A Threshold for scMSPs

In this section we obtain a threshold after which DNM is guaranteed to converge linearly
with rate 1.

We showed in [16] that for worst-case results on the convergence of Newton’s method it is
enough to consider quadratic MSPs, i.e., MSPs whose monomials have degree at most 2. The
reason is that any MSP (resp. scMSP) f can be transformed into a quadratic MSP (resp.
scMSP) f̃ by introducing auxiliary variables. This transformation is very similar to the
transformation of a context-free grammar into Chomsky normal form. The transformation
does not accelerate DNM, i.e., DNM on f is at least as fast (in a formal sense) as DNM on
f̃ , and so for a worst-case analysis, it suffices to consider quadratic systems. We refer the
reader to [16] for details.

We start by defining the notion of “valid bits”.

Definition 3.1. Let f(X) be an MSP. A vector ν has i valid bits of the least fixed point
µf if

∣∣µf j − νj

∣∣ / ∣∣µf j

∣∣ ≤ 2−i for every 1 ≤ j ≤ n.

In the rest of the section we prove the following:

Theorem 3.2. Let f(X) be a quadratic scMSP. Let cmin be the smallest nonzero coefficient
of f and let µmin and µmax be the minimal and maximal component of µf , respectively. Let

kf = n · log
(

µmax

cmin · µmin ·min{µmin, 1}
)

.

Then ν(dkf e+i) has i valid bits of µf for every i ≥ 0.

Loosely speaking, the theorem states that after kf iterations of Newton’s method, every
subsequent iteration guarantees at least one more valid bit. It may be objected that kf

depends on the least fixed point µf , which is precisely what Newton’s method should
compute. However, in the next section we show that there are important classes of MSPs
(in fact, those which motivated our investigation), for which bounds on µmin can be easily
obtained.

The following corollary is weaker than Theorem 3.2, but less technical in that it avoids
a dependence on µmax and cmin.
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Corollary 3.3. Let f(X) be a quadratic scMSP of dimension n whose coefficients are
given as ratios of m-bit integers. Let µmin be the minimal component of µf . Let kf =
3n2m + 2n2 |log µmin| . Then ν(dkf e+i) has at least i valid bits of µf for every i ≥ 0.

Corollary 3.3 follows from Theorem 3.2 by a suitable bound on µmax in terms of cmin and
µmin [5] (notice that, since cmin is the quotient of two m-bit integers, we have cmin ≥ 1/2m).

In the rest of the section we sketch the proof of Theorem 3.2. The proof makes crucial
use of vectors d � 0 such that d ≥ f ′(µf)d. We call a vector satisfying these two conditions
a cone vector of f or, when f is clear from the context, just a cone vector.

In a previous paper we have shown that if the matrix (Id−f ′(µf)) is singular, then f

has a cone vector ([16], Lemmata 4 and 8). As a first step towards the proof of Theorem 3.2
we show the following stronger proposition.

Proposition 3.4. Any scMSP has a cone vector.

To a cone vector d = (d1, . . . , dn) we associate two parameters, namely the maximum and
the minimum of the ratios µf 1/d1, µf2/d2, . . . , µfn/dn, which we denote by λmax and λmin,
respectively. The second step consists of showing (Proposition 3.6) that given a cone vector
d, the threshold kf ,d = log(λmax/λmin) satisfies the same property as kf in Theorem 3.2,
i.e., ν(dkf ,de+i) has i valid bits of µf for every i ≥ 0. This follows rather easily from the
following fundamental property of cone vectors: a cone vector leads to an upper bound on
the error of Newton’s method.

Lemma 3.5. Let d be a cone vector of an MSP f and let λmax = max{µf i
di
}. Then

µf − ν(k) ≤ 2−kλmax d.

Proof Idea. Consider the ray g(t) = µf − td starting in µf and headed in the direction −d

(the dashed line in the picture below). It is easy to see that g(λmax) is the intersection of g

with an axis which is located farthest from µf . One can then prove g( 1
2λmax) ≤ ν(1), where

g(1
2λmax) is the point of the ray equidistant from g(λmax) and µf . By repeated application

of this argument one obtains g(2−kλmax) ≤ ν(k) for all k ∈ N.
The following picture shows the Newton iterates ν (k) for 0 ≤ k ≤ 2 (shape: ×) and

the corresponding points g(2−kλmax) (shape: +) located on the ray g. Notice that ν (k) ≥
g(2−kλmax).
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µf = g(0)
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Now we easily obtain:

Proposition 3.6. Let f(X) be an scMSP and let d be a cone vector of f . Let kf ,d =
log λmax

λmin
, where λmax = maxj

µf j

dj
and λmin = minj

µf j

dj
. Then ν(dkf ,de+i) has at least i valid

bits of µf for every i ≥ 0.

We now proceed to the third and final step. We have the problem that kf ,d depends on the
cone vector d, about which we only know that it exists (Proposition 3.4). We now sketch
how to obtain the threshold kf claimed in Theorem 3.2, which is independent of any cone
vectors.

Consider Proposition 3.6 and let λmax = µf i
di

and λmin = µf j

dj
. We have kf ,d =

log
(

dj

di
· µf i

µf j

)
. The idea is to bound kf ,d in terms of cmin. We show that if kf ,d is very

large, then there must be variables X,Y such that X depends on Y only via a monomial
that has a very small coefficient, which implies that cmin is very small.

4. Stochastic Models

As mentioned in the introduction, several problems concerning stochastic models can be
reduced to problems about the least solution µf of an MSPE f . In these cases, µf is a
vector of probabilities, and so µmax ≤ 1. Moreover, we can obtain information on µmin,
which leads to bounds on the threshold kf .

4.1. Probabilistic Pushdown Automata

Our study of MSPs was initially motivated by the verification of probabilistic pushdown
automata. A probabilistic pushdown automaton (pPDA) is a tuple P = (Q,Γ, δ,Prob) where
Q is a finite set of control states, Γ is a finite stack alphabet, δ ⊆ Q× Γ×Q× Γ∗ is a finite
transition relation (we write pX ↪−→ qα instead of (p,X, q, α) ∈ δ), and Prob is a function
which to each transition pX ↪−→ qα assigns its probability Prob(pX ↪−→ qα) ∈ (0, 1] so that
for all p ∈ Q and X ∈ Γ we have

∑
pX↪−→qα Prob(pX ↪−→ qα) = 1. We write pX

x
↪−→ qα

instead of Prob(pX ↪−→ qα) = x. A configuration of P is a pair qw, where q is a control state
and w ∈ Γ∗ is a stack content. A probabilistic pushdown automaton P naturally induces
a possibly infinite Markov chain with the configurations as states and transitions given by:
pXβ

x
↪−→ qαβ for every β ∈ Γ∗ iff pX

x
↪−→ qα. We assume w.l.o.g. that if pX

x
↪−→ qα is a

transition then |α| ≤ 2.
pPDAs and the equivalent model of recursive Markov chains have been very thoroughly

studied [6, 2, 10, 8, 7, 9, 11]. These papers have shown that the key to the analysis of pPDAs
are the termination probabilities [pXq], where p and q are states, and X is a stack letter,
defined as follows (see e.g. [6] for a more formal definition): [pXq] is the probability that,
starting at the configuration pX, the pPDA eventually reaches the configuration qε (empty
stack). It is not difficult to show that the vector of termination probabilities is the least
fixed point of the MSPE containing the equation

[pXq] =
∑

pX
x

↪−→rY Z

x ·
∑
t∈Q

[rY t] · [tZq] +
∑

pX
x

↪−→rY

x · [rY q] +
∑

pX
x

↪−→qε

x

for each triple (p,X, q). Call this quadratic MSPE the termination MSPE of the pPDA
(we assume that termination MSPEs are clean, and it is easy to see that they are always
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feasible). We immediately have that if X = f(X) is a termination MSP, then µmax ≤ 1.
We also obtain a lower bound on µmin:

Lemma 4.1. Let X = f(X) be a termination MSPE with n variables. Then µmin ≥
c
(2n+1−1)
min .

Together with Theorem 3.2 we get the following exponential bound for kf .

Proposition 4.2. Let f be a strongly connected termination MSP with n variables and
whose coefficients are expressed as ratios of m-bit numbers. Then kf ≤ n2n+2m.

We conjecture that there is a lower bound on kf which is exponential in n for the following
reason. We know a family (f (n))n=1,3,5,... of strongly connected MSPs with n variables and
irrational coefficients such that c

(n)
min = 1

4 for all n and µ
(n)
min is double-exponentially small in

n. Experiments suggest that Θ(2n) iterations are needed for the first bit of µf (n), but we
do not have a proof.

4.2. Strict pPDAs and Back-Button Processes

A pPDA is strict if for every pX ∈ Q×Γ the transition relation contains a pop-rule pX
x

↪−→ qε
for some q ∈ Q and some x > 0. Essentially, strict pPDAs model programs in which every
procedure has at least one terminating execution that does not call any other procedure.
The termination MSP of a strict pPDA is of the form b(X,X) + lX + c for c � 0. So we
have µf ≥ c, which implies µmin ≥ cmin. Together with Theorem 3.2 we get:

Proposition 4.3. Let f be a strongly connected termination MSP with n variables and
whose coefficients are expressed as ratios of m-bit numbers. If f is derived from a strict
pPDA, then kf ≤ 3nm.

Since in most applications m is small, we obtain an excellent convergence threshold.
In [13, 14] Fagin et al. introduce a special class of strict pPDAs called back-button

processes: in a back-button process there is only one control state p , and any rule is of the

form pA
bA

↪−→ pε or pA
lAB

↪−−→ pBA. So the stack corresponds to a path through a finite graph

with Γ as set of nodes and edges A → B for pA
lAB

↪−−→ pBA.
In [13, 14] back-button processes are used to model the behaviour of web-surfers: Γ is

the set of web-pages, lAB is the probability that a web-surfer uses a link from page A to page
B, and bA is the probability that the surfer pushes the “back”-button of the web-browser
while visiting A. Thus, the termination probability [pAp] is simply the probability that, if A
is on top of the stack, A is eventually popped from the stack. The termination probabilities
are the least solution of the MSPE consisting of the equations

[pAp] = bA +
∑

pA
lAB

↪−−→pBA

lAB[pBp][pAp] = bA + [pAp]
∑

pA
lAB

↪−−→pBA

lAB [pBp].
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4.3. An Example

As an example of application of Theorem 3.2 consider the following scMSPE X = f(X).X1

X2

X3

 =

 0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7


The least solution of the system gives the revocation probabilities of a back-button process
with three web-pages. For instance, if the surfer is at page 2 it can choose between following
links to pages 1 and 3 with probabilities 0.3 and 0.4, respectively, or pressing the back button
with probability 0.3.

We wish to know if any of the revocation probabilities is equal to 1. Performing 14 New-
ton steps (e.g. with Maple) yields an approximation ν (14) to the termination probabilities
with  0.98

0.97
0.992

 ≤ ν(14) ≤
 0.99

0.98
0.993

 .

We have cmin = 0.3. In addition, since Newton’s method converges to µf from below,
we know µmin ≥ 0.97. Moreover, µmax ≤ 1, as 1 = f(1) and so µf ≤ 1. Hence kf ≤
3 · log 1

0.97·0.3·0.97 ≤ 6. Theorem 3.2 then implies that ν (14) has (at least) 8 valid bits of µf .
As µf ≤ 1, the absolute errors are bounded by the relative errors, and since 2−8 ≤ 0.004
we know:

µf ≺ ν(14) +

2−8

2−8

2−8

 ≺
0.994

0.984
0.997

 ≺
1

1
1


So Theorem 3.2 gives a proof that all 3 revocation probabilities are strictly smaller than 1.

5. Linear Convergence of the Decomposed Newton’s Method

Given a strongly connected MSP f , Theorem 3.2 states that, if we have computed kf

preparatory iterations of Newton’s method, then after i additional iterations we can be sure
to have computed at least i bits of µf . We call this linear convergence with rate 1. Now we
show that DNM, which handles non-strongly-connected MSPs, converges linearly as well.
We also give an explicit convergence rate.

Let f(X) be any quadratic MSP (again we assume quadratic MSPs throughout this
section), and let h(f) denote the height of the DAG of strongly connected components
(SCCs). The convergence rate of DNM crucially depends on this height: In the worst
case one needs asymptotically Θ(2h(f)) iterations in each component per bit, assuming one
performs the same number of iterations in each component.

To get a sharper result, we suggest to perform a different number of iterations in each
SCC, depending on its depth. The depth of an SCC S is the length of the longest path in
the DAG of SCCs from S to a top SCC.

In addition, we use the following notation. For a depth t, we denote by comp(t) the
set of SCCs of depth t. Furthermore we define C(t) :=

⋃
comp(t) and C>(t) :=

⋃
t′>t C(t′)

and, analogously, C<(t). We will sometimes write vt for vC(t) and v>t for vC>(t) and v<t

for vC<(t), where v is any vector.
Figure 1 shows the Decomposed Newton’s Method (DNM) for computing an approx-

imation ν for µf , where f(X) is any quadratic MSP. The authors of [10] recommend to
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run Newton’s Method in each SCC S until “approximate solutions for S are considered
‘good enough’ ”. Here we suggest to run Newton’s Method in each SCC S for a number of
steps that depends (exponentially) on the depth of S and (linearly) on a parameter j that
controls the number of iterations (see Figure 1).

function DNM (f , j)
/* The parameter j controls the number of iterations. */
for t from h(f ) downto 0

forall S ∈ comp(t) /* all SCCs S of depth t */
νS := N j·2t

fS
(0) /* j · 2t iterations */

/* apply νS in the depending SCCs */
f<t(X) := f<t(X)[XS/νS ]

return ν

Figure 1: Decomposed Newton’s Method (DNM) for computing an approximation ν of µf

Recall that h(f ) was defined as the height of the DAG of SCCs. Similarly we define the
width w(f) to be maxt |comp(t)|. Notice that f has at most (h(f ) + 1) · w(f) SCCs. We
have the following bound on the number of iterations run by DNM.

Proposition 5.1. The function DNM(f , j) of Fig. 1 runs at most j ·w(f )·2h(f )+1 iterations
of Newton’s method.

We will now analyze the convergence behavior of DNM asymptotically (for large j). Let
∆(j)

S denote the error in S when running DNM with parameter j, i.e., ∆(j)
S := µS − ν

(j)
S .

Observe that the error ∆(j)
t can be understood as the sum of two errors:

∆(j)
t = µt − ν

(j)
t = (µt − µ̃t

(j)) + (µ̃t
(j) − ν

(j)
t ) ,

where µ̃t
(j) := µ

(
f t(X)[X>t/ν

(j)
>t ]

)
, i.e., µ̃t

(j) is the least fixed point of f t after the ap-
proximations from the lower SCCs have been applied. So, ∆(j)

t consists of the propagation
error (µt − µ̃t

(j)) and the newly inflicted approximation error (µ̃t
(j) − ν

(j)
t ).

The following lemma, technically non-trivial to prove, gives a bound on the propagation
error.

Lemma 5.2 (Propagation error). Let ν>t be some approximation of µ>t, i.e., 0 ≤ ν>t ≤
µ>t. Let µ̃t = µ

(
f t(X)[X>t/ν>t]

)
. Then there is a constant c > 0 such that

‖µt − µ̃t‖ ≤ c ·
√
‖µ>t − ν>t‖ .

Intuitively, Lemma 5.2 states that if ν>t has k valid bits of µ>t, then µ̃t has roughly k/2
valid bits of µt. In other words, (at most) one half of the valid bits are lost on each level of
the DAG due to the propagation error.

The following theorem assures that after combining the propagation error and the
approximation error, DNM still converges linearly.

Theorem 5.3. Let f be a quadratic MSP. Let ν (j) denote the result of calling DNM(f , j)
(see Figure 1). Then there is a kf ∈ N such that ν(kf +i) has at least i valid bits of µf for
every i ≥ 0.
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We conclude that increasing i by one gives us asymptotically at least one additional bit in
each component and, by Proposition 5.1, costs w(f ) · 2h(f)+1 additional Newton iterations.

In the technical report [5] we give an example that shows that the bound above is
essentially optimal in the sense that an exponential (in h(f)) number of iterations is in
general needed to obtain an additional bit.

6. Newton’s Method for General MSPs

Etessami and Yannakakis [10] introduced DNM because they could show that the matrix
inverses used by Newton’s method exist if Newton’s method is run on each SCC separately
(see Theorem 2.6).

It may be surprising that the matrix inverses used by Newton’s method exist even if
the MSP is not decomposed. More precisely one can show the following theorem, see [5].

Theorem 6.1. Let f(X) be any MSP, not necessarily strongly connected. Let the Newton
operator Nf be defined as before:

Nf (X) = X + (Id− f ′(X))−1(f(X)−X)

Then the Newton sequence (ν (k)
f )k∈N with ν(k) = N k

f (0) is well-defined (i.e., the matrix
inverses exist), monotonically increasing, bounded from above by µf (i.e. ν (k) ≤ ν(k+1) ≺
µf), and converges to µf .

By exploiting Theorem 5.3 and Theorem 6.1 one can show the following theorem which
addresses the convergence speed of Newton’s Method in general.

Theorem 6.2. Let f be any quadratic MSP. Then the Newton sequence (ν (k))k∈N is
well-defined and converges linearly to µf . More precisely, there is a kf ∈ N such that
ν(kf+i·(h(f)+1)·2h(f)) has at least i valid bits of µf for every i ≥ 0.

Again, the 2h(f) factor cannot be avoided in general as shown by an example in [5].

7. Conclusions

We have proved a threshold kf for strongly connected MSPEs. After kf+i Newton iterations
we have i bits of accuracy. The threshold kf depends on the representation size of f and
on the least solution µf . Although this latter dependence might seem to be a problem,
lower and upper bounds on µf can be easily derived for stochastic models (probabilistic
programs with procedures, stochastic context-free grammars and back-button processes).
In particular, this allows us to show that kf depends linearly on the representation size for
back-button processes. We have also shown by means of an example that the threshold kf

improves when the number of iterations increases.
In [16] we left the problem whether DNM converges linearly for non-strongly-connected

MSPEs open. We have proven that this is the case, although the convergence rate is poorer:
if h and w are the height and width of the graph of SCCs of f , then there is a threshold
k̃f such that k̃f + i · w · 2h+1 iterations of DNM compute at least i valid bits of µf , where
the exponential factor cannot be avoided in general.

Finally, we have shown that the Jacobian of the whole MSPE is guaranteed to exist,
whether the MSPE is strongly connected or not.
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Abstract. We investigate quantitative extensions of modal logic and the modal µ-calculus,
and study the question whether the tight connection between logic and games can be lifted
from the qualitative logics to their quantitative counterparts. It turns out that, if the
quantitative µ-calculus is defined in an appropriate way respecting the duality properties
between the logical operators, then its model checking problem can indeed be characterised
by a quantitative variant of parity games. However, these quantitative games have quite
different properties than their classical counterparts, in particular they are, in general, not
positionally determined. The correspondence between the logic and the games goes both
ways: the value of a formula on a quantitative transition system coincides with the value of
the associated quantitative game, and conversely, the values of quantitative parity games
are definable in the quantitative µ-calculus.

1. Introduction

There have been a number of recent proposals to extend the common qualitative, i.e.
two-valued, logical formalisms for specifying the behaviour of concurrent systems, such as
propositional modal logic ML, the temporal logics LTL and CTL, and the modal µ-calculus
Lµ, to quantitative formalisms. In quantitative logics, the formulae can take, at a given state
of a system, not just the values true and false, but quantitative values, for instance from
the (non-negative) real numbers. There are several scenarios and applications where it is
desirable to replace purely qualitative statements by quantitative ones, which can be of very
different nature: we may be interested in the probability of an event, the value that we assign
to an event may depend on how late it occurs, we can ask for the number of occurrences
of an event in a play, and so on. We can consider transition structures, where already the
atomic propositions take numeric values, or we can ask about the ‘degree of satisfaction’
of a property. There are several papers that deal with either of these topics, resulting
in different specification formalisms and in different notions of transition structures. In
particular, due to the prominence and importance of the modal µ-calculus in verification,
there have been several attempts to define a quantitative µ-calculus. In some of these,
the term quantitative refers to probability, i.e. the logic is interpreted over probabilistic
transition systems [11], or used to describe winning conditions in stochastic games [5, 1, 8].
Other variants introduce quantities by allowing discounting in the respective version of
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a “next”-operator for qualitative transition systems [1], Markov decision processes and
Markov chains [2], and for stochastic games [4].

While there certainly is ample motivation to extend qualitative specification formalisms
to quantitative ones, there also are problems. As has been observed in many areas of mathe-
matics, engineering and computer science where logical formalisms are applied, quantitative
formalisms in general lack the clean and clear mathematical theory of their qualitative coun-
terparts, and many of the desirable mathematical and algorithmic properties tend to get
lost. Also, the definitions of quantitative formalisms are often ad hoc and do not always
respect the properties that are required for logical methodologies. In this paper we have
a closer look at quantitative modal logic and the quantitative µ-calculus in terms of their
description by appropriate semantic games. The close connection to games is a fundamen-
tal aspect of logics. The evaluation of logical formulae can be described by model checking
games, played by two players on an arena which is formed as the product of a structure K
and a formula ψ. One player (Verifier) attempts to prove that ψ is satisfied in K while the
other (Falsifier) tries to refute this.

For the modal µ-calculus Lµ, model checking is described by parity games, and this
connection is of crucial importance for the model theory, the algorithmic evaluation and
the applications of the µ-calculus. Indeed, most competitive model checking algorithms for
Lµ are based on algorithms to solve the strategy problem in parity games [10]. Further-
more, parity games enjoy nice properties like positional determinacy and can be intuitively
understood: often, the best way to make sense of a µ-calculus formula is to look at the
associated game. In the other direction, winning regions of parity games (for any fixed
number of priorities) are definable in the modal µ-calculus.

In this paper, we explore the question to what extent the relationship between the
µ-calculus and parity games can be extended to a quantitative µ-calculus and appropriate
quantitative model checking games. The extension is not straightforward, and requires that
one defines the quantitative µ-calculus in the ‘right’ way, so as to ensure that it has appro-
priate closure and duality properties (such as closure under negation, De Morgan equalities,
quantifier and fixed point dualities) to make it amenable to a game-based approach. Once
this is done, we can indeed construct a quantitative variant of parity games, and prove that
they are the appropriate model checking games for the quantitative µ-calculus. As in the
classical setting the correspondence goes both ways: the value of a formula in a structure
coincides with the value of the associated model checking game, and conversely, the values
of quantitative parity games (with a fixed number of priorities) are definable in the quan-
titative µ-calculus. However, the mathematical properties of quantitative parity games are
different from their qualitative counterparts. In particular, they are, in general, not posi-
tionally determined, not even up to approximation. The proof that the quantitative model
checking games correctly describe the value of the formulae is considerably more difficult
than for the classical case.

As in the classical case, model checking games lead to a better understanding of the
semantics and expressive power of the quantitative µ-calculus. Further, the game-based
approach also sheds light on the consequences of different choices in the design of the
quantitative formalism, which are far less obvious than for classical logics.
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2. Quantitative µ-calculus

In [3], de Alfaro, Faella, and Stoelinga introduce a quantitative µ-calculus, that is
interpreted over metric transition systems, where predicates can take values in arbitrary
metric spaces. Furthermore, their µ-calculus allows discounting in modalities and is studied
in connection with quantitative versions of basic system relations such as bisimulation.

We base our calculus on the one proposed in [3] but modify it in the following ways.
(1) We decouple discounts from the modal operators.
(2) We allow discount factors to be greater than one.
(3) In the definition of transition systems we allow additional discounts on the edges.
These changes make the logic more robust and more general, and, as we will show in

the next section, will permit us to introduce a negation operator with the desired duality
properties that are fundamental to a game-based analysis.

Quantitative transition systems, similar to the ones introduced in [3] are directed graphs
equipped with quantities at states and discounts on edges. In the sequel, R+ is the set of
non-negative real numbers, and R+∞ := R+ ∪ {∞}.
Definition 2.1. A quantitative transition system (QTS) is a tuple

K = (V,E, δ, {Pi}i∈I),

consisting of a directed graph (V,E), a discount function δ : E → R+ \ {0} and functions
Pi : V → R+∞, that assign to each state the values of the predicates at that state.

A transition system is qualitative if all functions Pi assign only the values 0 or ∞, i.e.
Pi : V → {0,∞}, where 0 stands for false and ∞ for true, and it is non-discounted if
δ(e) = 1 for all e ∈ E.

We now introduce a quantitative version of the modal µ-calculus to describe properties
of quantitative transition systems.

Definition 2.2. Given a set V of variables X, predicate functions {Pi}i∈I , discount factors
d ∈ R+ and constants c ∈ R+, the formulae of quantitative µ-calculus (Qµ) can be built in
the following way:

(1) |Pi − c| is a Qµ-formula,
(2) X is a Qµ-formula,
(3) if ϕ,ψ are Qµ-formulae, then so are (ϕ ∧ ψ) and (ϕ ∨ ψ),
(4) if ϕ is a Qµ-formula, then so are �ϕ and ♦ϕ,
(5) if ϕ is a Qµ-formula, then so is d · ϕ,
(6) if ϕ is a formula of Qµ, then µX.ϕ and νX.ϕ are formulae of Qµ.

Formulae of Qµ are interpreted over quantitative transition systems. Let F be the set
of functions f : V → R+∞, with f1 ≤ f2 if f1(v) ≤ f2(v) for all v. Then (F ,≤) forms a
complete lattice with the constant functions f = ∞ as top element and f = 0 as bottom
element.

Given an interpretation ε : V → F , a variable X ∈ V, and a function f ∈ F , we denote
by ε[X ← f ] the interpretation ε′, such that ε′(X) = f and ε′(Y ) = ε(Y ) for all Y 6= X.

Definition 2.3. Given a QTS K = (V,E, δ, {Pi}i∈I) and an interpretation ε, a Qµ-formula
yields a valuation function JϕKKε : V → R+∞ defined as follows:

(1) J|Pi − c|KKε (v) = |Pi(v)− c|,
(2) Jϕ1 ∧ ϕ2KKε = min{Jϕ1KKε , Jϕ2KKε } and Jϕ1 ∨ ϕ2KKε = max{Jϕ1KKε , Jϕ2KK},
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(3) J♦ϕKKε (v) = supv′∈vE δ(v, v′) · JϕKKε (v′) and J�ϕKKε (v) = infv′∈vE
1

δ(v,v′)JϕKKε (v′),
(4) Jd · ϕKKε (v) = d · JϕKKε (v),
(5) JXKKε = ε(X),
(6) JµX.ϕKKε = inf{f ∈ F : f = JϕKKε[X←f ]},
(7) JνX.ϕKKε = sup{f ∈ F : f = JϕKKε[X←f ]}.
For formulae without free variables, we can simply write JϕKK rather than JϕKKε .

We call the fragment of Qµ consisting of formulae without fixed-point operators quanti-
tative modal logic QML. If Qµ is interpreted over qualitative transition systems, it coincides
with the classical µ-calculus and we say that K, v is a model of ϕ, K, v |= ϕ if JϕKK(v) =∞.
Over non-discounted quantitative transition systems, the definition above coincides with
the one in [3]. For discounted systems we take the natural definition for ♦ and use the dual
one for �, thus the 1

δ factor. As we will show, this is the only definition for which there is
a well-behaved negation operator and with a close relation to model checking games.

We always assume the formulae to be well-named, i.e. each fixed-point variable is bound
only once and no variable appears both free and bound and we use the notions of alternation
level and alternation depth in the usual way, as defined in e.g. [9].

Note that all operators in Qµ are monotone, thus guaranteeing the existence of the
least and greatest fixed points, and their inductive definition according to the Knaster-
Tarski Theorem stated below.

Proposition 2.4. The least and greatest fixed points exist and can be computed inductively:JµX.ϕKKε = gγ with g0(v) = 0 (and JνX.ϕKKε = gγ with g0(v) =∞) for all v ∈ V where

gα =
{ JϕKε[X←gα−1] for α successor ordinal,

limβ<αJϕKε[X←gβ] for α limit ordinal,

and γ is such that gγ = gγ+1.

3. Negation and Duality

So far, the quantitative logics Qµ and QML lack a negation operator and the associated
dualities between ∧ and ∨, ♦ and �, and between least and greatest fixed points. Let us
clarify in the following definition what we expect from such an operator.

Definition 3.1. A negation operator f¬ for Qµ is a function R+∞ → R+∞, such that when
we define J¬ϕK = f¬(JϕK), the following equivalences hold for every ϕ ∈ Qµ:

(1) ¬¬ϕ ≡ ϕ
(2) ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ and ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ
(3) ¬�ϕ ≡ ♦¬ϕ and ¬♦ϕ ≡ �¬ϕ
(4) ¬d · ϕ ≡ β(d) · ¬ϕ for some β independent of ϕ
(5) ¬µX.ϕ ≡ νX.¬ϕ[X/¬X] and ¬νX.ϕ ≡ µX.¬ϕ[X/¬X]

A straightforward calculation shows that the function

f 1
x

: R+
∞ → R+

∞ : x 7→
 1/x for x 6= 0, x 6=∞,
∞ for x = 0,
0 for x =∞,

is a negation operator for Qµ. Hence, we can safely include negation into the definition
of Qµ. If we do so, we of course have to demand that the fixed-point variables in the
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definition of least and greatest fixed point formulae, see Definition 2.2, only occur under an
even number of negations, so as to preserve monotonicity.

Moreover, we show that f 1
x

is the only negation operator with the required properties.
You should note that this is the case even for non-discounted transition systems, and thus
it motivates our definition of the semantics of Qµ, in particular of the modal operators, on
quantitative transition systems.

Theorem 3.2. f 1
x

is the only negation operator for Qµ, even for non-discounted systems.

4. Quantitative Parity Games

Quantitative parity games are an extension of classical parity games. The two main
differences are the possibility to assign real values in final positions to denote the payoff for
Player 0 and the possibility to discount payoff values on edges.

Definition 4.1. A quantitative parity game is a tuple G = (V, V0, V1, E, δ, λ,Ω) where V is
a disjoint union of V0 and V1, i.e. positions belong to either Player 0 or 1. The transition
relation E ⊆ V × V describes possible moves in the game and δ : V × V → R+ maps
every move to a positive real value representing the discount factor. The payoff function
λ : {v ∈ V : vE = ∅} → R+∞ assigns values to all terminal positions and the priority function
Ω : V → {0, . . . , n} assigns a priority to every position.

How to play. Every play starts at some vertex v ∈ V . For every vertex in Vi, Player
i chooses a successor vertex, and the play proceeds from that vertex. If the play reaches
a terminal vertex, it ends. We denote by π = v0v1 . . . the (possibly infinite) play through
vertices v0v1 . . ., given that (vn, vn+1) ∈ E for every n. The outcome p(π) of a finite play
π = v0 . . . vk can be computed by multiplying all discount factors seen throughout the play
with the value of the final node,

p(v0v1 . . . vk) = δ(v0, v1) · δ(v1, v2) · . . . · δ(vk−1, vk) · λ(vk).

The outcome of an infinite play depends only on the lowest priority seen infinitely often.
We will assign the value 0 to every infinite play, where the lowest priority seen infinitely
often is odd, and ∞ to those, where it is even.
Goals. The two players have opposing objectives regarding the outcome of the play.
Player 0 wants to maximise the outcome, while Player 1 wants to minimise it.
Strategies. A strategy for player i ∈ 0, 1 is a function s : V ∗Vi → V with (v, s(v)) ∈ E. A
play π = v0v1 . . . is consistent with a strategy s for player i, if vn+1 = s(v0 . . . vn) for every
n such that vn ∈ Vi. For strategies σ, ρ for the two players, we denote by πσ,ρ(v) the unique
play starting at node v which is consistent with both σ and ρ.
Determinacy. A game is determined if, for each position v, the highest outcome Player 0
can assure from this position and the lowest outcome Player 1 can assure converge,

sup
σ∈Γ0

inf
ρ∈Γ1

p(πσ,ρ(v)) = inf
ρ∈Γ1

sup
σ∈Γ0

p(πσ,ρ(v)) =: valG(v),

where Γ0,Γ1 are the sets of all possible strategies for Player 0, Player 1 and the achieved
outcome is called the value of G at v.

Classical parity games can be seen as a special case of quantitative parity games when
we map winning to payoff ∞ and losing to payoff 0. Formally, we say that a quantitative
parity game G = (V, V0, V1, E, δ, λ,Ω) is qualitative when λ(v) = 0 or λ(v) =∞ for all v ∈ V
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with vE = ∅. In qualitative games, we denote by Wi ∈ V the winning region of player i, i.e.
W0 is the region where player 0 has a strategy to guarantee payoff ∞ and W1 is the region
where player 1 can guarantee payoff 0. Note that there is no need for the discount function
δ in the qualitative case as the payoff can not be changed by discounting.

Qualitative parity games have been extensively studied in the past. One of their funda-
mental properties is positional determinacy. In every parity game, the set of positions can
be partitioned into the winning regions W0 and W1 for the two players, and each player has
a positional winning strategy on her winning region (which means that the moves selected
by the strategy only depend on the current position, not on the history of the play).

Unfortunately, this result does not generalise to quantitative parity games. Example
4.2 shows that there are simple quantitative games where no player has a positional winning
strategy. In the depicted game there is no optimal strategy for Player 0, and even if one
fixes an approximation of the game value, Player 0 needs infinite memory to reach this
approximation, because she needs to loop in the second position as long as Player 1 looped
in the first one to make up for the discounts. (By convention, we depict positions of Player 0
with a circle and of Player 1 with a square and the number inside is the priority for non-
terminal positions and the payoff in terminal ones.)

Example 4.2.

0 1 1

1
2

2

4.1. Model Checking Games for Qµ

A game (G, v) is a model checking game for a formula ϕ and a structure K, v ′, if the
value of the game starting from v is exactly the value of the formula evaluated on K at v ′.
In the qualitative case, that means, that ϕ holds in K, v ′ if Player 0 wins in G from v.

Definition 4.3. For a quantitative transition system K = (S, T, δS , Pi) and a Qµ-formula
ϕ in negation normal form, the quantitative parity game MC[K, ϕ] = (V, V0, V1, E, δ, λ,Ω),
which we call the model checking game for K and ϕ, is constructed in the following way.
Positions. The positions of the game are the pairs (ψ, s), where ψ is a subformula of ϕ,
and s ∈ S is a state of the QTS K, and the two special positions (0) and (∞). Positions
(ψ, s) where the top operator of ψ is �,∧, or ν belong to Player 1 and all other positions
belong to Player 0.
Moves. Positions of the form (|Pi − c|, s), (0), and (∞) are terminal positions. From
positions of the form (ψ∧θ, s), resp. (ψ∨θ, s), one can move to (ψ, s) or to (θ, s). Positions
of the form (♦ψ, s) have either a single successor (0), in case s is a terminal state in K, or one
successor (ψ, s′) for every s′ ∈ sT . Analogously, positions of the form (�ψ, s) have a single
successor (∞), if sT = ∅, or one successor (ψ, s′) for every s′ ∈ sT otherwise. Positions
of the form (d · ψ, s) have a unique successor (ψ, s′). Fixed-point positions (µX.ψ, s), resp.
(νX.ψ, s) have a single successor (ψ, s). Whenever one encounters a position where the fixed-
point variable stands alone, i.e. (X, s′), the play goes back to the corresponding definition,
namely (ψ, s′).
Discounts. The discount of an edge is d for transitions from positions (d·ψ, s), it is δS(s, s′)
for transitions from (♦ψ, s) to (ψ, s′), it is 1/δS(s, s′) for transitions from (�ψ, s) to (ψ, s′),
and 1 for all outgoing transitions from other positions.
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Payoffs. The payoff function λ assigns |JPiK(s) − c| to all positions (|Pi − c|, s), ∞ to
position (∞), and 0 to position (0).
Priorities. The priority function Ω is defined as in the classical case using the alternation
level of the fixed-point variables, see e.g. [9]. Positions (X, s) get a lower priority than
positions (X ′, s′) if X has a lower alternation level than X ′. The priorities are then adjusted
to have the right parity, so that an even value is assigned to all positions (X, s) where X
is a ν-variable and an odd value to those where X is a µ-variable. The maximum priority,
equal to the alternation depth of the formula, is assigned to all other positions.

It is well-known that qualitative parity games are model checking games for the classical
µ-calculus, see e.g. [6] or [12]. A proof that uses the unfolding technique can be found in
[9]. We generalise this connection to the quantitative setting as follows.

Theorem 4.4. For every formula ϕ in Qµ, a quantitative transition system K, and v ∈ K,
the game MC[K, ϕ] is determined and

valMC[K, ϕ](ϕ, v) = JϕKK(v).

4.2. Unfolding Quantitative Parity Games

To prove the model checking theorem in the quantitative case, we start with games
with one priority, known as reachability and safety games. The construction of ε-optimal
strategies is obtained by a generalisation of backwards induction. At first, we fix the notation
and show a few basic properties.

Definition 4.5. A number k ∈ R+∞ is called ε-close to p ∈ R+∞, when either p is finite and
|k−p| ≤ ε or p =∞ and k ≥ 1

ε . A strategy σ in a determined game G is ε-optimal from v if
it assures a payoff ε-close to valG(v). Furthermore, we say that k is ε-above p (or ε-below),
if k ≥ p′ (or k ≤ p′) for some p′ that is ε-close to p.

We slightly abuse the word “close” as ε-closeness is not symmetric, since 1
ε is ε-close to

∞, but∞ is not ε-close to any number r ∈ R+. Still, the following lemmas should convince
you that our definition suits our considerations well.

Definition 4.6. For every history h = v0 . . . v` of a play, let ∆(h) = Πi<`δ(vi, vi+1) be the
product of all discount factors seen in h, and let D(h) = max(∆(h), 1

∆(h)). Note that for
every play π = v0v1 . . . and every k,

p(π) = ∆(v0 . . . vk) · p(vkvk+1 . . .).

Lemma 4.7. Let x, y ∈ R+∞, ε ∈ (0, 1), ∆ ∈ R+ \ {0}, and D = max{∆, 1
∆}.

(1) If x is ε/D-close to y, then ∆ · x is ε-close to ∆ · y. This holds in particular when
∆ = ∆(h) and D = D(h) for a history h.

(2) If x is ε/2-close to y and y is ε/2-close to z, then x is ε-close to z.

This lemma remains valid if we replace the close-relation by the above- or below-relation.

Proposition 4.8. Reachability and Safety games are determined, for every position v there
exist strategies σε and ρε that guarantee payoffs ε-above (or respectively ε-below) valG(v).

The next step is to prove the determinacy of quantitative parity games. For this
purpose, we present a method to unfold a quantitative parity game into a sequence of games
with a smaller number of priorities. This technique is inspired by the proof of correctness
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of the model checking games for Lµ in [9]. We can extend this method to prove Theorem
4.4 by showing that, as in the classical case, the unfolding of MC[K, ϕ] is closely related to
the inductive evaluation of fixed points in ϕ on K.

From now on, we assume that the minimal priority in G is even and call it m. This is
no restriction, since, if the minimal priority is odd, we can always consider the dual game,
where the roles of the players are switched and all priorities are decreased by one.

Definition 4.9. We define the truncated game G− = (V,E−, λ,Ω−) for a quantitative
parity game G = (V,E, λ,Ω). We assume without loss of generality that all nodes with
minimal priority in G have unique successors with a discount of 1. In G− we remove the
outgoing edge from each of these nodes. Since these nodes are terminal positions in G−,
their priority does not matter any more for the outcome of a play and Ω− assigns them a
higher priority, e.g. m+ 1. Formally,

E− = E \ {(v, v′) : Ω(v) = m}

Ω−(v) =
{

Ω(v) if Ω(v) 6= m,
m+ 1 if Ω(v) = m.

The unfolding of G is a sequence of games G−α , for ordinals α, which all coincide with G−,
except for the valuation functions λα. Below we give the construction of the λα

′s.
For all terminal nodes v of the original game G we have λα(v) = λ(v) for all α. For

the new terminal nodes, i.e. all v ∈ V , such that vE− = ∅ and vE = {w}, the valuation is
given by:

λα(v) =


∞ for α = 0,
valG−α−1(w) for α successor ordinal,
limβ<α valG−β (w) for α limit ordinal.

The intuition behind the definition of λα is to give an incentive for Player 0 to reach the
new terminal nodes by first giving them the best possible valuation, and later by updating
them to values of their successor in a previous game G−β , β < α.

To determine the value of the original game G, we inductively compute the values
for each game in Gα, until they do not change any more. Let γ be an ordinal for which
valG−γ = valG−γ+1. Such an ordinal exists, since the values of the games in the unfolding are
monotonically decreasing (which follows from determinacy of these games and definition).
We set g(v) = gγ(v) = valG−γ (v) and show that g is the value function of the original game G.

To prove this, we need to introduce strategies for Player 1 and Player 0, which are
inductively constructed from the strategies in the unfolding. To give an intuition for the
construction, we view a play in G as a play in the unfolding of G. Let us look more closely
at the situation of each player.

The Strategy of Player 0

Player 0 wants to achieve the value gγ(v0) or to come ε-close. To reach this goal, she
imagines to play in G−γ and uses her ε-optimal strategies σε

γ for that game. Between every
two occurrences of nodes of minimal priority throughout the play, she plays a strategy σεi

γ .
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Player 0’s strategy after having seen i nodes of priority m.

m

vki vki+1

in G
m

vk(i+1)σεi
γ

G−γ

Initially, εi will be ε
2 , ε being the approximation value she wants to attain in the end.

Then she chooses a lower εi+1 every time she passes an edge outside of G−. She will adjust
the approximation value not only by cutting it in half every time she changes the strategy,
but also according to the discount factors seen so far, since they also can dramatically alter
the value of the approximation.

For a history h or a full play π, let L(h) (resp. L(π)) be the number of nodes with
minimal priority m occurring in h (or π).

Definition 4.10. The strategy σε for Player 0 in the game G, after history h = v0 . . . v` is
given as follows. In the case that L(h) = 0 (i.e., no position of minimal priority has been
seen), let ε′ := ε/2, and σε(h) := σε′

γ (h). Otherwise, let vk be the last node of priority m in
the history h = v0 . . . v`,

ε′ :=
ε

2L(h)+1D(v0 . . . vk)
.

and
σε(h) := σε′

γ (vk+1 . . . v`).

Now let us consider a play π = v0 . . . vkvk+1 . . ., consistent with a strategy σε, where
vk is the first node with minimal priority. The following property about values gγ(v0) and
gγ(vk+1) in such case (and an analogous, but more tedious one for Player 1) is the main
technical point in proving ε-optimality.

Lemma 4.11. ∆(v0 . . . vk) · gγ(vk+1) is ε
2 -above gγ(v0).

With the above lemma we prove the ε-optimality of the strategies σε, as stated in the
proposition below.

Proposition 4.12. The strategy σε is ε-optimal, i.e. for every v ∈ V and every strategy ρ
for Player 1, p(πσε,ρ(v)) is ε-above g(v).

The Strategy of Player 1

Now we look at the situation of Player 1. The problem of Player 1 is that he cannot just
combine his strategies for G−γ . If he did so, he would risk going infinitely often through nodes
with minimal priority which is his worst case scenario. Intuitively speaking, he needs a way
to count down, so that will be able to come close enough to his desired value, but will stop
going through the nodes with minimal priority after a finite number of times. To achieve
that, he utilises the strategy index as a counter. Like Player 0, he starts with a strategy for
G−γ , but with every strategy change at the nodes of minimal priority he not only adjusts the
approximation value according to the previous one and the discount factors seen so far, but
also lowers the strategy index in the following way. If the current game index is a successor
ordinal, he just changes the index to its predecessor and adjusts the approximation value
in the same way Player 0 does. If the current game index is a limit value, he uses the fact,
that there is a game index belonging to a game which has an outcome close enough to still
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reach his desired outcome. In the situation depicted below he would choose an α such that
valG−α (vk1+1) is ε

4 -below λγ(vk1).

Player 1’s strategy at the beginning of the play for a limit ordinal γ.

v0

m

vk1ρ
ε
4
γ

G−γ

vk1+1

in G
m

vk2ρ
ε

16D
α

G−α

Finally, after a finite number of changes, as the ordinals are well-founded, he will be
playing some version of ρεl

0 and keep on playing this strategy for the rest of the play.
Now we formally describe Player 1’s strategy. Let us first fix some notation considering

game indices. For a limit ordinal α, a node v ∈ V of priority m, and for ε ∈ (0, 1), we denote
by α � ε, v the index for which the value valG−α (v) is ε-below λα(w), where {w} = vE.

Definition 4.13. For a given approximation value ε′, a starting ordinal ζ, and a history
h = v0 . . . vl, we define game indices αζ(h, ε′), approximation values ε(h, ε′), and a strategy
ρε′ for Player 1 in the following way.

If L(h) = 0, we fix αζ(h, ε′) = ζ and ε(h, ε′) = ε′.
For h = v0 . . . vkvk+1 . . . vl, where vk is the last node with minimal priority in h, let

h′ = v0 . . . vk−1 and put

αζ(h, ε′) =


αζ(h′, ε′)− 1 for αζ(h′, ε′) successor ordinal,
αζ(h′, ε′) � ( ε′

4L(h′)+1D(h′)
, vk) for αζ(h′, ε′) limit ordinal,

0 for αζ(h′, ε′) = 0,

and ε(h, ε′) = ε′
4L(h)D(v0...vk)

.

The ε′-optimal strategy for Player 1 is given by:

ρε′
ζ (v0 . . . vl) = ρ

ε(v0...vl,ε
′)

4

αζ(v0 ...vl,ε′)
.

Proposition 4.14. The strategy ρε
ζ is ε-optimal, i.e. for every ε ∈ (0, 1), for all v ∈ V ,

and strategies σ of Player 0: p(πσ,ρε
ζ
(v)) is ε-below gζ(v).

Having defined the ε-optimal strategies σε and ρε
γ , we can formulate the conclusion.

Proposition 4.15. For a QPG G = (V,E, λ,Ω), for all v ∈ V,
sup
σ∈Γ0

inf
ρ∈Γ1

p(πσ,ρ(v)) = inf
ρ∈Γ1

sup
σ∈Γ0

p(πσ,ρ(v)) = valG(v) = g(v).

4.3. Quantitative µ-calculus and Games

After establishing determinacy for quantitative parity games we are ready to prove
Theorem 4.4. In the proof, we first use structural induction to show that MC[K, ϕ] is a
model checking game for QML formulae. Further, we only need to inductively consider
formulae of the form ϕ = νX.ψ.
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Note that in the game MC[Q, ϕ], the positions with minimal priority are of the form
(X, v) each with a unique successor (ϕ, v). Our induction hypothesis states that for every
interpretation g of the fixed-point variable X, it holds that:JϕKQ[X←g] = valMC[Q, ψ[X/g]]. (4.1)

By Theorem 2.4, we know that we can compute νX.ψ inductively in the following way:JνX.ψKKε = gγ with g0(v) =∞ for all v ∈ V and

gα =
{ JψKε[X←gα−1] for α successor ordinal,

limβ<αJψKε[X←gβ] for α limit ordinal,

and where gγ = gγ+1.
Now we want to prove that the games MC[Q, ψ[X/gα]] coincide with the unfolding of

MC[Q, ϕ]. We say that two games coincide if the game graph is essentially the same, except
for some additional moves where neither player has an actual choice and there is no discount
that could change the outcome. In our case these are the moves from ϕ = νX.ψ to ψ, which
allows us to show the following lemma.

Lemma 4.16. The games MC[Q, ψ[X/gα]] and MC[Q, ϕ]−α coincide for all α.

From the above and Proposition 4.15, we conclude that the value of the game MC[Q, ϕ]
is the limit of the values MC[Q, ϕ]−α , whose value functions coincide with the stages of the
fixed-point evaluation gα for all α, and thus

valMC[Q, ϕ] = valMC[Q, ϕ]−γ = gγ = JϕKQ.
5. Describing Game Values in Qµ

Having model checking games for the quantitative µ-calculus is just one direction in
the relation between games and logic. The other direction concerns the definability of the
winning regions in a game by formulae in the corresponding logic. For the classical µ-
calculus such formulae have been constructed by Walukiewicz and it has been shown that
for any parity game of fixed priority they define the winning region for Player 0, see e.g.
[9]. We extend this theorem to the quantitative case in the following way. We represent
quantitative parity games (V, V0, V1, E, δG, λG,ΩG) with priorities Ω(V ) ∈ {0, . . . d− 1} by
a quantitative transition system QG = (V,E, δ, V0 , V1,Λ,Ω), where Vi(v) =∞ when v ∈ Vi

and Vi(v) = 0 otherwise, Ω(v) = ΩG(v) when vE 6= ∅ and Ω(v) = d otherwise,

δ(v, w) =
{
δG(v, w) when v ∈ V0,

1
δG(v,w) when v ∈ V1,

and payoff predicate Λ(v) = λG(v) when vE = ∅ and Λ(v) = 0 otherwise.
We then build the formula Wind and formulate the theorem

Wind = νX0.µX1.νX2. . . . λXd−1

d−1∨
j=0

((V0 ∧ Pj ∧ ♦Xj) ∨ (V1 ∧ Pj ∧�Xj)) ∨ Λ,

where λ = ν if d is odd, and λ = µ otherwise, and Pi := ¬(µX.(2 ·X ∨ |Ω− i|)).
Theorem 5.1. For every d ∈ N, the value of any quantitative parity game G with priorities
in {0, . . . d− 1} coincides with the value of Wind on the associated transition system QG.
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6. Conclusions and Future Work

In this work, we showed how the close connection between the modal µ-calculus and
parity games can be lifted to the quantitative setting, provided that the quantitative exten-
sions of the logic and the games are defined in an appropriate manner. This is just a first
step in a systematic investigation of what connections between logic and games survive in
the quantitative setting. These investigations should as well be extended to quantitative
variants of other logics, in particular LTL, CTL, CTL∗, and PDL.

Following [3] we work with games where discounts are multiplied along edges and values
range over the non-negative reals with infinity. Another natural possibility is to use addition
instead of multiplication and let the values range over the reals with −∞ and +∞. Crash
games, recently introduced in [7], are defined in such a way, but with values restricted to
integers. Gawlitza and Seidl present an algorithm for crash games over finite graphs which
is based on strategy improvement [7]. It is possible to translate back and forth between
quantitative parity games and crash games with real values by taking logarithms of the
discount values on edges as payoffs for moves in the crash game. The exponent of the value
of such a crash game is then equal to the value of the original quantitative parity game.
This suggests that the methods from [7] can be applied to quantitative parity games as
well. This could lead to efficient model-checking algorithms for Qµ and would thus further
justify the game-based approach to model checking modal logics.
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checking discounted temporal properties. Theoretical Computer Science, 345(1):139–170, 2005.
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Abstract. We compare the expressiveness of two extensions of monadic second-order
logic (MSO) over the class of finite structures. The first, counting monadic second-order
logic (CMSO), extends MSO with first-order modulo-counting quantifiers, allowing the
expression of queries like “the number of elements in the structure is even”. The second
extension allows the use of an additional binary predicate, not contained in the signature of
the queried structure, that must be interpreted as an arbitrary linear order on its universe,
obtaining order-invariant MSO.

While it is straightforward that every CMSO formula can be translated into an equiva-
lent order-invariant MSO formula, the converse had not yet been settled. Courcelle showed
that for restricted classes of structures both order-invariant MSO and CMSO are equally
expressive, but conjectured that, in general, order-invariant MSO is stronger than CMSO.

We affirm this conjecture by presenting a class of structures that is order-invariantly
definable in MSO but not definable in CMSO.

1. Introduction

Linear orders play an important role in descriptive complexity theory since certain re-
sults relating the expressive power of logics to complexity classes, e.g., the Immerman-Vardi
Theorem that LFP captures Ptime, only hold for classes of linearly ordered structures.
Usually, the order only serves to systematically access all elements of the structure, and
consequently to encode the configurations of a step-wise advancing computation of a Tur-
ing machine by tuples of elements of the structure. In these situations we do not actually
want to make statements about the properties of the order, but merely want to have an
arbitrary linear order available to express the respective coding techniques.

Furthermore, when actually working with finite structures in an algorithmic context,
e.g., when evaluating queries in a relational database, we are in fact working on an implicitly
ordered structure since, although relations in a database are modelled as sets of tuples, the
relations are nevertheless stored as ordered sequences of tuples in memory or on a disk. As
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this linear order is always available (though, as in the case of databases, it is implementation-
dependent and may even change over time as tuples are inserted or deleted), we could allow
queries to make use of an additional binary predicate that is interpreted as a linear order
on the universe of the structure, but require the outcome of the query not to depend on the
actual ordering, but to be order-invariant. Precisely, given a τ -structure A, we allow queries
built over an expanded vocabulary τ ∪̇ {<}, and say that a query ϕ is order-invariant if
(A, <1) |= ϕ ⇐⇒ (A, <2) |= ϕ for all possible relations <1 and <2 linearly ordering A.

Using Ehrenfeucht-Fräıssé-games for MSO, one can see that MSO on sets (i.e., struc-
tures over an empty vocabulary) is too weak to express that the universe contains an even
number of elements. However, this is possible if the universe is linearly ordered: simply
use the MSO sentence stating that the maximal element should be contained in the set of
elements on even positions in the ordering. Obviously, such a sentence is order-invariant
since rearranging the elements does not affect its truth value. Gurevich uses this observation
to show that the property of Boolean algebras having an even number of atoms, although
not definable in FO, is order-invariantly definable in FO (simulating the necessary MSO-
quantification over sets of atoms by FO-quantification over the elements of the Boolean
algebra).

If we explicitly add modulo-counting to MSO, e.g., via modulo-counting first-order
quantifiers such as “there exists an even number of elements x such that . . . ”, we ob-
tain counting monadic second-order logic (CMSO), and the question naturally arises as
to whether there are properties not expressible in CMSO that can be expressed order-
invariantly in MSO.

In fact, a second separation example due to Otto gives a hint in that direction. The
class of structures presented in [Ott00] even separates order-invariant FO from FO extended
by arbitrary unary generalised quantifiers, i.e., especially modulo-counting quantifiers, and
exploits the idea of “hiding” a part of the structure such that it is only meaningfully usable
for queries in presence of a linear order (or, as actually proven in the paper, in presence of
an arbitrary choice function).

The expressiveness of CMSO has been studied, e.g., in [Cou90], where it is mainly
compared to MSO, and in [Cou96] it is shown that, on the class of forests, order-invariant
MSO is no more expressive than CMSO. As pointed out in [BS05], this can be generalised
using results in [Lap98] to classes of structures of bounded tree-width. But still, this left
open Courcelle’s conjecture: that order-invariant MSO is strictly stronger than CMSO for
general graphs [Cou96, Conjecture 7.3].

In this paper, we present a suitable characterisation of CMSO-definability in terms of
an Ehrenfeucht-Fräıssé game, and later, as the main contribution, we present a separating
example showing that a special class of graphs is indeed definable by an order-invariant
MSO sentence but not by a counting MSO sentence.

2. Preliminaries

Throughout the paper N denotes the set of non-negative integers and N+ := N− {0}.
Given a non-empty finite set M = {m1, . . . ,mk}⊆fin N+, let lcm(M) := lcm(m1, . . . ,mk)
denote the least common multiple of all elements in M ; additionally, we define lcm(∅) = 1.
For sets X and Y as well as M as before, we abbreviate that |X| ≡ |Y | (mod m) for all
m ∈M by using the shorthand |X| ≡ |Y | (mod M).
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We restrict our attention to finite τ -structures with a nonempty universe over a count-
able relational vocabulary τ , possibly with constants, and we will mainly deal with monadic
second-order logic and some of its extensions. For more details concerning finite model the-
ory, we refer to [EF95] or [Lib04].

When comparing the expressiveness of two logics L and L′, we say that L′ is at least
as expressive as L, denoted L ⊆ L′, if for every ϕ ∈ L[τ ] there exists a ϕ′ ∈ L′[τ ] such that
Mod(ϕ) = Mod(ϕ′), where Mod(ϕ) denotes the class of all finite τ -structures satisfying ϕ.

2.1. Counting MSO

The notion of (modulo-)counting monadic second-order logic (CMSO) can be intro-
duced in two different, but nonetheless equivalent, ways. The first view of CMSO is via an
extension of MSO by modulo-counting first-order quantifiers.

Definition 2.1. Let τ be a signature and M ⊆ N+ a set of moduli, then
– every formula ϕ ∈ MSO[τ ] is also a formula in CMSO(M)[τ ], and
– if ϕ(x) ∈ CMSO(M)[τ ] and m ∈M , then ∃(m)x.ϕ(x) ∈ CMSO(M)[τ ].

If we do not restrict the set of modulo-counting quantifiers being used, we get the full
language CMSO[τ ] = CMSO(N+)[τ ]. The semantics of MSO formulae is as expected, and
we have A |= ∃(m)x.ϕ(x) if and only if |{a ∈ A : A |= ϕ(a)}| ≡ 0 (mod m). The quantifier
rank qr(ψ) of a CMSO[τ ] formula ψ is defined as for MSO-formulae with the additional
rule that qr

(∃(m)x.ϕ(x)
)

= 1 + qr(ϕ), i.e., we do not distinguish between different kinds of
quantifiers.

In this paper we use an alternative but equivalent definition of CMSO, namely the
extension of the MSO language by monadic second-order predicates C (m) which hold true
of a set X if and only if |X| ≡ 0 (mod m). As in the definition above, formulae of the
fragment CMSO(M)[τ ] may only use predicates C (m) where m ∈ M . The back-and-forth
translation can be carried out along the following equivalences which increase the quantifier
rank by at most one in each step:

∃(m)x.ϕ(x) ≡ ∃X(C(m)(X) ∧ ∀x(Xx↔ ϕ(x))) and

C(m)(X) ≡ ∃(m)x.Xx .

Furthermore, the introduction of additional predicates C (m,r) (or, equivalently, addi-
tional modulo-counting quantifiers ∃(m,r)) stating for a set X that |X| ≡ r (mod m) does
not increase the expressive power since they can be simulated as follows (with only a con-
stant increase of quantifier rank):

C(m,r)(X) ≡ ∃X0(“X0 ⊆ X” ∧ “|X0| = r” ∧ “C(m)(X \X0)”) ,

where all subformulae are easily expressible in MSO.
Later, we will introduce an Ehrenfeucht-Fräıssé game capturing the expressiveness of

CMSO with this extended set of second-order predicates.
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2.2. Order-invariance

Let τ be a relational vocabulary and ϕ ∈ MSO[τ ∪̇ {<}], i.e., ϕ may contain an addi-
tional relation symbol <. Then ϕ is called order-invariant on a class C of τ -structures if,
and only if, (A, <1) |= ϕ ⇐⇒ (A, <2) |= ϕ for all A ∈ C and all linear orders <1 and <2

on A.
Although, in general, it is undecidable whether a given MSO-formula is order-invariant

in the finite, we will speak of the order-invariant fragment of MSO, denoted by MSO[<]inv ,
that contains all formulae that are order-invariant on the class of all finite structures.

It is an easy observation that every CMSO formula is equivalent over the class of all
finite structures to an order-invariant MSO formula by translating counting quantifiers in
the following way:

∃(q)x.ϕ(x) := ∃X∃X0 . . . ∃Xq−1
∀x (Xx↔ ϕ(x)) ∧ “{X0, . . . , Xq−1} is a partition of X”

∧ ∃x(X0x ∧ ∀y(Xy → x ≤ y)
) ∧ ∃x(Xq−1x ∧ ∀y(Xy → x ≥ y)

)
∧ ∀x∀y

(
Sϕ,<(x, y) →

(
q−1∧
i=0

Xix↔ Xi+1 (mod q)y

))


where Sϕ,< defines the successor relation induced by an arbitrary order < on the universe
of the structure restricted to the set X of elements for which ϕ holds.

Note that the quantifier rank of the translated formula is not constant but bounded by
the parameter in the counting quantifier.

3. An Ehrenfeucht-Fräıssé game for CMSO

The Ehrenfeucht-Fräıssé game capturing expressiveness of MSO parameterised by the
quantifier-rank (cf. [EF95, Lib04]) can be naturally extended to a game capturing the ex-
pressiveness of CMSO parameterised by the quantifier rank and the set of moduli being
used in the cardinality predicates or counting quantifiers.

Viewing CMSO as MSO with additional quantifiers ∃(m)x.ϕ(x) for all m in a fixed set
M leads to a new type of move described, e.g., in the context of extending FO by modulo-
counting quantifiers in [Nur00]. Since a modulo-counting quantifier actually combines no-
tions of a first-order and a monadic second-order quantifier in the sense that it makes a
statement about the cardinality of a certain set of elements, but on the other hand, it be-
haves like a first-order quantifier binding an element variable and making a statement about
that particular element, the move capturing modulo-counting quantification consists of two
phases. First, Spoiler and Duplicator select sets of elements S and D in the structures such
that |S| ≡ |D| (mod M), and in the second phase, Spoiler and Duplicator select elements a
and b such that a ∈ S if and only if b ∈ D. After the move, reflecting the first-order nature
of the quantifier, only the two selected elements a and b are remembered and contribute to
the next position in the game, whereas the information about the chosen sets is discarded.

We prefer viewing CMSO via second-order cardinality predicates, yielding an Ehren-
feucht-Fräıssé game that allows a much clearer description of winning strategies. Since
we do not have additional quantifiers, we have exactly the same types of moves as in the
Ehrenfeucht-Fräıssé game for MSO, and we merely modify the winning condition to take
the new predicates into account.
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Towards this end, we first introduce a suitable concept of partial isomorphisms between
structures.

Definition 3.1. With any structure A and any set M ⊆fin N+ we associate the (first-
order) power set structure AM :=

(P(A), (C(m,r)) m∈M
0≤r<m

)
, where the predicates C (m,r) are

interpreted in the obvious way. (Note that first-order predicates in the power set structure
AM naturally correspond to second-order predicates in A.)

Let A and B be τ -structures, and let M ⊆fin N+ be a fixed set of moduli. Then the
mapping (A1, . . . , As, a1, . . . , at) 7→ (B1, . . . , Bs, b1, . . . , bt) is called a twofold partial isomor-
phism between A and B with respect to M if

(i) (a1, . . . , at) 7→ (b1, . . . , bt) is a partial isomorphism between (A, A1, . . . , As) and
(B, B1, . . . , Bs) and

(ii) (A1, . . . , As) 7→ (B1, . . . , Bs) is a partial isomorphism between AM and BM .

We propose the following Ehrenfeucht-Fräıssé game to capture the expressiveness of
CMSO where the use of moduli is restricted to a (finite) set M and formulae of quantifier
rank at most r.

Definition 3.2 (Ehrenfeucht-Fräıssé game for CMSO). Let M ⊆fin N+ and r ∈ N. The
r-round (mod M) Ehrenfeucht-Fräıssé game GM

r (A,B) is played by Spoiler and Duplicator
on τ -structures A and B. In each turn, Spoiler can choose between the following types of
moves:

– point move: Spoiler selects an element in one of the structures, and Duplicator
answers by selecting an element in the other structure.

– set move: Spoiler selects a set of elements X in one of the structures, and Duplicator
responds by choosing a set of elements Y in the other structure.

After r = s+ t rounds, when the players have chosen sets A1, . . . , As and B1, . . . , Bs as well
as elements a1, . . . , at and b1, . . . , bt in an arbitrary order, Duplicator wins the game if, and
only if, (A1, . . . , As, a1, . . . , at) 7→ (B1, . . . , Bs, b1, . . . , bt) is a twofold partial isomorphism
between A and B with respect to M .

First note that, although Duplicator is required to answer a set move X by a set Y
such that |X| ≡ |Y | (mod M) in order to win, we do not have to make this explicit in the
rules of the moves since these cardinality constraints are already imposed by the winning
condition (X and Y would not define a twofold partial isomorphism if they did not satisfy
the same cardinality predicates). Furthermore, for M = ∅ or M = {1}, the resulting game
GM

r (A,B) corresponds exactly to the usual Ehrenfeucht-Fräıssé game for MSO.

Theorem 3.3. Let A and B be τ -structures, r ∈ N, and M ⊆fin N. Then the following are
equivalent:

(i) A ≡M
r B, i.e., A |= ϕ if and only if B |= ϕ for all ϕ ∈ CMSO(M)[τ ] with qr(ϕ) ≤ r.

(ii) Duplicator has a winning strategy in the r-round (mod M) Ehrenfeucht-Fräıssé game
GM

r (A,B).

To prove non-definability results, we can make use of the following standard argument.

Proposition 3.4. A class C of τ -structures is not definable in CMSO if, for every r ∈ N
and every M ⊆fin N+, there are τ -structures AM,r and BM,r such that AM,r ∈ C, BM,r 6∈ C,
and AM,r ≡M

r BM,r.
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The following lemma, stating that the CMSO-theory of disjoint unions can be deduced
from the CMSO-theories of the components, can either be proved, as carried out in [Cou90,
Lemma 4.5], by giving an effective translation of sentences talking about the disjoint union
of two structures into a Boolean combination of sentences each talking about the individual
structures, or by using a game-oriented view showing that winning strategies for Duplicator
in the games on two pairs of structures can be combined into a winning strategy on the pair
of disjoint unions of the structures.

Lemma 3.5. Let A1,A2,B1, and B2 be τ -structures such that A1 ≡M
r B1 and A2 ≡M

r B2.
Then A1 ∪̇A2 ≡M

r B1 ∪̇B2.

Proof. Consider the game on A := A1 ∪̇A2 and B := B1 ∪̇B2. A Spoiler’s point move
in A (resp., in B) is answered by Duplicator according to her winning strategy in either
GM

r (A1,B1) or GM
r (A2,B2). A set move S ⊆ A (analogous for S ⊆ B) is decomposed into

two subsets S1 := S ∩ A1 and S2 := S ∩ A2, and is answered by Duplicator by the set
D := D1 ∪D2 consisting of the sets D1 and D2 chosen according to her winning strategies
as responses to S1 and S2 in the respective games GM

r (A1,B1) and GM
r (A2,B2).

Since A1 and A2 as well as B1 and B2 are disjoint, we have |S| = |S1| + |S2| and
|D| = |D1| + |D2|. Furthermore, |S1| ≡ |D1| (mod M) and |S2| ≡ |D2| (mod M) as the
sets D1 and D2 are chosen according to Duplicator’s winning strategies in the games on
A1 and B1, and A2 and B2, respectively. Since ≡ (mod M) is a congruence relation with
respect to addition, we have that |S| ≡ |D| (mod M). It is easily verified that the sets
and elements chosen according to this strategy indeed define a twofold partial isomorphism
between A and B.

As a direct corollary we obtain the following result that will be used in the inductive
step in the forthcoming proofs.

Corollary 3.6. Let A1,A2,B1, and B2 be τ -structures, such that A1 ≡M
r B1 and A2 ≡M

r

B2. Then (A1 ∪̇A2, A1) ≡M
r (B1 ∪̇B2, B1).

Proof. We consider the following τ ∪̇ {P}-expansions of the given structures: A′
1 := (A1, A1),

B′
1 := (B1, B1), A′

2 := (A2, ∅), and B′
2 := (B2, ∅). It is immediate that

(i) A1 ≡M
r B1 implies (A1, A1) ≡M

r (B1, B1), and

(ii) A2 ≡M
r B2 implies (A2, ∅) ≡M

r (B2, ∅)
since Duplicator can obviously win the respective Ehrenfeucht-Fräıssé games on the ex-
panded structures using the same strategies as in the games proving the equivalences on
the left-hand side. The claim follows by applying the previous lemma to the τ ∪̇ {P}-
expansions.

It is well known that MSO exhibits a certain weakness regarding the ability to specify
cardinality constraints on sets, i.e., structures over an empty vocabulary. A proof of this
fact using Ehrenfeucht-Fräıssé games can be found in [Lib04]. By adapting this proof, we
show that this is still the case for CMSO.

Lemma 3.7. Let A and B be ∅-structures, M ⊆fin N+, and r ∈ N. Then A ≡M
r B if

|A|, |B| ≥ (2r+1 − 4) lcm(M) and |A| ≡ |B| (mod M).

Proof. We prove by induction on the number of rounds that Duplicator wins the (mod M)
r-round Ehrenfeucht-Fräıssé game GM

r (A,B). For r = 0 and r = 1 the claim is obviously
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true. Let r > 1, assume that the claim holds for r − 1, and consider the first move of the
r-round game. We assume that Spoiler makes his move in A since the reasoning in the other
case is completely symmetric.

If Spoiler makes a set move S ⊆ A, we consider the following cases:
(1) |S| < (2r − 4) · lcm(M) (or |A − S| < (2r − 4) · lcm(M)). Then Duplicator selects

a set D ⊆ B such that |D| = |S| (or |B − D| = |A − S|), and hence S ∼= D and
A− S ≡M

r−1 B −D (or A− S ∼= B −D and S ≡M
r−1 D).

(2) |S|, |A−S| ≥ (2r−4)·lcm(M). Then Duplicator selects a set D ⊆ B such that |D| ≡ |S|
(mod M) and |D|, |B −D| ≥ (2r − 2) · lcm(M). In fact, she chooses for D half of the
elements and chooses ` < lcm(M) additional ones to fulfil the cardinality constraints
|D| ≡ |S| (mod M). Then, for the set B −D of non-selected elements, we have

|B −D| ≥ 1
2
(
(2r+1 − 4) lcm(M)

)− ` ≥ (2r − 2) lcm(M)− lcm(M)

≥ (2r − 4) lcm(M)

for all ` satisfying 0 ≤ ` < lcm(M). Since |D| = |B − D| + 2`, obviously |D| ≥
(2r − 4) lcm(M) as well.

Thus, in both cases, by the induction hypothesis we get S ≡M
r−1 D and A− S ≡M

r−1 B −D.
Hence, by Corollary 3.6 (A,S) ≡M

r−1 (B,D), i.e., Duplicator has a winning strategy in the
remaining (r − 1)-round game from position (S,D).

If Spoiler makes a point move s ∈ A, Duplicator answers by choosing an arbitrary ele-
ment d ∈ B. Similar to Case 1 above, we observe that ({s}, s) ∼= ({d}, d ) and A−{s} ≡M

r−1

B − {d} by the induction hypothesis. Thus, by Lemma 3.5, (A, s) ≡M
r−1 (B, d) implying

that Duplicator has a winning strategy for the remaining r−1 rounds from position (s, d).

4. The Separating Example

We will first give a brief description of our example showing that MSO[<]inv is strictly
more expressive than CMSO. We consider a property of two-dimensional grids, namely
that the vertical dimension divides the horizontal dimension. This property is easily defin-
able in MSO for grids that are given as directed graphs with two edge relations, one for
the horizontal edges pointing rightwards, and one for the vertical edges pointing upwards,
by defining a new relation of diagonal edges combining one step rightwards and one step
upwards wrapping around from the top border to the bottom border but not from the right
to the left border. Note that there is a path following those diagonal edges starting from
the bottom-left corner of the grid and ending in the top-right corner if, and only if, the
vertical dimension divides the horizontal dimension of the grid. Thus, for our purposes, we
have to weaken the structure in the sense that we hide information that remains accessible
to MSO[<]inv -formulae but not to CMSO formulae.

An appropriate loss of information is achieved by replacing the two edge relations with
their reflexive symmetric transitive closure, i.e., we consider grids as structures with two
equivalence relations which provide a notion of rows and columns of the grid. Obviously,
notions like corner and border vertices as well as the notion of an order on the rows and
columns that were important for the MSO-definition of the divisibility property are lost,
but clearly, all these notions can be regained in presence of an order. First, the order allows
us to uniquely define an element (e.g. the <-least element) to be the bottom-left corner of
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the grid, and second, the order induces successor relations on the set of columns and the
set of rows, from which both horizontal and vertical successor vertices of any vertex can be
deduced. Since the divisibility property is obviously invariant with respect to the ordering
of the rows or columns, this allows for expressing it in MSO[<]inv . In the course of this
section we will develop the arguments showing that CMSO fails to express this property on
the following class of grid-like structures.

Definition 4.1. A cliquey (k, `)-grid is a {∼h,∼v}-structure that is isomorphic to Gk` :=
({0, . . . , k − 1} × {0, . . . , `− 1},∼h,∼v), where

∼h := {((x, y), (x′, y′)) : x = x′} and

∼v := {((x, y), (x′, y′)) : y = y′} ,
i.e., ∼h consists of exactly k equivalence classes (called rows), each containing ` elements,
and∼v consists of exactly ` equivalence classes (called columns), each containing k elements,
such that every equivalence class of ∼h intersects every equivalence class of ∼v in exactly
one element and vice versa.

A horizontally coloured cliquey (k, `)-grid, denoted Gcol
k` , is the expansion of the {∼v}-

reduct of the cliquey grid Gk` by unary predicates {P1, . . . , Pk}, where the information of ∼h

is retained in the k new predicates (in the following referred to as colours) such that each
set Pi corresponds to exactly one former equivalence class.

Note that the same class of grid-like structures has already been used by Otto in a proof
showing that the number of monadic second-order quantifiers gives rise to a strict hierarchy
over finite structures [Ott95].

The class is first-order definable by a sentence ψgrid stating that
– ∼v and ∼h are equivalence relations, and
– every pair consisting of one equivalence class of ∼h and ∼v each has exactly one

element in common
as these properties are sufficient to enforce the desired grid-like structure. Note that even the
second property is first-order definable since every equivalence class is uniquely determined
by each of its elements.

The following two lemmata justify the introduction of the notion of horizontally coloured
cliquey grids for use in the forthcoming proofs.

Lemma 4.2. Let Gcol
k`1

, Gcol
k`2

, Gcol
k`′1

, and Gcol
k`′2

be horizontally coloured cliquey grids such

that Gcol
k`1

≡M
r Gcol

k`′1
and Gcol

k`2
≡M

r Gcol
k`′2

. Then Gcol
k,`1+`2

≡M
r Gcol

k,`′1+`′2
.

Proof. Note that, since there are no horizontal edges in horizontally coloured cliquey grids
and the vertical dimension of all grids is k, Gcol

k,`1+`2
is the disjoint union of the two smaller

horizontally coloured cliquey grids Gcol
k`1

and Gcol
k`2

, and of course, the same holds for Gcol
k,`′1+`′2

.
Thus, the claim follows by Lemma 3.5.

Lemma 4.3. Let Gcol
k` ≡M

r Gcol
k`′. Then Gk` ≡M

r Gk`′.

Proof. For each fixed horizontal dimension k, there exists a one-dimensional quantifier-free
interpretation of a cliquey grid in its respective horizontally coloured counterpart since we
can define the horizontal equivalence relation ∼h in terms of the colours as follows:

x ∼h y ≡
k∨

i=1

Pix ∧ Piy .
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Actually, the argument implies that Duplicator wins a game on cliquey grids using the
same strategy that is winning in the corresponding game on coloured grids since a strategy
preserving the colours of selected elements especially preserves the equivalence relation ∼h.

Before stating the main lemma, we will first prove a combinatorial result which will later
help Duplicator in synthesising her winning strategy and introduce the following weakened
notion of equality between numbers.

Definition 4.4. Two numbers a, b ∈ N are called threshold t equal (mod M), denoted
a =M

t b, if
(i) a = b or

(ii) a, b ≥ t and a ≡ b (mod M).
Intuitively, a =M

t b means that the numbers are equal if they are small, or that they are at
least congruent modulo all m ∈M if they are both at least as large as the threshold t.

Lemma 4.5. For every p, t ∈ N, and M ⊆fin N+, we can choose an arbitrary T ≥ p · (t +
lcm(M) − 1) such that for all sets A and B with |A| =M

T |B| and for every equivalence
relation ≈A on A of index at most p there exists an equivalence relation ≈B on B and a
bijection g : A/≈A

→ B/≈B
satisfying |{a′ ∈ A : a ≈A a′}| =M

t |g({a′ ∈ A : a ≈A a′})| for
all a ∈ A.

Proof. We let {a1, . . . , ap′}, where p′ ≤ p denotes the index of ≈A, be the set of class
representatives of A/≈A

, and we let [a]≈A
:= {a′ ∈ A : a′ ≈A a} denote the equivalence

class of a in A. Note that we will usually omit the subscript ≈A if it is clear from the
context and instead reserve the letters a and b for elements denoting equivalence classes in
A and B, respectively. Furthermore, a set will be called small in the following if it contains
less than t elements and large otherwise.

The equivalence relation ≈B on B is constructed by partitioning the set into p′ disjoint
non-empty subsets {B1, . . . , Bp′} as follows. If |A| = |B|, for each class [ai], we choose a
set Bi with exactly |[ai]| many elements. If |A|, |B| ≥ T , we have to distinguish between
the treatment of small and large classes. Since |A| ≥ T ≥ p · (t+lcm(M)− 1), lcm(M) ≥ 1,
and the index of ≈A is at most p, at least one of the equivalence classes contains at least t
elements, i.e., it is large, and without loss of generality, it is assumed that this is the case
for [a1]. For each small class [ai], we choose a set Bi with exactly |[ai]| many elements.
If [ai] is large, we choose a set Bi containing t + ` many elements where ` is the smallest
non-negative integer such that |[ai]| ≡ |Bi| (mod M). The number of elements selected
according to these rules is at most p · (t + lcm(M) − 1) ≤ T ≤ |B|. Since [a1] is large by
assumption, any possibly remaining elements in B, that have not been assigned to one of
the subsets B1, . . . , Bp′ yet, can be safely added to B1 without violating the condition that
|[a1]| ≡ |B1| (mod M).

This partitioning uniquely defines the equivalence relation ≈B :=
⋃p′

i=1(Bi ×Bi) on B.
By selecting an arbitrary element of each Bi we get a set of class representatives {b1, . . . , bp′}
which directly yields the bijection g : [ai] 7→ [bi] for all 1 ≤ i ≤ p′ satisfying |[a]| =M

t |g([a])|
for all a ∈ A by construction.

The following lemma extends the results on CMSO-equivalence of large enough sets to
large enough grids by giving a sufficient condition on the sizes of two grids for the existence
of a winning strategy for Duplicator in an r-round (mod M) game on the two structures.
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Due to the inductive nature of the proof that involves, in each step, a construction of
equivalence classes as in the above lemma, we need as a criterion for the size, for fixed p ∈ N
and M ⊆fin N+, a function fp,M : N → N such that, for all r ∈ N+ and t = fp,M(r − 1), we
can choose T = fp,M(r) in the previous lemma. One function satisfying, for all r ∈ N+,
the inequality fp,M(r) ≥ p · (fp,M(r− 1) + lcm(M)− 1) derived from the condition imposed
on T is fp,M(r) = 2 · (pr − 1) · lcm(M).

Lemma 4.6. Let M ⊆fin N+, r ∈ N and k > 1 be fixed. Then for f(r) := f2k,M (r) =
(2kr+1 − 2) lcm(M), as given above, Gk`1 ≡M

r Gk`2 if `1 =M
f(r) `2.

Proof. As motivated by Lemma 4.3, we consider the r-round (mod M) Ehrenfeucht-Fräıssé
game on the corresponding horizontally coloured cliquey grids Gcol

k`1
and Gcol

k`2
, and we show

by induction on the number of rounds that Duplicator has a winning strategy in this game.
Intuitively, the proof proceeds as follows. Spoiler’s set move induces an equivalence

relation on the set of columns forming the grid he plays in, and the previous lemma implies
that Duplicator is able to construct an equivalence relation on the columns of the other grid
which is similar in the sense that corresponding equivalence classes satisfy certain cardinality
constraints. Since the grids can be regarded as disjoint unions of these equivalence classes,
we can argue by induction that corresponding subparts of the two grids, being similar
enough, cannot be distinguished during the remaining r − 1 rounds of the game.

The case where `1 = `2 is trivial since grids of the same dimensions are isomorphic.
Thus, we assume in the following that `1, `2 ≥ f(r) and `1 ≡ `2 (mod M). The claim is
obviously true for r = 0, hence we assume that it holds for r − 1 and proceed with the
inductive step. As before, we assume without loss of generality that Spoiler makes his
moves in Gk`1 since the other case is symmetric.

A coloured k-column is a {∼v, P1, . . . , Pk}-structure isomorphic to Ccol
k := Gcol

k,1, such
that a coloured grid can be regarded as a disjoint union of columns. Given a subset S of
vertices of a grid and one of its coloured k-columns C with universe C, the colour-type of
C induced by S is defined as the isomorphism type of the expansion (C, S ∩ C) denoted by
tp(C, S). Given a set F of k-columns, each subset S of all of their vertices gives rise to an
equivalence relation ≈S on F by virtue of C1 ≈S C2 if, and only if, tp(C1, S) = tp(C2, S).
Note that the index of ≈S is at most 2k.

Assume, Spoiler performs a set move and chooses a subset S in Gcol
k`1

= C1 ∪̇ · · · ∪̇C`1 .
As described above, S induces an equivalence relation ≈S with at most 2k equivalence
classes on the set F = {C1, . . . ,C`1} of columns forming the grid. For p = 2k, t = f(r − 1)
and M as given, by the previous lemma, there is an equivalence relation ≈′

S on the set F ′ =
{C′1, . . . ,C′`2} of columns on the Duplicator’s grid Gcol

k`2
since `1, `2 ≥ f(r). Furthermore,

there is a bijection g mapping equivalence classes of columns in one grid to the other.
Given that the index of both ≈S and ≈′

S is p′ ≤ p = 2k, we can assume {C1, . . . ,Cp′} and
{C′1, . . . ,C′p′} to be the sets of class representatives of ≈S and ≈′

S, respectively. Duplicator
now selects the unique set D of elements such that tp(C, S) = tp(C′, D) for all 1 ≤ i ≤ p′,
C ∈ [Ci] and C′ ∈ g([Ci]).

For each 1 ≤ i ≤ p′, we let 〈Ci〉 := Gcol
k`1

� [Ci] and 〈C′i〉 := Gcol
k`2

� [C′i] denote the
substructures of the grids Gcol

k`1
and Gcol

k`2
induced by the sets of columns [Ci] and [C′i],

respectively. By construction, we have |[Ci]| =M
f(r−1) |[C′i]| for all i. Thus, depending on

whether [Ci] (and hence [C′i]) are small or large with respect to the threshold f(r − 1),
either 〈Ci〉 ∼= 〈C′i〉 or 〈Ci〉 ≡M

r−1 〈C′i〉 by the induction hypothesis. Since S and D induce the
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same colour-types on the columns in [Ci] and [C′i], respectively, we have(〈Ci〉, S ∩ univ(〈Ci〉)
) ≡M

r−1

(〈C′i〉, D ∩ univ(〈C′i〉)
)

for all i, where univ(·) denotes the universe of the respective structure. Thus, iterating
Lemma 3.5 yields that Duplicator has a winning strategy in the remaining rounds of the
game GM

r−1(G
col
k`1
,Gcol

k`2
) from position (S,D).

If Spoiler makes a point move s, say in column C1 of the grid Gcol
k`1

, Duplicator picks an
arbitrary element d of the same colour in her grid, say in column C′

1. As the substructures
consisting of just the columns containing the chosen elements are isomorphic, i.e.,

(
C1, s

) ∼=(
C′1, d

)
, and by the induction hypothesis we have C2 ∪̇ · · · ∪̇C`1 ≡M

r−1 C′2 ∪̇ · · · ∪̇C′`2 , Dupli-
cator can win the remaining (r − 1)-round game from position (s, d) by Lemma 3.5.

Now we have the necessary tools available to prove the main theorem.

Theorem 4.7. CMSO ( MSO[<]inv .

Proof. We show that the class C := {Gk` : k|` } is not definable in CMSO but order-
invariantly definable in MSO by the sentence ψgrid ∧ ϕ, where

ϕ = ∃min∃c
( ∀x(min ≤ x) ∧ ¬∃z(Eh(c, z) ∨Ev(c, z))

∧ ∀T (∀x∀y(Tx ∧ ϕdiag(x, y) → Ty) ∧ T min → Tc
)) ,

and

ϕdiag(x, y) =
(∃z(Ev(x, z) ∧Eh(z, y))

)
∨ (¬∃zEv(x, z) ∧ ∃z(z ∼h min ∧ z ∼v x ∧Eh(z, y))

)
,

Eh(x, y) = x ∼h y ∧ ∃x0∃y0

 x0 ∼h min ∧ y0 ∼h min
∧ x ∼v x0 ∧ y ∼v y0 ∧ x0 < y0

∧ ∀z0(z0 ∼h min → z0 ≤ x0 ∨ z0 ≥ y0) ,


Ev(x, y) = x ∼v y ∧ ∃x0∃y0

 x0 ∼v min ∧ y0 ∼v min
∧ x ∼h x0 ∧ y ∼h y0 ∧ x0 < y0

∧ ∀z0(z0 ∼v min → z0 ≤ x0 ∨ z0 ≥ y0) .


As hinted above, the horizontal and vertical edge relations (Eh and Ev, respectively) are
defined using the successor relation which is induced by an arbitrary ordering on the row
(and column) containing the minimal element (min) which itself serves as the lower left
corner of the grid. ϕdiag defines diagonal steps through the grid that wrap around from the
top to the bottom row. Finally, ϕ states that the pair consisting of the lower left corner
(min) and the upper right corner (c) of the grid is contained in the transitive closure of
ϕdiag. Obviously, there is such a sawtooth-shaped path starting at min and ending exactly
in the upper right corner if, and only if, k|`.

The second step consists in showing that C is not definable in CMSO. Towards this
goal, we show that for any choice of r ∈ N and M ⊆fin N+, we can find k, `1, `2 ∈ N, such
that Gk`1 ∈ C, Gk`2 6∈ C, and Gk`1 ≡M

r Gk`2 which contradicts the CMSO-definability of C.
Let r ∈ N and M ⊆fin N+ be fixed. We choose s ≥ r + 1 such that 2s - lcm(M).

Let k = 2s, `1 = 2kr+1 lcm(M), and `2 = `1 + lcm(M). Obviously, `1 and `2 satisfy the
conditions of Lemma 4.6, and thus Gk`1 ≡M

r Gk`2 .
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Furthermore, `1 = k · 22s·r−s+1 lcm(M), hence k | `1 and Gk`1 ∈ C. On the other hand,
k - `2 = `1 + lcm(M) by the choice of s, thus Gk`2 6∈ C.

5. Conclusion

We have provided a characterisation of the expressiveness of CMSO in terms of an
Ehrenfeucht-Fräıssé game that naturally extends the known game capturing MSO-defin-
ability, and we have presented a class of structures that are shown, using the proposed
game characterisation, to be undefinable by a CMSO-sentence yet being definable by an
order-invariant MSO-sentence. This establishes that order-invariant MSO is strictly more
expressive than counting MSO in the finite. Modifying the separating example by consid-
ering a variant of cliquey grids where the two separate equivalence relations are unified into
a single binary relation and considering, e.g., the class of such grids where the horizontal
dimension exactly matches the vertical dimension, we can also confirm Courcelle’s original
conjecture.

Corollary 5.1. CMSO-definability is strictly weaker than MSO[<]inv -definability for gen-
eral graphs.

The separating query being essentially a transitive closure query, i.e., the only place
where monadic second-order quantification is used is in the definition of the transitive
closure of a binary relation, we can conclude that the same class of structures yields a
separation of (D)TC1 [<]inv from (D)TC1 (the extension of FO by a (deterministic) transitive
closure operator on binary relations) and even from (D)TC1 extended with modulo-counting
predicates since (D)TC1 ⊆ MSO. Finding separating examples concerning higher arity
(D)TC or even full (D)TC requires further investigation since, in general, MSO ( DTC2.

Following an opposite line of research, it would be interesting to identify further classes
of graphs, besides classes of graphs of bounded tree-width, on which MSO[<]inv is no more
expressive than CMSO.
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Abstract. We study the succinctness of the complement and intersection of regular ex-
pressions. In particular, we show that when constructing a regular expression defining the
complement of a given regular expression, a double exponential size increase cannot be
avoided. Similarly, when constructing a regular expression defining the intersection of a
fixed and an arbitrary number of regular expressions, an exponential and double expo-
nential size increase, respectively, can in worst-case not be avoided. All mentioned lower
bounds improve the existing ones by one exponential and are tight in the sense that the
target expression can be constructed in the corresponding time class, i.e., exponential or
double exponential time. As a by-product, we generalize a theorem by Ehrenfeucht and
Zeiger stating that there is a class of DFAs which are exponentially more succinct than
regular expressions, to a fixed four-letter alphabet. When the given regular expressions
are one-unambiguous, as for instance required by the XML Schema specification, the com-
plement can be computed in polynomial time whereas the bounds concerning intersection
continue to hold. For the subclass of single-occurrence regular expressions, we prove a
tight exponential lower bound for intersection.

1. Introduction

The two central questions addressed in this paper are the following. Given regular
expressions r, r1, . . . , rk over an alphabet Σ,

(1) what is the complexity of constructing a regular expression r¬ defining Σ∗ \ L(r),
that is, the complement of r?

(2) what is the complexity of constructing a regular expression r∩ defining L(r1)∩ · · · ∩
L(rk)?

In both cases, the naive algorithm takes time double exponential in the size of the input.
Indeed, for the complement, transform r to an NFA and determinize it (first exponential
step), complement it and translate back to a regular expression (second exponential step).
For the intersection there is a similar algorithm through a translation to NFAs, taking
the crossproduct and a retranslation to a regular expression. Note that both algorithms
do not only take double exponential time but also result in a regular expression of double
exponential size. In this paper, we exhibit classes of regular expressions for which this double
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exponential size increase cannot be avoided. Furthermore, when the number k of regular
expressions is fixed, r∩ can be constructed in exponential time and we prove a matching
lower bound for the size increase. In addition, we consider the fragments of one-unambiguous
and single-occurrence regular expressions relevant to XML schema languages [2, 3, 13, 23].
Our main results are summarized in Table 1.

The main technical part of the paper is centered around the generalization of a result
by Ehrenfeucht and Zeiger [8]. They exhibit a class of languages (Zn)n∈N each of which can
be accepted by a DFA of size O(n2) but cannot be defined by a regular expression of size
smaller than 2n−1. The most direct way to define Zn is by the DFA that accepts it: the
DFA is a graph consisting of n states, labeled 0 to n − 1, which are fully connected and
the edge between state i and j carries the label ai,j. It now accepts all paths in the graph,
that is, all strings of the form ai0,i1ai1,i2 · · · aik,ik+1

. Note that the alphabet over which Zn is
defined grows quadratically with n. We generalize their result to a four-letter alphabet. In
particular, we define Kn as the binary encoding of Zn using a suitable encoding for ai,j and
prove that every regular expression defining Kn should be at least of size 2n. As integers are
encoded in binary the complement and intersection of regular expressions can now be used
to separately encode K2n (and slight variations thereof) leading to the desired results. In [9]
the same generalization as obtained here is attributed to Waizenegger [35]. Unfortunately,
we believe that proof to be incorrect as we discuss in the full version of this paper.

Although the succinctness of various automata models have been investigated in depth [14]
and more recently those of logics over (unary alphabet) strings [15], the succinctness of reg-
ular expressions has hardly been addressed. For the complement of a regular expression an
exponential lower bound is given by Ellul et al [9]. For the intersection of an arbitrary num-
ber of regular expressions Petersen gave an exponential lower bound [28], while Ellul et al [9]
mention a quadratic lower bound for the intersection of two regular expressions. In fact,
in [9], it is explicitly asked what the maximum achievable blow-up is for the complement
of one and the intersection of two regular expressions (Open Problems 4 and 5). Although
we do not answer these questions in the most precise way, our lower bounds improve the
existing ones by one exponential and are tight in the sense that the target expression can
be constructed in the time class matching the space complexity of the lower bounds.

Succinctness of complement and intersection relate to the succinctness of semi-extended
(RE(∩)) and extended regular expressions (RE(∩,¬)). These are regular expressions aug-
mented with intersection and both complement and intersection operators, respectively.
Their membership problem has been extensively studied [18, 20, 26, 28, 30]. Furthermore,
non-emptiness and equivalence of RE(∩,¬) is non-elementary [33]. For RE(∩), inequiva-
lence is expspace-complete [10, 16, 29], and non-emptiness is pspace-complete [10, 16] even
when restricted to the intersection of a (non-constant) number of regular expressions [19].
Several of these papers hint upon the succinctness of the intersection operator and provide
dedicated techniques in dealing with the new operator directly rather than through a trans-
lation to ordinary regular expressions [20, 28]. Our results present a double exponential
lower bound in translating RE(∩) to RE and therefore justify even more the development
for specialized techniques.

A final motivation for this research stems from its application in the emerging area of
XML-theory [21, 27, 31, 34]. From a formal language viewpoint, XML documents can be
seen as labeled unranked trees and collections of these documents are defined by schemas. A
schema can take various forms, but the most common ones are Document Type Definitions
(DTDs) [4] and XML Schema Definitions (XSDs) [32] which are grammar based formalisms
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complement intersection (fixed) intersection (arbitrary)
regular expression 2-exp exp 2-exp
one-unambiguous poly exp 2-exp
single-occurrence poly exp exp

Table 1: Overview of the size increase for the various operators and subclasses. All non-
polynomial complexities are tight.

with regular expressions at right-hand sides of rules [23, 25]. Many questions concerning
schemas reduce to corresponding questions on the classes of regular expressions used as
right-hand sides of rules as is exemplified for the basic decision problems studied in [11]
and [22]. Furthermore, the lower bounds presented here are utilized in [12] to prove, among
other things, lower bounds on the succinctness of existential and universal pattern-based
schemas on the one hand, and single-type EDTDs (a formalization of XSDs) and DTDs,
on the other hand. As the DTD and XML Schema specification require regular expres-
sions occurring in rules to be deterministic, formalized by Brüggemann-Klein and Wood in
terms of one-unambiguous regular expressions [6], we also investigate the complement and
intersection of those. In particular, we show that a one-unambiguous regular expressions
can be complemented in polynomial time, whereas the lower bounds concerning intersection
carry over from unrestricted regular expressions. A study in [2] reveals that most of the
one-unambiguous regular expression used in practice take a very simple form: every alpha-
bet symbol occurs at most once. We refer to those as single-occurrence regular expressions
(SOREs) and show a tight exponential lower bound for intersection.
Outline. In Section 2, we introduce the necessary notions concerning (one-unambiguous)
regular expressions and automata. In Section 3, we extend the result by Ehrenfeucht and
Zeiger to a fixed alphabet using the family of languages (Kn)n∈N. In Section 4, we consider
the succinctness of complement. In Section 5, we consider the succinctness of intersection
of several classes of regular expressions. We conclude in Section 6. A version of this paper
containing all proofs is available from the authors’ webpages.

2. Preliminaries

2.1. Regular expressions

By N we denote the natural numbers without zero. For the rest of the paper, Σ always
denotes a finite alphabet. A Σ-string (or simply string) is a finite sequence w = a1 · · · an

of Σ-symbols. We define the length of w, denoted by |w|, to be n. We denote the empty
string by ε. The set of positions of w is {1, . . . , n} and the symbol of w at position i is ai.
By w1 ·w2 we denote the concatenation of two strings w1 and w2. As usual, for readability,
we denote the concatenation of w1 and w2 by w1w2. The set of all strings is denoted
by Σ∗ and the set of all non-empty strings by Σ+. A string language is a subset of Σ∗.
For two string languages L,L′ ⊆ Σ∗, we define their concatenation L · L′ to be the set
{w · w′ | w ∈ L,w′ ∈ L′}. We abbreviate L · L · · ·L (i times) by Li.

The set of regular expressions over Σ, denoted by RE, is defined in the usual way: ∅,
ε, and every Σ-symbol is a regular expression; and when r1 and r2 are regular expressions,
then r1 · r2, r1 + r2, and r∗1 are also regular expressions.
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By RE(∩,¬) we denote the class of extended regular expressions, that is, RE ex-
tended with intersection and complementation operators. So, when r1 and r2 are RE(∩,¬)-
expressions then so are r1 ∩ r2 and ¬r1. By RE(∩) and RE(¬) we denote RE extended
solely with the intersection and complement operator, respectively.

The language defined by an extended regular expression r, denoted by L(r), is induc-
tively defined as follows: L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L(r1r2) = L(r1) · L(r2);
L(r1 + r2) = L(r1) ∪ L(r2); L(r∗) = {ε} ∪ ⋃∞

i=1 L(r)i; L(r1 ∩ r2) = L(r1) ∩ L(r2); and
L(¬r1) = Σ∗ \ L(r1).

By
⋃k

i=1 ri, and rk, with k ∈ N, we abbreviate the expression r1 + · · ·+ rk, and rr · · · r
(k-times), respectively. For a set S = {a1, . . . , an} ⊆ Σ, we abbreviate by S the regular
expression a1 + · · ·+ an.

We define the size of an extended regular expression r over Σ, denoted by |r|, as
the number of Σ-symbols and operators occurring in r disregarding parentheses. This is
equivalent to the length of its (parenthesis-free) reverse Polish form [37]. Formally, |∅| =
|ε| = |a| = 1, for a ∈ Σ, |r1r2| = |r1∩r2| = |r1 +r2| = |r1|+ |r2|+1, and |¬r| = |r∗| = |r|+1.

Other possibilities considered in the literature for defining the size of a regular expres-
sion are: (1) counting all symbols, operators, and parentheses [1, 17]; or, (2) counting only
the Σ-symbols. However, Ellul et al. [9] have shown that for regular expressions (so, with-
out ¬ and ∩), provided they are preprocessed by syntactically eliminating superfluous ∅-
and ε-symbols, and nested stars, the three length measures are identical up to a constant
multiplicative factor. For extended regular expressions, counting only the Σ-symbols is not
sufficient, since for instance the expression (¬ε)(¬ε)(¬ε) does not contain any Σ-symbols.
Therefore, we define the size of an expression as the length of its reverse Polish form.

2.2. One-unambiguous regular expressions and SOREs

As mentioned in the introduction, several XML schema languages restrict regular
expressions occurring in rules to be deterministic, formalized by Brüggemann-Klein and
Wood [6] in terms of one-unambiguity. We introduce this notion next.

To indicate different occurrences of the same symbol in a regular expression, we mark
symbols with subscripts. For instance, the marking of (a + b)∗a + bc is (a1 + b2)∗a3 + b4c5.
We denote by r[ the marking of r and by Sym(r[) the subscripted symbols occurring in r[.
When r is a marked expression, then r\ over Σ is obtained from r by dropping all subscripts.
This notion is extended to words and languages in the usual way.

Definition 2.1. A regular expression r is one-unambiguous iff for all strings w, u, v ∈
Sym(r[)∗, and all symbols x, y ∈ Sym(r[), the conditions uxv, uyw ∈ L(r[) and x 6= y imply
x\ 6= y\.

For instance, the regular expression r = a∗a, with marking r[ = a∗1a2, is not one-
unambiguous. Indeed, the marked strings a1a2 and a1a1a2 both in L(r[) do not satisfy
the conditions in the previous definition. The equivalent expression aa∗, however, is one-
unambiguous. The intuition behind the definition is that positions in the input string can
be matched in a deterministic way against a one-unambiguous regular expression without
looking ahead. For instance, for the expression aa∗, the first a of an input string is always
matched against the leading a in the expression, while every subsequent a is matched against
the last a. Unfortunately, one-unambiguous regular languages do not form a very robust
class as they are not even closed under the Boolean operations [6].
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The following subclass captures the class of regular expressions occurring in XML
schemas on the Web [2]:

Definition 2.2. A single-occurrence regular expression (SORE) is a regular expression
where every alphabet symbol occurs at most once. In addition, we allow the operator r+

which defines rr∗.

For instance, (a + b)+c is a SORE while a∗(a + b)+ is not. Clearly, every SORE is
one-unambiguous. Note that SOREs define local languages and that over a fixed alphabet
there are only finitely many of them.

2.3. Finite automata

A non-deterministic finite automaton (NFA) A is a 4-tuple (Q, q0, δ, F ) where Q is the
set of states, q0 is the initial state, F is the set of final states and δ ⊆ Q × Σ × Q is the
transition relation. We write q ⇒A,w q′ when w takes A from state q to q′. So, w is accepted
by A if q0 ⇒A,w q′ for some q′ ∈ F . The set of strings accepted by A is denoted by L(A).
The size of an NFA is |Q|+ |δ|. An NFA is deterministic (or a DFA) if for all a ∈ Σ, q ∈ Q,
|{(q, a, q′) ∈ δ | q′ ∈ Q}| ≤ 1.

We make use of the following known results.

Theorem 2.3. Let A1, . . . , Am be NFAs over Σ with |Ai| = ni for i ≤ m, and |Σ| = k.
(1) A regular expression r, with L(r) = L(A1), can be constructed in time O(m1k4m1),

where m1 is the number of states of A1 [24, 9].
(2) A DFA B with 2n1 states, such that L(B) = L(A1), can be constructed in time

O(2n1) [36].
(3) A DFA B with 2n1 states, such that L(B) = Σ∗ \L(A1), can be constructed in time

O(2n1) [36].
(4) Let r ∈ RE. An NFA B with |r|+1 states, such that L(B) = L(r), can be constructed

in time O(|r| · |Σ|) [5].
(5) Let r ∈ RE(∩). An NFA B with 2|r| states, such that L(B) = L(r), can be con-

structed in time exponential in the size of r [10].

3. A generalization of a Theorem by Ehrenfeucht and Zeiger to a fixed
alphabet

We first introduce the family (Zn)n∈N defined by Ehrenfeucht and Zeiger over an al-
phabet whose size grows quadratically with the parameter n [8]:

Definition 3.1. Let n ∈ N and Σn = {ai,j | 0 ≤ i, j ≤ n− 1}. Then, Zn contains exactly
all strings of the form ai0,i1ai1,i2 · · · aik−1,ik where k ∈ N.

A way to interpret Zn is to consider the DFA with states {0, . . . , n− 1} which is fully
connected and where the edge between state i and j is labeled with ai,j. The language Zn

then consists of all paths in the DFA. 1

Ehrenfeucht and Zeiger obtained the succinctness of DFAs with respect to regular ex-
pressions through the following theorem:

1Actually, in [8], only paths from state 0 to state n − 1 are considered. We use our slightly modified
definition as it will be easier to generalize to a fixed arity alphabet suited for our purpose in the sequel.
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Theorem 3.2 ([8]). For n ∈ N, any regular expression defining Zn must be of size at least
2n−1. Furthermore, there is a DFA of size O(n2) accepting Zn.

Our language Kn is then the straightforward binary encoding of Zn that additionally
swaps the pair of indices in every symbol ai,j. Thereto, for ai,j ∈ Σn, define the function
ρn as

ρn(ai,j) = enc(j)$enc(i)#,

where enc(i) and enc(j) denote the dlog(n)e-bit binary encodings of i and j, respectively.
Note that since i, j < n, i and j can be encoded using only dlog(n)e-bits. We extend the
definition of ρn to strings in the usual way: ρn(ai0,i1 · · · aik−1,ik) = ρn(ai0,i1) · · · ρn(aik−1,ik).

We are now ready to define Kn.

Definition 3.3. Let ΣK = {0, 1, $,#}. For n ∈ N, let Kn = {ρn(w) | w ∈ Zn}.
For instance, for n = 5, w = a3,2a2,1a1,4a4,2 ∈ Z5 and thus

ρn(w) = 010$011#001$010#100$001#010$100# ∈ K5.

We generalize the previous theorem as follows:

Theorem 3.4. For any n ∈ N, with n ≥ 2,
(1) any regular expression defining Kn is of size at least 2n; and,
(2) there is a DFA An of size O(n2 log n) defining Kn.

The construction of An is omitted. The rest of this section is devoted to the proof
of Theorem 3.4(1). It follows the structure of the proof of Ehrenfeucht and Zeiger but is
technically more involved as it deals with binary encodings of integers.

We start by introducing some terminology. Let w = ai0,i1ai1,i2 · · · aik−1,ik ∈ Zn. We say
that i0 is the start-point of w and ik is its end-point. Furthermore, we say that w contains
i or i occurs in w if i occurs as an index of some symbol in w. That is, ai,j or aj,i occurs in
w for some j. For instance, a0,2a2,2a2,1 ∈ Z5, has start-point 0, end-point 1, and contains
0, 1 and 2. The notions of contains, occurs, start- and end-point of a string w are also
extended to Kn. So, the start and end-points of ρn(w) are the start and end-points of w,
and w contains the same integers as ρn(w).

For a regular expression r, we say that i is a sidekick of r when it occurs in every non-
empty string defined by r. A regular expression s is a starred subexpression of a regular
expression r when s is a subexpression of r and is of the form t∗.

Now, the following lemma holds:

Lemma 3.5. Any starred subexpression s of a regular expression r defining Kn has a
sidekick.

We now say that a regular expression r is normal if every starred subexpression of r
has a sidekick. In particular, any expression defining Kn is normal. We say that a regular
expression r covers a string w if there exist strings u, u′ ∈ Σ∗ such that uwu′ ∈ L(r). If
there is a greatest integer m for which r covers wm, we call m the index of w in r and denote
it by Iw(r). In this case we say that r is w-finite. Otherwise, we say that r is w-infinite.
The index of a regular expression can be used to give a lowerbound on its size according to
the following lemma.
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Lemma 3.6 ([8]). For any regular expression r and string w, if r is w-finite, then Iw(r) <
2|r|.2

Now, we can state the most important property of Kn.

Lemma 3.7. Let n ≥ 2. For any C ⊆ {0, . . . , n − 1} of cardinality k and i ∈ C, there
exists a string w ∈ Kn with start- and end-point i only containing integers in C, such that
any normal regular expression r which covers w is of size at least 2k.

Proof. The proof is by induction on the value of k. For k = 1, C = {i}. Then, define
w = enc(i)$enc(i)#, which satisfies all conditions and any expression covering w must
definitely have a size of at least 2.

For the inductive step, let C = {j1, . . . , jk}. Define C` = C \ {j(` mod k)+1} and let w`

be the string given by the induction hypothesis with respect to C` (of size k − 1) and j`.
Note that j` ∈ C`. Further, define m = 2k+1 and set

w = enc(j1)$enc(i)#wm
1 enc(j2)$enc(j1)#wm

2 enc(j3)$enc(j2)# · · ·wm
k enc(i)$enc(jk)#.

Then, w ∈ Kn, has i as start and end-point and only contains integers in C. It only remains
to show that any expression r which is normal and covers w is of size at least 2k.

Fix such a regular expression r. If r is w`-finite for some ` ≤ k. Then, Iw`
(rk) ≥ m =

2k+1 by construction of w. By Lemma 3.6, |r| ≥ 2k and we are done.
Therefore, assume that r is w`-infinite for every ` ≤ k. For every ` ≤ k, consider all

subexpressions of r which are w`-infinite. It is easy to see that all minimal elements in this
set of subexpressions must be starred subexpressions. Here and in the following, we say
that an expression is minimal with respect to a set simply when no other expression in the
set is a subexpression. Indeed, a subexpression of the form a or ε can never be w`-infinite
and a subexpression of the form r1r2 or r1 + r2 can only be w`-infinite if r1 and/or r2

are w`-infinite and is thus not minimal with respect to w`-infinity. Among these minimal
starred subexpressions for w`, choose one and denote it by s`. Let E = {s1, . . . , sk}. Note
that since r is normal, all its subexpressions are also normal. As in addition each s` covers
w`, by the induction hypothesis the size of each s` is at least 2k−1. Now, choose from E
some expression s` such that s` is minimal with respect to the other elements in E.

As r is normal and s` is a starred subexpression of r, there is an integer j such that
every non-empty string in L(s`) contains j. By definition of the strings w1, . . . , wk, there is
some wp, p ≤ k, such that wp does not contain j. Denote by sp the starred subexpression
from E which is wp-infinite. In particular, s` and sp cannot be the same subexpression of r.

Now, there are three possibilities:
• s` and sp are completely disjoint subexpressions of r. That is, they are both not

a subexpression of one another. By induction they must both be of size 2k−1 and
thus |r| ≥ 2k−1 + 2k−1 = 2k.

• sp is a strict subexpression of s`. This is not possible since s` is chosen to be a
minimum element from E.

• s` is a strict subexpression of sp. We show that if we replace s` by ε in sp, then sp

is still wp-infinite. It then follows that sp still covers wp, and thus sp without s` is
of size at least 2k−1. As |s`| ≥ 2k−1 as well it follows that |r| ≥ 2k.

2In fact, in [8] the length of an expression is defined as the number of Σ-symbols occurring in it. However,
since our length measure also contains these Σ-symbols, this lemma still holds in our setting.
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To see that sp without s` is still wp-infinite, recall that any non-empty string
defined by s` contains j and j does not occur in wp. Therefore, a full iteration of s`

can never contribute to the matching of any number of repetitions of wp. So, sp can
only lose its wp-infinity by this replacement if s` contains a subexpression which is
itself wp-infinite. However, this then also is a subexpression of sp and sp is chosen
to be minimal with respect to wp-infinity, a contradiction. We can only conclude
that sp without s` is still wp-infinite.

Since by Lemma 3.5 any expression defining Kn is normal, Theorem 3.4(1) directly fol-
lows from Lemma 3.7 by choosing i = 0, k = n. This concludes the proof of Theorem 3.4(1).

4. Complementing regular expressions

It is known that extended regular expressions are non-elementary more succinct than
classical ones [7, 33]. Intuitively, each exponent in the tower requires nesting of an additional
complement. In this section, we show that in defining the complement of a single regular
expression, a double-exponential size increase cannot be avoided in general. In contrast,
when the expression is one-unambiguous its complement can be computed in polynomial
time.

Theorem 4.1. (1) For every regular expression r over Σ, a regular expression s with
L(s) = Σ∗ \ L(r) can be constructed in time O(2|r|+1 · |Σ| · 42|r|+1

).
(2) Let Σ be a four-letter alphabet. For every n ∈ N, there is a regular expressions rn

of size O(n) such that any regular expression r defining Σ∗ \L(rn) is of size at least
22n

.

Proof. (2) Take Σ as ΣK , that is, {0, 1, $,#}. Let n ∈ N. We define an expression rn of size
O(n), such that Σ∗ \ L(rn) = K2n . By Theorem 3.4, any regular expression defining K2n

is of size exponential in 2n, that is, of size 22n
. By r[0,n−1] we abbreviate the expression

(ε+r(ε+r(ε · · · (ε+r)))), with a nesting depth of n−1. We then define rn as the disjunction
of the following expressions:

• all strings that do not start with a prefix in (0 + 1)n$:

Σ[0,n] + (0 + 1)[0,n−1]($ + #)Σ∗ + (0 + 1)n(0 + 1 + #)Σ∗

• all strings where a $ is not followed by a string in (0 + 1)n#:

Σ∗$
(
Σ[0,n−1](# + $) + Σn(0 + 1 + $)

)
Σ∗

• all strings where a non-final # is not followed by a string in (0 + 1)n$:

Σ∗#
(
Σ[0,n−1](# + $) + Σn(0 + 1 + #)

)
Σ∗

• all strings that do not end in #:

Σ∗(0 + 1 + $)

• all strings where the corresponding bits of corresponding blocks are different:

((0 + 1)∗ + Σ∗#(0 + 1)∗)0Σ3n+21Σ∗ + ((0 + 1)∗ + Σ∗#(0 + 1)∗)1Σ3n+20Σ∗.

It should be clear that a string over {0, 1, $,#} is matched by none of the above expressions
if and only if it belongs to K2n . So, the complement of rn defines exactly K2n .
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The previous theorem essentially shows that in complementing a regular expression,
there is no better algorithm than translating to a DFA, computing the complement and
translating back to a regular expression which includes two exponential steps. However,
when the given regular expression is one-unambiguous, a corresponding DFA can be com-
puted in quadratic time through the Glushkov construction [6] eliminating already one
exponential step. The proof of the next theorem shows that the complement of that DFA
can be directly defined by a regular expression of polynomial size.

Theorem 4.2. For any one-unambiguous regular expression r over an alphabet Σ, a regular
expression s defining Σ∗ \ L(r) can be constructed in time O(n3), where n is the size of r.

Proof. Let r be a one-unambiguous expression over Σ. We introduce some notation.
• The set Not-First(r) contains all Σ-symbols which are not the first symbol in any

word defined by r, that is, Not-First(r) = Σ \ {a | a ∈ Σ ∧ ∃w ∈ Σ∗, aw ∈ L(r)} .
• For any symbol x ∈ Sym(r[), the set Not-Follow(r, x) contains all Σ-symbols of

which no marked version can follow x in any word defined by r[. That is, Not-Follow(r, x) =
Σ \ {y\ | y ∈ Sym(r[) ∧ ∃w,w′ ∈ Sym(r[)∗, wxyw′ ∈ L(r[)}.

• The set Last(r) contains all marked symbols which are the last symbol of some word
defined by r[. Formally, Last(r) = {x | x ∈ Sym(r[) ∧ ∃w ∈ Σ∗, wx ∈ L(r[)}.

We define the following regular expressions:

• init(r) =
{

Not-First(r)Σ∗ if ε ∈ L(r); and
ε + Not-First(r)Σ∗ if ε /∈ L(r).

• For every x ∈ Sym(r[), let r[
x be the expression defining {wx | w ∈ Sym(r[)∗ ∧ ∃u ∈

Sym(r[)∗, wxu ∈ L(r[)}. That is, all prefixes of strings in r[ ending in x. Then, let
rx define L(r[

x)\.
We are now ready to define s:

init(r) +
⋃

x/∈Last(r)

rx(ε + Not-Follow(r, x)Σ∗) +
⋃

x∈Last(r)

rxNot-Follow(r, x)Σ∗.

It can be shown that s can be constructed in time cubic in the size of r and that s defines
the complement of r. The latter is proved by exhibiting a direct correspondence between s
and the complement of the Glushkov automaton of r.

We conclude this section by remarking that one-unambiguous regular expressions are
not closed under complement and that the constructed s is therefore not necessarily one-
unambiguous.

5. Intersecting regular expressions

In this section, we study the succinctness of intersection. In particular, we show that
the intersection of two (or any fixed number) and an arbitrary number of regular expres-
sions are exponentially and double exponentially more succinct than regular expressions,
respectively. Actually, the exponential bound for a fixed number of expressions already
holds for single-occurrence regular expressions, whereas the double exponential bound for
an arbitrary number of expressions only carries over to one-unambiguous expressions. For
single-occurrence expressions this can again be done in exponential time.

In this respect, we introduce a slightly altered version of Kn.
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Definition 5.1. Let ΣL = {0, 1, $,#,4}. For all n ∈ N, Ln = {ρn(w)4 | w ∈ Zn ∧
|w| is even}.

We also define a variant of Zn which only slightly alters the ai,j symbols in Zn. Thereto,
let Σ◦

n = {ai◦,j, ai,j◦ | 0 ≤ i, j < n} and set ρ̂(ai,jaj,k) = Biai,j◦aj◦,k and ρ̂(ai0,i1ai1,i2

· · · aik−2,ik−1
aik−1,ik) = ρ̂(ai0,i1ai1,i2) · · · ρ̂(aik−2,ik−1

aik−1,ik), where k is even.

Definition 5.2. Let n ∈ N and Σn
M = Σ◦

n ∪ {B0,40, . . . ,Bn−1,4n−2}. Then, Mn =
{ρ̂(w)4i | w ∈ Zn ∧ |w| is even ∧ i is the end-point of w}.

Note that paths in Mn are those in Zn where every odd position is promoted to a circled
one (◦), and triangles labeled with the non-circled positions are added. For instance, the
string a2,4a4,3a3,3a3,0 ∈ Z5 is mapped to the string B2a2,4◦a4◦,3 B3 a3,3◦a3◦,040 ∈ M5.

We make use of the following property:

Lemma 5.3. Let n ∈ N.
(1) Any regular expression defining Ln is of size at least 2n.
(2) Any regular expression defining Mn is of size at least 2n−1.

The next theorem shows the succinctness of the intersection operator.

Theorem 5.4. (1) For any k ∈ N and regular expressions r1, . . . , rk, a regular expres-
sion defining

⋂
i≤k L(rk) can be constructed in time O((m+1)k · |Σ| ·4(m+1)k

), where
m = max {|ri| | 1 ≤ i ≤ k}.

(2) For every n ∈ N, there are SOREs rn and sn of size O(n2) such that any regular
expression defining L(rn) ∩ L(sn) is of size at least 2n−1.

(3) For each r ∈ RE(∩) an equivalent regular expression can be constructed in time
O(2|r| · |Σ| · 42|r|).

(4) For every n ∈ N, there are one-unambiguous regular expressions r1, . . . , rm, with
m = 2n + 1, of size O(n) such that any regular expression defining

⋂
i≤m L(ri) is of

size at least 22n
.

(5) Let r1, . . . , rn be SOREs. A regular expression defining
⋂

i≤n L(rn) can be con-
structed in time O(m · |Σ| · 4m), where m =

∑
i≤n |ri|.

Proof. (2) Let n ∈ N. By Lemma 5.3(2), any regular expression defining Mn is of size at
least 2n−1. We define SOREs rn and sn of size quadratic in n, such that L(rn)∩L(sn) = Mn.
We start by partitioning Σn

M in two different ways. To this end, for every i < n, define
Outi = {ai,j◦ | 0 ≤ j < n}, Ini = {aj◦,i | 0 ≤ j < n}, Outi◦ = {ai◦,j | 0 ≤ j < n}, and,
Ini◦ = {aj,i◦ | 0 ≤ j < n}. Then,

Σn
M =

⋃
i

Ini ∪Outi ∪ {Bi,4i} =
⋃
i◦

Ini◦ ∪Outi◦ ∪ {Bi,4i}.

Further, define

rn = ((B0 + · · ·+ Bn−1)
⋃
i◦

Ini◦Outi◦)+(40 + · · ·+4n−1)

and
sn =

(⋃
i

(Ini + ε)(Bi +4i)(Outi + ε)
)∗

.

Now, rn checks that every string consists of a sequence of blocks of the form Biaj,k◦ak◦,`,
for i, j, k, ` < n, ending with a 4i, for i < n. It thus sets the format of the strings and
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checks whether the circled indices are equal. Further, sn checks whether the non-circled
indices are equal and whether the triangles have the correct indices. Since the alphabet of
Mn is of size O(n2), also rn and sn are of size O(n2).
(4) Let n ∈ N. We define m = 2n + 1 one-unambiguous regular expressions of size O(n),
such that their intersection defines L2n . By Lemma 5.3(1), any regular expression defining
L2n is of size at least 22n

and the theorem follows. For ease of readability, we denote ΣL

simply by Σ. The expressions are as follows. There should be an even length sequence of
blocks: (

(0 + 1)n$(0 + 1)n#(0 + 1)n$(0 + 1)n#
)∗4.

For all i ∈ {0, . . . , n−1}, the (i+1)th bit of the two numbers surrounding an odd # should
be equal: (

Σi(0Σ3n+20 + 1Σ3n+21)Σn−i−1#
)∗4.

For all i ∈ {0, . . . , n−1}, the (i+1)th bit of the two numbers surrounding an even # should
be equal:

Σ2n+2
(
Σi(0Σ2n−i+1(4+ Σn+i+10Σn−i−1#) + (1Σ2n−i+1(4+ Σn+i+11Σn−i−1#)))

)∗
.

Clearly, the intersection of the above expressions defines L2n . Furthermore, every expression
is of size O(n) and is one-unambiguous as the Glushkov construction translates them into
a DFA [6].

6. Conclusion

In this paper we showed that the complement and intersection of regular expressions
are double exponentially more succinct than ordinary regular expressions. For comple-
ment, complexity can be reduced to polynomial for the class of one-unambiguous regular
expressions although the obtained expressions could fall outside that class. For intersection,
restriction to SOREs reduces complexity to exponential. It remains open whether there are
natural classes of regular expressions for which both the complement and intersection can
be computed in polynomial time.
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Abstract. The purpose of this paper is to provide efficient algorithms that decide mem-
bership for classes of several Boolean hierarchies for which efficiency (or even decidability)
were previously not known. We develop new forbidden-chain characterizations for the
single levels of these hierarchies and obtain the following results:

• The classes of the Boolean hierarchy over level Σ1 of the dot-depth hierarchy are
decidable in NL (previously only the decidability was known). The same remains
true if predicates mod d for fixed d are allowed.

• If modular predicates for arbitrary d are allowed, then the classes of the Boolean
hierarchy over level Σ1 are decidable.

• For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy
over level Σ2 of the Straubing-Thérien hierarchy are decidable in NL. This is the
first decidability result for this hierarchy.

• The membership problems for all mentioned Boolean-hierarchy classes are logspace
many-one hard for NL.

• The membership problems for quasi-aperiodic languages and for d-quasi-aperiodic
languages are logspace many-one complete for PSPACE.

Introduction

The study of decidability and complexity questions for classes of regular languages is
a central research topic in automata theory. Its importance stems from the fact that finite
automata are fundamental to many branches of computer science, e.g., databases, operating
systems, verification, hardware and software design.

Key words and phrases: automata and formal languages, computational complexity, dot-depth hierarchy,
Boolean hierarchy, decidability, efficient algorithms.
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There are many examples for decidable classes of regular languages (e.g., locally testable
languages), while the decidability of other classes is still a challenging open question (e.g.,
dot-depth two, generalized star-height). Moreover, among the decidable classes there is a
broad range of complexity results. For some of them, e.g., the class of piecewise testable
languages, efficient algorithms are known that work in nondeterministic logarithmic space
(NL) and hence in polynomial time. For other classes, a membership test needs more
resources, e.g., deciding the membership in the class of star-free languages is PSPACE-
complete.

The purpose of this paper is to provide efficient algorithms that decide membership
for classes of several Boolean hierarchies for which efficiency (or even decidability) were
not previously known. Many of the known efficient decidability results for classes of regu-
lar languages are based on so-called forbidden-pattern characterizations. Here a language
belongs to a class of regular languages if and only if its deterministic finite automaton
does not have a certain subgraph (the forbidden pattern) in its transition graph. Usu-
ally, such a condition can be checked efficiently, e.g., in nondeterministic logarithmic space
[Ste85a, CPP93, GS00a, GS00b].

However, for the Boolean hierarchies considered in this paper, the design of efficient
algorithm is more involved, since here no forbidden-pattern characterizations are known.
More precisely, wherever decidability is known, it is obtained from a characterization of the
corresponding class in terms of forbidden alternating chains of word extensions. Though the
latter also is a forbidden property, the known characterizations are not efficiently checkable
in general. (Exceptions are the special ‘local’ cases Σ%

1(n) and C1
k(n) where decidability in

NL is known [SW98, Sch01].) To overcome these difficulties, we first develop alternative
forbidden-chain characterizations (they essentially ask only for certain reachability condi-
tions in transition graphs). From our new characterizations we obtain efficient algorithms
for membership tests in NL. For two of the considered Boolean hierarchies, these are the
first decidable characterizations at all, i.e., for the classes Σ%

2(n) for the alphabet A = {a, b},
and for the classes Στ

1(n)).
Definitions. We sketch the definitions of the Boolean hierarchies considered in this

paper. Σ%
1 denotes the class of languages definable by first-order Σ1-sentences over the

signature % = {≤, Qa, . . .} where for every letter a ∈ A, Qa(i) is true if and only if the
letter a appears at the i-th position in the word. Σ%

1 equals level 1/2 of the Straubing-
Thérien hierarchy (STH for short) [Str81, Thé81, Str85, PP86]. Σ%

2 is the class of languages
definable by similar first-order Σ2-sentences; this class equals level 3/2 of the Straubing-
Thérien hierarchy. Let σ be the signature obtained from % by adding constants for the
minimum and maximum positions in words and adding functions that compute the successor
and the predecessor of positions. Σσ

1 denotes the class of languages definable by first-order
Σ1-sentences of the signature σ; this class equals level 1/2 of the dot-depth hierarchy (DDH
for short) [CB71, Tho82]. Let τd be the signature obtained from σ by adding the unary
predicates P 0

d , . . . , P
d−1
d where P jd (i) is true if and only if i ≡ j(mod d). Let τ be the union

of all τd. Στd
1 (resp., Στ

1) is the class of languages definable by first-order Σ1-sentences
of the signature τd (resp., τ). Cdk is the generalization of Σ%

1 where neighborhoods of k + 1
consecutive letters and distances modulo d are expressible (Definition 1.2). For a class D (in
our case one of the classes Σ%

1, Σσ
1 , Cdk , Στd

1 , Στ
1, and Σ%

2 for |A| = 2), the Boolean hierarchy
over D is the family of classes

D(n) df={L ∣∣L = L1 − (L2 − (. . . − Ln)) where L1, . . . , Ln ∈ D and L1 ⊇ L2 ⊇ · · · ⊇ Ln}.
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Figure 1: Boolean hierarchies considered in this paper.

The Boolean hierarchies considered in this paper are illustrated in Figure 1.
Our Contribution. The paper contributes to the understanding of Boolean hierar-

chies of regular languages in two ways:
(1) For the classes Σσ

1 (n), Στd
1 (n), and Σ%

2(n) for the alphabet A = {a, b} we prove new
characterizations in terms of forbidden alternating chains. In case of Σ%

2(n) for the
alphabet A = {a, b}, this is the first characterization of this class.

(2) For the classes Σσ
1 (n), Cdk(n), Στd

1 (n), and Σ%
2(n) for the alphabet A = {a, b} we

construct the first efficient algorithms for testing membership in these classes. In
particular, this yields the decidability of the classes Στ

1(n), and of Σ%
2(n) for the

alphabet A = {a, b}.
We also show that the membership problems for all mentioned Boolean-hierarchy classes

are logspace many-one hard for NL. An overview of the obtained decidability and complexity
results can be found in Table 1. Moreover, we prove that the membership problems for quasi-
aperiodic languages and for d-quasi-aperiodic languages are logspace many-one complete for
PSPACE.

Boolean hierarchies can also be seen as fine-grain measures for regular languages in
terms of descriptional complexity. Note that the Boolean hierarchies considered in this
paper do not collapse [Shu98, SS00, Sel04]. Moreover, all these hierarchies either are known
or turn out to be decidable (see Table 1 for the attribution of these results). If in addition
the Boolean closure of the base class is decidable, then we can even exactly compute the
Boolean level of a given language. By known results (summarized in Theorem 1.1), one can
do this exact computation of the level for the Boolean hierarchies over Σ%

1, Σ%
2 (for alphabet

A = {a, b}), C1
k, Σσ

1 , and Στ
1. To achieve the same for the Boolean hierarchies over Cdk and

Στd
1 we need the decidability of their Boolean closures which is not known.

Related Work. Due to the many characterizations of regular languages there are
several approaches to attack decision problems on subclasses of regular languages: Among
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Boolean hierarchy classes decidability complexity

Σ%
1(n) [SW98] NL-complete [SW98]

C1
k(n) [GS01a, Sel01] NL-complete [Sch01]

Σσ
1 (n) [GS01a] NL-complete [this paper]

Cdk(n) [Sel04] NL-complete [this paper]
Στd

1 (n) [Sel04] NL-complete [this paper]
Στ

1(n) [this paper] no efficient bound known
(see Remark 4.3)

Σ%
2(n) for |A| = 2 [this paper] NL-complete [this paper]

Table 1: Overview of decidability and complexity results.

them there is the algebraic, the automata-theoretic, and the logical approach. In this paper
we mainly use the logical approach which has a long tradition starting with the early work of
Trakhtenbrot [Tra58] and Büchi [Büc60]. Decidability questions for Boolean hierarchies over
classes of concatenation hierarchies were previously studied by [SW98, Sch01, GS01a, Sel04].
Enrichments of the first-order logics related to the dot-depth hierarchy and the Straubing-
Thérien hierarchy were considered in [BCST92, Str94, MPT00, Sel04, CPS06]. For more
background on regular languages, starfree languages, concatenation hierarchies, and their
decidability questions we refer to the survey articles [Brz76, Pin95, Pin96a, Pin96b, Yu96,
PW02, Wei04].

