
Preface
This volume contains the proceedings of the 28th international conference on the Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 2008), organized
under the auspices of the Indian Association for Research in Computing Science (IARCS).

This year’s conference attracted 117 submissions. Each submission was reviewed by at
least three independent referees. The final selection of the papers making up the programme
was done through an electronic discussion on EasyChair, spanning two weeks, without a
physical meeting of the Programme Committee (PC). All PC members participated actively
in the discussion.

We have five invited speakers this year: Hubert Comon-Lundh, Uriel Feige, Erich
Grädel, Simon Peyton Jones and Leslie Valiant. We thank them for having readily accepted
our invitation to talk at the conference and for providing abstracts (and even full papers) for
the proceedings.

We thank all the reviewers and PC members, without whose dedicated effort the con-
ference would not be possible. We thank the Organizing Committee for making the arrange-
ments for the conference.

This year, the conference is being held at the Indian Institute of Science, Bangalore, as
part of its centenary year celebrations. It is a great honour and privilege for the conference
to be recognized and associated with the institute on this occasion.

Finally, this year we have taken a decisive step in democratizing the conference by mov-
ing away from commercial publishers. Instead, we will be hosting the proceedings online,
electronically, via the Dagstuhl Research Online Publication Server (DROPS). A complete
copy of the proceedings will also be hosted on the FSTTCS website (www.fsttcs.org).

The copyrights to the papers will reside not with the publishers but with the respective
authors. The copyright is now governed by the Creative Commons attribution NC-ND.

We do hope this direction will be sustained in the future.
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ABSTRACT. Covering problems are fundamental classical problems in optimization, computer sci-
ence and complexity theory. Typically an input to these problems is a family of sets over a finite
universe and the goal is to cover the elements of the universe with as few sets of the family as pos-
sible. The variations of covering problems include well known problems like SET COVER, VERTEX

COVER, DOMINATING SET and FACILITY LOCATION to name a few. Recently there has been a lot of
study on partial covering problems, a natural generalization of covering problems. Here, the goal
is not to cover all the elements but to cover the specified number of elements with the minimum
number of sets.
In this paper we study partial covering problems in graphs in the realm of parameterized complex-
ity. Classical (non-partial) version of all these problems have been intensively studied in planar
graphs and in graphs excluding a fixed graph H as a minor. However, the techniques developed for
parameterized version of non-partial covering problems cannot be applied directly to their partial
counterparts. The approach we use, to show that various partial covering problems are fixed param-
eter tractable on planar graphs, graphs of bounded local treewidth and graph excluding some graph
as a minor, is quite different from previously known techniques. The main idea behind our approach
is the concept of implicit branching. We find implicit branching technique to be interesting on its own
and believe that it can be used for some other problems.

1 Introduction

Covering problems are basic, fundamental and widely studied problems in algorithms and

combinatorial optimizations. In general these problems ask for selecting a least sized family

of sets to cover all the elements. One of the prominent covering problem is the classical

SET COVER problem. SET COVER problem consists of a family F of sets over a universe

U and the goal is to cover this universe U with the least number of sets from F . Other

classical problems in the framework of covering include well known problems like VER-

TEX COVER, DOMINATING SET, FACILITY LOCATION, k-MEDIAN, k-CENTER problems, on

which hundreds of papers have been written.

In this paper we study the generalization of these problems to the partial covering prob-

lems, where the objective is not to cover all the elements but to cover the pre-specified num-

ber of elements with minimum number of objects. More precisely, in the partial covering
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2 IMPLICIT BRANCHING AND PARAMETERIZED PARTIAL COVER PROBLEMS

problem, for a given integer t ≥ 0, we want to cover at least t elements rather than cov-

ering all the elements. For an example, in PARTIAL VERTEX COVER (PVC), the goal is to

cover at least t edges with minimum number of vertices not all the edges while in PARTIAL

SET COVER (PSC) the goal is to cover at least t elements of U with minimum number of

sets from F . Other problems are defined similarly. Partial covering problems are studied

intensively not only because they generalize classical covering problems, but also because

of many real life applications. They have received a lot of attention recently, see, for exam-

ple [4, 5, 7, 18].

While different variations of PSCwere studied intensively andmany approximation al-

gorithm and non-approximability results exist in the literature, only few things are known

on their parameterized complexity. In this paper we fill this gap by initiating parameter-

ized algorithmic study of these problems on structural graphs like planar graphs, graphs

of bounded genus and graphs of bounded local treewidth. In parameterized algorithms,

for decision problems with input size n, and a parameter k, the goal is to design an algo-

rithm with runtime τ(k) · nO(1), where τ is a function of k alone. Problems having such an

algorithm are said to be fixed parameter tractable (FPT). There is also a theory of hardness

using which one can identify parameterized problems that are not amenable to such algo-

rithms. This hardness hierarchy is represented by W[i] for i ≥ 1. For an introduction and

more recent developments see the books [15, 17, 21]. In this paper, we always parameterize

a problem by the size of the partial set cover, i.e. all our algorithms for finding a partial set

cover of size k that cover at least t sets with input of size n are of running time τ(k) · nO(1).

Our Approach and Results. The main ideas behind our approach can be illustrated by

planar instances of PARTIAL VERTEX COVER and PARTIAL DOMINATING SET. Let a planar

graph G = (V, E) on n vertices, and integers k, t, be an instance of PARTIAL VERTEX COVER.

Let S be the set vertices in G of degree at least t/k. If S is sufficiently big, say, its size is

at least 4k, then (by the Four color theorem), the subgraph of G induced on S contains an

independent set of size at least k. This yields that there are k vertices of S that are pairwise

non-adjacent in G, and since each of these vertices covers at least t/k edges, we have that in

total they cover at least t edges. If the size of S is less than 4k, we apply explicit branching.

The crucial observation here is that if G has a partial vertex cover of size at most k, then

this cover must contain at least one vertex of S. Thus by making a guess on the vertices

x ∈ S, whether x is in a partial vertex cover of size at most k, we can guarantee, that if the

problem has a solution, then at least one of our guesses is correct. For each of the guesses x,

we create a new subproblem for PARTIAL VERTEX COVER, where the input is the subgraph

of G induced on V \ {x} and we are asked to cover t− deg(x) edges by k− 1 vertices, where

deg(x) is the number of edges adjacent to x. The number of subproblems we generate in this

way is at most 4k, and we call the procedure recursively on each subproblem. The depth

of the recursion is at most k, and the number of recursive calls at each steps is at most 4k,

resulting in total running time (4k)k · nO(1). Actually, in our arguments we used planarity

only to conclude that a graph has large independent set. Definitely, this approach is valid

for many other graph classes with large independent sets, like bipartite graphs, degenerate

graphs and graphs excluding some graph as a minor. (We provide detailed consequences of

this approach in Section 5.)

The main drawback of explicit branching is that we cannot use it for many partial cov-
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ering problems, in particular for PARTIAL DOMINATING SET. Even for planar graphs, the

existence of a large independent set of vertices of degree at least t/k does not imply that k

vertices can dominate at least t vertices. To overcome this obstacle, we do the following. We

start as in the case of PARTIAL VERTEX COVER, by selecting the set S consisting of vertices

of degree at least t/k. If there are more than k vertices in S which are at distance at least

three from each other, we have the solution. Otherwise, we know that at least one vertex

from S should be in a partial dominating set but we cannot use explicit branching by trying

all vertices of S because the size of S can be too large. However, we show in this case that

the graph formed by S and their neighbors is of small diameter, and thus, by well known

properties of planar graphs, has small treewidth. (Very loosely small here means bounded

by some function of k.) In this case we apply implicit branching, which means that we do not

create a new subproblem for every vertex of S, but instead for every i, 1 ≤ i ≤ k, we make a

guess that exactly i vertices of S are in a partial dominating set. Thus we branch on k cases

and try to solve the problem recursively. We formulate these ideas in details in Sections 3.1

and 3.2 and show how it is sufficient to just know the size of an intersection of an optimal

partial dominating set with S rather than the actual intersection itself to solve the problem.

Again, the only property of planar graphs we mentioned here was the property that

non-existence of a large set of pairwise remote vertices in a graphs yields a small treewidth.

But this property can be shown not only for planar graphs, but more generally for graphs of

bounded local treewidth, the class of graphs containing planar graphs, graphs of bounded

genus, graphs of bounded vertex degree, and graphs excluding an apex graph as a mi-

nor. With more additional work we show that similar ideas can be used to prove that much

more general problem, namely a weighted version of the PARTIAL (k, r, t)-CENTER problem,

where the goal is to cover at least t elements by balls of radius r centered around at most k

vertices, is FPT on graphs of bounded local treewidth. This result can be found in Section 3.2.

This is mainly of theoretical interest because the running time of the algorithm is 2k
O(k) · nO(1).

Such a huge running time is due to the bounds on the treewidth of a graph, which is used

in implicit branching. Due to the generality of the result for graphs with bounded local

treewidth, we do not see any reasonable way of overcoming this problem. But because of

numerous application, we find it is worth to search for faster practical algorithms on sub-

classes of graphs of bounded local treewidth, in particular on planar graphs. As a step

in this direction, we obtain much better combinatorial bounds on the treewidth of planar

graphs in implicit branching, which results in algorithms of running time 2O(k) · nO(1) on

planar graphs. The combinatorial arguments used for the exponential speedup (Section 3.3)

are interesting on their own. In Section 4, we show that the PARTIAL (k, r, t)-CENTER prob-

lem is FPT on graphs excluding a fixed graph as a minor. The proof of this result is based

on the decompositions theorem of Robertson and Seymour from Graph Minors [24]. The

algorithm is quite involved, it uses two levels of dynamic programming and two levels of

implicit branching, and can be seen as a non-trivial extension of the algorithm of Demaine

et al. [10] for classical covering problems to partial covering problems.

Finally, let us remark that while DOMINATING SET is FPT on d-degenerated graphs

[3], there are strong arguments that our results cannot be extended to this class of sparse

graphs. This is because Golovach and Villanger [19] showed that PARTIAL DOMINATING

SET is W[1]-hard on d-degenerated graphs.
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2 Preliminaries

Let G = (V, E) be an undirected graph where V (or V(G)) is the set of vertices and E (or

E(G)) is the set of edges. We denote the number of vertices by n and number of edges

by m. For a subset V ′ ⊆ V, by G[V ′] we mean the subgraph of G induced by V ′. By

N(u) we denote (open) neighborhood of u that is set of all vertices adjacent to u and by

N[u] = N(u)∪{u}. Similarly, for a subsetD ⊆ V, we define N[D] = ∪v∈DN[v]. The distance
dG(u, v) between two vertices u and v of G is the length of the shortest path in G from u to

v. The diameter of a graph G, denoted by diam(G), is defined to be the maximum length of

a shortest path between any pair of vertices of V(G). By an abuse of notation, we define

diameter of a graph as the maximum of the diameters of its connected components. For

r ≥ 0, the r-neighborhood of a vertex v ∈ V is defined as Nr
G[v] = {u | dG(v, u) ≤ r}. We also

let Br(v) = Nr
G[v] and call it a ball of radius r around v. Similarly Br(A) = ∪v∈AN

r
G[v] for

A ⊆ V(G). Given a weight function w : V → R and A ⊆ V(G), w(Br(A)) = ∑u∈Br(A) w(u).

Given an edge e = (u, v) of a graph G, the graph G/e is obtained by contracting the

edge (u, v) that is we get G/e by identifying the vertices u and v and removing all the loops

and duplicate edges. Aminor of a graphG is a graph H that can be obtained from a subgraph

of G by contracting edges. A graph class C is minor closed if any minor of any graph in C is

also an element of C. A minor closed graph class C is H-minor-free or simply H-free if H /∈ C.
We use the standard definitions of treewidth and tree decomposition. We use tw(G)

to denote the treewidth of a graph G. The definition of treewidth can be generalized to

take into account the local properties of G and is called local treewidth [16, 20]. The local

treewidth of a graph G is the function ltwG : N → N that associates with every integer

r ∈ N the maximum treewidth of an r-neighborhood of vertices of G, i.e., ltwG(r) =
maxv∈V(G)

{

tw(G[Nr
G[v]])

}

. A graph class G has bounded local treewidth, if there exists a

function f : N → N such that for each graph G ∈ G , and for each integer r ∈ N, we have

ltwG(r) ≤ f (r). The class G has linear local treewidth, if in addition the function f can be cho-

sen to be linear, that is f (r) = crwhere c ∈ R is a constant. For a given function f : N → N,

G f is the class of all graphs G of local tree-width at most f , that is, ltwG(r) ≤ f (r) for every
r ∈ N. A well known graph classes which are known to have bounded local treewidth are

planar graphs, graphs of bounded genus, and graphs of bounded maximum degree. By a

result of Robertson and Seymour [22], f (r) can be chosen as 3r for planar graphs. Similarly

Eppstein [16] showed that f (r) can be chosen as cgg(Σ)r for graphs embeddable in a sur-

face Σ, where g(Σ) is the genus of the surface Σ and cg is a constant depending only on the

genus of the surface. Demaine and Hajiaghayi [11] extended this result and showed that the

concept of bounded local treewidth and linear local treewidth are the same for minor closed

families of graphs.

3 FPT Algorithms for Weighted Partial-(k, r, t)-Center Problem

3.1 Developing a Step by Step Procedure

In this section we give a template of a generic algorithm for partial covering problems aris-

ing on graphs. We use this later to show that partial covering problems arising on graphs are

fixed parameter tractable in graphs of bounded local treewidth. We formulate the template
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through the following problem.

WEIGHTED PARTIAL-(k, r, t)-CENTER (WP-(k, r, t)-C): Given an undirected graph

G = (V, E), with weight function w : V → {0, 1} and integers k, r and t. The

problems asks whether there exists a C ⊆ V of size at most k (k centers), such

that w(Br(C)) ≥ t. Here k and r are the parameters.

When all the vertices have weight 1 this is a PARTIAL-(k, r, t)-CENTER (P-(k, r, t)-C)

problem, and for r = 1 and w(v) = 1 for all v ∈ V this is PARTIAL DOMINATING SET

problem. To formulate PSC problem as WP-(k, r, t)-C problem, we consider the incidence

bipartite graph associated with the instance of PSC problem and give weights 1 to the ver-

tices associated with elements and 0 to the vertices associated with sets. Since PVC can

be transformed to PSC problem, WP-(k, r, t)-C also generalizes PVC. One defines PARTIAL

HITTING SET similarly.

Unlike the non-partial and non-weighted version of WP-(k, r, t)-C problem, the first

major challenge in partial covering problems is: which t elements we choose to cover? To

find an answer to this we define the following set S and the corresponding graph G, which

forms the first step of the algorithm:

(T1) Define S = {v | v ∈ V, w(Br(v)) ≥ t/k} and G =
⋃

v∈S G[Br(v)].

The basic observation is that if there exists a subset C ⊆ V of size at most k such that

w(Br(C, r)) ≥ t then C ∩ S 6= ∅. Given the graph G our second idea is to:

(T2) Check the diameter of G, and if diam(G) is large then we argue that this is a YES

instance by providing a subset C of size at most k and w(Br(C)) ≥ t.

Now when the diam(G) is small, the treewidth of the graph G is bounded and hence dy-

namic programming over graphs with bounded treewidth can be used. But we still do not

know whether we can find the desired C among the vertices of G. Hence even if we find

out that there is no X ⊆ S such that |X| ≤ k and w(Br(X)) ≥ t, we can not guarantee that

this is a NO instance of the problem. So to overcome this difficulty we resort to an implicit

branching by using the earlier observation that there is no desired Cwhose intersection with

S is empty. Before we go further, given a vertex set S and G (as defined above), we define

µ(S, i) = maxA⊆S,|A|=i{w(Br(A))}.
(T3) Using dynamic programming over graphs with bounded treewidth, compute µ(S, i)

for G for 1 ≤ i ≤ k as well as a subset Ai ⊆ S such that w(Br(Ai)) = µ(S, i).
(T4) Now we make k recursive calls to reduce the size of k on the fact that if there exists a

C then its intersection with S is between 1 ≤ i ≤ k. Now we reduce the parameters t

to t− µ(S, i) and k to k− i and try to solve the problem recursively.

In the recursive steps, we follow the above steps and either wemove forward to a larger

G or we get a desired solution for the problem. More precisely, suppose we are at the ith step

of recursion then we do as follows:

(T5) Enlarge G by adding some new vertices to S. Let Si be the set of new vertices added

to S that is those set of vertices which are not in S and w(Br(v)) ≥ t/k where t and k

are the current parameters obtained after reductions done in previous recursive calls.

(T6) Either we bound the diameter and hence the treewidth of G. Else, we select a set C

of at most k vertices such that w(Br(C)) ≥ t and C respects the guesses made on the

number of vertices we need to select from Sj, 1 ≤ j ≤ i − 1. That is, the possible

number of vertices in C ∩ Sj.
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This completes the framework in which we will be working. In the next Section we

prove that WP-(k, r, t)-C Problem is FPT in graphs with bounded local treewidth by proving

the necessary technical lemmas needed for this generic algorithm to work.

3.2 An Algorithm for WP-(k, r, t)-C in Graphs of Bounded Local Treewidth

We first give an upper bound on the treewidth of G, the graphs we obtained in the recursive

calls which is crucial for analysis of the algorithm.

LEMMA 1. Let G be a graph on n vertices and m edges and H be an induced subgraph of
G such that the diameter of each of the connected components of H is at most ℓ. Let C be
a subset of V(H) of size at most k and A be a subset of V(G). Then there exists a function
g(k, r, ℓ) such that if diam(G[Br(A) ∪ H]) > g(k, r, ℓ), then there is a subset T ⊆ A such that
(a) |T| ≥ k; (b) for all u, v ∈ T, dG(u, v) ≥ 2r + 1; and (c) for all u ∈ T and for all v ∈ C,
dG(u, v) ≥ 2r + 1. In particular, one can take g(k, r, ℓ) = (6r + 2)2kℓ and find the desired set
T in O(m + n) time.

PROOF. Since C is a subset of size at most k, we have that it intersects at most k connected

components of H. Let these connected components be H1, . . . ,Hr, where r ≤ k. We contract

each of these connected components to a vertex and obtain a new graph G′. Let the contrac-
tions of H1, . . . ,Hr correspond to vertices vH1

, · · · , vHr in our new graph G′ and this set of

vertices be called X. For a vertex v ∈ V(G), we define its image, im(v), in G′ as vHi
if it is in

Hi for 1 ≤ i ≤ r and v otherwise. For a subsetW ⊆ V, its image im(W) in V(G′), is defined
as the set {im(v) | v ∈ W}.

For any subset W ⊆ V(G), we claim that diam(G′[im(W) ∪ X]) ≥ diam(G[W ∪ H])/ℓ

(let us remind that we define the diameter of the graph as the maximum diameter of its

connected components).

To prove the claim we observe that a path P′ in G′[im(W) ∪ X] can be lifted to a path

P in G[W ∪ H] by replacing every vertex in X on path P′ by local paths in each connected

component Hj of H. As the diameter of each Hj is bounded by ℓ, in this way, the length

of a path can only be increased by at most a constant multiplicative factor ℓ. This gives us

diam(G[W ∪ H]) ≤ ℓ · diam(G′[im(W) ∪ X]), which completes the proof of the claim.

To finish the proof of the lemma we proceed as follows: We apply the above claim to

the subsetW = Br(A). Since diam(G[Br(A) ∪ H]) > g(k, r, ℓ) = (6r + 2)2kℓ, we have that

diam(G′[im(Br(A)) ∪ X]) ≥ diam(G[Br(A) ∪ H])

ℓ
>

g(k, r, ℓ)

ℓ
= 2(6r + 2)k.

Thus there is a connected component C of G′[im(Br(A)) ∪ X] of diameter more than 2(6r +
2)k. Let im(v1), . . . , im(vκ), κ ≤ k, be the image of vertices of C in this component. Observe

that im(A) ∪ {im(v1), . . . , im(vκ)} form an r-center in C. Since the diameter of this compo-

nent is at least 2(6r + 2)k, we can find a subset Y ⊆ im(A) ∪ {im(v1), . . . , im(vκ)} of size at

least 2k such that for any two vertices u, v ∈ Y, dG′(u, v) ≥ 4r + 1. To see this, let us assume

that P = u0u1u2 · · · uq, q ≥ 2(6r + 2)k, is a path which realizes this diameter. Let Vi ⊆ V(C)
be the subset of vertices of distance exactly i from u0. Since im(A) ∪ {im(v1), . . . , im(vκ)}
forms an r-center, its intersection with

⋃i+2r
j=i Vi, 1 ≤ i ≤ q − 2r, is non-empty. Now one
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can form Y by selecting a vertex of im(A) ∪ {im(v1), . . . , im(vκ)} from ∪2r
i=0Vi and then

alternately not selecting any vertex from next 4r + 1 Vi’s and then selecting a vertex of

im(A) ∪ {im(v1), . . . , im(vκ)} from one of the next 2r + 1 blocks of Vi’s, and so on.

We put Z = Y ∩ {im(v1), . . . , im(vκ)}. Let us remark that, for each vertex v in {im(v1),
. . . , im(vκ)} \ Z there is at most one vertex v in Y \ Z such that dG′(u, v) ≤ 2r. Otherwise it

will violate the condition that the distance between any two vertices from Y is at least 4r+ 1

in G′. We construct the set T′ by removing all vertices from Y \ Z which are at distance

at most 2r from {im(v1), . . . , im(vκ)} \ Z. The subset T′ ⊆ im(A) satisfies the following

conditions: (a) |T′| ≥ k; (b) for all u, v ∈ T′, dG′(u, v) ≥ 2r + 1; and (c) for all u ∈ T′ and for

all im(vj), 1 ≤ j ≤ k, dG′(u, im(vj)) ≥ 2r + 1.

Lifting the subset T′ to G one gets a T (by taking inverse image of vertices in T′) of the
desired kind.

Another essential part of our algorithm is dynamic programming on graphswith bounded

treewidth which will be used in (T6). To do so we use a variation of the Theorem 4.1 of [9].

THEOREM 2. [⋆]∗ Let G be a graph on n vertices, given with (a) a weight function w : V →
{0, 1}, (b) a tree decomposition of width ≤ b, and (c) positive integers k, r and t. Further-
more let S1, · · · , Sp be disjoint subsets of V(G) with an associated positive integer ai for
1 ≤ i ≤ p and ∑

p
i=1 ai = a. Then we can check the existence of a weighted partial-(k, r, t)-

center such that it contains ai elements from Si, 1 ≤ i ≤ p, in O((2r + 1)
3b
2 2

a
2 · nt) time and,

in case of a positive answer, construct a weighted partial-(k, r, t)-center of G in the same
time.

The rest of the section is devoted to the proof of the following theorem.

THEOREM 3. Let f : N → N be a given function. ThenWP-(k, r, t)-C problem can be solved
in timeO(τ(k, r) · t · (m+ n)) for graphs in G f , where τ is a function of k and r. In particular,
WP-(k, r, t)-C problem is FPT for planar graphs, graphs of bounded genus and graphs of
bounded maximum degree.

Let us remark that for fixed k, r and t, our algorithm runs in linear time.

PROOF. The proof of the theorem is divided into three parts: Algorithm, correctness and

the time complexity. We first describe the algorithm.

Algorithm: First we set up notations used in the algorithm. By S we mean a family of

pairs (X, i) where X is a subset of V(G), i is a positive integer, and for any two elements

(X1, i1), (X2, i2) ∈ S , X1 ∩ X2 = ∅. Given a family S , we define ρ(S) = ∑(X,i)∈S i and

µ(w,S) = max
{

w(Br(D))
∣

∣

∣
D ⊆ V(G), |D| = ρ(S), ∀(X, i) ∈ S |D ∩ X| = i

}

,

that is a subset D ⊆ ⋃

(X,i)∈S X of size ρ(S), under the additional constraint that for each

element (X, i) of S we pick exactly i elements in X. A subset D realizing µ(w,S) will be

called an S-center. Our detailed algorithm is given in Figure 1.

Correctness: The correctness of the algorithm follows (almost directly) from its detailed

descriptions in the earlier sections and hence we remark on the necessary points of the

proof. Whenever we answer YES, we output a set C which has weight at least t that is

w(Br(C)) ≥ t and C is of size at most k and hence these steps do not require any justification.

∗Results marked with [⋆] will appear in the long version of the paper.
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Algorithm PCentre(G, r, k, t, w, S , C, S, µ(w,S))
(The algorithms takes as an input (a) a graph G = (V, E) ∈ G f , (b) positive integers k, r and t, (c) a

weight function w : V → {0, 1}, (d) a family S of pairs (X, i), (e) an S-center C, ( f ) a set S which is
equal to ∪(X,i)∈SX and (g) the value of µ(w,S). It returns either a set C such that w(Br(C)) ≥ t or
returns NO, if no such set exists. The algorithm is initialized with PCentre(G, r, k, t,w,∅,∅,∅, 0)).
Step 0 : If µ(w,S) ≥ t, then answer YES and return C.
Step 1: If k = 0 and µ(w,S) < t, then return NO and EXIT.
Step 2: First define A as follows: A = {v | v ∈ V , v /∈ S,w(Br(v)) ≥ t/k}. If A is empty return NO

and EXIT. Else let S = S ∪ A and define G =
⋃

v∈S G[Br(v)].
Step 3: Compute the diameter, diam, of G.
Step 4: If diam > ((12r + 4)(k + ρ(S)))|S|+1 then apply Lemma 1 to find the subset T ⊆ A of size

k such that: (a) for all u, v ∈ T, dG(u, v) ≥ 2r + 1; and (b) for all u ∈ T and for all v ∈ C,
dG(u, v) ≥ 2r + 1 and return C = C ∪ T and EXIT.

Step 5: Else, the graph G has bounded local treewidth, compute a tree decomposition of width
f (diam) of G.

Step 6: For every 1 ≤ p ≤ k, using the dynamic programming of Theorem 2, compute a
S ∪ {(A, p)}-center Dp of weight µ(w,S ∪ {(A, p)}). If for some recursive calls, 1 ≤ p ≤ k,
PCentre(G, r, k− p, t− µ(w,S ∪ {(A, p)}), w, S ∪ {(A, p)}, Dp, S, µ(w,S ∪ {(A, p)}))
returns a set C then answer YES and return C else answer NO and EXIT.

Figure 1: Algorithm for Weighted Partial Center Problem

Our observation is that if there exists a subset C such that w(Br(C)) ≥ t and |C| ≤ k, then C

and A = {v | v ∈ V, w(Br(v)) ≥ t/k} have non empty intersection. Hence we recursively

solve the problem with an assumption that |C ∩ A| = p, p ∈ {1, 2, · · · , k}. In recursive

steps we have a family S of pairs (X, i) such that we want to compute C with additional

constraints that for all (X, i) ∈ S , |C ∩ X| = i. At this stage the only way we can have

solution is when there exists a non-empty set A such that

C ∩ A 6= ∅ where A =
{

v
∣

∣

∣
v ∈ V , v /∈ (∪(X,i)∈SX),w(Br(v)) ≥ t−µ(w,S)

k−ρ(S)

}

6= ∅.

Now based on the diameter of the graph G =
⋃

v∈S G[Br(v)], where S = A ∪(X,i)∈S X, we

either apply Lemma 1 or make further recursive calls.

(1.) When we apply Lemma 1, the diameter of the graph is more than ((12r + 4)k)|S|+1, and

hence we obtain a set T ⊆ A such that T is of cardinality k− ρ(S) and the distance between

any two vertices in T and distance between vertices of T and C, C a S-center, is at least

2r + 1. In |C ∪ T| = |C| + |T| ≤ ρ(S) + k− ρ(S) ≤ k, and

w(Br(C ∪ T)) = w(Br(C)) + w(Br(T)) ≥ µ(w,S) + (k− ρ(S))× t−µ(w,S)
k−ρ(S)

≥ t.

(2.) Else the diameter and hence the treewidth of the graph G is at most f (((12r+ 4)k)|S|+1).
Hence in this case there is a solution to the problem precisely when there exists p, 1 ≤ p ≤
k− ρ(S), for which recursive call to PCentre returns a solution in Step 6 of the algorithm.

This completes the correctness of the algorithm.

Time Complexity: The running time depends on the number of recursive calls wemake and

the upper bound on the treewidth of the graphs G which we obtain during the execution of

the algorithm. First we bound the number of recursive calls. An easy bound is kk since the

number of recursive calls made at any step is at most k and the depth of the recursion tree is

also at most k. This bound can be improved as follows. Let N(k) be the number of recursive
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calls. Then N(k) satisfies the recurrence N(k) ≤ ∑
k
i=1 N(k− i), which solves to 2k.

At every recursive call we perform a dynamic programming algorithm and since the

size of the family S is at most k− 1, the diameter of the graph does not exceed ((12r + 4)k)k

at any step of the algorithm. Let h(r, k) = 3 · f (((12r + 4)k)k)/2. Then the dynamic pro-

gramming algorithm can be performed inO((2r+ 1)h(r,k)2
k
2 · (n+m)t) time in any recursive

step of the algorithm. Hence the total time complexity of the algorithm is upper bounded

by O((2r + 1)h(r,k)2
3k
2 · (n + m)t). This completes the proof.

3.3 Improved Algorithm for Planar Graphs

In the last section we gave an algorithm for WP- (k, r)-C problem in graphs of bounded

local treewidth. The time complexity of the algorithm was dominated by the upper bound

on the treewidth of the graph G, which were considered in the recursive steps of the algo-

rithm. If the input to the algorithm Algorithm PCentre is planar, then a direct application

of Lemma 1 gives us that the treewidth of the graph G, obtained in the recursive steps of the

algorithm, is bounded by O((rk)O(rk)). In this section we reduce this upper bound to O(rk)
using grid arguments. We also need to slightly modify Algorithm PCenter by replacing the

diameter arguments with treewidth based arguments. We give the modified steps here:
Modified Step 3: Compute the treewidth of G.
Modified Step 4: If tw(G) > g(r, k) (to be specified later) find a subset T ⊆ A of size k such that: (a)

for all u, v ∈ T, dG(u, v) ≥ 2r + 1; and (b) for all u ∈ T and for all v ∈ C, dG(u, v) ≥ 2r + 1 and
return C = C ∪ T and EXIT.

Modified Step 5: Else, the graph G has bounded treewidth, compute a tree decomposition of width

at most g(r, k) of G.
To give the combinatorial bound on the treewidth of the graph G, we need the following

relation between the size of grids and the treewidth of the planar graph.

LEMMA 4.[23] Let s ≥ 1 be an integer. The treewidth of every planar graph G with no
(s× s)-grid as a minor is upper bounded by 6s− 4.

The notations used in the next lemma is the same as in Algorithm PCentre.

LEMMA 5. [⋆] Let G = (V, E) be a planar graph on n vertices and m edges. Let k, r and t be
positive integers, and w be a weight function w : V → {0, 1}. Suppose that at some step in
AlgorithmPCentrewe are given a family S of pairs (X, i), an S-centerC, a set S = ∪(X,i)∈SX
and the value of µ(ω,S). Furthermore let A = {v | v ∈ V , v /∈ S,w(Br(v)) ≥ t/k′} 6= ∅,
S∗ = S ∪ A, where k′ = k− ∑(X,i)∈S i. Finally, let G =

⋃

v∈S∗ G[Br(v)]. Then either there is a
subset T ⊆ A of size k′ such that (a) for all u, v ∈ T, dG(u, v) ≥ 2r + 1; and (b) for all u ∈ T

and for all v ∈ C, dG(u, v) ≥ 2r + 1 or tw(G) ≤ O(rk).

Let us set g(r, k) = 6h(r, k). We can compute in O(|G|4) time a tree decomposition of

width ω of G such that tw(G) ≤ ω ≤ 1.5tw(G) [25]. Moreover, given a graph G, one can

also construct a grid minor of size (b/4)× (b/4) where the largest grid minor possible in G
is of order b× b, in time O(|G|2 log |G|) [6]. Hence if ω > g(r, k) then the tw(G) > 4h(r, k)
and then by applying the polynomial time algorithm to compute grid minor, we can obtain

a grid of size 4
24h(r, k). Let us finally observe that the proof of Lemma 5 is constructive, in a
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sense that given the grid H, we can construct the desired set T in polynomial time. Hence

by setting h(r, k) = O(rk) in the time complexity analysis of Theorem 3 , we obtain the

following theorem.

THEOREM 6. WP-(k, r, t)-C problem can be solved in timeO(2O(kr) · nO(1)) on planar graphs.

4 H-minor free graphs

The arguments of the previous sectionswere based on a specific graph class property, namely,

that a graph with small diameter has bounded treewidth. Thus the natural limit of our

framework is the class of graphs of bounded local treewidth. We overcome this limit and

extend the framework on the class of graphs excluding a fixed graph H as minor. To do so

we need to use the structural theorem of Robertson and Seymour [24] and an algorithmic

version of this theorem by Demaine et al. [13]. The algorithm is quite involved, it uses two

levels of dynamic programming and two levels of implicit branching, and can be seen as a

non-trivial extension of the algorithm of Demaine et al. [10] for classical covering problems

to partial covering problems.

THEOREM 7. [⋆] PDS is fixed parameter tractable for the class of H-minor free graphs and
the algorithm takes time O(τ(k) · t · nCH ), where τ is the function of k only and CH is the
constant depending only on the size of H.

5 Partial Vertex Cover

While the results of the previous section can be used to prove that PVC is FPT on H-minor

free graphs, we do not need that heavy machinery for this specific problem. In this section

we show how implicit branching itself does the job, even for more general classes of graphs.

We present a simple modification to our framework developed in the Section 3.1 and use it

to show that PVC problem is FPT in triangle free graphs. Given a graph G = (V, E) and a

subset S ⊆ V, by ∂S ⊆ E we denote the set of all edges having at least one end-point in S.

Our modification in the generic algorithm is in step (T2).

(T2′) Bound the size of S as a function of the parameter in every recursive step.

We call a graph class G hereditary if for any G ∈ G , all the induced subgraphs of G also

belong to G . Let ξ : N → N be an increasing function. We say that a hereditary graph class

G has the ξ-bounded independent set property, or simply the property ISξ , if for any G ∈ G

there exists an independent set X ⊆ V(G) such that |V(G)| ≤ ξ(|X|) and X can be found in

time polynomial in the input size. There are various graph classes which have the property

of ISξ . Every bipartite graph has an independent set of size at least n/2 and hence we can

choose ξb : N → N as ξb(k) = 2k. A triangle free graph has an independent set of size at

least max{∆, n/(∆ + 1)} where ∆ is the maximum degree of the graph which implies that a

triangle free graphs has an independent set of size at least
√
n/2. In this case we can choose

the function ξt : N → N by ξt(k) = 4k2. Every H-minor free graphs, and in particular

for planar graphs and graphs of bounded genus have chromatic number at most g(H) for

some function depending on H alone. In this case G has an independent set of size at least

n/g(|H|) and we can take ξH(n) = g(H)n. For planar graphs g(H) is 4.
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We can show that if a graph class G has the property ISξ , then in the case of PVC for

every G ∈ G either we can upper bound the size of S used in the implicit branching step by

ξ(k) or we can find a subset V ′ of size at most k such that |∂V ′| ≥ t. The main theorem of

this section is as follows.

THEOREM 8. [⋆] Let G be a hereditary graph class with the property of ISξ for some integer
function ξ. Then PVC can be solved in O(τ(k) · nO(1)) time in G where τ(k) = ξ(k)k.

6 Conclusion

In this paper we obtained a framework to give FPT algorithms for various partial covering

problems in graphs with locally bounded treewidth and graphs excluding a fixed graph

H as a minor. The main idea behind our approach was the concept of implicit branching

which is of independent interest. We believe that it will be useful for other problems as well.

We conclude with some open questions. For planar graphs (and even more generally, for

H-minor free graphs), many non-partial versions of parameterized problems can be solved

in subexponential time [12, 14]. We show that for planar graphs PARTIAL DOMINATING SET

can be solved in time 2O(k) · nO(1). Is this result tight, in a sense that up to some assumption

in the complexity theory, there is no time 2o(k) · nO(1) algorithm solving this problem on

planar graphs?

Many non-partial parameterized problems on planar graphs can be solved by reducing

to a kernel of linear size [2]. This does not seem to be the case for their partial counter-

parts and an interesting question here is, whether PARTIAL DOMINATING SET or PARTIAL

VERTEX COVER can be reduced to polynomial sized kernels on planar graphs.
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ABSTRACT. In many automated methods for proving inductive theorems, finding a suitable gener-
alization of a conjecture is a key for the success of proof attempts. On the other hand, an obtained
generalized conjecture may not be a theorem, and in this case hopeless proof attempts for the in-
correct conjecture are made, which is against the success and efficiency of theorem proving. Urso
and Kounalis (2004) proposed a generalization method for proving inductive validity of equations,
called sound generalization, that avoids such an over-generalization. Their method guarantees that
if the original conjecture is an inductive theorem then so is the obtained generalization. In this pa-
per, we revise and extend their method. We restore a condition on one of the characteristic argument
positions imposed in their previous paper and show that otherwise there exists a counterexample to
their main theorem. We also relax a condition imposed in their framework and add some flexibilities
to some of other characteristic argument positions so as to enlarge the scope of the technique.

1 Introduction

Reasoning on data structures or recursively defined domains is very common in formal

treatments of programs such as program verification and program transformation. Such a

reasoning often needs highly use of induction, that is, the properties of interest are not only

(general) theorems which hold in all models of the theory but inductive theoremswhich hold

only in a particular model, the initial model of the theory.

Although automated reasoning of inductive theorems has been investigated in many

years, comparing to the high degree of automation on automated proving of (general) the-

orems, automated proving of inductive theorems is still considered as a very challenging

problem [8]. Many approaches to automated proving of inductive theorems are known: ex-

plicit induction with sophisticated heuristics and/or decision procedures [4, 5, 6, 11, 13, 17],

implicit induction methods such as inductionless induction/coverset induction/rewriting

induction [3, 7, 9, 14, 16, 19].

In all these approaches, it is commonly understood that an introduction of suitable

lemmas is an important key for the success of proof attempts. Thus techniques for finding

suitable lemmas in the course of proof attempts have been investigated [12, 15, 18, 21, 22].

Among them, one of the most basic methods is generalization—replacing some of equivalent

subterms of the conjecture by a fresh variable. Proving generalized conjecture is often easier

than the original conjecture because generalization often suppress the complexity at the in-

duction step and sometimes makes another induction scheme possible. On the other hand,

the generalized conjecture may not be a theorem any more—this phenomenon is often ref-

ereed to as over-generalization. Because hopeless proof attempts for the incorrect conjecture

is against the success and efficiency of theorem proving, any over-generalization is always

better to be avoided.
c© Takahito Aoto; licensed under Creative Commons License-NC-ND
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Urso and Kounalis [21] proposed a generalization method called sound generalization,

which avoid such an over-generalization in automated inductive theorem proving of equa-

tions. Their method is sound in the sense it guarantees that if the original conjecture is an

inductive theorem then so is the obtained generalization. Thus the original conjecture can

be safely replaced by the obtained generalization if the criteria is satisfied. However, the

paper [21] contains an incorrect proof and, in fact, there exists a counterexample to their

main theorem.

Example 1 (counterexample) Let S = {Nat}, F = { plusNat×Nat→Nat, fNat→Nat, sNat→Nat,

0Nat } and

R =















plus(0, y) → y

plus(s(x), y) → s(plus(x, y))
f(0) → s(s(0))
f(s(x)) → s(s(x))















Then R is a monomorphic TRS and the argument 1 is a downward position of f [21]. In a mathe-

matical notation, f is a function f like this:

f (x) =

{

2 if x = 0

x + 1 if x > 0

Let s ≡ s(f(plus(x, s(0)))), t ≡ f(s(plus(x, s(0)))) and consider a conjecture s
.
= t, i.e.

s(f(plus(x, s(0))))
.
= f(s(plus(x, s(0))))

Then clearly this is an inductive theorem (on natural numbers), since we have f (x + 1) + 1 =
(x + 2) + 1 = f (x + 2). Now let us try a generalization of this conjecture based on the original

sound generalization [21]. We have 1.1.1 = BP(s) and 1.1.1 = BP(t) and thus 1.1 is a bottom path

of s and t. Since bot(s, 1.1) ≡ plus(x, s(0)) ≡ bot(t, 1.1) and s/1.1. ≡ plus(x, s(0)) ≡ t/1.1, the

generalization at 1.1 in s and at 1.1 in t is possible. Hence we obtain a generalized conjecture

s(f(y))
.
= f(s(y))

However, this is not an inductive theorem since s(f(0)) →R s(s(s(0))) and f(s(0)) →R s(s(0)).
Therefore, this generalization is not sound contrary to the Theorem 37 of [21].

The purpose of this paper is to correct and extend the sound generalization proposed in

[21]. In the sound generalization, generalizable subterms are computed based on five types

of argument positions of functions—namely, reflective argument, downward position, up-

ward position, down-contextual position, and up-contextual position when the term rewrit-

ing system is monomorphic. We clarify that the notion of downward position should be

weakened as in their previous paper [20] that proposes induction on term partition, other-

wise there is a counterexample (as presented above) and that the notion of down-contextual

and up-contextual position can be enlarged so that more flexible rewrite rules are allowed

for functions to have such positions. We relax the definition of monomorphic signature

and localize the monomorphic and left-linearity conditions so as to enlarge the scope of the

sound generalization.
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The rest of the paper is organized as follows. After fixing basic notation (Section 2), we

introduce a relaxed definition of monomorphic signature and revised definitions of argu-

ment positions and prove the characterization lemmas for these argument positions (Sec-

tion 3). The term partition and sound generalization techniques are presented in Section 4.

Section 5 concludes.

2 Preliminaries

We assume familiarity with basic notations on (many-sorted) term rewriting ([2, 10]).

Let S be a set of sorts and F be a set of S-sorted function symbols. We assume there is

a function from F to S∗ × S , denoted by sort. For f ∈ F , let sort( f ) = 〈τ1 · · · τn, τ0〉. Then
〈τ1 · · · τn, τ0〉 is called the sort of f and denoted by τ1 × · · · × τn → τ0. If n = 0, we write

sort( f ) = τ and f is called a constant of sort τ.

Let Vτ be the set of variables of sort τ ∈ S . We assume there is a countably infinite set

Vτ of variables for each τ ∈ S . We denote by V the set
⋃

τ∈S V
τ. The set T(F ,V)τ of terms

of sort τ ∈ S over F ,V is defined inductively as: (1) Vτ ⊆ T(F ,V)τ; (2) if f ∈ F , sort( f ) =
τ1 × · · · × τn → τ0 (n ≥ 0), ti ∈ T(F ,V)τi for 1 ≤ i ≤ n, then f (t1, . . . , tn) ∈ T(F ,V)τ0 . We

denote by T(F ,V) the set
⋃

τ∈S T(F ,V)τ. We write tτ if t ∈ T(F ,V)τ. The set of variables

contained in a term t is denoted by V(t). We use ≡ to denote the syntactical equality.

A position is a (possibly empty) sequence of positive integers. The empty sequence is

denoted by ǫ and the concatenation of positions p and q is by p.q. The set Pos(t) of positions
(or occurrence) in a term t and the subterm t/p of t at the position p are recursively defined

as follows: for t ∈ V, Pos(t) = {ǫ} and t/ǫ = t; for t ≡ f (t1, . . . , tn), Pos(t) = {ǫ} ∪
⋃

1≤i≤n{i.p | p ∈ Pos(ti)}, t/ǫ = t, and t/i.p = ti/p. If p ∈ Pos(t) and sort(t/p) = sort(s),
we write t[s]p the term obtained from t by replacing the subterm with s at the position p.

A variable x ∈ V(t) is said to have a linear variable occurrence in t if there exists a unique

p ∈ Pos(t) such that x ≡ t/p. The prefix ordering ≤ on positions are defined as p ≤ q iff

q = p.r for some position r. We write p | q if neither p ≤ q nor q ≤ p hold. A set of position

P is said to be prefix-closed if p ∈ P and q ≤ p imply q ∈ P. The function symbol that occurs

in t at a position p ∈ Pos(t) is denoted by t(p). In particular, the root symbol of a term t is

t(ǫ).

Suppose �
τ is a constant of sort τ and {�τ | τ ∈ S}∩F = ∅. A context is an element in

T(F ∪ {�τ | τ ∈ S},V). The special constants �
τ are called holes. If the holes occurring in a

context C are �
τ1 , . . . ,�τn from left to right and t1, . . . , tn are terms of sorts τ1, . . . , τn, respec-

tively, then we denote by C[t1, . . . , tn] the term obtained by replacing the holes �
τ1 , . . . ,�τn

with the terms t1, . . . , tn. The superscript of holes is often omitted if no confusion arises. For

a position p, we write C[u]p if C/p ≡ �.

A map σ from V to T(F ,V) is called a substitution if (1) σ preserves sort, i.e. sort(x) =
sort(σ(x)) and (2) the domain of σ is finite, where the domain of σ is given by dom(σ) =
{x ∈ V | σ(x) 6≡ x}. A substitution σ such that dom(σ) = {x1, . . . , xn} and σ(xi) ≡ ti
(1 ≤ i ≤ n) is also written as {x1 := t1, . . . , xn := tn}. We identify the substitution σ and its

homomorphic extension. A term σ(t) is called an instance of the term t; σ(t) is also written

as tσ.

A pair 〈l, r〉 of terms l, r satisfying conditions (1) l(ǫ) ∈ F and (2) V(r) ⊆ V(l) (3) sort(l) =
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sort(r) is said to be a rewrite rule. A rewrite rule 〈l, r〉 is denoted by l → r. A tuple 〈S ,F ,R〉
is a term rewriting system (TRS). If no confusion arises, 〈S ,F ,R〉 is abbreviated asR. If there

exist a position p, a substitution σ, and a rewrite rule l → r ∈ R such that s/p ≡ lσ and

t ≡ s[rσ]p, we write s →R t. We call s →R t a rewrite step, p a redex occurrence, and→R the

rewrite relation of the TRS R. The reflexive transitive closure and equivalence closure of

→R are denoted by
∗→R and

∗↔R, respectively. A TRS R is terminating if→R is noetherian

i.e. there is no infinite sequence t0 →R t1 →R · · ·; is confluent if ∗←R ◦ ∗→R ⊆ ∗→R ◦ ∗←R. A
term is said to be normal if there exists no s such that t →R s. Any normal term s such that

t
∗→R s is called a normal form of t. One can easily show that if a TRS R is terminating and

confluent, any term s has a unique normal form; the normal form of s is denoted by s↓R, or
simply by s↓ if no confusion arises.

The set of defined function symbols is given by DR = {l(ǫ) | l → r ∈ R} and the set of

constructor symbols by CR = F \ DR. The set of defined symbols appearing in a term t is

denoted by DR(t). If R is obvious from its context, we omit the subscript R from DR, CR.
Terms in T(C,V) are said to be constructor terms.

An equation l
.
= r is a pair 〈l, r〉 of terms of the same sort. When we write l

.
= r,

however, we do not distinguish 〈l, r〉 and 〈r, l〉. A term t is said to be ground if V(t) = ∅.

The set of ground terms is denoted by T(F ). If tσ ∈ T(F ), tσ is called a ground instance

of t. The ground instance of an equation is defined analogously. A ground substitution is a

substitution σg such that σg(x) ∈ T(F ) for any x ∈ dom(σg). Without loss of generality, we

assume that tσg is ground (i.e. V(t) ⊆ dom(σg)) when we speak of an instance tσg of t by a

ground substitution σg; and so for ground instances of equations. An inductive theorem of a

TRS R is an equation that is valid on T(F ), i.e. s
.
= t is an inductive theorem if sσg

∗↔R tσg

holds for any ground instance sσg
.
= tσg. We write R ⊢ind s

.
= t if s

.
= t is an inductive

theorem. A TRS R is said to be sufficiently complete if for any ground term tg ∈ T(F ), there

exists a constructor ground term sg ∈ T(C) such that tg
∗↔R sg. One can easily show that

if the TRS is sufficiently complete, terminating, and confluent then the normal form of any

ground term is a constructor term.

Throughout this paper, we only deal with the TRSs that are sufficiently complete, terminating,

and confluent.

3 Characterization of Monomorphic Equations

In this section, we introduce a relaxed definition of monomorphic signature and revised

definitions of argument positions—reflective argument position, downward and upward

argument positions, and contextual positions—and present lemmas that characterize these

positions.

The notion of monomorphic signature is introduced by Urso and Kounalis [20, 21]. We

here generalize the notion to monomorphic sorts, terms, etc.

DEFINITION 1.[monomorphic sort]

1. A sort τ is said to bemonomorphic if (i) there is only one constructor constant of the sort
τ (denoted by ⊥τ), (ii) for each non-constant constructor g ∈ C of sort τ1 × · · · × τn →
τ, there exists a unique 1 ≤ i ≤ n such that τi = τ; such i is called the reflective
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argument position of g and denoted by RA(g).
2. A variable, term, equation, and rule are said to bemonomorphic if its sort is monomor-

phic.

Intuitively, a sort is monomorphic if each normal term of that sort has a list structure.

For example, NatList (with nil : NatList and cons : Nat×NatList → NatList), Nat (with

0 : Nat and s : Nat→ Nat) are monomorphic while Tree, Bool are not.

We here removed one of the conditions contained in the original definition ofmonomor-

phicness. Let ≻S be a relation on S given by τ ≻S ρ iff there exists a ground constructor

term sg[u
ρ
g]

τ with τ 6= ρ. In the original definition, the monomorphic signature is the one

with only monomorphic sorts such that there are no ρ, δ such that ρ ≻S δ ≻S ρ. The acyclic-

ity of ≻S , however, turns out to be unnecessary in the subsequent development for sound

generalization. Moreover, the monomorphic condition can be localized so that the signature

may contain non-monomorphic sorts as well. This relaxation is useful, for example, to deal

with BoolList.

We introduce a notion of reflective positions in a monomorphic term as a successive

sequence of reflective argument positions from its root. Then, based on this, we define a join

operator. This is in contrast to the original definition in [20, 21] where the join operator is

defined as the replacement with⊥. The elimination of the extra restriction of monomorphic

signature is achieved due to our new definition.

DEFINITION 2.[reflective position] The set RPos(t) of reflective positions in t is defined as
follows: (i) ǫ ∈ RPos(t) (ii) if t ≡ g(t1, . . . , tn) with g ∈ C, i = RA(g), and p ∈ RPos(ti) then
i.p ∈ RPos(ti).

For example, we have RPos(s(s(0))) = {ǫ, 1, 1.1}. Since RPos(t) is total w.r.t. the prefix
ordering ≤, there exists a position p that is greatest (w.r.t. ≤) in RPos(t).

DEFINITION 3.[greatest reflective position] Let t be a monomorphic term. The greatest el-
ement w.r.t. the prefix ordering in RPos(t) is called the greatest reflective position (grp) of
t.