Paper Outline. After the preliminaries, we explain the general idea of an efficient
membership algorithm for the classes Cdk(n) (section 2). This easy example shows how a
suitable characterization of a Boolean hierarchy can be turned into an efficient membership
test. The algorithms for the other Boolean hierarchies are similar, but more complicated.
Section 3 provides new alternating-chain characterizations for the Boolean hierarchies over
Σσ

1 , Στd
1 , and Σ%

2 for the alphabet A = {a, b}. In section 4 we exploit these characterizations
and obtain efficient algorithms for testing the membership in these classes. In particular,
we obtain the decidability of the classes Στ

1(n) and Σ%
2(n) for the alphabet A = {a, b}.

Finally, section 5 provides lower bounds for the complexity of the considered decidability
problems. As a consequence (with the exception of Στ

1(n)) the membership problems of
all considered Boolean levels are logspace many-one complete for NL. In contrast, the
membership problems of the general classes FOτ and FOτd are logspace many-one complete
for PSPACE and hence are strictly more complex.

Detailed proofs are available in the technical report [GSS07].

1. Preliminaries

In this section we recall definitions and results that are needed later in the paper. If
not stated otherwise, A denotes some finite alphabet with |A| ≥ 2. Let A∗ and A+ be the
sets of finite (resp., of finite non-empty) words over A. If not stated otherwise, variables
range over the set of natural numbers. We use [m,n] as abbreviation for the interval
{m,m+1, . . . , n}. For a deterministic finite automaton M = (A,Z, δ, s0, F ) (dfa for short),
the number of states is denoted by |M | and the accepted language is denoted by L(M).
Moreover, for words x and y we write x ≡M y if and only if δ(s0, x) = δ(s0, y). For a
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class of languages C, BC(C) denotes the Boolean closure of C, i.e., the closure under union,
intersection, and complementation.

All hardness and completeness results in this paper are with respect to logspace many-
one reductions, i.e., whenever we refer to NL-complete sets (resp., PSPACE-complete sets)
then we mean sets that are logspace many-one complete for NL (resp., PSPACE).

1.1. The Logical Approach to Regular Languages

We relate to an arbitrary alphabet A = {a, . . .} the signatures % = {≤, Qa, . . .} and
σ = {≤, Qa, . . . ,⊥,>, p, s}, where ≤ is a binary relation symbol, Qa (for any a ∈ A) is a
unary relation symbol, ⊥ and > are constant symbols, and p, s are unary function symbols.
A word u = u0 . . . un ∈ A+ may be considered as a structure u = ({0, . . . , n};≤, Qa, . . .) of
signature σ, where ≤ has its usual meaning, Qa(a ∈ A) are unary predicates on {0, . . . , n}
defined by Qa(i) ⇔ ui = a, the symbols ⊥ and > denote the least and the greatest elements,
while p and s are respectively the predecessor and successor functions on {0, . . . , n} (with
p(0) = 0 and s(n) = n). Similarly, a word v = v1 . . . vn ∈ A∗ may be considered as a
structure v = ({1, . . . , n};≤, Qa, . . .) of signature %. For a sentence φ of σ (resp., %), let
Lφ = {u ∈ A+|u |= φ} (resp., Lφ = {v ∈ A∗|v |= φ}). Sentences φ, ψ are treated as
equivalent when Lφ = Lψ. A language is FOσ-definable (resp., FO%-definable) if it is of the
form Lφ, where φ ranges over first-order sentences of σ (resp., %). We denote by Σσ

k (resp.,
Πσ
k) the class of languages that can be defined by a sentence of σ having at most k − 1

quantifier alternations, starting with an existential (resp., universal) quantifier. Σ%
k and Π%

k
are defined analogously.

It is well-known that the class of FOσ-definable languages (and FO%-definable lan-
guages) coincides with the class of regular aperiodic languages which are also known as the
star-free languages. Moreover there is a levelwise correspondence to concatenation hierar-
chies: The classes Σ%

k, Π%
k, and BC(Σ%

k) coincide with the classes of the Straubing-Thérien
hierarchy [PP86], while the classes Σσ

k , Πσ
k , and BC(Σσ

k) coincide with the classes of the
dot-depth hierarchy [Tho82].

We will consider also some enrichments of the signature σ. Namely, for any positive
integer d let τd be the signature σ ∪ {P 0

d , . . . , P
d−1
d }, where P rd is the unary predicate true

on the positions of a word which are equivalent to r modulo d. By FOτd-definable language
we mean any language of the form Lφ, where φ is a first-order sentence of signature τd.
Note that signature τ1 is essentially the same as σ because P 0

1 is the valid predicate. In
contrast, for d > 1 the FOτd-definable languages need not to be aperiodic. E.g., the sentence
P 1

2 (>) defines the language L consisting of all words of even length which is known to
be non-aperiodic. We are also interested in the signature τ =

⋃
d τd. Barrington et al.

[BCST92, Str94] defined quasi-aperiodic languages and showed that this class coincides
with the class of FOτ -definable languages. With the same proof we obtain the equality of
the class of d-quasi-aperiodic languages and the class of FOτd -definable languages [Sel04]. It
was observed in the same paper that Στ

n =
⋃
d Στd

n for each n > 0, where Σn with an upper
index denotes the class of regular languages defined by Σn-sentences of the corresponding
signature in the upper index.

Theorem 1.1. For the following classes D it is decidable whether a given dfa M accepts
a language in D: BC(Σ%

1) [Sim75], BC(Σ%
2) for |A| = 2 [Str88], BC(Σσ

1 ) [Kna83], BC(Στ
1)

[MPT00].
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We do not know the decidability of BC(Στd
1 ). However, it is likely to be a generalization

of Knast’s proof [Kna83].

1.2. Preliminaries on the Classes Cd
k(n)

We will also refer to ‘local’ versions of the BH’s over Σσ
1 and Στd

1 [Ste85a, GS01a, Sel01,
Sel04]. For any k ≥ 0 the following partial order on Σ+ was studied in [Ste85a, GS01a,
Sel01]: u ≤k v, if u = v ∈ A≤k or u, v ∈ A>k, pk(u) = pk(v), sk(u) = sk(v), and there
is a k-embedding f : u → v. Here pk(u) (resp., sk(u)) is the prefix (resp., suffix) of u of
length k, and the k-embedding f is a monotone injective function from {0. . . . , |u| − 1} to
{0. . . . , |v| − 1} such that u(i) · · · u(i + k) = v(f(i)) · · · v(f(i) + k) for all i < |u| − k. Note
that ≤0 is the subword relation.

Definition 1.2 ([Sel04]). Let k ≥ 0 and d > 0.
(1) We say that a k-embedding f : u→ v is a (k, d)-embedding, if P r

d (i) implies P rd (f(i))
for all i < |u| and r < d.

(2) For all u, v ∈ A+, let u ≤dk v mean that u = v ∈ A≤k or u, v ∈ A>k, pk(u) = pk(v),
sk(u) = sk(v), and there is a (k, d)-embedding f : u→ v.

(3) With Cdk we denote the class of all upper sets in (A+;≤dk).
Note that for d = 1 the order ≤dk coincides with ≤k. By an alternating ≤dk-chain of

length n for a set L we mean a sequence (x0, . . . , xn) such that x0 ≤dk · · · ≤dk xn and
xi ∈ L⇔ xi+1 6∈ L for every i < n. The chain is called 1-alternating if x0 ∈ L, otherwise it
is called 0-alternating.

Proposition 1.3 ([GS01a, Sel01, Sel04]). For all L ⊆ A+ and n ≥ 1, L ∈ Cdk(n) if and
only if L has no 1-alternating chain of length n in (A+;≤dk).

Moreover, (A+;≤dk) is a well partial order, Στd
1 =

⋃
k Cdk , and Στ

1 =
⋃
k,d Cdk [GS01a,

Sel01, Sel04].

Theorem 1.4 ([Ste85a]). It is decidable whether a given dfa accepts a language in BC(C 1
k).

For d > 1 it is not known whether BC(Cdk) is decidable. However, we expect that this
can be shown by generalizing the proof in [Ste85a].

2. Efficient Algorithms for Cd
k(n)

The main objective of this paper is the design of efficient algorithms deciding mem-
bership for particular Boolean hierarchies. For this, two things are needed: first, we need
to prove suitable characterizations for the single levels of these hierarchies. This gives us
certain criteria that can be used for testing membership. Second, we need to construct
algorithms that efficiently apply these criteria. If both steps are successful, then we obtain
an efficient membership test.

Based on known ideas for membership tests for C1
0(n) [SW98]1 and C1

k(n) [Sch01], in this
section we explain the construction of a nondeterministic, logarithmic-space membership
algorithm for the classes Cdk(n). This is the first efficient membership test for this general

1For all n, the classes C1
0(n) and Σ%

1(n) coincide up to the empty word, i.e., C1
0 (n) = {L∩A+

˛̨
L ∈ Σ%

1(n)}.
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case. Our explanation has an exemplary character, since it shows how a suitable character-
ization of a Boolean hierarchy can be turned into an efficient membership test. Our results
in later sections use similar, but more complicated constructions.

We start with the easiest case k = 0 and d = 1, i.e., with the classes C1
0(n). By

Proposition 1.3,

L /∈ C1
0(n) ⇔ L has a 1-alternating ≤0-chain of length n. (2.1)

We argue that for a given L, represented by a finite automaton M , the condition on the
right-hand side can be verified in nondeterministic logarithmic space. So we have to test
whether there exists a chain w0 ≤0 · · · ≤0 wn such that wi ∈ L if and only if i is even. This
is done by the following algorithm.

0 // On input of a deterministic, finite automaton M = (A, Z, δ, z0, F)
the algorithm tests whether L(M) ∈ C1

0(n).
1 let s0 = · · · = sn = z0
2 do
3 nondeterministically choose a ∈ A and j ∈ [0, n]
4 for i = j to n
5 si = δ(si, a) // stands for the imaginary command wi := wia
6 next i
7 until ∀i, [si ∈ F ⇔ i is even]
8 accept

The algorithm guesses the words w0, . . . , wn in parallel. However, instead of construct-
ing these words in the memory, it guesses the words letter by letter and stores only the
states si = δ(z0, wi). More precisely, in each pass of the loop we choose a letter a and a
number j, and we interpret this choice as appending a to the words wj , . . . , wn. Simulta-
neously, we update the states sj, . . . , sn appropriately. By doing so, we guess all possible
chains w0 ≤0 · · · ≤0 wn in such a way that we know the states si = δ(z0, wi). This allows
us to easily verify the right-hand side of (2.1) in line 7. Hence, testing non-membership in
C1

0(n) is in NL. By NL = coNL [Imm88, Sze87], the membership test also belongs to NL.
The algorithm can be modified such that it works for Cd0 (n) where d is arbitrary: For

this we have to make sure that the guessed ≤0-chain is even a ≤d0-chain, i.e., the word
extensions must be such that the lengths of single insertions are divisible by d. This is done
by (i) introducing new variables li that count the current length of wi modulo d and (ii) by
making sure that li = li+1 whenever j ≤ i < n (i.e., letters that appear in both words, wi
and wi+1, must appear at equivalent positions modulo d). So also the membership test for
Cd0 (n) belongs to NL.

Finally, we adapt the algorithm to make it work for Cdk(n) where d and k are arbitrary.
So we have to make sure that the guessed ≤d

0-chain is even a ≤dk-chain. For this, let us
consider an extension u ≤dk w where u,w ∈ A>k. The (k, d)-embedding f that is used in
the definition of u ≤dk w ensures that for all i it holds that in u at position i there are the
same k + 1 letters as in w at position f(i). Therefore, a word extension u ≤d

k w can be
split into a series of elementary extensions of the form u1u2 ≤d0 u1vu2 such that the length
k prefixes of u2 and vu2 are equal. The latter is called the prefix condition. Moreover, we
can always make sure that the positions in u at which the elementary extensions occur form
a strictly increasing sequence. This allows us to guess the words in the ≤d

k-chain letter by
letter. Now the algorithm can test the prefix condition by introducing new variables vi that
contain a guessed preview of the next k letters in wi. Each time a letter is appended to
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wi, (i) we verify that this letter is consistent with the preview vi and (ii) we update vi by
removing the first letter and by appending a new guessed letter. In this way the modified
algorithm carries the length k previews of the wi with it and it makes sure that guessed
letters are consistent with these previews. Moreover, we modify the algorithm such that
whenever j ≤ i < n, then the condition vi = vi+1 is tested. The latter makes sure that
elementary extensions u1u2 ≤d0 u1vu2 satisfy the prefix condition and hence the involved
words are even in ≤dk relation. This modified algorithm shows the following.

Theorem 2.1. {M ∣∣M is a det. finite automaton and L(M) ∈ Cdk(n)} ∈ NL for k ≥ 0,
d ≥ 1.

We now explain why the above idea does not immediately lead to a nondeterministic,
logarithmic-space membership algorithm for the classes Σσ

1 (n), although an alternating
chain characterization for Σσ

1 (n) is known from [GS01a]. Note that the described algorithm
for Cdk(n) stores the following types of variables in logarithmic space.

(1) variables si that contain states of M
(2) variables li that contain numbers from [0, d − 1]
(3) variables vi that contain words of length k

However, the characterization of the classes Σσ
1 (n) [GS01a] is unsuitable for our al-

gorithm: In order to verify the forbidden-chain condition, we have to guess a chain of
so-called structured words and have to make sure that certain parts u in these words are
M -idempotent (i.e., δ(s, u) = δ(s, uu) for all states s). Again we would try to guess the
words letter by letter, but now we have to make sure that (larger) parts u of these words
are M -idempotent. We do not know how to verify the latter condition in logarithmic space.

In a similar way one observes that the known characterization of the classes Στd
1 (n)

[Sel04] cannot be used for the construction of an efficient membership test. So new char-
acterizations of Σσ

1 (n) and Στd
1 (n) are needed in order to obtain efficient membership algo-

rithms.

3. New Characterizations of Boolean-Hierarchy Classes

In this section we develop new alternating-chain characterizations that allow the con-
struction of efficient algorithms deciding membership for the Boolean hierarchies over Σσ

1 ,
Στd

1 , and Σ%
2 for |A| = 2. We begin with the introduction of marked words and related

partial orders which turn out to be crucial for the design of efficient algorithms.

3.1. Marked Words

For a fixed finite alphabet A, let A df=
{

[a, u]
∣∣ a ∈ A, u ∈ A∗ }

be the correspond-
ing marked alphabet. Words over A are called marked words. For w ∈ A∗ with w =
[a1, u1] · · · [am, um] let w df=a1 · · · am ∈ A∗ be the corresponding unmarked word. Sometimes
we use the functional notation fi(w) = a1u

i
1 · · · amuim, i.e., f0(w) = w. Clearly, f0 : A∗ → A∗

is a surjection. For x = x1 · · · xm ∈ A+ and u ∈ A∗ we define [x, u] df=[x1, ε] · · · [xm−1, ε][xm, u].
Next we define a relation on marked words. For w,w′ ∈ A∗ we write w�w′ if and only

if there exist m ≥ 0, marked words xi, zi ∈ A∗, and marked letters bi = [ai, ui] ∈ A where
ui ∈ A+ s.t.

w = x0b1 x1b2 x2 · · · bm xm, and
w′ = x0b1 z1b1 x1b2 z2b2 x2 · · · bm zmbm xm.
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We call bi the context letter of the insertion zibi. We write w�dw′ if w�w′ and
|f0(zibi)| ≡ 0 (mod d) for all i. Note that �1 coincides with � and observe that �d is
a transitive relation.

For a dfa M = (A,Z, δ, s0, F ) and s, t ∈ Z we write s w−→
M

t, if δ(s, w) = t and for all

i, δ(s, a1 · · · ai) = δ(s, a1 · · · aiui). So s w−→
M

t means that the marked word w leads from s

to t in a way such that the labels of w are consistent with loops in M . We say that w is
M -consistent, if for some t ∈ Z, s0

w−→
M

t and denote by BM the set of marked words that

are M -consistent. Every M -consistent word has the following nice property.

Proposition 3.1. For w = [c1, u1] · · · [cm, um] ∈ BM and all j ≥ 0, f0(w) ≡M c1u
j
1 · · · cmujm.

3.2. New Characterization of the Classes Σσ
1 (n) and Στd

1 (n)

We extend the known characterization of the classes Στd
1 (n) [Sel04] and add a charac-

terization in terms of alternating chains on M -consistent marked words. Because we can
also restrict the length of the labels ui, we denote by BcM for any c > 0 the set of marked
words [a0, u0] · · · [an, un] that are M -consistent and satisfy |ui| ≤ c for all i ≤ n.

Theorem 3.2. The following is equivalent for d, n ≥ 1, a dfa M , c = |M ||M |, and L =
L(M)⊆A+.

(1) L ∈ Στd
1 (n)

(2) f−1
0 (L) has no 1-alternating chain of length n in (BM ;�d)

(3) f−1
0 (L) has no 1-alternating chain of length n in (BcM ;�d)

The case d = 1 is an alternative to the known characterization of the classes Σσ
1 (n)

[GS01a].

Theorem 3.3. Let M be a dfa, L = L(M) ⊆ A+ and n ≥ 1. Then L ∈ Σσ
1 (n) if and only

if f−1
0 (L) has no 1-alternating chain of length n in (BM ;�).

We can give an upper bound on d for languages in Στ
1(n).

Theorem 3.4. For every dfa M , c = |M ||M |, and d = c!, L(M) ∈ Στ
1(n) ⇒ L(M) ∈ Στd

1 (n).

3.3. Characterization of the Classes Σ%
2(n) for |A| = 2

We obtain an alternating-chain characterization for the classes of the Boolean hierarchy
over Σ%

2 for the case |A| = 2. This allows us to prove the first decidability result for this
hierarchy. Note that only in case |A| = 2 decidability of BC(Σ%

2) [Str88] and Σ%
3 [GS01b] is

known.
For u ∈ A∗ let α(u) be the set of letters in u. We say that a marked word w =

[c1, u1] · · · [cm, um] satisfies the alphabet condition if for all ui 6= ε it holds that α(ui) = A.

Theorem 3.5. Let A = {a, b}, n ≥ 1 and let L(M) ⊆ A∗ for some dfa M such that
L = L(M) is a star-free language. Then L ∈ Σ%

2(n) if and only if f−1
0 (L) has no 1-

alternating chain (w0, . . . , wn) in (BM ;�) such that all wi satisfy the alphabet condition.
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4. Decidability and Complexity

The alternating-chain characterizations from the last sections can be used for the con-
struction of efficient algorithms for testing the membership in these classes. As corollaries
we obtain new decidability results: the classes Στ

1(n) and Σ%
2(n) for |A| = 2 are decidable.

The characterizations given in Theorems 3.2 and 3.3 allow the construction of nonde-
terministic, logarithmic-space membership tests for Σσ

1 (n) and Στd
1 (n).

Theorem 4.1. For all n ≥ 1, {M ∣∣M is a det. finite automaton and L(M) ∈ Σσ
1 (n)}∈NL.

Theorem 4.2. For all n ≥ 1, {M ∣∣M is a det. finite automaton and L(M)∈Στd
1 (n)}∈NL.

Remark 4.3. Unfortunately, we do not obtain NL-decidability for the classes Στ
1(n). The

reason is that the d in Theorem 3.4 is extremely big, i.e., we only know the upper bound
d ≤ (mm)! where m is the size of the automaton. We leave the question for an improved
bound open. Note that if d can be bounded polynomially in the size of the automaton,
then Στ

1(n) is decidable in NL. Although d is very large, it is still computable from the
automaton M which implies the decidability of all levels Στ

1(n). This settles a question left
open in [Sel04].

Theorem 4.4. For all n ≥ 1, {M ∣∣M is a det. finite automaton and L(M) ∈ Στ
1(n)} is

decidable.

Theorem 4.5. For all n ≥ 1,
{M ∣∣M is a det. finite automaton over the alphabet {a, b} and L(M) ∈ Σ%

2(n)} ∈ NL.

5. Exact Complexity Estimations

With the exception of Στ
1(n), the membership problems of all classes of Boolean hier-

archies considered in this paper are NL-complete. In contrast, the membership problems
of the general classes FOτ and FOτd are PSPACE-complete and hence are strictly more
complex.

Proposition 5.1. Let C be any class of regular quasi-aperiodic languages over A with
|A| ≥ 2 and ∅ ∈ C. Then it is NL-hard to decide whether a given dfa M accepts a language
in C.

Together with the upper bounds established in the previous sections this immediately
implies the following exact complexity estimations.

Theorem 5.2. Let k ≥ 0, n ≥ 1, d ≥ 1 and C is one of the classes Cdk(n), Σσ
1 (n), Στd

1 (n),
or Σ%

2(n) for |A| = 2. Then {M ∣∣M is a det. finite automaton and L(M) ∈ C} is NL-
complete.

We conclude this section with a corollary of the PSPACE-completeness of deciding FOσ

which was established by Stern [Ste85b] and by Cho and Huynh [CH91]. It shows that the
complexity of deciding the classes FOτ and FOτd is strictly higher than the complexity of
deciding the classes mentioned in Theorem 5.2. (Note that NL is closed under logspace
many-one reductions, NL ⊆ DSPACE(log2 n) [Sav70] and DSPACE(log2 n) ( PSPACE
[HS65]. Hence the classes FOτ and FOτd can not be decided in NL.)

Theorem 5.3. The classes FOτ and FOτd are PSPACE-complete.
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6. Conclusions

The results of this paper (as well as several previous facts that appeared in the litera-
ture) show that more and more decidable levels of hierarchies turn out to be decidable in
NL. One is tempted to strengthen the well-known challenging conjecture of decidability of
the dot-depth hierarchy to the conjecture that all levels of reasonable hierarchies of first-
order definable regular languages are decidable in NL. At least, it seems instructive to ask
this question about any level of such a hierarchy known to be decidable.

In this paper we considered the complexity of classes of regular languages only w.r.t.
the representation of regular languages by dfa’s. Similar questions are probably open for
other natural representations of regular languages, like nondeterministic finite automata
and propositions of monadic second order, first order or temporal logics.
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In Preproceedings 5th Conference on Developments in Language Theory, pp. 254–265, 2001.
[GSS07] C. Glaßer, H. Schmitz and V. Selivanov. Efficient algorithms for membership in Boolean hierar-

chies of regular languages. ECCC Report TR07-094, October 2007.
[HS65] J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Transactions of

the American Mathematical Society, 117:285–306, 1965.
[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM J. Computing,

17:935–938, 1988.
[Kna83] R. Knast. A semigroup characterization of dot-depth one languages. RAIRO Inform. Theor.,

17:321–330, 1983.
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Abstract. Modal logics are widely used in computer science. The complexity of modal
satisfiability problems has been investigated since the 1970s, usually proving results on
a case-by-case basis. We prove a very general classification for a wide class of relevant
logics: Many important subclasses of modal logics can be obtained by restricting the
allowed models with first-order Horn formulas. We show that the satisfiability problem
for each of these logics is either NP-complete or PSPACE-hard, and exhibit a simple
classification criterion. Further, we prove matching PSPACE upper bounds for many of
the PSPACE-hard logics.

1. Introduction

Modal logics have proven to be a valuable tool in mathematics and computer science.
The traditional uni-modal logic enriches the propositional language with the operator ♦,
where ♦ϕ is interpreted as ϕ possibly holds. The usual semantics interpret modal formulas
over graphs, where ♦ϕ means “there is a successor world where ϕ is true.” In addition
to their mathematical interest, modal logics are widely used in practical applications: In
artificial intelligence, modal logic is used to model the knowledge and beliefs of an agent,
see e.g. [BZ05]. Modal logics also can be applied in cryptographic and other protocols
[FHJ02, CDF03, HMT88, LR86]. For many specific applications, there exist tailor-made
variants of modal logics [BG04].

Due to the vast number of applications, complexity issues for modal logics are very
relevant, and have been examined since Ladner’s seminal work [Lad77]. Depending on the
application, modal logics with different properties are studied. For example, one might
want the formula ϕ → ♦ϕ to be an axiom—if something is true, then it should be consid-
ered possible. Or ♦♦ϕ → ♦ϕ—if it is possible that ϕ is possible, then ϕ itself should be
possible. Classical results [Sah73] show that there is a close correspondence between modal
logics defined by axioms and logics obtained by restricting the class of considered graphs.
Requiring the axioms mentioned above corresponds to restricting the classes of graphs to
those which are reflexive or transitive, respectively. Determining the complexity of a given
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modal logic, defined either by the class of considered graphs or via a modal axiom system,
has been an active line of research since Ladner’s results. In particular, the complexity
classes NP and PSPACE have been at the center of attention.

Most complexity results have been on a case-by-case basis, proving results for individual
logics both for standard modal logics and variations like temporal or hybrid logics [HM92,
Ngu05, SC85]. Examples of more general results include Halpern and Rêgo’s proof that
logics including the negative introspection axiom, which corresponds to the Euclidean graph
property, have an NP-complete satisfiability problem [HR07]. In [SP06], Schröder and
Pattinson show a way to prove PSPACE upper bounds for modal logics defined by modal
axioms of modal depth 1. In [Lad77], Ladner proved PSPACE-hardness for all logics for
which reflexive and transitive graphs are admissible models. In [Spa93], Hemaspaandra
showed that all normal logics extending S4.3 have an NP-complete satisfiability problem,
and work on the Guarded Fragment has shown that some classes of modal logics can be
seen as a decidable fragment of first-order logic [AvBN98].

While these results give hardness or upper bounds for classes of logics, they do not
provide a full case distinction identifying all “easy” or “hard” cases in the considered class.
We achieve such a result: For a large class of modal logics containing many important
representatives, we identify all cases which have an NP-complete satisfiability problem, and
show that the satisfiability problem for all other non-trivial logics in that class is PSPACE-
hard. Hence these problems avoid the infinitely many complexity classes between NP and
PSPACE, many of which have natural complete problems arising from logical questions. To
our knowledge, such a general result has not been achieved before.

To describe the considered class of modal logics, note that many relevant properties
of modal models can be expressed by first-order formulas: A graph is transitive if its
edge-relation R satisfies the clause ∀xyz (xRy ∧ yRz → xRz) and symmetric if it satis-
fies ∀xy (xRy → yRx). Many other graph properties can be defined using similar formulas,
where the presence of a certain pattern of edges in the graph forces the existence of another.
Analogously to propositional logic, we call conjunctions of such clauses universal Horn for-
mulas. Many relevant logics can be defined in this way: All examples form [Lad77] fall into
this category, as well as logics over Euclidean graphs.

We study the following problem: Given a universal Horn formula ψ̂, what is the com-
plexity of the modal satisfiability problem over the class of graphs defined by ψ̂?

The main results of this paper are the following: First, we identify all cases which give a
satisfiability problem solvable in NP (which then for every nontrivial logic is NP-complete),
and show that all other cases are PSPACE-hard. Second, we prove a generalization of a
“tree-like model property,” and use it to obtain PSPACE upper bounds for a large class of
logics. As a corollary, we prove that Ladner’s classic hardness result is “optimal” in the class
of logics defined by universal Horn formulas. A further corollary is that in the universal
Horn class, all logics whose satisfiability problem is not PSPACE-hard already have the
“polynomial-size model property,” which is only one of several known ways to prove NP
upper bounds for modal logics.

Various work was done on restricting the syntax of the modal formulas by restricting
the propositional operators [BHSS06], the nesting degree and number of variables [Hal95] or
considering modal formulas in Horn form [CL94]. While these results are about restricting
the syntax of the modal formulas, the current work studies different semantics of modal
logics, where the semantics are specified by Horn formulas.
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logic name graph property formula definition
K All graphs K(ϕ̂taut)
T reflexive K(ϕ̂refl)
B symmetric K(ϕ̂symm)
K4 transitive graphs K(ϕ̂trans)
S4 transitive and reflexive K(ϕ̂trans ∧ ϕ̂refl)
S5 equivalence relations K(ϕ̂trans ∧ ϕ̂refl ∧ ϕ̂symm)

Table 1: Common modal logics

In Section 2, we introduce terminology and generalize classic complexity results. Sec-
tion 3 introduces universal Horn formulas and states our main result. In Section 4, we
explain the main ideas of the proof, before we obtain matching PSPACE upper bounds
for many of the involved logics in Section 5, generalizing many previously known results.
Proofs and precise definitions can be found in the full version of the paper.

2. Preliminaries

2.1. Basic Concepts and Notation

Modal logic is an extension of propositional logic. A modal formula is a propositional
formula using variables, the usual logical symbols ∧,∨,¬, and a unary operator ♦. (A dual
operator � is often considered as well, this can be regarded as abbreviation for ¬♦¬.) A
model for a modal formula is a set of connected “worlds” with individual propositional
assignments. To be precise, a frame is a directed graph G = (W,R), where the vertices in
W are called “worlds,” and an edge (u, v) ∈ R is interpreted as v is “considered possible”
from u. A model M = (G,X, π) consists of a frame G = (W,R), a set X of propositional
variables and a function π assigning to each variable x ∈ X a subset of W, the set of worlds
in which x is true. We say the model M is based on the frame (W,R). If F is a class of
frames, then a model is an F-model if it is based on a frame in F . With |M | we denote the
number of worlds in M. For a world w ∈ W, we define when a modal formula φ is satisfied
at w in M (written M,w |= φ). If φ is a variable x, then M,w |= φ if and only if w ∈ π(x).
As usual, M,w |= φ1 ∧ φ2 if and only if M,w |= φ1 and M,w |= φ2, and M,w |= ¬φ iff
M,w 6|= φ. For the modal operator, M,w |= ♦φ if and only if there is a world w′ ∈W such
that (w,w′) ∈ R and M,w′ |= φ.

We describe a way to define classes of frames with propositional formulas. The frame
language is the first-order language containing (in addition to the operators ∧,∨, and ¬) the
binary relation R, which is interpreted as the edge relation in a graph. Semantics are defined
in the obvious way, e.g., a graph satisfies the formula ϕ̂trans := ∀xyz(xRy ∧ yRz → xRz) if
and only if it is transitive. In order to separate modal formulas from first-order formulas,
we use .̂ to denote the latter, e.g., ϕ̂ is a first-order formula, while φ is a modal formula.

A modal logic usually is defined as the set of the formulas provable in it. Since a formula
is satisfiable iff its negation is not provable, we can define a logic by the set of formulas
satisfiable in it. For a first-order formula ψ̂ over the frame language, we define the logic
K(ψ̂) as the logic in which a modal formula φ is satisfiable if and only if there is a model
M and a world w ∈ M such that the frame which M is based on satisfies ψ̂ (we simply
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write M |= ψ̂ for this), and M,w |= φ. Many relevant modal logics can be expressed in
this way: In addition to the formula ϕ̂trans defined above, let ϕ̂refl := ∀w(wRw), and let
ϕ̂symm := ∀xy(xRy → yRx). Finally, let ϕ̂taut be some tautology over the frame language.
Table 1 introduces common modal logics and how they can be expressed in our framework.
For a formula ψ̂ over the frame language, we consider the following problem:

Problem: K(ψ̂)-SAT
Input: A modal formula φ
Question: Is φ satisfiable in a model based on a frame satisfying ψ̂?

As an example, the problem K(ϕ̂trans)-SAT is the problem of deciding if a given modal
formula can be satisfied in a transitive frame, and is the same as the satisfiability problem for
the logic K4. In the problem K(ψ̂)-SAT, the formula ψ̂ is fixed. It is also interesting to study
the uniform version of the problem, where we are given a formula ψ̂ over the frame language
and a modal formula φ, and the goal is to determine whether there exists a model satisfying
both. This problem obviously is PSPACE-hard (this easily follows from Theorem 2.2). In
this paper, we study the complexity behavior of fixed modal logics, and focus on the NP-
PSPACE-gap in complexity. The property of having “small models” is often crucial, as
these often lead to a satisfiability problem in NP. A modal logic KL has the polynomial-size
model property, if there is a polynomial p, such that for every KL-satisfiable formula φ, there
is a KL-model M and a world w ∈ M such that M,w |= φ, and |M | ≤ p(|φ|). Since modal
logic is an extension of propositional logic, the satisfiability problem for every non-trivial
modal logic is NP-hard. Hence, showing that a modal logic has a satisfiability problem in
NP is an optimal complexity bound. The following standard observation is the basis of our
NP containment proofs:

Proposition 2.1. Let ψ̂ be a first-order formula over the frame language, such that K(ψ̂)
has the polynomial-size model property. Then K(ψ̂)-SAT ∈ NP.

2.2. Ladner’s Theorem and Applications

In [Lad77], Ladner proved complexity results for a variety of modal logics. An extension
of a modal logic KL is a modal logic KL′ such that every formula which is valid in KL is also
valid in KL′, or equivalently such that every KL′-satisfiable formula is KL-satisfiable. For
example, every logic that we consider is an extension of K, and S4 is an extension of K4. It
is easy to see that if ψ̂1 and ψ̂2 are formulas over the frame language such that ψ̂1 implies
ψ̂2, then K(ψ̂1) is an extension of K(ψ̂2). Ladner’s main result can be stated as follows.

Theorem 2.2 ([Lad77]). (1) The satisfiability problems for K,K4, and S4 are PSPACE-
complete, and S5-SAT is NP-complete.

(2) If S4 is an extension of KL, and KL extends K, then KL-SAT is PSPACE-hard.

The ideas from Ladner’s proof for Theorem 2.2 can be extended to show similar results.
We define a generalization of transitivity. For a number k, we say that a graph G is k-
transitive if for every pair of vertices u, v in G such that there is a k-step path from u to v
in G, there is an edge (u, v). Note that a graph is transitive if and only if it is 2-transitive.
For a set S ⊆ N, a graph is S-transitive if it is k-transitive for every k ∈ S. A strict
tree is a directed connected graph which has a root w from which all other vertices can
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be reached via a unique path. A reflexive/S-transitive/symmetric tree is the reflexive/S-
transitive/symmetric closure of a strict tree.

Theorem 2.3. Let ψ̂ be a first-order formula over the frame language such that one of the
following cases applies:

• ψ̂ is satisfied in every strict tree,
• ψ̂ is satisfied in every reflexive tree,
• there is a set S ⊆ N such that ψ̂ is satisfied in every S-transitive tree,
• ψ̂ is satisfied in every symmetric tree,
• ψ̂ is satisfied in every tree which is both reflexive and symmetric,
• there is a set S ⊆ N such that ψ̂ is satisfied in every tree which is both reflexive and
S-transitive.

Then K(ψ̂)-SAT is PSPACE-hard and K(ψ̂) does not have the polynomial-size model
property.

This theorem follows with straightforward observations from Ladner’s proof, by apply-
ing the well-known tree-model property for the involved logics, and using similar ideas for
the case of symmetric models. In the next section, we will present the main result of this
paper: In the class of modal logics defined by universal Horn formulas, all non-trivial cases
that are not covered by Theorem 2.3 have an NP-complete satisfiability problem.

3. Universal Horn Formulas and the Main Result

We now consider a syntactically restricted case of universal first-order formulas, namely
Horn formulas. Many well-known modal logics can be expressed in this way. Usually, a
Horn clause is defined as a disjunction of literals of which at most one is positive. If a
positive literal occurs, then the clause x1 ∨ · · · ∨ xn ∨ y can be written as the implication
x1 ∧ · · · ∧ xn → y. Since in the context of the frame language, an atomic proposition is of
the form xRy, the following is the natural version of Horn clauses for our purposes:

Definition 3.1. A universal Horn clause over the basic frame language is a formula of the
form x1

1Rx
1
2 ∧ · · · ∧ xk1Rxk2 → C, where C is of the form xRy or C = false, where all (not

necessarily distinct) variables are implicitly universally quantified.

A universal Horn formula is a conjunction of universal Horn clauses. Due to space
reasons, in this paper we only consider Horn clauses of the first form (known as positive
Horn clauses), our results hold for the second form analogously. With universal Horn
formulas, many of the frame properties usually considered can be expressed, like transitivity,
symmetry, euclidicity, etc. We now state the classification theorem:

Theorem 3.2. Let ψ̂ be a universal Horn formula. Then either ψ̂ satisfies the condition
from Theorem 2.3, (and thus K(ψ̂)-SAT is PSPACE-hard) or K(ψ̂) has the polynomial-size
model property and K(ψ̂)-SAT ∈ NP.

4. A Proof Sketch

We now give an overview of the ideas used to prove our main result. We first show
that universal Horn clauses can be represented as graphs in such a way that the properties
of the involved logics can be characterized with homomorphic images of the defining Horn
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clauses. In Section 4.2, we then demonstrate at an example how NP results can be shown
for universal Horn clauses, before outlining the strategy for the proof of Theorem 3.2.

4.1. Universal Horn clauses and homomorphisms

For a universal Horn clause ϕ̂ = x1
1Rx

1
2 ∧ · · · ∧ xk1Rxk2 → xRy, the prerequisite graph of

ϕ̂, denoted with prereq (ϕ̂), consists of the variables appearing on the left-hand side of the
implication ϕ̂ as vertices, where for variables u, v ∈ {x1

1, . . . , x
k
2

}
, there is an edge (u, v)

if the clause uRy appears on the left-hand side of the formula. The conclusion edge of ϕ̂,
denoted with conc (ϕ̂) , is the edge (x, y). As usual, a homomorphism between graphs is a
function on the vertices preserving the edge relation. The definition of the prerequisite graph
and the conclusion edge of a universal Horn formula establishes a one-to-one correspondence
between universal Horn clauses and their representation as graphs. These definitions allow
us to relate truth of a Horn clause to homomorphic images of the involved graphs. In the
following, prereq (ϕ̂)∪{x, y} is the graph obtained from prereq (ϕ̂) by adding (if not already
present) the vertices x and y, but no additional edges.

Proposition 4.1. Let ϕ̂ be a universal Horn clause with conc (ϕ̂) = (x, y). A graph G
satisfies ϕ̂ if and only if for every homomorphism α : prereq (ϕ̂) ∪ {x, y} → G, there is an
edge (α(x), α(y)) in G.

This observation is central, as it shows that properties of a logic K(ϕ̂) depend on the
types of homomorphic images of prereq (ϕ̂) .

4.2. Example of a Case in NP

w

x1

x2

y1

y2

y3

y4

Figure 1: ϕ̂2→4

We now give an example of the proof of NP membership. Let
ϕ̂k→l be the formula wRx1∧x1Rx2∧ · · · ∧xk−1Rxk ∧wRy1∧ y1Ry2∧
· · · ∧ yl−1Ryl → xkRyl, where all variables are universally quantified
(and in the case that k = 0 or l = 0, we replace x0 or y0 with w). In
Figure 1, we present the graph representation of the formula ϕ̂2→4.
A graph G satisfies ϕ̂k→l if and only if for any nodes w, xk, yl ∈ G, if
there is a k-step path from w to xk and an l-step path from w to yl,
then (xk, yl) is an edge in G. This definition generalizes several well-
known examples: A graph is reflexive if and only if it satisfies ϕ̂0→0,
symmetry is expressed with ϕ̂1→0, and k-transitivity with ϕ̂0→k. A
graph is Euclidean iff it satisfies ϕ̂1→1. Thus, this notation allows us
to capture many interesting graph properties. We give the proof idea
for a relatively easy special case. Generalizations of this idea are the
main ingredients for our polynomial-size model proofs.

Theorem 4.2. Let k ≥ 1, and let ψ̂ be a universal formula over the frame language such that
ψ̂ implies ϕ̂k→k. Then K(ψ̂) has the polynomial-size model property, and K(ψ̂)-SAT ∈ NP.

Proof Sketch. It suffices to prove the polynomial-size model property. We need to show
that every K(ψ̂)-satisfiable formula φ has a “small” model. Let M be a model and w a
world such that M,w |= φ, and M also satisfies the first-order formula ψ̂, in particular it
then satisfies ϕ̂k→k, which means that for t, u, v in M, if there is a k-step path from t to
u and also from t to v, then (u, v) is an edge in M. Note that since ψ̂ is universal, every
restriction of M still satisfies ψ̂. With a standard construction, we can restrict the number
of vertices in M which do not have a k-step predecessor to polynomial size.
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We show that the edge relation restricted to the set C of nodes having k-step prede-
cessors is an equivalence relation, then with a standard argument (similar to the proof for
the logic S5), we can pick one world for every satisfied subformula of φ from polynomially
many “clusters” in C, and obtain a small submodel M ′ of M satisfying M ′, w |= φ.

We first show that every node v in C is reflexive: It has a k-step predecessor t, and
hence by the ϕ̂k→k-property, there is an edge (v, v). We show that C is symmetric: Let
(u, v) be an edge in C. From the above, we know that both of these nodes are reflexive in
C. Hence there is a k-step path from u to both u and v. From the ϕ̂k→k-property, it follows
that (v, u) is an edge. Finally, we prove that C is transitive. Let (t, u) and (u, v) be edges
in C. Since we already showed that C is symmetric, we know that (u, t) is an edge as well.
Since all of the involved nodes are also reflexive, there is a k-step path from u to both t and
v, implying that (t, v) is an edge as well. �

The analog of Theorem 4.2 can be shown to hold for many other cases, for example
showing that all logics of the form K(ϕ̂k→l) for 1 ≤ k, l or k ≥ 2, l = 0 have satisfiability
problems in NP. Note that the case k = 1 of Theorem 4.2 follows from the main result
of [HR07]. Our results and theirs are incomparable: They achieve the NP result for all
modal logics extending what in our notation is K(ϕ̂1→1), where our results only hold for
logics defined by universal formulas. On the other hand, Theorem 3.2 gives NP membership
for a large class of logics which do not follow from their result, namely all logics defined by
universal Horn formulas not satisfied on the various forms of trees mentioned in Theorem 2.3.

Similarly to Proposition 4.1, it can be shown that there is a close relationship between
implications of Horn clauses and homomorphisms between their prerequisite graphs. This
relationship and Theorem 4.2 imply that every universal Horn clause which can be ho-
momorphically mapped into the clause ϕ̂k→k in an appropriate way defines a logic having
the polynomial-size model property and a satisfiability problem in NP. Therefore we can
collect “homomorphism properties” of Horn clauses that guarantee this property of the
corresponding logics (we need to be careful with what a homomorphism exactly is in this
context—we will not go into the technical details here). We can define a class HNP of
graphs, containing among others representations of generalizations of ϕ̂k→l for those k, l
leading to the polynomial-size model property, which has the following properties:

(1) For all universal Horn clauses ϕ̂ which can be homomorphically mapped into an
element of HNP, K(ϕ̂) has the polynomial-size model property, and K(ϕ̂)-SAT ∈ NP.

(2) HNP is large enough to form the basic building blocks of almost all of our NP results.
An example for a graph in HNP is the following: If a clause ϕ̂ with conc (ϕ̂) = (x, y) can

be mapped into a “generalized line” (l0, . . . , ln) with a homomorphism α satisfying α(y) = li
and α(x) = li+k for k ≥ 2, then the NP conditions are met. This is satisfied, for example,
for clauses of the form ϕ̂k→0 for k ≥ 2. While the set HNP contains a large class of graphs,
on its own it is not sufficient to prove all NP results for logics defined by universal Horn
formulas. The main reason is that it does not take into account interference between clauses
in Horn formulas. For example, it is well known that reflexivity, symmetry, and transitivity
alone lead to PSPACE-complete logics. But the combination of these requirements defines
the logic S5, which has a satisfiability problem in NP. Hence, interference between clauses
in a Horn formulas is of crucial importance for the complexity of the defined logic.
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4.3. An Alternative Formulation and Proof Idea of the Main Theorem

We give an idea of the main strategy used to prove the classification Theorem 3.2. For
this, we restate the complexity classification as the algorithm Horn-Classification (see
Figure 3) which, given a universal Horn formula ψ̂ as input, determines the complexity of
K(ψ̂)-SAT. The output of the algorithm and the statement of Theorem 3.2 agree in all cases.
The purpose of the algorithm is not to be implemented, but to serve as a case distinction
used to prove Theorem 3.2, and several later corollaries.

The idea of the algorithm is the following: In types-list, it maintains a list of implications
of the formula ψ̂. For example, Horn-Classification puts refl into types-list if it detects
the formula ψ̂ to require any graph G satisfying it to be “near reflexive” (every vertex
having long enough paths ending in and originating in it must be reflexive). Similarly,
symm ∈ types-list (transk ∈ types-list) means that ψ̂ requires a graph to be “near symmetric”
(“near k-transitive”). The occurring class Htypes-list

NP is a generalization of the set HNP

introduced earlier. Since we are not considering only individual clauses anymore, this
class is not constant, but dynamically grows corresponding to collected implications of the
formula kept in types-list. For example, H{refl}NP contains reflexive closures of elements in
HNP.

If Horn-Classification detects that a clause ϕ̂ can be mapped into an element of
Htypes-list

NP , then the clause ϕ̂, in addition with the requirements kept in types-list, implies the
polynomial-size model property. Another condition leading to NP containment of the logic
is the following: It is well known that the modal logic over the class of frames which are
both transitive and symmetric has a satisfiability problem in NP. Generalizing this, when
Horn-Classification detects that ψ̂ implies “near symmetry” and “near k-transitivity,”
this also leads to NP solvability of the satisfiability problem.

For a set types-list ⊆ {refl, symm, transk | k ∈ N
}
, a graph G satisfies the conditions

of types-list if it has the corresponding properties, i.e., if refl ∈ types-list (symm ∈ types-list,
transk ∈ types-list), then G is required to be reflexive (symmetric, k-transitive). A types-list
tree is obtained from a strict tree by adding exactly those edges required to make it sat-
isfy the conditions of types-list (this is a natural closure operator). For a universal Horn
clause ϕ̂, let types-list-T hom

ϕ̂ denote the pairs (α, T ) such that T is a types-list tree, and
α : prereq (ϕ̂)→ T is a homomorphism. Due to Proposition 4.1, this is the set of types-list
trees about which the clause ϕ̂ “makes a statement,” along with the corresponding homo-
morphisms.

f

s

x

d

a

e

b c

y

t

Figure 2: Example Formula

We now define the properties of Horn clauses
which do not lead to NP containment of the sat-
isfiability problems on their own. Recalling Sec-
tion 2.2, it is natural that clauses which are sat-
isfied in every reflexive, transitive, or symmetric
tree are among these. This is captured by the fol-
lowing definitions: If ϕ̂ is a universal Horn clause

with conc (ϕ̂) = (x, y), we say that (ϕ̂, types-list) satisfies the reflexive case, if for every
(α, T ) ∈ types-list-T hom

ϕ̂ it holds that α(x) = α(y). (ϕ̂, types-list) satisfies the transitive case
for k ∈ N, if for every (α, T ) ∈ types-list-T hom

ϕ̂ there is a path from α(x) to α(y) in T, and
there is some (α, T ) ∈ types-list-T hom

ϕ̂ such that α(y) is exactly k levels below α(x) in T.

Finally, (ϕ̂, types-list) satisfies the symmetric case if for every (α, T ) ∈ types-list-T hom
ϕ̂ , there
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Input: Universal Horn formula ψ̂
types-list := ∅
while not done do

if every clause in ψ̂ is satisfied on every types-list tree then
K(ψ̂)-SAT is PSPACE-hard

end if
Let ϕ̂ be a clause in ψ̂ not satisfied on every types-list tree
if ϕ̂ can homomorphically be mapped into a graph from Htypes-list

NP then
K(ψ̂) has the polynomial-size model property, and K(ψ̂)-SAT ∈ NP.

else
if (ϕ̂, types-list) satisfies the reflexive case then

types-list := types-list ∪ {refl}
else if (ϕ̂, types-list) satisfies the transitive case for k ≥ 2 then

types-list := types-list ∪ {transk}
else if (ϕ̂, types-list) satisfies the symmetric case then

types-list := types-list ∪ {symm}
end if

end if
if for some k,

{
symm, transk

} ⊆ types-list then
K(ψ̂) has the polynomial-size model property, and K(ψ̂)-SAT ∈ NP.

end if
end while

Figure 3: The Algorithm Horn-Classification

is an edge (α(y), α(x)) in T. If one of these cases applies, ϕ̂ is satisfied in every reflexive,
transitive, or symmetric tree, and hence recalling Theorem 2.3, it is not surprising that
these conditions do not lead to NP membership on their own—but in combination with
others, they very well might. In the variable types-list, the algorithm keeps a list of these
conditions encountered.

For the correctness proof, we first need to show that the choices that the algorithm
has to make always can be made: In the relevant situations, at least one of the “reflex-
ive,” “transitive,” or “symmetric” conditions occurs. We also need to prove that it actually
comes to a halt—the main argument is to show that only finitely many transk-conditions
are added to types-list, and no element is added twice. Building on Ladner’s results, proving
correctness of the PSPACE hard cases is trivial. The interesting statement of the classifica-
tion is that all logics not covered by these cases have an NP-complete satisfiability problem,
which is as low a complexity bound as we can hope for. We give an example for a logic
which Horn-Classification determines to have a satisfiability problem in NP.

As an example, let ϕ̂ be the universal Horn clause with prerequisite graph as shown in
Figure 2, with conc (ϕ̂) = (x, y), and let ψ̂ be the Horn formula having ϕ̂ as its only clause.
Horn-Classification starts with types-list = ∅, and in its first iteration checks if ϕ̂ is
satisfied in every strict tree. This is not the case, as Figure 4 shows (here, we simply marked
each node with the names of the vertices which are preimages of the homomorphism): This
is a homomorphic image of prereq (ϕ̂) as a line (in particular a strict tree), in which the
images of x and y are not connected with an edge. Thus ϕ̂ is not satisfied in this strict
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tree. However, if we map prereq (ϕ̂) homomorphically into a strict tree, then the vertices
between s and t must be “pairwise identified” like in Figure 4.

b, fs x, dx, d a, ea, e b, f c, yc, y t

Figure 4: Image as line

Therefore the transitive case is satisfied for
k = 3, and Horn-Classification adds trans3

to types-list. Next it checks if ϕ̂ is satisfied in ev-
ery

{
trans3

}
tree. This is not the case, and the

homomorphic image of prereq (ϕ̂) as a
{
trans3

}
line in Figure 5 (here we only included those edges added by the trans3 closure required for
the homomorphism) shows that ϕ̂ satisfies the homomorphic property in HNP mentioned
at the end of Section 4.2. This also clarifies what a “generalized line” is: At this point, the
variable types-list only contains the condition trans3, and hence a “generalized line” is the
3 transitive closure of a line. Therefore, K(ϕ̂)-SAT ∈ NP.

fs xd ae b cy t

Figure 5: Homomorphic image as
{
trans3

}
-line

This example
demonstrates that
in the run of
the algorithm, a
clause ϕ̂ can meet
different cases de-
pending on the

content of the variable types-list : In the situation that types-list = ∅, the clause ϕ̂ sat-
isfies the transitive case, but when types-list =

{
trans3

}
, this is no longer true.

5. Tree-like Models and PSPACE Upper Bounds

We now prove PSPACE upper bounds for many of our logics. The first step is to prove
a tree-like model property for the PSPACE-hard cases. This generalizes many standard
results, like the fact that K4-satisfiable formulas are always satisfiable on a transitive tree.
For a model M, let edges (M) denote the edges of the frame that M is based on.

Theorem 5.1. Let ψ̂ be a universal Horn formula satisfied on every types-list tree, where
there is no k such that types-list contains both transk and symm. Then every K(ψ̂)-satisfiable
modal formula is satisfiable in a model M such that M satisfies ψ̂ and there is a strict
tree T0 and a types-list tree T1 such that T0, T1, and M have the same set of worlds, and
edges (T0) ⊆ edges (M) ⊆ edges (T1) .

The theorem shows that in a certain way, the “converse” of the prerequisite that ψ̂ is
satisfied in every types-list tree is true as well: Not only is every types-list tree a model
in the logic K(ψ̂), but we can restrict ourselves to models which are “close” to types-list
trees. This is not a real “converse:” For example, if types-list contains only the symmetric
condition, there might be formulas satisfiable in K(ψ̂), but not in a symmetric tree. The
main idea of the proof is to start with a tree model for a satisfiable formula φ, and step by
step add enough edges to the model in a way which again gives a model for φ. Using this
theorem, we can construct a PSPACE decision algorithm for the involved logics similar in
spirit to Ladner’s decision procedure, with the additional difficulty that we need to ensure
that the properties demanded by the first-order formula are also met by the model. This is
a major obstacle: Recalling Proposition 4.1, we need to consider all homomorphisms from
the prerequisite graphs of the clauses in the formula ψ̂ into the (potentially exponential size)
model that we construct, at the same time may only keep a polynomial fragment of the
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model in memory. This can be done since we can restrict ourselves to connected components
of small diameter in a strict tree. The theorem gives a unified proof for showing that the
logics K,T, and B, among others, have satisfiability problems in PSPACE.

Theorem 5.2. Let ψ̂ be a universal Horn formula such that Horn-Classification does
not add any transk to types-list on input ψ̂. Then K(ψ̂)-SAT ∈ PSPACE.

There are some interesting applications of our results: Ladner proved that all normal
modal logics KL such that S4 is an extension of KL have a PSPACE-hard satisfiability
problem. Using Theorems 3.2 and 5.1, we show that his result is optimal in the sense that
every universal Horn logic which is a “proper extension” of S4 already has an NP-solvable
satisfiability problem.

Theorem 5.3. Let ψ̂ be a universal Horn formula such that ψ̂ implies ϕ̂refl ∧ ϕ̂trans. Then
either K(ψ̂) = S4, or K(ψ̂) has the polynomial-size model property and K(ψ̂)-SAT ∈ NP.

We further can show a PSPACE upper bound for all universal Horn logics which are
extensions of the logic T, and hence, from Theorem 3.2, conclude that these are all either
solvable in NP (and thus NP-complete if they are consistent), or PSPACE-complete.

Theorem 5.4. Let ψ̂ be a universal Horn formula such that ψ̂ implies ϕ̂refl. Then K(ψ̂)-
SAT ∈ PSPACE.

In a similar way, we can prove that all universal Horn logics which imply a variant of
symmetry give rise to a satisfiability problem in PSPACE. A noteworthy difference in the
prerequisites of Theorem 5.4 and Corollary 5.5 is that the former requires the reflexivity
condition to be implied by the formula ψ̂, while the latter only needs a “near symmetry”-
condition as detected by Horn-Classification.

Corollary 5.5. Let ψ̂ be a universal Horn formula such that Horn-Classification adds
symm to types-list on input ψ̂. Then K(ψ̂)-SAT ∈ PSPACE. In particular, any universal
Horn logic which is an extension of B has a satisfiability problem solvable in PSPACE.

6. Conclusion and Future Research

We analyzed the complexity of modal logics defined by universal Horn formulas, covering
many well-known logics. We showed that the non-trivial satisfiability problems for these
logics are either NP-complete or PSPACE-hard, and gave an easy criterion to recognize
these cases. Our results directly imply that (unless NP = PSPACE) such a logic has a
satisfiability problem in NP if and only if it has the polynomial-size model property. We
also demonstrated that a wide class of the considered logics has a satisfiability problem
solvable in PSPACE.

Open questions include determining complexity upper bounds for the satisfiability prob-
lems for all modal logics defined by universal Horn formulas. We strongly conjecture
that all of these are decidable, and consider it possible that all of these problems are in
PSPACE. A successful way to establish upper complexity bounds is the guarded frag-
ment [AvBN98, Grä99]. This does not seem to be applicable to our logics, since it cannot
be used for transitive logics, and we obtain PSPACE-upper bounds for all of our logics
except those involving a variant of transitivity.

The next major open challenges are generalizing our results to formulas not in the Horn
class, and allowing arbitrary quantification. Initial results show that even when considering
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only universal formulas over the frame language, undecidable logics appear. An interesting
enrichment of Horn clauses is to allow the equality relation. Preliminary results indicate
that Theorem 3.2 holds for this more general case as well.

Acknowledgments: The second author thanks Thomas Schneider for helpful hints. We
also thank the anonymous referees for many helpful suggestions.
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[HR07] J. Halpern and L. Rêgo. Characterizing the NP-PSPACE gap in the satisfiability problem for
modal logic. In International Joint Conferences on Artificial Intelligence, pages 2306–2311, 2007.

[Lad77] R. Ladner. The computational complexity of provability in systems of modal propositional logic.
SIAM Journal on Computing, 6(3):467–480, 1977.

[LR86] R. Ladner and J. Reif. The logic of distributed protocols: Preliminary report. In Proceedings of
the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pages 207–222, San
Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

[Ngu05] L. Nguyen. On the complexity of fragments of modal logics. In Advances in Modal Logic - Volume
5, pages 249–268. King’s College Publications, 2005.

[Sah73] H. Sahlqvist. Completeness and correspondence in the first and second order semantics for modal
logic. In Proceedings of the Third Scandinavian Logic Symposium, 1973.

[SC85] A. Sistla and E. Clarke. The complexity of propositional linear temporal logics. Journal of the
ACM, 32(3):733–749, 1985.
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Abstract. Consider a set of labels L and a set of trees T = {T (1), T (2), . . . , T (k)} where

each tree T (i) is distinctly leaf-labeled by some subset of L. One fundamental problem
is to find the biggest tree (denoted as supertree) to represent T which minimizes the
disagreements with the trees in T under certain criteria. This problem finds applications
in phylogenetics, database, and data mining. In this paper, we focus on two particular
supertree problems, namely, the maximum agreement supertree problem (MASP) and the
maximum compatible supertree problem (MCSP). These two problems are known to be
NP-hard for k ≥ 3. This paper gives the first polynomial time algorithms for both MASP
and MCSP when both k and the maximum degree D of the trees are constant.

1. Introduction

Given a set of labels L and a set of unordered trees T = {T (1), . . . , T (k)} where each
tree T (i) is distinctly leaf-labeled by some subset of L. The supertree method tries to find
a tree to represent all trees in T which minimizes the possible conflicts in the input trees.
The supertree method finds applications in phylogenetics, database, and data mining. For
instance, in the Tree of Life project [10], the supertree method is the basic tool to infer the
phylogenetic tree of all species.

Many supertree methods have been proposed in the literature [2, 5, 6, 8]. This paper
focuses on two particular supertree methods, namely the Maximum Agreement Supertree
(MASP) [8] and the Maximum Compatible Supertree (MCSP) [2]. Both methods try to
find a consensus tree with the largest number of leaves which can represent all the trees in
T under certain criteria. (Please read Section 2 for the formal definition.)

MASP and MCSP are known to be NP-hard as they are the generalization of the
Maximum Agreement Subtree problem (MAST) [1, 3, 9] and the Maximum Compatible
Subtree problem (MCT) [7, 4] respectively. Jansson et al. [8] proved that MASP remains
NP-hard even if every tree is a rooted triplet, i.e., a binary tree of 3 leaves. For k = 2,
Jansson et al. [8] and Berry and Nicolas [2] proposed a linear time algorithm to transform
MASP and MCSP for 2 input trees to MAST and MCT respectively. For k ≥ 3, positive

1998 ACM Subject Classification: Algorithms, Biological computing.
Key words and phrases: maximum agreement supertree, maximum compatible supertree.
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Rooted Unrooted
MASP for k trees of max degree D O((kD)kD+3(2n)k) † O((kD)kD+3(4n)k) †
MCSP for k trees of max degree D O(22kDnk) † O(22kDnk) †

MASP/MCSP for k binary trees
O

(
k(2n2)3k2)

[8]
O(8knk) [6]
O(6knk) †

Table 1: Summary of previous and new results († stands for new result).

results for computing MASP/MCSP are reported only for rooted binary trees. Jansson et
al. [8] gave an O

(
k(2n)3k2)

time solution to this problem. Recently, Guillemot and Berry
[6] further improve the running time to O(8knk).

In general, the trees in T may not be binary nor rooted. Hence, Jansson et al. [8]
posted an open problem and asked if MASP can be solved in polynomial time when k and
the maximum degree of the trees in T are constant. This paper gives an affirmative answer
to this question. We show that both MASP and MCSP can be solved in polynomial time
when T contains constant number of bounded degree trees. For the special case where the
trees in T are rooted binary trees, we show that both MASP and MCSP can be solved in
O(6knk) time, which improves the previous best result. Table 1 summarizes the previous
and new results.

The rest of the paper is organized as follows. Section 2 gives the formal definition of the
problems. Then, Sections 3 and 4 describe the algorithms for solving MCSP for both rooted
and unrooted cases. Finally, Sections 5 and 6 detail the algorithms for solving MASP for
both rooted and unrooted cases. Proofs omitted due to space limitation will appear in the
full version of this paper.

2. Preliminary

A phylogenetic tree is defined as an unordered and distinctly leaf-labeled tree. Given a
phylogenetic tree T , the notation L(T ) denotes the leaf set of T , and the size of T refers to
|L(T )|. For any label set S, the restriction of T to S, denoted T |S, is a phylogenetic tree
obtained from T by removing all leaves in L(T )−S and then suppressing all internal nodes
of degree two. (See Figure 1 for an example of restriction.) For two phylogenetic trees T
and T ′, we say that T refines T ′, denoted T DT ′, if T ′ can be obtained by contracting some
edges of T . (See Figure 1 for an example of refinement.)

Maximum Compatible Supertree Problem: Consider a set of k phylogenetic trees
T = {T (1), . . . , T (k)}. A compatible supertree of T is a tree Y such that Y |L(T (i)) D
T (i)|L(Y ) for all i ≤ k. The Maximum Compatible Supertree Problem (MCSP) is to find
a compatible supertree with as many leaves as possible. Figure 2 shows an example of a
compatible supertree Y of two rooted phylogenetic trees T (1) and T (2). If all input trees have
the same leaf sets, MCSP is referred as Maximum Compatible Subtree Problem (MCT).

Maximum Agreement Supertree Problem: Consider a set of k phylogenetic trees
T = {T (1), . . . , T (k)}. An agreement supertree of T is a tree X such that X|L(T (i)) =
T (i)|L(X) for all i ≤ k. The Maximum Agreement Supertree Problem (MASP) is to find
an agreement supertree with as many leaves as possible. Figure 2 shows an example of an
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a

a

b

c d

c

d

T T’ T’’

b

c

d

a

Figure 1: Three rooted trees. A tree T , a tree T ′ such that T ′ = T | {a, c, d}, and a tree T ′′
such that T ′′ D T .

agreement supertree X of two rooted phylogenetic trees T (1) and T (2). If all input trees have
the same leaf sets, MASP is referred as Maximum Agreement Subtree Problem (MAST).

b

c

ab

c

d

T 
(1)

T 
(2)

X

a e
a bd

e

a d b

e

c

Y

Figure 2: An agreement supertree X and a compatible supertree Y of 2 rooted phylogenetic
trees T (1) and T (2).

In the following discussion, for the set of phylogenetic trees T = {T (1), . . . , T (k)}, we
denote n = |⋃i=1..k L(T (i))|, and D stands for the maximum degree of the trees in T . We
assume that none of the trees in T has an internal node of degree two, so that each tree
contains at most n− 1 internal nodes. (If a tree T (i) has some internal nodes of degree two,
we can replace it by T (i) | L(T (i)) in linear time.)

3. Algorithm for MCSP of rooted trees

Let T be a set of k rooted phylogenetic trees. This section presents a dynamic program-
ming algorithm to compute the size of a maximum compatible supertree of T in O

(
22kDnk

)
time. The maximum compatible supertree can be obtained in the same asymptotic time
bound by backtracking.
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For every compatible supertree Y of T , there exists a binary tree that refines Y . This
binary tree is also a compatible supertree of T , and is of the same size as Y . Hence in this
section, every compatible supertree is implicitly assumed to be binary.

Definition 3.1 (Cut-subtree). A cut-subtree of a tree T is either an empty tree or a tree
obtained by first selecting some subtrees attached to the same internal node in T and then
connecting those subtrees by a common root.

Definition 3.2 (Cut-subforest). Given a set of k rooted (or unrooted) trees T , a cut-
subforest of T is a set A = {A(1), . . . ,A(k)}, where A(i) is a cut-subtree of T (i) and at least
one element of A is not an empty tree.

T 
(1)

b

c

a

c

b a b

c

A
(1)T 

(2)

de f b

A 
(2)

e d f

Figure 3: A cut-subforest A of T .

For example, in Figure 3, {A(1),A(2)} is a cut-subforest of {T (1), T (2)}. Let O denote
the set of all possible cut-subforests of T .

Lemma 3.3. There are O
(
2kDnk

)
different cut-subforests of T .

Proof. We claim that each tree T (i) contributes 2Dn or fewer cut-subtrees; therefore there
are O

(
2kDnk

)
cut-subforests of T . At each internal node v of T (i), since the degree of v

does not exceed D, we have at most 2D ways of selecting the subtrees attached to v to
form a cut-subtree. Including the empty tree, the number of cut-subtrees in T (i) cannot go
beyond (n− 1)2D + 1 < 2Dn.

Figure 4 demonstrates that a compatible supertree of some cut-subforest A of T may
not be a compatible supertree of T . To circumvent this irregularity, we define embedded
supertree as follows.

Definition 3.4 (Embedded supertree). For any cut-subforest A of T , a tree Y is called an
embedded supertree of A if Y is a compatible supertree of A, and L(Y )∩L(T (i)) ⊆ L(A(i))
for all i ≤ k.

Note that a compatible supertree of T is also an embedded supertree of T . For each
cut-subforest A of T , let mcsp(A) denote the maximum size of embedded supertrees of A.
Our aim is to compute mcsp(T ). Below, we first define the recursive equation for comput-
ing mcsp(A) for all cut-subforests A ∈ O. Then, we describe our dynamic programming
algorithm.

We partition the cut-subforests in O into two classes. A cut-subforest A of T is terminal
if each element A(i) is either an empty tree or a leaf of T (i); it is called non-terminal,
otherwise.
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T 
(1)

a b

c

a c

b

a b a b

c

c a b

c

A
(1)

Y

ZT 
(2)

A
(2)

Figure 4: Consider T = {T (1), T (2)} and its cut-subforest A = {A(1),A(2)}. Although Z is
a compatible supertree of A, it is not a compatible supertree of T . The maximum
compatible supertree of T is Y that contains only 2 leaves.

For each terminal cut-subforest A, let

Λ(A) =
{
l ∈

⋃
j=1..k

L(A(j)) | l 6∈ L(T (i))− L(A(i)) for i = 1, 2, . . . , k
}

. (3.1)

For example, with T in Figure 2, if A(1) and A(2) are leaves labeled by a and d respectively
then Λ(A) = {d}. In Lemma 3.5, we show that mcsp(A) = |Λ(A)|.
Lemma 3.5. If A is a terminal cut-subforest then mcsp(A) = |Λ(A)|.
Proof. Consider any embedded supertree Y of A. By Definition 3.4, every leaf of Y belongs
to Λ(A). Hence the value mcsp(A) does not exceed |Λ(A)|.

It remains to give an example of some embedded supertree of A whose leaf set is Λ(A).
Let C be a rooted caterpillar 1 whose leaf set is Λ(A). The definition of Λ(A) implies that
L(C) ∩ L(T (i)) ⊆ L

(A(i)
)

for every i ≤ k. Since each A(i) has at most one leaf, it is
straightforward that C is a compatible supertree of A. Hence C is the desired example.

Definition 3.6 (Bipartite). Let A be a cut-subforest of T . We say that the cut-subforests
AL and AR bipartition A if for every i ≤ k, the trees A(i)

L and A(i)
R can be obtained by (1)

partitioning the subtrees attached to the root of A(i) into two sets S
(i)
L and S

(i)
R ; and (2)

connecting the subtrees in S
(i)
L (resp. S

(i)
R ) by a common root to form A(i)

L (resp. A(i)
R ).

Figure 5 shows an example of the preceding definition. For each non-terminal cut-
subforest A, we compute mcsp(A) based on the mcsp values of AL and AR for each bipartite
(AL,AR) of A. More precisely, we prove that

mcsp(A) = max{mcsp(AL) + mcsp(AR) | AL and AR bipartition A} . (3.2)

The identity (3.2) is then established by Lemmas 3.8 and 3.10.

Lemma 3.7. Consider a bipartite (AL,AR) of some cut-subforest A of T . If YL and YR

are embedded supertrees of AL and AR respectively then Y is an embedded supertree of A,
where Y is formed by connecting YL and YR to a common root.

1A rooted caterpillar is a rooted, unordered, and distinctly leaf-labeled binary tree where every internal
node has at least one child that is a leaf.
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c

A 
(2)
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A L
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A R
(1)

A R
(2)

c
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c

A 
(1)

e
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Figure 5: A bipartite (AL,AR) of a cut-subforest A. The empty tree is represented by a
white circle.

Lemma 3.8. Let A be a cut-subforest of T . If (AL,AR) is a bipartite of A then mcsp(A) ≥
mcsp(AL) + mcsp(AR).

Proof. Consider an embedded supertree YL of AL such that |L(YL)| = mcsp(AL). Define
YR for AR similarly. Let Y be a tree formed by connecting YL and YR with a common root.
Note that Y is of size mcsp(AL) + mcsp(AR). By Lemma 3.7, Y is an embedded supertree
of A and hence the lemma follows.

Lemma 3.9. Given a cut-subforest A of T , let Y be a binary embedded supertree of A with
left subtree YL and right subtree YR. There exists a bipartite (AL,AR) of A such that either
(i) Y is an embedded supertree of AL; or (ii) YL and YR are embedded supertrees of AL and
AR respectively.

Lemma 3.10. For each non-terminal cut-subforest A of T , there exists a bipartite (AL,AR)
of A such that mcsp(A) ≤ mcsp(AL) + mcsp(AR).

Proof. Let Y be a binary embedded supertree of A such that |L(Y )| = mcsp(A). By
Lemma 3.9, there exists a bipartite (AL,AR) of A such that either (1) Y is an embedded
supertree of AL; or (2) YL and YR are embedded supertrees of AL and AR respectively,
where YL is the left subtree and YR is the right subtree of Y . In both cases, |L(Y )| ≤
mcsp(AL) + mcsp(AR). Then the lemma follows.

The above discussion then leads to Theorem 3.11.

Theorem 3.11. For every cut-subforest A of T , the value mcsp(A) equals to{ |Λ(A)| , if A is terminal,
max{mcsp(AL) + mcsp(AR) | AL and AR bipartition A}, otherwise .

We define an ordering of the cut-subforests in O as follows. For any cut-subforests
A1,A2 in O, we say that A1 is smaller than A2 if A(i)

1 is a cut-subtree of A(i)
2 for i =

1, 2, . . . , k. Our algorithm enumerates A ∈ O in topologically increasing order and computes
mcsp(A) based on Theorem 3.11. Theorem 3.12 states the complexity of our algorithm.

Theorem 3.12. A maximum compatible supertree of k rooted phylogenetic trees can be
obtained in O

(
22kDnk

)
time .
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Proof. Testing if a cut-subforest is terminal takes O(k) times, and each terminal cut-
subforest A then requires O(k2) time for the computation of Λ(A). In view of Lemma 3.3, it
suffices to show that each non-terminal cut-subforest A has O(2kD) bipartites. This result
follows from the fact that for each i ≤ k, there are at most 2D ways to partition the set of
the subtrees attached to the root of A(i).

In the special case where every tree T (i) is binary, Theorem 3.13 shows that our algo-
rithm actually has a better time complexity. Note that the concepts of agreement supertree
and compatible supertree will coincide for binary trees. Hence, our algorithm improves the
O

(
8knk

)
-time algorithm in [6] for computing maximum agreement supertree of k rooted

binary trees.

Theorem 3.13. If every tree in T is binary, a maximum compatible supertree (or a maxi-
mum agreement supertree) can be computed in O

(
6knk

)
time.

Proof. We claim that the processing of non-terminal cut-subforests of T requires O
(
6knk

)
time. The argument in the proof of Theorem 3.12 tells that the remaining computation
runs within the same asymptotic time bound. Consider an integer r ∈ {0, 1, . . . , k}. We
shall be dealing with a cut-subforest A such that there are exactly r cut-subtrees A(i) whose
roots are internal nodes of T (i). The key of this proof is to show that the number of those

cut-subforests does not exceed
(

k
r

)
(n−1)r(n+1)k−r, and the running time for each cut-

subforest is O
(
4r2k−r

)
. Hence, the total running time for all non-terminal cut-subforests

is
k∑

r=0

(
k
r

)
(n− 1)r(n + 1)k−rO

(
4r2k−r

)
= O

(
6knk

)
.

We can count the number of the specified cut-subforests A as follows. First there are(
k
r

)
options for r indices i such that the roots of cut-subtrees A(i) are internal nodes of

T (i). For those cut-subtrees, we then appoint one of the (n− 1) or fewer internal nodes of
T (i) to be the root node of A(i). Every other cut-subtree of A is a leaf or the empty tree,
and then can be determined from at most n+1 alternatives. Multiplying those possibilities
gives us the bound stipulated in the preceding paragraph.

It remains to estimate the running time for each specified cut-subforest A. This task
requires us to bound the number of bipartites of each cut-subforest. If the root v of A(i) is
an internal node of T (i) then A(i) contributes 4 or fewer ways of partitioning the set of the
subtrees attached to v. Otherwise, we have at most 2 ways of partitioning this set. Hence
A owns at most 4r2k−r bipartites, and this completes the proof.

4. Algorithm for MCSP of unrooted trees

Let T be a set of k unrooted phylogenetic trees. This section extends the algorithm
in Section 3 to find the size of a maximum compatible supertree of T . The maximum
compatible supertree can be obtained by backtracking. Surprisingly, the extended algorithm
for unrooted trees runs within the same asymptotic time bound as the original algorithm
for rooted trees.
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We will follow the same approach as Section 3, i.e., for each cut-subforest A of T , we
find an embedded supertree of A of maximum size. Definitions 3.1, 3.2, and 3.4 for cut-
subforest and embedded supertree in the previous section are still valid for unrooted trees.
Notice that although T is the set of unrooted trees, each cut-subforest A of T consists of
rooted trees. (See Figure 6 for an example of cut-subforest for unrooted trees.) Hence we
can use the algorithm in Section 3 to find the maximum embedded supertree of A. We then
select the biggest tree T among those maximum embedded supertrees for all cut-subforests
of T , and unroot T to obtain the maximum compatible supertree of T .

a b

c

de

f

a b

c

e

d

f ea d

A 
(1)

d

b

a

A 
(2)

T 
(1)

T 
(2)

Figure 6: The set of rooted trees A = {A(1),A(2)} is a cut-subforest of T = {T (1), T (2)}.
Theorem 4.1 shows that the extended algorithm has the same asymptotic time bound

as the algorithm in Section 3.

Theorem 4.1. We can find a maximum compatible supertree of k unrooted phylogenetic
trees in O

(
22kDnk

)
time.

Proof. Using a similar proof as Lemma 3.3, we can prove that there are O
(
2kDnk

)
cut-

subforests of T . As given in the proof of Theorem 3.12, finding the maximum embedded
supertrees of each cut-subforest takes O(2kD) time. Hence the extended algorithm runs
within the specified time bound.

5. Algorithm for MASP of rooted trees

Let T be a set of k rooted phylogenetic trees. This section presents a dynamic pro-
gramming algorithm to compute the size of a maximum agreement supertree of T in
O

(
(kD)kD+3(2n)k

)
time. The maximum agreement supertree can be obtained in the same

asymptotic time bound by backtracking.
The idea here is similar to that of Section 3. However, while we can assume that

compatible supertrees are binary, the maximum degree of agreement supertrees can grow
up to kD. It is the reason why we have the factor O((kD)kD+3) in the complexity.

Definition 5.1 (Sub-forest). Given a set of k rooted trees T , a sub-forest of T is a set
A = {A(1), . . . ,A(k)}, where each A(i) is either an empty tree or a complete subtree rooted
at some node of T (i), and at least one element of A is not an empty tree.

Notice that the definition of sub-forest does not coincide with the concept of cut-
subforest in Definition 3.2 of Section 3. For example, the cut-subforest A in Figure 3
is not a sub-forest of T , because A(2) is not a complete subtree rooted at some node of T (2).
Let O denote the set of all possible sub-forests of T . Then |O| = O

(
(2n)k

)
.
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Definition 5.2 (Enclosed supertree). For any sub-forest A of T , a tree X is called an
enclosed supertree of A if X is an agreement supertree of A, and L(X)∩L(T (i)) ⊆ L(A(i))
for all i ≤ k.

For each sub-forest A of T , let masp(A) denote the maximum size of enclosed supertrees
of A. We use a similar approach as Section 3, i.e., we compute masp(A) for all A ∈ O, and
masp(T ) is the size of a maximum agreement supertree of T . We partition the sub-forests
in O to two classes. A sub-forest A is terminal if each A(i) is either an empty tree or a leaf.
Otherwise, A is called non-terminal.

Notice that for terminal sub-forest, the definition of enclosed supertree coincides with
the concept of embedded supertree in Definition 3.4 of Section 3. Then by Lemma 3.5,
we have masp(A) = |Λ(A)|. (Please refer to the formula (3.1) in the paragraph preceding
Lemma 3.5 for the definition of function Λ.)

Definition 5.3 (Decomposition). Let A be a sub-forest of T . We say that sub-forests
B1, . . . ,Bd (with d ≥ 2) decompose A if for all i ≤ k, either (i) Exactly one of B(i)

1 , . . . ,B(i)
d

is isomorphic to A(i) while the others are empty trees; or (ii) There are at least 2 nonempty
trees in B(i)

1 , . . . ,B(i)
d , and all those nonempty trees are isomorphic to pairwise distinct

subtrees attached to the root of A(i).

�2�1 �3 �4 �1 �2 �4

A
(1)

B1
(1)

B2
(1)

B3
(1)

A
(2)

B1
(2)

B2
(2)

B3
(2)

Figure 7: A decomposition (B1,B2,B3) of a sub-forest A. The empty trees are represented
by white circles.

Figure 7 illustrates the concept of decomposition. For each sub-forest A of T , we will
prove that

masp(A) = max{masp(B1) + . . . + masp(Bd) | B1, . . . ,Bd decompose A} . (5.1)

The identity (5.1) is then established by Lemmas 5.5 and 5.7.

Lemma 5.4. Suppose (B1, . . . ,Bd) is a decomposition of some sub-forest A of T . Let
τ1, . . . , τd be some enclosed supertrees of B1, . . . ,Bd respectively, and let X be the tree ob-
tained by connecting τ1, . . . , τd to a common root. Then, X is an enclosed supertree of A.

Lemma 5.5. If (B1, . . . ,Bd) is a decomposition of a sub-forest A of T then masp(A) ≥
masp(B1) + . . . + masp(Bd).

Proof. For each Bj, let τj be an enclosed supertree of Bj such that |L(τj)| = masp(Bj). Let
X be the tree obtained by connecting τ1, . . . , τd to a common root. By Lemma 5.4, X is an
enclosed supertree of A. Hence |L(τ1)|+ . . . + |L(τd)| = |L(X)| ≤ masp(A).
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Lemma 5.6. Let X be an enclosed supertree of some sub-forest A of T , and let τ1, . . . , τd be
all subtrees attached to the root of X. Then either (i) There is a decomposition (B1,B2) of
A such that X is an enclosed supertree of B1; or (ii) There is a decomposition (B1, . . . ,Bd)
of A such that each τj is an enclosed supertree of Bj.

Lemma 5.7. For each non-terminal sub-forest A of T , there is a decomposition (B1, . . . ,Bd)
of A such that masp(A) ≤ masp(B1) + . . . + masp(Bd)

Proof. Let X be an enclosed supertree of A such that |L(X)| = masp(A) and let τ1, . . . , τd be
all subtrees attached to the root of X. By Lemma 5.6, either (i) There exists a decomposition
(B1,B2) of A such that X is an enclosed supertree of B1; or (ii) There is a decomposition
(B1, . . . ,Bd) of A such that each τj is an enclosed supertree of Bj. In case (i), we have
|L(X)| ≤ masp(B1) ≤ masp(B1) + masp(B2). On the other hand, in case (ii), we have
|L(X)| = |L(τ1)|+ . . . + |L(τd)| ≤ masp(B1) + . . . + masp(Bd).

The above discussion then leads to Theorem 5.8.

Theorem 5.8. For every sub-forest A of T , the value masp(A) equals to{ |Λ(A)| , if A is terminal,
max{masp(B1) + . . . + masp(Bd) | B1, . . . ,Bd decompose A}, otherwise .

We define an ordering of the sub-forests in O as follows. For any sub-forests A1,A2

in O, we say A1 is smaller than A2 if A(i)
1 is either an empty tree or a subtree of A(i)

2
for i = 1, 2, . . . , k. Our algorithm enumerates A ∈ O in topologically increasing order and
computes masp(A) based on Theorem 5.8.

In Lemma 5.9, we bound the number of decompositions of each sub-forest of T . Theo-
rem 5.10 states the complexity of the algorithm.

Lemma 5.9. Each sub-forest of T has O
(
(kD)kD+1

)
decompositions, and generating those

decompositions takes O
(
k2D2

)
time per decomposition.

Proof. Let A be a sub-forest of T . Since the maximum degree of any agreement supertree of
A is bounded by kD, we consider only decompositions that consist of at most kD elements.
We claim that for each d ∈ {2, . . . , kD}, the sub-forestA owns O

(
(d + 2)kD

)
decompositions

(B1, . . . ,Bd). Summing up those asymptotic terms gives us the specified bound.
The key of this proof is to prove that for each s ∈ {1, . . . , k}, the tree A(s) contributes

at most (d + 1)D + d < (d + 2)D sequences B(s)
1 , . . . ,B(s)

d , and generating those sequences
requires O(d) time per sequence. We have two cases, each corresponds to a type of the
above sequence.

Case 1: One term in the sequence is A(s); therefore the other terms are empty trees.
Then, we can generate this sequence by assigning A(s) to exactly one term and setting the
rest to be empty trees. This case provides exactly d sequences and enumerates them in
O(d) time per sequence.

Case 2: No term in the above sequence is A(s). Consider an integer r ∈ {0, 1, . . . , d}
and assume that the sequence consists of exactly r terms that are nonempty nodes. Then
those r nonempty trees are isomorphic to pairwise distinct subtrees attached to the root of
A(s). Let δ be the degree of the root of A(s). We generate the sequence as follows. First
we draw r pairwise distinct subtrees attached to the root of A(s). Next, we select r terms
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in the sequence and distribute the above subtrees to them. Finally we set the remaining
terms to be empty trees. Hence this case gives at most∑

r≤min{δ,d}

(
δ
r

)
d!

(d− r)!
<

D∑
r=0

(
D
r

)
dr = (d + 1)D

sequences, and generates them in O(d) time per sequence.

Theorem 5.10. A maximum agreement supertree of k rooted phylogenetic trees can be
obtained in O

(
(kD)kD+3(2n)k

)
time.

Proof. Testing if a sub-forest is terminal takes O(k) times, and each terminal sub-forest A
then requires O(k2) time for computing Λ(A). By Lemma 5.9, each non-terminal sub-forest
requires O

(
(kD)kD+3

)
running time. Summing up those asymptotic terms for O

(
(2n)k

)
sub-forests of T gives us the specified time bound.

6. Algorithm for MASP of unrooted trees

Let T be a set of k unrooted phylogenetic trees. This section extends the algorithm in
Section 5 to find the size of a maximum agreement supertree of T in O

(
(kD)kD+3(4n)k

)
time. The maximum agreement supertree can be obtained by backtracking.

We say that a set of k rooted trees F = {F (1), . . . ,F (k)} is a rooted variant of T if we
can obtain each F (i) by rooting T (i) at some internal node. One naive approach is to use
the algorithm in the previous section to solve MASP for each rooted variant of T . Each
rooted variant then gives us a solution, and the maximum of those solutions is the size of
a maximum agreement supertree of T . Because there are O

(
nk

)
rooted variants of T , this

approach adds an O
(
nk

)
factor to the complexity of the algorithm for rooted trees.

We now show how to improve the above naive algorithm. As mentioned in the previous
section, the computation of each rooted variant of T consists of O

(
(2n)k

)
sub-problems

which correspond to its sub-forests. (Please refer to Definition 5.1 for the concept of sub-
forest.) Since different rooted variants may have some common sub-forests, the total number
of sub-problems we have to run is much smaller than O(2kn2k). More precisely, we will show
that the total number of sub-problems is only O

(
(4n)k

)
.

A (rooted or unrooted) tree is trivial if it is a leaf or an empty tree. A maximal subtree
of an unrooted tree T is a rooted tree obtained by first rooting T at some internal node v
and then removing at most one nontrivial subtree attached to v. Let O denote the set of
sub-forests of all rooted variants of T .

Lemma 6.1. Let A = {A(1), . . . ,A(k)} be a set of rooted trees. Then A ∈ O if and only if
each A(i) is either a trivial subtree or a maximal subtree of T (i).

Proof. Let F be a rooted variant of T such that A is a sub-forest of F . Fix an index
s ∈ {1, . . . , k} and let v be the root node of A(s). Our claim is straightforward if either A(s)

is trivial or v is the root node of F (s). Otherwise, let u be the parent of v in F (s). Hence
A(s) is the maximal subtree of T (s) obtained by first rooting T (s) at v and then removing
the complete subtree rooted at u.

Conversely, we construct a rooted variant F of T such that A is a sub-forest of F as
follows. For each i ≤ k, if A(i) is trivial or A(i) is a tree obtained by rooting T (i) at some
internal node then constructing F (i) is straightforward. Otherwise A(i) is a maximal subtree
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of T (i) obtained by first rooting T (i) at some internal node v and then removing exactly
one nontrivial subtree τ attached to v. Hence F (i) is the tree obtained by rooting T (i) at
u, where u is the root of τ .

Theorem 6.2. We can find a maximum agreement supertree of k unrooted phylogenetic
trees in O

(
(kD)kD+3(4n)k

)
time.

Proof. The key of this proof is to show that each tree T (i) contributes at most (3n − 1)
maximal subtrees. It follows that |O| ≤ (4n)k. The specified running time of our algorithm
is then straightforward because each subproblem requires O

(
(kD)kD+3

)
time as given in

the proof of Theorem 5.10. Assume that the tree T (i) has exactly L leaves, with L ≤ n.
We now count the number of maximal subtrees T of T (i) in two cases.

Case 1: T is obtained by rooting T (i) at some internal node. Hence this case provides
at most L− 1 < n maximal subtrees.

Case 2: T is obtained by first rooting T (i) at some internal node v and then removing a
nontrivial subtree τ attached to v. Notice that there is a one-to-one correspondence between
the tree T and the directed edge (v, u) of T (i), where u is the root node of τ . There are
2L − 2 or fewer undirected edges in T (i) but exactly L of them are adjacent to the leaves.
Hence this case gives us at most 2(2L− 2− L) < 2n− 1 maximal subtrees.
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Abstract. Systems of equations over sets of natural numbers (or, equivalently, language
equations over a one-letter alphabet) of the form Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n) are
considered. Expressions ϕi may contain the operations of union, intersection and pairwise
sum A+B = {x+y | x ∈ A, y ∈ B}. A system with an EXPTIME-complete least solution is
constructed, and it is established that least solutions of all such systems are in EXPTIME.
The general membership problem for these equations is proved to be EXPTIME-complete.

1. Introduction

The study of expressions over sets of numbers and of the computational complexity of
their properties began in the paper by Stockmeyer and Meyer [17], who considered subsets of
N0 = {0, 1, 2, . . .} as formal languages over a one-letter alphabet. In this case, concatenation
of languages turns into a pairwise addition of elements of sets: X+Y = {x+y|x ∈ X, y ∈ Y }.
Stockmeyer and Meyer established that the membership problem for expressions with union,
intersection and addition is NP-complete.

Some extensions of this result were obtained by Yang [18], who considered integer cir-
cuits (that is, expressions in which subexpressions may be shared) with one more operation
of pairwise multiplication, and established similar complexity results. A systematic study
of complexity of expressions and circuits with different sets of operations was carried out
by McKenzie and Wagner [9, 10].

In this paper we consider equations over sets of natural numbers, which are a more
general device than expressions and circuits, and study the computational complexity of
their least solutions, as well as of their membership problem. These equations naturally
correspond to language equations over a one-letter alphabet. Language equations have
recently become an active area of research, see a recent survey by Kunc [8]. In particular,
unexpected hardness results on language equations have been obtained by Kunc [7] and by
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Okhotin [15, 16], and this connection gives another motivation for our study. Recent results
by Jeż [5] on the expressive power of conjunctive grammars provide a technical foundation
for our results.

We consider equations in the resolved form
X1 = ϕ1(X1, . . . , Xn)

...
Xn = ϕn(X1, . . . , Xn)

(*)

in which every variable Xi assumes value of a set of nonnegative integers. The right-hand
side ϕi of each equation may contain the operations of union, intersection and +, as well as
singleton constants. Every such system has a least solution with respect to componentwise
inclusion, which can be obtained by fixpoint iteration. Our result, established in Section 3,
is a construction of a system (*), such that testing the membership of numbers in its least
solution is an EXPTIME-hard problem (with the numbers given in binary notation). The
result is obtained by a new kind of arithmetization of an alternating linear-space Turing
machine. It is also shown that for every system (*) the membership of numbers in its least
solution can be tested in exponential time, which makes the constructed set the hardest.

Let us compare our result to the existing results on expressions and circuits on sets of
numbers. Previous research was concerned with the complexity of the general membership
problem, where it was sufficient to encode an instance of some hard problem for numbers
in an expression or a circuit. In our case, the task is to construct a system that represents
a class of problems, while instances of that problem are to be encoded as numbers.

As compared to the research on language equations, our present approach studies a
similar problem of constructing a representation of a hard set (cf. Kunc [7], Okhotin [15, 14],
Jeż [5]). However, while encoding a computation of a Turing machine as a string over {a, b}
is an ordinary task, in our case we have to encode similar objects as numbers, that is, as
strings over a one-letter alphabet. These strings have no apparent structure, and hence the
proposed arithmetization is quite unobvious.

This result allows us to establish the complexity of the general membership problem for
equations with {∪,∩,+}, which is stated as follows: “Given a system and a number n > 0
in binary notation, determine whether n is in the first component of the least solution of
the system”. For integer expressions and integer circuits with the operations {∪,∩,+}, it
is known from Stockmeyer and Meyer [17] and from McKenzie and Wagner [9, 10] that a
similar problem is PSPACE-complete. Another weaker model are equations with {∪,+},
that is, without intersection, for which the corresponding problem is NP-complete due to
the result of Huynh [4] on the commutative case of the context-free grammars. In our case
of equations with {∪,∩,+}, the general membership problem is EXPTIME-complete, which
is established in Section 4. An exponential algorithm for solving this problem is given by a
parsing algorithm on conjunctive grammars [13].

2. Language equations and conjunctive grammars

While our results are on the complexity of equations in sets of numbers, our methods
are derived from the domain of formal language theory, in particular, from some recent
results on language equations.

In language equations, the unknowns are formal languages over an alphabet Σ. If
|Σ| = 1, they coincide with equations over sets of numbers, while for larger alphabets
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they constitute a more general notion. The main object of this study are equations of the
resolved form (*), in which variables assume values of sets of non-negative integers, and
the right-hand sides may contain the operations of union, intersection and addition of sets.
These equations obviously correspond to language equations over a one-letter alphabet with
the operations of union, intersection and concatenation, and the recent results on language
equations of this kind provide a theoretical foundation, as well as a second motivation, for
the present research.

The first type of language equations to be studied were equations of the same form (*)
containing union and concatenation, but no intersection: Ginsburg and Rice [3] established
that these equations provide a natural semantics for the context-free grammars. Equations
with added intersection therefore constitute a generalization of the context-free grammars.

Definition 2.1 (Okhotin [12]). A conjunctive grammar is a quadruple G = (Σ, N, P, S),
in which Σ and N are disjoint finite non-empty sets of terminal and nonterminal symbols
respectively; P is a finite set of grammar rules, each of the form

A → α1& . . . &αn (where A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪N)∗)

while S ∈ N is a nonterminal designated as the start symbol.
The semantics of conjunctive grammars is defined by the least solution of the following

system of language equations:

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi (for all A ∈ N) (2.1)

The component corresponding to each A ∈ N is then denoted by LG(A), and L(G) is
defined as LG(S).

The operations used in the right-hand sides of systems (2.1) are union, intersection and
concatenation. Since they are monotone and continuous, a least solution always exists and
can be obtained by fixpoint iteration as⊔

i>0

ϕi(∅, . . . , ∅), (2.2)

where ϕ is the right-hand side of (2.1) as a vector operator on |N |-tuples of languages, while
t denotes pairwise union of vectors of sets.

An equivalent definition of conjunctive grammars can be given using term rewriting
[12], which generalizes Chomsky’s word rewriting. The importance of these grammars lies
with the fact that their expressive power is substantially greater than that of the context-
free grammars, while the generated languages can still be parsed in time O(n3), and the
practical context-free parsing algorithms, such as recursive descent and generalized LR,
admit generalization to conjunctive grammars without an increase in their complexity.

The question of whether conjunctive grammars can generate any non-regular unary
language has been an open problem for some years, until recently solved by Jeż [5], who
constructed a grammar for the language {a4n | n > 0}. Let us reformulate this grammar as
the following resolved system of four equations over sets of numbers:
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Example 2.2 (Jeż [5]). The system
X1 =

(
(X2 + X2) ∩ (X1 + X3)

) ∪ {1}
X2 =

(
(X12 + X2) ∩ (X1 + X1)

) ∪ {2}
X3 =

(
(X12 + X12) ∩ (X1 + X2)

) ∪ {3}
X12 =

(
(X3 + X3) ∩ (X1 + X2)

)
has least solution Xi = {` | base-4 notation of ` is i0 . . . 0}, for i = 1, 2, 3, 12.

Sets of this kind can be conveniently specified by regular expressions for the corre-
sponding sets of base-k notations of numbers, which in this case are 10∗, 20∗, 30∗ and
120∗, respectively. In the following we shall omit some parentheses in the right-hand sides
of equations, and assume the following default precedence of operations: addition has the
highest precedence, followed by intersection, and then by union with the least precedence.

Using the same technique in a more elaborate construction, a general theorem on the
expressive power of unary conjunctive grammars was established. It can be reformulated
for equations over sets of numbers as follows:

Theorem 2.3 (Jeż [5]). For every k > 2 and for every finite automaton M over the alphabet
{0, . . . , k − 1} there exists a system of resolved language equations over N0 using ∪,∩,+,
such that its least solution is

(S1, S2, . . . , Sn),
where Si ⊆ N0 and S1 = {` | k-ary notation of ` is in L(M)}.

Let us note in passing a recent paper by Jeż and Okhotin [6] establishing a generalization
of this result to a larger family of automata recognizing positional notations.

Though representing sets of numbers with a regular positional notation using this type
of formal grammars was an unexpected and strong result in terms of language theory, it
has no implications on computational complexity, as all these sets are computationally easy.
More general representation theorem of Jeż and Okhotin [6] also does not imply any better
complexity results than P-completeness, which, as the present paper shows, is much below
the actual complexity of these equations.

Therefore, a new method of constructing such equations is needed to understand their
complexity. This step is made in the next section, which introduces an arithmetization
technique based upon addition of sets of numbers.

3. Representing an EXPTIME-complete language

In this section it will be shown that languages defined by least solutions of resolved
language equations using +, ∪ and ∩ can be EXPTIME-complete, and this is the hardest
language in this family. Denote this family by EQ(∪,∩,+).

Theorem 3.1. The family EQ(∪,∩,+) is contained in EXPTIME and contains an
EXPTIME-complete language.

The proof is by constructing such a system of equations. The given system encodes a
computation of a linear-bounded alternating Turing machine (ATM) It is known that such
machines can recognize some EXPTIME-complete languages [2].

In our case we shall consider ATMs operating on a circular tape and moving to the
right at every step. Its tape originally contains the input word, and the squares containing
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it constitute all space available to the machine. Obviously, such machines are as powerful
as linear-bounded ATMs of the general form.

Formally, such a machine is defined as M = (Ω,Γ, QE , QA, δ, q0, qfin), where Ω is the
input alphabet, Γ = {a0, a1, . . . , amax} ⊃ Ω is the tape alphabet, QE and QA are disjoint
sets of existential and universal states, respectively, Q = QE∪QA and q0, qfin ∈ Q. Given an
input w ∈ Ω+, M starts in state q0 with the head over the first symbol of w. The transition
function is δ : Q×Γ → 2Q×Γ, and the head is moved one symbol to the right at every step.
Once the head moves beyond the right-most symbol, it is moved back over the first symbol
of w, maintaining its current state; this implements a circular tape. For technical reasons,
assume that (q, a′) /∈ δ(q, a) for all q ∈ Q and a, a′ ∈ Σ, (that is, the machine never stays in
the same state), and that δ(q, a) 6= ∅ for all q ∈ QA and a ∈ Σ.

Our construction of a system of equations over sets of numbers simulating a computation
is based upon representing instantaneous descriptions of the ATM as numbers. We shall
think of these numbers as written in base-(8+|Q|+max(|Q|+7, |Γ|)) positional notation, and
the entire argument is based upon mapping the symbols used by the machine to digits, and
then using addition to manipulate individual digits in the positional notation of numbers.
It must be noted that this positional notation is only a tool for our understanding of the
constructions, while the actual equations deals with numbers as they are.

Let Σ = {0, 1, . . . , 7 + |Q|+ max(|Q|+ 7, |Γ|)} be the alphabet of digits, and define the
mapping of symbols to digits, 〈·〉 : Q ∪ Γ → Σ, as follows:

〈qi〉 = 7 + i (for qi ∈ Q)

〈ai〉 = 7 + |Q|+ i (for ai ∈ Γ)

Furthermore, let 〈Q〉 = {〈q〉 | q ∈ Q} and 〈Γ〉 = {〈a〉 | a ∈ Γ}. Now the tape of the ATM
containing symbols ai1 . . . ain , with the head over the j-th symbol and the machine in state
q, is represented as the following string of digits:

0〈ai1〉 . . . 0〈aij−1〉〈q〉〈aij 〉0〈aij+1〉 . . . 0〈ain〉0 ∈ Σ∗

For technical reasons, configurations in which the head has just moved over the last symbol
but has not yet jumped to the first position are considered separately, and will be represented
as strings of the form

0〈ai1〉 . . . 0〈ain〉〈q〉,
where q is the current state. Note that digits denoting letters are written only in even
positions, while odd positions are reserved for the states of the Turing machine. The set of
all strings of digits representing valid encodings of tapes is specified by the following regular
expression over Σ:

Tape = (0〈Γ〉)∗〈Q〉(〈Γ〉0)∗ \ 〈Q〉
The set Tape should be a considered as a formal language over Σ, which will be used later
as a part of representations of some sets of numbers. Subsets of this set representing tapes
with different states will be denoted as follows:

Tapeu = {w | w ∈ Tape, u is a substring of w}
Tape`

u = {w | w ∈ Tape, u is a prefix of w}
Besides the contents of the tape, the encoding for Turing machine configurations uses

a counter of rotations of the circular tape. This counter specifies the number of passes
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through the tape the machine is still allowed to make before it must halt. It is represented
in binary notation using digits {0, 1}, and the set of valid counter representations is

Counter = 1{0, 1}∗
Normally the counter uses only digits {0, 1}, but in order to implement the incrementation
of the counter we shall use strings with one digit 2 representing zero with carry. The set of
valid representations of counters with a carry is

Counter′ = 1{0, 1}∗2{0, 1}∗ ∪ 2{0, 1}∗
For every string ck−1 . . . c0 ∈ Counter∪Counter′, define its value as

Value(ck−1 . . . c0) =
k−1∑
j=0

cj · 2j .

Now define the mapping from configurations of the Turing machine to numbers. A
configuration with the tape contents, head position and current state given by a string of
digits w ∈ Tape, and with the counter value given by x ∈ Counter is represented by a string
of digits

x55w,

where two marker digits 55 separate the values. This string of digits in base-|Σ| positional
notation specifies a certain number, which accordingly represents the configuration.

The key property of this encoding is that every transition of the ATM reduces the
numerical value of its configuration. Indeed, if the head is moved to the right, then a digit
〈q〉 is replaced with 0 and all other modifications are done on less signigicant digits. If the
head jumps from the end to the beginning, then the counter is decremented, and since the
counter occupies more significant positions in the number than the tape, this transition
decreases the value of the configuration as well. This monotonicity allows us to encode
dependence of configurations on each other by using addition of nonnegative numbers only.

The construction of equations representing the computation of the ATM begins with
some expressions that will be used in the right-hand sides of equations. These expressions
contain some constant sets of numbers given as regular languages over the alphabet Σ.
Every such language represents the set of all numbers with |Σ|-ary notation of the given
form. According to Theorem 2.3, every such set can be represented by a separate system of
equations using only singleton constants. All these subsystems are assumed to be included
in the constructed system, and each of the regular expressions in the system can be formally
regarded as a reference to one of the auxiliary variables.

Definitions of a few of these regular languages incorporate positional notations of num-
bers obtained by subtracting one number from another. For convenience, these values are
given in the form u � v, with u, v ∈ Σ∗ being positional notations of two numbers (the
former shall be greater or equal to the latter). One can write, e.g., (u � v)0∗ for the set of
all numbers with their |Σ|-ary notation beginning with fixed digits determined by the given
difference, followed with any number of zeroes.
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Step(X) =
( ⋃

q∈QE
a∈Γ

⋃
(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X)
)
∪

( ⋃
q∈QA
a∈Γ

⋂
(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X)
)

Moveq,a,q′,a′(X) =
(
X ∩ Counter 55Tape〈a〉〈q〉

)
+

(〈q′〉〈a′〉0 � 〈a〉〈q〉)(00)∗
∩Counter 55Tape〈q′〉〈a′〉

Jump(X) =
⋃
q

[(
X ∩ Counter 55Tape`

〈q〉
)

+ (1000 � 〈q〉)(00)+ + 〈q〉
]

∩ (Counter∪Counter′)55Tape〈q〉

Carry(Y ) =
[((

Y ∩ {0, 1}∗2{0, 1}∗ 55Tape
)

+ 10∗ ∩ {0, 1}∗3{0, 1}∗ 55Tape
)

+
(
10 � 3

)
0∗

]
∩ ({0, 1}+ ∪ {0, 1}∗2{0, 1}∗) 55Tape

In addition, define the set of final configurations of the machine:

Final = Counter 55Tape〈qfin〉
The construction uses two variables, X and Y . Either variable represents the set of

proper configurations of the machine, starting from which the machine accepts. The vari-
able X represents configurations belonging to the set Counter 55Tape, while Y represents
configurations from (Counter∪Counter′)55Tape, in which the counter may contain one
carry digit 2 that needs to be propagated to higher positions. The equations, using the
above auxiliary functions, are as follows:

X = Final∪Step(X) ∪ (
Y ∩ Counter 55Tape

)
(3.1)

Y = Jump(X) ∪ Carry(Y ) (3.2)

In order to determine the least solution of this system, let us first establish some prop-
erties of the auxiliary functions.

The first quite elementary property is their distributivity over infinite union, which
allows us to study these operations as operations on individual numbers, and then infer
their action on sets of numbers.

Lemma 1 (Distributivity). Each function f ∈ {Moveq,a,q′,a′ , Jump,Carry} is distributive
over infinite union, in the sense that f(S) =

⋃
n∈S f({n}) for every S ⊆ N0.

This follows from the fact that each of these expressions consists of intersections with
constant sets, sums with constant sets and unions. On the other hand, note that if an
expression contains intersections or sums of multiple expressions involving X, then it is not
necessarily distributive over infinite union; in particular, Step need not be distributive.

One of the main technical devices used in these functions is addition of a constant set
of numbers with |Σ|-ary notation u0∗ (that is, a set

{
m · |Σ|i ∣∣ i > 0

}
) with one, two or

three non-zero digits in u. The following lemma establishes that this addition can never
rewrite the double markers 55, that is, every sum in which these markers are altered does
not represent a valid tape contents. This means that every such addition manipulates the
counter and the tape separately, and the changes do not mix.

Lemma 2 (Marker preservation). For every x, x′ ∈ {0, 1, 2, 3}∗ \ 0Σ∗ and w,w′ ∈ Tape, if
x′55w′ ∈ x55w + (Σ3 ∪ Σ2 ∪ Σ)0∗, then |w| = |w′|.
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The next statement describes the operation of Carry: applied to a configuration with
the counter having a single carry digit 2, Carry changes this digit to 0 and increments the
next digit, making it 1 or 2. Note that all operations are in |Σ|-ary notation. The tape
contents is not altered.

Lemma 3 (Carry propagation). For every x ∈ Counter′ and for every w ∈ Tape,
Carry

({x55w}) = {x′55w}, where x′ ∈ Counter∪Counter′ and Value(x′) = Value(x).
If x′ ∈ Counter′, then the position of 2 in x′ is greater than the position of 2 in x.

According to Lemma 3, Carry moves the carry by one position higher. The next lemma
shows that sufficiently many iterations of Carry always eliminate the carry digit: given a
counter with the notation x = x̃01k−12, Carryk transforms it to x = x̃10k−10.

Lemma 4 (Termination of carry propagation). For every x ∈ Counter∪Counter ′ and
w ∈ Tape there exists x′ ∈ Counter and k > 0, such that Carryk(x55w) = x′55w and
Value(x) = Value(x′).

The next lemma states the functionality of Jump, which can be described as follows. If
Jump is applied to a configuration in which the head scans over the first symbol, then the
result of the operation is the previous configuration, in which the head is at the right-most
position beyond the end of the string, while the value of the counter x is greater by 1.

Lemma 5. Let x = x̃c ∈ Counter with c ∈ {0, 1} and w = 〈q〉w̃0 ∈ Tape with q ∈ Q, that
is, w encodes a configuration with the head over the first symbol. Then Jump(x55w) =
{x̃(c + 1)550w̃〈q〉}.

For any string α ∈ Σ∗ of a different form, Jump(α) = ∅.

It follows from Lemma 5 that Jump is a reversible function, that is, the previous
configuration given by Jump(x55w) corresponds to x55w only. This is stated as follows:

Lemma 6. Let x′55w′ ∈ Jump(x55w). Then w′ = 0w̃〈q〉 and w = 〈q〉w̃0 for some state q,
and Value(x′) = Value(x) + 1.

Let us now proceed with specifying the action of Move, which represents symbol manip-
ulation, head movement and state change of a Turing machine according to the membership
of states and symbols specified in δ. Generally, when Moveq,a,q′,a′ is applied to a valid con-
figuration, it computes the preceding configuration of the machine. This configuration is
unique because of the restriction built in Moveq,a,q′,a′ in its subscripts. The symbols and
states used as the subscript restrict its applicability to the following case: in the current
configuration the machine is in state q and the symbol to the left rewritten at the previous
step is a, while in the previous configuration the machine was in state q ′ and scanned the
symbol a′. For all other configurations and in all other cases, the function produces the
empty set.

Lemma 7. Let q, q′ ∈ Q and a, a′ ∈ Γ. Let x ∈ Counter and w = ŵ0〈a〉〈q〉w̃ ∈ Tape for
some ŵ ∈ (0〈Γ〉)∗ and w̃ ∈ (〈Γ〉0)∗. Then Moveq,a,q′,a′(x55w) = x55ŵ〈q′〉〈a′〉0w̃.

For every string α ∈ Σ∗ of a different form, Moveq,a,q′,a′(α) = ∅.

Similarly to Lemma 6, reversibility of Moveq,a,q′,a′ directly follows from Lemma 7.

Lemma 8. Let x55w ∈ Moveq′,a′,q,a(x′55w′). Then w = ŵ〈q〉〈a〉0w̃ and w′ = ŵ0〈a′〉〈q′〉w̃
for some ŵ ∈ (0〈Γ〉)∗ and w̃ ∈ (〈Γ〉0)∗, and x = x′.
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The flow control of the alternating Turing machine includes existential and universal
nondeterminism in the corresponding states, and a single step is in fact a disjunction or
conjunction of several transitions as specified in Move. This logic is transcribed in the
expression Step(X), which computes the set of all previous configurations, from which ma-
chines in a universal state make all their transitions to configurations in X and machines in
an existential state make at least one of their transitions to some configuration in X. This
implements one step of the computation of the machine, backwards.

Lemma 9. Let x ∈ Counter and w ∈ Tape, let q ∈ Q be the state encoded in w. Then
x55w ∈ Step(X) if and only if

• the configuration w has the head not in the position beyond the right-most symbol,
that is, w = ŵ〈q〉w̃0 for some ŵ, w̃ ∈ Σ∗.

• if q ∈ QE, then for some string w′ encoding next configuration of the ATM there
holds x55w′ ∈ X.

• if q ∈ QA, then for every string w′ encoding next configuration of the ATM there
holds x55w′ ∈ X.

Having established the formal meaning of the auxiliary operations, let us return to
the equations. The equation for X states that a configuration leads to acceptance if and
only if it is accepting itself (Final), or one can directly proceed from it to a configuration
leading to acceptance (Step(X)), or that it is a configuration obtained in Y . The equation
for Y specifies circular rotation of the tape by Jump(X) and implements iterated carry
propagation as in Lemma 4 by a self-reference Carry(Y ). Altogether, the least solution of
these equations corresponds to the computation of the machine as follows:

Lemma 10. Let (LX , LY ) be the least solution of the equations (3.1)–(3.2).
⇒© Let x ∈ Counter, w ∈ Tape and x55w ∈ LX . Then M accepts starting from the

configuration represented by w.
⇐© Conversely, if M accepts starting from the configuration represented by w ∈ Tape,

and the longest path in the tree of the accepting computation has length `, then for
each x ∈ Counter with Value(x) > `, there holds x55w ∈ LX .

It remains to observe that the number of steps of the machine is exponentially bounded,
hence the acceptance of a word by the machine is represented by the following number in
the least solution of the constructed system:

Main Lemma. ATM M accepts a string a1 . . . an ∈ Ω+ if and only if

12+log n+log(|Γ|)n+log(|Q|)55〈q0〉〈a1〉0〈a1〉0 . . . 〈an〉0 ∈ LX .

Proof of Theorem 3.1. The system of equations constructed above has an EXPTIME-
complete least solution.

To see that the least solution of every system is in EXPTIME, it is sufficient to represent
it as a conjunctive grammar over a unary alphabet. Then, given a number n, its membership
in the least solution can be tested by supplying the string an to a known cubic-time parsing
algorithm for conjunctive grammars [12]. Its time is cubic in n, hence exponential in the
length of the binary notation of n.
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Having established a solution complexity theorem for equations over sets of numbers,
let us discuss its implications on conjunctive grammars over a one-letter alphabet.

Every conjunctive language is in P [12], and some conjunctive languages over a multiple-
letter alphabet are known to be P-complete [14]. The case of a unary alphabet is special, as it
is known that no sparse language, in particular no unary language, can be P-complete unless
DLOGSPACE = P [11, 1], that is, unless the notion of P-completeness is trivial. However,
from Theorem 3.1 one can infer the following result slightly weaker than P-completeness:

Corollary 3.2. There exists a EXPTIME-complete set of numbers S ⊆ N, such that the
language L = {an|n ∈ S} of unary notations of numbers from S is generated by a conjunctive
grammar.

Note that for every unary language generated by a conjunctive grammar, the corre-
sponding set of numbers is in EXPTIME. The set constructed in Corollary 3.2 can thus be
regarded as the computationally hardest among unary conjunctive languages.

A simple consequence of Corollary 3.2 refers to the complexity of parsing for conjunctive
grammars.

Corollary 3.3. Unless PSPACE = EXPTIME, there is no logarithmic-space parsing algo-
rithm for conjunctive languages over a unary alphabet.

4. The membership problem

Consider the general membership problem for our equations, stated as follows: “Given
a system Xi = ϕi(X1, . . . , Xm) and a number n in binary notation, determine whether n
is in the first component of the least solution of the given system”. Its complexity is now
easy to establish.

Theorem 4.1. The membership problem for resolved systems of equations over sets of
numbers with operations {∪,∩,+} is EXPTIME-complete.

Proof. Membership in EXPTIME. The algorithm begins with representing the given system
as a conjunctive grammar over a unary alphabet, with a linearly bounded blow-up. The
given number n is represented as a string an with an exponential blow-up. Then it is suf-
ficient to apply the known polynomial-time algorithm for solving the membership problem
for conjunctive grammars [13].

The EXPTIME-hardness of the general membership problem immediately follows from
Theorem 3.1 by fixing the system of equations.

Let us conclude by comparing the complexity of the membership problem for expres-
sions, circuits and equations, as well as the families of sets representable by their solutions.
All known results are given in Table 1.

The new complexity results for the equations over sets of numbers naturally fit into the
framework of the existing research. On the other hand, the new results on the expressive
power of equations come in a sharp contrast with the previous work: these equations can
represent non-trivial sets of numbers, which are computationally as hard as the general
membership problem for this class.

It remains an open question, what is the exact family of sets of natural numbers defined
by these equations. For instance, is it possible to represent the set of all primes?
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Representable sets Membership problem
expressions with {∪,+} Finite NP-complete [17]
circuits with {∪,+} Finite NP-complete [4, 9, 10]
equations with {∪,+} Ultimately periodic NP-complete [4]
expressions with {∪,∩,+} Finite PSPACE-complete [17]
circuits with {∪,∩,+} Finite PSPACE-complete [9, 10]

equations with {∪,∩,+} ( EXPTIME, contains
EXPTIME-complete set EXPTIME-complete

Table 1: Comparison of formalisms over sets of integers.

References

[1] J.-Y. Cai, D. Sivakumar, “Sparse hard sets for P: resolution of a conjecture of Hartmanis”. Journal of
Computer and System Sciences, 58:2 (1999), 280–296.

[2] A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, “Alternation”, Journal of the ACM, 28:1 (1982) 114–133.
[3] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal of the ACM, 9 (1962),

350–371.
[4] D. T. Huynh, “Commutative grammars: the complexity of uniform word problems”, Information and

Control, 57:1 (1983), 21–39.
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[6] A. Jeż, A. Okhotin, “Conjunctive grammars over a unary alphabet: undecidability and unbounded

growth”, Computer Science in Russia (CSR 2007, Ekaterinburg, Russia, September 3–7, 2007), LNCS
4649, 168–181.

[7] M. Kunc, “The power of commuting with finite sets of words”, Theory of Computing Systems, 40:4
(2007), 521–551.

[8] M. Kunc, “What do we know about language equations?”, Developments in Language Theory (DLT
2007, Turku, Finland, July 3–6, 2007), LNCS 4588, 23–27.

[9] P. McKenzie, K. Wagner, “The complexity of membership problems for circuits over sets of natural
numbers”, 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2003, Berlin,
Germany, February 27–March 1, 2003), LNCS 2607, 571–582.

[10] P. McKenzie, K. Wagner, “The complexity of membership problems for circuits over sets of natural
numbers”, Computational Complexity, 16 (2007), to appear.

[11] M. Ogihara, “Sparse hard sets for P yield space-efficient algorithms”, Chicago J. Theor. Comput. Sci.,
1996.

[12] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Combinatorics, 6:4 (2001),
519–535.

[13] A. Okhotin, “A recognition and parsing algorithm for arbitrary conjunctive grammars”, Theoretical
Computer Science, 302 (2003), 365–399.

[14] A. Okhotin, “The hardest linear conjunctive language”, Information Processing Letters, 86:5 (2003),
247–253.

[15] A. Okhotin, “Decision problems for language equations with Boolean operations”, Automata, Languages
and Programming (ICALP 2003, Eindhoven, The Netherlands, June 30–July 4, 2003), LNCS 2719, 239–
251.

[16] A. Okhotin, “Unresolved systems of language equations: expressive power and decision problems”,
Theoretical Computer Science, 349:3 (2005), 283–308.

[17] L. J. Stockmeyer, A. R. Meyer, “Word problems requiring exponential time”, STOC 1973, 1–9.
[18] K. Yang, “Integer circuit evaluation is PSPACE-complete”, Computational Complexity 2000, 204–211.
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Abstract. We investigate structures that can be represented by omega-automata, so
called omega-automatic structures, and prove that relations defined over such structures
in first-order logic expanded by the first-order quantifiers ‘there exist at most ℵ0 many’,
’there exist finitely many’ and ’there exist k modulo m many’ are omega-regular. The
proof identifies certain algebraic properties of omega-semigroups.

As a consequence an omega-regular equivalence relation of countable index has an
omega-regular set of representatives. This implies Blumensath’s conjecture that a count-
able structure with an ω-automatic presentation can be represented using automata on
finite words. This also complements a very recent result of Hjörth, Khoussainov, Montal-
ban and Nies showing that there is an omega-automatic structure which has no injective
presentation.

1. Introduction

Automatic structures were introduced in [5] and later again in [6, 2] along the lines of
the Büchi-Rabin equivalence of automata and monadic second-order logic. The idea is to
encode elements of a structure A via words or labelled trees (the codes need not be unique)
and to represent the relations of A via synchronised automata. This way we reduce the
first-order theory of A to the monadic second-order theory of one or two successors. In
particular, the encoding of relations defined in A by first order formulas are also regular,
and automata for them can be computed from the original automata. Thus we have the
fundamental fact that the first-order theory of an automatic structure is decidable.

Depending on the type of elements encoding the structure, the following natural classes
of structures appear: automatic (finite words), ω-automatic (infinite words), tree-automatic
(finite trees), and ω-tree automatic (infinite trees). Besides the obvious inclusions, for in-
stance that automatic structures are also ω-automatic, there are still some some outstanding
problems. For instance, a presentation over finite words or over finite trees can be trans-
formed into one where each element has a unique representative.
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Kuske and Lohrey [9] point out an ω-regular equivalence relation (namely ∼e stating
that two infinite words are position-wise eventually equal) with no ω-regular set of repre-
sentatives. Thus, unlike the finite-word case, injectivity can not generally be achieved by
selecting a regular set of representatives from a given presentation. In fact, using topological
methods it has recently been shown [4] that there are omega-automatic structures having no
injective presentation. However, we are able to prove that every omega-regular equivalence
relation having only countably many classes does allow to select an omega-regular set of
unique representants. Therefore, every countable omega-automatic structure does have an
injective presentation.

A related question raised by Blumensath [1] is whether every countable ω-automatic
structure is also automatic. In Corollary 2.8 we confirm this by transforming the given pre-
sentation into an injective one, and then noting that an injective ω-automatic presentation
of a countable structure can be “packed” into one over finite words.

All these results rest on our main contribution: a characterisation of when there exist
countably many words x satisfying a given formula with parameters in a given ω-automatic
structure A (with no restriction on the cardinality of the domain of A or the injectivity of the
presentation). The characterisation is first-order expressible in an ω-automatic presentation
of an extension of A by ∼e. Hence we obtain an extension of the fundamental fact for ω-
automatic structures to include cardinality and counting quantifiers such as ’there exists
(un)countably many’, ’there exists finitely many’, and ’there exists k modulom many’. This
generalises results of Kuske and Lohrey [9] who achieve this for structures with injective
ω-automatic presentations.

2. Preliminaries

By countable we mean finite or countably infinite. Let Σ be a finite alphabet. With
Σ∗ and Σω we denote the set of finite, respectively ω-words over Σ. The length of a word
w ∈ Σ∗ is denoted by |w|, the empty word by ε, and for each 0 ≤ i < |w| the ith symbol
of w is written as w[i]. Similarly w[n,m] is the factor w[n]w[n+ 1] · · ·w[m] and w[n,m) is
defined by w[n,m − 1]. Note that we start indexing with 0 and that for u ∈ Σ∗ we denote
by un the concatenation of n number of us, in particular uω ∈ Σω.

We consider relations on finite and ω-words recognised by multi-tape finite automata
operating in a synchronised letter-to-letter fashion. Formally, ω-regular relations are those
accepted by some finite non-deterministic automaton A with Büchi, parity or Muller accep-
tance conditions, collectively known as ω-automata, and having transitions labelled by
m-tuples of symbols of Σ. Equivalently, A is a usual one-tape ω-automaton over the
alphabet Σm accepting the convolution ⊗~w of ω-words w1, . . . , wm defined by ⊗~w[i] =
(w1[i], . . . , wm[i]) for all i.

Words u, v ∈ Σω have equal ends, written u ∼e v, if for almost all n ∈ N, u[n] = v[n].
This is an important ω-regular equivalence relation. We overload notation so that for
S, T ⊂ N we write S ∼e T to mean for almost all n ∈ N, n ∈ S ⇐⇒ n ∈ T .

Example 2.1. The non-deterministic Büchi automaton depicted in Fig. 1 accepts the
equal-ends relation on alphabet {0, 1}.

In the case of finite words one needs to introduce a padding end-of-word symbol � 6∈ Σ
to formally define convolution of words of different length. For simplicity, we shall identify
each finite word w ∈ Σ∗ with its infinite padding w� = w�ω ∈ Σω

� where Σ� = Σ ∪ {�}.
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Figure 1: An automaton for the equal ends relation ∼e.

To avoid repeating the definition of automata for finite words, we say that a m-ary relation
R ⊆ (Σ∗)m is regular (synchronised rational) whenever it is ω-regular over Σ�.

2.1. Automatic structures

We now define what it means for a relational structure (we implicitly replace any
structure with its relational counterpart) to have an (ω-)automatic presentation.

Definition 2.2 ((ω-)Automatic presentations).
Consider a relational structure A = (A, {Ri}i) with universe dom(A) = A and relations
Ri. A tuple of ω-automata d = (A,A≈, {Ai}i) together with a surjective naming function
f : L(A) → A constitutes an (ω-)automatic presentation of A if the following criteria are
met:

(i) the equivalence, denoted ≈, and defined by {(u,w) ∈ L(A)2 | f(u) = f(w)} is recog-
nised by A≈,

(ii) every L(Ai) has the same arity as Ri,
(iii) f is an isomorphism between Ad = (L(A), {L(Ai)}i)/≈ and A.
The presentation is said to be injective whenever f is, in which case A≈ can be omitted.

The relation ≈ needs to be a congruence of the structure (L(A), {L(Ai)}i) for item
(iii) to make sense. In case L(A) only consists of words of the form w� where w ∈ Σ∗,
we say that the presentation is automatic. Call a structure (ω−)automatic if it has an
(ω-)automatic presentation.

The advantage of having an (ω-)automatic presentation of a structure lies in the fact
that first-order (FO) formulas can be effectively evaluated using classical automata con-
structions. This is expressed by the following fundamental theorem.

Theorem 2.3. (Cf. [5], [6], [3].)

(i) There is an effective procedure that given an (ω−)automatic presentation d, f of a
structure A, and given a FO-formula ϕ(~a, ~x) with parameters ~a from A (defining a
k-ary relation R over A), constructs a k-tape synchronous (ω−)automaton recognising
f−1(R).

(ii) The FO-theory of every (ω−)automatic structure is decidable.
(iii) The class of (ω−)automatic structures is closed under FO-interpretations

Let FOC denote the extension of first-order logic with all quantifiers of the form
• ∃(r mod m)x . ϕ meaning that the number of x satisfying ϕ is finite and is congruent

to r mod m;
• ∃∞x . ϕ meaning that there are infinitely many x satisfying ϕ;
• ∃≤ℵ0x . ϕ and ∃>ℵ0x . ϕ meaning that the cardinality of the set of all x satisfying ϕ

is countable, or uncountable, respectively.
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It has been observed that for injective (ω-)automatic presentations Theorem 2.3 can be
extended from FO to FOC [8, 9]. Moreover, Kuske and Lohrey show that the cardinality of
any set definable in FOC is either countable or equal to that of the continuum. Our main
contribution is the following generalisation of their result.

Theorem 2.4. The statements of Theorem 2.3 hold true for FOC over all (not necessarily
injective) ω-automatic presentations.

It is easily seen that finite-word automatic presentations can be assumed to be injec-
tive. This is achieved by restricting the domain of the presentation to a regular set of
representatives of the equivalence involved. This can be done effectively, e.g. by selecting
the length-lexicographically least word of every class.

This brings us to the question which ω-automatic structures allow an injective ω-
automatic presentation. In [9] Kuske and Lohrey have pointed out that not every ω-regular
equivalence has an ω-regular set of representatives. In particular, the following Lemma
shows that the equal-ends relation ∼e of Example 2.1 is a counterexample.

Lemma 2.5 ([9, Lemma 2.4]). Let A be a Büchi automaton with n states over Σ× Γ and
let u ∈ Σω be given. Consider the set V = {v ∈ Γω | u⊗ v ∈ L(A)}. Then V is uncountable
if and only if |V/ ∼e | > n, otherwise it is finite or countable.

The lemma implies that an ω-regular set is countable if and only if it meets only finitely
many equal-ends-classes. In this case each of its members is ultimately periodic with one
of finitely many periods.

Corollary 2.6. An ω-regular set is countable iff it can be written as a finite union of sets
of the form Uj · (wj)ω with each Uj a regular set of finite words and each wj a finite word.

A related question raised by Blumensath [1] is whether every countable ω-automatic
structure is also automatic. It is easy to see that every injective ω-automatic presentation
of a countable structure can be “packed” into an automatic presentation.

Proposition 2.7. ([1, Theorem 5.32]) Let d be an injective ω-automatic presentation of a
countable structure A. Then, an (injective) automatic presentation d′ of A can be effectively
constructed.

In our proof of Theorem 2.4 we identify a property of finite semigroups that recognise
transitive relations (Lemma 3.3 item (3)) that allows us to drop the assumption of injectivity
in the previous statement. We are thus able to answer the question of Blumensath.

Corollary 2.8. A countable structure is ω-automatic if and only if it is automatic. Trans-
forming a presentation of one type into the other can be done effectively.

2.2. ω-Semigroups

The fundamental correspondence between recognisability by finite automata and by
finite semigroups has been extended to ω-regular sets. This is based on the notion of ω-
semigroups. Rudimentary facts on ω-semigroups are well presented in [10]. We only mention
what is most necessary.

An ω-semigroup S = (Sf , Sω, ·, ∗, π) is a two-sorted algebra, where (Sf , ·) is a semigroup,
∗ : Sf × Sω 7→ Sω is the mixed product satisfying for every s, t ∈ Sf and every α ∈ Sω the
equality

s · (t ∗ α) = (s · t) ∗ α
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and where π : Sω
f 7→ Sω is the infinite product satisfying

s0 · π(s1, s2, . . .) = π(s0, s1, s2, . . .)

as well as the associativity rule

π(s0, s1, s2, . . .) = π(s0s1 · · · sk1 , sk1+1sk1+2 · · · sk2 , . . .)

for every sequence (si)i≥0 of elements of Sf and every strictly increasing sequence (ki)i≥0

of indices. For s ∈ Sf we denote sω = π(s, s, . . .).
Morphisms of ω-semigroups are defined to preserve all three products as expected.

There is a natural way to extend finite semigroups and their morphisms to ω-semigroups.
As in semigroup theory, idempotents play a central role in this extension. An idempotent is
a semigroup element e ∈ S satisfying ee = e. For every element s in a finite semigroup the
sub-semigroup generated by s contains a unique idempotent sk. The least k > 0 such that
sk is idempotent for every s ∈ Sf is called the exponent of the semigroup Sf and is denoted
by π. Another useful notion is absorption of semigroup elements: say that s absorbs t (on
the right) if st = s.

There is also a natural extension of the free semigroup Σ+ to the ω-semigroup (Σ+,Σω)
with ∗ and π determined by concatenation. An ω-semigroup S = (Sf , Sω) recognises a
language L ⊆ Σω via a morphism φ : (Σ+,Σω)→ (Sf , Sω) if φ−1(φ(L)) = L. This notion of
recognisability coincides, as for finite words, with that by non-deterministic Büchi automata.
In [10] constructions from Büchi automata to ω-semigroups and back are also presented.

Theorem 2.9 ([10]).
A language L ⊆ Σω is ω-regular iff it is recognised by a finite ω-semigroup.

We note that this correspondence allows one to engage in an algebraic study of varieties
of ω-regular languages, and also has the advantage of hiding complications of cutting apart
and stitching together runs of Büchi automata as we shall do. This is precisely the reason
that we use this algebraic framework. Most remarkably, one does not need to understand
the exact relationship between automata and ω-semigroups and the technical details of
the constructions behind Theorem 2.9 to comprehend our proof. An alternative approach,
though likely less advantageous, would be to use the composition method, which is closer
in spirit to ω-semigroups than to automata. 1

3. Cardinality and modulo counting quantifiers

This section is devoted to establishing the key to Theorem 2.4 announced earlier.
We characterise when there exist countably many words x satisfying a given formula

with parameters ϕ(x, ~z) in some ω-automatic structure A. The characterisation is first-order
expressible in an ω-automatic extension of A by the equal-ends relation ∼e.

So, fix an ω-automatic presentation of some A with congruence ≈, and a first-order
formula ϕ(x, ~z) in the language of A with x and ~z free variables.

Proposition 3.1. There is a constant C, computable from the presentation d, so that for
all tuples ~z of infinite words the following are equivalent:

(1) ϕ(−, ~z) is satisfiable and ≈ restricted to the domain ϕ(−, ~z) has countably many
equivalence classes.

1Define Tf resp. Tω as the sets of bounded (in terms of quantifier rank) theories of finite, respectively, of
ω-words. The composition theorem ensures that ·, ∗, π can naturally be defined on bounded theories.
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(2) there exist C-many words x1, · · · , xC each satisfying ϕ(−, ~z), so that every x satis-
fying ϕ(−, ~z) is ≈-equivalent to some y ∼e xi. Formally, the structure (A,≈,∼e)
models the sentence below.

∀~z
(
∃≤ℵ0w .ϕ(w, ~z)←→ ∃x1 . . . xC

(∧
i

ϕ(xi, ~z) ∧ ∀xϕ(x, ~z)→ ∃y(x ≈ y ∧
∨
i

y ∼e xi)

))
Proof. Suppose d, A, and ϕ are given. Define C to be c2, where c is the size of the
largest ω-semigroup corresponding to any of the given automata (from the presentation
or corresponding to ϕ). Now fix parameters ~z. From now on, ≈ denotes the equivalence
relation ≈ restricted to domain ϕ(−, ~z).

2 → 1: Condition 2 and the fact that every ∼e-class is countable imply that all words
satisfying ϕ(−, ~z) are contained in a countable number of ≈-classes.

1→ 2: We prove the contra-positive in three steps.
If ϕ(−, ~z) is satisfiable then the negation of condition 2 implies that there are C + 1

many words x0, . . . , xC each satisfying ϕ(−, ~z), and so that for i, j ≤ C, i 6= j, the ≈-class
of xj does not meet the ∼e-class of xi. In particular, the xis are pairwise 6∼e.

The plan is to produce uncountably many pairwise non-≈ words that satisfy ϕ(−, ~z).
In the first ’Ramsey step’, similar to what is done in [9], we find two words from the given
C many, say x1, x2 ∈ Σ∗, and a factorisation H ⊂ N so that both words behave the same
way along the factored sub-words with respect to the ≈- and ϕ-semigroups. In the second
’Coarsening step’ we identify a technical property of finite semigroups recognising transitive
relations. This allows us to produce an altered factorisation G and new, well-behaving words
y1, y2. In the final step, the new words are ’shuffled along G’ to produce continuum many
pairwise non-≈ words, each satisfying ϕ(−, ~z).
3.1. Ramsey step

This step effectively allows us to discard the parameters ~z. Before we use Ramsey’s
theorem, we introduce a convenient notation to talk about factorisations of words.

Definition 3.2. Let A = a1 < a2 < · · · be any subset of N and h : Σ∗ → S be a morphism
into a finite semigroup S. For an ω-word α ∈ Σω, and element e ∈ S, say that A is an
h, e-homogeneous factorisation of α if for all n ∈ N+, h

(
α[an, an+1)

)
= e.

Observe that
(1) if A is an h, s-homogeneous factorisation of α and k ∈ N+ then the set {aki}i∈N+ is

an h, sk-homogeneous factorisation of α.
(2) if A is an h, e-homogeneous factorisation of α and e is idempotent, then every infinite

B ⊂ A is also an h, e-homogeneous factorisation of α.
In the following we write wϕ and w≈ to denote the image of w under the semigroup mor-
phism into the finite semigroup associated to ϕ and ≈, respectively, as determined by the
presentation. Accordingly, we will speak of e.g. ϕ, si-homogeneous factorisations.

Let us now colour every {n,m} ∈ [N]2, say n < m, by the tuple of ω-semigroup elements

〈 (⊗ (xi, ~z)[n,m)ϕ
)

0≤i≤C
,
(⊗ (xi, xj)[n,m)≈

)
0≤i≤j≤C

〉.
By Ramsey’s theorem there exists infinite H ⊂ N and a tuple of ω-semigroup elements〈

(si)1≤i≤C , (t(i,j))1≤i≤j≤C

〉
so that for all 0 ≤ i ≤ j ≤ C,
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• H is a ϕ, si-homogeneous factorisation of the word ⊗(xi, ~z),
• H is ≈, t(i,j)-homogeneous factorisation of the word ⊗(xi, xj).

Note that by virtue of additivity of our colouring and Ramsey’s theorem each of the si

and t(i,j) above are idempotents. Note that since there are at most c-many sis and c-many
t(i,i)s there are at most c2 many pairs (si, t(i,i)) and so there must be two indices, we may
suppose 1 and 2, with s1 = s2 and t(1,1) = t(2,2).

3.2. Coarsening step

For technical reasons we now refine H and alter x1, x2 so that the semigroup elements
have certain additional properties.

To start with, using the fact that x1 6∼e x2 and our observation on coarsenings, we as-
sume without loss of generality that H is coarse enough so that x1[hn, hn+1) 6= x2[hn, hn+1)
for all n ∈ N.

Lemma 3.3. There exists a subset G ⊂ H, listed as g1 < g2 < · · · , and ω-words y1, y2 with
the following properties:

(1) The words y1 and y2 are neither ≈-equivalent nor ∼e-equivalent, and each satisfies
ϕ(−, ~z).

(2) There exists an idempotent ϕ-semigroup element s such that G is a ϕ, s-homogeneous
factorisation for each of ⊗(y1, ~z) and ⊗(y2, ~z).

(3) There exist idempotent ≈-semigroup elements t, t↑, t↓ so that for yj ∈ {y1, y2}
• both t↑ and t↓ absorb t
• ⊗(yj, yj)[0, g1)≈ absorbs t
• G is an ≈, t-homogeneous factorisation of ⊗(yj, yj)
• G is an ≈, t↑-homogeneous factorisation of ⊗(y1, y2)
• G is an ≈, t↓-homogeneous factorisation of ⊗(y2, y1).

Proof. Define ω-words y1 := x2[0, h2)x1[h2,∞), and y2 by

y2[0, h2) := x2[0, h2) and
y2[h2n, h2n+2) := x2[h2n, h2n+1)x1[h2n+1, h2n+2) for n > 0.

Item 1. Clearly, y1 6∼e y2 and each yj ∈ {y1, y2} satisfies ϕ(yj , ~z) since by homogeneity and
s1 = s2

⊗(y1, ~z)ϕ = ⊗(x2, ~z)[0, h2)ϕsω
1

= ⊗(x2, ~z)[0, h2)ϕsω
2

= ⊗(x2, ~z)ϕ

and similarly

⊗(y2, ~z)ϕ = ⊗(x2, ~z)[0, h2)ϕ(s2s1)ω

= ⊗(x2, ~z)[0, h2)ϕsω
2

= ⊗(x2, ~z)ϕ
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Next we check that y1 6≈ y2.

⊗(y1, y2)≈ = π≈
(⊗ (x2, x2)[0, h2)≈,

(⊗ (x1, x2)[h2n, h2n+1)≈, ⊗(x1, x1)[h2n+1, h2n+2)≈
)
n∈N+

)
= ⊗(x2, x2)[0, h1)≈ t(2,2) (t(1,2)t(1,1))

ω

= ⊗(x2, x2)[0, h1)≈ t(2,2)t(2,2) (t(1,2)t(1,1))
ω

= ⊗(x2, x2)[0, h1)≈ t(2,2)t(2,2) (t(1,2)t(2,2))
ω

= ⊗(x2, x2)[0, h1)≈ t(2,2) (t(2,2)t(1,2))
ω

= π≈
(⊗ (x2, x2)[0, h2)≈,

(⊗ (x2, x2)[h2n, h2n+1)≈, ⊗(x1, x2)[h2n+1, h2n+2)≈
)
n∈N+

)
= ⊗(y2, x2)≈

Thus, if y1 ≈ y2 then also y2 ≈ x2 and so by transitivity y1 ≈ x2. But since y1 ∼e x1,
the ≈-class of x2 meets the ∼e-class of x1, contradicting the initial choice of the xis.

Items 2 and 3. Define intermediate semigroup elements q := s1, r := t(1,1), r↑ := t(1,2)t(1,1)

and r↓ := t(2,1)t(1,1). Then

(1) both r↑ and r↓ absorb r, since t(1,1) is idempotent;
(2) ⊗(yj, yj)[0, h2)≈ = ⊗(yj, yj)[0, h1)≈t(2,2) and thus absorbs r (for yj ∈ {y1, y2}).

In this notation, for all i ∈ N+ and yj ∈ {y1, y2},
• ⊗(yj, ~z)[h2i, h2i+2)ϕ is qq = q,
• ⊗(yj, yj)[h2i, h2i+2)≈ is rr = r,
• ⊗(y1, y2)[h2i, h2i+2)≈ is t(1,2)t(1,1) = r↑,
• ⊗(y2, y1)[h2i, h2i+2)≈ is t(2,1)t(1,1) = r↓.

Finally, define the set G := {h2ki}i>1, i.e. gi = h2k(i+1), and the semigroup elements
t := rk, t↑ := (r↑)k, t↓ := (r↓)k and s := qk. The extra multiple of k (defined as the product
of the exponents of the give semigroups for ∼e and ≈) ensures all these semigroup elements
(in particular t↑ and t↓) are idempotent. We now verify the absorption properties:

t↑t = r↑krk = r↑k = t↑ because r↑ absorbs r

Similarly, t↓t absorbs t. Further, since g1 = h4k, we have

⊗(yj, yj)[0, g1)≈ = ⊗(yj, yj)[0, h2)≈ ⊗ (yj, yj)[h2, h4k)≈

= ⊗(yj, yj)[0, h2)≈r4k−2

= ⊗(yj, yj)[0, h2)≈r3k−2t

and thus absorbs t.
Finally we verify the homogeneity properties: G is an ≈, t↓-homogeneous factorisation

of ⊗(y2, y1) since for i ∈ N+

⊗(y2, y1)[gi, gi+1)≈ = ⊗(y2, y1)[h2k(i+1), h2k(i+2))
≈ = (r↓)k = t↓.

The other cases are similar.
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3.3. Shuffling step

We continue the proof of Proposition 3.1 by ’shuffling’ the words y1 and y2 along G
resulting in continuum many pairwise distinct words that are pairwise not ≈-equivalent,
each satisfying ϕ(−, ~z). To this end, define for S ⊂ N+ the ’characteristic word’ χS by

χS [0, g1) := y2[0, g1) , and

χS [gn, gn+1) :=

{
y2[gn, gn+1) if n ∈ S
y1[gn, gn+1) otherwise

First note that A |= ϕ(χS , ~z). Indeed, by Lemma 3.3 item 2

⊗(χS , ~z)ϕ = ⊗(y2, ~z)[0, g1)ϕsω

= ⊗(y2, ~z)ϕ

and A |= ϕ(y2, ~z) by Lemma 3.3 item 1. Moreover, for S 6∼e T the construction gives
that χS 6∼e χT . This is due our initial choice of x1 6∼e x2 and the assumption that the
factorisation (hn)n is coarse enough so that x1[hn, hn+1) 6= x2[hn, hn+1) and therefore also
y1[gn, gn+1) 6= y2[gn, gn+1) for all n.

The following two lemmas establish that if S 6∼e T then χS 6≈ χT .
Write x◦• for the word χ2N+ , and x•◦ for χ2N+−1 and let p denote ⊗(y2, y2)[0, g1)≈.

Lemma 3.4. For all S 6∼e T ,

⊗(χS , χT )≈ =

{
⊗(x◦•, x•◦)≈ or
⊗(x•◦, x◦•)≈

Proof. Define semigroup-elements pn for n ∈ N by

pn :=


t↓ if n ∈ S \ T
t↑ if n ∈ T \ S
t otherwise

Let m be the smallest number in S4T . Suppose that m ∈ S \ T . Because both t↑ and
t↓ are idempotent and since t is absorbed by both p, t↑ and t↓ we have

⊗(χS , χT )≈ = π≈ (p, (pn)n∈N) = p(t↓t↑)ω

= ⊗(x•◦, x◦•)≈

and the case that m ∈ T \ S similarly results in ⊗(x◦•, x•◦)≈.

Lemma 3.5. x◦• 6≈ x•◦.
Proof. Define an intermediate word x◦•◦◦ := χ4N+−2. By computations similar to the above
we find that

⊗(x•◦, x◦•◦◦)≈ = p(t↓t↑t↓t)ω = p(t↓t↑t↓)ω = p(t↓t↑)ω

= ⊗(x•◦, x◦•)≈

and

⊗(x◦•, x◦•◦◦)≈ = p(tttt↓)ω = p(t↓)ω

= ⊗(y2, y1)≈
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Therefore, if x•◦ ≈ x◦• then also x•◦ ≈ x◦•◦◦ and so by symmetry and by transitivity
x◦• ≈ x◦•◦◦. But in this case also y2 ≈ y1, contradicting Lemma 3.3 item 1.

There are continuum many classes in P(N)/ ∼e, thus there is a continuum of pairwise not
≈-equivalent words χS each satisfying ϕ(−, ~z). This completes the proof of Proposition 3.1.

4. Consequences

Theorem 2.4 The statements of Theorem 2.3 hold true for FOC over all (not necessarily
injective) ω-automatic presentations.

Proof. We prove item (i) from which the rest of the theorem follows immediately. We induc-
tively eliminate occurrences of cardinality and modulo-counting quantifiers in the following
way.

The countability quantifier ∃≤ℵ0 and uncountability quantifier ∃>ℵ0 can be eliminated
(in an extension of the presentation by ∼e) by the formula given in Proposition 3.1.

For the remaining quantifiers we further expand the presentation with the ω-regular
relations

• π(a, b, c) saying that a ∼e b ∼e c and the last position where a differs from c is no
larger than the last position where b differs from c, and
• λ(a, b, c) saying that π(a, b, c) and π(b, a, c) and, writing k for this common position,

the word a[0, k] is lexicographically smaller than the word b[0, k].
Now ∃<∞. ϕ(x, ~z) is equivalent to

∃x1 · · · xC Ψ(x1, · · · , xC , ~z)
where Ψ expresses that x1, · · · xC satisfy ϕ(−, ~z) and there exists a position, say k ∈ N, so
that every ≈-class contains a word satisfying ϕ(−, ~z) that coincides with one of the xi from
position k onwards. This additional condition can be expressed by

∃y1 · · · yC∀x∃y
(
ϕ(x, ~z)→ x ≈ y ∧

∨
i

π(y, yi, xi)

)
Consequently, ∃(r mod m)x . ϕ(x, ~z) can be eliminated since we can pick out unique rep-

resentatives of the ≈-classes as those x so that, writing i(w) for the smallest index i for
which w ∼e xi, for every y 6= x in the same ≈-class as x, either

• i(x) < i(y), or
• i(x) = i(y) and λ(x, y, xi(x)).

Now we can apply the construction of [9] or [8] for elimination of the ∃(r mod m) quantifier.

As a corollary of Proposition 3.1 we obtain that for every omega-regular equivalence
with countably many classes a set of unique representants is definable.

Corollary 4.1. Let ≈ be an ω-automatic equivalence relation on Σω. There is a constant
C, depending on the presentation, so that the following are equivalent:

(1) ≈ has countably many equivalence classes.
(2) there exist C many ∼e-classes so that every ≈-class has non-empty intersection with

at least one of these C.
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In this case there is an ω-regular set of representatives of ≈. Moreover an automaton for
this set can be effectively found given an automaton for ≈.

Proof. The first two items are simply a specialisation of Proposition 3.1. We get the repre-
sentatives as follows.

Write A for the domain of ≈ and consider the formula ψ(x1, · · · , xC) with free variables
x1, · · · , xC : ∧

i

xi ∈ A ∧ (∀x ∈ A)(∃y) [x ≈ y ∧
∨
i

y ∼e xi]

The relation defined by ψ is ω-regular since it is a first order formula over ω-regular
relations. By assumption it is non-empty. Thus it contains an ultimately periodic word of
the form ⊗(a1, · · · , aC). Thus each of these ais is ultimately periodic; say ai = vi(ui)ω.

Then every x has an ≈-representative in B :=
⋃

i Σ∗(ui)ω. It remains to prune B to
select unique representatives for each ≈-class.

It is easy to construct an ω-regular well-founded linear order on B. For every w ∈ B,
let p(w) ∈ Σ∗ be the length-lexicographically smallest word such that w has period p(w).
Also let t(w) ∈ Σ∗ be the length-lexicographically smallest word so that w = t(w) · p(w)ω .
Define an order ≺ on B by w ≺ w′ if p(w) is length-lexicographically smaller than p(w ′),
or otherwise if p(w) = p(w′) and t(w) is length-lexicographically smaller than t(w ′). The
ordering ≺ is ω-regular since it is FO-definable in terms of ω-regular relations. Finally, the
required set of representatives may be defined as the set of ≺-minimal elements of every
≈-class; and an automaton for this set can be constructed from an automaton for ≈.

This immediately yields an injective ω-automatic presentation from a given ω-automatic
presentation which by Proposition 2.7 can be transformed into an automatic presentation
of the structure. Thus we conclude that every countable ω-automatic structure is already
automatic.

Corollary 2.8 A countable structure is ω-automatic if and only if it is automatic. Trans-
forming a presentation of one type into the other can be done effectively.

Note that some of our technical results, in particular Lemmas 3.3 and 3.4, only require
transitivity of the relation ≈ and do not use symmetry. Applying them to an ω-automatic
linear order ≺ we get an interesting uncountable set of words of the form χS, S ⊆ N. For
any two such words with S 6∼e T , whether χS ≺ χT or not depends only on the first position
m ∈ S4T . Thus, ≺ behaves like the lexicographic order on such words.

4.1. Failure of Löwenheim-Skolem theorem for ω-automatic structures

While so far the area of automatic structures has mainly focused on individual struc-
tures, it is interesting to look at their theories as well. We note a consequence of our work
for ’automatic model theory’.

An automatic version of the Downward Löwenheim-Skolem Theorem would say that
every uncountable ω-automatic structure has a countable elementary substructure that is
also ω-automatic. Unfortunately this is false since there is a first-order theory with an
ω-automatic model but no countable ω-automatic model. Indeed, consider the first-order
theory of atomless Boolean Algebras. Kuske and Lohrey [9] have observed that it has
an uncountable ω-automatic model, namely (P(N),∩,∪,¬)/ ∼e. However, Khoussainov
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et al. [7] show that the countable atomless Boolean algebra is not automatic and so, by
Corollary 2.8, neither ω-automatic.

Here is the closest we can get to an automatic Downward Löwenheim-Skolem Theorem
for ω-automatic structures.

Proposition 4.2. Let (D,≈, {Ri}i≤ω) be an omega-automatic presentation of A and let Aup

be its restriction to the ultimately periodic words of D. Then Aup is a countable elementary
substructure of A.

Proof. Relying on the Tarski-Vaught criterion for elementary substructures we only need to
show that for all first-order formulas ϕ(~x, y) and elements ~b of Aup

A |= ∃yϕ(~b, y) ⇒ Aup |= ∃yϕ(~b, y) .

By Theorem 2.3 ϕ(~x, y) defines an omega-regular relation and, similarly, since the param-
eters ~b are all ultimately periodic the set defined by ϕ(~b, y) is omega-regular. Therefore, if
it is non-empty, then it also contains an ultimately periodic word, which is precisely what
we needed.

This proof can be viewed as a model construction akin to a classical compactness proof.
Indeed, starting with ultimately constant words and throwing in witnesses for all existential
formulas satisfied in A in each round one constructs an increasing sequence of substructures
comprising ultimately periodic words of increasing period lengths. The union of these is
closed under witnesses by construction. The argument is valid for relational structures with
constants assuming that every constant is represented by an ultimately periodic word.

Future work It remains to be seen whether statements analogous to Theorem 2.4 and
Corollary 2.8 also hold for automatic presentations over infinite trees.
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Abstract. We study extremal questions on induced matchings in several natural graph
classes. We argue that these questions should be asked for twinless graphs, that is graphs
not containing two vertices with the same neighborhood. We show that planar twinless
graphs always contain an induced matching of size at least n/40 while there are planar
twinless graphs that do not contain an induced matching of size (n + 10)/27. We derive
similar results for outerplanar graphs and graphs of bounded genus. These extremal results
can be applied to the area of parameterized computation. For example, we show that
the induced matching problem on planar graphs has a kernel of size at most 40k that
is computable in linear time; this significantly improves the results of Moser and Sikdar
(2007). We also show that we can decide in time O(91k + n) whether a planar graph
contains an induced matching of size at least k.

Introduction

A matching in a graph is an induced matching if it occurs as an induced subgraph of the
graph; we let mim(G) denote the size of a maximum induced matching in G. Determining
whether a graph has an induced matching of size at least k is NP-complete for general graphs
and remains so even if restricted to bipartite graphs of maximum degree 4, planar bipartite
graphs, 3-regular planar graphs (see [4] for a detailed history). Furthermore, approximating
a maximum induced matching is difficult: the problem is APX-hard, even for 4r-regular
graphs [4, 14].

In terms of the parameterized complexity of the induced matching problem on general
graphs, it is known that the problem is W [1]-hard [9]. Hence, according to the parameterized
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complexity hypothesis, it is unlikely that the problem is fixed-parameter tractable, that is,
solvable in time f(k)nc for some constant c independent of k.

There are several classes of graphs for which the problem turns out to be polynomial
time solvable, for example chordal graphs and outerplanar graphs (see [4] for a survey and [8]
for the result on outerplanar graphs).

Very recently, Moser and Sidkar [8] considered the parameterized complexity of planar-

IM: finding an induced matching of size at least k in a planar graph. They showed that
planar-IM has a linear problem kernel, but left the constant in the kernel size undeter-
mined. Their result automatically implies that the problem is fixed-parameter tractable.

In the current paper we take a combinatorial approach to the problem establishing lower
and upper bounds on the size of induced matchings in certain graph classes. In particular,
an application of our results to Planar-IM gives a significantly smaller problem kernel
than the one given in [8]. We also apply the results to obtain a practical parameterized
algorithm for planar-IM that can be extended to graphs of bounded genus and could be
used as a heuristic for general graphs.

Let us consider the induced matching problem from the point of view of extremal
graph theory: How large can a graph be without containing an induced matching of size at
least k? Of course, dense graphs such as Kn and Kn,n pose an immediate obstacle to this
question being meaningful, but they can easily be eliminated by restricting the maximum
or the average degree of the graph. Indeed, for strong edge colorings the maximum degree
restriction is popular: a strong edge coloring with k colors is a partition of the edge set
into at most k induced matchings [12]. A greedy algorithm shows that graphs of maximum
degree ∆ have a strong edge chromatic number of at most 2∆(∆ − 1) + 1, and, of course,
∆ is an immediate lower bound. If we are only interested in a large induced matching
though, perhaps we need not restrict the maximum degree. On the other hand, bounding
only the average degree of a graph allows pathological examples such as K1,n, which has
average degree less than 2 but only a single-edge induced matching. This example illustrates
another obstacle to a large induced matching: twins. Two vertices u and v are said to be
twins if N(u) = N(v). Obviously, at most one of u and v can be an endpoint of an edge in
an induced matching and if one of them can, either can. Thus, from the extremal point of
view (and since they can be easily recognized and eliminated) we should study the induced
matching problem on graphs without twins. Twinlessness does not allow us to drop the
bounded average degree requirement however, as shown by removing a perfect matching
from Kn,n, which yields a twinless graph with a maximum induced matching of size 2.

We begin by studying twinless graphs of bounded average degree. Those graphs might
still not have large induced matchings since they could contain very dense subgraphs (Re-
mark 1.3 elaborates on this point). One way of dealing with this problem is to extend the
average degree requirement to all subgraphs. In Section 1 we see that a slightly weaker
condition is sufficient, namely a bound on the chromatic number of the graph. We can
show that a graph of average degree at most d and chromatic number at most k contains
an induced matching of size Θ(n1/(d+1)).

While we cannot expect to substantially improve the dependency on the average degree
of this result in general (see Remark 1.2), we do investigate the case of planar graphs and
graphs of bounded genus, for which we can show the existence of induced matchings of linear
size. Indeed, a planar twinless graph always contains an induced matching of size n/40. We
also know that this bound cannot be improved beyond (n + 10)/27 (Remark 2.10). Planar
graphs and graphs of bounded genus are discussed in Section 2.
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We next investigate the case of outerplanar graphs: an outerplanar graph of mini-
mum degree 2 always contains an induced matching of size n/7 (even without assuming
twinlessness), and this result is tight (Section 3). Our bounds fit in with a long series of
combinatorial results on finding sharp bounds on the size of induced structures in subclasses
of planar graphs (see for example [5, 11, 1, 10]).

We also use our combinatorial results to obtain fixed-parameter algorithms for the
induced matching problem. For example, we show that planar-IM can be solved in time
O(91k + n) by a very practical algorithm, while—on the more theoretical side—there is an
algorithm deciding it in time O(2159

√
k + n) using the Lipton-Tarjan [7] separator theorem.

Both results easily extend to graphs of bounded genus.
For graph-theoretic terminology we refer the reader to West [13]. For background on

parameterized complexity, we recommend Downey and Fellows [3].

1. Induced matchings in graphs of bounded average degree

We can show that twinless graphs of bounded average degree and bounded chromatic
number contain large induced matchings. At the core of the proof is a combinatorial result
due to Füredi and Tuza [6, Theorem 9.13] on systems of strong representatives. For lack of
space, we omit the details.

Theorem 1.1. A twinless graph G with χ(G) ≤ k and average degree at most d must
contain an induced matching of size at least(

d

2

(
n− 1

2k(d + 1)

)1/(d+1)

− (d + 1)

)
/(k − 1)

which is Θ(n1/(d+1)) where n = |V (G)|.
Remark 1.2. Consider the following bipartite graph: take a set A of ` vertices, and for
every d/2 element subset of A create a new vertex and connect it to the vertices of the
subset.

This graph has n = `+
( `
d/2

)
vertices, and its largest induced matching has size `/(d/2).

Moreover, its average degree is 2 · d
2

( `
d/2

)
/
(
` +

( `
d/2

)) ≤ d. For d fixed, `/(d/2) is of order

n2/d, which shows that the bound of the theorem (while not being tight) has the right form.

Remark 1.3. The preceding example can be extended to show that bounding the chromatic
number is necessary: take the graph as constructed in the previous remark and add all edges
between the ` vertices of A. Assuming d ≥ 4, this gives a graph of average degree at most
d + 2. However, the largest induced matching in this graph has size 1.

2. Planar graphs and graphs of bounded genus

2.1. Matchings and induced matchings

To find large induced matchings in graphs we often proceed in two steps: we first find
a large matching in the graph and then turn it into an induced matching. To make this
approach work, we need assumptions on the graph: to obtain a large matching, we assume
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an upper bound on α(G), the size of the largest independent set in G. To turn the matching
into an induced matching, we assume that the graph is twinless and all minors of G have a
large independent set.

Lemma 2.1. A graph G with α(G) ≤ αn contains a matching of size at least (1 − α)n/2,
where n = n(G).

Proof. Let M ⊆ E be a maximal matching in G on vertex set V (M). Then I = V − V (M)
is an independent set. By assumption, |I| ≤ αn. Adding |V (M)| to either side gives us
n ≤ αn + |V (M)|, and, therefore, |V (M)| ≥ (1− α)n.

Lemma 2.2. Assume that any minor H � G of a graph G fulfills α(H) ≥ α n(H). Then
any matching M in G contains an induced matching in G of size at least α|M |.
Proof. Remove all vertices not in V (M) and contract the edges of M (removing duplicate
edges). The resulting graph is a minor of G, and, by assumption, has an independent set
of size α|M |. The edges in M which were contracted to the vertices in the independent set,
form an induced matching in G.

By this lemma a matching of size k in a planar graph contains an induced matching of
size k/4. In [2] the authors show that a 3-connected planar graph contains a matching of
size at least (n + 4)/3, which allows us to draw the following conclusion.

Corollary 2.3. A 3-connected planar graph contains an induced matching of size (n+4)/12.

To apply the two lemmas to planar graphs and graphs of bounded genus we need some
generalizations of Euler’s theorem to hypergraphs. We say a hypergraph H is embeddable
in a surface if the bipartite incidence graph obtained from H by replacing each of its edges
by a vertex adjacent to all the vertices in the edge is embeddable in that surface.

Lemma 2.4. A hypergraph of genus at most g on n vertices has at most 2n + 4g− 4 edges
containing at least three vertices, unless n = 1 and g = 0.

If H is a hypergraph of genus g such that all edges have size 2, we can take the associated
bigraph G of genus g and contract away all the the vertices that correspond to edges of H.
This produces a graph of genus g with |V (H)| vertices and |E(H)| edges, to which we may
apply the following consequence of Euler’s Theorem.

Lemma 2.5 (Euler). A graph of genus g on n vertices contains at most 3n + 6g − 6 edges
if n ≥ 2.

By splitting edges of a hypergraph into those of size at least three, those of size two,
and those that contain a single vertex, we can derive the following.

Lemma 2.6. A hypergraph of genus at most g on n vertices has at most 6n+10g−9 edges
if n ≥ 2.

We are now ready to give a lower bound on the size of induced matchings in twinless
graphs of bounded genus. This includes the planar case, but in the next section we will
give an improved bound for that case. We need a result due to Heawood [13] that states
that a graph of genus at most g can be colored using at most (7 +

√
1 + 48g)/2 colors. The

statement remains true for the plane case, g = 0, by virtue of the Four-Color Theorem.

Theorem 2.7. A twinless graph of genus at most g contains an induced matching of size
at least (n− 10g)/(49 + 7

√
1 + 48g), where n is the number of vertices of the graph.
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Proof. Let G be a twinless graph of genus at most g, and assume temporarily that G does
not contain any isolated vertex. Let M ⊆ E be a maximal matching in G on vertex set
V (M). Then I = V −V (M) is an independent set. Let H be the hypergraph with vertex set
V (M) and edges N(v), v ∈ I. Then H is a hypergraph of genus at most g (as its bipartite
incidence graph is a subgraph of G), and by Lemma 2.6, has at most 6|V (M)|+10g−9 edges
(note that we can assume |V (M)| ≥ 2 since otherwise G consists of a single vertex, in which
case there is nothing to prove). As G contains no twins, each edge of H uniquely corresponds
to a vertex in I, so |I| ≤ 6|V (M)| + 10g − 9 and, therefore, |V (M)| ≥ (|V | − 10g + 9)/7.
The original graph might have contained at most one isolated vertex (since it is twinless),
so |V (M)| ≥ (n− 10g)/7 and G has a matching of size at least (n− 10g)/14.

By Heawood’s theorem and the Four-Color Theorem, a graph of genus at most g can be
colored using at most (7+

√
1 + 48g)/2 colors. Hence, G and any of its minors always contain

independent sets on a 2/(7 +
√

1 + 48g) fraction of their vertices. Then by Lemma 2.2, G
has an induced matching of size at least 2(n− 10g)/[14(7 +

√
1 + 48g)] = (n− 10g)/(49 +

7
√

1 + 48g).

A simple consequence of Theorem 2.7 not involving the concept of twinlessness is the
following:

Corollary 2.8. A planar graph of minimum degree at least 3 contains an induced matching
of size at least (n + 8)/20, where n is the number of vertices of the graph.

Proof. Since the graph has minimum degree at least 3 it cannot contain degree 1 and 2
vertices. Then by Lemma 2.4, the hypergraph constructed in the proof of Theorem 2.7 (for
g = 0) contains at most 2|V (M)|− 4 edges. However, it is now possible that more than one
vertex in the independent set results in the same edge of the hypergraph. However, there
can be at most two vertices sharing the same neighborhood, since a planar graph does not
contain a K3,3. Therefore, the size of the independent set is at most 4|V (M)| − 8, and thus
the graph contains a matching of size at least (n+8)/5. Using Lemma 2.2, it can be turned
into an induced matching of size at least (n + 8)/20.

Theorem 2.7 implies that a planar twinless graph always contains an induced matching
of size n/56. This lower bound can still be improved as shown in the following theorem.

Theorem 2.9. A twinless planar graph contains an induced matching of size at least n/40,
where n is the number of vertices of the graph.

Remark 2.10. We do not have a matching upper bound to complement Theorem 2.9,
but we can get close. We can construct a graph whose largest induced matching has size
(n + 10)/27.

3. Induced matchings in outerplanar graphs

The main result of this section is that a nontrivial connected outerplanar graph with
minimum degree 2 has an induced matching of size d n

7 e. This result is sharp, as will be seen
later. We first consider a special case, which will arise later in the proof of the main result.
We refer the reader to [13] for the terminology on the block decomposition of a graph.

Lemma 3.1. Suppose that G is a connected graph for which the block-cutpoint tree is a
path and all blocks are triangles or cut-edges; or, equivalently, G is the union of a path of
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length ` ≥ 1 and at most ` triangles, with each edge of the path in at most one triangle, and
exactly one edge of each triangle in the path. If 2 ≤ n(G) ≤ 5 then mim(G) ≥ d n(G)+1

6 e
and if n(G) ≥ 6 then mim(G) ≥ dn(G)+3

6 e.
Corollary 3.2. Let G be a 2-connected outerplanar graph with exactly one non-leaf face,
such that every leaf face is a 3-face. Then for any vertex v, mim(G− v) ≥ d n(G)

6 e.
To prove the main result of this section, we use induction after separating the graph

into components (by removing vertices that form a certain cut in the graph). To apply
the inductive statement, each of these components must have minimum degree 2. This,
however, may not be true after the removal of the cut-set from the graph. We next define
an operation, called the patching operation, that patches each of these components so that
its minimum degree is 2.

Definition 3.3. Let H be an outerplanar graph with n(H) ≥ 4 and with at most two
degree 1 vertices. We define an operation that can be applied to H, called the patching
operation, to obtain a graph H ′ as follows.

(a) If there is no degree 1 vertex in H let H ′ = H.
(b) If there is exactly one degree 1 vertex u in H, let u′ be its neighbor. If degH(u′) ≥ 3,

let H ′ = H − u. Otherwise (degH(u′) = 2), let v be the other neighbor of u′. Let v′
be a vertex after v on the boundary walk in H − {u, u′}. Let H ′ = (H − u) + u′v′.

(c) If there are exactly two degree 1 vertices u and v in H, let u′ be the neighbor of u
and v′ be the neighbor of v. Remove u from H and add the edge u′v. Let H ′ be the
resulting graph.

Proposition 3.4. Let H be an outerplanar graph with n(H) ≥ 4 and with at most two
degree 1 vertices. Moreover, when H has exactly two degree 1 vertices u and v, then adding
a path from u to v leaves H outerplanar. Let H ′ be the graph resulting from the application of
the patching operation to H. Then H ′ is an outerplanar graph such that: (1) the minimum
degree of H ′ is 2, (2) n(H ′) ≥ n(H)− 1, and (3) mim(H) ≥ mim(H ′).

Theorem 3.5. A nontrivial connected outerplanar graph G of minimum degree 2 has an
induced matching of size dn

7 e.
Proof. Clearly the statement is true if 3 ≤ n ≤ 7. Therefore, we may assume in the
remainder of the proof that n ≥ 8, and that, inductively, the statement is true for any
graph with fewer than n vertices.

Let u be a cut-point in G which is in at most one non-leaf block. Let B1, · · · , B` be
all the leaf blocks containing u, let B0 = G − ⋃`

i=1[V (Bi) − u], and let ni = n(Bi), for
i = 0, · · · , `. If G has no cut-points, let u be any vertex in G, and let B0 = G.

Let Bi, where i ∈ {1, · · · , `} be a block such that ni ≥ 7. Let B′
i be the block obtained

from Bi by deleting the chord of each 3-face of Bi. Suppose that B ′
i is not a cycle. Clearly,

any leaf face in B ′
i must be of length at least 4.

Suppose that B ′
i has a leaf face of length at least 6, with boundary F = (u1, . . . , ur, u1)

such that u1ur is a chord and u1 6= u. Let H = G − {u1, u2, u3, u4, u5}, and note that
none of the vertices in H is a cut-point in G. Therefore, H is an outerplanar graph with
at most two degree 1 vertices. Apply the patching operation to H to obtain a graph H ′.
Then H ′ is a connected outerplanar graph with minimum degree two. Inductively, we have
mim(H ′) ≥ dn(H′)

7 e. Since n(H ′) ≥ n(H)− 1 and mim(H) ≥ mim(H ′) by Proposition 3.4,
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we have mim(H) ≥ dn(H)−1
7 e = dn(G)−6

7 e. A maximum induced matching in H plus edge
u2u3 is an induced matching in G, because any edge of E(Bi)−E(B′

i) incident to u2 or u3

has at its other endpoint u1, u4, or u5, by the construction of B ′
i and F . We conclude that

mim(G) ≥ dn(G)−6
7 e+ 1 = dn(G)+1

7 e, which suffices.
If B′

i contains a leaf face F = (u1, · · · , ur, u1) with r = 4 or r = 5, and such that u1 6= u
and ur 6= u, then similar to the above, we let H = G− {u1, · · · , ur}. Again note that none
of the vertices in H is a cut-point in G. Using the same analysis as in the above paragraph,
we obtain mim(G) ≥ dn(G)+1

7 e.
Assuming that ni ≥ 7 and that B ′

i is not a cycle, it follows now that every leaf face
in B′

i has length 4 or 5 and is incident to the cut-point u in G. Therefore, B ′
i has exactly

two leaf faces that contain u, and each of length 4 or 5. Let F = (u1, · · · , ur, u1) and
F ′ = (u′1, · · · , u′s, u′1) where r, s ∈ {4, 5}, u = u1 = u′1, and u1ur and u′1u′s are chords.
Note that it is possible that ur = u′s. Let H be the graph obtained from Bi by removing
the vertices in F ∪ F ′; then H is a path so it has at most two vertices of degree 1. If
n(H) ≥ 1 then the edges u2u3 and u′2u

′
3 give an induced matching in Bi of size 2. Since

ni ≤ 10, Bi has a matching Mi of size at least dni+4
7 e. If n(H) is 2 or 3, then H has a

maximum induced matching of size at least 1, which together with edges u2u3 and u′2u′3
give an induced matching in Bi of size 3. Since in this case ni ≤ 12, we conclude that Bi

has an induced matching Mi of at least dni
6 e. Moreover, no edge of Mi is incident on the

cut-point u of G. Now if n(H) ≥ 4, we apply the patching operation to H to obtain an
outerplanar graph of minimum degree two. Inductively, mim(H ′) ≥ dn(H′)

7 e, and hence
mim(H) ≥ dn(H)−1

7 e. Now any induced matching in H plus edges u2u3 and u′2u′3 gives an
induced matching Mi in Bi such that none of the edges in Mi is incident on u. It follows
that mim(G) ≥ 2 + mim(H) ≥ 2 + dn(H)−1

7 e ≥ 2 + dni−9−1
7 e ≥ dni+4

7 e. Therefore, in this
case Bi contains an induced matching Mi, none of its edges is incident on u, of size at least
dni+4

7 e.
Now, for any i ∈ {1, · · · , `} we have the following:
If ni ≤ 6, then clearly Bi contains an induced matching Mi, none of its edges incident

on u, of size at least dni
6 e. Simply let Mi be any edge in Bi that is not incident on u.

If ni ≥ 7 and B′
i is a cycle, then Bi satisfies the conditions of Corollary 3.2, and Bi has

an induced matching Mi of size at least dni
6 e, none of its edges is incident on u (by choosing

v = u in Corollary 3.2).
If ni ≥ 7, and B′

i is not a cycle, then from the above discussion, Bi has an induced
matching of size at least min{dni+4

7 e, dni
6 e}.

Let M =
⋃`

i=1 Mi. Let H = B0−u and note that H has at most two degree 1 vertices.
If n(H) ≤ 3, then clearly mim(H) ≥ dn0

6 e. If n(H) ≥ 4, apply the patching operation to H
to obtain an outerplanar graph H ′ of minimum degree 2. Now by applying the inductive
statement to H ′, we get mim(B0) ≥ dn0−2

7 e. Let M0 be a maximum induced matching in
B0 − u, and note that since none of the induced matching edges in M ∪M0 is incident on
u, M ∪M0 is an induced matching in G.

If G has no cut-points, then G is 2-connected and we let B1 = G. In this case we have
mim(G) ≥ min{dn(G)+4

7 e, dn(G)
6 e} ≥ dn(G)

7 e.
Now we can assume that ` ≥ 1. Note that in this case we have n0+n1+ · · ·+n` = n+`.
If at least one block Bi has |Mi| ≥ dni+4

7 e, then by using dni
7 e as a lower bound on the

size of the matching in each block Bj where j ∈ {1, · · · , `} and j 6= i, we get:
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|M ∪M0| ≥
∑̀

j=1,j 6=i

dnj

7
e+ dni + 4

7
e+ dn0 − 2

7
e ≥ dn + 2 + `

7
e ≥ dn

7
e.

Otherwise, we can use dni
6 e as a lower bound on the size of each block Bi where i ∈

{1, · · · , `}. If ` ≥ 2, we have:

|M ∪M0| ≥
∑̀
i=1

dni

6
e+ dn0 − 2

7
e ≥

∑̀
i=1

dni

7
e+ dn0 − 2

7
e ≥ dn + `− 2

7
e ≥ dn

7
e.

If ` = 1 and n1 ≤ 5, by picking M to be any edge that is not incident on u in block B1,
we get:

|M ∪M0| ≥ 1 + dn0 − 2
7

e = dn0 + 5
7

e ≥ dn
7
e.

If ` = 1 and n1 ≥ 6, we have:

|M ∪M0| ≥ dn1

6
e+ dn0 − 2

7
e ≥ d7n1 + 6n0 − 12

42
e = d6(n1 + n0) + n1 − 12

42
e

≥ d6n + 6 + n1 − 12
42

e ≥ dn
7
e.

This completes the induction and the proof.

Figure 1 shows an example of a graph in which the size of the maximum induced
matching is exactly dn/7e. A graph in this family consists of a cycle of length 2` (` ≥ 3)
with ` gadgets attached as indicated in the figure. The total number of vertices in this
graph is 7`, and it is easy to verify that the maximum induced matching has size exactly `.

Figure 1: An illustration of a family of outerplanar graphs for which the lower bound on
the size of an induced matching is tight.

4. Applications to parameterized computation

In this section we apply our previous results to obtain parameterized algorithms for IM

on graphs of bounded genus. Let (G, k) be an instance of IM where G has n vertices and
genus g for some integer constant g ≥ 0.
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4.1. A problem kernel

We first show how to kernelize the instance (G, k) when G is planar (i.e., for the case
g = 0). We then extend the results to graphs with genus g for any integer constant g > 0.

Theorem 2.9 shows that any twinless planar graph on n vertices has an induced match-
ing of at least n/40 edges. Observing that if u is a vertex in G that has a twin then
mim(G) = mim(G − u), by repeatedly removing every vertex in G with a twin, we end
up with a twinless graph G′ such that G has an induced matching of size k if and only if
G′ does. If k ≤ n(G′)/40 then the instance (G′, k) of IM can be accepted; otherwise, the
instance (G′, k) is a kernel of (G, k) with n(G′) ≤ 40k, and we can work on (G′, k).

Therefore, our task amounts to reducing the graph G to the twinless graph G′. We
describe next how this can be done in linear time.

Assume that G is given by its adjacency list and that the vertices in G are labeled
by the integers 1, . . . , n. We can further assume that the neighbors of every vertex appear
in the adjacency list in increasing order. If this is not the case, we create the desired
adjacency list by enumerating the vertices in increasing order, and inserting each vertex in
the neighborhood list of each of its adjacent vertices. This can be easily done in O(n) time.

For every vertex v of degree d, we associate a d-digit number xv = v1 · · · vd, where
v1, . . . , vd are the neighbors of v in the order they appear in the adjacency list of v (i.e., in
increasing order). We perform a radix sort on the numbers associated with the vertices of
G using only the first three or less (leftmost) digits of these numbers. Since each digit is a
number in the range 1 . . . n, and there are at most O(n) numbers (twice the number of edges
in the planar graph), radix sort takes O(n) time. Let π be this sorted list. Observe that
two vertices u and v are twins if and only if xu = xv. Moreover, since the graph is planar,
and hence does not contain the complete bipartite graph Kr,r for any integer r ≥ 3, any
twin vertices of degree at least 3 must have their numbers adjacent in π (otherwise there
would be at least 3 vertices with the same neighborhood). Therefore, we can recognize the
twins in G as follows. Process the numbers in π in order: Let xu and xv be two adjacent
numbers in π, and assume that xu appears before xv. We check whether u and v are twins
by comparing the corresponding digits of xu and xv. If u and v are twins, we mark u.
When we have finished this process, we remove all marked vertices from the graph. We let
G′ be the resulting graph. Since for each number xu in π we spend time proportional to
the number of digits in xu and that of the number appearing next to xu in π, the running
time is proportional to the sum of the degrees of the vertices in G, which is O(n).

Theorem 4.1. Let (G, k) be an instance of IM where G is a planar graph on n vertices.
Then in O(n) time we can compute an instance (G′, k′) where (G′, k′) is a kernel of (G, k),
k′ ≤ k, and such that either n(G′) ≥ 40k′ and we can accept the instance (G, k), or n(G′) <
40k′.

The above theorem gives a kernel of size 40k for Planar-IM, and is a significant
improvement on the results in [8] where a kernel of size O(k) was derived without the
constant in the asymptotic notation being specified. The above results give a concrete
value for the bound on the kernel size. Moreover, this value is moderately small and the
analysis techniques are much simpler when compared to the technique of decomposing a
planar graph into regions used in [8].

The same technique can be used to eliminate twin vertices from a graph with genus g.
Using Euler’s formula on Kr,r with the fact that faces in an embedded bipartite graph have
length at least 4, it can be easily shown that:
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Proposition 4.2. A graph with genus g does not contain the complete bipartite graph Kr,r

for any r > 2 + 2
√

g.

Using Theorem 2.7 and Proposition 4.2, Theorem 4.1 can now be generalized to graphs
with bounded genus.

Theorem 4.3. Let (G, k) be an instance of IM where G is a graph on n vertices with genus
g. Then in O(gn) time we can compute an instance (G′, k′) where (G′, k′) is a kernel of
(G, k), k′ ≤ k, and such that either n(G′) ≥ (49 + 7

√
1 + 48g)k′ + 10g and we can accept

the instance (G, k), or n(G′) < (49 + 7
√

1 + 48g)k′ + 10g.

4.2. Parameterized algorithms for IM on graphs with bounded genus

We again begin with the planar case. Assume that we have an instance (G, k) of
Planar-IM. By Theorem 4.1, we can assume that after an O(n) preprocessing time, the
number of vertices n in G satisfies n ≤ 40k. We will show how to design a parameterized
algorithm for the Planar-IM problem. Our algorithm is a bounded-search-tree algorithm
that uses the Lipton-Tarjan separator theorem [7]. Our results answer an open question
posed by [8] of whether a bounded-search-tree algorithm exists for Planar-IM. We also
show at the end of this section how these results can be extended to bounded genus graphs.

Theorem 4.4 ([7]). Given a planar graph G = (V,E) on n vertices, there is a linear time
algorithm that partitions V into vertex-sets A,B, S such that:

(1) |A|, |B| ≤ 2n/3;
(2) |S| ≤ √

8n; and
(3) S separates A and B, i.e. there is no edge between a vertex in A and and a vertex

in B.

Given an instance (G, k) of Planar-IM, where G = (V,E) and |V | = n, we partition
V into vertex-sets A,B, S according to the Lipton-Tarjan theorem. Let GA, GB , and GS

be the subgraphs of G induced by the vertices in A, B, and S, respectively. The idea
is simple: separate the graph by enumerating a possible status for the vertices in S, and
then use a divide-and-conquer approach. However, special care needs to be taken when
enumerating the vertices in S as this enumeration is not straightforward. We outline the
general approach below

Each vertex u in S is either an endpoint of an edge in the induced matching or not.
Therefore, we assign each vertex u two possible statuses: status 0 if u is an endpoint of an
edge in the induced matching and 1 if it is not. Suppose that we have assigned a status to
every vertex u in S. If the assigned status to u is 0, we simply remove u (and its incident
edges) from G. If the assigned status to u is 1 and there is an edge uu′ where u′ ∈ S
and the status assigned to u′ is 1, then uu′ has to be an edge in the induced matching if
our enumeration is correct. Therefore, we can add uu′ to the matching and remove all the
neighbors of u and u′ from G. If the assigned status to u is 1, and no vertex u′ ∈ S exists
such that the assigned status to u′ is 1, then we further assign u two statuses: status 1A if
u is matched to a vertex in GA in the induced matching, and status 1B if u is matched to a
vertex in GB . In the former case, we add u to GA and remove all its neighbors in GB , and
in the latter case, we add u to B and remove all its neighbors in GA.

After assigning each vertex in S a status from {0, 1A, 1B}, and updating the graph
according to the above description, GA and GB are separated, and we can recurse on them
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to compute an induced matching MA of GA and MB of GB . We then return MA ∪ MB

plus all the edges uu′ where u, u′ ∈ S, and the assigned status to u and u′ is 1. Note that
since our enumeration might be incorrect, the returned set of edges may not correspond to
an induced matching. Therefore, we will need to verify that the returned set corresponds
to an induced matching before returning it.

If there is an induced matching of at least k edges in G, then it is not difficult to see that
at least one enumeration will return such an induced matching. Otherwise, no enumeration
can find an induced matching of at least k edges, and we reject the instance.

Finally, note that in the recursive calls, some of the vertices in GA and GB may have
already been assigned the status 1, and we need to respect the assigned statuses in any
possible future enumeration of those vertices in GA and GB .

A standard analysis shows that the running time of the algorithm is O(225
√

n). Noting
that n ≤ 40k, we have the following theorem:

Theorem 4.5. In time O(2159
√

k + n), it can be determined whether a planar graph on n
vertices has an induced matching of at least k edges.

The above results can be extended to bounded genus graphs.

Theorem 4.6. Let G be a graph on n vertices with genus g. In time O(2O(
√

gk) + n), it
can be determined whether G has an induced matching of at least k edges.

Due to the large constant in the exponent of the running time of the above algorithms,
it is clear that these algorithms are far from being practical. We shall present in the next
section more practical parameterized algorithms for IM on bounded genus graphs.

5. Practical algorithms for IM on graphs of bounded genus

We start with the planar case. Let (G, k) be an instance of Planar-IM where G has
n vertices. By Theorem 4.1, we can assume that after an O(n) preprocessing time, the
number of vertices n in G satisfies n ≤ 40k.

Let M be a maximal matching in G and let I = V (G)−V (M). If V (M) contains more
than 8k vertices, then by contracting each edge of M in GM = G(V (M)) then applying the
Four-Color Theorem to GM , we conclude that GM , and hence G, has an induced matching
of at least k edges, and we can accept the instance (G, k). Assume that V (M) < 8k.

The algorithm will look for a set of exactly k edges that form an induced matching.
These edges will have at most 2k endpoints in V (M). Therefore, we start by enumerating
every subset S ⊆ V (M) of size at most 2k. There are at most

∑2k
i=0

(8k
i

)
such subsets. Let

S be such a subset. We work under the assumption that every vertex in S is an endpoint
of an edge in the induced matching until we either find the desired induced matching, or
this assumption turns out to be false. In the latter case we enumerate the next subset S.

If two vertices u and v in S are adjacent, then uv must be an edge in the induced
matching; therefore, in this case we include uv, remove every neighbor of u and v from G,
and reduce k by 1. After we have included (in the induced matching) every edge both of
whose endpoints are in S, every remaining vertex in S must be matched with a vertex in
I. Observe that if there is a vertex w ∈ I that is adjacent to at least two vertices in S,
then none of the edges joining w to S is in the induced matching. Hence, w could not be
an endpoint to an edge in the matching, and w can be removed from I. After removing
every such vertex w from I, each remaining vertex in I is adjacent to at most one vertex in
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S. Now if our original choice of the set S was correct, then by choosing a neighbor in I for
every vertex in S, we should obtain an induced matching in G of size k. If such a choice is
not possible (for example, a vertex in S does not have a neighbor in I), or the total number
of edges in the induced matching at the end of this process is less than k, then our choice of
S was incorrect, and we enumerate the next subset S of V (M) of size at most 2k. After we
have enumerated all subsets of V (M) of size at most 2k, either we have found an induced
matching of at least k edges, or no such matching exists. Noting that there are at most∑2k

i=0

(
8k
i

) ≤ (2k + 1)
(
8k
2k

)
such subsets, and that the number of vertices in G is O(k), we

have the following theorem:

Theorem 5.1. Planar-IM can be solved in O(
(
8k
2k

)
k2 + n) = O(91k + n) time.

This algorithm is more practical for small values of the parameter k than the one
described previously. We can generalize the result to bounded genus graphs:

Theorem 5.2. The IM problem on graphs with n vertices and genus g can be solved in
O(
((7+√1+48g)k

2k

)
k2 + n) time.
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Abstract. We consider the problem of constructing bounded-degree planar geometric
spanners of Euclidean and unit-disk graphs. It is well known that the Delaunay subgraph
is a planar geometric spanner with stretch factor Cdel ≈ 2.42; however, its degree may
not be bounded. Our first result is a very simple linear time algorithm for constructing
a subgraph of the Delaunay graph with stretch factor ρ = 1 + 2π(k cos π

k
)−1 and degree

bounded by k, for any integer parameter k ≥ 14. This result immediately implies an
algorithm for constructing a planar geometric spanner of a Euclidean graph with stretch
factor ρ · Cdel and degree bounded by k, for any integer parameter k ≥ 14. Moreover, the
resulting spanner contains a Euclidean Minimum Spanning Tree (EMST) as a subgraph.
Our second contribution lies in developing the structural results necessary to transfer our
analysis and algorithm from Euclidean graphs to unit disk graphs, the usual model for
wireless ad-hoc networks. We obtain a very simple distributed, strictly-localized algorithm
that, given a unit disk graph embedded in the plane, constructs a geometric spanner with
the above stretch factor and degree bound, and also containing an EMST as a subgraph.
The obtained results dramatically improve the previous results in all aspects, as shown in
the paper.

Introduction

Given a set of points P in the plane, the Euclidean graph E on P is defined to be
the complete graph whose vertex-set is P . Each edge AB connecting points A and B is
assumed to be embedded in the plane as the straight line segment AB; we define its cost
to be the Euclidean distance |AB|. We define the unit disk graph U to be the subgraph of
E consisting of all edges AB with |AB| ≤ 1.

Let G be a subgraph of E. The cost of a simple path A = M0,M1, ...,Mr = B in G is∑r−1
j=0 |MjMj+1|. Among all paths between A and B in G, a path with the smallest cost is

defined to be a smallest cost path and we denote its cost as cG(A,B). A spanning subgraph
H of G is said to be a geometric spanner of G if there is a constant ρ such that for every
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two points A,B ∈ G we have: cH(A,B) ≤ ρ · cG(A,B). The constant ρ is called the stretch
factor of H (with respect to the underlying graph G).

The problem of constructing geometric spanners of Euclidean graphs has recently re-
ceived a lot of attention due to its applications in computational geometry, wireless com-
puting, and computer graphics (see, for example, the recent book [13] for a survey on
geometric spanners and their applications in networks). Dobkin et al. [9] showed that the
Delaunay graph is a planar geometric spanner of the Euclidean graph with stretch factor
(1+

√
5)π/2 ≈ 5.08. This ratio was improved by Keil et al [10] to Cdel = 2π/(3 cos (π/6)) ≈

2.42, which currently stands as the best upper bound on the stretch factor of the Delaunay
graph. Many researchers believe, however, that the lower bound of π/2 shown in [7] is also
an upper bound on the stretch factor of the Delaunay graph. While Delaunay graphs are
good planar geometric spanners of Euclidean graphs, they may have unbounded degree.

Other geometric (sparse) spanners were also proposed in the literature including the
Yao graphs [16], the Θ-graphs [10], and many others (see [13]). However, most of these
proposed spanners either do not guarantee planarity, or do not guarantee bounded degree.

Bose et al. [2, 3] were the first to show how to extract a subgraph of the Delaunay
graph that is a planar geometric spanner of the Euclidean graph with stretch factor ≈ 10.02
and degree bounded by 27. In the context of unit disk graphs, Li et al. [11, 12] gave a
distributed algorithm that constructs a planar geometric spanner of a unit disk graph with
stretch factor Cdel; however, the spanner constructed can have unbounded degree. Wang
and Li [14, 15] then showed how to construct a bounded-degree planar spanner of a unit disk
graph with stretch factor max{π/2, 1+π sin (α/2)}·Cdel and degree bounded by 19+2π/α,
where 0 < α < 2π/3 is a parameter. Very recently, Bose et. al [5] improved the earlier
result in [2, 3] and showed how to construct a subgraph of the Delaunay graph that is a
geometric spanner of the Euclidean graph with stretch factor: max{π/2, 1+π sin (α/2)}·Cdel

if α < π/2 and (1+2
√

3+3π/2+π sin (π/12))·Cdel when π/2 ≤ α ≤ 2π/3, and whose degree
is bounded by 14 + 2π/α. Bose et al. then applied their construction to obtain a planar
geometric spanner of a unit disk graph with stretch factor max{π/2, 1 + π sin (α/2)} · Cdel

and degree bounded by 14 + 2π/α, for any 0 < α ≤ π/3. This was the best bound on the
stretch factor and the degree.

We have two new results in this paper. We develop structural results about Delaunay
graphs that allow us to present a very simple linear-time algorithm that, given a Delaunay
graph, constructs a subgraph of the Delaunay graph with stretch factor 1+2π(k cos (π/k))−1

(with respect to the Delaunay graph) and degree at most k, for any integer parameter
k ≥ 14. This result immediately implies an O(n lg n) algorithm for constructing a planar
geometric spanner of a Euclidean graph with stretch factor of (1 + 2π(k cos (π/k))−1) ·Cdel

and degree at most k, for any integer parameter k ≥ 14 (n is the number of vertices in the
graph). We then translate our work to unit disk graphs and present our second result: a very
simple and strictly-localized distributed algorithm that, given a unit-disk graph embedded in
the plane, constructs a planar geometric spanner of the unit disk graph with stretch factor
(1 + 2π(k cos (π/k))−1) · Cdel and degree bounded by k, for any integer parameter k ≥ 14.
This efficient distributed algorithm exchanges no more than O(n) messages in total, and
runs in O(∆ lg ∆) local time at a node of degree ∆. We show that both spanners include a
Euclidean Minimum Spanning Tree as a subgraph.

Both algorithms significantly improve previous results (described above) in terms of the
stretch factor and the degree bound. To show this, we compare our results with previous
results in more detail. For a degree bound k = 14, our result on Euclidean graphs imply
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a bound of at most 3.54 on the stretch factor. As the degree bound k approaches ∞, our
bound on the stretch factor approaches Cdel ≈ 2.42. The very recent results of Bose et
al. [5] achieve a lowest degree bound of 17, and that corresponds to a bound on the stretch
factor of at least 23. If Bose et al. [5] allow the degree bound to be arbitrarily large (i.e., to
approach ∞), their bound on the stretch factor approaches (π/2) ·Cdel > 3.75. Our stretch
factor and degree bounds for unit disk graphs are the same as our results for Euclidean
graphs. The smallest degree bound derived by Bose et al. [5] is 20, and that corresponds to
a stretch factor of at least 6.19. If Bose et al. [5] allow the degree bound to be arbitrarily
large, then their bound on the stretch factor approaches (π/2) · Cdel > 3.75. On the other
hand, the smallest degree bound derived in Wang et al. [14, 15] is 25, and that corresponds
to a bound of 6.19 on the stretch factor. If Wang et al. [14, 15] allow the degree bound to
be arbitrarily large, then their bound on the stretch factor approaches (π/2) · Cdel > 3.75.
Therefore, even the worst bound of at most 3.54 on the stretch factor corresponding to our
lowest bound on the degree k = 14, beats the best bound on the stretch factor of at least
3.75 corresponding to arbitrarily large degree in both Bose et al. [5] and Wang et al. [14, 15]!

1. Definitions and Background

We start with the following well known observation:

Observation 1.1. A subgraph H of graph G has stretch factor ρ if and only if for every
edge XY ∈ G: the length of a shortest path in H from X to Y is at most ρ · |XY |.

For three non-collinear points X, Y , Z in the plane we denote by ©XY Z the circum-
scribed circle of triangle 4XY Z. A Delaunay triangulation of a set of points P in the plane
is a triangulation of P in which the circumscribed circle of every triangle contains no point
of P in its interior. It is well known that if the points in P are in general position (i.e.,
no four points in P are cocircular) then the Delaunay triangulation of P is unique [8]. In
this paper—as in most papers in the literature—we shall assume that the points in P are
in general position; otherwise, the input can be slightly perturbed so that this condition is
satisfied. The Delaunay graph of P is defined as the plane graph whose point-set is P and
whose edges are the edges of the Delaunay triangulation of P . An alternative definition
that we end up using is:

Definition 1.2. An edge XY is in the Delaunay graph of P if and only if there exists a
circle through points X and Y whose interior contains no point in P .

It is well known that the Delaunay graph of a set of points P is a spanning subgraph of
the Euclidean graph defined on P (i.e., the complete graph on point-set P ) whose stretch
factor is bounded by Cdel = 4

√
3π/9 ≈ 2.42 [10].

Given integer parameter k > 6, the Yao subgraph [16] of a plane graph G is constructed
by performing the following Yao step at every point M of G: place k equally-separated rays
out of M (arbitrarily defined), thus creating k closed cones of size 2π/k each, and choose
the shortest edge in G out of M (if any) in each cone. The Yao subraph consists of edges
in G chosen by either endpoint. Note that the degree of a point in the Yao subgraph of G
may be unbounded.

Two edges MX, MY incident on a point M in a graph G are said to be consecutive if
one of the angular sectors determined by MX and MY contains no neighbors of M .
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2. Bounded Degree Spanners of Delaunay Graphs

Let P be a set of points in the plane and let E be the complete, Euclidean graph defined
on point-set P . Let G be the Delaunay graph of P . This section is devoted to proving the
following theorem:

Theorem 2.1. For every integer k ≥ 14, there exists a subgraph G′ of G such that G′ has
maximum degree k and stretch factor 1 + 2π(k cos π

k )−1.

A linear time algorithm that computes G′ from G is the key component of our proof.
This very simple algorithm essentially performs a modified Yao step (see Section 2.3) and
selects up to k edges out of every point of G. G′ is simply the spanning subgraph of G
consisting of edges chosen by both endpoints.

In order to describe the modified Yao step, we must first develop a better understanding
of the structure of the Delaunay graph G. Let CA and CB be edges incident on point C in
G such that ∠BCA ≤ 2π/k and CA is the shortest edge within the angular sector ∠BCA.
We will show how the above theorem easily follows if, for every such pair of edges CA and
CB:

1. we show that there exists a path p from A to B in G of length |p|, such that:
|CA| + |p| ≤ (1 + 2π(k cos π

k )−1)|CB|, and
2. we modify the standard Yao step to include the edges of this path in G′, in addition

to including the edges picked by the standard Yao step but without increasing the
number of edges chosen at each point beyond k.

This will ensure that: for any edge CB ∈ G that is not included in G′ by the modified Yao
step, there is a path from C to B in G′, whose edges are all included in G′ by the modified
Yao step, and whose cost is at most (1+2π(k cos π

k )−1)|CB|. In the lemma below, we prove
the existence of this path and show some properties satisfied by edges of this path; we will
then modify the standard Yao step to include edges satisfying these properties.

Lemma 2.2. Let k ≥ 14 be an integer, and let CA and CB be edges in G such that
∠BCA ≤ 2π/k and CA is the shortest edge in the angular sector ∠BCA. There exists a
path p : A = M0,M1, ...,Mr = B in G such that:

(i) |CA|+ ∑r−1
i=0 |MiMi+1| ≤ (1 + 2π(k cos π

k )−1)|CB|.
(ii) There is no edge in G between any pair Mi and Mj lying in the closed region delimited

by CA, CB and the edges of p, for any i and j satisfying 0 ≤ i < j − 1 ≤ r.
(iii) ∠Mi−1MiMi+1 > (k−2

k )π, for i = 1, · · · , r − 1.
(iv) ∠CAM1 ≥ π

2 − π
k .

We break down the proof of the above lemma into two cases: when 4ABC contains no
point of G in its interior, and when there are points of G inside 4ABC. We define some
additional notation and terminology first. We define the circle (O) = ©ABC with center

O, and set Θ = ∠BCA. Note that ∠AOB = 2Θ ≤ 4π/k. We will use
_

AB to denote the arc
of (O) determined by points A and B and facing ∠AOB. We will make use of the following
easily verified Delaunay graph property:

Proposition 2.3. If CA and CB are edges of G then the region inside (O) subtended by
chord CA and away from B and the region inside (O) subtended by chord CB and away
from A contain no points.
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2.1. The Outward Path

We consider first the case when no points of G are inside 4ABC. Since both CA and
CB are edges in G and by Proposition 2.3, the region of (O) subtended by chord AB closer
to C has no points of G in its interior. Keil and Gutwin [10] showed that, in this case, there
exists a path between A and B in G inside the region of (O) subtended by chord AB away

from C, whose length is bounded by the length of
_

AB (see Lemma 1 in [10]). We find it
convenient to use a recursive definition of their path (for more details, we refer the reader
to [10]):

1. Base case: If AB ∈ G, the path consists of edge AB.
2. Recursive step: Otherwise, a point must reside in the region of (O) subtended

by chord AB and away from C. Let T be such a point with the property that
the region of ©ATB subtended by chord AB closer to T is empty. We call T an
intermediate point with respect to the pair of points (A,B). Let (O1) be the circle
passing through A and T whose center O1 lies on segment AO and let (O2) be the
circle passing through B and T whose center O2 lies on segment BO. Then both (O1)
and (O2) lie inside (O), and ∠AO1T and ∠TO2B are both less than ∠AOB ≤ 4π/k.
Moreover, the region of (O1) subtended by chord AT that contains O1 is empty, and
the region of (O2) subtended by chord BT and containing O2 is empty. Therefore,
we can recursively construct a path from A to T and a path from T to B, and then
concatenate them to obtain a path from A to B.

Definition 2.4. We call the path constructed above the outward path between A and B.

Keil and Gutwin [10], from this point on, use a purely geometric argument (with no
use of Delaunay graph properties) to show that the length of the obtained path A =
M0,M1, · · · ,Mr = B (where each point Mp, for p = 1, · · · , r − 1, is an intermediate point

with respect to a pair (Mi,Mj), where 0 ≤ i < p < j ≤ r) is smaller than the length of
_

AB.
Figure 1 illustrates an outward path between A and B.

C B = M3

A = M0

M1

M2

≤ 2π/k

Figure 1: Illustration of an outward path.

Proposition 2.5. In every recursive step of the outward path construction described above,
if Mp is an intermediate point with respect to a pair of points (Mi,Mj), then:

(a) there is a circle passing through C and Mp that contains no point of G, and
(b) circles ©CMiMp and ©CMjMp contain no points of G except, possibly, in the region

subtended by chords MiMp and MpMj, respectively, away from C.



414 I. KANJ AND L. PERKOVIĆ

Proof. We assume, by induction, that there are circles (OMi) and (OMj ) passing through
C and Mi, and C and Mj , respectively, containing no points of G, and that the circle
(O) = ©CMiMj contains no point of G in the interior of the region R′ subtended by
chord MiMj closer to C. (This is certainly true in the base case because CA,CB ∈ G, by
Proposition 2.3, and by our initial assumptions).

Since MiMj is not an edge in G, the point Mp chosen in the construction is the point
with the property that the region R of ©MiMpMj subtended by chord MiMj away from
C, contains no point of G. Then the circle passing through C and Mp and tangent to
©MiMpMj at Mp is completely inside (OMi) ∪ (OMj ) ∪ R ∪ R′, and therefore devoid of
points of G. This proves part (a).

The region of ©CMiMp subtended by chord MiMp and containing C is inside (OMi)∪
R∪R′, and therefore contains no point of G in its interior. The same is true for the region
of ©CMjMp subtended by chord MjMp and containing C, and part (b) holds as well.

We are now ready to prove Lemma 2.2 in the case when no point of G lies inside4ABC.
In this case we define the path in Lemma 2.2 to be the outward path between A and B.

Proof of Lemma 2.2 for the case of outward path.

(i) With Θ = ∠BCA, we have |
_

AB | = 2Θ · |OA| and sinΘ = |AB|/(2|OA|). We

note that |CA| + |
_

AB | is largest when |CA| = |CB|, i.e. when CA and CB are
symmetrical with respect to the diameter of ©CAB passing through C; this follows
from the fact that the perimeter of a convex body is not smaller than the perimeter
of a convex body containing it (see page 42 in [1]). If |CA| = |CB|, sin Θ

2 = |AB|
2|CB| .

Using elementary trigonometry, it follows from the above facts and from |CA| ≤ |CB|
that:

|CA|+ |
_

AB | ≤ |CB|+ 2Θ · |OA| = |CB|+ (
Θ

sinΘ
) · |AB| = |CB|+ (

Θ
cos Θ

2

) · |CB|

≤ (1 + 2π(k cos
π

k
)−1)|CB|.

The last inequality follows from Θ ≤ 2π/k and k > 2.
(ii) If MiMj was an edge in G then, for every p between i and j, the circle ©MiMpMj

would not contain C. This, however, contradicts part (a) of Proposition 2.5.
(iii) If the outward path contains a single intermediate point M1, then since M1 lies

inside (O) = ©CAB, ∠AM1B ≥ π − ∠AOB/2 ≥ π − 2π/k = (k − 2)π/k (note that
∠AOB = 2 · ∠ACB), as desired. Now the statement follows by induction on the
number of steps taken to construct the outward path between A and B, using the
fact (proved in [10]) that each angle ∠Mi−1OiMi+1 at the center of the circle (Oi)
defining the intermediate point Mi, is bounded by ∠AOB.

(iv) This follows from the fact that ∠CAM1 ≥ ∠CAB ≥ π/2 − π/k. The last inequality
is true because |CA| ≤ |CB| and ∠BCA ≤ 2π/k in 4CAB.

2.2. The Inward Path

We consider now the case when the interior of 4ABC contains points of G. Let S be
the set of points consisting of points A and B plus all the points interior to 4ABC (note
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that C /∈ S). Let CH(S) be the points on the convex hull of S. Then CH(S) consists of
points N0 = A and Ns = B, and points N1, ..., Ns−1 of G interior to 4ABC. We have the
following proposition:

Proposition 2.6. For every i = 1, · · · , s− 1 :
(a) CNi ∈ G,
(b) |CNi| ≤ |CNi+1|, and
(c) ∠Ni−1NiNi+1 ≥ π, where ∠Ni−1NiNi+1 is the angle facing point C.

Proof. These follow follow from the following facts: CA and CB are edges in G, CA is the
shortest edge in its cone, and hence |CA| ≤ |CNi|, for i = 0, · · · , s, and points N0, · · · , Ns

are on CH(S) in the listed order.

Since |CNi| ≤ |CNi+1| and no point of G lies inside 4NiCNi+1 (Ni and Ni+1 are on
CH(S)), CNi is the shortest edge in the angular sector ∠NiCNi+1. Since ∠NiCNi+1 ≤
∠BCA ≤ 2π/k, by Lemma 2.2 there exists an outward path Pi between Ni and Ni+1, for ev-
ery i = 0, 1, · · · , s−1, satisfying all the properties of Lemma 2.2. Let A = M0,M1, · · · ,Mr =
B be the concatenation of the paths Pi, for i = 0, · · · , r − 1.

Definition 2.7. We call the path A = M0,M1, · · · ,Mr = B constructed above the inward
path between A and B.

Figure 2 illustrates an inward path between A and B.

C B = N3

A = N0

N1

N2

≤ 2π/k

Figure 2: Illustration of an inward path.

We now prove Lemma 2.2 in the case when there are points of G interior to 4ABC.
In this case we define the path in Lemma 2.2 to be the inward path between A and B.

Proof of Lemma 2.2 for the case of inward path.
(i) Define A′′ to be a point on the half-line [CA such that |CA′′| = |CB|, and let

(O′′) = ©CA′′B. Denote by α′′ the length of the arc of ©CA′′B subtended by
chord A′′B and facing ∠A′′CB. For every i = 0, 1, · · · , s − 1, we define arc αi to
be the arc of ©CNiNi+1 subtended by chord NiNi+1 and facing ∠NiCNi+1. For
every i = 0, 1, ..., s − 1, we define N ′

i to be the point on the half-line [CNi such
that |CN ′

i | = |CNi+1|, (Oi) to be the circle ©CN ′
iNi+1, and α′

i to be the arc of (Oi)
subtended by chord N ′

iNi+1 and facing ∠N ′
iCNi+1. Finally, for every i = 0, · · · , s−1,

we define N ′′
i to be the point of intersection of the half-line [CNi and circle (O′′),

and α′′
i to be the arc of (O′′) subtended by chord N ′′

i N ′′
i+1 and facing ∠N ′′

i CN ′′
i+1.

As shown in section 2.1, the length of the outward path Pi between Ni and Ni+1 is
bounded by the length of αi. Since the convex body C1 delimited by CNi, CNi+1

and αi is contained inside the convex body C2 delimited by CN ′
i , CNi+1 and α′

i,
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by [1], the perimeter of C1 is not larger than that of C2. Denoting by |Pi| the length
of path Pi, we get:

|Pi| ≤ |NiN
′
i |+ α′

i, i = 1, · · · , s− 1. (2.1)

Since (Oi) and (O′′) are concentric circles (of center C), and the radius of (Oi) is
not larger than that of (O′′), we have α′

i ≤ α′′
i , for i = 0, · · · , s − 1. It follows from

Inequality (2.1) that:

|Pi| ≤ |NiN
′
i |+ α′′

i , i = 1, · · · , s− 1. (2.2)

Using Inequalities (2.1) and (2.2) we get:

|CA|+
s−1∑
i=0

|Pi| ≤ |CA|+
s−1∑
i=0

|NiN
′
i |+

s−1∑
i=0

α′′
i . (2.3)

Noting that
∑s−1

i=0 |NiN
′
i | = |CB| − |CA|, that

∑r−1
i=0 α′′

i = α′′, and using the same
argument as in part (i) of Lemma 2.2) completes the proof.

(ii) Since CNp ∈ G for p = 1, · · · , s− 1 by part (a) of Proposition 2.6, by planarity of G,
if such an edge between two points Mi and Mj exists, then Mi and Mj must belong
to an outward path between two points Np and Np+1 of CH(S). But this contradicts
part (ii) of Lemma 2.2 for the case of the outward path applied to Np and Np+1.

(iii) For each i = 0, · · · , r, either Mi = Nj ∈ CH(S), or Mi is an intermediate point
on the outward path between two points Np and Nq in CH(S). In the former case
∠Mi−1MiMi+1 ≥ ∠Nj−1MiNj+1 ≥ π ≥ (k − 2)π/k for k ≥ 14 (Nj−1 and Nj are
points before and after Mi = Nj on CH(S)), by part (c) of Proposition 2.6. In the
latter case ∠Mi−1MiMi+1 ≥ (k − 2)π/k by the proof of part (iii) of Lemma 2.2
applied to the outward path between Np and Nq.

(iv) This follows from |CA| = |CM0| ≤ |CM1| and ∠ACM1 ≤ ∠ACB ≤ 2π/k, in triangle
4CAM1.

2.3. The Modified Yao Step

We now augment the Yao step so edges forming the paths described in Lemma 2.2 are
included in G′, in addition to the edges chosen in the standard Yao step. Lemma 2.2 says
that consecutive edges on such paths form moderately large angles. The modified Yao step
will ensure that consecutive edges forming large angles are included in G′. The algorithm
is described in Figure 3.

Since the algorithm selects at most k edges incident on any point M and since only
edges chosen by both endpoints are included in G′, each point has degree at most k in G′.

Before we complete the proof of Theorem 2.1, we show that the running time of the
algorithm is linear. Note first that all edges incident on point M of degree ∆ can be mapped
to the k cones around M in linear time in ∆. Then, the shortest edge in every cone can
be found in time O(∆) (step 2. in the algorithm). Since k is a constant, selecting the `/2
edges clockwise (or counterclockwise) from a sequence of ell < k empty cones around M
(step 3.1.) can be done in O(∆) time. Noting that the total number of edges in G is linear
in the number of vertices completes the analysis.

To complete the proof of Theorem 2.1, all we need to do is show:
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Algorithm Modified Yao step

Input: A Delaunay graph G; integer k ≥ 14
Output: A subgraph G′ of G of maximum degree k

1. define k disjoint cones of size 2π/k around every point M in G;

2. in every non-empty cone, select the shortest edge incident on M in this cone;

3. for every maximal sequence of ` ≥ 1 consecutive empty cones:
3.1. if ` > 1 then select the first b`/2c unselected

incident edges on M clockwise from the sequence
of empty cones and the first d`/2e unselected
edges incident on M counterclockwise from the
sequence of empty cones;

3.2. else (i.e., ` = 1) let MX and MY be the incident
edges on M clockwise and counterclockwise,
respectively, from the empty cone; if either MX
or MY is selected then select the other edge
(in case it has not been selected); otherwise select
the shorter edge between MX and MY breaking
ties arbitrarily;

4. G′ is the spanning subgraph of G consisting of edges selected by both endpoints.

Figure 3: The modified Yao Step.

Lemma 2.8. If edge CB is not selected by the algorithm, let CA be the shortest edge in
the cone out of C to which CB belongs. Then the edges of the path described in Lemma 2.2
are included in G′ by the algorithm.

Proof. For brevity, instead of saying that the algorithm Modified Yao Step selects an
edge MX out of a point M , we will say that M selects edge MX. To get started, it is
obvious that C will select edge CA.

By part (iv) of Lemma 2.2, the angle ∠CAM1 ≥ π/2 − π/k ≥ 6π/k for k ≥ 14.
Therefore, at least two empty cones must fall within the sector ∠CAM1 determined by the
two consecutive edges CA and AM1, and edges AC and AM1 will both be selected by A.
Since edge CA is also selected by point C, edge AC ∈ G′.

By part (iii) of Lemma 2.2, for every i = 1, 2, · · · , r − 1, the angle ∠Mi−1MiMi+1 ≥
(k− 2)π/k ≥ 10π/k for k ≥ 12, and hence at least four cones fall within the angular sector
∠Mi−1MiMi+1. Since by part (ii) of Lemma 2.2 MiC is the only possible edge inside the
angular sector ∠Mi−1MiMi+1, it is easy to see that regardless of the position of these four
cones with respect to edge MiC, Mi ends up selecting all edges MiMi−1, MiMi+1 and MiC
in steps 2 and/or 3 of the algorithm. Since we showed above that A selects edge AM1, this
shows that all edges MiMi+1, for i = 0, · · · , r− 2, are selected by both their endpoints, and
hence must be in G′. Moreover, edge Mr−1Mr = Mr−1B is selected by point Mr−1.

We now argue that edge BMr−1 will be selected by B. First, observe that |BMr−1| ≤
|

_
AB | < |CB|. Let CD be the other consecutive edge to CB in G (other than CMr−1).

Because C does not select B, it follows that ∠Mr−1CD ≤ 6π/k. Otherwise, since CMr−1

and CB are in the same cone, two empty cones would fall within the sector ∠BCD
and C would select B. Since CB is an edge in G, by the characterization of Delaunay
edges [8], ∠CMr−1B + ∠CDB ≤ π. By considering the quadrilateral CDBMr−1, we have
∠Mr−1CD + ∠DBMr−1 ≥ π. This, together with the fact that ∠Mr−1CD ≤ 6π/k, imply
that ∠DBMr−1 ≥ (k − 6)π/k ≥ 8π/k, for k ≥ 14. Therefore, ∠DBMr−1 contains at least
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three cones of size 2π/k out of B. If one of these cones falls within the angular sector
∠CBMr−1 then, since |Mr−1B| < |CB|, BMr−1 must have been selected out of B.

Suppose now that ∠CBMr−1 contains no cone inside and hence ∠CBMr−1 < 4π/k.
If one of these three cones within sector ∠DBMr−1 contains edge CB, then the remaining
two cones must fall within ∠DBC and BMr−1 will get selected out of B when considering
the sequence of at least two empty cones contained within ∠CBD. Suppose now that all
three empty cones fall within ∠CBD. Then we have ∠CBD ≥ 6π/k.

If ∠Mr−1CD ≥ 4π/k, then since Mr−1C and CB belong to the same cone, the sector
∠BCD must contain an empty cone. Because D is exterior to ©CBMr−1, ∠CBMr−1 <
4π/k, and ∠Mr−1CB ≤ 2π/k, it follows that ∠CDB < ∠Mr−1CB + ∠CBMr−1 < 6π/k <
∠DBC. Therefore, by considering the triangle 4CDB, we note that |CB| < |CD|. But
then edge CB would have been selected by C in step 3 since the sector ∠BCD contains an
empty cone, a contradiction.

It follows that ∠Mr−1CD ≤ 4π/k, and therefore ∠Mr−1BD ≥ (k − 4)π/k ≥ 10π/k
for k ≥ 14. This means that at least four cones are contained inside sector ∠DBMr−1.
It is easy to check now that regardless of the placement of the edge BC with respect to
these cones, edge BMr−1 is always selected out of B by the algorithm. This completes the
proof.

Corollary 2.9. A Euclidean Minimum Spanning Tree (EMST) on P is a subgraph of G ′.

Proof. It is well known that a Delaunay graph (G) contains a EMST. If an edge CB is not
in G′, then, by Lemma 2.8, a path from C to B is included in G′. All edges on this path
are no longer than CB, so there is a EMST not including CB.

Since a Delaunay graph of a Euclidean graph of n points can be computed in time
O(n lg n) [8] and has stretch factor Cdel ≈ 2.42, we have the following theorem.

Theorem 2.10. There exists an algorithm that, given a set P of n points in the plane,
computes a plane geometric spanner of the Euclidean graph on P that contains a EMST,
has maximum degree k, and has stretch factor (1+2π(k cos π

k )−1) ·Cdel, where k ≥ 14 is an
integer. Moreover, the algorithm runs in time O(n lg n).

3. Geometric Spanners of Unit Disk Graphs

In this section we generalize our planar geometric spanner algorithm to unit disk graphs.
Unit disk graphs model wireless ad-hoc and sensor networks and, for packet routing and
other applications, a bounded-degree planar geometric spanner of the wireless network is
often desired. Due to the limited computational power of the network devices and the
requirement that the network be robust with respect to device joining and leaving the
network, the construction/algorithm should ideally be strictly-localized: the computation
performed at a point depends solely on the information available at the point and its d-hop
neighbors, for some constant d (in our case d = 2). In particular, no global propagation of
information should take place in the network.

The results in the previous section do not carry over to unit disk graphs because not all
Delaunay graph edges on a point-set P are unit disk edges. However, if U is the unit disk
graph on points in P and UDel(U) is the subgraph of the Delaunay graph on P obtained
by deleting edges of length greater than one unit, then UDel(U) is a connected, planar,
spanning subgraph of U with stretch factor bounded by Cdel (see [11, 4]). Therefore, if we
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apply the results from the previous section to UDel(U) and observe that all edges on the
path defined in Lemma 2.2 must be unit disk edges (given that edges CA and CB are), it
is easy to see that Theorem 2.1 and Theorem 2.10 carry over to unit disk graphs. The only
problem, however, is that the construction of UDel(U) cannot be done in a strictly-localized
manner.

To solve this problem, Wang et al. [11, 12] introduced a subgraph of U denoted
LDel(2)(U). It was shown in [11, 12] that LDel(2)(U) is a planar supergraph of UDel(U),
and hence also has stretch factor bounded by Cdel. Moreover, the results in [6, 15] show
how LDel(2)(U) can be computed with a strictly-localized distributed algorithm exchang-
ing no more than O(n) messages in total (n is the number of points in U), and having a
local processing time of O(∆ lg ∆) = O(n lg n) at a point of degree ∆. In a style similar to
Definition 1.2, LDel(2)(U) can be defined as follows:

Definition 3.1. An edge XY of U is in LDel(2)(U) if and only if there exists a circle
through points X and Y whose interior contains no point of U that is a 2-hop neighbor of
X or Y .

We will use G = LDel(2)(U) as the underlying subgraph of U to replace the Delaunay
graph G used in the previous section. We note that G is planar, is a supergraph of UDel(U),
and hence has stretch factor Cdel. To translate our results to unit disk graphs, we need to
show that the inward and outward paths are still well defined in G. In particular, we need
to show that Lemma 2.2 holds for G = LDel(2)(U). We outline the general approach and
omit the details for lack of space.

The following is equivalent to Proposition 2.3:

Lemma 3.2. If CA and CB are edges of G then the region of (O) = ©ABC subtended by
chord CA and away from B and the region of (O) subtended by chord CB and away from
A contain no points that are two hop neighbors of A, B and C.

Proof. By symmetry it is enough to prove the lemma for the region of (O) subtended by
chord CA and away from B. By Definition 3.1, there is a circle (OCA) passing through C
and A whose interior is empty of any point within two hops of C or A. The region of (O)
subtended by chord CA and away from B is inside this circle, so we only need to argue that
it doesn’t contain two hop neighbors of B either. If it did, say point X, then any neighbor
of X and B would have to be a neighbor of C or A as well, a contradiction.

With this lemma in hand, the recursive construction of the outward path given in
Subsection 2.1 can be applied to the graph G = LDel(2)(U). The following proposition for
G = LDel(2)(U) corresponds to Proposition 2.5 for Delaunay graphs and is proven in an
equivalent manner:

Proposition 3.3. In every recursive step of the outward path construction, if Mp is an
intermediate point with respect to a pair of points (Mi,Mj), then:

(a) there is a circle passing through C and Mp that contains no point of G that is a
two-hop neighbor of C or Mp, and

(b) circles ©CMiMp and ©CMjMp contain no points of G that are two-hop neighbors
of C, Mi and Mp and C, Mj, and Mp, respectively, except, possibly, in the region
subtended by chords MiMp and MpMj, respectively, away from C.

With this proposition, we can show that Lemma 2.2 holds true for G = LDel(2)(U) for
outward paths. It holds for inward paths as well, using the same argument as in Section 2.2.
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Finally, it is obvious how the Modified Yao Step algorithm in Section 2.3 can be easily
described as a strictly-localized algorithm. We can show, therefore, the following theorem:

Theorem 3.4. There exists a distributed strictly-localized algorithm that, given a set P of
n points in the plane, computes a plane geometric spanner of the unit disk graph on P that
contains a EMST, has maximum degree k, and has stretch factor (1 + 2π(k cos π

k )−1) ·Cdel,
for any integer k ≥ 14. Moreover, the algorithm exchanges no more than O(n) messages in
total, and has a local processing time of ∆lg ∆ at a point of degree ∆.

Due to the strictly-localized nature of the algorithm, the algorithm is very robust to
topological changes (such as wireless devices moving or joining or leaving the network), an
essential property for the application of the algorithm in a wireless ad-hoc environment.
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Abstract. The classical Frobenius problem over N is to compute the largest integer g
not representable as a non-negative integer linear combination of non-negative integers
x1, x2, . . . , xk, where gcd(x1, x2, . . . , xk) = 1. In this paper we consider novel generaliza-
tions of the Frobenius problem to the noncommutative setting of a free monoid. Unlike
the commutative case, where the bound on g is quadratic, we are able to show exponential
or subexponential behavior for several analogues of g, with the precise bound depending
on the particular measure chosen.

1. Introduction

Let x1, x2, . . . , xk be positive integers. It is well-known that every sufficiently large
integer can be written as a non-negative integer linear combination of the xi if and only
if gcd(x1, x2, . . . , xk) = 1. The famous Frobenius problem (so-called because, according to
Brauer [2], “Frobenius mentioned it occasionally in his lectures”) is the following:

Given positive integers x1, x2, . . . , xk with gcd(x1, x2, . . . , xk) = 1, find the largest pos-
itive integer g(x1, x2, . . . , xk) which cannot be represented as a non-negative integer linear
combination of the xi.

Although it seems simple at first glance, the Frobenius problem on positive integers has
many subtle and intriguing aspects that continue to elicit study. A recent book by Ramı́rez
Alfonśın [23] lists over 400 references on this problem. Applications to many different fields
exist: to algebra [19]; the theory of matrices [11], counting points in polytopes [1]; the
problem of efficient sorting using Shellsort [17], the theory of Petri nets [25]; the liveness of
weighted circuits [8]; etc.

Generally speaking, research on the Frobenius problem can be classified into three
different areas:
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• Formulas or algorithms for the exact computation of g(x1, . . . , xk), including formu-
las for g where the xi obey certain relations, such as being in arithmetic progression;

• The computational complexity of the problem;
• Good upper or lower bounds on g(x1, . . . , xk).

For k = 2, it is folklore that

g(x1, x2) = x1x2 − x1 − x2; (1.1)

this formula is often attributed to Sylvester [24], although he did not actually state it.
Eq. (1.1) gives an efficient algorithm to compute g for two elements. For k = 3, efficient
algorithms have been given by Greenberg [15] and Davison [10]; if x1 < x2 < x3, these algo-
rithms run in time bounded by a polynomial in log x3. Kannan [18] gave a very complicated
algorithm that runs in polynomial time in log xk if k is fixed, but is wildly exponential in k.
However, Ramı́rez Alfonśın [22] proved that the general problem is NP-hard, under Turing
reductions, by reducing from the integer knapsack problem. So it seems very likely that
there is no simple formula for computing g(x1, x2, . . . , xk) for arbitrary k. Nevertheless,
recent work by Einstein, Lichtblau, Strzebonski, and Wagon [12] shows that in practice the
Frobenius number can be computed relatively efficiently, even for very large numbers, at
least for k ≤ 8.

Another active area of interest is estimating how big g is in terms of x1, x2, . . . , xk for
x1 < x2 < · · · < xk. It is known, for example, that g(x1, x2, . . . , xk) < x2

k. This follows
from Wilf’s algorithm [26]. Many other bounds are known.

One can also study variations on the Frobenius problem. For example, given positive
integers x1, x2, . . . , xk with gcd(x1, x2, . . . , xk) = 1, what is the number f(x1, x2, . . . , xk) of
positive integers not representable as a non-negative integer linear combination of the xi?
Sylvester, in an 1884 paper [24], showed that f(x1, x2) = 1

2(x1 − 1)(x2 − 1).
Our goal in this paper is to generalize the Frobenius problem to the setting of a free

monoid. In this framework, we start with a finite, nonempty alphabet Σ, and consider
the set of all finite words Σ∗. Instead of considering integers x1, x2, . . . , xk, we consider
words x1, x2, . . . , xk ∈ Σ∗. Instead of considering linear combinations of integers, we in-
stead consider the languages {x1, x2, . . . , xk}∗ and x∗1x∗2 · · · x∗k. Actually, we consider several
additional generalizations, which vary according to how we measure the size of the input,
conditions on the input, and measures of the size of the result. For an application of the
noncommutative Frobenius problem, see Clément, Duval, Guaiana, Perrin, and Rindone
[9].

In sections 2 and 3, we introduce the definition of the generalized Frobenius problem.
In sections 4 and 5, we discuss the state complexity of this generalized problem. In sections
5 and 6, we will discuss the longest length and number of omitted words, respectively.

In order to motivate our definitions, we consider the easiest case first: where Σ = {0},
a unary alphabet.

2. The unary case

Suppose xi = 0ai , where ai ∈ N for 1 ≤ i ≤ k. The Frobenius problem is evidently
linked to many problems over unary languages. It figures, for example, in estimating the
size of the smallest DFA equivalent to a given NFA [7].

If L ⊆ Σ∗, by L we mean Σ∗−L, the complement of L. If L is a finite language, by |L|
we mean the cardinality of L. Evidently we have
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Proposition 2.1. Suppose xi = 0ai where ai ∈ N for 1 ≤ i ≤ k, and write S =
{x1, x2, . . . , xk}. Then S∗ is co-finite if and only if gcd(a1, a2, . . . , ak) = 1. Further-
more, if S∗ is co-finite, then the length of the longest word in S∗ is g(a1, a2, . . . , ak), and
|S∗ | = f(a1, a2, . . . , ak).

This result suggests that one appropriate noncommutative generalization of the condi-
tion gcd(a1, a2, . . . , ak) = 1 is that S∗ = {x1, x2, . . . , xk}∗ be co-finite, and one appropriate
generalization of the g function is the length of the longest word not in S ∗.

But there are other possible generalizations. Instead of measuring the length of the
longest omitted word, we could instead consider the state complexity of S ∗. By the state
complexity of a regular language L, written sc(L), we mean the number of states in the
(unique) minimal deterministic finite automaton (DFA) accepting L. In the unary case,
this alternate measure has a nice expression in terms of the ordinary Frobenius function:

Theorem 2.2. Let gcd(a1, a2, . . . , ak) = 1. Then

sc({0a1 , 0a2 , . . . , 0ak}∗) = g(a1, a2, . . . , ak) + 2.

Proof. Let L = {0a1 , 0a2 , . . . , 0ak}∗. Since gcd(a1, a2, . . . , ak) = 1, every word of length >
g(a1, a2, . . . , ak) is contained in L. Thus we can accept L with a DFA having g(a1, . . . , ak)+2
states, using a “tail” of g(a1, . . . , ak) + 1 states and a “loop” of one accepting state. Thus
sc(L) ≤ g(a1, a2, . . . , ak) + 2.

To see sc(L) ≥ g(a1, a2, . . . , ak) + 2, we show that the words ε, 0, 02, . . . , 0g(a1 ,...,ak)+1

are pairwise inequivalent under the Myhill-Nerode equivalence relation. Pick 0i and 0j,
0 ≤ i < j ≤ g(a1, . . . , ak) + 1. Choose z = 0g(a1,...,ak)−i. Then 0iz = 0g(a1,...,ak) 6∈ L, while
0jz = 0g(a1,...,ak)+j−i ∈ L, since j > i.

Corollary 2.3. Let gcd(a1, . . . , ak) = d. Then

sc({0a1 , 0a2 , . . . , 0ak}∗) = d
(
g(a1/d, a2/d, . . . , ak/d) + 1

)
+ 1.

Hence it follows that sc({0a1 , 0a2 , . . . , 0ak}∗) = O(a2) for a = max1≤i≤k ai. Further-
more, this bound is essentially optimal; since g(n, n +1) = n2−n− 1, there exist examples
with sc({0a1 , 0a2 , . . . , 0ak}∗) = Ω(a2).

3. The case of larger alphabets

We now turn to the main results of the paper. Given as input a list of words x1, x2, . . . , xk,
not necessarily distinct, and defining S = {x1, x2, . . . , xk}, we can measure the size of the
input in a number of different ways:

(a) k, the number of words;
(b) n = max1≤i≤k |xi|, the length of the longest word;
(c) m =

∑
1≤i≤k |xi|, the total number of symbols;

(d) sc({x1, x2, . . . , xk}), the state complexity of the language represented by the input.
We may impose various conditions on the input:
(i) Each xi is defined over the unary alphabet;
(ii) S∗ = {x1, x2, . . . , xk}∗ is co-finite
(iii) k = 2, or k is fixed.
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And finally, we can explore various measures on the size of the result:
(1) L = maxx∈Σ∗−S∗ |x|, the length of the longest word not in S∗;
(2) K = maxx∈Σ∗−x∗1x∗2 ···x∗k |x|, the length of the longest word not in x∗1x

∗
2 · · · x∗k;

(3) S = sc(S∗), the state complexity of S∗;
(4) M = |Σ∗ − S∗|, the number of words not in S∗;
(5) S ′ = sc(x∗1x∗2 · · · x∗k);
Clearly not every combination results in a sensible question to study. In order to study

L, the length of the longest word omitted by S∗, we clearly need to impose condition (ii),
that S∗ be co-finite.

We now study under what conditions it makes sense to study K = maxx∈Σ∗−x∗1x∗2···x∗k |x|,
the length of the longest word not in x∗1x

∗
2 · · · x∗k.

Theorem 3.1. Let x1, x2, . . . , xk ∈ Σ+. Then Q = x∗1x
∗
2 · · · x∗k is co-finite if and only if

|Σ| = 1 and gcd(|x1|, . . . , |xk|) = 1.

Proof. If |Σ| = 1 and gcd(|x1|, . . . , |xk|) = 1, then every sufficiently long unary word can be
obtained by concatenations of the xi, so Q is co-finite.

For the other direction, suppose Q is co-finite. If |Σ| = 1, let gcd(|x1|, . . . , |xk|) = d. If
d > 1, Q contains only words of length divisible by d, and so is not co-finite. So d = 1.

Hence assume |Σ| ≥ 2, and let a, b be distinct letters in Σ. Let l = max1≤i≤k |xi|, the
length of the longest word. Let Q′ = ((a2lb2l)k)+. Then we claim that Q′ ∩ Q = ∅. For
if none of the xi consists of powers of a single letter, then the longest block of consecutive
identical letters in any word in Q is < 2l, so no word in Q′ can be in Q. Otherwise, say
some of the xi consist of powers of a single letter. Take any word w in Q, and count the
number n(w) of maximal blocks of 2l or more consecutive identical letters in w. Clearly
n(w) ≤ k. But n(w′) ≥ 2k for any word w′ in Q′. Thus Q is not co-finite, as it omits all
the words in Q′.

4. State complexity results

In this section we study the measures S = sc(S∗), and S ′ = sc(x∗1x∗2 · · · x∗k). First we
review previous results.

Yu, Zhuang, and Salomaa [27] showed that if L is accepted by a DFA with n states,
then L∗ can be accepted by a DFA with at most 2n−1 + 2n−2 states. Furthermore, they
showed this bound is realized, in the sense that for all n ≥ 2, there exists a DFA M with n
states such that the minimal DFA accepting L(M)∗ needs 2n−1 + 2n−2 states. This latter
result was given previously by Maslov [21].

Câmpeanu et al. [3, 5] showed that if a DFA with n states accepts a finite language L,
then L∗ can be accepted by a DFA with at most 2n−3 +2n−4 states for n ≥ 4. Furthermore,
this bound is actually achieved for n > 4 for an alphabet of size 3 or more. Unlike the
examples we are concerned with in this section, however, the finite languages they construct
contain exponentially many words in n.

Holzer and Kutrib [16] examined the nondeterminstic state complexity of Kleene star.
They showed that if an NFA M with n states accepts L, then L∗ can be accepted by an
NFA with n+ 1 states, and this bound is tight. If L is finite, then n− 1 states suffices, and
this bound is tight.

Câmpeanu and Ho [4] gave tight bounds for the number of states required to accept a
finite language whose words are all bounded by length n.
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Proposition 4.1.
(a) nsc({x1, x2, . . . , xk}∗) ≤ m− k + 1.
(b) sc({x1, x2, . . . , xk}∗) ≤ 2m−k+1.
(c) If no xi is a prefix of any other xj, then sc({x1, x2, . . . , xk}∗) ≤ m− k + 2.

We now recall an example providing a lower bound for the state complexity of {x1, x2, . . . , xk}∗
[13]. Let t be an integer ≥ 2, and define words as follows: y := 01t−10 and xi := 1t−i−101i+1

for 0 ≤ i ≤ t− 2. Let St := {0, x0, x1, . . . , xt−2, y}.
Theorem 4.2. S∗

t has state complexity 3t2t−2 + 2t−1.

Corollary 4.3. There exists a family of sets St, each consisting of t + 1 words of length
≤ t + 1, such that sc(S∗

t ) = 2Ω(t). If m is the total number of symbols in these words, then
sc(S∗

t ) = 2Ω(
√

m).

Using similar ideas, we can also create an example achieving subexponential state com-
plexity for x∗1x∗2 · · · x∗k.
Theorem 4.4. Let y and xi be as defined above. Let L = (0∗x∗1x∗2 · · · x∗n−1y

∗)e where
e = (t + 1)(t− 2)/2 + 2t. Then sc(L) ≥ 2t−2.

Proof. Define A = {x0, x1, . . . , xt−2, y, 0} and T = {x1, x2, . . . , xt−2}. For any subset S of
T , say {s1, s2, . . . , sj} with s1 < s2 < · · · sj define

x(S) = yxt−2yxt−3xt−2y · · · yx1x2 · · · xt−2yxs1xs2 · · · xsjy.

Note that x(S) contains t copies of y and at most (t− 2)(t− 1)/2 + t− 2 = (t + 1)(t− 2)/2
x’s. Thus |x(S)| ≤ (t + 1)(t + (t + 1)(t− 2)/2) and |x(S)|0 ≤ 2t + (t + 1)(t− 2)/2.

To get the bound sc(L) ≥ 2t−2, we exhibit 2t−2 pairwise distinct words under the Myhill-
Nerode equivalence relation. Let R and S be two distinct subsets of T , and without loss of
generality, let m ∈ R, m 6∈ S. By the proof of [13, Theorem 13] we have x(R)1t−m ∈ A∗
but x(S)1t−m 6∈ A∗. Since L ⊆ A∗, x(S)1t−m 6∈ L. It remains to see x(R)1t−m ∈ L.

Since x(R)1t−m ∈ A∗, there exists a factorization of x(R)1t−m in terms of elements of
A. However, |x(R)1t−m| ≤ |x(R)|+ t ≤ (t +1)(t + (t + 1)(t− 2)/2 + t) so any factorization
of x(R)1t−m into elements of A contains at most (t + 1)(t− 2)/2 + 2t copies of words other
than 0. Similarly |x(R)1t−m|0 ≤ |x(R)| ≤ (t + 1)(t − 2)/2 + 2t, so any factorization of
x(R)1t−m into elements of A contains at most (t + 1)(t − 2)/2 + 2t copies of the word 0.
Thus a factorization of x(R)1t−m into elements of A is actually contained in L.

Corollary 4.5. There exists an infinite family of tuples (x1, x2, . . . , xk) where m, the total
number of symbols, is O(t4), and sc(x∗1 · · · x∗k) = 2Ω(t) = 2Ω(m1/4).

We now turn to an upper bound on the state complexity of S∗ in the case where the
number of words in S is not specified, but we do have a bound on the length of the longest
word.

Theorem 4.6. Let S = {x1, x2, . . . , xk} be a finite set with max1≤i≤k |xi| = n, that is, the
longest word is of length n. Then sc(S∗) ≤ 2

2|Σ|−1(2n|Σ|n − 1).

Proof. The idea is to create a DFA M = (Q,Σ, δ, q0, F ) that records the last n− 1 symbols
seen, together with the set of the possible positions inside those n − 1 symbols where the
factorization of the input into elements of S could end.

The number of states in this DFA is
∑

0≤i<n |Σ|i2i+1 = 2
2|Σ|−1(2n|Σ|n − 1).
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5. State complexity for two words

In this section we develop formulas bounding the state complexity of {w, x}∗ and w∗x∗.
Here, as usual, g(x1, x2) denotes the Frobenius function introduced in Section 1. We need
the following lemma, which is of independent interest and which generalizes a classical
theorem of Fine and Wilf [14].

Lemma 5.1. Let w and x be nonempty words. Let y ∈ w{w, x}ω and z ∈ x{w, x}ω. Then
the following conditions are equivalent:

(a) y and z agree on a prefix of length |w|+ |x| − gcd(|w|, |x|);
(b) wx = xw;
(c) y = z.

Furthermore, the bound in (a) is optimal, in the sense that for all pairs of lengths (m,n)
there exist w, x with (m,n) = (|w|, |x|) such that wω and xω agree on a prefix of length
|w|+ |x| − gcd(|w|, |x|) − 1.

Proof. (a) =⇒ (b): We prove the contrapositive. Suppose wx 6= xw. Then we prove that
y and z differ at a position ≤ |w|+ |x|−gcd(|w|, |x|). The proof is by induction on |w|+ |x|.
The base case is |w| = |x| = 1 and is left to the reader.

Now assume the result is true for |w| + |x| < k. We prove it for |w| + |x| = k. If
|w| = |x| then y and z must disagree at the |w|’th position or earlier, for otherwise w = x
and wx = xw; since |w| ≤ d = |w|, the result follows. So, without loss of generality, assume
|w| < |x|. If w is not a prefix of x, then y and z disagree at the |w|’th position or earlier,
and again |w| ≤ d.

So w is a proper prefix of x. Write x = wt for some nonempty word t. Now any common
divisor of |w| and |x| must also divide |x| − |w| = |t|, and similarly any common divisor of
both |w| and |t| must also divide |w|+ |t| = |x|. So gcd(|w|, |x|) = gcd(|w|, |t|).

Now wt 6= tw, for otherwise we have wx = wwt = wtw = xw, a contradiction. Then y
begins with ww and z begins with wt. By induction (since |w| + |t| < k) w−1y and w−1z
disagree at position |w| + |t| − gcd(|w|, |t|) or earlier. Hence y and z disagree at position
2|w| + |t| − gcd(|w|, |t|) = d or earlier.

(b) =⇒ (c): If wx = xw, then by the theorem of Lyndon-Schützenberger, both w and
x are powers of a common word u. Hence y = uω = z.

(c) =⇒ (a): Trivial.

For the optimality statement, the words constructed in the paper [6] suffice.

Theorem 5.2. Let w, x ∈ Σ+. Then

sc({w, x}∗) ≤
{
|w|+ |x|, if wx 6= xw;
d (g(|w|/d, |x|/d) + 1) + 2, if wx = xw and d = gcd(|w|, |x|) .

Proof. If wx = xw, then by a classical theorem of Lyndon and Schützenberger [20], we
know there exists a word z and integers i, j ≥ 1 such that w = z i, x = zj . Thus {w, x}∗ =
{zi, zj}∗. Let e = gcd(i, j). Then L = {zi, zj}∗ consists of all words of the form zke for
k > g(i/e, j/e), together with some words of the form zke for 0 ≤ k < g(i/e, j/e). Thus,
as in the proof of Corollary 2.3, we can accept L with a “tail” of e|z|g(i/e, j/e) + 1 states
and a “loop” of e|z| states. Adding an additional state as a “dead state” to absorb unused
transitions gives a total of (e|z|(g(i/e, j/e)+1)+2 states. Since d = e|z|, the bound follows.
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Otherwise, xw 6= wx. Without loss of generality, let us assume that |w| ≤ |x|. Suppose
w is not a prefix of x. Let p be the longest common prefix of w and x. Then we can write
w = paw′ and x = pbx′ for a 6= b. Then we can accept {w, x}∗ with a transition diagram
that has one chain of nodes labeled p leading from q0 to a state q, and two additional
chains leading from q back to q0, one labled aw′ and one labeled bx′. Since a 6= b, this is
a DFA. One additional “dead state” might be required to absorb transitions on letters not
mentioned. The total number of states is |p|+ 1 + |w ′|+ |x′|+ 1 ≤ |w|+ |x|.

Finally, suppose |w| ≤ |x| and w is a prefix of x. We claim it suffices to bound the longest
common prefix between any word of w{w, x}∗ and x{w, x}∗. For if the longest common
prefix is of length b, we can distinguish between them after reading b + 1 symbols. The
b+1’th symbol must be one of two possibilities, and we can use back arrows in the transition
diagram to the appropriate state. We may need one additional state as a “dead state”, so
the total number of states needed is b + 2. But from Lemma 5, we know b ≤ |w|+ |x| − 2.

Theorem 5.3. Let w, x ∈ Σ+. Then

sc(w∗x∗) ≤
{
|w| + 2|x|, if wx 6= wx;
d(g(|w|/d, |x|/d) + 1) + 2, if wx = xw and d = gcd(|w|, |x|) .

Proof. Similar to the proof of the previous theorem. Omitted.

6. Longest word omitted

In this section we assume that S = {x1, x2, . . . , xk} for finite words x1, x2, . . . , xk, and
S∗ is co-finite. We first obtain an upper bound on the length of the longest word not in S ∗.

Theorem 6.1. Suppose |xi| ≤ n for all i. Then if S∗ is co-finite, the length of the longest
word not in S∗ is < 2

2|Σ|−1(2n|Σ|n − 1).

In the rest of this section we show that the length of the longest word not in S ∗ can be
exponentially long in n. We need several preliminary results first.

We say that x is a proper prefix of a word y if y = xz for a nonempty word z. Similarly,
we say x is a proper suffix of y if y = zx for a nonempty word z.

Proposition 6.2. Let S be a finite set of nonempty words such that S∗ is co-finite, and
S∗ 6= Σ∗. Then for all x ∈ S, there exists x′ ∈ S such that x is a proper prefix of x, or vice
versa. Similarly, for all x ∈ S, there exists x′ ∈ S such that x is a proper suffix of x′, or
vice versa.

Proof. Let x ∈ S. Since S∗ 6= Σ∗, there exists v ∈ S∗. Since S∗ is co-finite, S∗ ∩ x∗v is
nonempty. Let i ≥ 0 be the smallest integer such that xiv ∈ S∗; then i ≥ 1, for otherwise
v ∈ S∗. Since xiv ∈ S∗, there exist y1, y2, . . . , yj ∈ S such that xiv = y1y2 . . . yj. Now
y1 6= x, for otherwise by cancelling an x from both sides, we would have xi−1v ∈ S∗,
contradicting the minimality of i. If |x| < |y1|, then x is a proper prefix of y1, while if
|x| > |y1|, then y1 is a proper prefix of x.

A similar argument applies for the result about suffixes.
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Next, we give two lemmas that characterize those sets S such that S∗ is co-finite, when
S is a set containing words of no more than two distinct lengths.

Lemma 6.3. Suppose S ⊆ Σm ∪ Σn, 0 < m < n, and S∗ is co-finite. Then Σm ⊆ S.

Proof. If S∗ = Σ∗, then S must contain every word x of length m, for otherwise S∗ would
omit x. So assume S∗ 6= Σ∗.

Let x ∈ Σm. Then S∗ ∩ xΣ∗ is nonempty, since S∗ is co-finite. Choose v such that
xv ∈ S∗; then there is a factorization xv = y1y2 · · · yj where each yi ∈ S. If y1 ∈ Σm, then
x = y1 and so x ∈ S. Otherwise y1 ∈ Σn. By Proposition 6.2, there exists z ∈ S such that
y1 is a proper prefix of z or vice versa. But since S contains words of only lengths m and
n, and y1 ∈ Σn, we must have z ∈ Σm, and z is a prefix of y1. Then x = z, and so x ∈ S.

Lemma 6.4. Suppose S ⊆ Σm ∪ Σn, with 0 < m < n < 2m and S∗ is co-finite. Then
Σl ⊆ S∗, where l = m|Σ|n−m + n−m.

Proof. Let x be a word of length l that is not in S∗. Then we can write x uniquely as

x = y0z0y1z1 · · · y|Σ|n−m−1z|Σ|n−m−1y|Σ|n−m , (6.1)

where yi ∈ Σn−m for 0 ≤ i ≤ |Σ|n−m, and zi ∈ Σ2m−n for 0 ≤ i < |Σ|n−m.
Now suppose that yiziyi+1 ∈ S for some i with 0 ≤ i < |Σ|n−m. Then we can write

x =

 ∏
0≤j<i

yjzj

 yiziyi+1

 ∏
i+1≤k≤|Σ|n−m

zkyk

 .

Note that |yjzj | = |zkyk| = m. From Lemma 6.3, each term in this factorization is in S.
Hence x ∈ S∗, a contradiction. It follows that

yiziyi+1 6∈ S for all i with 0 ≤ i < |Σ|n−m. (6.2)

Now the factorization of x in Eq. (6.1) uses |Σ|n−m + 1 y’s, and there are only |Σ|n−m

distinct words of length n−m. So, by the pigeonhole principle, we have yp = yq for some
0 ≤ p < q ≤ |Σ|n−m. Now define

u = y0z0 · · · yp−1zp−1

v = ypzp · · · yq−1zq−1

w = yqzq · · · y|Σ|n−m ,

so x = uvw. Since S∗ is co-finite, there exists a smallest exponent k ≥ 0 such that
uvkw ∈ S∗.

Now let uvkw = x1x2 · · · xj be a factorization into elements of S. Then x1 is a word of
length m or n. If |x1| = n, then comparing lengths gives x1 = y0z0y1. But by (6.2) we know
y0z0y1 6∈ S. So |x1| = m, and comparing lengths gives x1 = y0z0. By similar reasoning
we see that x2 = y1z1, and so on. Hence xj = y|Σ|n−m−1z|Σ|n−m−1y|Σ|n−m ∈ S. But this
contradicts (6.2).

Thus, our assumption that x 6∈ S∗ must be false, and so x ∈ S∗. Since x was arbitrary,
this proves the result.
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Now we can prove an upper bound on the length of omitted words, in the case where
S contains words of at most two distinct lengths.

Theorem 6.5. Suppose S ⊆ Σm ∪ Σn, where 0 < m < n < 2m, and S∗ is co-finite. Then
the length of the longest word not in S∗ is ≤ g(m, l) = ml−m−l, where l = m|Σ|n−m+n−m.

Proof. Any word in S∗ must be a concatenation of words of length m and n. If gcd(m,n) =
d > 1, then S∗ omits all words whose length is not congruent to 0 (mod d), so S∗ is not
co-finite, contrary to the hypothesis. Thus gcd(m,n) = 1.

By Lemmas 6.3 and 6.4, we have Σm ∪ Σl ⊆ S∗, where l = m|Σ|n−m + n−m. Hence
S∗ contains all words of length m and l; since gcd(m, l) = 1, S∗ contains all words of length
> g(m, l).

Remark. We can actually improve the result of the previous theorem to arbitrary m and n,
thus giving an upper bound in the case where S consists of words of exactly two distinct
lengths. Details will appear in a later version of the paper.

Corollary 6.6. Suppose S ⊆ Σm ∪ Σn, where 0 < m < n < 2m and gcd(m,n) = 1. Then
S∗ is co-finite if and only if Σm ⊆ S and Σl ⊆ S∗, where l = m|Σ|n−m + n−m.

Proof. If S∗ is co-finite, then by Lemmas 6.3 and 6.4 we get Σm ⊆ S and Σl ⊆ S∗. On
the other hand, if Σm ⊆ S and Σl ⊆ S∗, then since gcd(m, l) = 1, every word of length
> g(m, l) is contained in S∗, so S∗ is co-finite.

We need one more technical lemma.

Lemma 6.7. Suppose S ⊆ Σm ∪ Σn, where 0 < m < n < 2m, and S∗ is co-finite. Let τ
be a word not in S∗ where |τ | = n + jm for some j ≥ 0. Then S∗ ∩ (τΣm)i−1τ = ∅ for
1 ≤ i < m.

Proof. As before, since S∗ is co-finite we must have gcd(m,n) = 1. Define Li = (τΣm)i−1τ
for 1 ≤ i < m. We prove that S∗ ∩ Li = ∅ by induction on i.

The base case is i = 1. Then Li = L1 = {τ}. But S∗ ∩ {τ} = ∅ by the hypothesis
that τ 6∈ S∗.

Now suppose we have proved the result for some i, i ≤ m− 2, and we want to prove it
for i + 1. First we show that S∗ ∩ Σn−mLi = ∅. Assume that uw ∈ S∗ for some u ∈ Σn−m

and w ∈ Li. Then there is a factorization

uw = y1y2 · · · yt (6.3)

where yh ∈ S for 1 ≤ h ≤ t. Now |uw| = n − m + (n + jm + m)(i − 1) + n + jm =
n(i + 1) + m(ji + i− 2). Since 0 < i + 1 < m, m does not divide |uw|. Thus at least one of
the yh is of length n, for otherwise (6.3) could not be a factorization of uw into elements of
S. Let r be the smallest index such that |yr| = n. Then we have

uw =
all of length m︷ ︸︸ ︷
y1y2 · · · yr−1

of length n︷︸︸︷
yr yr+1 · · · yt.

Hence |y1y2 · · · yr| = m(r − 1) + n = mr + n−m. Since, by Lemma 6.3 we have Σm ⊆ S,
we can write y1 · · · yr = uz1 · · · zr, where zh ∈ S for 1 ≤ h ≤ r. Thus

uw = y1 · · · yr−1yryr+1 · · · yt

= uz1 · · · zryr+1 · · · yt;
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and, cancelling the u on both sides, we get w = z1 · · · zryr+1 · · · yt. But each term on the
right is in S, so w ∈ S∗. But this contradicts our inductive hypothesis that S∗ ∩ Li = ∅.

So now we know that
S∗ ∩ Σn−mLi = ∅; (6.4)

we’ll use this fact below.
Now assume that S∗ ∩ Li+1 6= ∅. Since Li+1 = τΣmLi, there exists α ∈ Σm and w ∈ Li

such that ταw ∈ S∗. Write ταw = g1g2 · · · gp, where gh ∈ S for 1 ≤ h ≤ p. We claim that
gh ∈ Σm for 1 ≤ h ≤ j + 1. For if not, let k be the smallest index such that |gk| = n. Then
by comparing lengths, we have

τ =
each of length m︷ ︸︸ ︷
g1g2 · · · gk−1

of length n︷︸︸︷
gk

each of length m︷ ︸︸ ︷
g′1g

′
2 · · · g′j−k+1

for some g′1, g′2, . . . , g′j−k+1 ∈ Σm. But this shows τ ∈ S∗, a contradiction. We also have
gj+1 6∈ Σn, for otherwise τ = g1 · · · gjgj+1 ∈ S∗, a contradiction.

Now either gj+2 ∈ Σm or gj+2 ∈ Σn. In the former case, by comparing lengths, we
see that gj+3 · · · gp ∈ Σn−mLi. But this contradicts (6.4). In the latter case, by comparing
lengths, we see gj+3 · · · gp ∈ Li, contradicting our inductive hypothesis. Thus our assump-
tion that S∗ ∩ Li+1 6= ∅ was wrong, and the lemma is proved.

Now we are ready to give a class of examples achieving the bound in Theorem 6.5.
Without lose of generality, let Σ = {0, 1, · · · }. We define r(n, k, l) to be the word of length
l representing n in base k, possibly with leading zeros. For example, r(11, 2, 5) = 01011.
For integers 0 < m < n, we define

T (m,n) = {r(i, |Σ|, n−m)02m−nr(i + 1, |Σ|, n−m) : 0 ≤ i ≤ |Σ|n−m − 2}.
For example, over a binary alphabet we have T (3, 5) = {00001, 01010, 10011}.
Theorem 6.8. Let m,n be integers with 0 < m < n < 2m and gcd(m,n) = 1, and let
S = Σm ∪ Σn−T (m,n). Then S∗ is co-finite and the longest words not in S∗ are of length
g(m, l), where l = m|Σ|n−m + n−m.

Proof. First, let’s prove that S∗ is co-finite. Since Σm ⊆ S, by Corollary 6.6 it suffices to
show that Σl ⊆ S∗, where l = m|Σ|n−m + n−m.

Let x ∈ Σl, and write

x = y0z0y1z1 · · · y|Σ|n−m−1z|Σ|n−m−1y|Σ|n−m

where yi ∈ Σn−m for 0 ≤ i ≤ |Σ|n−m, and zi ∈ Σ2m−n for 0 ≤ i < |Σ|n−m.
If yiziyi+1 ∈ T (m,n) for all i, 0 ≤ i < |Σ|n−m, then since the base-k expansions are

forced to match up, we have yi = r(i, |Σ|, n−m) for 0 ≤ i < |Σ|n−m. But the longest such
word is of length m|Σ|n−m + n − 2m < l, a contradiction. Hence yiziyi+1 ∈ S for some i.
Thus

x =

 ∏
0≤j<i

yjzj

 yiziyi+1

 ∏
i+1≤k≤|Σ|n−m

zkyk

 .

Note that |yjzj | = |zkyk| = m. Since Σm ⊆ S, this gives a factorization of x ∈ S∗. Since x

was arbitrary, we have Σl ⊆ S∗.
Now we will prove that τ 6∈ S∗, where

τ := r(0, |Σ|, n−m)02m−nr(1, |Σ|, n−m)02m−n · · · r(|Σ|n−m − 1, |Σ|, n−m).
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Note that |τ | = |Σ|n−m(n − m) + (|Σ|n−m − 1)(2m − n) = m|Σ|n−m + n − 2m = l − m.
Suppose there exists a factorization τ = w1w2 · · ·wt, where wi ∈ S for 1 ≤ i ≤ t. Since
|τ | is not divisible by m, at least one of these terms is of length n. Let k be the smallest
index such that wk ∈ Σn. then τ = w1 · · ·wk−1wkwk+1 · · ·wt. By comparing lengths, we get
wi = r(i−1, |Σ|, n−m)02m−n for 1 ≤ i < k. Thus wk = r(k−1, |Σ|, n−m)02m−nr(k, |Σ|, n−
m) ∈ S ∩ Σn. But r(k − 1, |Σ|, n −m)02m−nr(k, |Σ|, n −m) ∈ T (m,n), a contradiction.
Thus τ 6∈ S∗.

We may now apply Lemma 6.7 to get that S∗ omits words of the form (τΣm)m−2τ ;
these words are of length (l −m + m)(m− 2) + l −m = lm− l −m = g(m, l).

Corollary 6.9. For each odd integer n ≥ 5, there exists a set of binary words of length at
most n, such that S∗ is co-finite and the longest word not in S∗ is of length Ω(n22n/2).

Proof. Choose m = (n + 1)/2 and apply Theorem 6.8.

Example 6.10. Let m = 3, n = 5, Σ = {0, 1}. Then S = Σ3 +Σ5−{00001, 01010, 10011}.
Then a longest word not in S∗ is 00001010011 000 00001010011, of length 25.

7. Number of omitted words

Recall that f(x1, x2, . . . , xk) is the classical function which, for positive integers x1, . . . , xk

with gcd(x1, . . . , xk) = 1, counts the number of integers not representable as a non-negative
integer linear combination of the xi. In this section we consider a generalization of this
function to the setting of a free monoid, replacing the integers xi with finite words in Σ∗,
and replacing the condition gcd(x1, . . . , xk) = 1 with the requirement that {x1, . . . , xk}∗ be
co-finite.

We have already studied this in the case of a unary alphabet in Section 2, so let us
assume that Σ has at least two letters.

Theorem 7.1. Let x1, x2, . . . , xk ∈ Σ∗ be such that |xi| ≤ n for 1 ≤ i ≤ n. Let S =
{x1, x2, . . . , xk} and suppose S∗ is co-finite. Then

M = |Σ∗ − S∗| ≤ |Σ|q − 1
|Σ| − 1

,

where q = 2
2|Σ|−1(2n|Σ|n − 1).

Proof. From Theorem 6.1, we know that if S∗ is co-finite, the length of the longest omitted
word is < q, where q = 2

2|Σ|−1(2n|Σ|n− 1). The total number of words < q is 1+ |Σ|+ · · ·+
|Σ|q−1 = |Σ|q−1

|Σ|−1 .

We now give an example achieving a doubly-exponential lower bound on M.

Theorem 7.2. Let m,n be integers with 0 < m < n < 2m and gcd(m,n) = 1, and let
S = Σm ∪ Σn − U(m,n), where U is defined by

U(m,n) = {r(i, |Σ|, n−m)02m−nr(j, |Σ|, n−m) : 0 ≤ i < j ≤ |Σ|n−m − 1}.
Then S∗ is co-finite and S∗ omits at least 2|Σ|n−m − |Σ|n−m − 1 words.

Proof. Similar to that of Theorem 6.8.
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Abstract. We prove space hierarchy and separation results for randomized and other
semantic models of computation with advice. Previous works on hierarchy and separation
theorems for such models focused on time as the resource. We obtain tighter results with
space as the resource. Our main theorems are the following. Let s(n) be any space-
constructible function that is Ω(log n) and such that s(an) = O(s(n)) for all constants a,
and let s′(n) be any function that is ω(s(n)).

There exists a language computable by two-sided error randomized machines
using s′(n) space and one bit of advice that is not computable by two-sided
error randomized machines using s(n) space and min(s(n), n) bits of advice.
There exists a language computable by zero-sided error randomized machines
in space s′(n) with one bit of advice that is not computable by one-sided error
randomized machines using s(n) space and min(s(n), n) bits of advice.

The condition that s(an) = O(s(n)) is a technical condition satisfied by typical space
bounds that are at most linear. We also obtain weaker results that apply to generic
semantic models of computation.

1. Introduction

A hierarchy theorem states that the power of a machine increases with the amount
of resources it can use. Time hierarchy theorems on deterministic Turing machines follow
by direct diagonalization: a machine N diagonalizes against every machine Mi running in
time t by choosing an input xi, simulating Mi(xi) for t steps, and then doing the oppo-
site. Deriving a time hierarchy theorem for nondeterministic machines is more complicated
because a nondeterministic machine cannot easily complement another nondeterministic
machine (unless NP=coNP). A variety of techniques can be used to overcome this difficulty,
including translation arguments and delayed diagonalization [4, 13, 16].

In fact, these techniques allow us to prove time hierarchy theorems for just about any
syntactic model of computation. We call a model syntactic if there exists a computable
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enumeration of all machines in the model. For example, we can enumerate all nondetermin-
istic Turing machines by representing their transition functions as strings and then iterating
over all such strings to discover each nondeterministic Turing machine.

Many models of computation of interest are not syntactic, but semantic. A semantic
model is defined by imposing a promise on a syntactic model. A machine belongs to the
model if it is output by the enumeration of the underlying syntactic model and its execution
satisfies the promise on every input. Bounded-error randomized Turing machines are an
example of a non-syntactic semantic model. There does not exist a computable enumeration
consisting of exactly all randomized Turing machines that satisfy the promise of bounded
error on every input, but we can enumerate all randomized Turing machines and attempt to
select among them those that have bounded error. In general promises make diagonalization
problematic because the diagonalizing machine must satisfy the promise everywhere but has
insufficient resources to determine whether a given machine from the enumeration against
which it tries to diagonalize satisfies the promise on a given input.

Because of these difficulties there has yet to be a single non-trivial proof of a time
hierarchy theorem for any non-syntactic model. A recent line of research [1, 5, 7, 6, 11] has
provided progress toward proving time hierarchy results for non-syntactic models, including
two-sided error randomized machines. Each of these results applies to semantic models
that take advice, where the diagonalizing machine is only guaranteed to satisfy the promise
when it is given the correct advice. Many of the results require only one bit of advice, which
the diagonalizing machine uses to avoid simulating a machine on an input for which that
machine breaks the promise.

As opposed to the setting of time, fairly good space hierarchy theorems are known for
certain non-syntactic models. In fact, the following simple translation argument suffices
to show that for any constant c > 1 there exists a language computable by two-sided
error randomized machines using (s(n))c space that is not computable by such machines
using s(n) space [10], for any space-constructible s(n) that is Ω(log n). Suppose by way of
contradiction that every language computable by two-sided error machines in space (s(n))c

is also computable by such machines in space s(n). A padding argument then shows that in
that model any language computable in (s(n))c2 space is computable in space (s(n))c and
thus in space s(n). We can iterate this padding argument any constant number of times
and show that for any constant d, any language computable by two-sided error machines
in space (s(n))d is also computable by such machines in s(n) space. For d > 1.5 we
reach a contradiction with the deterministic space hierarchy theorem because randomized
two-sided error computations that run in space s(n) can be simulated deterministically
in space (s(n))1.5 [12]. The same argument applies to non-syntactic models where s(n)
space computations can be simulated deterministically in space (s(n))d for some constant
d, including one- and zero-sided error randomized machines, unambiguous machines, etc.