DEFINITION 4.[join operator] For each monomorphic sort τ, a join operator ⊗τ on the set
T(C) is defined as follows: for ground constructor terms sg and tg of sort τ, sg⊗τ tg = sg[tg]p
where p is the grp of sg. We omit the superscript τ if no confusion arises.

The following properties of join operator is easily verified.

LEMMA 5.[properties of join operator] Let sg, tg, ug ∈ T(C) be monomorphic terms.
1. If sg ⊗ tg ≡ sg ⊗ ug then tg ≡ ug. If sg ⊗ tg ≡ ug ⊗ tg then sg ≡ ug.
2. (sg ⊗ tg)⊗ ug ≡ sg ⊗ (tg ⊗ ug).
3. p ∈ RPos(ug) implies ug[sg ⊗ tg]p ≡ ug[sg]p ⊗ tg.
4. ⊥⊗ tg ≡ tg and sg ⊗⊥ ≡ sg.

LEMMA 6.[decomposition at a reflective position] Suppose tg, ug ∈ T(F ) are monomorphic
and p ∈ RPos(tg). Then tg[ug]p↓ ≡ tg[⊥]p↓ ⊗ ug↓.
PROOF. By induction on p. (B.S.) Suppose p = ǫ. Then tg[ug]p↓ ≡ ug↓ ≡ ⊥ ⊗ ug↓ ≡
⊥↓ ⊗ ug↓ ≡ tg[⊥]p↓ ⊗ ug↓. (I.S.) Let p = i.q with tg ≡ g(t1, . . . , tn), g ∈ C, i = RA(g), and
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q ∈ RPos(ti). Then

tg[ug]p↓ ≡ g(t1, . . . , ti[ug]q, . . . , tn)↓ by definition

≡ g(t1↓, . . . , ti[ug]q↓, . . . , tn↓) by g ∈ C
≡ g(t1↓, . . . , ti[⊥]q↓ ⊗ ug↓, . . . , tn↓) by the induction hypothesis

≡ g(t1↓, . . . , ti[⊥]q↓, . . . , tn↓)⊗ ug↓ by i = RA(g) and Lemma 5

≡ g(t1, . . . , ti[⊥]q, . . . , tn)↓ ⊗ ug↓ by g ∈ C
≡ tg[⊥]p↓ ⊗ ug↓.

In [20, 21], the notion of downward position is defined recursively; however, themutual

recursion of the definition is not terminating and thus the downward positions may not be

uniquely defined for a TRS. To make this fact explicit, we introduce a notion of downward

argument map and that of compatibility of the map with a TRS.

DEFINITION 7.[downward argument map/downward position]
1. A downward argument map DP is a partial map from D to N such that for any f ∈

dom(DP), if i = DP( f ) then (1) 1 ≤ i ≤ arity( f ), and (2) if f : τ1 × · · · × tn → τ0 then
τi = τ0 and τ0 is monomorphic.

2. Let p be a position in a term t. The setDPos(t) of downward positions in t is defined as
follows: (i) ǫ ∈ DPos(t) (ii) if t ≡ g(t1, . . . , tn) with g ∈ C, i = RA(g), and p ∈ DPos(ti)
then i.p ∈ DPos(ti). (iii) t ≡ f (t1, . . . , tn) with f ∈ D, i = DP( f ), and p ∈ DPos(ti)
then i.p ∈ DPos(ti).

DEFINITION 8.[compatible downward argument map] A downward argument map DP is
compatible with a set R of rewrite rules if for any f ∈ dom(DP) with i = DP( f ) and for
any f (l1, . . . , ln) → r ∈ R, li is a linear variable occurrence of f (l1, . . . , ln) and there exists a
position p ∈ DPos(r) such that li ≡ r/p and r/p is a linear variable occurrence in r.

Contrary to the definition in [21] in which li (≡ r/p) is allowed to be an arbitrary term

when p 6= ǫ, we impose a restriction that li must be a variable; this condition is imposed in

their previous paper [20] that proposes induction on term partition.

Example 2 Let S = {Nat}, F = { plusNat×Nat→Nat, sNat→Nat, 0Nat } and

R =

{

plus(0, y) → y

plus(s(x), y) → s(plus(x, y))

}

.

Then ⊥Nat ≡ 0 and RA(s) = 1. A map DP with DP(plus) = 2 is a downward argument map

compatible withR.

Example 3 Let S = {Nat}, F = { fNat×Nat→Nat, gNat×Nat→Nat, sNat→Nat, 0Nat } and

R =

{

f(0, y) → y g(x, 0) → x

f(s(x), y) → s(g(y, x)) g(x, s(y)) → s(f(y, x))

}

.

Then functions {f 7→ 2, g 7→ 1} and ∅ are both downward argument maps compatible with R. In

terms of [20, 21], it may possibly be (1) 2 is a downward position of f and 1 is a downward position

of g, and (2) both of f and g do not have downward positions. This is why we introduced the notion

of downward argument maps as remarked above.
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LEMMA 9.[preservation of a downward position] Suppose that DP is compatible with R.
Let z be a fresh variable.

1. Let p ∈ DPos(sg) and sg →R tg. Then either (1) sg/p ≡ tg/q and sg[z]p →R tg[z]q or
(2) p = q, sg[z]p ≡ tg[z]q, and sg/p→R tg/q.

2. Let p ∈ DPos(sg) and sg
∗→R tg. Then there exists q ∈ DPos(tg) such that sg[z]p

∗→R
tg[z]q and sg/p

∗→R tg/q.

PROOF. 1. Let the redex occurrence of sg →R tg be p′. If p′ | p then apparently (1)

holds and if p′ ≥ p then apparently (2) holds. It remains to show the case p′ < p. Then

there exists f (l1, . . . , ln) → r ∈ R and a substitution σ such that sg/p
′ ≡ f (l1, . . . , ln)σ. By

p ∈ DPos(sg), p′.i ≤ p with i = DP( f ), li ≡ x ∈ V is a linear in f (l1, . . . , ln), and there

exists a unique u ∈ DPos(r) such that r/u ≡ x. Then we have p = p′.i.q′ for some q′. Let
q = p′.u.q′. Then sg/p ≡ tg/q. Since p ∈ DPos(sg[rσ]p) = DPos(tg), q′ ∈ DPos(xσ), and
u ∈ DPos(r), we have q = p.u.q′ ∈ DPos(tg). Furthermore, since li ≡ x ∈ V and x is a linear

variable in f (l1, . . . , ln) and r, we have sg[z]p →R tg[z]q. 2. It follows from 1.

LEMMA 10.[decomposition at a downward position] Suppose that DP is compatible with
R, tg, ug ∈ T(F ) are monomorphic, and p ∈ DPos(tg). Then tg[ug]p↓ ≡ tg[⊥]p↓ ⊗ ug↓.
PROOF. By Lemma 9, there exist sg, vg, q such that tg[ug]p↓ ≡ sg[vg]q, q ∈ DPos(sg),

tg[z]p
∗→R sg[z]q, and ug

∗→R vg. By sufficient completeness, sg[vg]q ∈ T(C) and thus

vg, sg[⊥]q ∈ T(C) and hence tg[⊥]p↓ ≡ sg[⊥]q, and ug↓ ≡ vg. Furthermore, since q ∈
DPos(sg) and sg[⊥]q ∈ T(C), it follows q ∈ RPos(sg) by the definition of downward posi-

tion. Hence, by Lemma 6, we have sg[vg]q ≡ sg[⊥]q ⊗ vg. Therefore, tg[ug]p↓ ≡ tg[⊥]p↓ ⊗
ug↓.
Example 4 (counterexample) The lemma above does not hold for the definition of downward po-

sition in [21]. Let S = {Nat}, F = {fNat→Nat, sNat→Nat, 0Nat}, and

R =

{

f(0) → s(s(0))
f(s(x)) → s(s(x))

}

.

Then we have f(s(0))↓ ≡ s(s(0)) and f(0)↓ ⊗ s(0)↓ ≡ s(s(0)) ⊗ s(0) ≡ s(s(s(0))). Thus

f(s(0))↓ 6≡ f(0)↓ ⊗ s(0).
We now describe very roughly how the downward positions can be used to identify

the common subterms that can be generalized.

Example 5 Let S ,F ,R be as in Example 2. Consider a conjecture e and its generalization e′ like
this:

e = plus(s[x]p, x)
.
= plus(t[x]q, x), e′ = plus(s[x]p, y)

.
= plus(t[x]q, y).

Obviously, if the equation e′ is an inductive theorem then the equation e is an inductive theorem

(because e is a particular instance of e′). We explain, using the decomposition at a downward

position 2, that the other implication also holds. Suppose the equation e is an inductive theo-

rem. Then, by definition, plus(sσg[ug]p, ug)
∗↔R plus(tσg[ug]q, ug) for any ground term ug and

ground substitution σg. This means plus(sσg[ug]p, ug)↓ ≡ plus(tσg[ug]q, ug)↓. Thus, by Lemma

10, plus(sσg[ug]p, 0))↓ ⊗ ug↓ ≡ plus(tσg[ug]q, 0))↓ ⊗ ug↓, which implies plus(sσg[ug]p, 0))↓ ≡
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plus(tσg[ug]q, 0))↓. Then, for any wg, plus(sσg[ug]p, 0))↓⊗wg↓ ≡ plus(tσg[ug]q, 0))↓⊗wg↓. By
Lemma 10, this implies e′ is also an inductive theorem.

Throughout the paper, if no confusion arises, we assume that the downward argument map DP

is compatible with the TRSR.

Next, we focus on the dual notion of downward position called upward position. The

notion of upward argument position UP is the same as the one given in [20, 21]. We, how-

ever, additionally introduce a notion of upward position in a term which will be used to

extend the definition of contextual positions.

DEFINITION 11.[upward argument position/upward position] Let f ∈ D with f : τ1 ×
· · · × τn → τ and 1 ≤ i ≤ n such that τi = τ and τ is monomorphic.

1. The index i is called a upward argument position of f (UP( f )) if for any f (l1, . . . , ln)→
r ∈ R, either li ≡ ⊥τ or li ≡ u[x]p ∈ T(C,V) and r ≡ u[l[x]i]p, where l ≡ f (l1, . . . , ln),
p ∈ RPos(u), and x is a linear variable in l. Note that p 6= ǫ; for, otherwise l ≡ r and
contradicts termination ofR.

2. The set UPos(t) of upward positions in t is defined as follows: UPos(t) = {i} ∪ {i.p |
p ∈ UPos(ti)} if t ≡ f (t1, . . . , tn) with f ∈ D and i = UP( f ); UPos(t) = ∅ otherwise.

The dual property of Lemma 10 holds for upward positions.

LEMMA 12.[decomposition at a upward position] Let tg, ug ∈ T(F ) be monomorphic terms.

1. Let tg ≡ f (t1, . . . , tn) with tj ∈ T(C) for all 1 ≤ j ≤ n. If i = UP( f ) and p be the grp of

ti then tg
∗→R ti[tg[⊥]i]p.

2. If i = UP(tg(ǫ)) then tg[ug]i↓ ≡ ug↓ ⊗ tg[⊥]i↓.
3. If p ∈ UPos(tg) then tg[ug]p↓ ≡ ug↓ ⊗ tg[⊥]p↓.

PROOF.

1. By induction on |ti|.
2. Use confluence, sufficient completeness ofR and 1.

3. By induction on p. Use 2.

Next, we focus on the notion of contextual argument positions. The definition is ex-

tended from the original one given in [20, 21].

DEFINITION 13.[contextual argument position] Let f ∈ D with f : τ0 × · · · × τn → τ with
monomorphic τ and 1 ≤ i ≤ arity( f ) such that τi is monomorphic.

1. The index i is called a down-contextual argument position of f (DCP( f )) if for any
f (l1, . . . , ln) → r ∈ R, either li ≡ ⊥ and r ≡ ⊥ hold or li ≡ u[x]p ∈ T(C,V) and
r/q ≡ l[x]i, where l ≡ f (l1, . . . , ln), p ∈ RPos(u), q ∈ UPos(r), and x is a linear
variable in l and r. Note that p 6= ǫ; for, otherwise r/q ≡ l and contradicts termination
ofR.

2. The index i is called an up-contextual argument position of f (UCP( f )) if for any
f (l1, . . . , ln) → r ∈ R, either li ≡ ⊥ and r ≡ ⊥ hold or li ≡ u[x]p ∈ T(C,V) and
r/q ≡ l[x]i, where l ≡ f (l1, . . . , ln), p ∈ RPos(u), q ∈ DPos(r), and x is a linear vari-
able in l and r. Note that p 6= ǫ; for, otherwise r/q ≡ l and contradicts termination of
R.
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The original definition of contextual positions use the conditions q = UP(r(ǫ)) and

q = DP(r(ǫ)) instead of q ∈ UPos(r) and q ∈ DPos(r), respectively. Furthermore, when

li ≡ ⊥ and r ≡ ⊥, sort(li) = sort(r) (and hence li ≡ r) is required in the original definition.

Since UP(r(ǫ)) ∈ UPos(r) and DP(r(ǫ)) ∈ DPos(r), our definition enlarges the scope of the

contextual positions.

Example 6 Let S = {Nat, List}, F = {dblNat→Nat, lenList→Nat, sumList→Nat, plusNat×Nat→Nat,

consNat×List→List, nilList, sNat→Nat, 0Nat}, and

R =















len(nil) → 0 dbl(0) → 0

len(cons(x, xs)) → s(len(xs)) dbl(s(x)) → s(s(dbl(x)))
plus(x, 0) → x sum(nil) → 0

plus(x, s(y)) → s(plus(x, y)) sum(cons(x, xs)) → plus(x, sum(xs))















Then we have 1 = UCP(len), 1 = UCP(dbl), and 1 = DCP(sum). In the original definition in

[20, 21], however, none of these are defined.

LEMMA 14.[decomposition at contextual positions] Let tg ∈ T(F ), ug, vg ∈ T(C) bemonomor-
phic terms and f = tg(ǫ).

1. If i = DCP( f ) then tg[⊥]i↓ ≡ ⊥.
2. If i = DCP( f ) then tg[ug ⊗ vg]i↓ ≡ tg[vg]i↓ ⊗ tg[ug]i↓.
3. If i = UCP( f ) then tg[⊥]i↓ ≡ ⊥.
4. If i = UCP( f ) then tg[ug ⊗ vg]i↓ ≡ tg[ug]i↓ ⊗ tg[vg]i↓.

PROOF.

1. Straightforward.

2. By induction on |ug|. Use Lemma 6 and Lemma 12.

3. Same as 1 except using i = UCP( f ) instead of i = DCP( f ).
4. Same as 2 except using Lemma 10 instead of Lemma 12.

4 Term Partition and Sound Generalization

Based on the characterization of five types of argument positions, Urso and Kounalis ([20,

21]) developed techniques useful in inductive theorem proving—namely, term partition and

sound generalization. These techniques rely on the following observation.

DEFINITION 15.[term partition[20, 21]] Let R be a sufficiently complete, confluent, termi-
nating TRS. 〈s0, s1〉 is said to be a term partition of s if (1) s0 and s1 have the same monomor-
phic sort τ and (2) for any ground substitution θg, s0θg↓ ⊗ s1θg↓ ≡ sθg↓.

PROPOSITION 16.[term partition theorem (Theorem 1 of [20])] Let R be a sufficiently com-
plete, confluent, terminating TRS. Suppose 〈s0, s1〉 is a term partition of s and 〈t0, t1〉 is a
term partition of t. Then for each i ∈ {0, 1}, if R ⊢ind si

.
= ti then we have R ⊢ind s

.
= t iff

R ⊢ind s1−i .
= t1−i.

In [20, 21], Urso and Kounalis introduced a notion of prominent paths (called top path

and bottom path) based on the five types of argument positions of functions and a method to

compute some term partitions based on these paths.
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DEFINITION 17.[top/bottom paths[20, 21]] Let t be a monomorphic term. The set TPath(t)
of top paths in a term t and the set BPath(t) of bottom paths in a term t are defined as
follows:

TPath(t) =























{ǫ} ∪ {i.p | p ∈ TPath(ti)} if t ≡ f (t1, . . . , tn), i = RA( f )
{ǫ} ∪ {i.p | p ∈ TPath(ti)} if t ≡ f (t1, . . . , tn), i = UP( f )
{ǫ} ∪ {i.p | p ∈ BPath(ti)} if t ≡ f (t1, . . . , tn), i = DCP( f )
{ǫ} ∪ {i.p | p ∈ TPath(ti)} if t ≡ f (t1, . . . , tn), i = UCP( f )
{ǫ} otherwise

BPath(t) =























{ǫ} ∪ {i.p | p ∈ BPath(ti)} if t ≡ f (t1, . . . , tn), i = RA( f )
{ǫ} ∪ {i.p | p ∈ BPath(ti)} if t ≡ f (t1, . . . , tn), i = DP( f )
{ǫ} ∪ {i.p | p ∈ TPath(ti)} if t ≡ f (t1, . . . , tn), i = DCP( f )
{ǫ} ∪ {i.p | p ∈ BPath(ti)} if t ≡ f (t1, . . . , tn), i = UCP( f )
{ǫ} otherwise

Clearly, TPath(t) and BPath(t) are totally orderedw.r.t.≤ and the greatest element in TPath(t)
and BPath(t) are called the maximum top path and the maximum bottom path and denoted
by TP(t) and BP(t), respectively.

DEFINITION 18.[head/tail parts[20, 21]] Let t be amonomorphic term. For each p ∈ TPath(t),
its head context Ctopt,p as well as for each q ∈ BPath(t), its tail context Cbott,q are defined as
follows:

Ctopt,p =



























� if p = ǫ

t[Ctopti ,p′ ]i if p = i.p′, t ≡ f (t1, . . . , tn), and i = RA( f )

Ctopti ,p′ if p = i.p′, t ≡ f (t1, . . . , tn), and i = UP( f )

t[Cbotti ,q′ ]i if p = i.q′, t ≡ f (t1, . . . , tn), and i = DCP( f )
t[Ctopti ,p′ ]i if p = i.p′, t ≡ f (t1, . . . , tn), and i = UCP( f )

Cbott,q =



























� if q = ǫ

Cbotti ,q′ if q = i.q′, t ≡ f (t1, . . . , tn) and i = RA( f )
Cbotti ,q′ if q = i.q′, t ≡ f (t1, . . . , tn) and i = DP( f )
t[Ctopti ,p′ ]i if q = i.p′, t ≡ f (t1, . . . , tn) and i = DCP( f )

t[Cbotti ,q′ ]i if q = i.q′, t ≡ f (t1, . . . , tn) and i = UCP( f )

The head part is given by top(t, p) ≡ Ctopt,p[t/p] and the tail part is by bot(t, q) ≡ Cbott,q[t/q].

The development of the term patition based on prominent paths is solely based on

the characterization lemmas for five types of argument positions. Thus this term partition

can be corrected and extended based on our revised definition of monomorphic signature

and argument positions given in the previous section. We refer to [20, 21] the definition of

ntp(t, p) and nbt(t, q) in the following proposition.

PROPOSITION 19.[term partition via prominent path (Theorem 36 of [21])] Let R be a suf-
ficiently complete, terminating, and confluent TRS. Let t be a monomorphic term. (1) For
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each top path p in t, 〈top(t, p), ntp(t, p)〉 is a term partition of t. (2) For each bottom path q

in t, 〈nbt(t, q), bot(t, q)〉 is a term partition of t.

The sound generalization is obtained from Proposition 19.

PROPOSITION 20.[sound generalization theorem (Theorem 37 of [21])] Let R be a suffi-
ciently complete, terminating, and confluent TRS. Let s

.
= t be a monomorphic equation

and x be a fresh variable.

1. Let p be a top path in s and q a top path in t. Suppose that s/p ≡ t/q and top(s, p) ≡
top(t, q). ThenR ⊢ind s .

= t iffR ⊢ind s[x]p .
= t[x]q.

2. Let p be a bottom path in s and q a bottom path in t. Suppose that s/p ≡ t/q and
bot(s, p) ≡ bot(t, q). ThenR ⊢ind s .

= t iffR ⊢ind s[x]p .
= t[x]q.

5 Conclusion

We presented an example showing that the sound generalization proposed in [21] does not

work without a condition imposed in their previous paper [20] that proposes induction

based on term partition. We restored a condition in the definition of one of the argument

positions and gave the corrected proof of the characterization of the position. Based on this,

the correctness of sound generalization [21] was recovered. We note that all examples of

sound genereralization presented in [21] still works under the restored condition. We also

extended the technique by eliminating one of the restriction of monomorphic signature, lo-

calizing a part of the conditions for target term rewriting systems, and extending the notion

of contextual positions. The corrected part of sound generalization is implemented in our

experimental induction prover based on rewriting induction [1].

Despite the relaxation, some strong restrictions of monomorphicness are still imposed

on the sound generalization. Finding other types of sound generalization applicable for

non-monomorphic equations remains as a future work. Another future work is obtaining

a lemma discovery method other than term partition and sound generalization via deeper

analysis of monomorphicness.
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ABSTRACT. We study the algorithmic complexity of lattice problems based on the sieving technique
due to Ajtai, Kumar, and Sivakumar [AKS01]. Given a k-dimensional subspace M ⊆ R

n and a full
rank integer lattice L ⊆ Q

n, the subspace avoiding problem SAP, defined by Blömer and Naewe [BN07],

is to find a shortest vector in L \ M. We first give a 2O(n+k log k) time algorithm to solve the subspace
avoiding problem. Applying this algorithm we obtain the following results.

1. We give a 2O(n) time algorithm to compute ith successive minima of a full rank lattice L ⊂ Q
n

if i is O( n
log n ).

2. We give a 2O(n) time algorithm to solve a restricted closest vector problem CVPwhere the inputs
fulfil a promise about the distance of the input vector from the lattice.

3. We also show that unrestricted CVP has a 2O(n) exact algorithm if there is a 2O(n) time exact
algorithm for solving CVP with additional input vi ∈ L, 1 ≤ i ≤ n, where ‖vi‖p is the ith

successive minima of L for each i.
We also give a new approximation algorithm for SAP and the Convex Body Avoiding problem which
is a generalization of SAP. Several of our algorithms work for gauge functions as metric, where the
gauge function has a natural restriction and is accessed by an oracle.

1 Introduction

Fundamental algorithmic problems concerning integer lattices are the shortest vector prob-

lem (SVP) and the closest vector problem(CVP). Given a lattice L ⊂ R
n by a basis, the

shortest vector problem (SVP) is to find a shortest nonzero vector in L w.r.t. some metric

given by a gauge function in general (usually the ℓp norm for some p). Likewise, the closest

vector problem (CVP) takes as input a lattice L ⊂ R
n and vector v ∈ R

n and asks for a

u ∈ L closest to v w.r.t. a given metric. These problems have polynomial-time approxima-

tion algorithms based on the celebrated LLL algorithm for basis reduction [LLL82].

The fastest known exact deterministic algorithms for SVP and CVP have running time

2O(n log n) [Kan87] (also see [Bl00]). More recently, Ajtai, Kumar and Sivakumar in a semi-

nal paper [AKS01] gave a 2O(n) time randomized exact algorithm for SVP. Subsequently, in

[AKS02] they gave a 2O(n) time randomized approximation algorithm for CVP. Their al-

gorithms are based on a generic sieving procedure (introduced by them) that exploits the

underlying geometry. Recently, Blömer and Naewe [BN07] gave a different 2O(n) time ran-

domized approximation algorithm for CVP, also based on the AKS sieving technique.

For 1 ≤ i ≤ n, the ith successive minima λi(L) is defined as the smallest r such that a

ball of radius r around origin contains at least i linearly independent lattice vectors. The

successive minimas λi(L) are important lattice parameters. A classical problem is the suc-

cessive minima problem SMP of finding for a given lattice L, n linearly independent vectors
c© V. Arvind and Pushkar S. Joglekar; licensed under Creative Commons License-NC-ND
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v1, v2, . . . , vn ∈ L such that ‖vi‖ is at most λi(L). This problem clearly subsumes the short-

est independent vectors problem SIVP where one wants to find linearly independent vectors

v1, v2, . . . , vn ∈ L such that ‖vi‖ ≤ λn(L). Given a k-dimensional subspace M ⊆ R
n and a

full rank integer lattice L ⊆ Q
n, the subspace avoiding problem SAP, is to find a shortest vector

in L \ M. The paper [BN07] gives 2O(n) time approximation algorithm for these problems.

No exact 2O(n) time randomized algorithm is known for CVP or SMP. Recently, Miccian-

cio has shown [Mi08] that CVP is polynomial-time equivalent to several lattice problems,

including SIVP and SMP, under deterministic polynomial time rank-preserving reductions.

This perhaps explains the apparent difficulty of finding a 2O(n) time exact algorithm for CVP

or SMP, because SVP reduces to all of these problems but no reduction is known in the other

direction. In particular, the reductions in [Mi08] yield 2O(n log n) time exact algorithms for

SAP, SMP and SIVP, whereas [BN07] gives 2O(n) time randomized approximation algorithm

for these problems.

Our results

In this paper we consider some natural restrictions of these problems that can be exactly

solved in 2O(n) time. We obtain these results giving a 2O(n+k log k) algorithm to solve SAP

where n is the rank of the lattice and k is the dimension of the subspace.

As our first result we show that given a full rank lattice L ⊂ Q
n there is 2O(n) time

randomized algorithm to compute linearly independent vectors v1, v2, . . . , vi ∈ L such that

‖vi‖ = λi(L) if i is O( n
log n ). Given a full rank lattice L ⊂ Q

n and v ∈ Q
n we also give

a 2O(n) time algorithm to solve CVP(L, v) if the input (v,L) fulfils the promise d(v,L) ≤√
3
2 λO( n

log n )(L).

We show that CVP can be solved in 2O(n) time if there is a 2O(n) time algorithm to com-

pute a closest vector to v in Lwhere v ∈ Q
n, L ⊂ Q

n is a full rank lattice and v1, v2, . . . , vn ∈
L such that ‖vi‖p is equal to ith successive minima of L for i = 1 to n are given as an ad-

ditional input to the algorithm. As a consequence, we can assume that successive minimas

are given for free as an input to the algorithm for CVP. We believe that using basis reduc-

tion techniques from [Kan87] one might be able to exploit the information about successive

minimas of the lattice to get a better algorithm for CVP.

We give a new 2O(n+k log 1/ǫ) time randomized algorithm to solve 1 + ǫ approximation

of SAP, where n is rank of the lattice and k is the dimension of subspace. We get better

approximation guarantee than the one in [BN07] parametrised on k. We also consider a

generalization of SAP (the convex body avoiding problem) and give a singly exponential ap-

proximation algorithm for the problem.

2 Preliminaries

A lattice L is a discrete additive subgroup of Rn, n is called dimension of the lattice. For

algorithmic purposes we can assume that L ⊆ Q
n, and even in some cases L ⊆ Z

n. A

lattice is usually specified by a basis B = {b1, · · · , bm}, where bi ∈ Q
n and bi’s are linearly

independent. m is called the rank of the lattice. If the rank is n the lattice is said to be a full

rank lattice. Although most results in the paper hold for general lattices, for convenience we
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mainly consider only full-rank lattices. For x ∈ Q
n let size(x) denote the number of bits for

the standard binary representation as an n-tuple of rationals. Let size(L) denote ∑i size(bi).
Next we recall the definition of gauge functions.

DEFINITION 1.[Si45] A function f : R
n → R is called a gauge function if it satisfies follow-

ing properties:
1. f (x) > 0 for all x ∈ R

n \ {0} and f (x) = 0 if x = 0.
2. f (λx) = λ f (x) for all x ∈ R

n and λ ∈ R.
3. f (x + y) ≤ f (x) + f (y) for all x, y ∈ R

n.

For v ∈ R
n we denote f (v) by ‖v‖ f and call it norm of v with respect to the gauge

function f . It is easy to see that any lp norm satisfies all the above properties. Thus gauge

functions generalize the usual lp norms. A gauge function f defines a natural metric d f

on R
n by setting d f (x, y) = f (x − y) for x, y ∈ R

n. For x ∈ R
n and r > 0, let B f (x, r)

denote the f -ball of radius r with center x with respect to the gauge function f , defined

as B f (x, r) = {y ∈ R
n| f (x − y) ≤ r}. We denote the metric balls with respect to usual

lp norm by Bp(x, r). Unless specified otherwise we always consider balls in R
n. The next

well-known proposition characterizes the class of all gauge functions.

PROPOSITION 2.[Si45] Let f : R
n → R be any gauge function then a unit radius ball around

origin with respect to f is a n dimensional bounded O-symmetric convex body. Conversely,
for any n dimensional bounded O-symmetric convex body C, there is a gauge function
f : R

n → R such that B f (0, 1) = C.

Given an f -ball of radius r around origin with respect to a gauge function f , from the

Proposition 2 it follows that B f (0, r) is an O-symmetric convex body. It is easy to check that

for any r > 0 and any constant c we have vol(B f (0, cr)) = cnvol(B f (0, r)), where vol(C)
denotes the volume of the corresponding convex body C (see e.g. [Si45]).

We now place a natural restriction on gauge functions. A gauge function f , given by

oracle access, is a nice gauge function if it satisfies the following property: For some poly-

nomial p(n), B2(0, 2−p(n)) ⊆ B f (0, 1) ⊆ B2(0, 2p(n)), i.e. there exists a Euclidean sphere

of radius 2−p(n) inside the convex body B f (0, 1), and B f (0, 1) is contained inside a Eu-

clidean sphere of radius 2p(n). Note that if f is a nice gauge function and v ∈ Q
n we have

size( f (v))=poly(n,size(v)). For a nice gauge function f we can sample points from convex

body B f (0, r) almost uniformly at random in poly(size(r),n) time using the Dyer-Frieze-

Kannan algorithm [DFK91]. It is easy to check that all lp norms p ≥ 1 define nice gauge

functions. The ith successive minima of a lattice L with respect to ℓp norm is smallest r > 0

such that Bp(0, r) contains at least i linearly independent lattice vectors. It is denoted by

λ
p
i (L).

Remarks: In this paper we consider lattice problems with respect to nice gauge functions.

Let L be a lattice with basis {b1, b2, . . . , bn} and f be a nice gauge function. Suppose B is a

full rank n× n matrix with columns b1, b2, . . . , bn. Note that the linear transformation B−1

maps lattice L isomorphically to the standard lattice Z
n. Furthermore, it is easy to see that

the set C = B−1(B f (0, 1)) is an O-symmetric convex body. Hence, by Proposition 2 it follows

that C = Bg(0, 1) for some gauge function g. As f is a nice gauge function, it easily follows

that g is also a nice gauge function.
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Thus, our algorithms that work for nice gauge functions can be stated for the the stan-

dard lattice Z
n and a nice gauge function g. However, some of our results hold only for ℓp

norms. Thus, to keep uniformity we allow our algorithms to take arbitrary lattices as input

even when the metric is give by a nice gauge function.

3 A Sieving Algorithm for SAP

In this section we present a different analysis of the AKS sieving [AKS01, Re04] applied

to the Subspace Avoiding Problem (SAP). Our analysis is quite different from that due to

Blömer and Naewe [BN07] and gives us improved running time for computing a 1 + ǫ

approximate solution.

Recall that an input instance of the subspace avoiding problem (SAP) consists of (L,M)
where L ⊂ Q

n is a full rank lattice and M ⊂ R
n is a subspace of dimension k. The SAP

problem is to find a vector v ∈ L \ M with least norm with respect to a nice gauge function

f .

We give an intuitive outline of our approximation algorithm: Our analysis of AKS siev-

ing will use the fact that the sublattice L ∩ M of L is of rank k. We will use the AKS sieving

procedure to argue that we can sample 2O(n+k log(1/ǫ)) points from some coset of L ∩ M in

2O(n+k log(1/ǫ)) time. We can then apply a packing argument in the coset (which is only k-

dimensional) to obtain points in the coset that are close to each other. Then, with a standard

argument following the original AKS result [AKS01] we can conclude that their differences

will contain a good approximation.

Suppose, without loss of generality, that the input lattice L ⊆ R
n is n-dimensional

given by a basis {b1, · · · , bn}, so that L = ∑
n
i=1 Z · bi. Let us fix a nice gauge function f and

let v ∈ L denote a shortest vector in L \ M with respect to gauge function f , i.e. f (x) for

x ∈ L \M attains minimum value at x = v. Let s = size(L,M) denote the input size (which

is the number of bits for representing the vectors bi and the basis for M). As v is a shortest

vector inL\M and f is a nice gauge function it is quite easy to see that size( f (v)) is bounded
by a polynomial in s. Thus, we can scale the lattice L to ensure that 2 ≤ f (v) ≤ 3. More

precisely, we can compute polynomially many scaled lattices from L, so that 2 ≤ f (v) ≤ 3

holds for at least one scaled lattice. Thus, we can assume that 2 ≤ f (v) ≤ 3 holds for the

lattice L.
We first describe the AKS sieving procedure [AKS01] for any gauge function, analyze

its running time and explain its key properties. The following lemma is crucially used in

the algorithm.

LEMMA 3.[Sieving Procedure] Let f : R
n → R be any gauge function. Then there is a

sieving procedure that takes as input a finite set of points {v1,v2,v3, . . . , vN} ⊆ B f (0, r),

and in NO(1) time it outputs a subset of indices S ⊂ [N] such that |S| ≤ 5n and for each
i ∈ [N] there is a j ∈ S with f (vi − vj) ≤ r/2.

Proof. The sieving procedure is exactly as described in Regev’s lecture notes [Re04]. The

sieving procedure is based on a simple greedy strategy. We start with S = ∅ and run the

following step for all elements vi, 1 ≤ i ≤ N. At the ith step we consider vi. If f (vi − vj) >

r/2 for all j ∈ S include i in the set S and increment i. After completion, for all i ∈ [N]
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there is a j ∈ S such that f (vi − vj) ≤ r/2. The bound on |S| follows from a packing

argument combined with the fact that vol(B f (0, cr)) = cnvol(B f (0, r)) for any r > 0 and

a constant c > 0. More precisely, for any two points vi, vj ∈ S we have f (vi − vj) > r/2.

Thus, all the convex bodies B f (vi, r/4) for vi ∈ S are mutually disjoint and are contained

in B f (0, r + r/4). Also note that vol(B f (0, dr)) = dnvol(B f (0, r)) for any constant d > 0. It

follows that 5nvol(B f (vi, r/4)) ≥ vol(B f (0, r + r/4)). Hence, |S| ≤ 5n. The second property

of S is guaranteed by the sieving procedure.

Next, our algorithm follows the usual AKS random sampling procedure. Let R =
n ·maxi‖bi‖ f . It is clear that size(R) is polynomial in s since f is a nice gauge function. Let

B f (0, 2) denote the f -ball of radius 2 around the origin. Since we have an oracle for mem-

bership in B f (0, 2) and f is a nice gauge function we can almost uniformly sample from

B f (0, 2) using the Dyer-Frieze-Kannan algorithm [DFK91]. Let x1, x2, · · · , xN denote such

a random sample, for N = 2c·(n+k log(1/ǫ)) · logR where the constant c > 0 will be suitably

chosen. Now, using the lattice L we can round off the points xi. More precisely, we express

xi = Σjαijbj for rationals αij. Then, from each vector xi we compute the vector yi = Σjβijbj,

where 0 ≤ βij < 1, by adding appropriate integral multiples of the bj’s to the expression

for xi. Thus, the points y1, · · · , yN are in the interior of the fundamental parallelepiped of L,
and each xi − yi ∈ L. We denote this by yi = xi(mod L). We now have the set of N pairs

P = {(xi, yi) | i ∈ [N]}, where xi − yi are lattice points. Since yi lie inside the fundamental

parallelepiped we have ‖yi‖ f ≤ n ·maxi‖bi‖ f = R for i = 1 to N.

Now, we apply the AKS sieving procedure in Lemma 3 to the set {y1, y2, · · · , yN}. The
result is a subset S ⊂ [N] of at most 5n indices such that for each i ∈ [N] there is some

j ∈ S such that f (yi − yj) ≤ R/2. We remove from P all (xj, yj) for j ∈ S and replace each

remaining (xi, yi) ∈ P by a corresponding (xi, yi − (yj − xj)), where j ∈ S is the first index

such that f (yi − yj) ≤ R/2. After the sieving round, the set P has the property that for each

(xi, zi) ∈ P we have xi − zi ∈ L and f (xi − zi) ≤ 4 + R/2, and P has shrunk in size by at

most 5n. We continue with O(log R) sieving rounds so that we are left with a set P with

N −O(log R)5n pairs (xi, zi) such that xi − zi ∈ L and f (xi − zi) ≤ 8. We can ensure that

|P| ≥ 2c
′(n+k log(1/ǫ)) for an arbitrary constant c′ by appropriately choosing constant c. The

vectors, xi − zi for (xi, zi) ∈ P follows some distribution among lattice points inside B f (0, 8).
Next, we need following simple proposition.

PROPOSITION 4. Let L ⊂ R
n be a rank n lattice, v ∈ L such that 2 ≤ f (v) ≤ 3 for a

nice gauge function f . Consider the convex regions C = B f (−v, 2) ∩ B f (0, 2) and C′ =

B f (v, 2) ∩ B f (0, 2). Then C′ = C + v and vol(C) = vol(C′) = Ω(
vol(B f (0,2))

2O(n) ).

Proposition 4 is easy to prove since B f (−v/2, 1/2) ⊆ C, B f (v/2, 1/2) ⊆ C′. Note that

we have picked x1, . . . , xN uniformly at random from B f (0, 2),where N = 2c·(n+k log(1/ǫ)) ·
logR. By Proposition 4, the point xi is in C with probability at least 2−O(n). Hence by

choosing the constant c large enough we can ensure that with high probability there is a

subset Z ⊆ P such that |Z| ≥ 2c1(n+k log(1/ǫ)) for a constant c1 and for all (xi, zi) ∈ Z, xi ∈ C.

We now prove the main theorem of this section.
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THEOREM 5. Let L ⊂ Q
n be a full rank lattice and let v ∈ L \M such that 2 ≤ f (v) ≤ 3 for a

given gauge function f and f (v) ≤ f (x) for all x ∈ L\M. Let ǫ > 0 be an arbitrary constant.
Then there is a randomized algorithm that in time 2O(n+klog(1/ǫ)).poly(size(L)) computes a
set P of pairs (xi, zi) such that |P| ≥ 2c

′·(n+k log(1/ǫ)) for a constant c′ and f (xi − zi) ≤ 8 for
all (xi, zi) ∈ P. Moreover, zi − xi ∈ L are such that with probability 1− 2−O(n) there is a pair
of points (xi, zi), (xj, zj) ∈ P such that v + u = (xi − zi) − (xj − zj) for a vector u ∈ L ∩ M

with f (u) ≤ ǫ.

Proof.

Consider the set P of pairs (xi, zi), obtained after the AKS sieving as described above,

such that |P| ≥ 2c
′(n+k log(1/ǫ)), and f (xi − zi) ≤ 8 for all (xi, zi) ∈ P. We know that by

choosing c large enough we can ensure that with high probability there is Z ⊆ P such that

|Z| ≥ 2c1(n+k log(1/ǫ)) for any constant c1 and for all (xi, zi) ∈ Z, xi ∈ C.

Note that L ∩ M is a rank k sublattice of L. We will now analyze Z using the cosets of

the sublattice L ∩ M.

Write Z as a partition Z =
⋃m

j=1 Zj, where for each Zj there is a distinct coset (L∩M) +
vj of L ∩ M in L such that zi − xi ∈ (L ∩ M) + vj for all (xi, zi) ∈ Zj. Let Z′

j = {zi − xi |
(xi, zi) ∈ Zj}. Suppose uj ∈ Z′

j ⊆ (L ∩ M) + vj for j = 1 to m.

CLAIM 6.[Coset sampling] By choosing constant c1 large enough we can ensure that there
is an index t, 1 ≤ t ≤ m such that |Zt| ≥ 2c2(n+k log(1/ǫ)) for any constant c2.

Proof of Claim Note that ui and uj for i 6= j lie in different cosets of L ∩ M. So ui − uj /∈ M.

Since v is a shortest f-vector in L \Mwith 2 ≤ f (v) ≤ 3, we have f (ui − uj) ≥ 2. Hence unit

radius f -balls around ui’s are disjoint. Note that B f (ui, 1) ⊂ B f (0, 9) for i = 1 to m. Since

vol(B f (0, 9))/vol(B f (0, 1)) ≤ 2dn for some constant d, we have m ≤ 2dn. We have |Z| ≥
2c1(n+k log(1/ǫ)) and Z is partitioned as Z =

⋃m
j=1 Zj. So it is clear that by choosing c1 large

enough we can ensure that there is an index t, 1 ≤ t ≤ m such that |Zt| ≥ 2c2(n+k log(1/ǫ)) for

any constant c2.

By renumbering the indices assume that Zt = {(x1, z1), . . . , (xq, zq)}, q ≥ 2c2(n+k log(1/ǫ)).

Let βi = zi − xi for (xi, zi) ∈ Zt. Thus, each such βi lies in the same coset (L ∩ M) + vℓ.

CLAIM 7.[Packing argument] By choosing the constant c2 large enough we can ensure that
there exists (xi, zi), (xj, zj) ∈ Zt, i 6= j such that f (βi − β j) ≤ ǫ.

Proof of Claim Suppose for all (xi, zi), (xj, zj) ∈ Zt, i 6= j f (βi − β j) ≥ ǫ. We also have

f (βi − β j) ≤ 16 for i, j ∈ [q]. Let γi = βi − vℓ ∈ L ∩ M ⊂ M for i = 1 to q. It is clear

that f (γi − γj) = f (βi − β j) for i, j ∈ [q]. Let {b1, . . . , bk} be an orthonormal basis of M.

Consider the linear transformation T : M → R
k such that T(bi) = ei for i = 1 to k, where

{e1, e2, . . . , ek} is a standard basis of R
k. Let δi = T(γi) for i = 1 to q. By standard linear

algebra it follows that T preserves distances between points with respect to any norm. In

particular, we have f (γi − γj) = f (δi − δj) for i, j ∈ [q]. So we have ǫ/2 ≤ f (δi − δj) ≤
16. As δi ∈ R

k for i ∈ [q], it follows that k-dimensional balls of radius ǫ/2 around δi’s are

mutually disjoint. By a packing argument it follows that |Zt| ≤ (16+ǫ/2)k

(ǫ/2)k
= 2 f (k log(1/ǫ))

for a constant f . This is a contradiction since choosing c2 large enough we can ensure that

|Zt| ≥ 2c2(n+k log(1/ǫ)) > 2 f (k log(1/ǫ)).
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We now complete the proof with a standard argument from [AKS01, Re04] using a

modified distribution.

We have (xi, zi), (xj, zj) ∈ Zt ⊂ Z, i 6= j, xi, xj ∈ C such that f (βi − β j) ≤ ǫ and βi −
β j ∈ L ∩ M. Now, we apply the argument as explained in Regev’s notes [Re04] to reason

with a modified distribution of the xi. Note that in the sieving procedure described before

Theorem 5, each xi is picked independently and uniformly at random from B f (0, 2). Now,

notice that we can replace the original distribution of xi with a modified distribution in

which we output xi if it lies in B f (0, 2) \ (C ∪ C′) and if xi ∈ C it outputs either xi or xi +
v with probability 1/2 each. Similarly, if xi ∈ C′ = C + v it outputs either xi or xi − v

with probability 1/2 each. By Proposition 4 it follows that this modified distribution is also

uniform on B f (0, 2) (indeed, this distribution is required only for the purpose of analysis).

Furthermore, we can replace each xi by the modified distribution just before it is used in

the algorithm for the first time. The reason we can do this is because the distribution of yi’s

remains same even if we replace xi by the modified distribution because yi = xi(modL)
and v ∈ L. This is explained further in Regev’s notes [Re04]. Now recall that we have

(xi, zi), (xj, zj) ∈ Z with xi, xj ∈ C and f (βi − β j) ≤ ǫ. Putting it together with the above

argument, it follows that with good probability the points (xi, zi) and (xj + v, zj) are in the

set P, where P is the set of pairs left after the sieving. This is easily seen to imply that with

high probability we are likely to see the vector v + (βi − β j) as the difference of zi − xi and

zj− xj for some two pairs (xi, zi), (xj, zj) ∈ P. The theorem now follows since f (βi − β j) ≤ ǫ.

By choosing M as the 0-dimensional subspace we get a 2O(n) algorithm for SVP with

respect to any nice gauge function. As an immediate consequence of Theorem 5we get a 1+

ǫ approximation algorithm for SAP problem that runs in time 2O(n+k log 1
ǫ ) · poly(size(L,M)).

Remarks: The 1+ ǫ approximation algorithm in [BN07] for SAP has running time 2O(n log 1
ǫ ) ·

poly(size(L,M))). Our algorithm has running time 2O(n+k log 1
ǫ ) for computing 1+ ǫ approx-

imate solution. Put another way, for k = o(n) we get a 2O(n) time algorithm for obtaining

1+ 2−n/k approximate solutions to SAP.

There is a crucial difference in our analysis of the AKS sieving and that given in [BN07].

In [BN07] it is shown that with probability 1− 2−O(n) the sieving procedure outputs a 1+ ǫ

approximate solution u ∈ L \ M.

On the other hand, we show in Claim 6 that with probability 1 − 2−O(n) the sieving

procedure samples 2O(n+k log(1/ǫ) lattice points in some coset of the sublattice L ∩ M in L.
Then we argue that with probability 1− 2−O(n) the sample contains a lattice point u in L ∩
M + v such that such that d(u, v) is small, for some shortest vector v in L \ M. We argue

this in Claim 7 by a packing argument in the coset of L ∩ M. As L ∩ M has rank k, the

packing argument in k dimensions gives the improved running time for our approximation

algorithm for the problem.

The fact that the AKS sampling contains many points from the same coset of L ∩ M

also plays crucial role in our exact algorithm for SAP shown in Theorem 12.
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COROLLARY 8. Given a rank n lattice L and a k-dimensional subspace M ⊂ R
n, there

is 1 + ǫ randomized approximation algorithm for SAP (for any nice gauge function) with

running time 2O(n+k log 1
ǫ ) · poly(size(L,M)).

Proof. The algorithm will examine all (zi − xi) − (zj − xj) for (xi, zi), (xj, zj) ∈ P obtained

after sieving and output that element inL\M ofminimum f -value. The proof of correctness

and running time guarantee follows immediately from Theorem 5.

4 Convex Body Avoiding Problem

In this section we consider a generalization of SAP: given a lattice L and a convex body C

the problem is to find a shortest vector (w.r.t. ℓp norm) in L \ C. We consider convex bodies

C that are bounded and O-symmetric. We refer to this problem as the Convex body Avoiding

Problem (CAP).

A set S ⊆ R
n is O-symmetric if x ∈ S if and only if −x ∈ S. Notice that a subspace

M ⊆ R
n is convex and O-symmetric (but not bounded).

The input to CAP is the lattice L and the convex body C, where C is given by a mem-

bership oracle. An algorithm can query the oracle for any x ∈ R
n to test if x ∈ C.

We give an approximation algorithm to solve CAP.

THEOREM 9. Given an integer lattice L of rank n and an O-symmetric convex body C in R
n

given by a membership oracle, there is 1 + ǫ factor approximation algorithm to solve CAP
(w.r.t. any ℓp norm) with running time 2O(n)·log(1/ǫ) · poly(size(L)).

Proof. It suffices to solve the problem for the case when C is n-dimensional. To see this,

suppose C is contained in some k-dimensional subspace M of R
n. We can find a basis for

M with high probability by sampling vectors from C using the polynomial-time almost

uniform sampling algorithm described in [DFK91]. Next, we compute the sublattice L ∩ M

and find a (1 + ǫ) approximate solution u for the k-dimensional convex body avoidance

for the lattice L ∩ M and C. We also solve the SAP instance (L,M) and find a (1 + ǫ)
approximate solution v ∈ L \ M using Theorem 5. The shorter of vectors u and v is clearly

a (1+ ǫ) approximate solution for the input CAP instance.

Thus, we can assume C is n-dimensional. Let v be a shortest vector in L \ C which, as

before, we can assume satisfies 2 ≤ ‖v‖p ≤ 3 by considering polynomially many scalings

of the lattice and the convex body. As in Theorem 5, we pick random points x1, · · · , xN
from Bp(0, 2) for N = 2cn log(1/ǫ) · poly(s). The constant c > 0 will be suitably chosen later.

Let yi = xi(mod L) for i = 1 to N. We apply several rounds of the AKS sieving on the

set {(x1, y1), · · · , (xN , yN)} until we are left with a set S of 2c1n log(1/ǫ) pairs (xi, zi) such that

‖xi − zi‖p ≤ 8. From proposition 4 it follows easily that with good probability we have

Z ⊆ S such that |Z| ≥ 2c2n log(1/ǫ) and for all (xi, zi) ∈ Z we have xi ∈ D ∪ D′ where

D = Bp(0, 2) ∩ Bp(−v, 2) and D′ = Bp(0, 2) ∩ Bp(v, 2). Note that the the constant c2 can be

chosen as large as we like by appropriate choice of c. Let Z′ = {zi − xi | (xi, zi) ∈ Z}. Now

consider ℓp ball of radius ǫ/2 centered at each lattice point β ∈ Z′. It is clear that for all β ∈
Z′, Bp(β, ǫ/2) ⊆ Bp(0, 8+ ǫ/2). If for all β ∈ Z′ ℓp balls Bp(β, ǫ/2) are mutually disjoint, by

packing argument we get |Z′| ≤ (8+ǫ/2)n

(ǫ/2)n
= 2c

′n log(1/ǫ) for a constant c′. We choose constant
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c appropriately to ensure that c2 > c′. This implies that there exists tuples (xi, zi), (xj, zj) ∈ Z

such that ‖βi − β j‖ ≤ ǫ, where βi = zi − xi and β j = zj − xj. Let β = βi − β j. We claim that

it is not possible that both β + v, β − v lie inside the convex body C. Because this implies

v− β ∈ C since C is O-symmetric. Therefore v = (β+v)+(v−β)
2 ∈ C, which contradicts with

assumption v /∈ C. So without loss of generality assume that β + v /∈ C. Note that without

loss of generality we can also assume that xi ∈ D′ with good probability. Now, we apply the

argument as explained in [Re04] to reason with a modified distribution of the xi. As xi ∈ D′

we can replace xi by xi − v. It is easy to see that after sieving with good probability there

exists tuples (xi, zi), (xj, zj) ∈ S such that ri,j = (zi − xi) − (zj − xj) = v + βi − β j. Hence,

ri,j = v + β /∈ C and, clearly, ‖ri,j‖p ≤ (1 + ǫ)‖v‖p since ‖βi − β j‖p ≤ ǫ. It is easy to see

that the algorithm runs in time 2O(n log(1/ǫ))poly(size(L)). This completes the proof of the

theorem.