Since we can always reduce the space usage by a constant factor by increasing the work-
tape alphabet size, the tightest space hierarchy result one might hope for is to separate space
s′(n) from space s(n) for any space-constructible function s′(n) = ω(s(n)). For models
like nondeterministic machines, which are known to be closed under complementation in
the space-bounded setting [8, 14], such tight space hierarchies follow by straightforward
diagonalization. For generic syntactic models, tight space hierarchies follow using the same
techniques as in the time-bounded setting. Those techniques all require the existence of an
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efficient universal machine, which presupposes the model to be syntactic. For that reason
they fail for non-syntactic models of computation such as bounded-error machines.

In this paper we obtain space hierarchy results that are tight with respect to space
by adapting to the space-bounded setting techniques that have been developed for proving
hierarchy results for semantic models in the time-bounded setting. Our results improve
upon the space hierarchy results that can be obtained by the simple translation argument.

1.1. Our Results

Space hierarchy results have a number of parameters: (1) the gap needed between the
two space bounds, (2) the amount of advice that is needed for the diagonalizing machine
N , (3) the amount of advice that can be given to the smaller space machines Mi, and (4)
the range of space bounds for which the results hold. We consider (1) and (2) to be of
the highest importance. We focus on space hierarchy theorems with an optimal separation
in space – where any super-constant gap in space suffices. The ultimate goal for (2) is to
remove the advice altogether and obtain uniform hierarchy results. As in the time-bounded
setting, we do not achieve this goal but get the next best result – a single bit of advice for
N suffices in each of our results. Given that we strive for space hierarchies that are tight
with respect to space and require only one bit of advice for the diagonalizing machine, we
aim to optimize the final two parameters.

1.1.1. Randomized Models. Our strongest results apply to randomized models. For two-
sided error machines, we can handle a large amount of advice and any typical space bound
between logarithmic and linear. We point out that the latter is an improvement over
results in the time-bounded setting, in the sense that there tightness degrades for all super-
polynomial time bounds whereas here the results remain tight for a range of space bounds.

Theorem 1.1. Let s(n) be any space-constructible function that is Ω(log n) and such that
s(an) = O(s(n)) for all constants a, and let s′(n) be any function that is ω(s(n)). There
exists a language computable by two-sided error randomized machines using s ′(n) space and
one bit of advice that is not computable by two-sided error randomized machines using s(n)
space and min(s(n), n) bits of advice.

For s(n) = log(n), Theorem 1.1 gives a bounded-error machine using only slightly larger
than log n space that uses one bit of advice and differs from all bounded-error machines
using O(log n) space and O(log n) bits of advice. The condition that s(an) = O(s(n)) for
all constants a is a technical condition needed to ensure the construction yields a tight
separation in space. The condition is true of all natural space bounds that are at most
linear. More generally, our construction works for arbitrary space bounds s(n) and space-
constructible s′(n) such that s′(n) = ω(s(n + as(n))) for all constants a.

Our second result gives a separation result with similar parameters as those of Theorem
1.1 but for the cases of one- and zero-sided error randomized machines. We point out that
the separation result for zero-sided error machines is new to the space-bounded setting
as the techniques used to prove stronger separations in the time-bounded setting do not
work for zero-sided error machines. In fact, we show a single result that captures space
separations for one- and zero-sided error machines – that a zero-sided error machine suffices
to diagonalize against one-sided error machines.
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Theorem 1.2. Let s(n) be any space-constructible function that is Ω(log n) and such that
s(an) = O(s(n)) for all constants a, and let s′(n) be any function that is ω(s(n)). There
exists a language computable by zero-sided error randomized machines using s ′(n) space and
one bit of advice that is not computable by one-sided error randomized machines using s(n)
space and min(s(n), n) bits of advice.

1.1.2. Generic Semantic Models. The above results take advantage of specific properties of
randomized machines that do not hold for arbitrary semantic models. Our final results in-
volve a generic construction that applies to a wide class of semantic models which we term
reasonable. We omit the precise definition due to lack of space; but besides randomized
two-, one-, and zero-sided error machines, the notion also encompasses bounded-error quan-
tum machines [15], unambiguous machines [2], Arthur-Merlin games and interactive proofs
[3], etc. When applied to the logarithmic space setting, the construction gives a language
computable within the model with s′(n) space and one bit of advice that is not computable
within the model using O(log n) space and O(1) bits of advice, for any s′(n) = ω(log n).

The performance of the generic construction is poor on the last two parameters we
mentioned earlier – it allows few advice bits on the smaller space side and is only tight
for s(n) = O(log n). Either of these parameters can be improved for models that can be
simulated deterministically with only a polynomial blowup in space – models for which the
simple translation argument works. In fact, there is a trade-off between (a) the amount of
advice that can be handled and (b) the range of space bounds for which the result is tight.
By maximizing the former we get the following.

Theorem 1.3. Fix any reasonable model of computation for which space O(log n) compu-
tations can be simulated deterministically in space O(logd n) for some rational constant d.
Let s′(n) be any function with s′(n) = ω(log n). There exists a language computable using
s′(n) space and one bit of advice that is not computable using O(log n) space and O(log1/d n)
bits of advice.

In fact, a tight separation in space can be maintained while allowing O(log1/d n) advice
bits for s(n) any poly-logarithmic function, but the separation in space with this many
advice bits is no longer tight for larger s(n). By maximizing (b), we obtain a separation
result that is tight for typical space bounds between logarithmic and polynomial.

Theorem 1.4. Fix any reasonable model of computation for which space s computations can
be simulated deterministically in space O(sd) for some constant d. Let s(n) be a space bound
that is Ω(log n) and such that s(n) ≤ nO(1); let s′(n) be a space bound that is constructible
in space o(s′(n)) and such that s′(n + 1) = O(s′(n)). If s′(n) = ω(s(n)) then there is a
language computable in space s′(n) with one bit of advice that is not computable in space
s(n) with O(1) bits of advice.

The first two conditions on s′(n) are technical conditions true of typical space bounds in
the range of interest – between logarithmic and polynomial. When applied to randomized
machines, Theorem 1.4 gives a tight separation result for slightly higher space bounds than
Theorems 1.1 and 1.2, but the latter can handle more advice bits.
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1.2. Our Techniques

Recently, Van Melkebeek and Pervyshev [11] showed how to adapt the technique of
delayed diagonalization to obtain time hierarchies for any reasonable semantic model of
computation with one bit of advice. For any constant a, they exhibit a language that is
computable in polynomial time with one bit of advice but not in linear time with a bits of
advice. Our results for generic models of computation (Theorems 1.3 and 1.4) follow from a
space-efficient implementation and a careful analysis of that approach. The proofs of these
results are omitted here but included in the full paper on our web pages.

Our stronger results for randomized machines follow a different type of argument, which
roughly goes as follows. When N diagonalizes against machine Mi, it tries to achieve
complementary behavior on inputs of length ni by reducing the complement of Mi at length
ni to instances of some hard language L of length somewhat larger than ni, say mi. N cannot
compute L on those instances directly because we do not know how to compute L in small
space. We instead use a delayed computation and copying scheme that forces Mi to aid N
in the computation of L if Mi agrees with N on inputs larger than mi. As a result, either
Mi differs from N on some inputs larger than mi, or else N can decide L at length mi in
small space and therefore diagonalize against Mi at length ni.

The critical component of the copying scheme is the following task. Given a list of
randomized machines with the guarantee that at least one of them satisfies the promise
and correctly decides L at length m in small space, construct a single randomized machine
that satisfies the promise and decides L at length m in small space. We call a procedure
accomplishing this task a space-efficient recovery procedure for L.

The main technical contributions of this paper are the design of recovery procedures
for adequate hard languages L. For Theorem 1.1 we use the computation tableau language,
which is an encoding of bits of the computation tableaux of deterministic machines; we
develop a recovery procedure based on the local checkability of computation tableaux. For
Theorem 1.2 we use the configuration reachability language, which is an encoding of pairs
of configurations that are connected in a nondeterministic machine’s configuration graph;
we develop a recovery procedure from the proof that NL=coNL [8, 14].

We present the basic construction for Theorems 1.1 and 1.2 with the recovery procedures
as black boxes in section 3. The recovery procedure for the computation tableau language
is given in section 4, and the recovery procedure for the configuration reachability language
is given in section 5. Resource analysis of the construction is given in section 6.

1.2.1. Relation to Previous Work. Our high-level strategy is most akin to the one used
in [11]. In the time-bounded setting, [11] achieves a strong separation for bounded-error
randomized machines using the above construction with satisfiability as the hard language
L. Hardness of L follows from the fact that randomized machines can be time-efficiently
deterministically simulated using a randomized two-sided error algorithm for satisfiability.
We point out that some of our results can also be obtained using a different high-level
strategy than the one in [11], which can be viewed as delayed diagonalization with advice.
Some of the results of [11] in the time-bounded setting can also be derived by adapting
translation arguments to use advice [1, 5, 7, 6]. It is possible to derive our Theorems 1.1
and 1.2 following a space-bounded version of the latter strategy. However, the proofs still
rely on the recovery procedure as a key technical ingredient and we feel that our proofs are
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simpler. Moreover, for the case of generic semantic models, our approach yields results that
are strictly stronger.

2. Preliminaries

We assume familiarity with standard definitions for randomized complexity classes,
including two-, one-, and zero-sided error machines. For each machine model requiring
randomness, we allow the machine one-way access to the randomness and only consider
computations where each machine always halts in finite time.

Our separation results apply to machines that take advice. We use α and β to denote
infinite sequences of advice strings. Given a machine M , M/β denotes the machine M
taking advice β. Namely, on input x, M is given both x and β|x| as input. When we are
interested in the execution of M/β on inputs of length n, we write M/b where b = βn.

We consider semantic models of computation, with an associated computable enumer-
ation (Mi)i=1,2,3,... and an associated promise. A machine falls within the model if it is
contained in the enumeration and its behavior satisfies the promise on all inputs.

For a machine M/β∗ that takes advice, we only require that M satisfies the promise
when given the “correct” advice sequence β∗. We note that this differs from the Karp-
Lipton notion of advice of [9], where the machine must satisfy the promise no matter which
advice string is given. A hierarchy for a semantic model with advice under the stronger
Karp-Lipton notion would imply the existence of a hierarchy without advice.

3. Randomized Machines with Bounded Error

In this section we describe the high-level strategy used to prove Theorems 1.1 and 1.2.
Most portions of the construction are the same for both, so we keep the exposition general.
We aim to construct a randomized machine N and advice sequence α witnessing Theorems
1.1 and 1.2 for some space bounds s(n) and s′(n). N/α should always satisfy the promise,
run in space s′(n), and differ from Mi/β for randomized machines Mi and advice sequences
β for which Mi/β behaves appropriately, i.e., for which Mi/β satisfies the promise and uses
at most s(n) space on all inputs.

As with delayed diagonalization, for each Mi we allocate an interval of input lengths
[ni, n

∗
i ] on which to diagonalize against Mi. That is, for each machine Mi and advice

sequence β such that Mi/β behaves appropriately, there is an n ∈ [ni, n
∗
i ] such that N/α

and Mi/β decide differently on at least one input of length n. The construction consists of
three main parts: (1) reducing the complement of the computation of Mi on inputs of length
ni to instances of a hard language L of length mi, (2) performing a delayed computation of
L at length mi on inputs of length n∗

i , and (3) copying this behavior to smaller and smaller
inputs down to input length mi. These will ensure that if Mi/β behaves appropriately,
either N/α differs from Mi/β on some input of length larger than mi, or N/α computes L
at length mi allowing N/α to differ from Mi/b for all possible advice strings b at length ni.
We describe how to achieve (1) for two-sided error machines in section 4 and for one- and
zero-sided error machines in section 5. For now, we assume a hard language L and describe
(2) and (3).

Let us first try to develop the construction without assuming any advice for N or for
Mi and see why N needs at least one bit of advice. On an input x of length ni, N reduces
the complement of Mi(x) to an instance of L of length mi. Because N must run in space
not much more than s(n) and we do not know how to compute the hard languages we use
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with small space, N cannot directly compute L at length mi. However, L can be computed
at length mi within the space N is allowed to use on much larger inputs. Let n∗

i be large
enough so that L at length mi can be deterministically computed in space s′(n∗

i ). We let
N at length n∗

i perform a delayed computation of L at length mi as follows: on inputs of
the form 0`y where ` = n∗

i −mi and |y| = mi, N uses the above deterministic computation
of L on input y to ensure that N(0`y) = L(y).

Since N performs a delayed computation of L, Mi must as well – otherwise N already
computes a language different than Mi. We would like to bring this delayed computation
down to smaller padded inputs. The first attempt at this is the following: on input 0`−1y,
N simulates Mi(0`y). If Mi behaves appropriately and performs the initial delayed com-
putation, then N(0`−1y) = Mi(0`y) = L(y), meaning that N satisfies the promise and
performs the delayed computation of L at length mi at an input length one smaller than
before. However, Mi may not behave appropriately on inputs of the form 0`y; in particular
Mi may fail to satisfy the promise, in which case N would also fail to satisfy the promise
by performing the simulation. If Mi does not behave appropriately, N does not need to
consider Mi and could simply abstain from the simulation. If Mi behaves appropriately on
inputs of the form 0`y, it still may fail to perform the delayed computation. In that case N
has already diagonalized against Mi at input length mi + ` and can therefore also abstain
from the simulation on inputs of the form 0`−1y.

N has insufficient resources to determine on its own if Mi behaves appropriately and
performs the initial delayed computation. Instead, we give N one bit of advice at input
length mi + ` − 1 indicating whether Mi behaves appropriately and performs the initial
delayed computation at length n∗

i = mi + `. If the advice bit is 0, N acts trivially at this
length by always rejecting inputs. If the advice bit is 1, N performs the simulation so
N(0`−1y)/α = Mi(0`y) = L(y).

If we give N one bit of advice, we should give Mi at least one advice bit as well. Other-
wise, the hierarchy result is not fair (and is trivial). Consider how allowing Mi advice effects
the construction. If there exists an advice string b such that Mi/b behaves appropriately and
Mi(0`y)/b = L(y) for all y with |y| = mi, we set N ’s advice bit for input length mi +`−1 to
be 1, meaning N should copy down the delayed computation from length mi + ` to length
mi + ` − 1. Note, though, that N does not know for which advice b the machine Mi/b
appropriately performs the delayed computation at length mi + `. N has at its disposal a
list of machines, Mi with each possible advice string b, with the guarantee that at least one
Mi/b behaves appropriately and Mi(0`y)/b = L(y) for all y with |y| = mi. With this list
of machines as its primary resource, N wishes to ensure that N(0`−1y)/α = L(y) for all y
with |y| = mi while satisfying the promise and using small space.

N can accomplish this task given a space-efficient recovery procedure for L at length mi:
on input 0`−1y, N removes the padding and executes the recovery procedure to determine
L(y), for each b simulating Mi(0`y′)/b when the recovery procedure makes a query y ′. As
the space complexity of the recovery procedures we give in sections 4 and 5 is within a
constant factor of a single simulation of Mi, this process uses O(s(n)) space. We point out
that for Theorem 1.1, the recovery procedure may have two-sided error, while for Theorem
1.2, the recovery procedure must have zero-sided error.

Given a recovery procedure for L, N/α correctly performs the delayed computation on
inputs of length mi + ` − 1 if there is an advice string causing Mi to behave appropriately
and perform the initial delayed computation at length mi + `. We repeat the process on
padded inputs of the next smaller size. Namely, N ’s advice bit for input length mi + `− 2
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is set to indicate if there is an advice string b such that Mi/b behaves appropriately on
inputs of length mi + ` − 1 and Mi(0`−1y)/b = L(y) for all y with |y| = mi. If so, then
on inputs of the form 0`−2y, N/α uses the recovery procedure for L to determine the value
of L(y), for each b simulating Mi(0`−1y′)/b when the recovery procedure makes a query
y′. By the correctness of the recovery procedure, N/α thus correctly performs the delayed
computation on padded inputs of length mi + `−2. If the advice bit is 0, N/α acts trivially
at input length mi + ` − 2 by rejecting immediately.

We repeat the same process on smaller and smaller padded inputs. We reach the con-
clusion that either there is a largest input length n ∈ [mi +1, n∗

i ] where for no advice string
b, Mi/b appropriately performs the delayed computation of L at length n; or N/α correctly
computes L on inputs of length mi. If the former is the case, N/α performs the delayed
computation at length n whereas for each b either Mi/b does not behave appropriately at
length n or it does but does not perform the delayed computation at length n. In either
case, N/α has diagonalized against Mi/b for each possible b at length n. N ’s remaining
advice bits for input lengths [ni, n−1] are set to 0 to indicate that nothing more needs to be
done, and N/α immediately rejects inputs in this range. Otherwise N/α correctly computes
L on inputs of length mi. In that case N/α diagonalizes against Mi/b for all advice strings
b at length ni by acting as follows. On input xb = 0ni−|b|b, N reduces the complement of
the computation Mi(xb)/b to an instance y of L of length mi and then simulates N(y)/α,
so N(xb)/α = N(y)/α = L(y) = ¬Mi(xb)/b.

We have given the major points of the construction, with the notable exception of the
recovery procedures. We develop these in the next two sections. We save the resource
analysis of the construction for the final section.

4. Two-sided Error Recovery Procedure – Computation Tableau Language

In this section we develop a space-efficient recovery procedure for the computation
tableau language (hereafter written COMP), the hard language used in the construction of
Theorem 1.1.

COMP = {〈M,x, t, j〉 |M is a deterministic Turing machine, and in the tth

time step of executing M(x), the j th bit in the machine’s configuration is
equal to 1}.

Let us see that COMP is in fact “hard” for two-sided error machines. For some input x, we
would like to know whether Pr[Mi(x) = 1] < 1

2 . For a particular random string, whether
Mi(x) accepts or rejects can be decided by looking at a single bit in Mi’s configuration after
a certain number of steps – by ensuring that Mi enters a unique accepting configuration
when it accepts. With the randomness unfixed, we view Mi(x) as defining a Markov chain
on the configuration space of the machine. Provided Mi(x) uses at most s(n) space, a
deterministic machine running in 2O(s) time and space can estimate the state probabilities
of this Markov chain to sufficient accuracy and determine whether a particular configuration
bit has probability at most 1/2 of being 1 after t time steps. This deterministic machine
and a particular bit of its unique halting configuration define the instance of COMP we
would like to solve when given input x.

We now present the recovery procedure for COMP. We wish to compute COMP on
inputs of length m in space O(s(m)) with bounded error when given a list of randomized
machines with the guarantee that at least one of the machines computes COMP on all
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inputs of length m using s(m) space with bounded error. Let y = 〈M,x, t, j〉 be an instance
of COMP with |y| = m that we wish to compute.

A natural way to determine COMP(y) is to consider each machine in the list one at a
time and design a test that determines whether a particular machine computes COMP(y).
The test should have the following properties:

(i) if the machine in question correctly computes COMP on all inputs of length m, the
test declares success with high probability, and

(ii) if the test declares success with high probability, then the machine in question gives
the correct answer of COMP(y) with high probability.

Given such a test, the recovery procedure consists of iterating through each machine in the
list in turn. We take the first machine P to pass testing, simulate P (y) some number of
times and output the majority answer. Given a testing procedure with properties (i) and
(ii), correctness of this procedure follows using standard probability arguments (Chernoff
and union bounds) and the assumption that we are guaranteed that at least one machine
in the list of machines correctly computes COMP at length m.

The technical heart of the recovery procedure is the testing procedure to determine if
a given machine P correctly computes COMP(y) for y = 〈M,x, t, j〉. This test is based on
the local checkability of computation tableaux – the j th bit of the configuration of M(x) in
time step t is determined by a constant number of bits from the configuration in time step
t−1. For each bit (t, j) of the tableau, this gives a local consistency check – make sure that
the value P claims for 〈M,x, t, j〉 is consistent with the values P claims for each of the bits
of the tableau that this bit depends on. We implement this intuition as follows.

(1) For each possible t′ and j′, simulate P (〈M,x, t′, j′〉) a large number of times and
fail the test if the acceptance ratio lies in the range [3/8, 5/8].

(2) For each possible t′ and j′, do the following. Let j ′1, ..., j′k be the bits of the
configuration in time step t′ − 1 that bit j ′ in time step t′ depends on. Simulate
each of P (〈M,x, t′, j′〉), P (〈M,x, t′ − 1, j′1〉), ..., P (〈M,x, t′ − 1, j′k〉) a large number
of times. If the majority values of these simulations are not consistent with the
transition function of M , then fail the test. For example, if the bit in column j ′
should not change from time t′− 1 to time t′, but P has claimed different values for
these bits, fail the test.

Each time we need to run multiple trials of P , we run 2O(s(m)) many. The first test checks
that P has error bounded away from 1/2 on input 〈M,x, t, j〉 and on all other bits of
the computation tableau of M(x). This allows us to amplify the error probability of P
to exponentially small in 2s(m). For some constants 0 < γ < δ < 1/2, the first test has
the following properties: (A) If P passes the test with non-negligible probability then for
any t′ and j′, the random variable P (〈M,x, t′, j′〉) deviates from its majority value with
probability less than δ, and (B) if the latter is the case with δ replaced by γ then P passes
the test with overwhelming probability. The second test verifies the local consistency of the
computation tableau claimed by P . Note that if P computes COMP correctly at length m
then P passes each consistency test with high probability, and if P passes each consistency
test with high probability then P must compute the correct value for COMP(y). This along
with the two properties of the first test guarantee that we can choose a large enough number
of trials for the second test so that properties (i) and (ii) from above are satisfied.

Consider the space usage of the recovery procedure. The main tasks are the following:
(a) cycle over all machines in the list of machines, and (b) for each t′ and j′ determine the
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bits of the tableau that bit (t′, j′) depends on and for each of these run 2O(s(m)) simulations
of P . The first requirement depends on the representation of the list of machines. For our
application, we will be cycling over all advice strings for input length m, and this takes
O(s(m)) space provided advice strings for Mi are of length at most s(m). The second
requirement takes an additional O(s(m)) space by the fact that we only need to simulate
P while it uses s(m) space and the fact that the computation tableau bits that bit (t ′, j′)
depends on are constantly many and can be computed very efficiently.

5. Zero-sided error Recovery Procedure – Configuration Reachability

In this section we develop a space-efficient recovery procedure for the configuration
reachability language (hereafter written CONFIG), the hard language used in the construc-
tion of Theorem 1.2.

CONFIG = {〈M,x, c1, c2, t〉 |M is a nondeterministic Turing machine, and
on input x, if M is in configuration c1, then configuration c2 is reachable
within t time steps.

We point out that CONFIG is “hard” for one-sided error machines since a one-sided er-
ror machine can also be viewed as a nondeterministic machine. That is, if we want to
know whether Pr[Mi(x) = 1] < 1

2 for Mi a one-sided error machine that uses s(n) space,
we can query the CONFIG instance

〈
Mi, x, c1, c2, 2O(s(|x|))〉 where c1 is the unique start

configuration, and c2 is the unique accepting configuration.

We now present the recovery procedure for CONFIG. We wish to compute CONFIG
on inputs of length m with zero-sided error and in space O(s(m)) when given a list of ran-
domized machines with the guarantee that at least one of the machines computes CONFIG
on all inputs of length m using s(m) space with one-sided error. Let y = 〈M,x, c1, c2, t〉 be
an instance of CONFIG with |y| = m that we wish to compute.

As we need to compute CONFIG with zero-sided error, we can only output a value of
“yes” or “no” if we are sure this is correct. The outer loop of our recovery procedure is the
following: cycle through each machine in the list of machines, and for each execute a search
procedure that attempts to verify whether configuration c2 is reachable from configuration
c1. The search procedure may output “yes”, “no”, or “fail”, and should have the following
properties:

(i) if the machine in question correctly computes CONFIG at length m, the search
procedure comes to a definite answer (“yes” or “no”) with high probability, and

(ii) when the search procedure comes to a definite answer, it is always correct, no matter
what the behavior of the machine in question.

We cycle through all machines in the list, and if the search procedure ever outputs “yes”
or “no”, we halt and output that response. If the search procedure fails for all machines
in the list, we output “fail”. Given a search procedure with properties (i) and (ii), the
correctness of the recovery procedure follows from the fact that we are guaranteed that one
of the machines in the list of machines correctly computes CONFIG at length m.

The technical heart of the recovery procedure is a search procedure with properties (i)
and (ii). Let P be a randomized machine under consideration, and y = 〈M,x, c1, c2, t〉 an
input of length m we wish to compute. Briefly, the main idea is to mimic the proof that
NL=coNL to verify reachability and un-reachability, replacing nondeterministic guesses
with simulations of P . If P computes CONFIG at length m correctly, there is a high
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probability that we have correct answers to all nondeterministic guesses, meaning property
(i) is satisfied. Property (ii) follows from the fact that the algorithm can discover when
incorrect nondeterministic guesses have been made. For completeness, we explain how the
nondeterministic algorithm of [8, 14] is used in our setting. The search procedure works as
follows.

(1) Let k0 be the number of configurations reachable from c1 within 0 steps, i.e., k0 = 1.
(2) For each value ` = 1, 2, ..., t, compute the number k` of configurations reachable

within ` steps of c1, using only the fact that we have remembered the value k`−1

that was computed in the previous iteration.
(3) While computing kt, experience all of these configurations to see if c2 is among them.
Consider the portion of the second step where we must compute k` given that we have

already computed k`−1. We accomplish this by cycling through all configurations c and for
each one re-experiencing all configurations reachable from c1 within `−1 steps and verifying
whether c can be reached in at most one step from at least one of them. To re-experience
configurations reachable within distance `− 1, we try all possible configurations and query
P to verify a nondeterministic path to each. To check if c is reachable within one step of a
given configuration, we use the transition function of M . If we fail to re-experience all k`−1

configurations or if P gives information inconsistent with the transition function of M at
any point we consider the search for reachability/un-reachability failed with machine P .

An examination of the algorithm reveals that it has property (ii) from above: if the
procedure reaches a “yes” or “no” conclusion for reachability, it must be correct. Further,
by using a large enough number of trials each time we simulate P , we can ensure that we
get correct answers on every simulation of P with high probability if P correctly computes
CONFIG at length m. This implies property (i) from above.

Consider the space usage of the recovery procedure. A critical component is to be able
to cycle over all configurations and determine whether two configurations are “adjacent”.
As the instances of CONFIG we are interested in correspond to a machine which uses s(n)
space, these two tasks can be accomplished in O(s(m)) space. The remaining tasks of
the recovery procedure take O(s(m)) space for similar reasons as given for the recovery
procedure for the computation tableau language in the previous section.

6. Analysis

In this section we explain how we come to the parameters given in the statements of
Theorems 1.1 and 1.2. First, consider the space usage of the construction. The recovery
procedures use O(s(m)) space when dealing with inputs of size m, and the additional tasks
of the diagonalizing machine N also take O(s(m)) space. For input lengths n where N is
responsible for copying down the delayed computation of the hard language L, N executes
the recovery procedure using Mi on padded inputs of one larger length. Thus for such
input lengths, the space usage of N is O(s(n + 1)). For input length ni, N produces
an instance y of the hard language corresponding to complementary behavior of Mi on
inputs of length ni and then simulates N(y). For two-sided error machines, we reduce to
the computation tableau language COMP. When Mi is allowed s(n) space, the resulting
instance of COMP is of size n+O(s(n)). For one- and zero-sided error machines, we reduce
to configuration reachability, and the resulting instance is also of size n + O(s(n)). In both
cases, the space usage of N on inputs of length ni is O(s(ni + O(s(ni)))). We have chosen
COMP and CONFIG as hard languages over other natural candidates (such as the circuit
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value problem for Theorem 1.1 and st-connectivity for Theorem 1.2) because COMP and
CONFIG minimize the blowup in input size incurred by using the reductions.

The constant hidden in the big-O notation depends on things such as the alphabet size
of Mi. If s′(n) = ω(s(n+as(n))) for all constants a, N operating in space s′(n) has enough
space to diagonalize against each Mi for large enough n. To ensure the asymptotic behavior
has taken effect, we have N perform the construction against each machine Mi infinitely
often. We set N ’s advice bit to zero on the entire interval of input lengths if N does not yet
have sufficient space. Note that this use of advice obviates the need for s′(n) to be space
constructible.

Finally consider the amount of advice that the smaller space machines can be given.
As long as the advice is at most s(n), the recovery procedure can efficiently cycle through
all candidate machines (Mi with each possible advice string). Also, to complement Mi for
each advice string at length ni, we need at least one input for each advice string of length
ni. Thus, the amount of advice that can be allowed is min(s(n), n).
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Abstract. Various logical theories can be decided by automata-theoretic methods. No-
table examples are Presburger arithmetic FO(Z, +, <) and the linear arithmetic over the
reals FO(R, +, <), for which effective decision procedures can be built using automata.
Despite the practical use of automata to decide logical theories, many research questions
are still only partly answered in this area. One of these questions is the complexity of
such decision procedures and the related question about the minimal size of the automata
of the languages that can be described by formulas in the respective logic. In this paper,
we establish a double exponential upper bound on the automata size for FO(R,+, <) and
an exponential upper bound for the discrete order over the integers FO(Z, <). The proofs
of these upper bounds are based on Ehrenfeucht-Fräıssé games. The application of this
mathematical tool has a similar flavor as in computational complexity theory, where it can
often be used to establish tight upper bounds of the decision problem for logical theories.

1. Introduction

Various logical theories admit automata-based decision procedures. The idea of using
automata-theoretic methods to decide logical theories goes at least back to Büchi [7]. The
elements of the domain of the logical theory are encoded by words over some alphabet in
such a way that equality and the relations of the logical theory correspond to regular lan-
guages. In order to decide whether a formula is satisfiable, one constructs an automaton
that precisely accepts the representatives of the elements that satisfy the formula. This
automaton can be constructed by recursion over the formula structure, where standard
automata constructions handle the boolean connectives and quantifiers. The satisfiability
problem is thus reduced to the emptiness problem for automata.

The logical theories that admit such automata-based decision procedures are often
called automatic and they have been systematically studied, e.g., in [4, 12, 13]. Prominent
and practically relevant examples are the weak monadic second-order theory of one suc-
cessor WS1S, Presburger arithmetic FO(Z,+, <), and the linear arithmetic over the reals
FO(R,+, <), see, e.g., [5–7]. Tools like MONA [15] and LIRA [3], which have been applied
to various verification problems, implement such automata-based decision procedures for
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logical theories such as WS1S, Presburger arithmetic, and the linear arithmetic over the
reals. Furthermore, model checkers for counter systems like FAST [1, 2] use an automata-
based representation of sets definable in Presburger arithmetic.

A crude complexity analysis of an automata-based decision procedure leads to a non-
elementary worst-case complexity. Namely, for every quantifier alternation there is a poten-
tial exponential blow-up in the state space of the automaton. For WS1S, this wost-case sce-
nario actually exists, since the decision problem for WS1S has a non-elementary worst-case
complexity [20,23]. However, for many other automatic logical theories, the non-elementary
complexity upper bounds of automata-based decision procedures often contrasts with the
known computational complexity upper bounds on the decision problems for the logical the-
ories. Moreover, such exponential blow-ups in the state spaces of the automata are rarely
observed in practice in automata-based decision procedures for Presburger arithmetic and
the linear arithmetic over the reals. In fact, in many cases, one obtains a smaller automa-
ton after eliminating a quantifier. However, only partial answers exist that explain this
phenomenon.

In [14], it is shown that the size of the minimal deterministic automaton that repre-
sents a Presburger definable set is triply exponentially bounded with respect to the formula
length. This upper bound is established by comparing the automata for Presburger arith-
metic formulas with the formulas produced by Reddy and Loveland’s quantifier-elimination
method for Presburger arithmetic [22]. The proof on the upper bound in [14] is rather te-
dious in the sense that several auxiliary upper bounds on the formulas that are generated by
the quantifier-elimination method need to be established. These additional upper bounds
depend on Reddy and Loveland’s quantifier-elimination method. With the slightly different
quantifier-elimination method by Cooper [8], we obtain an upper bound on the automata
size that has at least one additional exponent.

For the linear arithmetic over the reals, the approach of using quantifier-elimination
methods to establish upper bounds on the automata sizes does not lead to a satisfactory
result: an application of this approach establishes only a triple exponential upper bound on
the automata size when using the quantifier-elimination method for the linear arithmetic
over the reals described in [10]. The author is not aware of any quantifier-elimination method
for the linear arithmetic over the reals that would lead to a upper bound on the automata
size that is smaller than triple exponential. However, since there are decision procedures for
the linear arithmetic over the reals that run in double exponential deterministic time [10],
one might conjecture that the automata size is also doubly exponentially bounded.

The main result of this paper proves this conjecture. The presented proof of the double
exponential upper bound is based on Ehrenfeucht-Fräıssé games (EF-games, for short from
now on). It relates the states of a minimal automaton for a formula and the equivalence
classes of a refinement of the equivalence relation determined by EF-games played over
(R,+, <). This proof technique can also be used for other automatic logical theories to
establish tight upper bounds on the automata sizes. As another example, we establish an
exponential upper bound on the automata size for FO(Z, <). Note that the best known
deterministic algorithms that decide FO(Z, <) run in exponential time [11]. In summary,
the results presented in this paper shed light on the complexity of automata-based decision
procedures for logical theories by identifying a relationship to EF-games.

It is worth pointing out that EF-games have already been used in similar contexts.
Closely related to our work is Ladner’s work [17]. He uses EF-games to show decidability
of monadic second-order theories of one successor and first fragments of it. Similar to
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this paper, he relates the equivalence classes determined by EF-games to automata states.
However, Ladner does not focus on the automata sizes and he does not consider FO(R,+, <).

The use of EF-games in computational complexity theory [11] and constraint data-
bases [21] is reminiscent of their use in this paper by partitioning the domain and connecting
such a partition to the definable sets. Roughly speaking, the use EF-games for establish
upper bounds on the decision problem for logical theories is as follows: The key ingredient
for obtaining an upper bound for the respective logical theory is to show that the quantifiers,
which can range over an infinite domain, can be relativized to a finite subset. Usually, one
uses EF-games here to establish upper bounds on the sizes of such sets by analyzing the
information that the formulas of a certain quantifier depth can convey. Given such a result
on relativizing the quantifiers, satisfiability of a formula can be checked by an exhaustive
search. The upper bounds on the sizes of the sets over which the relativized quantifiers
range in turn yield upper bounds on the time and space that is needed to perform this
search. For several logical theories, this use of EF-games yield tight upper bounds on the
computational complexity for their decision problem.

The remainder of the paper is organized as follows. In §2, we give preliminaries. In §3,
we illustrate our method by analyzing the languages that are FO(Z, <)-definable. In §4, we
analyze the languages that are FO(R,+, <)-definable and establish the double exponential
upper bound on the automata size. Finally, in §5, we draw conclusions. Due to space
restrictions some proofs are omitted or sketched. They can be found in the full version of
the paper, which is available from the author’s web-page.

2. Preliminaries

We assume that the reader is familiar with first-order logic and automata theory over finite
and infinite words. Here, we recall the needed background in these areas and fix the notation
and terminology that we use in the remainder of the text.

2.1. Words and Languages

Let Σ be an alphabet. We denote the set of all finite words over Σ by Σ∗ and Σ+ denotes
the set Σ∗ \ {ε}, where ε is the empty word. Σω is the set of all ω-words over Σ. The
concatenation of words is written as juxtaposition. We write |w| for the length of w ∈ Σ∗.
We often write a word w ∈ Σ∗ of length ` ≥ 0 as w(0) . . . w(` − 1) and an ω-word α ∈ Σω

as α(0)α(1)α(2) . . . , where w(i) and α(i) denote the ith letter of w and α, respectively.
For a language L ⊆ Σ∗, the Nerode relation ∼L⊆ Σ∗ × Σ∗ is defined as u ∼L v iff for

all w ∈ Σ∗, it holds that uw ∈ L ⇔ vw ∈ L. Analogously, for an ω-language L ⊆ Σω, we
define ∼L⊆ Σ∗ × Σ∗ as u ∼L v iff for all γ ∈ Σω, it holds that uγ ∈ L⇔ vγ ∈ L.

2.2. First-order Logic

The (first-order) formulas over a signature are defined as usual: they are built from variables
v0, v1, . . . , the symbol ≈ for equality, the atomic formulas over the signature, the boolean
connectives ¬ and ∨, and the quantifier ∃. In this paper, we only consider signatures
that consist of relation symbols. The signature, its relation symbols, and the arities of its
relation symbols are always clear from the context. We write ϕ(x1, . . . , xr) when at most
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the variables x1, . . . , xr occur free in the formula ϕ. The quantifier depth of a formula ϕ is
recursively defined as

qd(ϕ) :=


qd(ψ) if ϕ = ¬ψ,
max{qd(ψ), qd(ψ′)} if ϕ = ψ ∨ ψ′,
1 + qd(ψ) if ϕ = ∃xψ, and
0 otherwise.

A (first-order) structure over a signature consists of a nonempty universe U and it
associates with each relation symbol in the signature a relation over U r, where r is the
arity of the relation symbol. We use R and Z to denote the structures (R,+, <) and (Z, <),
respectively, where + is the ternary addition relation and < is the ordering relation over
the reals or the integers, respectively.

Let A be a structure over some signature and with the universe A. For a1, . . . , ar ∈ A
and a formula ϕ(x1, . . . , xr), we write A |= ϕ[a1 . . . , ar] if ϕ is satisfied in A when the
variable xi is interpreted as ai, for all 1 ≤ i ≤ r. For the sake of brevity, we often write x̄
and ā instead of x1, . . . , xr and a1, . . . , ar, respectively.

Let m, r ∈ N, ā ∈ Ar and b̄ ∈ Ar. We write ā ≡r
m b̄ if for all formulas ϕ(x1, . . . , xr) with

qd(ϕ) ≤ m, it holds that A |= ϕ[ā] ⇔ A |= ϕ[b̄]. Note that the relation ≡r
m partitions the

elements of Ar. The equivalence classes of≡r
m can be game-theoretically characterized by so-

called Ehrenfeucht-Fräıssé games. For details on these games, see, for instance, [9]. Instead
of working directly with ≡r

m, we work with refinements of it, since the reasoning about a
well-chosen refinement of ≡r

m simplifies matters. In particular, it might be difficult for ≡r
m

to directly establish an upper bound on the index of ≡r
m, to identify elements ā, b̄ ∈ Ar that

are in the same equivalence class, and to find a representative of an equivalence class.

2.3. Representation of Sets Definable in Real Addition

Boigelot, Jodogne, and Wolper have shown in [5] that every first-order definable set X ⊆ R
r

in R determines an ω-language L that is in the Borel class Fσ ∩Gδ. In other words, L can
be accepted by a so-called weak deterministic Büchi automaton. In fact, Boigelot, Jodogne,
and Wolper have established in [5] a stronger result. First, they have proved the result for
an extension of R with the additional predicate Z. Second, for a formula ϕ(x1, . . . , xr) over
this extended structure, they have shown how to effectively construct a weak deterministic
Büchi automaton that represents the set {ā ∈ R

r : R |= ϕ[ā]}.
We recall the representation of subsets of R

r by ω-languages from [5]. In the remainder
of the text, let % > 1 and Σ := {0, . . . , %− 1} be fixed. % is called the base. Let r ≥ 1.
(a) Vr denotes the set of all ω-words over the alphabet Σr ∪ {?} of the form v ? γ, where

v ∈ (Σr)+ and γ ∈ (Σr)ω.
(b) Let v ? γ be an ω-word in Vr with v(0) = (v1, . . . , vr). The ω-word v ? γ represents the

vector of real numbers with r components

〈v ? γ〉 := −%|v|−1 ·
( b1...

br

)
+

∑
0<i<|v| %

|v|−i−1 · v(i) +
∑

i≥0 %
−i−1 · γ(i) ,

where bi :=
⌈

vi
%

⌉
, for 1 ≤ i ≤ r. Observe that bi = 0 if vi = 0, and bi = 1, otherwise.

Here, scalar multiplication is as usual and vector addition is componentwise. Note that
we do not distinguish between vectors and tuples.

(c) For a formula ϕ(x1, . . . , xr), we define L(ϕ) := {α ∈ Vr : R |= ϕ[〈α〉]}.
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Note that the encoding v?γ ∈ V1 of a real number is based on the %’s complement represen-
tation. The symbol ? plays the role of a decimal point, separating the integer part v from
the fractional part γ. Furthermore, the first letter determines whether a “track” represents
a number that is greater than or equal to 0, or a number that is less than or equal to 0.
Note that the ω-words 0 ? 0ω and (%− 1) ? (%− 1)ω both represent the number 0, where bω

denotes the infinite repetition of the letter b ∈ Σ.
We overload the notation 〈 · 〉 by using it also for finite nonempty prefixes in Vr. For

v ∈ (Σr)+ and v′ ∈ (Σr)∗, we write 〈v〉 and 〈v ? v′〉 for 〈v ? 0̄ω〉 and 〈v ? v′0̄ω〉, respectively,
where 0̄ denotes the vector (0, . . . , 0) ∈ Σr.

3. Automata Upper Bound for the Ordering over the Integers

Before looking at the ω-languages that can be described by the first-order logic over R,
we look at a simpler case. Namely, we investigate the languages that can be described
by formulas over Z. We establish an exponential upper bound on the automata size for
these languages. The purpose of investigating this simpler case first is twofold. First, it
introduces the main concepts, which we also use in §4 for the ω-languages definable in the
first-order logic over R. Second, it demonstrates the generality of the approach. The results
in this section illustrate the relationship between the equivalence classes of a refinement of
the equivalence relation ≡r

m and the equivalence classes of the Nerode relation of a language
described by a formula ϕ(x1, . . . , xr) over Z with qd(ϕ) ≤ m.

Throughout this section, formulas are over Z’s signature, and m and r range over the
natural numbers. We start with some definitions. For a formula ϕ(x1, . . . , xr), we define
the language

K(ϕ) := {v ∈ (Σr)+ : Z |= ϕ[〈v〉]} .
We partition Z

r by the equivalence relation Er
m that is defined as

ā Er
m b̄ iff sign(ai − aj − c) = sign(bi − bj − c),

for all c, i, j ∈ N with c ≤ m and 1 ≤ i, j ≤ r ,

where ā, b̄ ∈ Z
r, and sign(x) := 0 if x < 0 and sign(x) := 1, otherwise, for x ∈ R. Intuitively

speaking, ā, b̄ ∈ Z
r are in the same equivalence class of Er

m if the distances between their
components are equal up to the threshold m.

Before we launch into the proof of establishing an upper bound on the size of the
minimal deterministic automaton for a formula ϕ(x1, . . . , xr), we give an outline: (i) We
show that Er

2qd(ϕ) refines ≡r
qd(ϕ). (ii) We establish an upper bound on the index of Er

2qd(ϕ) .
(iii) We show that Er

2qd(ϕ) has a congruence property with respect to word concatenation.
(iv) By using (i) and (iii), we show that Er

2qd(ϕ) determines an equivalence relation on (Σr)+

that refines the Nerode relation ∼K(ϕ). Finally, from (ii) we derive an upper bound on the
index of ∼K(ϕ). Note that the equivalence classes of ∼K(ϕ) can be viewed as the states of
the minimal deterministic finite automaton that accepts K(ϕ). The properties (i) to (iv)
correspond to the Lemmas 3.1 to 3.4, respectively, which are given below.

Lemma 3.1. The equivalence relation Er
2m refines the equivalence relation ≡r

m. That
means, ā Er

2m b̄ implies ā ≡r
m b̄, for all ā, b̄ ∈ Z

r.
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To prove Lemma 3.1, we apply a standard technique from model theory. First, we show
that the family (Es

n)s,n∈N of equivalence relations has the following property:

If ā Er
2m+1 b̄ then for every a′ ∈ Z, there is some b′ ∈ Z such that (ā, a′) Er+1

2m (b̄, b′). (3.1)

Properties of this kind are often called back-and-forth properties in the literature. Note
that Er

2m+1 is symmetric. Second, we complete the proof by an induction over m, where we
use the property (3.1) in the induction step for the existential quantifier.

Lemma 3.2. The index of Er
m is at most r! · (m+ 1)r.

Proof. There are at most r! many possibilities to order the r elements increasingly. If in
such an ordering the distance between the ith element x and the (i + 1)st element y is
greater than or equal to m, we have that sign(y − x− c) = 1, for all c ∈ N with c ≤ m. We
obtain that the index is at most r! · (m+ 1)r.

Lemma 3.3. Let u, v ∈ (Σr)+. If 〈u〉 Er
m 〈v〉 then 〈uw〉 Er

m 〈vw〉, for all w ∈ (Σr)∗.

Proof. Let n := |w|, ā := (a1, . . . , ar) := 〈u〉, b̄ := (b1, . . . , br) := 〈v〉, and d̄ := (d1 . . . , dr) :=
〈0̄w〉. We have that 〈uw〉 = %nā+ d̄ and 〈vw〉 = %nb̄+ d̄. Furthermore, it holds that di < %n,
for all i ∈ {1, . . . , r}. Let i, j, c ∈ N with 1 ≤ i, j ≤ r and c ≤ m. We have to show that

sign
(
%n(ai − aj) + di − dj − c

)
= sign

(
%n(bi − bj) + di − dj − c

)
. (3.2)

Case ai − aj = 0. We have that sign(ai − aj) = 1 = sign(aj − ai). From the assumption
ā Er

m b̄, it follows that sign(ai − aj) = sign(bi − bj) and sign(aj − ai) = sign(bj − bi), and
hence, bi − bj = 0. Obviously, the equality (3.2) holds.
Case bi − bj = 0. This case is symmetric to the case ai − aj = 0 above.
Case ai − aj 6= 0 and bi − bj 6= 0. For showing (3.2), it suffices to show the equality

sign
(
ai − aj + di−dj−c

%n

)
= sign

(
bi − bj + di−dj−c

%n

)
. (3.3)

– If m = 0, we have that c = 0 and thus
∣∣ di−dj−c

%n

∣∣ ≤ |di−dj |
%n ≤ %n−1

%n < 1. Since ai − aj 6= 0
and bi − bj 6= 0 and by the assumption ā Er

0 b̄, we conclude that the equality (3.3) holds.
– If m > 0, we have that

∣∣di−dj−c
%n

∣∣ ≤ |di−dj |+|c|
%n ≤ %n−1+|c|

%n ≤ m(%n−1)+m
%n = m. The

equality (3.3) follows from the assumption ā Er
m b̄.

Lemma 3.4. Let ϕ be a formula with at most r free variables and with quantifier depth at
most m. If 〈u〉 Er

2m 〈v〉 then u ∼K(ϕ) v, for all u, v ∈ (Σr)+.

Proof. We prove the lemma by contraposition. Assume that u 6∼K(ϕ) v, i.e., there is a word
w ∈ Σ∗ such that uw ∈ K(ϕ) 6⇔ vw ∈ K(ϕ). It follows that 〈uw〉 6≡r

m 〈vw〉. By Lemma 3.1,
we conclude that 〈uw〉Er

2m 〈vw〉 does not hold. By Lemma 3.3, we obtain that 〈u〉Er
2m 〈v〉

does not hold.

Theorem 3.5. Let ϕ be a formula. The index of ∼K(ϕ) is at most 1 + 2n2
, where n is the

length of the formula ϕ, i.e., ϕ consists of n symbols.

Proof. Let r be the number of free variables of ϕ and m := qd(ϕ). Note that n ≥ r+m+1.
Without loss of generality, we assume that r > 0. By Lemma 3.2, we have that the index
of Er

2m is at most r! · (2m + 1)r ≤ 2r2+rm+r ≤ 2rn ≤ 2n2
. From Lemma 3.4, it follows that

∼K(ϕ) partitions (Σr)+ in at most 2n2
equivalence classes. Note that the empty word can

be in an equivalence class that is distinct from all the others.
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4. Automata Upper Bound for Real Addition

In this section, we establish an upper bound on the automata size for the first-order logic
over R. The proof has a similar structure as the proof in the previous section §3. However,
it is more involved. In §4.1, we define a family (F s

n)s,n∈N of equivalence relations. In §4.1
and §4.2, we show that (F s

n)s,n∈N has similar properties as the family (Es
n)s,n∈N defined in

§3. Namely, (1) we show that each F r
22m+2 refines ≡r

m and (2) we establish a relationship
between the equivalence classes of the congruence relations determined by the definable
ω-languages and equivalences classes of refinements of the equivalence relations (F s

n)s,n∈N.
Finally, in §4.3, we derive the double exponential upper bound on the size of a minimal
Büchi automaton that accepts the ω-language of a formula of the first-order logic over R.

In the following, formulas are always over R’s signature, and r and m range over the
natural numbers.

4.1. Partitioning the Reals by First-order Formulas

The results, which we use later, and their presentation of this subsection are based on
Chapter 22 of Kozen’s book [16]. Since subtle modifications are made, we provide proofs
in the full version of the paper. At the end of this subsection, we comment on these
modifications and their implications.

An integer affine function of arity r is a function f : R
r → R defined by a linear

polynomial with integer coefficients, i.e., there are c0, . . . , cr ∈ Z such that for all x1, . . . , xr ∈
R, it holds that f(x1, . . . , xr) = c0 +

∑
1≤i≤r cixi. For such a function, f ∗ denotes the

function with f ∗(x1, . . . , xr) =
∑

1≤i≤r cixi, for all x1, . . . , xr ∈ R
r. We define ||f || :=

max{0, |c1|, . . . , |cr|}. Let Ar be the set of all integer affine functions of arity r and

Br
m :=

{
f ∈ Ar : ||f || ≤ m and |f(0̄)| ≤ rm

}
.

Definition 4.1. We partition R
r by the equivalence relation F r

m that is defined as

ā F r
m b̄ iff for all f ∈ Br

m, sign(f(ā)) = sign(f(b̄)) ,

where ā, b̄ ∈ R
r.

Note that F r
m decomposes R

r into cells. Each such cell is described by a conjunction
of linear inequations, where the absolute values of the coefficients of the inequations are
bounded. Moreover, we remark that the technique that we present in the following by
connecting such partitions to first-order logic and Ehrenfeucht-Fräıssé games is reminiscent
of techniques in computational complexity (see [11]) and constraint databases (see [21]). A
novel insight is that these partitions are also connected to the relation ∼L(ϕ) for a formula
ϕ. We start with some properties about the family (F s

n)s,n∈N of equivalence relations.

Lemma 4.2. Let ā, b̄ ∈ R
r. If ā F r

4m2 b̄ then for all a′ ∈ R, there is some b′ ∈ R such that
(ā, a′) F r+1

m (b̄, b′).

Similar to Lemma 3.1, we obtain the following lemma by using Lemma 4.2.

Lemma 4.3. For all ā, b̄ ∈ R
r, it holds that if ā F r

22m+2 b̄ then ā ≡r
m b̄.

The following two lemmas show how to obtain a set R ⊆ R
r such that each equivalence

class of F r
m has at least one representative in R. Let σ be an equivalence class of F r

m and
let σ′ be an equivalence class of F r+1

n , where n ∈ N. We say that σ′ is consistent with σ if
(σ × R) ∩ σ′ 6= ∅.
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Lemma 4.4. For each equivalence class σ of F 1
m, we have that

σ ∩ {
d
c : c, d ∈ Z with c 6= 0 and |c|, |d| ≤ 2m2

} 6= ∅ .
Lemma 4.5. Let r > 1, ā ∈ R

r, where σ is the equivalence class of ā with respect to F r
2m2 .

For every equivalence class σ′ of F r+1
m that is consistent with σ, we have that

σ′ ∩ {(
ā, f(ā)+d

c

)
: f ∈ Br

2 and c, d ∈ Z \ {0} with |c| ≤ 2, and |d| < 2
} 6= ∅

if m = 1, and, for m 6= 1, we have that

σ′ ∩ {(
ā, f(ā)

c

)
: f ∈ Br

2m2 and c ∈ Z \ {0} with |c| ≤ 2m2
} 6= ∅ .

Remark 4.6. Before we proceed to establish the upper bound on the size of the minimal
automata representation for the set defined by a formula ϕ, we point out the differences
between the family (F s

n)s,n∈N of equivalence relations and the family of equivalence relations
defined in Kozen’s book [16] in Chapter 22.

In Kozen’s book, two elements ā, b̄ ∈ R
r are related iff sgn(f(ā)) = sgn(f(b̄)), for all

integer affine function f ∈ Ar with ||f || ≤ m and |f(0̄)| ≤ m. Here, sgn denotes the signum
function that is defined as sgn(x) := −1 if x < 0, sgn(x) := 1 if x > 0, and sgn(0) := 0.

There are two differences to our definition. First, we use the function sign instead of
the function sgn. This difference is actually irrelevant. Using sign instead of sgn in the
definition in Kozen’s book would not change the equivalence relations. However, we found
the reasoning in the proofs when using the function sign slightly simpler. Second and more
relevant, we require |f(0̄)| ≤ rm instead of |f(0̄)| ≤ m. The proofs of the Lemmas 4.2 to 4.5
follow the lines of the proofs of the corresponding lemmas in Kozen’s book. However, there
are subtle differences, e.g., in Lemma 4.5, we have the special case for m = 1, which is not
needed in the corresponding lemma in Kozen’s book.

An immediate consequence of only requiring this weaker restriction on the functions
f ∈ Ar is that the equivalence relation F r

m refines the corresponding equivalence relation as
defined in Kozen’s book. The purpose for having finer equivalence relations is the following:
For a formula ϕ(x1, . . . , xr), we show in §4.2 that the equivalence classes of ∼L(ϕ) are
related to the equivalence classes of a certain relation in the family (F s

n)s,n∈N. Without
the weaker requirement we were not able to establish a similar relationship. The problem
can be pinpointed to Lemma 4.8, which is crucial in relating the equivalence relations. The
corresponding statement of Lemma 4.8 would not be correct when using the equivalence
relations as defined in Kozen’s book.

4.2. Relationship to Languages

In this subsection, we establish a relationship between the equivalence relation F r
22m+2+1

and
the congruence relation ∼L(ϕ), where ϕ(x1, . . . , xr) is a formula with qd(ϕ) ≤ m. Namely,
we show that F r

22m+2+1
determines a refinement of the congruence relation ∼L(ϕ).

We start with a technical lemma. Its proof is straightforward and we therefore omit it.
In the following, we will use it without explicitly referring to it.

Lemma 4.7. For f ∈ Ar, u ∈ (Σr)+, u′ ∈ (Σr)∗, and γ ∈ (Σr)ω, the following facts hold:
(1) f(〈uu′〉) = f(0̄) + %|u′|f∗(〈u〉) + f ∗(〈0̄u′〉), and
(2) f(〈u ? u′γ〉) = f(0̄) + f∗(〈u ? u′〉) + %−|u′|f∗(〈0̄ ? γ〉).
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The next two lemmas show that the equivalence relations in the family (F s
n)s,n∈N have

congruence properties on words with respect to word concatenation and show how their
equivalence classes relate to the equivalence classes of the congruence relation ∼L(ϕ). We
want to point out a technical detail, which is reflected in the (b)-parts of the lemmas, is
illustrated by the following example. The words u?u′ and u?u′0̄ represent the same vector
of real numbers, i.e., 〈u ? u′〉 = 〈u ? u′0̄〉. Therefore, u ? u′ and u ? u′0̄ represent the same
equivalence class in F r

m. However, u ? u′ and u ? u′0̄ might not be in the same equivalence
class with respect to ∼L(ϕ). Observe that appending an ω-word γ ∈ (Σr)ω to u?u′ and u?u′0̄
may yield representations of different vectors of real numbers, i.e., 〈u ? u ′γ〉 6= 〈u ? u′0̄γ〉,
and u ? u′γ and u ? u′0̄γ may represent different equivalence classes in F r

m.

Lemma 4.8. For all u, v ∈ (Σr)+ and u′, v′ ∈ (Σr)∗, the following two facts hold:
(a) If 〈u〉 F r

m 〈v〉 then for all w ∈ (Σr)∗, 〈uw〉 F r
m 〈vw〉.

(b) If 〈u ? u′〉F r
2m 〈v ? v′〉 and |u′| ≥ |v′| then for all γ ∈ (Σr)ω, 〈u ? u′γ〉F r

m 〈v ? v′0̄kγ〉 with
k = min{|u′| − |v′|} ∪ {k ∈ Z : %k ≥ rm}.

Proof. For r = 0, there is nothing to prove. In the following, we assume that r > 0.
(a) We prove (a) by contraposition. Assume that for some w ∈ (Σr)∗, it is not the case that
〈uw〉F r

m 〈vw〉, i.e., there is some f ∈ Br
m with sign(f(〈uw〉)) 6= sign(f(〈vw〉)). Without loss

of generality, we assume that f(〈uw〉) < 0 and hence f(〈vw〉) ≥ 0. The other cases can be
reduced to this case by using the function g ∈ Br

m with g(x̄) = −f(x̄), for all x̄ ∈ R
r.

We have that %|w|f∗(〈u〉) + f(〈0̄w〉) < 0 and %|w|f∗(〈v〉) + f(〈0̄w〉) ≥ 0. Obviously, it
must hold that f ∗(〈u〉) 6= f ∗(〈v〉). If sign(f ∗(〈u〉)) 6= sign(f ∗(〈v〉)) then 〈u〉F r

m 〈v〉 does not
hold and we are done. So, assume that sign(f ∗(〈u〉)) = sign(f ∗(〈v〉)). If |f ∗(〈u〉)| ≤ rm
or |f∗(〈v〉)| ≤ rm then we are also done by choosing an appropriate function g ∈ B r

m

with sign(g(〈u〉)) 6= sign(g(〈v〉)). So, assume that |f ∗(〈u〉)|, |f ∗(〈v〉)| > rm. Note that
|f∗(〈0̄w〉)| ≤ (%|w| − 1)rm.
– If f∗(〈v〉) < −rm, we obtain a contradiction to the assumption f(〈vw〉) ≥ 0, since

%|w|f∗(〈v〉) + f(〈0̄w〉) = %|w|f∗(〈v〉) + f ∗(〈0̄w〉) + f(0̄)
<−%|w|rm+ (%|w| − 1)rm+ rm ≤ 0 .

– If f∗(〈v〉) > rm, we conclude that f ∗(〈u〉) > rm. Analogously, as in the above case, we
obtain a contradiction to the assumption f(〈uw〉) < 0.

(b) Let f be an arbitrary function in Br
m and γ ∈ (Σr)ω. We have to show that sign(f(〈u ?

u′γ〉)) = sign(f(〈v?v′0̄kγ〉)). Since Br
m ⊆ Br

2m, it follows from the assumption 〈u?u′〉F r
2m〈v?

v′〉 that sign(f(〈u?u′〉)) = sign(f(〈v?v′〉)). That means, either (1) f(〈u?u′〉), f(〈v?v′〉) < 0
or (2) f(〈u ? u′〉), f(〈v ? v′〉) ≥ 0 holds. Since the case (1) can be reduced to the case (2) by
considering the function g(x̄) = −f(x̄), for all x̄ ∈ R

r, we restrict ourselves to (2).
For the sake of readability, we use the abbreviations a := f ∗(〈u ? u′〉), b := f ∗(〈v ? v′〉),

and c := f ∗(〈0̄ ? γ〉). Note that

f(〈u ? u′γ〉) = f(0̄) + a+ c%−|u′| and f(〈v ? v′0̄kγ〉) = f(0̄) + b+ c%−|v′|−k . (4.1)

If c ≥ 0 then sign(f(〈u ? u′γ〉)) = sign(f(〈v ? v′0̄kγ〉)) = 1. In the following, assume c < 0.

Case a 6= b. With the assumption 〈u ? u′〉F r
2m〈v ? v′〉 we conclude that a, b > 2rm. Note

that |f ∗(〈0̄ ? α〉)| ≤ rm, for all α ∈ (Σr)ω. It follows that

f∗(〈u ? u′γ〉) = a+ c%−|u′| > 2rm− rm ≥ rm .
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The reasoning for f ∗(〈v?v′0̄kγ〉) > rm is similar. Since |f(0̄)| ≤ rm, we have that sign(f(〈u?
u′γ〉)) = sign(f(〈v ? v′0̄kγ〉)) = 1.

Case a = b. For k = |u′| − |v′|, it immediately follows from the equalities in (4.1) that
f(〈u ? u′γ〉) = f(〈v ? v′0̄kγ〉), and hence sign(f(〈u ? u′γ〉)) = sign(f(〈v ? v′0̄kγ〉)). For
a = b = −f(0̄), it is also straightforward to see from the two equalities in (4.1) that
sign(f(〈u ? u′γ〉)) = sign(f(〈v ? v′0̄kγ〉)). For the rest of the proof, assume k = min{k ∈
Z : %k ≥ rm} and b 6= −f(0̄). Moreover, for |c| · %−|u′| > f(0̄) + a, it follows directly
from the equalities (4.1) that sign(f(〈u ? u′γ〉)) = sign(f(〈v ? v′0̄kγ〉)) = 0. So, we also
assume that |c| · %−|u′| ≤ f(0̄) + a. Observe that f(〈u ? u′γ〉) ≥ 0. Furthermore, observe
that f(0̄) + b ≥ %−|v′|. We have that f(〈v ? v′0̄kγ〉) ≥ 1

%|v′|
+ c

%|v′|+k
= %k−|c|

%|v′|+k
≥ rm−rm

%|v′|+k
≥ 0.

Lemma 4.9. Let ϕ(x1, . . . , xr) be a formula with qd(ϕ) ≤ m. For all u, v ∈ (Σr)+ and
u′, v′ ∈ (Σr)∗, the following two facts hold:
(a) If 〈u〉 F r

22m+2+1
〈v〉 then u ∼L(ϕ) v.

(b) If 〈u ? u′〉 F r
22m+2+1

〈v ? v′〉 and |u′| ≥ |v′| then u ? u′ ∼L(ϕ) v ? v
′0̄k with k = min{|u′| −

|v′|} ∪ {k ∈ Z : %k ≥ rm}.
Proof. We only show (a). The proof for (b) is analogous and we omit it. From Lemma 4.8(a),
it follows that 〈uw〉 F r

22m+2+1
〈vw〉, for all w ∈ (Σr)∗. With Lemma 4.8(b), we obtain that

〈uw ? γ〉 F r
22m+2 〈vw ? γ〉, for all w ∈ (Σr)∗ and γ ∈ (Σr)ω. By Lemma 4.3, we conclude

that 〈uw ? γ〉 ≡r
m 〈vw ? γ〉, for all w ∈ (Σr)∗ and γ ∈ (Σr)ω. In particular, we have that

uw ? γ ∈ L(ϕ) ⇔ vw ? γ ∈ L(ϕ), for all w ∈ (Σr)∗ and γ ∈ (Σr)ω. From this it follows that
u ∼L(ϕ) v, since for any ω-word α not in Vr, we have that uα, vα 6∈ L(ϕ).

4.3. Upper Bounds

We establish an upper bound on the index of F r
m, from which we then derive an upper

bound on the automata size. We start with a simple lemma.

Lemma 4.10. The cardinality of Br
m is at most (2rm+ 1)(2m+ 1)r.

Using the Lemmas 4.4, 4.5, and 4.10, we establish an upper bound on the index of F r
m.

Lemma 4.11. The index of F r
m is at most max{1,m23+r · 223+r}.

Theorem 4.12. Let ϕ be a formula. The index of ∼L(ϕ) is at most 228+n
, where n is the

length of the formula ϕ, i.e., the number of symbols of ϕ.

Proof. Let r be the number of free variables in ϕ and m := qd(ϕ). We use F r
22m+2+1

to
define a refinement R of ∼L(ϕ). First, the singleton {ε} is an equivalence class of R. Second,
the set of words with at least two occurrences of the letter ? is another equivalence class of
R. The equivalence class of a word v ∈ (Σr)+ of R is {u ∈ (Σr)+ : 〈v〉 F r

22m+2+1
〈u〉}.

It remains to define the equivalence classes of R on F := {v ? v ′ : v ∈ (Σr)+ and v′ ∈
(Σr)∗}. For v ? v′ ∈ F , let S := {u ? u′ ∈ F : 〈v ? v′〉 F r

22m+2+1
〈u ? u′〉}. R chops S into

equivalence classes, assuming |v′| ≤ |u′|, for all u ? u′ ∈ S:
– For k ∈ {0, . . . , dlog% r22m+2+1e − 1}, the equivalence class of v ? v′0̄k of R is {u ? u′ ∈ S :
|u′| = |v′|+ k}.

– For k = dlog% r22m+2+1e, the equivalence class of v?v′0̄k of R is {u?u′ ∈ S : |u′| ≥ |v′|+k}.
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Note that any word u ? u′ ∈ S relates to exactly one word v ? v′0̄k.
With Lemma 4.9 at hand, it is easy to see that R refines ∼L(ϕ). It remains to prove

an upper bound on the index of R. Note that n ≥ m + r ≥ 1. By Lemma 4.11, an upper
bound on the index of F r

22m+2+1
is(

22m+2+1
)23+r · 223+r

= 22m+2·23+r+23+r+23+r
= 225+r+m+24+r ≤ 226+n

.

Hence, R partitions (Σr)+ into at most 226+n
equivalence classes and F is partitioned into

at most 226+n · dlog% r22m+2+1e ≥ 226+n · r(2m+2 + 1) ≥ 226+n · 23+n ≥ 227+n
equivalence

classes. From this, we derive the upper bound 228+n
on R’s index.

Remark 4.13. Since for any formula ϕ, L(ϕ) is an ω-language in the Borel class Fσ∩Gδ [5],
we can—similar to deterministic finite automata—view the equivalence classes of ∼L(ϕ)

as the states of a minimal deterministic Büchi automaton that accepts L(ϕ). For further
details, see [19] and [18]. Thus, Theorem 4.12 establishes a double exponential upper bound
with respect to the formula length on the size of the minimal number of states of any Büchi
automaton that accepts L(ϕ).

Remark 4.14. The double exponential upper bound on the automata size is tight, i.e.,
there is a family of formulas (ϕn)n∈N such that for each n ∈ N, the length of ϕn is linear in
n and the index of ∼L(ϕn) is double exponential in n. An analogous result with a similar
proof has already been shown in [14] for Presburger arithmetic.

5. Conclusion

This papers presented a new method to reason about the sizes of automata that represent
first-order definable sets of automatic structures. The method consists of identifying a
relationship between the states of a minimal deterministic automaton for a formula and the
equivalence classes of a refinement of the equivalence relation determined by Ehrenfeucht-
Fräıssé games. We applied the presented method to establish tight upper bounds on the
minimal sizes of automata that represent sets definable in FO(Z, <) and FO(R,+, <). For
FO(R,+, <), previously proposed techniques based on quantifier-elimination methods [14]
failed to establish a double exponential upper bound on the automata size.

As future work, we want to investigate how, and to what extent, the upper bounds
on the automata sizes depend on how elements of a structure are encoded as words. The
word encoding of integers and reals that we have used in this paper is based on the %’s
complement representation, for some % ∈ N with % ≥ 2. There are various other word
encodings of numbers so that, e.g., FO(Z, <) admits an automata-based decision procedure.
For a study on the impact of encodings in automatic structures, see, e.g., [13]. We also plan
to apply the presented technique to establish further upper bounds on automata sizes for
other automatic structures and use it to simplify the proofs of previously established upper
bounds. For instance, for Presburger arithmetic, we expect that we can use equivalence
relations similar to the ones used in this paper for FO(R,+, <). However, we have to adjust
the bounds on the coefficients and take the definable divisibility relations into account.

Acknowledgments. The author thanks David Basin, Cas Cremers, Matthias Schmalz, and
the anonymous reviewers for their comments on earlier versions of the paper.
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Abstract. In 2003, Leonid A. Levin presented the idea of a combinatorial complete
one-way function and a sketch of the proof that Tiling represents such a function. In
this paper, we present two new one-way functions based on semi-Thue string rewriting
systems and a version of the Post Correspondence Problem and prove their completeness.
Besides, we present an alternative proof of Levin’s result. We also discuss the properties
a combinatorial problem should have in order to hold a complete one-way function.

1. Introduction

In computer science, complete objects play an extremely important role. If a certain
class of problems has a complete representative, one can shift the analysis from the whole
class (where usually nothing can really be proven) to this certain, well-specified complete
problem. Examples include Satisfiability and Graph Coloring for NP (see [GJ79] for a
survey) or, which is more closely related to our present work, Post Correspondence and
Matrix Transformation problems for DistNP [Gur91, BG95].

However, there are problems that are undoubtedly complete for their complexity classes
but do not actually cause such a nice concept shift because they are too hard to analyze.
Such problems usually come from diagonalization procedures and require enumeration of
all Turing machines or all problems of a certain complexity class.

Our results lie in the field of cryptography. For a long time, little has been known
about complete problems in cryptography. While “conventional” complexity classes got
their complete representatives relatively soon, it had taken thirty years since the definition
of a public-key cryptosystem [DH76] to present a complete problem for the class of all
public-key cryptosystems [HKN+05, GHP06]. However, this complete problem is of the
“bad” kind of complete problems, requires enumerating all Turing machines and can hardly
be put to any use, be it practical implementation or theoretical complexity analysis.
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Before tackling public-key cryptosystems, it is natural to ask about a seemingly simpler
object: one-way functions (public-key cryptography is equivalent to the existence of a trap-
door function, a particular case of a one-way function). The first big step towards useful
complete one-way functions was taken by Leonid A. Levin who provided a construction of
the first known complete one-way function [Lev87] (see also [Gol99]).

The construction uses a universal Turing machine U to compute the following function:

funi(desc(M), x) = (desc(M),M(x)),

where desc(M) is the description of a Turing machine M . If there are one-way functions
among M ’s (and it is easy to show that if there are any, there are one-way functions that
run in, say, quadratic time), then funi is a (weak) one-way function.

As the reader has probably already noticed, this complete one-way function is of the
“useless” kind we’ve been talking about. Naturally, Levin asked whether it is possible to
find “combinatorial” complete one-way functions, functions that would not depend on enu-
merating Turing machines or giving their descriptions as input. For 15 years, the problem
remained open and then was resolved by Levin himself [Lev03]. Levin devised a clever trick
of having determinism in one direction and indeterminism in the other.

Having showed that a modified Tiling problem is in fact a complete one-way function,
Levin asked to find other combinatorial complete one-way functions. In this work, we
answer this open question. We take Levin’s considerations further to show how a complete
one-way function may be derived from string-rewriting problems shown to be average-case
complete in [Wan95] and a variation of the Post Correspondence Problem. Moreover, we
discuss the general properties a combinatorial problem should enjoy in order to contain a
complete one-way function by similar arguments.

2. Distributional Accessibility problem for semi-Thue systems

Consider a finite alphabet A. An ordered pair of strings 〈g, h〉 over A is called a
rewriting rule (sometimes also called a production). We write these pairs as g → h because
we interpret them as rewriting rules for other strings. Namely, for two strings u, v we write
u ⇒g→h v if u = agb, v = ahb for some a, b ∈ A∗. A set of rewriting rules is called a
semi-Thue system. For a semi-Thue system R, we write u ⇒R v if u ⇒g→h v for some
rewriting rule 〈g, h〉 ∈ R. Slightly abusing notation, we extend it and write u ⇒R v if there
exists a finite sequence of rewriting rules 〈g1, h1〉, . . . , 〈gm, hm〉 ∈ R such that

u = u0 ⇒g1→h1 u1 ⇒g2→h2 u2 ⇒ . . . ⇒gm→hm um = v.

For a more detailed discussion of semi-Thue systems we refer the reader to [BO93].
We can now define the distributional accessibility problem for semi-Thue systems:
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Instance. A semi-Thue system R = {〈g1, h1〉, . . . , 〈gm, hm〉}, two binary
strings u and v, a positive integer n. The size of the instance is n+ |u|+
|v|+ ∑m

1 (|gi|+ |hi|).
Question. Is u ⇒n

R v?
Distribution. Randomly and independently choose positive integers n
and m and binary strings u and v. Then randomly and independently
choose binary strings g1, h1, . . . , gm, hm. Integers and strings are chosen
with the default uniform probability distribution, namely the distribu-
tion proportional to 1

n2 for integers and proportional to 2−|u|
|u|2 for binary

strings.

In [WB95], this problem was shown to be complete for DistNP.
For what follows, we also need another notion of derivation in semi-Thue systems.

Namely, for a semi-Thue system R we write u ⇒∗
R v if u = agb, v = ahb for some 〈g, h〉 ∈ R

and, moreover, there does not exist another rewriting rule 〈g ′, h′〉 ∈ R such that u = a′g′b′
and v = a′h′b′ for some a′, b′ ∈ A∗. Similarly to ⇒R, we extend ⇒∗

R to finite chains of
derivations. In other words, u ⇒∗

R v if u ⇒R v, and on each step of this derivation there
was only one applicable rewriting rule. This uniqueness (or, better to say, determinism) is
crucial to perform Levin’s trick. We also write u ⇒∗,n

R v if u ⇒∗
R v in at most n steps.

3. Post Correspondence Problem

The following problem was proven to be complete for DistNP in [Gur91] (see also
Remark 2 in [BG95]):

Instance. A positive integer m, pairs Γ = {〈u1, v1〉, . . . , 〈um, vm〉}, a
binary string x, a positive integer n. The size of the instance is n+ |x|+∑m

1 (|ui|+ |vi|).
Question. Is ui1 · · · uik = uvi1 · · · vik for some k ≤ n?
Distribution. Randomly and independently choose positive integers n
and m and binary string x. Then randomly and independently choose
binary strings u1, v1, . . . , um, vm. Integers and strings are chosen with
the default uniform probability distribution.

We need a modification of this problem. Namely, we pose the question as follows: does

ui1 · · · uiky = xvi1 · · · vik

hold for some y? If we remove the restriction n, this problem is undecidable, but the
bounded version is not known to be complete for DistNP.

Given a nonempty list Γ = (〈u1, v1〉, . . . , 〈um, vm〉) of pairs of strings, it will be conve-
nient to view the function based on modified Post Correspondence Problem as a derivation
with pairs from Γ as inference rules. A string x yields a string y in one step if there is a pair
〈u, v〉 in Γ such that uy = xv. The “yield” relation `Γ is defined as the transitive closure
of the “yield-in-one-step” relation.

To perform Levin’s trick, we need to get rid of the indeterminism. This time, the
description of a deterministic version of `∗ is more complicated than in the case of semi-
Thue systems. If we simply required it to be deterministic, we would not be able to move
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the head of the Turing machine to the left. To solve this problem, we have to look ahead by
one step: if one of the two branches fails in two steps, we consider the choice deterministic.

Formally speaking, we write x `∗ y if there are no more than two pairs 〈p, s〉, 〈p′, s′〉 ∈ Γ
such that py = xs and p′y′ = xs′ for some strings y, y′ (where y 6= y′, but p may equal p′:
two possible different applications of the same rule are still nondeterministic) and, moreover,
we cannot apply any rule in Γ to y′. We write u `∗,nΓ v if u `∗Γ v in not more than n steps.

4. Complete One-Way Tiling Function

Before presenting our own construction, we recall Levin’s complete one-way function
from [Lev03]. In fact, we slightly modify Levin’s construction and present an alternative
proof based on ideas from [Wan99]. The difference with the original Levin’s construction is
that he considered the tiling function for tiles with marked corners, namely, the corners of
tiles, instead of edges, are marked with symbols. In the tiling of an n× n square, symbols
on touching corners of adjacent tiles should match.

A tile is a square with a symbol for a finite alphabet A on each size which may not be
turned over or rotated. We assume that there exist infinite copies of each tile. By a tiling
of an n × n square we mean a set of n2 tiles covering the square in which the symbols on
the common sides of adjacent tiles are the same.

It will be convenient for us to consider Tiling as a string transformation system. Fix a
finite set of tiles T . We say that T transforms a string x to y, |x| = |y|, if there is a tiling
of an |x| × |x| square with x on the bottom and y on top. We write x −→T y in this case.
By a tiling process we mean the completion of a partially tiled square by one tile at the
time. Similarly to semi-Thue systems, we define x −→∗

T y if and only if x −→T y with an
additional restriction: we permit the extension of a partially tiled square only if the possible
extension is unique.

Definition 4.1. The Tiling simulating function (Tiling) is the function f : A∗ → A∗
defined as follows:

• if the input has the form (T, x) for a finite set of tiles T and a string x, then:
– if x −→∗

T y, then f(T, x) = (T, y);
– otherwise, f returns its input;

• otherwise, f returns its input.

Theorem 4.2. If one-way functions exist, then Tiling is a weakly one-way function.

Proof. Let Q be the set of states of a Turing machine M , s be the initial state of M , h —
the halting state, πM — the transition function of M , {0, 1, B} — the tape symbols. By $
we denote the begin marker and by # — the end marker. We also introduce a new symbol
for each pair from Q× {0, 1, B}. We now present the construction of a tileset TM .

(1) For each tape symbol a ∈ {0, 1, B} we add

a

a

(h, a)

(h, a)
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(2) For each a, b, c ∈ {0, 1, B}, q ∈ Q \ {h}, p ∈ Q, if πM(q, a) = (p, b, R) we add

(q, a)

b

p

c

(p, c)

p

(3) For each a, b, c ∈ {0, 1, B}, q ∈ Q \ {h}, p ∈ Q, if πM(q, a) = (p, b, L) we add

(q, a)

b

p

c

(p, c)

p

(4) Finally, for $ and # we add

$

$

$

#

#

#

The following lemma is now obvious.

Lemma 4.3. For a deterministic Turing machine M that works n2 steps and its corre-
sponding tiling system TM ,

M(x) = y, |x| = |y|, if and only if $sxBn(n−1)# −→∗
TM

$hyBn(n−1)#.

The rest of the proof closely follows [Gol99]. Suppose that g is a length-preserving one-
way function that, on inputs of length n, works for time not exceeding n2. By Lemma 4.3,
there exists a finite system of tiles TM such that $sxBn(n−1)# −→∗

TM
$hyBn(n−1)# is

equivalent to g(x) = y. Therefore, with constant probability solving Tiling is equivalent to
inverting g.

5. A complete one-way function based on semi-Thue systems

Our complete one-way function is based upon the distributional accessibility problem
for semi-Thue systems. First, we need to make this decision problem a function and then
add Levin’s trick in order to assure length-preservation.

Definition 5.1. The semi-Thue accessibility function (STAF) is the function f : A∗ → A∗
that defined as follows:

• if the input has the form (〈g1, h1〉, . . . , 〈gm, hm〉, x), consider the semi-Thue system
Γ = (〈g1, h1〉, . . . , 〈gm, hm〉) and:

– if x ⇒∗,t
Γ y, t = |x|2 + 4|x| + 2, there are no rewriting rules in Γ that may be

applied to y, and |y| = |x|, f(Γ, x) = (Γ, y);
– otherwise, f returns its input;

• otherwise, f returns its input.

Obviously, STAF is easy to compute: one simply needs to use the first part of the input
as a semi-Thue system (if that’s impossible, return input) and apply its rules until either
there are two rules that apply, or we have worked for |x|2 + 4|x| + 2 steps, or y has been
reached and no other rules can be applied. In the first two cases, return input. In the third
case, check that |y| = |x| and return (Γ, y) if so and input otherwise.



462 A. KOJEVNIKOV AND S. I. NIKOLENKO

Theorem 5.2. If one-way functions exist, then STAF is a weakly one-way function.

Proof. This time we need to encode Turing machines into the string-rewriting setting. Fol-
lowing [Gur91, WB95, Wan99], we have the following proposition:

Proposition 5.3. For any finite alphabet A with |A| > 2 and any pair of binary strings
x and y there exists a dynamic binary coding scheme of A with {0, 1} with the following
properties.

(1) All codes (binary codes of symbols of A) have the same length l = 2 log |x|+ O(1).
(2) Both strings x and y are distinguishable from every code, that is, no code is a

substring of x or y.
(3) If a nonempty suffix z of a code u is a prefix of a code v then z = u = v (one can

always distinguish where a code ends and another code begins).
(4) Strings x and y can be written as a unique concatenation of binary strings 1, 10,

000, and 100 which are not prefixes of any code.

Now let us define the semi-Thue system RM that corresponds to a Turing machine
M . The rewriting rules are divided into three parts: RM = R1 ∪ R2 ∪ R3. Let us denote
B = {1, 10, 100, 000} and fix a dynamic binary coding scheme and denote by w the encoding
of w in this scheme.

R1 consists of the following rules for each u ∈ B:

su → $us1,
s1u → us1,

us1$ → s2u$,
us2 → s2u,
$s2 → $s.

These rules are needed to rewrite the initial string sx$ into $sx$. Since x can be uniquely
written as u1 . . . um for some ui ∈ B, this transformation can be carried out in 2m + 1 ≤
2|x|+ 1 steps.

R2 consists of rewriting rules corresponding to Turing machine instructions. By h we
denote the halting state, by s — the initial state, by B — the blank symbol, by QM — the
set of states of M , by πM — the transition function of M , and by $ the begin/end marker.
Then R2 consists of the following pairs:

(1) For each state q ∈ QM \ {h}, p ∈ Q, a, b, c ∈ {0, 1, B}:
πM(q, a) = (p, b, R) ⇒ qac → bpc, qa$ → bpB$ ∈ R2.

(2) For each state q ∈ QM \ {h}, p ∈ Q, a, b, d ∈ {0, 1, B} and c ∈ {0, 1, $},
πM (q, a) = (p, b, L) ⇒ dqac → pdbc, dqB$ → pdbB$ ∈ R2

for a 6= B, c 6= $, or b 6= B.
R1 and R2 are completely similar to the construction presented in [Wan99]. The third

part of his construction is supposed to reduce the result from $sy$, where y is the result of
the Turing machine computation, to the protocol of the Turing machine that is needed to
prove that non-deterministic semi-Thue systems are DistNP-hard.

This time we have to deviate from [Wan99]: we need a different set of rules because
we actually need the output of the machine, and not the protocol. Thus, our version of R3
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looks like the following:
$hu → $us5,
s5u → us5,

s5u$ → us6$,
us6 → s6u,
$s6 → h.

This transformation can be carried out in at most 2|y|+ 1 steps.
These rules simply translate y back into the original y and add h in front of the output,

thus achieving the actual output configuration of the original Turing machine M .
The following lemma is now obvious.

Lemma 5.4. For a deterministic Turing machine M and its corresponding semi-Thue
system RM ,

M(x) = y if and only if sx$ ⇒∗,t
RM

hy$,

where t = T + 2|x|+ 2|y|+ 2, T being the running time of M on x.

Again, the rest of the proof follows the lines of [Gol99]. There is a constant probability
(for the uniform distribution, it is proportional to 1

|R|22|R| ) that any given semi-Thue system
appears as the first part of the input. Suppose that g is a length-preserving one-way function.
By [Gol99], we can safely assume that there is a Turing machine Mg that computes g and
runs in quadratic time. By Lemma 5.4, there exists a semi-Thue system RM such that
sx$ ⇒∗,t

RM
hy$ is equivalent to g(x) = y. Therefore, with constant probability solving STAF

is equivalent to inverting g.

6. A complete one-way function based on Post Correspondence

In this section, we describe a one-way function based on the Post Correspondence
Problem and prove that it is complete. The function is defined as follows.

Definition 6.1. The Post Transformation function (PTF) is the function f : A∗ → A∗
defined as follows:

• if the input has the form (〈g1, h1〉, . . . , 〈gm, hm〉, x), considers the derivation system
Γ = (〈g1, h1〉, . . . , 〈gm, hm〉) and:

– if x `∗,n4

Γ y, there are no rewriting rules in Γ that may be applied to y, and
|y| = |x|, then f(Γ, x) = (Γ, y);

– otherwise, f returns its input;
• otherwise, f returns its input.

Now, we reduce the computation of a universal Turing machine to Post Correspondence
in the way described in [Gur91].

Theorem 6.2. If one-way functions exist, then PTF is a weakly one-way function.

Proof. As usual, let Q be the set of states of a Turing machine M , s be the initial state of
M , h — the halting state, πM — the transition function of M , 0, 1, B — the tape symbols.
For all symbols we use the dynamic binary coding scheme described in Section 5.

We now present the construction of a derivation set ΓM .
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(1) For every tape symbol x:
〈x, x〉.

(2) For each state q ∈ QM \ {h}, p ∈ Q, a, b ∈ {0, 1} and rule πM (q, a) = (p, b, R):

〈qa, bp〉.
(3) For each state q ∈ QM \ {h}, p ∈ Q, a ∈ {0, 1} and rule πM (q,B) = (p, a,R):

〈qB, bpB〉.
(4) For each state q ∈ QM \ {h}, p ∈ Q, a, b, c ∈ {0, 1} and rule πM(q, a) = (p, b, L):

〈cqa, pcb〉.
(5) For each state q ∈ QM \ {h}, p ∈ Q, a ∈ {0, 1} and rule πM (q,B) = (p, a, L):

〈cqB, pcbB〉.
The configuration of M after t steps of computation is represented by a string xqy, where
q is the current state of M , x is the tape before the head, and y is the tape from the
head to the first blank symbol. The simulation of a step of M from a configuration xqy
consists of at most |x| applications of the rule 1, followed by one application of one of the
rules 2–5, followed by |y| − 1 applications of rule 1. Note that before an application of a
rule that moves head to the left one could also apply rule 1. If the Turing Machine M is
deterministic, then this “wrong” application leads to a situation where no rule from ΓM is
applicable. Thus, we have the following lemma.

Lemma 6.3. For a deterministic Turing machine M with running time at most n2 and its
corresponding Post Transformation system ΓM ,

M(x) = y if and only if sxB `∗,n4

ΓM
hyB.

As usual, the rest of the proof closely follows [Gol99]. Suppose that g is a length-
preserving one-way function that works for time not exceeding n2. By Lemma 6.3, there
exists a finite system of pair ΓM such that sxB `∗,n4

RM
hyB is equivalent to g(x) = y.

Therefore, with constant probability solving PTF is equivalent to inverting g.

Remark 6.4. Note the slight change in distributions on inputs and outputs: PTF accepts
as input x and outputs y, while the emulated machine g accepts x and outputs y. Such
“tiny details” often hold the devil of average-case reasoning. Fortunately, distributions on
x and x can be transformed from one to another by a polynomial algorithm, so PTF is still
a weak one-way function (see [Gol99] for details).

7. Complete one-way functions and DistNP-hard combinatorial problems

Both our constructions of a complete one-way function look very similar to the con-
struction on the Tiling complete one-way function. This naturally leads to the question:
in what other combinatorial settings can one apply the same reasoning to find a complete
one-way function?

The whole point of this proof is to keep the function both length-preserving and easily
computable. Obvious functions fall into one of two classes.



COMPLETE ONE-WAY FUNCTIONS 465

(1) Easily computable, but not length-preserving. For any DistNP-hard problem, one can
construct a hard-to-invert function f that transfers protocols of this problem into its
results. This function is hard to invert on average, but it does not preserve length,
and thus it is impossible to translate a uniform distribution on outputs of f into a
reasonable distribution on its inputs. The reader is welcome to think of a reasonably
uniform distribution on proper tilings that would result in a reasonably uniform
distribution on their upper rows; we believe that to construct such a distribution is
either impossible or requires a major new insight.

(2) Length-preserving, but hard to compute. Take a DistNP-hard problem and consider
the function that sends its input into its output (e.g. the lowest row of the tiling
into its uppermost row). This function is hard to invert and length-preserving, but
it is also hard to compute, because to compute it one needs to solve Tiling.

Following Levin, we get around these obstacles by having a deterministic version of
a DistNP-hard problem. This time, a Tiling problem produces nontrivial results only if
there always is only one proper tile to attach. Similarly, in Section 5 we demanded that
there is only one rewriting rule that applicable on each step (we introduced ⇒∗ for this
very purpose). In Section 6 we slightly generalized this idea of determinism, allowing fixed
length deterministic backtrack. However, if for all z ∈ f−1(y) we can do this deterministic
procedure, then we can easily invert f . So we need that for most z an indeterminism appears
and the procedure return z.

A combinatorial problem should have two properties in order to hold a complete one-
way function.

(1) It should have a deterministic restricted version, like Tiling, string rewriting and
modified Post Correspondence.

(2) Its deterministic version should be powerful enough to simulate a deterministic
Turing machine. For example, natural deterministic Post Correspondence (without
any backtrack) is, of course, easy to formulate, but does not seem to be powerful
enough.

Keeping in mind these properties, one is welcome to look for other combinatorial settings
with combinatorial complete one-way functions.

8. Discussion and further work

We have shown a new complete one-way function and discussed possibilities of other
combinatorial settings to hold complete one-way functions. These functions are combina-
torial in nature and represent a step towards the easy-to-analyze complete cryptographic
objects, much like SAT is a perfect complete problem for NP.

However, we are still not quite there. Basically, we sample a Turing machine at random
and hope to find precisely the hard one. This distinction is very important for practical
implications of our constructions. We believe that constructing a complete cryptographic
problem that has properties completely analogous to SAT requires a major new insight, and
such a construction represents one of the most important challenges in modern cryptography.

Another direction would be to find other similar combinatorial problems that can hold
a complete one-way function. By looking at our one-way functions and Levin’s Tiling,
one could imagine that every DistNP-complete problem readily yields a complete one-way
function. However, there is also this subtle requirement that the problem (or its appropriate
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restriction) should be deterministic (compare ⇒∗
R and ⇒R). It would be interesting to

restate this requirement as a formal restriction on the problem setting. This would require
some new definitions and, perhaps, a more general and unified approach to combinatorial
problems.
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COMPATIBILITY OF SHELAH AND STUPP’S AND MUCHNIK’S
ITERATION WITH FRAGMENTS OF MONADIC SECOND ORDER

LOGIC

DIETRICH KUSKE

Institut für Informatik, Universität Leipzig

Abstract. We investigate the relation between the theory of the iterations in the sense of
Shelah-Stupp and of Muchnik, resp., and the theory of the base structure for several logics.
These logics are obtained from the restriction of set quantification in monadic second order
logic to certain subsets like, e.g., finite sets, chains, and finite unions of chains. We show
that these theories of the Shelah-Stupp iteration can be reduced to corresponding theories
of the base structure. This fails for Muchnik’s iteration.

1. Introduction

Rabin’s tree theorem states, via an automata-theoretic proof, the decidability of the
monadic second order (short: MSO) theory of the complete binary tree. It allows to derive
the decidability of seemingly very different theories (e.g., the MSO-theory of the real line
where set quantification is restricted to closed sets [11]). Its importance is stressed by
Seese’s result that any class of graphs of bounded degree with a decidable MSO-theory has
bounded tree-width (i.e., is “tree-like”) [13].

In [15], Shelah reports a generalization of Rabin’s tree theorem that was proved by
Shelah and Stupp. The idea is to start with a structure A and to consider the tree whose
nodes are the finite words over the universe of A together with the prefix order on these
words. Then the immediate successors of any node in this tree can naturally be identified
with the elements of the structure A – hence they carry the relations of A. The resulting tree
with additional relations is called Shelah-Stupp-iteration. The above mentioned result of
Shelah and Stupp states that the MSO-theory of the Shelah-Stupp-iteration can be reduced
to the MSO-theory of the base structure A. If A is the two-elements set, then Rabin’s tree
theorem follows.

A further extension is attributed to Muchnik [14] who added a unary clone predicate to
Shelah and Stupp’s iteration resulting in the Muchnik-iteration. This clone predicate states
that the last two letters of a word are the same. This allows, e.g., to define the unfolding of
a rooted graph in its Muchnik-iteration [5]. Muchnik’s theorem then gives a reduction of the
MSO-theory of the Muchnik-iteration to the MSO-theory of the base structure. The proof
was not published by Muchnik himself, but, using automata-theoretic methods, Walukiewicz

1998 ACM Subject Classification: F.4.1.
Key words and phrases: Logic in computer science, Rabin’s tree theorem.

c© Dietrich Kuske
CC© Creative Commons Attribution-NoDerivs License



468 DIETRICH KUSKE

showed that the reduction in Muchnik’s theorem is even uniform (i.e., independent from the
concrete base structure) [17]. Since, as mentioned above, the unfolding of a rooted graph
can be defined in the Muchnik-iteration, the MSO-theory of this unfolding can be reduced
to that of the graph [5]. This result forms the basis for Caucal’s hierarchy [2] of infinite
graphs with a decidable MSO-theory. Walukiewicz’s automata-theoretic proof ideas have
been shown to work for the Muchnik-iteration and stronger logics like Courcelle’s counting
MSO and guarded second-order logic by Blumensath & Kreutzer [1].

In [10], we asked for a first-order version of Muchnik’s result – and failed. More precisely,
we constructed structures with a decidable first-order theory whose Muchnik-iteration has
an undecidable first-order theory. As it turns out, the only culprit is Muchnik’s clone
predicate since, on the positive side, we were able to uniformly reduce the first-order theory
(and even the monadic chain theory where set variables range over chains, only) of the
Shelah-Stupp-iteration to the first-order theory of the base structure.1

The aim of this paper is to clarify the role of weak monadic second order logic MSOw in
the context of Shelah-Stupp- and Muchnik-iteration. We first define infinitary versions of
these iterations that contain, in addition to the finite words, also ω-words. On the positive
side, we prove a rather satisfactory relation between the theories of the infinitary Shelah-
Stupp-iteration and the base structure. More precisely, the Shelah-Stupp result together
with some techniques from [11] allows to uniformly reduce the MSOclosed-theory of the
infinitary Shelah-Stupp-iteration (where set quantification is restricted to closed sets) to
the MSO-theory of the base set. Our result from [10] ensures that Shelah-Stupp-iteration
is FO-compatible in the sense of Courcelle (i.e., the FO-theory of the infinitary Shelah-
Stupp-iteration can be reduced uniformly to the FO-theory of the base structure). Our new
positive result states that Shelah-Stupp-iteration is also MSOw-compatible. To obtain this
result, one first observes that the finiteness of a set in the Shelah-Stupp-iteration is definable
in MSOmch (where quantification is restricted to finite unions of chains), hence the MSOw-
theory of the Shelah-Stupp-iteration can be reduced to its MSOmch-theory. For this logic, we
then prove a result analogous to Rabin’s basis theorem: Any consistent MSOmch-property
in the Shelah-Stupp-iteration of a finite union of chains (i.e., of a certain set of words over
the base structure) has a witness that can be accepted by a small automaton. But an
automaton over a fixed set of states can be identified with its transition matrix, i.e., with
a fixed number of finite sets in the base structure. We then prove that MSOmch-properties
of the language of an automaton can effectively be translated into MSOw-properties of the
transition matrix.

On the negative side, we prove that infinitary Muchnik-iteration is not MSOw-compat-
ible. Namely, there is a tree Tω with decidable MSOw-theory such that for any set M of
natural numbers, there exists an MSOw-equivalent tree AM such that M can be reduced
to the MSOw-theory of the infinitary Muchnik-iteration of AM . This proof uses the fact
that the existence of an infinite branch in a tree is not expressible in MSOw, but it is a
first-order (and therefore a MSOw-) property of the infinitary Muchnik-iteration.

1In the meantime, Alexis Bes found a simpler proof of a stronger result based on the ideas of automatic
structures and [16] (personal communication).
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2. Preliminaries

2.1. Logics

A (relational) signature σ consists of finitely many constant and relation symbols (to-
gether with the arity of the latter); a purely relational signature does not contain any
constant symbols. Formulas use individual and set variables, usually denoted by small
and capital, resp., letters from the end of the alphabet. Atomic formulas are x1 = x2,
R(x1, . . . , xn), and x1 ∈ X where R is an n-ary relation symbol from σ, x1, x2, . . . , xn are
individual variables or constant symbols, and X is a set variable. Formulas are obtained
from atomic formulas by conjunction, negation, and quantification ∃Z for Z an individual
or a set variable. A sentence is a formula without free variables. The satisfaction relation
|= between a σ-structure A and formulas is defined as usual. For two σ-structures A and
B, we write A ≡MSO

m B if, for any sentence ϕ of quantifier depth at most m, we have
A |= ϕ iff B |= ϕ. If A and B agree on all first-order formulas (i.e., formulas without set
quantification) of quantifier depth at most m, then we write A ≡FO

m B.
Let (V,�) be a partially ordered set. A set M ⊆ V is a chain if (M,�) is linearly

ordered, it is a multichain if M is a finite union of chains. An element x ∈M is a branching
point if {y ∈M | x < y} is nonempty and does not have a least element.

We will also consider different restrictions of the satisfaction relation |= where set vari-
ables range over certain subsets, only. In particular, we will meet the following restrictions.

• Set quantification can be restricted to finite sets, i.e., we will discuss weak monadic
second order logic. The resulting satisfaction relation is denoted |=w and the equiv-
alence of structures ≡w

m.
• Set quantification can be restricted to chains (where we assume a designated binary

relation symbol � in σ) which results in |=ch and ≡ch
m , cf. Thomas [16].

• |=mch etc. refer to the restriction of set quantification to multichains.
• The superscript closed denotes that set variables range over closed sets, only (where

we associate a natural topology to any σ-structure), cf. Rabin [11].
Let t be some transformation of σ-structures into τ -structures, e.g., transitive closure.

A very strong relation between the L-theory of A and the K-theory of t(A) is the existence
of a single computable function red that reduces the K-theory of t(A) to the L-theory of A
for any σ-structure A. As shorthand for this fact, we say “The transformation t is (K,L)-
compatible” or, slightly less precise “The K-theory of t(A) is uniformly reducible to the
L-theory of A.” (K,K)-compatible transformations are simply called K-compatible.

Example 2.1. Any MSO-transduction is MSO-compatible [4] and finite set interpretations
are (MSOw,FO)-compatible [3]. Feferman & Vaught showed that any generalized product
is FO-compatible [7]. Finally, any generalized sum is MSO-compatible by Shelah [15].

2.2. Shelah and Stupp’s and Muchnik’s iteration

Let A be a (not necessarily finite) alphabet. With A∗ we denote the set of all finite
words over A, Aω is the set of infinite words, and A∞ = A∗ ∪ Aω. The prefix relation
on finite and infinite words is �. The set of finite prefixes of a word u ∈ A∞ is denoted
↓u = {v ∈ A∗ | v � u}, if C ⊆ A∞, then ↓C =

⋃
u∈C ↓u. For L ⊆ A∞ and u ∈ A∗ let

u−1L = {v ∈ A∞ | uv ∈ L} denote the left-quotient of L with respect to u.
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Let σ be a relational signature and let A = (A, (RA)R∈σ) be a structure over the
signature σ. The infinitary Shelah-Stupp-iteration A∞ of A is the structure

A∞ = (A∞,�, (R̂)R∈σ, ε)

where, for R ∈ σ,

R̂ = {(ua1, . . . , uan) | u ∈ A∗, (a1, . . . , an) ∈ RA} .
The (finitary) Shelah-Stupp-iteration A∗ is the restriction of A∞ to the set of finite words A∗.

Example 2.2. Suppose the structure A has two elements a and b and two unary relations
R1 = {a} and R2 = {b}. Then R̂1 = {a, b}∗a and R̂2 = {a, b}∗b. Hence the finitary Shelah-
Stupp-iteration A∗ can be visualized as a complete binary tree with unary predicates telling
whether the current node is the first or the second son of its father. In addition, the root ε
is a constant of the Shelah-Stupp-iteration A∗. Furthermore, the infinitary Shelah-Stupp-
iteration A∞ adds leaves to this tree at the end of any branch. Since this allows to define
(R,≤) in A∞, the unrestricted MSO-theory of A∞ is undecidable.

Example 2.3. (cf. [9]) The Shelah-Stupp iteration allows to reduce the Cayley graph of a
free product to the Cayley graphs of the factors. Let Mi = (Mi, ◦i, 1i) be monoids finitely
generated by Γi for 1 ≤ i ≤ n and let Gi = (Mi, (Ea

i )a∈Γi , {1i}) denote the rooted Cayley
graph of Mi. Then the Cayley graph G = (P, (Ea)a∈S

Γi
) of the free product P = (P, ◦, 1)

of these monoids can be defined in the Shelah-Stupp iteration of the disjoint union of the
Cayley graphs Gi. For this to work, let M =

⋃
1≤i≤nMi be the disjoint union of the monoids

Mi and consider the structure

A = (M, (Mi)1≤i≤n, (Ea
i )1≤i≤n

a∈Γi

, U)

where U = {1i | 1 ≤ i ≤ n} is the set of units.
Then a word w ∈ M ∗ belongs to the direct product P iff the following holds in the

Shelah-Stupp iteration of A:∧
1≤i≤n

∀xl y � w : x ∈ M̂i → y /∈ M̂i ∧ y /∈ Û

where l denotes the immediate successor relation of the partial order �. For a ∈ Γi and
v, w ∈ P , we have v ◦ a = w (i.e., (v, w) ∈ Ea) iff the Shelah-Stupp iteration satisfies(

∃v′ ∈ Û : v l v′ ∧ (v′, w) ∈ Êa
i

)
∨ (v, w) ∈ Êa

i ∨
(
∃w′ ∈ Û : w l w′ ∧ (v, w′) ∈ Êa

i

)
.

Muchnik introduced the additional unary clone predicate cl = {uaa | u ∈ A∗, a ∈ A}.
The extension of the Shelah-Stupp-iterations by this clone predicate will be called finitary
and infinitary Muchnik-iteration (A∗, cl) and (A∞, cl), resp. Courcelle and Walukiewicz [5]
showed that the unfolding of a directed rooted graph G can be defined in the Muchnik
iteration (G∗, cl) of G.

To simplify notation, we will occasionally omit the word “finitary” and just speak of
the Shelah-Stupp- and Muchnik-iteration.
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3. A basis theorem for MSOmch

Rabin’s tree theorem [11] states the decidability of the monadic second order theory
of the complete binary tree. As a corollary of his proof technique by tree automata, one
obtains Rabin’s basis theorem [12, Theorem 26]: Let ϕ be a formula with free variables
X1, . . . , X` and let L1, . . . , L` ⊆ {a, b}∗ be regular languages such that the binary tree satis-
fies ϕ(L1, . . . , L`). Then it satisfies ψ(L1, . . . , L`) where ψ is obtained from ϕ by restricting
all quantifications to regular sets. To obtain this basis theorem, it suffices to show that
validity of ∃X` : ϕ(L1, . . . , L`−1, X`) implies the existence of a regular set R` such that
ϕ(L1, . . . , L`−1, R`) holds true in the binary tree.

This is precisely what this section shows in our context of MSOmch and the Shelah-
Stupp-iteration A∗. Even more, we will not only show that the set R` can be chosen
regular, but we will also bound the size of the automaton accepting it.

Throughout this section, σ denotes some purely relational signature.

3.1. Preliminaries

For k, ` ∈ N, let τk,` be the extension of the signature (σ,�) by k constants and `
unary relations. Using Hintikka-formulas (see [6] for the definition and properties of these
formulas) one can show that for any of the signatures τk,` and m ∈ N, there are only finitely
many equivalence classes of ≡mch

m . An upper bound T (`,m) for the number of equivalence
classes of ≡mch

m on formulas over the signature τ2,` can be computed effectively.
Now let A = (A, (R)R∈σ) be some σ-structure. For u ∈ A∗, let A∗u denote the τ1,0-

structure (uA∗,v, (R)R∈σ, u) where
• the relation v is the restriction of � to uA∗ and
• R is the restriction of R̂ to uA+.

For any u, v ∈ A∗, the mapping f : A∗u → A∗v with f(ux) = vx is an isomorphism – this is
the reason to consider R and not the restriction of R̂ to uA∗. Similarly, the τ2,0-structure
A∗u,v = (uA∗ \ vA+,v, (R)R∈σ , u, v) is defined for u, v ∈ A∗ with u � v. Here, again, R is
the restriction of R̂ to uA+ \ vA+.

Frequently, we will consider the structure A∗ together with some additional unary
predicates L1, . . . , L`. As for the plain structure A∗, we will also meet the restriction of
(A∗, L1, . . . , L`) to the set uA∗, i.e., the structure (A∗

u, L1 ∩uA∗, . . . , L` ∩uA∗). To simplify
notation, this will be denoted (A∗

u, L1, . . . , L`); the structure (A∗
u,v, L1, . . . , L`) is to be

understood similarly.

Example 2.2 (continued). In the case of Example 2.2, A∗
u is just the subtree rooted

at the node u. On the other hand, A∗
u,v is obtained from A∗u by deleting all descendants

of v and marking the node v as a constant. Thus, we can think of A∗
u,v as a tree with a

marked leaf. These special trees are fundamental in the work of Gurevich & Shelah [8] and
of Thomas [16].

In the following, fix some ` ∈ N. We then define the operations of product and infinite
product of τk,`-structures: If A = (A,�A, (RA)R∈σ , a1, a2, L

A
1 , . . . , L

A
` ) is a τ2,`-structure

and B = (B,�B, (RB)R∈σ , b1, . . . , bk, L
B
1 , . . . , L

B
` ) a disjoint τk,`-structure with k ≥ 1, then

their product A ·B is a τk,`-structure. It is obtained from the structure

(A ∪B,�A ∪ �B, (RA ∪RB)R∈σ, L
A
1 ∪ LB

2 , . . . , L
A
` ∪ LB

` )
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by identifying a2 and b1, taking the transitive closure of the partial orders, and extending
the resulting structure by the list of constants a1, b2, b3, . . . , bk. Now let An be disjoint
τ2,`-structures with constants un and vn for n ∈ N. Then the infinite product

∏
n∈N An is a

τ1,`-structure. It is obtained from the disjoint union of the structures An by identifying vn

and un+1 for any n ∈ N. The only constant of this infinite product is u0. If A ∼= An for all
n ∈ N, then we write simply Aω for the infinite product of the structures An.

Standard applications of Ehrenfeucht-Fräıssé-games (see [6]) yield:

Proposition 3.1. Let j, `,m ∈ N, An,A
′
n be τ2,`-structures for n ∈ N and let B,B′ be some

τj+1,`-structures such that An ≡mch
m A′n for n ∈ N and B ≡mch

m B′. Then

A0 ·B ≡mch
m A′0 ·B′ and

∏
n∈N

An ≡mch
m

∏
n∈N

A′n .

Remark 3.2. We sketch a typical use of the above proposition in this section. Let x ∈ A∗
be some sufficiently long word. Since ≡mch

m has only finitely many equivalence classes, there
exist words u, v, w with x = uvw and v 6= ε such that (A∗

u, {x}) ≡mch
m (A∗uv, {x}). Hence we

obtain

(A∗, {x}) = (A∗ε,u, ∅) · (A∗u, {uvw}) ≡mch
m (A∗ε,u, ∅) · (A∗uv, {uvw}) ∼= (A∗, {uw}) .

(This proves that every consistent property of a single element of A∗ is witnessed by some
“short” word.)

The last isomorphism does not hold for the Muchnik-iteration since the clone predicate
allows to express that the last letter of u and the first letter of v are connected by some
edge in the graph A.

Convention 3.3. We consider complete deterministic finite automata M = (Q,B, ι, δ, F ),
called automata for short. Its language is denoted L(M). We will also write p.w for δ(p,w).
The transition matrix of M is the tuple T = (Tp,q)p,q∈Q with Tp,q = {b ∈ B | δ(p, b) = q}.

As explained above, we will use automata to describe subsets of the Shelah-Stupp
iteration A∗, i.e., the alphabet B will always be a finite subset of the universe of A. These
regular subsets have the following nice property whose proof is obvious.

Lemma 3.4. Let A be a σ-structure with universe A and let M = (Q,B, ι, δ, F ) be an
automaton with alphabet B ⊆ A. Then, for any u, v ∈ B∗ with δ(ι, u) = δ(ι, v), the mapping
fu,v : uA∗ → vA∗ : ux 7→ vx is an isomorphism from (A∗

u, L(M)) onto (A∗v , L(M)).

As a consequence, the number of isomorphism classes of structures (A∗
v, L(M)) is finite.

This fails in the Muchnik-iteration even for L(M) = ∅: With A = (N, succ) and m,n ∈ N,
we have (A∗m, cl) ∼= (A∗n, cl) iff m = n since the structure (N, succ,m) can be defined in
(A∗m, cl).

3.2. Quantification

While multichains in the Shelah-Stupp-iteration can be rather complicated, this section
shows that, up to logical equivalence, we can restrict attention to “simple” multichains.
Here, “simple” means that they are regular and, even more, can be accepted by a “small”
automaton.

For the rest of this section, let A = (A, (R)R∈σ) be some fixed σ-structure and `,m ∈ N.
For 1 ≤ i ≤ `, let Mi = (Qi, Bi, ιi, Fi) be automata with Bi ⊆ A such that L(Mi) ⊆ A∗
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is a multichain in the Shelah-Stupp iteration A∗. Write L for the tuple of multichains
(L(M1), . . . , L(M`)).

Proposition 3.5. Let C ⊆ A∗ be a chain. Then there exist u, v ∈ A∗, E ⊆ ↓u \ {u}, and
F ⊆ ↓v \ {v} such that ιi.u = ιi.uv for all 1 ≤ i ≤ ` and (A∗, L, C) ≡mch

m (A∗, L,D) with
D = E ∪ uv∗F .

Proof. One shows the existence of u1 ≺ u2 ∈ A∗ such that C ∪ {u1, u2} is a chain, ιi.u1 =
ιi.u2 for all 1 ≤ i ≤ `, (A∗, L) ∼= (A∗ε,u1

, L) · (A∗u1,u2
, L)ω, and (A∗, L, C) ≡mch

m (A∗ε,u1
, L, C) ·

(A∗u1,u2
, L, C)ω. This uses arguments similar to those in Remark 3.2 and Ramsey’s theorem.

The result follows with u = u1, uv = u2, E = C ∩ ↓u \ {u}, and F = u−1(C ∩ ↓u2 \ {u2}).
The above proposition shows that every consistent property of a chain is witnessed by

some regular chain D. Using the pigeonhole principle and arguments as in Remark 3.2, one
can bound the lengths of u and v to obtain

Proposition 3.6. Let C ⊆ A∗ be a chain. Then there exists an automaton N with at
most 2

∏
1≤i≤` |Qi| · T (` + 1,m) states such that L(N ) is a chain and (A∗, L, C) ≡mch

m

(A∗, L, L(N )).

It is our aim to prove a similar result for arbitrary multichains in place of the chain
C in the proposition above. Certainly, in order to get a small automaton for a multichain,
the branching points of this set have to be short words. Again using arguments as in
Remark 3.2, one obtains

Lemma 3.7. Let M ⊆ A∗ be a multichain. Then there exists a multichain N ⊆ A∗ such
that

• (A∗, L,M) ≡mch
m (A∗, L,N) and

• any branching point of N has length at most k =
∏

1≤i≤`(|Qi|+ 1) · T (`+ 1,m).

Lemma 3.8. Let M be a multichain such that all branching points of M have length at
most s− 1. Then there exists an automaton N with at most (2

∏
1≤i≤` |Qi| ·T (`+1,m))s+1

many states such that L(N ) is a multichain and (A∗, L,M) ≡mch
m (A∗, L, L(N )).

Proof. Let n =
∏

1≤i≤` |Qi| and L = (L(M1), . . . , L(M`)).
The lemma is shown by induction on s. If s = 0, then M is a chain, i.e., the result

follows from Prop. 3.6.
Now let M be a multichain such that any branching point has length at most s > 0.

By the induction hypothesis, for every a ∈ A, there exists an automaton Na with at most
(2nT (`+ 1,m))s+1 many states such that L(Na) is a multichain and

(A∗a, L,M) ≡mch
m (A∗, a−1L(M1), . . . , a−1L(Ma

` ), L(Na)) .

Let θ be the equivalence relation on A with (a, b) ∈ θ if and only if
(1) δi(ιi, a) = δi(ιi, b) for all 1 ≤ i ≤ ` and
(2) (A∗a, L,M) ≡mch

m (A∗b , L,M).
Let H ⊆ A contain precisely one element h from any θ-equivalence class. Then the set⋃{aL(Nh) | a θ h ∈ H and a−1M 6= ∅} ∪ ({ε} ∩M) is a multichain and can be accepted by
some automaton N with the right number of states.

Then (A∗, L, L(N )) is obtained from (A∗, L,M) by replacing any subtree (A∗
a, L,M)

with the equivalent structure (A∗, a−1L(M1), . . . , a−1L(Ma
` ), L(Nh)) for a θh ∈ H. Hence,

by Prop. 3.1, (A∗, L,M) ≡mch
m (A∗, L, L(N )).
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Putting these two lemmas together, we obtain that, indeed, every consistent property
of a multichain M is witnessed by some multichain that can be accepted by some “small”
automaton:

Proposition 3.9. Let M ⊆ A∗ be some multichain. Then there exists an automaton N
with at most (2nT (` + 1,m))s+1 many states (where s = n · T (`+ 1,m), n =

∏
1≤i≤` |Qi|)

such that L(N ) is a multichain and (A∗, L,M) ≡mch
m (A∗, L, L(N )).

Now a result analogous to Rabin’s basis theorem follows immediately

Theorem 3.10. Let A be a σ-structure, let ϕ be an MSOmch-formula in the language of
the Shelah-Stupp-iteration A∗ with free variables X1, . . . , X` and let L1, . . . , L` ⊆ A∗ be
regular languages such that (A∗, L1, . . . , L`) |=mch ϕ. Then (A∗, L1, . . . , L`) |=reg−mch ϕ
where |=reg−mch denotes that set quantification is restricted to regular multichains.

Recall that Rabin’s basis theorem follows from his tree theorem whose proof, in turn,
uses the effective complementation of Rabin tree automata. While the above theorem is an
analogue of Rabin’s basis theorem, the proof is more direct and does in particular not rest
on any complementation of automata.

4. Shelah-Stupp-iteration is (MSOmch, MSOw)-compatible

The results of the previous section, as explained at the beginning, imply that quan-
tification in an MSOmch-sentence can be restricted to regular sets that are accepted by
“small” automata. In this section, we will use this insight to reduce the MSOmch-theory of
the Shelah-Stupp-iteration to the MSOw-theory of the base structure.

Fix some σ-structure A with universe A, some finite set of states Q, some initial state ι,
and some set of final states F ⊆ Q. Then, for any automaton M = (Q,B, ι, δ, F ) with
B ⊆ A, the language L(M) is a set in the Shelah-Stupp-iteration A∗ while its transition
matrix is a tuple of finite sets in the base structure A. The idea of our reduction is that
MSOmch-properties of the set L(M) in the Shelah-Stupp-iteration A∗ can (effectively) be
translated into MSOw-properties of the transition matrix T in the base structure A.

In precisely this spirit, the following lemma expresses simple properties of the automa-
ton M and of the language L(M) in terms of FO-properties of (A, T ) = (A, (Tp,q)p,q∈Q).

Lemma 4.1. Let F ⊆ Q be finite sets and ι ∈ Q. There exist formulas reach(Q,p,q) for
p, q ∈ Q and mchain(Q,ι,F ) of FO with free variables Tp,q for p, q ∈ Q such that for any
σ-structure A and any automaton M = (Q,B, ι, δ, F ) with transition matrix T :
(1) (A, T ) |=w reach(Q,p,q) iff there exists a word w ∈ A∗ with δ(p,w) = q.
(2) (A, T ) |=w mchain(Q,ι,F ) iff L(M) is a multichain.

Proof. The proof is based on the observation that (1) one only needs to search for a path
of length at most |Q| and (2) that L(M) is a multichain iff no branching point belongs to
some cycle.

So far, we showed that simple properties of L(M) are actually FO- (and therefore
MSOw-) properties of the transition matrix of M. We now push this idea further and
consider arbitrary MSOmch-properties of a tuple of languages L(M1), . . . , L(M`).
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Theorem 4.2. There is an algorithm with the following specification
input: • ` ∈ N,

• finite sets Fi ⊆ Qi and states ιi ∈ Qi for 1 ≤ i ≤ `,
• and a formula α with free variables among L1, . . . , L` in the language of

the Shelah-Stupp-iteration A∗.
output: A formula α(Q,ι,F ) in the language of A with free variables among T i

p,q for p, q ∈ Qi

and 1 ≤ i ≤ ` with the following property:
If A is a σ-structure and Mi = (Qi, Bi, ιi, T

i, Fi) are automata with Bi ⊆ A for
1 ≤ i ≤ `, then

(A∗, L(M1), L(M2), . . . , L(M`)) |=mch α ⇐⇒ (A, T 1, T 2, . . . , T `) |=w α(Q,ι,F ) .

Proof. The proof proceeds by induction on the construction of the formula α, we only
sketch the most interesting part α = ∃X β. Set n =

∏
1≤i≤` |Qi|, s = nT (` + 1,m), and

k = (2nT (`+1,m))s+1. Let A be a σ-structure and let Mi = (Qi, Bi, ιi, δi, Fi) be automata
with Bi ⊆ A and transition matrix T i. Then, by Prop. 3.9, (A∗, L(M1), . . . , L(M`)) |=mch α
iff there exists an automaton N with k states such that

(A∗, L(M1), L(M2), . . . , L(M`), L(N )) |=mch β .

Using the induction hypothesis on β and β(Q,ι,F ), this is the case if and only if there exist
finite sets T `+1

i,j , B ⊆ A for i, j ∈ [k] = {1, 2, . . . , k} such that

• T `+1 forms the transition matrix of some automaton with alphabet B
• for some F ⊆ [k], the automaton M`+1 = ([k], B, 1, T `+1, F )

– accepts a multichain M (i.e., (A, T `+1) |=w mchain([k],1,F )) and
– this multichain satisfies β (i.e., A, T 1, . . . , T `+1 |=w β((Q,[k]),(ι,1),(F ,F ))).

Since all these properties can be expressed in MSOw, the construction of α(Q,ι,F ) is complete.

As an immediate consequence, we get a uniform version of Shelah and Stupp’s theorem
for the logics MSOw and MSOmch:

Theorem 4.3. Finitary Shelah-Stupp-iteration is (MSOmch,MSOw)-compatible.

Remark 4.4. (MSOch,FO)-compatibility of Shelah-Stupp-iteration [10] can alternatively
be shown along the same lines: One allows incomplete automata and proves an analogue
of Prop. 3.6 for the logic MSOch. Then Theorem 4.3 can be shown for the pair of logics
(MSOch,FO).

5. Infinitary Muchnik-iteration is not (FO, MSOw)-compatible

Our argument goes as follows: From a set M ⊆ N, we construct a tree AM . The
MSOw-theory of this tree will be independent from M and M will be FO-definable in the
infinitary Muchnik-iteration (A∞

M , cl). Assuming (FO,MSOw)-compatibility of the infinitary
Muchnik-iteration, the set M will be reduced uniformly to the MSOw-theory of AM . For
M 6= N , this yields a contradiction.

A tree is a structure (V,�, r) where � is a partial order on V such that, for any v ∈ V ,
(↓v,�) is a finite linear order and r � v for all v ∈ V .
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We will consider the set Tω = {(a1,m1)(a2,m2) . . . (ak,mk) ∈ (N × N)∗ | m1 > m2 >
m3 · · · > mk} of sequences in N2 whose second components decrease. This set, together
with the prefix relation �, forms a tree (Tω,�, ε) with root ε that we also denote Tω. Nodes
of the form w(a, 0) are leaves of Tω. Any inner node of Tω has infinitely many children
(among them, there are infinitely many leaves). Furthermore, all the branches of Tω are
finite. Even more, if x is a node different from the root, then the branches passing through
x have bounded length.

We will also consider the set T∞ = a∗Tω where a is an arbitrary symbol. Together with
the prefix relation, this yields another tree (T∞,�, ε) that we denote T∞. Differently from
Tω, it has an infinite branch, namely the set of all nodes an for n ∈ N.

For two trees S and T and a node v of S, let S ·v T denote the tree obtained from the
disjoint union of S and T by identifying v with the root of T (i.e., the node v gets additional
children, namely the children of the root in T ).

It is important for our later arguments that this operation transforms trees equivalent
wrt. ≡w

m into equivalent structures. More precisely

Proposition 5.1. Let S, T , and T ′ be trees and k ∈ N such that T ≡w
k T ′. Then S ·v T ≡w

k
S ·v T ′ for any node v of S.

With a≤n = {ε, a, a2, . . . , an}, the set a≤nTω together with the prefix relation and the
root, is considered as a tree that we denote a≤nTω.

Proposition 5.2. For any k ∈ N, we have Tω ≡w
k T∞.

Proof. The statement is shown by induction on k where the base case k = 0 is trivial. To
show Tω ≡w

k+1 T∞, it suffices to prove for any formula ϕ(X) of quantifier-depth at most k

Tω |=w ∃X ϕ(X) ⇐⇒ T∞ |=w ∃X ϕ(X) .

Assuming T∞ |=w ∃X ϕ, there exist n ∈ N and M ⊆ a≤nTω finite with (T∞,M) |=w ϕ.
Hence we have

(T∞,M) ∼= (a≤nTω,M) ·an (T∞, ∅)
≡w

k (a≤nTω,M) ·an (Tω, ∅) by Prop. 5.1 and the induction hypothesis
∼= (a≤nTω,M) .

Hence (a≤nTω,M) |=w ϕ and therefore a≤nTω |=w ∃X ϕ. Using Tω ≡w
k+1 a≤nTω (see

complete paper for the proof), we obtain Tω |=w ∃X ϕ.
Conversely, one can argue similarly again using Tω ≡w

k+1 a
≤nTω.

Remark 5.3. This proves that the existence of an infinite path cannot be expressed in
weak monadic second order logic since T∞ has such a path and Tω does not.

Using an idea from [5], the existence of an infinite path is a first-order property of the
infinitary Muchnik-iteration. The following lemma pushes this idea a bit further:

Lemma 5.4. Let T = (T,≤, r) be a tree and let U ⊆ T be the union of all infinite branches
of T . Then the MSOw-theory of (T,≤, r, U) is uniformly reducible to the MSOw-theory of
the infinitary Muchnik-iteration (T∞, cl) of the tree (T,≤, r) without the extra predicate.

For M ⊆ N, let AM = {bm | m ∈ M}T∞ ∪ {bm | m /∈ M}Tω and AM = (AM ,�, ε).
Then AM is obtained from the linear order (N,≤) ∼= (b∗,�) by attaching the tree T∞ to
elements from M and the tree Tω to the remaining numbers.
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Theorem 5.5. For M ⊆ N, we have AM ≡w
k Tω for all k ∈ N, and M can be reduced to

the FO-theory of the infinitary Muchnik-iteration (A∞
M , cl).

Proof. Using Ehrenfeucht-Fräıssé-games and Prop. 5.2, one obtains

AM ≡w
k (b∗Tω,�, ε) ∼= T∞ ≡w

k Tω .

For the second statement, it suffices, by Lemma 5.4, to reduce M to the first-order
theory of (AM ,�, ε, U) where U = b∗ ∪ {bm | m ∈M}a∗ is the set of nodes of the tree AM

that belong to some infinite branch.

If a transformation t is (FO,MSOw)-compatible, then for any structure A, the FO-
theory of t(A) can be reduced to the the MSOw-theory of A. Contrary to this, the above
theorem states that the FO-theory of the infinitary Muchnik-iteration can be arbitrarily
more complicated than the MSOw-theory of the base structure. Hence we obtain

Corollary 5.6. Infinitary Muchnik-iteration is not (FO,MSOw)-compatible.

6. Summary

Table 1 summarizes our knowledge about the compatibility of Muchnik’s and Shelah &
Stupp’s iteration. It consists of four subtables dealing with finitary and infinitary Muchnik-
iteration and with finitary and infinitary Shelah-Stupp-iteration. The sign + in cell (K,L) of
a subtable denotes that the respective iteration is (K,L)-compatible, – denotes the opposite.
Minus-signs without further marking hold since the base structure can be defined in any
of its iterations. Capital letters denote references: (A) is [15], (B) [17], (C) [10, Prop. 3.4],
(D) [10, Thm. 4.10], (E) Theorem 4.3, (F) Theorem 5.5, and (G) since the base structure
is definable in its iteration and finiteness of a set is no MSO-property. Small letters denote
that the result follows from Theorem 6.1 below and some further “simple” arguments from
the result marked by the corresponding capital letter.

Theorem 6.1. Let (K,L) be any of the pairs of logics (MSOclosed,MSO), (MSOch,MSOch),
or (MSOmch,MSOmch). There exists a computable function red such that, for any σ-
structure A, red reduces the K-theory of (A∞, cl) to the L-theory of (A∗, cl).

The same holds for the Shelah-Stupp-iterations.

The two questions marks in Table 1 express that it is not clear whether finitary Muchnik-
iteration is MSOw-compatible or not.

Note the main difference between Muchnik- and Shelah-Stupp-iteration: the latter is
K-compatible for all relevant logics while only MSO behaves that nicely with respect to
(infinitary) Muchnik-iteration

A referee proposed to also consider the variant of MSO where set quantification is
restricted to countable sets. As to whether Muchnik iteration is compatible with this logic
is not clear at the moment.
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Muchnik inf. Muchnik
MSO MSOw FO MSO MSOw FO

MSO + (B) – – MSOclosed + (b) – –
MSOw – (g) ? – MSOw – (g) – (f) –
FO + (b) ? – (C) FO + (b) – (F) – (c)

Shelah-Stupp inf. Shelah-Stupp
MSO MSOw FO MSO MSOw FO

MSO + (A) – – MSOclosed + (a) – –
MSOmch – (g) + (E) – MSOmch – (g) + (e) –
MSOw – (G) + (e) – MSOw – (g) + (e) –
MSOch + (a) + (e) + (D) MSOch + (a) + (e) + (d)
FO + (a) + (e) + (d) FO + (a) + (e) + (d)

Table 1: summary
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Abstract. Suppose we are given a finite set of points P in R
3 and a collection of polytopes

T that are all translates of the same polytope T . We consider two problems in this paper.
The first is the set cover problem where we want to select a minimal number of polytopes
from the collection T such that their union covers all input points P . The second problem
that we consider is finding a hitting set for the set of polytopes T , that is, we want to
select a minimal number of points from the input points P such that every given polytope
is hit by at least one point.

We give the first constant-factor approximation algorithms for both problems. We
achieve this by providing an epsilon-net for translates of a polytope in R

3 of size O( 1
ε
).

Introduction

Suppose we are given a set of n points P in R3 and a collection of polytopes T that
are all translates of the same polytope T . We consider two problems in this paper. The
first is the set cover problem where we want to select a minimal number of polytopes from
the collection T such that their union covers all input points P . The second problem that
we consider is finding a hitting set for the set of polytopes T , that is, we want to select a
minimal number of points from the input points P such that every given polytope is hit by
at least one point.

Both problems, the set cover problem and the hitting set problem which are in fact
dual to each other are very fundamental problems and have been studied intensively. In a
more general setting, where the sets could be arbitrary subsets, both problems are known
to be NP-hard, in fact they are even hard to approximate within o(log n) [11]. Even when
the sets are induced by geometric objects it is widely believed that the corresponding set
cover problem as well as the hitting set problem are NP-hard. Several geometric versions
of these problems were even proven to be hard to approximate. Hence, we are looking for
algorithms that approximate both problems. We give the first constant-factor approxima-
tion algorithms for the set cover problem and the hitting set problem for translates of a
polytope in R3. The central idea to our approximation algorithms are small epsilon-nets.
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A set of elements P (also called points) along with a collection T of subsets of P (also
called ranges) is in general called a set system (P, T ) and for geometric settings also known
as range spaces. One essential characteristic of these set systems is the Vapnik-Chervonenkis
dimension, or VC-dimension [17]. The VC-dimension is the cardinality of the largest subset
A ⊆ P for which {T ∩ A : T ∈ T } is the powerset of A. If the set A is finite, we say that
the set system (P, T ) has bounded VC-dimension, otherwise we say the VC-dimension of
(P, T ) is unbounded. For instance, the set system induced by translates of a polytope has
VC-dimension three as well as the set system induced by halfspaces in R2. A set N ⊆ P is
called an epsilon-net for a given set system (P, T ) if N ∩ T 6= ∅ for every subset T ∈ T for
which ‖T‖ ≥ ε · ‖P‖. In other words, an epsilon-net is a hitting set for all subsets T ∈ T
whose cardinality is an ε-fraction of the cardinality of the input point set P .

It is known that there exist epsilon-nets of size O
(

d
ε log d

ε

)
for any set system of VC-

dimension d [2, 10]. This bound is in fact tight for arbitrary set systems as there exist set
systems that do not admit epsilon-nets of size less than this bound [16]. Such an epsilon-net
can be simply found by random sampling [12].

However, for special set systems that are induced by geometric objects there do exist
epsilon-nets of smaller size, namely of size O( 1

ε ). It has been shown by Pach and Woegin-
ger [16] that halfspaces in R2 and translates of polytopes in R2 admit epsilon-net of size
O(1

ε ). Matoušek et al. [14] gave an algorithm for computing small epsilon-nets for pseudo-
disks in R2 and halfspaces in R3. The result for halfspaces in R3 also follows from a more
general statement by Matoušek [13].

Among other reasons for finding epsilon-nets of small size is the fact that an epsilon-net
of size g(ε) immediately implies an approximation algorithm for the corresponding hitting
set with approximation guarantee of O(g(1/c)/c), where c denotes the optimal solution to
the hitting set [15]. This means, that for arbitrary set systems of fixed VC-dimension we
have an algorithm for the hitting set problem with approximation O(log c). And for set
systems that admit epsilon-nets of size O(1/ε) we get an approximation algorithm to the
hitting set problem with constant approximation guarantee.

Clarkson and Varadarajan [5] developed a technique that connects the complexity of
a union of geometric objects to the size of the epsilon-net for the dual set system. Using
this result, they are able to develop, among other approximation algorithms for geometric
objects in R2, a constant-factor approximation algorithm for the set cover problem induced
by translates of unit cubes in R3.

We extend their result to not only the set cover problem but also the hitting set problem
for arbitrary translates of a polytope in R3. We do not require the polytope to be convex
or fat. This is the first constant-factor approximation algorithm for these two problems.
We achieve this by giving an epsilon-net for translates of a polytope in R3 of size O( 1

ε ).
We reduce the problem of finding epsilon-nets for translates of a polytope to a family of
non-piercing objects in R2 and then generalize the epsilon-net finder for pseudo-disks of
Matoušek et al. [14] to our setting.

The set cover problem which is studied by Hochbaum and Maass [9] where one is allowed
to move the objects is fundamentally different. They give a PTAS for their problem.

1. Small Epsilon-Nets for Polytopes in R
3

Let P be a set of n points in R3 and let T be a family of polytopes that are all translates
of the same bounded polytope T0. We want to find a set of polytopes of minimal cardinality
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among the collection T that covers all input points P . First, we find a small epsilon-net for
this set system and use this later for the constant-factor approximation of the hitting set
problem. Finally, we show how this then can be translated into a solution for the set cover
problem.

Throughout this paper we denote by T the polytope as well as the subset of points from
P that T covers and by T the family of polytopes as well as the corresponding family of
subsets of P . This will make the paper easier to read and it will be clear from the context
whether we talk about the geometric object or the corresponding set of points.

1.1. From Polytopes in R3 to Non-Piercing Objects in R2

So given such a set system (P, T ) we want to find an epsilon-net for it, i.e. we are
looking for a set N ⊆ P such that every subset of points T ∈ T with ‖T‖ ≥ ε · ‖P‖ is
stabbed by at least one point from N .

We can cut the polytope T into, lets say k polytopes T1, T2, . . . , Tk. If the polytope T
contains εn input points then one of the polytopes T1, T2, . . . , Tk must contain at least ε

k ·n
input points. Hence, in order to find an ε-net for the set system (P, T ) induced by translates
of T , it suffices to find ε

k -net for the set systems induced by the translates of T1, T2, . . . , Tk.
Following this reasoning we can reduce our problem for finding an epsilon-net for the

set system induced by translates of arbitrary polytopes to translates of convex polytopes
by cutting the possibly non-convex polytope into a set of convex polytopes. Note that the
number of these convex polytopes only depends on the polytope T and hence is constant
for fixed T .

Wlog. let T be from now on a convex polytope. We can place a cubical grid onto the
space R3 such that for any translate of T every cubical grid cell contains at most vertex of
T . This can be achieved by making the grid fine enough. Clearly, the maximal number t
of grid cells that can be intersected by T is bounded and only depends on T . Again, if T
contains εn input points then at least one of the cells must contain at least ε

t ·n of the input
points. Hence, we can restrict ourselves to finding epsilon-nets for translates of triangular
cones where all input points lie in a cube in R3. This just adds a multiplicative constant to
the size of the final epsilon-net.

The case when the cubical cell only contains a halfspace or the intersection of two
halfspaces can be either seen as a special case of a cone or, in fact, be even treated separately
in a much simpler way. The case of a translate of a halfspace reduces to a one-dimensional
problem an admits an epsilon-net of size 1 and the case of two intersecting halfspaces reduces
to a problem on intervals which admits an epsilon-net of size O(1/ε).

In the following we will construct an epsilon-net for the set system (P, C) that is induced
by translates of a triangular cone C.

Given a cone C, we call a set of points P in non-C-degenerate position if every translate
of C has at most three points of P on its boundary. We can always perturb the input points
P in such a way that they are in non-C-degenerate position and the collection of subsets of
the form P ∩CT where CT is a translate of C does not decrease [6]. Hence, we can restrict
ourselves on non-C-degenerate set of points P .

We place a coordinate system such that the input points all have z-coordinate greater
than 0 and a ray r emitting from the apex of the cone C and lying entirely in the cone
should intersect the plane z = 0. We refer to such a cone as a cone that opens to the bottom
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and the ray r as its internal ray. Figure 1 illustrates this setup for the two-dimensional
case.
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Figure 1: The cone C and its
internal ray r.

The following two definitions are helpful generalizations
the lower envelope.

Definition 1.1. Given a finite point set P and a triangular
cone C that opens to the bottom consider the arrangement
of all translates of C that have a point of P on its boundary
but no point of P in its interior. The upper set of plane
segments that can be seen from above is called the lower
envelope of P with respect to cone C.

Figure 2 illustrates the definition of the lower envelope
in the two-dimensional case. This definition is similar to
the definition of alpha-shapes where the cone is replaced
by a ball. We call all points that lie on the lower envelope with respect to cone C lower
envelope points and denote this set by L.

PSfrag replacements

C
Figure 2: The lower envelope with respect to

cone C, the corresponding cones
are drawn dotted.

PSfrag replacements

C
Figure 3: The flattened lower envelope with

respect to cone C, lower envelope
is drawn dotted.

Definition 1.2. Let C be a triangular cone that opens to the bottom and let P ⊆ R3 be
a finite set of points in non-C-degenerate position. Let C ′ be a cone that is flatter that C
by small δ and such that it contains C and the combinatorial structure of P and C ′ is the
same as for P and C. See figure 3 for an illustration. Then, the lower envelope of P with
respect to C ′ is called the flattened lower envelope of P with respect to cone C.

Such a cone C ′ always exists for a finite point set that is in non-C-degenerate position.
From now on we will abbreviate the term lower envelope with respect to cone C by lower
envelope since we will throughout this paper only talk about the same cone C. The flattened
lower envelope can be basically seen as a slightly flattened version of the lower envelope.

The next lemma shows that we can reduce the problem of finding an epsilon-net with
respect to cones of arbitrary point sets to lower envelope points.

Lemma 1.3. If for every finite point set P ′ ⊆ R3 of lower envelope points in non-C-
degenerate position there exists an epsilon-net with respect to translates of a cone C of size
s(ε) then there exists an epsilon-net with respect to translates of a cone C of size 3s(ε) for
every finite point set P ⊆ R3 in non-C-degenerate position.
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Figure 4: The projection of
points onto flattened
lower envelope.

.Proof. Let P ⊆ R3 be such a finite point set in non-C-
degenerate position and let C denote the cone. Let L
denote the set of lower envelope points. Let L̄ = P \ L
be the set of all non-lower envelope points. We project
all non-lower envelope points L̄ along the internal ray r
of cone C onto the flattened lower envelope (cf. figure 4).
We denote the projection of a point p by p′. Let P ′ be
union of the projected points and L. Clearly, P ′ is a set
of lower envelope points in non-C-degenerate position.

Suppose we have an epsilon-net N ′ for this point set
P ′. From this epsilon-net N ′ we will construct an epsilon-
net N for the original point set P . If a point from the set L is in the epsilon-net N ′, we
also add it to the epsilon-net N for P . If however, a projected point p′ is in N ′ then we add
to N the three points p1, p2 and p3 from the lower envelope L that determine the cone C
on whose boundary also p′ lies. Note that whenever an arbitrary cone contains the point p′
then it has to contain one of the three points p1, p2 or p3.

We have the following two properties:
(1) If a cone contains at least εn points from the set P then it contains at least εn points

from the set P ′.
(2) If a cone contains a point from the epsilon-net N ′ for P ′ then the cone contains a

point from the epsilon-net N for P .
Both properties prove that the set N is indeed an epsilon-net for P .

The preceding lemma assures that we can restrict ourselves on a finite set of lower
envelope points in non-C-degenerate position. For such a set system we will now construct
a corresponding set system of points in the plane and a collection of regions in the plane.

Definition 1.4. Let C be a cone and let P ′ be a finite set of lower envelope points in non-
C-degenerate position and let C be a collection of translates of C. We define a projection τ
from the flattened lower envelope onto the plane z = 0 by projecting each point along the
internal ray r. Let the projection of all points p′ ∈ P ′ which all lie on the be denoted as
the set S. For each cone of the collection the image of the intersection of the cone with the
flattened lower envelope is an object D ⊆ R2 and the family C of cones induces a family of
objects which we will denote by D.

Using the flattened lower envelope instead of the lower envelope avoids degeneracy. The
intersection of an arbitrary cone with the flattened lower envelope is always a collection of
line segments. Furthermore, it makes everything continuous in the sense that if a cone is
moved continuously in R3 then the intersection of the cone with the flattened lower envelope
moves continuously as well as its image of the projection τ . Note, that τ is injective.

Analogously, we call a set of points S ⊆ R2 in non-D-degenerate position if every D ∈ D
has at most three points on its boundary. We have the following lemma:

Lemma 1.5. If for every finite point set S ⊆ R2 in non-D-degenerate position there exists
an epsilon-net with respect to the family of objects D produced by the projection τ of size
s(ε) then there exists an epsilon-net with respect to cones of size s(ε) for every point set of
lower envelope points P ′ ⊆ R3 in non-C-degenerate position.

Proof. The proof follows easily from the fact that the image of a cone C under the projection
τ contains exactly those points that are the image of the points that are contained in C.



484 SÖREN LAUE

We refer to a cone C as the corresponding cone of the object D = τ(C). We will prove
a few useful properties of the so constructed set system (S,D).

Notice, that the intersection of two triangular cones is again a cone. Furthermore,
the intersection of a possibly infinite family of triangular cones is either empty or again a
triangular cone since all cones are closed. The intersection of the boundary of a cone with
the flattened lower envelope is either empty or a set of line segments that form one simple
closed cycle. Hence, the image of a cone under the projection τ is a closed and connected
region whose boundary is a closed and connected cycle.

Figure 5: A set of non-
piercing objects

.

Definition 1.6. Two geometric objects(sets) A ⊆ R2 and
B ⊆ R2 that are bounded by Jordan curves are said to be
non-piercing if the boundary of A and B cross at most twice.
A family of geometric objects is called non-piercing if every two
objects from this family are non-piercing. See figure 5 for an
illustration.

Lemma 1.7. The projection τ produces a family D of non-
piercing objects.

Proof. Consider two cones C1 and C2 that intersect each other.
If one is contained in the other, i.e. C1 ⊆ C2 then we are done,
as τ(C1) ⊆ τ(C2) and hence their boundaries cannot cross. So if C1 and C2 intersect and
none is subset of the other then the intersection of their boundaries are two rays emitting
from the same point. Each of these rays intersects the flattened lower envelope exactly once.
Hence, as the projection τ is injective the boundary of the two images of the cones C1 and
C2 under the projection τ intersect exactly twice. Thus, the objects are non-piercing.

1.2. Small Epsilon-Nets for Non-Piercing Objects in R2

In this subsection we will derive a few properties of the projection that are necessary
to apply the algorithm of Matoušek et al. [14] for finding a small epsilon-net for pseudo-
disks. These properties also hold in general for any family of non-piercing objects with the
additional property that for any three points there always exists an object that has these
three points on its boundary. However the proofs are a bit more involved. Since this does
not lie in the scope of this paper, we omit this here and focus only on the special family of
non-piercing objects that is produced by the projection described above.

Consider the family of all cones that have p and q on its boundary. The intersection of
all these cones is a cone Cpq that has p and q on its boundary. Connect p and q by a Jordan
curve Epq such that it lies entirely in the cone Cpq and on the flattened lower envelope,
for instance part of the boundary of Cpq that intersects the flattened lower envelope. The
image of Epq under the projection τ is a curve τ(Epq) embedded in the plane.

Definition 1.8. Let D be a family of non-piercing objects and let S ⊆ R2 be a finite set of
points. We call two points p, q ∈ R2 D-Delaunay neighbors if there exists an object D ∈ D
that has p and q on its boundary and no other point of S in its interior. The D-Delaunay
graph of S, in short D-DT(S), is the graph that is embedded in the plane, has S as its
vertex set and the edges τ(Epq) between all D-Delaunay neighbors p and q.
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Due to the definition of the D-Delaunay edge between two D-Delaunay neighbors p and
q it is guaranteed that whenever a object D ∈ D contains p as well as q then it also must
contain the D-Delaunay edge τ(Epq). In the following we will prove that this D-Delaunay
graph is in fact a triangulation of the vertex set S.

Lemma 1.9. The D-Delaunay graph of the given finite point set S in non-D-degenerate
position is a triangulation.
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Figure 6: Two intersecting D-
Delaunay edges and
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.Proof. First, we will prove that D-DT(S) is planar. Sup-
pose otherwise, i.e. two edges τ(Epq) and τ(Ers) inter-
sect each other in the plane. Since the cone Cpq does not
have any point in its interior and Crs also does not have
any point in its interior and since each of these cones has
at most 3 points on its boundary the objects τ(Cpq) and
τ(Crs) would have to pierce each other, see figure 6 for an
illustration. Here, it is actually essential, that the set S is
in non-D-degenerate position. Thus, the graph is planar.

The graph D-DT(S) itself consists of an outer face
which is defined by cones of the lower envelope that have
at most 2 points on their boundary and all other faces are
triangles defined by the cones of the lower envelope that have exactly three points on its
boundary. Suppose an inner face F is not bounded by a triangle. Then, one can place the
apex of a cone in such a way onto the flattened lower envelope such that its image under
the projection τ is a point which lies inside this face F . By moving the cone upward one
can ensure that the cone will finally have three points on its boundary whose image under
the projection τ are three vertices of the face F but no point in its interior. Hence, the face
F must be bounded by a triangle. Hence, D-DT(S) is a triangulation of the set S.

We call the points of S that lie define the outer face the convex hull of S with respect
to cone C and we denote it by convC(S). It is a generalization of the standard convex hull
and we will make use of it later. For a standard triangulation one requires that the outer
face is determined by the convex hull. Here, we replaced the standard convex hull by the
convex hull with respect to cone C. This is the appropriate generalization that we need.

Lemma 1.10. Let D be an object produced by the projection τ . The subgraph G of D-DT(S)
induced by the points of S that lie in D is connected.

Proof. We prove the connectivity using induction over the number of points that lie in D. If
D contains at most 2 points that it must be connected by definition and the fact that we can
slide down the corresponding cone until both points lie on the boundary. So lets assume
that every object D that contains at most k points from the set S induces a connected
subgraph G. Now consider an object D that contains k + 1 points of S. Consider the cone
that is the intersection of all cones that contain exactly those k + 1 points. This cone has
exactly three points on its boundary. We can move the cone by a small δ in such a way
that each of the three points can be excluded separately. As all of these induced graphs are
connected by induction hypothesis, the whole subgraph induced by D must be connected.

We need two more lemmas. Both lemmas basically rely on the fact that projection τ
is continuous.

Lemma 1.11. Let S be a finite point set.
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(1) For any object D ∈ D, there exists an object D ′ ∈ D with S∩D′ = S∩intD′ = S∩D.
(2) For any object D′ ∈ D, there exists an object D ∈ D with S ∩ D ′ = S ∩ int D′ =

S ∩ intD.

Proof. Let C be the corresponding cone of D. If we move C upward along the internal ray
r by a small δ then the corresponding object D ′ of this cone will satisfy (1). On the other
hand, if we move the cone C downward along the ray r by a small δ then the corresponding
object D′ will satisfy (2).

Lemma 1.12. Let S be a finite point set in non-D-degenerate position, let (p, q) be a D-
Delaunay edge in D-DT(S). Then, there exists an object D with p and q on its boundary
and with S ∩D = {p, q}.
Proof. Let D be the object that assures that p, q is a D-Delaunay edge, i.e. D has p and q
on its boundary. Since the point set S is in non-D-degenerate position D has at most three
points on its boundary. If D has exactly two points on its boundary we are done. So lets
assume that D has exactly three points on its boundary. Let C be the corresponding cone
of D and let the corresponding points of p and q be p′ ∈ R3 and q′ ∈ R3. Neither p′ nor
q′ can lie on the intersection of two of the defining planes of cone C because otherwise the
cone could still be moved in an upward direction such that all three points still lie on the
boundary until the cone hits a fourth point. But this would mean that the point set was in
C-degenerate position. Hence, p′ and q′ lie in the interior of two of the plane segments of
cone C. If we now move the cone C downward by a small δ such that it still touches p ′ and
q′ then the corresponding object of this cone will only have p and q on its boundary.

Having these properties, we can basically directly apply the algorithm for finding an
epsilon-net for pseudo-disks from [14]. We will describe the algorithm here and prove its
correctness for our setting.

We are given a finite point set S in non-D-degenerate position and we want to find a
subset N ⊆ S of size O(1/ε) that stabs any object D that contains at least εn points of S.

Let δ = ε/6. First, let S1, . . . , Sj be pairwise disjoint subsets of S with the following
properties: Each Si contains δn points, their union contains the convex hull of S with
respect to cone C, i.e. convC(S) ⊆ ⋃

1≤i≤j Si and each Si is representable by S ∩ τ(Ci) for
an appropriate cone Ci. Such sets can be easily constructed by repeatedly biting off points
from convC(S) with a suitable cone Ci. Notice, that all these objects Di = τ(Ci) belong to
the collection D.

Next, find a maximal pairwise disjoint collection Sj+1, . . . , Sk of subsets of the remaining
points S \ ⋃

1≤i≤j Si satisfying Si = S ∩Di for some object Di and each subset containing
δn points. Obviously, there are at most 1/δ+1 many subsets Si in total. For an illustration
we refer to figure 7. We assign all points in Si the color i and call all other points colorless.
Let S̄ be the set of all colored points. Note, that if an object contains only colorless points
then it contains less that δn points, since the collection of subsets Si was maximal.

Let G be the D-Delaunay graph of the set of colored points S̄, i.e. G = DT(S̄). G is
indeed a triangulation (cf. lemma 1.9). In this graph we call a triangle uni-colored, bi-colored
or tri-colored depending upon the number of colors its vertices have. In a similar way we call
edges uni-colored or bi-colored. We call a maximal connected chain of bi-colored triangles
in G sharing bi-colored edges a corridor (cf. figure 8). Since the graph G is planar and each
of the induced subgraphs G∩Di is connected according to lemma 1.10 the number of such
corridors is at most 3k − 6 ([14]). All colorless points are contained in the corridors and
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Figure 7: The sets Si and the convex hull
convC(S) with respect to cone C.
The D-Delaunay triangulation is
drawn dotted.
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Figure 8: The corridor R which is split
into two sub-corridors and two tri-
colored triangles. The corners of
the sub-corridors are marked by
crosses.

the tri-colored triangles because any uni-colored triangle is contained it its color-defining
object. We break each corridor R into a minimum number of sub-corridors, i.e. sub-chains
of the chain that forms R, so that each sub-corridor contains at most δn colorless points.
Since there are less than n colorless points and since the total number of corridors is 3k− 6
the total number of sub-corridors is O(1/δ).

Each sub-corridor is bounded by two chains of uni-colored edges which we call sides
and by two bi-colored edges which we call ends of the sub-corridor. The endpoints of the
sides are called corners. Let N ⊆ S be the set of all corners of all sub-corridors. Since each
sub-corridor has at most 4 corners the size of N is O(1/ε). The set N is an epsilon-net for
the set of non-piercing objects D.

The proof that N is indeed an epsilon-net relies in principle on the fact that the collec-
tion D are non-piercing objects and follows along the lines of [14].

Proof. Let D be an object that has no points of S on its boundary (cf. lemma 1.11) and
assume that D does not contain any points from N . The theorem is proven when we can
show that D then contains less than εn points of S. If D contains no colored point then
we are done, because the sets Si were a maximal. Hence, D must contain at least one
colored point. If it contains two colored points, lets say z1 of color 1 and z2 of color 2, we
can draw the following picture: Let D1 be the color defining object of color 1 and D2 the
color defining object of color 2. Then D intersects D1 and D2 but cannot pierce them. The
area between D1 and D2 is a sub-corridor whose ends we denote by (a1, a2) and (b1, b2).
Lemma 1.12 assures that there is an object Da that has a1 and a2 on its boundary and
there is an object Db that has b1 and b2 on its boundary. Since D also does not contain any
point from N which are the corners of the sub-corridors, i.e. it does not contain a1, a2, b1

or b2 and since D and Da as well as D and Db are non-piercing it must lie between two
ends of one sub-corridor. See figure 9 for an illustration. Now, as all objects D1, D2, Da

and Db contain at most δn points and the sub-corridor also contains at most δn points D
can contain at most 5 · δn = 5/6εn < εn points of S.

The case where D only contains points of one color and colorless points is very similar.
There is basically only one setup and it is depicted in figure 10. Arguing as above it easy
to see in this case that D cannot contain more than 4 · δn < εn points from S.

Hence, we have the following theorem
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Theorem 1.13. Let D be the set of non-piercing objects in R2, that is produced by the
projection τ . For every finite point set in non-D-degenerate position there exists an epsilon-
net of size O(1/ε).

Together with lemma 1.3 and lemma 1.5 this immediately implies our main theorem

Theorem 1.14. Given a finite point set P ⊆ R3 and a polytope T ⊆ R3. The set system
(P, T ) induced by a set of translates of polytope T admits an epsilon-net of size O(1/ε).

2. From Epsilon-Nets to Hitting Sets

In this section we will describe a constant factor approximation algorithm to the hitting
set problem using the epsilon-net of size O(1/ε) from the previous section. Recall that in
the hitting set problem we are given a set of points P ∈ R3 and a set polytopes that are
all translates of the same polytope and we would like to select a subset H ⊆ P of the
input points of minimal cardinality such that every polytope is stabbed by a point in H.
We denote the corresponding set system by (P, T ). The fractional hitting set problem is a
relaxation of the original hitting set problem and is defined by the following linear program:

min
∑

p∈P x(p) (2.1)

s. t. ∀T ∈ T
∑
p∈T

x(p) ≥ 1 (2.2)

∀p ∈ P x(p) ≥ 0 (2.3)

Let OPT denote the optimal size of the hitting set and OPT∗ the optimal value of
the fractional hitting set problem. It is known that the integrality gap is constant for set
systems that admit an epsilon-net of size O(1/ε) [15].

Let w : P → R≥0 be a weight function for the set P . We define the weight w(A) of a
subset A ⊆ P to be the sum of the weights of the elements of A. The weighted version of
an epsilon-net is as follows:

Definition 2.1. Consider a set system (P, T ) and a weight function w : P → R≥0. A set
H ⊆ P is called an epsilon-net with respect to w if H ∩ R 6= ∅ for every subset T ∈ T for
which w(T ) ≥ ε · w(S).

There are algorithms that compute a hitting set provided one has an epsilon-net finder.
The core idea to all these algorithms is to find a weight function w : P → R≥0 that assigns
weights to the elements of P and finds an appropriate ε such that every set in T has weight



GEOMETRIC SET COVER AND HITTING SETS FOR POLYTOPES IN R3 489

at least ε ·w(S). Once such weights are found it is then obvious that an epsilon-net to this
set system is automatically a hitting set.

The algorithm given by Brönnimann and Godrich [3] computes these weights iteratively.
Initially, all elements have weight 1. Then, in each iteration an epsilon-net is computed and
then checked whether it is also a proper hitting set. If not, i.e. there is a set which is not
hit, then the weights of its elements are doubled. This is done until a hitting set is found.
This algorithm can be seen as a deterministic analogue of the randomized natural selection
technique used for instance by Clarkson [4].

Another algorithm is by Even et al. [7]. Here, the weights of the elements and ε are
directly found by the following linear program:

max ε (2.4)
s. t. ∀T ∈ T w(T ) ≥ ε (2.5)∑

p∈P

w(p) = 1 (2.6)

∀p ∈ P w(p) ≥ 0 (2.7)

It suffices to approximate the solution to this linear problem. There are numerous algo-
rithms that find an approximate solution to such a covering linear program efficiently [18, 8].

One can reduce the problem of finding a weighted epsilon-net to the unweighted case.
One just makes multiple copies of a point according to its assigned weight and it can be
shown that the cardinality of this multiset can be bounded by 2n [5]. Hence, an ε

2 -net for
this set system gives a hitting set for the original hitting set problem. Hence, we have

Theorem 2.2. There exists a polynomial time algorithm that computes a constant-factor
approximation to the hitting set problem for translates of polytopes in R3.

3. From Hitting Set to Set Cover

Definition 3.1. The dual set system of a set system (P, T ) is the set system (T , P ∗) where
P ∗ = {Tp : p ∈ P} and Tp consists of all subsets of T that contain p.

Obviously, a set cover for the primal set system is a hitting set for the dual set system.
Hence, in order to solve the set cover problem for a set system it suffices to solve the hitting
set problem for the dual set system. For arbitrary set systems, the dual set system can be
of quite different structure. In general it is only known that the VC-dimension of the dual
set system is less than 2d+1, where d is the VC-dimension of the primal set system [1].

However, we observe that if the set system is induced by translates of a polytope, then
the dual is again induced by translates of a polytope. To see this, let (P, T ) be the primal
set system. One just reduces each polytope T ∈ T to a point, for instance each to its lowest
vertex. Let this be the set P ′. Then, replace each point of P by a translate of the polytope
T ′ which is the inversion of T in a point. One easily verifies that the so constructed set
system (P ′, T ′) of points P ′ and collection of translates of polytope T ′ is indeed equivalent
to the dual (T , P ∗). This holds in fact for all Rd. Hence, we can find a constant-factor
approximation to the set cover problem for translates of a polytope in R3 in polynomial
time. This brings us to our final theorem

Theorem 3.2. There exists a polynomial time algorithm that computes a constant-factor
approximation to the set cover problem for translates of polytopes in R3.
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4. Conclusions and Open Problems

In this paper we have given the first constant-factor approximation algorithm for finding
a set cover for a set of points in R3 by a given collection of translates of a polytope as well as
the first constant-factor approximation algorithm for the corresponding hitting set problem.
We achieved this result by providing an epsilon-net of size O( 1

ε ) for the corresponding set
system which is optimal up to a multiplicative constant. Eventhough we can approximate
a unit ball in R3 up to any given precision by a polytope, the corresponding question,
whether there exists a constant-factor approximation algorithm for unit balls in R3 still
remains open.
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[1] P. Assouad. Densité et dimension. Ann. Inst. Fourier, 33(3):233–282, 1983.
[2] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the vapnik-chervonenkis

dimension. J. ACM, 36(4):929–965, 1989.
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[14] J. Matoušek, R. Seidel, and E. Welzl. How to net a lot with little: Small epsilon-nets for disks and

halfspaces. In SoCG ’90, pages 16–22, 1990.
[15] J. Pach and P. K. Agarwal. Combinatorial Geometry. Wiley, New York, 1995.
[16] J. Pach and G. Woeginger. Some new bounds for epsilon-nets. In SoCG ’90, pages 10–15, New York,

USA, 1990. ACM Press.
[17] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to

their probability. Theory Probab. Appl., 16:264–280, 1971.
[18] N. E. Young. Randomized rounding without solving the linear program. In SODA ’95, pages 170–178,

Philadelphia, PA, USA, 1995. Society for Industrial and Applied Mathematics.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.



Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 491-502
www.stacs-conf.org

A THEORY FOR VALIANT’S MATCHCIRCUITS
(EXTENDED ABSTRACT)

ANGSHENG LI 1 AND MINGJI XIA 1

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences,
P.O. Box 8717, Beijing 100080, China
E-mail address: angsheng@ios.ac.cn

E-mail address: xmjljx@gmail.com

Abstract. The computational function of a matchgate is represented by its character
matrix. In this article, we show that all nonsingular character matrices are closed under
matrix inverse operation, so that for every k, the nonsingular character matrices of k-bit
matchgates form a group, extending the recent work of Cai and Choudhary [1] of the same
result for the case of k = 2, and that the single and the two-bit matchgates are universal
for matchcircuits, answering a question of Valiant [4].

1. Introduction

Valiant [4] introduced the notion of matchgate and matchcircuit as a new model of
computation to simulate quantum circuits, and successfully realized a significant part of
quantum circuits by using this new model. Valiant’s new method organizes certain com-
putations based on the graph theoretic notion of perfect matching and the corresponding
algebraic object of the Pfaffian. This leaves an interesting open question of characterizing
the exact power of the matchcircuits. To solve these problems, a significant first step would
be a better understanding the structures of the matchgates and the matchcircuits, to which
the present paper is devoted.

In [6], Valiant introduced the notion of holographic algorithm, based on matchgates and
their properties, but with some additional ingredients of the choice of a set of linear basis
vectors, through which the computation is expressed and interpreted.

Matchgates and their character matrices have some nice properties, which have already
been extensively studied. In [1], Cai and Choudhary showed that a matrix is the character
matrix of a matchgate if and only if it satisfies all the useful Grassmann-Plücker identities,
and all nonsingular character matrices of two bits matchgates form a group.
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In the present paper, we show that for every k, all the nonsingular character matrices
of k-bit matchgates form a group, extending the result of Cai and Choudhary of the same
result for the case of k = 2.

Furthermore, we show that every matchcircuit based on k-bit matchgates for k > 2
can be realized by a series of compositions of either single bit or two bits matchgates. This
result answers a question raised by Valiant in [4]. The result is an analogy of the quantum
circuits in the matchcircuits [3].

We organize the paper as follows. In section 2, we outline necessary definitions and
background of the topic. In section 3, we state our results, and give some overview of the
proofs. In section 4, we establish our first result that for every k, all nonsingular k-bit
character matrices form a group. In section 5, we prove the second result that level 2
matchgates are universal for matchcircuits.

2. Definitions

2.1. Graphs and Pfaffian

Let G = (V,E,W ) be a weighted undirected graph, where V = {1, 2, . . . , n} is the set of
vertices each represented by a distinct positive integer, E is the set of edges and W is the set
of weights of the edges. We represent the graph by a skew-symmetric matrix M , called the
skew-symmetric adjacency matrix of G, where M(i, j) = w(i, j) if i < j, M(i, j) = −w(i, j)
if i > j, and M(i, i) = 0.

The Pfaffian of an n× n skew-symmetric matrix M is defined to be 0 if n is odd, 1 if
n is 0, and if n = 2k where k > 0 then it is defined by

Pf(M) =
∑
π

επw(i1, i2)w(i3, i4) . . . w(i2k−1, i2k),

where
• π = [i1, i2, . . . , i2k] is a permutation on [1, 2, . . . , n],
• the summation is over all permutations π, where i1 < i2, i3 < i4, . . . , i2k−1 < i2k

and i1 < i3 < . . . < i2k−1,
• επ is the sign of the permutation π, or equivalently, επ is the sign or parity of

the number of overlapping pairs, where a pair of edges (i2r−1, i2r), (i2s−1, i2s) is
overlapping iff i2r−1 < i2s−1 < i2r < i2s or i2s−1 < i2r−1 < i2s < i2r.

A matching is a subset of edges such that no two edges share a common vertex. A
vertex is said to be saturated if there is a matching edge incident to it. A perfect matching
is a matching which saturates all vertices. There is a one-to-one correspondence between
the monomials in the Pfaffian and the perfect matchings in G.

If M is an n × n matrix and A = {ii, . . . , ir} ⊆ {1, . . . , n}, then M [A] denotes the
matrix obtained from M by deleting the rows and columns of indices in A. The Pfaffian
Sum of M is a polynomial over indeterminates λ1, λ2, . . . , λn defined by

PfS(M) =
∑
A

(
∏
i∈A

λi)Pf(M [A])

where the summation is over the 2n subsets of {1, . . . , n}. There is a one-one correspondence
between the terms of the Pfaffian sum and the matchings in G. We consider only instances
such that each λi is fixed to be 0 or 1. In this case, Pfaffian Sum is a summation over all
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matchings that match all nodes with λi = 0. It is well known that both the Pfaffian and
the Pfaffian Sum are computable in polynomial time.

2.2. Matchgate

A matchgate Γ, is a quadruple (G,X, Y, T ), where G = (V,E,W ) is a graph, X ⊆ V
is a set of input nodes, Y ⊆ V is a set of output nodes, and T ⊆ V is a set of omittable
nodes such that X, Y and T are pairwise disjoint. Usually the numbers of nodes in V are
consecutive from 1 to n = |V | and X, Y have minimal and maximal numbers respectively.
Whenever we refer to the Pfaffian Sum of a matchgate fragment, we assume that λi = 1,
if i ∈ T , and 0 otherwise. Each node in X ∪ Y is assumed to have exactly one incident
external edge. For a node in X, the other end of the external edge is assumed to have index
less than the index for any node in V , and for a node in Y , the other end node has index
greater than that for every node in V . If k = |X| = |Y |, then Γ is called k-bit matchgate.
A matchgate is called a level k matchgate, if it is an n-bit matchgate for some n ≤ k. If
a matchgate only contains input nodes, output nodes and one ommitable node, then it is
called a standard matchgate.

We define, for every Z ⊆ X ∪ Y , the character χ(Γ, Z) of Γ with respect to Z to be the
value µ(Γ, Z)PfS(G−Z), where G−Z is the graph obtained from G by deleting the vertices
in Z together with their incident edges, and the modifier µ(Γ, Z) ∈ {−1, 1} counts the parity
of the number of overlaps between matched edges in G − Z and matched external edges.
We assume that all the nodes in Z are matched externally. By definition of the modifier, it
is easy to verify that µ(Γ, Z) = µ(Γ, Z ∩X)µ(Γ, Z ∩ Y ), and that if X = {1, 2, . . . , k} and
Z ∩X = {i1, i2, . . . , il}, then µ(Γ, Z ∩X) = (−1)

Pl
j=1 (ij−j).

The character matrix χ(Γ) is defined to be the 2|X| × 2|Y | matrix such that entry
(i1i2 . . . ik, inin−1 . . . in−k+1) is χ(Γ, X ′ ∪ Y ′), where X ′ = {j ∈ X|ij = 1}, Y ′ = {j ∈
Y |ij = 1} and i1i2 . . . ik, inin−1 . . . in−k+1 are binary expression of numbers between 0 and
2k − 1. We also use (X ′, Y ′) to denote this entry. We call an entry (X ′, Y ′) edge entry, if
0 < |(X − X ′) ∪ (Y − Y ′)| ≤ 2. Throughout the paper, we identify a matchgate and its
character matrix. An easy but useful fact is that for every k, the 2k × 2k unit matrix is a
character matrix.

2.3. Properties of character matrix

We introduce several properties of character matrices, which will be used in the proof
of our results.

Theorem 2.1 ([4]). If A and B are character matrices of size 2k × 2k, then AB is a
character matrix.

Theorem 2.2 ([4]). Given any matchgate Γ there exists another matchgate Γ′ that has the
same character as Γ and has an even number of nodes, exactly one of which is omittable.

Theorem 2.3 ([1]). Let A be a 2k×2l matrix. Then A is the character matrix of a k-input,
l-output matchgate, if and only if A satisfies all the useful Grassmann-Plücker identities.

This is a very useful characterization of the character matrices generalizing the char-
acterization for a major part of all 2-input 2-output matchgates in [4]. The proof of this
theorem implies the following:
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Corollary 2.4 ([1]). Let A be a 2k×2l matrix whose right-bottom most entry is 1 satisfying
all the useful Grassmann-Plücker identities. Then A is uniquely determined by its edge
entries and A is the character matrix of a standard matchgate Γ containing k + l + 1 nodes
(k input nodes, l output nodes and 1 omittable node).

Recently, Cai and Choudhary also showed that:

Theorem 2.5 ([1]). Let A be a 4 × 4 character matrix. If A is invertible, then A−1 is a
character matrix. Consequently, the nonsingular 4× 4 character matrices form a group.

2.4. Matchcircuit

Given a matchgate Γ = (G,X, Y, T ), we say that it is even, if PfS(G − Z) is zero
whenever Z = X ∪ Y has odd size, and odd if PfS(G− Z) is zero whenever |Z| is even.

Theorem 2.6 ([4],[1]). Consider a matchcircuit Γ composed of gates as in [4]. Suppose
that every gate is:

(1) a gate with diagonal character matrix,
(2) an even gate applied to consecutive bits xi, xi+1, . . . , xi+j for some j,
(3) an odd gate applied to consecutive bits xi, xi+1, . . . , xi+j for some j, or
(4) an arbitrary gate on bits x1, . . . , xj for some j.

Suppose also that every parallel edge above any odd matchgate, if any, has weight −1 and
all other parallel edges have weight 1. Then the character matrix of Γ is the product of the
character matrices of the constituent matchgates, each extended to as many inputs as those
of Γ.

From now on, whenever we say a matchcircuit, we mean that it satisfying the require-
ments in the above theorem. An example circuit is shown in Fig. 1, where the edges in a
matchgate are not drown, and each node has index smaller than that of all nodes located
to the right of the node. We call a matchcircuit is of level k, if it is composed of matchgates
no more than k bits.

Figure 1: An example of matchcircuit.

The character matrix of a matchcircuit is defined by the same way as that of a matchgate
except that there is no modifier µ.
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3. The results and overview of the proofs

Theorem 3.1. For every k, the nonsingular 2k×2k character matrices form a group under
the matrix multiplication.

We will prove theorem 3.1 by induction on the size of matchgates. The proof proceeds
as follows. Based on corollary 2.4, we observe that all 2k × 2k character matrices can be
transformed to a special form 2k × 2k character matrices. This suggests the following:

Definition 3.2. We say that a k-bit matchgate is a reducible matchgate, if the bottom pair
of nodes k and n − k + 1 are connected by a weight 1 edge, and there is no other edge
incident to any of the nodes k and n− k + 1.

The character matrix of a reducible matchgate is called a reducible character matrix.

By corollary 2.4, a character matrix B is a reducible character matrix if it satisfies the
following:

(1) B2k−1,2k−1 = B2k−2,2k−2 = 1.
(2) All the edge entries in the last two columns and the last two rows are 0 except for

B2k−2,2k−2.
Firstly we prove that if the k-bit nonsingular character matrices are closed under matrix

inverse operation, then so are the (k + 1)-bit nonsingular reducible character matrices .
Secondly, we introduce some elementary nonsingular matchgates so that every non-

singular 2k × 2k character matrix can be transformed to a reducible character matrix by
multiplying with the character matrices of the elementary matchgates.

This transformation is realized by four phases as follows. Starting from A = A(0), we
need the following:
Phase T1 (A(0) ⇒ A(1)). Turn the right-bottom most entry to 1.
Phase T2 (A(1) ⇒ A(2)). Turn the edge entries in the last row and column to 0’s, while
keeping the right-bottom most entry 1.
Phase T3 (A(2) ⇒ A(3)). Turn the entry A

(2)

2k−2,2k−2
to 1, while keeping the right-bottom

most entry 1 and the edge entries in the last row and column 0’s.
Phase T4 (A(3) ⇒ A(4)). Turn the edge entries in the row 2k − 2 and column 2k − 2 to
0’s, while keeping the last two diagonal entries 1’s and the edge entries in the last row and
column 0’s.

Each phase consists of several actions (or for simplicity, steps). In each step, either the
positions of entries are changed, or the values of some entries are changed.

An action is defined to be the multiplication of a character matrix with an elementary
character matrix. The role of an action is to change some specific entries to be some fixed
value 0 or 1. However, such an action will certainly injure other entries which are undesired.

The crucial observation is that an appreciate sequence of actions will gradually satisfy
all the entries requirements. During the course of the transformation, once an entry re-
quirement is satisfied by some action, it will never be injured again by the future actions.
That is to say, an action may injure only the entries which have not been satisfied. This
ensures that all the entries requirements will be eventually satisfied.

This describes the idea of the proof of theorem 3.1. The proof will also build an essential
ingredient for our second result, the theorem below.

Theorem 3.3. For every k > 2, if Γ is a matchcircuit composed of level k matchgates,
then:
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(1) Γ can be simulated by a level 2 matchcircuit ∆.
(2) A k-bit matchgate can be simulated by O(k4) many single and two-bit matchgates.

And every matchcircuit Γ can be simulated by a level 2 matchcircuit in polynomial
time.

Our proof of theorem 3.3 is a composition of the proof of theorem 3.1 and some more
elementary matchgates. On the other hand, one could firstly prove theorem 3.3, then
prove 3.1 by combining theorem 3.3 and theorem 2.5. However there are subtle difference
between character matrices of matchgate and matchcircuit. Therefore, this approach needs
additional technique.

4. Group property of the k-bit character matrices

In this section, we prove theorem 3.1. To proceed an inductive argument, we exploit
the structure of the reducible character matrices which pave the way to the reductions.

4.1. Reducible matchgates

Lemma 4.1. Let ∆1 be a (k+1)-bit reducible matchgate, that is, the bottom edge (k+1, k+3)
having weight 1 and there is no any other edge incident to any of the nodes k +1 and k +3.
Let Γ1 be the k-bit matchgate obtained from ∆1 by deleting the edge (k + 1, k + 3). Then:

(i) If ∆1 is invertible, so is Γ1.
(ii) If χ(Γ1)−1 is a character matrix, so is χ(∆1)−1.

Proof. (Sketch) For (i). This holds because χ(∆1) is a block diagonal matrix after rear-
ranging the order of rows and columns, and χ(Γ1) is equal to one block.

For (ii). We prove this by constructing the inverted matchgate ∆2(F2,W2, Z2, T2) of
∆1(F1,W1, Z1, T1) from the inverted gate Γ2(G2, X2, Y2, T2) of Γ1(G1, X1, Y1, T1).

It suffices to prove that the composition of ∆1 and ∆2 has the unit matrix as its
character matrix. See Fig. 2 for the intuition of the proof, while detailed verification will
be given in the full version of the paper.

Figure 2: Example of k = 2. X1 = {1, 2}, Y1 = {6, 7}, T1 = {4} X2 = {8, 9}, Y2 = {13, 14},
T2 = {11}, W1 = {1, 2, 3}, Z1 = {5, 6, 7}, W2 = {7, 8, 9}, Z2 = {12, 13, 14}.
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4.2. The transformation lemma

In this part, we construct the matchgates to realize the phases T1 – T4 prescribed in
section 3, and show that every k-bit nonsingular character matrix can be transformed to a
k-bit reducible character matrix by using the transformation.

The key point to the proof of the theorem is the following:

Lemma 4.2. Let A be a 2k×2k nonsingular character matrix. Then there exist nonsingular
character matrices Ls, . . . , L2, L1, R1, R2, . . . , Rt for some s and t such that Ls · · ·L2L1AR1

R2 · · ·Rt is a reducible character matrix.

Proof. Given a nonsingular character matrix A, we denote A by A(0). We construct the
matchgates to realize the four phases T1 – T4. We use A(i) to denote the character matrix
obtained from A(i−1) by using phase Ti, where i = 1, 2, 3, 4. We start with A(0), and define
the transformation to be a series of actions, defined in section 3. In the discussion below,
we will use A to denote the character matrix obtained so far in the construction from A(0)

(or shortly, the current matrix).
The four phases proceed as follows.

Phase T1: Suppose that Γl is the k-bit matchgate such that the l-th pair of input-output
nodes are connected by a path of length 2 on which each edge has weight 1, and each of the
other pairs is connected by an edge of weight 1, and k+1 is the only unomittable node other
than the input and output nodes. (See Fig. 3 (a)). Let Cl denote the character matrix of
Γl.

Figure 3:

Suppose without loss of the generality that AI=i1i2...ik,J=j1j2...jk
6= 0. Define

L1 =
∏

1≤l≤k,il=0

Cl, R1 =
∏

1≤l≤k,jl=0

Cl.

It is easy to see that the right-bottom most entry, a say, of L1AR1 is either AI,J or
−AI,J by computing the PfS(G − X ∪ Y ) of the composed matchgate corresponding to
L1AR1. Let L2 = 1

aE, and A(1) = L2L1AR1. Clearly L2 is a character matrix, so is A(1),
by theorem 2.1.
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Phase T2: Phase T2 will change the edge entries in the last column and the last row to
0’s. We first describe the actions for the column as follows.

Phase T2 for the last column:
We turn the edge entries in the last column to 0’s one by one from bottom to top. To

turn an edge entry (X ′, 2k−1) to zero, we need a row transformation applied to the current
matrix A, which adds the multiplication of −b and the last row to row X ′, where b is the
value of entry (X ′, 2k − 1) of the current matrix.

Therefore phase T2 for the last column consists of the following actions. In decreasing
order of X ′, for every edge entry (X ′, 2k − 1), we have:

Action (X ′, 2k−1): Multiplying an elementary character matrix, L say, to the current
character matrix A from the left side, where L is a character matrix satisfying that the
diagonal entries are all 1’s, and that LI=X′,2k−1 = −b.

This makes some row transformations to the current matrix according to the nonzero en-
tries other than the diagonal entries. The row transformation corresponding to LI=X′,2k−1 =
−b is exactly the one that realizes the goal of this action.

Now we formally construct the matchgate to realize the character matrix L as required
in the action (X ′, 2k − 1) above. The construction is divided into two cases depending on
the size of X ′ as follows.

Case 1. X ′ = X − {i} for some i.
We use the matchgate with the following properties: (1) each input-output pair of the

gate is connected by an edge of weight 1, and (2) it contains one more edge (i, t) to realize
L, where t is the unique omittable node, and the weight of (i, t) is either b or −b ensuring
LI,2k−1 = −b. For intuition of the matchgate, a reader is referred to Fig. 3 (b).

Let (I ′, J ′) be an arbitrary nonzero entry of L other than the diagonal entries. By the
construction of the gate, we have that the i-th bit of I ′ and J ′ are 0 and 1 respectively, and
that I ′, and J ′ are identical on the j-th bit for every j 6= i. Hence I ′ < J ′ and I ′ ≤ I (recall
that I = X ′). The action at entry (X ′, 2k − 1) in this case actually makes the following
row transformation: For each such pair (I ′, J ′), row I ′ is added by the multiplication of
LI′,J ′ and row J ′. Since I ′ ≤ I, all the edge entries (I1, 2k − 1) with I1 > I have never been
injured by the action in this case.

Case 2 X ′ = X − {i, j} for some i, j.
The character matrix L in this case is constructed by a similar way to that in case 1

above, using the matchgate in Fig. 3 (c).
The cost of the action in this case is similarly analyzed to that for case 1.
Recall that after phase T1, the right-bottom most entry is 1. The actions in both case

1 and case 2 of phase T2 above will never injure the last row of the matrix, so that the
satisfaction of T1 is still preserved by the current state of the construction.

Phase T2 for the last row: The construction, and analysis for the actions is the
same as that for the column case with the roles of rows and columns exchanged.

Therefore, the goal of T2 prescribed in section 3 has been realized.
Phase T3: The goal of this phase is similar to that of phase T1, but different actions are
needed. T3 consists of 2 actions. The first action moves a nonzero edge entry to position
(2k − 1, 2k − 1), and the second one changes edge entry (2k − 1, 2k − 1) to 1. The actions
proceed as follows.
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Action 1: First, we choose a nonzero edge entry. Since A(2) is nonsingular, there must
be a nonzero edge entry A

(2)
X′=X−{i},Y ′=Y −{j} for some i and j. (Otherwise, all edge entries

are zero’s so that A(2) is a zero matrix, contradicting the non-singularity of A(0).)
We use a gate of type Γd, defined as follows: (i) connect each input-output pair other

than the i-th or the j-th pair by an edge, (ii) the i-th input is connected to the j-th output,
and (iii) the j-th input is connected to the i-th output. All edges are of weight 1. (See Fig.
3 (d)) Let Ci,j denote the character matrix of the matchgate described above.

This action just turns A(2) to Ci,kA
(2)Cj,k by connecting the matchgate of Ci,k with the

gate of A(2), and the gate of Ci,k in the order of left to right.
Firstly, we verify that action 1 realizes its goal. Generally, multiplying Ca,b from left

(resp. right) side is equivalent to exchanging pairs of rows (resp. columns) i1i2 . . . ia . . . ib . . . ik
and i1i2 . . . ib . . . ia . . . ik, modular a factor of 1 or −1. Hence, the edge entry (2k − 2, 2k − 2)
of Ci,kA

(2)Cj,k is either A
(2)
X′,Y ′ or −A

(2)
X′,Y ′ .

Secondly, we analyze the cost of the action. Notice that the row exchanges are deter-
mined by a bit exchange on the labels of rows, so that the number of zeros in (the string of)
the row label is kept unchanged. By definition, an edge entry can be exchanged only with
another edge entry. Therefore all edge entries in the last row and column are kept zeros. In
addition, it is easy to see that the left-bottom most entry is kept 1.

Action 2: We construct a matchgate with all of the input-output pairs connected by an
edge of weight 1, except that the last pair is connected by an edge of weight w = 1

A
2k−2,2k−2

.
All entries of the character matrix of this matchgate are zeros, except for the diagonal

entries. A diagonal entry (I, I) is w, if the last bit of I is 0, and 1, otherwise.
We multiply this character matrix with the current matrix, then a straightforward

calculation shows that entry (2k − 1, 2k − 1) is turned to 1, while all the satisfied entries
achieved previously are still preserved.

The goal of T3 is realized.
Phase T4: This phase is similar to phase T2, except that we need consider the consequence
on the last column and row. We start from changing the edge entries in column 2k − 2.

Phase T4 for column 2k−2: Suppose we are going to change edge entry (X−{i}, Y −
{n− k + 1}) to zero by the order from bottom to top. Denote the action realizing this goal
by action at (X − {i}, Y − {n− k + 1}).

We construct the elementary matchgate used in the action at (X − {i}, Y − {n −
k + 1}). Each pair of input-output nodes of this matchgate is connected by an edge of
weight 1, furthermore, the i-th input node is connected to the last output node by an edge
of weight w, where w is either AX−{i},Y −{n−k+1} or −AX−{i},Y −{n−k+1} such that entry
(X −{i}, Y −{n− k +1}) of the character matrix of the matchgate is −AX−{i},Y −{n−k+1}.
(See Fig. 3 (e).)

We examine the nonzero entries in the character matrix L of the constructed matchgate.
We first note that all diagonal entries are 1’s. Let (I ′, J ′) denote an arbitrary nonzero entry
other than the diagonal entries of the matrix L. By construction of the matchgate, I ′ and
J ′ differ at only the i-th and the k-th bits, and I ′|i = J ′|k = 0, I ′|k = J ′|i = 1, I ′ < J ′,
I ′ < X − {i} and I ′, J ′ contain the same number of 0’s, which is at least 1, where I ′|i
denotes the i-th bit of I ′. The action at (X − {i}, Y − {n − k + 1}) multiplies L with A
from the left side. It makes some row transformations: for every such entry (I ′, J ′) chosen
as above, add row I ′ by the multiplication of row J ′ by LI′,J ′ . So the goal of this action is
realized.
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Now we analyze the cost of the action. We first prove that it does not injure the edge
entries in column 2k − 2 which have already been satisfied. The reason is similar to that
in phase T2. Because I ′ ≤ X − {i}, the action only injures the rows with indices less than
X − {i}.

The cost of the action is different from that in phase T2 in that it may affect the edge
entries in the last column which have already been satisfied in phases T1 and T2. Because
I ′ and J ′ contain the same number of 0’s, which is at least 1, all the row changes made
by the action always add a zero edge entry of the last column to another zero edge entry
in the same column. Hence, it does not injure the satisfied entries in the last column.
Additionally, it is obvious that the last two rows are preserved during the current action,
so the left-bottom most entry, the edge entries in the last row and entry (2k − 2, 2k − 2) are
all preserved.

Phase T4 for row 2k − 2: Similar actions to that in phase T4 for the column above
can be applied to the row 2k − 2 to change its edge entries to 0’s.

Therefore, T4 realizes its goal, at the same time, it preserves the satisfied entries in
phases T1 – T3.

We have realized the phases T1 – T4 prescribed in section 3, by corollary 2.4, B is a
reducible character matrix. The lemma follows.

4.3. Proof of theorem 3.1

Proof. We prove by induction on k that for every k, and every 2k × 2k character matrix A,
if A is invertible, then A−1 is a character matrix.

The case for k = 1 is easy, the first proof was given by Valiant in [4].
Suppose by induction that the theorem holds for k − 1. By lemma 4.2, there exist

nonsingular character matrices Li and Rj such that B = Ls · · ·L2L1AR1R2 · · ·Rt is the
character matrix of a reducible matchgate ∆. Let B ′ be the 2k−1 × 2k−1 character matrix
of Γ constructed from ∆ by deleting the bottom edge.

Since A is invertible, so is B, and so is B ′ by lemma 4.1. By the inductive hypothesis,
B′−1 is a character matrix, so is B−1 by lemma 4.1.

By the choice of Li and Rj , for all 1 ≤ i ≤ s and 1 ≤ j ≤ t, we have that

A−1 = R1R2 · · ·RtB
−1Ls · · ·L2L1.

By theorem 2.1, A−1 is also a character matrix.
This completes the proof of theorem 3.1.

We notice that the inductive argument in the proof of theorem 3.1 also gives a different
proof for the result in the case of k = 2. Our method is a constructive, and uniform one. It
may have some more applications.

5. Level 2 matchgates are universal

We introduce nine types of matchgates as our elementary gates. We use Γa, . . . ,Γi, to
denote the elementary level 2 matchgates corresponding to that in the following Fig. 4 (a),
(b), (c), (d), (e), (f), (g), (h) and (i) respectively.
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Figure 4:

We describe the elementary gates as follows. All edges in Γa have weight 1. All edges
connecting an input and an output node except for the edge in Γf , and the diagonal edge
in Γg, are all of weight 1. The remaining edges take weights w.

Γa makes a row (or column, when it is multiplied from right side) exchange, which is a
special transformation, of the character matrix according to a bit flip on the label, and it
is used to move a nonzero entry to the right-bottom most entry by the same way as that in
the proof of theorem 2.3 in [1]. Γb is used to realize cE, and to turn a nonzero entry to 1.
Both Γa and Γb are only used in the first phase, i.e. T1, of the transformation. Intuitively,
Γc can exchange two consecutive bits, and it allows us to apply some other elementary gates
to nonconsecutive bits. Γd and Γe are used in phase T2 to eliminate the edge entries in the
last column and the last row. Γc will be also used in phase T3 to move a nonzero edge entry
to position (2k − 2, 2k − 2), in which case, Γf will further turn this entry to 1. Γg is used
in phase T4 to eliminate the edge entries in the column 2k − 2 and row 2k − 2. A nonzero
singular character matrix will be transformed to a matchcircuit composed of only Γh-type
gates. Γi is used to realize zero matrix. To understand the composition of Γc with other
elementary gates, we need the following:

Lemma 5.1. Suppose A is the character matrix of a k-bit matchcircuit ∆, and P1, P2 are
two arbitrary permutations on k elements. There exists matchcircuit Λ constructed from
∆ by adding some gates Γc, such that the corresponding character matrices B satisfying
B2k−1,2k−1 = A2k−1,2k−1 and |Bi1···ik,j1···jk

| = |AP1(i1···ik),P2(j1···jk)|.
The following lemma gives the transformation for matchcircuits.
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Lemma 5.2. For any k > 2, and any k-bit matchcircuit ∆ consisting of a single nonsingular
k-bit matchgate Γ, there is a new matchcircuit Λ constructed by adding some invertible
single and two-bit matchgates to ∆, such that the character matrix B of Λ is reducible.
Furthermore, B is the character matrix of an even reducible matchgate.

So far we have established the result for the first significant case that a matchgate is
applied to the first k bits.

In the following lemma we consider two more cases:
• a gate applied to consecutive bits but not starting from the first bit,
• a gate applied to nonconsecutive bits.

For the first case, the gate must be an even or an odd gate, we observe that only even
and odd gates are used in the transformation for an even or an odd gate. For the second
case, we extend its matrix, and replace it by a new even gate which is applied to consecutive
bits reducing it to the first case.

Lemma 5.3. For any k > 2, and any m-bit matchcircuit ∆ containing a k-bit matchgate
Γ with character matrix A, there is a level k − 1 matchcircuit Λ having the same character
matrix as ∆.

The proof for lemma 5.1-5.3 will be given in the full version.

5.1. Proof of theorem 3.3

Proof. For (1). Repeat the process in lemma 5.3 until there is no gate of bit greater than 2.
For (2). The number of matchgates used in the phases of transformation are O(k),

O(k3), O(k) and O(k2), respectively, so a k-bit matchgate can be simulated by O(k4) many
single and two-bit matchgates. This procedure is polynomial time computable, because
there are polynomially many actions, and each action is polynomial time computable due
to the fact that we compute only the edge entries.
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Abstract. In the Multislope Ski Rental problem, the user needs a certain resource for
some unknown period of time. To use the resource, the user must subscribe to one of
several options, each of which consists of a one-time setup cost (“buying price”), and cost
proportional to the duration of the usage (“rental rate”). The larger the price, the smaller
the rent. The actual usage time is determined by an adversary, and the goal of an algo-
rithm is to minimize the cost by choosing the best option at any point in time. Multislope
Ski Rental is a natural generalization of the classical Ski Rental problem (where the only
options are pure rent and pure buy), which is one of the fundamental problems of online
computation. The Multislope Ski Rental problem is an abstraction of many problems
where online decisions cannot be modeled by just two options, e.g., power management
in systems which can be shut down in parts. In this paper we study randomized algo-
rithms for Multislope Ski Rental. Our results include the best possible online randomized
strategy for any additive instance, where the cost of switching from one option to another
is the difference in their buying prices; and an algorithm that produces an e-competitive
randomized strategy for any (non-additive) instance.

1. Introduction

Arguably, the “rent or buy” dilemma is the fundamental problem in online algorithms:
intuitively, there is an ongoing game which may end at any moment, and the question is
to commit or not to commit. Choosing to commit (the ‘buy’ option) implies paying large
cost immediately, but low overall cost if the game lasts for a long time. Choosing not to
commit (the ‘rent’ option) means high spending rate, but lower overall cost if the game ends
quickly. This problem was first abstracted in the “Ski Rental” formulation [10] as follows.
In the buy option, a one-time cost is incurred, and thereafter usage is free of charge. In
the rent option, the cost is proportional to usage time, and there is no one-time cost. The
deterministic solution is straightforward (with competitive factor 2). In the randomized
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model, the algorithm chooses a random time to switch from the rent to the buy option
(the adversary is assumed to know the algorithm but not the actual outcomes of random
experiments). As is well known, the best possible online strategy for classical ski rental has
competitive ratio of e

e−1 ≈ 1.582.
In many realistic cases, there may be some intermediate options between the extreme

alternatives of pure buy and pure rent: in general, it may be possible to pay only a part
of the buying cost and then pay only partial rent. The general problem, called here the
Multislope Ski Rental problem, can be described as follows. There are several states (or
slopes), where each state i is characterized by two numbers: a buying cost bi and a rental
rate ri (see Fig. 1). Without loss of generality, we may assume that for all i, bi < bi+1

and ri > ri+1, namely that after ordering the states in increasing buying costs, the rental
rates are decreasing. The basic semantics of the multislope problem is natural: to hold the
resource under state i for t time units, the user is charged bi + rit cost units. An adversary
gets to choose how long the game will last, and the task is to minimize total cost until the
game is over.

The Multislope Ski Rental problem introduces entirely new difficulties when compared
to the classical Ski Rental problem. Intuitively, whereas the only question in the classical
version is when to buy, in the multislope version we need also to answer the question of
what to buy. Another way to see the difficulty is that the number of potential transitions
from one slope to another in a strategy is one less than the number of slopes, and finding
a single point of transition is qualitatively easier than finding more than one such point.

In addition, the possibility of multiple transitions forces us to define the relation between
multiple “buys.” Following [2], we distinguish between two natural cases. In the additive
case, buying costs are cumulative, namely to move from state i to state j we only need to
pay the difference in buying prices bj − bi. In the non-additive case, there is an arbitrarily
defined transition cost bij for each pair of states i and j.
Our results. In this paper we analyze randomized strategies for Multislope Ski Rental.
(We use the term strategy to refer to the procedure that makes online decisions, and the
term algorithm to refer to the procedure that computes strategies.) Our main focus is the
additive case, and our main result is an efficient algorithm that computes the best possible
randomized online strategy for any given instance of additive Multislope Ski Rental problem.
We first give a simpler algorithm which decomposes a (k+1)-slope instance into k two-slope
instances, whose competitive factor is e

e−1 . For the non-additive model, we give a simple
e-competitive randomized strategy.
Related Work. Variants of ski rental are implicit in many online problems. The classical
(two-slope) ski rental problem, where the buying cost of the first slope and the rental rate of
the second slope are 0, was introduced in [10], with optimal strategies achieving competitive
factors of 2 (deterministic) and e

e−1 (randomized). Karlin et al. [9] apply the randomized
strategy to TCP acknowledgment mechanism and other problems. The classical ski rental
is sometimes called the leasing problem [5].

Azar et al. [3] consider a problem that can be viewed as non-additive multislope ski
rental where slopes become available over time, and obtain an online strategy whose compet-
itive ratio is 4 + 2

√
2 ≈ 6.83. Bejerano et al. [4], motivated by rerouting in ATM networks,

study the non-additive multislope problem. They give a deterministic 4-competitive strat-
egy, and show that the factor of 4 holds assuming only that the slopes are concave, i.e.,
when the rent in a slope may decrease with time. Damaschke [6] considers a static version
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Figure 1: A multislope ski rental instance with 5 slopes: The thick line indicates the optimal
cost as a function of the game duration time.

of the problem from [3], namely non-additive multislope ski rental problem where each slope
is bought “from scratch.”1 For deterministic strategies, [6] gives an upper bound of 4 and
a lower bound of 5+

√
5

2 ≈ 3.618; [6] also presents a randomized strategy whose competitive
factor is 2/ ln 2 = 2.88. As far as we know, Damaschke’s strategy is the only randomized
strategy for multislope ski rental to appear in the literature.

Irani et al. [8] present a deterministic 2-competitive strategy for the additive model that
generalizes the strategy for the two slopes case. They motivate their work by energy saving:
each slope corresponds to some partial “sleep” mode of the system. Augustine et al. [2]
present a dynamic program that computes the best deterministic strategy for non-additive
multislope instances. The case where the length of the game is a stochastic variable with
known distribution is also considered in both [8, 2].

Meyerson [12] defines the seemingly related “parking permit” problem, where there are
k types of permits of different costs, such that each permit allows usage for some duration
of time. Meyerson’s results indicate that the problems are not very closely related, at
least from the competitive analysis point of view: It is shown in [12] that the competitive
ratio of the parking permit problem is Θ(k) and Θ(log k) for deterministic and randomized
strategies, respectively.
Organization. The remainder of this paper is organized as follows. In Section 2 we define
the basic additive model and make a few preliminary observations. In Section 3 we give
a simple algorithm to solve the multislope problem, and in Section 4 we present our main
result: an optimal online algorithm. An e-competitive algorithm for the non-additive case
is presented in Section 5.

2. Problem Statement and Preliminary Observations

In this section we formalize the additive version of the multislope ski rental problem. A
k-ski rental instance is defined by a set of k +1 states, and for each state i there is a buying
cost bi and a renting cost ri. A state can be represented by a line: the ith state corresponds
to the line y = bi + rix. Fig. 1 gives a geometrical interpretation of a multislope ski rental
instance with five states. We use the terms “state” and “slope” interchangeably.

The requirement of the problem is to specify, for all times t, which slope is chosen at
time t. We assume that state transitions can be only forward, and that states cannot be

1It can be shown that strategies that work for this case also work for the general non-additive case (see
Section 5).
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skipped, i.e., the only transitions allowed are of the type i → i + 1. We stress that this
assumption holds without loss of generality in the additive model, where a transition from
state i → j for j > i + 1 is equivalent to a sequence of transitions i → i + 1 → . . . → j
(cf. Section 5). It follows that a deterministic strategy for the additive multislope ski rental
problem is a monotone non-decreasing sequence (t1, . . . , tk) where ti ∈ [0,∞) corresponds
to the transition i− 1→ i.

A randomized strategy can be described using a probability distribution over the family
of deterministic strategies. However, in this paper we use another way to describe ran-
domized strategies. We specify, for all times t, a probability distribution over the set of
k + 1 slopes. The intuition is that this distribution determines the actual cost paid by any
online strategy. Formally, a randomized profile (or simply a profile) is specified by a vector
p(t) = (p0(t), . . . , pk(t)) of k + 1 functions, where pi(t) is the probability to be in state i at
time t. The correctness requirement of a profile is

∑k
i=0 pi(t) = 1 for all t ≥ 0. Clearly, any

strategy is related to some profile. In the sequel we consider a specific type of profiles for
which a randomized strategy can be easily obtained.

The performance of a profile is defined by its total accrued cost, which consists of two
parts as follows. Given a randomized profile p, the expected rental cost of p at time t is

Rp(t)
def=
∑

i pi(t) · ri ,

and the expected total rental cost up to time t is∫ t

z=0
Rp(z)dz .

The second part of the cost is the buying cost. In this case it is easier to define the
cumulative buying cost. Specifically, the expected total buying cost up to time t is

Bp(t)
def=
∑

i pi(t) · bi .

The expected total cost for p up to time t is

Xp(t)
def= Bp(t) +

∫ t

z=0
Rp(z)dz .

The goal of the algorithm is to minimize total cost up to time t for any given t ≥ 0, with
respect to the best possible. Intuitively, we think of a game that may end at any time. For
any possible ending time, we compare the total cost of the algorithm with the best possible
(offline) cost. To this end, consider the optimal solution of a given instance. If the games
ends at time t, the optimal solution is to select the slope with the least cost at time t (the
thick line in Fig. 1 denotes the optimal cost for any given t). More formally, the optimal
offline cost at time t is

opt(t) = min
i

(bi + ri · t) .

For i > 0, denote by si the time t instance where bi−1 + ri−1 · t = bi + ri · t, and define
s0 = 0. It follows that the optimal slope for a game ending at time t is the slope i for which
t ∈ [si, si+1] (if t = si for some i then both slopes i− 1 and i are optimal).

Finally, let us rule out a few trivial cases. First, note that if there are two slopes such
that bi ≤ bj and ri ≤ rj then the cost incurred by slope j is never less than the cost incurred
slope i, and we may therefore just ignore slope j from the instance. Consequently, we will
assume henceforth, without loss of generality, that the states are ordered such that ri−1 > ri

and bi−1 < bi for 1 ≤ i ≤ k.
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Second, using similar reasoning, note that we may consider only strategies that are
monotone over time with respect to majorization [11], i.e., strategies such that for any two
times t ≤ t′ we have

j∑
i=0

pi(t) ≥
j∑

i=0

pi(t′) . (2.1)

Intuitively, Eq. (2.1) means that there is no point is “rolling back” purchases: if at a given
time we have a certain composition of the slopes, then at any later time the composition
of slopes may only improve. Note that Eq. (2.1) implies that Bp is monotone increasing
and Rp is monotone decreasing, i.e., over time, the strategy invests non-negative amounts
in buying, resulting in decreased rental rates.

3. An e
e−1

-Competitive Algorithm

In this section we describe how to solve the multislope problem by reducing it to the
classical two-slope version, resulting in a randomized strategy whose competitive factor is

e
e−1 . This result serves as a warm-up and it also gives us a concrete upper bound on the
competitiveness of the algorithm presented in Section 4.
The case of rk = 0. Suppose we are given an instance (b, r) with k + 1 slopes, where
rk = 0. We define the following k instances of the classical two-slopes ski rental problem:
in instance i for i ∈ {1, . . . , k}, we set

instance i: bi
0 = 0 and ri

0 = ri−1 − ri ; bi
1 = bi − bi−1 and ri

1 = 0 . (3.1)

Observe that bi
1 = ri

0 · si, i.e., the two slopes of the ith instance intersect exactly at
si, their intersection point at the original multislope instance. Now, let opt(t) denote
the optimal offline solution to the original multislope instance, and let opti(t) denote the
optimal solution of the ith instance at time t, i.e., opti(t) = min{bi

1, r
i
0 · t}. We have the

following.

Lemma 3.1. opt(t) =
∑k

i=1 opti(t).

Proof. Consider a time t and let i(t) be the optimal multislope state at time t. Then,
k∑

i=1

opt
i(t) =

∑
i:si≤t

bi
1 +

∑
i:si>t

ri
0 · t

=
∑

i:si≤t

(bi − bi−1) +
∑

i:si>t

(ri−1 − ri) · t = bi(t) + ri(t) · t = opt(t) .

Given the decomposition (3.1), it is easy to obtain a strategy for any multislope instance
by combining strategies for k classical instances. Specifically, what we do is as follows. Let
pi be the e

e−1 -competitive profile for the ith (two slope) instance (see [10]). We define a
profile p̂ for the multislope instance as follows: p̂i(t) = pi

1(t)− pi+1
1 (t) for i ∈ {1, . . . , k− 1},

p̂0(t) = p1
0(t), and p̂k(t) = pk

1(t). We first prove that the profile is well defined.

Lemma 3.2. (1) pi
1(t) ≤ pi−1

1 (t) for every i ∈ {1, . . . , k} and time t. (2)
∑k

i=0 p̂i(t) = 1 .
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Proof. By the algorithm for classical ski rental, we have that the strategy for the i instance
is pi

1(t) = (et·ri
0/bi

1 − 1)/(e − 1). Claim (1) of the lemma now follows from that fact that
bi
1/r

i
0 = si > si−1 = bi−1

1 /ri−1
0 for every i ∈ {1, . . . , k}. Claim (2) follows from the telescopic

sum
k∑

i=0

p̂i(t) = p1
0(t) +

k−1∑
i=1

(pi
1(t)− pi+1

1 (t)) + pk
1(t) = p1

0(t) + p1
1(t) = 1 .

Next, we show how to convert the profile p̂ into a strategy. Note that the strategy
uses a single random experiment, since arbitrary dependence between the different pis are
allowed.

Lemma 3.3. Given p̂ one can obtain an online strategy whose profile is p̂.

Proof. Define P̂i(t)
def=
∑

j≥i p̂j(t) and let U be a random variable that is chosen uniformly
from [0, 1]. The strategy is as follows: we move from state i to state i + 1 when U = P̂i(t)
for every state i. Namely, the ith transition time ti is the time t such that U = P̂i(t).

Thus we obtain the following:

Theorem 3.4. The expected cost of the strategy defined by p̂ is at most e
e−1 times the

optimal offline cost.

Proof. We first show that by linearity, the expected cost to the combined strategy is the
sum of the costs to the two-slope strategies, i.e., that Xp̂(t) =

∑k
i=1 Xpi(t). For example,

the buying cost is

Bp̂(t) =
k∑

i=0

p̂i(t) ·bi =
k−1∑
i=0

(pi
1(t)−pi+1

1 (t)) ·bi +pk
1(t) ·bk =

k∑
i=1

pi
1(t) ·(bi−bi−1) =

k∑
i=1

Bpi(t) .

Similarly, Rp̂(t) =
∑k

i=1 Rpi(t) by linearity, and therefore,

Xp̂(t) = Bp̂(t) +
∫ t

z=0
Rp̂(z)dz =

k∑
i=1

Bpi(t) +
∫ t

z=0

(
k∑

i=1

Rpi(z)

)
dz =

k∑
i=1

Xpi(t) .

Finally, by Lemma 3.1 and the fact that the strategies p1, . . . , pk are e
e−1 -competitive we

conclude that

Xp̂(t) =
k∑

i=1

Xpi(t) ≤
k∑

i=1

e

e− 1
· opt

i(t) =
e

e− 1
· opt(t)

which means that p̂ is e
e−1 -competitive.

The case of rk > 0. We note that if the smallest rental rate rk is positive, then the
competitive ratio is strictly less that e

e−1 : this can be seen by considering a new instance
where rk is subtracted from all rental rates, i.e., b′i = bi and r′i = ri − rk for all 0 ≤ i ≤
k. Suppose p is e

e−1 -competitive with respect to (r′, k′) (note that r′k = 0). Then the
competitive ratio of p at time t w.r.t. the original instance is:

c(t) =
Xp(t)
opt(t)

=
X ′

p(t) + rk · t
opt′(t) + rk · t ≤

e
e−1 · opt′(t) + rk · t

opt′(t) + rk · t =
e

e− 1
− 1

e− 1
· 1

opt′(t)
rk·t + 1
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d
dtopt′(t) = ri − rk for t ∈ [si−1, si). Hence, the ratio opt′(t)

rk·t is monotone decreasing, and
thus c(t) is monotone decreasing as well. It follows that

c ≤ e

e− 1
− 1

e− 1
· 1

r0−rk
rk

+ 1
=

e− rk/r0

e− 1

Observe that c = e
e−1 when rk = 0, and that c = 1 when rk = r0 (i.e., when k = 0).

4. An Optimal Online Algorithm

In this section we develop an optimal online strategy for any given additive multislope
ski rental instance. We reduce the set of all possible strategies to a subset of much simpler
strategies, which on one hand contains an optimal strategy, and on the other hand is easier
to analyze, and in particular, allows us to effectively find such an optimal strategy.

Consider an arbitrary profile. (Recall that we assume w.l.o.g. that no slope is completely
dominated by another.) As a first simplification, we confine ourselves to profiles where each
pi has only finitely many discontinuities. This allows us to avoid measure-theoretic patholo-
gies without ruling out any reasonable solution within the Church-Turing computational
model. It can be shown that we may consider only continuous profiles (details omitted).

So let such a profile p = (p0, . . . , pk) be given. We show that it can be transformed
into a profile of a certain structure without increasing the competitive factor. Our chain
of transformations is as follows. First, we show that it suffices to consider only simple
profiles we call “prudent.” Prudent strategies buy slopes in order, one by one, without
skipping and without buying more than one slope at a time. We then define the concept of
“tight” profiles, which are prudent profiles that spend money at a fixed rate relative to the
optimal offline strategy. We prove that there exists a tight optimal profile. Furthermore,
the best tight profile can be effectively computed: Given a constant c, we show how to check
whether there exists a tight c-competitive strategy, and this way, using binary search on c,
we can find the best tight strategy. Finally, we explain how to construct that profile and a
corresponding strategy.

4.1. Prudent and Tight Profiles

Our main simplification step is to show that it is sufficient to consider only profiles that
buy slopes consecutively one by one. Formally, prudent profiles are defined as follows.

Definition 4.1 (active slopes, prudent profiles). A slope i is active at time t if pi(t) > 0.
A profile is called prudent if at all times there is either one or two consecutive active slopes.

At any given time t, at least one slope is active because
∑

i pi(t) = 1 by the problem
definition. Considering Eq. (2.1) as well, we see that a continuous prudent profile progresses
from one slope to next without skipping any slope in between: once slope i is fully “paid
for” (i.e., pi(t) = 1), the algorithm will start buying slope i + 1.

We now prove that the set of continuous prudent profiles contains an optimal profile.
Intuitively, the idea is that a non-prudent profile must have two non-consecutive slopes with
positive probability at some time. In this case we can “shift” some probability toward a
middle slope and only improve the overall cost.

Theorem 4.2. If there exists a continuous c-competitive profile p for some c ≥ 1, then
there exists a prudent c-competitive profile p̃.
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Proof. Let p = (p0, . . . , pk) be a profile and suppose that all the pis are continuous. It
follows that Bp is also continuous. Define best(t) = max {i : bi ≤ Bp(t)} and next(t) =
min {i : bi ≥ Bp(t)}. In words, best(t) is the most expensive slope that is fully within the
buying budget of p at time t, and next(t) is the most expensive slope that is at least partially
within the buying budget of p at time t. Obviously, best(t) ≤ next(t) ≤ best(t) + 1 for all
t. Now, we define p̃ as follows:

p̃i(t) =



bnext −Bp(t)
bnext − bbest

i = best(t) and best(t) 6= next(t),
Bp(t)−bbest

bnext−bbest
i = next(t) and best(t) 6= next(t),

1 i = best(t) = next(t),
0 otherwise.

It is not hard to verify that
∑

i pi(t) = 1 for every time t. Furthermore, observe that p̃ is
prudent, because Bp is continuous. It remains to show that p̃ is c-competitive. We do so
by proving that Bp̃(t) = Bp(t) and Rp̃(t) ≤ Rp(t) for all t. First, directly from definitions
we have

Bp̃(t) = pbest(t)(t) · bbest(t) + pnext(t)(t) · bnext(t)

=
bnext(t) −Bp(t)
bnext(t) − bbest(t)

· bbest(t) +
Bp(t)− bbest(t)

bnext(t) − bbest(t)
· bnext(t) = Bp(t) .

Consider now rental payments. To prove that Rp̃(t) ≤ Rp(t) for every time t we
construct inductively a sequence of probability distributions p = p0, . . . , p` = p̃. The first
distribution p0 is defined to be p. Suppose now that pj is not prudent. Distribution pj+1 is
obtained from pj as follows. For any t such that there are two non-consecutive slopes with
positive probability, let i1(t), i2(t), i3(t) be any three slopes such that i1(t) = argmin{i :
pj

i (t) > 0}, i3(t) = argmax{i : pj
i (t) > 0}, and i1(t) < i2(t) < i3(t) (such i2(t) exists because

pj is not prudent). Define

pj+1
i (t) =



pj
i (t)− ∆j(t)

bi2(t)−bi1(t)
i = i1(t),

pj
i (t) + ∆j(t)

bi2(t)−bi1(t)
+ ∆j(t)

bi3(t)−bi2(t)
i = i2(t),

pj
i (t)− ∆j(t)

bi3(t)−bi2(t)
i = i3(t),

pj
i (t) i 6∈ {i1(t), i2(t), i3(t)}

where ∆j(t) > 0 is maximized so that pj+1
i (t) ≥ 0 for all i. Intuitively, we shift a maximal

amount of probability mass from slopes i1(t) and i3(t) to the middle slope i2(t). The fact
that ∆j(t) is maximized means that we have either that pj+1

i1
(t) = 0, or pj+1

i3
(t) = 0, or

both. In any case, we may already conclude that ` < k. Also note that by construction, for
all t we have Bpj+1(t) =

∑
i p

j+1
i (t) · bi =

∑
i p

j
i (t) · bi = Bpj (t). Hence, p` = p̃.

As to the rental cost, fix a time t, and consider now the rent paid by pj and pj+1:

Rpj (t) − Rpj+1(t) =

= ri1(t)
∆j(t)

bi2(t) − bi1(t)
− ri2(t)

(
∆j(t)

bi2(t) − bi1(t)

∆j(t)
bi3(t) − bi2(t)

)
+ ri3(t)

∆j(t)
bi3(t) − bi2(t)

= ∆j(t) ·
(

ri1(t) − ri2(t)

bi2(t) − bi1(t)
− ri2(t) − ri3(t)

bi3(t) − bi2(t)

)
> 0
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where the last inequality follows from the fact that if i < j, then bj−bi

ri−rj
is the x coordinate

of the intersection point between the slopes i and j.

Our next step is to consider profiles that invest in buying as much as possible under
some spending rate cap. Our approach is motivated by the following intuitive observation.

Observation 4.3. Let p1 and p2 be two randomized prudent profiles. If Bp1(t) ≥ Bp2(t)
for every t, then Rp1(t) ≤ Rp2(t) for every t.

In other words, investing available funds in buying as soon as possible results in lower
rent, and therefore in more available funds. Hence, we define a class of profiles which spend
money as soon as possible in buying, as long as there is a better slope to buy, namely as
long as pk(t) < 1.

Definition 4.4. Let c ≥ 1. A prudent c-competitive profile p is called tight if Xp(t) =
c · opt(t) for all t with pk(t) < 1.

Clearly, if the last slope is flat, i.e., rk = 0, then it must be the case that pk(sk) = 1
for any profile with finite competitive factor: otherwise, the cost to the profile will grow
without bound while the optimal cost remains constant. However, it is important to note
that if rk > 0, there may exist an optimal profile p that never buys the last slope, but still
its expected spending rate as t tends to infinity is c · rk.

It is easy to see that a tight profile can achieve any achievable competitive factor.

Lemma 4.5. If there exists a c-competitive prudent profile p for some c ≥ 1, then there
exists a c-competitive tight profile p̃.

Proof. Let p̃ be the prudent profile satisfying Xp̃(t) = c · opt(t) for all t for which p̃k(t) <
1. We need to show that p̃ is feasible. Since by definition, p buys with any amount
left, it suffices to show that for all t, the rent paid by p is at most c · d

dtopt(t). Indeed,
Rp̃(t) ≤ Rp(t) for every t due to Observation 4.3, and since p is c-competitive it follows that
Rp(t) ≤ c · d

dtopt(t) and we are done.

4.2. Constructing Optimal Online Strategies

We now use the results above to construct an algorithm that produces the best possible
online strategy for the multislope problem. The idea is to guess a competitive factor c, and
then try to construct a c-competitive tight profile. Given a way to test for success, we can
apply binary search to find the optimal competitive ratio c to any desired precision.

The main questions are how to test whether a given c is feasible, and how to construct
the profiles. We answer these questions together: given c, we construct a tight c-competitive
profile until either we fail (because c was too small) or until we can guarantee success. In
the remainder of this section we describe how to construct a tight profile p for a given
competitive factor c.

We begin with analyzing the way a tight profile may spend money. Consider the
situation at some time t such that pk(t) < 1. Let j be the maximum index such that sj ≤ t.
Then d

dtopt(t) = rj. Therefore, the spending rate of a tight profile at time t must be c · rj .
If j < k, the tight profile may spend at rate c · rj until time sj+1 (or until pk(t) = 1), and if
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j = k the tight profile may continue spending at this rate forever. Hence, for t ∈ (sj , sj+1),
we have

d

dt
Bp(t) + Rp(t) = c · d

dt
opt(t) = c · rj . (4.1)

Since p is tight and therefore prudent, we also have, assuming best(t) = i and next(t) = i+1,
that

Bp(t) = pi(t)bi + pi+1(t)bi+1 ,

and
Rp(t) = pi(t)ri + pi+1(t)ri+1 .

Plugging the above equations into Eq. (4.1), we get
d

dt
pi(t)bi +

d

dt
pi+1(t)bi+1 + pi(t)ri + pi+1(t)ri+1 = c · rj

Since p is prudent, pi(t) = 1− pi+1(t) and hence d
dtpi(t) = − d

dtpi+1(t). It follows that

d

dt
pi+1(t) + pi+1(t) · ri+1 − ri

bi+1 − bi
=

c · rj − ri

bi+1 − bi
(4.2)

A solution to a differential equation of the form y ′(x) + αy(x) = β where α and β are
constants is y = β

α + Γ · e−αx, where Γ depends on the boundary condition. Hence in our
case we conclude that

pi+1(t) =
c · rj − ri

ri+1 − ri
+ Γ · e

ri−ri+1
bi+1−bi

·t
, (4.3)

and pi(t) = 1− pi+1(t), where the constant Γ is determined by the boundary condition.
Eq. (4.3) is our tool to construct p in a piecewise iterative fashion. For example, we

start constructing p from t = 0 using p1(t) = c·r0−r0
r1−r0

+Γ·e
r0−r1
b1−b0

·t and the boundary condition

p1(0) = 0. We get that Γ = r0(c−1)
r0−r1

, i.e.,

p1(t) =
r0(c− 1)
r0 − r1

· (e
r0−r1
b1−b0

t − 1) ,

and this holds for all t ≤ min(s1, t1), where t1 is the solution to p1(t1) = 1.
In general, Eq. (4.2) remains true so long as there is no change in the spending rate

and in the slope the profile p is buying. The spending rate changes when t crosses sj, and
the profile starts buying slope i + 2 when pi+1(t) = 1.

We can now describe our algorithm. Given a ratio c, Algorithm Feasible is able to
construct the tight profile p or to determine that such a profile does not exist. It starts
with the boundary condition p1(0) = 0 and reveals the first part of the profile as shown
above. Then, each time the spending rate changes or there is a change in best(i) it moves
to the next differential equation with a new boundary condition. After at most 2k such
iterations it either computes a c-competitive tight profile p or discovers that such a profile
is infeasible. Since we are able to test for success using Algorithm Feasible, we can apply
binary search to find the optimal competitive ratio to any desired precision.

We note that it is easy to construct a strategy that corresponds to any given prudent
profile p, as described in the proof of Lemma 3.3. We conclude with the following theorem.

Theorem 4.6. There exists an O(k log 1
ε ) time algorithm that given an instance of the addi-

tive multislope ski rental problem for which the optimal randomized strategy has competitive
ratio c, computes a (c + ε)-competitive strategy.
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Algorithm 1 – Feasible(c,M): true if the k-ski instance M = (b, r) admits competitive
factor c

1: Let si = bi−bi−1
ri−1−ri

for each 1 ≤ i ≤ k

2: Boundary Condition ← “p1(0) = 0”
3: j ← 0; i← 1
4: loop

5: Define pi(t) =
c·rj−ri−1
ri−ri−1

+ Γ · exp( ri−1−ri

bi−bi−1
· t)

6: Try to solve for Γ using Boundary Condition
7: if no solution then return false . possible escape if not feasible
8: y ← pi(sj)
9: if y < 1 then

10: Boundary Condition ← “pi(sj) = y”
11: j ← j + 1 . continue at the next interval [sj , sj1 ]
12: else

13: Let x be such that pi(x) = 1
14: Boundary Condition ← “pi+1(x) = 0”
15: i← i + 1 . move to next slope
16: end if

17: if i > k or j ≥ k then return true . we’re done
18: end loop

5. An e-Competitive Strategy for the Non-Additive Case

In this section we consider the non-additive multislope ski rental problem. We present a
simple randomized strategy which improves the best known competitive ratio from 2/ ln 2 =
2.88 to e. Our technique is a simple application of randomized repeated doubling (see,
e.g., [7]), used extensively in competitive analysis of online algorithms. For example, deter-
ministic repeated doubling appears in [1], and a randomized version appears in [13].

Before presenting the strategy let us consider the details of the non-additive model.
Augustine at el. [2] define a general non-additive model in which a transition cost bij is
associated with every two states i and j, and show that one may assume w.l.o.g. that
bij = 0 if i > j and that bij ≤ bj for every i < j. Observe that we may further assume
that bij = bj for every i and j, since the optimal (offline) strategy remains the unchanged.
It follows that the strategies from [3, 4, 6] that were designed for the case of buying slopes
“from scratch” also work for the general non-additive case.

We propose using the following iterative online strategy, which is similar to the one in
[6], except for the choice of the “doubling factor.” Specifically, the jth iteration is associated
with a bound Bj on opt(τ), where τ denotes the termination time of the game. We define

B1
def= opt(s1)/αX , where α > 1 and X is a chosen at random uniformly in [0, 1). We also

define Bj+1 = α ·Bj. Let τj = opt−1(Bj) and let ij be the optimal offline state at time τj .
In case there are two such states, i.e., τj = si for some i, we define ij = i − 1. It follows
that i1 = 0. In the beginning of the jth iteration the online strategy buys ij and stays in
ij until the this iteration ends. The jth iteration ends at time τj . Observe that the first
iteration starts with B1 = opt(s1), namely we use slope 0 until s1.

Theorem 5.1. The expected cost of the strategy described above is at most e times the
optimum.
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Proof. Observe that the first iteration starts with B1 = opt(s1), namely we use slope 0
until s1, and hence, if the game ends during the first iteration, i.e., before s1/α

X , then the
online strategy is optimal. Consider now the case where the game ends at time τ ≥ s1/α

X ,
and suppose that τ ∈ [τ`, τ`+1) for ` > 1. In this case, the expected cost of the online
strategy is bounded by

E

∑̀
j=1

opt(τj) + opt(τ)

 ≤ E

`+1∑
j=1

opt(τj)

 ≤ E
[

α

α− 1
· opt(τ`+1)

]

= E
[
α2−X

α− 1
· opt(τ)

]
=

α

α− 1
·
∫ 1

x=0
αxdx · opt(τ) =

α

lnα
· opt(τ)

By choosing α = e the competitive ratio is α
ln α = e as required.
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Abstract. Linearity tests are randomized algorithms which have oracle access to the
truth table of some function f, and are supposed to distinguish between linear functions
and functions which are far from linear. Linearity tests were first introduced by Blum,
Luby and Rubenfeld in [BLR93], and were later used in the PCP theorem, among other
applications. The quality of a linearity test is described by its correctness c - the probability
it accepts linear functions, its soundness s - the probability it accepts functions far from
linear, and its query complexity q - the number of queries it makes.

Linearity tests were studied in order to decrease the soundness of linearity tests, while
keeping the query complexity small (for one reason, to improve PCP constructions).
Samorodnitsky and Trevisan constructed in [ST00] the Complete Graph Test, and prove
that no Hyper Graph Test can perform better than the Complete Graph Test. Later in
[ST06] they prove, among other results, that no non-adaptive linearity test can perform
better than the Complete Graph Test. Their proof uses the algebraic machinery of the
Gowers Norm. A result by Ben-Sasson, Harsha and Raskhodnikova [BHR05] allows to
generalize this lower bound also to adaptive linearity tests.

We also prove the same optimal lower bound for adaptive linearity test, but our proof
technique is arguably simpler and more direct than the one used in [ST06]. We also study,
like [ST06], the behavior of linearity tests on quadratic functions. However, instead of
analyzing the Gowers Norm of certain functions, we provide a more direct combinatorial
proof, studying the behavior of linearity tests on random quadratic functions. This proof
technique also lets us prove directly the lower bound also for adaptive linearity tests.

1. Introduction

We study the relation between the number of queries and soundness of adaptive linearity
tests. A linearity test (over the field F2 for example) is a randomized algorithm which has
oracle access to the truth table of a function f : {0, 1}n → {0, 1}, and needs to distinguish
between the following two extreme cases:

(1) f is linear
(2) f is far from linear functions
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A function f is called linear if it can be written as f(x1, ..., xn) = a1x1 + ... + anxn,
with a1, ..., an ∈ F2. The agreement of two functions f, g : {0, 1}n → {0, 1} is defined as
d(f, g) = |Px[f(x) = g(x)] − Px[f(x) 6= g(x)]|. f is far from linear functions if it has small
agreement with all linear functions (we make this definition precise in Section 2).

Linearity tests were first introduced by Blum, Luby and Rubenfeld in [BLR93]. They
presented the following test (coined the BLR test), which makes only 3 queries to f :

(1) Choose x,y ∈ {0, 1}n at random
(2) Verify that f(x + y) = f(x) + f(y).
Bellare et al. [BCH+96] gave a tight analysis of the BLR test. It is obvious that the

BLR test always accepts a linear function. They have shown that if the test accepts a
function f with probability 1/2 + ε, then f has agreement at least 2ε with some linear
function.

For a linearity test, we define that it has completeness c if it accepts any linear function
with probability of at least c. A test has perfect completeness if c = 1. A linearity test has
soundness s if it accepts any function f with agreement at most ε with all linear functions,
with probability of at most s+ε′, where ε′ → 0 when ε→ 0. We define the query complexity
q of a test as the maximal number of queries it performs. In the case of the BLR test, it
has perfect completeness, soundness s = 1/2 (with ε′ = 2ε) and query complexity q = 3.

If one repeats a linearity test with query complexity q and soundness s independently
t times, the query complexity grows to q ′ = qt while the soundness reduces to s′ = st. So,
it makes sense to define the amortized query complexity q̄ of a test as q̄ = q/ log2 (1/s).
Independent repetition of a test doesn’t change it’s amortized query complexity. Notice
that the BLR test has amortized query complexity q̄ = 3.

Linearity tests are a key ingredient in the PCP theorem, started in the works of Arora
and Safra [AS98] and Arora, Lund, Motwani, Sudan and Szegedy [ALM+98]. In order to
improve PCP constructions, linearity tests were studied in order to improve their amortized
query complexity.

Samorodnitsky and Trevisan [ST00] have generalized the basic BLR linearity test. They
introduced the Complete Graph Test. The Complete Graph Test (on k vertices) is:

(1) Choose x1, ...,xk ∈ {0, 1}n independently
(2) Verify f(xi + xj) = f(xi) + f(xj) for all i, j

This test has perfect completeness and query complexity q =
(k
2

)
+ k. They show that all

the
(
k
2

)
tests that the Complete Graph Test performs are essentially independent, i.e. that

the test has soundness s = 2−(k
2). This makes this test have amortized query complexity

q̄ = 1 + θ(1/
√
q). They show that this test is optimal among the family of Hyper-Graph

Tests (see [ST00] for definition of this family of linearity tests), and raise the question of
whether the Complete Graph Test is optimal among all linearity tests, i.e. does a test with
the same query complexity but with better soundness exist?

They partially answer this question in [ST06], where (among many other results) they
show that no non-adaptive linearity test can perform better than the Complete Graph Test.
A test is called non-adaptive if it first chooses q locations in the truth table of f , then queries
them, and based on the results accept or rejects f . Otherwise, a test is called adaptive. An
adaptive test may decide on its query locations based on the values of f in previous queries.

The proof technique of [ST06] uses the algebraic analysis of the Gowers Norm of certain
functions. The Gowers Norm is a measure of local closeness of a function to a low degree
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polynomial. For more details regarding the definition and properties of the Gowers Norm,
see [GT05] and [Sam07].

Ben-Sasson, Harsha and Raskhodnikova prove in [BHR05] that any adaptive linearity
test with completeness c, soundness s and query complexity q can be transformed into
a non-adaptive linearity test with the same query complexity, perfect completeness and
soundness s′ = s+ 1− c. Combining their result with the result of [ST06] proves the lower
bound also for adaptive linearity tests.

We also prove the same optimal lower bound for adaptive linearity test, but our proof
technique is arguably simpler and more direct than the one used in [ST06]. We also study,
like [ST06], the behavior of linearity tests on quadratic functions. However, instead of
employing algebraic analysis of the Gowers Norm of certain functions, we provide a more
direct combinatorial proof, studying the behavior of linearity tests on random quadratic
functions. This proof technique also lets us prove directly the lower bound also for adaptive
linearity tests.

1.1. Our techniques

We model adaptive tests using test trees. A test tree T is a binary tree, where in each
inner vertex v there is some label x(v) ∈ {0, 1}n, and the leaves are labeled with either
accept or reject. Running a test tree on a function f is done by querying at each stage f
on the label of the current vertex (starting at the root), and following one of the two edges
leaving the vertex, depending on the query response. When reaching a leaf, its label (accept
or reject) is the value of that f gets in T . An adaptive test T can always be modeled as
first randomly choosing a test tree from some set {Ti}, according to some distribution on
the test trees, then running the test tree on f .

It turns out that in order to prove a lower bound which matches the upper bound of the
Complete Graph Test, it is enough to consider functions f which are quadratic. Actually,
it’s enough to consider f which is a random quadratic function.

A function f is quadratic if it can be presented as f(x1, ..., xn) =
∑
i,j

ai,jxixj+
∑
i

bixi+c

for some values ai,j, bi, c ∈ F2. We study the behavior of running test trees on a random
linear function, and on a random quadratic function.

The main idea is as follows. Let v be some inner vertex in a test tree T , with the path
from the root of T to v being v0, ..., vk−1, v. If x(v) is linearly dependent on x(v0), ...,x(vk−1),
then when running T on any linear function, the value of f(x(v)) can be deduced from the
already known values of f(x(v0)), ..., f(x(vk−1)). Therefore, if the vertex v is reached, then
the same edge leaving v will always be taken by any linear function. Additionally, if x(v) is
linearly independent of x(v0), ...,x(vk−1), then either v is never reached running T on linear
functions, or the two edges leaving v are taken with equal probability when running T on
a random linear function. A similar analysis can be made when running T on quadratic
functions, replacing linear dependence with a corresponding notion of quadratic dependence.

Using this observation, we can define the linear rank of a leaf v, marked l(v), as the
linear rank of labels on the path from the root to v. We prove that running the test tree
T on a random linear function reaches v with probability 2−l(v). Similarly, we define the
quadratic rank of a leaf v, marked q(v), as the quadratic rank of those labels, and we
proving that running T on a random quadratic function reaches v with probability 2−q(v).
We prove that the quadratic rank of any set cannot be much larger than its linear rank,
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and in particular that q(v) ≤ (l(v)
2

)
+ l(v) for all leaves v. We use this inequality to prove

that a test which has completeness c and query complexity q accepts a random quadratic
function with a probability of at least c− 1 + 2−q+φ(q), where φ(q) is defined as the unique
non-negative solution to

(φ(q)
2

)
+ φ(q) = q.

We use this to show that any linearity test with completeness c and query complexity
q must have s ≥ 2−q+φ(q). In particular, the Complete Graph Test on k vertices has perfect
completeness, soundness s = 2−(k

2) and query complexity q =
(k
2

)
+ k. Since φ(q) = k the

Complete Graph Test is optimal among all adaptive tests with the same query complexity.
In fact, we prove a stronger claim. We say that a test T has average query complexity

q if for any function f , the average number of queries performed is at most q. In particular
any test with query complexity q also has average query complexity q. We prove that for
any test with completeness c and average query complexity q, the soundness is at least
s ≥ 2−q+φ(q).

We present and analyze linearity tests over F2. Linearity tests can also be considered
over larger fields or groups. Our lower bound actually generalizes easily to any finite field,
but for ease of presentation, and since the techniques are exactly the same, we present
everything over F2. We comment further on the modifications required for general finite
fields in Section 2.

2. Preliminaries

2.1. Linearity tests

We call a function f : {0, 1}n → {0, 1} linear if it can be written as f(x1, ..., xn) =
a1x1 + ...+ anxn for some a1, ..., an ∈ {0, 1} where addition and multiplication are in F2.

A linearity test is a randomized algorithm with oracle access to the truth table of f ,
which is supposed to distinguish the following two extreme cases:

(1) f is linear (accept)
(2) f is ε-far from linear functions (reject)

where the agreement of two functions f, g : {0, 1} → {0, 1} is defined as d(f, g) = |Prx[f(x) =
g(x)]− Prx[f(x) 6= g(x)]|, and f is ε-far from linear functions if the agreement it has with
any linear function is at most ε.

We now follow with some standard definition regarding linearity tests (or more generally,
property tests). We say a test has completeness c if for any linear function f the test accepts
with probability at least c. A test has perfect completeness if c = 1. We say a test has
soundness s if for any f which is ε-far from linear the test accepts with probability at most
s + ε′, where ε′ → 0 when ε → 0 (in fact, we talk about a family of linearity tests, for
n→∞, but we ignore this subtle point).

A test is said to have query complexity q if it accesses the truth-table of f at most q times
(for any choice of it’s internal randomness). A test is said to have average query complexity
q if for any function f , the average number of accesses (over the internal randomness of the
test) done to the truth table of f is at most q. Obviously, any test with query complexity
q is also a test with average query complexity q.

We say a test is non-adaptive if it chooses all the locations it’s going to query in the
truth table of f before reading any of their values. Otherwise, we call the test adaptive.
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We now turn to model adaptive tests in a way that will be more convenient for our
analysis. We first define a test tree and running a test tree on a function.

Definition 2.1. A test tree on functions {0, 1}n → {0, 1} is a rooted binary tree T . On
each inner vertex of the tree v there is a label x(v) ∈ {0, 1}n. On each leaf there is a label
of either accept or reject.

Definition 2.2. Running a test tree T on a function f is done as follows. We start at the
root of the tree v0, read the value of f(x(v0)), and according to the value take the left or
the right edge leaving v0. We continue in this fashion on inner vertices of T until we reach
a leaf of T . The value of f in T is the value of the end leaf (i.e. accept or reject), and the
depth of f in T is the depth of the end vertex of f in T .

Using these definitions, we can now model adaptive tests. We identify an adaptive test
T on functions {0, 1}n → {0, 1} with a distribution of binary trees {Ti} (also on functions
{0, 1}n → {0, 1}). Running the test T on a function f is done by randomly choosing one of
the trees Ti (according to their distribution), and then running the test tree Ti on f . The
result of the function f in the test tree Ti is the result the test T returns on f .

Notice that a test has query complexity q iff all trees Ti has depth at most q, and has
average query complexity q iff for any function f , the average depth reached in a random
tree from {Ti} is at most q.

In order to define our main theorem, we will define the following function. For x > 0
define φ(x) as the unique real positive solution to φ(x)2/2 + φ(x)/2 = x. Notice that for
positive integer φ(x), this is the same as

(φ(x)
2

)
+ φ(x) = x. The following is the main

theorem of this paper:

Theorem 2.3. (main theorem) Let T be an adaptive test with completeness c, soundness s
and average query complexity q ≥ 1. Then s+ 1− c ≥ 2−q+φ(q).

Notice that for large q, φ(q) ≈ √2q, also
√
q ≤ φ(q) ≤ √2q, so we get that in particular,

s+ 1− c ≥ 2−q+θ(
√
q).

The Complete Graph Test was presented in [ST00]. The test (on a graph with k vertices)
can be described as choosing x1, ...,xk at random, and querying f at xi (for i = 1..k) and
on xi + xj (for 1 ≤ i < j ≤ k). The test accepts f if for any i, j

f(xi) + f(xj) + f(xi + xj) = 0

In [ST00] it is proven that the Complete Graph Test has perfect completeness and
soundness s = 2−(k

2). The total number of queries performed is q = k +
(k
2

)
, so by our

definitions, k = φ(q) and s = 2−q+φ(q). We have the following corollary:

Corollary 2.4. The Complete Graph Test is optimal among all adaptive linearity tests.

Remark 2.5. We state and prove all results for functions f : {0, 1}n → {0, 1}. In fact,
the lower bound result on adaptive linearity tests holds for functions f : Fn → F for any
finite field F, and not just F2, with only minor adjustments to the definitions and proofs.
We need to make the following modifications:

(1) Define ”ε-far from linear functions” for general fields
(2) Test trees should have |F | edges leaving each edge instead of 2
(3) The proof that random quadratic functions are far from linear, proved in Section 5,

should be slightly modified
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Since the results follow simply for any finite field, we chose to present the results over F2

to make the presentation simpler and clearer.

3. Quadratic functions

We will see that in order to prove Theorem 2.3, it will be enough to limit the functions
f to be quadratic. We say a function f is quadratic if it can be written as:

f(x1, ..., xn) =
∑
i,j

ai,jxixj +
∑
i

bixi + c

for some ai,j, bi, c ∈ F2.
In fact, for our usage, we will force our quadratic functions f to have f(0) = 0 (equiv-

alently, c = 0 in the above description). So, throughout this paper, when speaking of
quadratic functions, we actually speak of quadratic functions f with the added condition
f(0) = 0.

We will study the dynamics of a test tree T in a linearity test T, in two cases - when
applied to a uniformly random linear function, and when applied to a uniformly random
quadratic function.

The following technical lemma is the key ingredient to the proof of the Theorem 2.3.

Lemma 3.1. Let T be an adaptive linearity test with completeness c and average query com-
plexity q. Then running T on a random quadratic function returns accept with probability
at least c− 1 + 2−q+φ(q).

In order to prove Theorem 2.3, we will also need the following simple lemma:

Lemma 3.2. Let f be a random quadratic function. Then the probability that f is not
2−Ω(n)-far from linear functions is 2−Ω(n).

Theorem 2.3 now follows directly from Lemmas 3.1 and 3.2. We sketch now it’s proof
following the two lemmas.

Proof. (of the main theorem) The average probability that T returns accept on a random
quadratic function which is 2−Ω(n)-far from linear functions is at least c−1+2−q+φ(q)−2−Ω(n).
So, there exists some quadratic function f which is 2−Ω(n)-far from linear and on which T
returns accept with probability at least c − 1 + 2−q+φ(q) − 2−Ω(n). Taking n → ∞ shows
that s+ 1− c ≥ 2−1+φ(q).

The remainder of the paper is organized as follows. Lemma 3.1 is proved in Section 4,
and Lemma 3.2 is proved in Section 5.

4. Linearity test applied to a random quadratic function

We study tests and test trees applied to linear and quadratic functions, in order to prove
Lemma 3.1. Let T be an adaptive test with completeness c and average query complexity
q. Let T be a some test tree which is a part of the test T.

We start by studying the dynamics of applying T to linear functions. Assume we know
that f is a linear function, and we are at some vertex v ∈ T , where the path from the root
to v is v0, .., vk−1, v. Assume x(v) is linearly dependant on x(v0), ...,x(vk−1). Since we know
f is linear, we can deduce the value of x(v) from x(v0), ...,x(vk−1), and so we will always
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follow the same edge leaving v when we apply T to any linear function. On the other hand,
if x(v) is linearly independent of x(v0), ...,x(vk−1), we know that when we apply T to a
random linear function, either we never reach v, or we have equal chances of taking any of
the two edges leaving v.

This gives rise to the following formal definition:

Definition 4.1. Let v be a leaf in T , where the path from the root to v is v0, v1, ..., vk−1, v.
We define the linear degree of v, marked l(v), to be the linear rank of x(v0), ...,x(vk−1).

We define LT to be the set of leaves of T to which linear functions can arrive. i.e, v ∈ L
if the path from the root to v, v0, ..., vk−1, v always takes the ”correct” edge leaving any
vertex vi with x(vi) linearly dependent on x(v0), ...,x(vi−1).

The following lemma formalizes the discussion above:

Lemma 4.2. For any test tree T :
(1) For any v ∈ LT , the probability that a random linear function will arrive to v is

2−l(v)
(2)

∑
v∈LT

2−l(v) = 1

For v ∈ LT , we define c(v) to be 1 if the value of v is accept, and c(v) = 0 otherwise.
Since the completeness of T is c, we have that the probability that T returns accept on
a random linear function is at least c. On the other hand, for any test tree T in T, the
probability that a random linear function will return accept is exactly

∑
v∈LT

c(v)2−l(v) . So,

the following lemma follows:

Lemma 4.3. ET
∑
v∈LT

c(v)2−l(v) ≥ c

where by ET here and throughout the paper we mean the average value of a random
test tree T in T.

We now generalize the concept of linear dependence to quadratic functions.

Definition 4.4. Let x1, ...,xk ∈ {0, 1}n.
(1) We say x1, ..., xk are quadratically dependent if there are constants a1, ..., ak ∈ F2,

not all zero, s.t. for any quadratic function f we have: a1f(x1) + ...+ akf(xk) = 0.
otherwise will call x1, ..., xk quadratically independent.

(2) We say xk is quadratically dependent on x1, ...,xk−1 if there are constants a1, ..., ak−1 ∈
F2 s.t. for any quadratic function f we have: f(xk) = a1f(x1) + ...+ ak−1f(xk−1).
Otherwise we say xk is quadratically independent of x1, ...,xk−1.

(3) We define the quadratic dimension of x1, ...,xk to be the size of the largest subset
of {x1, ...,xk} which is quadratically independent.

This definition may seem obfuscated, but the following alternative yet equivalent def-
inition will clarify it. The space of quadratic functions over {0, 1}n is a linear space over
F2. Let M be it’s generating matrix, i.e. the rows of M are a base for the linear space (in
particular, the dimensions of M are (

(n
2

)
+n)×2n). A column of M corresponds to an input

x ∈ {0, 1}n. Now, x1, ...,xk are quadratically dependent iff the columns corresponding to
them are linearly dependent, and similarly for the other definitions.
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Notice that the usual definition of linear dependence is equivalent to this more complex
definition, when applied to the linear space of all linear functions.

We now can repeat the informal discussion at the start of this section, except this
time for quadratic functions, with all the reasoning left intact. Let v ∈ T be a vertex,
with path from the root being v0, ..., vk−1, v. Assume x(v) is quadratically dependent on
x(v0), ...,x(vk−1), and f is any quadratic function. The value of f(x(v)) can be deduced
from the already known values of f(x(v0)), ..., f(x(vk−1)), and so only one edge leaving v
will be taken on all quadratic functions. Alternatively, if x(v) is quadratically independent
on x(v0), ...,x(vk−1), then a random quadratic function either never reaches v, or has equal
chances of taking each of the two edges leaving v.

This leads to the following definition and lemma for quadratic degree of a vertex v ∈ T ,
similar to the ones for linear degree.

Definition 4.5. Let v be a leaf in T , where the path from the root to v is v0, v1, ..., vk−1, v.
We define the quadratic degree of v, marked q(v), to be the quadratic rank of x(v0), ...,x(vk−1).

We define QT to be the set of leaves of T to which quadratic functions can arrive.
Naturally LT ⊆ QT . The following lemma on quadratic degree follows from the discussion
above:

Lemma 4.6. For any test tree T :
(1) For any v ∈ QT , the probability that a random quadratic function will arrive to v is

2−q(v)
(2)

∑
v∈Q

2−q(v) = 1

(3) For any v ∈ LT we have q(v) ≥ l(v)

Last, we mark the depth of a vertex v ∈ T by d(v). Since T has average query complexity
q, we know that for any function f , the average depth of running a random tree T of T on f
is at most q. So, this also holds for a random linear function. However, the average depth a
random linear function arrives on a tree T is exactly

∑
d(v)2−l(v) , so the following lemma

follows.

Lemma 4.7. ET
∑
v∈LT

d(v)2−l(v) ≤ q

We now wish to make a connection between q(v) and l(v) for vertices v ∈ LT .
First, we prove that following lemma:

Lemma 4.8. For any x1, ...,xk ∈ {0, 1}n there are coefficients ai,j , bi ∈ F2 s.t. for any
quadratic function f we have:

f(x1 + ...+ xk) =
∑
i,j

ai,jf(xi + xj) +
∑
i

bif(xi)

Proof. Let f(x) by some polynomial of degree d. It’s derivative in the y direction is defined
to be fy(x) = f(x+y)− f(x). It’s easy to see that the degree of fy as a function of x is at
most d − 1. So, taking 3 derivatives from a quadratic function makes it the zero function,
and so in particular for any quadratic function f, we we take it’s derivatives in directions
x,y and z, and evaluate the result at 0, we get that

(((fx)y)z(0) = 0
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Opening this expression yields:

f(x + y + z)− f(x + y)− f(x + z)− f(y + z) + f(x) + f(y) + f(z)− f(0) = 0

Since f(0) = 0, we can express f(x+y+ z) as a sum of application of f on an element,
or sum of two elements in {x,y, z}. This proves the lemma for k = 3. For k > 3 we use
simple induction.

Now we can bound l(v) in term of q(v). We first prove a result bounding in general the
linear rank of a set by it’s quadratic rank.

Lemma 4.9. Let {x1, ...,xk} be elements in {0, 1}n. Let l be the their linear rank, and q
their quadratic rank. Then

q ≤
(
l

2

)
+ l

Proof. Let S ⊂ {x1, ...,xk} be a maximal quadratic independent set. |S| = q. The linear
rank of S is also l. Let S ′ ⊂ S be a maximal set of linearly independent elements of S.
|S′| = l. Assume w.l.o.g that S ′ = {x1, ...,xl}. Since every x ∈ S is linearly dependent on
S′, it can be written as a sum of some of the elements of S ′. Using Lemma 4.8, we get that
for any x ∈ S there exists coefficients a(x)

i,j , b
(x)
i ∈ F2 s.t for any quadratic function f :

f(x) =
∑

1≤i<j≤l
a

(x)
i,j f(xi + xj) +

∑
1≤i≤l

b
(x)
i f(xi)

We have assumed that all the elements of S are quadratically independent. For this to
hold, the above equations in the symbolic variables f(xi + xj) and f(xi) must be linearly
independent. So the number of equations q must be at most the number of variables, which
is

( l
2

)
+ l. So, we get that:

q = |S| ≤
(
l

2

)
+ l

Lemma 4.10. For any leaf v ∈ LT , l(v) ≥ φ(q(v))

Proof. Let v0, ..., vk−1, v be the path in T from the root to v. Let xi = x(vi) for i = 0..k−1.
Apply lemma 4.9 on {x0, ...,xk−1} to get that q(v) ≤ (l(v)

2

)
+ l(v). Reversing this formula,

since φ(x) is monotone, we get that l(v) ≥ φ(q(v)).

We can now prove our main technical lemma (Lemma 3.1). We start with some technical
lemmas. We define ψ(x) to be x − φ(x) for x ≥ 1, and 0 for x < 1. Notice that ψ is
continuous, and ψ(x) = x− φ(x) for any non-negative integer x. Hence, using Lemma 4.10
we get that:

Lemma 4.11. For any vertex v in a tree T , q(v)− l(v) ≤ ψ(q(v)).

Lemma 4.12. ψ is increasing and convex.

Proof. Since ψ is continuous and constant for x ≤ 1, it’s enough to prove the claim for
x > 1 (for increasing it’s clear, and once we’ve proved ψ is increasing, it shows it’s enough
to prove convexity for x > 1). We first show ψ is increasing.

For x > 1, define y = φ(x), so x = y2/2 + y/2 and ψ(y) = y2/2− y/2.

dψ

dx
=
dψ

dy

dy

dx
=

dψ
dy

dx
dy

=
y − 1/2
y + 1/2
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If x > 1 then y = φ(x) > 1, hence dψ
dx > 0 for x > 1, and so ψ is increasing.

To show that ψ in convex,

d2ψ

dx2
=
d

(
y−1/2
y+1/2

)
dy

dy

dx
=

1
(y + 1/2)3

> 0

We are now finally ready to prove Lemma 3.1.

Proof. (of Lemma 3.1) We need to prove that any test T with completeness c and average
query complexity q ≥ 1 accepts a random quadratic function with probability at least
c − 1 + 2−ψ(q). Let us mark the probability the test accepts a random quadratic function
by p. Let pT mark the probability that a tree T accepts a random quadratic function. pT
is at least the probability that a random quadratic function reaches a leaf in LT which is
labeled accept. So:

pT ≥
∑
v∈LT

c(v)2−q(v)

We now follow to analyze p = ET [pT ].

p ≥ ET [
∑
v∈LT

c(v)2−q(v)] = ET [
∑
v∈LT

2−l(v)c(v)2−q(v)+l(v) ]

.
We divide the sum in the right side into two parts, p0 − p1, with p0, p1 ≥ 0, where:

p0 = ET [
∑
v∈LT

2−l(v)2−q(v)+l(v)]

. and
p1 = ET [

∑
v∈LT

2−l(v)(1− c(v))2−q(v)+l(v) ]

.
We start by analyzing p1. Since for any v always q(v) ≥ l(v) we have:

p1 ≤ ET [
∑
v∈LT

2−l(v)(1− c(v))]

Recall that by Lemma 4.6 for any tree T we have∑
v∈LT

2−l(v) = 1

and by Lemma 4.3 we have
ET [

∑
v∈LT

2−l(v)c(v)] ≥ c

so we conclude that:
p1 ≤ 1− c

We move to analyze p0. Since ET [
∑
v∈LT

2−l(v)] = 1 and since the function X → 2X is

concave, we have by Jensen’s inequality that:

p0 ≥ 2

ET [

∑
v∈LT

2−l(v)(−q(v) + l(v))]
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Now, we have that q(v)− l(v) ≤ ψ(q(v)) by Lemma 4.12, and also by the same lemma,
since q(v) ≤ d(v), we get ψ(q(v)) ≤ ψ(d(v)). So we get:

ET [
∑
v∈LT

2−l(v)(q(v)− l(v))] ≤ ET [
∑
v∈LT

2−l(v)ψ(d(v))]

.
Since by Lemma 4.12 ψ is convex, we get that again by Jensen’s inequality we get that

this is at most ψ(ET [
∑
v∈LT

2−l(v)d(v)]). By Lemma 4.7

ET [
∑
v∈LT

2−l(v)d(v)] ≤ q

where q is the average query complexity of T. So, we conclude that p0 ≥ 2−ψ(q), and in
total

p ≥ p0 − p1 ≥ 2−ψ(q) + c− 1

5. Random quadratic function is far from linear

In this section we prove Lemma 3.2, i.e. that a random quadratic function is far from
linear. We will use commonly known facts about quadratic functions.

Any quadratic function can be written as:

f(x) = xtAx+ < x, b >

The correlation of f with some linear function g is the g-th Fourier coefficient of f .
The Fourier coefficients of quadratic functions are well studied. In particular, it is known
that all the Fourier coefficients of f have the same absolute value, and that the number
of non-zero Fourier coefficients is 2rank(A+At). So, in order to show that f has no large
correlation with some linear function, it’s enough to show that B = A+At has high rank.
In particular, in order to show that f is 2−Ω(n)-far from linear functions, we need to show
that B has rank Ω(n). We will show that the probability that a random quadratic function
has rank less than n/4 is 2−Ω(n). We will use the following lemma:

Lemma 5.1. The number of matrices of rank at most k is at most nk2nk.

Using Lemma 5.1, it’s easy to prove Lemma 3.2. The number of matrices of rank
at most n/4 is at most 2n

2/4(1+o(1)) . For a random quadratic function, B is a random
symmetric matrix with zero diagonal, and so the probability that B has rank less than n/4
is 2−n2/4(1+o(1)) = 2−Ω(n).

Now we finish by proving Lemma 5.1.

Proof. Let B be a matrix of rank at most k. There are
(n
k

)
options to choose k rows which

span the row span of the matrix, each other row have at most 2k options since it must be
in the row span of k specific rows. So, the number of possibilities for rank k matrices is at
most: (

n

k

)
(2k)

n−k ≤ nk2nk
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Abstract. We study the scheduling problem on unrelated machines in the mechanism
design setting. This problem was proposed and studied in the seminal paper of Nisan and
Ronen [NR99], where they gave a 1.75-approximation randomized truthful mechanism for
the case of two machines. We improve this result by a 1.6737-approximation randomized
truthful mechanism. We also generalize our result to a 0.8368m-approximation mechanism
for task scheduling with m machines, which improve the previous best upper bound of
0.875m[MS07].

1. Introduction

Mechanism design has become an active area of research both in Computer Science and
Game Theory. In the mechanism design setting, players are selfish and wish to maximize
their own utilities. To deal with the selfishness of the players, a mechanism should both
satisfy some game-theoretical requirements such as truthfulness and some computational
properties such as good approximation ratio. The study of their algorithmic aspect was ini-
tiated by Nisan and Ronen in their seminal paper “Algorithmic Mechanism Design” [NR99].
The focus of that paper was on the scheduling problem on unrelated machines, for which the
standard mechanism design tools ( VCG mechanisms [Clarke71, Groves1973, Vickrey61])do
not suffice. They proved that no deterministic mechanism can have an approximation ratio
better than 2 for this problem. This bound is tight for the case of two machines. How-
ever if we allow randomized mechanisms, this bound can be beaten. In particular they
gave a 1.75-approximation randomized truthful mechanism for the case of two machines.
Since then, many researchers have studied the scheduling problem on unrelated machines in
mechanism design setting [JP99, Sourd01, SS02, SX02, GMW07, CKV07, CKK07, MS07].
However their mechanism remains the best to the best of our knowledge. In a recent paper
[MS07], Mu’alem and Schapira proved a lower bound of 1.5 for this setting. So to explore the
exact bound between 1.5 and 1.75 is an interesting open problem in this area. In this paper,
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we improve the upper bound from 1.75 to 1.6737. Formally we give a 1.6737-approximation
randomized truthful mechanism for task scheduling with two machines. Using similar tech-
niques of [MS07], we also generalize our result to a 0.8368m-approximation mechanism for
task scheduling with m machines.

Let us describe the problem more carefully. There are m machines and n tasks, and
each machine is controlled by an agent. We use ti

j to denote the running time of task j

on machine i, which is also called the type value of the agent(machine) i on task j. The
objective is to minimize the completion time of the last assignment (the makespan). Unlike
in the classical optimization problem, the scheduling designer does not know ti

j . Each selfish
agent i holds his/her own type values (the ti

js). In order to motivate the agents to report
their true value tijs, the mechanism needs to pay the agents. So a mechanism consists of
an allocation algorithm and a payment algorithm. A mechanism is called truthful when
telling one’s true value is among the optimal strategies for each agent, no matter how other
agents behave. Here the utility of each agent is the payment he/she gets minus the load of
tasks allocated to his/her machine. When randomness is involved, there are two versions of
truthfulness: in the stronger version, i.e. universally truthfulness, the mechanism remains
truthful even if the agents know the random bits; in the weaker version, i.e. truthfulness
in expectation, an agent maximizes his/her expected utility by telling the true type value.
Our mechanisms proposed in this paper are universally truthful.

Now we can talk about the high level idea of the technical part. Here we only talk
about the allocation algorithms, and the corresponding payment algorithms, which make
the mechanism truthful, will be given later. First we describe Nisan and Ronen’s mechanism
[NR99]. In their mechanism, each task is allocated independently. For a particular task j,
if the two values t1j and t2j are relatively close to each other, say t1j/t

2
j ∈ [3/4, 4/3], then

they allocate task j randomly to machine 1 or 2 with equal probability; if one is much
higher then the other, say t1j/t

2
j > 4/3 or t2j/t

1
j > 4/3, the task j is allocated to the more

efficient machine. The main idea of our mechanism is to partition the tasks into three
categories rather than two. So we need two threshold values, say α, β, where 1 < β < α
and a biased probability r , where 1/2 < r < 1. If the two values are relatively close to
each other, say t1j/t

2
j ∈ [1/β, β], or one is much higher then the other, say t1j/t

2
j > α or

t2j/t
1
j > α , we do the same things as Nisan and Ronen’s mechanism. In the remaining

case, one is significantly larger than the other, but however still does not dominate, say
t1j/t

2
j ∈ [β, α] or t2j/t

1
j ∈ [β, α]. In this case, we allocate the task j to the more efficient

one with a higher probability r (r > 1/2) and the less efficient one with a lower probability
1 − r. The mechanism is quite simple, so it is very computationally efficient. Intuitively
our mechanism will give better approximation ratios by choosing suitable parameters α, β
and r. This is indeed true. We can prove an improved approximation ratio of 1.6737 by
choosing α = 1.4844, β = 1.1854, r = 0.7932. However, the proof is quite involved. One
reason is that the situation for the new case (middle case) is more complicated than the
original two. The main reason is that their approach becomes infeasible in the analysis
of our mechanism. The proof in Nisan and Ronen’s paper is basically case by case, but
unfortunately the number of subcases increases double exponentially with the number of
task types. So we introduce some substantial new proof techniques to overcome this. We
also think this techniques may further improve the upper bound.
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1.1. Related Work

Scheduling on unrelated machines is one of the most fundamental scheduling Prob-
lems. For this NP-hard optimization problem, there is a polynomial time algorithm with
approximation ratio of 2[LST87]. Especially if the number of machines is bounded by
some constant, Angel, Bampis and Kononov gave an FPTAS[ABK01]. However there is no
corresponding payment strategy to make either of the above allocation algorithms truthful.

The study of this problem in the mechanism design setting is initiated by Nisan and
Ronen. In their paper [NR99], they gave a 1.75-approximation randomized truthful mecha-
nism for two machines. This result was generalized by Mu’alem and Schapira to a 0.875m-
approximation randomized mechanism for m machines[MS07]. We improved the two upper
bounds to 1.6737 and 0.8368m respectively.

For the lower bound side, Nisan and Ronen gave a lower bound of 2 for deterministic
version. This bound was improved by Christodoulou, Koutsoupias and Vidali to 1+

√
2 for

3 or more machines [CKV07]. For the randomized version, Mu’alem and Schapira gave a
lower bound of 2 − 1/m[MS07]. This also holds for the weaker notion of truthfulness, i.e.,
truthfulness in expectation.

Lavi and Swarmy considered a restricted variant, where each task j only has two values
of running time , and gave a 3-approximation randomized truthful mechanism [LS07]. They
first use the cycle monotonicity in designing mechanisms.

In [CKK07], Christodoulou, Koutsoupias and Kovács considered the fractional version
of this problem, in which each task can be split among the machines. For this version, they
gave a lower bound of 2−1/m and an upper bound of (m+1)/2. We remark that these two
bounds are closed for the case of two machines as in the integral deterministic version. So
to explore the exact bound for the randomized version seems very interesting and desirable.
We believe that our work in this paper is an important step toward this objective.

2. Problem and Definitions

In this section we review some definitions and results on mechanism design and sched-
uling problem. More details can be found in[NR99].

In a mechanism design problem, there are usually some resources to distribute among
n agents. Every agent i has a type value ti, which denotes his/her preference on the
resources. Let t = (ti)i∈[m] denote the vector of all agents’ type values and t−i denote the
vector of all agents’ type vectors except agent i’s. Receiving all the type values t from
agents, the mechanism will produce an output o(t) = (x(t), p(t)). Here x(t) specifies the
allocation of the resources and is produced by an allocation algorithm. p(t) specifies the
payment to agents and is produced by an payment algorithm. Every agent i has a valuation
vi(x, ti), which describe his/her preference on the output allocation. The agent i’s objective
is maximizing his/her utility function ui, where ui = vi +pi, and pi is the payment obtained
from the mechanism. The mechanism’s objective is to maximize an objective function
g(o, t). Formally, we have the following definitions.

Definition 2.1. A mechanism is a pair of Algorithms M = (X,P ).
• Allocation Algorithm X: Its input is m agents’ type vectors, t1, t2, · · · , tm, which are

reported by the agents. and its output is x = (x1, · · · , xm), where xi = (xi
j)j∈[n] ∈

{0, 1}n are allocation vector of agent i.
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• Payment Algorithm P : It outputs a payment vector p = (p1, · · · , pm), which de-
pends both on agents’ type vectors and allocation vectors produced by allocation
algorithm.

A mechanism is deterministic if both the allocation algorithm and payment algorithm
are deterministic. When at least one of them uses random bits, it is called a randomized
mechanism.

In order to increase utility, an agent may lie when reporting his/her type values. But
for some mechanisms, no agent can increase his/her utility by lying. This nice property of
a mechanism is called truthfulness. We give the formal definitions of truthfulness.

Definition 2.2. A deterministic mechanism is truthful iff for every agent, reporting
his/her true type values is among the best strategies to maximize his/her utility, no matter
how other agents acts. A randomized mechanism is truthful in expectation iff no agent
can increase his/her expected utility by lying. A randomized mechanism is universally
truthful iff it remains truthful even if the agents know the random bits.

From now on, we will only focus on truthful mechanisms. The most important pos-
itive result in mechanism design is generalized Vickrey-Clarke-Groves(VCG) mechanism
[Vickrey61, Groves1973, Clarke71]. Many known truthful mechanisms are all in VCG fam-
ily. The mechanisms of VCG family usually apply to mechanism design problem in which
the objective function is the (weighted) sum of all agents’ valuations. To be formal, we have

Definition 2.3. [NR99] A mechanism M = (X,P ) belongs to weighted VCG family if
there are real numbers(weights) β1, · · · , βn > 0, such that:

(1) the problem’s objective function satisfies g(o, t) =
∑

i βivi(ti, o).
(2) o(t) ∈ argmaxo(g(o, t).
(3) pi(t) = 1

βi

∑
i′ 6=i β

i′vi′(ti
′
, o(t)) + hi(t−i), where hi() is an arbitrary function of t−i.

Theorem 2.4. ([Roberts79]) A weighted VCG mechanism is truthful.

Now we specify these mechanism notions in the problem of scheduling unrelated ma-
chines. Assume there are n tasks to be allocated to m machines, each of which is controlled
by an agent. Each agent i’s type value is ti = (tij)j∈[n], where tij denotes the time to perform
task j on machine i.