5 Applications

The results of this section are essentially applications of ideas from Theorem 5 and Section 3.

First we describe an exact algorithm for SAP for ℓp norms. We prove our result for full

rank lattices, but it is easy to see that the result holds for general lattices as well. Let L ⊂ Q
n

be a full rank integer lattice given by a basis {b1, · · · , bn} and let M ⊆ R
n is a subspace of

dimension k < n. For any ℓp norm we give a randomized 2O(n+k log k)poly(s) time algorithm

to find a shortest vector in L \ M, where s = size(L,M). Our exact algorithm uses the same

sieving procedure and analysis described in the proof of Theorem 5 in Section 3. As before,

by considering polynomially many scalings of the lattice, we can assume that a shortest

vector v ∈ L \ M satisfies 2 ≤ ‖v‖p ≤ 3. We now describe the algorithm.

1. Let N = 2cn log(n.maxi‖bi‖p). Pick x1, x2, · · · , xN uniformly at random from Bp(0, 2).
2. Let yi = xi(mod L). Apply AKS sieving to the set {(x1, y1), · · · , (xN , yN)} as described

in Section 3 until ‖xi − zi‖p ≤ 8 for each pair (xi, zi) left after the sieving.
3. Let P = {(xi, zi)|i ∈ T}, T ⊂ [N] be the set of tuples left after the sieving procedure.

For all i, j ∈ T compute lattice points vi,j = (zi − xi) − (zj − xj).
4. Let wi,j be a closest lattice vector to vi,j in the rank k lattice L ∩ M (found using Kan-

nan’s exact CVP algorithm [Kan87]), and let ri,j = vi,j − wi,j. Output a vector of least

nonzero ℓp norm among all the vectors ri,j for i, j ∈ T.

First we prove the correctness of the algorithm.

LEMMA 10. For an appropriate choice of the constant c in the algorithm, it outputs a shortest
nonzero vector in L \ M with respect to ℓp norm.

Proof. Let v be a shortest vector in L \M. Consider the set of pairs P = {(xi, zi)|i ∈ T}, T ⊂
[N], that remains after the sieving procedure in Step 3 of the algorithm. If we choose ǫ

as a constant in Theorem 5, it follows that there is a constant c such that with probability

1− 2−O(n) there exists (xi, zi), (xj, zj) ∈ P such that v + u = βi − β j for some u ∈ L ∩ M

where βi = zi − xi and β j = zj − xj. Hence, in Step 3 of the algorithm we have some

vi,j = v + u for some vector u ∈ L ∩ M, i.e. vi,j and v lie in same coset of L ∩ M.

Let wi,j ∈ L∩M be a closest vector to vi,j. So we have d(vi,j,wi,j) ≤ d(vi,j, u) = ‖v‖p, i.e.
‖vi,j − wi,j‖p ≤ ‖v‖p. But since we have vi,j /∈ L ∩ M and wi,j ∈ L ∩ M clearly vi,j − wi,j /∈
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L ∩ M and since v is a shortest vector in L \ M, this implies ‖vi,j − wi,j‖p = ‖v‖p. So with

probability 1− 2−O(n) the algorithm will output (in Step 4) a vector ri,j with ‖ri,j‖p = ‖v‖p.
This proves the correctness of the algorithm.

Next we argue that the running time of the algorithm is 2O(n+k log k) · poly(s) where s is

the input size. In Step 1 of the algorithm we are sampling N = 2O(n) points from Bp(0, 2),
a ball of radius 2 with respect to lp norm. Since Bp(0, 2) is a convex body, the task can be

accomplished using Dyer-Frieze-Kannan algorithm [DFK91] in time 2O(n) · poly(s). It easily
follows that the sieving procedure in Step 2 can be performed in 2O(n) time. Note that L∩M

is a rank k lattice and a basis for it can be computed efficiently. We need the following easy

lemma from [Mi08].

LEMMA 11.[Mi08, Lemma 1] There is a polynomial-time algorithm that takes as input a
lattice L ⊂ Q

n and a subspace M ⊂ R
n of dimension k < n outputs a basis for rank k lattice

L ∩ M.

From the above lemma it is clear that a basis for L ∩ M can be efficiently computed in

polynomial time. In Step 4 of the algorithm we are solving 2O(n) many instances of CVP

for the rank k lattice L ∩ M. For i, j ∈ S a closest vector to vi,j in the rank k lattice L ∩
M can be computed in 2O(k log k) time using Kannan’s algorithm for CVP [Kan87]. Hence

the Step 4 takes 2O(n+k log k) time. Therefore the overall running time of the algorithm is

2O(n+k log k) · poly(s). Note that by repeating above algorithm 2O(n) times we can make the

success probability of the algorithm exponentially close to 1.

THEOREM 12. Given a full rank lattice L ⊂ Q
n and a subspace M ⊆ R

n of dimension
k < n, There is a randomized algorithm to finds v ∈ L \ M with least possible lp norm.

The running time of the algorithm is 2O(n+k log k) times a polynomial in the input size and it
succeeds with probability 1− 2−cn for an arbitrary constant c.

Blömer and Naewe [BN07] gave 2O(n) time 1 + ǫ factor approximation algorithms to

solve the SMP and SIVP problems. As a simple consequence of Theorem 12 we get a 2O(n)

time randomized algorithm to “partially” solve SMP: we can compute the firstO( n
log n ) suc-

cessive minima in 2O(n) time. More precisely, we can compute a set of i linearly independent

vectors {v1, v2, . . . , vi} ⊂ L such that ‖vj‖p = λ
p
j (L) for j = 1 to i if i is O( n

log n ).

Given a lattice L, let M = 0 ⊂ R
n be the zero-dimensional subspace in R

n and consider

the SAP instance (L,M). Clearly, v1 is a shortest vector in L \ M. Hence, by Theorem 12

we can compute v1 in 2O(n) time. Now, inductively assume that we have computed linearly

independent vectors v1, v2, . . . , vk ∈ L such that ‖vj‖p = λ
p
j (L). Consider the instance

(L,M) of SAP where M is the space generated by v1, . . . , vk and compute v ∈ L \ M using

Theorem 12 in time 2O(n+k log k). It is clear that ‖v‖p = λ
p
k+1(L) and as v /∈ M the vectors

v1, v2, . . . , vk, v are linearly independent. If k is O( n
log n ) it is clear that algorithm takes 2O(n)

time. This proves Corollary 13.

COROLLARY 13. Given a full rank lattice L ⊂ Q
n and a positive integer i ≤ cn

log n for

a constant c, there is a randomized algorithm with running time 2O(n) · poly(size(L)) to
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compute linearly independent vectors v1, v2, . . . , vi ∈ L such that ‖vj‖p = λ
p
j (L) for j = 1

to i.

The CVP problem is polynomial-time reducible to SAP, as noted in [BN07]. Miccian-

cio [Mi08] has shown that CVP, SAP and SMP are all polynomial-time equivalent. Our

algorithm computes v ∈ L \ M with least norm by solving 2O(n) instances of CVP. We have

basically given a randomized 2O(n) time Turing reduction from SAP to CVP. An interesting

property of our reduction is that we are solving instance (L,M) of SAP by solving 2O(n)

many CVP instances (L∩ M, v) where L ∩ M is a rank k lattice, where k is dimension of M.

In contrast, for the CVP instance (N, v) produced by the SAP to CVP reduction in [BN07]

the lattice N has rank O(n).
As a consequence of this property of our reduction we obtain Corollary 14 which states

that it suffices to look for a 2O(n) randomized exact algorithm for CVP that can access all

successive minimas of the input lattice.

COROLLARY 14. Suppose for all m there is a 2O(m) randomized exact algorithm for CVP
that takes as input a CVP instance (M, v) where M is full rank lattice of rank m and v ∈ R

m

(along with the extra input vi ∈ M such that |vi|p = λ
p
i (M) for i = 1 to m where λ

p
i (M) is

ith successive minima in M). Then, in fact, there is a 2O(n) randomized exact algorithm for
solving CVP on any rank n lattice.

Proof. By [Mi08], CVP is polynomial-time equivalent to SMP (the successive minima prob-

lem). Consider the full rank lattice L ⊂ Q
n as input to SMP. It suffices to compute linearly

independent vectors v1, . . . , vn ∈ L with ‖vi‖p = λ
p
i (L) for i = 1 to n in 2O(n) time. We

proceed as in the proof of Corollary 13. Inductively assume that we have computed linearly

independent vectors v1, . . . , vk ∈ L with ‖vi‖p = λ
p
i (L). Let M be the space generated by

v1, . . . , vk. As in proof of Theorem 12 we can solve the SAP instance (L,M) by solving 2O(n)

many instances of CVP (L ∩ M, v′). Note that L ∩ M is rank k lattice and it is clear that

‖vi‖pλ
p
i (L ∩ M) for i = 1 to k. Hence we can solve these instances in 2O(n) time (although

L∩M is not full rank lattice, but it is not difficult to convert all these instances of CVP to full

rank by applying a suitable linear transformation). This takes time 2O(n+k) which is at most

2O(n). Hence, it is clear that we can compute linearly independent vectors v1, . . . , vn ∈ L
such that ‖vi‖p = λ

p
i (L) in time n · 2O(n).

In the next corollary we give a 2O(n) time algorithm to solve certain CVP instances

(L, v) for any ℓp norm. We prove the result only for ℓ2 norm and it is easy to generalize it

for general ℓp norms. Let λi(L) denote i th successive minima of the lattice L with respect

to ℓ2 norm.

COROLLARY 15. Let (L, v) be a CVP instance such that L is full rank with the promise
that d(v,L) <

√
3/2λt(L), t ≤ cn

log n . Then there is a 2O(n) · poly(size(L)) time randomized

algorithm that solves such a CVP instance exactly.

Proof. By Corollary 13 we first compute λt(L). We now use ideas from Kannan’s CVP to

SVP reduction [Kan87]. Let b1, b2, · · · , bn be a basis for L. We obtain new vectors ci ∈ Q
n+1

for i = 1 to n by letting cTi = (bTi , 0). Likewise, define u ∈ Q
n+1 as uT = (vT,λt/2). Let

M be the lattice generated by the n + 1 vectors u, c1, c2, · · · cn. Compute the vectors vj ∈ M
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such that ‖vj‖2 = λj(M) for j = 1 to t using Corollary 13 in time 2O(n) · poly(size(L)). Write

vectors vj as vj = uj + αju, uj ∈ L(c1, · · · , cn) and αj ∈ Z. Clearly, |αj| ≤ 1 since u has λt/2

as its (n + 1)th entry. As d(v,L) <
√
3/2λt(L) we have d(u,M) < λt(L). Hence, there

is at least one index i, 1 ≤ i ≤ t such that |αi| = 1. Consider the set S = {ui | 1 ≤ i ≤
t, |αi| = 1}and let uj be the shortest vector in S. Writing uj = (wT

j , 0), it is clear that the

vector −wj ∈ L is closest vector to v if αj = 1 and wj is a closest vector to v if αj = −1.
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ABSTRACT. Multiset pushdown systems have been introduced by Sen and Viswanathan as an ad-
equate model for asynchronous programs where some procedure calls can be stored as tasks to be
processed later. The model is a pushdown system supplied with a multiset of pending tasks. Tasks
may be added to the multiset at each transition, whereas a task is taken from the multiset only when
the stack is empty. In this paper, we consider an extension of these models where tasks may be of dif-
ferent priority level, and can be preempted at any point of their execution by tasks of higher priority.
We investigate the control point reachability problem for these models. Our main result is that this
problem is decidable by reduction to the reachability problem for a decidable class of Petri nets with
inhibitor arcs. We also identify two subclasses of these models for which the control point reachabil-
ity problem is reducible respectively to the reachability problem and to the coverability problem for
Petri nets (without inhibitor arcs).

1 Introduction

In the last few year, a lot of effort has been devoted to the verification problem for models of

concurrent programs (see, e.g., [17, 7, 15, 19, 4, 3, 2, 23, 13, 1]). Multiset Pushdown Systems

(MPDS) have been introduced in [22] as an adequate model for asynchronous programs.

These programs constitute an important class of program widely used in the management of

concurrent interactions with the environment, e.g., in building networked software systems,

distributed systems, etc. In these programs, procedure calls can be either synchronous,

which means that the caller waits as usual until the callee returns, or asynchronous, which

means that the callee is rather stored as a task to be processed later. Repetitively, pending

tasks are chosen and executed until completion, which may generate other pending tasks.

The MPDS model consists of a pushdown system supplied with a multiset store con-

taining pending tasks. When (and only when) the stack is empty, a task is taken from the

multiset and put into the stack. Then, the system starts executing the task using push-

down transition rules which, in addition to usual push and pop operations (modeling syn-

chronous procedure calls) can generate new tasks (modeling asynchronous procedure calls).

Notice that in this model, both the stack and the multiset store are of unbounded sizes. The

control point reachability problem has been proved to be decidable in [22], and an efficient

procedure for deciding this problem has been developed in [12].

In this paper, we consider a wider class of programs where tasks may have different

priority levels (assuming that there is a finite number of such levels), and that at any point

in time tasks are executed according to their priority level ordering. This means that tasks

can be preempted by tasks of higher priority level: When a task γ of level i generates a
c© M.F. Atig, A. Bouajjani, T. Touili; licensed under Creative Commons License-NC-ND
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task γ′ of level j > i, the task γ is preempted and must wait until the task γ′ as well as

all its descendants (i.e., tasks it created) of level greater than i are done. We consider that

in general the task γ′ may also have descendant of level less or equal to i; these tasks are

stored among the other pending tasks of their level for later execution.

To reason about this class of programs, we introduce the model of k-MPDS correspond-

ing to MPDS with k + 1 priority levels and preemption (i.e., 0-MPDS coincides with the

model of [22]). We address the control point/configuration reachability problem in these

models. Our main result is that both of these problems are decidable. The proof is not triv-

ial. The main difficulty to face is that a preempted task can be resumed only when there

are no pending tasks of higher level. This involves a kind of test to 0 of some counters

(which count the number of pending tasks at each priority level). We show that in fact these

reachability problems can be reduced to the reachability problem in a class of Petri nets with

inhibitor arcs shown to be decidable by Reinhardt in [21].

Then, we consider two classes of k-MPDS obtained by introducing some restrictions

either on the way priority levels are assigned to newly created tasks, or on the allowed kind

of communication through return values between asynchronous calls. The first subclass of

models we consider, called hierarchical MPDS, corresponds to systems where each created

task is assigned a priority level which is at least as high as the one of its caller. We show

that this inheritance-based policy of priority assignment leads to a model for which both the

control point and the configuration reachability problem can be reduced to the reachability

problem in Petri nets without inhibitor arcs.

The second subclass we consider, called restricted MPDS, corresponds to systems

where return values are taken into account (1) for synchronous calls at any level, (2) for

asynchronous calls at level 0, and (3) between tasks of different levels when a preemption

or a resumption occurs. This means that returns values by asynchronous calls within lev-

els greater than 0 are not taken into account (i.e., they are abstracted away), but these calls

may have an influential side effect by creating new tasks at any level, and this is taken into

account in our model. We prove that for the corresponding models to this class of pro-

grams the control point and the configuration reachability problems are reducible to the

corresponding problems in Petri nets using Parikh image computations of context-free lan-

guages. This means in particular that the control point problem (which the relevant problem

for proving safety properties) for these models can be reduced to the coverability problem

in Petri nets. As far as we know, our results are not covered by any existing result in the

literature.

2 Preliminaries
Words and Languages. Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set of all

words (resp. non empty words) over Σ, and by ǫ the empty word. A language is a (possibly

infinite) set of words. Given two disjoint finite alphabets Σ and Σ′ and a language L over

Σ ∪ Σ′, the projection of L on Σ, denoted LΣ, is the set of words a1 . . . an ∈ Σ∗ such that
(

Σ′∗a1Σ′∗a2Σ′∗ · · · Σ′∗anΣ′∗) ∩ L 6= ∅.

Finite State Automata. A Finite State Automaton (FSA) is a tuple S = (S, Σ, δ, si, s f ) where

S is a finite set of states, Σ is a finite alphabet, δ ⊆ S × (Σ ∪ {ǫ}) × S is a set of rules, si ∈ S

is an initial state, and s f ∈ S is a final state. Let L(S) denotes the language accepted by S .
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Multi-sets. Let Σ be a finite alphabet. A Multi-set over Σ is a function M : Σ → N. We

denote by M[Σ] the collection of all multi-sets over Σ and by ∅ the empty multi-set. Given

two multi-sets M and M′, we write M′ ≤ M iff M′(a) ≤ M(a) for every a ∈ Σ; and M + M′

(resp. M − M′ if M′ ≤ M) to denote the multi-set where (M + M′)(a) = M(a) + M′(a)
(resp. (M − M′)(a) = M(a) − M′(a)) for every a ∈ Σ. For a word w ∈ Σ∗, ⌊w⌋ is the multi-

set formed by counting the number of symbols occurring in w; and for a language L ⊆ Σ∗,

⌊L⌋ = {⌊w⌋ : w ∈ L}. A set M ⊆ M[Σ] is semi-linear iff there is a FSA S s.t. M = ⌊L(S)⌋.

Context-Free Grammars. A Context-Free Grammar (CFG) is a tuple G = (V, Σ, R, S)
where V is a set of non terminal symbols, Σ is an input alphabet, S ∈ V is the start symbol

(called also axiom), and R ⊆ V ×
(

V ∪ Σ
)∗

is a finite set of production rules. Given two

words u, v ∈
(

V ∪ Σ
)∗

, we write u ⊢G v iff ∃(α, β) ∈ R such that u = u1αu2 and v = u1βu2

for some u1, u2 ∈
(

V ∪ Σ
)∗

. We denote by ⊢∗
G the transitive and reflexive closure of ⊢G and

by L(G) = {w ∈ Σ∗ | S ⊢∗
G w} the context free language generated by G.

Labeled Pushdown Systems. A Labeled Pushdown System (LPDS) is a tuple P =
(Q, Σ, Γ, δ) where Q is a finite set of states, Σ is an input alphabet, Γ is a stack alphabet,

and δ is a finite set of transition rules of the form: qγ
a→֒ q′w′ where q, q′ ∈ Q, γ ∈ Γ,

a ∈ Σ ∪ {ǫ}, and w ∈ Γ∗. A configuration of P is a tuple (q, σ, w) where q ∈ Q is a state,

σ ∈ Σ∗ is an input word, and w ∈ Γ∗ is a stack content. We define the binary relation ⇒P
between configurations as follows: (q, aσ, wγ) ⇒P (q′, σ, ww′) iff qγ

a→֒ q′w′ ∈ ∆. The

transition relation ⇒∗
P is the reflexive transitive closure of ⇒P .

Given a LPDS P , a pair of states q1, q2 ∈ Q, and a stack symbol γ ∈ Γ, we define

LP(q1, q2, γ) as the set of words {σ ∈ Σ∗ | (q1, σ, γ) ⇒∗
P (q2, ǫ, ǫ)}. It is well-known that

LP(q1, q2, γ) is a context-free language, and conversely, every context-free language can be

defined as a trace language of some LPDS.

Finally, we recall a result due to Parikh [18] which will be used later in the paper.

PROPOSITION 1. Given a LPDS P = (Q, Σ, Γ, δ), two states q1, q2 ∈ Q, and a stack symbol
γ ∈ Γ, it is possible to construct a FSA S such that ⌊LP(q1, q2, γ)⌋ = ⌊L(S)⌋.

Petri Nets with Inhibitor arcs. A Petri net with inhibitor arcs is a pair N = (P, T) where P

is a finite set of places, and T ⊆ 2P × P∗ × P∗ is a finite set of transitions. Given a transition

t = (I, w, w′), we define the relation
t→⊆ M[P] × M[P] as follows: W

t→ W ′ iff W ≥ ⌊w⌋,

W ′ = W + ⌊w′⌋ − ⌊w⌋ and W(p) = 0 for every p ∈ I. We define the transition relation →N
on multi-sets over P by the union of the

t→, i.e., →N=
⋃

t∈T
t→. The transition relation →∗

N
is the reflexive transitive closure of →N .

A Petri net with weak inhibitor arcs is a Petri-net with inhibitor arcs (P, T) such that

there is a function f : P → N \ {0} such that ∀p, p′ ∈ P, f (p) ≤ f (p′) ⇒ (∀(I, w, w′) ∈
T, p′ ∈ I ⇒ p ∈ I). A Petri net can be seen as a subclass of Petri nets with inhibitor arcs

where all the transitions (I, w, w′) ∈ T are such that I = ∅. In this case, the transitions T can

be described in P∗ × P∗.

The reachability (resp. coverability) problem for a Petri net with inhibitor arcs N is the

problem of deciding for two given multi-sets W ′ and W whether W →∗
N W ′ (resp. there is a

multi-set W ′′ ≥ W ′ such that W →∗
N W ′′). Reachability and coverability problems for Petri
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nets with inhibitor arcs are undecidable [10]. Fortunately, they become decidable for Petri

nets Petri nets with weak inhibitor arcs.

THEOREM 2. Reachability and coverabilty problems for Petri nets with weak inhibitor arcs
are decidable [21]. Moreover, the reachability (resp. coverability) problem for Petri nets is
decidable and EXSPACE-hard (resp. EXSPACE-complete) [14, 20, 16, 5].

3 Multi-set Pushdown Systems with Preemption
3.1 Definition of the Model

We introduce multiset pushdown systems with preemptive task generation according to a

finite number of priority classes. The model of MPDS defined in [22] corresponds to the par-

ticular case where all tasks have the same priority (and therefore preemption never occurs).

DEFINITION 3. Let k be a natural number. A k-Multi-set Pushdown System with Preemp-
tion (k-MPDS) is a tuple A = (Q, Γ0, . . . , Γk, ∆, ∆′, q0, γ0) where Q is a finite set of states,
Γ =

⋃

0≤j≤k Γj is a finite set of multi-set symbols, q0 ∈ Q is the initial state, γ0 ∈ Γ0 is the

initial task, and the sets ∆ ⊆ ⋃k
j=0

(

Q × Γj

)

×
(

Q × Γ∗
j × (Γ ∪ {ǫ})

)

and ∆′ ⊆ Q × Q × Γ

form together the transition rules.

For presentation matter, transitions in ∆ (resp. ∆′) will be represented respectively by

qγ →֒ q′w′
⊲ γ′ (resp. q →֒ q′ ⊳ γ′) with q, q′ ∈ Q, γ ∈ Γj, w′ ∈ Γ∗

j , and γ′ ∈ Γ for some

j ∈ {0, . . . , k}. Intuitively, rules of the form qγ →֒ q′w′
⊲ γ′ correspond, in addition to the

usual pushdown operations (popping γ and then pushing w′ while changing the control

state from q to q′), to generate the task γ′. Rules of the form q →֒ q′ ⊳ γ correspond to move

the control state from q to q′ and to start executing the pending task γ if the priority level of

the topmost symbol in the stack is strictly less than the priority level of γ.

A configuration of A is a tuple (q, w, M0, . . . , Mk) where q ∈ Q, w ∈ Γ∗
0 × · · · × Γ∗

k ,

and Mj ∈ M[Γj], 0 ≤ j ≤ k, is a multiset representing the waiting tasks of priority j. The

content of the stack w is always of the form w0w1 . . . wi where for every j ∈ {0, . . . , i}, wj ∈
Γ∗

j is the tasks of priority j that are waiting in the stack. The initial configuration of A
is (q0, ǫ, ⌊γ0⌋, ∅, . . . , ∅). The transition relation ⇒A is defined as the union of the binary

relations →0≤j≤k, →֒0≤j≤k, and ;0≤j<k defined as follows:

• Move with task creation (→֒j): (q, wγj, M0, . . . , Mj, ∅, . . . , ∅) →֒j (q′, ww′, M0, . . . , Mi +
⌊γi⌋, . . . , Mj, ∅, . . . , ∅) iff (qγj →֒ q′w′

⊲ γi) ∈ ∆, γj ∈ Γj, γi ∈ Γi ∪ {ǫ}, and i ≤ j.

Such transitions correspond to move the control state from q to q′, pop γj from the top

of the stack, push w′ into the stack, and generate the task γi.

• Move with task preemption (;j): (q, wγj, M0, . . . , Mj, ∅, . . . , ∅) ;j (q′, ww′γi, M0, . . . ,

Mj, ∅, . . . , ∅) iff (qγj →֒ q′w′
⊲ γi) ∈ ∆, γj ∈ Γj, γi ∈ Γi, and i > j. Such transitions

correspond to move the control state from q to q′, pop γj from the top of the stack,

push w′ into the stack, and to start executing the task γi.

• Treatment of a new task (→j): (q, w, M0, . . . , Mj + ⌊γj⌋, ∅, . . . , ∅) →j (q′, wγj, M0,

. . . , Mj, ∅, . . . , ∅) iff (q →֒ q′ ⊳ γi) ∈ ∆′, γj ∈ Γj, and w ∈ Γ∗
0 × · · · × Γ∗

j−1. Such

transitions correspond to move the control state from q to q′ and to start executing

the pending task γj if its priority level is strictly greater than the priority level of the

topmost symbol in the stack.
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Finally, let ⇒∗
A denotes the reflexive and transitive closure of the binary relation ⇒A.

3.2 Reachability Problems

The configuration (resp. control state) reachability problem is to determine, given

a k-MPDS A = (Q, Γ0, . . . , Γk, ∆, ∆′, q0, γ0) and a configuration (q, w, M0, . . . , Mk)
(resp. a control state q), whether (q0, ǫ, ⌊γ0⌋, ∅, . . . , ∅) ⇒∗

A (q, w, M0, . . . , Mk) (resp.

(q0, ǫ, ⌊γ0⌋, ∅, . . . , ∅) ⇒∗
A (q, w′, M′

0, . . . , M′
k) for some w′ and M′

0, . . . , M′
k). The empty

stack configuration (resp. control state) reachability problem is to determine, given a k-

MPDS A = (Q, Γ0, . . . , Γk, ∆, ∆′, q0, γ0) and a control state q, whether (q0, ǫ, ⌊γ0⌋, ∅, . . . , ∅)
⇒∗

A (q, ǫ, ∅, . . . , ∅) (resp. (q0, ǫ, ⌊γ0⌋, ∅, . . . , ∅) ⇒∗
A (q, ǫ, M′

0, ∅, . . . , ∅) for some M′
0).

LEMMA 4. The configuration (resp. control state) reachability problem is polynomially re-
ducible to empty stack configuration (resp. control state) reachability problem for k-MPDSs
and vice-versa.

From now, we sometimes use configuration (resp. control state) reachability problem

to denote the empty stack configuration (resp. control state) reachability problem.

3.3 Sub-classes of Multi-set Pushdown Systems with preemption

Two subclasses of our models can be defined by restricting either (1) the way the priorities

are assigned to newly created tasks, or (2) the way tasks returns values after their executions.

The first class we define, called Hierarchical k-MPDS, corresponds to systems where

created tasks inherit is a priority which at least as high as the one of their parents.

DEFINITION 5. A Hierarchical k-MPDS (k-HMPDS) A = (Q, Γ0, . . . , Γk, ∆, ∆′, q0, γ0) is a

k-MPDS such that ∆ ⊆ ⋃k
j=0

(

Q × Γj

)

× (Q × Γ∗
j × (

⋃

l≥j Γl ∪ {ǫ})
)

.

The second class we consider, called Restricted k-MPDS, corresponds to systems where

communication between tasks through shared memory can only happen (1) for tasks of level

0, or (2) between tasks at different levels (at the preemption and resumption operations). In

other words, intra-level communication cannot occur between asynchronous tasks of level

greater or equal to 1 (but value passing at synchronous procedure calls and returns is not

restricted). Formally, the restriction we consider can be modeled by the fact that for each

level j ≥ 1, there is a designated state qj such that tasks of level j can be treated only if the

control state of the system is qj.

DEFINITION 6. A Restricted k-MPDS (k-RMPDS) is a tuple R = (Q, Γ0, . . . , Γk, ∆, ∆′, q0,

. . . , qk, γ0) where A = (Q, Γ0, . . . , Γk, ∆, ∆′, q0, γ0) is an k-MPDS, q1, . . . , qk ∈ Q is a fixed

sequence of states, and ∆′ ⊆ (Q × Q × Γ0) ∪ (
⋃k

j=1

(

{qj} × {qj} × Γj

)

).

4 0-MPDSs vs Petri nets

In the case of 0-MPDS, the decidability of the control state reachability problem has been

shown to be decidable in [22]. We present hereafter an alternative proof based on a reduction

of this problem to the coverability problem for Petri nets. We show actually that 0-MPDS can

be simulated by Petri nets and vice-versa (in some sense that will be made clear later). Our

principal aim by showing this relationship between the two models is to introduce smoothly
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ideas and constructions which constitute the basis of the constructions presented in the next

sections that are our main contributions. Actually, the reduction we show provides also

a more robust proof principle, since it allows us to establish the decidability not only for

control state reachability problem but also for configuration reachability problem.

4.1 From 0-MPDSs to Petri nets

We prove that every 0-MPDS can be simulated by a Petri net in the following sense:

THEOREM 7. Given a 0-MPDS A = (Q, Γ0, ∆, ∆′, q0, γ0), it is possible to construct a Petri net
N such that (q0, ǫ, ⌊γ0⌋) ⇒∗

A (q, ǫ, M) iff ⌊q0⌋ + ⌊γ0⌋ →∗
N M + ⌊q⌋.

Proof (Sketch): First, we observe that for any run (q0, ǫ, {γ0}) ⇒∗
A (q, ǫ, M) of A there are

q0, q′0, . . . , qn, q′n ∈ Q, M1, . . . , Mn ∈ M[Γ0], and γ0, . . . , γn ∈ Γ0 such that:

(q0, ǫ, ⌊γ0⌋) →0 (q′0, γ0, ǫ) →֒∗
0 (q1, ǫ, M1 + ⌊γ1⌋) →0 (q′1, γ1, M1) →֒∗

0 (q2, ǫ, M2 + ⌊γ2⌋) →0

· · · →֒∗
0 (qn−1, ǫ, Mn−1 + ⌊γn−1⌋) →0 (q′n−1, γn−1, Mn−1) →֒∗

0 (qn, ǫ, Mn + ⌊γn⌋) →0

(q′n, γn, Mn) →֒∗
0 (q, ǫ, M)

(Notice that ;0 is never used since there are no preemptions for 0-MPDS models.)

Then, the first step of the reduction is to show using Proposition 1 that, for every p, p′ ∈
Q and γ ∈ Γ0, the set M(p, p′, γ) = {M′ | (p, γ, ∅) →֒∗

0 (p′, ǫ, M′)} is a semi-linear set.

In fact, a transition rule p1γ1 →֒ p2w ⊲ γ2 of ∆ (and therefore of →֒0) can be seen as a

transition rule p1γ1

γ2→֒ p2w of the LPDS P = (Q, Γ0, Γ0, δ). Thus, a word in the trace

language LP(p, p′ , γ) corresponds to the set of waiting tasks added to the multi-set during

the execution of γ to its completion, i.e. ⌊LP (p, p′, γ)⌋ = M(p, p′, γ). Hence, it is possible to

construct a finite state automaton S(p,p′,γ) = (S(p,p′,γ), Γ0, δ(p,p′,γ), si
(p,p′,γ), s

f

(p,p′,γ)
) such that

⌊L(S(p,p′,γ))⌋ = M(p, p′, γ).

In the second step, we prove that every run of A of the form: (p1, ǫ, ⌊γ⌋) →0

(p2, γ, ∅) →֒∗
0 (p3, ǫ, M′) can be simulated by a computation of the Petri net N(p1,p3,γ) =

(P(p1,p3,γ), T(p1,p3,γ)) such that P(p1,p3,γ) = Q ∪ (
⋃

p2∈Q S(p2,p3,γ))∪ Γ0 and T(p1,p3,γ) is the small-

est set of transitions containing:

• Initialization: A transition (p1γ, si
(p2,p3,γ)) for every transition rule (p1 →֒ p2 ⊳ γ) in

∆′. Such a transition takes a token from each of the places p1 and γ and puts a token

in the place si
(p2,p3,γ). This allows to simulate the move (p1, ǫ, ⌊γ⌋) →0 (p2, γ, ∅).

• Simulation of S(p2,p3,γ): A transition (s, s′γ′) (resp. (s, s′)) for every (s, γ′, s′) (resp.

(s, ǫ, s′)) in δ(p2,p3,γ). Such transitions allow the simulation of computation of the form

(p2, γ, ∅) →֒∗
0 (p3, ǫ, M′).

LEMMA 8. Given a multi-set M′ ∈ M[Γ0], states p1, p2, p3 ∈ Q, and a task γ ∈ Γ0,

(p1, ǫ, ⌊γ⌋) →0 (p2, γ, ∅) →֒∗
0 (p3, ǫ, M′) iff ⌊p1⌋ + ⌊γ⌋ →∗

N(p1,p3,γ)
M′ + ⌊s

f

(p2,p3,γ)
⌋.

Since any run that reaches a configuration (q, ǫ, M) can be decomposed as a sequence

of runs of the form: (p1, ǫ, ⌊γ⌋) →0 (p2, γ, ∅) →֒∗
0 (p3, ǫ, M′), then (q0, ǫ, ⌊γ0⌋) ⇒∗

A (q, ǫ, M)
can be simulated by the following Petri net N = (P, T) where: P =

⋃

p1,p3∈Q, γ∈Γ0
P(p1,p3,γ)

is a finite set of places, and T is the smallest set of transitions such that: T(p1,p3,γ) ⊆ T

and (s
f

(p2,p3,γ)
, p3) is in T for every p1, p2, p3 ∈ Q and γ ∈ Γ0. Hence, Theorem 7 follows

immediately from the following lemma:
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LEMMA 9. Given a state q ∈ Q and a multi-set M ∈ M[Γ0], (q0, ǫ, ⌊γ0⌋) ⇒∗
A (q, ǫ, M) iff

W ′ = M + ⌊q⌋ is reachable by the Petri net N from W = ⌊γ0⌋ + ⌊q0⌋.
2

The following fact follows immediately from Proposition 4 and Theorem 7.

COROLLARY 10. Configuration and control state reachability for 0-MPDSs are decidable.

4.2 From Petri nets to 0-MPDSs

We show that every Petri net can be simulated by a 0-MPDS in the following sense:

THEOREM 11. Given a Petri net N = (P, T), it is possible to construct a 0-MPDS A with a
special state q0 such that W →∗

N W ′ iff (q0, ǫ, W) ⇒∗
A (q0, ǫ, W ′).

This can be done by adapting the construction given in [22] to prove the lower bound

on the complexity for control state reachability problem for 0-MPDS.

By Theorem 11 and the fact that the set of reachable multi-sets for Petri nets is in general

not semi-linear [11], it is possible to show that:

COROLLARY 12. The set of reachable multi-set configurations {M | (q0, ǫ, ⌊γ0⌋) ⇒∗
A

(q, ǫ, M)} by an 0-MPDS A = (Q, Γ0, ∆, ∆′, q0, γ0) is in general not semi-linear.

5 Reachability Analysis for k-MPDSs

In this section, we prove that the configuration (resp. the control state) reachability problem

for k-MPDSs is decidable by reduction to the reachability (resp. coverability) problem for

Petri nets with weak inhibitor arcs.

THEOREM 13. Configuration and control state reachability are decidable for k-MPDSs.

Proof (Sketch): We consider here that k ≥ 1 (since k = 0 has been already considered in

the previous section). To simplify the presentation of the proof, we consider first the case of

k = 1. The generalization to any k ≥ 1 is given later.

Case k = 1: Let A = (Q, Γ0, Γ1, ∆, ∆′, q0, γ0) be an 1-MPDS. Let ⇒1=→1 ∪ →֒1 and

⇒0=;0 ∪ ⇒1 ∪ →֒0 be two transition relations. Thanks to Proposition 4, we con-

sider w.l.o.g configurations of the form (q, ǫ, M, ∅) with M ∈ M[Γ0]. We observe that

(q, ǫ, M, ∅) is reachable by A iff there are some q0, q′0, q1, . . . , qn ∈ Q, γ0, . . . , γn−1 ∈ Γ0,

and M1, . . . , Mn ∈ M[Γ0] such that qn = q, Mn = M, and:

Path 0: (q0, ǫ, ⌊γ0⌋, ∅) →0 (q′0, γ0, ∅, ∅) ⇒∗
0 (q1, ǫ, M1 + ⌊γ1⌋, ∅) →0 (q′1, γ1, M1, ∅) ⇒∗

0

(q2, ǫ, M2 + ⌊γ2⌋, ǫ) →0 (q′2, γ2, M2, ∅) · · · (q′n−1, γn−1, Mn−1, ∅) ⇒∗
0 (qn, ǫ, Mn, ∅)

Indeed, any computation of A of the form (p, γ, ∅, ∅) ⇒∗
0 (p′, ǫ, N, ∅) for some p, p′ ∈

Q, γ ∈ Γ0, and N, N′ ∈ M[Γ0], there are p′0, p0, p′′1 , p′1, . . . , p′′m ∈ Q, γ′
0, . . . , γ′

m−1 ∈ Γ1,

w′
0, w1, w′

1, . . . , wm ∈ Γ∗
0, and N′

0, N1, N′
1, . . . , Nm ∈ M[Γ0] such that:

Path 1: (p, γ, ∅, ∅) →֒∗
0 (p′0, w′

0, N′
0, ∅) ;0 (p0, w1γ′

0, N′
0, ∅) ⇒∗

1 (p′′1 , w1, N1, ∅) →֒∗
0

(p′1, w′
1, N′

1, ∅) ;0 (p1, w2γ′
1, N′

1, ∅) ⇒∗
1 (p′′2 , w2, N2, ∅) →֒∗

0 (p′2, w′
2, N′

2, ∅) ;0

(p2, w3γ′
2, N′

2, ∅) ⇒∗
1 (p′′3 , w3, N3, ∅) →֒∗

0 · · · ⇒∗
1 (p′′m, wm, Nm, ∅) →֒∗

0 (p′, ǫ, N, ∅)

Then the proof is structured as follows:
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• For every g, g′ ∈ Q and γ′ ∈ Γ1, we construct a Petri net N ′
(g,g′,γ′) with a spe-

cial place c counting the number of pending tasks of priority 1, such that the set of

reachable multi-sets when the place c is empty is precisely M1(g, g′, γ′) = {N′ ∈
M[Γ0] | (g, γ′ , ∅, ∅) ⇒∗

1 (g′, ǫ, N′, ∅)}.

• For every p, p′ ∈ Q and γ ∈ Γ0, we construct a Petri net N(p,p′,γ) with weak in-

hibitor arcs that characterizes the set M0(p, p′, γ) = {N ∈ M[Γ0] | (p, γ, ∅, ∅) ⇒∗
0

(p′, ǫ, N, ∅)}. The Petri net N(p,p′,γ) simulates the runs of the form Path 1 by delegat-

ing the ⇒∗
1 segments of these runs to the networks N ′

(g,g′,γ′) introduced above.

The difficulties to face in doing that are: (1) transitions ;0 are not always taken when

the stack is empty (since at level 1 the context of the interrrupted task of level 0 is

still present in the stack), and (2) the effect of ⇒∗
1 computations on the multiset of

pending tasks of level 0 must be computed precisely and this should be done only

for such computations that reach at their end a configuration where the multiset of

pending tasks of level 1 is empty. Since computations at level 1 can be as general as

computations of any Petri net, the latter problem needs to be addressed using some

notion of place emptyness testing. Then, inhibitor arcs are used to check at the end of

⇒∗
1 computations that the place c of N ′

(g,g′,γ′) is empty.

To tackle the first issue, the idea is to reason about the whole computations of level

0 by inserting instead of the level 1 segments a tuple (g1, g2, γ′) ∈ Q × Q × Γ1 corre-

sponding to the guess that an interruption by a task γ′ of level 1 is able to bring the

control state from g1 to g2. So, we build a pushdown system labelled by the generated

task of level 0 as well as the guessed tuples (g1, g2, γ′) defined as above. Then, the

key observation is that the information represented in the traces of this LPDS can be

represented by the traces of a finite state automata S . Indeed, (1) like in the previous

section, the ordering between tasks generated by level 0 computations between two

given control states does not need to be kept, and (2) it is sufficient to know for each

Path 1 computation how many times each guessing pair (g1, g2, γ′) occurs; the consis-

tency of these occurrences within the computation (i.e., these guesses can indeed be

inserted in the computation) can be checked using a finite control.

Then, to simulate the computations of the form Path 1, the Petri net N(p,p′,γ) simulates

in parallel the evolution of the control states and the finite-state automaton S by (1)

generating a level 0 task whenever the transition of the automaton is labelled by this

task, and (2) simulating the network N ′(g1, g2, γ′) whenever the transition of S is

labelled by (g1, g2, γ′) where γ′ is a level 1 task (which is supposed to be the one

which preempts the current level 0 task).

• The collection of all the networks N(p,p′,γ) with p, p′ ∈ Q and γ ∈ Γ0 are used to

build a network N0 with weak inhibitor arcs that simulates all the runs that reaches a

configuration of the form (q, ǫ, M, ∅) (i.e. computations of the form Path 2).

Computing N ′
(g,g′,γ′): Let g, g′ ∈ Q be a pair of states and γ′ ∈ Γ1 be a task of prior-

ity 1. Then, any computation of the form (g, γ′, ∅, ∅) ⇒∗
1 (g′, N′, M′) can be seen as

a computation of the 0-MPDS A1 which mimics the execution of A over tasks of prior-

ity 1. Formally, A1 is defined by the tuple (Q, Γ0 ∪ Γ1, ∆1, ∆′
1, g, γ′) where ∆1 = ∆ and

∆′
1 = ∆′ ∩ (Q×Q× Γ1). Thus, (g, γ′, ∅, ∅) ⇒∗

1 (g′, N′, M′) iff (g, γ′, ∅) ⇒∗
A1

(g′, ǫ, N′ + M′).
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Then, by adapting the construction given in the previous section (see Theorem 7) to A1, we

can construct a Petri net N ′
(g,g′,γ′) = (P′

(g,g′,γ′), T′
(g,g′,γ′)) which has two special places c and

tg′ . The place c is used to count the number of pending task of priority 1. A token in the

place tg′ means that the guessed control state when all tasks of priority level 1 are done is

g′. The relation between A and N ′
(g,g′,γ′) is given by the following lemma:

LEMMA 14. Let g, g′ ∈ Q be a pair of states and γ′ ∈ Γ1 be a task of priority 1. Then,
(g, γ′, ∅, ∅) ⇒∗

1 (g′, ǫ, N′, ∅) iff ⌊g⌋ + ⌊γ′⌋ + ⌊tg′⌋ →∗
N ′

(g,g′,γ′)
⌊g′⌋ + ⌊tg′⌋ + N′.

Computing N(p,p′,γ): For every p, p′ ∈ Q and γ ∈ Γ0, we construct a Petri net N(p,p′,γ)

with weak inhibitor arcs that simulates computations of A of the form: (p, ǫ, ⌊γ⌋, ∅) →0

(p′′, γ, ∅, ∅) ⇒∗
0 (p′, ǫ, M′, ∅). Then, let P ′ = (Q, Σ′, Γ0, δ′) be a LPDS with Σ′ = {(g, g′, γ′) |

g, g′ ∈ Q, γ′ ∈ Γ1} ∪ Γ0. For every g, g′ ∈ Q and γ′ ∈ Γ1, (g, g′, γ′) is a new symbol which

represents the set M1(g, g′ , γ′) (we have showed in the previous paragraph how these sets

can be characterized by the Petri nets N ′
(g,g′,γ′)). The set δ′ is defined as the smallest set of

transition rules such that:

• If g1γ1 →֒ g2w′
⊲ γ2 ∈ ∆, γ1 ∈ Γ0, and γ2 ∈ Γ0 ∪ {ǫ}, then g1γ1

γ2→֒ g2w′ ∈ δ′;

• If g1γ1 →֒ g2w′
⊲ γ′ ∈ ∆, γ1 ∈ Γ0, and γ2 ∈ Γ1, then g1γ1

(g2,g3 ,γ2)→֒ g3w′ ∈ δ′ for every

g3 ∈ Q. Such a transition rule records in its label the fact that a guess is made at this

point of the computation: The level 1 task γ2 interrupts the level 0 task γ0, and then

the level 1 computation of the form (g2, γ2, ∅, ∅) ⇒∗
1 (g3, ǫ, N, ∅) brings the control

state from g2 to g3.

Thanks to Proposition 1, it is possible to construct a finite state automaton S(p′′,p′,γ) =

(S(p′′,p′,γ), Σ′, δ(p′′,p′,γ), si
(p′′,p′,γ), s

f

(p′′,p′,γ)
) such that ⌊L(S(p′′,p′,γ))⌋ = ⌊LP ′(p′′, p′, γ)⌋. Then,

we can define a Petri net with weak inhibitor arcs N(p,p′,γ) = (P(p,p′,γ), T(p,p′,γ)) using the set

of automata S(p′′,p′,γ) as follows:

• P(p,p′,γ) = {⊤,⊥} ∪ P ∪ (
⋃

p′′∈Q S(p′′,p′,γ)) is a finite set of places where P =
⋃

g,g′∈Q, γ′∈Γ1
P′

(g,g′,γ′). The places ⊤ and ⊥ are flags that indicate if the simulation of

S(p′′,p′,γ) has been initiated or not. When the simulation starts, the place ⊤ is emp-

tied and a token is put in ⊥. This allows to ensure that the segments →0 ◦ ⇒∗
0 are

simulated in a serial manner and do not interfer.

• The set of transitions T(p,p′,γ) is the set of the following transitions:

– Initialization: A transition (∅,⊤pγ,⊥si
(p′′,p′,γ)) for each transition rule p →֒ p′′ ⊳

γ in ∆′. This transition simulates the move (p, ǫ, ⌊γ⌋, ∅) →0 (p′′, γ, ∅, ∅).

– Simulation of S(p′′,p′,γ): A transition rule (∅,⊥s,⊥s′γ′) (resp. (∅,⊥s,⊥s′)) for

each each transition (s, γ′, s′) (resp. (s, ǫ, s′)) in δ(p′′,p′,γ) with γ′ ∈ Γ0. A transition

rule (∅,⊥s, g tg′ γ′ s′) for each transition (s, (g, g′ , γ′), s′) of S(p,p′,γ) .

– Simulation of N ′
(g,g′,γ′): The set of transitions T′

(g,g′,γ′) of the network N ′
(g,g′,γ′) de-

fined previously for each g, g′ ∈ Q and γ′ ∈ Γ1.

– Checking the guessed tuple (g, g′, γ′): A transition rule (c, g′tg′ ,⊥) for each g′ ∈ Q.

This rule checks if there are no more tasks of level 1 (i.e. ⌊c⌋ = ∅) and that the

control state at the resumption of the preempted task of level 0 is g′.
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LEMMA 15. (p, ǫ, ⌊γ⌋, ∅) →0 (p′′, γ, ∅, ∅) ⇒∗
0 (p′, ǫ, M′, ∅) iff the multi-set W ′ = M′ +

⌊s
f

(p′′,p′,γ)
⌋ + ⌊⊥⌋ is reachable by N(p,p′,γ) from W = ⌊⊤⌋ + ⌊γ⌋ + ⌊p⌋.

Computing the Petri net N0: We observe that any run (q0, ǫ, {γ0}, ∅) ⇒∗
A (q, ǫ, M, ∅) of

A can be simulated by a sequence of executions of the Petri nets N(p,p′,γ) with p, p′ ∈ Q and

γ ∈ Γ0. This can be obtained by defining the Petri net N0 = (P0, T0) as follows:

• P0 is a finite union of places P(p,p′,γ) for every p, p′ ∈ Q and γ ∈ Γ0.

• T0 is the smallest set of transitions satisfying the following conditions:

– T(p,p′,γ) ⊆ T0 for every p, p′ ∈ Q and γ ∈ Γ0,

– (∅,⊥s
f

(p′′,p′,γ)
,⊤p′) ∈ T0 for every p′′, p′ ∈ Q and γ ∈ Γ0, which makes possible

the iteration of the executions of Petri nets of the form N(p,p′,γ).

Then, Theorem 13 follows immediately from the following lemma:

LEMMA 16. (q0, ǫ, ⌊γ0⌋, ∅) ⇒∗
A (q, ǫ, M, ∅) iff ⌊γ0⌋ + ⌊q0⌋ + ⌊⊤⌋ →∗

N0
M + ⌊q⌋ + ⌊⊤⌋.

General Case: This construction can be extended to the case where we have an arbitrary

number k of priorities. In this case, we compute a Petri net with weak inhibitor arcs as

follows: we need k places c1, . . . , ck, where ci counts the number of tasks in the multiset

of level i. Then, these places can be ordered as follows: c1 > c2 > · · · > ck. Indeed, in

the computed Petri net with inhibitor arcs, we need to check whether ci = 0 only if the

other counters cj, j ≥ i are also null. This ensures that the network we construct is a weak

inhibitor arcs Petri net. 2

6 Reachability Analysis for k-RMPDSs and k-HMPDSs

6.1 Reachability Analysis of Restricted k-MPDSs

In this section, we prove that the configuration and control state reachability problems for

k-RMPDSs are decidable and reducible to the same problems for 0-MPDSs. In particular,

we show that the control state reachability problem for k-RMPDSs is reducible to the cover-

ability problem for Petri nets. This is based on the fact that it is possible to prove in this case

that the sets M1(g, g′, γ′) = {N′ ∈ M[Γ0] | (g, γ′, ∅, ∅) ⇒∗
1 (g′, ǫ, N′ , ∅)} are semi-linear

and can be computed as Parikh images of context free languages. Notice that for the case of

(unrestricted) k-MPDS these sets are not semi-linear in general (see Corrollary 12).

THEOREM 17. For any k > 0, control state and configuration reachability problems for
k-RMPDSs are reducible to the same problems for some (k − 1)-RMPDSs.

Proof (Sketch): Let us fix a 1-RMPDS R = (Q, Γ0, Γ1, ∆, ∆′, q0, q1, γ0) and its transition re-

lations ⇒1=→1 ∪ →֒1 and ⇒0=;0 ∪ ⇒1 →֒0. Given g, g′ ∈ Q and γ′ ∈ Γ1, we con-

struct a context free grammar G(g,g′,γ′) such that ⌊L(G(g,g′,γ′))⌋ = M1(g, g′, γ′) = {N′ ∈
M[Γ0] | (g, γ′ , ∅, ∅) ⇒∗

1 (g′, ǫ, N′, ∅)}. Indeed, let us observe that such computations can be

decomposed as follows:

(g, γ′, ∅, ∅) →֒∗
1 (q1, ǫ, N1

0 , N1
1 + ⌊γ1⌋) →1 (q1, γ1, N1

0 , N1
1 ) →֒∗

1 (q1, ǫ, N2
0 , N2

1 + ⌊γ2⌋) →1

(q1, γ2, N2
0 , N2

1 ) →֒∗
1 · · · →֒∗

1 (q1, ǫ, Nn
0 , Nn

1 + ⌊γn⌋) →1 (q1, γn, Nn
0 , Nn

1 ) →֒∗
1 (g′, ǫ, N′, ∅)

Then, given g1, g2 ∈ Q and γ ∈ Γ1, it is possible to characterize the set of com-

putations (g1, γ, ∅, ∅) →֒∗
1 (g2, ǫ, N0, N1) by a CFG G′

〈g1,g2,γ〉 such that ⌊L(G′
〈g1,g2 ,γ〉)⌋ =
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{N0 + N1 | (g1, γ, ∅, ∅) →֒∗
1 (g2, ǫ, N0, N1)} using a similar construction to the characteriza-

tion of →֒∗
0 computations in 0-MPDS (see proof of Theorem 7). Now, we use the set of CFGs

G′
〈g,g′,γ′〉, G′

〈g,q1,γ′〉, G′
〈q1,q1,γ〉, and G′

〈q1,g′,γ〉 to built G〈g,g′,γ′〉 as follows. Every computation

(g1, ǫ, ∅, ⌊γ⌋) →1 (g1, γ, ∅, ∅) →֒∗
1 (g2, ǫ, N0, N1) is simulated by G(g,g′,γ′): γ is rewritten by

the axiom of G′
〈g1,g2,γ〉, and then rules of G′

〈g1,g2,γ〉 are applied. This can be done because the

processing order of pending tasks of level 1 is not relevant due to the restriction in RMPDS

models (two pending tasks of level 1 cannot communicate).

By Proposition 1, we can construct a finite state automaton S(g,g′,γ′) such that

⌊L(S(g,g′,γ′))⌋ = ⌊L(G(g,g′,γ′))⌋ = M1(g, g′, γ′). Then, we construct a 0-MPDS A′

over the alphabet Γ0 that mimics any computation of R over tasks of priority 0, i.e.

g1γ1 →֒ g2w′
⊲ γ2 (resp. g1 →֒ g2 ⊳ γ1) is a rule of A′ iff g1γ1 →֒ g2w′

⊲ γ2 (resp.

g1 →֒ g2 ⊳ γ1) is a transition rule of R and γ1, γ2 ∈ Γ0 ∪ {ǫ}. On the other hand, any

computation (g, γ′, ∅, ∅) ⇒∗
1 (g′, ǫ, N′, ∅), with g, g′ ∈ Q and γ′ ∈ Γ1, can be simulated by

a computations of A′ that: (1) moves the control state from g to the initial state of S(g,g′,γ′);

(2) each transition (s, γ′′, s′) of S(g,g′,γ′) by rule that moves the control state from s to s′

and creates the task γ′′; and (3) changes the control state from the final state S(g,g′,γ′) to

g′. Hence, (q0, ǫ, ⌊γ0⌋, ∅) ⇒∗
R (q, ǫ, M, ∅) iff (q0, ǫ, ⌊γ0⌋) ⇒∗

A′ (q, ǫ, M) for any q ∈ Q and

M ∈ M[Γ0]. 2

6.2 Reachability Analysis of Hierarchical k-MPDSs

In this section, we study the reachability problem for Hierarchical k-MPDS. We show

that control state and configuration reachability problems for k-HMPDSs are decidable us-

ing reachability for Petri nets without inhibitor arcs. Here, we use the fact that the set

M1(g, g′, γ′) = {N′ ∈ M[Γ0] | (g, γ′ , ∅, ∅) ⇒∗
1 (g′, ǫ, N′, ∅)} is empty. Indeed, in that case,

the only relevant information about level 1 computation segments when simulating Path 1

computations is whether, given two states g and g’ and a task γ ∈ Γ1, it is possible to have

a run from gγ which reaches a configuration with control state g′ where no level 1 tasks

are left. This can be solved as a reachability problem in a Petri net simulating the level 1

computations of a configuration where there are no pending tasks of priority 1.

THEOREM 18. For any k ≥ 0, the control state and configuration reachability problems for
(k)-HMPDSs are reducible to the corresponding problems for (k − 1)-HMPDSs using the
reachability problem for Petri nets.

7 Conclusion

We have investigated the reachability problem for a model of concurrent programs where

tasks (1) can be dynamically created, (2) may have different levels of priority, and (3) may

be preempted by tasks of higher priority level. We have shown that this problem is difficult

but decidable. Our proof is based on a reduction to the reachability problem in a class

of Petri nets with inhibitor arcs. We have also identified a class of models for which the

(control point) reachability problem can be reduced to the reachability problem in Petri nets

without inhibitor arcs, and another class of models for which the control point reachability

problem can be reduced, using Parikh image computations of context-free languages, to

the coverability problem in Petri nets. For the latter class, although the problem of solving
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the control point reachability problem remains complex (EXPSPACE-hard), we believe that

it can be handled in practice using efficient algorithms and tools for (1) computing CFL

Parikh images using a Newton method based technique for solving polynomial equations

in commutative Kleene algebras [6], and for (2) solving the coverability problem in Petri

nets using forward reachability analysis and complete abstraction techniques [8, 9].
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ABSTRACT. We introduce a novel approach to the runtime monitoring of complex system proper-
ties. In particular, we present an online algorithm for a safety fragment of metric first-order temporal
logic that is considerably more expressive than the logics supported by prior monitoring methods.
Our approach, based on automatic structures, allows the unrestricted use of negation, universal and
existential quantification over infinite domains, and the arbitrary nesting of both past and bounded
future operators. Moreover, we show how to optimize our approach for the common case where
structures consist of only finite relations, over possibly infinite domains. Under an additional restric-
tion, we prove that the space consumed by our monitor is polynomially bounded by the cardinality
of the data appearing in the processed prefix of the temporal structure being monitored.

1 Introduction

Runtime monitoring [1] is an approach to verifying system properties at execution time by us-

ing an online algorithm to check whether a system trace satisfies a temporal property. While

novel application areas such as compliance or business activity monitoring [13, 15] require

expressive property specification languages, current monitoring techniques are restricted in

the properties they can handle. They either support properties expressed in propositional

temporal logics and thus cannot cope with variables ranging over infinite domains [6,16,20,

23,29], do not provide both universal and existential quantification [4,12,17,23–25] or only in

restricted ways [4,28,30], do not allow arbitrary quantifier alternation [4,22], cannot handle

unrestricted negation [8, 22, 27, 30], do not provide quantitative temporal operators [22, 25],

or cannot simultaneously handle past and future temporal operators [8, 22–24,26, 27].

In this paper, we present a runtime monitoring approach for an expressive safety frag-

ment of metric first-order temporal logic (MFOTL) [8] that overcomes most of these limita-

tions. The fragment consists of formulae of the form � φ, where φ is bounded, i.e., its tem-

poral operators refer only finitely into the future. Our monitor uses automatic structures [7]

to finitely represent infinite structures, which allows for the unrestricted use of negation and
c© Basin, Klaedtke, Müller, Pfitzmann; licensed under Creative Commons License-NC-ND
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quantification in monitored formulae. Moreover, our monitor supports the arbitrary nest-

ing of both (metric) past and bounded future operators. This means that complex properties

can be specified more naturally than with only past operators.1

In a nutshell, our monitor works as follows: Given a MFOTL formula � φ over a sig-

nature S, where φ is bounded, we first transform φ into a first-order formula φ̂ over an

extended signature Ŝ, obtained by augmenting Swith auxiliary predicates for every tempo-

ral subformula in φ. Our monitor then incrementally processes a temporal structure (D, τ)
over S and determines for each time point i those elements in (D, τ) that violate φ. This is

achieved by incrementally constructing a collection of automata that finitely represent the

(possibly infinite) interpretations of the auxiliary predicates and by evaluating the trans-

formed first-order formula ¬φ̂ over the extended Ŝ-structure at every time point. In doing

so, our monitor discards any information not required for evaluating ¬φ̂ at the current and

future time points.

We also show how to adapt our monitoring approach to the common case where all

relations are required to be finite and hence relational databases can serve as an alternative

to automata. Under the additional (realistic) restriction that time increases after at most a

fixed number of time points, our incremental construction ensures that our monitor requires

only polynomial space in the cardinality of the data appearing in the processed prefix of the

monitored temporal structure. This is in contrast to complexity results for other approaches,

such as the logical data expiration technique proposed for 2-FOL [30]. While this logic is at

least as expressive as MFOTL, the space required for monitoring (syntactically-restricted)

2-FOL formulae is non-elementary in the cardinality of the data in the processed prefix.

Overall, we see our contributions as follows. First, the presented monitor admits a

substantially more expressive logic than previous monitoring approaches. In particular,

by supporting arbitrary bounded MFOTL formulae, it significantly extends Chomicki’s dy-

namic integrity checking approach for temporal databases [8]. Second, we extend runtime

monitoring to automatic structures, which allows for the unrestricted use of negation and

quantification in monitored formulae. Third, for the restricted setting where all relations are

finite, we show how to implement our monitor using relational databases. Here, we extend

the rewrite procedure of [11] to handle a larger class of temporal formulae. We then prove

that, under an additional restriction, the space consumed by our monitor is polynomially

bounded in the cardinality of the data appearing in the processed prefix of a monitored

temporal structure. Finally, our work shows how to effectively combine ideas from differ-

ent, but related areas, including database theory, runtime monitoring, model checking, and

model theory.

This paper is an extended abstract. Full details are presented in [5].

2 Metric First-order Temporal Logic

In this section, we introduce metric first-order temporal logic (MFOTL) [8], which extends

propositional metric temporal logic [19] in a standard way. In the forthcoming sections, we

present a method for monitoring requirements formalized within MFOTL.

1It is unknown whether the past-only fragment of MFOTL is as expressive as the fragment with both past
and bounded future operators and whether formulae in the past-only fragment can be expressed as succinctly
as those in the future-bounded fragment.
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Syntax and Semantics. Let I be the set of nonempty intervals over N. We often write an

interval in I as [c, d), where c ∈ N, d ∈ N ∪ {∞}, and c < d, i.e., [c, d) := {a ∈ N | c ≤
a < d}. A signature S is a tuple (C,R, a), where C is a finite set of constant symbols, R is a

finite set of predicates disjoint from C, and the function a : R→ N associates each predicate

r ∈ R with an arity a(r) ∈ N. For the rest of this paper, V denotes a countably infinite set of

variables, where we assume that V ∩ (C ∪ R) = ∅, for every signature S = (C,R, a). In the

following, let S = (C,R, a) be a signature.

DEFINITION 1. The formulae over S are inductively defined: (i) For t, t′ ∈ V ∪ C, t ≈ t′

and t ≺ t′ are formulae. (ii) For r ∈ R and t1, . . . , ta(r) ∈ V ∪ C, r(t1, . . . , ta(r)) is a formula.
(iii) For x ∈ V, if θ and θ′ are formulae then (¬θ), (θ ∧ θ′), and (∃x. θ) are formulae. (iv) For
I ∈ I, if θ and θ′ are formulae then ( I θ), (#I θ), (θ SI θ′), and (θ UI θ′) are formulae.

To define the semantics of MFOTL, we need the following notions: A (first-order) struc-

ture D over S consists of a domain |D| 6= ∅ and interpretations cD ∈ |D| and rD ⊆ |D|a(r),
for each c ∈ C and r ∈ R. A temporal (first-order) structure over S is a pair (D, τ), where

D = (D0,D1, . . . ) is a sequence of structures over S and τ = (τ0, τ1, . . . ) is a sequence of

natural numbers (time stamps), where:

1. The sequence τ is monotonically increasing (i.e., τi ≤ τi+1, for all i ≥ 0) and makes

progress (i.e., for every i ≥ 0, there is some j > i such that τj > τi).

2. D has constant domains, i.e., |Di| = |Di+1|, for all i ≥ 0. We denote the domain by |D|
and require that |D| is linearly ordered by the relation <.

3. Each constant symbol c ∈ C has a rigid interpretation, i.e., cDi = cDi+1 , for all i ≥ 0. We

denote the interpretation of c by cD.

A valuation is a mapping v : V → |D|. We abuse notation by applying a valuation v also to

constant symbols c ∈ C, with v(c) = cD. For a valuation v, a variable vector x̄ = (x1, . . . , xn),
and d̄ = (d1, . . . , dn) ∈ |D|n, v[x̄/d̄] is the valuation that maps xi to di, for i such that

1 ≤ i ≤ n, and the valuation of the other variables is unaltered.

DEFINITION 2. Let (D, τ) be a temporal structure over S, with D = (D0,D1, . . . ) and τ =
(τ0, τ1, . . . ), θ a formula over S, v a valuation, and i∈N. We define (D, τ, v, i) |= θ as follows:

(D, τ, v, i) |= t ≈ t′ iff v(t) = v(t′)
(D, τ, v, i) |= t ≺ t′ iff v(t) < v(t′)
(D, τ, v, i) |= r(t1, . . . , ta(r)) iff (v(t1), . . . , v(ta(r))) ∈ rDi

(D, τ, v, i) |= (¬θ1) iff (D, τ, v, i) 6|= θ1
(D, τ, v, i) |= (θ1 ∧ θ2) iff (D, τ, v, i) |= θ1 and (D, τ, v, i) |= θ2
(D, τ, v, i) |= (∃x. θ1) iff (D, τ, v[x/d], i) |= θ1, for some d ∈ |D|
(D, τ, v, i) |= ( I θ1) iff i > 0, τi − τi−1 ∈ I, and (D, τ, v, i− 1) |= θ1
(D, τ, v, i) |= (#I θ1) iff τi+1 − τi ∈ I and (D, τ, v, i + 1) |= θ1
(D, τ, v, i) |= (θ1 SI θ2) iff for some j ≤ i, τi − τj ∈ I, (D, τ, v, j) |= θ2,

and (D, τ, v, k) |= θ1, for all k ∈ [j + 1, i + 1)
(D, τ, v, i) |= (θ1 UI θ2) iff for some j ≥ i, τj − τi ∈ I, (D, τ, v, j) |= θ2,

and (D, τ, v, k) |= θ1, for all k ∈ [i, j)

Note that the temporal operators are augmented with lower and upper bounds. A

temporal formula is only satisfied if it is satisfied within the bounds given by the temporal

operator, which are relative to the current time stamp τi.
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Terminology and Notation. We use standard syntactic sugar such as the standard con-

ventions concerning the binding strength of operators to omit parentheses (e.g., temporal

operators bind weaker than Boolean connectives and quantifiers) and we use standard tem-

poral operators (e.g., �I θ := true SI θ, where true abbreviates ∃x. x ≈ x). Note that the

non-metric variants of the temporal operators are easily defined (e.g., � θ := �[0,∞) θ).

We call formulae of the form t ≈ t′, t ≺ t′, and r(t1, . . . , ta(r)) atomic, and formulae

with no temporal operators first-order. The outermost connective (i.e., Boolean connective,

quantifier, or temporal operator) occurring in a formula θ is called the main connective of

θ. A formula that has a temporal operator as its main connective is a temporal formula. A

formula θ is bounded if the interval I of every temporal operator UI occurring in θ is finite.

MFOTL denotes the set of MFOTL formulae and FOL the set of first-order formulae. For

θ∈MFOTL, we define its immediate temporal subformulae tsub(θ) to be: (i) tsub(α) if θ =¬α

or θ =∃x. α; (ii) tsub(α) ∪ tsub(β) if θ = α ∧ β; (iii) {θ} if θ is a temporal formula; and (iv) ∅

otherwise. E.g., for θ := ( α)∧ ((# β) S[1,9) γ), we have that tsub(θ) = { α, (# β) S[1,9) γ}.
If θ ∈ MFOTL has the free variables given by the vector x̄ = (x1, . . . , xn), we define the

set of satisfying assignments at time instance i as

θ(D,τ,i) :=
{

d̄ ∈ |D|n
∣

∣ (D, τ, v[x̄/d̄], i) |= θ, for some valuation v
}

.

For θ ∈ FOL, we write (Di, v) |= θ instead of (D, τ, v, i) |= θ and θDi for θ(D,τ,i). Note that

(Di, v) |= θ agrees with the standard definition of satisfaction in first-order logic.

3 Monitoring by Reduction to First-order Queries

To effectively monitor MFOTL formulae, we restrict both the formulae and the temporal

structures under consideration. We discuss these restrictions in §3.1 and describe monitor-

ing in §3.2–§3.5.

3.1 Restrictions

Throughout this section, let (D, τ) be a temporal structure over the signature S = (C,R, a)
and ψ the formula to be monitored. We make the following restrictions on ψ and D. First,

we require ψ to be of the form � φ, where φ is bounded. It follows that ψ describes a safety

property [3]. Note though that not all safety properties can be expressed by formulae of

this form [9]. This is in contrast to propositional linear temporal logic, where every safety

property can be expressed as � β, where β contains only past-time operators [21].

Second, we require that each structure in D is automatic [18]. Roughly speaking, this

means that each structure in D can be finitely represented by a collection of automata over

finite words. Let us briefly recall some background on automatic structures [7, 18]. Let Σ

be an alphabet and # a symbol not in Σ. The convolution of the words w1, . . . ,wk ∈ Σ∗ with

wi = wi1 · · ·wiℓi is the word

w1 ⊗ · · · ⊗ wk :=





w′11
...

w′k1



 · · ·





w′1ℓ
...

w′kℓ



 ∈
((

Σ ∪ {#}
)k)∗

,

where ℓ = max{ℓ1, . . . , ℓk} and w′ij = wij, for j ≤ ℓi and w′ij = # otherwise. The padding

symbol # is added to the words wi to ensure that all of them have the same length.
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DEFINITION 3. A structure A over a signature S = (C,R, a) is automatic if there is a reg-
ular language L|A| ⊆ Σ∗ and a surjective function ν : L|A| → |A| such that the languages
L≈ := {u ⊗ v | u, v ∈ L|A| with ν(u) = ν(v)} and Lr := {u1 ⊗ · · · ⊗ ua(r) | u1, . . . , ua(r) ∈
L|D| with (ν(u1), . . . , ν(ua(r))) ∈ rA}, for each r ∈ R, are regular.

An automatic representation of the automatic structure A consists of (i) the function ν :

L|A| → |A|, (ii) a family of words (wc)c∈C with wc ∈ L|A| and ν(wc) = cA, for all c ∈ C,

and (iii) a collection (A|A|,A≈, (Ar)r∈R) of automata that recognize the languages L|A|, L≈,
and Lr, for all r ∈ R. In the following, we assume that for an automatic structure, we

always have an automatic representation for it at hand. A relation rA ⊆ |A|k is regular if

the language {u1 ⊗ · · · ⊗ uk | u1, . . . , uk ∈ L|A| with (ν(u1), . . . , ν(uk)) ∈ r} is regular. Note

that an automaton reads the components of the convolution of a representative of ā ∈ |A|k
synchronously.

In addition to the requirement that each structure in D is automatic, we require that D

has a constant domain representation. This means that the domain of each Di is represented

by the same regular languageL|D| and eachword inL|D| represents the same element in |D|,
i.e., each automatic representation has the same function ν : L|D| → |D|. Finally, we assume

that |D| = N and that < is the standard ordering on N. This is without loss of generality

whenever the function ν is injective, i.e., every element in |D| has only one representative in

L|D|. Furthermore, note that every automatic structure has an automatic representation in

which the function ν is injective [18].

Note that for a first-order formula θ, we can effectively construct an automaton that

represents the set θDi . Moreover, various basic arithmetical relations are first-order defin-

able in the structure (N,<) and thus regular. For example, the successor relation {(x, y) ∈
N

2 | y = x + 1} and the relation {(x, y) ∈ N
2 | x + d ≤ y}, for any d ∈ N, are regular.

Before presenting our monitoring method, we give two examples of system proper-

ties expressed in the MFOTL fragment that our monitor can handle. First, the property

“whenever the program variable in stores the input x, then x must be stored in the pro-

gram variable out within 5 time units” can be expressed by � ∀x. in(x) → ♦[0,6) out(x).
Second, the property “the value of the program variable v increases by 1 in each step

from an initial value 0 until it becomes 5 and then it stays constant” can be formalized

as �(¬( true) → v(0)) ∧ (∃i. v(i) ∧ i ≺ 5 → # v(i + 1)) ∧ (v(5) → # v(5)). Note that we

use relations that are singletons to model program variables.

3.2 Overview of the Monitoring Method

To monitor the formula � φ over a temporal structure (D, τ), we incrementally build a se-

quence of structures D̂0, D̂1, . . . over an extended signature Ŝ. The extension depends on the

temporal subformulae of φ. For each time point i, we determine the elements that violate φ

by evaluating a transformed formula ¬φ̂ ∈ FOL over D̂i. Observe that with future opera-

tors, we usually cannot do this yet when time point i occurs. Our monitor, which we present

in §3.5, therefore maintains a list of unevaluated subformulae for past time points. In the

following, we first describe how we extend S and transform φ. Afterwards, we explain how

we incrementally build D̂i. Finally, we present our monitor and prove its correctness.
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3.3 Signature Extension and Formula Transformation

In addition to the predicates in R, the extended signature Ŝ contains an auxiliary predicate

pα for each temporal subformula α of φ. For subformulae of the form β SI γ and β UI γ,

we introduce further predicates, which store information that allows us to incrementally

update the auxiliary relations.

DEFINITION 4. Let Ŝ := (Ĉ, R̂, â) be the signature with Ĉ := C and R̂ is the union of the sets
R, {pα | α temporal subformula of φ}, {rα | α subformula of φ of the form β SI γ or β UI γ},
and {sα | α subformula of φ of the form β UI γ}. For r ∈ R, let â(r) := a(r). If α is a temporal
subformula with n free variables, then â(pα) := n, and â(rα) := n + 1 and â(sα) := n + 2, if
rα and sα exist. We assume that pα, rα, sα 6∈ C∪ R∪ V.

We transform MFOTL formulae over the signature S into first-order formulae over the

extended signature Ŝ as follows.

DEFINITION 5. For θ ∈ MFOTL, we define (i) θ̂ := ¬β̂ if θ is of the from ¬β, (ii) θ̂ := β̂∧ γ̂ if
θ is of the form β ∧ γ, (iii) θ̂ := ∃y. β̂ if θ is of the form ∃y. β, (iv) θ̂ := pθ(x̄) if θ is a temporal
formula with the vector of free variables x̄, and (v) θ̂ := θ if θ is an atomic formula.

We assume throughout this section, without loss of generality, that each subformula

of φ has the vector of free variables x̄ = (x1, . . . , xn). The formula transformation has the

following properties, which are easily shown by an induction over the formula structure.

LEMMA 6. Let θ be a subformula of φ. For all i ∈ N, the following properties hold:

(i) If pD̂i
α = α(D,τ,i) for all α ∈ tsub(θ), then θ̂D̂i = θ(D,τ,i).

(ii) If pD̂i
α is regular for all α ∈ tsub(θ), then θ̂D̂i is regular.

3.4 Incremental Extended Structure Construction

We now show how the auxiliary relations in the D̂is are incrementally constructed. Their in-

stantiations are computed recursively both over time and over the formula structure, where

evaluations of subformulae may also be needed from future time points. We later show that

this is well-defined and can be evaluated incrementally.

For c ∈ C and r ∈ R, we define cD̂i := cDi and rD̂i := rDi . We address the auxiliary

relations for each type of main temporal operator separately.

Previous and Next. For α =  I β with I ∈ I, we define pD̂i
α as β̂D̂i−1 if i > 0 and τi − τi−1 ∈

I, and pD̂i
α := ∅ otherwise. Intuitively, a tuple ā is in pD̂i

α if ā satisfies β at the previous time

point i− 1 and the difference of the two successive time stamps is in the interval I.

LEMMA 7. Let α =  I β. For i > 0, if p
D̂i−1
δ is regular and p

D̂i−1
δ = δ(D,τ,i−1) for all δ ∈ tsub(β),

then pD̂i
α is regular and pD̂i

α = α(D,τ,i). Moreover, pD̂0
α is regular and pD̂0

α = α(D,τ,0).

PROOF. For i = 0, the lemma obviously holds. For i > 0, the regularity of pD̂i
α follows

from the assumption that the relations p
D̂i−1
δ are regular and Lemma 6(ii). The equality of

the two sets follows from Lemma 6(i) and the semantics of the temporal operator  I .
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For α = #I β with I ∈ I, we define pD̂i
α as β̂D̂i+1 if τi+1 − τi ∈ I, and pD̂i

α := ∅ otherwise.

Note that the definition of pD̂i
α depends on the relations of the next structure Di+1 and on the

auxiliary relations for δ ∈ tsub(β) of the next extended structure D̂i+1. Hence, the monitor

instantiates pD̂i
α with a delay of at least one time step.

LEMMA 8. Let α = #I β. If p
D̂i+1

δ is regular and p
D̂i+1

δ = δ(D,τ,i+1) for all δ ∈ tsub(β), then pD̂i
α

is regular and pD̂i
α = α(D,τ,i).

Since and Until. We first address the past-time operator SI with I = [c, d) ∈ I. Assume

that α = β SI γ. We start with the initialization and update of the auxiliary relations for rα.

We define rD̂0
α := γ̂D̂0 × {0} and for i > 0, we define

rD̂i
α :=

(

γ̂D̂i×{0}
)

∪
{

(ā, y)∈N
n+1

∣

∣ ā∈ β̂D̂i , y<d, and (ā, y′)∈ rD̂i−1
α , for y′=y− τi + τi−1

}

.

Intuitively, a pair (ā, y) is in rD̂i
α if ā satisfies α at time point i independent of the lower bound

c, where the “age” y indicates how long ago the formula γ was satisfied by ā. If ā satisfies

γ at the time point i, it is added to rD̂i
α with the age 0. For i > 0, we additionally update the

tuples (ā, y) ∈ r
D̂i−1
α . First, ā must satisfy β at the time point i. Second, the age is adjusted

by the difference of the time stamps τi−1 and τi. Third, the new age must be less than d,

otherwise it is too old to satisfy α.

The arithmetic constraint y′ = y− τi + τi−1 in the definition of rD̂i
α for i > 0 is first-order

definable in D. Note that τi + τi−1 is a constant value. Now it is not hard to see that rD̂i
α is

regular if all its components are regular.

With the relation rD̂i
α , we can determine the elements that satisfy α at the time point i.

We define pD̂i
α :=

{

ā ∈ N
n
∣

∣ (ā, y) ∈ rD̂i
α , for some y ≥ c

}

.

LEMMA 9. Let α = β S[c,d) γ. Assume that p
D̂j

δ is regular and p
D̂j

δ = δ(D,τ,j), for all j ≤ i and
δ ∈ tsub(β) ∪ tsub(γ). Then the following properties hold:

(i) The relation rD̂i
α is regular and for all ā ∈ N

n and y ∈ N,

(ā, y) ∈ rD̂i
α iff

there is a j ∈ [0, i + 1) such that y = τi − τj < d , ā ∈ γ(D,τ,j) ,

and ā ∈ β(D,τ,k), for all k ∈ [j + 1, i + 1) .

(ii) The relation pD̂i
α is regular and pD̂i

α = α(D,τ,i).

Note that the definition of rD̂i
α only depends on the relation r

D̂i−1
α , if i > 0, and on the

relations in D̂i for which the corresponding predicates occur in the subformulae of β̂ or γ̂.

Furthermore, the definition of pD̂i
α only depends on rD̂i

α .

We now address the bounded future-time operator UI with I = [c, d) ∈ I and d ∈ N.

Assume that α = β UI γ. For all i ∈ N, let ℓi := max{j ∈ N | τi+j − τi < d}. We call ℓi the

lookahead offset at time point i. For convenience, let ℓ−1 := 0. To instantiate the relation pD̂i
α ,

only the relations pD̂i
δ , . . . , p

D̂i+ℓi
δ are relevant, where δ ∈ tsub(β) ∪ tsub(γ). The definition of

pD̂i
α is based on the auxiliary relations rD̂i

α and sD̂i
α , which we first show how to initialize and

update.
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We define rD̂i
α as the union of the sets Nr and Ur. Nr contains the tuples that are new in

the sense that they are obtained from data at the time points i + ℓi−1, . . . , i + ℓi; Ur contains

the updated data from the time points i, . . . , i + ℓi−1 − 1. Formally, we define

Nr :=
{

(ā, j) ∈ N
n+1

∣

∣ ℓi−1 ≤ j ≤ ℓi, ā ∈ γ̂D̂i+j , and τi+j − τi ≥ c
}

Ur :=

{

{

(ā, j) ∈ N
n+1

∣

∣ (ā, j + 1) ∈ r
D̂i−1
α and τi+j − τi ≥ c

}

if i > 0,

∅ otherwise.

Intuitively, rD̂i
α stores the tuples satisfying the formula ♦I γ at the time point i, where each

tuple in rD̂i
α is augmented by the index relative to i where the tuple satisfies γ.

Similarly to rD̂i
α , the relation sD̂i

α is the union of a set Ns for the new elements and a set

Us for the updates. These two sets are defined as

Ns :=
{

(ā, j, j′) ∈ N
n+2

∣

∣ ℓi−1 ≤ j ≤ j′ ≤ ℓi and ā ∈ β̂D̂i+k , for all k ∈ [j, j′ + 1)
}

and Us := ∅ if i = 0, and

Us :=
{

(ā, j, j′) ∈ N
n+2

∣

∣ (ā, j + 1, j′ + 1) ∈ s
D̂i−1
α

}

∪
{

(ā, j, j′) ∈ N
n+2

∣

∣ (ā, j + 1, ℓi−1) ∈ s
D̂i−1
α and (ā, ℓi−1, j′) ∈ Ns

}

otherwise. Intuitively, sD̂i
α stores the tuples and the bounds of the interval (relative to i) in

which β is satisfied.

With the relations rD̂i
α and sD̂i

α at hand, we define

pD̂i
α :=

{

ā ∈ N
n
∣

∣ (ā, j) ∈ rD̂i
α and (ā, 0, j′) ∈ sD̂i

α , for some j ≤ j′ + 1
}

.

LEMMA 10. Let α = β UI γ. Assume that pD̂k
δ is regular and pD̂k

δ = δ(D,τ,k), for all k ≤ i + ℓi

and δ ∈ tsub(β) ∪ tsub(γ). Then the following properties hold:

(i) The relation rD̂i
α is regular and for all ā ∈ N and j ∈ N,

(ā, j) ∈ rD̂i
α iff ā ∈ γ(D,τ,i+j) and τi+j − τi ∈ I .

(ii) The relation sD̂i
α is regular and for all ā ∈ N

n and j, j′ ∈ N,

(ā, j, j′) ∈ sD̂i
α iff j ≤ j′, τi+j′ − τi < d, and ā ∈ β(D,τ,i+k), for all k ∈ [j, j′ + 1) .

(iii) The relation pD̂i
α is regular and pD̂i

α = α(D,τ,i).

3.5 Monitor and Correctness

Figure 1 presents the monitorM(φ). Without loss of generality, it assumes that each tem-

poral subformula occurs only once in φ. In the following, we outline its operation.

The monitor uses two counters i and q. The counter i is the index of the current element

(Di, τi) in the input sequence (D0, τ0), (D1, τ1), . . . , which is processed sequentially. Initially,

i is 0 and it is incremented at the end of each loop iteration (lines 4–16). The counter q ≤ i

is the index of the next time point q (possibly in the past, from the point of view of i) for

which we evaluate ¬φ̂ over the structure D̂q. The evaluation is delayed until the relations

p
D̂q
α for α ∈ tsub(φ) are all instantiated (lines 10–13). Furthermore, the monitor uses the list2

2We abuse notation by using set notation for lists. Moreover, we assume that Q is ordered in that (α, j, S)
occurs before (α′, j′, S′), whenever α is a proper subformula of α′, or α = α′ and j < j′.
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1: i← 0 % current index in input sequence (D0, τ0), (D1, τ1), . . .
2: q← 0 % index of next query evaluation in sequence (D0, τ0), (D1, τ1), . . .
3: Q←

{(

(α, 0,waitfor(α)
) ∣

∣ α temporal subformula of φ
}

4: loop
5: Carry over constants and relations of Di to D̂i.
6: for all (α, j,∅) ∈ Q do % respect ordering of subformulae

7: Build relations for α in D̂j (e.g., build r
D̂j
α and p

D̂j
α if α = β SI γ).

8: Discard auxiliary relations for α in D̂j−1 if j− 1 ≥ 0 (e.g., discard r
D̂j−1
α if α = β SI γ).

9: Discard relations p
D̂j

δ , where δ is a temporal subformula of α.

10: while all relations p
D̂q
α are built for α ∈ tsub(φ) do

11: Output valuations violating φ at time point q, i.e., output (¬φ̂)D̂q and q.
12: Discard structure D̂q−1 if q− 1 ≥ 0.
13: q← q + 1
14: Q←

{(

α, i + 1,waitfor(α)
) ∣

∣ α temporal subformula of φ
}

∪
{(

α, j,
⋃

θ∈update(S,τi+1−τi) waitfor(θ)
) ∣

∣ (α, j, S) ∈ Q and S 6= ∅
}

15: i← i + 1 % process next element in input sequence (Di+1, τi+1)
16: end loop

Figure 1: MonitorM(φ)

Q to ensure that the auxiliary relations of D̂0, D̂1, . . . are built at the right time: if (α, j,∅)
is an element of Q at the beginning of a loop iteration, enough time has elapsed to build

the relations for the temporal subformula α of the structure D̂j. The monitor initializes Q

in line 3. The function waitfor extracts the subformulae that cause a delay of the formula

evaluation. We define waitfor(θ) to be: (i) waitfor(β) if θ = ¬β, θ = ∃x. β, or θ =  I β;

(ii) waitfor(β) ∪waitfor(γ) if θ = β ∧ γ or θ = β SI γ, (iii) {θ} if θ = #I β or θ = β UI γ, and

(iv) ∅ otherwise. The list Q is updated in line 14 before we increment i and start a new loop

iteration. For the update we use the function update that is defined as

update(U,∆) := {β | #I β ∈ U} ∪ {β U[max{0,c−∆},d−∆) γ | β U[c,d) γ ∈ U, with d− ∆ > 0} ∪
{β | β U[c,d) γ ∈ U or γ U[c,d) β ∈ U, with d− ∆ ≤ 0} ,

for a formula set U and ∆ ∈ N. The update adds a new tuple (α, i + 1,waitfor(α)) to Q,

for each temporal subformula α of φ, and it removes the tuples of the form (α, j,∅) from Q.

Moreover, for tuples (α, j, S) with S 6= ∅, the set S is updated using the functions waitfor

and update by taking into account the elapsed time to the next time point, i.e. τi+1 − τi.

In lines 6–9, we build the relations for which enough time has elapsed, i.e., the auxiliary

relations for α in D̂j with (α, j,∅) ∈ Q. Since a tuple (α′, j,∅) does not occur before a tuple

(α, j,∅) in Q, where α is a subformula of α′, the relations in D̂j for α are built before those

for α′. To build the relations, we use the incremental constructions described earlier in this

section. We thus discard certain relations after we have built the relations for α in D̂j to

reduce space consumption. For instance, if j > 0 and α = β SI γ, we discard the relation

r
D̂j−1
α , and we discard r

D̂j−1
α and s

D̂j−1
α when α = β UI γ.

In lines 10–13, the valuations violating φ at time point q are output together with q,

for all q where the relations p
D̂q
α of all immediate temporal subformulae α of φ have been

built. After an output, the remainder of the extended structure D̂q−1 is discarded and q is

incremented by 1.
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THEOREM 11. The monitorM(φ) from Figure 1 has the following properties:

(i) Whenever M(φ) outputs (¬φ̂)D̂q , then (¬φ̂)D̂q = (¬φ)(D,τ,q). Furthermore, the set

(¬φ̂)D̂q is effectively constructable and finitely representable.
(ii) For every n ∈ N,M(φ) eventually sets the counter q to n in some loop iteration.

4 MFOTL Monitoring with Finite Relations

In this section, we sketch how to use relational databases as an alternative to automata for

implementing our monitor and analyze its space complexity. Details are provided in [5].

In the following, we assume that all relations are finite and thus can be stored in a rela-

tional database. When replacing “regular” by “finite”, however, our constructions from §3.4,
in particular Lemmas 7–10, become invalid. The problem is that the auxiliary relations

constructed for the temporal subformulae are possibly infinite. We overcome this prob-

lem by extending work from database theory on domain independence [14]. In particular,

we generalize the solutions for first-order queries [2] and non-metric first-order temporal

logic [8, 10, 11] to MFOTL formulae by trying to rewrite the given MFOTL formula φ so that

all temporal subformulae and their direct subformulae have only finitely many satisfying

valuations. After rewriting the formula φ, we check, based on the syntax of the result ψ,

whether each θ ∈ {α | α = ψ, α is a temporal subformula of ψ, or α is a direct subformula of

a temporal subformula of ψ} is temporal domain independent. If ψ passes this check, we know

that it can be handled by our monitor for finite relations. Otherwise, no conclusions can be

drawn. For the rest of this section, we assume that φ, all temporal subformulae of φ, and all

direct subformulae of temporal subformulae of φ are temporal domain independent.

We now analyze the memory consumption of our monitor for finite relations. To obtain

a polynomial bound on the memory consumption, we modify M(φ) as follows: (i) the

counters i and q are replaced by the relative counter i− q and (ii) the update constructions

for subformulae of the form α = β S[c,∞) γ are modified to prevent the “age” y of a tuple

(ā, y) ∈ r
D̂i−1
α from increasing forever. The analyze the resources consumed by monitors in

general, we introduce the following abstract notion. Let C be a class of temporal structures

over the signature S = (C,R, a) and let pre(C) denote the set of nonempty finite prefixes of

the temporal structures in C.

DEFINITION 12. Let f , g : pre(C) → N and s : N → N be functions. We write f ⊳
s g if

f (D̄, τ̄) < s(g(D̄, τ̄)), for all (D̄, τ̄) ∈ pre(C).

In our context, the function f : pre(C) → N measures the consumption of a particular

resource (e.g., storage) of a monitor after it has processed the finite prefix (D̄, τ̄). The func-
tion g : pre(C) → N measures the size of the prefix (D̄, τ̄). Intuitively, f ⊳

s g means that,

at any time point, the resource consumption (measured by f ) of the monitor is bounded by

the function s : N → N with respect to the size of the processed prefix (measured by g) of

an input from C. We use the following concrete functions f and g. Let (D̄, τ̄) ∈ pre(C) with

D̄ = (D0, . . . ,Di) and τ̄ = (τ0, . . . , τi).

– We define g(D̄, τ̄) := |adom(D̄)|, where adom(D̄) is the active domain of (D̄, τ̄), i.e.,
adom(D̄) := {cD0 | c ∈ C} ∪ ⋃

0≤k≤i
⋃

r∈R{dj | (d1, . . . , da(r)) ∈ rDk and 1 ≤ j ≤ a(r)} .
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Note that g only counts the number of elements of D̄ that are constants or that occur

in some of D̄’s relations. It ignores the sizes of these elements as well as the number

of times and where an element appears in D̄. It also ignores the time stamps in τ̄.

– We define f (D̄, τ̄) to be the sum of the cardinalities of the relations for r ∈ R̂ stored by

M(φ) after the (i+ 1)st loop iteration, having processed the input (D0, τ0), . . . , (Di, τi).

Note that f ⊳
s g is a desirable property of a monitor. It says that the amount of data stored

does not depend on how long the monitor has been running but only on the number of

domain elements that appeared so far, and that the stored data is bounded by the func-

tion s. We remark that the property of a (polynomially) bounded history encoding [8] can

be formalized as f ⊳
s g, for some (polynomial) s : N → N.

THEOREM 13. Let C be a class of temporal databases. Assume that there is some ℓ ∈ N

such that max{j | τi = τi+1 = . . .= τi+j} < ℓ, for all (D, τ) ∈ C and all i ∈ N. Then, we have
that f ⊳

s g, where s : N → N is a polynomial of degree max{a(r) | r ∈ R̂}.

Note that if such a bound ℓ on the sequence τ of time stamps does not exist, we cannot

guarantee any upper bound on f . It is open whether Theorem 13 can be carried over to

temporal structures with possibly infinite relations and automatic representations.

5 Conclusion and Future Work

We have presented an automata-based monitoring approach for an expressive fragment of

a metric first-order temporal logic. The use of automata substantially generalizes both the

kinds of structures and the class of formulae that can be monitored. Moreover, it elimi-

nates the limitations that arise in databases, where relations must be finite. An interesting

question here is to what extent the use of automatic structures can be carried over to other

monitoring approaches, thereby solving the problems they have with infinite relations.

One direction for future work is to explore whether our approach can be used to moni-

tor temporal first-order logics that have an interval-based semantics instead of a point-based

semantics, or a combined interval and point-based semantics, which is useful for modeling

state and event predicates. Another direction is to conduct a refined complexity analysis for

our algorithm with automatic structures and to validate our results by implementation and

testing. In particular, we plan to design and evaluate data structures and algorithms for effi-

ciently incrementally updating relations, which is at the heart of our monitoring algorithm.
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ABSTRACT. We study the decision theory of a maximally risk-averse investor — one whose objec-
tive, in the face of stochastic uncertainties, is to minimize the probability of ever going broke. With a
view to developing the mathematical basics of such a theory, we start with a very simple model and
obtain the following results: a characterization of best play by investors; an explanation of why poor
and rich players may have different best strategies; an explanation of why expectation-maximization
is not necessarily the best strategy even for rich players. For computation of optimal play, we show
how to apply the Value Iteration method, and prove a bound on its convergence rate.

1 Introduction

A key concern in computer science and operations research is decision-making under uncer-

tainty. We define a very simple game that helps us study the issue of solvency, or indefinite

survival, in the presence of stochastic uncertainties. In Section 1.1 below we provide some

motivating reasons for studying this issue.

We start by defining the model. A state of the game is an integer, which we call the

wealth of the player. An action (representing, say, an investment choice) is a finitely sup-

ported probability distribution on the integers; this distribution specifies the probabilities

with which various payoffs are received, if this action is chosen. Let w be the wealth of the

player at time t. Let A be a set of actions. Suppose that after choosing a particular action

from A, the random variable sampled from that action is a. Then at time t + 1 the wealth

of the player is w + a. The game terminates if the player goes broke (wealth becomes ≤ 0).

A strategy π for the set A of actions is a function π : Z+ → A specifying the action that is

chosen at each possible value of wealth. Corresponding to strategy π, define

pπ(w) = Pr[ever going broke, starting from wealth w],

for each w ∈ Z+. The object of interest is a strategy that minimizes pπ(w) for each value of

w ∈ Z+. In this notation there are two implicit assumptions regarding an optimal strategy:
c© Berger, Kapur, Schulman and Vazirani; licensed under Creative Commons License-NC-ND
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that the action depends only on current wealth (not past history), and that the action is

deterministic. Both assumptions can be made without loss of generality.

This model, which is a certain kind of infinite-state Markov Decision Process (MDP), is

a natural and elementary one to consider both from the point of view of probability theory,

and that of mathematical finance. As far as we have been able to determine it has not

previously been studied.

Before going into detail we pause for a simple illustration. Suppose two actions are

available, called A and B; let qAi denote the probability of winning i dollars with action A:

Action A: qA−1 = 0.5, qA15 = 0.5 Action B: qB−10 = 0.5, qB150 = 0.5

Expected profit is ten times greater in action B, but it is easy to see that an investor with, say

$10, has probability of survival less than 1/2 if he plays B, and close to 1 if he chooses and

sticks to A. This illustrates howmaximizing the likelihood of solvency can be quite different

from maximizing expected profit. The problem, of course, is to determine proper strategy

in less obvious situations.

1.1 Motivation

There are a couple of reasons to focus on maximization of the likelihood of indefinite sur-

vival. The first concerns investment strategies of individual, “middle class” investors. Eco-

nomic decision theory concerns itself largely (though not solely) with maximization of util-

ity as expressed by expected profit (or log profit). This framework may be appropriate to

the decision theory of a shareholder-owned firm, whose bankruptcy creates an unpleasant

but bounded effect on a balanced portfolio. But it is ill suited to the decision theory of an

individual investor, whose goal is often not maximization of wealth for its own sake, but

financial stability. For such a typical investor, bankruptcy, and its consequences for self and

family, are dearly to be avoided.

The second reason concerns investment (loan) strategies of banks, which are unlike

other corporations in that they are supposed to provide their depositors with a strong as-

surance of preservation of capital. The incompatibility between doing so and acting com-

petitively in the loan marketplace has led to banking crises which have been addressed in

part through government intervention including, in the USA, both federal deposit insurance

and mandatory holding requirements. These restrict the extent to which banks can pursue

purely profit-maximizing strategies (although we do not suggest that banks conversely act

to maximize probability of indefinite solvency).

We return to the clash between optimizing for profit or survival. Naturally, a good way

to avoid bankruptcy is to make a lot of money! But investment decisions entail a trade-off

between risk and reward. The most secure investments typically provide returns below or

only marginally above the inflation rate. So even a decision-maker whose sole purpose is to

avoid bankruptcy cannot escape risk entirely, andmust weigh the alternatives. The purpose

of this paper is to develop some basic ingredients relevant to these decisions. In defining our

model, simplicity is a key criterion. As a result, the model does not capture complications

that always accompany realistic situations. On the other hand, this simplicity leads to clean

mathematics and a basis from which more elaborate models can be considered.
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1.2 Related work

As noted, the simple model defined above has apparently not been studied before. How-

ever, our motivation is very similar to that of previous authors, especially Ferguson [4],

Truelove [11] and Browne [2]. The models are different enough to make the conclusions

incomparable; some main differences are that in the previous work (a) The player has only

one investment choice at any one time, and is simply deciding howmuch to invest, (b) That

amount is unbounded except by the player’s wealth. In some of the results, even the last

restriction is dropped, and the player is permitted to borrow unlimited funds, sometimes

with and sometimes without interest. Put simply, these authors’ models are more general in

allowing for investment scaling, and more special in not posing choices between dissimilar

types of investments. The latter issue is the grist of our work.

An early book in the area, more relevant to Ferguson, Truelove and Browne’s work than

ours, is Dubins and Savage [3]. Slightly less related, but still relevant in terms of the motiva-

tion, is work in mathematical finance, in which risk (volatility) vs. reward is often measured

with the Sharpe or Sterling ratios: see, e.g., [8]. Optimal investing by these criteria is less

risk-averse than by ours. Shifting attention from the finance aspect to the decision theory,

our work is more closely related to the large literature on the MDP model [10], a broad for-

malization of the study of decision-making under stochastic uncertainty. Specifically, the

“multi-arm bandit” problem concerns maximizing profit from a collection of actions, where

optimal play is characterized by the well-known Gittins index [6, 12]. Our problem does not

seem to fit into this model.

Perhaps closest to our work is an interesting paper that first appeared in June 2007 [5]∗.
In this paper, Foster and Hart consider the question of measuring the riskiness of a gamble

(their “gamble” has the same definition as our “action”). Surprisingly enough, they show

that this can be boiled down to a single number – the critical wealth. If the wealth is strictly

smaller than this number, it is risky to play the action, i.e., it will lead to bankruptcy with

probability 1. Else, playing this action is guaranteed to not lead to bankruptcy, again with

probability 1.

1.3 Results

The specific questions we address include:

1. In a set A of actions, is there a rich man’s strategy — an investment that is always the

best choice once one’s wealth is above some threshold? Put another way, does the optimal

strategy have a “pure tail”?

Besides its obvious role in the decision theory of our model, this question gets at a real

phenomenon which we feel should be reflected in any good model of risk-averse investing:

that the poor do disproportionately worse than the rich because they can not afford to make

certain investments that are by-and-large profitable, yet risky.

2. If there is a “rich man’s strategy,” what characterizes it, and is there a bound on

the threshold where it takes over? If there isn’t one, then what does the tail of the optimal

∗Most of our results date to 2004 and were presented at the 2004 AGATE Workshop on Algorithmic Game
Theory in Bertinoro, Italy, and at a Plenary talk in RANDOM 2004.
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strategy look like?

3. Can the optimal strategy be computed “efficiently”?

In Sections 3 and 4 we provide answers to these questions. We show that under certain

technical conditions there does exist a richman’s strategy, andwe provide a bound onwhere

the pure tail begins. We also show that in general there is no such strategy — an interesting

phenomenon, since it says that optimal play in a small-stakes game can depend, say, on the

low-order bit of your bank balance. The MDP literature suggests three possible algorithms

for computing the optimal strategy in the pure tail case (where this strategy has a finite

description). For one of these algorithms, Value Iteration, we prove “linear convergence”

(i.e., exponentially decreasing relative error) to the failure function of the optimal strategy.

1.4 Notation, terminology and structure of the paper

An action is represented by a probability mass function on a finite set of integers. For an ac-

tion A, let qAj be the probability that the payoff is j. For an action A, define lA := −min{j <

0 : qAj > 0} and rA := max{j > 0 : qAj > 0}. The action is said to have positive drift if

∑
rA
j=−lA

jqAj > 0. The action is said to be irreducible if gcd
(

{j : qAj > 0}
)

= 1. In this paper all

actions will be assumed to be irreducible and positive drift, though some of our statements

hold more generally.

A strategy (sometimes also referred to as policy or decision rule) is a function π : Z+ →
A, where A is a set of actions. For a strategy π, we define the following Markov chain.

Xt+1 = Xt +Yt where Yt is defined as follows: If Xt ≤ 0 then Yt = 0, whereas if Xt > 0 then

Yt is sampled according to π(Xt), but otherwise independently of X0, . . . ,Xt. The failure

probability at a positive integer w (i.e, the probability of ever going broke) corresponding

to π is defined as pπ(w) := Pr[∃m>0 : Xm ≤ 0 | X1 = w]. A strategy is said to be pure

if π(w) = π(1) for all w ≥ 1. It is said to have a pure tail if there is a w′ ≥ 1 such that

π(w) = π(w′) for all w ≥ w′.

In Section 2 we develop the fairly simple theory of the behavior of the game under

a pure strategy. Being basically a random walk, our results are mostly known. However,

those results serve as necessary tools for the study of optimal strategy. In Section 3 we prove

the main results of the paper - namely conditions for the existence of a rich man’s strategy.

In Section 4 we discuss algorithms for determining the optimal strategy. Missing proofs and

the Appendix can be found in the full paper, available online at ECCC [1].

2 Pure strategies

Consider a pure strategy πA consisting only of the action A with l ≡ lA and r ≡ rA. Then,

the failure probability p(w) ≡ pπA
(w) satisfies the linear recurrence

p(w) =
r

∑
j=−l

qAj p(w + j), w ≥ 1, (1)
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where qj ≡ qAj and with p(w) = 1 for all w ≤ 0. The characteristic rational function of A is

defined as

q(z) ≡ qA(z) := −1+
r

∑
j=−l

qjz
j (2)

LEMMA 1. If q′(1) > 0 then q has exactly l roots in the open unit disk. Furthermore q has a
unique positive root in the open unit disk.