We use a binary array xi = (xi
j)j∈[n] to specify the allocation of tasks to machine i.

xi
j is 1 if task j is allocated to machine i and otherwise 0. Let x = (xi)i∈[m] denote the

allocation of all the tasks. For an allocation x, agent i’s valuation is v i = −xi · ti, where
xi · ti =

∑n
j=1 xi

jt
i
j .

Definition 2.5. Given any allocation x of the tasks, the longest running time of the ma-
chines is called the makespan of the allocation. Formally, makespan(x) = maxi∈[m]x

i · ti.
The objective of the mechanism is to minimize the (expected) makespan of the alloca-

tion. This is not the (weighted) sum of all agents’ valuations. So we can not apply VCG
mechanism here. However, we remark that if there is only one task, the makespan can be
viewed as the sum of all agents’ valuations. We will use this observation in our analysis.

From [NR99] and [MS07], we know that there is no optimal truthful mechanism for this
problem, even if we allow super-polynomial running time and randomness. So we will try
to find a truthful mechanism with good approximation ratio.
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Definition 2.6. Let tM (t) be the (expected) makespan of the mechanism M on instances t
and topt(t) be the optimal makespan of instance t. We say mechanism M has approximation
ratio c iff for any instance t, tM (t)/topt(t) ≤ c.

3. Our Mechanism and the Analysis

In this section, we give a truthful scheduling mechanism for 2 machines case, and show
that its approximation ratio is 1.6737. Then we generalize our result to the m machines
case as in [MS07] and obtain a 0.8368m-approximation randomized truthful mechanism.

3.1. Generalized Randomly Biased Mechanism

Parameters: Real numbers α > β ≥ 1 > r ≥ 1
2 .

(Here we choose α = 1.4844, β = 1.1854, r = 0.7932.)
Input: The reported type vectors t = (t1, t2).
Output: A randomized allocation x = (x1, x2),
and a payment p = (p1, p2).
Allocation and Payment algorithm:
x1

j ← 0, x2
j ← 0, j = 1, 2 · · · , n; p1 ← 0; p2 ← 0.

For each task j = 1, 2 · · · , n do

sj ←


α, with probability 1− r,

β, with probability r − 1/2,
1/β, with probability r − 1/2,
1/α, with probability 1− r.

if t1j < sjt
2
j ,

x1
j = 1, p1 ← p1 + sjt

2
j ;

else
x2

j = 1, p2 ← p2 + s−1
j t1j .

Theorem 3.1. The Generalized Randomly Biased Mechanism (GBM for short) is univer-
sally truthful and can achieve a 1.6737-approximation solution for task scheduling with two
machines.

We will prove this theorem in the following two subsections. In 3.2, we will prove that
our mechanism is universally truthful. Then we analyze its approximation ratio in 3.3

3.2. Truthfulness

Lemma 3.2. The Generalized Randomly Biased Mechanism is universally truthful.

Proof. To prove that the GBM is universally truthful, we only need to prove that it is
truthful when the random sequence sj is fixed. Since the utility of an agent equals the sum
of the utilities obtained from each task and our mechanism is task-independent, we only
need consider the case of one task. In this case, say sj is fixed and there is only one task j,
the mechanism is exactly the VCG mechanism with weight (1, sj). Since a weighted VCG
is truthful, the GBM mechanism is universally truthful.
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3.3. Estimation of the Approximation Ratio

If this subsection, we will estimate the approximation ratio of our GBM mechanism.
Since we already proved that GBM is universally truthful in 3.2, we only need to focus on
the allocation algorithms of GBM. So we can restate the allocation algorithms for GBM
in an equivalent but more understandable way. Intuitively we should assign one task with
larger probability to the machine which has smaller type value(running time) on it. The
idea of our mechanism is to partition all the tasks into several types according to the ratio
of two agents’ type values. For different types of tasks, we use different biased probabilities
to allocate them. To be formal, we have the following definition.

Definition 3.3. For a task j, we call it an h-task iff
tij

t3−i
j

> α for some i ∈ {1, 2}; we called

it an m-task iff β <
tij

t3−i
j

≤ α for some i ∈ {1, 2}; we call it an l-task if
tij

t3−i
j

≤ β for any

i ∈ {1, 2}.
Then, we have the following claim.

Claim 3.4. The GBM mechanism allocates the tasks in the same way as the following
allocating algorithm does.

• For h-task, we allocate it to the machine with lower type value.
• For m-task, we allocate it to the more efficient machine with probability r and to

the less efficient machine with probability 1− r.
• For l-task, we allocate it to two machines with equal probabilities.

Proof. For each task j, we consider the probability that it is allocated to machine 1 in GBM.

According to the ratio of
t1j
t2j

, we have the following 5 cases:

• Case 1: t1j ≥ αt2j , then Pr(x1
j = 1) = 0

• Case 2: β ≤ t1j < αt2j , then Pr(x1
j = 1) = 1− r

• Case 3: β−1 ≤ t1j < βt2j , then Pr(x1
j = 1) = (1− r) + (r − 1

2) = 1
2

• Case 4: α−1 ≤ t1j < β−1t2j , then Pr(x1
j = 1) = (1− r) + (r − 1

2) + (r − 1
2) = r

• Case 5: t2j < α−1t2j , then Pr(x1
j = 1) = (1− r) + (r − 1

2) + (r − 1
2 ) + (1− r) = 1

The probabilities that task j is assigned to machine 1 by two algorithms are always the
same, so the lemma is true.

Remark 3.5. This claim only says that the (distribution of) allocation produced by the
two methods are the same. However if we use this allocation algorithm stated in the claim,
we can only make the mechanism truthful in expectation.

As in [NR99], we obtain the following crucial claim, which can help us cut the number
of tasks. The proof of this claim is similar , and we put it in the Appendix.

Claim 3.6. To analyze the performance of the generalized randomized biased mechanism,
we only need consider the following cases:

(1) For each h-task j, the ratio of the two machines’ type value is arbitrarily close to α.
So we can assume it equals α.

(2) If OPT allocates an l-task j to machine i, then t3−i
j /tij = β.

(3) If OPT allocates an m-task j to machine i which has smaller type value, then
t3−i
j /tij = α.
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(4) If OPT allocates an m-task j to machine i which has bigger type value, then
t3−i
j /tij = β−1.

(5) One of the machines is more efficient than the other on all h-tasks. We assume it’s
machine 1.

(6) There are at most 8 tasks A,B,C,D,E, F,G,H. In OPT , tasks A,C,E,G are
allocated to machine 1, and the others to machine 2. Tasks A,B are h-tasks. Tasks
C,D,E, F are m-tasks and tasks G,H are l-tasks.

From the above analysis, we know that we only need to consider the reduced case as
described in Figure 1.

type task t1j t2j opt-alloc gbm-alloc(probability)
h1 A a αa 1 1 : 0
h2 B b αb 2 1 : 0
m1

1 C c αc 1 r : (1− r)
m1

2 D d βd 2 r : (1− r)
m2

1 E βe e 1 (1− r) : r
m2

2 F αf f 2 (1− r) : r

l1 G g βg 1 1
2 : 1

2
l2 H βh h 2 1

2 : 1
2

Figure 1: The Reduced Case.

Now we can estimate the approximation ratio based on this reduced case.

Lemma 3.7. The allocation produced by GBM is a 1.6737-approximation solution for the
task scheduling problem with two machines.

Proof. Let topt be the make-span of an optimal solution and let tgbm be the expected
makespan of allocations produced by GBM. We want to show that tgbm ≤ 1.6737topt.

From the allocation of the optimal solution, we have that

topt = max{a + c + βe + g, αb + βd + f + h}.
Now we will estimate the expected makespan of our mechanism tgbm. First we introduce

some notation which will be used in the following analysis. We will treat the same name X
(X = A,B, · · · ,H) as a random variable, which denotes the assignment of the task X. For
example, C = 2 means that our mechanism assigns the task C to the second machine. Then
the last column in Figure 1 can also be viewed as the distribution of the random variable
X (X = A,B, · · · ,H). For example Pr(C = 1) = r and Pr(C = 2) = 1 − r. Since our
mechanism assigns each task independently, the random variables are also independent of
each other. More precisely, for any X,Y ∈ {A,B, · · · ,H}, i, j ∈ {1, 2} and X 6= Y , we have

Pr(X = i, Y = j) = Pr(X = i)Pr(Y = j).

We use a random variable M to denote the machine finishing last. More precisely,
M = 1 means the completion time of the first machine is not earlier than the second
machine, otherwise we have M = 2.

Now we compute the contribution of each task to tgbm. Let the j-th task be X. Then
its contribution to tgbm contains two parts. First part is from t1j . t1j contributes to tgbm



534 P. LU AND C. YU

iff our mechanism assigns task X to 1 (e.t. X = 1) and the machine 1 finishes later (e.t.
M = 1). The situation for t2j is similar. To sum up, the contribution of the j-th task X to
tgbm is

Pr(M = 1, X = 1)t1j + Pr(M = 2, X = 2)t2j .
For example, the contribution of task C to tgbm is

Pr(M = 1, C = 1)c + αPr(M = 2, C = 2)c = (Pr(M = 1, C = 1) + αPr(M = 2, C = 2))c.

Similarly, we can compute the contribution of each task to tgbm easily. To simplify the
notation, we use Cx (x = a, b, · · · , h) to denote the coefficient of x in tgbm. So we have

tgbm = Caa + Cbb + Ccc + Cdd + Cee + Cff + Cgg + Chh.

where

Ca = Pr(M = 1),
Cb = Pr(M = 1),
Cc = Pr(M = 1, C = 1) + αPr(M = 2, C = 2),
Cd = Pr(M = 1, D = 1) + βPr(M = 2, D = 2),
Ce = βPr(M = 1, E = 1) + Pr(M = 2, E = 2),
Cf = αPr(M = 1, F = 1) + Pr(M = 2, F = 2),
Cg = Pr(M = 1, G = 1) + βPr(M = 2, G = 2),
Ch = βPr(M = 1,H = 1) + Pr(M = 2,H = 2).

Since

tgbm = Caa + Cbb + Ccc + Cdd + Cee + Cff + Cgg + Chh

= (Caa + Ccc +
Ce

β
βe + Cgg) + (

Cb

α
αb +

Cd

β
βd + Cff + Chh)

≤ max(Ca, Cc,
Ce

β
,Cg)(a + c + βe + g) + max(

Cb

α
,
Cd

β
,Cf , Ch)(αb + βd + f + h)

≤ max(Ca, Cc,
Ce

β
,Cg)topt + max(

Cb

α
,
Cd

β
,Cf , Ch)topt

So the performance of our mechanism is bounded by

max(Ca, Cc,
Ce

β
,Cg) + max(

Cb

α
,
Cd

β
,Cf , Ch).

We will give bound for every possible sum between {Ca, Cc,
Ce
β , Cg} and {Cb

α , Cd
β , Cf , Ch}.

First

Ca +
Cb

α
= Pr(M = 1) +

Pr(M = 1)
α

≤ 1 +
1
α

.

So Ca + Cb
α is bounded by 1 + 1

α . Later we will choose suitable parameter α so that this
value is not too big.

Now we analyze a more complicated case, say Cc + Cf . Substituting Cc and Cf , we
have

Cc+Cf = Pr(M = 1, C = 1)+αPr(M = 2, C = 2)+αPr(M = 1, F = 1)+Pr(M = 2, F = 2).
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Here we use Pijk to denote the joint distribution of three random variables M,C,F (e.t.
Pijk = Pr(M = i, C = j, F = k) ). Then we can rewrite the formula as following

P111 + P112 + α(P221 + P222) + α(P111 + P121) + (P212 + P222).

Then we recombine the terms as following

(P111 + P112 + P212) + α(P111 + P121 + P221) + (1 + α)P222.

The first term is bounded by Pr(C = 1) (since Pr(C = 1) = P111 + P112 + P212 + P211);
similarly the second term is bounded by αPr(F = 1); the third term is bounded by (1 +
α)Pr(C = 2, F = 2). So we can bound Cc + Cf by

Pr(C = 1) + αPr(F = 1) + (1 + α)Pr(C = 2, F = 2)

= r + α(1 − r) + (1 + α)r(1− r) = 2r + α− r2 − αr2.

Similarly we can bound the remaining 14 sums as follows. Some of proofs are slightly
more complicated but all of them are along similar lines. We only list the bounds here, and
the details are omitted here due to the space limitation.

(1) Ca + Cd
β ≤ 1 + r

β .

(2) Ca + Cf ≤ 1 + (1− r)α.

(3) Ca + Ch ≤ 1 + β
2 .

(4) Cc + Cb
α ≤ 1 + 1

α . (Here we use the assumption that α ≤ 1 + 1
α .)

(5) Cc + Cd
β ≤ r2

β + 1 + r2 + α− r + αr.

(6) Cc + Ch ≤ 1
2 + 1

2r + α− αr + 1
2βr.

(7) Ce
β + Cb

α ≤ 1 + 1
α .

(8) Ce
β + Cd

β ≤ (1− r) + 1
β r + (1 + 1

β )r(1− r) ≤ Cc + Cf .

(9) Ce
β + Cf ≤ r2

β + 1 + r2 + α− r + αr.

(10) Ce
β + Ch ≤ 1 + r

2β + 1
2β − 1

2r.

(11) Cg + Cb
α ≤ 1 + 1

α . (Here we use the assumption that α ≤ 1 + 1
α .)

(12) Cg + Cd
β ≤ 1 + r

2β + 1
2β − 1

2r.

(13) Cg + Cf ≤ 1
2 + 1

2r + α− αr + 1
2βr.

(14) Cg + Ch ≤ 3
4 + 3

4β.

To sum up, we have 9 different bounds: 1+ 1
α , 2r+α−r2−αr2, 1+ r

β , 1+(1−r)α, 1+ β
2 ,

r2

β +1+r2 +α−r+αr, 1
2 + 1

2r+α−αr+ 1
2βr, 1+ r

2β + 1
2β− 1

2r, 3
4 + 3

4β, and one assumption
that α ≤ 1 + 1

α . We want to choose suitable parameter α, β, r such that the assumption is
satisfied and the maximal bound is as small as possible. This can be easily done numerically
by a mathematical tool such as Matlab. We can choose α = 1.4844, β = 1.1854, r = 0.7932.
Substituting these values, we can verify that all the bounds are less than 1.6737. So we
proved that our mechanism has an approximate ratio of 1.6737.

3.4. An Improved Mechanism for m Machines

As an application of our main result, we turn to the case of m machines. In [NR99],
Nisan and Ronen gave a truthful deterministic mechanism that achieves an m-approximation.
Recently, Mu’alem and Schapira [MS07] generalized Nisan and Ronen’s truthful randomized
mechanism for 2 machines to the case of m machines. They partitioned the m machines into
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two sets of machines with equal size, S1 and S2. Then they construct a new instance with
only two machines, with type values ti

j = mina∈Sit
a
j , i = 1, 2. Applying the mechanism for 2

machines case, They showed a universally truthful randomized mechanism that obtains an
approximation of 0.875m. Using this idea and our improved result for two machines case,
we can improve the ratio from 0.875m to 0.8368m. To be self contained, we give the formal
description of the mechanism here. The proof is similar with [MS07] and omitted here.'

&

$

%

Parameters: real numbers α > β ≥ 1 > r ≥ 1
2 .

Input: the reported type value vectors t = (t1, t2, · · · , tm).
Output: an randomized allocation x = (x1, x2, · · · , xm) and a payment p =
(p1, p2, · · · , pm).
Mechanism:

(1) For each machine i, let xi ← ∅; pi ← 0.
(2) Partition the set of machines into two sets S1, S2 with equal size. If m is not

even, we can add an extra machine with infinite type values on every task.
(3) For each task j, Let ta = mini∈S1t

i
j , a = argmini∈S1t

i
j, ta

′
= mini∈S1−{a}t

i
j. Let

tb = mini∈S2t
i
j, b = argmini∈S1t

i
j, tb

′
= mini∈S1−{a}t

i
j.

(4) Apply our mechanism GBM for two machines case to machine a and b on task
j. Also the payment strategy need a little change. If a gets the task, and it will
gain a payment pa

j in GBM, then we pay it min{pa
j , t

a′
j }. If b gets the task, and

it will gain a payment pb
j in GBM, then we pay it min{pb

j , t
b′
j }. This change is in

order to keep the mechanism truthful.

Theorem 3.8. m-GBM is an universally truthful randomized mechanism for the scheduling
problem that obtains an approximation ratio of 0.8369m when choosing α = 1.4844, β =
1.1854, r = 0.7932.

4. Conclusions and Open Problems

This is the first improvement since Nisan and Ronen proposed the problem and the
1.75-mechanism. We believe it is possible to further improve the upper bound using our
technics. A direct open problem is to close the gap between the lower bound of 1.5 and our
new upper bound of 1.6737.

Another more important direction is to generalize the mechanisms for 2 machine to
mechanisms for m machines in a more clever way. In the general case, the gap between the
best lower bounds (constants) and the best upper bounds (Θ(m)) is huge both in determin-
istic and randomized versions. Any improvement in either direction is highly desirable.
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Appendix

Proof of Claim 3.6

(1) For h-task j, assume t1j < t2j . We can decrease t2j to αt1j , then tgbm will not change since
GBM always allocates task j to agent 1. But this may help OPT , so the approximation
ratio can only be worse.
(2) Increasing t3−i

j to βtij will not affect OPT but will increase tgbm. This is because the
probability to allocate j does not change as long as it is still an l-task, and one type value
is increased.
(3) It is similar with the above. We can keep increasing t3−i

j while j is still m-task. Here
β ≤ t3−i

j /tij ≤ α, so we can make it equal α.
(4) Here β−1 ≥ t3−i

j /tij ≥ α−1, so we can increase t3−i
j until this ratio equals β−1.

(5) This is the same as in [NR99]. We omit the proof here.
(6) Let ha, la, a ∈ {1, 2} denote an h-task or l-task respectively which is allocated to agent
a in OPT . Let ma

b , a, b ∈ {1, 2} denote an m-task allocated to agent b in OPT , on which
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agent a has smaller type value. So there are 8 types of tasks. We will prove that any two
task j1, j2 of the same type can be combined into a single task j of the same type. Firstly,
notice that j1, j2 have the same ratio of the two agents’ type values. so task j still has this
ratio, hence the same type. Further more, they are all allocated by GBM with the same
probability distribution.

In one direction, combining will leave topt unchanged. Obviously, combining can only
increase topt because any allocation obtained for the new instance can be get for the old
one. Also topt can be achieved for the new instance since two tasks of the same type are
allocated to the same agent.

In the other direction, combining can only increase tgbm.
For the h-task case, tgbm is also unchanged because GBM always allocate the h-tasks to the
more efficient agent.

For the m-task case, assume j1, j2 are both ma
b , a, b ∈ {1, 2}. Let Y denote an allocation

of all the tasks except task j1, j2. Let tY,j1,j2 (resp.tY,j) denote the expected make-span when
j1, j2 (resp. j) are (is) allocated by GBM and all other tasks are allocated according to
Y . We have to show that tY,j1,j2 ≤ tY,j. Let T 1, T 2 denote finishing time of two agents
respectively when allocation is Y .
If agent i finishes last regardless of how j1, j2 are allocated, then

tY,j1,j2 = T i + ri(tij1 + tij2) = tY,j

Here ri denotes the probability that j1, j2 and j are allocated to agent i. Otherwise, if agent
i finishes last iff both j1, j2 are allocated to it, then T 3−i ≤ T i + tij1 + tij2
tY,j1,j2

= r2
i (T

i + tij1 + tij2) + ri(1− ri)(T 3−i + t3−i
j1

+ T 3−i + t3−i
j2

) + (1− ri)2(T 3−i + t3−i
j1

+ t3−i
j2

)

≤ (r2
i + ri(1− ri))(T i + tij1 + tij2) + ((1 − ri)2 + ri(1− ri))(T 3−i + t3−i

j1
+ t3−i

j2
)

= ri(T i + tij1 + tij2) + (1− ri)(T 3−i + t3−i
j1

+ t3−i
j2

)
= tY,j

Finally assume that tij1 ≥ tij2 , i = 1, 2 and consider the last case where the agent to which
j1 is allocated finishes last. In this case

tY,j1,j2

= r2
i (T

i + tij1 + tij2) + ri(1− ri)(T i + tij1)

+ ri(1− ri)T 3−i + t3−i
j1

) + (1− ri)2(T 3−i + t3−i
j1

+ t3−i
j2

)

≤ (r2
i + ri(1− ri))(T i + tij1 + tij2) + ((1− ri)2 + ri(1− ri))(T 3−i + t3−i

j1
+ t3−i

j2
)

= ri(T i + tij1 + tij2) + (1− ri)(T 3−i + t3−i
j1

+ t3−i
j2

)
= tY,j

The l-task case is similar with m-task case, with ri = 1
2 .

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.
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Abstract. Lagrangian relaxation has been used extensively in the design of approxima-
tion algorithms. This paper studies its strengths and limitations when applied to Partial
Cover.

We show that for Partial Cover in general no algorithm that uses Lagrangian relaxation
and a Lagrangian Multiplier Preserving (LMP) α-approximation as a black box can yield an
approximation factor better than 4

3
α. This matches the upper bound given by Könemann

et al. (ESA 2006, pages 468–479).
Faced with this limitation we study a specific, yet broad class of covering problems:

Partial Totally Balanced Cover. By carefully analyzing the inner workings of the LMP
algorithm we are able to give an almost tight characterization of the integrality gap of
the standard linear relaxation of the problem. As a consequence we obtain improved
approximations for the Partial version of Multicut and Path Hitting on Trees, Rectangle
Stabbing, and Set Cover with ρ-Blocks.

1. Introduction

Lagrangian relaxation has been used extensively in the design of approximation algo-
rithms for a variety of problems such as k-MST [12, 7, 11], k-median [21, 5], MST with
degree constraints [27] and budgeted MST [31].

In this paper we study the strengths and limitations of Lagrangian relaxation applied
to the Partial Cover problem. Let S be collection of subsets of a universal set U with cost
c : S → R+ and profit p : U → R+, and let P be a target coverage parameter. A set C ⊆ S
is a partial cover if the overall profit of elements covered by C is at least P . The objective
is to find a minimum cost partial cover.

The high level idea behind Lagrangian relaxation is as follows. In an IP formulation
for Partial Cover, the constraint enforcing that at least P profit is covered is relaxed : The
constraint is multiplied by a parameter λ and lifted to the objective function. This relaxed
IP corresponds, up to a constant factor, to the prize-collecting version of the underlying
covering problem in which there is no requirement on how much profit to cover but a penalty
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of λ p(i) must be paid if we leave element i ∈ U uncovered. An approximation algorithm
for the prize-collecting version having the Lagrangian Multiplier Preserving (LMP) prop-
erty1 is used to obtain values λ1 and λ2 that are close together for which the algorithm
produces solutions C1 and C2 respectively. These solutions are such that C1 is inexpensive
but unfeasible (covering less than P profit), and C2 is feasible (covering at least P profit)
but potentially very expensive. Finally, these two solutions are combined to obtain a cover
that is both inexpensive and feasible.

Broadly speaking there are two ways to combine C1 and C2. One option is to treat
the approximation algorithm for the prize-collecting version as a black box, only making
use of the LMP property in the analysis. Another option is to focus on a particular LMP
algorithm and exploit additional structure that it may offer. Not surprisingly, the latter
approach has yielded better approximation guarantees. For example, for k-median compare
the 6-approximation of Jain and Vazirani [21] to the 4-approximation of Charikar and Guha
[5]; for k-MST compare the 5-factor to the 3-factor approximation due to Garg [12].

The results in this paper support the common belief regarding the inherent weakness of
the black-box approach. First, we show a lower bound on the approximation factor achiev-
able for Partial Cover in general using Lagrangian relaxation and the black-box approach
that matches the recent upper bound of Könemann et al. [26]. To overcome this obstacle,
we concentrate on Kolen’s algorithm for Prize-Collecting Totally Balanced Cover [25]. By
carefully analyzing the algorithm’s inner workings we identify structural similarities between
C1 and C2, which we later exploit when combining the two solutions. As a result we derive
an almost tight characterization of the integrality gap of the standard linear relaxation for
Partial Totally Balanced Cover. This in turn implies improved approximation algorithms
for a number of related problems.

1.1. Related Work

Much work has been done on covering problems because of both their simple and elegant
formulation, and their pervasiveness in different application areas. In its most general form
the problem, also known as Set Cover, cannot be approximated within (1− ε) ln |U | unless
NP ⊆ DTIME(|U |log log |U |) [9]. Due to this hardness, easier, special cases have been studied.

A general class of covering problems that can be solved efficiently are those whose
element-set incidence matrix is balanced. A 0, 1 matrix is balanced if it does not contain
a square submatrix of odd order with row and column sums equal to 2. These matrices
were introduced by Berge [4] who showed that if A is balanced then the polyhedron {x≥
0 : Ax ≥ 1} is integral. A 0, 1 matrix is totally balanced if it does not contain a square
submatrix with row and column sums equal to 2 and no identical columns. Kolen [25] gave
a simple primal-dual algorithm that solves optimally the covering problem defined by a
totally balanced matrix. A 0,±1 matrix is totally unimodular if every square submatrix
has determinant 0 or ±1. Although totally balanced and totally unimodular matrices are
subclasses of balanced matrices, the two classes are neither disjoint nor one is included in
the other.

Beyond this point, even minor generalizations can make the covering problem hard.
For example, consider the vertex cover problem: Given a graph G = (V,E) we are to
choose a minimum size subset of vertices such that every edge is incident on at least one
of the chosen vertices. If G is bipartite, the element-set incidence matrix for the problem

1The definition of the LMP property is outlined in Section 2.
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is totally unimodular; however, if G is a general graph the problem becomes NP-hard [24].
Numerous approximation algorithms have been developed for vertex cover [19]. The best
known approximation factor for general graphs is 2− o(1) [3, 16, 23]; yet, after 25 years of
study, the best constant factor approximation for vertex cover remains 2 [8, 2, 18]. This
lack of progress has led researchers to seek generalizations of vertex cover that can still be
approximated within twice of optimum. One such generalization is the multicut problem
on trees: Given a tree T and a collection of pairs of vertices, a cover is formed by a set of
edges whose removal separates all pairs. The problem was first studied by Garg et al. [13]
who gave an elegant primal-dual 2-approximation.

A notable shortcoming of the standard set cover formulation is that certain hard-to-
cover elements, also known as outliers [6], can render the optimal solution very expensive.
Motivated by the presence of outliers, the unit-profit partial version calls for a collection
of sets covering not all but a specified number k of elements. Partial Multicut, a.k.a. k-
Multicut, was recently studied independently by Levin and Segev [28] and by Golovin et al.
[15], who gave a 8

3 +ε approximation algorithm. This scheme was generalized by Könemann
et al. [26] who showed how to design a 4

3α+ε approximation for any covering problem using
Lagrangian relaxation and an α-LMP approximation as a black box. (Their algorithm runs
in time polynomial on |U |, |S| 1ε and the running time of the α-LMP approximation.)

1.2. Our Results and Outline of the Paper

Section 3 shows that for Partial Cover in general no algorithm that uses Lagrangian
relaxation and an α-LMP approximation as a black box can yield an approximation factor
better than 4

3α. In Section 4 we give an almost tight characterization of the integrality
gap of the standard LP for Partial Totally Balanced Cover, settling a question posed by
Golovin et al. [15]. Our approach is based on Lagrangian relaxation and Kolen’s algorithm.
We prove that IP ≤ (

1 + 1
3k−1

)
LP + k cmax for any k≥1, where IP and LP are the costs of

the optimal integral and fractional solutions respectively and cmax is the cost of the most
expensive set in the instance. The trade-off between additive and multiplicative error is
not an artifact of our analysis or a shortcoming of our approach. On the contrary, this is
precisely how the integrality gap behaves. More specifically, we show a family of instances
where IP >

(
1 + 1

3k−1

)
LP + k

2 cmax. In other words, there is an unbounded additive gap in
terms of cmax but as it grows the multiplicative gap narrows exponentially fast.

Finally, we show how the above result can be applied, borrowing ideas from [14, 17, 15],
to get a ρ+ ε approximation or a quasi-polynomial time ρ-approximation for covering prob-
lems that can be expressed with a suitable combination of ρ totally-balanced matrices. This
translates into improved approximations for a number of problems: a 2 + ε approximation
for the Partial Multicut on Trees [28, 15], a 4+ ε approximation for Partial Path Hitting on
Trees [30], a 2-approximation for Partial Rectangle Stabbing [14], and a ρ approximation for
Partial Set-Cover with ρ-blocks [17]. In addition, the ε can be removed from the first two
approximation guarantees if we allow quasi-polynomial time. It is worth noting that prior
to this work, the best approximation ratio for all these problems could be achieved with
the framework of Könemann et al. [26]. In each case our results improve the approximation
ratio by a 4

3 multiplicative factor. Due to lack of space these results only appear in the full
version2 of the paper.

2Full version available at http://arxiv.org/abs/0712.3936
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2. Lagrangian relaxation

Let S = {1, . . . ,m} be a collection of subsets of a universal set U = {1, . . . , n}. Each
set has a cost specified by c ∈ Rm

+ , and each element has a profit specified by p ∈ Rn
+.

Given a target coverage P , the objective of the Partial Cover problem is to find a minimum
cost solution C ⊆ S such that p(C) ≥ P , where the notation p(C) denotes the overall profit
of elements covered by C. The problem is captured by the IP below. Matrix A = {aij} ∈
{0, 1}n×m is an element-set incidence matrix, that is, aij = 1 if and only if element i ∈ U
belongs to set j ∈ S; variable xj indicates whether set j is chosen in the solution C; variable
ri indicates whether element i is left uncovered.

Lagrangian relaxation is used to get rid of the constraint bounding the profit of un-
covered elements to be at most p(U) − P . The constraint is multiplied by the parameter
λ, called Lagrange Multiplier, and is lifted to the objective function. The resulting IP
corresponds, up to the constant λ (p(U)− P ) factor in the objective function, to the prize-
collecting version of the covering problem, where the penalty for leaving element i uncovered
is λpi.

min c · x

Ax + Ir ≥ 1

p · r ≤ p(U)− P

ri, xj ∈ {0, 1}
Lagrangian
Relaxation

min c · x + λp · r − λ (p(U) − P )

Ax + Ir ≥ 1

ri, xj ∈ {0, 1}

Let OPT be the cost of an optimal partial cover and OPT-PC(λ) be the cost of an
optimal prize-collecting cover for a given λ. Let A be an α-approximation for the prize-
collecting variant of the problem. Algorithm A is said to have the Lagrangian Multiplier
Preserving (LMP) property if it produces a solution C such that

c(C) + αλ
(
p(U)− p(C)) ≤ α OPT-PC(λ). (2.1)

Note that OPT-PC(λ) ≤ OPT + λ (p(U)− P ). Thus,

c(C) ≤ α
(
OPT + λ

(
p(C)− P

))
. (2.2)

Therefore, if we could find a value of λ such that C covers exactly P profit then C is
α-approximate. However, if p(C) < P , the solution is not feasible, and if p(C) > P , equation
(2.2) does not offer any guarantee on the cost of C. Unfortunately, there are cases where
no value of λ produces a solution covering exactly P profit. Thus, the idea is to use binary
search to find two values λ1 and λ2 that are close together and are such that A(λ1) covers
less, and A(λ2) covers more than P profit. The two solutions are then combined in some
fashion to produce a feasible cover.

3. Limitations of the black-box approach

A common way to combine the two solutions returned by the α-LMP is to treat the
algorithm as a black box, solely relaying on the LMP property (2.1) in the analysis. More
formally, an algorithm for Partial Cover that uses Lagrangian relaxation and an α-LMP
approximation A as a black box is as follows. First, we are allowed to run A with as many
different values of λ as desired; then, the solutions thus found are combined to produce a
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feasible partial cover. No computational restriction is placed on the second step, except
that only sets returned by A may be used.

Theorem 3.1. In general, the Partial Cover problem cannot be approximated better than
4
3α using Lagrangian relaxation and an α-LMP algorithm A as a black box.

Let A1, . . . Aq and B1, . . . Bq be sets as depicted on the
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right. For each i and j the intersection Ai∩Bj consists of a
cluster of q elements. There are q2 clusters. Set Ai is made
up of q clusters; set Bi is made up of q clusters and two
additional elements (the leftmost and rightmost elements
in the picture.) Thus |Ai| = q2 and |Bi| = q2 + 2. In
addition, there are sets O1, . . . , Oq, which are not shown in
the picture. Set Oi contains one element from each cluster
and the leftmost element of Bi. Thus |Oi| = q2 + 1. The
cost of Oi is 1

q , the cost of Ai is 2 α
3 q , and the cost of Bi is

4 α
3 q . Every element has unit profit and the target coverage
is P = q3 + q. It is not hard to see that O1, . . . , Oq is an optimal partial cover with a cost
of 1.

The α-LMP approximation algorithm we use has the unfortunate property that it never
returns sets from the optimal solution.

Lemma 3.2. There exists an α-LMP approximation A that for the above instance and any
value of λ outputs either ∅ or A1, . . . , Aq or B1, . . . , Bq.

The proof that such an algorithm exists is given in the full version of the paper. Hence,
if we use A as a black box we must build a partial cover with the sets A1, . . . , Aq and
B1, . . . , Bq. Note that in order to cover q2 + q elements either all A-sets, or all B-sets
must be used. In the first case q

2 additional B-sets are needed to attain feasibility, and
the solution has cost 4

3α; in the second case the solution is feasible but again has cost 4
3α.

Theorem 3.1 follows.
One assumption usually made in the literature [1, 10, 26] is that cmax = maxj cj ≤

εOPT, for some constant ε > 0, or more generally an additive error in terms of cmax is
allowed. This does not help in our construction as cmax can be made arbitrarily small by
increasing q.

Admittedly, our lower bound example belongs to a specific class of covering problem
(every element belongs to at most three sets) and although the example can be embedded
into a partial totally unimodular covering problem (see full version), it is not clear how to
embed the example into other classes. Nevertheless, the 4

3α upper bound of Koneman et
el. [26] makes no assumption about the underlying problem, only using the LMP property
(2.1) in the analysis. It was entirely conceivable that the 4

3α factor could be improved using
a different merging strategy—Theorem 3.1 precludes this possibility.

4. Partial Totally Balanced Cover

In order to overcome the lower bound of Theorem 3.1, one must concentrate on a specific
class of covering problems or make additional assumptions about the α-LMP algorithm. In
this section we focus on covering problems whose IP matrix A is totally balanced. More
specifically, we study the integrality gap of the standard linear relaxation for Partial Totally
Balanced Cover (P-TBC) shown below.
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Theorem 4.1. Let IP and LP be the cost of the optimal integral and fractional solutions
of an instance of P-TBC. Then IP ≤ (

1 + 1
3k−1

)
LP + k cmax for any k ∈ Z+. Furthermore,

for any large enough k ∈ Z+ the exists an instance where IP >
(
1 + 1

3k−1

)
LP + k

2 cmax.

min c · x

Ax + Ir ≥ 1

p · r ≤ p(U)− P

ri, xe ≥ 0
LP Duality

max 1 · y − (p(U)− P )λ

AT y ≤ c

y ≤ λp

yi, λ ≥ 0

The rest of this section is devoted to proving the upper bound in Theorem 4.1, the
lower bound is left for the full version of the paper. Our approach is based on Lagrangian
relaxation and Kolen’s algorithm for Prize-Collecting Totally Balanced Cover (PC-TBC).
The latter exploits the fact that a totally balanced matrix can be put into greedy standard
form by permuting the order of its rows and columns; in fact, the converse is also true [20].
A matrix is in standard greedy form if it does not contain as an induced submatrix[

1 1
1 0

]
(4.1)

There are polynomial time algorithms that can transform a totally balanced matrix into
greedy standard form [32] by shuffling the rows and columns of A. Since this transformation
does not affect the underlying covering problem, we assume that A is given in standard
greedy form.

4.1. Kolen’s algorithm for Prize-Collecting Totally Balanced Cover

For the sake of completeness we describe Kolen’s primal-dual algorithm for PC-TBC.
The algorithm finds a dual solution y and a primal solution C, which is then pruned in
a reverse-delete step to obtain the final solution Ĉ. The linear and dual relaxations for
PC-TBC appear below.

min c · x + λp · r

Ax + Ir ≥ 1

ri, xe ≥ 0
LP Duality

max 1 · y

AT y ≤ c

y ≤ λp

yi ≥ 0

The residual cost of the set j w.r.t. y is defined as c′j = cj −
∑

i:aij=1 yi. The algorithm
starts from the trivial dual solution y = 0, and processes the elements in increasing column
order of AT . Let i the index of the current element. Its corresponding dual variable, yi,
is increased until either the residual cost of some set j containing i equals 0 (we say set j
becomes tight), or yi equals λpi (Lines 3-5).

Let C = {j | c′j = 0} be the set of tight sets after the dual update is completed. As
it stands the cover C may be too expensive to be accounted for using the lower bound
provided by 1 ·y because a single element may belong to multiple sets in C. The key insight
is that some of the sets in C are redundant and can be pruned.
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Kolen((A, c, p, λ))
1 // Dual update

2 y ← 0, C ← ∅, Ĉ ← ∅
3 for i← 1 to n
4 do δ ← min{c′j | aij = 1}
5 yi ← min{λpi, δ}
6 C ← {j | c′j = 0}

()
7 // Reverse delete
8 while C 6= ∅
9 do j ← largest set index in C

10 Ĉ ← Ĉ + j
11 C ← C \ { j′ | j dominates j′ or j = j′ }
12 return (Ĉ, y)

Definition 4.2. Given sets j1, j2 we say that j1 dominates j2 in y if j1 > j2 and there
exists an item i such that yi > 0 and i belongs to j1 and j2, that is, aij1 = aij2 = 1.

The reverse-delete step iteratively identifies the largest index j in C, adds j to Ĉ, and
removes j and all the sets it dominates. This is repeated until no set is left in C (Lines
8–11).

Notice that all sets j ∈ C are tight, thus we can pay for set j by charging the dual
variables of items that belong to j. Because of the reverse-delete step if yi > 0 then i

belongs to at most one set in Ĉ; thus in paying for Ĉ we charge covered items at most once.
Using the fact A is in standard greedy form, it can be shown [25] that if i was left uncovered
then we can afford its penalty, i.e., yi = λpi. The solution Ĉ is optimal for PC-TBC since∑

j∈ bC
cj +

∑
i∈U s.t.

@ j∈ bC : aij=1

λpi =
∑

i∈U s.t.
∃ j∈ bC : aij=1

yi +
∑

i∈U s.t.
@ j∈ bC :aij=1

yi =
∑
i∈U

yi. (4.2)

If we could find a value of λ such that Kolen(A, c, p, λ) returns a solution (Ĉ, y)
covering exactly P profit, we are done since from (4.2) it follows that∑

j∈ bC
cj =

∑
i∈U

yi − λ (p(U)− P ). (4.3)

Notice that (y, λ) is a feasible for the dual relaxation of P-TBC and its cost is precisely the
right hand side of (4.3). Therefore for this instance IP=DL=LP and Theorem 4.1 follows.

Unfortunately, there are cases where no such value of λ exists. Nonetheless, we can
always find a threshold value λ such that for any infinitesimally small δ > 0, λ− = λ − δ
and λ+ = λ + δ produce solutions covering less and more than P profit respectively. A
threshold value can be found using Megiddo’s parametric search [29] by making O(n log m)
calls to the procedure Kolen.

Let y (y−) be the dual solution and C (C−) the set of tight sets when Kolen is run on
λ (λ−). Without loss of generality assume Ĉ covers more than P profit. (The case where Ĉ
covers less than P profit is symmetrical: we work with y+ and C+ instead of y− and C−.)

Our plan to prove Theorem 4.1 is to devise an algorithm to merge Ĉ and Ĉ− in order
to obtain a cheap solution covering at least P profit.

4.2. Merging two solutions

Before describing the algorithm we need to establish some important properties regard-
ing these two solutions and their corresponding dual solutions.
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For any i, the value of y−i is a linear function of δ for all i. This follows from the fact
that δ is infinitesimally small. Furthermore, the constant term in this linear function is yi.

Lemma 4.3. For each i ∈ U there exists a ∈ Z, independent of δ, such that y−i = yi + aδ.

Proof. By induction on the number of iteration of the dual update step of kolen, using the
fact that the same property holds for the residual cost of the sets.

A useful corollary of Lemma 4.3 is that C− ⊆ C, since if the residual cost of a set is
non-zero in y it must necessarily be non-zero in y−. The other way around may not hold.

At the heart of our approach is the notion of a merger graph G = (V,E). The vertex
set of G is made up of sets from the two solutions, i.e., V = Ĉ ⊕ Ĉ−. The edges of G are
directed and given by

E =
{

(j1, j2)
j1 ∈ Ĉ− \ Ĉ, j2 ∈ Ĉ \ Ĉ− s.t. j1 dominates j2 in y−, or
j1 ∈ Ĉ \ Ĉ−, j2 ∈ Ĉ− \ Ĉ s.t. j1 dominates j2 in y

}
(4.4)

This graph has a lot of structure that can be exploited when merging the solutions.

Lemma 4.4. The merger graph G = (V,E) of Ĉ− and Ĉ is a forest of out-branchings.

Proof. First note that G is acyclic, since if (j1, j2) ∈ E then necessarily j1 > j2. Thus, it is
enough to show that the in-degree of every j ∈ V is at most one. Suppose otherwise, that
is, there exist j1, j2 ∈ V such that (j1, j), (j2, j) ∈ E. Assume that j1 < j2 and j ∈ Ĉ (the
remaining cases are symmetrical).

By definition (4.4), we know that j1 (j2) ∈ Ĉ− and that
i1 i2 i2 i1

j 1 1 1 1
j1 1 1 1
j2 1 1 1

there exists i1 (i2) that belongs to j and j1 (j2) such that
y−i1 > 0 (y−i2 > 0). Since AT is in standard greedy form we
can infer that i2 belongs to j1 if i1 < i2, or i1 belongs to j2 if
i1 > i2: The diagram on the right shows how, using the fact
that AT does not contain (4.1) as an induced submatrix, we
can infer that the boxed entries must be 1. In either case we get that j2 dominates j1 in
y−, which contradicts the fact that both belong to Ĉ−.

merge((Ĉ−, Ĉ))

1 let G be the merger graph for Ĉ− and Ĉ

2 D ← Ĉ−

3 for each root r in G
4 do if p(D ⊕ Tr) ≤ P
5 then then D ← D ⊕ Tr

6 else return increase(r, D)

The procedure merge starts from the unfeasible solution D = Ĉ− and guided by the
merger graph G, it modifies D step by step until feasibility is attained. The operation used
to update D is to take the symmetric difference of D and a subtree of G rooted at a vertex
r ∈ V , which we denote by Tr. For each root r of an out-branchings of G we set D ← D⊕Tr,
until p(D ⊕ Tr) > P . At this point we return the solution produced by increase(r,D).

Notice that after setting D ← D ⊕ Tr in Line 5, the solution D “looks like” Ĉ within
Tr. Indeed, if all roots are processed then D = Ĉ. Therefore, at some point we are bound
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to have p(D ⊕ Tr) > P and to make the call increase(r,D) in Line 6. Before describing
increase we need to define a few terms. Let the absolute benefit of set j, which we denote
by bj , be the profit of elements uniquely covered by set j, that is,

bj = p
({

i ∈ U | ∀ j′ ∈ Ĉ ∪ Ĉ− : aij′ = 1 iff j′ = j
})

. (4.5)

Let D ⊆ Ĉ ∪ Ĉ−. Note that if j ∈ D, the removal of j decreases the profit covered by D by
at least bj ; on the other hand, if j /∈ D, its addition increases the profit covered by at least
bj . This notion of benefit can be extended to subtrees,

∆(Tj, D) =
∑

j′∈Tj\D
bj′ −

∑
j′∈Tj∩D

bj′ . (4.6)

We call this quantity the relative benefit of Tj with respect to D. It shows how the profit of
uniquely covered elements changes when we take D ⊕ Tj. Note that ∆(Tj , D) can positive
or negative.

Everything is in place to explain increase(j,D). The algorithm assumes the input
solution is unfeasible but can be made feasible by adding some sets in Tj ; more precisely,
we assume p(D) ≤ P and P < p(D) + ∆(Tj , D). If adding j to D makes the solution
feasible then return D + j (Lines 2-3). If there exists a child c of j that can be used to
propagate the call down the tree then do that (Lines 4-5). Otherwise, split the subtree Tj :
Add j to D and process the children of c, setting D ← D ⊕ Tc until D becomes feasible
(Lines 6-9). At this point p(D) > P and p(D⊕Tc) ≤ P . If P − p(D⊕Tc) < p(D)−P then
call increase(c,D ⊕ Tc) else call decrease(c,D) and let D′ be the cover returned by the
recursive call (Lines 10-12). Finally, return the cover with minimum cost between D and
D′.

increase((j, D))
1 // assume p(D) ≤ P < p(D) + ∆(Tj , D)
2 if p(D + j) ≥ P
3 then return D + j
4 if ∃ child c of j : p(D) + ∆(Tc, D) > P
5 then return increase(c, D)
6 D ← D + j
7 while p(D) ≤ P
8 do c← child of j maximizing ∆(Tc, D)
9 D ← D ⊕ Tc

10 if P − p(D ⊕ Tc) < p(D)− P
11 then D′ ← increase(c, D ⊕ Tc)
12 else D′ ← decrease(c, D)
13 return min cost {D, D′}

decrease((j, D))
1 // assume p(D) ≥ P > p(D) + ∆(Tj , D)
2 if p((D ⊕ Tj) + j) ≥ P
3 then return (D ⊕ Tj) + j
4 if ∃ child c of j : p(D) + ∆(Tc, D) < P
5 then return decrease(c, D)
6 D ← D + j
7 while p(D) ≥ P
8 do c← child of j minimizing ∆(Tc, D)
9 D ← D ⊕ Tc

10 if p(D ⊕ Tc)− P < P − p(D)
11 then D′ ← increase(c, D)
12 else D′ ← decrease(c, D ⊕ Tc)
13 return min cost {D ⊕ Tc, D

′}

The twin procedure decrease(j,D) is essentially symmetrical: Initially the input is
feasible but can be made unfeasible by removing some sets in Tj ; more precisely p(D) ≥ P
and P < p(D) + ∆(Tc, D).

At a very high level, the intuition behind the increase/decrease scheme is as follows.
In each call one of three things must occur:
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(i) A feasible cover with a small coverage excess is found (Lines 2-3), or
(ii) The call is propagated down the tree at no cost (Lines 4-5), or
(iii) A subtree Tj is split (Lines 6-9). In this case, the cost cj cannot be accounted

for, but the offset in coverage |P − p(D)| is reduced at least by a factor of 3.
If the increase/decrease algorithms split many subtrees (incurring a high extra cost)
then the offset in coverage must have been very high at the beginning, which means the
cost of the dual solution is high and so the splitting cost can be charged to it. In order to
flesh out these ideas into a formal proof we need to establish some crucial properties of the
merger graph and the algorithms. Proofs are omitted due to lack of space.

Lemma 4.5. If yi < λpi then there exist j ′ ∈ Ĉ and j′′ ∈ Ĉ− such that either j ′ = j′′ or
(j′, j′′) ∈ E or (j′′, j′) ∈ E.

Lemma 4.6. Let (j,D) be the input of increase/decrease. Then at the beginning of
each call we have j ′ ∈ D or j′′ ∈ D for all (j ′, j′′) ∈ E. Furthermore, if j ′ ∈ D and j′′ ∈ D
then j′ or j′′ must have been split in a previous call.

Lemma 4.7. Let (j,D) be the input of increase/decrease. For increase we always
have p(D) ≤ P < p(D) + ∆(Tj , D), and for decrease we have p(D) ≥ P > p(D) +
∆(Tj , D).

Recall that y is also a feasible solution for the dual relaxation of P-TBC and its cost
is given by DL =

∑n
i=1 yi − (p(U)− P )λ. The following lemma proves the upper bound of

Theorem 4.1.

Lemma 4.8. Suppose merge outputs D. Then c(D) ≤ (
1 + 1

3k−1

)
DL + k cmax for all

k ∈ Z+.

Proof. Let us digress for a moment for the sake of exposition. Suppose that in Line 6 of
merge, instead of calling increase, we return D ′=D⊕Tr. Notice every arc in the merger
graph has exactly one endpoint in D′. By Lemma 4.5, any element i not covered by D ′ must
have yi = λ pi. Furthermore, if yi > 0 then there exists at most one set in D ′ that covers
i; if two such sets exist, one must dominate the other in y and y−, which is not possible.
Hence,

c(D) =
∑
j∈D′

∑
i:aij=1

yi =
∑
i s.t.

∃ j∈D′ :aij=1

yi =
∑
i∈U

yi − (p(U)− p(D′))λ ≤ DL + (p(D′)− P )λ (4.7)

In the fortunate case that (p(D′)− P )λ ≤ kcmax, the lemma would follow. Of course, this
need not happen and this is why we make the call to increase instead of returning D ′.

Let jq be the root of the qth subtree split by increase/decrease. Also let Dq the
solution right before splitting Tjq , and D′

q and D′′
q be the unfeasible/feasible pair of solutions

after the splitting, which are used as parameters in the recursive calls (Lines 11-12). Suppose
Lines 7-9 processed only one child of jq, this can only happen in increase, in which case
p(D′′

q ) > P but p(D′′
q )− bjq < P . The same argument used to derive (4.7) gives us

c
(
D′′

q \ {j≤q}
) ≤∑

i∈U

yi −
(
p(U)− p(D′′

q ) + bjq

)
λ ≤ DL (4.8)

The cost of the missing sets is c({j≤q}) ≤ q cmax, thus if q ≤ k the lemma follows. A similar
bound can be derived if the recursive call ends in Line 3 before splitting the k th subtree.
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Finally, the last case to consider is when Lines 7-9 process two or more children jq for all
q ≤ k. In this case

|p(Dq)− P | ≥ 3min
{|p(D′

q)− P |, |p(D′′
q )− P |} = 3 |p(Dq+1)− P |, (4.9)

which implies |p(D1)−P | ≥ 3k−1|p(Dk)−P | ≥ 3k−1|p(D′′
k)−P |. Also, λ(P − p(D1)) ≤ DL

since all elements i not covered by D1 must be such that yi = λpi. Hence, as before

c
(
D′′

k \ {j≤k}
) ≤ DL +

(
p(D′′

k)− P
)
λ ≤ DL +

P − p(D1)
3k−1

≤
(

1 +
1

3k−1

)
DL (4.10)

Adding the cost of {j≤k} we get the lemma.

5. Concluding remarks and open problems

The results in this paper suggest that Lagrangian relaxation is a powerful technique for
designing approximation algorithms for partial covering problems, even though the black-
box approach may not be able to fully realize its potential.

It would be interesting to extend this study on the strengths and limitation of La-
grangian relaxation to other problems. The obvious candidate is the k-Median problem.
Jain and Vazirani [21] designed a 2α-approximation for k-Median using as a black box an
α-LMP approximation for Facility Location. Later, Jain et al. [22] gave a 2-LMP approxi-
mation for Facility Location. Is the algorithm in [21] optimal in the sense of Theorem 3.1?
Can the algorithm in [22] be turned into a 2-approximation for k-Median by exploiting
structural similarities when combining the two solutions?

Acknowledgments: I am indebted to Danny Segev for sharing an early draft of [26] and
for pointing out Kolen’s work. Also thanks to Mohit Singh and Arie Tamir for helpful
discussions and to Elena Zotenko for suggesting deriving the result of Section 3.
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Abstract. We provide the first non-trivial result on dynamic breadth-first search (BFS)
in external-memory: For general sparse undirected graphs of initially n nodes and O(n)
edges and monotone update sequences of either Θ(n) edge insertions or Θ(n) edge deletions,

we prove an amortized high-probability bound of O(n/B2/3 + sort(n) · log B) I/Os per
update. In contrast, the currently best approach for static BFS on sparse undirected
graphs requires Ω(n/B1/2 + sort(n)) I/Os.

1. Introduction

Breadth first search (BFS) is a fundamental graph traversal strategy. It can also be
viewed as computing single source shortest paths on unweighted graphs. It decomposes the
input graph G = (V,E) of n nodes and m edges into at most n levels where level i comprises
all nodes that can be reached from a designated source s via a path of i edges, but cannot
be reached using less than i edges.

The objective of a dynamic graph algorithm is to efficiently process an online sequence
of update and query operations; see [8, 14] for overviews of classic and recent results. In
our case we consider BFS under a sequence of either Θ(n) edge insertions, but not deletions
(incremental version) or Θ(n) edge deletions, but not insertions (decremental version). After
each edge insertion/deletion the updated BFS level decomposition has to be output.

1.1. Computation models.

We consider the commonly accepted external-memory (EM) model of Aggarwal and
Vitter [1]. It assumes a two level memory hierarchy with faster internal memory having
a capacity to store M vertices/edges. In an I/O operation, one block of data, which can
store B vertices/edges, is transferred between disk and internal memory. The measure of
performance of an algorithm is the number of I/Os it performs. The number of I/Os needed
to read N contiguous items from disk is scan(N) = Θ(N/B). The number of I/Os required
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to sort N items is sort(N) = Θ((N/B) logM/B(N/B)). For all realistic values of N , B, and
M , scan(N) < sort(N) � N .

There has been a significant number of publications on external-memory graph algo-
rithms; see [12, 16] for recent overviews. However, we are not aware of any dynamic graph
algorithm in the fully external-memory case (where |V | > M).

1.2. Results.

We provide the first non-trivial result on dynamic BFS in external-memory. For general
sparse undirected graphs of initially n nodes and O(n) edges and either Θ(n) edge insertions
or Θ(n) edge deletions, we prove an amortized high-probability bound of O(n/B 2/3+sort(n)·
log B) I/Os per update. In contrast, the currently best bound for static BFS on sparse
undirected graphs is O(n/B1/2 + sort(n)) I/Os [11].

Also note that for general sparse graphs and worst-case monotone sequences of Θ(n)
updates in internal-memory there is asymptotically no better solution than performing Θ(n)
runs of the linear-time static BFS algorithm, even if after each update we are just required to
report the changes in the BFS tree (see Fig. 1 for an example). In case Ω(n/B 1/2 +sort(n))
I/Os should prove to be a lower bound for static BFS in external-memory, then our result
yields an interesting differentiator between static vs. dynamic BFS in internal and external
memory.
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Figure 1: Example for a graph class where each update requires Ω(n) changes in the BFS
tree: inserting new (dashed) edges alternatingly shortcut the distances from s to
X and s to Y. As a result, in the updated BFS tree the parents of all vertices in
Z keep on changing between X and Y.

1.3. Organization of the paper.

In Section 2 we will review known BFS algorithms for static undirected graphs. Then
we consider traditional and new external-memory methods for graph clustering (Section 3).
Subsequently, in Section 4 we provide the new algorithm and analyze it in Section 5. Final
remarks concerning extensions and open problems are given in Sections 6 and 7, respectively.

2. Review of Static BFS Algorithms

Internal-Memory. BFS is well-understood in the RAM model. There exists a simple
linear time algorithm [6] (hereafter referred as IM BFS) for the BFS traversal in a graph.
IM BFS keeps a set of appropriate candidate nodes for the next vertex to be visited in a
FIFO queue Q. Furthermore, in order to find out the unvisited neighbors of a node from
its adjacency list, it marks the nodes as either visited or unvisited.
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Unfortunately, as the storage requirements of the graph starts approaching the size
of the internal memory, the running time of this algorithm deviates significantly from the
predicted O(n + m) asymptotic performance of the RAM model: checking whether edges
lead to already visited nodes altogether needs Θ(m) I/Os in the worst case; unstructured
indexed access to adjacency lists may add another Θ(n + m/B) I/Os.

EM-BFS for dense undirected graphs. The algorithm by Munagala and Ranade [13]
(referred as MR BFS) ignores the second problem but addresses the first by exploiting the
fact that the neighbors of a node in BFS level t − 1 are all in BFS levels t− 2, t − 1 or t.
Let L(t) denote the set of nodes in BFS level t, and let A(t) be the multi-set of neighbors of
nodes in L(t−1). Given L(t−1) and L(t−2), MR BFS builds L(t) as follows: Firstly, A(t)
is created by |L(t − 1)| random accesses to get hold of the adjacency lists of all nodes in
L(t−1). Thereafter, duplicates are removed from A(t) to get a sorted set A′(t). This is done
by sorting A(t) according to node indices, followed by a scan and compaction phase. The
set L(t) := A′(t) \{L(t−1)∪L(t−2)} is computed by scanning “in parallel” the sorted sets
of A′(t), L(t−1), and L(t−2) to filter out the nodes already present in L(t−1) or L(t−2).
The resulting worst-case I/O-bound is O (

∑
t L(t) +

∑
t sort(A(t))) = O (n + sort(n + m)).

The algorithm outputs a BFS-level decomposition of the vertices, which can be easily trans-
formed into a BFS tree using O(sort(n + m)) I/Os [4].

EM-BFS for sparse undirected graphs. Mehlhorn and Meyer suggested another ap-
proach [11] (MM BFS) which involves a preprocessing phase to restructure the adjacency
lists of the graph representation. It groups the vertices of the input graph into disjoint
clusters of small diameter in G and stores the adjacency lists of the nodes in a cluster
contiguously on the disk. Thereafter, an appropriately modified version of MR BFS is run.
MM BFS exploits the fact that whenever the first node of a cluster is visited then the
remaining nodes of this cluster will be reached soon after. By spending only one random
access (and possibly, some sequential accesses depending on cluster size) to load the whole
cluster and then keeping the cluster data in some efficiently accessible data structure (pool)
until it is all processed, on sparse graphs the total amount of I/Os can be reduced by a factor
of up to

√
B: the neighboring nodes of a BFS level can be computed simply by scanning

the pool and not the whole graph. Though some edges may be scanned more often in the
pool, unstructured I/Os to fetch adjacency lists is considerably reduced, thereby reducing
the total number of I/Os.

3. Preprocessing

3.1. Traditional preprocessing within MM BFS.

Mehlhorn and Meyer [11] proposed the algorithms MM BFS R and MM BFS D, out
of which the first is randomized and the second is deterministic. In MM BFS R, the par-
titioning is generated “in parallel rounds”: after choosing master nodes independently and
uniformly at random, in each round, each master node tries to capture all unvisited neigh-
bors of its current sub-graph into its partition, with ties being resolved arbitrarily.



554 U. MEYER

A similar kind of randomized preprocessing is also applied in parallel [15] and stream-
ing [7] settings. There, however, a dense compressed graph among the master nodes is
produced, causing rather high parallel work or large total streaming volume, respectively.

The MM BFS D variant first builds a spanning tree Ts for the connected component
of G that contains the source node. Arge et al. [2] show an upper bound of O((1 +
log log (B · n/m)) · sort(n + m)) I/Os for computing such a spanning tree. Each undi-
rected edge of Ts is then replaced by two oppositely directed edges. Note that a bi-directed
tree always has at least one Euler tour. In order to construct the Euler tour around this
bi-directed tree, each node chooses a cyclic order [3] of its neighbors. The successor of
an incoming edge is defined to be the outgoing edge to the next node in the cyclic order.
The tour is then broken at the source node and the elements of the resulting list are then
stored in consecutive order using an external memory list-ranking algorithm; Chiang et
al. [5] showed how to do this in sorting complexity. Thereafter, we chop the Euler tour into

chunks of max{1,
√

n·B
n+m} nodes and remove duplicates such that each node only remains

in the first chunk it originally occurs; again this requires a couple of sorting steps. The
adjacency lists are then re-ordered based on the position of their corresponding nodes in
the chopped duplicate-free Euler tour: all adjacency lists for nodes in the same chunks form
a cluster and the distance in G between any two vertices whose adjacency-lists belong to
the same cluster is bounded by max{1,

√
n·B
n+m}.

3.2. Modified preprocessing for dynamic BFS.

The preprocessing methods for the static BFS in [11] may produce very unbalanced
clusters: for example, with MM BFS D using chunk size 1 < µ < O(

√
B) there may be

Ω(n/µ) clusters being in charge of only O(1) adjacency-lists each. For the dynamic version,
however, we would like to argue that each random access to a cluster not visited so far
provides us with Ω(µ) new adjacency-lists. Unfortunately, finding such a clustering I/O-
efficiently seems to be quite hard. Therefore, we shall already be satisfied with an Euler
tour based randomized construction ensuring that the expected number of adjacency-lists
kept in all but one1 clusters is Ω(µ).

The preprocessing from MM BFS D is modified as follows: each vertex v in the spanning
tree Ts is assigned an independent binary random number r(v) with P[r(v) = 0] = P[r(v) =
1] = 1/2. When removing duplicates from the Euler tour, instead of storing v’s adjacency-
list in the cluster related to the chunk with the first occurrence of a vertex v, now we only
stick to its first occurrence iff r(v) = 0 and otherwise (r(v) = 1) store v’s adjacency-list in
the cluster that corresponds to the last chunk of the Euler tour v appears in. For leaf nodes
v, there is only one occurrence on the tour, hence the value of r(v) is irrelevant. Obviously,
each adjacency-lists is stored only once. Furthermore, the modified procedure maintains all
good properties of the standard preprocessing within MM BFS D like guaranteed bounded
distances of O(µ) in G between the vertices belonging to the same cluster and O(n/µ)
clusters overall.

Lemma 3.1. For chunk size µ > 1 and each but the last chunk, the expected number of
adjacency-lists kept is at least µ/8.

1The last chunk of the Euler tour only visits ((2 ·n′−1) mod µ)+1 vertices where n′ denotes the number
of vertices in the connected component of the starting node s.
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Proof. Let R = (v1, . . . , vµ) be the sequence of vertices visited by an arbitrary chunk R
of the Euler tour T , excluding the last chunk. Let a be the number of entries in R that
represent first or last visits of inner-tree vertices from the spanning tree Ts on T . These
a entries account for an expected number of a/2 adjacency-lists actually stored and kept
in R. Note that if for some vertex v ∈ T both its first and last visit happen within R, then
v’s adjacency-list is kept with probability one. Similarly, if there are any visits of leaf nodes
from Ts within R, then their adjacency-lists are kept for sure; let b denote the number of
these leaf node entries in R. What remains are µ−a− b intermediate (neither first nor last)
visits of vertices within R; they do not contribute any additional adjacency-lists.

We can bound µ − a − b using the observation that any intermediate visit of a tree
node v on T is preceded by a last visit of a child v ′ of v and proceeded by a first visit of
another child v′′ of v. Thus, µ−a− b ≤ dµ/2e, that is a+ b ≥ bµ/2c, which implies that the
expected number of distinct adjacency-lists being kept for R is at least bµ/2c/2 ≥ µ/8.

4. The Dynamic Incremental Algorithm

In this section we concentrate on the incremental version for sparse graphs with Θ(n)
updates where each update inserts an edge. Thus, BFS levels can only decrease over time.
Before we start, let us fix some notation: for i ≥ 1, Gi = (V,Ei) is to denote the graph
after the i-th update, G0 is the initial graph. Let di(v), i ≥ 0, stand for the BFS level of
node v if it can be reached from the source node s in Gi and n otherwise. Furthermore, for
i ≥ 1, let ∆di(v) = |di−1(v) − di(v)|. The main ideas of our approach are as follows:

Checking Connectivity; Type A updates. In order to compute the BFS levels for
Gi, i ≥ 1, we first run an EM connected components algorithm (for example the one in [13]
taking O(sort(n)·log B) I/Os) in order to check, whether the insertion of the i-th edge (u, v)
enlarges the connected component Cs of the source vertex s. If yes (let us call this a Type A
update), then w.l.o.g. let u ∈ Cs and let Cv be the connected component that comprises v.
The new edge (u, v) is then the only connection between the existing BFS-tree for s and
Cv. Therefore, we can simply run MR BFS on the subgraph G′ defined by the vertices in
Cv with source v and add di−1(u) + 1 to all distances obtained. This takes O(nv + sort(n))
I/Os where nv denotes the number of vertices in Cv.

If the i-th update does not merge Cs with some other connected component but adds
an edge within Cs (Type B update) then we need to do something more fancy:

Dealing with small changes; Type B updates. Now for computing the BFS levels
for Gi, i ≥ 1, we pre-feed the adjacency-lists into a sorted pool H according to the BFS
levels of their respective vertices in Gi−1 using a certain advance α > 1, i.e., the adjacency
list for v is added to H when creating BFS level max{0, di−1(v)−α} of Gi. This can be done
I/O-efficiently as follows. First we extract the adjacency-lists for vertices having BFS levels
up to α in Gi−1 and put them to H where they are kept sorted by node indices. From the
remaining adjacency-lists we build a sequence S by sorting them according to BFS levels
in Gi−1 (primary criterion) and node indices (secondary criterion). For the construction
of each new BFS level of Gi we merge a subsequence of S accounting for one BFS level in
Gi−1 with H using simple scanning.

Therefore, if ∆di(v) ≤ α for all v ∈ V then all adjacency-lists will be added to H in
time and can be consumed from there without random I/O. Each adjacency-list is scanned
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at most once in S and at most α times in H. Thus, if α = o(
√

B) this approach causes less
I/O than MM BFS.

Dealing with larger changes. Unfortunately, in general, there may be vertices v with
∆di(v) > α. Their adjacency-lists are not prefetched into H early enough and therefore
have to be imported into H using random I/Os to whole clusters just like it is done in
MM BFS. However, we apply the modified clustering procedure described in Section 3.2 on
Gi−1, the graph without the i-th new edge (whose connectivity is the same as that of Gi)
with chunk size α/4.

Note that this may result in Θ(n/α) cluster accesses, which would be prohibitive for
small α. Therefore we restrict the number of random cluster accesses to α · n/B. If the
dynamic algorithm does not succeed within these bounds then it increases α by a factor of
two, computes a new clustering for Gi−1 with larger chunk size and starts a new attempt
by repeating the whole approach with the increased parameters. Note that we do not need
to recompute the spanning tree for the for the second, third, . . . attempt.

At most O(log B) attempts per update. The j-th attempt, j ≥ 1, of the dynamic
approach to produce the new BFS-level decomposition will apply an advance of αj := 32 ·2j

and recompute the modified clustering for Gi−1 using chunk size µj := 8 · 2j . Note that
there can be at most O(log

√
B) = O(log B) failing attempts for each edge update since by

then our approach allows sufficiently many random accesses to clusters so that all of them
can be loaded explicitly resulting in an I/O-bound comparable to that of static MM BFS.
In Section 5, however, we will argue that for most edge updates within a longer sequence,
the advance value and the chunk size value for the succeeding attempt are bounded by
O(B1/3) implying significantly improved I/O performance.

Restricting waiting time in H. There is one more important detail to take care of:
when adjacency-lists are brought into H via explicit cluster accesses (because of insufficient
advance αj in the prefetching), these adjacency-lists will re-enter H once more later on
during the (for these adjacency-lists by then useless) prefetching. Thus, in order to make
sure that unnecessary adjacency-lists do not stay in H forever, each entry in H carries
a time-stamp ensuring that superfluous adjacency-lists are evicted from H after at most
αj = O(2j) BFS levels.

Lemma 4.1. For sparse graphs with O(n) updates, each Type B update succeeding during
the j-th attempt requires O(2j · n/B + sort(n) · log B) I/Os.

Proof. Deciding whether a Type B update takes place essentially requires a connected com-
ponents computation, which accounts for O(sort(n) · log B) I/Os. Within this I/O bound
we can also compute a spanning tree Ts of the component holding the starting vertex s
but excluding the new edge. Subsequently, there are j = O(log B) attempts, each of which
uses O(sort(n)) I/Os to derive a new modified clustering based on an Euler tour with in-
creasing chunk sizes around Ts. Furthermore, before each attempt we need to initialize H
and S, which takes O(sort(n)) I/Os per attempt. The worst-case number of I/Os to (re-)
scan adjacency-lists in H or to explicitly fetch clusters of adjacency-lists doubles after each
attempt. Therefore it asymptotically suffices to consider the (successful) last attempt j,
which causes O(2j · n/B) I/Os. Furthermore, each attempt requires another O(sort(n))
I/Os to pre-sort explicitly loaded clusters before they can be merged with H using a sin-
gle scan just like in MM BFS. Adding all contributions yields the claimed I/O bound of
O(2j · n/B + sort(n) · log B) for sparse graphs.
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5. Analysis

We split our analysis of the incremental BFS algorithm into two parts. The first (and
easy one) takes care of Type A updates:

Lemma 5.1. For sparse undirected graphs with Θ(n) updates, there are at most n−1 Type
A updates causing O(n · sort(n) · log B) I/Os in total.

Proof. Each Type A update starts with an EM connected components computation causing
O(sort(n) · log B) I/Os per update. Since each node can be added to the connected compo-
nent Cs holding the starting vertex s only once, the total number of I/Os spend in calls to
the MR-BFS algorithm on components to be merged with Cs is O(n + sort(n)). Producing
the output takes another O(sort(n)) per update.

Now we turn to Type B updates:

Lemma 5.2. For sparse undirected graphs with Θ(n) updates, all Type B updates cause
O(n · (n2/3 + sort(n) · log B)) I/Os in total with high probability.

Proof. Recall that di(v), i ≥ 0, stands for the BFS level of node v if it can be reached from
the source node s in Gi and n otherwise. If upon the i-th update the dynamic algorithm
issues an explicit fetch for the adjacency-lists of some vertex v kept in some cluster C
then this is because ∆di(v) = di−1(v) − di(v) > α for the current advance α. Note that
for all other vertices v′ ∈ C, there is a path of length at most µ in Gi−1, implying that
|di−1(v′)− di−1(v)| ≤ µ as well as |di(v)− di(v′)| ≤ µ. Having current chunk size µ = α/4,
this implies

∆di(v′) = di−1(v′)− di(v′)
= di−1(v′)− di−1(v) + di−1(v) − di(v) + di(v)− di(v′)
> α− 2µ
≥ α/2.

If the i-th update needs j attempts to succeed then, during the (failing) attempt j − 1,
it has tried to explicitly access αj−1 · n/B + 1 distinct clusters. Out of these at least
αj−1 · n/B = 2j+4 · n/B clusters carry an expected amount of at least µj−1/8 = 2j−1

adjacency-lists each. This accounts for an expected number of at least 22·j+3 · n/B distinct
vertices, each of them featuring ∆di(·) ≥ αj−1/2 = 2j+3. With probability at least 1/2 we
actually get at least half of the expected amount of distinct vertices/adjacency-lists, i.e.,
22·j+2 · n/B. Therefore, using the definitions Di =

∑
v∈V \{s} di(v) and ∆Di = |Di−1 −Di|,

if the i-th update succeeds within the j-th attempt we have ∆Di ≥ 23·j+5 · n/B =: Yj with
probability at least 1/2. Let us call this event a large j-yield.

Since each attempt uses a new clustering with independent choices for r(·), if we consider
two updates i′ and i′′ that succeed after the same number of attempts j, then both i′ and
i′′ have a large yield with probability at least 1/2, independent of each other. Therefore,
we can use Chernoff bounds [10] in order to show that out of k ≥ 16 · c · lnn updates
that all succeed within their j-th attempt, at least k/4 of them have a large j-yield with
probability at least 1−n−c for an arbitrary positive constant c. Subsequently we will prove
an upper bound on the total number of large j-yields that can occur during the whole
update sequence.
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The quantity ∆Di provides a global measure as for how much the BFS levels change
after inclusion of the i-th edge from the update sequence. If there are m′ = Θ(n) edge
inserts in total, then

n2 > D0 ≥ D1 ≥ . . . ≥ Dm′−1 ≥ Dm′ > 0.

A large j-yield means ∆Di ≥ Yj . Therefore, in the worst case there are at most n2/Yj =
n2/(23·j+5 · n/B) = n · B/23·j+5 large j-yield updates and – according to our discussion
above – it needs at most kj := 4 ·n ·B/23·j+5 updates that succeed within the j-th attempt
to have at least kj/4 large j-yield updates with high probability2.

For the last step of our analysis we will distinguish two kinds of Type B updates:
those that finish using an advance value αj∗ < B1/3 (Type B1), and the others (Type B2).
Independent of the subtype, an update costs O(αj∗ ·n/B +sort(n) · log B) = O(2j∗ ·n/B +
sort(n) · log B) I/Os by Lemma 4.1. Obviously, for an update sequence of m′ = Θ(n) edge
insertions there can be at most Θ(n) updates of Type B1, each of them accounting for at
most O(n/B2/3 +sort(n) · log B) I/Os. As for Type B2 updates we have already shown that
with high probability there are at most O(n · B/23·j∗) updates that succeed with advance
value Θ(2j∗). Therefore, using Boole’s inequality, the total amount of I/Os for all Type B2
updates is bounded by

O

∑
g≥0

n · B
(B1/3 · 2g)3

· B1/3 · 2g · n
B

 + n · sort(n) · log B

 =

O(n · (n/B2/3 + sort(n) · log B)) with high probability.

Combining the two lemmas of this section implies

Theorem 5.3. For general sparse undirected graphs of initially n nodes and O(n) edges and
Θ(n) edge insertions, dynamic BFS can be solved using amortized O(n/B2/3+sort(n)·log B)
I/Os per update with high probability.

6. Decremental Version and Extensions.

Having gone through the ideas of the incremental version, it is now close to trivial to
come up with a symmetric external-memory dynamic BFS algorithm for a sequence of edge
deletions: instead of pre-feeding adjacency-lists into using an advance of αj levels, we now
apply a lag of αj levels. Therefore, the adjacency-list for a vertex v is found in H as long as
the deletion of the i-th edge does not increase di(v) by more than α. Otherwise, an explicit
random access to the cluster containing v’s adjacency-list is issued later on. All previously
used amortization arguments and bounds carry through, the only difference being that di(·)
values may monotonically increase instead of decrease.

Better amortized bounds can be obtained if ω(n) updates take place and/or G0 has
ω(n) edges. Then we have the potential to amortize more random accesses per attempt,
which leads to larger j-yields and reduces the worst-case number of expensive updates.
Consequently, we can reduce the defining threshold between Type B1 and Type B2 updates,

2We also need to verify that kj ≥ 16 · c · ln n. As observed before, the dynamic algorithm will not

increase its advance and chunk size values beyond O(
√

B) implying 2j = O(
√

B). But then we have

kj = 4 · n · B/23·j+5 = Ω(n/
√

B) and n/
√

B ≥ n/
√

M ≥ n/
√

n ≥ 16 · c · ln n for sufficiently large n.
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thus eventually yielding better amortized I/O bounds. Details we be provided in the full
version of this paper.

Modifications along similar lines are in order if external-memory is realized by flash
disks [9]: compared to hard disks, flash memory can sustain many more unstructured
read I/Os per second but on the other hand flash memory usually offers less read/write
bandwidth than hard disks. Hence, in algorithms like ours that are based on a trade-off
between unstructured read I/Os and bulk read/write I/Os, performance can be improved
by allowing more unstructured read I/Os (fetching clusters) if this leads to less overall I/O
volume (scanning hot pool entries).

7. Conclusions

We have given the first non-trivial external-memory algorithm for dynamic BFS. Even
though we obtain significantly better I/O bounds than for the currently best static algo-
rithm, there are a number of open problems: first of all, our bounds dramatically deteriorate
for mixed update sequences (edge insertions and edge deletions in arbitrary order and pro-
portions); besides oscillation effects, a single edge deletion (insertion) may spoil a whole
chain of amortizations for previous insertions (deletions). Also, it would be interesting to
see, whether our bounds can be further improved or also hold for shorter update sequences.
Finally, it would be nice to come up with a deterministic version of the modified clustering.
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Abstract. There exist very lucid explanations of the combinatorial origins of rational and
algebraic functions, in particular with respect to regular and context free languages. In the
search to understand how to extend these natural correspondences, we find that the shuffle
product models many key aspects of D-finite generating functions, a class which contains
algebraic. We consider several different takes on the shuffle product, shuffle closure, and
shuffle grammars, and give explicit generating function consequences. In the process, we
define a grammar class that models D-finite generating functions.

Introduction

Generating functions of languages

The (ordinary) generating function of a language L is the sum

L(z) =
∑
w∈L

z|w|,

where |w| is the length of the word. This sum is a formal power series if there are finitely
many words of a given length. In this case, we say the language is proper, and we can
rewrite L(z) as L(z) =

∑
`(n)zn, where `(n) is the number of words in L of length n.

In the case where we have an unambiguous grammar to describe a regular language or
a context free language, one can automatically generate equations satisfied by generating
function directly from the grammar. These are the well known translations:

L = L1 + L2 =⇒ L(z) = L1(z) + L2(z)
L = L1 · L2 =⇒ L(z) = L1(z)L2(z)
L = L∗1 =⇒ L(z) = (1− L1(z))−1.

Generating functions of formal languages are now a very established tool for algorithm
analysis (see [12] for many references) and increasingly for random generation [9]. In this
context, we are also interested in the exponential generating function of a language. The
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two are related by the Laplace-Borel transform, however it is sufficient for our purposes to
think of the exponential generating function L̂(z) as the Hadamard product of L(z) and
exp(z) =

∑ zn

n! ; that is, L̂(z) =
∑

`(n) zn

n! .
One spectacular feature of generating functions of languages is the extent to which their

analytic complexity models the complexity of the language. Specifically, we have the two
classic results: first, regular languages have rational generating functions, and second, those
context-free languages which are not inherently ambiguous have an algebraic generating
function. The context-free languages form a large and historically important subclass of all
objects which have algebraic generating functions. Bousquet-Mélou provides us [6, 7] with
an interesting discussion of the nature of combinatorial structures that possess algebraic
and rational generating functions, including broad classes that are not representable as
context-free languages.

There remain unanswered questions related to other classes of languages, and other
classes of functions. An example of the former is the question of Flajolet [10]: “In which
class of transcendental functions do generating functions of (general) context free languages
lie?” An example of the latter is the identification of languages whose generating functions
are D-finite1. This is an exceptional class of functions [24], which, for the moment, lacks a
satisfying combinatorial explanation. We survey some current understandings in Section 1.3,
and provide a language theoretic interpretation of one in Section 3.1.

To capture the analytic complexity of D-finite generating functions we should not expect
a simple climbing of the language hierarchy (to indexed or context sensitive, say), as there
are different notions of complexity in competition. For example the language {anbncn : n ∈
N} is difficult to recognize, but trivial to enumerate. Likewise, the generating function of
the relatively simple looking language {zn2

: n ∈ N} has a natural boundary at |z| = 1,
which is a trademark of very complex analytic behaviour.

The shuffle product

In the absence of the obvious answers, we consider a very common, and useful operator,
the shuffle product, and discover that it fills in many interesting holes in this story. Consider
the words w, uw1 and vw2, and the letters u, v ∈ Σ. We define the shuffle product of two
words recursively by the equation

uw1 vw2 = u(w1 vw2) + v(uw1 w2), w ε = w; ε w = w.

Here the union is disjoint, and we distinguish duplicated letters from the second word by
a bar: a a = {aa, aa}. Using the shuffle product we can define a class of languages with
associated generating functions that form a class that strictly contains algebraic functions;
it allows us to model a very straightforward combinatorial interpretation of the derivative
(indeed in some interesting non-commutative algebras the shuffle product is even called a
derivative); and it allows us to neatly consider some larger classes which are simultaneously
more complex from the language and generating function points of view.

1D-finite, also known as holonomic, functions satisfy linear differential equations with polynomial
coefficients.



ANALYTIC ASPECTS OF THE SHUFFLE PRODUCT 563

Goal and Results

The aim of this study is two-fold. We hope that a greater understanding of generat-
ing function implications of adding the shuffle product to context free languages provides
insight to a larger class of combinatorial problems. The second goal is to understand the
combinatorial interpretations of different function classes that arise between algebraic and
D-finite. The shuffle is a natural combinatorial product to consider since it is, in some sense,
a generalization of pointing.

In the present work, we first examine the shuffle as an operator on languages, and in
the second part we consider the shuffle as a grammar production rule to define languages.
We show that the shuffle closure of the context free languages is D-finite; we give the
asymptotic growth of coefficients of two classes using shuffle; we define a special pointing
class that describes all D-finite functions; and discuss the shuffle closure of a language.

In the next section we review interpretations of differential equations. This is followed
by a discussion on the shuffle of languages, and some descriptions of shuffle grammars.

1. Interpreting differential equations combinatorially

1.1. The class of D-finite functions

The class of D-finite functions is of interest to the combinatorialist for many reasons.
The coefficient sequence of a D-finite power series is P-recursive: it satisfies a linear recur-
rence of fixed length with polynomial coefficients, and hence is easy to generate, manipulate,
and even “guess” their form. By definition, D-finite functions satisfy linear differential equa-
tions with polynomial coefficients, and thus it is relatively straightforward in many cases
to perform an asymptotic analysis on the coefficients, even without a closed form for the
generating function. One important feature that we use here is that a P-recursive sequence
grows asymptotically like

`(n) ∼ λ(n!)r/s exp(Q(n1/mωnnα(log n)k))

where r, s,m, n, k ∈ N, Q is a polynomial and λ, ω, α, are complex numbers. We contrast
this to the asymptotic template satisfied by coefficients of algebraic functions:

`(n) ∼ κ
nd

Γ(d + 1)
ω−n, (1.1)

where κ is an algebraic number and d ∈ Q \ {−1,−2, . . . }. (A very complete source on
the theory of asymptotic expansions of coefficients of algebraic functions arising in the
combinatorial context is [12, Section VII.4.1].) Notable differences include the exponential/
logarithmic factors, the power of a factorial, and the allowable exponents of n.

We shall use the following properties of the D-finite functions: The function 1/f is D-
finite if, and only if, f is of the form exp(g)h, where g and h are algebraic [23]; The Hadamard
product f × g =

∑
fngnzn of two D-finite functions f =

∑
fnzn and g =

∑
gnzn is also

D-finite.
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1.2. The simplest shuffle: the point

Pointing (or marking) is an operation that has been long studied in connection with
structures generated by grammars. The point of an word w, denoted P (w), is a set of words,
each with a different position marked. For example, P (abc) = {abc, abc, abc}. From the
enumerative point of view we remark that the two languages L, and L1 = P (L) = {P (w) :
w ∈ L}, satisfies the enumerative relation

`1(n) = n`(n), (1.2)

and hence L1(z) = z d
dzL(z). The pointing operator is relevant to our discussion because of

the simple bijective correspondence between P (L) and L a = {w a : w ∈ L}.
The first obvious question is, “does pointing increase expressive power?”. In the case

of regular languages and context free languages the answer is no; We can add a companion
non-terminal for each non terminal that generates a language isomorphic to the pointed
language. Let A be the pointed version of A. We add the following rules which model
pointing:

(AB) = AB + AB, (A + B) = A + B

Remark how these rules resemble the corresponding product and sum rules for differen-
tiation. Furthermore, from the point of view of generating functions, we know that the
derivative of a rational function is rational again, and the derivative of an algebraic func-
tion is again algebraic, and so we know immediately that we could not hope to increase the
class of generating functions represented by this method.

Pointing, when paired with a “de-pointing” operator which removes such marks, be-
comes powerful enough to describe other kinds of constructions, namely labelled cycles
and sets [13, 15]. In this case we can describe set partitions, and which has exponential
generating function exp(exp(z)− 1), which is not D-finite.

It takes much more effort [5] to define a pointing operator with a differentiation property
as in Eq.(1.2) for unlabelled structures defined using Set and Cycle constructions. It is a
fruitful exercise, as one can then generate approximate size samplers with expected linear
time complexity.

1.3. Other combinatorial derivatives

Combinatorial species theory [2] provides a rich formalism for explaining the interplay
between analytic and combinatorial representions of objects. In particular, using the vehicle
of the the cycle index series, and there are several possibilities on how to relate them to
(multivariate) D-finite functions [18, 21]. In this realm, given any arbitrary linear differential
equation with polynomial coefficients we can define a set of grammar operators that allow
us to construct a pair of species whose difference has a generating function that satisfies the
given differential equation. Unfortunately at present we lack the intuition to understand
what this class “is”, specifically, we lack the tools to construct a test to see if any given
class or language falls within it.

In Section 3.4 we give a language theoretic interpretation of the derivative of a species;
specifically a grammar system, from which, for any linear differential equation with co-
efficients from Q[x] we can generate a language whose generating function satisfies this
equation.
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1.4. Other differential classes

There are several other natural function classes related to the differential equations. A
series f(z) ∈ K[[t]] is said to be constructible differentiably algebraic (CDF) if it belongs to
some finitely generated ring which is closed under differentiation. [3, 4]. This is equivalent
to satisfying a system of differential equations of a given form. Combinatorially, any CDF
function can be interpreted as a family of enriched trees. Theorem 3 of [3] gives the result
that if

∑
an/n!tn is CDF, then |an| = O(αnn!) for some complex constant α. This class is

not closed under Hadamard product, and any arbitrary CDF function is unlikely to have
the image under the Borel transform also CDF. This is the key closure property required
for a meaningful correspondence with respect to the shuffle product.

A larger class which contains both CDF and D-finite is differentiably algebraic. A
function is differentiably algebraic (DA) if it satisfies an algebraic differential equation of
the form P (x, y, y′, . . . , y(n)) = 0 where P is a non-trivial polynomial in its n + 2 variables.
(See Rubel’s survey [22] for many references.)

The set of DA functions is closed under multiplicative inverse and Hadamard product.
These two facts together are sufficient to prove that all of the classes we consider are
differentiably algebraic.

1.5. Generating functions and shuffles

Generating functions are useful tool for the automatic studies of certain combinatorial
problems. The shuffle operator has a straightforward implication on the generating function,
as we shall see.

With the aid of the shuffle product, Flajolet et al. [11] are able to perform a straightfor-
ward analysis of four problems in random allocation. By using some systematic translations,
they are able to derive integral representations for expectations and probability distribu-
tions. As they remark, the shuffle of languages appears in several places relating to analysis
of algorithms (such as evolution of two stacks in a common memory area).

2. The shuffle of two languages

The shuffle of two languages is defined as

L1 L2 =
⋃

w1∈L1,w2∈L2

(w1 w2).

In order to use a generating function approach, we assume that L1 is a language over the
alphabet Σ1, and L2 is a language over Σ2, and Σ1 ∩ Σ2 = ∅. If they share an alphabet, it
suffices to add a bar on top of the copy from Σ2.

2.1. The shuffle closure of context free languages

We consider the shuffle closure of a language in the next section, and first concentrate
on the shuffle closure of a class of languages. For any given class of languages C, the
shuffle closure can be defined recursively as the (infinite) union of S0, S1, . . . , the sequence
recursively defined by

S0 = C, Sn = {L1 L2 : L1 ∈ Sn−1,L2 ∈ C}.
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The shuffle product is commutative and associative [20], and thus the closure contains
Sj Si, for any i and j. Remark, that for any given language in the closure, there is a
bound on the number of shuffle productions that can occur in any derivation tree; namely,
if L ∈ Sn, that bound is n.

In general, we denote the closure of a class of languages under shuffle as C . The class
of regular languages is closed under the shuffle product, since the shuffle of any two regular
languages is regular. However, the context free languages are not closed under the shuffle
product [20], and hence we consider its closure.

The prototypical language in this class is the shuffle of (any finite number of) Dyck
languages. Let |w|a be count the number of occurences of the letter a in the word w. Let
D be the Dyck language over the alphabet Σ = {u, d}:

D = {w ∈ Σ∗ : w′v = w =⇒ |w′|u ≥ |w′|d and |w|u = |w|d.}
We construct an isomorphic version E , over the alphabet {l, r}.

The language D E has encodes random walks restricted to the quarter plane with
steps from u(p), d(own), r(ight), and l(eft) that return to the origin. By considering the
larger language of Dyck prefixes, we can models walks that end anywhere in the quarter
plane. Indeed, as the shuffle does preserve two distinct sets of prefix conditions, there are
many examples of random walks in bounded regions that can be expressed as shuffles of
algebraic languages.

It might be interesting to consider other standard questions of classes of languages for
this closure class; in particular if interesting random walks arise.

2.2. The closure is D-finite

In order to show that the shuffle product of two languages with D-finite generating func-
tions also has a D-finite generating function, we consider the following classic observation
on the enumeration of shuffles of languages.

If L is the shuffle of L1 and L2, then the number of words of length n in L are easily
counted if the generating series for L1(z) = `1(n)zn and L2(z) = `2(n)zn are known by the
following formula:

`(n) =
∑

n1+n2=n

(
n

n1 n2

)
`1(n1)`2(n2).

To see this, recognize that a word in L is a composed of two words, and a set of positions
for the letters in the word from L1, This is equivalent to

`(n)
n!

=
∑

n1+n2=n

`1(n1)
n1!

`2(n2)
n2!

, (2.1)

which amounts to the relation between the exponential generating functions of the three
languages:

L = L1 L2 =⇒ L̂(z) = L̂1(z)L̂2(z). (2.2)
Using these relations, we can easily prove the following result.

Proposition 2.1. If L1 and L2 are languages with D-finite ordinary generating functions,
then the generating series for L = L1 L2, L(z) is also D-finite.

As is the case with many of the most interesting closure properties of D-finite functions,
the proof follows from the closure of D-finite functions under Hadamard product [19].
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Proof. Since D-finite functions are closed under Hadamard product, the ordinary generating
function is D-finite if and only if the exponential generating function of a sequence is D-
finite. Consequently, if L1(z) and L2(z) are D-finite, then so are the exponential generating
functions, L̂1(z) and L̂2(z). By closure under product, L̂(z) is D-finite, and thus so is L(z).

This result has the following consequences.

Corollary 2.2. If L1 and L2 are context free languages which are not inherently ambiguous,
then the generating series L(z) for L = L1 L2 is D-finite.

Corollary 2.3. Any language in the shuffle closure of context free languages has a D-finite
generating function.

2.3. Asymptotic template for `(n)

We continue the example from the previous section using the two Dyck languages D
and E . It is straightforward to compute that D(z) = E(z) =

∑(2n
n

)
1

n+1zn. Thus, `(n), the
number of words of length n in the shuffle is given by

`(n) =
∑

n1+n2=n

(
n

n1

)(
n1

n1/2

)(
n2

n2/2

)
.

We remark that an asymptotic expression for `(n) can be determined by first using the
Vandermonde-Chu identity to simplify `(n):

`(n) =
(

n

bn/2c
)(

n + 1
dn/2e

)
,

and then by applying Stirling’s formula. Since `(n) ∼ 4n/n, we see that it the resulting series
is not algebraic. Flajolet uses this technique extensively in [10] to prove that certain context-
free languages are inherently ambiguous. Thus, we have that our class has generating
functions strictly contains the algebraic functions.

Thus, we have some elements of a class of function with a nice asymptotic expansion.
A rough calculation gives that that the shuffle of two languages, with respective asymptotic
growth of κin

ri(αi)n, for i = 1, 2 respectively, is given by the expression

`(n) ∼ κnr1+r2(α1 + α2 − r1 − r2)n.

How could one hope to prove directly that all elements in this class have an expansion of
the form

`(n) ∼ καnnr,

where now r can be any rational, and κ is no longer restricted to algebraic numbers? It
seems that it should be possible to prove this at least for the shuffles of series which satisfy
the hypotheses of Theorem 3.11 [7], using a more generalized form of the Chu-Vandermonde
identity, or for the closure of the sub-class of context-free languages posessing an N-algebraic
generating function. In this case the d = −3/2, and this simplifies the analyses considerably.
Unfortunately, it does not seem like a direct application of Bender’s method [12, Theorem
VI.2] applies.

Theorem 3.2 states that the asymptotic form will not contain any powers of n! greater
than 2. This illustrates a limitation with the expressive power of the shuffle closure of
context free languages: there are known natural combinatorial objects which have D-finite
generating functions with coefficients that grow asymptotically with higher powers of n!.
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For example, the number of k-regular graphs for k > 4 contains (n!)5/2, and the conjectured
asymptotic for for k-uniform Young tableaux [8] contains n!k/2−1.

3. Shuffle grammars

We extend the first approach by allowing the shuffle to come into play earlier in the
story; we add the shuffle operator to our grammar rewriting rules. Shuffle grammars as
defined by Gischer [14] include a shuffle rule, and a shuffle closure rule. We consider these
in Section 3.4.

As we did earlier, we first consider languages which have a natural bound on the number
of shuffle productions that can occur in a derivation tree of any word in the language. That
is followed by an example of a recursive shuffle grammar to illustrate how powerful they can
be. It has been proven [17] that the recursive shuffle grammars do indeed have a greater
expressive power, but it is not always clear how to interpret the resulting combinatorial
families. We begin with a second kind of pointing operator.

3.1. A terminal pointing operator

The traditional pointing operator can be used to model z d
dz , but one can show that

this is, in fact, insufficient to generate all D-finite functions. To remedy this, we define
a pointing operator which mimics the concept behind the derivative of a species. This
pointing operator has the effect of converting a letter to an epsilon by ‘marking’ the letter.
Consequently, a letter can not be marked more than once, and each subsequent time a
word is marked, there is a counter on the mark which is augmented. The pointing operator
applied a set of words will be the pointing operator applied to each of the elements of the
set. Notationally, we distinguish them with accumulated primes. We give some examples:

P(aab) = a′ab + aa′b + aab′

P(P(aab)) = a′a′′b + a′ab′′ + a′′a′b + aa′b′′ + a′′ab′ + aa′′b′

P(a′′′a′b′′) = ∅.
The length of the word is the number of unmarked letters in a word (but the combinatorial
objects in the language encode more than just the length in some sense). The number of
words in the pointing of a word is equal to its length.

This gives a straightforward interpretation of the derivative:

L1 = P(L) =⇒ L1(z) =
d

dz
L(z).

Using this definition if A is a symbol which ‘yields’ through a grammar a language
Remark, if we allow concatenation after marking, we could generate two letters in the

same word marked with a single prime via concatenation of marked words.
Using the marking operation, we can express most D-finite functions, specifically, by the

differential equations that they satisfy. For example, the series P (z) =
∑

n≥0 n!zn satisfies
the differential equation

P (z) = 1 + zP (z) + z2P ′(z).
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This is modelled by the grammar

A → ε

A → aA

A → bcP(A).

An alphabet on three letters (a, b, c) allows us to track the origin of each letter. Here is the
result of the third iteration of the rules:

1⊕ a⊕ aa + ba′c⊕ aaa + abca′ + bca′a + bcb′′ca′ + bcaa′ + bcbc′′a′ ⊕ aaaa + aabca′ + abca′a.

We will call a pointing grammar one that has rules of the form

A → w, A → wB, A → P(B). (3.1)

Despite the fact that we allow only left concatenation, (a strategy to avoid concatenating
pointed words) these grammars rules can model any D-finite function.

We can define a procedure for finding a language given a defining equation satisfied by
a D-finite generating function. Say that a generating function T (z) satisfies

T (z) = q(z) + q0(z)T (z) + q1(z)T ′(z) + . . . + qn(z)T (n)(z) . (3.2)

Now substitute T (z) = P (z)−N(z) and

(P (z)−N(z)) = q(z)+q0(z)(P (z)−N(z))+q1(z)(P ′(z)−N ′(z))+. . .+qn(z)(P (n)(z)−N (n)(z))

Use also the notation that qi(z) = q+
i (z)− q−i (z) where q+

i (z) are the positive terms of
the polynomial and q−i (z) are the negative ones.

Then if

P (z) = q+(z) + q+
0 (z)P (z) + q−0 (z)N(z) + · · ·+ q+

n (z)P (n)(z) + q−n (z)N (n)(z) (3.3)

and

N(z) = q−(z) + q−0 (z)P (z) + q+
0 (z)N(z) + · · ·+ q−n (z)P (n)(z) + q+

n (z)N (n)(z) (3.4)

then P (z)−N(z) satisfies equation (3.2).
Now we can define a language with a rule for each monomial in (3.3) and (3.4) and

every terms xaR(k)(z) is represented by a rule of the form

R̃ → wP(· · · P(R) · · · )
where P occurs k times and R, R̃ are symbols representing a language whose generating
function is either P (z) or N(z) and w is a word of length a.

Any language which is generated from rules of the form Eq. (3.1) has a generating
function which satisfies a linear differential equation, and hence is D-finite.

We summarize this in the following theorem.

Theorem 3.1. A language which is generated from the rules of the form Eq. (3.1) has a
D-finite generating function. Moreover, any D-finite function can be written as a difference
of two generating functions for languages which are generated by rules of this form.
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3.2. Acyclic shuffle dependencies

We consider languages generated by the following re-writing rules, where w is a word,
and A, B and C are non-terminals:

A → w, A → BC, A → B C. (3.5)

For any language generated by rules of the above type, and a fixed set of non-terminals, we
construct the graph with non-terminals as nodes, and for every production rule A → B C,
we make an edge from A to B and an edge from A to C. If this graph is acyclic, we say
the language has acyclic shuffle dependencies. The next section treats languages that have
a cyclic dependency.

We prove that this class of languages is larger than those generated by the pointing
operator of the previous section, because we can generate a language with a generating
function that is not D-finite.

We re-use the Dyck languages D and E defined in Section 3.4. Consider the language
generated by the following grammar:

A → D E
C → 1|AC.

The shuffle dependency graph is a tree, and thus this is in our class. The generating
functions of A and C are given by

A(z) =
−1
4z

+
(16z − 1)

2πz
EllipticK(4

√
z) +

1
πz

EllipticE(4
√

z), C(z) =
1

1−A(z)
.

Since 1−A(z) is not of the form exp(algebraic)algebraic, C(z) is not D-finite. Nonetheless,
we can prove an asymptotic result about generating functions in this class.

Theorem 3.2. Let L be a proper language generated by shuffle production in an unambigu-
ous grammar of with rules of the form given in Eq. (3.5), on an alphabet with k letters. The
number of words of length n, `(n), satisfies `(n) = O(n!2).

Proof. Since the grammar generates proper languages, there are no shuffle productions
with epsilon. Thus, the derivation tree of a word of length n can have at most n shuffle
productions. In the worst case, each one increments the alphabet and so the maximum size
of alphabet that a word of length n can draw on is then kn. The total number of words
from this alphabet is (kn)n.

For k < n the result follows by Stirling’s formula.

3.3. Cyclic shuffle dependencies

Languages in this class will have an infinite alphabet since we use a disjoint union in our
shuffle. However, the number of words of a given length is finite if there is no derivation tree
possible that is a shuffle and an ε. Under this restriction, any word of length n comes from
an alphabet using no more than more than a constant multiple of n letters. We consider
an important class of this type in the next section.
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3.4. The shuffle closure of a languages

A class of languages which falls under this category are those that are generating using
the shuffle closure operator. The shuffle closure of a language is defined recursively in the
following way: L 1 = L L, and L n = L n−1 L. The shuffle closure, is the union over
all finite shuffles:

L =
⋃
n

L n.

Equivalently, we write this as a grammar production: A → A B|B. The shuffle clo-
sure [16, 17] provides extremely concise notation. In particular, they arise in descriptions
of sequential execution histories of concurrent processes.

Remark, that the closure of the language is one single language, whereas the closure of
the class of languages that is one language is an infinite set of languages.

The shuffle closure of a single letter gives all permutations:

a = a⊕ aa + aa⊕ aaa + aaa + aaa + aaa + aaa + aaa⊕ . . .

The generating function of the this language is
∑

n!zn, and indeed the generating
function of the shuffle closure of any word of length k is

∑
(kn)!( zk

k )n, which is also D-finite.
To prove our formula above, we express the generating function of L in terms of the

operators which switch between the ordinary and exponential generating functions. Recall,
L(z) =

∑
anzn =⇒ L̂(z) =

∑ an
n! , and we define the Laplace operator L · L̂(z) = L(z).

Then,
L1 = L =⇒ L1(z) =

∑
n

L · [(L̂(z))n]. (3.6)

Although all of the summands are D-finite, it is possible that the sum is not.
Clearly, the shuffle closure does not preserve regularity, and indeed adding it, and

the shuffle product to regular languages is enough to generate all recursively enumerable
languages. Thus, we see that if there is no bound on the number of shuffles possible in any
expression tree, the languages can get far more complex.

Nonetheless the following conjecture seems reasonable, and perhaps it is possible to
prove it following starting from Eq. (3.6), and necessarily a more sophisticated analysis.

Conjecture 3.3. The shuffle closure of a regular language has a D-finite generating func-
tion.

4. Conclusion

A next step is to adapt the Bolzmann generators to these languages. Since we can effec-
tively simulate labelled objects in an unlabelled context, we can easily describe objects like
strong interval trees. This approach might allow a detailed analysis of certain parameters
of permutation sorting by reversals, as applied to comparative genomics [1].

We are also interested in characterizing the context-free languages whose shuffle is not
algebraic, and to consider the other naturual questions of closure that are standard for
language classes.
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Abstract. We investigate weak recognizability of deterministic languages of infinite trees.
We prove that for deterministic languages the Borel hierarchy and the weak index hierarchy
coincide. Furthermore, we propose a procedure computing for a deterministic automaton
an equivalent minimal index weak automaton with a quadratic number of states. The
algorithm works within the time of solving the emptiness problem.

1. Introduction

Finite automata on infinite trees are one of the basic tools in the verification of non-
terminating programs. Practical applicability of this approach relies on the simplicity of the
automata used to express the specifications. On the other hand it is convenient to write the
specifications in an expressive language, e. g. µ-calculus. This motivates the search for auto-
matic simplifications of automata. An efficient, yet reasonably expressive, model is offered
by weak alternating automata. It was essentially showed by Rabin [18] that a language L

can be recognized by a weak automaton if and only if both L and L{ can be recognized
by nondeterministic Büchi automata. Arnold and Niwiński [2] proposed an algorithm that,
given two Büchi automata recognizing a language and its complement, constructs a dou-
bly exponential alternation free µ-calculus formula defining L, which essentially provides
an equally effective translation to a weak automaton. Kupferman and Vardi [7] gave an
immensely improved construction that involves only quadratic blow-up.

A more refined construction could also simplify an automaton in terms of different
complexity measures. A measure that is particularly important for theoretical and practi-
cal reasons is the Mostowski–Rabin index. This measure reflects the alternation depth of
positive and negative events in the behaviour of a verified system. The index orders au-
tomata into a hierarchy that was proved strict for deterministic [21], nondeterministic [13],
alternating [4, 8], and weak alternating automata [9]. Computing the least possible index
for a given automaton is called the index problem. Unlike for ω-words, where the solution
was essentially given already by Wagner [21], for trees this problem in its general form
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remains unsolved. For deterministic languages, Niwiński and Walukiewicz gave algorithms
to compute the deterministic and nondeterministic indices [14, 16].

The theoretical significance of the weak index is best reflected by its coincidence with the
quantifier alternation depth in the weak monadic second order logic [9]. Further interesting
facts are revealed by the comparison with the Borel rank. In 1993 Skurczyński gave examples
of Π0

n and Σ0
n-complete languages recognized by weak alternating automata with index (0, n)

and (1, n + 1) accordingly [19]. In [5] it was shown that weak (0, n)-automata can only
recognize Π0

n languages (and dually, (1, n + 1)-automata can only recognize Σ0
n languages),

and it was conjectured that the weak index and the Borel hierarchies actually coincide.
Here we prove that the conjecture holds for deterministic languages. Consequently, the
algorithm calculating the Borel rank for deterministic languages [11] can be also used to
compute the weak index. Since all deterministic languages are at the first level of the
alternating hierarchy, this completes the picture for the deterministic case. We also provide
an effective translation to a weak automaton with a quadratic number of states and the
minimal index.

2. Automata

We will be working with deterministic and weak automata, but to have a uniform
framework, we first define automata in their most general alternating form.

A parity game is a perfect information game of possibly infinite duration played by two
players, Adam and Eve. We present it as a tuple (V∃, V∀, E, v0, rank), where V∃ and V∀ are
(disjoint) sets of positions of Eve and Adam, respectively, E ⊆ V × V is the relation of
possible moves, with V = V∃ ∪ V∀, p0 ∈ V is a designated initial position, and rank : V →
{0, 1, . . . , n} is the ranking function.

The players start a play in the position v0 and then move a token according to relation E
(always to a successor of the current position), thus forming a path in the graph (V,E). The
move is selected by Eve or Adam, depending on who is the owner of the current position.
If a player cannot move, she/he looses. Otherwise, the result of the play is an infinite path
in the graph, v0, v1, v2, . . .. Eve wins the play if the highest rank visited infinitely often is
even, otherwise Adam wins.

An alternating automaton A = 〈Σ, Q∃, Q∀, q0, δ, rank〉, consists of a finite input alphabet
Σ, a finite set of states Q partitioned into existential states Q∃ and universal states Q∀ with
a fixed initial state q0, a transition relation δ ⊆ Q×Σ×{0, 1, ε}×Q, and a ranking function

rank : Q → ω. Instead of (p, σ, d, q) ∈ δ, one usually writes p
σ,d−→ q.

An input tree t is accepted by A iff Eve has a winning strategy in the parity game 〈Q∃×
{0, 1}∗, Q∀×{0, 1}∗, (q0, ε), E, rank′〉, where E = {((p, v), (q, vd)) : v ∈ dom(t), (p, t(v), d, q) ∈
δ} and rank′(q, v) = rank(q). The computation tree of A on t is obtained by unravelling the
graph above from the vertex (q0, ε) and labelling the node (q0, ε), (q1, d1), (q2, d2), . . . , (qn, dn)
with qn. The result of the parity game above only depends on the computation tree.

An automaton is called deterministic iff Eve has no choice at all, and Adam can only
choose the direction: left or right (no ε-moves). Formally, it means that Q∃ = ∅, and
δ : Q× Σ× {0, 1} → Q. For deterministic automata, the computation tree is a full binary

tree. The transitions are often written as p
σ−→ q0, q1, meaning p

σ,d−→ qd for d = 0, 1.
A weak automaton is an alternating automaton satisfying the condition

p
σ,d−→ q =⇒ rank p ≤ rank q .
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A more elegant definition of the class of weakly recognizable languages is obtained by using
weak parity games in the definition of acceptance by alternating automata. In those games
Eve wins a play if the highest rank used at least once is even. For the purpose of the
following lemma, let us call the first version restricted alternating automata. Later, we will
stick to the second definition.

Lemma 2.1. For every L it holds that L is recognized by a restricted alternating (ι, κ)-
automaton iff it is recognized by a weak alternating (ι, κ)-automaton.

Proof. Every restricted automaton can be transformed into an equivalent weak automaton
by simply changing the acceptance condition to weak. Let us, then, concentrate on the
converse implication.

Fix a weak automaton A using ranks (ι, κ). To construct a restricted automaton we
will take one copy of A for each rank: A(ι), A(ι+1), . . . , A(κ). By q(i) we will denote the
counterpart of A’s state q in A(i). We set rank q(i) = i. We want the number of the copy
the computation is in to reflect the highest rank seen so far. To obtain that, we set the
initial state of the new automaton to q

(rank q0)
0 , and for each i and each transition p

σ,d−→ q

in A we add a transition p(i) σ,d−→ q(max(i, rank q)). For each i and q, q(i) is universal iff q is
universal. Checking the equivalence is straightforward.

For deterministic automata we will assume that all states are productive, i. e., are
used in some accepting run, save for one all-rejecting state ⊥, and that all transitions are
productive or go to ⊥, i. e., whenever q

σ−→ q1, q2, then either q1 and q2 are productive,
or q1 = q2 = ⊥. The assumption of productivity is vital for our proofs. Thanks to this
assumption, in each node of an automaton’s run we can plug in an accepting sub-run.

Transforming a given automaton into such a form of course needs calculating the pro-
ductive states, which is equivalent to deciding a language’s emptiness. The latter problem
is known to be in NP ∩ co-NP, but it has no polynomial solutions yet. Therefore we can
only claim that our algorithms are polynomial for the automata that underwent the above
preprocessing. We will try to mention it whenever particularly important.

3. Two Hierarchies

The index of an automaton A is a pair (min rankQ,max rankQ). Scaling down the
rank function if necessary, one may assume that min rankQ is either 0 or 1. Thus, the
indices are elements of {0, 1} ×ω \ {(1, 0)}. For an index (ι, κ) we shall denote by (ι, κ) the
dual index, i. e., (0, κ) = (1, κ + 1), (1, κ) = (0, κ − 1). Let us define an ordering of indices
with the following formula:

(ι, κ) < (ι′, κ′) if and only if κ− ι < κ′ < ι′ .

In other words, one index is greater than another if and only if it “uses” more ranks.
This means that dual indices are incomparable. The Mostowski–Rabin index hierarchy for
a certain class of automata consists of ascending sets (levels) of languages recognized by
(ι, κ)-automata.

Here, we are mainly interested in the weak index hierarchy, i. e., the hierarchy of lan-
guages recognized by weak (ι, κ)-automata. The strictness of this hierarchy was established
by Mostowski [9] via equivalence with the quantifier-alternation hierarchy for the weak
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(1, 1) (1, 2) (1, 3) (1, 4) · · ·
� � � � � �
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(0, 0) (0, 1) (0, 2) (0, 3) · · ·
Figure 1: The Mostowski–Rabin index hierarchy
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Figure 2: The Borel hierarchy

monadic second order logic, whose strictness was proved by Thomas [20]. The weak in-
dex problem, i. e., computing the minimal weak index needed to recognize a given weak
language, for the time being remains unsolved just like other versions of the index problem.

The weak index hierarchy is closely related to the Borel hierarchy. We will work with
the standard Cantor-like topology on TΣ induced by the metric

d(s, t) =
{

2−min{|x| : x∈{0,1}∗, s(x)6=t(x)} iff s 6= t
0 iff s = t

.

The class of Borel sets of a topological space X is the closure of the class of open sets of X
by countable sums and complementation.
For a topological space X, the initial (finite) levels of the Borel hierarchy are defined as
follows:

• Σ0
1(X) – open subsets of X,

• Π0
k(X) – complements of the sets from Σ0

k(X),
• Σ0

k+1(X) – countable unions of sets from Π0
k(X).

For instance, Π0
1(X) are the closed sets, Σ0

2(X) are Fσ sets and Π0
2(X) are Gδ sets. By

convention Σ0
0(X) = {∅} and Π0

0(X) = {X}.
A straightforward inductive argument shows that the classes defined above are closed

under inverse images of continuous functions. Let C be one of those classes. A set A is
called C-hard, if each set in C is an inverse image of A under some continuous function. If
additionally A ∈ C, A is C-complete.

We start the discussion of the relations between the index of a weak automaton and
the Borel rank of the language it recognises by recalling Skurczyński’s results. For a tree
t : {0, 1}∗ → Σ and a node v ∈ {0, 1}∗ let t.v denote the tree rooted in v, i. e., t.v(w) =
t(vw). Let us define a sequence of languages:

• L(0,1) = {t}, where t ∈ T{a,b} is the tree with no b’s,
• L(1,n+1) = L{

(0,n) for n ≥ 1,
• L(0,n+1) = {t ∈ T{a,b} : ∀k t.0k1 ∈ L(1,n+1)} for n ≥ 1.

Theorem 3.1 (Skurczyński [19]). For each n ≥ 1,
• L(0,n) is a Π0

n-complete language recognized by a weak (0, n)-automaton,
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• L(1,n+1) is a Σ0
n-complete language recognized by a weak (1, n + 1)-automaton.

We will now show that this construction is as efficient as it can be: ranks (0, n) are necessary
to recognize any Π0

n-hard language (if it can be weakly recognized at all).
We will actually prove a bit stronger result. We will consider weak game languages W [ι,κ],

to which all languages recognized by weak [ι, κ]-automata can be reduced, and show that
W[0,n] ∈ Π0

n and W[1,n+1] ∈ Σ0
n (by Skurczyński’s results, they are hard for these classes).

The languages W[ι,κ] are natural weak counterparts of strong game languages that prove
the strictness of the strong alternating index hierarchy. Lately Arnold and Niwiński proved
that the strong game languages also form a strict hierarchy with respect to continuous
reductions, but they are all non-Borel [3].

Fix a natural number N . For ι = 0, 1 and κ ≥ ι, let T(ι,κ) denote the set of full N -ary
trees over the alphabet {∃,∀}×{ι, ι+1, . . . , κ}. Let W(ι,κ) ⊆ T(ι,κ) be the set of all trees t for
which Eve has a winning strategy in the weak parity game Gt = 〈V∃, V∀, E, v0, rank〉, where
Vθ = {v ∈ dom t : t(v) = (θ, j) for some j}, E = {(v, vk) : v ∈ dom t , k < N}, v0 = ε,
rank(v) = j iff t(v) = (θ, j) for some θ.

Theorem 3.2. For each n, W(0,n) ∈ Π0
n(T(0,n)) and W(1,n+1) ∈ Σ0

n(T(1,n+1)).

Proof. We will proceed by induction on n. For n = 0 the claim is obvious: W(0,0) = T(0,0) ∈
Π0

0(T(0,0)), W(1,1) = ∅ ∈ Σ0
0(T(1,1)).

Take n > 0. For each t ∈ W(1,n+1) there exists a strategy σ for Eve, such that it
guarantees that the play reaches a node with the rank greater or equal to 2. By König
lemma, this must happen in a bounded number of moves. Basing on this observation we
will provide a Σ0

n presentation of W(1,n+1).
Let k-antichain be a subset of the nodes on the level k. Let A denote the set of all

possible k-antichains for all k < ω. Obviously this set is countable. For a k-antichain A let
WA denote the set of trees such that there exists a strategy for Eve that guarantees visiting
a node with the rank ≥ 2 during the initial k moves and reaching a node from A. This set
is a clopen. We have a presentation

W(1,n+1) =
⋃

A∈A

(
WA ∩

⋂
v∈A

{
t : t′.v ∈ W(0,n−1)

})
,

where t′ is obtained from t by decreasing all the ranks by 2 (if the result is −1, take 0).
The claim follows by induction hypothesis and the continuity of t 7→ t′ and t 7→ t.v.

Now, it remains to see that W(0,n) ∈ Π0
n(T(0,n)). For this, note that

W(0,n) =
{
t : t′′ ∈ (W(1,n+1))

{
}

,

where t′′ is obtained from t by swapping ∃ and ∀, and increasing ranks by 1. The claim
follows by the continuity of t 7→ t′′.

As a corollary we get the promised improvement of Skurczyński’s result.

Corollary 3.3. For every weak alternating automaton A with index (0, n) (resp. (1, n+1))
it holds that L(A) ∈ Π0

n (resp. L(A) ∈ Σ0
n).

Proof. Let A be an automaton with priorities inside [ι, κ]. For sufficiently large N we may
assume without loss of generality that the computation trees of the automaton are N -ary
trees. By assigning to an input tree the run of A, one obtains a continuous function reducing
L(A) to W(ι,κ). Hence, the claim follows from the theorem above.
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Figure 3: The Borel hierarchy and weak index hierarchy for deterministic tree languages.

In fact the corollary follows also from Mostowski’s theorem on equivalence of weak
automata and weak monadic second order logic on trees [9]. The present proof of Theorem
3.2 is actually just a repetition of Mostowski’s proof in the setting of the Borel hierarchy.
An entirely different proof can be found in [5].

We believe that the converse implication is also true: a weakly recognizable Π0
n-language

can be recognized by a weak (0, n)-automaton (and dually for Σ0
n).

Conjecture 3.4. For weakly recognizable languages the weak index hierarchy and the
Borel hierarchy coincide.

In this paper we show that the conjecture holds true when restricted to deterministic lan-
guages.

4. The Deterministic Case

In 2002 Niwiński and Walukiewicz discovered a surprising dichotomy in the family of
deterministic languages: a deterministic language is either very simple or very sophisticated.

Theorem 4.1 (Niwiński, Walukiewicz [15]). For a deterministic automaton A with n states,
L(A) is either recognizable with a weak alternating (0, 3)-automaton with O(n2) states (and
so Π0

3) or is non-Borel (and so not weakly recognizable). The equivalent weak automaton
can be constructed within the time of solving the emptiness problem.

An important tool used in the proof of the Gap Theorem (Theorem 4.1) is the technique
of difficult patterns. In the topological setting the general recipe goes like this: for a given
class identify a pattern that can be unravelled to a language complete for this class; if
an automaton does not contain the pattern, then L(A) should be in the dual class. The
same technique was later applied to obtain effective characterisations of the remaining Borel
classes of deterministic languages [11].

Let us define the patterns used in these characterisations. A loop in an automaton is a
sequence of states and transitions:

p0
σ1,d1−→ p1

σ2,d2−→ . . .
σn,dn−→ p0 .

A loop is called accepting if maxi rank (pi) is even. Otherwise it is rejecting.
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A (ι, κ)-flower is a sequence of loops λι, λι+1, . . . , λκ starting in the same state p, such
that the highest rank appearing on λi has the same parity as i and it is higher than the
highest rank on λi−1 for i = ι, ι + 1, . . . , κ.

A weak (ι, κ)-flower is a sequence of loops λι, λι+1 . . . , λκ such that λi+1 is reachable
from λi, and λi is accepting iff i is even.

A split is a pair of loops p
σ,0−→ p0 −→ . . . −→ p and p

σ,1−→ p1 −→ . . . −→ p such that
the highest ranks occurring on them are of different parity and the highest one is odd.

A state q is replicated by a loop p
σ,d0−→ p0 −→ . . . −→ p if there exists a path p

σ,d1−→
p1 −→ . . . −→ q such that d0 6= d1. We will say that a loop or a flower is replicated by a
loop λ if it contains a state replicated by λ.

Proposition 4.2 (Niwiński, Walukiewicz [15]; Murlak [11]). Let A be a deterministic au-
tomaton.

(1) L(A) ∈ Π0
1 iff A contains no weak (1, 2)-flower.

(2) L(A) ∈ Σ0
1 iff A contains no weak (0, 1)-flower.

(3) L(A) ∈ Π0
2 iff A contains no (0, 1)-flower.

(4) L(A) ∈ Σ0
2 iff A contains neither (1, 2)-flower nor a weak (1, 2)-flower replicated by

an accepting loop.
(5) L(A) ∈ Σ0

3 iff A contains no (0, 1)-flower replicated by an accepting loop.
(6) L(A) ∈ Π0

3 iff A contains no split.
In particular, the Borel rank of L(A) is computable within the time of finding the productive
states of A.

The patterns defined above were originally introduced to capture the index complexity
of recognizable languages. Niwiński and Walukiewicz used flowers to solve the deterministic
index problem for word languages [14]. Their result may easily be adapted to trees (see [11]
for details).

Theorem 4.3. For a deterministic tree automaton A the language L(A) is recognized by a
deterministic (ι, κ)-automaton iff A does not contain a (ι, κ)-flower. An equivalent minimal
index automaton with the same number of states can be constructed within the time of
solving the emptiness problem.

The weak flowers provide an analogous characterisation of the weak deterministic index.

Proposition 4.4 ([11]). A deterministic automaton A is equivalent to a weak deterministic
(ι, κ)-automaton iff it does not contain a weak (ι, κ)-flower. An equivalent minimal index
automaton with the same number of states can be constructed within the time of solving the
emptiness problem.

Proof. If the automaton contains a weak (ι, κ)-flower, for each weak (ι, κ)-automaton one
can build a cheating tree (see [11] for details). For the converse implication, construct
a weak deterministic (ι, κ)-automaton by modifying the ranks of the given deterministic
automaton. Set rank q to the lowest number m such that there exists a weak (m,κ)-flower
with a path from q to λm.
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5. The Power of the Weak

In this section we finally turn to the weak recognizability of deterministic languages.
First we give sufficient conditions for a deterministic automaton to be equivalent to a weak
alternating automaton of index (0, 2), (1, 3), and (1, 4). This is the first step to the solution
of the weak index problem for deterministic automata.

Proposition 5.1. For each deterministic (1, 2)-automaton with n states one can construct
an equivalent weak (0, 2)-automaton with 2n + 1 states.

Proof. Fix a deterministic (1, 2)-automaton A. We will construct a weak (0, 2)-automaton
B such that L(A) = L(B). Basically, for each node v the automaton B should check
whether on each path in the subtree rooted in v the automaton A will reach a state with
rank 2. This can be done as follows. Take two copies of A. In the first copy, all states are
universal and have rank 0. The transitions are like in A plus for each state q (1) there is an
ε-transition to q(2), the counterpart of q(1) in the second copy. In the second copy all states
are universal and have rank 1. For the states with rank 1 in A, the transitions are like in
A. For the states with rank 2 in A, there is just one transition to an all-accepting state >
(rank 2 in B).

Before we proceed with the conditions, let us show a useful property of the replication.

Lemma 5.2 (Replication Lemma). A state occurs in infinitely many incomparable nodes
of an accepting run iff it is productive and is replicated by an accepting loop.

Proof. If a state p is replicated by an accepting loop, then by productivity one may easily
construct an accepting run with infinitely many incomparable occurrences of p. Let us
concentrate on the converse implication.

Let p occur in an infinite number of incomparable nodes v0, v1, . . . of an accepting
run ρ. Let πi be a path of ρ going through the node vi. Since 2ω is compact, we may
assume, passing to a subsequence, that the sequence πi converges to a path π. Since vi

are incomparable, vi is not on π. Let the word αi be the sequence of states labeling the
path from the last common node of π and πi to vi. Cutting the loops off if needed, we may
assume that |αi| ≤ |Q| for all i ∈ ω. Consequently, there exist a word α repeating infinitely
often in the sequence α0, α1, . . .. Moreover, the path π is accepting, so the starting state of
α must lay on an accepting productive loop. This loop replicates p.

Proposition 5.3. For each deterministic (0, 1)-automaton with n states which contains no
weak (1, 2)-flower replicated by an accepting loop one can construct effectively an equivalent
weak (1, 3)-automaton with 3n + 1 states.

Proof. Let A be a deterministic (0, 1)-automaton which contains no weak (1, 2)-flower repli-
cated by an accepting loop. Let us call a state of A relevant if it has the highest rank on
some loop. We may change the ranks of productive irrelevant states to 0, and assume from
now on that all odd states are relevant. We claim that the odd states occur only finitely
many times on accepting runs of A. Suppose that an odd state p occurs infinitely many
times in an accepting run ρ. Then it must occur in infinitely many incomparable nodes
(otherwise we would get a rejecting path). By the Replication Lemma p is replicated by an
accepting loop. As p is odd and relevant, it lies on some nontrivial rejecting loop. Since p
is also productive, some accepting loop can be reached from p. Hence, A contains a weak
(1, 2)-flower replicated by an accepting loop - a contradiction
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Now, we can easily construct a weak (1, 3)-automaton recognising L(A). Intuitively, we
will simulate A and check if A’s odd states occur finitely many times. This can be done as
follows. Take three copies of A. In the first copy all the states are universal and have rank
1. The transitions are just like in A, only they go to the second copy of A. In the second
copy of A, all the states are existential and have rank 1. From each state q (2) there are two
ε-transitions to q(1) in the first copy and to q(3) in the third copy. Finally, in the third copy
of A all the states are universal and have rank 2. The transitions from the states ranked 0
in A are just like in A, and from the states ranked 1 in A they go to an all-rejecting state
⊥ (rank 3 in B). It is easy to see that B recognizes L(A).

Proposition 5.4. For each automaton with n states containing no (0, 1)-flower replicated
by an accepting loop one can construct an equivalent weak alternating (1, 4)-automaton with
O(n2) states.

Proof. Let A be an automaton without (0, 1)-flower replicated by an accepting loop. Con-
sider the DAG of strongly connected components of A.For each SCC X containing at least
one loop we will construct a weak automaton BX recognising the languages of trees t such
that each path of A’s run on t that enters X either leaves X or is accepting. Obviously, the
conjunction of such automata recognizes exactly L(A). Let us first consider components
replicated by an accepting loop. By the hypothesis, such a component must not contain a
(0, 1)-flower. Therefore we may assume that X only uses ranks 1 and 2. To obtain BX take
a copy of A. The states outside X can be divided into three disjoint groups: those that
can be reached from X, those from which X can be reached, and the rest. Give the states
from the first group the rank 4, and the states from the second and third group the rank
2. Finally, following the method from Proposition 5.1, replace X with an equivalent weak
alternating subautomaton using ranks 2,3, and 4. The constructed automaton has O(n)
states.

The case of X not replicated by an accepting loop is more tricky. The key property
follows from the Replication Lemma. Let ρX denote the restriction of the run ρ to the
nodes labeled with a state from X or having a descendant labeled with a state from X. By
the Replication Lemma, this tree has only finitely many branches (some of them may be
infinite). What BX should do is to guess a node v on each path such that in the subtree
rooted in v, ρX is either empty or consists of one infinite accepting branch. In the latter case
we may additionally demand that on this infinite path the highest rank that ever occurs,
occurs infinitely many times.

BX consists of the component Cguess realising the guessing, the component CA\X check-
ing that no path of the computation enters X, and components CX,r for all ranks r used in
X, which check that in a given subtree of the run ρ there is exactly one branch of ρX and
that on this branch r occurs infinitely often and no higher rank is used.

To construct Cguess, take a copy of A and declare all the states universal and set their
ranks to 1. For each q add a fresh existential state q ′ of rank 1 with an ε-transition to q
and either to qA\X ∈ CA\X if q /∈ X (ρX is empty) or to qX,r ∈ CX,r for all r if q ∈ X (ρX

is one infinite accepting path). Finally replace each transition p
σ−→ p0, p1 with σ−→ p′0, p′1.

The component CA\X is a copy of A with all ranks equal 2, and the SCC X replaced
with one all-rejecting state ⊥ with rank 3.

Finally, let us now describe the automaton CX,r. The automaton, staying in rank 2,
works its way down the input tree just like A would, with the following modifications:
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Σ0
0 = (1, 1) Σ0

1 = (1, 2) Σ0
2 = (1, 3)

� � � � �

Σ0
1 ∩Π0

1 Σ0
2 ∩Π0

2 Σ0
3 ∩Π0

3

‖ ‖ ‖
(1, 2) ∩ (0, 1) (1, 3) ∩ (0, 2) (1, 4) ∩ (0, 3)

� � � � � �

Π0
0 = (0, 0) Π0

1 = (0, 1) Π0
2 = (0, 2) Π0

3 = (0, 3)

Figure 4: For deterministic tree languages the hierarchies coincide.

• if A enters a state in X with rank greater than r, CX,r moves to an all rejecting
state ⊥ (rank 3),

• if A takes a transition exiting X on both branches or staying in X on both branches,
CX,r moves to ⊥,

• if A takes a transition whose left branch leaves X and the right branch stays inside,
CX,r sends to the right a (3, 4)-component looking for a state from X with the rank
r, and moves on to the right subtree (and symmetrically).

In order two see that CX,r does the job, it is enough to observe that if the (3, 4)
component always succeeds to find a state from X with the rank r, then on the unique path
that stays forever in X the rank r repeats infinitely often.

The (3, 4)-component of CX,r can be constructed in such a way that it has |X| + 2
states, and so in this case BX has at most 2|X|(|X| + 2) + 3n ≤ 2|X|2 + 7n states.

In both cases, the number of states of BX can be bounded by c1|X|2 + c2n for fixed
constants c1 and c2, independent of X. Since the SCCs are disjoint, the number of states
of the conjunction of BX ’s is at most

1 +
∑
X∈A

(c1|X|2 + c2n) ≤ 1 + c1

(∑
X∈A

|X|
)2

+ c2n
2 ≤ (c1 + c2)n2 + 1 .

We have now collected all the ingredients for the solution of the weak index problem for
deterministic languages. What is left to be done is to glue together the sufficient conditions
for index easiness and Borel hardness using Corollary 3.3.

Theorem 5.5. For deterministic languages the Borel hierarchy and the weak index hierar-
chy coincide (Fig. 4) and are decidable within the time of solving emptiness problem. For a
deterministic automaton with n states, an equivalent minimal index automaton with O(n2)
states can be constructed effectively within the time of solving the emptiness problem.

Proof. We will abuse the notation and write (ι, κ) to denote the class of languages recognized
by weak (ι, κ)-automata. All the classes considered here are relativised to the deterministic
languages.

By the two versions of the Gap Theorem we have the equality and decidability of the
classes of the classes Π0

3 and (0, 3).
Let us continue with the third level. Let us see that Σ0

3 = (1, 4). We will show that
both these classes are equal to the class of languages recognized by deterministic automata
without a (0, 1)-flower replicated by an accessible loop. If a deterministic automaton A does
not contain this pattern, then it is equivalent to a weak (1, 4)-automaton and by Corollary
3.3 recognizes a Σ0

3 language. If A does contain this pattern, then by Proposition 4.2 it is
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not Σ0
3 and so is not equivalent to a weak (1, 4)-automaton. The decidability follows easily,

since checking for the pattern above can be done effectively (in polynomial time).
For the equality Π0

2 = (0, 2), prove that both classes are equal to the class of languages
recognized by deterministic automata without a (0, 1)-flower. Proceed just like before, only
use Proposition 5.1 instead of Proposition 5.4. Analogously, using Proposition 5.3, show that
both Σ0

2 and (1, 3) are equal to the class of languages recognized by deterministic automata
admitting neither a (1, 2)-flower nor a weak (1, 0)-flower replicated by an accepting loop.

For the first level use the characterisation given by Proposition 4.4. The level zero is
trivial.
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Abstract. In this paper, we prove an extension of Mahler’s theorem, a celebrated result
of p-adic analysis. Mahler’s original result states that a function from N to Z is uniformly
continuous for the p-adic metric dp if and only if it can be uniformly approximated by
polynomial functions. We prove the same result for functions from A∗ to Z, where dp is
now the profinite metric defined by p-groups (pro-p metric).

This paper was originally motivated by two main research lines of automata theory, but
resulted into an approximation theorem that goes far beyond our original project. We first
present our original motivations and then describe our main result. Recall that a variety
of languages is a class of regular languages closed under Boolean operations, left and right
quotients and inverse morphisms.

1. Motivations

Our first motivation was the study of regularity-preserving functions f from A∗ to B∗, in
the following sense: ifX is a regular language of B∗, then f−1(X) is a regular language of A∗.
More generally, we were interested in functions preserving a given variety of languages V: if
X is a language of V, then f−1(X) is also a language of V. There is an important literature
on the regular case [20, 6, 18, 12, 13, 2], including the authors recent paper [14]. A similar
problem was also recently considered for formal power series [3]. A remarkable contribution
to the second problem can be found in [16], where a characterization of sequential functions
preserving aperiodic languages (respectively group-languages) is given.
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Our second motivation was the study of certain reductions. A fundamental idea of
descriptive set theory is to use continuous reductions to classify topological spaces: given two
sets X and Y , Y reduces to X if there exists a continuous function f such that X = f−1(Y ).
For Polish spaces, this gives rise to the Wadge hierarchy [21], nowadays entirely described
and very well understood. Wagner [22] was the first to consider the restriction of the Wadge
hierarchy to ω-rational languages. He proved in particular that the hierarchy doesn’t change
if continuous functions are replaced by sequential functions, a much more restricted class
of functions (see [10, Chapter 5] for more details).

Our idea was to consider similar reductions for regular languages (of finite words this
time). The first obstacle was to find an appropriate topology, but there is a natural can-
didate: the profinite topologies, a notion first introduced in [5]. Indeed, by Eilenberg’s
theorem, to each variety of languages V corresponds a unique variety of finite monoids V,
which in turn defines the pro-V topology [15]. We shall not give here the precise definition,
but it suffices to know that, in the most interesting cases, this topology can be defined by
a metric dV. Let us call V-reduction a uniformly continuous function between the metric
spaces (A∗, dV) and (B∗, dV). These V-reductions define a hierarchy similar to the Wadge
hierarchy among regular languages, which we would like to explore. Note that a different
notion of reduction for regular languages was recently considered in [19]. The first author
had very instructive discussions with Selivanov and Kunc in June 2006 on the comparison
between these two reductions and this paper is partly motivated by this conversation.

Regularity-preserving functions and V-reductions are actually strongly related. Indeed,
one can show that a function from (A∗, dV) to (B∗, dV) is uniformly continuous if and only
if, for every language L in V(B∗), f−1(L) belongs to V(A∗). This encouraging fact lead
us to search for a more precise description of V-reductions. However, apart from general
results, not so much is known on pro-V topologies, except when V is a variety of finite
groups. Among groups, the variety Gp of p-groups, where p is a given prime, is of special
interest for two reasons. First, Eilenberg and Schützenberger gave a very nice description of
the languages recognized by a p-group (see Proposition 2.2 below). Second, a special case
of the metric dp has been widely studied in mathematics: indeed, the free monoid over a
one-letter alphabet is isomorphic to N, and the metric dp is known as the p-adic metric. The
completion of the metric space (N, dp) is the space of p-adic numbers and p-adic analysis is
the branch of number theory that deals with functions of p-adic numbers [1, 17, 9].

Our main result takes advantage of this powerful mathematical framework to provide a
characterization of the Gp-reductions from A∗ to N, that is, the uniformly continuous func-
tions from (A∗, dp) to (N, dp). It turns out that this characterization extends a celebrated
result of number theory, Mahler’s theorem (see http://en.wikipedia.org/wiki/Mahler’
s_theorem), giving our result a mathematical interest on its own. Our result states that
a function from A∗ to N is uniformly continuous for dp if and only if it can be uniformly
approximated by a sequence of polynomial functions. Before stating this result in a precise
form, we need a few formal definitions.

2. The p-adic and pro-p topologies

In the sequel, A denotes a finite alphabet, A∗ is the free monoid on A and 1 denotes
the empty word.

Let p be a prime number. Recall that a p-group is a finite group whose order is a power
of p. Let u and v be two words of A∗. A p-group G separates u and v if there is a monoid
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morphism from A∗ onto G such that ϕ(u) 6= ϕ(v). One can show that any pair of distinct
words can be separated by a p-group. We now set

rp(u, v) = min { n | there is a p-group of order pn separating u and v }
dp(u, v) = 2−rp(u,v)

with the usual convention min ∅ = −∞ and 2−∞ = 0. One can show that dp is an ultramet-
ric, that is, satisfies the following properties, for all u, v, w ∈ A∗:

(1) dp(u, v) = 0 if and only if u = v,
(2) dp(u, v) = dp(v, u),
(3) dp(u, v) 6 max(dp(u,w), dp(w, v))

One can also show that the concatenation product on A∗ is uniformly continuous for this
metric. It follows that the completion of the metric space (A∗, dp) is naturally equipped
with a structure of monoid, which is in fact a compact group, called the free pro-p group.
The topology defined by the metric dp is usually called the pro-p topology in the literature.

There is a nice connection [11] between this topology and a generalization of the bino-
mial coefficients. Let u and v be two words of A∗. Let u = a1 · · · an, with a1, . . . , an ∈ A.
Then u is a subword of v if there exist v0, . . . , vn ∈ A∗ such that v = v0a1v1 . . . anvn.
Following [4, 7], we define the binomial coefficient of u and v by setting(

v

u

)
= |{(v0, . . . , vn) | v = v0a1v1 . . . anvn}| .

Observe that if a is a letter, then
(
v
a

)
is simply the number of occurrences of a in v, also

denoted by |v|a. Also note that if A = {a}, u = an and v = am, then(
v

u

)
=

(
m

n

)
and hence these numbers constitute a generalization of the classical binomial coefficients.
The next proposition, whose proof can be found in [7, Chapter 6], summarizes the basic
properties of the generalized binomial coefficients and can serve as an alternative definition.

Lemma 2.1. Let u, v ∈ A∗ and a, b ∈ A. Then
(1)

(u
1

)
= 1,

(2)
(u
v

)
= 0 if |u| 6 |v| and u 6= v,

(3)
(ua

vb

)
=

{(
u
vb

)
if a 6= b( u

vb

)
+

(u
v

)
if a = b

A third way to define the binomial coefficients is to use the Magnus automorphism of the
algebra Z〈A〉 of polynomials in noncommutative indeterminates in A defined by µ(a) = 1+a
for all a ∈ A. One can show that, for all u ∈ A∗,

µ(u) =
∑
x∈A∗

(
u

x

)
x (2.1)

which leads to the formula (
u1u2

x

)
=

∑
x1x2=x

(
u1

x1

)(
u2

x2

)
(2.2)
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The connection between the pro-p topology and the binomial coefficients comes from the
characterization of the languages recognized by a p-group given by Eilenberg and Schützen-
berger (see [4, Theorem 10.1, p. 239]). Let us call a p-group language a language recognized
by a p-group. Note that such a language is necessarily regular.

Proposition 2.2. A language of A∗ is a p-group language if and only if it is a Boolean
combination of the languages

L(x, r, p) = {u ∈ A∗ |
(
u

x

)
≡ r mod p},

for 0 6 r < p and x ∈ A∗.
Let us set now

r′p(u, v) = min
{
|x| ∣∣ x ∈ A∗ and

(
u

x

)
6≡

(
v

x

)
(mod p)

}
d′p(u, v) = p−r′p(u,v).

It is proved in [11, Theorem 4.4] that d′p is an ultrametric uniformly equivalent to dp. We
shall use this result under a slightly different form.

Theorem 2.3. A function f : A∗ → B∗ is uniformly continuous for dp if and only if,
for every regular language L of A∗ recognized by a p-group, the language f−1(L) is also
recognized by a p-group.

Proof. Let L be a language recognized by a p-group G of order pk. Then there exists a
monoid morphism ϕ : A∗ → G such that L = ϕ−1(ϕ(L)). If f is uniformly continuous
for dp, there exists n > 0 such that if rp(u, v) > n, then rp(f(u), f(v)) > k. It follows in
particular that f(u) and f(v) cannot be separated by G and hence ϕ(f(u)) = ϕ(f(v)).

Let (ψi)i∈I be the family of all monoid morphisms from A∗ onto a p-group Hi of order
6 pn. Let ψ : A∗ → ∏

i∈I Hi be the morphism defined by ψ(x) = (ψi(x))i∈I and let H
be the range of ψ. Then H is a p-group and if ψ(u) = ψ(v), then rp(u, v) > n and thus
ϕ(f(u)) = ϕ(f(v)). We claim that

ψ−1(ψ(f−1(L)) = f−1(L)

First, f−1(L) is clearly a subset of ψ−1(ψ(f−1(L)). To prove the opposite inclusion, let
u ∈ ψ−1(ψ(f−1(L)). Then ψ(u) ∈ ψ(f−1(L)), that is, ψ(u) = ψ(v) for some v ∈ f−1(L). It
follows that ϕ(f(u)) = ϕ(f(v)) and since f(v) ∈ L, f(u) ∈ ϕ−1(ϕ(L)) and finally f(u) ∈ L
since L = ϕ−1(ϕ(L)). This proves the claim and shows that f−1(L) is a p-group language.

Suppose now that if L is a p-group language, then f−1(L) is also a p-group language.
Let ϕ be a morphism from A∗ onto a p-group G. For each g ∈ G, ϕ−1(g) is a p-group
language and hence f−1(ϕ−1(g)) is recognized by a morphism ψg : A∗ → Hg onto a p-
group. Let ψ : A∗ → ∏

g∈GHg be the mapping defined by ψ(x) = (ψg(x))g∈G and let
H = ψ(A∗). Then H is also a p-group and if ψ(u) = ψ(v), then ψg(u) = ψg(v) for all
g ∈ G. Since ψg recognizes f−1(ϕ−1(g)), it follows that u ∈ f−1(ϕ−1(g)) if and only if
v ∈ f−1(ϕ−1(g)) and hence ϕ(f(u)) = ϕ(f(v)).

Now let k ∈ N. If we consider all the morphisms ϕ from A∗ onto a p-group of order
6 pk, and take n ∈ N large enough so that every group H corresponding to ϕ has order
6 pn, it follows that

rp(u, v) > n⇒ rp(f(u), f(v)) > k

holds for all u, v ∈ A∗. This shows that f is uniformly continuous for dp.



A MAHLER’S THEOREM FOR FUNCTIONS FROM WORDS TO INTEGERS 589

In the case of a one-letter alphabet, A∗ is isomorphic to the additive monoid N and the
definition of dp can be further simplified. If n is a non-zero integer, recall that the p-adic
valuation of n is the integer

νp(n) = max
{
k ∈ N | pk divides n

}
By convention, νp(0) = +∞. The p-adic norm of n is the real number

|n|p = p−νp(n).

The p-adic norm satisfies the following axioms, for all n,m ∈ N:
(1) |n|p > 0,
(2) |n|p = 0 if and only if n = 0,
(3) |mn|p = |m|p|n|p,
(4) |m+ n|p 6 max{|m|p, |n|p}.

Finally, the metric dp can be defined by

dp(u, v) = |u− v|p.
and is known as the p-adic metric. Since Z is naturally embedded in the p-adic completion
of N, the definitions above can be readily extended to Z. In the sequel, it will be more
convenient to use the metric space (Z, dp) in place of (N, dp).

3. Mahler’s expansions

The classical Stone-Weierstrass approximation theorem states that a continuous func-
tion defined on a closed interval can be uniformly approximated by a polynomial function.
In particular, if a function f is infinitely differentiable in the neighbourhood of 0, it can be
approximated, under some convergence conditions, by its Taylor polynomials

k∑
n=0

f (n)(0)
n!

xn

The p-adic analogue of these results is Mahler’s theorem [8]. For a fixed k ∈ N, the binomial
polynomial function

u→
(
u

k

)
defines a uniformly continuous function from (N, dp) to (Z, dp). The Mahler’s expansion of
a function f from N to Z is defined as the series

∞∑
k=0

(∆kf)(0)
(
u

k

)
where ∆ is the difference operator, defined by

(∆f)(u) = f(u+ 1)− f(u)

Mahler’s theorem states that f is uniformly continuous for dp if and only if its Mahler’s
expansion converges uniformly to f . Of course, the most remarkable part of the theorem
is the fact that any uniformly continuous function can be approximated by polynomial
functions, in contrast to Stone-Weierstrass approximation theorem, which requires much
stronger conditions.
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For instance, if f is the Fibonacci sequence defined by f(0) = f(1) = 1 and f(n) =
f(n− 1) + f(n− 2) for n > 2, then

f(n) =
∞∑

k=0

(−1)k+1f(k)
(
n

k

)
This function is not uniformly continuous for dp for any choice of p. If f(n) = rn, then

f(n) =
∞∑

k=0

(r − 1)k

(
n

k

)
and f is uniformly continuous for dp if and only if p divides r − 1.

The first step to extend Mahler’s theorem to functions from words to integers is to
define a suitable notion of Mahler’s expansion for these functions.

Let f : A∗ → Z be a function. For each letter a, we define the difference operator ∆a

by
(∆af)(u) = f(ua)− f(u)

One can now define inductively an operator ∆w for each word w ∈ A∗ by setting (∆1f)(u) =
f(u), and for each letter a ∈ A,

(∆awf)(u) = (∆a(∆wf))(u).

It is easy to see that these operators can also be defined directly by setting

∆wf(u) =
∑

06|x|6|w|
(−1)|w|+|x|

(
w

x

)
f(ux) (3.1)

For instance, ∆aabf(u) = −f(u) + 2f(ua) + f(ub)− f(uaa)− 2f(uab) + f(uaab).
For a fixed v ∈ A∗, the function

u→
(
u

v

)
from A∗ to Z which maps a word u to the binomial coefficient

(u
v

)
is uniformly continuous

for dp. This family of functions, for v ranging over A∗, is locally finite in the sense that,
for each u ∈ A∗, the binomial coefficient

(u
v

)
is null for all but finitely many words v. In

particular, if (mv)v∈A∗ is a family of integers, there is a well-defined function from A∗ to Z

defined by the formula

f(u) =
∑
v∈A∗

mv

(
u

v

)
We can now state our first result, which doesn’t require any assumption on f .

Theorem 3.1. Let f : A∗ → Z be an arbitrary function. Then there exists a unique family
〈f, v〉v∈A∗ of integers such that, for all u ∈ A∗,

f(u) =
∑
v∈A∗

〈f, v〉
(
u

v

)
(3.2)

This family is given by

〈f, v〉 = (∆vf)(1) =
∑

06|x|6|v|
(−1)|v|+|x|

(
v

x

)
f(x) (3.3)
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Proof. First observe that, according to (3.1)

(∆vf)(1) =
∑

06|x|6|v|
(−1)|v|+|x|

(
v

x

)
f(x) (3.4)

Thus ∑
v∈A∗

(∆vf)(1)
(
u

v

)
=

∑
v∈A∗

∑
|x|6|v|

(−1)|v|+|x|
(
v

x

)(
u

v

)
f(x)

=
∑
x∈A∗

(−1)|u|+|x|

 ∑
06|v|6|u|

(−1)|v|+|u|
(
u

v

)(
v

x

) f(x)

= f(u)

in view of the following relation from [7, Corollary 6.3.8]:∑
06|v|6|u|

(−1)|u|+|v|
(
u

v

)(
v

w

)
=

{
1 if u = w

0 otherwise
(3.5)

Uniqueness of the coefficients 〈f, v〉 follows inductively from the formula

〈f, u〉 = f(u)−
∑

06|v| < |u|
〈f, v〉

(
u

v

)
,

a straightforward consequence of (3.2).

The series defined by (3.2) is called the Mahler’s expansion of f .
For instance, let f : {0, 1}∗ → N be the function mapping a binary word onto its value

as a binary number. Thus f(010111) = f(10111) = 23. Then one has

(∆vf) =

{
f + 1 if |v|1 > 0
f otherwise

(∆vf)(ε) =

{
1 if |v|1 > 0
0 otherwise

Thus, if u = 01001, one gets

f(u) =
(
u

1

)
+

(
u

10

)
+

(
u

11

)
+

(
u

100

)
+

(
u

101

)
+

(
u

1001

)
= 2 + 2 + 1 + 1 + 2 + 1 = 9

4. Mahler polynomials

A function f : A∗ → Z is a Mahler polynomial if its Mahler’s expansion has finite
support, that is, if the number of nonzero coefficients 〈f, v〉 is finite. In this section, we
prove in particular that Mahler polynomials are closed under addition and product. We
first introduce a convenient combinatorial operation, the infiltration product. We follow the
presentation of [7].

Let Z〈〈A〉〉 be the ring of formal power series in noncommutative indeterminates in A.
Any series s is written as a formal sum s =

∑
u∈A∗〈s, u〉u, a notation not to be confused with
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our notation for the Mahler’s expansion. The infiltration product is the binary operation
on Z〈〈A〉〉, denoted by ↑ and defined inductively as follows:

for all u ∈ A∗,
u ↑ 1 = 1 ↑ u = u, (4.1)

for all u, v ∈ A∗, for all a, b ∈ A

ua ↑ bv =

{
(u ↑ vb)a+ (ua ↑ v)b+ (u ↑ v)a if a = b

(u ↑ vb)a+ (ua ↑ v)b otherwise
(4.2)

for all s, t ∈ Z〈〈A〉〉,
s ↑ t =

∑
u,v∈A∗

〈s, u〉〈t, v〉(u ↑ v) (4.3)

Intuitively, the coefficient 〈u ↑ v, x〉 is the number of pairs of subsequences of x which
are respectively equal to u and v and whose union gives the whole sequence x. For instance,

ab ↑ ab = ab+ 2aab+ 2abb+ 4aabb+ 2abab
ab ↑ ba = aba+ bab+ abab+ 2abba+ 2baab+ baba

Also note that 〈u ↑ v, u〉 =
(u
v

)
. We shall need the following relation (see [7, p.131]). For all

v1, v2 ∈ A∗, (
u

v1

)(
u

v2

)
=

∑
x∈A∗

〈v1 ↑ v2, x〉
(
u

x

)
(4.4)

Formula 4.4 leads to an explicit computation of the Mahler’s expansion of the product of
two functions.

Proposition 4.1. Let f and g be two functions from A∗ to N. Then the coefficients of the
Mahler’s expansion of fg are given by the formula:

〈fg, x〉 =
∑

v1,v2∈A∗
〈f, v1〉〈g, v2〉〈v1 ↑ v2, x〉

Proof. Indeed, if f(u) =
∑

v∈A∗〈f, v〉
(u
v

)
and g(u) =

∑
v∈A∗〈g, v〉

(u
v

)
, then

fg(u) =
∑

v1,v2∈A∗
〈f, v1〉〈g, v2〉

(
u

v1

)(
u

v2

)
and the result follows by Formula (4.4).

It is now easy to prove the result announced at the beginning of this section.

Proposition 4.2. Mahler polynomials form a subring of the ring of all functions from A∗
to Z for addition and multiplication.

Proof. It is clear that the difference of two Mahler polynomials is a Mahler polynomial.
Further Proposition 4.1 shows that Mahler polynomials are closed under product.
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5. Mahler’s theorem

We are now ready to state our main result, which extends Mahler’s theorem. In this
section, uniform continuity always refers to the metric dp.

Theorem 5.1. Let f(u) =
∑

v∈A∗〈f, v〉
(
u
v

)
be the Mahler’s expansion of a function from

A∗ to Z. Then f is uniformly continuous if and only if lim|v|→∞ |〈f, v〉|p = 0.

Proof. Suppose that lim|v|→∞ |〈f, v〉|p = 0. Then there exists s ∈ N such that, if |v| > s,
νp(〈f, v〉) > r. Setting

g(u) =
∑
|v|<s

〈f, v〉
(
u

v

)
and h(u) =

∑
|v|>s

〈f, v〉
(
u

v

)
we get f = g+ h. Further pr divides 〈f, v〉 for |v| > s. Since g is a Mahler polynomial, it is
uniformly continuous and there exists t ∈ N such that dp(u, u′) 6 p−t implies g(u) ≡ g(u′)
(mod pr) and hence f(u) ≡ f(u′) (mod pr). Thus f is uniformly continuous.

This proves the easy direction of the theorem. The key argument for the opposite
direction is the following approximation result.

Theorem 5.2. Let f : A∗ → N be a uniformly continuous function. Then there exists a
Mahler polynomial P such that, for all u ∈ A∗, f(u) ≡ P (u) (mod p).

Proof. We first prove the theorem for some characteristic functions related to the binomial
coefficients. The precise role of these functions will appear in the course of the main proof.

Let x ∈ A∗ and let s be an integer such that 0 6 s < p. Let χs,x : A∗ → N be the
function defined by

χs,x(u) =

{
1 if

(u
x

) ≡ s (mod p)
0 otherwise

Lemma 5.3. There is a Mahler polynomial Ps,x such that, for all u ∈ A∗, χs,x(u) ≡ Ps,x(u)
(mod p).

Proof. Let

Ps,x(u) = −
[(u

x

)] [(u
x

)− 1
] · · · [(u

x

)− (p− 1)
]

(u
x

)− s

Then Ps,x is a Mahler polynomial by Proposition 4.2. If
(u
x

) 6≡ s (mod p), then Ps,x(u) ≡ 0
(mod p). If

(
u
x

) ≡ s (mod p), then by Al-Haytham’s theorem,

Ps,x(u) ≡ −(p− 1)! ≡ 1 (mod p)

It follows that Ps,x(u) ≡ χs,x(u) (mod p) in all cases.

We now prove Theorem 5.2. Since f is uniformly continuous, there exists a positive integer
n such that if, for 0 6 |x| 6 n, (

u

x

)
≡

(
v

x

)
(mod p)

then
f(u) ≡ f(v) (mod p)

It follows that the value of f(u) modulo p depends only on the residues modulo p of the
family

{(u
x

)}
06|x|6n

.



594 J.-É. PIN AND P. V. SILVA

Let C be the set of all families r = {rx}06|x|6n such that 0 6 rx < p. For 0 6 i < p, let
Ci be the set of all families r of C satisfying the following condition:

if, for 0 6 |x| 6 n,
(
u

x

)
≡ rx (mod p), then f(u) ≡ i (mod p) (5.1)

The sets (Ci)06i<p are pairwise disjoint and their union is C. We claim that, for all u ∈ A∗,

f(u) ≡
∑

06i<p

iPi(u) (mod p) (5.2)

where Pi is the Mahler polynomial

Pi =
∑
r∈Ci

∏
06|x|6n

Prx,x (5.3)

First consider, for r ∈ C, the characteristic function

χr(u) =
∏

06|x|6n

χrx,x(u)

By construction, χr is defined by

χr(u) =

{
1 if, for 0 6 |x| 6 n,

(u
x

) ≡ rx (mod p)
0 otherwise

and it follows from (5.1) and from the definition of Ci that

f(u) ≡
∑

06i<p

(
i
∑
r∈Ci

χr(u)
)

(mod p) (5.4)

Now Lemma 5.3 gives immediately

χr(u) ≡
∏

06|x|6n

Prx,x(u) (mod p) (5.5)

and thus (5.2) follows now from (5.3), (5.4) and (5.5). The result follows, since

P =
∑

06i<p

iPi(u)

is a Mahler polynomial.

Theorem 5.2 can be extended as follows.

Corollary 5.4. Let f : A∗ → N be a uniformly continuous function. Then, for each positive
integer r, there exists a Mahler polynomial Pr such that, for all u ∈ A∗, f(u) ≡ Pr(u)
(mod pr).

Proof. We prove the result by induction on r. For r = 1, the result follows from Theorem
5.2. If the result holds for r, there exists a Mahler polynomial Pr such that, for all u ∈ A∗,
f(u)−Pr(u) ≡ 0 (mod pr). Let g = f −Pr. Since g is uniformly continuous, there exists a
positive integer n such that if

(
u
x

) ≡ (
v
x

)
(mod p) for |x| 6 n, then g(u) ≡ g(v) (mod p2r).

It follows that 1
pr g(u) ≡ 1

pr g(v) (mod pr), and thus 1
pr g is uniformly continuous.

Applying Theorem 5.2 to 1
pr g, we get a Mahler polynomial P such that, for all u ∈ A∗,

1
pr
g(u) ≡ P (u) (mod p)
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Setting Pr+1 = Pr + prP , we obtain finally

f(u) ≡ Pr+1(u) (mod pr+1)

which concludes the proof.

We now conclude the proof of Theorem 5.1. For each positive integer r, there exists
a Mahler polynomial Pr such that, for all u ∈ A∗, f(u) ≡ Pr(u) (mod pr). Using (3.3) to
compute explicitly the coefficients 〈f − Pr, v〉, we obtain

〈f − Pr, v〉 ≡ 0 (mod pr)

Since Pr is a polynomial, there exists an integer nr such that for all v ∈ A∗ such that
|v| > n, 〈Pr, v〉 = 0. It follows |〈f, v〉|p < p−r and thus lim|v|→∞ |〈f, v〉|p = 0.

Mahler’s theorem is often presented as an interpolation result (see for instance [9,
p. 57]). This can also be extended to functions from words to integers. Given a family
of integers (cv)v∈A∗ , one can ask whether there is a (uniformly) continuous function f
from the free pro-p group to Z such that f(v) = cv. Then answer is yes if and only if
lim|v|→∞ |mv|p = 0, where mv =

∑
06|x|6|v|(−1)|v|+|x|

(
v
x

)
cx.

6. Conclusion

We proved an extension of Mahler’s theorem for functions from words to integers. It
would be interesting to find a suitable extension for functions from words to words. It would
also be interesting to see whether other results from p-adic analysis can be extended to the
word case.
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Abstract. Distinguishing logarithmic depth quantum circuits on mixed states is shown
to be complete for QIP, the class of problems having quantum interactive proof systems.
Circuits in this model can represent arbitrary quantum processes, and thus this result has
implications for the verification of implementations of quantum algorithms. The distin-
guishability problem is also complete for QIP on constant depth circuits containing the
unbounded fan-out gate. These results are shown by reducing a QIP-complete problem to
a logarithmic depth version of itself using a parallelization technique.

1. Introduction

Much of the difficulty in implementing quantum algorithms in practice is that qubits
quickly decohere upon interacting with the environment. This entanglement destroying
process limits the length of the computations that can be realized by experiment. Im-
plementing quantum algorithms as circuits of low depth can provide a way to perform as
much computation as possible within the limited time available, and for this reason there
is significant interest in finding short quantum circuits for important problems.

Log-depth quantum circuits have been found for several significant problems including
the approximate quantum Fourier transform [3] and the encoding and decoding operations
for many quantum error correcting codes [10]. In addition to these applications, a pro-
cedure for parallelizing to log-depth a large class of quantum circuits has recently been
discovered [2]. These examples demonstrate the surprising power of short quantum circuits.

Much of the work on quantum circuits is done in the standard model of unitary quantum
circuits on pure states. In this paper a slightly different model of computation is considered:
the model of mixed state quantum circuits, introduced by Aharonov, Kitaev, and Nisan [1].
While much of the previous complexity-theoretic work on short quantum circuits has been
in the unitary model [4, 6], there has also been work outside of this model [13]. There
are several advantages to considering the more general model of mixed state circuits. The
primary advantage is that the mixed state model is able to capture any process allowed by
quantum mechanics, so that results on this model may have implications for experimental
work in quantum computing. The problem of distinguishing circuits may thus be thought
of as the problem of distinguishing potentially noisy physical processes. As an example,

Key words and phrases: quantum information, computational complexity, quantum circuits, quantum
interactive proof systems.
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finding an error in an implementation of a quantum algorithm is simply the problem of
distinguishing the constructed circuit from one that is known to be correct.

Unfortunately, in this paper it is shown that the apparent power of short quantum
computations comes with a price: logarithmic depth quantum circuits are exactly as difficult
to distinguish as polynomial depth quantum circuits. This equivalence implies the surprising
result that distinguishing log-depth quantum computations is complete for the class QIP,
the set of all problems that have quantum interactive proof systems. As PSPACE ⊆ QIP ⊆
EXP [8], this result also implies that the problem is PSPACE-hard.

The result on circuit distinguishability is shown using the closely related problem of
determining if two circuits can be made to output states that are close together. This
problem was introduced by Kitaev and Watrous [8] who show it to be both complete for
QIP and contained in EXP. The main result of the present paper is obtained by reducing an
instance of this problem of polynomial depth to an equivalent instance of logarithmic depth.
This demonstrates that the problem of close images remains complete for QIP even under
a logarithmic depth restriction. The hardness of distinguishing short quantum circuits is
then demonstrated by a modification to the argument in [12] to show that the equivalence
of close images problem and the distinguishability holds even for log-depth circuits.

The remainder of this paper is organized as follows. In the next section, some of the
notation and results that will be needed are summarized. This is followed by Section 3,
where the complete problems for QIP are discussed. In Section 4 the reduction from the
polynomial depth to logarithmic depth versions of the close images problem is given, and
the correctness of this construction is shown in Section 5. The equivalence between the
log-depth close images problem and the problem of distinguishing log-depth computations
is discussed in Section 6.

2. Preliminaries

This section outlines some of the definitions and results that will be used throughout
the paper. For a more thorough treatment of the concepts introduced here see [9] and [11].

Throughout the paper scripted letters such as H will refer to finite dimensional Hilbert
spaces, D(H) will denote the set of all density matrices on H, and U(H,K) will denote
the norm-preserving linear operators from H to K. The proof of the main result will make
extensive use of two notions of distance between quantum states. The first of these is the
fidelity. The fidelity between two positive semidefinite operators X and Y on a space H
can be defined as

F (X,Y ) = max{|〈φ|ψ〉| : |φ〉, |ψ〉 ∈ H ⊗K, trK |φ〉〈φ| = X, trK |ψ〉〈ψ| = Y }.
This definition is known as Uhlmann’s Theorem, and it is used here as it is more directly
applicable to the task at hand than the usual definition. As any purification of a state
necessarily purifies the partial trace of that state, this equation implies that the fidelity is
nondecreasing under the partial trace. This property is known as monotonicity and can be
stated more formally as F (X,Y ) ≤ F (trKX, trK Y ) where X,Y are positive semidefinite
operators on H⊗K. The final property of the fidelity that will be needed is the result that
the maximum fidelity of any outputs of two transformations is multiplicative with respect
to the tensor product. This result can be found in [9] (see Problem 11.10 and apply the
multiplicativity of the diamond norm with respect to the tensor product).
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Theorem 2.1 (Kitaev, Shen, and Vyalyi [9]). For any completely positive transformations
Φ1,Φ2,Ψ1,Ψ2 on states in H

max
ρ,ξ∈D(H⊗H)

F ((Φ1 ⊗ Φ2)(ρ), (Ψ1 ⊗Ψ2)(ξ)) =
∏

i=1,2

max
ρ,ξ∈D(H)

F(Φi(ρ),Ψi(ξ))

The second notion of distance that will be used is the trace norm, which can be defined
for any linear operator X by ‖X‖tr = tr

√
X∗X, or equivalently as the sum of the singular

values of X. This quantity is a norm, and so in particular it satisfies the triangle inequality.
Similar to the fidelity, the trace norm is monotone under the partial trace, though in this
case the trace norm is non-increasing under this operation. The proofs that follow will make
essential use of the Fuchs-van de Graaf Inequalities [5] that relate the trace norm and the
fidelity. For any density operators ρ and ξ on the same space, these inequalities are

1− F(ρ, ξ) ≤ 1
2
‖ρ− ξ‖tr ≤

√
1− F(ρ, ξ).

In addition to these measures on quantum states, it will be helpful to have a distance
measure on quantum transformations. One such measure is the diamond norm, which for
a completely positive transformation Φ on density operators on H is given by

‖Φ‖� = sup
ρ∈D(H⊗H)

∥∥(Φ⊗ IL(H))(ρ)
∥∥

tr
.

This norm is essential when considering transformations as it represents the distinguisha-
bility of two transformations when a reference system is taken into account. The simple
supremum of the trace norm over all inputs to the channel is not stable under the addition
of a reference system, and so the diamond norm is used in place of the simpler one. More
properties and a more thorough definition of this norm can be found in [9].

The circuit model that will be used in this paper is the mixed state model introduced
by Aharonov, Kitaev, and Nisan [1]. Circuits in this model are composed of qubits that are
acted upon by arbitrary trace preserving and completely positive operations. This model
allows for non-unitary operations, such as measurement or the introduction of ancillary
qubits, to occur in the middle of the circuit. It is important to note that this model
captures any physical process that quantum mechanics allows, and so in particular, any
computation that can be done on mixed states with measurements can be represented in
this model. Fortunately this model is polynomially equivalent to the standard model of
unitary quantum circuits (with ancilla) followed by measurement, as shown in [1]. This will
allow us to consider only circuits composed of unitary gates from some finite basis of one
and two qubit gates with the additional operations of introducing qubits in the |0〉 state
and measuring in the computational basis. This restriction can be strengthened, again with
no loss of generality, to assume that all ancillary qubits are introduced at the start of the
circuit and that all measurements are performed at the end.

We will often add to this circuit model one additional gate: the unbounded fan-out
gate. This gate, in constant depth, applies a controlled-not operation from one qubit to an
arbitrary number of output qubits. It is not clear that this gate is a reasonable choice in a
standard basis of gates, and so it will be clearly marked when this gate is allowed into the
circuit model under consideration. As an example of the power of this gate it can be used
to build a constant depth circuit for the approximate quantum Fourier transform [7]. This
gate is considered here for the sole reason that if it is included in the standard set of gates,
the main result will also hold for constant depth circuits.
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Figure 1: A circuit implementing the swap test.

For spaces H and K of the same dimension, we use W ∈ U(H⊗K,H⊗K) to represent
the operation that swaps the states in the two spaces. As W is a permutation matrix when
expressed in the computational basis, and the permutation that it encodes is composed ex-
clusively of transpositions, the swap operation is both hermitian and unitary. Furthermore,
W can easily be implemented in constant depth, as all of the required transpositions can
be performed in parallel. This operator is the essential component of the swap test, where
a controlled W operation is used to determine how close two states are to each other. A
circuit performing the swap test is given in Figure 1, where the measurement is performed in
the computational basis. Another way to view the swap test is as a projective measurement
onto the symmetric and antisymmetric subspaces. The projections in this measurement are
given by (I +W )/2 and (I −W )/2. This formulation of the swap test is equivalent to the
circuit presented in Figure 1.

It is not immediately clear how a controlled operation on n qubits, such as the controlled-
swap operation used in the swap test, can be performed in depth logarithmic in n. The
straightforward implementation requires using one control qubit to control each of the gates
in the operation. However, Moore and Nilsson [10] give a simple construction that allows
such an operation to be performed in log-depth.

Proposition 2.2 (Moore and Nilsson). Any log depth operation on n qubits controlled by
one qubit can be implemented in O(log n) depth with O(n) ancillary qubits.

Moore and Nilsson prove this only for the constant depth case, but the method of proof
that they use immediately extends to the log depth case. They prove this proposition by
using a tree of log n controlled-not operations to ‘duplicate’ the control qubit. These copies
can then be used to control the remaining operations, with each control qubit used at most
a logarithmic number of times. This proposition, as an example, implies that the swap test
circuit on n qubits shown in Figure 1 can be implemented in depth O(log n).

If the fan-out gate is allowed into the standard basis of gates, then controlled operations
can be performed with only constant depth overhead. A circuit that performs this can be
obtained by simply using one fan-out gate to make n copies (in the computational basis) of
the control qubit onto ancillary qubits. These ‘copies’ may then be used to control each of
the n operations, with a final application of the fan-out gate to restore the ancillary qubits
to the |0〉 state. As controlled operations will be the only place that the circuits constructed
here exceed constant depth, this will allow the proof of the main result for constant depth
circuits with fan-out.
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3. Complete Problems for QIP

The Close Images problem, defined and shown to be complete for QIP in [8] can be
stated as follows.
Close Images. For constants 0 < b < a ≤ 1, the input consists of quantum circuits Q1 and
Q2 that implement transformations from H to K. The promise problem is to distinguish the
two cases:

Yes: F(Q1(ρ), Q2(ξ)) ≥ a for some ρ, ξ ∈ D(H),
No: F(Q1(ρ), Q2(ξ)) ≤ b for all ρ, ξ ∈ D(H).

This is simply the problem of determining if there are inputs to Q1 and Q2 that cause them
to output states that are nearly the same. It will be helpful to abbreviate the name of this
problem as CIa,b.

A closely related problem is that of distinguishing two quantum circuits. This problem
was introduced and shown complete for QIP in [12].
Quantum Circuit Distinguishability. For constants 0 ≤ b < a ≤ 2, the input consists
of quantum circuits Q1 and Q2 that implement transformations from H to K. The promise
problem is to distinguish the two cases:

Yes: ‖Q1 −Q2‖� ≥ a,
No: ‖Q1 −Q2‖� ≤ b.

Less formally, this problem asks: is there an input density matrix ρ on which the circuits
Q1 and Q2 can be made to act differently? This problem will be referred to as QCDa,b.

It is our aim to prove that these problems remain complete for QIP when restricted
to circuits Q1 and Q2 that are of depth logarithmic in the number of input qubits. This
will be achieved in the case of perfect soundness error, i.e. a = 1, 2 in the above problem
definitions. Both of these problem remain complete for QIP in this case. This restriction
serves only to make these problems easier, as distinguishing the two cases for a weaker
promise can only be more difficult, so the results of this paper will also imply the hardness
of the more general problems. The log-depth versions of these problems will be referred to
as Log-depth CI1,b and Log-depth QCD2,b, and since these are restrictions of QIP-complete
problems it is clear that they are also in QIP. Similarly, the abbreviations Const-depth CI1,b

and Const-depth QCD2,b for the versions of these problems on constant-depth circuits will
be convenient.

4. Log-Depth Construction

In this section the reduction from the general CI1,b problem to the log-depth restriction
of the problem is described. The general idea behind the construction is to simply slice
the circuits of an instance of CI1,b into logarithmic-depth pieces and run them in parallel.
These circuits will require more input, but if each piece of the circuit is given as input the
same state output by the previous piece, then the output of the last piece of the circuit will
be equal to the output of the original circuit. This may not be the case if the intermediate
inputs are not the outputs of the previous pieces, and so additional tests that ensure these
inputs are at least close to the desired states are required.

To describe the reduction, let Q1 and Q2 be the circuits from an instance of CI1,b,
and let n be the size (number of gates) of Q1 and Q2 (by padding the smaller circuit, if
necessary). In order to perform the slicing of the circuit into pieces it is assumed that Q1
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Figure 2: The original circuits Q1 and Q2 decomposed into constant depth unitary circuits.

and Q2 first introduce any necessary ancillary qubits, then apply local unitary gates, and
finally trace out any qubits that are not part of the input. This restriction can be made
with no loss in generality, as any quantum circuit, even one that incorporates measurements
and other non-unitary operations, can be approximated by such a circuit, and furthermore,
this circuit uses a number of gates that is a polynomial in the size of the original circuit [1].

A simple way to decompose Q1 into constant depth pieces is to simply let each gate of
Q1 be a piece in the decomposition. Let U1, U2, . . . , Un be these pieces, with the additional
complication that the operation U1 both adds the ancillary qubits and performs the first
gate of the circuit. In a similar way, Q2 can be decomposed into constant depth pieces
V1, V2, . . . , Vn. These pieces are shown in Figure 2. If Q1 and Q2 implement transformations
from H to K, using ancillary qubits that fit into A, and trace out the qubits in B, then the
spaces H⊗A and B ⊗K are isomorphic, since by assumption Q1 and Q2 first introduce
any needed ancilla and only trace qubits out at the end of the computation. Using these
spaces, and implicitly this isomorphism, we have

U1, V1 ∈ U(H1,B1 ⊗K1)

Ui, Vi ∈ U(Hi ⊗Ai,Bi ⊗Ki) for 2 ≤ i ≤ n,

where the subscripted spaces are copies of the non-subscripted spaces that hold the input
or output of one of the pieces of the original circuits. As an example of this notation, if
ρ ∈ D(H), then the output of Q1 on ρ is given by

trBn UnUn−1 · · ·U1ρU
∗
1U

∗
2 · · ·U∗n,

and the output of Q2 is given by the same expression using the Vi operators.
Using this decomposition of Q1 and Q2, circuits C1 and C2 are constructed that are

logarithmic in depth and still in some sense faithfully implement Q1 and Q2. This is done
by running the circuits corresponding to U1, . . . , Un in parallel, and tracing out all the
qubits that are not in the output of Un. Such a circuit is constant depth, but does not
necessarily output a state in the image of Q1, as the input to Ui is not necessarily close to
the output from Ui−1. This problem can be dealt with by comparing the output of Ui−1

to the input to Ui. In order to do this in logarithmic depth an auxiliary input that is first
compared against the input to Ui and then held in reserve to compare to the output of Ui−1

is needed. To compare these quantum states the swap test can be used. This test will fail
with some probability depending on the distance between the two states. An example of
the construction used to ensure that the output of Ui−1 agrees with the input to Ui is given
in Figure 3. To simplify the analysis of the constructed circuits these tests are controlled
so that either one or the other is performed. This will affect the failure probability by a
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Figure 3: Testing that the output of Ui is close to the input of Ui+1. The inputs |ψj〉 are
the ideal inputs to Uj , and are labelled for clarity only – no assumptions are made
about these states. Qubits that do not reach the right edge are traced out.

factor of at most two, but will allow the analysis of each swap test to ignore the effect of the
other. To implement this a control qubit is used so that either the first or the second test is
performed between every two pieces Ui, Ui+1 of the circuit. If a test is not performed, then
the value of the output qubit of the swap test is left unchanged, and so the result of the test
is a qubit in the |0〉 state. These controlled operations can be implemented in logarithmic
depth using the technique of Moore and Nilsson [10].

After adding these tests between each piece of the circuit there is one final modification
required. If any of the swap tests fail, i.e. detect states that are not the same, then they
will output qubits in the |1〉 state. As yes instances of CI1,b have outputs that are close
together, we can ensure that no outputs of the constructed circuits can be close if any swap
tests fail by adding dummy qubits in the |0〉 state to be compared to the outputs of the
swap tests in the other circuit. These dummy qubits are shown in Figure 4.

The constructed circuits C1 and C2 are obtained by decomposing Q1 and Q2 into
constant depth pieces, inserting the swap tests shown in Figure 3, and adding dummy
qubits to ensure that the swap tests in the other circuit do not fail. At the end of these
circuits, all qubits are traced out, except the output (in the space Kn) of Un or Vn, the
output of the swap tests, and the dummy zero qubits. If the outputs of C1 and C2 are close
together, then intuitively the output of the swap tests in each circuit must be close to zero
and the output of Un and Vn must also be close. If the swap tests do not fail with high
probability (i.e. the outputs are close to zero), then these circuits will more or less faithfully
reproduce the output of Q1 and Q2. Thus, in the case that the outputs of C1 and C2 can
be made close, we will be able to argue that the output of Q1 and Q2 can also be made
close. Proving that this intuitive picture is accurate forms the content of the next section.

In the other direction, it is not hard to see that if there are states ρ, ξ ∈ D(H) such that
Q1(ρ) = Q2(ξ), then there are similar states for the constructed circuits C1 and C2. To do
this, notice that the circuit construction does not change if additional qubits are added to
the circuits to allow purification of the states ρ and ξ to be used as inputs to C1 and C2.
These additional qubits are traced out with the other qubits at the end of the circuit, so
that the output state of the circuit are not changed. As these purifications are pure states
and all operations performed during the circuit are unitary, the intermediate states of the
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Figure 4: The outputs of C1 and C2.

circuits must also be pure states. If the input state to C1 is |ψ〉, then by providing the state

|ψ〉 ⊗ U1|ψ〉 ⊗ · · · ⊗ Un−1Un−2 · · ·U1|ψ〉
as input to C1, the output of each block of the circuit will be identical to the input to the
next block, ensuring that all the swap tests will succeed with probability one. It remains
only to check on such input states that C1 produces the same output as Q1 on ρ. This can
be observed by noting that the output of the circuit is exactly

trBn UnUn−1 · · ·U1ρU
∗
1U

∗
2 · · ·U∗n,

which by construction is equal to the output of Q1 on ρ. Thus if the circuits Q1 and Q2

have intersecting images then so do the circuits C1 and C2. This observation proves the
completeness of the construction. Soundness is considerably more intricate, and is the focus
of the next section.

5. Soundness of the Construction

In this section it is demonstrated that if the images of the original circuits Q1 and Q2

are far apart then so must be the images of the constructed circuits C1 and C2. As the
constructed circuits essentially simulate Q1 and Q2 the desired result can be obtained by
arguing that either the outputs of C1 and C2 are far apart or the input to at least one of the
constructed circuits is not a faithful simulation of the corresponding original circuit. In the
case that this simulation is not faithful it will be shown that there is some swap test that
fails with reasonable probability. This implies that outputs of the constructed circuits must
also be distant, as the failing swap test produces a state of the form (1− p)|0〉〈0| + p|1〉〈1|
that has low fidelity with the corresponding dummy zero qubit of the other circuit.

As a first step, we place a lower bound on the failure probability of a swap test in terms
of the fidelity of the two states being compared. In the following lemma the swap test is
viewed as a measurement of the symmetric and antisymmetric projectors, with the outcome
that produces a qubit in the state |1〉 corresponding to the antisymmetric case.

Lemma 5.1. If ρ ∈ D(A⊗ B) then a swap test on A⊗ B returns the antisymmetric out-
come with probability at least

1
2
− 1

2
F(trA ρ, trB ρ).
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Proof. Let |ψ〉 ∈ A ⊗ B ⊗ C be a purification of ρ, where C is an arbitrary space of sufficient
dimension to allow such a purification. The swap test measures the state on A⊗ B with
the projectors 1

2(I −W ) and 1
2(I+W ), where W is the swap operator on A⊗B. Thus, the

antisymmetric outcome occurs with probability
1
4

tr ([(I −W )⊗ I]|ψ〉〈ψ|[(I −W ∗)⊗ I]) =
1
2
〈ψ|I ⊗ I −W ⊗ I|ψ〉 =

1
2
− 1

2
〈ψ|W ⊗ I|ψ〉,

as W is hermitian. Then as W is also unitary, the states |ψ〉 and W |ψ〉 each purify both
trA⊗C |ψ〉〈ψ| and trB⊗C |ψ〉〈ψ|, and so by Uhlmann’s theorem

1
2
− 1

2
〈ψ|W ⊗ I|ψ〉 ≥ 1

2
− 1

2
F(trA⊗C |ψ〉〈ψ|, trB⊗C |ψ〉〈ψ|).

After tracing out the space C, this is exactly the statement of the lemma.

This lemma cannot be immediately applied to the circuits C1 and C2, as in these circuits
the output of one block of the circuit is not directly compared to the input to the next block,
but instead each of these states are with probability 1/2 compared to some intermediate
value. In order to deal with this difficulty, we use the Fuchs-van de Graaf inequalities to
translate the fidelity to a relation involving the trace norm, which we can then apply the
triangle inequality to. This application of the triangle inequality shows that at least one
of the two swap tests fails with probability bounded below by an expression involving the
fidelity. In the following corollary the reduced states of various parts of the input to either
of the circuits C1 or C2 are used, but it is not assumed that these states are given in a
separable form. For instance, the density matrices ρi, σi, and ξi that appear in the lemma
may be part of some larger entangled pure state, so that the failure probabilities of the two
swap tests need not be independent.

Corollary 5.2. If |ψ〉 is input to the circuit Ca for a ∈ {1, 2}, with ρi the reduced state
of |ψ〉〈ψ| on Hi ⊗ Ai, then at least one of the swap tests on the ith block of Ca fails with
probability at least

1
64

‖Uiρi−1U
∗
i − ρi‖2

tr .

Proof. In the ith block of Ca there are two inputs to the first swap test: let the reduced
density operators of these inputs be ρi and σi. The inputs to the second swap test are then
given by σi and Uiρi−1U

∗
i = ξi. As exactly one of these tests is performed we do not need

to consider the effect of the first test on the state when considering the second test, and so
the same input state σi is used in both swap tests.

By Lemma 5.1, the failure probability of first and second tests, when performed, are
at least 1

2(1 − F(ρi, σi)) and 1
2(1 − F(σi, ξi)), respectively. Thus, the probability p that at

least one of these tests fails, given that each of them is performed with probability 1/2, is
at least

p ≥ 1
2

max
{

1
2
(1− F(σi, ξi)),

1
2
(1− F(ρi, σi))

}
=

1
4

(1−min{F(σi, ξi)),F(ρi, σi)}) .
By the Fuchs-van de Graaf inequalities, this fidelity may be replaced by the trace norm.
Doing so, we obtain

p ≥ 1
16

max(‖σi − ξi‖2
tr , ‖ρi − σi‖2

tr).
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Finally, as this maximum must be at least the average of the two values,

p ≥ 1
16

(‖σi − ξi‖tr

2
+
‖ρi − σi‖tr

2

)2

≥ 1
64

‖ρi − ξi‖2
tr ,

where the last inequality follows from an application of the triangle inequality.

By repeatedly applying some of the properties of the trace norm discussed in Section 2
it is somewhat tedious but not difficult to reduce the problem at hand to the previous
Corollary. This is the content of the following theorem.

Theorem 5.3. If F(Q1(ρ0), Q2(ξ0)) < 1− c for all ρ0, ξ0 ∈ H then

F(C1(ρ), C2(ξ)) < 1− c2

144n2

for all ρ, ξ ∈ (H⊗A)⊗2n.

Proof. Let ρ and ξ be inputs to C1 and C2, and let ρi, ξi be the reduced states of these
inputs on Hi ⊗ Ai for 0 ≤ i ≤ 2n, where the states for i > n are the inputs that are only
used by the swap tests, which we will not need to refer to explicitly. That is, ρi and ξi for
0 ≤ i ≤ n are the portions of the state that are input to the unitaries Ui and Vi that make
up the circuits Q1 and Q2. The output of the circuits C1 and C2 is then given by a number
of qubits corresponding to the swap tests as well as the states trBn ρn and trBn ξn, where Bn

is simply the space that is traced out to obtain the output from the unitary representations
of the original circuits.

By the condition on the fidelity of Q1 and Q2 and the Fuchs-van de Graaf inequalities,
we have 2c < ‖Q1(ρ0)−Q2(ξ0)‖tr . Using the triangle inequality we can relate this to the
distance between the constructed circuits. Adding terms and simplifying, we obtain

2c < ‖Q1(ρ0)− trBn ρn + trBn ξn −Q2(ξ0) + trBn ρn − trBn ξn‖tr

≤ ‖Q1(ρ0)− trBn ρn‖tr + ‖trBn ξn −Q2(ξ0)‖tr + ‖trBn ρn − trBn ξn‖tr .

We now observe that ‖trBn ρn − trBn ξn‖tr ≤ ‖C1(ρ)− C2(ξ)‖tr by the monotonicity of the
trace norm under the partial trace, since the former can be obtained from the later by
tracing out the appropriate spaces. Using this we have

2c < ‖Q1(ρ0)− trBn ρn‖tr + ‖trBn ξn −Q2(ξ0)‖tr + ‖C1(ρ)− C2(ξ)‖tr (5.1)

As the three terms on the right are nonnegative, at least one of them must be larger than
the average 2c/3. If ‖C1(ρ)−C2(ξ)‖tr > 2c/3 then F(C1(ρ), C2(ξ)) < 1− c2/144 and there
is nothing left to prove.

The cases where one of the first two terms of (5.1) exceeds 2c/3 are symmetric, and so
we can consider only the first term. Expanding Q1(ρ0) in terms of the Ui, we obtain

2c
3
< ‖Q1(ρ0)− trBn ρn‖tr

= ‖trBn UnUn−1 · · ·U1ρ0U
∗
1U

∗
2 · · ·U∗n − trBn ρn‖tr

≤ ‖UnUn−1 · · ·U1ρ0U
∗
1U

∗
2 · · ·U∗n − ρn‖tr ,

where once again the monotonicity of the trace norm under the partial trace has been used.
By repeating the strategy of adding terms and then applying the triangle inequality we have

2c
3
< ‖U1ρ0U

∗
1 − ρ1‖tr + ‖UnUn−1 · · ·U2ρ1U

∗
2U

∗
3 · · ·U∗n − ρn‖tr .
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Here we have made use of the unitary invariance of the trace norm to discard the operators
U2, . . . Un from the first term. Continuing in this fashion we have

2c
3
<

n∑
i=1

‖Uiρi−1U
∗
i − ρi‖tr .

As all terms in this sum are nonnegative, there must be at least one term in the sum that
exceeds 2c/(3n), as this is a lower bound on the average of all terms. Thus, for some value
of i, we have ‖Uiρi−1U

∗
i − ρi‖tr > 2c/(3n), and so by Corollary 5.2 one of the corresponding

swap tests fails with probability p > c2/(144n2). The qubit representing the output value
of this swap test is then of the form (1 − p)|0〉〈0| + p|1〉〈1|, and so, by the monotonicity of
the fidelity under the partial trace,

F(C1(ρ), C2(ξ)) ≤ F((1− p)|0〉〈0| + p|1〉〈1|, |0〉〈0|) = 1− p < 1− c2

144n2
,

as in the statement of the theorem.

By combining Theorem 5.3 with the observation in Section 4 and the multiplicativity
of the maximum output fidelity of two transformations, we obtain the following result.

Corollary 5.4. The problem Log-depth CI1,b is QIP-complete for any constant 0 < b < 1.

Proof. Theorem 5.3 establishes the completeness of the problem for any b ≥ 1− c2/(144n2),
where n is an upper bound on the size of the circuits. Using Theorem 2.1 of Kitaev,
Shen, and Vyalyi [9] we can repeat each of the circuits r times in parallel to obtain the
completeness of the problem for b ≥ (

1− c2/(144n2)
)r
, which can be made smaller than

any constant for r some polynomial in n.

As the circuits constructed by the reduction only make use of logarithmic depth when
performing swap tests, and the controlled swap operations performed by these tests can
be accomplished in constant depth using unbounded fan-out gates, the following Corollary
follows immediately from the previous one.

Corollary 5.5. The problem Const-depth CI1,b on circuits with the unbounded fan-out gate
is QIP-complete for for any constant 0 < b < 1.

6. Distinguishing Log-Depth Computations

The hardness of Log-depth CI1,b can be extended to Log-depth QCD2,b by observing
that the reduction for the polynomial depth version of this problem in [12] can be made to
preserve the depth of the constructed circuits. Once this observation is made, the hardness
of the log-depth (and constant-depth with fan-out) versions of the circuit distinguishability
problem is immediate.

The reduction in [12] takes as input circuits (Q1, Q2) and produces circuits C1 and
C2. Without describing the reduction in detail, the constructed circuits C1 and C2 run,
depending on the value of a control qubit, one of Q1 and Q2, followed by a constant depth
circuit. If the input circuits Q1 and Q2 have logarithmic depth, then the only significant
difficulty is the fact that controlled versions of these circuits are needed. However, as we
have already seen, if we replace the gates in Q1 and Q2 with controlled versions, then we
can use the scheme of Moore and Nilsson [10] to implement the controlled operations in
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logarithmic depth. With this modification, the reduction in [12] can be reused to show the
hardness of the QCD problem on log-depth circuits.

Corollary 6.1. Log-depth QCD2,b is QIP-complete for any constant 0 < b < 2.

Once again these controlled operations can be implemented in a constant depth circuit
if the unbounded fan-out gate is allowed into the set of allowed gates.

Corollary 6.2. Const-depth QCD2,b on circuits with the unbounded fan-out gate is QIP-
complete for any constant 0 < b < 2.

7. Conclusion

The hardness of distinguishing even log-depth mixed state quantum circuits leaves
several related open problems, a few of which are listed here.

• Can this new complete problem be used to further understand QIP?
• Does this result rely in an essential way on the mixed state circuit model? How

difficult is it to distinguish quantum circuits in less general models of computation?
• What is the complexity of distinguishing constant depth quantum circuits that do

not use the unbounded fan-out gate?
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Abstract. We study the problem of factoring univariate polynomials over finite fields.
Under the assumption of the Extended Riemann Hypothesis (ERH), Gao [Gao01] designed
a polynomial time algorithm that fails to factor only if the input polynomial satisfies a
strong symmetry property, namely square balance. In this paper, we propose an extension
of Gao’s algorithm that fails only under an even stronger symmetry property. We also
show that our property can be used to improve the time complexity of best determinis-
tic algorithms on most input polynomials. The property also yields a new randomized
polynomial time algorithm.

1. Introduction

We consider the problem of designing an efficient deterministic algorithm for factoring
a univariate polynomial, with coefficients taken from a finite field. The problem reduces in
polynomial time to the problem of factoring a monic, square-free and completely splitting
polynomial f(x) with coefficients in a prime field Fp (see [Ber70], [LN94]). Although there
are efficient polynomial time randomized algorithms for factoring f(x) ([Ber70], [CZ81],
[vzGS92], [KS95]), as yet there is no deterministic polynomial time algorithm even under
the assumption of the Extended Riemann Hypothesis (ERH). In this paper we will assume
that ERH is true and ξ1, ξ2, . . . , ξn are the n distinct roots of the input polynomial f ,

f(x) =
n∏

i=1

(x− ξi) where ξi ∈ Fp

In 2001, Gao [Gao01] gave a deterministic factoring algorithm that fails to find non-
trivial factors of f in polynomial time, if f belongs to a restricted class of polynomials,
namely square balanced polynomials. Motivated by the work of Gao [Gao01], we have de-
fined a proper subclass of square balanced polynomials, namely cross balanced polynomials,
such that polynomials that are not cross balanced, can be factored deterministically in
polynomial time, under the assumption of the ERH.

Our contribution can be summarized as follows. Let f be a monic, square-free and
completely splitting polynomial in Fp[x] with n roots ξ1, . . . , ξn. Our factoring algorithm
uses an arbitrary (but deterministically chosen) collection of k = (n log p)O(1) (n = deg(f))

Key words and phrases: Algebraic Algorithms, polynomial factorization, finite fields.
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small degree auxiliary polynomials p1(.), . . . , pk(.), and from each pl(·) (1 ≤ l ≤ k) and f it
implicitly constructs a simple n-vertex digraph Gl such that, (for l > 1) Gl is a subgraph
(not necessarily a proper subgraph) of Gl−1. A proper factor of f is efficiently retrieved if
any one of the graphs is either not regular, or is regular with in degree and out degree of
every vertex less than a chosen constant c. This condition of regularity of all the k graphs
imposes a tight symmetry condition on the roots of f , and we point out that this may
be exploited to improve the worst case time complexity of the best known deterministic
algorithms. Further, we show that if the polynomials pl(·) (1 ≤ l ≤ k) are randomly chosen
then the symmetry breaks with high probability and our algorithm works in randomized
polynomial time. We call the checking of this symmetry condition a balance test.

We now present a little more details. Define the sets ∆i for 1 ≤ i ≤ n as,

∆i = {1 ≤ j ≤ n : j 6= i, σ((ξi − ξj)2) = −(ξi − ξj)}
where σ is the square root algorithm described in [Gao01] (see section 2.4). The polynomial
f is called a square balanced polynomial (as in [Gao01]) if #∆1 = . . . = #∆n. For l > 1,
define polynomial fl as,

fl =
n∏

i=1

(x− pl(ξi))

where pl(.) is an arbitrary but deterministically chosen polynomial with degree bounded by
(n log p)O(1). Further, pl1(.) 6= pl2(.) for l1 6= l2, and f1 is taken to be f i.e. p1(y) = y.
Assume that, for a given k = (n log p)O(1), for every l, 1 ≤ l ≤ k, polynomial fl = f̃dl

l ,
where f̃l is a square-free and square balanced polynomial and dl > 0. Later, we show that,
if fl is not of the above form then a proper factor of f can be retrieved efficiently. For each
polynomial fl, 1 ≤ l ≤ k, define the sets ∆(l)

i for 1 ≤ i ≤ n as,

∆(l)
i = {1 ≤ j ≤ n : pl(ξi) 6= pl(ξj), σ((pl(ξi)− pl(ξj))2) = −(pl(ξi)− pl(ξj))}

Further, define the sets Di
(l) iteratively over l as,

D
(1)
i = ∆(1)

i

For l > 1, D
(l)
i = D

(l−1)
i ∩∆(l)

i

If D
(l)
i = φ for all i, 1 ≤ i ≤ n, then redefine D

(l)
i as D

(l)
i = D

(l−1)
i .

For 1 ≤ l ≤ k, let Gl be a directed graph with n vertices v1, . . . , vn, such that there is
an edge from vi to vj if and only if j ∈ D

(l)
i . Note that, Gl is a subgraph of Gl−1 for

1 < l ≤ k. Denote the in degree and out degree of a vertex vi by indeg(vi) and outdeg(vi),
respectively. We say that the graph Gl is regular (or t-regular) if indeg(v1) = outdeg(v1) =
. . . = indeg(vn) = outdeg(vn) = t. Call t as the regularity of Gl. The following theorem is
proved in this paper.

Theorem 1.1. Polynomial f can be factored into nontrivial factors in time l · (n log p)O(1)

if Gl is not regular for some l, 1 ≤ l ≤ k. Further, if G1, . . . , Gk are all regular and for
at least dlog2 ne of the graphs we have Gl 6= Gl−1 (1 < l ≤ k), then f can be factored in
k · (n log p)O(1) time.

Note that, G1 is regular if and only if f is square balanced, as ∆(1)
i = ∆i, for 1 ≤ i ≤ n and

G1 is in fact a regular tournament.
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Suppose f(y) splits as f(y) = (y−X) ·f ′(y) in the quotient ring R = Fp[x]
(f) where X = x

mod f . Our algorithm iteratively tests graphs G1, G2, . . . so on, to check if any one of them
is not regular. If at the lth iteration graph Gl turns out to be not regular, then a proper
factor of f is obtained in polynomial time. However, if Gl is regular, then the algorithm
returns a nontrivial monic factor gl(y) of f ′(y) with degree equal to the regularity of Gl.
Moreover, gl(y) is also a factor of (although may be equal to) gl−1(y), the factor obtained at
the (l−1)th iteration, and it can be ensured that if gl(y) is a proper factor of gl−1(y) (which
happens iff Gl 6= Gl−1) then deg(gl(y)) ≤ 1

2 · deg(gl−1(y)). Thus, if the graphs repeatedly
turn out to be regular (which in itself is a stringent condition) and for at least dlog2 ne
times it happen that Gl 6= Gl−1, for 1 < l ≤ k, then we obtain a nontrivial linear factor
g(y) of f ′(y). The element −g(0) defines a nontrivial endomorphism in the ring R, and
by using a result from [Evd94] (Lemma 9 in [Evd94]) we can find a proper factor of f in
polynomial time. Further, if for only εdlog2 ne times we get Gl 6= Gl−1 (1 < l ≤ k) for some
ε, 0 < ε ≤ 1, then we obtain a nontrivial factor g(y) of f ′(y) with degree at most n1−ε

2 .
Now if we apply Evdokimov’s algorithm ([Evd94]) on g(y) (instead of f ′(y)), we can get

a proper factor of f in time (n
(1−ε)2

2
log n+ε+c1 log p)c2 (c1 and c2 are constants). For most

polynomials ε > 0 (i.e. at least about 1
log n) and this gives an improvement over the time

complexity of (n
1
2

log n+c1 log p)c2 in [Evd94] (c1, c2 are the same constants).
Assuming n << p, all the best known deterministic algorithms (e.g. [Evd94], [CH00])

use computations in rings with large dimensions over Fp to get smaller degree factors of
f ′(y). Unlike these approaches, the balance test is an attempt to exploit an asymmetry
among the roots of the input polynomial to obtain smaller degree factors of f ′(y) without
carrying out computations in rings with large dimensions over Fp. This attribute of our
approach yields a better time complexity for most polynomials in a way as discussed in the
previous paragraph.

It is sufficient to choose the auxiliary polynomials pl(y), 1 < l ≤ k, in such a way that
the graphs, if regular, are not all the same for too long, if their regularities are large. An
efficient and deterministic construction of such auxiliary polynomials will immediately imply
that factorization of univariate polynomials over finite fields can be done in deterministic
polynomial time under ERH. In this paper we assume that the auxiliary polynomials are
arbitrary but deterministically chosen polynomials with degree bounded by (n log p)O(1).
For example, one possibility is to choose pl(y) = yl for 1 ≤ l ≤ k. (In fact, Gao [Gao01]
used this choice of auxiliary polynomials to define a restricted class of square balanced
polynomials called super square balanced polynomials.) We show that, if random choices of
auxiliary polynomials are allowed then our algorithm works in randomized polynomial time.
For the graphs to be all regular and equal, the roots of f must satisfy a tight symmetry
condition (given by equal sizes of all the sets D

(l)
i , for 1 ≤ i ≤ n and 1 ≤ l ≤ k) and it is

only then that our algorithm fails to factor f .

Definition 1.1. A polynomial f is called k-cross balanced, for k > 0, if for every l, 1 ≤ l ≤ k,
polynomial fl = f̃dl

l , where f̃l is a square-free, square balanced polynomial with dl > 0, and
graph Gl is regular.

It follows from the definition that, 1-cross balanced polynomials form the class of square
balanced polynomials. Let k = (n log p)O(1) be some fixed polynomial in n and log p. A
polynomial f is called cross balanced if it is k-cross balanced and regularity of graph Gk is
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greater than a fixed constant c. From Theorem 1.1 and [Evd94] it follows that, polynomials
that are not cross balanced can be factored deterministically in polynomial time.

2. Preliminaries

Assume that f is a monic, square-free and completely splitting polynomial over Fp and
R = Fp[x]

(f) is the quotient ring consisting of all polynomials modulo f .

2.1. Primitive Idempotents

Elements χ1, . . . , χn of the ring R are called the primitive idempotents of R if,
∑n

i=1 χi =
1 and for 1 ≤ i, j ≤ n, χi · χj = χi if i = j and 0 otherwise. By Chinese Remaindering
theorem, R ∼= Fp ⊕ . . . ⊕ Fp (n times), such that every element in R can be uniquely
represented by an n-tuple of elements in Fp. Addition and multiplication between two
elements in R can viewed as componentwise addition and multiplication of the n-tuples.
Any element α = (a1, . . . , an) ∈ R can be equated as, α =

∑n
i=1 aiχi where ai ∈ Fp. Let

g(y) be a polynomial in R[y] given by,

g(y) =
m∑

i=0

γiy
i where γi ∈ R and

γi =
n∑

j=1

gijχj where gij ∈ Fp for 0 ≤ i ≤ m and 1 ≤ j ≤ n.

Then g(y) can be alternatively represented as,

g(y) =
n∑

j=1

gj(y)χj where gj(y) =
m∑

i=0

gijy
i ∈ Fp[y] for 1 ≤ j ≤ n.

The usefulness of this representation is that, operations on polynomials in R[y] (multi-
plication, gcd etc.) can be viewed as componentwise operations on polynomials in Fp[y].

2.2. Characteristic Polynomial

Consider an element α =
∑n

i=1 aiχi ∈ R where ai ∈ Fp, 1 ≤ i ≤ n. The element
α defines a linear transformation on the vector space R (over Fp), mapping an element
β ∈ R to αβ ∈ R. The characteristic polynomial of α (viewed as a linear transformation)
is independent of the choice of basis and is equal to

cα(y) =
n∏

i=1

(y − ai),

In order to construct cα one can use 1, X,X2, . . . , Xn−1 as the basis in R and form the
matrix (mij) where α · Xj−1 =

∑n
i=1 mijX

i−1, mij ∈ Fp, 1 ≤ i, j ≤ n. Then cα can be
constructed by evaluating det(y · I − (mij)) at n distinct values of y and solving for the n
coefficients of cα using linear algebra. The process takes only polynomial time. The notion
of characteristic polynomial extends even to higher dimensional algebras over Fp.
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2.3. GCD of Polynomials

Let g(y) =
∑n

i=1 gi(y)χi and h(y) =
∑n

i=1 hi(y)χi be two polynomials in R[y], where
gi, hi ∈ Fp[y] for 1 ≤ i ≤ n . Then, gcd of g and f is defined as,

gcd(g, f) =
n∑

i=1

gcd(gi, hi)χi

We note that, the concept of gcd of polynomials does not make sense in general over any
arbitrary algebra. However, the fact that R is a completely splitting semisimple algebra over
Fp allows us to work component-wise over Fp and this makes the notion of gcd meaningful
in the context. The following lemma was shown by Gao [Gao01].

Lemma 2.1. [Gao01] Given two polynomials g, h ∈ R[y], gcd(g, h) can be computed in time
polynomial in the degrees of the polynomials, n and log p.

2.4. Gao’s Algorithm

Let R = Fp[x]
(f) = Fp[X] where X = x mod f and suppose that f(y) splits in R as,

f(y) = (y −X)f ′(y). Define quotient ring S as, S = R[y]
(f ′) = R[Y ] where Y = y mod f ′. S

is an elementary algebra over Fp with dimension n′ = n(n− 1). Gao [Gao01] described an
algorithm σ for taking square root of an element in S. If p− 1 = 2ew where e ≥ 1 and w is
odd, and η is a primitive 2e-th root of unity, then σ has the following properties:

(1) Let µ1, . . . , µn′ be primitive idempotents in S and α =
∑n′

i=1 aiµi ∈ S where ai ∈ Fp.
Then, σ(α) =

∑n′
i=1 σ(ai)µi.

(2) Let a = ηuθ where θ ∈ Fp with θw = 1 and 0 ≤ u < 2e. Then σ(a2) = a iff u < 2e−1.
When p = 3 mod 4, η = −1 and property 2 implies that σ(a2) = a for a ∈ Fp iff a is a
quadratic residue in Fp.

Algorithm 1. [Gao01]
Input: A polynomial f ∈ Fp[x].
Output: A proper factor of f or output that “f is square balanced”.
1. Form X, Y , R, S as before.
2. Compute C = 1

2(X + Y + σ((X − Y )2)) ∈ S.
3. Compute the characteristic polynomial c(y) of C over R.
4. Decompose c(y) as c(y) = h(y)(y −X)t, where t is the largest possible.
5. If h(X) is a zero divisor in R then find a proper factor of f , otherwise output that “f is
square balanced”.

It was shown in [Gao01] that Algorithm 1 fails to find a proper factor of f if and only
if f is square balanced. Moreover, it follows from the analysis in [Gao01] (see Theorem 3.1
in [Gao01]) that, when f is square balanced the polynomial h(y) takes the form,

h(y) =
n∑

i=1

 ∏
j∈∆i

(y − ξj)

χi

where ∆i = {j : j 6= i, σ((ξi − ξj)2) = −(ξi − ξj)} and #∆i = n−1
2 for all i, 1 ≤ i ≤ n.



614 CHANDAN SAHA

3. Our Algorithm and Analysis

In this section, we describe our algorithm for factoring polynomial f . We show that the
algorithm fails to factor f in k · (n log p)O(1) time if and only if f is k-cross balanced and
regularity of Gk is greater than c. The algorithm involves k polynomials, f = f1, . . . , fk,
where polynomial fl, 1 < l ≤ k, is defined as,

fl =
n∏

i=1

(x− pl(ξi))

where pl(.) is an arbitrary but deterministically fixed polynomial with degree bounded
by (n log p)O(1) and pl1(.) 6= pl2(.) for l1 6= l2. The polynomial fl can be constructed in
polynomial time by considering the element pl(X) in R = Fp[x]

(f) = Fp[X], where X = x

mod f , and then computing its characteristic polynomial over Fp.

Lemma 3.1. If fl is not of the form fl = f̃l
dl , where f̃l is a square-free, square balanced

polynomial and dl > 0, then a proper factor of f can be retrieved in polynomial time.

Proof: By definition, fl =
∏n

i=1 (x− pl(ξi)). Define the sets Ei, for 1 ≤ i ≤ n, as
Ei = {1 ≤ j ≤ n : pl(ξj) = pl(ξi)}. Consider the following gcd in the ring R[y],

g(y) = gcd (pl(y)− pl(X), f(y)) =
n∑

i=1

 ∏
j∈Ei

(y − ξj)

χi

The leading coefficient of g(y) is a zero-divisor in R, unless #E1 = . . . = #En = dl (say).
Therefore, we can assume that,

fl =
ml∏
j=1

(
x− pl(ξsj )

)dl where pl(ξs1), . . . , pl(ξsml
) are all distinct and ml =

n

dl

= f̃l
dl where f̃l =

ml∏
j=1

(
x− pl(ξsj )

)
is square-free.

If polynomial f̃l (obtained by square-freeing fl) is not square balanced then a proper factor
g̃l of f̃l is returned by Algorithm 1. But then,

gcd (g̃l(pl(x)), f(x)) =
∏

j:g̃l(pl(ξj))=0

(x− ξj)

is a proper factor of f .

Algorithm 1 works with f̃l =
∏ml

j=1

(
x− pl(ξsj )

)
as the input polynomial where pl(ξsj )’s are

distinct and ml = n
dl

, and returns a polynomial hl(y) such that,

hl(y) =
ml∑
j=1

 ∏
r∈∆̃

(l)
j

(y − pl(ξsr))

χ
(l)
j (3.1)

where χ
(l)
j ’s are the primitive idempotents of the ring Rl = Fp[x]

(f̃l)
,

∆̃(l)
j = {1 ≤ r ≤ ml : r 6= j, σ((pl(ξsj )− pl(ξsr))

2) = −(pl(ξsj )− pl(ξsr))}
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and #∆̃(l)
j = ml−1

2 for 1 ≤ j ≤ ml. Assume that p > n2 and n is odd, as even degree
polynomials can be factored in polynomial time. In the following algorithm, parameter k is
taken to be a fixed polynomial in n and log p and c is a fixed constant.

Algorithm 2. Cross Balance
Input: A polynomial f ∈ Fp[x] of odd degree n.
Output: A proper factor of f or “Failure”.

• Choose k − 1 distinct polynomials p2(y), . . . , pk(y) with degree greater than unity
and bounded by a polynomial in n and log p. (We can use any arbitrary, efficient
mechanism to deterministically choose the polynomials.) Take p1(y) = y.

• for l = 1 to k do
[Steps (1) - (2): Constructing polynomial fl and checking if f can be factored
using Lemma 3.1.]

(1) (Construct polynomial fl) Compute the characteristic polynomial, cα(x), of
element α = pl(X) ∈ R, over Fp. Then fl = cα(x).

(2) (Check if f can be factored) Check if fl is of the form fl = f̃l
dl , where f̃l is a

square-free, square balanced polynomial and dl > 0. If not, then find a proper
factor of f as in Lemma 3.1.

[Steps (3) - (6): Constructing graph Gl implicitly.]

(3) (Obtain the required polynomial from Algorithm 1) Else, f̃l is square balanced
and Algorithm 1 returns a polynomial hl(y) = yt + α1y

t−1 + . . . + αt (as in
equation 3.1), where t = ml−1

2 and αu ∈ Rl for 1 ≤ u ≤ t.
(4) (Change to a common ring so that gcd is feasible) Each αu ∈ Rl is a polynomial

αu(x) ∈ Fp[x] of degree less than ml. Compute α′
u as, α′u = αu(pl(x)) mod f ,

for 1 ≤ u ≤ t, and construct the polynomial h′l(y) = yt+α′1yt−1+. . .+α′
t ∈ R[y].

(5) (Construct graph Gl implicitly) If l = 1 then assign gl(y) = h′l(y) ∈ R[y] and
continue the loop with the next value of l. Else, construct the polynomial
h′l(pl(y)) by replacing y by pl(y) in hl(y) and compute gl(y) as,

gl(y) = gcd(gl−1(y), h′l(pl(y))) ∈ R[y].

(6) (Check if Gl is a null graph) Let gl(y) = βt′y
t′ + . . .+β0, where t′ is the degree

of gl(y) and βu ∈ R for 0 ≤ u ≤ t′. If t′ = 0 then make gl(y) = gl−1(y) and
continue the loop with the next value of l.

[Steps (7) - (8): Checking for equal out degrees of the vertices of graph Gl.]

(7) (Check if out degrees are equal) Else, t′ > 0. If βt′ is a zero divisor in R,
construct a proper factor of f from βt′ and stop.

(8) (Factor if out degrees are small) Else, if t′ ≤ c then use Evdokimov’s algorithm
[Evd94] on gl(y) to find a proper factor of f in (n log p)O(1) time.

[Steps (9) - (11): Checking for equal in degrees of the vertices of graph Gl.]
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(9) (Obtain the values of a nice polynomial at multiple points) If t′ > c, eval-
uate gl(y) ∈ R[y] at n · t′ distinct points y1, . . . , ynt′ taken from Fp. Find
the characteristic polynomials of elements gl(y1), . . . , gl(ynt′) ∈ R over Fp as
c1(x), . . . , cnt′(x) ∈ Fp[x], respectively. Collect the terms ci(0) for 1 ≤ i ≤ nt′.

(10) (Construct the nice polynomial from the values) Construct the polynomial
r(x) = xnt′+r1x

nt′−1+. . .+rnt′ ∈ Fp[x] such that r(yi) = −ci(0) for 1 ≤ i ≤ nt′.
Solve for ri ∈ Fp, 1 ≤ i ≤ nt′, using linear algebra.

(11) (Check if in degrees are equal) For 0 ≤ i < t′, if f i(x) divides r(x) then compute
gcd

(
r(x)
f i(x)

, f(x)
)
∈ Fp[x]. If a proper factor of f is found, stop. Else, continue

with the next value of l.

endfor
• If a proper factor of f is not found in the above for loop, return “Failure”.

Theorem 3.2. Algorithm 2 fails to find a proper factor f in k · (n log p)O(1) time if and
only if f is k-cross balanced and regularity of graph Gk is greater than c.

Proof: We show that, Algorithm 2 fails to find a proper factor of f at the lth iteration of
the loop iff f is l-cross balanced and regularity of Gl is greater than c. Recall the definitions
of the sets ∆(l)

i and D
(l)
i , 1 ≤ i ≤ n, from section 1. The set ∆(l)

i is defined as,

∆(l)
i = {1 ≤ j ≤ n : pl(ξi) 6= pl(ξj), σ((pl(ξi)− pl(ξj))2) = −(pl(ξi)− pl(ξj))}

And set D
(l)
i is defined iteratively over l as,

D
(1)
i = ∆(1)

i

For l > 1, D
(l)
i = D

(l−1)
i ∩∆(l)

i

If D
(l)
i = φ for all i, 1 ≤ i ≤ n, then D

(l)
i is redefined as D

(l)
i = D

(l−1)
i .

Graph Gl, with n vertices v1, . . . , vn, has an edge from vi to vj iff j ∈ D
(l)
i .

Algorithm 2 fails at the first iteration (l = 1) if and only if f is square balanced. In
this case, D

(1)
i = ∆(1)

i = ∆i, the polynomial g1(y) is,

g1(y) = h(y) =
n∑

i=1

 ∏
j∈D

(1)
i

(y − ξj)

χi

and G1 is regular with in degree and out degree of a vertex vi equal to #D
(1)
i = #∆i = n−1

2 .
Thus, polynomial f is 1-cross balanced and deg(g1(y)) = n−1

2 . If Algorithm 2 fails at the
lth iteration, then we can assume that the polynomials f = f̃1, . . . , f̃l are square free and
square balanced (by Lemma 3.1).

Suppose that, Algorithm 2 fails at the lth iteration. Then, f̃l =
∏ml

j=1

(
x− pl(ξsj )

)
is

square free and square balanced, and Algorithm 1 returns the polynomial hl(y) ∈ Rl[y] such
that,

hl(y) =
ml∑
j=1

 ∏
r∈∆̃

(l)
j

(y − pl(ξsr))

χ
(l)
j (3.2)
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where χ
(l)
j ’s are the primitive idempotents of the ring Rl = Fp[x]

(f̃l)
and,

∆̃(l)
j = {1 ≤ r ≤ ml : r 6= j, σ((pl(ξsj )− pl(ξsr))

2) = −(pl(ξsj )− pl(ξsr))}
Let, hl(y) = yt + α1y

t−1 + . . . + αt, where t = ml−1
2 and αu ∈ Rl for 1 ≤ u ≤ t. Each

αu ∈ Rl is a polynomial αu(x) ∈ Fp[x] with degree less than ml and if αu =
∑ml

j=1 aujχ
(l)
j

for auj ∈ Fp, then by Chinese Remaindering theorem (and assuming the correspondence
between χ

(l)
j and the factor (x− pl(ξsj )) of f̃l) we get,

αu(x) = q(x)(x− pl(ξsj )) + auj for some polynomial q(x) ∈ Fp[x]
⇒ αu(pl(x)) = q(pl(x))(pl(x)− pl(ξsj )) + auj

⇒ αu(pl(x)) = auj mod (x− ξ) for every ξ ∈ {ξ1, . . . , ξn} such that pl(ξ) = pl(ξsj )

Suppose that, for a given i (1 ≤ i ≤ n), j(i) (1 ≤ j(i) ≤ ml) is a unique index such that,
pl(ξi) = pl(ξsj(i)

). Then, the polynomial α′
u(x) = αu(pl(x)) mod f has the following direct

sum (or canonical) representation in the ring R,

α′u(x) =
n∑

i=1

auj(i)χi

This implies that the polynomial h′l(y) = yt + α′1yt−1 + . . . + α′
t ∈ R[y] has the canonical

representation,

h′l(y) =
n∑

i=1

 ∏
r∈∆̃

(l)
j(i)

(y − pl(ξsr))

χi (3.3)

Inductively, assume that gl−1(y) has the form,

gl−1(y) =
n∑

i=1

 ∏
j∈D

(l−1)
i

(y − ξj)

χi

Then,

gl(y) = gcd
(
gl−1(y), h′l(pl(y))

)
=

n∑
i=1

gcd

 ∏
j∈D

(l−1)
i

(y − ξj),
∏

r∈∆̃
(l)
j(i)

(pl(y)− pl(ξsr))

χi

=
n∑

i=1

 ∏
j∈D

(l−1)
i ∩∆

(l)
i

(y − ξj)

χi (as r ∈ ∆̃(l)
j(i) ⇔ sr ∈ ∆(l)

i )

Therefore,

gl(y) =
n∑

i=1

 ∏
j∈D

(l)
i

(y − ξj)

χi

= βt′y
t′ + . . . + β0 (say)
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where t′ = maxi

(
#D

(l)
i

)
and βu ∈ R for 1 ≤ u ≤ t′ ≤ n−1

2 . The element βt′ is not a

zero divisor in R if and only if #D
(l)
1 = . . . = #D

(l)
n = t′. If t′ ≤ c then a factor of f can

be retrieved from gl(y) in polynomial time using already known methods ([Evd94]). The
condition #D

(l)
i = t′ for all i, 1 ≤ i ≤ t′, makes the out degree of every vertex in Gl equal

to t′. However, this may not necessarily imply that the in degree of every vertex in Gl is
also t′. Checking for identical in degrees of the vertices of Gl is handled in steps (9)− (11)
of the algorithm. Consider evaluating the polynomial gl(y) at a point ys ∈ Fp.

gl(ys) =
n∑

i=1

 ∏
j∈D

(l)
i

(ys − ξj)

χi ∈ R

The characteristic polynomial of gl(ys) over Fp is,

cs(x) =
n∏

i=1

x−
∏

j∈D
(l)
i

(ys − ξj)


⇒ −cs(0) =

n∏
j=1

(ys − ξj)kj (since n is odd)

where kj is the in degree of vertex vj in Gl. Let r(x) = xnt′ + r1x
nt′−1 + . . . + rnt′ ∈ Fp[x]

be a polynomial of degree nt′, such that,

r(ys) = −cs(0) =
n∏

j=1

(ys − ξj)kj

for nt′ distinct points {ys}1≤s≤nt′ taken from Fp. Since we have assumed that p > n2 >
n(n−1)

2 ≥ nt′, we can solve for the coefficients r1, . . . , rnt′ using any nt′ distinct points from
Fp. Then,

r(x) =
n∏

j=1

(x− ξj)kj

If kj 6= t′ for some j, then there is an i = min{k1, . . . , kn} < t′ such that f i(x) divides r(x)

and gcd
(

r(x)
f i(x)

, f(x)
)

yields a nontrivial factor of f(x). This shows that the graph Gl is

regular if the algorithm fails at the lth step. Since deg(gl(y)) equals the regularity of Gl,
hence if the latter quantity is less than c then we can apply Evdokimov’s algorithm [Evd94]
on gl(y) and get a non trivial factor of f in polynomial time.

Let Hl (1 ≤ l ≤ k) be a digraph with n vertices v1, . . . , vn such that there is an edge
from vi to vj iff j ∈ ∆(l)

i . Then, graph Gl = Gl−1 ∩ Hl or Gl = Gl−1 (if Gl−1 ∩ Hl = Φ,
where Φ is the null graph with n vertices but no edge). Here ∩ denotes the edge intersection
of graphs defined on the same set of vertices. Algorithm 2 fails to find a proper factor of f
in polynomial time if and only if there exists an l ≤ k such that Gl is t-regular (t > c) and
Gl ∩Hj = Gl or Φ for all j, l < j ≤ k. It is therefore important to choose the polynomials
pj(·) in such a way that very quickly we get a graph Hj with Gl ∩Hj 6= Gl or Φ. We say
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that a polynomial pl(·) is good if either Hl is not regular or Gl 6= Gl−1 (1 < l ≤ k). We
show that, only a few good polynomials are required.

Lemma 3.3. Algorithm 2 (with a slight modification) requires at most dlog2 ne good auxil-
iary polynomials to find a proper factor of f .

Proof: Consider the following modification of Algorithm 2. At step 5 of Algorithm 2,
for l > 1, take gl(y) to be either gcd(gl−1(y), h′l(pl(y))) or gl−1(y)/gcd(gl−1(y), h′l(pl(y))),
whichever has the smaller nonzero degree. Accordingly, we modify the definition of graph
Gl. Define the set ∆̄(l)

i (1 ≤ i ≤ n) as,

∆̄(l)
i = {1 ≤ j ≤ n : j 6= i, σ((pl(ξi)−pl(ξj))2) = (pl(ξi)−pl(ξj))} = {1 ≤ j ≤ n : j 6= i}−∆(l)

i

and modify the definition of the sets D
(l)
i (1 ≤ i ≤ n) as,

D
(1)
i = ∆(1)

i

For l > 1, Di
(l) = Di

(l−1) ∩∆(l)
i if gl(y) = gcd(gl−1(y), h′l(pl(y)))

= Di
(l−1) ∩ ∆̄(l)

i else if gl(y) = gl−1(y)/gcd(gl−1(y), h′l(pl(y)))

As before, an edge (vi, vj) is present in Gl iff j ∈ D
(l)
i . This modification ensures that, if

gl(y) 6= gl−1(y) has an invertible leading coefficient (i.e if gl(y) is monic) then the degree
of gl(y) is at most half the degree of gl−1(y). Hence, for every good choice of polynomial
pl(·) if Gl−1 and Gl are tl−1-regular and tl-regular, respectively, then tl ≤ tl−1

2 . Therefore,
at most dlog2 ne good choices of polynomials pl(·) are required by the algorithm.

Theorem 1.1 follows as a corollary to Theorem 3.2 and Lemma 3.3. As already pointed
out in section 1, if only εdlog2 ne good auxiliary polynomials are available for some ε,
0 < ε ≤ 1, then we obtain a nontrivial factor g(y) of f ′(y) with degree at most n1−ε

2 . If
we apply Evdokimov’s algorithm on g(y) instead of f ′(y), then the maximum dimension of

the rings considered is bounded by n
(1−ε)2

2
log n+ε+O(1) instead of n

log n
2

+O(1) (as is the case
in [Evd94]).

In the following discussion we briefly analyze the performance of Algorithm 2 based
on uniform random choices of the auxiliary polynomials pl(.) (1 < l ≤ k). The proofs are
omitted.

Lemma 3.4. If p = 3 mod 4 and p ≥ n622n then about (1+o(1))n

( π
2
n)

n
2

fraction of all completely

splitting, square-free polynomials of degree n are square balanced.

Corollary 3.5. If p = 3 mod 4, p > n622n and pl(y) is a uniformly randomly chosen
polynomial of degree (n − 1) then the probability that fl is either not square-free or is a
square-free and square balanced polynomial is upper bounded by (1+o(1))n

( π
2
n)

n
2

.

It follows that, for p = 3 mod 4 and p > n622n, if the auxiliary polynomials pl(·)’s
are uniformly randomly chosen then Algorithm 2 works in randomized polynomial time.
However, the arguments used in the proof of Lemma 3.4 do not immediately apply to the
case p = 1 mod 4. Therefore, we resort to a more straightforward analysis, although in the
process we get a slightly weaker probability bound.



620 CHANDAN SAHA

Lemma 3.6. If Gl (1 ≤ l < k) is regular and pl+1(y) ∈ Fp[y] is a uniformly randomly
chosen polynomial of degree (n− 1) then Gl+1 6= Gl with probability at least 1− 1

20.9n−2 .

Thus, if polynomials pl(y), 1 < l ≤ dlog2 ne, are randomly chosen, then the probability that
f is not factored by Algorithm 2 within dlog2 ne iterations is less than dlog2 ne

20.9n−2 .

4. Conclusion

In this paper, we have extended the square balance test by Gao [Gao01] and showed a
direction towards improving the time complexity of the best previously known deterministic
factoring algorithms. Using certain auxiliary polynomials, our algorithm attempts to exploit
an inherent asymmetry among the roots of the input polynomial f in order to efficiently
find a proper factor. The advantage of using auxiliary polynomials is that, unlike [Evd94],
it avoids the need to carry out computations in rings with large dimensions, thereby saving
overall computation time to a significant extent. Motivated by the stringent symmetry
requirement from the roots of f , we pose the following question:

• Is it possible to construct good auxiliary polynomials in deterministic polynomial
time?

An affirmative answer to the question will immediately imply that factoring polynomials
over finite fields can be done in deterministic polynomial time under ERH.
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Abstract. We give a new, and hopefully more easily understandable, structural proof of
the decomposition of a k-valued transducer into k unambiguous functional ones, a result
established by A. Weber in 1996. Our construction is based on a lexicographic ordering of
computations of automata and on two coverings that can be build by means of this ordering.
The complexity of the construction, measured as the number of states of the transducers
involved in the decomposition, improves the original one by one exponential. Moreover,
this method allows further generalisation that solves the problem of decomposition of
rational relations with bounded length-degree, which was left open in Weber’s paper.

1. Introduction

This communication is part of a complete reworking1 and rewriting of the theory of
k-valued rational relations and transducers which puts it in line with the theory of rational
functions (1-valued rational relations) and functional transducers and makes it appear as a
natural generalisation of the latter not only at the level of the results — as we recall in the
next paragraph — but also at the level of proofs.

It is decidable whether a transducer is functional (originally due to Schützenberger [13]);
as a consequence, the equivalence of functional transducers is decidable, and, above all, ev-
ery functional transducer is equivalent to an unambiguous one [5]. These results generalise
in a remarkable way to bounded valued rational relations and transducers. It is decidable
whether the image of every word by a given transducer is bounded (Weber [14]), it is decid-
able whether it is bounded by a given integer k (Gurari and Ibarra [6]), every k-valued trans-
ducer is equivalent to the sum of k functional (and thus unambiguous) ones (Weber [15])
and the equivalence of k-valued transducers is decidable (Culik and Karhumäki [4]).

It is noteworthy that all the results just quoted for functional transducers are now
(if not in the original papers) established by means of constructions conducted on the
transducers themselves [2,9,11] whereas the corresponding results on k-valued transducers
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come, in some sense, “from outside” and, what is worse, from a different world for each of
them. Gurari and Ibarra’s proof for the decidability of the k-valuedness relies on a reduction
to the emptiness problem for a class of counter automata, Culik and Karhumäki’s one for
the decidability of the equivalence appears in the context of the solution of Ehrenfeucht’s
conjecture on HDTOL languages, and Weber’s proof of the decomposition — which we shall
discuss more in detail below — is highly combinatorial and still somewhat detached from
the transducers.

Our approach for those results are based on constructions which depend directly on
the structure of the automata. They give back the subject a full coherence and yield
systematically better complexity bounds. This will be illustrated in this paper with a new
proof of the decomposition theorem which we restate below as Theorem 1.1. In [12] we give
a new proof for the decidability of the k-valuedness.

Theorem 1.1 (Weber [15]). Every k-valued transducer T can be effectively decomposed
into a sum of k (unambiguous) functional transducers.2

Our proof for Theorem 1.1 differs from the original one by three aspects. First, Weber’s
proof is generally considered as very difficulty to follow, whereas ours is hopefully simpler.
Second, Weber’s construction results in k transducers whose number of states is a double
exponential on the number of states of T , whereas we obtain a decomposition of single
exponential size. Third and finally, our method allows to solve the problem, posed by
Weber, of the decomposition of bounded length-degree rational relations with a more general
statement (in Weber’s question, θ is the length morphism):

Theorem 1.2. Let τ : A∗ → B∗ be a finite image rational relation and θ : B∗ → C∗ a
morphism such that the composition τθ is k-valued.3 Every transducer S realising τ can be
effectively decomposed into k transducers whose compositions with θ are functions.

Our proof makes use twice of the notion of covering of automata. A covering of an
automaton4 A is an expansion of A: a new automaton B whose states and transitions
map to those of A, preserving adjacency and labels of transitions. Moreover, the outgoing
transitions of every state of B map one-to-one to those of the projection, which implies a
bijection between the successful computations of A and B. Typically, B is larger than A,
for several states can have the same image. This allows to choose certain subsets of the
computations of A by erasing parts of B.

The two coverings we are going to define are based on a lexicographic ordering on the
computations. This method can be seen as a conceptual generalisation of the one used by H.
Johnson in order to build a lexicographic selection of deterministic rational relations [7, 8].

The first construction, explained in Section 3.3, is what we call the lag separation
covering UN of a (real time) transducer T . It is parameterised by an integer N , and roughly
speaking allows to distinguish between computations with same input and same output and

2By “decomposed” we mean that the relation realised by T and the union of the relations realised by the
k transducers are the same.

3We write functions and relations using a postfix notation: xτ is the image of x by the relation τ and
thus the composition of relations is written by left-to-right concatenation. Let us recall that the rational
relations are closed under composition [5].

4As we shall define in Section 2, transducers are automata of a certain kind.
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whose lag5 is bounded by N . If T is k-valued, we show that for a certain N , UN contains
a subtransducer VN which is equivalent to T and input-k-ambiguous6 (Proposition 4.2).

The second construction (Section 3.2) is what we call the multi-skimming covering of
an N-automaton. It proves the following multi-skimming theorem for N-rational series:

Theorem 1.3. Let A be a finite N-automaton with n states realising the series s. There
exists an infinite N-covering B of A such that for every integer k > 0, there exists a finite N-
quotient Bk of B which satisfies: Bk is an N-covering of A with at most n (k+1)n states; for
every i, 0 ≤ i < k, there exists an unambiguous subautomaton B(i)

k of Bk which recognises
the support of s− i; there exists a subautomaton Dk of Bk whose behaviour is s− k.

Here s−k is the series obtained from s by subtracting k to every coefficient larger than
k and assigning 0 to the others. In particular, Theorem 1.3 says that, if A is a k-ambiguous
automaton, then there exists a finite covering Bk of A and unambiguous subautomata
B(0)

k , . . . ,B(k−1)
k of Bk such that the successful computations of the union

⋃
i B(i)

k are in
bijection with those of A. Of course, it is not new that s − k is a N-rational series when
s is. This is an old result by Schützenberger which can be proved by iterated applications
of Eilenberg’s Cross-Section Theorem [5], or of the construction given in [11]. But all these
methods yield an automaton whose size is a tower of exponentials of height k. Theorem 1.3
thus answers a problem left open in [11] with a solution which is better than the one that
was conjectured there.

These coverings together give in two steps a decomposition of a k-valued transducer T .
First, the lag separation covering of T yields a transducer VN equivalent to T and whose
underlying input automaton, say A, is k-ambiguous. Next, the multi-skimming covering
applied to A yields, as stated in the discussion after Theorem 1.3, k unambiguous automata
B(i)

k ; the successful computations of the union of the B(i)
k are in bijection with those of A

and, as the transitions of every B(i)
k map on those of A, one can “lift” on them the output of

the corresponding transitions of VN : one thus obtain k unambiguous functional transducers
Z(0), . . . ,Z(k−1) decomposing T (see Figure 1).

T UN VN

A ⋃
i B(i)

k

⋃
iZ(i)

π π

Figure 1: Decomposition of a k-valued transducer T . The simple edge stands for a covering;
the dotted one represents an input-k-ambiguous subautomaton; the double ones
are immersions; π is a projection on the underlying input automaton.

Our proof goes so to speak in the opposite way that Weber’s one: our first step is to
build an input-k-ambiguous transducer from which the decomposition is extracted, whereas
the existence of such a transducer is viewed in [15] as a consequence of the decomposition.
Moreover, although both proofs have a very general idea in common — a classification
of computations from which at most k successful ones can be distinguished, for every in-
put word — the way we do this is completely different. Indeed, Weber’s decomposition is

5To be defined in the body of the paper.
6When it comes to ambiguity in transducers, we distinguish between input-ambiguity (called ambiguity

in most of the references) and ambiguity of the transducer (which allows to define ambiguity for relations).
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extracted from the strongly connected components of a graph built on a preliminary de-
composition of T into exponentially many functional transducers. We perform a selection
among the computations of T according to a lexicographic ordering on the transitions.

A rough estimation of the complexity (number of states, as a function on the number
of states of T ) of this two-step procedure gives a double exponential: one for the lag sep-
aration covering UN and other for the multi-skimming covering. However, a major feature
of this construction is that every computation in the newly built automata corresponds to
a computation in the original transducer — this is basically what we mean by structural
proof — which allows to track down the usefulness of every newly created state. Then, a
careful analysis shows that restricting the constructions to the trim parts of the automata
the number of obtained states is bounded by 2O(hLk4nk+4) states, where n is the number of
states of T , h is the size of the output alphabet and L is the maximal length of the outputs
of the transitions (Section 4.2). This is to be compared with the size of Weber’s decompo-
sition described in [15], 22P

, where P = p(n + L + h + k) is a polynomial whose degree and
coefficients do not seem to be easily derived from the arguments developed there.

The proof of Theorem 1.2 starts with the construction of k unambiguous transducers
decomposing the k-valued relation τθ. Next, we show that these transducers induce a
decomposition of the set of successful computations of S. This gives a new set of k finite
transducers, not necessarily unambiguous, which decompose S (Section 4.3).

Finally, let us note that — as explained in [15] — the improvement in the size of the
decomposition from double to single exponential yields an improvement of the same order
for the complexity of the decision of the equivalence of k-valued transducers.

2. Preliminaries

We basically follow the definitions and notation in [1, 5, 10].
The semiring of the nonnegative integers is denoted by N, the set of words over a finite

alphabet A (the free monoid over A) by A∗ and the empty word by 1A∗ . The length of
u ∈ A∗ is denoted by |u|. The powerset of a set X is denoted by P(X).

An automaton over a monoid M is a labelled directed graph A = (Q,M,E, I, T ) defined
by the set Q of vertices, called states and E of edges, called transitions, together with two
subsets I and T of Q, the initial and final states respectively. Every transition e in E is
associated with a triple (p,m, q) of Q×M×Q, specifying its origin, label and end. Note
that we shall explicitly consider cases where distinct transitions have the same origin, label
and end, even though we take the liberty to write e : p

m−→ q ∈ E meaning a transition e
associated with (p,m, q). The automaton A is finite if Q and E are finite.

A computation in A is a sequence of transitions c : p0
m1−−→ p1

m2−−→ . . .
ml−−→ pl, also de-

noted as p0
m1...ml−−−−−→

A
pl. Its label is m1 . . . ml ∈ M and its length l. It is successful if p0 ∈ I

and pl ∈ T . The behaviour of A is the set |||A||| ⊆ M of labels of successful computations.
These sets are the family Rat M of the rational subsets of M .

A state of A is accessible if it can be reached by a computation starting at some state
of I, and co-accessible if some state of T can be reached from it. The state is useful if is
both accessible and co-accessible, and we say that A is trim if every state is useful.

If M is a free monoid A∗ and the labels of transitions are letters, then A is a classical
automaton over A; we write in this case A = (Q,A,E, I, T ). If M is a product A∗ × B∗,
then every transition is labelled by a pair denoted as u|x and consisting of an input word
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u ∈ A∗ and an output one x ∈ B∗; and A is a transducer realising a rational relation
from A∗ to B∗. The image of a word u ∈ A∗ by a transducer is the set of outputs of
successful computations whose input is u. The transducer is called k-valued, for k ∈ N, if
the cardinality of the image of every input word is at most k.

By using classical constructions on automata, every transducer can be transformed into
a real-time one: a transducer whose labels are of form a|K, where a is a letter, K ∈ Rat B ∗
and I and T are functions from Q to Rat B∗ [5, 10]. For finite image relations we may
suppose that the transitions read a letter and output a single word, and the image of every
final state is 1B∗ . In this case, the transducer is denoted rather as T = (Q,A,B∗, E, I, T ).

The underlying input automaton A of a real-time transducer T is the (classical) au-
tomaton obtained by forgetting the output of the transitions and replacing the functions I
and T by their domains. The behaviour of A is the domain of the relation realised by T .

p q
a |b2

a |1B∗

a |b

p q
a

a

a

Figure 2: A 2-valued real-time transducer T over {a}∗×{b}∗ and its (infinitely ambigu-
ous) underlying input automaton. The behaviour of T is the relation defined by
(1A∗)|||T ||| = 1B∗ and (an)|||T ||| = {bn, bn+1} for n > 0.

An N-automaton is an automaton labelled by letters with multiplicities in N attached
to the transitions and to initial and final states. It realises an N-rational series: a function
s : A∗ → N which assigns to u ∈ A∗ a multiplicity given by summing the multiplicites
(product of the multiplicities of transitions) of the successful computations labelled by u.

Every N-automaton or real-time transducer can be described by a matrix representation
(λ, µ, ν), where λ ∈ SQ (ν ∈ SQ) is a row (column) vector for the multiplicities of the initial
(final) states, µ : A∗ → SQ×Q is a morphism, S = N for N-automata and S = Rat B∗ for
transducers. The behaviour can be expressed by the function which maps every u ∈ A∗ to
λ · uµ · ν. This leads to call dimension the set of states of an automaton.

It will be useful to consider N-automata whose transitions are characteristic, that is,
with multiplicity 1. Every N-automaton can be transformed into such a one by splitting
every transition with multiplicity l > 0 into a set of l characteristic ones (Figure 3).

p qb

a 2a

b 2b

p qb

a

b

a

b

a

b

Figure 3: An N-automaton C1 over {a, b}, on the right-hand side with characteristic transi-
tions obtained by splitting multiplicities. If u ∈ {a, b}∗ is viewed as the writing in
the binary system of an integer u by interpreting a as 0 and b as 1, then u|||C1||| = u.

A morphism from B = (R,M,F, J, U) to A = (Q,M,E, I, T ), denoted by ϕ : B → A, is
a pair of mappings R → Q and F → E, both denoted by ϕ, such that Jϕ ⊆ I, Uϕ ⊆ T and
for every e ∈ F , if e is associated with (p,m, q), then eϕ is associated with (pϕ,m, qϕ). We
say that ϕ is a covering if ϕ induces a bijection between the outgoing transitions of p and
pϕ, I is in bijection with J and Tϕ−1 = U . An immersion is by definition a subautomaton
of a covering. These conditions imply that every successful computation of B maps to a
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successful computation of A, and thus |||B||| ⊆ |||A|||. In the case of coverings, there is indeed a
bijection between the successful computations and thus |||B||| = |||A||| [9].

A covering of the split form of an N-automaton A is the split form of an N-covering of
A, see [3, 10, 11] for the definition of the latter. The N-series realised by an N-automata
and any of its N-coverings are the same.

3. Lexicographic coverings

The idea of the two coverings we are going to define is to order lexicographically com-
putations of automata, inasmuch as it can be done with words on some alphabet. Here, the
alphabet is the set of transitions, and computations are seen as words on it.

3.1. The lexicographic ordering of computations

Let A = (Q,A,E, I, T ) be a classical automaton. Fix a (partial) ordering ≺ on E such
that transitions are comparable iff they have the same label and origin. This ordering is ex-
tended on E∗ and thus on the computations of A in such a way that it can be called a lexico-
graphic ordering of the computations: c = e1e2 . . . elel+1 . . . en and d = e′1e

′
2 . . . e′le

′
l+1 . . . e′m

(ei, e
′
j ∈ E for 1 ≤ i ≤ n and 1 ≤ j ≤ m) are such that c ≺ d iff c and d have the same label

(thus m = n) and there exists l such that ei = e′i for 1 ≤ i ≤ l − 1 and el ≺ e′l.

p

q

b

a b

a b

a b

p p p p ≺ ≺p p p q

p p q q ≺ ≺p q q q

p q q q ≺ ≺p q q q

p q q q ≺ p q q q

b b b b b b

b b b b b b

b b b b b b

b b b b b b

Figure 4: A lexicographic ordering between the computations of C1 labelled by bbb and
starting at p. Solid transitions are smaller than the dotted and dashed ones.

The definitions for other kinds of automata are similar but, in order to give them the
wanted meaning, a little bit more delicate: for N-automata, the ordering is put on the split
form, and for real-time transducers, on the underlying input automaton.7

3.2. The multi-skimming covering of an N-automaton

The aim of the multi-skimming covering of an N-automaton A = (Q,A∗, E, i, T ) is to
count, for every successful computation, the number of the smaller ones according to ≺.

Let ξ : E → NQ be the function from transitions to N-vectors indexed by Q defined by
(eξ)r = card

(
{f ∈ E | f : p

a−→ r and f ≺ e}
)
, for e : p

a−→ q ∈ E and r ∈ Q.

Definition 3.1. The multi-skimming covering of A is the (infinite) N-automaton B of
dimension Q× NQ defined as follows:

7In order to ease the explanation, we shall describe the constructions for automata with a single initial
state. Computations starting at distinct initial states become ordered by extending ≺ to new transitions

i
1−→ p starting at a “hidden” initial state i, for every p ∈ I. Initial multiplicities can be treated similarly.
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• the initial state is (i, ~0) (where ~0 is the zero vector);
• the final states are T × NQ;
• for every (p, v) ∈ Q × NQ and every e : p

a−→ q ∈ E, (p, v) a−→ (q, v · aµ + eξ) is a
transition of B (where µ is the morphism of the matrix representation of A). �

It follows from this definition that for every state (p, v) of B, the outgoing transitions of
(p, v) are in bijection with those of p. Thus, the projection ϕ of B on the first component is
an N-covering ofA. The property below follows by induction on the length of computations8:

Property 3.2. Let C : (i,~0) u−→
B

(p, v) be a computation. For every q ∈ Q, vq is the number

of computations d : i
u−→
A

q such that d ≺ Cϕ (where Cϕ is the projection of C on A).

We define as above the (finite) automaton Bk satisfying Theorem 1.3; the difference is
that it counts until k−1. Let Nk = {0, . . . , k−1, ω} be the quotient semiring of N given by
the relation k = k + 1 (ω is the class of k and plays the role of an infinity). The dimension
of Bk is Q × NQ

k ; transitions and initial and final states are defined as in Definition 3.1,
but the matrix operations v · aµ + eξ are made in Nk. The morphism N → Nk induces an
N-quotient B → Bk, and as noted, Bk is an N-covering of A. Figure 5 shows an example.

By induction on the length of computations, we have:

Property 3.3. Let C : (i,~0) u−→
Bk

(p, v) be a computation. For every q ∈ Q, vq is the number

of computations d : i
u−→
A

q such that d ≺ Cϕ, if this number is smaller than k, or it is ω

otherwise.

Proof of Theorem 1.3. In view of Property 3.3, we can obtain the subautomata B (i)
k of Bk by

erasing the condition of being final of some final states of Bk: each B(i)
k is defined by choosing

as final only the states (p, v) ∈ T × NQ
k such that

∑
q∈T vq = i; Dk is the subautomaton of

Bk defining as final the states (p, v) ∈ T × NQ
k such that

∑
q∈T vq = ω.

3.3. The lag separation covering of a real-time transducer

Let T = (Q,A,B∗, E, i, T ) be a real-time transducer. We aim with the lag separation
covering of T at a selection between computations of this transducer with same input and
same output (stated in Property 3.9). This will be useful in Section 4 to construct a input-
k-ambiguous transducer from a k-valued one.

It is not possible in general to build a finite expansion which allows to select exactly one
computation for each pair of words in the relation realised by the transducer, for this would
lead to an unambiguous transducer and there exist rational relations which are inherently
ambiguous. The idea is to fix a parameter N and compare only computations such that the
differences of lengths of outputs along them (their “lag”) are bounded by N .

At first, let us recall the Lead or Delay action, defined in [2] to describe differences of
words. We restate it in a slightly different form, based on the free group F (B) generated by
B: the quotient of (B ∪ B)∗ by the relations xx = xx = 1B∗ (x ∈ B), where B a disjoint
copy of B. The inverse of u ∈ B∗, denoted by u, is the mirror image of u with barred letters.

8Computations of coverings will be represented with capital letters.
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B(0)
3 B(1)

3 B(2)
3

D3

p

q

b

a b

a b

a b

(0 0) (1 0) (1 1) (1 2) (1 ω)

b

a
b

b
a

b

a

b

b

a

b
a

a

a b

2a + 2b

(a) With the dashed transition starting at p being
smaller than the dotted one...

B(0)
3 B(1)

3 B(2)
3

D3

(0 0) (0 1) (0 2) (0 ω)

a

b
a b

a
b

a
b

bb
aa

a

b

b

a a
b b

a

b

b
b

b

2a + 2b

(b) ... and with the other ordering
on the outgoing transitions of p.

Figure 5: The multi-skimming covering at layer k = 3 for C1 with two different orderings of
the transitions starting at p. States of the covering are pairs (r, v), where r is a
state of the automaton (horizontal projection) and v is an N3-vector indexed by
{p, q} in that order (vertical projection). Solid transitions leaving q are smaller
than the dotted ones in both coverings. The double transitions stand for four
transitions. The automata B(i)

3 recognising the support of s−i and D3 recognising
s−3 are given by keeping as final exactly one final state at the indicated columns.

We denote by 1 the empty word of F (B) (which is the class of the empty word of B). Let
∆ = B∗∪B

∗∪{0}, where 0 is a new element, a zero, not in F (B), and ρ : F (B)∪{0} → ∆
be the function wρ = w, if w ∈ ∆, and wρ = 0 otherwise.

Definition 3.4. The Lead or Delay Action of B∗×B∗ on ∆ is defined by w·(x, y) = (xwy)ρ ,
w ∈ ∆, (x, y) ∈ B∗×B∗ (the product is taken with the rules 0x = x0 = 0). �

Intuitively, 1 · (x, y) represents the “difference” of the words x and y, being a positive
word if x is a prefix of y (the lead of y with respect to x), a negative word if y is a prefix of
x (the delay of y with respect to x), and 0 if x and y are not prefixes of a common word.

Definition 3.5. Let c : p
u|x−−→ q and d : p′

u|y−−→ q′ be two computations of T with the same
input u. As T is a real-time transducer, c and d have the same length. We define their Lead
or Delay, denoted by LD(c, d), as the element 1 · (x, y) of ∆, and if LD(c, d) 6= 0, their lag
as the integer 〈c, d〉 = max{|LD(c′, d′)| | c′, d′ prefixes of c, d with the same length}. �

Similarly to the multi-skimming covering, the states of the lag separation covering of T
carry vectors indexed by Q. But in this case the “stored information” is the Lead or Delay
between any computation and those which are smaller. Let ξ : E → P(∆)Q be the function

given by (eξ)r = {(xy)ρ | f : p
a|y−−→ r ∈ E, f ≺ e}, for e : p

a|x−−→ q ∈ E and r ∈ Q.

Definition 3.6. The lag separation covering of T is the (infinite) real-time transducer
U = (R,A,B∗, F, j, U) defined by

• R = Q×P(∆)Q;
• j = (i,~0) (where ~0 is the vector whose entries are all equal to ∅);
• U = T×R;
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• for every (p, v) ∈ R and every e : p
a|x−−→ q ∈ E, (p, v)

a|x−−→ (
q, (x · v · aµ + eξ)ρ

)
is a

transition in F (where µ is the morphism of the matrix representation of T , x · v
is the vector obtained by multiplying on the left every entry of v by x, and ρ is
extended componentwise to vectors in P(∆)Q). �

As before, for every state (p, v) of U , there is a bijection between the outgoing transitions
of (p, v) and those of p: the projection ϕ of U on the first component is a covering on T .
By induction on the length of computations, we have:

Property 3.7. Let C : (i,~0)
u|x−−→ (p, v) be a computation of U . For every state q of T , vq

is the set of Lead or Delay of Cϕ (the projection of C on T ) and any computation of T
smaller than Cϕ and which ends in q: vq = {LD(Cϕ, d) | d : i

u|y−−→
T

q, d ≺ Cϕ}.

In order to build the announced selection of computations of T , we define a “bounded”
lag separation covering where only the computations with lag bounded by N are compared,
so that only words in ∆N = B≤N ∪ B

≤N are “stored” in the entries of the vectors v. Let
ρN : F (B) → ∆N ∪ {0} be the function defined by wρN = w, if w ∈ ∆N , and wρN = 0
otherwise. The element 0 is intentionally omitted from ∆N in order to simplify the writing
of Property 3.8, and in the extension of ρN to P(F (B))Q the image of a word not in ∆N

will be seen as the empty set so that for v ∈ P(F (B))Q, vρN is a vector in P(∆N )Q (which
does not contain 0 in any of its entries). We define UN as the (finite) transducer constructed
as in Definition 3.6, but with states and transitions given by:

R = Q×P(∆N )Q, ∀ (p, v) ∈ R, ∀ e : p
a|x−−→ q ∈ E (p, v)

a|x−−→ (
q, (x·v·aµ+eξ)ρN

) ∈ F.

Due to the fact that ρN is not a morphism, it is not true in general that U is a covering of
UN ; but UN is another covering of T . By induction we have (see Figure 6(a)):

Property 3.8. Let C : (i,~0)
u|x−−→ (p, v) be a computation of UN . For every state q of T ,

vq = {LD(Cϕ, d) | d : i
u|y−−→
T

q, x, y prefixes of a common word, d ≺ Cϕ, 〈Cϕ, d〉 ≤ N}.

The wanted selection is a consequence of Property 3.8 and can be stated as follows:

Property 3.9. Let VN be the subtransducer of UN obtained by removing the property of
being final of every state (p, v) ∈ T ×R such that 1 ∈ vt for some t ∈ T . A computation C
of VN is successful if, and only if, Cϕ is successful in T and for every successful computation
d of T smaller than Cϕ with (same input and) same output, 〈Cϕ, d〉 > N .

The transducers T and VN are equivalent : if (u, x) is in the behaviour of T , the smallest
successful computation of T labelled by (u, x) is the projection of a successful one in VN .

The following remark on the trim part of VN will be useful for the evaluation of the
size of the decomposition (Section 4.2).

Property 3.10. Let T be a trim and k-valued transducer with n states, and whose output
alphabet has h letters. The number of useful states of VN is bounded by 22hNk2n.

Proof. We write P(l)(X) for the set of the subsets with at most l elements of a set X.

Clearly, card
(
P(l)(X)

) ≤ card (X)l2 . The hypothesis that T is trim and k-valued together
with Property 3.8 imply that the vectors in the useful states of VN have in every coordinate
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at most k words, thus these states belong to Q×P(k)(∆N )Q. The cardinality of this set is

at most n ·
(
card (∆N )k

2
)n ≤ n ·

(
(2h)Nk2

)n
. This is clearly bounded by 22hNk2n.

4. Decomposing a k-valued rational relation

As said in the introduction, we first prove a result for k-valued transducers:

Theorem 4.1. Any k-valued transducer is equivalent to an input-k-ambiguous one.

This will be established by the lag separation covering: for some adequate N , VN is
input-k-ambiguous (Proposition 4.2). Next, Theorem 1.1 is proved by applying the multi-
skimming covering on the underlying input automaton of VN (Section 4.2).

4.1. From a k-valued transducer to an input-k-ambiguous one

Proposition 4.2. Let T be a real-time transducer with n states and lengths of outputs of
transitions bounded by L. If T is k-valued, then for N ≥ Lnk+1 VN is input-k-ambiguous.

The crux of the proof is a combinatorial property stated in Theorem 2.2 of [15], and
restated here as Lemma 4.3. In this lemma, T k+1 is the cartesian product of T by itself
k + 1 times, a natural generalisation of the squaring of T defined in [2] to establish the
decidability of the functionality of transducers. In T 2, every computation corresponds to
a pair of computations of T with the same input ; in T k+1, every computation corresponds
then to a (k+1) tuple of computations of T with the same input (this construction is heavily
used in [12] to give a new proof of the decidability of k-valuedness).

Lemma 4.3 (Weber [15]). If T is k-valued, then for every successful computation c of T k+1

there exists a pair i, j of coordinates such that the projections ci and cj satisfy LD(ci, cj) = 1
(that is, ci and cj have the same output) and 〈ci, cj〉 < Lnk+1.

A concise proof for Lemma 4.3 can be derived from a property of the Lead or Delay
action stated in Lemma 5 of [2]. Although not so long, it is omitted due to space constraints.

Proof of Proposition 4.2. Fix N ≥ Lnk+1. By Property 3.9, distinct successful computa-
tions of VN with the same input either output distinct words or have a lag greater than
Lnk+1. Hence k+1 distinct successful computations of VN with the same input word would
project on a (k + 1)-tuple of computations of T that contradicts Lemma 4.3.

4.2. Decomposing the input-k-ambiguous transducer VN

As observed in Section 3.3, T and VN are equivalent (for every N). Thus, a decompo-
sition of VN is also a decomposition of T .

Take N = Lnk+1 and let A be the underlying input automaton of VN . It is straight-
forward to decompose VN by applying the multi-skimming covering on A. By Proposi-
tion 4.2, A is k-ambiguous, hence the multi-skimming covering yields unambiguous au-
tomata B(0)

k , . . . ,B(k−1)
k which are immersions in A, and whose successful computations

are in bijection with those of A. By lifting to the transitions of B(0)
k , . . . ,B(k−1)

k the
corresponding outputs in VN of the projected ones, we obtain unambiguous transducers
Z(0), . . . ,Z(k−1) whose union is equivalent to T . Figure 6 shows an example with a given
ordering for each covering. Other decompositions are obtained by varying these orderings.
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p

q

a |b2 a |1

a |b

(∅ ∅) ({b̄} ∅) ({1} {b}) ({b̄} {1})

r

s

a |b2

a |ba |b

a |1

a |1
a |b2

(a) A lag separation covering UN with N = 1. The
P(∆1)

Q-vectors (vertical projection) are indexed by
{p, q}, in that order. The dotted transition is larger than
the solid one. The input-2-ambiguous (and equivalent to
T ) subtransducer V1 is reduced to the states {r, s}.

Z(0) Z(1)

r

s

a | b
a | b2

(0 0) (1 0)

a | b

a | b2

(b) The lifted transducers Z(0) and

Z(1) from a 2-skimming of the input
automaton of V1. The choices of final
states yield |||Z(0)||| : an 7→ bn (n ≥ 0)

and |||Z(1)||| : an 7→ bn+1 (n > 0).

Figure 6: A decomposition of the 2-valued transducer T of Figure 2.

The number of states of the decomposition depends on the following parameters of T :
n (number of states), h (cardinality of the output alphabet), L (maximal of the lengths of
the outputs of transitions) and k (valuedness). We claim:

Property 4.4. Each transducer Z (i) has at most 2O(hLk4nk+4) useful states.

The proof is based on a fine analysis of the useful states of Z (i) and goes as follows.
Let X be the set of useful states of VN (as said in Section 3.3, X ⊆ Q × P(k)(∆N )Q).
Each transducer Z (i) is obtained by the multi-skimming covering of the underlying input
automaton of VN , hence its states belong to X × NX

k (assuming that Z (i) was built on
the trim part of VN ). By the stated properties of the constructions, we can derive that if9

(P,V) is useful in Z (i), then V has at most kn entries different from 0. In other words, the
set of coordinates of V having a nonzero value belongs to P(kn)(X). There are k possible
nonzero values for each such coordinate, namely {1, . . . , k−1, ω}, thus the number of useful
states of Zi is at most card (X) · card

(
P(kn)(X)

) · kkn. To conclude, it remains to use
the discussion on the number of useful states of VN at the end of Section 3.3: we have
that card

(
P(kn)(X)

) ≤ card (X)(kn)2 , and by Property 3.10, card (X) ≤ 22hNk2n. With
N = nk+1L, we obtain the bound of 2O(hLk4nk+4) states.

4.3. The morphic decomposition theorem

We turn now to Theorem 1.2, the proof of which goes in four steps. First, we construct
a k-valued transducer T realising the composition τθ. This is done by relabelling the tran-

sitions of the transducer S realising τ : every transition p
a|x−−→ q of S is replaced by p

a|xθ−−→ q.
Next, T is decomposed into k unambiguous transducers Z (0), . . . ,Z(k−1). These transducers
are immersions in VN and, by composition of morphisms, also in T ; but it may be the case
that not every successful computation of T is projected by some successful one in the union
of the Z(i). The third and crucial step (described more precisely below) consists, roughly
speaking, to stick the successful computations of T to the transducers Z (0), . . . ,Z(k−1) in

9Capital letters are used in order to distinguish the states of Z (i) from the states of other automata.
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order to obtain equivalent (thus functional) transducers W (0), . . . ,W(k−1), not necessarily
unambiguous, whose successful computations project on the whole set of successful compu-
tations of T . Finally, the transitions of each W (i) are relabelled in order to construct an

immersion of S: e : p
a|y−−→ q in W(i) projects on a transition f of T ; the label of f is, by

construction, of form a|xθ; the output y of e is replaced by x. This yields k transducers
decomposing S, not necessarily functional, but whose compositions with θ are functional.

The definition of the transducers W (0), . . . ,W(k−1) is based on a generalisation of the
property of functional transducers that the lag between every pair of successful computations
with same label is bounded by some integer (this appears implicitly in a proof of [2]).

Property 4.5. Let N = nk+1L and K = 2(k + 1)N . If T is k-valued, then for every
successful computation c of T there exists a successful computation D in Z (0)∪ · · · ∪Z(k−1)

with same input, same output and such that 〈c,Dϕ〉 < K.

We can obtain each W (i) from the product of T × Z (i) by the Lead or Delay action,
see [2] for details. The part of this product restricted to states having Lead or Delay in ∆K

projects on the successful computations of T with lag smaller than K with some successful
computation in Z (i). The number of states of W (i) is bounded by n×M×card (∆K), where
M is the number of states of Z(i). This is again of order 2O(hLk4nk+4).
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Abstract. The isomorphism problem for planar graphs is known to be efficiently solvable.
For planar 3-connected graphs, the isomorphism problem can be solved by efficient parallel
algorithms, it is in the class AC1.

In this paper we improve the upper bound for planar 3-connected graphs to unambigu-
ous logspace, in fact to UL ∩ coUL. As a consequence of our method we get that the
isomorphism problem for oriented graphs is in NL. We also show that the problems are
hard for L.

1. Introduction

The graph isomorphism problem (GI) is one of the most challenging problems today. No
polynomial time algorithm is known for it, even with extended resources like randomization
or on quantum computers. On the other hand, it is not known to be NP-complete and
there are good reasons to conjecture that it is in fact not complete.

For some restricted classes of graphs, efficient algorithms for GI are known. For example
for trees [AHU74] or for graphs with bounded degree [Luk82]. We are interested in planar
graphs and 3-connected graphs. A graph is 3-connected if it remains connected after deleting
two arbitrary vertices. In 1966, Weinberg [Wei66] presented an O(n2)-algorithm for testing
isomorphism of planar 3-connected graphs. This algorithm was improved and extended by
Hopcroft and Tarjan [HT74] to an O(n log n)-algorithm for the planar graph isomorphism
problem (planar-GI). Then Hopcroft and Wong [HW74] showed that it is solvable in linear
time. Since the constant hidden in the linear time bound is very large, the problem has
been reconsidered under a more practical approach [KHC04]. The parallel complexity of
planar-GI has been studied by Miller and Reif [MR91] and Ramachandran and Reif [RR94].
They showed that planar-GI AC1-reduces to the 3-connected case and that 3-connected GI
is in AC1.

Grohe and Verbitsky [GV06] gave an alternative way to show that planar-GI is in AC1.
They proved for a class G of graphs, that if every graph in G is definable in a finite-variable
first order logic within logarithmic quantifier depth, then the isomorphism problem for G
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is in AC1. Later Verbitsky [Ver07] showed that planar 3-connected graphs are definable
with 15 variables and quantifier depth O(log n) which leads to a 14-dimensional Weisfeiler-
Lehman algorithm. With the reduction of [MR91] one obtains a new AC1-algorithm for
planar-GI.

In the above papers on planar-GI, the authors consider first 3-connected graphs. The
reason is a result due to Whitney [Whi33] that every planar 3-connected graph has pre-
cisely two embeddings on a sphere, where one embedding is the mirror image of the other.
Moreover, one can efficiently compute these embeddings. Weinberg [Wei66] used these em-
beddings to compute a code for a graph, such that isomorphic graphs will have the same
code. We call a code with this property a canonical code for the graph.

Some of the subroutines in the above algorithms have complexity below AC1. Allender
and Mahajan [AM00] showed that planarity testing is hard for L and in symmetric logspace,
SL. Since SL = L [Rei05], planarity testing is complete for logspace. Furthermore Allender
and Mahajan [AM00] showed that a planar embedding can be computed in logspace. Also
the connectivity structure of a (undirected) graph can be computed in logspace [NTS95].
Hence a natural question is whether planar-GI is in logspace.

While this question remains open, we considerably improve the upper bound for planar-
GI for 3-connected graphs in Section 3, namely from AC1 to unambiguous logspace, in fact
to UL∩coUL. Like Weinberg, we construct codes for the given graphs. In order to use only
logarithmic space, our code is constructed via a spanning tree, which depends on the planar
embedding of the graph. A crucial tool in the construction of the spanning tree is based
on a recent result by Bourke, Tewari, and Vinodchandran [BTV07] that the reachability
problem for planar directed graphs is in UL ∩ coUL. They built on work of Reinhard and
Allender [RA00] and Allender, Datta, and Roy [ADR96]. We argue in Section 4 that their
algorithm can be modified to not just solve reachability questions but to compute distances
between nodes in UL ∩ coUL.