Note that the condition is equivalent to positive drift of the action.

PROOF. It suffices to consider instead the roots of the polynomial

A(z) := zlq(z) :=
l+r

∑
j=0
j 6=l

qj−lz
j − [1− q0]z

l .

Note that A′(1) = q′(1) > 0 and A(1) = 0 so that A(1−) < 0. Furthermore A(0) = q−l > 0

so by continuity, A has a root in (0, 1), call it ζ. For ǫ > 0 define Aǫ(z) := fǫ(z) + h(z),
where

fǫ(z) := −(1+ ǫ)(1− q0)z
l , h(z) :=

l+r

∑
j=0
j 6=l

qj−lz
j.

Consider the circle |z| = ζ. There,

| fǫ(z)| = (1+ ǫ)(1− q0)ζ l > (1− q0)ζ l and |h(z)| ≤
l+r

∑
j=0
j 6=l

qj−lζ
j.

Since ζ is a zero of p, we have | fǫ(z)| > |h(z)| for all z with |z| = ζ. Hence by Rouché’s

theorem (see, e.g., [9]), fǫ and Aǫ have the same number of zeros inside |z| = ζ. But fǫ has

exactly l zeros inside |z| = ζ, and hence so does Aǫ. Similarly Aǫ has exactly l zeros |z| = 1,

so that there are no zeros of Aǫ in ζ < |z| < 1. Now letting ǫ ↓ 0 yields that A has exactly

l zeros in the closed disk |z| ≤ ζ and none in the annulus ζ < |z| < 1 so that the first claim

of the lemma follows.

For the second claim note that if ζ1 and ζ2 are distinct positive zeros of p, an argument

similar to the one above yields that there are no zeros of p in the interval (ζ1, ζ2). The claim
then follows by letting ζ1 = ζ and ζ2 = 1.

Remarks: The positive root of q in the open unit disk will be called the Perron root, for

reasons explained in Appendix A in [1]. Since q(1) = 0, if q′(1) < 0 then there exits z > 1

such q(z) < 0. Also q(z) > 0 for large enough z. It follows then that q has a positive zero

outside the closed unit disk and the proof of Lemma 1 reveals that this zero is unique.

Corollary 2 If a pure strategy πA has positive drift then its failure probabilities are

p(w) ≡ pπA
(w) =

d

∑
j=1

λw
j

mj−1

∑
k=0

cj,kw
k, (3)

where λ1, . . . ,λd are the distinct zeros of q in the interior of the unit disk in decreasing order of norm,

with multiplicities m1, . . . ,md such that m1 + · · · + md = l, and (cj,k) are constants.
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PROOF. Let λ be a zero of the characteristic rational function (2) with multiplicity m. Such

a zero contributes a linear combination of (wjλw)m−1
j=0 to p(w). Furthermore since we know

a priori (see Fact 3) that p(w) → 0 as w → ∞, there cannot be any contribution from zeros

with modulus at least 1. Since the pure strategy has positive drift, we have (qA)′(1) > 0, so

by Lemma 1, qA has exactly l zeros in the unit disc and the result follows.

Remarks: Observe that the recurrence (1) defines a linear transformationmapping the initial

conditions p(w)w≤0 monotonically to p(w)w≥1. In particular, if λ is a zero of q, then (λw)w≤0

is mapped to (λw)w≥1.

3 Optimal strategies

LetA = {A1, . . . , Ak} be a finite set of actions with positive drifts. We consider strategies π :

Z+ → A. We start with a simple fact.

Fact 3 For every strategy π, pπ(w) → 0 as w → ∞.

PROOF. For j = 1, . . . , k, let {Y(j)
n }∞

n=1 be i.i.d. samples of Aj, and assume that for different

values of j, the sequences {Y(j)
n } are independent. The displacement at any time n is of

the form ∑
k
j=1 ∑

nj

i=1 Y
(j)
i , where the {nj} sum to n and are (arbitrarily dependent) random

variables. Fix ǫ. Due to the positive drifts, for all N large enough,

Pr

[

∀n,j

n

∑
i=1

Y
(j)
i > −N/k

]

> 1− ǫ.

But this shows that for all N large enough, pπ(w) < ǫ.

For w ≥ 1, an action A and a sequence p, we define

EA
w(p) :=

rA

∑
j=−lA

qAj p(w + j). (4)

For this to make sense, we need to have values for p(w) for k ≤ 0. Unless otherwise men-

tioned, we take p(w) to be 1 for all w ≤ 0. Similarly for a strategy π we define

Eπ
w(p) := E

π(w)
w (p) (5)

Clearly if p is the failure probability sequence of π, then

p(w) = Eπ
w(p) (6)

for every w ≥ 1. Equation (6) determines p in the following sense:

LEMMA 4. Fix a strategy π and initial conditions b(w), w ≤ 0. There exists a unique solution
to (6) satisfying p(w) = b(w) for all w ≤ 0 and limw→∞ p(w) = 0.

PROOF. This proof follows a conventional outline. Existence follows from Fact 3, Re-

mark 2 and the fact that the probabilities satisfy (6). To see uniqueness, assume that p and

q both satisfy the conditions. Then, h = p − q also satisfies (6), h(w) = 0 for all w ≤ 0
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and limw→∞h(w) = 0. Assume that there exists w′ such that h(w′) 6= 0. Without loss of

generality, h(w′) > 0. Since h(w) → 0, there exists w0 so that h(w) < h(w′) for all w > w0.

Therefore, maxw h(w) = max{h(w) : w ≤ w0} and the maximum exists since it is taken over

a finite set. Let H be this maximum, and let w̃ = max{w : h(w) = H}. By (6), h(w̃) is the
average of numbers, all of which are no larger than H and some of which are strictly smaller

than H. Therefore h(w̃) < H, in contradiction to its definition. Therefore, h(w) ≡ 0.

Definition 5 We say that p is harmonic with respect to π if (6) holds for every w ≥ 1. We say

that p is subharmonic with respect to π if

p(w) ≤ Eπ
w(p) (7)

for every w ≥ 1, and we say that p is superharmonic with respect to π if

p(w) ≥ Eπ
w(p) for every w ≥ 1. (8)

The usefulness of Definition 5 is expressed in the following lemma:

LEMMA 6. Let π be a strategy and p the unique solution to (6) with given initial condi-
tions b(w), w ≤ 0. Let v be a sequence that satisfies the following conditions:

1. v(w) = b(w) for all w ≤ 0.
2. limw→∞ v(w) = 0.
3. v is subharmonic with respect to π.

Then v(w) ≤ p(w) for every w. If instead v is superharmonic, then v(w) ≥ p(w) for every w.

3.1 Structure of optimal strategies

We can define a natural partial order between strategies: π1 � π2 if for every w, pπ1(w) ≤
pπ2(w). We say that π∗ is optimal if π∗ � π for every strategy π. We say that σ is locally

optimal if σ � π for every π satisfying |{w : σ(w) 6= π(w)}| ≤ 1.

Proposition 7 For every finite collection A of actions, there exists an optimal strategy. Further-

more, σ is optimal if and only if it is locally optimal.

PROOF. We will start with the “furthermore” part: Let σ be locally optimal, and let π

be another strategy. Let s be the failure probability sequence for σ, and let p be the failure

probability sequence for π. By local optimality of σ, for every w, Eπ
w(s) ≥ s(w). Therefore,

s is subharmonic with respect to π, and by Lemma 6, p(w) ≥ s(w) for every w, i.e., σ � π

and σ is optimal.

In order to prove the proposition, all we need is to find a locally optimal strategy. By

compactness of the space of strategies (the product space of actions over all wealths), and

continuity of
∞

∑
w=1

pπ(w). (9)

in this topology (using the positive-drifts assumption), there exits a strategy σ minimizes

expression 9. We claim that σ is locally optimal. Indeed, let π be so that |{w : σ(w) 6=
π(w)}| = 1, and let w be the unique index such that σ(w) 6= π(w). Since σ and π disagree
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at exactly one point, pσ is either subharmonic or superharmonic with respect to π. It has to

be subharmonic since pσ minimizes (9), and therefore σ � π and σ is locally optimal.

For an action A, let λ
(1)
A > 0,λ

(2)
A , . . . ,λ

(lA)
A be the roots of its characteristic rational

function [recall (2)] in the open unit disk arranged in decreasing order of modulus.

We now present a characterization of optimal strategies. The next theorem exhibits the

existence of a “rich man’s strategy,” as indicated in the introductory section.

THEOREM 8. Let A be a finite set of actions and let A ∈ A be an action so that λ
(1)
A < λ

(1)
B

for every B 6= A in A. Let π∗ be optimal for A. Then there exists M such that π∗(w) = A

for every w > M.

The existence of a “rich man’s strategy” may seem natural, and if so, the imposition

of technical hypotheses in Theorem 8 may seem disappointing. But this is not the case:

strikingly, such conditions are necessary, as demonstrated in:

THEOREM 9. Let A = {A,B} with lA = lB = 2, λ
(1)
A = λ

(1)
B , and λ

(2)
A 6= λ

(2)
B . If π∗ is optimal

for A, then for everyW there exist w′,w′′ > W such that π∗(w′) = A and π∗(w′′) = B.

Remarks: Theorem 9 can be generalized to the case where lg or l f is greater than 2 under

the assumption that the characteristic rational function of A has a root in the interior of the

unit disk that is not shared by B and vice versa. The proof is omitted.

Proof of Theorem 8: For convenience of notation, let λ := λ
(1)
A . Let π be a (fixed) strategy

such that for every M there exists w > M with π(w) 6= A. We will show that π is not

optimal. Let πA be the pure-A strategy. Let a(−w) = λ−w and p(−w) = 1 for w ≥ 0. Let aπ

be the unique solution of a(w) = Eπ
w(a) with a(w) → 0, and let aπA

be the unique solution

of a(w) = EπA

w (a) with a(w) → 0. Let pπ and pπA
be the failure probabilities for π and πA.

It is sufficient to show that there exists w so that pπA
(w) < pπ(w). Let l be the absolute

value of the minimal number on the support of any of the actions in A, i.e., l := maxB∈A lB.

Then by monotonicity (recall Remark 2), for every w,

aπ(w) ≥ pπ(w) ≥ λlaπ(w)

aπA
(w) ≥ pπA

(w) ≥ λlaπA

Therefore it will suffice if we prove that there exist w so that

aπA
(w) < λlaπ(w). (10)

In fact, we prove

lim
w→∞

aπ(w)

aπA(w)
= ∞. (11)

To see (11), first note that (see Remark 2)

aπA
(w) = λw. (12)

LEMMA 10. aπA
is subharmonic with respect to π.
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4 Algorithms for determining optimal strategies

We now turn our attention to the problem of determining the optimal strategy. To that end

it will be useful to cast our problem in terms of Markov decision processes (MDPs). For back-

ground on MDPs, we refer the reader to the excellent book by Puterman [10]. Throughout,

A is a finite set of actionswith l := max{lB : B ∈ A} and r := max{rB : B ∈ A}.

4.1 MDP formulations

For our purposes, aMarkov decision process is a collection of objects {S, As, p(· | s, a), r(s, a)}.
Here S is a set of possible states the system can occupy. For each s ∈ S, the set of possible

actions is denoted by As. The function p(· | s, a), called the transition probability function is a

distribution on the set of states S and the reward function r(s, a) is a real-valued function.

Under the assumptions of Theorem 8, we can modify our problem into an equivalent

finite Markov decision problem, which makes determining an optimal strategy tractable.

Let M be such that for some optimal strategy π∗, π∗(w) = A for every w > M. Here A is

the action with the smallest Perron root. In Appendix B [1] we show how to explicitly bound

M, with a method that extends the arguments of Theorem 8. To find an optimal strategy we

need only consider strategies that have a pure-A tail starting at M. Let S = {−l+ 1, . . . ,M+
r,∞}. (The state ∞ represents the possibility of never returning to {−l + 1, . . . ,M+ r}.) The
actions for s ∈ {1, . . . ,M} are the original actions of the system. For s ∈ {M+ 1, . . . ,M+ r},
the only action available is the action A′ with the following transition probability function:

p(j | s, A′) = αA
s−j; j = s− 1, . . . , s− lA; p(∞ | s, A′) = 1−

lA

∑
j=1

αA
j =: αA

∞.

Here the values {αA
j } are the coefficients of the linear functional giving pw as a function of

pw−1, . . . , pw−l in the pure A strategy; see Appendix A [1] for further details. The action set

for the state ∞ as well as for any state in {−l + 1, . . . , 0}, consists only of the trivial action

that leaves the state unchanged. The reward function is given by (13):

r(s, a) := − ∑
j∈S

1{s > 0 and j < 0}p(j | s, a), s ∈ S; a ∈ As. (13)

Clearly the expected total reward is the negative of the failure probability.

Next, we present an algorithm that can be used to determine optimal decision rules.

4.2 Value iteration

An iterative procedure known as value iteration produces a sequence that converges to the

optimal expected total reward for each s ∈ S. The critical thing of course will be the runtime

analysis.

1. Set v0(s) = 0 for each s ∈ S.

2. For each s ∈ S, compute vn+1(s) using

vn+1(s) = max
a∈As

{

r(s, a) + ∑
j∈S

p(j | s, a)vn(j)
}
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and increment n.

The sequences converge monotonically to the optimal expected total reward v∗ [10]. We

show next that the order of convergence is linear.

To that end, let d∗ denote an optimal decision rule and consider the sequence defined

iteratively by u0(s) = 0 for each s ∈ S and

un+1(s) = r(s, d∗(s)) + ∑
j∈S

p(j | s, d∗(s))un(j). (14)

This is just the sequence produced by value iteration when the only action available at a

state is the optimal action. Clearly un(s) → v∗(s) and a simple induction argument yields

vn(s) ≥ un(s) for each s ∈ S and n ≥ 0.

Writing (14) in matrix notation we have un+1 = Pun + α, where un, α ∈ R
M+r and

P ≡ Pij is the M + r× M + r matrix with Pij := p(j | i, d∗(i)).
LEMMA 11. Let P ≡ P(d∗) denote the transition matrix for an optimal decision rule d∗.
Then, ρ(P), the spectral radius of P is strictly less than 1.

PROOF. If |||P|||∞ < 1, then the claim is true. Suppose |||P|||∞ = 1 so that ρ(P) ≤ 1.

Suppose ρ(P) = 1. Since P is nonnegative an eigenvalue of maximum modulus must be 1.

Let Px = x, x = [xi] 6= 0 and suppose p is an index such that |xp| = ‖x‖∞ 6= 0. Now 1 lies

on the boundary of G(P), the Geršgorin region for the rows of P so that [7, Lemma 6.2.3(a)]

1− Ppp = |1− Ppp| =
M+r

∑
j=1
j 6=p

Ppj,

i.e., ∑
M+r
j=1 Ppj = 1 so that p ∈ {1, . . . ,M}. Since P is the transitionmatrix for an optimal strat-

egy theremust be positive probability of reaching a state in {M+ 1, . . . ,M+ r} starting from

the state p. In other words, there exist a sequence of distinct integers k1 = p, k2, . . . , km = q

with q ∈ {M+ 1, . . . ,M+ r} such that all of the matrix entries Pk1k2 , . . . , Pkm−1km are nonzero.

But then [7, Lemma 6.2.3(b)], |xki | = |xp| for each i = 1, . . . ,m. In particular |xq| = |xp|, so
that again [7, Lemma 6.2.3(a)],

1 = |1− Pqq| =
M+r

∑
j=1
j 6=q

Pqj =
l

∑
j=1

αj < 1, which is a contradiction.

Remarks: Using the fact that all actions have positive drift, we can estimate the spectral

radius as follows. LetD be the diagonalmatrix with entries (λ + ǫ, (λ + ǫ)2, . . . , (λ + ǫ)M+r),
where λ is the largest Perron root among all roots of the characteristic rational functions of

the actions and ǫ > 0 is arbitrarily small. We show that |||D−1PD|||∞ ≤ δ < 1. Indeed for

i ∈ {1, . . . ,M}, the ith row sum of D−1PD is given by

M+r

∑
j=1

Pij(λ + ǫ)j−i ≤ qi(λ + ǫ) + 1 := δi, (15)
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where qi(·) is the characteristic function of the action employed at state i. If λi is the unique

positive root of qi inside the unit disk, then qi(λi) = qi(1) = 0 and qi has no zero crossing in

(λi, 1). Since i has positive drift we have (qi)′(1) > 0 so that qi(z) < 0 for z ∈ (λi, 1). Hence

the row-sum in (15) is bounded by δi < 1.

On the other hand for i ∈ {M + 1, . . . ,M + r}, the ith row-sum of D−1PD is given by

∑
l
j=1 αA

j (λ + ǫ)−j := δi < 1, the last strict inequality following from the fact that if λA <

λ + ǫ is the Perron root of the pure-A tail, then

l

∑
j=1

αA
j λ

−j
A = 1

Taking δ := max1≤i≤M+r δi gives us ρ(P) = ρ(D−1PD) ≤ |||D−1PD|||∞ ≤ δ < 1.

The preceding lemma and remark lead directly to the following result.

THEOREM 12. Let v∗ denote the optimal total expected value and vn the nth iterate of value
iteration. Then vn ≥ un, where for some vector norm ‖·‖ and n ≥ 1,

‖v∗ − un‖ ≤ c‖v∗ − un−1‖

and c < 1 satisfies

c ≤ max{1+ max
action B

qB(λ + ǫ),
l

∑
j=1

αj(λ + ǫ)−j},

where λ is the largest of the Perron roots of the actions and ǫ > 0 is arbitrarily small.

5 Discussion

In theMDP formulation, two other algorithms can be applied to computing the failure prob-

abilities of the optimal strategy: policy iteration and linear programming. Their adaptation

to our problem is discussed in Appendix C in [1].

It is clear that our results are at best a sketch of some elements of a larger theory. To

begin with an equally well-motivated (and more general) model is one in which players

are prohibited from taking actions that have nonzero probability of driving them immedi-

ately to a negative balance. (The player loses if no actions are available.) Our basic results

carry over to this model. Another natural variant allows for the payoffs to be arbitrary real

numbers. We have not explored this case.

It is natural to ask what happens if each available action can be scaled, at the player’s

discretion, by a positive constant. Allowing scaling by large constants is an interesting vari-

ant to study. (Allowing scaling by arbitrarily small constants trivializes the model: for any

positive-drift action the probabilities of failure can be made to tend to 0. More importantly,

it fails to match the motivating real-world scenarios. A bank deciding whether to issue a

particular $200, 000 mortgage cannot change the associated risks by renaming it as 200, 000

separate $1 mortgages.) Ideally in this context one would like to address a common exten-

sion of our model and those treated by Ferguson [4], Truelove [11] and Browne [2].
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ABSTRACT. We present a polynomial-time reduction from parity games with imperfect information
to safety games with imperfect information. Similar reductions for games with perfect information
typically increase the game size exponentially. Our construction avoids such a blow-up by using
imperfect information to realise succinct counters which cover a range exponentially larger than their
size. In particular, the reduction shows that the problem of solving imperfect-information games
with safety conditions is EXPTIME-complete.

1 Introduction

Nondeterminism is a notorious source of complexity in automata. The process of determin-

isation, which consists in monitoring the uncertainty about the flow of control in a nonde-

terministic device, typically involves a power-set construction and an exponential blow-up

of the state space. Reversing the argument, a nondeterministic automaton may be consider-

ably more succinct than any equivalent deterministic automaton.

When we shift from automata to games, a similar jump in complexity arises as an effect

of imperfect information of players about the history of a play. Already in the basic setting

of two-player zero-sum games, the construction of a perfect-information game monitoring

the uncertainty of a player about the flow of information in an imperfect-information game

requires a powerset construction [13, 5].

The shape of winning conditions constitutes a further source of complexity in games. In

particular in parity games, the range of the priority function is perceived as a key factor. For

games with perfect information, the current situation is as follows. While games with two

priorities can be solved in quadratic time, the complexity of the best known deterministic

algorithms is exponential in the number of priorities. Several procedures for reducing the

priorities in a parity game to a fixed small number have been proposed, all leading to an

exponential blow-up in the size of the game [3, 9, 15]. A polynomial-time reduction of this

kind would prove that parity games can be solved in polynomial time, which is a major

open problem.

The question of parity-range reduction has also been investigated in the context of

the modal µ-calculus, an expressive logic that subsumes many important specification for-

malisms. The model-checking problem for this logic corresponds to the problem of solving

a parity game with as many priorities as there are alternations of fixed-point quantifiers in
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the formula [7]. A uniform method for reducing the number of quantifier alternations in

formulae would thus lead to tractable model-checking games. For a particular fragment

of distributive formulae, a reduction to formulae with only one alternation is presented

in [12]. However, the fact that the µ-calculus alternation hierarchy is strict [11, 4, 1], implies

that a uniform reduction, which depends only on the formula, cannot exist for the general

case. In [15], Seidl proposes a reduction that removes fixed-point alternations syntactically

in a non-uniform way, depending on the model, yielding one of the best algorithms for µ-

calculus model checking, or equivalently, for solving parity games with perfect information.

In this paper, we consider parity games with imperfect information. We present a

polynomial-time reduction of parity games into safety games that preserves the existence of

winning strategies. This shows that, in the setting of imperfect information, parity games

with only two priorities are able to simulate parity games with arbitrarily many priorities in

a succinct way. In other words, the complexity arising from imperfect information preempts

the complexity inherent to the winning condition.

The reduction implements a variant of the progress-measure algorithm for solving par-

ity games proposed by Jurdzinski in [8]. We use the power of imperfect information in two

ways: firstly, to design counters that cover a range exponentially larger than their size and,

secondly, to maintain the number of occurrences of all odd priorities simultaneously during

the play. The parity condition is monitored by synchronising the game graph with a small

counter gadget equipped with a safety condition.

Our construction illustrates a basic design pattern for applying imperfect information

as a synchronisation mechanism. Furthermore, the counting gadgets provide examples of

safety games in which winning strategies require memory of exponential size. Finally, our

reduction shows that the problem of solving imperfect-information games with safety con-

ditions is EXPTIME-complete.

2 Parity games with perfect information

We first describe the model of parity games with perfect information and introduce the

key properties needed for our reduction. In view of a uniform treatment of both perfect

and imperfect information models, our terminology sometimes deviates from the standard

literature.

2.1 Games and strategies

Let Σ be a finite alphabet of actions. A game structure with perfect information is a tuple G =
(L, ℓ0,∆) consisting of a finite set L of locations (or positions), a designated initial location ℓ0 ∈
L, and a transition relation ∆ ⊆ L × Σ × L. We assume that the transition relation is total,

i.e., for every location ℓ ∈ L and every action a ∈ Σ, there exists at least one a-successor

ℓ′ such that (ℓ, a, ℓ′) ∈ ∆, and that all locations of L are reachable from ℓ0 via transitions

in ∆. Games on G are played by two players, Player 1 and Player 2, taking turns to move

a token along transitions of G. Initially, the token is located at ℓ0. The game proceeds in

rounds. In every round, Player 1 first chooses an action a ∈ Σ, then Player 2 moves the

token to an a-successor of the current location. Thus, playing the game yields an infinite
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sequence of locations π = ℓ1ℓ2 . . . , called a play, such that ℓ1 = ℓ0 and (ℓi, a, ℓi+1) ∈ ∆ for all

i ≥ 1. A history is a finite prefix ℓ1 . . . ℓi of a play. A strategy for Player 1 in G is a function

σ : L+ → Σ that maps histories to actions. A play ℓ1ℓ2 . . . is consistent with σ if, for every

position i ≥ 1, there is a transition (ℓi, a, ℓi+1) ∈ ∆ with a = σ(ℓ1, . . . , ℓi). We denote the set

of plays in G that are consistent with σ by Outcome(G, σ).

A winning condition for a game structure G is a set ϕ ⊆ Lω. A strategy σ for Player 1 is

winning for the condition ϕ, if all plays consistent with σ are winning, i.e., Outcome(G, σ) ⊆
ϕ. A game is a pair (G, ϕ) consisting of a game structure G and a matching winning condi-

tion ϕ. We say that Player 1 wins the game, if he has a winning strategy for the condition ϕ.

We shall consider two kinds of winning conditions. Given a set T ⊆ L of target

locations, the safety condition requires that the play stay within the set T : Safe(T) =
{ℓ1ℓ2 . . . | ℓi ∈ T for all i ≥ 1}. We call the elements of L \ T bad locations. Given

a priority function Ω : L → N that maps each location to a priority, the parity condi-

tion requires that the least priority visited infinitely often in a play be even : Parity(Ω) =
{ℓ1ℓ2 . . . | lim infi→∞ Ω(ℓi) is even}. Parity conditions can be viewed as nested com-

binations of safety and reachability conditions, where reachability is the dual of safety :

Reach(T) = Lω \ Safe(L \ T). They provide a canonical form to express all ω-regular win-

ning conditions [16].

The algorithmic problem of solving a game is to decide, given a game structure G and a

winning condition ϕ, whether Player 1 wins the game (G, ϕ). Safety conditions are specified

by a target set, and parity conditions are specified by a priority function.

A conceptually simple way of solving parity games is to provide a winning strategy

for Player 1. For this purpose, strategies that depend only on the last location of the history

of the play are of particular interest. A strategy σ is memoryless if σ(ρ · ℓ) = σ(ρ′ · ℓ) for all
ρ, ρ′ ∈ L∗. It is easy to see that, if Player 1 wins a game with safety or reachability condition,

then he also has a memoryless strategy to win the game. The following fundamental re-

sult establishes that memoryless strategies are sufficient even for perfect-information games

with parity conditions.

THEOREM 1.[[6]] Player 1wins a parity game with perfect information if and only if he has
a memoryless winning strategy.

A memoryless strategy σ for a game structure G = (L, ℓ0,∆) can be represented as

a substructure Gσ obtained by removing from ∆ all transitions (ℓ, a, ℓ′) with a 6= σ(ℓ). The
plays in Gσ are then precisely the plays inOutcome(G, σ). Accordingly, for a parity condition

ϕ, the strategy σ is winning if and only if all the plays in Gσ are winning, which amounts

to saying that on each cycle in Gσ reachable from ℓ0, the least visited priority is even. This

remark provides the key argument for the transformation of parity games into safety games.

DEFINITION 2.Let n ∈ N. An infinite sequence p1p2 . . . of natural numbers is parity-n-fair

if, for every odd number r, each subsequence pipi+1 . . . pj that contains the number r more

than n times also contains a number strictly smaller than r.

For a fixed game (G,Parity(Ω)), we say that a play π is parity-n-fair if the sequence of

priorities visited by π is parity-n-fair. Notice that every parity-n-fair play satisfies the parity

condition. Conversely, if G has n locations, then all plays consistent with a memoryless
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winning strategy σ of Player 1 in G are parity-n-fair. Indeed, every subsequence of a play

consistent with σ that contains more than n occurrences of an odd priority r must follow

a cycle in Gσ. As the least priority in every cycle of Gσ is even, every such subsequence

also contains a priority smaller than r. According to Theorem 1, we can hence restrict our

attention, without loss of generality, to strategies that enforce parity-n-fair plays.

PROPOSITION 3. Player 1wins a parity game with perfect information of size n if and only
if he has a strategy σ such that every play consistent with σ is parity-n-fair.

Let us now turn to the computational complexity of solving a parity game with perfect

information G. A memoryless strategy σ for Player 1 can be guessed in linear time and we

can verify in polynomial time whether σ is winning, i.e., whether the minimal priorities on

all reachable cycles in Gσ are even. Thus, the problem of solving a game belongs to NP and,

by the Determinacy Theorem of [6], it follows that it is in NP ∩ Co-NP. Hence the problem

is close to polynomial time, in terms of general complexity (see also [8]). The question

whether parity games can be solved in polynomial time is a major open problem. The best

known deterministic algorithms have running times that are polynomial with respect to the

size of the game structure, but exponential with respect to the number of different priorities

(see [10, 14]).

2.2 Priority-range reduction

Due to the apparent impact of the number of priorities on the complexity of solving parity

games, it would be very desirable to find efficient procedures for reducing the range of the

priority function.

An explicit reduction from parity to safety games with perfect information is presented

by Bernet, Janin, and Walukiewicz in [3]; it can be understood as an online-version of Ju-

rdzinski’s progress-measure algorithm for solving parity games [9]. The main ingredient

of the reduction is an internal memory device consisting of a vector of counters, one for

each odd priority which is maintained along the transitions of a play. Basically, the device

works as follows: if the current state has priority r, all counters corresponding to priori-

ties strictly higher than r are reset; additionally, if r is odd, the counter corresponding to r

is incremented. The range of each counter is bounded by the number of locations in the

game. To transform a parity game into a safety game, the memory device is synchronised

with the game structure via a product operation. Finally, the safety condition requires that

no counter overflow occur. Essentially, the internal memory monitors whether the current

play is parity-n-fair and forces the play into a bad location when it detects that this is not the

case. The correctness of this reduction is justified by arguments similar to Proposition 3. No-

tice, however, that to monitor a game with n states and d priorities, a memory device with

O(nd/2) many states is needed. Accordingly, this reduction from parity to safety games

involves an exponential blow-up of the game structure.

3 Games with Imperfect Information

We consider a model of games with imperfect information that was originally introduced

in [13]. The set of locations is partitioned into information sets indexed by observations.
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3.1 Observation-based model

In addition to the alphabet Σ of actions, we fix a finite alphabet Γ of observations. A game

structure with imperfect information over Σ and Γ is a tuple G = (L, ℓ0,∆,γ), where L, ℓ0,∆ are

defined as in the perfect-information case, and γ : Γ → 2L \∅ is an observability function that

maps each observation to a nonempty set of locations such that the sets γ(o) for o ∈ Γ form

a partition of L. For each location ℓ ∈ L, we write obs(ℓ) to denote the unique observation o

such that ℓ ∈ γ(o). For an action a ∈ Σ and a set of locations s ⊆ L, we define posta(s) =
{ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, a, ℓ′) ∈ ∆}.

The game on G is played in the same way as in the perfect information case, by moving

a token along the transitions ofG and forming an infinite play. But now, only the observation

of the current location is revealed to Player 1. The effect of the uncertainty about the history

of the play is formally captured by the notion of strategy.

A strategy for Player 1 in G is a function σ : Γ+ → Σ that maps finite sequences of

observations to actions. Given a play π = ℓ1ℓ2 . . . , we set obs(π) = obs(ℓ1)obs(ℓ2) . . .. We

say that π is consistent with the strategy σ, if for every position i ≥ 1, there is a transition

(ℓi, a, ℓi+1) ∈ ∆ with a = σ(obs(ℓ1) . . . obs(ℓi)). As before, we denote the set of plays in G

that are consistent with σ by Outcome(G, σ).
Following [5], we express winning conditions in terms of observations. A winning

condition for a game structure G = (L, ℓ0,∆,γ) is a set ϕ ⊆ Γω of infinite sequences of

observations. A strategy σ for Player 1 is winning for the condition ϕ if obs(π) ∈ ϕ for

all π ∈ Outcome(G, σ). The safety condition for a set T ⊆ Γ is Safe(T) = {o1o2 . . . | oi ∈
T for all i ≥ 1}, and the parity condition for a priority function Ω : Γ → N is defined by

Parity(Ω) = {o1o2 . . . | lim infi→∞ p(oi) is even}.
Notice that games of perfect information correspond to the special case where Γ = L

and γ(ℓ) = {ℓ} for all ℓ ∈ L.

3.2 Reduction to perfect-information games

To solve a game with imperfect information (G, ϕ) over a structure G = (L, ℓ0,∆,γ), the
basic algorithm proposed in [13] constructs a game of perfect information (GK, ϕ′) over a

game structure GK = (S, s0,∆′) with the action alphabet Σ of G, such that Player 1 has

a winning strategy for ϕ in G if and only if he has a winning strategy for ϕ′ in GK. The

structure GK is obtained by a subset construction which, intuitively, monitors the knowledge

that Player 1 has about the current location of the play. The set of locations S ⊆ 2L \ {∅}
consists of the subsets of L reachable from the initial location s0 = {ℓ0} via transitions in

∆′ defined by (s1, a, s2) ∈ ∆′ if and only if there exists an observation o ∈ Γ such that s2 =
posta(s1)∩γ(o) 6= ∅. Notice that each location in GK corresponds to a unique observation in

G, in the sense that for all s ∈ S, there is a unique o ∈ Γ such that s ⊆ γ(o). A bijection µ be-

tween strategies σ in G and strategies σK in GK that preserves winning strategies is defined

as follows. For all strategies σ in G, set µ(σ) = σK such that σK(s1 . . . sn) = σ(o1 . . . on) for
all sequences s1 . . . sn of locations in GK, where o1 . . . on is the unique sequence of observa-

tions o1 . . . on corresponding to s1 . . . sn. Conversely, given a strategy σK in GK, the strategy

σ = µ−1(σK) is such that for all o1 . . . on ∈ Γ+, we have σ(o1 . . . on) = σK(s1 . . . sn) where

s1 = s0 and si+1 = postai(si) ∩ γ(oi+1) with ai = σK(s1 . . . si) for all 1 ≤ i < n. Observe that
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the plays consistent with σ in G visit the same sequences of priorities as the plays consistent

with σK = µ(σ) in GK.

The construction transforms games with imperfect information into games of perfect

information with the same type of winning condition [5]. For a parity condition ϕ defined

by the priority function Ω : Γ → N, the parity condition ϕ′ is defined by the priority

function Ω′ : S → N such that Ω′(s) = Ω(o) for all s ∈ S and o ∈ Γ such that s ⊆ o.

PROPOSITION 4.[[5]] Player 1wins a gamewith imperfect information (G,Parity(Ω)) if and
only if he wins the game with perfect information (GK,Parity(Ω′)).

4 Reduction of parity to safety games

To present our reduction from parity to safety games, let us fix a parity game with imperfect

information (G,Parity(Ω)) with n locations and with priorities ranging from 1 to d; we set

[d] = {1, 2, . . . , d}. Without loss of generality, we assume that d is even.

The game structure GK obtained by the subset construction of Section 3.2 has less

than 2n locations. According to Proposition 3, we can require that a winning strategy of

Player 1 in (GK,Parity(Ω)) (and thus also in (G,Parity(Ω))) ensures that no odd priority is

visited more than 2n times between two consecutive occurrences of lower priorities. This is

a safety condition that can be checked by counting the occurrences of each odd priority in

the play. If the count exceeds 2n while no lower priority is visited, a bad location is entered.

The challenge is to design counters with a bound of at least 2n and to maintain simul-

taneously d/2 such counters, one for each odd priority, using only a polynomial number of

locations.

We use a counter gadget to store the number of occurrences of an odd priority r. When-

ever a priority smaller than r is visited, the counter is reset. For each visit to priority r,

Player 1 has to increment the counter via a click action that he can choose from the set

[n] = {1, 2, . . . , n}. The gadgets are constructed in such a way that in each step at least

one click can increment the counter, until the upper bound is reached. When this happens,

all clicks would lead to the bad location.

To each odd priority, we associate a counter gadget. In the first round of the game,

Player 2 can choose a counter associated to one particular odd priority r to be tracked. This

choice is not observable to Player 1. Thus, Player 1 has to ensure that every odd priority

occurs only a bounded number of times before a lower priority is visited. This translates

the parity condition (that the minimal priority seen infinitely often is even) into a safety

condition (that no counter ever overflows).

4.1 Succinct counters

For each odd priority r, the counter gadget Cr is a game structure consisting of n disjoint

components (numbered 1, 2, . . . , n), one for each click. Figure 1 shows a counter gadget

with 3 components. The i-th component has the shape of a loop over qi locations, where qi
is the i-th prime number. The locations of Cr are all indistinguishable to Player 1. Therefore,

we may think of a virtual game played simultaneously on all components, as if there was a

token moving in each component of the gadget. The number of configurations of the tokens
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ℓ11

ℓ12

⊤ ¬1

ℓ21

ℓ22 ℓ23

⊤

⊤

¬2

ℓ31

ℓ32

ℓ33 ℓ34

ℓ35

⊤

⊤

⊤

⊤

¬3

Increment (solid edges) on priority p = r, with any click except i on edges ℓiqi
→ ℓi1.

Reset (dashed edges) on all priorities p < r.
Idle (not depicted) on all priorities p > r (self-loops).

Figure 1: Counter gadget for priority r with 3 components that counts modulo 2 · 3 · 5 = 30.

in a counter is given by the primorial qn# = ∏
n
i=1 qi. Clearly, we have qn# > 2n whereas the

number of locations in a counter is ∑
n
i=1 qi = O(n2 log n) and thus polynomially bounded

in n (cf. [2]).

The value of a counter is encoded by the position of the (virtual) tokens in each of its

components. A counter can be incremented by taking, simultaneously in all components, a

transition represented by a solid edge in Figure 1, it can be reset to 0 with the dashed edges,

and it can idle with self-loops on each location (not drawn in the figure). The transitions

of Cr are labeled by all actions (a, p, k) ∈ Σ× [d]× [n] such that p > r on all idle edges, p < r

on all reset edges, and p = r on all increment edges, except the last edge of each component

where the click k must be different from the number of the component (in Figure 1, the

label ⊤ is interpreted as “for all clicks” and ¬k is interpreted as “for all clicks except k”, for

k ∈ N). Finally, we complete the transition relation, by sending all missing transitions to a

sink location. Intuitively, whenever a counter is incremented, the value of the click k should

be chosen (by Player 1) in such a way that every component has an enabled increment

transition labeled with k, i.e., such that qk does not divide the incremented counter value.

This is always possible except when, in all components, the token is in the last location

before completing the cycle. In the example of Figure 1, this happens after 2 · 3 · 5− 1 = 29

steps. From that moment on, Player 1 should avoid visiting priority r unless the counter is

reset by a visit to a lower priority.

LEMMA 5. Let C1,C3, . . . ,Cd−1 be counter gadgets, each with n components. A sequence
p1p2 . . . of priorities pi ∈ [d] is parity-(qn#)-fair if and only if there exist sequences a1a2 . . .

of actions and k1k2 . . . of clicks such that (a1, p1, k1)(a2, p2, k2) . . . is a play in each of the
components of C1, . . . ,Cd−1.

4.2 Reduction

For the parity game with imperfect information (G,Parity(Ω)) over alphabets Σ and Γ, we

construct in polynomial time a safety game with imperfect information (G,Safe(T)) over



80 ON THE POWER OF IMPERFECT INFORMATION

C1 C3

. . .

Cd−1 ̂G

ℓ11

ℓ12

⊤ ¬1

ℓ21

ℓ22 ℓ23

⊤

⊤

¬2

ℓ31

ℓ32

ℓ33 ℓ34

ℓ35

⊤

⊤

⊤

⊤

¬3 ℓ11

ℓ12

⊤ ¬1

ℓ21

ℓ22 ℓ23

⊤

⊤

¬2

ℓ31

ℓ32

ℓ33 ℓ34

ℓ35

⊤

⊤

⊤

⊤

¬3 ℓ11

ℓ12

⊤ ¬1

ℓ21

ℓ22 ℓ23

⊤

⊤

¬2

ℓ31

ℓ32

ℓ33 ℓ34

ℓ35

⊤

⊤
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⊤
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b c
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σ σ

σ

σ

σ

ℓ′0

. . .

Figure 2: Reduction overview.

extended alphabets Σ′ and Γ′ such that Player 1 wins (G,Parity(Ω)) if and only if he wins

(G′,Safe(T)). The set T contains all locations of G′ except a designated sink location. The

game structure G′ consists of an initial location ℓ′0 fromwhich there is an outgoing transition

to the initial location of each of the n components of each counter gadget C1, . . . ,Cd−1 and

to the initial location of a modified copy ̂G of G, as in Figure 2.

The game structure ̂G enriches the set Σ of actions to synchronise with the counter

gadgets. The locations of ̂G are those of G and a fresh location with odd priority. For each

transition (ℓ, a, ℓ′) in G, there are transitions (ℓ, (a, p, k), ℓ′) for p = Ω(obs(ℓ)) and for all

1 ≤ k ≤ n. Hence, the set of actions of ̂G is Σ′ = Σ × [d] × [n]. We complete the transition

relation of ̂G by sending all missing transitions to the fresh location from which Player 1

cannot win. The game ̂G is equivalent to G, as the strategies of Player 1 in G have access

to the observation of the current location (and therefore also to its priority) and can thus be

translated into equivalent strategies for ̂G by simply choosing the priority p = Ω(obs(ℓ)) of
the current location ℓ for the second component of the indicated action (the third component

is intended for synchronisation with the clicks and does not matter in ̂G).

The observations in G′ are the same as in G, that is, Γ′ = Γ. However, the observability

function γ′ of G′ is defined for all o ∈ Γ by γ′(o) = γ(o) ∪ LC where LC is the set of all loca-

tions of the counter gadgets. This defines overlapping observations, but we can construct in

polynomial time an equivalent safety game with partitioning observations (cf. [5, page 7]).

PROPOSITION 6. The problem of solving a parity game with imperfect information can be
reduced in polynomial time to the problem of solving a safety game with imperfect infor-
mation.

Proof. We show that Player 1 wins the game (G,Parity(Ω)) if and only if he wins the game

(G′,Safe(T)).
First, let us assume that Player 1 wins (G′,Safe(T)) and let us fix a winning strategy

σ′ in G′. We construct a strategy σ in G such that for all ρ ∈ Γ+, we have σ(ρ) = a if

σ′(ρ) = (a, p, k) for a priority p and a click k. Now we claim that σ is winning in G. To show

this, we argue that for all odd priorities r, if r occurs infinitely often in a path π of Gσ, then a

smaller priority p < r also occurs infinitely often in π. Towards a contradiction, assume that

an odd priority r occurs infinitely often on a path π of Gσ, whereas all priorities lower than r
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occur only finitely often. In particular, this implies that π is not a parity-qn#-fair path. By

Lemma 5 it follows that σ′, which agrees with σ on the first component (on actions a ∈ Σ),

cannot avoid an overflow of the counter Cr leading the play to the sink state. Hence, σ′ is
not a winning strategy in G′.

For the converse, assume that Player 1 wins (G,Parity(Ω)). Then, there exists a winning

strategy σ for Player 1 in G ensuring that every path in Gσ is parity-2n-fair, by Proposition 3

and via the bijection µ between strategies of G and GK defined in Section 3.2. Therefore,

each path of Gσ, can visit at most 2n < qn# times an odd priority r without visiting a smaller

priority. Hence, each counter Cr is reset before reaching the maximal value qn#. The win-

ning strategy σ can therefore be extended to a winning strategy in G′ by prescribing (a, r, k)
whenever σ prescribes a, where r is the priority of the current observation, and k is a click

allowed in the corresponding counter Cr (i.e., such that qi is not a divisor of the number of

visits to priority r since the last visit to a smaller priority). In this way, the sink location of

the counters is never reached in G′ and thus, the strategy σ is winning. �

If we view the counter gadgets as individual games, we obtain a family of examples of

safety games with an exponential lower bound for the memory size of a winning strategy.

COROLLARY 7. There exists a family (Gn,Safe(Tn))n∈N of safety games with imperfect in-
formation where Player 1 wins, such that each game Gn is of size polynomial in n, whereas
every winning strategy in Gn requires memory of size at least exponential in n.

The problem of solving reachability and parity games of imperfect information is

known to be EXPTIME-complete [13, 5]. However, the question about a matching lower

bound for the complexity of safety games remained open. We can now settle this question

as a direct consequence of Proposition 6.

COROLLARY 8. The problem of solving safety games with imperfect information is
EXPTIME-complete.
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ABSTRACT. Several recent works have studied subfamilies of deterministic context-free languages
with good closure properties, for instance the families of input-driven or visibly pushdown lan-
guages, ormore generally families of languages accepted by pushdown automatawhose stack height
can be uniquely determined by the input word read so far. These ideas can be described as a notion
of synchronization. In this paper we present an extension of synchronization to all context-free
languages using graph grammars. This generalization allows one to define boolean algebras of non-
deterministic but unambiguous context-free languages containing regular languages.

1 Introduction

Several restrictions of pushdown automata were recently studied in order to define classes

of languages which generalize regular languages while retaining some of their closure prop-

erties, namely closure under boolean operations, concatenation and its iteration. All of these

approaches consist in defining a notion of synchronization between pushdown automata

[AM 04, Ca 06, NS 07] (see also [LMM 08] for complexity results). An approach which also

avoids a special treatment of the ε-moves, is to define the synchronization at graph level

[CH 08]. More precisely, the transition graph of any pushdown automaton A can be gener-

ated by a (deterministic graph) grammar R [MS 85, Ca 07] using infinite parallel rewritings.

The stack height of a configuration of A is replaced by its weight, which is the minimal

number of steps of parallel rewriting by R necessary to produce it.

The notion of synchronization can be defined for all graph grammars. A grammar G

is synchronized by a grammar H if for any accepting path λ of (the graph generated by) G,

there exists an accepting path µ of H with the same label u such that λ and µ are synchro-

nized: for every prefix v of u, the prefixes of λ and µ labelled by v lead to vertices of the same

weight. By extending usual constructions from finite automata to grammars generating de-

terministic graphs, we have shown that the languages recognized by all grammars synchro-

nized with a given grammar form a boolean algebra lying between regular languages and

deterministic context-free languages [CH 08].

In this paper, we apply the notion of synchronization to graph grammars recognizing

unambiguous context-free languages, which are the languages generated by context-free

grammars with at most one derivation tree for each word. Although these languages form

a natural generalization of deterministic context-free languages, their equivalence prob-

lem remains a challenge in formal language theory [Gi 66]. Recent developments can be

found in [Wi 04]. We present two classes of graph grammars, called unambiguous and

level-unambiguous, recognizing all unambiguous context-free languages. A grammar is

unambiguous if two accepting paths in the generated graph have distinct labels. More
c© Didier Caucal; licensed under Creative Commons License-NC-ND

FSTTCS 2008 
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generally, a grammar is level-unambiguous if two accepting paths with the same label are

synchronized. We show that the languages recognized by grammars synchronized with a

fixed level-unambiguous grammar form a boolean algebra containing the regular languages

(where the complement operation is relative to the language of the synchronizing gram-

mar). A direct consequence is the decidability of the inclusion problem between languages

recognized by two level-unambiguous grammars synchronized by a third one.

The paper is structured as follows: after recalling some notations and definitions in Sec-

tions 2 and 3, we present the notion of synchronization of arbitrary grammars in Section 4.

We then focus on the closure properties of level-unambiguous grammars in Section 5.

2 Notations

Let IN be the set of natural numbers. For a set E, we write |E| its cardinality, 2E its pow-

erset and for every n ≥ 0, En = {(e1, . . ., en) | e1, . . ., en ∈ E} is the set of n-tuples of

elements of E. Thus E∗ =
⋃

n≥0 E
n is the free monoid generated by E for the concatenation:

(e1, . . ., em)·(e′1, . . ., e′n) = (e1, . . ., em, e
′
1, . . ., e

′
n), whose neutral element is the 0-tuple (). A

finite set E of symbols is an alphabet of letters, and E∗ is the set of words over E. Any word

u ∈ En is of length |u| = n and is also represented by a mapping from [n] = {1, . . ., n}
into E, or by the juxtaposition of its letters: u = u(1). . .u(|u|). The neutral element is the

word of length 0 called the empty word and denoted by ε. We denote by [0, n] = {0, . . . , n}
for any n ∈ IN. For any binary relation R, we also write xRy for (x, y) ∈ R; as usual

Dom(R) = {x | ∃y, xRy} and Im(R) = {y | ∃x, xRy} are the domain and the image of R.

Let F be a set of symbols called labels, ranked by a mapping ̺ : F−→IN associating to

each label f its arity ̺( f ) ≥ 0, and such that Fn := { f ∈ F | ̺( f ) = n} is countable for every

n ≥ 0. We consider simple, oriented and labelled hypergraphs: a hypergraph G is a subset of
⋃

n≥0 FnV
n, where V is an arbitrary set, such that

• its vertex set VG := {v ∈ V | FV∗vV∗ ∩ G 6= ∅} is finite or countable,

• its label set FG := { f ∈ F | fV∗ ∩ G 6= ∅} is finite.

Any f v1. . .v̺( f ) ∈ G is a hyperarc labelled by f and of successive vertices v1, . . ., v̺( f ); it is

depicted according to the arity of f as follows:

• for ̺( f ) ≥ 2, as an arrow labelled f and successively linking v1, . . ., v̺( f );

• for ̺( f ) = 1, as a label f on vertex v1 ( f is called a colour of v1);

• for ̺( f ) = 0, as an isolated label f called a constant.

This is illustrated in the next figures. Note that a vertex v is depicted by a dot named (v)
where parentheses are used to differentiate a vertex name from a vertex label (a colour).

For a subset E ⊆ F of labels, we write VG,E := {v ∈ V | EV∗vV∗ ∩ G 6= ∅} = VG∩EV∗
G

the set of vertices of G linked by a hyperarc labelled in E. A graph G is a hypergraph whose

labels are only of arity 1 or 2: FG ⊂ F1 ∪ F2. Hence a graph G is a set of arcs av1v2 identified

with the labelled transition v1
a−→
G
v2 or directly v1

a−→v2 if G is understood, plus a set of

coloured vertices f v.

A tuple (v0, a1, v1, . . ., an, vn) with n ≥ 0 and v0
a1−→
G
v1. . .vn−1

an−→
G
vn is called a path from

v0 to vn labelled by u = a1. . .an; we write v0
u

=⇒
G
vn or directly v0

u
=⇒vn if G is understood.

For P,Q ⊆ VG and u ∈ F∗2 , we write P
u

=⇒
G

Q if p
u

=⇒
G
q for some p ∈ P and q ∈ Q and
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L(G, P,Q) := {u | P u
=⇒

G
Q} is the language recognized by G from P to Q. In these notations,

we can replace P (and/or Q) by a colour ◦ to designate the subset VG,◦. In particular ◦ u
=⇒

G
Q

means that there is a path labelled by u from a vertex coloured by ◦ to a vertex in Q, and

L(G, ◦, •) is the label set of the paths from a vertex coloured by ◦ to a vertex coloured by •.
In this paper, we use two colours ◦, • ∈ F1 to mark respectively the initial vertices and

the final vertices. To depict an initial or final vertex, the dot is replaced by its colour, and
•◦ represents a vertex which is initial and final. For any graph G, we denote by L(G) :=
L(G, ◦, •) the language recognized by G. Recall that the regular languages over an alphabet

T ⊂ F2 form the set Reg(T∗) := {L(G) | G finite ∧ FG ⊆ T∪{◦, •}}.

3 Graph grammars

In this section, we recall the definition of deterministic graph grammars, together with the

family of graphs they generate (called regular graphs). Using initial and final vertices, they

can be viewed as infinite automata, generalizing finite automata. We also define two re-

stricted classes of grammars recognizing all unambiguous context-free languages.

A graph grammar R is a finite set of rules of the form f x1. . .x̺( f ) −→ Hwhere f x1. . .x̺( f )

is a hyperarc joining pairwise distinct vertices x1 6= . . . 6= x̺( f ) and H is a finite hypergraph;

we denote by NR := { f ∈ F | ∃x1, . . ., x̺( f ), f x1. . .x̺( f ) ∈ Dom(R)} the non-terminals of R

(the labels of the left hand sides), by TR := { f ∈ F − NR | ∃H ∈ Im(R),VH, f 6= ∅} the

terminals of R (the labels of Rwhich are not non-terminals), and by FR := NR ∪ TR the labels

of R. We use grammars to generate graphs. Hence in the following, we assume that any

terminal is of arity 1 or 2: TR ⊂ F1 ∪ F2.

Like a context-free grammar (on words), a graph grammar has an axiom, which is an

initial finite hypergraph. To specify this axiom, we assume that any grammar R has a con-

stant non-terminal Z ∈ NR∩F0 which does not appear in any right hand side; the axiom of R

is the right hand side H of the rule corresponding to Z: Z−→H ∧ Z 6∈ FK for any K ∈ Im(R).

Starting from the axiom, we want R to generate a unique graph up to isomorphism.

So we finally assume that any grammar R is deterministic, meaning that there is only one

rule per non-terminal: (X,H), (Y,K) ∈ R ∧ X(1) = Y(1) =⇒ (X,H) = (Y,K). For any

rule X −→ H, we say that VX ∩ VH are the inputs of H and
⋃{VY | Y ∈ H ∧ Y(1) ∈ NR}

are the outputs of H. For convenience and without loss of generality, it is simpler to assume

that any grammar R is terminal-outside [Ca 07], meaning that there should be at least one

non-input vertex in the support of any terminal arc or colour in a right hand side: H ∩
(TRVXVX∪TRVX) = ∅ for any rule (X,H) ∈ R. We use upper-case letters A, B,C, . . . to

denote non-terminals and lower-case letters a, b, c . . . for terminals.

The next figure shows an example of a (deterministic graph) grammarDoublewith non-

terminals Z, A, B, terminals a, b, ◦, • and rule inputs 1, 2, 3 (except for the axiom rule which

has no input).

; ;AZ A B B

b

b

a

b

(1)

(2)

(3)

(1)

(2)

(3)

(1)

(2)

(3)

(1)

(2)

(3)

b

A

b
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Given a grammar R, the rewriting −→
R

is the binary relation between hypergraphs de-

fined as follows: M rewrites into N, written M−→
R

N, if we can choose a non-terminal hy-

perarc X = As1. . .sp in M and a rule Ax1. . .xp −→ H in R such that N can be obtained by

replacing X by H in M: N = (M − X) ∪ h(H) for some function h mapping each xi to si,

and the other vertices of H injectively to vertices outside of M; this rewriting is denoted by

M−→
R,X

N. The rewriting −→
R,X

of a hyperarc X is extended in an obvious way to the rewriting

−→
R, E

of any set E of non-terminal hyperarcs.

The complete parallel rewriting =⇒
R

is a simultaneous rewriting according to the set of

all non-terminal hyperarcs: M=⇒
R

N if M−→
R, E

N where E is the set of all non-terminal hyper-

arcs of M. We depict below the first three steps of the parallel derivation of the previous

grammar Double from its constant non-terminal Z:

=⇒ =⇒=⇒ B

b b b

A
a

b

AZ

b

b

Given a deterministic grammar R and a hypergraph H, we denote by [H] := H ∩
TRV

∗
H = H ∩ (TRVHVH∪TRVH) the set of terminal arcs and of terminal coloured vertices of

H. A graph G is generated by R (from its axiom) if G belongs to the set of isomorphic graphs

Rω:={⋃

n≥0[Hn] | Z−→
R

H0=⇒
R
. . .Hn=⇒

R
Hn+1. . .}. For instance by indefinitely iterating the

previous derivation, we get the following infinite graph:

a

b

b

a

b

b

a

b

b

b b b bb b

b bb

We call regular a graph generated by a (deterministic graph) grammar. Given a (regular)

graph G =
⋃

n≥0[Hn] generated by a grammar R, with Z−→
R

H0=⇒
R
. . .Hn=⇒

R
Hn+1. . ., we

define the level ℓ(s) of a vertex s ∈ VG, denoted also ℓRG(s) to specify G and R, as the minimal

number of rewritings applied from the axiom to obtain s: ℓ(s) := min{n | s ∈ VHn}. The
previous graph is represented by vertices of increasing level: vertices of the same level are

vertically aligned for clarity. For any grammar R and for G ∈ Rω, we denote by L(R) :=
L(G) the language recognized by R, which is well-defined since all graphs generated by a

grammar are isomorphic. For instance, the grammar Double above recognizes the language

L(Double) = {anbn | n > 0} ∪ {anb2n | n > 0}.
A graph G is deterministic if ◦ colours a unique vertex, and two arcs with the same source

have distinct labels: r
a−→
G
s ∧ r

a−→
G
t =⇒ s = t. Deterministic graph grammars recognize the

family of context-free languages. The restriction to grammars generating a deterministic

graph yields the family of deterministic context-free languages [Ca 07]. A grammar R is

unambiguous if any pair of accepting paths have distinct labels: for G ∈ Rω,

s0
a1−→
G
s1. . .

an−→
G
sn ∧ t0

a1−→
G
t1. . .

an−→
G
tn ∧ ◦s0, ◦t0, •sn, •tn ∈ G =⇒ si = ti ∀i ∈ [0, n].
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Note that the previous grammar is unambiguous. Any grammar generating a determinis-

tic graph is unambiguous. However, unambiguous grammars recognize strictly more lan-

guages than deterministic ones.

PROPOSITION 1. Unambiguous grammars recognize the family of unambiguous context-
free languages.

Recall that there exist context-free languages which are not unambiguous i.e. which

cannot be generated by an unambiguous context-free grammar; they are called inherently

ambiguous context-free languages. An example of an ambiguous context-free language is

{ambmanbn | m, n ≥ 0} ∪ {ambnanbm | m, n ≥ 0}.
The synchronization relation we will soon define requires a slight generalization of un-

ambiguous grammars. A grammar R is called level-unambiguous if for any pair of accepting

paths λ, µ with the same label u and for every prefix v of u, the prefixes of λ and µ labelled

by v lead to vertices of the same level. Formally, for (any) G ∈ Rω,

s0
a1−→
G
s1. . .

an−→
G
sn ∧ t0

a1−→
G
t1. . .

an−→
G
tn ∧ ◦s0, ◦t0, •sn, •tn ∈ G =⇒ ℓ

R
G(si) = ℓ

R
G(ti) ∀i ∈ [0, n].

Note that any unambiguous grammar is also level-unambiguous. One can prove (Cf. Lem-

mas 12 and 13) that even though they are slightly more general, level-unambiguous gram-

mars do not recognize more languages than unambiguous ones.

PROPOSITION 2. Level-unambiguous grammars recognize the family of unambiguous
context-free languages.

4 Synchronization of grammars

The notion of synchronization was defined in earlier work as a binary relation between

grammars generating deterministic graphs [CH 08]. In this section, we extend it to all gram-

mars. To each grammar R, we associate the family Sync(R) of languages recognized by

grammars synchronized by R. We give closure properties of Sync(R) and show that this

family is independent of the way to generate Rω.

A grammar R synchronizes a grammar S, andwewrite R� S or S�R if for (any) G ∈ Rω

and (any) H ∈ Sω, whenever there exists a path t0
a1−→
H

t1. . .
an−→
H

tn with ◦t0, •tn ∈ H, then there

exists s0
a1−→
G
s1. . .

an−→
G
sn with ◦s0, •sn ∈ G and ℓRG(si) = ℓSH(ti) ∀i ∈ [0, n], meaning that for any

accepting path µ labelled by u in the graph generated by S, there must be an accepting path

λ label by u in the graph generated by R such that for every prefix v of u, the prefixes of λ

and µ labelled by v lead to vertices of the same level.

For instance the grammar Double of the previous section synchronizes the following gram-

mar S:

;; ; ;

(1)

(2)

(1)

(2)

Z AA

(1)

(2)

(1)

(2)

CB

a(1)

(2)

(1)

(2)

B C

b b

b

a(1)

(2)

(1)

(2)
b b

D D A

whose generated graph is represented by vertices of increasing level as follows:
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a

b

b b

a a

b b

b

b b

a a

b b

b

b b

and whose accepted language is L(S) = {a2n+1b4n+2 | n ≥ 0}.
Note in particular that S�R =⇒ L(S) ⊆ L(R). The relation� is reflexive and transitive

but not antisymmetric. We denote by �� the bi-synchronization relation: R�� S if R� S and

S � R. The following lemma states that level-unambiguity is preserved for synchronized

grammars.

LEMMA 3. For any level-unambiguous grammar R:

a) S� R =⇒ S is level-unambiguous;
b) S��R ⇐⇒ S� R and L(S) = L(R).

A useful transformation preserving bi-synchronization is to restrict to vertices accessi-

ble from ◦ and co-accessible from •. The restriction G|P of a graph G to a subset P ⊆ VG of

vertices is the subgraph of G induced by P:

G|P := {s a−→t | s a−→
G
t ∧ s, t ∈ P} ∪ {cs | cs ∈ G ∧ s ∈ P}.

We write Rω
◦,• := {G|{s|◦=⇒

G
s=⇒

G
•} | G ∈ Rω} the restriction of Rω by accessibility from ◦

and co-accessibility from •. We can restrict synchronization to grammars generating graphs

accessible from their initial vertices and co-accessible from their final vertices.

LEMMA 4. Any grammar R can be transformed into a grammar S such that S��R and
Sω = Rω

◦,•.

Another basic transformation, given in Lemma 6.1 of [Ca 07] allows us to restrict our-

selves to grammars with colours ◦ and • only in the axiom (i.e. whose generated graph only

contains initial and final vertices at level 0). We say that a grammar R is initial when this is

the case, i.e. when (X,H) ∈ R ∧ X 6= Z =⇒ VH,◦ = ∅ = VH,•.
This transformation works as follows. Let R be any grammar. We consider two arity 2

new symbols i, f ∈ F2 such that i, f 6∈ FR and i, f are not vertices of R. To any non-terminal

A ∈ NR −{Z}, we associate a new symbol Ai, f of arity ̺(A) + 2. We consider the grammar:

[R, i, f ] := {(Z,Hi, f∪{◦i, • f }) | (Z,H) ∈ R} ∪ {(Ai, fXi f ,Hi, f ) | (AX,H) ∈ R ∧ A 6= Z}
where Hi, f := ([H] − {◦, •}VH) ∪ {Ai, fXi f | AX ∈ H ∧ A ∈ NR}

∪ {i i−→s | ◦s ∈ H} ∪ {s f−→ f | •s ∈ H}.

This grammar [R, i, f ] is an initial grammar such that, for any G ∈ Rω with i, f 6∈ VG,

Gi, f ∪ {◦i, • f } ∈ [R, i, f ]ω. In particular L([R, i, f ]) = iL(R) f . Moreover,

S� R ⇐⇒ [S, i, f ] � [R, i, f ] and [R, i, f ] is (level-)unambiguous if and only if R is.

Note that if Rω has an infinite number of initial (resp. final) vertices then the initial (resp.

final) vertex of [R, i, f ]ω is of infinite out-degree (resp. in-degree).

To any grammar R, we associate a family of synchronized languages

Sync(R) := {L(S) | S� R}
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which are thelanguages accepted by the grammars synchronized by R. Observe in particu-

lar that R�� S =⇒ Sync(R) = Sync(S), and Sync([R, i, f ]) = {iL f | L ∈ Sync(R)}.
For any alphabet T ⊂ F2, all the regular languages in T∗ can be synchronized by the

grammar Reg defined as the unique axiom rule Z−→{0 a−→0 | a ∈ T} ∪ {◦0, •0} (in other

words, Sync(Reg) = Reg(T∗)). Also note that any grammar R synchronizes any grammar

without colour ◦ or •, thus ∅ ∈ Sync(R). Let us generalize this fact.

PROPOSITION 5. For any grammar R, the family Sync(R) is closed under union, and con-
tains L(R)∩M for any regular language M.

PROOF. Closure under union will not be detailed here, but is straightforward. Contain-

ment of all regular languages inside L(R) is done by synchronization product of R with a

finite automaton K [CH 08]. Let {q1, . . ., qn} = VK be the vertex set of K. To each A ∈ NR, we

associate a new symbol A′ of arity n×̺(A), and to each hyperarc Ar1. . .rm with m = ̺(A),
we associate the hyperarc (Ar1. . .rm)′ := A′(r1, q1). . .(r1, qn) . . . (rm, q1). . .(rm, qn). As an ex-

ception, we assimilate Z′ to Z. We then define the grammar R×K, which associates to each

rule (X,H) ∈ R the rule:

X′ −→ {(s, p) a−→(t, q) | s a−→
H

t ∧ p
a−→
K
q} ∪ {(BU)′ | BU ∈ H ∧ B ∈ NR}

∪ {◦(s, p) | ◦s ∈ H ∧ ◦p ∈ K} ∪ {•(s, p) | •s ∈ H ∧ •p ∈ K}.

It is easily shown that R×K � R and L(R×K) = L(R)∩L(K).

For any grammar R, the family Sync(R) is in general not closed under intersection,

hence not closed under complement with respect to L(R), since L∩M = L(R) − [(L(R) −
L)∪(L(R) − M)] for any L,M ⊆ L(R). For instance the following grammar:

;Z A

A

(1) (1)

A

a
a, b

a, b

is not level-unambiguous, and for L = {ambman | m, n ≥ 0} and M = {ambnan | m, n ≥ 0},
we have L,M ∈ Sync(R) but L∩M = {anbnan | n ≥ 0} 6∈ Sync(R).

For Rω deterministic, Sync(R) coincides with the family of synchronized languages

defined in [CH 08].

PROPOSITION 6. For any grammar R such that Rω is deterministic,
Sync(R) = {L(S) | S� R ∧ Sω deterministic}.

As a corollary of Proposition 6, Sync(R) is a boolean algebra when Rω is deterministic

[CH 08]. For instance, let Single be the following grammar:

;Z

(x)(x)

(y) (y)

A A A

a

b

b

We have L(Single) = {anbn | n > 0} and Sync(Single) = {L(Gm,n, I) | m ≥ 0 ∧ n > 0},
where L(Gm,n, I) is the language generated from I by the linear context-free grammar Gm,n:

I = P + amAbm with P ⊆ {ab, . . . , ambm}
A = Q + anAbn with Q ⊆ {ab, . . . , anbn}.
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We conclude this section with a fundamental result concerning grammar synchroniza-

tion, which states that Sync(R) is independent of the way the graph Rω is generated.

THEOREM 7. For any grammars R and S, Rω = Sω =⇒ Sync(R) = Sync(S).

This theorem allows to transfer the concept of grammar synchronization to the level

of graphs: for any regular graph G, we can define Sync(G) as Sync(R) for any grammar R

generating G. For instance, the following regular graph:

b

c

b

a
c

b

a
c

b

a
c

defines by synchronization the family of visibly pushdown languages (with a pushing, b

popping and c internal) [AM 04].

5 Synchronization of level-unambiguous grammars

As previously stated, for any grammar R generating a deterministic graph, Sync(R) is an

effective boolean algebra. In this section, we show that this remains true when R is level-

unambiguous.

THEOREM 8. For any level-unambiguous grammar R, the family Sync(R) is an effective
boolean algebra with respect to L(R), containing all the regular languages included in L(R).

For instance, let us consider the initial and unambiguous grammar Double of Section 3.

We have Sync(Double) = {L(Gm,n, I) ∪ L(Hm′,n′ , I) | m,m′ ≥ 0 ∧ n, n′ > 0} where Gm,n is

defined above and Hm,n is the following linear context-free grammar:

I = P + amAb2m with P ⊆ {abb, . . . , amb2m}
A = Q + anAb2n with Q ⊆ {abb, . . . , anb2n}.

This is indeed a boolean algebra with respect to L(Double). Finally for the regular graph G

b

b

b

b

b

b

b b b b bb b

b
a aa a

b b bb

b
b

the family Sync(G) is the regular closure of Sync(Double).
A particular consequence of Theorem 8 is that we can decide the inclusion L(S) ⊆ L(S′)

for two grammars S and S′ synchronized by a common level-unambiguous grammar. Recall

that the inclusion problem is undecidable for the so-called simple languages [Fr 77].

The constructions from [CH 08] cannot be trivially extended because level-unambiguity

is a global property of accepted words and not a local property like graph determinism.

However we can still work locally thanks to the notions of synchronization and level-

unambiguity, which both only require to work level by level.

Closure under union was already stated in Proposition 5. We now proceed to prove the

closures under intersection (Lemma 9) and complement (Lemma 14).
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5.1 Closure under intersection

Wewill use other colours in addition to ◦ and •. For any set of colours C ⊆ F1 − {◦} and any

grammar R, we denote RC the grammar obtained from R by colouring every C-coloured

vertex with • and removing • on all other vertices:

RC := {
(

X, (H − {•}VH)∪{•p | ∃c ∈ C, cp ∈ H}
)

| (X,H) ∈ R}.
We define a level-preserving version of the grammar synchronization product. Let •1, •2 be
new colours. Let R and S be two grammars, G ∈ Rω and H ∈ Sω two graphs they generate,

and letW := {(s, p) ∈ VG×VH | ℓRG(s) = ℓSH(p)}, the level synchronization product G×H is

G×H := {(s, p) a−→(t, q) | s a−→
G
t ∧ p

a−→
H

q ∧ (s, p), (t, q) ∈ W}
∪ {◦(s, p) | ◦s ∈ G ∧ ◦p ∈ H ∧ (s, p) ∈ W} ∪ {•(s, p) | •s ∈ G ∧ •p ∈ H ∧ (s, p) ∈ W}
∪ {•1(s, p) | •s ∈ G ∧ •p 6∈ H ∧ (s, p) ∈ W} ∪ {•2(s, p) | •s 6∈ G ∧ •p ∈ H ∧ (s, p) ∈ W}.

We then simply define Rω×Sω as {G×H | G ∈ Rω ∧H ∈ Sω}. The standard synchronization

product of two regular graphs can be non regular, but the level synchronization product

Rω×Sω can be generated by a grammar R×S that we define.

Let (A, B) ∈ NR×NS be any pair of non-terminals, we consider binary relations E

over inputs such that ∀i, j ∈ [̺(A)], E(i) ∩ E(j) 6= ∅ =⇒ E(i) = E(j), where E(i) =
{j | (i, j) ∈ E} denotes the image of i ∈ [̺(A)]. To any such A, B and E, we associate

a new symbol [A, B, E] of arity |E| (where [Z,Z,∅] is assimilated to Z). To each non-

terminal hyperarc Ar1. . .rm of R (A ∈ NR and m = ̺(A)) and each non-terminal hyperarc

Bs1. . .sn of S (B ∈ NS and n = ̺(B)), we associate the hyperarc [Ar1. . .rm, Bs1 . . . sn, E] :=
[A, B, E](r1, s1)

E
. . . (r1, sn)

E
. . . (rm, s1)

E
. . . (rm, sn)

E
with (ri, sj)

E
:= (ri, sj) if (i, j) ∈ E, and ε

otherwise. The grammar R×S is then defined as the set of rules

[AX, BY, E]−→
(

[P]×[Q]
)

|E ∪ {[CU,DV, E′] | CU ∈ P ∧ C ∈ NR ∧ DV ∈ Q ∧ D ∈ NS}

for each (AX, P) ∈ R, each (BY,Q) ∈ S, and each E ⊆ [̺(A)]×[̺(B)] with

E := {(X(i),Y(j)) | (i, j) ∈ E} ∪
(

VP −VX

)

×
(

VQ −VY

)

E′ := {(i, j) ∈ [̺(C)]×[̺(D)] | (U(i),V(j)) ∈ E}
and where the level synchronization product [P]×[Q] is defined according to

ℓ(s) =

{

0 if s ∈ VX

1 if s ∈ VP −VX

ℓ(t) =

{

0 if t ∈ VY

1 if t ∈ VQ −VY.

Finally we restrict R×S to the non-terminals accessible from Z. This grammar indeed gen-

erates the level synchronization product (R×S)ω = Rω×Sω of their generated graphs, and

also satisfies the following properties:

(R×S)•,•1 � R ; (R×S)•,•2 � S ; S� R =⇒ R×S�� S.

This implies that for any level-unambiguous R, Sync(R) is closed under intersection.

LEMMA 9. For any S, S′ � R with R level-unambiguous, L(S×S′) = L(S)∩L(S′).
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5.2 Level-wise determinization

Before proving the closure under complement of Sync(R) in the next subsection, we need to

define a suitable notion of level-wise determinism, and show that any level-unambiguous

grammar is equivalent, in terms of synchronised languages, to one generating a level-wise

deterministic graph. We say that a grammar R is level-deterministic if for any G ∈ Rω, there

is at most one initial vertex per level, and the targets of any pair of arcs with the same source

and label have distinct levels: ◦s, ◦t ∈ G ∨ (r
a−→
G
s ∧ r

a−→
G
t) =⇒ s = t ∨ ℓG(s) 6= ℓG(t).

In other words, R is level-deterministic if and only if there exists no pair of level-

synchronized initial paths in Rω
◦ . So any grammar generating a deterministic graph is level-

deterministic. We state another property oflevel-deterministic grammars.

LEMMA 10. Any level-deterministic and level-unambiguous grammar is unambiguous.

Another advantage of level-deterministic grammars is that the synchronization relation

is recursive when the synchronizer is level-deterministic (this is proved using the general-

ized grammar synchronization product defined in the next section).

LEMMA 11. We can decide whether R� S for R level-deterministic.

Similarly to way level synchronization is done, we perform the standard powerset con-

struction only level by level.

For R a grammar generating G, let Π := {P | ∅ 6= P ⊆ VG ∧ ∀p, q ∈ P, ℓ(p) = ℓ(q)}
be the set of subsets of vertices with same level, and let Succa(P) be the set of successors of
vertices in P ∈ Π by a ∈ FG∩F2: Succa(P) := {q | ∃p ∈ P(p

a−→
G
q)}. The level-determinization

of any grammar R is defined as Det(Rω) := {Det(G) | G ∈ Rω}, where Det(G) is:

Det(G) :={P a−→Q | P,Q ∈ Π ∧Q ⊆ Succa(P) ∧ ∀q ∈ Succa(P) −Q,Q∪{q} 6∈ Π}
∪ {◦P | P ∈ Π ∧ ∀p ∈ P(◦p ∈ G) ∧ ∀q(◦q ∈ G ∧ q 6∈ P =⇒ P∪{q} 6∈ Π)}
∪ {cP | P ∈ Π ∧ c ∈ F1 − {◦} ∧ ∃p ∈ P(cp ∈ G)}

restricted to the vertices accessible from ◦.
Contrary to the level synchronization product, Det does not preserve regularity. How-

ever Det(Rω) can be generated by a grammar when R is in a certain normal form which

preserves synchronised languages.

Let us define an arc grammar R as an initial grammarwhose rules (except the axiom rule)

are all of the form A12−→HA where HA is a finite graph with no terminal arc of target 1, or

of source 2, or of source 1 and target 2 : s
a−→

[HA ]
t =⇒ s 6= 2∧ t 6= 1∧ (s, t) 6= (1, 2). We tranform

a grammar into an arc grammar by splitting non-terminal hyperarcs into non-terminal arcs

of arity 2 (hence the name).

LEMMA 12. Any initial grammar can be transformed into a bi-synchronized arc grammar,
while preserving unambiguity.

This lemma allows to prove Proposition 1 by translating any unambiguous arc gram-

mar R into an unambiguous context-free grammar generating L(R), and conversely.

For any arc grammar R, Det(Rω) can be generated by a grammar Det(R) that we define.

Let R be an arc grammar generating a graph accessible from ◦. To any A ∈ NR − {Z}, we
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associate a new symbol A of arity 2 and we define the grammar R obtained from R by

adding the rules A12−→HA for all A ∈ NR − {Z}, and then by replacing in the right hand

sides any non-terminal arc s
B−→2 by s

B−→2:

R := {(Z,HZ)} ∪ {
(

A12, (HA − NRVHA
2)∪{Bs2 | B ∈ NR ∧ Bs2 ∈ HA}

)

| A ∈ NR − {Z}}
∪ {

(

A12, (HA − NRVHA
2)∪{Bs2 | B ∈ NR ∧ Bs2 ∈ HA}

)

| A ∈ NR − {Z}}.

Let < be a linear order over 2NR−{Z} of smallest element ∅. For each P ⊆ NR − {Z}, P 6= ∅,

we take a new symbol P′ of arity 2|P| and a hyperarc <P> = P′p1. . .pm with {p1, . . ., pm} =

2P and p1 < . . . < pm, and we define a graph HP such that {Z A−→A | A ∈ P} ∪ {◦Z}=⇒
R

HP.

In the special case where P = ∅, we let <∅> = Z and H∅ = HZ.

For every P ⊆ NR − {Z}, we apply to HP the level-determinization procedure de-

scribed above to get the graph H′
P := Det(HP)[∅/{Z}]−{◦∅}whose vertex level mapping

ℓ is defined by ℓ(A) = 0 for all A ∈ P− NR, ℓ(A) = 1 for all A ∈ P∩NR and ℓ(s) = 2 for all

s ∈ VHP
− (P∪{Z}). Note that the level ℓ(Z) of Z is not significant because there is no arc of

target Z in HP. We define grammar Det(R) by associating to each P ⊆ NR − {Z} the rule:

<P> −→ [H′
P] ∪ {<Q>[s/∅][∪e∈Ese/E]∅ 6=E⊆Q | s ∈ VH′

P
∧Q 6= ∅}

with Q := {A ∈ NR | s A−→
H′
P

} and s
A−→
H′
P

sA for any A ∈ Q. Note that when R is unambiguous,

we can restrict <P> = P′p1. . .pm to {p1, . . ., pm} = P.

LEMMA 13. For any arc grammar R, (Det(R))ω = Det(Rω), Det(R) ��R and Det(R) is
level-deterministic, hence Det(R) is unambiguous for R level-unambiguous.

5.3 Closure under complement

We now consider the closure under complement of Sync(R) for R level-unambiguous.

First we have to extend the level synchronization product R×S of any grammars R and

S in order to retain a path for all the words accepted by R. We take new colours •1, •2 and a

fresh symbol ⊥. For any grammars R and S, the generalized level synchronization product of

their generated graphs is Rω⊗Sω := {G⊗H | G ∈ Rω ∧ H ∈ Sω}, where G⊗H is defined as:

G⊗H :=G×H ∪ {•1(s,⊥) | •s ∈ G} ∪ {•2(⊥, p) | •p ∈ H}
∪ {(s, p) a−→(t,⊥) | s a−→

G
t ∧ ((s, p) ∈ VG×H ∨ p = ⊥) ∧ ∀q(p a−→

H
q =⇒ ℓ(q) 6= ℓ(t))}

∪ {(s, p) a−→(⊥, q) | p a−→
H

q ∧ ((s, p) ∈ VG×H ∨ s = ⊥) ∧ ∀t(s a−→
G
t =⇒ ℓ(t) 6= ℓ(q))}

∪ {◦(s,⊥) | ◦s ∈ G ∧ ∀p(◦p ∈ H =⇒ ℓ(p) 6= ℓ(s))}
∪ {◦(⊥, p) | ◦p ∈ H ∧ ∀s(◦s ∈ G =⇒ ℓ(s) 6= ℓ(p))}.

The definition of R×S from the previous section is extended to define a grammar R⊗S. The
symbol [A, B, E] is now of arity |E| + ̺(A) + ̺(B) with the definition

[Ar1. . .rm, Bs1. . .sn, E] := [A, B, E](r1, s1)
E
. . . (rm, sn)

E
(r1,⊥) . . . (rm,⊥)(⊥, s1). . .(⊥, sn)
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and we replace
(

[P]×[Q]
)

|E by
(

[P]⊗[Q]
)

|E ∪ VP×{⊥} ∪ {⊥}×VQ
in the right hand side of the

rule of [AX, BY, E]. The grammar R⊗S generates Rω⊗Sω, and satisfies:

(R⊗S)•,•1,•1 ��R ; (R⊗S)•,•2,•2 �� S ; ∀ f ∈ {•, •1, •2}, (R⊗S) f �� (R×S) f .

The language L(R) − L(S) for S� R is the set of non accepting words labelling initial paths

in R⊗S which end in a vertex coloured by •1 or •1:

L(R)− L(S) = L(R)− (L(R)∩ L(S)) = L((R⊗S)•,•1,•1)− L(R⊗S) = L((R⊗S)•1,•1)− L(R⊗S)

When (R⊗S)•,•1,•1 is unambiguous, the language L((R⊗S)•1,•1)− L(R⊗S) is the set of words

which label paths ending in non final vertices coloured by •1 or •1. As (R⊗S)•,•1,•1 is level-
unambiguous when R is, we get the closure under complement of Sync(R) using Lemmas

12 and 13.

LEMMA 14. For R level-unambiguous and S� R, L(R) − L(S) ∈ Sync(R).

6 Conclusion

For lack of space, we had to omit from this paper a condition on grammars ensuring that

their synchronized languages are closed under concatenation and Kleene star. Many other

examples of grammars and their families of synchronized languages also have to be studied.

Acknowledgements. Many thanks to Antoine Meyer for helping me prepare the final ver-

sion of this paper.
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Université Paris-Sud

{chaillou,jkeren}@lri.fr

ABSTRACT.
In quantum zero knowledge, the assumption was made that the verifier is only using unitary oper-
ations. Under this assumption, many nice properties have been shown about quantum zero knowl-
edge, including the fact that Honest-Verifier Quantum Statistical Zero Knowledge (HVQSZK) is
equal to Cheating-Verifier Quantum Statistical Zero Knowledge (QSZK) (see [17, 18]).
In this paper, we study what happens whenwe allow an honest verifier to flip some coins in addition
to using unitary operations. Flipping a coin is a non-unitary operation but doesn’t seem at first to
enhance the cheating possibilities of the verifier since a classical honest verifier can flip coins. In
this setting, we show an unexpected result: any classical Interactive Proof has an Honest-Verifier
Quantum Statistical Zero Knowledge proof with coins. Note that in the classical case, honest verifier
SZK is no more powerful than SZK and hence it is not believed to contain even NP. On the other
hand, in the case of cheating verifiers, we show that Quantum Statistical Zero Knowledge where the
verifier applies any non-unitary operation is equal to Quantum Zero-Knowledge where the verifier
uses only unitaries.
One can think of our results in two complementary ways. If we would like to use the honest verifier
model as a means to study the general model by taking advantage of their equivalence, then it is
imperative to use the unitary definition without coins, since with the general one this equivalence
is most probably not true. On the other hand, if we would like to use quantum zero knowledge
protocols in a cryptographic scenario where the honest-but-curious model is sufficient, then adding
the unitary constraint severely decreases the power of quantum zero knowledge protocols.

1 Introduction

Zero knowledge protocols propose an elegant way of doing formally secure identification.

In these interactive protocols, a prover P knows a secret s and he wants to convince a veri-

fier V that he knows s without revealing any information about s. The condition ”without

revealing any information” has been formalized in [3, 4] and this security condition has

been defined in the computational (CZK) and the information-theoretic setting (SZK). Zero

knowledge has been extensively studied and found numerous applications in theoretical

computer science and cryptography (see [16] and references therein).

In addition, zero knowledge is defined for the case of honest or cheating verifiers. In

the honest verifier model, we force the protocol to be zero knowledge only against a veri-

fier who follows the protocol but tries to extract as much information as possible from the
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interaction. An honest verifier is equivalent to the ‘Honest-but-Curious’ or ‘Semi-Honest’

adversary in cryptography. This model has been widely studied in cryptography and is

important in certain realistic scenarios (for example online protocols), where the protocols

are used in complex interactions with limited capacity of cheating ([5], ch. 7). Moreover,

in the case of classical zero knowledge it is particularly interesting, due to the fact that it is

equivalent to the general Zero-Knowledge model against cheating verifiers [6].

In 2002, Watrous proposed a quantum equivalent of zero knowledge proofs [17] for the

case of honest verifiers. In this definition, the prover and the verifier are allowed to use

only unitary operations and the zero knowledge property is defined in a seemingly weaker

way than in the classical case. Watrous proved many interesting results for this class, such

as complete problems, closure properties and a few years later, that honest verifier equals

cheating verifier (i.e. HVQSZK = QSZK) [18]. These results provided strong a posteriori

evidence that Watrous’ definition is the right one for quantum Zero Knowledge.

In this paper, we revisit the definition of quantum zero knowledge and examine the

importance of the unitarity constraint. First, we increase the power of the honest verifier

by allowing him to flip classical coins in addition to performing unitary quantum opera-

tions. Note that flipping classical coins is not a unitary operation and that coin flips are also

allowed in the classical case. In this new setting, we also strengthen the definition of simula-

tion in order to still catch the essence of Zero-Knowledge protocols. In particular, the verifier

does not ”forget” or ”erase” these coins, since he remains honest but curious. Even though

this augmentation to the model seems minimal if not trivial, we prove that any classical

interactive proof has a quantum honest-verifier statistical zero-knowledge proof (Section 3)

with coins. Note that in the classical case, honest verifier SZK is no more powerful than

SZK and hence it is not believed to contain even NP. If, on the other hand, we look at

cheating verifiers, we show that the most general cheating strategies for quantum verifiers

are the unitary ones. In Section 4, we transform any general Zero Knowledge protocol into

a unitary protocol that retains completeness, soundness and the zero-knowledge property.

We like to see the consequences of our results from two different points of view. On one

hand, if we want to use the honest verifier model as a means for the study of general zero

knowledge, then the most important property that we would like is the equivalence of the

two models. This way, one only needs to prove that a protocol is zero knowledge against

honest verifiers and immediately conclude that it can also be made zero knowledge against

cheating verifiers. Our results show that in this case, Watrous’ definition with unitaries is

indeed the right one, since we give strong evidence that this equivalence does not hold in

the non-unitary case. Moreoover, we prove that the use of non-unitaries does not change

the power of a cheating verifier.

On the other hand, the Honest-but-Curious model (that corresponds to the honest ver-

ifier) is not only a means for the study of the malicious model (that corresponds to the

cheating verifier) but an important model in itself pertinent to many realistic cryptographic

scenarios. For example, in certain settings, we can assume that the verifier is semi-honest

when he interacts with the prover via a secure interface, eg. an ATM or a secure web in-

terface. In this case, it might suffice to assume that the verifier does not open the ATM by

force or hack the webpage, instead he can only provide well-chosen legal inputs to these

machines and try to extract as much information as possible from the interaction.
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2 Definitions of classical and quantum Statistical Zero Knowl-
edge

An interactive proof system for a problem Π is an interactive protocol between a computa-

tionally unbounded prover P and a probabilistic polynomial-time verifier V that satisfies

the following two properties:

• Completeness: if x is a YES instance of Π (x ∈ ΠY), then V will accept with probability

greater than 2/3 after interacting with P on common input x.

• Soundness: if x is a NO instance of Π (x ∈ ΠN), then for every (even computationally

unbounded) prover strategy P∗, V will accept with probability less than 1/3 after

interacting with P∗ on common input x.

DEFINITION 1. We say that a protocol 〈P,V〉 solves Π if and only if 〈P,V〉 is an interactive
proof system for Π.

In the classical Zero-Knowledge setting, we want the Verifier to learn nothing from

the interaction with the Prover, other than the fact that the input is a Yes instance of the

problem (x ∈ ΠY) when it is the case. The way this is formalized is that for x ∈ ΠY, one can

simulate in probabilistic polynomial-time the Verifier’s view of the protocol view〈P,V〉(x), i.e.
his private coins, the messages he received from the Prover and the messages he sent to the

Prover. Note that the view is a distribution depending on the random coins of the Prover

and the Verifier and contains all the information that the Verifier gains by interacting with

the Prover. Specifically,

DEFINITION 2. A protocol 〈P,V〉 has the zero-knowledge property for Π if there exists a
probabilistic polynomial-time simulator S and a negligible function µ such that for ∀x ∈ ΠY,
the simulator outputs a distribution S(x) such that |view〈P,V〉(x) − S(x)|1 ≤ µ(|x|).

In our discussion so far, we have considered the casewhere the Verifier honestly follows

the protocol but tries to extract as much information as possible from the interaction with

the Prover. In order to do that, the Honest Verifier would keep a copy of all themessages and

his coins throughout the protocol and would not erase or discard any of this information.

We can now define the class of Honest Verifier Statistical Zero Knowledge (HVSZK):

DEFINITION 3. Π ∈ HVSZK iff there exists an interactive protocol 〈P,V〉 that solves Π and
that has the zero-knowledge property for Π.

2.1 Honest Verifier Quantum Statistical Zero Knowledge

Quantum Statistical Zero Knowledge proofs are a special case of Quantum Interactive Proofs.

They were defined for honest verifiers by Watrous in [17] and have been also studied in

[8, 18, 9]. We can think of a quantum interactive protocol 〈P,V〉(x) for a promise problem

Π as a circuit (V1(x), P1(x), . . . ,Vk(x), Pk(x)) acting on V ⊗M⊗P . V are the Verifier’s pri-

vate qubits, M the message qubits and P the Prover’s private qubits. Vi(x) (resp. Pi(x))
represents the ith action of the Verifier (resp. of the prover) during the protocol and is de-

cribed by a super-operator acting on V ⊗M (resp. on M⊗P). βi corresponds to the state
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in V ⊗M⊗P after the ith action of the protocol. In other words, β0 is the initial state, β2i is

the state after Pi and β2i−1 the one after Vi.

Defining the Zero-Knowledge property in the quantum setting is not straightforward,

even for the Honest Verifier case. We would still like to say that a quantum protocol has the

zero knowledge property if there exists an efficient way to simulate the Verifier’s view of

the protocol. The main difficulty, however, is the definition of the view of the Verifier, since

in the quantum case there is no notion of transcript. Indeed, the Verifier and Prover send the

same qubits back and forth during the protocol and hence an Honest-but-curious Verifier

cannot follow the protocol and simultaneously keep a copy of all the quantum messages

that have been previously sent.

Watrous ([17]) tried to resolve these problems by defining honest verifier quantum zero

knowledge in the following way: the view of the Honest Verifier for every round j is the

Verifier’s part of the state β j, i.e. view〈P,V〉(j) = TrP (β j). We say that the Verifier’s view can

be simulated if there is a negligible function µ such that on any input x and for each step j

we can create in quantum polynomial-time a state σj such that ‖σj − view〈V,P〉(j)‖ ≤ µ(|x|).
We also distinguish the Verifier’s view depending on whether the last action was made

by the Verifier or the Prover. We note ρ0 the input state, ρi the Verifier’s view after Pi and

ξi the Verifier’s view after Vi. Note that for a state σ with ‖σ − ρi‖ ≤ µ(|x|) it is easy to see

that σ′ = Vi+1(σ) is close to ξi+1 = Vi+1(ρi) in the sense that ‖σ′ − ξi+1‖ ≤ µ(|x|). Hence,

we just need to simulate the ρi’s and hence

DEFINITION 4. A protocol 〈P,V〉 has the zero-knowledge property for Π if there is a neg-
ligible function µ such that ∀x ∈ ΠY and ∀j we can create σj with quantum polynomial
computational power such that ‖σj − ρj‖tr ≤ µ(|x|).

Let us look more closely to the ‘round-by-round’ definition of the simulation. First,

the fact that we simulate the verifier’s view at every round and not just at the end of the

protocol ensures that the zero knowledge property is retained even if the Honest Verifier

follows the protocol up to some round and then decides to abort.

Second, in order for this definition to be pertinent in the honest but curious model, we

need to ensure that the verifier will retain all the information that he acquires during the

protocol and not forget any of it. One way to ensure this is by restricting the verifier to use

only unitary operations. The intuition is that since unitary operations are reversible, they

do not allow for ‘forgetting’ any information. This is precisely the way Watrous defined the

class of Honest Verifier Quantum Statistical Zero Knowledge (HVQSZK):

DEFINITION 5. Π ∈ HVQSZK iff there exists a quantum protocol 〈P,V〉 with V using only
unitaries that solves Π and that has the zero-knowledge property for Π.

The above intuition was later confirmed by the fact that indeed Honest Verifier Quan-

tum Statistical Zero Knowledge with unitaries is equivalent to general cheating verifiers

([18]).

2.2 The coin model for Honest Verifier Quantum Zero-Knowledge

As we said, we would like to investigate the importance of the unitarity constraint in the

power of quantum zero knowledge. For this, we define and study a newmodel for quantum
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zero-knowledge protocols, where we just allow the verifier to flip classical coins in addition

to performing unitary operations. This is equivalent to saying that the verifier starts with a

private random string r∗ or in a quantum language that the verifier starts with some private

qubits initialized to |0〉 − acting as the verifier usual workspace, and additionally some

qubits in the totally mixed state I − acting as the verifier’s initial coins. The verifier uses his

coins (the state I) only as control bits. More formally, if we suppose that the verifier starts

with the state I ⊗ |0〉〈0| in the space A⊗ B, then he can only use the space A by applying

unitaries of the form:

U(|x〉, |y〉) = |x〉 ⊗ |y⊕ f (x)〉 with |x〉 ∈ A and |y〉 ∈ B

Note that this constraint just implies that the verifier doesn’t forget his coins. In particular,

he does not discard these bits by sending them to the prover.

In this case, of course, one needs to be very careful with the definition of the simulation

since now, the Verifier has the extra classical information of the coins. Since the interaction

is quantumwe still have to consider a ‘round-by-round’ simulation. However, in our defini-

tion of the ‘round-by-round’ simulation we need to insist that one must simulate the entire

private random string of the verifier in addition to the quantum view of the Verifier.

Note that apart from these additional initial coins, the verifier is allowed to use only

unitaries like in the original definition of HVQSZK. We can now define HVQSZKC:

DEFINITION 6. Π ∈ HVQSZKC iff, there exists a quantum protocol 〈P,V〉, where the
verifier’s initial state is (|0〉〈0|)⊗n ⊗ In, that solves Π and has the zero-knowledge property
for Π. The verifier uses only unitaries and uses his coins (the state In) only as control bits.

This model is meant to be a very small augmentation of the original model proposed by

Watrous. Note that the verifier is not able to create by himself the totally mixed state using

only unitaries. It is important to notice that the requirement “the prover uses the state In as

control bits” means that these coins are always part of his view of the protocol or in other

words that he never forgets his coins.

2.3 The hidden-bits model for Statistical Zero-Knowledge

The hidden-bits model was first defined for Non-Interactive Zero-Knowledge [2], however,

it naturally extends to the interactive case.

DEFINITION 7. We say that the prover has a hidden-bit r with security parameter k iff:
• r is a truly random bit known to the prover.
• The verifier has no information about r.
• The prover can reveal the value of the bit r to the Verifier. If he tries to convince the

Verifier that the value is r then he will be caught with probability (1− 2−k).

DEFINITION 8. Π ∈ HVSZKHB iff there exists a classical protocol 〈P,V〉 that solves Π and
has the zero-knowledge property for Π where the prover starts with a polynomial number
of hidden bits.

We can also define the associated quantum class
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DEFINITION 9. Π ∈ HVQSZKHB iff there exists a quantum protocol 〈P,V〉 that solves
Π and has the zero-knowledge property for Π where the prover starts with a polynomial
number of hidden bits.

Note that the existence of hidden-bits is a very strong assumption. In particular, we

can remark that hidden-bits imply that the prover and verifier can perform bit commitment

with perfect hiding and statistically binding conditions. Bit commitment is a primitive used

in many cryptographic protocols. More formally:

DEFINITION 10. A bit commitment scheme with perfect hiding condition and statistically
binding condition with security parameter k is a scheme with a commit phase and a reveal
phase such that:

• Commit phase: the prover chooses a bit c and commits to it by interacting with the
verifier. At the end of the interaction, the verifier has no information about c (perfectly
hiding).

• Reveal phase: the prover sends a message to the verifier and reveals the commited bit
c. If the prover tries to cheat and reveal c then he will be caught by the verifier with
probability greater than (1− 2−k) (statistically binding).

Note that both classically and quantumly, bit commitment schemes with k ≥ 1 do not

exist unconditionally [11, 12]. However, there is an easy way to do bit commitment which is

perfectly hiding and statistically binding with security parameter k from a hidden bit r with

security parameter k. The prover commits to a bit c by sending c⊕ r and later reveals r. After

the commit phase the verifier has no information about r (and hence c) and during the reveal

phase the prover cannot lie about r (and hence c) without being caught with probability at

least (1− 2−k). Hence, this scheme is a commitment scheme which is perfectly hiding and

statistically binding with security parameter k.

Classically, if we suppose the existence of such a bit commitment scheme, we can create

zero-knowledge protocols for all interactive proofs [1] and since Shamir showed that IP =
PSPACE [15], we have

PSPACE = IP ⊆ HVSZKHB

3 The role of coins in Quantum Statistical Zero-Knowledge

In this section we prove our main result, that HVSZKHB ⊆ HVQSZKC which implies that

PSPACE ⊆ HVQSZKC. We will first present a general method to create hidden-bits out of

shares. We will then show a way to achieve these shares with a quantum honest verifier that

has coins.

3.1 A general method for creating hidden-bits

The method described here is the one used in [14] to create hidden bits from secret help,

which in turn uses ideas from [7] in order to do Oblivious Transfer. For clarity of exposition,

we show how to hide a single bit, but the construction naturally generalizes to n bits by

repeating in parallel.
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PROPOSITION 11. Let three random bits (s0, s1, b) be such that: the prover knows s0 and
s1 and has no information about b; the verifier knows b and the associated bit sb but has no
information about sb. Then we can create a hidden bit r with security parameter k = 1.

PROOF. From these bits, the associated hidden bit will be r = s0 ⊕ s1 and s0, s1 will be

called the shares of r. The way the prover will reveal r is by sending these two shares to the

verifier who checks that they correspond with the one share he has. We now show that r is

a hidden bit with security parameter 1:

• Since s0 and s1 are random and known to the prover, then so is r.

• Since the verifier knows sb but has no information about sb, he has no information

about r.

• If the prover tries to lie about r then he has to flip exaclty one of the two shares. He

will get caught if he flips sb and will not get caught if he flips sb. Since he has no

information about b, he will be caught cheating with probability 1/2.

Note that if we have for each hidden bit r, k independent random couples of shares

(s0k , s
1
k) such that s0k ⊕ s1k = r then similarly, we can suppose that r is a hidden-bit with

security parameter k.

3.2 A quantum way of achieving Hidden Bits

From the coins of the verifier, we now show how to create the shares described in the previ-

ous part. As before, we describe the construction of one hidden-bit which easily generalizes

to n bits. We use three qubits of the verifier’s initial totally mixed state (three coins) as

∑b,sb,c∈{0,1} |b, sb, c〉〈b, sb, c|.
As in the previous part, the bit b corresponds to which share the Verifier has and sb

corresponds to the value of that share. The bit c corresponds to the value of the other share

in the Hadamard basis, i.e. we define |c×〉 = 1√
2
(|0〉 + (−1)c|1〉). The verifier performs the

unitary Ub,sb,c that depends on (b, sb, c) and sends the outcome to the Prover.

U0,sb,c : |0〉|0〉 → |sb〉|c×〉 and U1,sb,c : |0〉|0〉 → |c×〉|sb〉

The prover has two qubits which he measures in the computational basis and the out-

comes of this measurement will correspond to the two shares. One of this measurements

will give sb and the other one will give a random bit s
b
. The hidden bit r is equal to sb ⊕ s

b
.

LEMMA 12. The above construction results in a hidden bit r with security parameter 1.

PROOF.

• The bit r = sb ⊕ s
b
is random since the verifier picks sb at random and the outcome

of the measurement of |c×〉 in the computational basis is also random (hence sb is

random). Since the prover knows the two shares he knows r.

• The verifier knows a share sb which is random since b is random. He has no infor-

mation about the share sb since the outcome of the Prover’s measurement of |c×〉 is
independent of the Verifier’s coins. Hence he has no information about r.



102 INCREASING THE POWER OF THE VERIFIER IN QUANTUM ZERO KNOWLEDGE

• b is unknown to the prover: to show this, let ρb be the state of the prover conditioned

on the verifier’s coin b

ρ0 =















wp. 1/4 |0,+〉
wp. 1/4 |0,−〉
wp. 1/4 |1,+〉
wp. 1/4 |1,−〉

and ρ1 =















wp. 1/4 |+, 0〉
wp. 1/4 |+, 1〉
wp. 1/4 |−, 0〉
wp. 1/4 |−, 1〉

We can easily see that ρ0 = ρ1 hence the prover has no information about b. Moreover,

since ρ0 = ρ1 = I, the prover’s state is equivalent to a mixture of classical pairs of

shares. Since he has no information about b, the prover cannot cheat for any of those

classical pairs of shares with probability striclty greater than 1/2.

We can easily extend the above construction to a hidden-bit with security parameter k

for any polynomial k (by creating k independent pairs of shares for this hidden-bit) and also

to n hidden-bits with security parameter k by just repeating this process n times.

Note also that the unitary used by the verifier uses his coins only as control bits. There-

fore, we can use this construction to create hidden bits in a way which is consistent with our

enhanced notion of simulation and show that HVSZKHB ⊆ HVQSZKC. Let us prove this

fact formally:

PROPOSITION 13. HVSZKHB ⊆ HVQSZKC

PROOF.

Let Π a problem in HVSZKHB and 〈P,V〉 a classical zero-knowledge protocol with

hidden-bits that solves Π. We create the following quantum protocol 〈P′,V ′〉 where the

verifier starts with the state : (|0〉〈0|)⊗n ⊗ In (acting as his workspace and coins).

• The verifier V ′ views his coins as the coins of the original verifier V and the coins

needed in order to create hidden bits.

• In the beginning of the protocol the verifier uses our construction and creates hidden

bits with security parameter k.

• Then, the prover and verifier both follow the original classical protocol 〈P,V〉. Note

that this is possible since any classical circuit C can be transformed into a quantum

unitary circuit UC such that UC(|x, 0〉) = |x,C(x)〉.
Note that since V ′ uses his coins as the private randomness of V, he can perform the

classical protocol 〈P,V〉 using unitaries.

We now prove that 〈P′,V ′〉 is a Zero-Knowledge protocol that solves Π. Completeness

is straightforward from the completeness of the original protocol and the fact that in our

construction the prover can always reveal the correct hidden bits. Concerning soundness:

1. If the prover reveals all the hidden-bits correctly, the soundness of 〈P′,V ′〉 is the same

as the soundness of 〈P,V〉.
2. If the prover lies on at least one of the hidden-bits he reveals, then the soundness of

〈P′,V ′〉will be smaller than 2−k since the hidden-bits created have security parameter

k.