The embedding of a planar graph can be represented as a rotation scheme. Intuitively
this gives the edges in clockwise or counter clockwise order around each node such that it
leads to a planar drawing of the graph. Rotation schemes have also been considered for
non-planar graphs. We talk of oriented graphs in this case. We extend our results to the
isomorphism problem for oriented graphs. There one has given two graphs G and H and a
rotation scheme for each of the graphs. One has to decide whether there is an isomorphism
between G and H that respects the rotation schemes. In Section 5 we show that the problem
is in NL.

With respect to lower bounds, GI is known to be hard for DET [Tor04], where DET
is the class of problems that are NC1-reducible to the determinant defined by [Coo85]. In
fact, already the isomorphism problem for tournament graphs is hard for DET [Wag07].
We show in Section 6 that the isomorphism problem for planar 3-connected graphs is hard
for logspace.

2. Preliminaries

Basically, L and NL are the classes of languages computable by a deterministic and
nondeterministic logspace bounded Turing machine, respectively. A nondeterministic Tur-
ing machine is called unambiguous, if it has at most one accepting computation on any
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input. The class of languages computable by unambiguous logspace bounded Turing ma-
chines is denoted by UL. NL is known to be closed under complement [Imm88, Sze88], but
it is open for UL.

The functional version of L is denoted by FL. It is known that FL-functions are closed
under composition, i.e. FL ◦FL = FL. The proof goes by recomputing bits of the function
value of the first function each time such a bit is needed by the second function. The same
argument works when we consider functions that are computed by unambiguous logspace
bounded Turing machines. If we call the class FUL, then this says that FUL◦FUL = FUL.
We need a further property of UL:

Lemma 2.1. LUL∩coUL = UL ∩ coUL.

Proof. Let M be a logspace oracle Turing machine with oracle A ∈ UL∩coUL. Let M0,M1

be (nondeterministic) unambiguous logspace Turing machines such that L(M0) = A and
L(M1) = A. An unambiguous logspace Turing machine M ′ for L(M,A) works as follows
on input x:

Simulate M on input x. If M asks an oracle question y, then nondetermin-
istically guess whether the answer is 0 or 1.
• If the guess is answer 0, then simulate M0 on input y. If M0 accepts,

then continue the simulation of M with oracle answer 0. If M0 rejects
then reject and halt.
• If the guess is answer 1, then simulate M1 on input y. If M1 accepts,

then continue the simulation of M with oracle answer 1. If M1 rejects
then reject and halt.

Finally accept iff M accepts.
Note that M ′ is unambiguous because M0 and M1 are unambiguous and of the two guessed
oracle answers always exactly one guess is correct.

Let G = (V,E) be an undirected graph with vertices V = V (G) and edges E = E(G).
Let G − {v} denote the induced subgraph of G on V (G) \ {v}. The neighbours of v ∈ V
are Γ(v) = {u | (v, u) ∈ E }. By Ev we denote the edges going from v to its neighbors,
Ev = { (v, u) | u ∈ Γ(v) }. By d(u, v) we denote the distance between nodes u and v in G,
which is the length of a shortest path from u to v in G.

A graph is connected if there is a path between any two vertices in G. A vertex v ∈ V is
an articulation point if G−{v} is not connected. A pair of vertices u, v ∈ V is a separation
pair if G− {u, v} is not connected. A biconnected graph contains no articulation points. A
3-connected graph contains no separation pairs.

A rotation scheme for a graph G is a set ρ of permutations, ρ = { ρv | v ∈ V }, where ρv

is a permutation on Ev that has only one cycle (which is called a rotation). Let ρ−1 be the
set of inverse rotations, ρ−1 = { ρ−1

v | v ∈ V }. A rotation scheme ρ describes an embedding
of graph G in the plane. We call G together with ρ an oriented graph. If the embedding is
planar, we call ρ a planar rotation scheme. Note that in this case ρ−1 is a planar rotation
scheme as well. Allender and Mahajan [AM00] showed that a planar rotation scheme for a
planar graph can be computed in logspace.

If a planar graph is in addition 3-connected, then there exist precisely two planar
rotation schemes [Whi33], namely some planar rotation scheme ρ and its inverse ρ−1. This
is a crucial property in our isomorphism test.
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3. Planar 3-Connected Graph Isomorphism

In this section we prove the following theorem.

Theorem 3.1. The isomorphism problem for planar, 3-connected graphs is in UL∩coUL.

In 1966, Weinberg [Wei66] presented an O(n2) algorithm for testing isomorphism of
planar 3-connected graphs. The algorithm computes a canonical form for each of the two
graphs. This is a coding of graphs such that these codings are equal iff the two graphs are
isomorphic. For a 3-connected graph G, the algorithm starts by constructing a code for
every edge of G and any of the two rotation schemes. Of all these codes, the lexicographical
smallest one is the code for G.

For a designated edge (s, t) and a rotation scheme ρ for G, the code is constructed
roughly as follows. Every undirected edge is considered as two directed edges. Now one can
define an Euler tour based on some rules for selecting the next edge. Basically, the rules
distinguish between the case whether a vertex or edge was already visited or not. The next
edge to consider is chosen to the left or right of the active edge according to ρ. Define edge
(s, t) to be the start of the tour. The code consists of the nodes as they appear on the tour,
where the names are replaced by the order of their first appearance on the tour. That is,
the code starts with (1, 2) for the edge (s, t) and every later occurrence of s or t on the tour
is replaced by 1 or 2, respectively.

Weinberg’s algorithm doesn’t work in logspace, because one has to store the vertices
and edges already visited. We show how to construct a different code in UL. Let (s, t) be
a designated edge and ρ be a rotation scheme for G. Our construction makes three steps.

(1) First we compute a canonical spanning tree T for G. This is a spanning tree which
depends on (s, t), ρ, and G, but not on the way these inputs are represented.

(2) Next we construct a canonical list L of all edges of G. To do so, we traverse T and
enumerate the edges of T and their neighbor edges according to ρ. The list L does
not depend on the representation of G, ρ or T .

(3) Finally we rename the vertices depending on the position of their first occurrence
in the list L and get a code word for G with respect to (s, t) and ρ.

We will see that the spanning tree in step 1 can be computed in (the functional version
of) UL∩coUL. The list and the renaming in step 2 and step 3 can be computed in logspace,
L. Therefore the composition of the three steps is in UL ∩ coUL.

The overall algorithm has to decide whether two given graphs G and H are isomorphic.
To do so we fix (s, t) and ρ for G and cycle through all edges of H as designated edge and
the two possible permutation schemes of H. Then G and H are isomorphic iff we find a
code for H that matches the code for G. It is not hard to see that this outer loop is in
logspace. Therefore the isomorphism test stays in UL ∩ coUL.

Step 1: Construction of a canonical spanning tree

We show that the following problem can be solved in unambiguous logspace.
• Input: An undirected graph G = (V,E), a rotation scheme ρ for G, and a designated

edge (s, t) ∈ E.
• Output: A canonical spanning tree T ⊆ E of G.

Recall that by a canonical spanning tree we mean that T does not depend on the input
representation of ρ or G, any representation will result in the same spanning tree T .
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The idea to construct the spanning tree is to traverse G with a breath-first search
starting at node s. The neighbors of a node are visited in the order given by the rotation
scheme ρ. Since the algorithm should work in logspace, we cannot afford to store all the
nodes that we already visited, as in a standard breath-first search. We get around this
problem by working with distances between nodes.

We start with the nodes at distance 1 from s. That is, write (s, v) on the output tape,
for all v ∈ Γ(s). Now let d ≥ 2 and assume that we have already constructed T up to nodes
at distance ≤ d − 1 to s. Then we consider the nodes at distance d from s. Let w be a
node with d(s, w) = d. We have to connect w to the tree constructed so far. We do so by
computing a shortest path from s to w. Ambiguities are resolved by using the first feasible
edge according to ρ. We start with (s, t) as the active edge (u, v).

• If d(u,w) > d(v, w), then (u, v) is the first edge encountered that is on a shortest
path from u to w. Therefore we go from u to v and start searching the next edge
from v. As starting edge we take the successor of (v, u). That is, ρv(v, u) is the new
active edge.
• If d(u,w) ≤ d(v, w), then (u, v) is not on a shortest path from u to w. Then we

proceed with ρu(u, v) as the new active edge.
After d− 1 steps in direction of w the node v of the active edge (u, v) is a predecessor of w
on a shortest path from s to w. Then we write (v, w) on the output tape. The following
pseudo-code summarizes the algorithm.

for all v ∈ Γ(s) do output (s, v)
for d← 2 to n− 1 do

for all w ∈ V such that d(s, w) = d do
(u, v)← (s, t)
for k ← 1 to d− 1 do

while d(u,w) ≤ d(v, w) do (u, v)← ρu(u, v)
(u, v)← ρv(v, u)

output (v, w)
The spanning tree T is canonical because its construction depends only on ρ, edge (s, t),

and edge set E. The following figure shows an example of a spanning tree T for a graph G
with rotation function ρ which arranges the edges in clockwise order around each vertex.

ρv3

ρv2

ρv1

ρt

= ( (s, t) (s, v1) (s, v2) )
= ( (t, s) (t, v3) (t, v1) )
= ( (v1, s) (v1, t) (v1, v3) (v1, v2) )
= ( (v2, s) (v2, v1) (v2, v3) )
= ( (v3, t) (v3, v2) (v3, v1) )

ρs

ρ = {ρs, ρt, ρv1 , ρv2 , ρv3}

v1

v3

t

s

v2

Except for the computation of the distances, the algorithm works in logspace. We
have to store the values of d, k, u and v, and the position of w, plus some extra space for
doing calculations. We show in Theorem 4.1 below that the distances can be computed in
UL ∩ coUL. By Lemma 2.1 the canonical spanning tree can be computed in UL ∩ coUL.
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Step 2: Computation of a canonical list of all edges

We show that the following problem can be solved in logspace.
• Input: An undirected graph G = (V,E), a rotation scheme ρ for G, a spanning

tree T ⊆ E of G, and a designated edge (s, t) ∈ T .
• Output: A canonical list L of all edges in E.

Recall that by a canonical list we mean that the order of the edges as they appear in
L does not depend on the input representation of ρ, G or T , any representation will result
in the same list.

The idea is to traverse the spanning tree in a depth-first manner. At each vertex visit
all incident edges in breath-first manner according to ρ until the next edge contained in the
spanning tree is reached.

We start the traversal with edge (s, t) as the active edge (u, v). We write (u, v) on the
output tape and then compute the next active edge as follows:

• If (u, v) ∈ T then we walk depth-first in T from u to v, consider the edge (v, u) and
take its successor according to ρv, i.e., ρv(v, u) is the new active edge.
• If (u, v) 6∈ T then we proceed breath-first with ρu(u, v) as the new active edge.

This step is repeated until the active edge is again (s, t). Then we have traversed all edges
in E. Every undirected edge is encountered exactly twice, once in each direction. The
following pseudo-code summarizes the algorithm.

(u, v)← (s, t)
repeat

output (u, v)
if (u, v) ∈ T then (u, v)← ρv(v, u)
else (u, v)← ρu(u, v)

until (u, v) = (s, t)
Clearly, the algorithm works in logspace. The list L is canonical because its construction

depends only on ρ, edge (s, t), and sets E and T . Since T is canonical as well, L depends
actually only on ρ, (s, t), and E. The following figure shows an example for L.

v1

v3

t

s

(s, v2)(v2, v1)(v2, v3)(v2, s)

(s, v1)(v1, t)(v1, v3)(v1, v2)(v1, s)

(s, t)(t, v3)(v3, v2)(v3, v1)(v3, t)(t, v1)(t, s)L =

v2

Step 3: Renaming the vertices

The last step is to rename the vertices in the list L such that they become independent
of the names they have in G. This is achieved as follows: consider the first occurrence (from
left) of node v in L. Let k − 1 be the number of pairwise different nodes to the left of v.
Then all occurrences of v are replaced by k. Recall that L starts with the edge (s, t). Hence
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all occurrences of s get replaced by 1, all occurrences of t get replaced by 2, and so on. Call
the new list code(G, ρ, s, t).

Given L as input, the list code(G, ρ, s, t) can be computed in logspace. We start with
the first node v (which is s) and a counter k, that counts the number of different nodes we
have seen so far. In the beginning, we set k = 1.

• If v occurs for the first time, than we output k and increase k by 1.
• If v occurs already to the left of the current position, then we have to determine the

number, v got at its first occurrence. To do so, we determine the first occurance of v
and then count the number of different nodes to the left of of v at its first occurance.
It is not hard to see that this can be done in logspace.

Then we go to the next node in L. Consider the example from above. The code constructed
from list L for G is as follows.

L = (s, t) (t, v3) (v3, v2) (v3, v1) (v3, t) (t, v1) (t, s)
code(G, ρ, s, t) = (1, 2) (2, 3) (3, 4) (3, 5) (3, 2) (2, 5) (2, 1)

sequel of L (s, v1) (v1, t) (v1, v3) (v1, v2) (v1, s)
sequel of code (1, 5) (5, 2) (5, 3) (5, 4) (5, 1)

sequel of L (s, v2) (v2, v1) (v2, v3) (v2, s)
sequel of code (1, 4) (4, 5) (4, 3) (4, 1)

The renaming algorithm works in logspace. It remains to argue that the new names
of the nodes are independent of their names in G. Let H be a graph which is isomorphic
to G, and let ϕ be an isomorphism between G and H. Note that ρ ◦ ϕ is a rotation scheme
for H. Consider the computation of the code for graph H with rotation scheme ρ ◦ ϕ and
designated edge (ϕ(s), ϕ(t)). The spanning tree computed in step 1 will be ϕ(T ) and the
list computed in step 2 will be ϕ(L). Now the above renaming procedure will give the same
number to node v in L and to node ϕ(v) in ϕ(L). For example nodes ϕ(s) and ϕ(t) will
get number 1 and 2, respectively. It follows that code(G, ρ, s, t) = code(H, ρ ◦ϕ,ϕ(s), ϕ(t)).
We summarize:

Theorem 3.2. Let G and H be connected, undirected graphs, let ρG be a rotation scheme
for G and (s, t) be an edge in G. Then G and H are isomorphic iff there exists a rotation
scheme ρH for H and an edge (u, v) in H such that code(G, ρG, s, t) = code(H, ρH , u, v).

This completes the proof of Theorem 3.1 except for the complexity bound on computing
distances in planar graphs. This is done in the next section.

4. Computing Distances in Planar Graphs

We show that distances in planar graphs can be computed in unambiguous logspace.

Theorem 4.1. The distance between any two vertices in a planar graph can be computed
in UL ∩ coUL.

Bourke, Tewari, and Vinodchandran [BTV07] showed that the reachability problem for
planar directed graphs is in UL∩coUL. Their algorithm is essentially based on two results:

(1) Allender, Datta, and Roy [ADR96] showed that the reachability problem for planar
directed graphs can be reduced to grid graph reachability. Grid graphs are graphs



640 T. THIERAUF AND F. WAGNER

who’s vertices can be identified with the grid points in a 2-dimensional grid with
the edges connecting only the direct horizontal or vertical neighbors.

(2) Reinhard and Allender [RA00] showed that the NL-complete reachability problem
for directed graphs is in UL∩coUL if there is a logspace computable weight function
for the edges such that for every pair of vertices u and v, if there is a path from u
to v, then there is a unique minimum weight shortest path between u and v.

Bourke, Tewari, and Vinodchandran [BTV07] provide such a weight function for grid graphs.
Therefore the reachability problem for planar directed graphs is in UL ∩ coUL.

We modify this algorithm in order to determine distances between nodes in the given
planar graph G. This is adapted from the Reinhard-Allender algorithm applied to the
weighted grid graph computed from G. Here, we only describe the changes that have to be
made in the cited references.

We start by considering the reduction from reachability for a planar graph G to a grid
graph Ggrid [ADR96]. The reduction from G to Ggrid is a special combinatorial embedding
that introduces only degree 2 nodes, thereby it preserves the exact number of paths between
any two original vertices. Vertices in G are replaced by directed cycles and edges in G are
replaced by paths such that they can be embedded into a grid. For our purpose it suffices
to note that one can modify the construction and mark the original edges of G in Ggrid .
Hence if we consider paths in Ggrid and count only the marked edges, we get distances in G.

The next step is to define a weight function such that shortest paths in Ggrid with
respect to marked edges are unique. Bourke, Tewari, and Vinodchandran [BTV07] defined
the following weight function. For an edge e let

w0(e) =


n4, if e is an east or west edge,
n4 + i, if e is a north edge in column i,

n4 − i, if e is a south edge in column i.

Let p be a path in Ggrid . The weight w0(p) is the sum of the weights of the edges on p
and can be written as a + bn4. Clearly, b is the number of edges on p. Also, it is easy to
see that if another path p′ with weight w0(p′) = a′ + b′n4 has the same weight as p, i.e..
w0(p) = w0(p′), then a = a′ and b = b′. This enforces that when we consider shortest paths
between two nodes, these paths must have the same number of edges. The crucial part now
is the value of a. Let p and p′ be different simple paths connecting the same two vertices.
Then Bourke, Tewari, and Vinodchandran [BTV07] showed that a 6= a′. It follows that the
minimum weight path with respect to w0 is always unique.

Now we modify the weight function in order to give priority to the marked edges. That
is, we define

w(e) =

{
w0(e) + n8, if e is marked,

w0(e), otherwise.
Clearly, minimum weight paths must minimize the number of marked edges. The next
parameter to minimize is the number of all edges on a path. Finally, by the same argument
as above, the a-values of different simple paths that connect the same two vertices will be
different. It follows that the minimum weight path with respect to w is always unique.

Reinhard and Allender [RA00] extended the counting technique of Immerman [Imm88]
and Szelepcsényi [Sze88]. In addition to the number of nodes within distance k from some
start node s, they also sum up the length of the shortest paths to these nodes. If the shortest
paths are unique then they show that the predicate d(s, v) ≤ k is in UL ∩ coUL. The
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distance d now refers to Ggrid because this is the input of the algorithm. By augmenting
the algorithm with a counter for marked edges we also can refer to distances in G by
construction of the weight function w. This suffices for our purpose because by several
invocations of this procedure with different k’s we can determine d(s, v) for any s and v in
UL ∩ coUL, where d is the distance in G.

5. Oriented Graph Isomorphism

In the previous sections we have considered planar graphs, where the planar embedding
is provided by a rotation scheme. It is also interesting to consider arbitrary (undirected)
graphs with a rotation scheme that induces some orientation, i.e. cyclic order, on the edges.
In the isomorphism problem for oriented graphs we have given two graphs, each with a
rotation scheme. One has to decide whether there is an isomorphism between the graphs
that respects the orientation.

Miller and Reif [MR91] proved that the isomorphism problem for oriented graphs is in
AC1. We improve the complexity bound to NL. The proof goes along the same lines as for
planar-GI: compute a canonical form for each of the graphs according to the given rotation
schemes such that precisely in the isomorphic case, these canonical forms are equal.

Theorem 5.1. The oriented graph isomorphism problem is in NL.

It suffices to analyse the complexity of computing a canonical form for a graph G and
a rotation scheme ρ. If G is not connected, then we determine the connected components
in logspace [NTS95, Rei05] and compute canonical forms for each of them. Then we sort
these canonical forms lexicographically and write them onto the output tape. Thus, we
may assume that G is connected.

The three steps to compute a canonical form for a planar graph were all in logspace,
except for the subroutine to compute distances, which was in UL ∩ coUL. Without pla-
narity, the best upper bound for computing distances in a graph is NL: to determine if
d(u, v) ≤ k simply guess a path of length ≤ k from u to v. This proves Theorem 5.1.

6. Hardness of Planar 3-Connected GI

Lindell [Lin92] proved that tree isomorphism (TI) is in L. In fact, TI is complete
for L [JKMT03]. Since trees are planar graphs, planar-GI is hard for L. We show that
the problem remains hard for L even when restricted to planar 3-connected graphs. All
the hardness and completeness results in this section are with respect to AC0-many-one
reductions.

Theorem 6.1. Planar 3-connected graph isomorphism is hard for L.

We reduce from the known L-complete problem Ord which is defined as follows.
Order between Vertices (Ord)
Input: a directed graph G = (V,E) that is a line, and s, t ∈ V .
Decide whether s < t in the total order induced on V by G.

We first describe the reduction from Ord to TI [JKMT03]. Let v1, . . . , vn be the nodes
of G in the order they appear on the line in G. In particular, v1 is the unique node with
in-degree 0 and vn is the unique node with out-degree 0. Let s = vi and t = vj . W.l.o.g.
assume that i 6= n (otherwise map the instance to a non-isomorphic pair of trees). The
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(undirected) tree T constructed from G has two copies u1, . . . , un and w1, . . . , wn of the line
of G, and there is an additional node r that is connected to u1 and w1. Up to this point,
we have constructed one long line. Now the trick is to interrupt this line: take out the edge
(ui, ui+1) and instead put the edge (wi, ui+1). Let T be the resulting tree.

u1 u2 ui ui+1 un

r

w1 w2 wi wi+1 wn

v1 v2 vi vi+1 vn

TG

Note that there is a unique non-trivial automorphism for T : exchange ui+1 and wi+1,
. . . , un and wn, and map the other vertices onto themselves. We construct two trees T1

and T2 from T . With respect to T , tree T1 has two extra nodes x0, x1 which are connected
with node uj, and T2 has extra nodes y0, y1 which are connected with node wj. The extra
edges enforce that an isomorphism between T1 and T2 has to map uj to wj, because these
are the only nodes of degree 4 (for j < n). Now, if vi < vj, then the above automorphism
of T yields an isomorphism between T1 and T2. On the other hand, if vi ≥ vj , then there is
no isomorphism between T1 and T2.

We modify T to a graph H that is no longer a tree, but planar and 3-connected. Split
each node v of degree 1 or 2 in T into three nodes v0, v1, v2. Connect these nodes via edges
(v0, v1) and (v1, v2). If v has degree 1, then additionally put the edge (v0, v2). Now, if (u, v)
is an edge in T , where u and v have degree 1 or 2, then we have edges (u0, v0), (u1, v1), and
(u2, v2) in H. The following picture illustrates the situation. In (a), node v has degree 2,
in (b), node v has degree 1.

u0

u1

u2

v0

v1

v2

u0

u1

u2

v0

v1

v2

u v

(a) (b)

A special case is node wi which has degree 3. For wi we need a gadget with 9 nodes
which are connected as a 3 × 3 grid. The connections from this graph gadget (bold lines)
to the other nodes are shown in the following picture.

u0
n

u1
n

u2
n

u2
i+1

u1
i+1

u0
i+1

w1
n

w2
n

w0
n

w1
i+1

w0
i+1

w2
i+1

w1
i−1

w2
i−1

w0
i−1

w2
1

w1
1

w0
1

r1 r2r0

u2
1

u1
1

u0
1

u2
i

u1
i

u0
i

H



THE ISOMORPHISM PROBLEM FOR PLANAR 3-CONNECTED GRAPHS IS IN UL 643

Now it suffices again to mark the nodes corresponding to vj . That is, define graph H1

as graph H plus the edge (u0
j , u

2
j ), and H2 as H plus the edge (w0

j , w
2
j ). Note that H1

and H2 are planar and 3-connected. Furthermore, any isomorphism between H1 and H2

has to map u0
j to w0

j , u1
j to w1

j , and u2
j to w2

j . Again, this is only possible iff vi < vj. This
completes the proof of Theorem 6.1.

A final observation is about oriented trees. An oriented tree is a tree with a planar
rotation scheme. It is not hard to see that one can adapt Lindell’s algorithm to work for
oriented trees, so that the corresponding isomorphism problem is in L. We show that it is
also hard for L.

Theorem 6.2. Oriented tree isomorphism is complete for L.

We reduce Ord to the oriented tree isomorphism problem. Let G be the given line
graph and consider again the trees T1 and T2 from above constructed from G in the proof
of Theorem 6.1. For nodes of degree 1 or 2 there is only one rotation scheme. Therefore we
only have to take care of the nodes of degree 3 and 4, i.e. wi, wj , and uj .

• The rotation scheme for wi is easy to handle: output the edges around wi for T1 in
an arbitrary order, and choose the opposite order for wi in T2. This definition fits
together with the only possible isomorphism that should exchange ui+1 and wi+1.
• In the rotation scheme for wj the order of edges to the neighbors can be chosen as

wj−1, y0, wj+1, y1, and around uj in order uj−1, x0, uj+1, x1. Because of the
symmetry of the parts (uj, x0) and (uj , x1) in T1 and of (wj , y0) and (wj , y1) in T2

an isomorphism mapping wj to uj can be defined respecting the rotation schemes
for these nodes.

Now the same argument as for Theorem 6.1 shows that the oriented trees T1 and T2 are
isomorphic iff vi < vj . This proves the theorem.

Open Problems

The most challenging task is to close the gap between L and UL∩coUL for the planar
3-connected graph isomorphism problem. Another goal is to extend the isomorphism test
to arbitrary planar graphs. If the graph is not connected, we can compute the connected
components and consider them separately. Hence, we may assume that the graph is con-
nected. Then we can determine the articulation points and the separating pairs and get
the 1- and 2-connected components of the graph. For sequential algorithms to compute a
canonical form for these graphs see for example [KHC04]. Miller and Reif [MR91] provide
an AC1-reduction from planar graphs to planar 3-connected graphs. We ask whether one
can compute a canonical form for planar graphs in (unambiguous) logspace.
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EFFICIENT MINIMIZATION OF DFAS WITH PARTIAL TRANSITION
FUNCTIONS
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Abstract. Let PT-DFA mean a deterministic finite automaton whose transition relation
is a partial function. We present an algorithm for minimizing a PT-DFA in O(m lg n) time
and O(m + n + α) memory, where n is the number of states, m is the number of defined
transitions, and α is the size of the alphabet. Time consumption does not depend on α,
because the α term arises from an array that is accessed at random and never initialized.
It is not needed, if transitions are in a suitable order in the input. The algorithm uses
two instances of an array-based data structure for maintaining a refinable partition. Its
operations are all amortized constant time. One instance represents the classical blocks and
the other a partition of transitions. Our measurements demonstrate the speed advantage
of our algorithm on PT-DFAs over an O(αn lg n) time, O(αn) memory algorithm.

1. Introduction

Minimization of a deterministic finite automaton (DFA) is a classic problem in computer
science. Let n be the number of states, m the number of transitions and α the size of the
alphabet of the DFA. Hopcroft made a breakthrough in 1970 by presenting an algorithm
that runs in O(n lg n) time, treating α as a constant [5]. Gries made the dependence of
the running time of the algorithm on α explicit, obtaining O(αn lg n) [3]. (Complexity is
reported using the RAM machine model under the uniform cost criterion [1, p. 12].)

Our starting point was the paper by Knuutila in 2001, where he presented yet another
O(αn lg n) algorithm, and remarked that some versions which have been believed to run
within this time bound actually fail to do so [6]. Hopcroft’s algorithm is based on using only
the “smaller” half of some set (known as block) that has been split. Knuutila demonstrated
with an example that although the most well-known notion of “smaller” automatically leads
to O(αn lg n), two other notions that have been used may yield Ω(n3) when α = 1

2n. He
also showed that this can be avoided by maintaining, for each symbol, the set of those
states in the block that have input transitions labelled by that symbol. According to [3],
Hopcroft’s original algorithm did so. Some later authors have dropped this complication as
unnecessary, although it is necessary when the alternative notions of “smaller” are used.

Key words and phrases: deterministic finite automaton, sparse adjacency matrix, partition refinement.
Petri Lehtinen was funded by Academy of Finland, project ALEA (210795).
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Knuutila mentioned as future work whether his approach can be used to develop an
O(m lg n) algorithm for DFAs whose transition functions are not necessarily total. For
brevity, we call them PT-DFAs. With an ordinary DFA, O(m lg n) is the same as O(αn lg n)
as m = αn, but with a PT-DFA it may be much better. We present such an algorithm
in this paper. We refined Knuutila’s method of maintaining sets of states with relevant
input transitions into a full-fledged data structure for maintaining refinable partitions. In-
stead of maintaining those sets of states, our algorithm maintains the corresponding sets of
transitions. Another instance of the structure maintains the blocks.

Knuutila seems to claim that such a PT-DFA algorithm arises from the results in [7],
where an O(m lg n) algorithm was described for refining a partition against a relation.
However, there α = 1, so the solved problem is not an immediate generalisation of ours.
Extending the algorithm to α > 1 is not trivial, as can be appreciated from the extension
in [2]. It discusses O(m lg n) without openly promising it. Indeed, its analysis treats α as a
constant. It seems to us that its running time does have an αn term.

In Section 2 we present an abstract minimization algorithm that, unlike [3, 6], has been
adapted to PT-DFAs and avoids scanning the blocks and the alphabet in nested loops. The
latter is crucial for converting αn into m in the complexity. The question of what blocks
are needed in further splitting, has led to lengthy and sometimes unconvincing discussions
in earlier literature. Our correctness proof deals with this issue using the “loop invariant”
paradigm advocated in [4]. Our loop invariant “knows” what blocks are needed.

Section 3 presents an implementation of the refinable partition data structure. Its per-
formance relies on a carefully chosen combination of simple low-level programming details.

The implementation of the main part of the abstract algorithm is the topic of Section 4.
The analysis of its time consumption is based on proving of two lines of the code that,
whenever the line is executed again for the same transition, the end state of the transition
resides in a block whose size is at most half the size in the previous time. The numbers of
times the remaining lines are executed are then related to these lines.

With a time bound as tight as ours, the order in which the transitions are presented in
the input becomes significant, since the Θ(m lg m) time that typical good sorting algorithms
tend to take does not necessarily fit O(m lg n). We discuss this problem in Section 5, and
present a solution that runs in O(m) time but may use more memory, namely O(m + α).

Some measurements made with our implementations of Knuutila’s and our algorithm
are shown in Section 6.

2. Abstract Algorithm

A PT-DFA is a 5-tuple D = (Q,Σ, δ, q̂, F ) such that Q and Σ are finite sets, q̂ ∈ Q,
F ⊆ Q and δ is explained below. The elements of Q are called states, q̂ is the initial state,
and F is the set of final states. The set Σ is the alphabet. We have δ ⊆ Q× Σ×Q, and δ
satisfies the condition that if (q, a, q1) ∈ δ and (q, a, q2) ∈ δ, then q1 = q2. The elements of δ
are transitions. In essence, δ is a partial function from Q×Σ to Q. Therefore, if (q, a, q ′) ∈ δ,
we write δ(q, a) = q′. If q ∈ Q and a ∈ Σ but there is no q′ such that (q, a, q′) ∈ δ, we
write δ(q, a) = ⊥, where ⊥ is some symbol satisfying ⊥ /∈ Q. We will use |δ| as the number
of transitions, and this number may be much smaller than |Q||Σ|, which is the number of
transitions if δ is a full function.

By q−a1a2 · · · an→ q′ we denote that there is a path from state q to state q ′ such
that the labels along the path constitute the word a1a2 · · · an. That is, q−ε→ q holds for
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1 (Q,Σ, δ, q̂, F ) := remove irrelevant states and transitions from (Q,Σ, δ, q̂, F )
2 if F = ∅ then return empty DFA(Σ)
3 else
4 if Q = F then B := {F} else B := {F, Q− F}
5 U := { (B, a) | B ∈ B ∧ a ∈ Σ ∧ δB,a 6= ∅ }
6 while U 6= ∅ do
7 (B, a) := any element of(U); U := U − {(B, a)}
8 for C ∈ B such that ∃q ∈ C : δ(q, a) ∈ B do
9 C1 := { q ∈ C | δ(q, a) ∈ B }; C2 := C − C1

10 if C2 6= ∅ then
11 B := B − {C}; B := B ∪ {C1, C2}
12 if |C1| ≤ |C2| then small := 1; big := 2 else small := 2; big := 1
13 U := U ∪ { (Csmall , b) | δCsmall ,b 6= ∅ ∧ b ∈ Σ }
14 U := U ∪ { (Cbig , b) | δCbig ,b 6= ∅ ∧ (C, b) ∈ U }
15 U := U − ( {C} × Σ)
16 Q′ := B; δ′ := ∅; q̂′ := Block (q̂); F ′ := ∅
17 for B ∈ B do
18 q := any element of(B)
19 if q ∈ F then F ′ := F ′ ∪ {B}
20 for a ∈ Σ such that δ(q, a) 6= ⊥ do δ′ := δ′ ∪ { (B, a,Block (δ(q, a))) }
21 return (Q′,Σ, δ′, q̂′, F ′)

Figure 1: Abstract PT-DFA minimization algorithm

every q ∈ Q, and q−a1a2 · · · anan+1→ q′ holds if and only if there is some q′′ ∈ Q such
that q−a1a2 · · · an→ q′′ and δ(q′′, an+1) = q′ 6= ⊥. The language accepted by D is the set
of words labelling the paths from the initial state to final states, that is, L(D) = {σ ∈
Σ∗ | ∃q ∈ F : q̂−σ→ q }. We will also talk about the languages of individual states, that is,
L(q) = {σ ∈ Σ∗ | ∃q′ ∈ F : q−σ→ q′ }. Obviously L(D) = L(q̂).

We say that a state is relevant, if and only if either it is the initial state, or it is
reachable from the initial state and some final state is reachable from it. More precisely,
R = {q̂} ∪ { q ∈ Q | ∃q′ ∈ F : ∃σ ∈ Σ∗ : ∃ρ ∈ Σ∗ : q̂−σ→ q−ρ→ q′ }. It is obvious that
irrelevant states and their adjacent transitions may be removed from a PT-DFA without
affecting its language. The initial state cannot be removed, because otherwise the result
would violate the condition q̂ ∈ Q in the definition of a DFA. The removal yields the
PT-DFA (R,Σ, δ′, q̂, F ′), where δ′ = δ ∩ (R× Σ×R) and F ′ = F ∩R.

If no final state is reachable from the initial state, then L(D) = ∅. This is handled as a
special case in our algorithm, because otherwise the result might contain unnecessary transi-
tions from the initial state to itself. For this purpose, let empty DFA(Σ) be ({x},Σ, ∅, x, ∅),
where x is just any element. Obviously empty DFA(Σ) is the smallest PT-DFA with the
alphabet Σ that accepts the empty language.

The abstract minimization algorithm is shown in Figure 1. In it, B denotes a partition
on Q. That is, B is a collection {B1, B2, . . . , Bn} of nonempty subsets of Q such that
B1 ∪ B2 ∪ · · · ∪ Bn = Q, and Bi ∩ Bj = ∅ whenever 1 ≤ i < j ≤ n. The elements of B are
called blocks. By checking all statements that modify the contents of B, it is easy to verify
that after its initialization on line 4, B is a partition on Q throughout the execution of the
algorithm, except temporarily in the middle of line 11.
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By Block (q) we denote the block to which state q belongs. Therefore, if q ∈ Q, then
q ∈ Block(q) ∈ B. For convenience, we define Block(⊥) = ⊥ /∈ B. If Block (q1) 6= Block(q2)
ever starts to hold, then it stays valid up to the end of the execution of the algorithm.

Elements of B × Σ are called splitters. Let δB,a = { (q, a, q′) ∈ δ | q′ ∈ B }. We say
that splitter (B, a) is nonempty, if and only if δB,a 6= ∅. The set U contains those nonempty
splitters that are currently “unprocessed”. It is obvious from line 8 that empty splitters
would have no effect. The main loop of the algorithm (lines 6. . . 15) starts with all nonempty
splitters as unprocessed, and ends when no nonempty splitter is unprocessed. The classic
algorithm uses either only F or only Q − F for constructing the initial splitters, but this
does not work with a partial δ.

The goal of the main loop is to split blocks until they are consistent with δ, without
splitting too much. We will now prove in two steps that this is achieved.

Lemma 2.1. For every q1 ∈ Q and q2 ∈ Q, if Block(q1) 6= Block(q2) at any time of the
execution of the algorithm in Figure 1, then L(q1) 6= L(q2).

Proof. If the algorithm puts states q1 and q2 into different blocks on line 4, then either
ε ∈ L(q1)∧ ε /∈ L(q2) or ε /∈ L(q1)∧ ε ∈ L(q2). Otherwise, it does so on line 11. Then there
are i, j, B and a such that {i, j} = {1, 2}, δ(qi, a) ∈ B and δ(qj , a) /∈ B. Let q′

i = δ(qi, a).
If δ(qj , a) 6= ⊥, then let q′

j = δ(qj , a). We have q′
j /∈ B. Because the algorithm has

already put q′
i and q′

j into different blocks (they were in different blocks on line 9), there is
some σ ∈ Σ∗ such that either σ ∈ L(q′

i) ∧ σ /∈ L(q′
j) or vice versa. As a consequence, aσ is

in L(q1) or in L(q2), but not in both.
Assume now that δ(qj , a) = ⊥. Because of lines 1 and 2, L(q) 6= ∅ for every q ∈ Q.

There is thus some σ ∈ Σ∗ such that σ ∈ L(q′
i). We have aσ ∈ L(qi). Clearly aσ /∈ L(qj).

At this point it is worth noticing that line 1 is important for the correctness of the
algorithm. Without it, there could be two reachable states q1 and q2 that accept the same
language, and a such that δ(q1, a) = ⊥ while δ(q2, a) is a state that accepts the empty
language. The algorithm would eventually put q1 and q2 into different blocks.

We have shown that the main loop does not split blocks when it should not. We now
prove that it splits all the blocks that it should.

Lemma 2.2. At the end of the algorithm in Figure 1, for every q1 ∈ Q, q2 ∈ Q and a ∈ Σ,
if Block (q1) = Block(q2), then Block (δ(q1, a)) = Block(δ(q2, a)).

Proof. To improve readability, let B1 = Block (δ(q1, a)) and B2 = Block(δ(q2, a)). In the
proof, Block(), B1 and B2 are always evaluated with the current B, so their contents change.
The proof is based on the following loop invariant:

On line 6, for every q1 ∈ Q, q2 ∈ Q and a ∈ Σ, if Block (q1) = Block(q2),
then B1 = B2 or (B1, a) ∈ U or (B2, a) ∈ U .

Consider the situation immediately after line 5. If B1 6= ⊥, then (B1, a) ∈ U . If B2 6= ⊥,
then (B2, a) ∈ U . If B1 = B2 = ⊥, then B1 = B2. Thus the invariant holds initially.

Consider any q1, q2, a and instance of executing line 6 such that the invariant holds.
Our task is to show that the invariant holds for them also when line 6 is executed for the
next time.

The case that the invariant holds because Block(q1) 6= Block(q2) is simple. Blocks are
never merged, so Block(q1) 6= Block (q2) is valid also the next time.

Consider the case Block(q1) = Block(q2), B1 6= B2 and (Bi, a) ∈ U , where i = 1 or
i = 2. Let j = 3 − i. If (Bi, a) is the (B, a) of line 7, then, when Block(qi) is the C of the
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for-loop, qi goes to C1 and qj goes to C2. So Block (q1) = Block (q2) ceases to hold, rescuing
the invariant. If (Bi, a) is not the (B, a) of line 7, then, whenever Bi is split, lines 13 and 14
take care that both halves end up in U . Thus (Bi, a) ∈ U stays true keeping the invariant
valid, although Bi and U may change.

Let now Block(q1) = Block (q2) and B1 = B2. To invalidate the invariant, B1 or B2

must be changed so that B1 = B2 ceases to hold. When this happens, line 13 puts (Bi, a)
into U , where i = 1 or i = 2. Like above, lines 13 and 14 keep (Bi, a) in U although Bi may
change until line 6 is entered again.

We have completed the proof that the invariant stays valid.
When line 16 is entered, U = ∅. The invariant now yields that if Block (q1) = Block(q2),

then Block (δ(q1, a)) = Block (δ(q2, a)).

It is not difficult to check that lines 16. . . 20 yield a PT-DFA, that is, Q′ and Σ are
finite sets and so on. In particular, the construction gives δ ′(B, a) a value at most once.
We now show that the result is the right PT-DFA.

Lemma 2.3. Let D′ = (Q′,Σ, δ′, q̂′, F ′) be the result of the algorithm in Figure 1. We have
L(D′) = L(D). Furthermore, every PT-DFA that accepts L(D) has at least as many states
and transitions as D′. If it has the same number of states, it is either isomorphic with D ′
(ignoring Σ in the comparison), or it is of the form ({q̂ ′′},Σ′′, δ′′, q̂′′, ∅) with δ′′ 6= ∅.
Proof. The case where the algorithm exits on line 2 is trivial and has been discussed, so
from now on we discuss the case where the algorithm goes through the main part.

Let q ∈ Q and a ∈ Σ. Lemma 2.2 implies that Block (δ(q, a)) = Block(δ(q ′, a)) for every
q′ ∈ Block (q). From this line 20 yields δ ′(Block (q), a) = Block(δ(q, a)). By induction, if σ ∈
Σ∗, q′ ∈ Q and q−σ→ q′ in D then Block (q)−σ→Block (q′) in D′, and if Block (q)−σ→B 6=
⊥ in D′ then there is q′ ∈ Q such that B = Block (q′) and q−σ→ q′ in D. Similarly,
lines 4 and 19 guarantee that q′ ∈ F if and only if Block(q′) ∈ F ′. Together these yield
L(q) = L(Block (q)) and, in particular, L(D) = L(q̂) = L(q̂ ′) = L(D′).

Let (Q′′,Σ, δ′′, q̂′′, F ′′) be any PT-DFA that accepts the same language as D ′. Let
q′ ∈ Q′. Because the algorithm executed the main part, there are some σ ∈ Σ∗ and ρ ∈ Σ∗
such that q̂′−σ→ q′ and ρ ∈ L(q′). So σρ ∈ L(q̂′) = L(q̂′′), and also Q′′ contains a state
q′′ such that q̂′′−σ→ q′′ and L(q′′) = L(q′). As σ may vary, there may be many q′′ with
L(q′′) = L(q′). We arbitrarily choose one of them and denote it with f(q ′). Lemma 2.1
implies that if q′

1 6= q′
2, then L(q′

1) 6= L(q′
2), yielding f(q′

1) 6= f(q′
2). So |Q′′| ≥ |Q′|. If

δ′(q′, a) 6= ⊥, then some aρ′ ∈ L(q′) = L(f(q′)), so δ′′(f(q′), a) 6= ⊥. As a consequence,
|δ′′| ≥ |δ′|.

If |Q′′| = |Q′|, then f is an isomorphism.

The proof has the consequence that after the end of the main loop, Block (q1) =
Block(q2) if and only if L(q1) = L(q2).

Let us consider the number of times a transition (q, a, q ′) can be used on line 9. It is
used whenever such a (B, a) is taken from U that q ′ ∈ B, that is, Block (q′) = B. So, shortly
before using (q, a, q′), (Block (q′), a) ∈ U held but ceased to hold (line 7). To use it again,
(Block (q′), a) ∈ U must be made to hold again. To make (Block (q ′), a) ∈ U to hold again,
line 13 or 14 must be executed such that Block(q ′) is in the role of Csmall or Cbig , and a is in
the role of b. But line 14 tests that (C, b) ∈ U , so it cannot make (Block (q ′), a) ∈ U to hold
if it did not hold already on line 9, although it can keep (Block(q ′), a) ∈ U valid. So only
line 13 can make (Block (q′), a) ∈ U to hold again. An important detail of the algorithm
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is that line 13 puts the smaller half of C (paired with a) into U . Therefore, each time
(Block (q′), a) ∈ U starts to hold again, q′ resides in a block whose size is at most half of
the size in the previous time. As a consequence, (q, a, q ′) can be used for splitting at most
lg |Q|+ 1 times.

3. Refinable Partitions

The refinable partition data structure maintains a partition of the set {1, . . . ,max}.
Our algorithm uses one instance of it with max = |Q| for the blocks and another with
max = |δ| for the splitters. Each set in the partition has an index in the range 1, . . . , sets ,
where sets is the current number of sets. The structure supports the following operations.

Size(s): Returns the number of elements in the set with index s.
Set(e): Returns the index of the set that element e belongs to.
First(s) and Next(e): The elements of the set s can be scanned by executing first

e := First(s) and then while e 6= 0 do e := Next(e). Each element will be returned
exactly once, but the ordering in which they are returned is unspecified. While
scanning a set, Mark and Split must not be executed.

Mark(e): Marks the element e for splitting of a set.
Split(s): If either none or all elements of set s have been marked, returns 0. Otherwise

removes the marked elements from the set, makes a new set of the marked elements,
and returns its index. In both cases, unmarks all the elements in the set or sets.

No marks(s): Returns True if and only if none of the elements of s is marked.
The implementation uses the following max -element arrays.

elems: Contains 1, . . . ,max in such an order that elements that belong to the same
set are next to each other.

loc: Tells the location of each element in elems , that is, elems [loc[e]] = e.
sidx : The index of the set that e belongs to is sidx [e].
first and end : The elements of set s are elems [f ], elems [f + 1], . . . , elems [`], where

f = first [s] and ` = end [s]− 1.
mid : Let f and ` be as above, and let m = mid [s]. The marked elements are elems [f ],

. . . , elems[m− 1], and the unmarked are elems [m], . . . , elems [`].
Initially sets = 1, first [1] = mid [1] = 1, end [1] = max + 1, and elems[e] = loc[e] = e and
sidx [e] = 1 for e ∈ {1, . . . ,max}. Initialization takes O(max ) time and O(1) additional
memory.

The implementation of the operations is shown in Figure 2. Each operation runs in
constant time, except Split , whose worst-case time consumption is linear in the number M
of marked elements. However, also Split can be treated as constant-time in the analysis of
our algorithm, because it is amortized constant time. When calling Split , there had been
M calls of Mark . They are unique to this call of Split , because Split unmarks the elements
in question. The total time consumption of these calls of Mark and Split is Θ(M), but the
same result is obtained even if Split is treated as constant-time.

4. Block-splitting Stage

In this section we show how lines 4. . . 15 of the abstract algorithm can be implemented
in O(|δ| lg |Q|) time and O(|δ|) memory assuming that δ is available in a suitable ordering.
The implementation of abstract lines 1. . . 3 and 16. . . 21 in O(|Q| + |δ|) time and memory
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Size(s)
return end [s]− first [s]

Set(e)
return sidx [e]

First(s)
return elems [first [s]]

Next(e)
if loc[e] + 1 ≥ end [sidx [e]] then return 0
else return elems [loc[e] + 1]

Mark(e)
s := sidx [e]; ` := loc[e]; m := mid [s]
if ` ≥ m then

elems [`] := elems [m]; loc[elems [`]] := `
elems [m] := e; loc[e] := m; mid [s] := m + 1

Split(s)
if mid [s] = end [s] then mid [s] := first [s]
if mid [s] = first [s] then return 0
else

sets := sets + 1
first [sets ] := first [s]; mid [sets ] := first [s]; end [sets ] := mid [s]
first [s] := mid [s]
for ` := first [sets ] to end [sets ]− 1 do sidx [elems [`]] := sets
return sets

No marks(s)
if mid [s] = first [s] then return True
else return False

Figure 2: Implementation of the refinable partition data structure

is easy and not discussed further in this paper. (By “abstract lines” we refer to lines in
Figure 1).

The implementation relies on the following data structures. The “simple sets” among
them are all initially empty. They have only three operations, all O(1) time: the set is empty
if and only if Empty returns True, Add(i) adds number i to the set without checking if it
already is there, and Remove removes any number from the set and returns the removed
number. The implementation may choose freely the element that Remove removes and
returns. One possible efficient implementation of a simple set consists of an array that is
used as a stack.

tail , label and head : The transitions have the indices 1, . . . , |δ|. If t is the index of
the transition (q, a, q′), then tail [t] = q, label [t] = a, and head [t] = q ′.

In trs: This stores the indices of the input transitions of state q. The ordering of the
transitions does not matter. This is easy to implement efficiently. For instance, one
may use an array elems of size |δ|, together with arrays first and end of size |Q|, so
that the indices of the input transitions of q are elems [first [q]], elems [first [q] + 1],
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. . . , elems [end [q]−1]. The array can be initialized in O(|Q|+|δ|) time with counting
sort, using head [t] as the key.

BRP : This is a refinable partition data structure on {1, . . . , |Q|}. It represents B,
that is, the blocks. The index of the set in BRP is used as the index of the block
also elsewhere in the algorithm. Initially BRP consists of one set that contains the
indices of the states.

TRP : This is a refinable partition data structure on {1, . . . , |δ|}. Each of the sets in
it consists of the indices of the input transitions of some nonempty splitter (B, a).
That is, TRP stores { δB,a | B ∈ B∧a ∈ Σ∧δB,a 6= ∅ }. The index of δB,a in TRP is
used as the index of (B, a) also elsewhere in the algorithm. For this reason, we will
occasionally use the word “splitter” also of the sets in TRP . Initially TRP consists
of { δQ,a | a ∈ Σ∧ δQ,a 6= ∅ }, that is, two transitions are in the same set if and only
if they have the same label. This can be established as follows:

for a ∈ Σ such that δQ,a 6= ∅ do
for t ∈ δQ,a do TRP .Mark(t)
TRP .Split(1)

If transitions are pre-sorted such that transitions with the same label are next to
each other, then this runs in O(|δ|) time and O(1) additional memory.

Unready Spls : This is a simple set of numbers in the range 1, . . . , |δ|. It stores the
indices of the unprocessed nonempty splitters. That is, it implements the U of
the abstract algorithm. Because each nonempty splitter has at least one incoming
transition and splitters do not share transitions, |δ| suffices for the range.

Touched Blocks : This is a simple set of numbers in the range 1, . . . , |Q|. It contains
the indices of the blocks C that were met when backwards-traversing the incoming
transitions of the current splitter on abstract line 8. It is always empty on line 19.

Touched Spls : This is a simple set of numbers in the range 1, . . . , |δ|. It contains the
indices of the splitters that were affected when scanning the incoming transitions of
the smaller of the new blocks that resulted from a split. It is empty on line 4.

The block-splitting stage is shown in Figure 3. We explain its operation in the proof of
the following theorem.

Theorem 4.1. Given a PT-DFA all whose states are relevant and that has at least one final
state, the algorithm in Figure 3 computes the same B (represented by BRP) as lines 4. . . 15
of Figure 1.

Proof. Let us first investigate the operation of Split block . As was told earlier, BRP models
B, TRP models the set of all nonempty splitters (or the sets of their input transitions), and
Unready Spls models U . The task of Split block is to update these three variables according
to the splitting of a block C. Before calling Split block , the states q that should go to one
of the halves have been marked by calling BRP .Mark (q) for each of them.

Line 1 unmarks all states of C and either splits C in BRP updating B, or detects that
one of the halves would be empty, so C should not be split. In the latter case, line 2 exits
the procedure. The total effect of the call and its preceding calls of BRP .Mark is zero
(except that the ordering of the states in BRP may have changed).

From now on assume that both halves of C are nonempty. Line 3 makes b the index
of the bigger half B and b′ the index of the smaller half B ′. Because C is no more a block,
for each a ∈ Σ, the pairs (C, a) are no more splitters, and must be replaced by (B, a) and
(B′, a), to the extent that they are nonempty. For this purpose, lines 4, 5 and 10 scan



EFFICIENT MINIMIZATION OF DFAS WITH PARTIAL TRANSITION FUNCTIONS 653

Split block(b)
1 b′ := BRP .Split(b)
2 if b′ 6= 0 then
3 if BRP .Size(b) < BRP .Size(b′) then b′ := b
4 q := BRP .First(b′)
5 while q 6= 0 do
6 for t ∈ In trs [q] do
7 p := TRP .Set(t)
8 if TRP .No marks(p) then Touched Spls .Add (p)
9 TRP .Mark (t)

10 q := BRP .Next(q)
11 while ¬Touched Spls .Empty do
12 p := Touched Spls .Remove
13 p′ := TRP .Split(p)
14 if p′ 6= 0 then Unready Spls .Add(p′)

Main part
15 Initialize TRP to { δQ,a | a ∈ Σ ∧ δQ,a 6= ∅ }
16 for p := 1 to TRP .sets do Unready Spls .Add(p)
17 for q ∈ F do BRP .Mark(q)
18 Split block(1)
19 while ¬Unready Spls .Empty do
20 p := Unready Spls .Remove
21 t := TRP .First(p)
22 while t 6= 0 do
23 q := tail [t]; b′ := BRP .Set(q)
24 if BRP .No marks(b′) then Touched Blocks .Add(b′)
25 BRP .Mark(q)
26 t := TRP .Next(t)
27 while ¬Touched Blocks .Empty do
28 b := Touched Blocks .Remove
29 Split block(b)

Figure 3: Implementation of lines 4. . . 15 of the abstract algorithm

B′ and line 6 scans the incoming transitions of the currently scanned state of B ′. Line 9
marks, for each a ∈ Σ, the transitions that correspond to (B ′, a). Line 7 finds the index of
(C, a) in TRP , and line 8 adds it to Touched Spls , unless it is there already. After all input
transitions of B ′ have been scanned, lines 11 and 12 discharge the set of affected splitters
(C, a). Line 13 updates (C, a) to those of (B, a) and (B ′, a) that are nonempty.

Line 14 corresponds to the updating of U . If both (B, a) and (B ′, a) are nonempty
splitters, then the index of (B ′, a) is added to Unready Spls , that is, (B ′, a) is added to U .
In this case, (B, a) inherits the index of (C, a) and thus also the presence or absence in U .
If (B, a) is empty, then (B ′, a) inherits the index and U -status of (C, a). If (B ′, a) is empty,
then (C, a) does not enter Touched Spls in the first place. To summarize, if (C, a) ∈ U ,
then all of its nonempty heirs enter U ; otherwise only the smaller heir enters U , and only
if it is nonempty. This is equivalent to abstract lines 13. . . 14. Regarding abstract line 15,
(C, a) disappears automatically from U because its index is re-used.
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Lines 15. . . 18 implement the total effect of abstract lines 4. . . 5. The initial value of
BRP corresponds to B = {Q}. Line 15 makes TRP contain the sets of input transitions
of all nonempty splitters (Q, a) (where a ∈ Σ), and line 16 puts them all to U . If Q = F ,
then lines 17 and 18 have no effect. Otherwise, they update B to {F,Q−F}, update TRP
accordingly, and update Unready Spls to contain all current nonempty splitters.

Lines 19 and 20 match trivially abstract lines 6 and 7. They choose some nonempty
splitter (B, a) for processing. Lines 21. . . 26 can be thought of as being executed between
abstract lines 7 and 8. They mark the states in C1 for every C that is scanned by abstract
line 8, and collect the indices of those C into Touched Blocks . Lines 27 and 28 correspond
to abstract line 8, and abstract lines 9. . . 15 are implemented by the call Split block(b).
Lines 1 and 2 have the same effect as abstract lines 9. . . 11. Line 3 implements abstract
line 12. The description of line 14 presented above matches abstract lines 13. . . 15.

Theorem 4.2. Given a PT-DFA all whose states are relevant and that has at least one
final state, and assuming that the transitions that have the same label are given successively
in the input, the algorithm in Figure 3 runs in O(|δ| lg |Q|) time and O(|δ|) memory.

Proof. The data structures have been listed in this section and they all consume O(|Q|) or
O(|δ|) memory. Their initialization takes O(|Q|+ |δ|) time. Because all states are relevant,
we have |Q| ≤ |δ| + 1, so O(|Q|) terms are also O(|δ|).

We have already seen that each individual operation in the algorithm runs in amortized
constant time, except for line 15, which takes O(|δ|) time. We also saw towards the end
of Section 2 that each transition is used at most lg |Q| + 1 times on line 9 of the abstract
algorithm. This implies that line 25, and thus lines 23. . . 26, are executed at most |δ|(lg |Q|+
1) times. The same holds for lines 28 and 29, because the number of Add -operations on
Touched Blocks is obviously the same as Remove-operations. Because TRP -sets are never
empty, lines 20 and 21 are not executed more often than line 25, and lines 22 and 27 are
executed at most twice as many times as line 25. Line 19 is executed once more than line 20,
and lines 15. . . 18 are executed once. Line 16 runs in O(|δ|) and line 17 in O(|Q|) time.

Lines 1. . . 4 are executed at most once more than line 29. If BRP .Size(b) ≥ BRP .Size(b ′)
on line 3, then each of the states scanned by lines 5 and 10 was marked on line 17 or 25.
Otherwise the number of scanned states is smaller than the number of marked states. There-
fore, line 10 is executed at most as many times as lines 17 and 25, and line 5 at most twice
as many times. Whenever lines 7. . . 9 are executed anew (or for the first time) for some
transition, the end state of the transition belongs to a block whose size is at most half of
the size in the previous time (or originally), because the block was split on line 1 and the
smaller half was chosen on line 3. Therefore, lines 7. . . 9 are executed at most |δ| lg |Q|
times. Line 6 is executed as many times as lines 7 and 10 together. The executions of
lines 12. . . 14 are determined by line 8, and of line 11 by lines 4 and 8.

5. Sorting Transitions

In TRP , transitions are sorted such that those with the same label are next to each
other. Transitions are not necessarily in such an order in the input. Therefore, we must
take the resources needed for sorting into account in our analysis.

Transitions can of course be sorted according to their labels with heapsort in O(|δ| lg |δ|)
time and O(|δ|) memory. This is inferior to the time consumption of the rest of the algo-
rithm. Because the labels need not be in alphabetical order, a suitable ordering can also
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TRP .sets := 0
for t ∈ δ do

a := label [t]; i := idx [a]
if i < 1 ∨ i > TRP .sets ∨ TRP .mid [i] 6= a then

i := TRP .sets + 1; TRP .sets := i
idx [a] := i; TRP .mid [i] := a; TRP .end [i] := 1

else TRP .end [i] := TRP .end [i] + 1
TRP .first [1] := 1; TRP .end [1] := TRP .end [1] + 1; TRP .mid [1] := TRP .end [1]
for i := 2 to TRP .sets do

TRP .first [i] := TRP .end [i− 1]
TRP .end [i] := TRP .first [i] + TRP .end [i]; TRP .mid [i] := TRP .end [i]

for t ∈ δ do
i := idx [label [t]]; ` := TRP .mid [i]− 1; TRP .mid [i] := `
TRP .elems [`] := t; TRP .loc[t] := `; TRP .sidx [t] := i

Figure 4: Initialization of TRP in O(|δ|) time and O(|Σ|) additional memory

be found by putting the transitions into a hash table using their labels as the keys. Then
nonempty hash lists are sorted and concatenated. This takes O(|δ|) time on the average,
and O(|δ|) memory. However, the worst-case time consumption is still O(|δ| lg |δ|).

A third possibility runs in O(|δ|) time even in the worst case, but it uses O(|Σ|) ad-
ditional memory. That its time consumption may be smaller than memory consumption
arises from the fact that it uses an array idx of size |Σ| that need not be initialized at all,
not even to all zeros. It is based on counting the occurrences of each label as in exercise
2.12 of [1], and then continuing like counting sort. The pseudocode is in Figure 4.

6. Measurements and Conclusions

Table 1 shows some measurements made with our test implementations of Knuutila’s
and our algorithm. They were written in C++ and executed on a PC with Linux and
1 gigabyte of memory. No attempt was made to optimise either implementation to the
extreme. The implementation of Knuutila’s algorithm completes the transition function to
a full function with a well-known construction. Namely, it adds a “sink” state to which all
originally absent transitions and all transitions starting from itself are directed.

The input DFAs were generated at random. Because of the difficulty of generating a
precise number of transitions according to the uniform distribution, sometimes the generated
number of transitions was slightly smaller than the desired number. Furthermore, the DFAs
may have unreachable states and/or reachable irrelevant states that are processed separately
by one or both of the algorithms. Running time depends also on the size of the minimized
DFA: the smaller the result, the less splitting of blocks. We know that the joint effects of
these phenomena were small, because, in all cases, the numbers of states and transitions of
the minimized DFAs were > 99.4 % of |Q| and |δ| in the table. Therefore, instead of trying
to avoid the imperfections by fine-tuning the input (which would be difficult), we always
used the first input DFA that our generator gave for the given parameters.

The times given are the fastest and slowest of three measurements, made with |F | =
|Q|
2 +d, where d ∈ {−1, 0, 1}. They are given in seconds. The number of transitions |δ| varies

between 10% and 100% of |Q||Σ|. The times contain the special processing of unreachable
and irrelevant states, but they do not contain the reading of the input DFA from and writing
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Table 1: Running time measurements. |δ| = p|Q||Σ|, where p is given as %.
A: |Q| = 1000 and |Σ| = 100. B: |Q| = 1000 and |Σ| = 1000.
C: |Q| = 10 000 and |Σ| = 100. D: |Q| = 10 000 and |Σ| = 1000.

alg. 10 % 30 % 50 % 70 % 90 % 100 %
A our 0.004 0.005 0.013 0.014 0.024 0.025 0.036 0.037 0.052 0.060 0.061 0.062

Knu 0.026 0.026 0.034 0.035 0.040 0.041 0.045 0.046 0.048 0.049 0.053 0.054
B our 0.059 0.061 0.277 0.279 0.549 0.551 0.855 0.865 1.181 1.211 1.330 1.416

Knu 0.467 0.486 0.645 0.651 0.785 0.795 0.893 0.907 0.971 0.979 1.033 1.040
C our 0.070 0.071 0.296 0.301 0.574 0.581 0.887 0.893 1.210 1.229 1.424 1.434

Knu 0.526 0.529 0.730 0.734 0.901 0.904 1.027 1.035 1.128 1.130 1.200 1.202
D our 1.224 1.238 4.038 4.087 7.132 7.164 10.50 10.57 14.18 14.34 16.41 16.48

Knu 6.324 6.356 8.606 8.705 10.46 10.64 11.91 11.95 13.00 13.04 13.83 13.89

the result to a file. With |Q| = |Σ| = 10 000, Knuutila’s algorithm ran out of memory, while
our algorithm spent about 15 s when p = |δ|

|Q||Σ| = 10% and 32 s when p = 20%.
The superiority of our algorithm when p is small is clear. That our algorithm loses when

p is big may be because it uses both F and Q−F in the initial splitters, whereas Knuutila’s
algorithm uses only one of them. Also Knuutila’s algorithm speeds up as p becomes smaller.
Perhaps the reason is that when p is, say, 10%, the block that contains the sink state has
an unproportioned number of input transitions, causing blocks to split to a small and big
half roughly in the ratio of 10% to 90%. Thus small blocks are introduced quickly. As a
consequence, the average size of the splitters that the algorithm uses during the execution is
smaller than when p = 100%. The same phenomenon also affects indirectly our algorithm,
probably explaining why its running time is not linear in p.

Of the three notions of “smaller” mentioned in the introduction, our analysis does not
apply to the other two. It seems that they would require making Split block somewhat
more complicated. This is a possible but probably unimportant topic for further work.

A near-future goal of us is to publish a much more complicated, true O(m lg n) algorithm
for the problem in [2], that is, the multi-relational coarsest partition problem.

References

[1] Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The Design and Analysis of Computer Algorithms. Addison-
Wesley 1974.

[2] Fernandez, J.-C.: An Implementation of an Efficient Algorithm for Bisimulation Equivalence. Science of
Computer Programming 13 (1989/90) 219–236.

[3] Gries, D.: Describing an Algorithm by Hopcroft. Acta Informatica 2 (1973) 97–109.
[4] Gries, D.: The Science of Programming. Springer 1981.
[5] Hopcroft, J.: An n log n Algorithm for Minimizing States in a Finite Automaton. Technical Report

CS-190, Stanford University, 1970.
[6] Knuutila, T.: Re-describing an Algorithm by Hopcroft. Theoret. Computer Science 250 (2001) 333–363.
[7] Paige, R., Tarjan, R.: Three Partition Refinement Algorithms. SIAM J. Computing, 16 (1987) 973–989.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.



Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 657-668
www.stacs-conf.org

DESIGN BY MEASURE AND CONQUER
A FASTER EXACT ALGORITHM FOR DOMINATING SET

JOHAN M. M. VAN ROOIJ AND HANS L. BODLAENDER

Institute of Information and Computing Sciences, Utrecht University,
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
E-mail address: jmmrooij@cs.uu.nl

E-mail address, Hans L. Bodlaender: hansb@cs.uu.nl

URL: http://www.cs.uu.nl

Abstract. The measure and conquer approach has proven to be a powerful tool to analyse
exact algorithms for combinatorial problems, like Dominating Set and Independent
Set. In this paper, we propose to use measure and conquer also as a tool in the design of
algorithms. In an iterative process, we can obtain a series of branch and reduce algorithms.
A mathematical analysis of an algorithm in the series with measure and conquer results in
a quasiconvex programming problem. The solution by computer to this problem not only
gives a bound on the running time, but also can give a new reduction rule, thus giving
a new, possibly faster algorithm. This makes design by measure and conquer a form of
computer aided algorithm design.

When we apply the methodology to a Set Cover modelling of the Dominating Set
problem, we obtain the currently fastest known exact algorithms for Dominating Set:
an algorithm that uses O(1.5134n) time and polynomial space, and an algorithm that uses
O(1.5063n) time.

1. Introduction

The design of fast exponential time algorithms for finding exact solutions to NP-hard
problems such as Independent Set and Dominating Set has been a topic for research
for over 30 years, see e.g., the results on Independent Set in the 1970s by Tarjan and
Trojanowski [18, 19]. A number of different techniques have been used for these and other
exponential time algorithms [5, 21, 22].

An important paradigm for the design of exact algorithms is branch and reduce, pi-
oneered in 1960 by Davis and Putnam [1]. Typically, in a branch and reduce algorithm,
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a collection of reduction rules and branching rules are given. Each reduction rule simpli-
fies the instance to an equivalent, simpler instance. If no rule applies, the branching rules
generate a collection of two or more instances, on which the algorithm recurses.

An important recent development in the analysis of branch and reduce algorithms is
measure and conquer, which has been introduced by Fomin, Grandoni and Kratsch [4]. The
measure and conquer approach helps to obtain good upper bounds on the running time of
branch and reduce algorithms, often improving upon the currently best known bounds for
exact algorithms. It has been used successfully on Dominating Set [4], Independent Set

[6], Dominating Clique [15], the number of minimal dominating sets [9], Connected

Dominating Set [7], Minimum Independent Dominating Set [12], and possibly others.
In this paper, we show that the measure and conquer approach can not only be used for

the analysis of exact algorithms, but also for the design of such algorithms. More specifically,
measure and conquer uses a non-standard size measure for instances. This measure is based
on weight vectors, which are computed by solving a quasiconvex programming problem.
Analysis of the solution of this quasiconvex program yields not only an upper bound to the
running time of the algorithm, but also shows where we should improve the algorithm. This
can lead to a new rule, which we add to the branch and reduce algorithm.

We apply this design by measure and conquer methodology to a Set Cover modelling
of the Dominating Set problem, identical to the setting in which measure and conquer
was first introduced. If we start with the trivial algorithm, then, we can obtain in a number
of steps the original algorithm of Fomin et al. [4], but with additional steps, we obtain a
faster algorithm, using O(1.5134n) time and polynomial space, with a variant that uses
exponential memory and O(1.5063n) time. We also show that at this point we cannot
improve this measure and conquer computed running time, unless we choose a different
measure or change the branching rules.

While for several classic combinatorial problems, the first non-trivial exact algorithms
date many years ago, for the Dominating Set problem, the first algorithms with running
time O∗(cn) with c < 2 are from 2004, with three independent papers: by Fomin et al. [10],
by Randerath and Schiermeyer [16], and by Grandoni [13]. The so far fastest algorithm for
Dominating Set was found in 2005 by Fomin, Grandoni, and Kratsch [4]: this algorithm
uses O(1.5260n) time and polynomial space, or O(1.5137n) time and exponential space.

2. Preliminaries

Given a collection of non-empty sets S, a set cover of S is a subset C ⊆ S such that
every element in any of the sets in S occurs in some set in C. In the Set Cover problem
we are given a collection S and are asked to compute a set cover of minimum cardinality.

The universe US of a Set Cover problem instance is the set of all elements in any set
in S; US =

⋃
S∈S S. The frequency f(e) of an element e ∈ US is the number of sets in S in

which this element occurs. Let S(e) = {S ∈ S | e ∈ S} be the set of sets in S in which the
element e occurs. We define a connected component C in a Set Cover problem instance
S in a natural way: a minimal non-empty subset C ⊆ S for which all elements in the sets in
C occur only in sets contained in C. The dimension dS of a Set Cover problem instance
is the sum of the number of sets in S and the number of elements in US ; dS = |S|+ |US |.

Let G = (V,E) be an undirected graph. A subset D ⊆ V of nodes is called a dominating
set if every node v ∈ V is either in D or adjacent to some node in D. The Dominating

Set problem is to compute for a given graph G a dominating set of minimum cardinality.
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We can reduce the minimum dominating set problem to the Set Cover problem by
introducing a set for each node of G which contains the node itself and its neighbours;
S := {N [v] | v ∈ V }. Thus we can solve a Dominating Set problem on a graph of n nodes
by a minimum set cover algorithm running on an instance of dimension d = 2n.

Both problems are long known to be NP-complete [11, 14], which motivates the search
for fast exponential time algorithms.

3. A Faster Exact Algorithm for Dominating Set

In this section, we give our new algorithm for Dominating Set. The algorithm is
an improvement to the algorithm by Fomin et al. [4]; it is obtained from this algorithm
by adding some additional reduction rules. These rules were derived using the design by
measure and conquer approach, see Section 4. After introducing our algorithm, we recall
the necessary background of the measure and conquer method [4].

3.1. The Algorithm

Our algorithm for the Dominating Set problem uses the Set Cover modelling of
Dominating Set shown in Section 2. It is a branch and reduce algorithm on this modelling
consisting of four simple reduction rules, one base case for the recursion and a branching
rule. See Algorithm 1.

For a given problem instance we first apply the following reduction rules:
(1) Base case. If all sets in the instance are of size at most two then finding a minimum

set cover is equivalent to finding a maximum matching in a graph. Introduce a node
for each element and an edge for each set of size two. Now the maximum matching
joined with some sets containing the unmatched nodes form a minimum set cover.
This matching can be computed in polynomial time [2].

(2) Splitting connected components. If the instance contains multiple connected compo-
nents, compute the minimum set cover in each connected component separately.

(3) Subset rule. If the instance contains sets S1, S2 with S1 ⊆ S2, then we remove S1

from the instance. Namely, in each minimum set cover that contains S1, we can
replace S1 by S2 and obtain a minimum set cover without S2.

(4) Subsumption rule. If the set of sets S(e′) in which an element e′ occurs is a subset
of the set of sets S(e) in which another element e occurs, we remove the element e.
For any set cover, covering e′ also covers e.

(5) Unique element or singleton rule. If any set of size one remains in the instance after
application of the previous rules, we add this set to the set cover. For the element
in this set must occur uniquely in this set, otherwise it would have been a subset of
another set and have been removed by rule 3.

(6) Avoiding unnecessary branchings based on frequency two elements. For any set S in
the problem instance let r2 be the number of frequency two elements it contains. Let
m be the number of elements in the union of sets containing the other occurrences
of these frequency two elements, excluding any element already in S. If for any set
S: m < r2 then include S in the set cover.
This rule is correct since if we would branch on S and include it in the set cover we
would cover |S| elements with one set. If the set cover does not use S, it must use all
sets containing the other occurrence of the frequency two elements, since they have
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become unique elements now. Notice that by Rule 4 all other occurrences of the
frequency two elements must be in different sets and thus we would cover |S| + m
elements with r2 sets. So if m < r2 the first case can be preferred over the second:
we can just add S to the cover and have r2 − 1 ≤ m sets left to cover at least this
much elements.

For the branching rule, we select a set of maximum cardinality and create two subproblems
by either including it in the minimum set cover and removing all newly covered elements
from the problem instance or removing it.

Algorithm 1 Algorithm Designed by Measure and Conquer

MSC(S) = {
if max{|S| | S ∈ S} ≤ 2 then

return minimum set cover of S by computing a matching
else if ∃C ⊆ S : C 6∈ {∅,S}, {S(e)|e ∈ S, S ∈ C} = C then

return MSC(C) + MSC(S\C)
else if ∃S, S ′ ∈ S : S 6= S′, S ⊆ S′ then

return MSC(S\{S})
else if ∃e, e′ ∈ US : e 6= e′, S(e) ⊇ S(e′) then
S ′ = MSC({S\{e}|S ∈ S})
return {S ∪ {e}|S ∈ S ′, S ∪ {e} ∈ S} ∪ {S|S ∈ S ′, S ∪ {e} 6∈ S}

else if ∃{e} ∈ S then
return {{e}} ∪MSC(S\{{e}})

else if ∃S : |⋃{S′\S|e ∈ S, f(e) = 2, S ′ ∈ S(e)}| < |{e ∈ S|f(e) = 2}| then
return S ∪MSC({S ′\S|S′ ∈ S\{S}})

else
Let S := argmaxS′∈S(|S′|)
P = {MSC(S\{S}), S ∪MSC({S ′\S|S′ ∈ S\{S}})}
return argminP∈P(|P |)

end if
}

3.2. Running time analysis by Measure and Conquer

The basic idea of measure and conquer is the usage of a non-standard measure for the
complexity of a problem instance in combination with an extensive subcase analysis. In the
case of Set Cover, we give weights to set sizes and element frequencies, and sum these
weights over all items and sets. We enumerate many subcases in which the algorithm can
branch and derive recurrence relations for each of these cases in terms of these weights.
Finally we obtain a large numerical optimisation problem which computes the weights
corresponding to the smallest solution to all recurrence relations, giving an upper bound on
the running time of our algorithm. This analysis is similar to [4].

We let vi, wi ∈ [0, 1] be the weight of an element of frequency i and a set of size i
respectively, and set our variable measure of complexity kS to:

kS =
∑
S∈S

w|S| +
∑
e∈US

vf(e) notice : kS ≤ dS
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Sets of different sizes and elements of different frequencies contribute equally to the dimen-
sion of the instance, but now larger sets and higher frequency elements can contribute more
to the measured complexity of the instance. Furthermore we set vi = wi = 0, i ∈ {0, 1}
since all frequency one elements and size one sets are removed by the reduction rules. For
later use we introduce quantities representing the reduction in problem complexity when
the size of a set or the frequency of an element is reduced by one. For technical reasons,
these quantities must be non-negative.

∆wi = wi − wi−1 ∆vi = vi − vi−1 ∀i ≥ 1 : ∆vi,∆wi ≥ 0

The next step will be to derive recurrence relations representing problem instances the
algorithm branches on. Let N(k) be the number of subproblems generated in order to solve
a problem of measured complexity k. And let ∆kin (include S) and ∆kout (discard S)
be the difference in measured complexity of both subproblems compared to the problem
instance we branch on. Finally let |S| =

∑∞
i=2 ri, where ri the number of elements in S of

frequency i.
If we add S to the set cover, S is removed together with all its elements. This re-

sults in a reduction in size of w|S| +
∑∞

i=2 rivi. Because of the removal of these ele-
ments, other sets are reduced in size; this leads to an additional complexity reduction
of at least minj≤|S|{∆wj}

∑∞
i=2(i − 1)ri. To keep the formula (and the next) linear, we

set minj≤|S|{∆wj} = ∆w|S| and keep the formula correctly modelling the algorithm by
introducing the following constraints on the weights:

∀i ≥ 2 : ∆wi ≤ ∆wi−1

One can show that including these in the numerical optimisation problem does not change
the solution, as it gives the same weights. The constraints help to considerably speed up
this optimisation process.

If we discard S, we also remove it from the problem instance, and hence all its elements
are reduced in frequency by one. So we have a complexity reduction of w|S| +

∑∞
i=2 ri∆vi.

Besides this reduction, the sets which contain the second occurrences of any frequency
two element are included in the set cover. Notice that these must be different sets due to
reduction Rule 4. Because of Rule 6 we know that at least r2 other elements must be in these
sets as well, and these also must occur somewhere else in the instance, hence even more sets
are reduced in size. Summation leads to an additional size reduction of r2(v2 +w2 +∆w|S|).
Here we also use Rule 2 to make sure that not all these frequency two elements occur in the
same set, because in that case all considered sets form a connected component of at most
five sets which thus can be solved in O(1) time.

This leads to the following set of recurrence relations: ∀ 3 ≤ |S| = ∑∞
i=2 ri:

N(k) ≤ N(k −∆kout) + N(k −∆kin)

where

∆kout = w|S| +
∞∑
i=2

ri∆vi + r2(v2 + w2 + ∆w|S|)

∆kin = w|S| +
∞∑
i=2

rivi + ∆w|S|
∞∑
i=2

(i− 1)ri

We make the problem finite by setting for some large enough p all vi = wi = 1 for
i ≥ p, and only consider the subcases |S| =

∑p
i=2 ri + r>p, where r>p =

∑∞
i=p+1 ri. Now
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we have a finite set of recurrences which model our algorithm since the recurrences for the
cases where |S| > p + 1 are dominated by those where |S| = p + 1. The best value for p
follows from the optimisation, for if chosen too small the now constant recurrences (weights
equal 1) will dominate all others in the optimum, and if chosen too large the extra vi and wi

are optimised to 1 (and the optimisation problem was unnecessarily hard). Here p equals 7.
A solution to this set of recurrence relations will be of the form N(k) = αk, where α is

the smallest solution of the set of inequalities:

αk ≤ αk−∆kout + αk−∆kin

Since k ≤ d where d the dimension of the problem, we know that the algorithm will have a
running time of O((α + ε)d), for any ε > 0:

O(poly(d)N(k)) = O(poly(d)αk) ≤ O(poly(d)αd) ≤ O((α + ε)d)

From here on we let ε be the error in the upward decimal rounding of α.
So for any given vector ~v = (0, v2, v3, v4, . . .) and ~w = (0, w2, w3, w4, . . .) we can now

compute the running time measured with these weights. As a result we have obtained a
numerical optimisation problem: choose the best weights so that the upper bound on the
running time is minimal.

The numerical solution to this problem can be found in the last cell of Table 1, resulting
in an upper bound on the running time of the algorithm of O(1.2302d):

3.3. Quasiconvex programming

The sort of numerical optimisation problems arising from measure and conquer analyses
are quasiconvex programs, named after the kind of function we are optimising: a quasiconvex
function, which is a function with convex level sets {~x | q(x) ≤ λ}.

To our knowledge there are currently two different techniques in use to solve these
quasiconvex programs: randomised search, and Eppstein’s smooth quasiconvex programming
algorithm [3]. We have implemented a variant of the second technique; for details see [20].

3.4. Results

As discussed, we have now obtained the following result.

Theorem 3.1. Algorithm 1 solves a Set Cover problem instance of dimension d in
O(1.2302d) time and polynomial space.

Using the minimum set cover modelling of Dominating Set this results in:

Corollary 3.2. There exists an algorithm that solves the Dominating Set problem in
O(1.5134n) time and polynomial space.

We can further reduce the time complexity of the algorithm at the cost of exponential
space. This can be done by dynamic programming; the algorithm keeps track of all solutions
to subproblems solved and if the same subproblem turns up more than ones it is looked up.
Notice that querying and storing the subproblems can be implemented in polynomial time.

We compute the new time complexity based on [8, 17] and obtain:

Theorem 3.3. Algorithm 1, modified as above, solves a Set Cover problem of dimension
d in O(1.2273d) time and space.
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Corollary 3.4. There exists an algorithm that solves the Dominating Set problem in
O(1.5063n) time and space.

4. Design by Measure and Conquer

The beauty of our algorithm lies in the fact that it has been designed using a form
of computer aided algorithm design which we call design by measure and conquer. Given
a variable measure of complexity as in the analysis in Section 3.2 and a set of branching
rules, all polynomial time computable reduction rules relative to this measure and branching
rules follow by the method. We start with a trivial branch and reduce algorithm, i.e. one
without any reduction rules and only consisting of the branching rule and a trivial base case
(if the problem is empty, return ∅). Next we exhaustively apply an improvement step, which
comes up with a new reduction rule and hence a possibly faster algorithm. This changes the
algorithm analysis technique measure and conquer into a technique for algorithm design.

Thus, this gives a very nice process, where a human invents additional reduction rules,
and the computational power of our computer does the extensive measure and conquer
analysis and points to all possible points of direct improvement. This combination has
proven to be successful as we see from the results of Section 3. While constructing our
algorithm, the previously fastest algorithm for Dominating Set by Fomin et al. [4] has
been obtained as an intermediate step. It has now been improved up to a point where
we need to either change the branching rule (or add new branching rules) or modify the
measure and conquer analysis, i.e. use a different variable measure or perform a more
elaborate subcase analysis. See Table 1 for information on the analysis and added rules for
all algorithms, from the starting trivial algorithm without any reduction rules till we obtain
Algorithm 1.

4.1. A Single Iteration: improving the previously fastest algorithm

We now demonstrate how the improvement step works, by giving one such improve-
ment as elaborate example, namely an improvement we can make when we start with the
algorithm by Fomin et al. [4]. This step is marked with a star in Table 1. First we perform a
measure and conquer analysis on the current algorithm giving us the optimal instantiation
of the variable measure, and an upper bound on the running time of the algorithm. Next
we examine the quasiconvex function we have just optimised.

The quasiconvex function has the following form:

q(~v, ~w) = max
c∈C

qc(~v, ~w) = max
c∈C

{
α ∈ R>0 |1 = α−∆kc

out + α−∆kc
in

}
where C is the set of all possible instances the algorithm can branch on and ∆kc

in,∆kc
out are

the differences in measured complexity between the generated subproblems and branching
subcase c.

Each one of the functions qc is quasiconvex (see [3]), i.e. it has convex level sets. The
situation is very similar to finding the point x of minimum maximum distance to a set of
points P in N dimensional space: only a few points in P have distance to x tight to this
maximum, and moving away from x always results in at least one of these distances to
increase. If one such tight point is moved or removed, this directly influences the optimum
x and the minimum maximum distance.
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We now consider the eight cases that are tight to the value of the quasiconvex function
q in the optimum. These are:

|S| = r2 = 3, |S| = r3 = 3, |S| = r4 = 3, |S| = r5 = 4
|S| = r6 = 4, |S| = r6 = 5, |S| = r7 = 5, |S| = r7 = 6

Now, if we can formulate a reduction rule that either further reduces the size of any sub-
problem generated in these cases, or removes any of these cases completely, then we lower
the value of the corresponding qc, or remove this qc respectively, resulting in a new optimum
corresponding to a faster running time.

We take the simplest case for improvement; |S| as small as possible, and with as low
frequency elements as possible. This corresponds to an instance with:

S = { 1, 2, 3 } existing next to: { 1, 2, 4 }, { 3, 4 }
We emphasize that this is not an entire instance, but just a fragment of an instance con-
taining the set S used for branching and the collection of sets in which the elements from S
also occur. In an instance corresponding to this subcase the element 4 can be of frequency
two or higher, but all sets are of size three or smaller.

We note that we do not need to branch on this particular subcase: elements 1 and 2
occur in exactly the same sets, and thus if a set cover covers one of these, the other is covered
as well. We generalise this and formulate the subsumption rule (Rule 4 of Algorithm 1).
Now we have a new algorithm, for which we can adjust the measure and conquer analysis,
and repeat this process.

4.2. The Process Halts

Above, we discussed how to perform one step of the design by measure and conquer
process. For a complete overview of the construction of Algorithm 1 see Table 1, with the
relevant data for each improvement step. Note from Table 1 that after each new step, the
example worst case instance part is no longer a valid worst case for the next step. As a
result, at each step either some subcases are removed by using a larger smallest set S or
by removing small sets or elements (setting v1 = 0 or w1 = 0), or the size reduction in
the formula for ∆kout is increased. After each step we refactored the reduction rules and
removed possible superfluous ones. We have not included the formula for ∆kin in this table,
since it does not change except that r1 6= 0 in early stages.

It appears that we must use a different approach to obtain a faster algorithm. Consid-
ered the following problem:

Problem 4.1. Given a Set Cover instance S and a set S ∈ S with the properties:
(1) Non of the reduction rules of Algorithm 1 apply to S.
(2) All sets in S have cardinality at most three; |S| = 3.
(3) Every element e ∈ S has frequency two.

Question: Does there exist a minimum set cover of S containing S?

Proposition 4.2. Problem 4.1 is NP-complete.

Proposition 4.2 implies that we cannot formulate a polynomial time reduction rule that
removes the current simplest worst case of our algorithm by deciding on whether S is in a
minimum set cover or not, unless P = NP .
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Latest new reduction rule Running times for Set Cover and
current formula for ∆kout Dominating Set

subcases considered instance part of the simplest worst case;
weights vectors ~v and ~w S − other occurrences of elements of S

Trivial algorithm O(1.4519d) O(2.1080n)
w|S| +

∑∞
i=1 ri∆vi

1 ≤ |S| = ∑p
i=1 ri + r>p ≤ p + 1 = 3 { 1 } − ∅

~v = (0.8808, 0.9901, . . .) ~w = (0.9782, . . .)
Stop when all sets of size one O(1.3380d) O(1.7902n)
w|S| +

∑∞
i=1 ri∆vi

2 ≤ |S| = ∑p
i=1 ri + r>p ≤ p + 1 = 4 { 1, 2 } − ∅

~v = (0.7289, 0.9638, 0.9964, . . .) ~w = (0.4615, 0.9229, . . .)
Include all frequency one elements O(1.2978d) O(1.6842n)
w|S| +

∑∞
i=2 ri∆vi + δr2>0w1 + δ|S|=r2=2∆w2

2 ≤ |S| = ∑p
i=2 ri + r>p ≤ p + 1 = 5 { 1, 2 } − { 1, 2 }

~v = (0, 0.4818, 0.8357, 0.9636, . . .) ~w = (0.4240, 0.8480, 0.9676, . . .)
Subset rule O(1.2665d) O(1.6038n)
w|S| +

∑∞
i=2 ri∆vi + δr2>0(w2 + v2) + δ|S|=r2=2∆w2

2 ≤ |S| = ∑p
i=2 ri + r>p ≤ p + 1 = 7 { 1, 2 } − { 1, 3 }, { 1, 4 }, { 2, 3 }, { 2, 4 }

~v = (0, 0.3900, 0.7992, 0.9318, 0.9808, . . .) ~w = (0, 0.6973, 0.9093, 0.9800, . . .)
Compute matching for size two sets∗ O(1.2352d) O(1.5258n)
w|S| +

∑∞
i=2 ri∆vi + δr2>0(w2 + v2) + δ|S|=3,r2≥2(∆w3 + δr2=3w2) + δ|S|=r2=4w4

3 ≤ |S| = ∑p
i=2 ri + r>p ≤ p + 1 = 7 { 1, 2, 3 } − { 1, 2, 4 }, { 3, 4 }

~v = (0, 0.3978, 0.7650, 0.9263, 0.9842, . . .) ~w = (0, 0.3787, 0.7575, 0.9103, 0.9763, . . .)
Subsumption rule O(1.2339d) O(1.5223n)
w|S| +

∑∞
i=2 ri∆vi + δr2>0(r2w2 + v2) + δ|S|=r2=3∆v3

3 ≤ |S| = ∑p
i=2 ri + r>p ≤ p + 1 = 7 { 1, 2, 3 } − { 1, 4 }, { 2, 4 }, { 3, 4 }

~v = (0, 0.3545, 0.7455, 0.9203, 0.9818, . . .) ~w = (0, 0.3755, 0.7510, 0.9061, 0.9745, . . .)
Avoid unnecessary branchings O(1.2313d) O(1.5160n)
w|S| +

∑∞
i=2 ri∆vi + r2(w2 + v2) + δr2>1(r2 − 1)∆w|S|

3 ≤ |S| = ∑p
i=2 ri + r>p ≤ p + 1 = 8 { 1, 2, 3 } − { 1, 4 }, { 2, 5 }, { 3, 6 }

~v = (0, 0.269912, 0.689810, 0.892666, 0.965849, 0.992140, . . .)
~w = (0, 0.376088, 0.752176, 0.907558, 0.974394, 0.999212, . . .)
Connected components (final) O(1.2302d) O(1.5134n)
w|S| +

∑∞
i=2 ri∆vi + r2(w2 + v2 + ∆w|S|)

3 ≤ |S| = ∑p
i=2 ri + r>p ≤ p + 1 = 8 { 1, 2, 3 } − { 1, 4 }, { 2, 5 }, { 3, 6 }

~v = (0, 0.219478, 0.671386, 0.876555, 0.956850, 0.988195, . . .)
~w = (0, 0.375418, 0.750835, 0.905768, 0.971965, 0.998158, . . .)
∗ Algorithm by Fomin, Grandoni and Kratsch [4].

Table 1: The iterations of the design by measure and conquer process.
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We can construct similar NP-complete problems for all other worst cases of Algorithm 1.
Therefore Algorithm 1 is optimal in some sense: we cannot straightforwardly improve it by
performing another iteration. In order to obtain a faster branch and reduce algorithm using
polynomial time reduction rules with a smaller measure and conquer proved time bound,
it is necessary to either change the variable measure, the branching rule(s), or perform a
more extensive subcase analysis.

Very recently, we pursued the last option with little result. We tried to further subdivide
the frequency two elements in the branch set depending on the size of the set containing
their second occurence (two or larger) and if this is a set of size two, on the frequency of
the other element in this set. This resulted in a set of very technical reduction rules and a
small speedup for the case where we use only polynomial space. This speedup, however, was
almost completely lost when using exponential space because some of the weights involved
became almost zero.

5. Conclusion and Further Research

In this paper, we have given the currently fastest exact algorithm for the Dominating

Set problem. Besides setting the current record for this central graph theoretic problem,
we also have shown that measure and conquer can be used as a tool for the design of
algorithms.

We have shown that there exists a strong relation between the chosen variable measure,
the branching rule(s) and the reduction rules of a measure and conquer based algorithm.
We intend to further investigate this relation and examine to what point we can deduce not
only reduction rules, but also branching rules from the given measure.

We plan to apply the design by measure and conquer method to a number of other
combinatorial problems, and hope and expect that in a number of cases, such a computer
aided algorithm design will give further improvements to the best known exact algorithms
for these problems.

In this paper, we observe that measure and conquer can be used as a form of computer
aided algorithm design. Another intriguing question is whether we can automate some
additional steps in the design process, e.g., can we automatically obtain reduction rules
from the solution of the quasiconvex program?
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Abstract. We reduce the best known approximation ratio for finding a weighted match-
ing of a graph using a one-pass semi-streaming algorithm from 5.828 to 5.585. The
semi-streaming model forbids random access to the input and restricts the memory to
O(n · polylog n) bits. It was introduced by Muthukrishnan in 2003 and is appropriate
when dealing with massive graphs.

1. Introduction

Matching. Consider an undirected graph G = (V,E) without multi-edges or loops, where
n and m are the number of vertices and edges, respectively. Let furthermore w : E → R+

be a function that assigns a positive weight w(e) to each edge e. A matching in G is
a subset M of the edges such that no two edges in M have a vertex in common. With
w(M) :=

∑
e∈M w(e) being the weight of M , the maximum weighted matching problem

MWM is to find a matching in G that has maximum weight over all matchings in G.
That problem is well studied and exact solutions in polynomial time are known, see [12]

for an overview. The fastest algorithm is due to Gabow[4] and runs in time O(nm+n2 log n).
Approximation Algorithms. When processing massive graphs even the fastest exact
algorithms computing an MWM are too time-consuming. Examples where weighted match-
ings in massive graphs must be calculated are the refinement of FEM nets [7] and multilevel
partitioning of graphs [8].

To deal with such graphs there has been effort to find algorithms that in a much shorter
running time compute solutions that are not necessarily optimal but have some guaranteed
quality. Such algorithms are called approximation algorithms and their performance is given
by an approximation ratio. A matching algorithm achieves a c-approximation ratio if for
every graph G the algorithm finds a matching M in G such that w(M) ≥ w(M∗)

c , where M ∗
is a matching of maximum weight in G.

A 2-approximation algorithm computing a matching in time O(m) was given by Preis
[11]. The best known approximation ratio approachable in linear time is (3/2 + ε) for
an arbitrarily small but constant ε. This ratio is obtained by an algorithm of Drake and
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Hougardy[1] in time O(m · 1
ε ), an algorithm of Pettie and Sanders[10] gets the same ratio

slightly faster in time O(m · log 1
ε ).

Streaming Model. The large amount of input for today’s computational tasks often
exceeds the size of the working memory and can only be stored on disks or even tapes
in total. The key assumption of the traditional RAM model, that is, a working memory
containing the whole input allowing very fast random access to every input item, is therefore
put in question. Rather seek times of read/write heads are dominating the running time.
Thus for algorithms as the above ones that do not consider the peculiarities of external
memory the running time totally gets out of hand.

To develop time-efficient algorithms working on these storage devices it is reasonable
to assume the input of the algorithm (which is the output of the storage devices) to be a
sequential stream. While tapes produce a stream as their natural output, disks reach much
higher output rates when presenting their data sequentially in the order it is stored.

Streaming algorithms are developed to deal with such large amounts of data arriving as
a stream. In the classical data stream model, see e.g. [5], [9], the algorithm has to process
the input stream using a working memory that is small compared to the length of the input.
In particular the algorithm is unable to store the whole input and therefore has to make
space-efficient summarizations of it according to the query to be answered.
Semi-Streaming Model. With the objective of approaching graph problems in the
streaming context Muthukrishnan[9] proposed the model of a semi-streaming algorithm:
Random access to the input graph G is forbidden, on the contrary the algorithm gets the
edges of G in arbitrary order as the input stream. The memory of the algorithm is restricted
to O(n · polylog n) bits. That does not suffice to store all edges of G if G is sufficiently
dense, i.e., m = ω(n · polylog n). A semi-streaming algorithm may read the input stream
for a number of P passes. The parameter T denotes the per-edge processing time, that is,
the time the algorithm needs to handle a single edge.

Despite the heavy restrictions of the model there has been progress in developing semi-
streaming algorithms solving graph problems. Feigenbaum et al.[2], [3] presented semi-
streaming algorithms for testing k-vertex and k-edge connectivity of a graph, k being a
constant. They pointed out how to find the connected components and a bipartition and
how to calculate a minimum spanning tree of a weighted graph. Zelke[13] showed how all
these problems can be solved using only a constant per-edge processing time.
Matching in the Semi-Streaming Model. There are approaches to find a weighted
matching of a graph in the semi-streaming model. McGregor[6] presents an algorithm
finding a (2 + ε)-approximative solution with a number of passes P > 1 depending on ε.

However, for some real-world applications even a second pass over the input stream
is unfeasible. If observed phenomena are not stored and must be processed immediately
as they happen only a single pass over the input can occur. For the case of one-pass
semi-streaming algorithms it is known, see [2], that finding the optimal solution to the
MWM problem is impossible in general graphs. A first one-pass semi-streaming algorithm
approximating the MWM problem with a ratio of 6 presented in [2] was tweaked in [6] to
a ratio of 5.828, which was the best known ratio until recently. Both algorithms use only a
per-edge processing time of O(1).
Our Contribution. In this paper we present a semi-streaming algorithm that runs in one
pass over the input, has a constant per-edge processing time, and that approximates the
MWM problem on general graphs with a ratio of 5.585. Therefore it surpasses the known
semi-streaming algorithms computing a weighted matching in a single pass. In Section 2
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Shadow Matching(G, k)

1 M := ∅
2 while input stream is not empty
3 get next input edge y1y2

4 Let g1y1, g2y2 be the edges of M sharing a vertex with y1y2

5 a1g1 := shadow-edge(g1y1, g1)
6 a2g2 := shadow-edge(g2y2, g2)
7 Let a1c1 be the edge of M covering vertex a1

8 Let a2c2 be the edge of M covering vertex a2

9 S := {y1y2, g1y1, a1g1, a1c1, g2y2, a2g2, a2c2}

10 Find an augmenting set A ⊆ S that maximizes r(A) := w(A) − k · w(M(A))
11 if r(A) > 0 then
12 store each edge in M(A) as a shadow-edge of its adjacent edges in A
13 M := (M \M(A)) ∪A

Figure 1: The algorithm Shadow Matching

we present our algorithm and its main ideas. While the proof of the approximation ratio is
found in Section 3, we conclude in Section 4.

2. The Algorithm

In a graph G = (V,E) let two edges be adjacent if they have a vertex in common. While
M∗ denotes a matching of maximum weight in G let in the following M be the matching of
G that is currently under consideration by our algorithm. For a set of vertices W we call
M(W ) to be the set of edges in M covering a vertex in W . Correspondingly, for a set F of
edges we denote by M(F ) all edges in M that are adjacent to an edge in F . A set of edges
in E \M that are pairwise not adjacent we call an augmenting set. Throughout the whole
paper k denotes a constant greater than 1.

Our algorithm is given in Figure 1. Note at first that each edge in the algorithm
is denoted by its endpoints, which is done for the sake of simpler considerations in the

PSfrag replacements

c1c1 c2c2

a1a1 a2a2

g1g1 g2g2

y1y1 y2y2

S

Figure 2: Example of an algorithm’s step. Edges in M are shown in bold, shadow-
edges appear in grey. y1y2 is the actual input edge shown dashed. The algorithm
inserts the augmenting set A = {y1y2, a1g1} into M . Therefore the edges M(A) =
{a1c1, g1y1, g2y2} are removed from M , they become shadow-edges.
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following on edges having common vertices. Every edge is well-defined by its endpoints
since we assume the input graph G to contain neither multi-edges nor loops.

The general idea of the algorithm is to keep a matching M of G at all times and to
decide for each incoming edge y1y2 in the input stream if it is inserted into M . This is the
case if the weight of y1y2 is big compared to the edges already in M sharing a vertex with
y1y2 and that therefore must be removed from M to incorporate y1y2.

This idea so far has already been utilized by one-pass semi-streaming algorithms of
Feigenbaum et al.[2] and McGregor[6] seeking a matching in weighted graphs. However,
our algorithm differs from the ones in [2] and [6] in fundamental points.

First, if the algorithms in [2] and [6] remove an edge from the actual matching M this
is irrevocable. Our new algorithm, by contrast, stores some edges that have been in M
in the past but were removed from it. To potentially reinsert them into M the algorithm
memorizes such edges under the name of shadow-edges. For an edge xy in M shadow-
edge(xy, a), a ∈ {x, y}, denotes an edge that is stored by the algorithm and shares the
vertex a with xy. Every edge xy in M has at most two shadow-edges assigned to it, at most
one shadow-edge is assigned to the endpoint x and at most one is assigned to y.

A second main difference is the way of deciding if an edge e is inserted into M or not.
In the algorithms of [2] and [6] this decision is based only on the edges in M adjacent to e.
Our algorithm takes edges in M as well as shadow-edges in the vicinity of e into account to
decide the insertion of e.

Finally, the algorithms of [2] and [6] are limited to the inclusion of the actual input edge
into M . By reintegrating shadow-edges our algorithm can insert up to three edges into M
within a single step.

Let us take a closer look at the algorithm. As an example of a step of the algorithm, Figure
2 is given. But note that this picture shows only one possible configuration of the set S.
Since non-matching edges in S may be adjacent, S may look different.

After reading the actual input edge y1y2 the algorithm tags all memorized edges in
the vicinity of y1y2. This is done in lines 4-8. If an edge is not present the corresponding
tag denotes the null-edge, that is, the empty set of weight zero. Thus if for example the
endpoint y2 of the input edge y1y2 is not covered by an edge in M , the identifier g2y2 denotes
a null-edge, as well as its shadow-edge a2g2 and the edge a2c2. All edges tagged so far are
taken into consideration in the remaining part of the loop, they are subsumed to the set S
in line 9.

In line 10 all augmenting sets of S are examined. Among these sets the algorithm
selects A that maximizes r(A). If r(A) > 0 the edges of A are taken into M and the edges
in M sharing a vertex with edges in A are removed from M . We say A is inserted into M ,
this is done in line 13.

If an augmenting set A is inserted into M this is always accompanied by storing the
removed edges M(A) as shadow-edges of edges in A in line 12. More precisely, every edge
e in M(A) is assigned as a shadow-edge to every edge in A that shares a vertex with e.
If, as in the example given in Figure 2, A = {y1y2, a1g1}, the edge g1y1 that is adjacent
to both edges in A is memorized under the name shadow-edge(y1y2, y1) as well as under
the name shadow-edge(a1g1, g1). a1c1 is stored as shadow-edge(a1g1, a1), g2y2 as shadow-
edge(y1y2, y2). After inserting A, a2g2 is not memorized as a shadow-edge assigned to
g2y2 since g2y2 is not an edge in M after the step. That is indicated in Figure 2 by the
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disappearance of a2g2. However, if a2g2 was memorized as a shadow-edge of a2c2 before,
this will also be the case after inserting A.

It is important to note that there is never an edge in M which is a shadow-edge at
the same time: Edges only become shadow-edges if they are removed from M . An edge
which is inserted into M is no shadow-edge anymore, since there is no edge in M it could
be assigned to as a shadow-edge.

It is easy to see that our algorithm computes a valid matching of the input graph G.

Corollary 2.1. Throughout the algorithm Shadow Matching(G, k), M is a matching of G.

Proof. This is true at the start of the algorithm since M = ∅. Whenever the algorithm
modifies M in line 13 it inserts edges that are pairwise not adjacent and removes all edges
that are adjacent to the newly inserted ones. Thus M never includes two adjacent edges.

Our algorithm may remind of algorithms in [1] and [10] approximating a maximum weighted
matching in the RAM model. Starting from some actual matching M in a graph G these
algorithms look for short augmentations, that is, connected subgraphs of G having constant
size in which edges in M and E \M can be exchanged to increase the weight of the actual
matching.

From this point of view our algorithm may suggest itself as it is reasonable to expect
the notion of short augmentations to be profitable in the semi-streaming model as well.
However, we are unable to use even the basic ideas of proving the approximation ratio in [1]
and [10]. As well as the algorithms the proof concept relies on random access to the whole
graph, a potential we cannot count on in the semi-streaming model.

Certainly, our algorithm can be considered as a natural extension of the semi-streaming
algorithms in [2] and [6] seeking a weighted matching. But the abilities of our algorithm
go beyond the insertion of a single edge to the actual matching, the step to which the
algorithms in [2] and [6] are limited to. Therefore we have to substantially enhance the
proof techniques used therein to attest an improved approximation ratio of our algorithm.
This is done in the next section.

3. Approximation Ratio

Consider an augmenting set A which covers the vertices B ⊆ V and let k > 1 be some
constant. We call fA,k : V → {x ∈ R | 0 ≤ x ≤ 1} an allocation function for A if fA,k(v) = 0
for all v ∈ V \ B and additionally the following holds:

• ∀ ab ∈ A : fA,k(a) · w(M(a)) + fA,k(b) · w(M(b)) ≤ w(ab)
k• ∀ cd ∈ M(A) : fA,k(c) + fA,k(d) ≥ 1

If there exists such an allocation function fA,k for an augmenting set A we call A to be
locally k-exceeding. The intuition here is as follows: If for an augmenting set A we have
w(A) > k · w(M(A)) we can distribute the weight of the edges in M(A) to the edges of
A in such a way that every edge ab in A gets weight of at most w(ab)

k distributed to it. If
A satisfies the stronger condition of being locally k-exceeding such a weight distribution
can also be done with the additional property that the weight of an edge cd in M(A) is
distributed only to edges in A that are adjacent to cd.

Lemma 3.1. Every augmenting set A that is inserted into M by the algorithm Shadow
Matching(G, k) is locally k-exceeding.
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Proof. Since A ⊆ {y1y2, a1g1, a2g2} and r(A) > 0, 1 ≤ |A| ≤ 3. If A consists of only one
edge, say y1y2, we have for the sum of the weights of the adjacent edges w(g1y1)+w(g2y2) ≤
w(y1y2)

k because of the satisfied condition in line 11. In that case the allocation function is
fA,k(y1) = fA,k(y2) = 1 and A is locally k-exceeding.

Let A consist of two edges, say y1y2 and a1g1. Since every subset of A is an augmenting
set as well which is not taken by the algorithm, r({y1y2, a1g1}) ≥ r({y1y2}) and therefore

w(y1y2) + w(a1g1)− k(w(a1c1) + w(g1y1) + w(g2y2)) ≥ w(y1y2)− k(w(g1y1) + w(g2y2))

Thus w(a1g1) ≥ k ·w(a1c1) and because r({y1y2, a1g1}) ≥ r({a1g1}) we can deduce similarly
w(y1y2) ≥ k ·w(g2y2). Hence for the allocation function we can set fA,k(a1) = fA,k(y2) = 1.
Since r(A) > 0 we can find appropriate values for fA,k(g1) and fA,k(y1), too.

For other configurations of A it can be exploited correspondingly that r(A) ≥ r(A ′) for
all subsets A′ of A to show the existence of a allocation function for A in a similar way.

Because of Corollary 2.1 we can take the final M of the algorithm as a valid solution for
the weighted matching problem on the input graph G. It is immediate that the constant
k is crucial for the weight of the solution we get and therefore determines the ratio up to
which the algorithm approximates an optimal matching. The main part of the paper is to
prove the following theorem which we just state here and which we prove later.

Theorem 3.2. Let M be a matching constructed by Shadow Matching(G, k), k > 1. Then

w(M∗)
w(M)

≤ k +
k

k − 1
+

k3 − k + 1
k2

We call Gi the subgraph of G consisting of the first i input edges, Mi denotes the M of
the algorithm after completing the while-loop for the ith input edge. An edge xy prevents
an edge ab if ab is the ith input edge and xy ∈ Mi shares an endpoint with ab, thus ab is
not taken into M by the algorithm. Note that an edge might be prevented by one or two
edges. An edge xy replaces an edge cd if xy is the ith input edge, xy and cd share a vertex,
cd ∈ Mi−1, xy ∈ Mi, and therefore cd 6∈ Mi. An edge can replace up to two edges and can
be replaced by up to two edges.

Consider an optimal solution M ∗ = {o1, o2, . . .} for the MWM problem of G, M ∗
i :=

M∗ ∩Gi. The edges o1, o2, . . . in M ∗ we call optimal edges. If w(Mi) < w(M∗
i ), some edges

of M∗
i must be missing in Mi. There are two possible reasons for the absence of an edge

ol ∈ M∗
i in Mi. First, there are edges in Mj , j ≤ i, which prevented ol. Second, ol ∈ Mj ,

j < i, is replaced by one or two edges and not reinserted into M afterwards.
In any case we can make edges in

⋃
h≤i Mh responsible for missing edges of M ∗

i in Mi.
We charge the weight of an optimal edge ol to the edges in

⋃
h≤i Mh that are responsible

for the prevention or the removal of ol. If such a charged edge in M is replaced by other
edges its charge is transferred to the replacing edges such that no charge is lost. After all
we can sum up the charges of all edges in the final Mm to get w(M ∗ \Mm).

To bound w(M ∗
i \ Mi) as a multiple c of w(Mi) if suffices to show that each edge

xy ∈ Mi carries a charge of at most c · w(xy). This technique has been carried out by
Feigenbaum et al.[2] and McGregor[6] to estimate the approximation ratios of their semi-
streaming algorithms calculating a weighted matching.

We follow the same general idea but need a more sophisticated approach of managing
the charge. This is due to two reasons. First, the algorithms of [2] and [6] are limited to a
simple replacement step which substitutes one or two edges by a single edge e. That makes
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the charge transfer easy to follow since the charges of the substituted edges are transferred
completely to e. Our algorithm, by contrast, is able to substitute several edges by groups
of edges. The charge to be transferred must be distributed carefully to the replacing edges.

Second, in the algorithms of [2] and [6] the decision whether to insert an input edge
into M is determined only by the edges in M adjacent to the input edge. If an optimal edge
o is not taken into M the charge can simply be assigned to the at most two edges already
in M that are adjacent to o. In our algorithm not only the edges in M that are adjacent to
o specify if o is taken into M . In fact, several shadow-edges and other edges in M in the
environment of o may codetermine if o is inserted into M . These ambient edges must be
taken into account if charge has to be distributed for preventing o.

For our more sophisticated technique of managing the charges we think of every edge
xy ∈ M as being equipped with two values, namely charge of optimal edge coe(xy, x) and
coe(xy, y), one for every endpoint of xy. coe(xy, x) is the charge that the edge in M ∗ which
is covering the vertex x is charging to xy.

If an edge is removed from M its charges are transfered to the one or two replacing
edges. Therefore in addition to its coe(xy, x) and coe(xy, y) every edge xy ∈ M is equipped
with a third value aggregated charge ac(xy) which contains charges that xy takes over from
edges replaced by xy. We define T (xy) := coe(xy, x) + coe(xy, y) + ac(xy) as the sum of
the charges of the edge xy.

During the proof of the following lemma we will explicitly show how the weights of
edges in M ∗

i \Mi can be charged to the edges in Mi and how these charges are transferred
to replacing edges such that particular properties hold.

Lemma 3.3. Let Mi be the solution found by the algorithm Shadow Matching(G, k), k > 1,
after reading Gi for 1 ≤ i ≤ m. To every edge xy in Mi we can assign three values
coe(xy, x), coe(xy, y) and ac(xy), with T (xy) being their sum, such that:

a)
∑

xy∈Mi

T (xy) ≥ w(M ∗
i \Mi)

b) ∀ xy ∈ Mi: coe(xy, x) ≤ k · w(xy) and coe(xy, y) ≤ k · w(xy)
c) ∀ xy ∈ Mi: ac(xy) ≤ k

k−1 · w(xy)

d) ∀ xy ∈ Mi: T (xy) ≤
(
k + k

k−1 + k3−k+1
k2

)
· w(xy)

Proof. Let y1y2 be the ith input edge. If y1y2 is an optimal edge that is not taken into Mi

by the algorithm we want to charge the weight of y1y2 to the edges in Mi that prevented
y1y2. We first take a look at the different cases that can occur if y1y2 is not taken into Mi.
We postpone the case in which the set S contains a C5, i.e., a cycle on five vertices, to the
end of this proof. Thus, until further notice S contains no C5.

If A = {y1y2, a1g1, a2g2} is an augmenting set and none of the edges is taken into Mi

the condition in line 11 of the algorithm is violated for A and all its subsets. In this case
we can split w(y1y2) into two partial weights p1, p2 and charge p1 to g1y1 and p2 to g2y2

such that the following holds for x ∈ {1, 2}:
px ≤ k · w(gxyx) and px ≤ k · (w(gxyx) + w(axcx))− w(axgx) (3.1)

Now let one of the edges axgx in A be taken into Mi, w.l.o.g. let this edge be a1g1. If y1y2

is not inserted into Mi the whole weight of y1y2 can be charged to g2y2, thus p2 = w(y1y2)
and p2 satisfies condition (3.1) for x = 2.

Let a1g1 be adjacent to y1y2, hence a1g1, y1y2, and g1y1 build a triangle and let a2 6= y1

and a2 6= g1. If neither y1y2 nor a1g1 is inserted into Mi we charge w(y1y2) as follows: A
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part of weight at most k · w(g1y1) is charged as p1 to g1y1 such that:

p1 ≤ k · w(g1y1) and y1y2, g1y1, and a1g1 build a triangle (3.2)

If a2g2 is not inserted into Mi the remaining part of w(y1y2) after subtracting p1 can be
charged as p2 to g2y2 satisfying condition (3.1) with x = 2. If on the contrary a2g2 is taken
into Mi there is no remaining part of w(y1y2) since then w(y1y2) ≤ k · w(g1y1). In the
case that a1g1 is inserted into Mi a similar reasoning to the previous one can be applied
since now a1g1 instead of g1y1 is preventing y1y2. Therefore the weight charged to a1g1 now
satisfies a condition similar to (3.2) because a1g1 ∈ Mi, g1y1, which is now the shadow-edge
of a1g1, and the prevented edge y1y2 form a triangle.

For all other shapes of S (except for the postponed C5 case) and for all possible aug-
menting sets it can be shown similarly that w(y1y2) of the prevented edge y1y2 can be split
into two partial weights in such a way that the following generalization holds:

Let ab ∈ Mi share the vertex a with the ith input edge o ∈ M ∗. Let bc be the shadow-
edge(ab, b), that is, the shadow-edge assigned to the vertex of ab that is not shared by o.
Let cd be the edge in Mi that covers c. w(o) can be split into two partial weights such that
for the partial weight p that ab has to take as a charge for preventing o at least one of the
following conditions is satisfied:

(I) p ≤ k · w(ab) ≤ k · (w(ab) + w(cd)) − w(bc)
(II) p ≤ k · (w(ab) + w(cd)) − w(bc) ≤ k · w(ab)

(III) p ≤ k · w(ab) and ab, input edge o and shadow-edge bc form a triangle.
We start to prove the lemma by induction over the edges inserted into M . More precisely
we suppose that the edge y1y2 as the ith input edge is inserted into Mi and that before this
insertion, i.e., for Mi−1, all properties of the lemma are satisfied.

We have to consider two things: First, we have to point out how the charges of the
edges in Mi−1 that y1y2 replaces are carried over to y1y2 to preserve the properties of the
lemma. Second we have to regard the at most two optimal edges that possibly come after
y1y2 and share a vertex with y1y2. If y1y2 prevents one or both of these edges we have to
show how y1y2 is charged by them without violating the lemma.

For the initial step of our induction note that the properties of the lemma hold for the
first input edge. For the inductive step let y1y2 as the ith input edge be taken into Mi.
Thus y1y2 is contained in the augmenting set A that is inserted into M . Because of Lemma
3.1 A is locally k-exceeding, hence there exists an allocation function fA,k.

Let in the following x ∈ {1, 2}. y1y2 takes over charges from gxyx, the edges it replaces.
According to the allocation function fA,k y1y2 takes over a fA,k(yx)-fraction of the charges
of gxyx. In fact, y1y2 builds its ac as follows: ac(y1y2) = (coe(g1y1, g1)+ac(g1y1))·fA,k(y1)+
(coe(g2y2, g2) + ac(g2y2)) · fA,k(y2). By the induction hypothesis coe(gxyx, gx) ≤ k ·w(gxyx)
and ac(gxyx) ≤ k

k−1 · w(gxyx). Due to the definition of an allocation function fA,k(y1) ·
w(g1y1)+fA,k(y2) ·w(g2y2) ≤ w(y1y2)

k . Thus ac(y1y2) ≤ k
k−1 ·w(y1y2) satisfying property c).

Furthermore y1y2 takes over charge from coe(gxyx, yx) to its own coe(y1y2, yx), again
a fA,k(yx)-fraction of it. If gxyx is in M∗, coe(gxyx, yx) = 0 and y1y2 instead takes over a
fA,k(yx)-fraction of w(gxyx) as its coe(y1y2, yx) for replacing the optimal edge gxyx.

Note that whenever fA,k(yx) < 1, y1y2 does not take over all the charge of gxyx.
However, the definition of the allocation function makes sure that fA,k(gx) ≥ 1 − fA,k(yx)
and that another edge in A covering gx takes over the remaining charge of gxyx. That way
no charge can get lost and property a) holds.
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Let us check the validity of property b). Right after y1y2 was inserted into M and
took over the charges as described from gxyx it holds that coe(y1y2, yx) ≤ w(y1y2). That
does not suffice to show validity of property b). In fact, there might be an optimal edge
oxyx coming after y1y2 in the input stream covering yx. In that case coe(y1y2, yx) = 0 up
to this moment, since there cannot be another optimal edge besides oxyx covering yx. If
oxyx is not inserted into M , that is, y1y2 prevents oxyx, y1y2 must be charged. By the
considerations above we know about the charges that an edge in M has to take because
of optimal edges prevented by it. In all three possibilities (I)-(III) the charge y1y2 has to
include into coe(y1y2, yx) for preventing oxyx is at most k · w(y1y2), satisfying property b).

It remains to show that property d) holds which bounds the sum of all charges of y1y2.
The situation is as follows: y1y2 is in M and we call the shadow-edge(y1y2, y1) g1y1, the
shadow-edge(y1y2, y2) g2y2. Remember that y1y2 took over only a fA,k(yx)-fraction of the
charges from gxyx. Directly after y1y2 was inserted into M and took over the charges from
the replaced edges as described property d) holds. We have to consider optimal edges oxyx

that appear after y1y2 in the input stream, are prevented by y1y2 and therefore cause charge
px at coe(y1y2, yx).

As described ac(y1y2) is composed of four values, namely fractions of ac(gxyx) and
coe(gxyy, gx). The value of the fraction of ac(gxyx) that is taken over into ac(y1y2) we call
ac(gxyx) y ac(y1y2), correspondingly we have coe(gxyx, gx) y ac(y1y2). Using that we can
separate T (y1y2) into two halves as follows

T (y1y2) =
(
coe(y1y2, y2) + ac(g1y1) y ac(y1y2) + coe(g1y1, g1) y ac(y1y2)

)
+(

coe(y1y2, y1) + ac(g2y2) y ac(y1y2) + coe(g2y2, g2) y ac(y1y2)
)

Let us call the upper half H1 and the lower one H2. We will estimate H2 in the following
according to the three possible cases for p1 and show that

H2 ≤
(

k +
1

k − 1
+

1
k

)
w(g2y2) · fA,k(y2) + k · w(y1y2) (*)

We will see later that it suffices to show that if neither H2 violates inequality (*) nor H1
violates a corresponding inequality, property d) holds for y1y2.

Charge p1 coming from o1y1 satisfies (I)
Let g2z2 be an edge in M covering g2. We can bound p1 because of property (I)

p1 ≤ k · w(y1y2) ≤ k · (w(y1y2) + w(g2z2))− w(g2y2) (3.3)

We call the shadow-edge g2y2 of y1y2 overloaded if we have coe(g2y2, g2) y ac(y1y2) >
w(g2y2) ·fA,k(y2). For a shadow-edge uv we say that uv fingers v if uv covers v and v is not
the vertex that uv shares with the edge in M it is assigned to. For example the shadow-edge
g2y2, which is assigned to y1y2, fingers g2 but not y2. A shadow-edge uv is prepared if for
the edge uw in M that uv is assigned to coe(uw,w) = 0. So in the present example g2y2 is
prepared if coe(y1y2, y1) = 0.

If p1 ≤ k · w(y1y2)− fA,k(y2) · w(g2y2) or if g2y2 is not overloaded, we can simply add
p1 to coe(y1y2, y1) and H2 satisfies (*). Otherwise we do a charge transfer as follows: We
reduce coe(g2y2, g2) y ac(y1y2) to r := max{coe(g2y2, g2) y ac(y1y2)− (k− 1) ·w(g2z2), 0}
and add a value of coe(g2y2, g2) y ac(y1y2)− r to coe(g2z2, g2), thus no charge is lost.

It is important to see that this increasing of coe(g2z2, g2) does not violate the properties
of the lemma for g2z2: We know that coe(g2z2, z2) ≤ k ·w(g2z2) and ac(g2z2) ≤ k

k−1 ·w(g2z2).
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If before the charge transfer coe(g2z2, g2) = 0, after the transfer T (g2z2) cannot exceed
(k + k

k−1 + k3−k+1
k2 ) · w(g2z2).

For the other case, i.e., that coe(g2z2, g2) > 0 before the charge transfer we need a
few considerations. In fact, we will show that for every vertex v at every moment of the
algorithm at most one shadow-edge fingers v, is overloaded, and prepared at the same time:

Assume that uv is the first shadow-edge created by the algorithm that is fingering v
and that is overloaded and prepared. This can only be the case if uv in M gets replaced
by uw and possibly vs. uv as a shadow-edge of uw is now fingering v and it is overloaded
and prepared. Right after the replacement coe(vs, v) ≤ w(vs). As long as no charge of
coe(uv, v) y ac(uw) is transferred to an edge in M covering v, for every edge vq in M
covering v coe(vq, v) ≤ w(vq). Such an edge vq cannot be turned into a shadow-edge
fingering v and being overloaded. A second overloaded shadow-edge fingering v can only be
created by replacing an edge vr with coe(vr, v) > w(vr), that can only occur if uw transfers
charge to vr. However, uw only transfers charge to vr if it prevents an optimal edge.
After that coe(uw,w) > 0 and uv is not prepared anymore. This shows that a prepared
and overloaded shadow-edge fingering v can only be created if the at most one previously
prepared and overloaded shadow-edge fingering v lost its status as being prepared.

Now we can come back to the case coe(g2z2, g2) > 0. We can assume that g2z2 as part of
the augmenting set A′ replaced the edges d2g2 and t2z2. g2z2 took over a fA′,k(g2)-fraction
of the charges from d2g2. Since coe(d2g2, g2) ≤ k · w(d2g2) before the replacement of d2g2,
we have coe(g2z2, g2) ≤ fA′,k(g2) · k ·w(d2g2) after the replacement. By the definition of an
allocation function it follows coe(g2z2, g2) ≤ w(g2z2)−fA′,k(z2) ·k ·w(t2z2). After our charge
transfer of weight at most (k − 1) · w(g2z2) from coe(g2y2, g2) y ac(y1y2) to coe(g2z2, g2),
it holds that coe(g2z2, g2) ≤ k · (w(g2z2)− fA′,k(z2) ·w(t2z2)). Therefore the charges of g2z2

satisfy an inequality corresponding to (*), thus property d) cannot be violated for g2z2.
Now the above considerations are important: We know that no shadow-edge besides

g2y2 that is fingering g2 is prepared and overloaded. Thus no further charge transfer to
coe(g2z2, g2) can occur violating the properties of the lemma for g2z2.

After transferring a part of coe(g2y2, g2) y ac(y1y2) as described we have coe(g2y2, g2)
y ac(y1y2) ≤ max{k ·fA,k(y2) ·w(g2y2)−(k−1) ·w(g2z2), 0}. We add p1 to coe(y1y2, y1) and
can evaluate H2: We have coe(y1y2, y1) = p1 ≤ k ·w(y1y2) because of (3.3) and ac(g2y2) y
ac(y1y2) ≤ fA,k(y2) · w(g2y2) · k

k−1 by the induction hypothesis. Since w(g2z2) ≥ w(g2y2)
k

because of (3.3) we can estimate H2 as being bounded as in inequality (*).

Charge p1 coming from o1y1 satisfies (II)
This case is very similar to the previous one with the only difference that w(g2z2) ≤ w(g2y2)

k
and we use p1 ≤ k ·(w(y1y2)+w(g2z2))−w(g2y2). All other considerations remain the same
and that results in the very same estimation for H2.

Charge p1 coming from o1y1 satisfies (III)
In this case o1 = g2 since the input edge o1y1, the edge y1y2 ∈ M and the shadow-edge g2y2

form a triangle. Since g2y1 is an optimal edge, before its arrival coe(g2y2, g2) y ac(y1y2) = 0.
So y1y2 can take a charge of p1 ≤ k · w(y1y2) as its coe(y1y2, y1) and H2 satisfies (*).

We can handle the charge p1 in every possible case such that H2 satisfies (*). With a
symmetric argumentation we can show that H1 satisfies a corresponding inequality. Using
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that fA,k(y1) · w(g1y1) + fA,k(y2) · w(g2y2) ≤ w(y1y2)
k we get validity of property d) since

T (y1y2) = H1 + H2 ≤
(

k +
k

k − 1
+

k3 − k + 1
k2

)
· w(y1y2)

It remains to consider the postponed situation in which S contains a C5. This can only be
the case if a1 = a2. If y1y2 ∈ M∗ as the ith input edge is prevented but one of the edges
a1g1, a2g2 is inserted into Mi the edge g1y1 (g2y2, respectively) can be charged with w(y1y2)
and this charge satisfies condition (I) or (II).

The last possibility is the one in which a1 = a2 and no augmenting set is inserted
into M at all. Assume now that this is the case, thus the situation is as follows: g1y1

and g2y2 are in M , a1g1 = shadow-edge(g1y1, g1) and a2g2 = shadow-edge(g2y2, g2). g1y1

took over a fA′,k(g1)-fraction of the charges from a1g1 when replacing it, g2y2 took over a
fA′′,k(g2)-fraction of the charges from a2g2. Since a1 = a2 it is also c1 = c2.

Let w.l.o.g. fA′,k(g1) · w(a1g1) ≥ fA′′,k(g2) · w(a2g2). It suffices to consider y1y2 as
an optimal edge since otherwise no charge must be assigned if y1y2 is prevented and the
properties of the lemma hold further on.

Prior the arrival of y1y2, coe(g1y1, y1) = coe(g2y2, y2) = 0, thus a1g1 and a2g2 are both
prepared and fingering a1. If coe(a2g2, a2) y ac(g2y2) = fA′′,k(g2) ·w(a2g2) + X for X > 0,
a2g2 is overloaded, thus coe(a1g1, a1) y ac(g1y1) ≤ fA′,k(g1) · w(a1g1) since a1g1 cannot be
overloaded as well. X cannot be greater than (k − 1) · fA′′,k(g2) ·w(a2g2), therefore we can
transfer a charge of weight X from coe(a2g2, a2) y ac(g2y2) to coe(a1g1, a1) y ac(g1y1),
a1g1 might get overloaded, a2g2 is not overloaded anymore.

After this transfer of charge, or if no transfer was necessary because X ≤ 0, we have
coe(a2g2, a2) y ac(g2y2) ≤ fA′′,k(g2) · w(a2g2). Thus coe(g2y2, y2) can take a charge of
k · w(g2y2) without violating the properties of the lemma since in that case coe(g2y2, y2),
coe(a2g2, a2) y ac(g2y2) and ac(a2g2) y ac(g2y2) still satisfy an inequality corresponding
to (*). If no augmenting set is inserted into M , w(y1y2) ≤ min{k · (w(g1y1) + w(g2y2)), k ·
(w(g1y1) + w(a1c1)) − w(a1g1) + k · w(g2y2)}. Therefore the partial weight of y1y2 that
g1y1 has to take as charge for preventing y1y2 satisfies the properties (I) or (II) and can be
handled as described before.

We showed that the properties a)-d) of the lemma hold when y1y2 replaces and prevents
edges. In the very same way the validity of the properties can be shown for the edges a1g1

and/or a2g2 that are possibly taken into M at the same time as y1y2.

Using Lemma 3.3 we can prove our main theorem.

Proof of Theorem 3.2: Let M be the final Mm. w(M∗) = w(M∗ ∩ M) + w(M ∗ \ M).
Because for an edge xy ∈ M ∗ ∩M we have coe(xy, x) = coe(xy, y) = 0, we can write

w(M∗ \M) ≤
∑

xy∈M∗∩M

k

k − 1
· w(xy) +

∑
uv∈M\M∗

T (uv)

That results in w(M ∗) ≤
(
k + k

k−1 + k3−k+1
k2

)
· w(M).

The term describing the approximation ratio of our algorithm reaches its minimum for k
being around 1.717, that yields a ratio of 5.585. It is easy to see that the algorithm does not
exceed the space restrictions of the semi-streaming model: It needs to memorize the edges
of M , for each of those at most two shadow-edges, thus it suffices to store a linear number



680 MARIANO ZELKE

of edges. The time required to handle a single input edge is determined by the size of S.
Since S is of constant size, a single run of the while loop, including the enumeration and
comparison of all possible augmenting sets of S, can be done in constant time. Therefore
the algorithm needs a per-edge processing time of O(1) and is content with a single pass
over the input.

4. Conclusion

We presented a semi-streaming algorithm calculating a weighted matching in a graph G.
Our algorithm achieves an approximation ratio of 5.585 and therefore surpasses all previous
algorithms for the maximum weighted matching problem in the semi-streaming model. In
addition to the edges of an actual matching M the algorithm memorizes some more edges
of G, the so called shadow-edges. For each input edge e, the subgraph S made up of e and
of shadow-edges and edges of M in the vicinity of e is examined. If a certain gain in the
weight of M can be made, matching and non-matching edges in S are exchanged.

The subgraph S investigated by our algorithm for each input edge consists of at most
seven edges. It is reasonable to assume that by examining bigger subgraphs the approxi-
mation ratio can be enhanced further. Therefore we believe that extending our approach
will lead to improved semi-streaming algorithms computing a weighted matching.
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