To show the zero-knowledge property, we use the fact that we can already simulate the

verifier’s view in the protocol 〈P,V〉. This includes the private coins of V, the messages and

in particular, all the hidden-bits ri revealed by the prover.
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In order to simulate the verifier’s view in the new protocol 〈P,V〉 we have to addition-

ally simulate the following:

• all the coins that the verifier V ′ used in order to create hidden bits.

• The k pairs of shares (s0i , s
1
i )j, j ∈ [k] for every revealed hidden bit ri.

First, the simulator just flips some coins in order to simulate all the random bits the

verifier uses to construct the hidden bits. In particular, for every revealed hidden bit ri, the

simulator has the corresponding bits (bi, s
b
i , ci)j, j ∈ [k]. From these bits and the value of ri

(which we know from the original simulation), we can now create all the couples of shares

(s0i , s
1
i )j. This allows us to simulate the view of the verifier in the protocol 〈P′,V ′〉.

THEOREM 14. PSPACE ⊆ HVQSZKC

PROOF. From Section 2.3 we know that: PSPACE ⊆ HVSZKHB. We now use the fact that

HVSZKHB ⊆ HVQSZKC and conclude.

Onemight think that this surprising result comes from the fact that the round-by-round

simulation is too weak in our setting and that a satisfactory zero-knowledge property is not

achieved. In fact, if we assume that the verifier follows the protocol, then our notion of

simulation is as strong as in the unitary case. The only extra information that the verifier

has in our protocols is the initial random string which we always simulate at every round.

4 Non-unitaries and cheating verifiers

4.1 Definitions

The goal of this section is to describeWatrous’ definition of Quantum Statistical Zero Knowl-

edge (QSZK) for cheating verifiers. Consider a quantum zero-knowledge protocol between

a prover P and a verifier V where the verifier starts with an auxiliary input w. Additionally,

the prover and verifier have as common input the input of the promise problem which is

a classical string. All the operations described hereafter will depend on this input and this

dependence will be omitted.

We will use the following Hilbert spaces for our analysis.

• P the space of the prover.

• M the space where the prover and verifier store the messages they send.

• V the verifier’s workspace initialized to |0〉.
• W the verifier’s space where the auxiliary input is initially stored.

Let 〈P,V〉 = 〈P1,V1, . . . , Pn,Vn〉. Each Pi acts onP ⊗M and eachVi acts onM⊗V ⊗W .

We can tensor these operations with the identity and suppose that they all act on the space:

P ⊗M⊗ V ⊗W. We can therefore see the whole protocol as a big operation O acting on

P ⊗M⊗V ⊗W. More formally:

DEFINITION 15. For any protocol 〈P1,V1, . . . , Pn,Vn〉 where each Vi and Pi acts on P ⊗
M⊗V ⊗W (in fact by tensoring the Vi’s and Pi’s with the identity) we denote by OP,V the
following admissible mapping:

OP,V : L(W) → L(P ⊗M⊗V ⊗W)
: w → Vn(Pn(. . . (V1(P1( |0〉

︸︷︷︸

∈P⊗M⊗V

⊗ w
︸︷︷︸

∈W
)))))
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where L(X ,Y) is the set of linear operators from X to Y , and L(X ) = L(X ,X ). In

particular, any mixed state in X can be represented as an element of L(X ).

The zero-knowledge property concerns only what the verifier has at the end of the

protocol. Without loss of generality, we can suppose that M is empty since a cheating

verifier can always move the information from M to V at the end of the protocol. Hence,

we will be interested in:

OV : L(W) → L(V ⊗W)

: w → TrP⊗M






Vn(Pn(. . . (V1(P1( |0〉

︸︷︷︸

∈P⊗M⊗V

⊗ w
︸︷︷︸

∈W
)))))







which for short we will also denote as OV = TrP⊗MOP,V . More generally, for any super-

operator X that outputs inA⊗B, we denote TrAX the super-operator such that (TrAX)(ρ) =
TrA(X(ρ)). We say that OV is the mapping that corresponds to the verifier’s view of the

protocol. We want to be able to simulate this mapping i.e. be able to create in quantum

polynomial time a mapping Σ which will act like OV and this for every auxiliary input w.

We can now define QSZK:

DEFINITION 16. We say that Π ∈ QSZK if there is a protocol 〈P,V〉 = 〈P1,V1, . . . , Pn,Vn〉
such that:

• Completeness: ∀x ∈ ΠY, the verifier accepts with probability greater than 2/3.
• Soundness: ∀x ∈ ΠN , and for all prover’s strategies P∗, the verifier accepts with prob-

ability smaller than 1/3.
• Zero-knowledge: for any cheating verifier V∗ (where OV∗ is the mapping associated

to 〈P,V∗〉), there is a function µ and a mapping Σ : L(W) → L(V ⊗W) that can be
computed in quantum polynomial time such that ∀x ∈ ΠY, we have

||OV∗ − Σ||⋄ ≤ µ(|x|).

where for any super-operator Φ, ||Φ||⋄ = sup{||Φ⊗ IL(Z)||tr, Z is a complex Euclidean

space} (see [10] for more details on this diamond norm).

Note that if Σ uses V∗ only as a black box, then we can change the order of quantifiers

and have a single mapping Σ for all possible V∗.
In the definition of QSZK, the verifier and the prover can use any physically admissible

operation. We will show that in fact, if the zero-knowledge property holds against cheating

verifiers that only use unitaries then it also holds for cheating verifiers that use any physi-

cally admissible operation. In other words, cheating strategies with unitary operations are

the most general ones.

DEFINITION 17. We say that Π ∈ QSZKU if there is a protocol 〈P,V〉 = 〈P1,V1, . . . , Pn,Vn〉
such that:

• Completeness: ∀x ∈ ΠY, the verifier accepts with probability greater than 2/3.
• Soundness: ∀x ∈ ΠN , and for all prover’s strategies P∗, the verifier accepts with prob-

ability smaller than 1/3.
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• Zero-knowledge: for any cheating verifier V∗ that uses unitaries (where OV∗ is the
mapping associated to 〈P,V∗〉), there is a function µ and a mapping Σ : L(W) →
L(V ⊗W) that can be computed in quantum polynomial time such that ∀x ∈ ΠY, we
have

||OV∗ − Σ||⋄ ≤ µ(|x|).

4.2 Unitary cheating verifiers are as powerful as general cheating verifiers

In this section, we show that in the case of cheating verifiers, coin flips − and more gen-

erally any non-unitary operations − do not add anything to the power of quantum Zero-

Knowledge. In other words, we show that

PROPOSITION 18. QSZK = QSZKU

PROOF. We have by definition that QSZK ⊆ QSZKU . We show now the other inclu-

sion. The main idea is to say that each time the verifier uses a non-unitary, he can use a

larger unitary which will act as a purification of this non-unitary which will only give him

more information. More formally, we use the following fact that is a direct corollary of the

purification lemma. (see [13]).

LEMMA 19. Let C a quantum non-unitary circuit acting on a space A. There is a space B of
same dimension as A and a unitary circuit ˜C acting on A⊗B such that TrB ˜C = C.

Now consider a protocol 〈P,V〉 = 〈P1,V1, . . . , Pn,Vn〉 which has the zero-knowledge

property for any unitary cheating verifier V. Consider a cheating verifier V∗, the protocol

〈P,V∗〉 = 〈P1,V∗
1 , . . . , Pn,V

∗
n 〉 and its associated mapping OV∗ from L(W) to L(V ⊗W).

Recall that:

OV∗ = TrP⊗M (Pn ◦V∗
n ◦ . . . ◦ P1 ◦V∗

1 )

Consider now n additional Hilbert spacesA1 throughAn and admissible mappings ˜V∗
i such

that

∀i TrAi
˜V∗
i = V∗

i

The spaces Ai are Hilbert spaces that the verifier possesses. Let us look at the protocol

〈P, ˜V∗〉 = 〈P1, ˜V∗
1 , . . . , Pn,

˜V∗
n 〉 andO

˜V∗ the associatedmapping for the verifier. Thismapping

is a mapping from L(W) to L(A1 ⊗ . . .⊗An ⊗ V ⊗W). We know that there is a mapping

Σ computable in quantum polynomial time such that ||O
˜V∗ − Σ||⋄ ≤ µ(|x|).

By construction, we know that OV∗ = TrA1⊗...⊗An
O

˜V∗ . Consider Σ′ = TrA1⊗...⊗An
Σ, we

can easily conclude that

||OV∗ − Σ′||⋄ ≤ µ(|x|)
and that Σ′ is quantum polynomial time computable which concludes our proof.
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ABSTRACT. Simulation and bisimulation metrics for stochastic systems provide a quantitative gen-
eralization of the classical simulation and bisimulation relations. These metrics capture the similarity
of states with respect to quantitative specifications written in the quantitative µ-calculus and related
probabilistic logics.
We present algorithms for computing the metrics on Markov decision processes (MDPs), turn-
based stochastic games, and concurrent games. For turn-based games and MDPs, we provide a
polynomial-time algorithm based on linear programming for the computation of the one-step metric
distance between states. The algorithm improves on the previously known exponential-time algo-
rithm based on a reduction to the theory of reals. We then present PSPACE algorithms for both
the decision problem and the problem of approximating the metric distance between two states,
matching the best known bound for Markov chains. For the bisimulation kernel of the metric, which
corresponds to probabilistic bisimulation, our algorithm works in time O(n4) for both turn-based
games and MDPs; improving the previously best known O(n9 · log(n)) time algorithm for MDPs.
For a concurrent game G, we show that computing the exact distance between states is at least as
hard as computing the value of concurrent reachability games and the square-root-sum problem
in computational geometry. We show that checking whether the metric distance is bounded by
a rational r, can be accomplished via a reduction to the theory of real closed fields, involving a

formula with three quantifier alternations, yielding O(|G|O(|G|5)) time complexity, improving the

previously known reduction with O(|G|O(|G|7)) time complexity. These algorithms can be iterated
to approximate the metrics using binary search.

1 Introduction

System metrics constitute a quantitative generalization of system relations. The bisimula-

tion relation captures state equivalence: two states s and t are bisimilar if and only if they

cannot be distinguished by any formula of the µ-calculus [4]. The bisimulation metric cap-

tures the degree of difference between two states: the bisimulation distance between s and t

is a real number that provides a tight bound for the difference in value of formulas of the

quantitative µ-calculus at s and t [9]. A similar connection holds between the simulation

relation and the simulation metric.

The classical system relations are a basic tool in the study of boolean properties of sys-

tems, that is, the properties that yield a truth value. As an example, if a state s of a transition
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system can reach a set of target states R, written s |= 3R in temporal logic, and t can simu-

late s, then we can conclude t |= 3R. System metrics play a similarly fundamental role in

the study of the quantitative behavior of systems. As an example, if a state s of a Markov

chain can reach a set of target states R with probability 0.8, written s |= P≥0.83R, and if

the metric simulation distance from t to s is 0.3, then we can conclude t |= P≥0.53R. The

simulation relation is at the basis of the notions of system refinement and implementation,

where qualitative properties are concerned. Similarly, simulation metrics provide a notion

of approximate refinement and implementation for quantitative properties.

We consider three classes of systems:

• Markov decision processes. In these systems there is one player. At each state, the player

can choose amove; the current state and themove determine a probability distribution

over the successor states.

• Turn-based games. In these systems there are two players. At each state, only one of the

two players can choose amove; the current state and themove determine a probability

distribution over the successor states.

• Concurrent games. In these systems there are two players. At each state, both players

choose moves simultaneously and independently; the current state and the chosen

moves determine a probability distribution over the successor states.

Systemmetrics were first studied forMarkov chains andMarkov decision processes (MDPs)

[9, 18, 19], and they have recently been extended to two-player turn-based and concurrent

games [8]. The fundamental property of themetrics is that they provide a tight bound for the

difference in value that formulas belonging to quantitative specification languages assume

at the states of a system. Precisely, let qµ indicate the quantitative µ-calculus, a specification

language in which many of the classical specification properties, including reachability and

safety properties, can be written [7]. The metric bisimulation distance between two states s

and t, denoted [s ≃g t], has the property that [s ≃g t] = supϕ∈qµ |ϕ(s) − ϕ(t)|, where ϕ(s)

and ϕ(t) are the values ϕ assumes at s and t. A metric is associated with a kernel: the kernel

of a metric is the relation that relates pairs of states at distance 0; to each metric corresponds

a metric kernel relation. The kernel of the simulation metric is probabilistic simulation; the

kernel of the bisimulation metric is probabilistic bisimulation [15].

We investigate algorithms for the computation of the metrics. The metrics can be com-

puted in iterative fashion, following the inductive way in which they are defined. A metric

d can be computed as the limit of a monotonically increasing sequence of approximations

d0, d1, d2, . . . , where d0(s, t) is the difference in value that variables can have at states s and

t. For k ≥ 0, dk+1 is obtained from dk via dk+1 = H(dk), where the operator H depends on

the metric (bisimulation, or simulation), and on the type of system. Our main results are as

follows:

1. Metrics for turn-based games and MDPs. We show that for turn-based games, and

MDPs, the one-step metric operator H for both bisimulation and simulation can be

computed in polynomial time, via a reduction to linear programming (LP). The only

previously known algorithm, which can be inferred from [8], had EXPTIME complex-

ity and relied on a reduction to the theory of real closed fields; the algorithm thus

had more a complexity-theoretic, than a practical value. The key step in obtaining our

polynomial-time algorithm consists in transforming the original sup-inf non-linear op-
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timization problem (which required the theory of reals) into a quadratic-size inf linear

optimization problem that can be solved via LP. We then present PSPACE algorithms

for both the decision problem of the metric distance between two states and for the

problem of computing the approximate metric distance between two states for turn-

based games and MDPs. Our algorithms match the complexity of the best known

algorithms for the sub-class of Markov chains [17].

2. Metrics for concurrent games. For concurrent games, our algorithms for the H opera-

tor still rely on decision procedures for the theory of real closed fields, leading to an

EXPTIME procedure. However, the algorithms that could be inferred from [8] had

time-complexity O(|G|O(|G|7)), where |G| is the size of a game; we improve this result

by presenting algorithms with O(|G|O(|G|5)) time-complexity.

3. Hardness of metric computation in concurrent games. We show that computing the exact

distance of states of concurrent games is at least as hard as computing the value of

concurrent reachability games [10], which is known to be at least as hard as solving

the square-root-sum problem in computational geometry. These two problems are

known to lie in PSPACE, and have resisted many attempts to show that they are in

NP.

4. Kernel of the metrics. We present polynomial time algorithms to compute the simu-

lation and bisimulation kernel of the metrics for turn-based games and MDPs. Our

algorithm for the bisimulation kernel of the metric runs in time O(n4) (assuming a

constant number of moves) as compared to the previous known O(n9 · log(n)) algo-
rithm of [21] for MDPs, where n is the size of the state space. For concurrent games the

simulation and the bisimulation kernel can be computed in time O(|G|O(|G|3)), where

|G| is the size of a game.

Our formulation of probabilistic simulation and bisimulation differs from the one pre-

viously considered for MDPs in [1]: there, the names of moves (called “labels”) must be

preserved by simulation and bisimulation, so that a move from a state has at most one

candidate simulator move at another state. Our problem for MDPs is closer to the one con-

sidered in [21], where labels must be preserved, but where a label can be associated with

multiple probability distributions (moves).

For turn-based games andMDPs, the algorithms for probabilistic simulation and bisim-

ulation can be obtained from the LP algorithms that yield the metrics. For probabilistic sim-

ulation, the algorithmwe obtain coincideswith the algorithm of [21]. The algorithm requires

the solution of feasibility-LP problems with a number of variables and inequalities that is

quadratic in the size of the system. For probabilistic bisimulation, we are able to improve on

this result by providing an algorithm that requires the solution of feasibility-LP problems

that have linearly many variables and constraints. Precisely, as for ordinary bisimulation,

the kernel is computed via iterative refinement of a partition of the state space [14]. Given

two states that belong to the same partition, to decide whether the states need to be split in

the next partition-refinement step, we present an algorithm that requires the solution of a

feasibility-LP problem with a number of variables equal to the number of moves available

at the states, and number of constraints linear in the number of equivalence classes. The

proofs omitted due to lack of space are available in [6].
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2 Definitions

Valuations and distributions. Let [θ1, θ2] ⊆ IR be a fixed, non-singleton real interval. Given a

set of states S, a valuation over S is a function f : S 7→ [θ1, θ2] associating with every state

s ∈ S a value θ1 ≤ f (s) ≤ θ2; we let F be the set of all valuations. For c ∈ [θ1, θ2], we denote

by c the constant valuation such that c(s) = c at all s ∈ S. We order valuations pointwise:

for f , g ∈ F , we write f ≤ g iff f (s) ≤ g(s) at all s ∈ S; we remark that F , under ≤, forms a

lattice. Given a, b ∈ IR, we write a⊔ b = max{a, b}, and a⊓ b = min{a, b}; we extend ⊓,⊔ to

valuations by interpreting them in pointwise fashion. For a finite set A, let Dist(A) denote
the set of probability distributions over A. We say that p ∈ Dist(A) is deterministic if there is

a ∈ A such that p(a) = 1. We assume a fixed finite set V of observation variables.

Game structures. A (two-player, concurrent) game structure G = 〈S, [·],Moves, Γ1, Γ2, δ〉 con-
sists of the following components: (a) a finite set S of states; (b) a variable interpreta-

tion [·] : V 7→ S 7→ [θ1, θ2], which associates with each variable v ∈ V a valuation

[v]; (c) a finite set Moves of moves; (d) two move assignments Γ1, Γ2: S 7→ 2Moves \ ∅

: for i ∈ {1, 2}, the assignment Γi associates with each state s ∈ S the nonempty set

Γi(s) ⊆ Moves of moves available to player i at state s; and (e) a probabilistic transition

function δ: S×Moves×Moves 7→ Dist(S), that gives the probability δ(s, a1, a2)(t) of a tran-

sition from s to t when player 1 plays move a1 and player 2 plays move a2.

At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and inde-

pendently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to a successor state

t ∈ S with probability δ(s, a1, a2)(t). We let Dest(s, a1, a2) = {t ∈ S | δ(s, a1, a2)(t) > 0}. The
propositional distance p(s, t) between two states s, t ∈ S is the maximum difference in valu-

ation over all variables: p(s, t) = maxv∈V |[v](s) − [v](t)|. The kernel of the propositional

distance induces an equivalence on states: for states s, t, we let s ≡ t if p(s, t) = 0. In the

following, unless otherwise noted, the definitions refer to a game structure G with compo-

nents 〈S, [·],Moves, Γ1, Γ2, δ〉. We indicate the opponent of a player i ∈ {1, 2} by ∼i = 3− i.

We consider the following subclasses of games.

Turn-based game structures and MDPs. A game structure G is turn-based if S = S1 ∪ S2 with

S1 ∩ S2 = ∅ where s ∈ S1 implies |Γ2(s)| = 1, and s ∈ S2 implies |Γ1(s)| = 1, and further,

there exists a special variable turn ∈ V , such that [turn]s = θ1 iff s ∈ S1, and [turn]s = θ2 iff

s ∈ S2. For i ∈ {1, 2}, we say that a structure is an i-MDP if ∀s ∈ S, |Γ∼i(s)| = 1. For MDPs,

we omit the (single) move of the player without a choice of moves, and write δ(s, a) for the
transition function.

Moves and strategies. A mixed move is a probability distribution over the moves avail-

able to a player at a state. We denote by Di(s) ⊆ Dist(Moves) the set of mixed moves

available to player i ∈ {1, 2} at s ∈ S, where: Di(s) = {D ∈ Dist(Moves) | D(a) >

0 implies a ∈ Γi(s)}. The moves in Moves are called pure moves. We extend the tran-

sition function to mixed moves by defining, for s ∈ S and x1 ∈ D1(s), x2 ∈ D2(s),
δ(s, x1, x2)(t) = ∑a1∈Γ1(s) ∑a2∈Γ2(s) δ(s, a1, a2)(t) · x1(a1) · x2(a2). A path σ of G is an infi-

nite sequence s0, s1, s2, ... of states in s ∈ S, such that for all k ≥ 0, there are mixed moves

xk1 ∈ D1(sk) and xk2 ∈ D2(sk) with δ(sk, x
k
1, x

k
2)(sk+1) > 0. We write Σ for the set of all paths,

and Σs the set of all paths starting from state s.

A strategy for player i ∈ {1, 2} is a function πi : S
+ 7→ Dist(Moves) that associates with
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every non-empty finite sequence σ ∈ S+ of states, representing the history of the game, a

probability distribution πi(σ), which is used to select the next move of player i; we require

that for all σ ∈ S∗ and states s ∈ S, if πi(σs)(a) > 0, then a ∈ Γi(s). We write Πi for the set

of strategies for player i. Once the starting state s and the strategies π1 and π2 for the two

players have been chosen, the game is reduced to an ordinary stochastic process, denoted

Gπ1,π2
s , which defines a probability distribution on the set Σ of paths. We denote by Prπ1,π2

s (·)
the probability of a measurable event with respect to this process, and denote by E

π1,π2
s (·)

the associated expectation operator. For k ≥ 0, we let Xk : Σ → S be the random variable

denoting the k-th state along a path.

One-step expectations and predecessor operators. Given a valuation f ∈ F , a state s ∈ S, and

two mixed moves x1 ∈ D1(s) and x2 ∈ D2(s), we define the expectation of f from s under

x1, x2 by E
x1,x2
s ( f ) = ∑t∈S δ(s, x1, x2)(t) f (t). For a game structure G, for i ∈ {1, 2} we

define the valuation transformer Prei : F 7→ F : for all f ∈ F and s ∈ S, Prei( f )(s) =
supxi∈Di(s)

infx∼i∈D∼i(s)
E

xi ,x∼i
s ( f ). Intuitively, Prei( f )(s) is the maximal expectation player

i can achieve of f after one step from s: this is the standard “one-day” or “next-stage”

operator of the theory of repeated games [11].

Game bisimulation and simulation metrics. A directed metric is a function d : S2 7→ IR≥0 which

satisfies d(s, s) = 0 and the triangle inequality d(s, t) ≤ d(s, u) + d(u, t) for all s, t, u ∈ S. We

denote by M ⊆ S2 7→ IR the space of all directed metrics; this space, ordered pointwise,

forms a lattice which we indicate with (M,≤). Since d(s, t) may be zero for s 6= t, these

functions are pseudo-metrics as per prevailing terminology [18]. In the following, we omit

“directed” and simply say metric when the context is clear.

For a metric d, we indicate with C(d) the set of valuations k ∈ F where k(s) − k(t) ≤
d(s, t) for every s, t ∈ S. A metric transformer H�1

: M 7→ M is defined as follows, for all

d ∈ M and s, t ∈ S: H�1
(d)(s, t) = p(s, t) ⊔ supk∈C(d)

(

Pre1(k)(s) − Pre1(k)(t)
)

. The player 1

game simulation metric [�1] is the least fixpoint of H�1
; the game bisimulation metric [≃1] is the

least symmetrical fixpoint of H�1
and is defined as follows, for all d ∈ M and s, t ∈ S:

H≃1
(d)(s, t) = H�1

(d)(s, t) ⊔ H�1
(d)(t, s) . (1)

The operator H�1
is monotonic, non-decreasing and continuous in the lattice (M,≤). We

can therefore compute H�1
using Picard iteration; we denote by [�n

1 ] = Hn
�1

(0) the n-iterate
of this. From the determinacy of concurrent games with respect to ω-regular goals [12], we

have that the game bisimulation metric is reciprocal, in that [≃1] = [≃2]; we will thus simply

write [≃g]. Similarly, for all s, t ∈ S we have [s �1 t] = [t �2 s].
The main result in [8] about these metrics is that they are logically characterized by the

quantitative µ-calculus of [7]. We omit the formal definition of the syntax and semantics

of the quantitative µ-calculus (see [7] for details). Given a game structure G, every closed

formula ϕ of the quantitative µ-calculus defines a valuation [[ϕ]] ∈ F . Let qµ (respectively,

qµ+
1 ) consist of all quantitative µ-calculus formulas (respectively, all quantitative µ-calculus

formulas with only the Pre1 operator and all negations before atomic propositions). The

result of [8] shows that for all states s, t ∈ S,

[s �1 t] = sup
ϕ∈qµ+

1

([[ϕ]](s)− [[ϕ]](t)) [s ≃g t] = sup
ϕ∈qµ

|[[ϕ]](s)− [[ϕ]](t)| . (2)
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Metric kernels. The kernel of the metric [≃g] defines an equivalence relation ≃g on the states

of a game structure: s ≃g t iff [s ≃g t] = 0; the relation ≃g is called the game bisimulation

relation [8]. We define the game simulation preorder s �1 t as the kernel of the directed

metric [�1], that is, s �1 t iff [s �1 t] = 0. For notational ease, given a relation R ⊆ S× S,

we denote by 1R : S× S 7→ {0, 1} its characteristic set, defined as 1R(s, t) = 1 iff (s, t) ∈ R.

Given a relation R ⊆ S× S, let B(R) ⊆ F consist of all valuations k ∈ F such that, for all

s, t ∈ S, if sRt then k(s) ≤ k(t).

3 Algorithms for Turn-Based Games and MDPs

In this section, we present algorithms for computing the metric and its kernel for turn-based

games and MDPs. We first present a polynomial time algorithm to compute the operator

H�i
(d) that gives the exact one-step distance between two states, for i ∈ {1, 2}. We then

present a PSPACE algorithm to decide whether the limit distance between two states s and

t (i.e., [s �1 t]) is at most a rational value r. Our algorithm matches the best known bound

for the special class of Markov chains [17]. Finally, we present improved algorithms for the

important case of the kernel of the metrics. For the bisimulation kernel our algorithm is

significantly more efficient compared to previous algorithms.

Algorithms for the metrics. For turn-based games and MDPs, only one player has a choice

of moves at a given state. We consider two player 1 states. A similar analysis applies to

player 2 states. We remark that the distance between states in Si and S∼i is always θ2 − θ1
due to the existence of the variable turn. For a metric d ∈ M, and states s, t ∈ S1, computing

H�1
(d)(s, t), given that p(s, t) is trivially computed by its definition, entails evaluating the

expression, supk∈C(d) supx∈D1(s)
infy∈D1(t)

(E
x
s (k) − E

y
t (k)). By expanding the expectations,

we get the following form,

sup
k∈C(d)

sup
x∈D1(s)

inf
y∈D1(t)

(

∑
u∈S

∑
a∈Γ1(s)

δ(s, a)(u) · x(a) · k(u) − ∑
v∈S

∑
b∈Γ1(t)

δ(t, b)(v) · y(b) · k(v)
)

. (3)

We observe that the one-step distance as defined in (3) is a sup-inf non-linear (quadratic) op-

timization problem. The following lemma transforms (3) to an inf linear optimization prob-

lem, which can be solved by linear programming.

Lemma 1 For all turn-based game structures G, for all player i states s and t, given a metric

d ∈ M, the following equality holds,

sup
k∈C(d)

sup
x∈Di(s)

inf
y∈Di(t)

(E
x
s (k) − E

y
t (k)) = sup

a∈Γi(s)

inf
y∈Di(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) .

Therefore, given d ∈ M, we can write the player 1 one-step distance between states s

and t as follows,

OneStep(s, t, d) = sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) . (4)

Hence we compute the expression OneStep(s, t, d, a) = infy∈D1(t)
supk∈C(d)(E

a
s(k) − E

y
t (k))

for all a ∈ Γ1(s), and then choose the maximum: maxa∈Γ1(s) OneStep(s, t, d, a). We now
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present a lemma that helps to reduce the above inf-sup optimization problem to a linear

program. We first introduce some notation. Let λ denote the set of variables λu,v, for u, v ∈
S. Given d ∈ M, a ∈ Γ1(s), and a distribution y ∈ D1(t), we write λ ∈ Φ(d, a, y) if the

following linear constraints are satisfied:

(1) for all v ∈ S : ∑
u∈S

λu,v = δ(s, a)(v); (2) for all u ∈ S : ∑
v∈S

λu,v = ∑
b∈Γ1(t)

y(b) · δ(t, b)(u);

(3) for all u, v ∈ S : λu,v ≥ 0 .

Lemma 2 For all turn-based games and MDPs, for all d ∈ M, and for all s, t ∈ S, we have

sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) = sup

a∈Γ1(s)

inf
y∈D1(t)

inf
λ∈Φ(d,a,y)

(

∑
u,v∈S

d(u, v) · λu,v

)

.

Using the above result we obtain the following LP for OneStep(s, t, d, a) over the vari-

ables: (a) {λu,v}u,v∈S, and (b) yb for b ∈ Γ1(t):

Minimize ∑
u,v∈S

d(u, v) · λu,v subject to (5)

(1) for all v ∈ S : ∑
u∈S

λu,v = δ(s, a)(v); (2) for all u ∈ S : ∑
v∈S

λu,v = ∑
b∈Γ1(t)

yb · δ(t, b)(u);

(3) for all u, v ∈ S : λu,v ≥ 0; (4) for all b ∈ Γ1(t) : yb ≥ 0; (5) ∑
b∈Γ1(t)

yb = 1 .

Theorem 1 For all turn-based games and MDPs, given d ∈ M, for all states s, t ∈ S, we can

compute H�1
(d)(s, t) in polynomial time by the LP (5).

Iteration of OneStep(s, t, d) converges to the exact distance. However, in general, there

are no known bounds for the rate of convergence. We now present a decision procedure

to check whether the exact distance between two states is at most a rational value r. We

first show a way to express the predicate d(s, t) = OneStep(s, t, d), for a given d ∈ M. We

observe that since H�1
is non-decreasing, we have OneStep(s, t, d) ≥ d(s, t). It follows that

the equality d(s, t) = OneStep(s, t, d) holds iff all the linear inequalities of LP (5) are satisfied,

and d(s, t) = ∑u,v∈S d(u, v) · λu,v holds. It then follows that d(s, t) = OneStep(s, t, d) can be

written as a predicate in the theory of real closed fields. Given a rational r, two states s and

t, we present an existential theory of reals formula to decide whether [s �1 t] ≤ r. Since

[s �1 t] is the least fixed point of H�1
, we define a formula Φ(r) that is true iff [s �1 t] ≤ r,

as follows: Φ(r) = ∃d ∈ M.[(OneStep(s, t, d) = d(s, t)) ∧ (d(s, t) ≤ r)]. If the formula Φ(r)
is true, then there is a fixpoint that is bounded by r, which means that the least fixpoint is

bounded by r. Conversely, if the least fixpoint is bounded by r, then the least fixpoint is a

witness d for Φ(r) being true. Since the existential theory of reals is decidable in PSPACE [5],

we have the following result.

Theorem 2 (Decision complexity for exact distance). For all turn-based games and MDPs,

given a rational r, and two states s and t, whether [s �1 t] ≤ r can be decided in PSPACE.
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Approximation. For a rational ǫ > 0, using binary search and O(log( θ2−θ1
ǫ )) calls to check

Φ(r), we can obtain an interval [l, u] with u − l ≤ ǫ such that [s �1 t] lies in the interval

[l, u].

Algorithms for the kernel. The kernel of the simulation metric �1 can be computed as

the limit of the series �0
1, �1

1, �2
1, . . . , of relations. For all s, t ∈ S, we have (s, t) ∈�0

1 iff

s ≡ t. For all n ≥ 0, we have (s, t) ∈�n+1
1 iff OneStep(s, t, 1�n

1
) = 0. Checking the condition

OneStep(s, t, 1�n
1
) = 0, corresponds to solving an LP feasibility problem for every a ∈ Γ1(s),

as it suffices to replace the minimization goal γ = ∑u,v∈S 1�n
1
(u, v) · λu,v with the constraint

γ = 0 in the LP (5). This is the same LP feasibility problem that was introduced in [21] as

part of an algorithm to decide simulation of probabilistic systems in which each label may

lead to one or more distributions over states.

For the bisimulation kernel, we present a more efficient algorithm, which also improves

on the algorithms presented in [21]. The idea is to proceed by partition refinement, as usual

for bisimulation computations. The refinement step is as follows: given a partition, two

states s and t belong to the same refined partition iff every pure move from s induces a

probability distribution on equivalence classes that can be matched by mixed moves from t,

and vice versa. Precisely, we compute a sequence Q0, Q1, Q2, . . . , of partitions. Two states

s, t belong to the same class of Q0 iff they have the same variable valuation (i.e., iff s ≡ t).

For n ≥ 0, since by the definition of the bisimulation metric given in (1), [s ≃g t] = 0 iff

[s �1 t] = 0 and [t �1 s] = 0, two states s, t in a given class of Qn remain in the same class

in Qn+1 iff both (s, t) and (t, s) satisfy the set of feasibility LP problems OneStepBis(s, t,Qn)
as given below:

OneStepBis(s, t,Q) consists of one feasibility LP problem for each a ∈ Γ(s). The
problem for a ∈ Γ(s) has set of variables {xb | b ∈ Γ(t)}, and set of constraints:

(1) for all b ∈ Γ(t) : xb ≥ 0, (2) ∑
b∈Γ(t)

xb = 1,

(3) for all V ∈ Q : ∑
b∈Γ(t)

∑
u∈V

xb · δ(t, b)(u) ≥ ∑
u∈V

δ(s, a)(u) .

Complexity. The number of partition refinement steps required for the computation of both

the simulation and the bisimulation kernel is bounded byO(|S|2) for turn-based games and

MDPs, where S is the set of states. At every refinement step, at most O(|S|2) state pairs

are considered, and for each state pair (s, t) at most |Γ(s)| LP feasibility problems needs to

be solved. Let us denote by LPF(n,m) the complexity of solving the feasibility of m linear

inequalities over n variables. We obtain the following result.

Theorem 3 For all turn-based games and MDPs G, the following assertions hold: (a) the sim-

ulation kernel can be computed in O
(

n4 · m · LPF(n2 + m, n2 + 2n + m + 2)
)

time; and (b) the

bisimulation kernel can be computed in O
(

n4 ·m · LPF(m, n + m + 1)
)

time; where n = |S| is the
size of the state space, and m = maxs∈S |Γ(s)|.
Remarks: The best known algorithm for LPF(n,m) works in time O(n2.5 · log(n)) [20] (as-
suming each arithmetic operation takes unit time). The previous algorithm for the bisim-

ulation kernel checked two way simulation and hence has the complexity O(n4 · m · (n2 +
m)2.5 · log(n2 +m)), whereas our algorithmworks in timeO(n4 ·m ·m2.5 · log(m)). For most
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practical purposes, the number of moves at a state is constant (i.e., m is constant). For the

case whenm is constant, the previous best algorithmworked inO(n9 · log(n)) time, whereas

our algorithm works in time O(n4).

4 Algorithms for Concurrent Games

In this section we first show that the computation of the metric distance is at least as hard as

the computation of optimal values in concurrent reachability games. The exact complexity

of the latter is open, but it is known to be at least as hard as the square-root sum problem,

which is in PSPACE but whose inclusion in NP is a long-standing open problem [10]. Next,

we present algorithms based on a decision procedure for the theory of real closed fields, for

both checking the bounds of the exact distance and the kernel of the metrics. Our reduction

to the theory of real closed fields removes one quantifier alternation when compared to the

previous known formula (inferred from [8]). This improves the complexity of the algorithm.

Reduction of reachability games to metrics. We will use the following terms in the result.

A proposition is a boolean observation variable, and we say a state is labeled by a proposition

q iff q is true at s. For a proposition q, let 3q denote the set of paths that visit a state labeled

by q at least once. In concurrent reachability games, the objective is 3q, for a proposition q.

Theorem 4 Consider a concurrent game structure G, with a single proposition q. We can con-

struct in linear-time a concurrent game structure G′, with one additional state t′, such that for all

s ∈ S, we have

[s �1 t
′] = sup

π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (3q) .

Algorithms for the metrics. We present a lemma that helps obtain reduced-complexity

algorithms for concurrent games. The lemma states that the distance [s �1 t] is attained by

restricting player 2 to pure moves at state t, for all states s, t ∈ S.

Lemma 3 Given a game structure G and a distance d ∈ M, we have

sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

(E
x1,x2
s (k))− E

y1,y2
t (k))

= sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
b∈Γ2(t)

inf
x2∈D2(s)

(E
x1,x2
s (k) − E

y1,b
t (k)) . (6)

We now present algorithms for metrics in concurrent games. Due to the reduction

from concurrent reachability games, shown in Theorem 4, it is unlikely that we have an

algorithm in NP for the metric distance between states. We therefore construct statements

in the theory of real closed fields, firstly to decide whether [s �1 t] ≤ r, for a rational r, so

that we can approximate the metric distance between states s and t, and secondly to decide

if [s �1 t] = 0 in order to compute the kernel of the game simulation and bisimulation

metrics.

The statements improve on the complexity that can be achieved by a direct translation

of the statements of [8] to the theory of real closed fields. The complexity reduction is based

on the observation that using Lemma 3, we can replace a sup operator with finite conjunc-

tion, and therefore reduce the quantifier complexity of the resulting formula. Fix a game
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structure G and states s and t of G. We proceed to construct a statement in the theory of

reals that can be used to decide if [s �1 t] ≤ r, for a given rational r.

In the following, we use variables x1, y1 and x2 to denote a set of variables {x1(a) | a ∈
Γ1(s)}, {y1(a) | a ∈ Γ1(t)} and {x2(b) | b ∈ Γ2(s)} respectively. We use k to denote the set

of variables {k(u) | u ∈ S}, and d for the set of variables {d(u, v) | u, v ∈ S}. The variables
α, α′, β, β′ range over reals. For convenience, we assume Γ2(t) = {b1, . . . , bl}.

First, notice that we can write formulas that state that a variable x is a mixed move for

a player at state s, and k is a constructible predicate (i.e., k ∈ C(d)):

IsDist(x, Γ1(s)) ≡
∧

a∈Γ1(s)

x(a) ≥ 0∧
∧

a∈Γ1(s)

x(a) ≤ 1∧ ∑
a∈Γ1(s)

x(a) = 1

kBounded(k, d) ≡
∧

u∈S

[

k(u) ≥ θ1 ∧ k(u) ≤ θ2

]

∧
∧

u,v∈S
(k(u) − k(v) ≤ d(u, v)) .

In the following, we write bounded quantifiers of the form “∃x1 ∈ D1(s)” or “∀k ∈ C(d)”
which mean respectively ∃x1.IsDist(x1, Γ1(s)) ∧ · · · and ∀k.kBounded(k, d) → · · · .

Let η(k, x1, x2, y1, b) be the polynomial E
x1,x2
s (k)−E

y1,b
t (k). Notice that η is a polynomial

of degree 3. We construct the formula for game simulation in stages. First, we construct a

formula Φ1(d, k, x, α) with free variables d, k, x, α such that Φ1(d, k, x1, α) holds for a valua-

tion to the variables iff α = infy1∈D1(t) supb∈Γ2(t)
infx2∈D2(s)(E

x1,x2
s (k) − E

y1,b
t (k)). We use the

following observation to move the innermost inf ahead of the sup over the finite set Γ2(t)
(for a function f ):

sup
b∈Γ2(t)

inf
x2∈D2(s)

f (b, x2, x) = inf
x
b1
2 ∈D2(s)

. . . inf
x
bl
2 ∈D2(s)

max( f (b1, x
b1
2 , x), . . . , f (bl , x

bl
2 , x)) .

Using the above observation the formula Φ1(d, k, x1, α) can be written as a ∀∃ formula (i.e.,

with one quantifier alternation) in the theory of reals (see [6] for the formula). Using Φ1,

we construct a formula Φ(d, α) with free variables d and α such that Φ(d, α) is true iff: α =

supk∈C(d) supx1∈D1(s)
infy1∈D1(t)

supb∈Γ2(t)
infx2∈D2(s)

(E
x1,x2
s (k) − E

y1,b
t (k)). The formula Φ is

defined as follows:

∀k ∈ C(d).∀x1 ∈ D1(s).∀β.∀α′.
[

Φ1(d, k, x1, β) → (β ≤ α)∧
(∀k′ ∈ C(d).∀x′1 ∈ D1(s).∀β′.Φ1(d, k

′, x′1, β′) ∧ β′ ≤ α′) → α ≤ α′

]

. (7)

Finally, given a rational r, we can check if [s �1 t] ≤ r by checking if the following sentence

is true: ∃d ∈ M.∃a ∈ M.[Φ(d, a) ∧ (d = a) ∧ (d(s, t) ≤ r)]. The above sentence is true

iff the least fixpoint is bounded by r. Like in the case of turn-based games and MDPs,

given a rational ǫ > 0, using binary search and O(log( θ2−θ1
ǫ )) calls to a decision procedure

to check the above sentence, we can compute an interval [l, u] with u − l ≤ ǫ, such that

[s �1 t] ∈ [l, u].

Complexity. Note that Φ is of the form ∀∃∀, because Φ1 is of the form ∀∃, and appears in

negative position in Φ. The formula Φ has (|S| + |Γ1(s)| + 3) universally quantified vari-

ables, followed by (|S|+ |Γ1(s)|+ 3+ 2(|Γ1(t)|+ |Γ2(s)| · |Γ2(t)|+ |Γ2(t)|+ 2)) existentially
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quantified variables, followed by 2(|Γ1(t)| + |Γ2(s)| · |Γ2(t)| + |Γ2(t)| + 1) universal vari-

ables. The sentence for the least fixpoint introduces |S|2 + |S|2 existentially quantified vari-

ables ahead of Φ. The matrix of the formula is of length at most quadratic in the size of

the game, and the maximum degree of any polynomial in the formula is 3. We define the

size of a game G as: |G| = |S| + |T|, where |T| = ∑s,t∈S ∑a,b∈Moves |δ(s, a, b)(t)|. From the

complexity of deciding a formula in the theory of real closed fields [2] we get the following

result.

Theorem 5 (Decision complexity for exact distance). For all concurrent games G, given a

rational r, and two states s and t, whether [s �1 t] ≤ r can be decided in time O(|G|O(|G|5)).

In contrast, the formula to check whether [s �1 t] ≤ r, for a rational r, as implied by the

definition of H�1
(d)(s, t), that does not use Lemma 3, has five quantifier alternations due

to the inner sup, which when combined with the 2 · |S|2 existentially quantified variables in

the sentence for the least fixpoint, yields a decision complexity of O(|G|O(|G|7)).

Computing the kernels. Similar to the case of turn-based games and MDPs, the kernel of

the simulation metric �1 for concurrent games can be computed as the limit of the series

�0
1, �1

1, �2
1, . . . , of relations. For all s, t ∈ S, we have (s, t) ∈�0

1 iff s ≡ t. For all n ≥ 0, we

have (s, t) ∈�n+1
1 iff the following sentence Φs is true: ∀a.Φ(�n, a) → a ≤ 0, where Φ is

defined as in (7). At any step in the iteration, the distance between any pair of states u, v ∈ S

is defined as follows: for all u, v ∈ S we have d(u, v) = 0 if (s, t) ∈�n
1 , else if (s, t) 6∈�n

1 then

d(u, v) = 1. To compute the bisimulation kernel, we again proceed by partition refinement.

For a set of partitions Q0,Q1, . . ., (s, t) ∈≃n+1 iff the following sentence Φb is true for the

state pairs (s, t) and (t, s): ∀a.Φ(Qn, a) → a ≤ 0.

Complexity. In the worst case we needO(|S|2) partition refinement steps for computing both

the simulation and the bisimulation relation. At each partition refinement step the number

of state pairs we consider is bounded byO(|S|2). We can check if Φs and Φb are true using a

decision procedure for the theory of real closed fields. Therefore, we needO(|S|4) decisions
to compute the kernels. The partitioning of states based on the decisions can be done by any

of the partition refinement algorithms.

Theorem 6 For all concurrent games G, states s and t, whether s �1 t can be decided in

O(|G|O(|G|3)) time, and whether s ≃g t can be decided in O(|G|O(|G|3)) time.
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ABSTRACT. Given an edge-weighted undirected graph G with a specified set of terminals, let the
density of any subgraph be the ratio of its weight/cost to the number of terminals it contains. If G is
2-connected, does it contain smaller 2-connected subgraphs of density comparable to that of G? We
answer this question in the affirmative by giving an algorithm to prune G and find such subgraphs
of any desired size, at the cost of only a logarithmic increase in density (plus a small additive factor).
We apply the pruning techniques to give algorithms for two NP-Hard problems on finding large 2-
vertex-connected subgraphs of low cost; no previous approximation algorithmwas known for either
problem. In the k-2VC problem, we are given an undirected graph G with edge costs and an integer
k; the goal is to find a minimum-cost 2-vertex-connected subgraph of G containing at least k vertices.
In the Budget-2VC problem, we are given the graph G with edge costs, and a budget B; the goal
is to find a 2-vertex-connected subgraph H of G with total edge cost at most B that maximizes the
number of vertices in H. We describe an O(log n log k) approximation for the k-2VC problem, and

a bicriteria approximation for the Budget-2VC problem that gives an O( 1ǫ log
2 n) approximation,

while violating the budget by a factor of at most 3+ ǫ.

1 Introduction

Connectivity and network design problems play an important role in combinatorial opti-

mization and algorithms both for their theoretical appeal and their usefulness in real-world

applications. Many of these problems, such as the well-known minimum cost Steiner tree

problem, are NP-hard, and there has been a large and rich literature on approximation al-

gorithms. A number of elegant and powerful techniques and results have been developed

over the years. In particular, the primal-dual method [1, 17] and iterated rounding [19]

have led to some remarkable results. Occasionally, interesting and useful variants of classi-

cal problems are introduced, sometimes motivated by their natural appeal and sometimes

motivated by practical applications. One such problem is the k-MST problem introduced

by Ravi et al. [24]: Given an edge-weighted graph G and an integer k, the goal is to find a

minimum-cost subgraph of G that contains at least k vertices. It is not hard to see that the

k-MST problem is at least as hard as the Steiner tree problem; moreover an α-approximation

for the k-MST problem implies an α-approximation for the Steiner tree problem. The k-MST

problem has attracted considerable attention in the approximation algorithms literature and

its study has led to several new algorithmic ideas and applications [3, 15, 14, 7, 5]. Closely

related to the k-MST problem is the budgeted or Max-Prize Tree problem [21, 5]; here we
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are given G and a budget B, and the goal is to find a subgraph H of G of total cost no more

than B, that maximizes the number of vertices (or terminals) in H. Interestingly, it is only

recently that the rooted version of the Max-Prize Tree problem was shown to have anO(1)-
approximation [5], although an O(1)-approximation was known for the k-MST problem

much earlier [6].

Recently, Lau et al. [22] considered the natural generalization of k-MST to higher con-

nectivity. In particular they defined the (k,λ)-subgraph problem to be the following: Find

a minimum-cost subgraph of the given graph G that contains at least k vertices and is λ-

edge connected. We use the notation k-λEC to refer to this problem. In [22, 23] a poly-

logarithmic approximation was derived for the k-2EC problem. In this paper, we consider

the vertex-connectivity generalizations of the k-MST and Budgeted Tree problems. We de-

fine the k-λVC problem as follows: Given an integer k and a graph G with edge costs,

find the minimum-cost λ-vertex-connected subgraph of G that contains at least k vertices.

Similarly, in the Budget-λVC problem, given a budget B and a graph G with edge costs,

the goal is to find a λ-vertex-connected subgraph of G of cost at most B, that maximizes

the number of vertices it contains. In particular we focus on k = 2 and develop approxi-

mation algorithms for both the k-2VC and Budget-2VC problems. We note that the k-λEC

problem reduces to the k-λVC problem in an approximation preserving fashion, though

the opposite reduction is not known. The k-λEC and k-λVC problems are NP-hard and

also APX-hard for any k ≥ 1. Moreover, Lau et al. [22] give evidence that, for large λ, the

k-λEC problem is likely to be harder to approximate by relating it to the approximability of

the dense k-subgraph problem [12].

Problems such as k-MST, Budget-2VC, k-2VC are partly motivated by applications in

network design and related areas where onemaywant to build low-cost networks including

(or servicing) many clients, but there are constraints such as a budget on the network cost, or

a minimum quota on the number of clients. Algorithms for these problems also find other

uses. For instance, a basic problem in vehicle routing applications is the s-t Orienteering

problem in which one seeks an s-t path that maximizes the number of vertices in it subject

to a budget B on its length. Approximation algorithms for this problem [5, 4, 11] have been

derived through approximation algorithms for the k-MST and the related k-stroll problems;

in the latter, the goal is to find a minimum-cost path containing k vertices.

How do we solve these problems? The k-MST problem required several algorithmic

innovations which eventally led to the current best approximation ratio of 2 [14]. The main

technical tool which underlies O(1) approximations for the k-MST problem [6, 15, 14] is a

special property that holds for a LP relaxation of the prize-collecting Steiner tree problem

[17] which is a Lagrangian relaxation of the Steiner tree problem. Unfortunately, one cannot

use these ideas (at least directly) for more general problems such as k-2VC (or the k-Steiner

forest problem [18]) since the LP relaxation for the prize-collecting variant is not known to

satisfy the above mentioned property. We therefore rely on alternative techniques that take

a more basic approach.

Our algorithms for k-2VC and Budget-2VC use the same high-level idea, relying on the

notion of density: the density of a subgraph is the ratio of its cost to the number of vertices

it contains. The algorithms greedily combine subgraphs of low density until the union of

these subgraphs has the desired number of vertices or has cost equal to the budget. They
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fail only if we find a subgraph H of good density, but that is far too large. One needs, then,

a way to prune H to find a smaller subgraph of comparable density. Our main structural

result for pruning 2-connected graphs is the following:

THEOREM 1. Let G be a 2-connected edge-weighted graph with density ρ, and a desig-
nated vertex r ∈ V(G) such that every vertex of G has 2 vertex-disjoint paths to r of to-
tal weight/cost at most L. There is a polynomial-time algorithm that, given any integer
k ≤ |V(G)|, finds a 2-connected k-vertex subgraph H of G containing r, of total cost at most
O(log k)ρk + 2L.

Intuitively, the algorithm of Theorem 1 allows us to find a subgraph of any desired

size, at the cost of only a logarithmic increase in density. Further, it allows us to require any

vertex r to be in the subgraph, and also applies if we are given a terminal set S, and the output

subgraph must contain k terminals. (In this case, the density of a subgraph is the ratio of its

cost to the number of terminals it contains.) In addition, it applies if the terminals/vertices

have arbitrary weights, and the density of a subgraph is the ratio of its cost to the sum of

the weights of its terminals. All our algorithms apply to these weighted instances, but for

simplicity of exposition, we discuss the more restricted unweighted versions throughout.

We observe that pruning a tree (a 1-connected graph) is easy and one loses only a constant

factor in the density; the theorem above allows one to prune 2-connected graphs. A technical

ingredient that we develop is the following theorem: we believe that Theorems 1 and 2 are

interesting in their own right and will find other applications besides algorithms for k-2VC

and Budget-2VC.

THEOREM 2. Let G be a 2-vertex-connected graph with edge costs and let S ⊆ V be a set of
terminals. Then, there is a simple cycle C containing at least 2 terminals (a non-trivial cycle)
such that the density of C is at most the density of G. Moreover, such a cycle can be found
in polynomial time.

Using the above theorem and an LP approach we obtain the following.

COROLLARY 3. Given a graph G(V, E) with edge costs and ℓ terminals S ⊆ V, there is an
O(log ℓ) approximation for the problem of finding a minimum-density non-trivial cycle.

Note that Theorem 2 and Corollary 3 are of interest because we seek a cycle with at least

two terminals. A minimum-density cycle containing only one terminal can be found by us-

ing the well-known min-mean cycle algorithm in directed graphs [2]. We remark, however,

that although we suspect that the problem of finding a minimum-density non-trivial cycle is

NP-hard, we currently do not have a proof. Theorem 2 shows that the problem is equivalent

to the dens-2VC problem, defined in the next section.

Armed with these useful structural results, we give approximation algorithms for both the

k-2VC and Budget-2VC problems. Our results in fact hold for the more general versions

of these problems where the input also specifies a subset S ⊆ V of terminals and the goal

is to find subgraphs with the desired number of terminals, or to maximize the number of

terminals.‡

‡For k-2EC and k-λEC , the problem with specified terminal set S can be reduced to the problem where
every vertex in V is a terminal. Such a reduction does not seem possible for the k-2VC and k-λVC , so we work
directly with the terminal version.
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THEOREM 4. There is an O(log ℓ · log k) approximation for the k-2VC problem, where ℓ is
the number of terminals.

COROLLARY 5. There is an O(log ℓ · log k) approximation for the k-2EC problem, where ℓ

is the number of terminals.

THEOREM 6. There is a polynomial time bicriteria approximation algorithm for Budget-
2VC that, for any 0 < ǫ ≤ 1, outputs a subgraph of edge-weight (3 + ǫ)B containing Ω(ǫ ·
OPT/(log n log OPT)) terminals, where OPT is the number of terminals in an optimum
solution of cost B. For the rooted version, the subgraph has weight at most (2+ ǫ)B.

Most of the proofs are omitted from this version due to space limitations. The reader

can find a full version on the websites of the authors.

1.1 Overview of Technical Ideas

We focus on the rooted version of k-2VC : the goal is to find a min-cost subgraph that 2-

connects at least k terminals to a specified root vertex r. It is easy to reduce k-2VC to its

rooted version. We draw inspiration from algorithmic ideas that led to poly-logarithmic

approximations for the k-MST problem.

For a subgraph H that contains r, let k(H) be the number of terminals that are 2-

connected to r in H. Then the density of H is simply the ratio of the cost of H to k(H). The
dens-2VC problem is to find a 2-connected subgraph of minimum density. An O(log ℓ) ap-
proximation for the dens-2VC problem (where ℓ is the number of terminals) can be derived

in a some what standard way by using a bucketing and scaling trick on a linear program-

ming relaxation for the problem. We exploit the known bound of 2 on the integrality gap of

a natural LP for the SNDP problem with vertex connectivity requirements in {0, 1, 2} [13].
Our algorithm for k-2VC uses a greedy approach at the high level. We start with an

empty subgraph G′ and use the approximation algorithm for dens-2VC in an iterative fash-

ion to greedily add terminals to G′ until at least k′ ≥ k terminals are in G′. This approach
would yield an O(log ℓ log k) approximation if k′ = O(k). However, the last iteration of

the dens-2VC algorithm may add many more terminals than desired with the result that

k′ ≫ k. In this case we cannot bound the cost of the solution obtained by the algorithm. To

overcome this problem, one can try to prune the subgraph H added in the last iteration to

only have the desired number of terminals. For the k-MST problem, H is a tree and pruning

is quite easy.

Our main technical contribution is Theorem 1, to give a pruning step for the k-2VC

problem. To accomplish this, we use two algorithmic ideas. The first is encapsulated in

the cycle finding algorithm of Theorem 2. Second, we use this cycle finding algorithm to

repeatedly merge subgraphs until we get the desired number of terminals in one subgraph;

this latter step requires care. The cycle merging scheme is inspired by a similar approach

from the work of Lau et al. [22] on the k-2EC problem and in our previous work [11] on

the directed orienteering problem. These ideas yield an O(log ℓ · log2 k) approximation. We

give a modified cycle-merging algorithm with a more sophisticated and non-trivial analysis

to obtain an improved O(log ℓ · log k) approximation.
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Some remarks are in order to compare our work to that of [22] on the k-2EC problem.

The combinatorial algorithm in [22] is based on finding a low-density cycle or a related

structure called a bi-cycle. The algorithm in [22] to find such a structure is incorrect. Fur-

ther, the cycles are contracted along thewaywhich limits the approach to the k-2EC problem

(contracting a cycle in 2-node-connected graph may make the resulting graph not 2-node-

connected). In our algorithmwe do not contract cycles and instead introduce dummy termi-

nals with weights to capture the number of terminals in an already formed component. This

requires us to now address the minimum-density non-trivial simple cycle problem which

we do via Theorem 2 and Corollary 3. In independent work, Lau et al. [23] obtain a new and

correct O(log n log k)-approximation for k-2EC . They also follow the same approach that

we do in using the LP for finding dense subgraphs followed by the pruning step. However,

in the pruning step they use a very different approach; they use the sophisticated idea of

nowhere-zero 6-flows [25]. Although the use of this idea is elegant, the approach works

only for the k-2EC problem, while our approach is less complex and leads to an algorithm

for the more general k-2VC problem.

2 The Algorithms for the k-2VC and Budget-2VC Problems

We work with graphs in which some vertices are designated as terminals. Henceforth, we

use 2-connected graph to mean a 2-vertex-connected graph. Recall that the goal of the k-

2VC problem is to find a minimum-cost 2-connected subgraph on at least k terminals. In the

rooted k-2VC problem, we wish to find a min-cost subgraph on at least k terminals in which

every terminal is 2-connected to the specified root r. The (unrooted) k-2VC problem can

be reduced to the rooted version by guessing 2 vertices u, v that are in an optimal solution,

creating a new root vertex r, and connecting it with 0-cost edges to u and v. It is not hard to

show that any solution to the rooted problem in the modified graph can be converted to a

solution to the unrooted problem by adding 2 minimum-cost vertex-disjoint paths between

u and v. (Since u and v are in the optimal solution, the cost of these added paths cannot

be more than OPT.) Similarly, one can reduce Budget-2VC to its rooted version. However,

note that adding a min-cost set of paths between the guessed vertices u and vmight require

us to pay an additional amount of B, so to obtain a solution for the unrooted problem of cost

(3+ ǫ)B, we must find a solution for the rooted instance of cost (2+ ǫ)B.

Note that k-2VC and Budget-2VC are equivalent from the viewpoint of exact optimiza-

tion, but this is not true from an approximation perspective. Still, we solve them both via the

dens-2VC problem, where the goal is to find a subgraph H of minimum density in which all

terminals of H are 2-connected to the root. We use the following lemma, which relies on a

2-approximation, via a natural LP for the min-cost 2-connectivity problem, due to Fleischer,

Jain and Williamson [13], and some standard techniques.

LEMMA 7. There is anO(log ℓ)-approximation algorithm for the dens-2VC problem, where
ℓ is the number of terminals in the given instance.

We first describe our algorithm for the k-2VC problem. Let OPT be the cost of an op-

timal solution to the k-2VC instance. We assume knowledge of OPT; this can be dispensed

with using standard methods. We pre-process the graph by deleting any terminal that does
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not have 2 vertex-disjoint paths to the root r of total cost at most OPT. The high-level de-

scription of the algorithm for the rooted k-2VC problem is given below.
k′ ← k, G′ is the empty graph.
While (k′ > 0):

Use the approximation algorithm for dens-2VC to find a subgraph H in G.
If (k(H) ≤ k′):

G′ ← G′ ∪ H, k′ ← k′ − k(H).
Mark all terminals in H as non-terminals.

Else:
Prune H to obtain H′ that contains k′ terminals.
G′ = G′ ∪ H′, k′ ← 0.

Output G′.
At the beginning of any iteration of the while loop, the graph contains a solution to the

dens-2VC problem of density at most OPT
k′ . Therefore, the graph H returned always has

density at most O(log ℓ)OPT
k′ . If k(H) ≤ k′, we add H to G′ and decrement k′; we refer

to this as the augmentation step. Otherwise, we have a graph H of good density, but with

too many terminals. In this case, we prune H to find a graph with the required number of

terminals; this is the pruning step. A simple set-cover type argument shows the following

lemma:

LEMMA 8. If, at every augmentation step, we add a graph of density at most O(log ℓ)OPT
k′

(where k′ is the number of additional terminals that must be selected), the total cost of all
the augmentation steps is at most O(log ℓ · log k)OPT.

Therefore, it remains only to bound the cost of the graph H′ added in the pruning step,

and Theorem 1, proved in Section 4, is precisely what is needed. Our main result for the

k-2VC problem, Theorem 4, follows easily from Lemma 8 and Theorem 1.

We now describe the similar algorithm for the Budget-2VC problem. Given budget

B, preprocess the graph as before by deleting vertices that do not have 2 vertex-disjoint

paths to r of total cost at most B. Let OPT denote the number of vertices in the optimal

solution, and k = OPT/c log ℓ logOPT, for some constant c = O(1/ǫ). We run the same

greedy algorithm, using the O(log ℓ)-approximation for the dens-2VC problem. Note that

at each stage, the graph contains a solution to dens-2VC of density at most B/(OPT− k) <

2B/OPT. Therefore, we have the following lemma:

LEMMA 9. If, at every augmentation step of the algorithm for Budget-2VC, we add a graph
of density at most O(log ℓ)(2B/OPT), the total cost of all augmentation steps is at most
O(B/ logOPT) ≤ ǫB.

Again, to prove Theorem 6, giving a bicriteria approximation for Budget-2VC, we only

have to bound the cost of the pruning step.

PROOF OF THEOREM 6. From the previous lemma, the total cost of the augmentation

steps is at most ǫB. The graph H returned by the dens-2VC algorithm has density at most

O(log ℓ · B/OPT), and k(H) > k′ terminals. Now, from Theorem 1, we can prune H to

find a graph H′ containing k′ terminals and cost at most O(log k′ log ℓ · B/OPT) · k′ + 2B.

As k′ ≤ k = OPT/(c log ℓ log OPT), a suitable choice of c ensures that the total cost of the

pruning step is at most ǫB + 2B.
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It remains only to prove Lemma 7, that there is anO(log ℓ)-approximation for the dens-

2VC problem, and the crucial Theorem 1, bounding the cost of the pruning step. We omit

the proof of Lemma 7 from this extended abstract. Before the latter is proved in Section 4,

we develop some tools in Section 3; chief among these tools is Theorem 2.

3 Finding Low-density Non-trivial Cycles

A cycle C ⊆ G is non-trivial if it contains at least 2 terminals. We define the min-density

non-trivial cycle problem: Given a graph G(V, E), with S ⊆ V marked as terminals, edge

costs and terminal weights, find a minimum-density cycle that contains at least 2 terminals.

Note that if we remove the requirement that the cycle be non-trivial (that is, it contains at

least 2 terminals), the problem reduces to the min-mean cycle problem in directed graphs,

and can be solved exactly in polynomial time (see [2]). Algorithms for the min-density non-

trivial cycle problem are a useful tool for solving the k-2VC and k-2EC problems. In this

section, we give an O(log ℓ)-approximation algorithm for the minimum-density non-trivial

cycle problem.

THEOREM 10. Let G be a 2-connected graph with at least 2 terminals. G contains a simple
non-trivial cycle X such that density(X) ≤ density(G).

PROOF SKETCH. Let C be an arbitrary non-trivial simple cycle; such a cycle always exists

since G is 2-connected and has at least 2 terminals. If density(C) > density(G), we give an

algorithm that finds a new non-trivial cycle C′ such that density(C′) < density(C). Repeat-
ing this process gives us the desired cycle. Let G′ be the graph formed by contracting the

given cycle C to a single vertex v. In G′, v is not a terminal, and so has weight 0. Consider

the 2-connected components of G′ (each such component is formed by adding v to a con-

nected component of G′ − v), and pick the one of minimum density. If H is this component,

density(H) < density(G) by an averaging argument.

H contains at least 1 terminal. If it contains 2 or more terminals, recursively find a non-

trivial cycle C′ in H such that density(C′) ≤ density(H) < density(C). If C′ exists in the given

graph G, we are done. Otherwise, C′ contains v, and the edges of C′ form an ear of C in

the original graph G. The density of this ear is less than the density of C, and we can find a

non-trivial cycle in the union of C and the ear of density at most that of G.

Finally, if H has exactly 1 terminal u, find any 2 vertex-disjoint paths using edges of

H from u to distinct vertices in the cycle C. (Since G is 2-connected, there always exist

such paths.) The cost of these paths is at most cost(H), and concatenating these 2 paths

corresponds to an ear of C in G. The density of this ear is less than density(C); again, the

union of the ear and C has a desired non-trivial cycle.

We remark that the algorithm of Theorem 10 does not lead to a polynomial-time al-

gorithm, even if all edge costs and terminal weights are polynomially bounded. We give

a strongly polynomial time algorithm to find such a cycle in the full version of this paper.

Note that neither of these algorithms may directly give a good approximation to the min-

density non-trivial cycle problem, because the optimal non-trivial cycle may have density

much less than that of G. However, we can use Theorem 10 to prove the following theorem:
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THEOREM 11. There is an α-approximation to the (unrooted) dens-2VC problem if and
only if there is an α-approximation to the problem of finding a minimum-density non-trivial
cycle.

Theorem 11 and Lemma 7 imply an O(log ℓ)-approximation for the minimum-density

non-trivial cycle problem; this proves Corollary 3.

4 Pruning 2-connected Graphs of Good Density

In this section, we prove Theorem 1. We are given a graph G and S ⊆ V, a set of at least k

terminals. Further, every terminal in G has 2 vertex-disjoint paths to the root r of total cost

at most L. Let ℓ be the number of terminals in G, and cost(G) its total cost; ρ = cost(G)
ℓ

is the

density of G. We describe an algorithm that finds a subgraph H of G that contains at least k

terminals, each of which is 2-connected to the root, and of total edge cost O(log k)ρk + 2L.

We can assume ℓ > (8 log k) · k, or the trivial solution of taking the entire graph G

suffices. The main phase of our algorithm proceeds by maintaining a set of 2-connected

subgraphs that we call clusters, and repeatedly finding low-density cycles that merge clus-

ters of similar weight to form larger clusters. (The weight of a cluster X, denoted by wX, is

(roughly) the number of terminals it contains.) Clusters are grouped into tiers by weight;

tier i contains clusters with weight at least 2i and less than 2i+1. Initially, each terminal is

a separate cluster in tier 0. We say a cluster is large if it has weight at least k, and small

otherwise. The algorithm stops when most terminals are in large clusters.

We now describe the algorithmMERGECLUSTERS (see next page). To simplify notation,

let α be the quantity 2⌈log k⌉ρ. We say that a cycle is good if it has density at most α; that is,

good cycles have density at most O(log k) times the density of the input graph.
MERGECLUSTERS:
For (each i in {0, 1, . . . , (⌈log2 k⌉ − 1)}) do:

If (i = 0):
Every terminal has weight 1

Else:
Mark all vertices as non-terminals
For (each small 2-connected cluster X in tier i) do:

Add a (dummy) terminal vX to G of weight wX

Add (dummy) edges of cost 0 from vX to two (arbitrary) distinct vertices of X
While (G has a non-trivial cycle C of density at most α = 2⌈log k⌉ρ):

Let X1,X2, . . .Xq be the small clusters that contain a terminal or an edge of C.
(Note that the terminals in C belong to a subset of {X1, . . .Xq}.)
Form a new cluster Y (of a higher tier) by merging the clusters X1, . . .Xq

wY ← ∑
q
j=1 wXj

If (i = 0):
Mark all terminals in Y as non-terminals

Else:
Delete all (dummy) terminals in Y and the associated (dummy) edges.

We briefly remark on some salient features of this algorithm and our analysis before

presenting the details of the proofs.

1. In iteration i, terminals correspond to tier i clusters. Clusters are 2-connected sub-

graphs of G, and by using cycles to merge clusters, we preserve 2-connectivity as the
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clusters become larger.

2. When a cycle C is used to merge clusters, all small clusters that contain an edge of C

(regardless of their tier) are merged to form the new cluster. Therefore, at any stage

of the algorithm, all currently small clusters are edge-disjoint. Large clusters, on the

other hand, are frozen; even if they intersect a good cycle C, they are not merged with

other clusters on C. Thus, at any time, an edge may be in multiple large clusters and

up to one small cluster.

3. In iteration i of MERGECLUSTERS, the density of a cycle C is only determined by its

cost and the weight of terminals in C corresponding to tier i clusters. Though small

clusters of other (lower or higher) tiers might be merged using C, we do not use their

weight to pay for the edges of C.

4. The ith iteration terminates when no good cycles can be found using the remaining

tier i clusters. At this point, there may be some terminals remaining that correspond

to clusters which are not merged to form clusters of higher tiers. However, our choice

of α (which defines the density of good cycles) is such that we can bound the num-

ber of terminals that are “left behind” in this fashion. Therefore, when the algorithm

terminates, most terminals are in large clusters.

We prove that after MERGECLUSTERS terminates most terminals are in large clusters

and that each large cluster has good density. The proof proceeds via several properties that

we establish formally.

Remarks: Throughout the algorithm, the graph G is always 2-connected. The weight of a

cluster is at most the number of terminals it contains.

LEMMA 12. The clusters formed by MERGECLUSTERS are all 2-connected.

LEMMA 13. The total weight of small clusters in tier i that are not merged to form clusters
of higher tiers is at most ℓ

2⌈log k⌉ .

COROLLARY 14. When the algorithmMERGECLUSTERS terminates, the total weight of large
clusters is at least ℓ/2 > (4 log k) · k.

So far, we have shown that most terminals reach large clusters, all of which are 2-

connected, but we have not argued about the density of these clusters. The next lemma

says that if we can find a large cluster of good density, we can find a solution to the k-2VC

problem of good density.

LEMMA 15. Let Y be a large cluster formed by MERGECLUSTERS. If Y has density at most
δ, we can find a graph Y′ with at least k terminals, each of which is 2-connected to r, of total
cost at most 2δk + 2L.

The following lemma allows us to show that every large cluster has density atmostO(log2 k)ρ.

LEMMA 16. For any cluster Y formed by MERGECLUSTERS during iteration i, the total cost
of edges in Y is at most (i + 1) · αwY.

Let Y be an arbitrary large cluster; since we have only ⌈log k⌉ tiers, the previous lemma

implies that the cost of Y is at most ⌈log k⌉ · αwY = O(log2 k)ρwY. That is, the density of Y
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is at most O(log2 k)ρ, and we can use this fact together with Lemma 15 to find a solution

to the rooted k-2VC problem of cost at most O(log2 k)ρk + 2L. This completes the ‘weaker’

analysis, but this does not suffice to prove Theorem 1; to prove the theorem, we would need

to use a large cluster Y of density O(log k)ρ, instead of O(log2 k)ρ.

For the purpose of the more careful analysis, implicitly construct a forest F on the clus-

ters formed by MERGECLUSTERS. Initially, the vertex set of F is just S, the set of terminals,

and F has no edges. Every time a cluster Y is formed by merging X1,X2, . . .Xq , we add a

corresponding vertex Y to the forest F , and add edges from Y to each of X1, . . .Xq; Y is the

parent of X1, . . .Xq. We also associate a cost with each vertex in F ; the cost of the vertex Y is

the cost of the cycle used to form Y from X1, . . .Xq. We thus build up trees as the algorithm

proceeds; the root of any tree corresponds to a cluster that has not yet become part of a

bigger cluster. The leaves of the trees correspond to vertices of G; they all have cost 0. Also,

a large cluster Y formed by the algorithm is at the root of its tree; we refer to this tree as TY.

For each large cluster Y after MERGECLUSTERS terminates, say that Y is of type i if Y

was formed during iteration i of MergeClusters. We now define the final-stage clusters of Y:

They are the clusters formed during iteration i that became part of Y. (We include Y itself in

the list of final-stage clusters; even though Y was formed in iteration i of MERGECLUSTERS,

it may contain other final-stage clusters. For instance, during iteration i, we may merge

several tier i clusters to form a cluster X of tier j > i. Then, if we find a good-density cycle

C that contains an edge of X, X will merge with the other clusters of C.) The penultimate

clusters of Y are those clusters that exist just before the beginning of iteration i and become

a part of Y. Equivalently, the penultimate clusters are those formed before iteration i that

are the immediate children in TY of final-stage clusters. Figure 1 illustrates the definitions

of final-stage and penultimate clusters.

Y

i i + 2 i i + 1A B C D

i i + 1 i
E F G

i i
H J

Figure 1: A part of the Tree TY corresponding to Y, a large cluster of type i. The number

in each vertex indicates the tier of the cluster. Only final-stage and penultimate clusters are

shown: final-stage clusters are shown with a double circle; the rest are penultimate.

An edge of a large clusterY is said to be a final edge if it is used in a cycle C that produces

a final-stage cluster of Y. All other edges of Y are called penultimate edges; note that any

penultimate edge is in some penultimate cluster of Y. We define the final cost of Y to be the

sum of the costs of its final edges, and its penultimate cost to be the sum of the costs of its

penultimate edges; clearly, the cost of Y is the sum of its final and penultimate costs. We

bound the final costs and penultimate costs separately.

Recall that an edge is a final edge of a large cluster Y if it is used by MERGECLUSTERS to
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form a cycle C in the final iteration during which Y is formed. The reason we can bound the

cost of final edges is that the cost of any such cycle is at most α times the weight of clusters

contained in the cycle, and a cluster does not contribute to the weight of more than one cycle

in an iteration. (This is also the essence of Lemma 16.) We formalize this intuition below.

LEMMA 17. The final cost of a large cluster Y is at most αwY, where wY is the weight of Y.

LEMMA 18. If Y1 and Y2 are distinct large clusters of the same type, no edge is a penultimate
edge of both Y1 and Y2.

THEOREM 19. After MERGECLUSTERS terminates, at least one large cluster has density at
most O(log k)ρ.

PROOF. We define the penultimate density of a large cluster to be the ratio of its penultimate

cost to its weight. Consider the total penultimate costs of all large clusters: For any i, each

edge e ∈ E(G) can be a penultimate edge of at most 1 large cluster of type i. This implies

that each edge can be a penultimate edge of at most ⌈log k⌉ clusters. Therefore, the sum of

penultimate costs of all large clusters is at most ⌈log k⌉cost(G). Further, the total weight of

all large clusters is at least ℓ/2. Therefore, the (weighted) average penultimate density of

large clusters is at most 2⌈log k⌉ cost(G)
ℓ

= 2⌈log k⌉ρ, and hence there exists a large cluster Y

of penultimate density at most 2⌈log k⌉ρ. The penultimate cost of Y is, therefore, at most

2⌈log k⌉ρwY, and from Lemma 17, the final cost of Y is at most αwY. Therefore, the density

of Y is at most α + 2⌈log k⌉ρ = O(log k)ρ.

Theorem 19 and Lemma 15 together imply that we can find a solution to the rooted

k-2VC problem of cost at most O(log k)ρk + 2L. This completes our proof of Theorem 1.
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ABSTRACT. We study single-sink network design problems in undirected graphs with vertex con-
nectivity requirements. The input to these problems is an edge-weighted undirected graph G =
(V, E), a sink/root vertex r, a set of terminals T ⊆ V, and integer k. The goal is to connect each
terminal t ∈ T to r via k vertex-disjoint paths. In the connectivity problem, the objective is to find a
min-cost subgraph of G that contains the desired paths. There is a 2-approximation for this prob-
lem when k ≤ 2 [9] but for k ≥ 3, the first non-trivial approximation was obtained in the recent
work of Chakraborty, Chuzhoy and Khanna [4]; they describe and analyze an algorithm with an

approximation ratio ofO(kO(k2) log4 n) where n = |V|.
In this paper, inspired by the results and ideas in [4], we show an O(kO(k) log |T|)-approximation
bound for a simple greedy algorithm. Our analysis is based on the dual of a natural linear pro-
gram and is of independent technical interest. We use the insights from this analysis to obtain an

O(kO(k) log |T|)-approximation for the more general single-sink rent-or-buy network design problem
with vertex connectivity requirements. We further extend the ideas to obtain a poly-logarithmic ap-
proximation for the single-sink buy-at-bulk problem when k = 2 and the number of cable-types is
a fixed constant; we believe that this should extend to any fixed k. We also show that for the non-
uniform buy-at-bulk problem, for each fixed k, a small variant of a simple algorithm suggested by

Charikar and Kargiazova [5] for the case of k = 1 gives an 2O(
√

log |T|) approximation for larger k.
These results show that for each of these problems, simple and natural algorithms that have been
developed for k = 1 have good performance for small k > 1.

1 Introduction

We consider several single-sink network design problems with vertex connectivity require-

ments. Let G = (V, E) be a given undirected graph on n nodes with a specified sink/root

vertex r and a subset of terminals T ⊆ V, with |T| = h. Each terminal t has a demand dt > 0

that needs to be routed to the root along k vertex-disjoint paths (dt is sent on each of the k

paths). In the following discussion, we assume for simplicity that dt = 1 for each terminal

t. The goal in all the problems is to find a routing (a selection of paths) for the terminals

so as to minimize the cost of the routing. We obtain problems of increasing generality and

complexity based on the cost function on the edges. In the basic connectivity problem, each

edge e has a non-negative cost ce, and the objective is to find a minimum-cost subgraph H
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of G that contains the desired disjoint paths for each terminal. We then consider general-

izations of the connectivity problem where the cost of an edge depends on the number of

terminals whose paths use it. In the rent-or-buy problem there is a parameter M with the

following interpretation: An edge e can either be bought for a cost of ce · M, in which case

any number of terminals can use it, or e can be rented at the cost of ce per terminal. In other

words, the cost of an edge e is ce ·min{M, |Te|} where Te is the set of terminals whose paths

use e. In the uniform buy-at-bulk problem, the cost of an edge e is ce · f (|Te|) for some given

sub-additive function f : R+ → R+. In the non-uniform buy-at-bulk problem the cost of

an edge e is fe(|Te|) for some edge-dependent sub-additive function fe : R
+ → R+. All of

the above problems are NP-hard and also APX-hard to approximate even for k = 1. Note

that when k = 1 the connectivity problem is the well-known Steiner tree problem. In this

paper we focus on polynomial-time approximation algorithms for the above network de-

sign problem when k > 1. We refer to the above three problems as SS-k-CONNECTIVITY,

SS-k-RENT-OR-BUY and SS-k-BUY-AT-BULK respectively.

Motivation: Our work is motivated by several considerations. First, connectivity and net-

work design problems are of much interest in algorithms and combinatorial optimization.

A very general problem in this context is the survivable network design problem (SNDP).

An instance of SNDP consists of an edge-weighted graph G = (V, E) and an integer con-

nectivity requirement ruv for each pair of nodes uv. The goal is to find a minimum-cost

subgraph H of G such that H contains ruv disjoint paths between u and v for each pair uv.

EC-SNDP refers to the variant in which the paths are required only to be edge-disjoint and

VC-SNDP refers to the variant where the paths are required to be vertex-disjoint. SNDP

captures many connectivity problems as special cases. Jain’s [13] seminal work on iterated

rounding showed a 2-approximation for EC-SNDP, improving previous results [18]. This

was extended to element-connectivity SNDP and to VC-SNDP when ruv ∈ {0, 1, 2} [9]. An

important question is to understand the approximability of VC-SNDP when the connectiv-

ity requirements exceed 2.

Kortsarz, Krauthgamer and Lee [14] showed that VC-SNDP is hard to approximate to

within a factor of 2log
1−ǫ n even when ruv ∈ {0, k} for all uv. However, the hardness requires

k to be nδ for some constant δ > 0; in this same setting they show that SS-k-CONNECTIVITY

is hard to approximate to within Ω(log n) factor. A natural question to ask is whether SS-

k-CONNECTIVITY and more generally VC-SNDP admits a good approximation when k (or

in general, the maximum requirement) is small. This question is quite relevant from a prac-

tical and theoretical perspective. In fact, no counterexample is known to the possibility of

iterated rounding yielding a ratio of maxuv ruv for VC-SNDP (see [9] for more on this). Al-

though there is a 2-approximation for VC-SNDP when maxuv ruv ≤ 2, until very recently

there was no non-trivial (that is, o(|T|)) approximation for SS-k-CONNECTIVITY even when

k = 3! Chakraborty, Chuzhoy and Khanna [4] developed some fundamental new insights in

recent work and showed anO(kO(k2) log4 n)-approximation for SS-k-CONNECTIVITY via the

setpair relaxation; we mention other relevant results from [4] later. Our paper is inspired by

the results and ideas in [4]. We show that a simple greedy algorithm yields an improved ap-

proximation for SS-k-CONNECTIVITY. Perhaps of equal importance is our analysis, which

is based on the dual of the linear programming relaxation. This new dual-based perspective
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allows us to analyze simple algorithms for the more complex problems SS-k-RENT-OR-BUY

and SS-k-BUY-AT-BULK.

Another motivation for these problems comes from the buy-at-bulk network design

problem [17]; this arises naturally in the design of telecommunication networks [17, 1, 6].

Economies of scale imply that bandwidth on a link can be purchased in integer units of dif-

ferent cable-types; that is, there are some b cable-types with capacities u1 < u2 < . . . < ub
and costs w1 < w2 < . . . < wb such that w1/u1 > . . . > wb/ub. Antonakapoulos et al.

[2], motivated by real-world fault-tolerant models in optical network design [6] introduced

the protected buy-at-bulk network design problem. In [2] this problem was reduced to the

corresponding single-sink problem at the expense of a poly-logarithmic ratio in the approx-

imation. An O(1) approximation for the single-sink problem was derived in [2], however,

the techniques in [2] were applicable only to the case of a single-cable. An open question

raised in [2] is whether one can find a good approximation for the single-sink problem even

for the case of two cable-types. In this paper we show that natural and simple algorithms

can be obtained for this problem for any fixed number of cable-types. We also analyze a

simple randomized greedy inflation algorithm (suggested by Charikar and Kargiazova [5]

for k = 1) for the non-uniform buy-at-bulk problem and show that it achieves a non-trivial

approximation for each fixed k. Our starting point for the buy-at-bulk problem is the rent-

or-buy cost function which can be modeled with two cable-types, one with unit capacity

and the other with essentially infinite capacity. This simple cost function, in addition to its

inherent interest, has played an important role in the development of algorithms for several

problems [12].

Results and Technical Contributions: We analyze simple combinatorial algorithms for the

three single-sink vertex-connectivity network design problems that we described. We prove

bounds on the approximation ratio of the algorithms using the dual of natural LP relax-

ations; the LP relaxation is used only for the analysis. This leads to the following results:

• An O(k2k log |T|) approximation for SS-k-CONNECTIVITY.

• An O(k2k log |T|) approximation for SS-k-RENT-OR-BUY.

• AnO((log |T|)O(b)) approximation for the SS-k-BUY-AT-BULKwith b cable-typeswhen

k = 2.

• A 2O(
√

log h) approximation for the non-uniform SS-k-BUY-AT-BULK for each fixed k.

Our result for SS-k-CONNECTIVITY improves the ratio of O(kO(k2) log4 n) from [4]. For the

SS-k-RENT-OR-BUY problem, ours is the first non-trivial result for any k ≥ 2. For the SS-

k-BUY-AT-BULK problem, an O(1) approximation is known for k = 2 in the single-cable

setting, but no non-trivial algorithmwas known even for the case of k = 2 with two or more

cables. Some other results can be derived from the above. Following the observation in

[4], the SS-k-CONNECTIVITY approximation ratio applies also to the subset-k-connectivity

problem; here the objective is to find a min-cost subgraph such that T is k-connected. It is

also easy to see that the approximation ratio only worsens by a factor of k if the terminals

have different connectivity requirements in {1, 2, . . . , k}. For k = 2, our algorithms for rent-

or-buy and buy-at-bulk can be used to obtain algorithms for the multicommodity setting

using the ideas in [2].

Our algorithms are natural extensions of known combinatorial algorithms for the k = 1

case. For SS-k-CONNECTIVITY a (online) greedy algorithm is to order the terminals arbitrar-
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ily and add terminals one by one while maintaining a feasible solution for the current set

of terminals. This greedy algorithm gives an O(log |T|) approximation for the Steiner tree

problem which is the same as SS-k-CONNECTIVITY when k = 1. However, it can be shown

easily that this same algorithm, and in fact any deterministic online algorithm, can return so-

lutions of value Ω(|T|)OPT even for k = 2. Interestingly, we show that a small variant that

applies the greedy strategy in reverse yields a good approximation ratio! For SS-k-RENT-

OR-BUY, our algorithm is a straightforward generalization of the simple random-marking

algorithm of Gupta et al. [12] for k = 1. Our algorithm for SS-k-BUY-AT-BULK is also based

on a natural clustering strategy previously used for k = 1. We remark that the hardness

results of [14] imply that the approximation ratio has to depend on k in some form. The

exponential dependence on k is an artifact of the analysis. In particular, we extend a combi-

natorial lemma from [4]; we believe that the analysis of this lemma can be tightened to show

a polynomial dependence on k. Some very recent work [8] achieves results in this direction;

see the end of this section for more on this subject.

Although the algorithms are simple and easy extensions of the known algorithms for

k = 1, the analysis requires several new sophisticated ideas even for k = 2. The main

technical difference between k = 1 and k > 1 is the following. For k = 1, metric methods can

be used since the problem remains unchanged even if we take themetric closure of the given

graph G. However this fails for k > 1 in a fundamental way. Chakaraborty, Chuzhoy and

Khanna [4] developed new insights for k > 1. Unfortunately we are unable to elaborate on

their ideas due to space limitations. We do mention that they use a primal approach wherein

they use an optimal fractional solution to argue about the costs of connecting a terminal t

to other terminals via disjoint paths. Our analysis is different and is based on analyzing

the dual of a natural linear programming relaxation. This is inspired by the dual-packing

arguments that have been used earlier for connectivity problems. These prior arguments

were for k = 1, where distance-based arguments via balls grown around terminals can be

used. For k ≥ 2 these arguments do not apply. Nevertheless, we show the effectiveness of

the dual-packing approach by using non-uniform balls.

Due to space limitations we defer discussion of the large literature on network design

and related work to a full version of the paper. We refer the reader to [15] for a recent survey

and to [4, 8]. Chuzhoy and Khanna [8] have independently and concurrently obtained re-

sults for SS-k-CONNECTIVITY; they obtain an O(k log |T|)-approximation with edge-costs,

and an O(k7 log2 n)-approximation with vertex-costs. Their result for SS-k-CONNECTIVITY

has a much better dependence on k than ours. Our dual-based analysis differs from their

analysis, and is crucial to our algorithms for SS-k-RENT-OR-BUY and SS-k-BUY-AT-BULK

which are not considered in [8].

We omit all proofs and many technical details in this extended abstract. The reader can

find a longer version on the websites of the authors.

2 Connectivity

In this section we analyze a simple reverse greedy algorithm for SS-k-CONNECTIVITY. For-

mally, the input to the problem is an edge-weighted graph G = (V, E), an integer k, a

specified root vertex r, and a set of terminals T ⊆ V. The goal is to find a min-cost edge-
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induced subgraph H of G such that H contains k vertex-disjoint paths from each terminal t

to r.

The key concept is that of augmentation. Let T′ ⊆ T be a subset of terminals and let H′

be a subgraph of G that is feasible for T′. For a terminal t ∈ T \ T′, a set of k paths p1, . . . , pk
is said to be an augmentation for twith respect to T′ if (i) pi is a path from t to some vertex in

T′ ∪ {r} (ii) the paths are internally vertex disjoint and (iii) a terminal t′ ∈ T′ is the endpoint
of at most one of the k paths. Note that the root is allowed to be the endpoint of more than

one path. The following proposition is easy to show via a simple min-cut argument.

PROPOSITION 1. If p1, p2, . . . , pk is an augmentation for t with respect to T′ and H′ is a
feasible solution for T′ then H ∪ (

⋃

i pi) is a feasible solution for T′ ∪ {t}.

Given T′ and t, the augmentation cost of t with respect to T′ is the cost of a min-cost

set of paths that augment t w.r.t. to T′. If T′ is not mentioned, we implicitly assume that

T′ = T \ {t}. With this terminology and Proposition 1, it is easy to see that the algorithm

below finds a feasible solution.

REVERSE-GREEDY:
Let t ∈ T be a terminal of minimum augmentation cost.
Recursively solve the instsance of SS-k-CONNECTIVITY on G, with terminal set T′ = T − {t}.
Augment t with respect to T′, paying (at most) its augmentation cost.

The rest of the section is devoted to showing that REVERSE-GREEDY achieves a good

approximation. As we mentioned already, there is an Ω(|T|) lower bound on the perfor-

mance of any online algorithm. Thus, the order of terminals is of considerable importance

in the performance of the greedy algorithm. Note that for k = 1, namely the Steiner tree

problem, the greedy online algorithm does have a performance ratio of O(log |T|).

The key step in the analysis of the algorithm is to bound the augmentation cost of ter-

minals. We do this by constructing a natural linear program for the problem and using a

dual-based argument. The primal and its dual linear programs for SS-k-CONNECTIVITY are

shown below. We remark that our linear program is based on a path-formulation unlike the

standard cut-based (setpair) formulation for VC-SNDP [10, 9]. However, the optimal solu-

tion values of the two relaxations are the same. The path-formulation is more appropriate

for our analysis.

In the primal linear program below, and throughout the paper, we let P k
t denote the

collection of all sets of k vertex-disjoint paths from t to the root r. We use the notation ~P to

abbreviate {p1, p2, . . . pk}, an unordered set of k disjoint paths in P k
t . Finally, we say that

an edge e ∈ ~P if there is some pj ∈ ~P such that e ∈ pj. In the LP, the variable xe indicates

whether or not the edge e is in the solution. For each ~P ∈ P k
t , the variable f~P is 1 if terminal

t selects the k paths of ~P to connect to the root, and 0 otherwise.
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Primal-Conn min ∑
e∈E

cexe

∑
~P∈P k

t

f~P ≥ 1 (∀t ∈ T)

∑
~P∈P k

t |e∈~P

f~P ≤ xe (∀t ∈ T, e ∈ E)

xe, f~P ∈ [0, 1]

Dual-Conn max ∑
t∈T

αt

∑
t

βt
e ≤ ce (∀e ∈ E)

αt ≤ ∑
e∈~P

βt
e

(

∀~P ∈ P k
t

)

αt, βe
t ≥ 0

The value f~P can be thought of as the amount of “flow” sent from t to the root along

the set of paths in ~P. The first constraint requires that for each terminal, a total flow of at

least 1 unit must be sent along various sets of k disjoint paths. Our analysis of the algorithm

REVERSE-GREEDY is based on the following technical lemma.

LEMMA 2. Given an instance of SS-k-CONNECTIVITY with h terminals, let OPT be the cost
of an optimal fractional solution to Primal-Conn. For each terminal t, let Cost(t) denote the
augmentation cost of t. Then mint Cost(t) ≤ f (k)k2 · OPT

h where f (k) = 3kk!. It also follows
that ∑t Costt ≤ 2 f (k)k2 log h ·OPT.

Lemma 2 and a simple inductive proof give the following theorem.

THEOREM 3. REVERSE-GREEDY is anO( f (k)k2 log h)-approximation for SS-k-CONNECTIVITY.

2.1 Overview of the Dual-Packing Analysis

We prove Lemma 2 based on a dual-packing argument. In order to do this we first interpret

the variables and constraints in Dual-Conn. There is a dual variable αt for each t ∈ T. We

interpret αt as the total cost that t is willing to pay to connect to the root. In addition there

is a variable βt
e which is the amount that t is willing to pay on edge e. The dual constraint

∑t βt
e ≤ ce requires that the total payment on an edge from all terminals is at most ce. In

addition, for each terminal t, the total payment αt should not exceed the min-cost k-disjoint

paths to the root with costs given by the βt
e payments of t on the edges.

Let α = mint Cost(t). To prove Lemma 2 it is sufficient to exhibit a feasible setting for

the dual variables in which αt ≥ α/( f (k)k2). How do we do this? To understand the overall

plan and intuition, we first consider the Steiner tree problem (the case of k = 1). In this case,

α = mint Cost(t) is the shortest distance between any two terminals. For each t consider the

ball of radius α/2 centered around t; these balls are disjoint. Hence, setting αt = α/2 and

βt
e = ce for each e in t’s ball (and βt

e = 0 for other edges) yields a feasible dual solution. This

interpretation is well-known and underlies the O(log |T|) bound on the competitiveness of

the greedy algorithm for the online Steiner tree problem. Extending the above intuition to

k > 1 is substantially more complicated. We again to wish to define balls of radius Ω(α)
that are disjoint. As we remarked earlier, for k = 1 one can work with distances in the graph

and the ball of radius α/2 is well defined.
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t v
e

P

e′

For k > 1, there may be multiple terminals at close distance d from

a terminal t, but nevertheless Cost(t) could be much larger than d. The

reason for this is that t needs to reach k terminals via vertex disjoint paths

and theremay be a vertex vwhose removal disconnects t from all the nearby

terminals. Consider the example in the figure, where filled circles denote

other terminals: The terminal t is willing to pay for e and edges on P but

not e′. There does not appear to be a natural notion of a ball; however, we

show that one can define some auxiliary costs on the edges (that vary based on t) which can

then be used to define a ball for t. The complexity of the analysis comes from the fact that

the balls for different t are defined by different auxiliary edge costs. Now we show how the

auxiliary costs can be defined.

We can obtain the augmentation cost of a terminal t via a min-cost flow computation

in an associated directed graph Gt(Vt, Et) constructed from G in the following standard way:

make 2 copies v+ and v− of each vertex v 6= t, with a single edge/arc between them, and

for each undirected edge uv in G, edges from u+ to v− and v+ to u−. Further, we add a new

vertex rt as sink, and for each terminal t̂ other than t, add a 0-cost edge from t̂+ to rt. Recall

that an augmentation for t is a set of k disjoint paths from t that end at distinct terminals in

T \ {t}, or the root. While constructing Gt, then, the root is also considered a terminal, and

wemake k copies of it to account for the fact that multiple paths in the augmentation can end

at the root; each such copy is also connected to the sink rt. We now ask for a minimum cost

set of k disjoint paths from t to rt
‡; these correspond to a minimum-cost augmentation for t.

It is useful to use a linear programming formulation for the min-cost flow computation. The

linear program for computing the augmentation cost of t, and its dual are shown below. We

refer to these as Primal-Aug(t) andDual-Aug(t) respectively.

min ∑
e∈Et

ce fe

∑e∈δ−(rt) fe ≥ k

∑e∈δ−(v) fe = ∑e=δ+(v) fe (∀v 6= t, rt)

fe ≤ 1 (∀e ∈ Et)

fe ≥ 0 (∀e ∈ Et)

max k · Π − ∑
e

zte

Π − πt(u) ≤ ce + zte (∀e = (u, rt))

πt(v) − πt(u) ≤ ce + zte (∀e = (u, v),

u 6= t, v 6= rt)

πt(v) ≤ ce + zte (∀e = (t, v) ∈ Et)

zte ≥ 0 (e ∈ Et)

Note that the cost of an optimal solution to Primal-Aug(t) is equal to Cost(t). The

interesting aspect is the interpretation of the dual variables. The variables zte are auxiliary

costs on the edges. One can then interpret the dual Dual-Aug(t) as setting zte values such

that the distance from t, with modified cost of each edge e set to ce + zte, is equal to Π for

every other terminal t′. Thus the modified costs create a ball around t in which all terminals

are at equal distance!

Thus, the overall game plan of the proof is the following. For each t solve Primal-

Aug(t) and find an appropriate solution to Dual-Aug(t) (this requires some care). Use

‡Note that we do not make two copies of t, as we will never use an incoming edge to t in a min-cost set of
paths. All edges are directed out of the unique copy of t.
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these dual variables to define a non-uniform ball around t in the original graph G. This

leads to a feasible setting of variables in Dual-Conn (with the balls being approximately

disjoint). Although the scheme at a high level is fairly natural, the technical details are non-

trivial and somewhat long. In particular, one requires an important combinatorial lemma

on intersecting path systems that was formulated in [4] — here we give an improved proof

of a slight variant that we need. The use of this lemma leads to the exponential dependence

on k. A certain natural conjecture regarding the non-uniform balls, if true, would lead to a

polynomial dependence on k. We refer the reader to the full version for the details.

3 Rent-or-Buy

In this section we describe and analyze a simple algorithm for the SS-k-RENT-OR-BUY prob-

lem. Recall that the input to this problem is the same as that for SS-k-CONNECTIVITY with

an additional parameter M. The goal is to find for each terminal t ∈ T, k vertex-disjoint

paths ~P ∈ P k
t to the root r. The objective is to minimize the total cost of the chosen paths

where the cost of an edge e is ce ·min{M, |Te|} where Te is the set of terminals whose paths

contain e. In other words an edge can either be bought at a price of Mce in which case any

number of terminals can use it or an edge can be rented at a cost of ce per terminal. Our

algorithm given below is essentially the same as the random marking algorithm that has

been shown to give an O(1) approximation for the case of k = 1 [12].

RENT-OR-BUY-SAMPLE:
1. Sample each terminal independently with probability 1/M.
2.1 Find a subgraph H in which every sampled terminal is k-connected to the root.
2.2 Buy the edges of H, paying Mce for each edge e ∈ H.
3. For each non-sampled terminal, greedily rent disjoint paths to k distinct sampled terminals.

It is easy to see that the algorithm is correct. Note that a non-sampled terminal can

always find feasible paths since the root can be the endpoint of all k paths. The algorithm

and analysis easily generalize to the case where each terminal t has a demand dt to be routed

to the root. The algorithm can be analyzed using the strict cost-shares framework of Gupta et

al. [12] for sampling algorithms for rent-or-buy and related problems. It is not hard to show

that the REVERSE-GREEDY algorithm directly implies the desired strict-cost shares needed

for the framework. This allows us to conclude that the approximation ratio of RENT-OR-

BUY-SAMPLE is no more than two times that of REVERSE-GREEDY.

THEOREM 4. There is aO( f (k)k2 log h)-approximation for the SS-k-RENT-OR-BUY problem.

We omit the formal proof of the above theorem in this version. In fact we give a direct

and somewhat complex analysis that proves a slightly weaker bound than the above for

reasons that we discuss now. One of our motivations to understand SS-k-RENT-OR-BUY is

for its use in obtaining algorithms for the SS-k-BUY-AT-BULK problem. For k = 1, previous

algorithms for SS-k-BUY-AT-BULK [11, 12] could use an algorithm for SS-k-RENT-OR-BUY

essentially as a black box. However, for k ≥ 2 there are important technical differences

and challenges that we outline in Section 4. We cannot, therefore, use an algorithm for

SS-k-RENT-OR-BUY as a black box. In a nutshell, the extra property that we need is the

following. In the sampling algorithm RENT-OR-BUY-SAMPLE, there is no bound on the
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number of unsampled terminals that may route to any specific sampled terminal. In the

buy-at-bulk application we need an extra balance condition which ensures that unsampled

terminals route to sampled terminals in such a way that no sampled terminal receives more

than βM demand where β ≥ 1 is not too large. We prove the following technical lemma

that shows that β can be chosen to be O( f (k)k log2 h).

LEMMA 5. Consider an instance of RENT-OR-BUY and let OPT be the value of an opti-
mal fractional solution to the given instance. Then for each terminal t we can find paths
Pt
1, P

t
2, . . . , P

t
o with the following properties: (i) o ≥ (k− 1/2)M and (ii) the paths originate

at t and end at distinct terminals or the root and (iii) no edge e is contained in more than M

paths for any terminal t. Moreover the total rental cost of the paths isO( f (k)eO(k2) · k5 log h) ·
M ·OPT and no terminal is the end point of more than O( f (k)k log2 h · M) paths.

The proof of the above lemma is non-trivial. We are able to prove it by first analyzing

the sampling based algorithm directly via the natural LP relaxation for SS-k-RENT-OR-BUY.

Although the underlying ideas are inspired by the ones for SS-k-CONNECTIVITY, the proof

itself is fairly technical.

4 Buy-at-Bulk Network Design

In this section we consider the SS-k-BUY-AT-BULK problem. We first consider the uniform

version; Section 4.1 discusses the non-uniform version.

Each terminal t ∈ T wishes to route one unit of demand to the root along k vertex

disjoint paths. More generally, terminals may have different demands, but we focus on the

unit-demand case for ease of exposition. There are b cable-types; the ith cable has capacity

ui and cost wi per unit length. Let f : R+ → R+ be a sub-additive function§ where f (x)
is the minimum-cost set of cables whose total capacity is at least x. The goal is to find a

routing for the terminals so that ∑e ce · f (xe) is minimized where xe is the total flow on edge

e. One can assume that the cables exhibit economy of scale; that is, wi/ui > wi+1/ui+1 for

each i. Therefore, there is some parameter gi+1, with ui < gi+1 < ui+1, such that if the flow

on an edge is at least gi+1, it is more cost-effective to use a single cable of type i + 1 than

gi+1/ui cables of type i. Consistent with this notation, we set g1 = 1; since all our cables

have capacity at least u1, if an edge has non-zero flow, it must use a cable of type at least 1.

Our overall algorithm follows the same high-level approach as that of the previous

single-sink algorithms for the k = 1 problem [11, 12]. The basic idea is as follows: Given

an instance in which the demand at each terminal is of value at least gi, it is clear that

cable types 1 to i− 1 can be effectively ignored. The goal is now to aggregate or cluster the

demand from the terminals to some cluster centers such that the aggregated demand at the

cluster centers is at least gi+1. Suppose we can argue the following two properties of the

aggregation process: (i) the cost of sending the demand from the current terminals to the

cluster centers is comparable to that of OPT and (ii) there exists a solution on the cluster

centers of cost not much more than OPT. Then we have effectively reduced the problem

to one with fewer cables, since the demand at the cluster centers is at least gi+1. We can

thus recurse on this problem. For k = 1 this outline can be effectively used to obtain an

§Any sub-additive f can conversely be approximated by a collection of cable-types.



140 SINGLE-SINK NETWORK DESIGN WITH VERTEX CONNECTIVITY REQUIREMENTS

O(1) approximation independent of the number of cable types. There are several obstacles

to using this approach for k > 1. The most significant of these is that it is difficult to argue

that there is a solution on the new cluster centers of cost not much more than OPT. In the

case of k = 1, this is fairly easy, as the new cluster centers can pretend to randomly send

the demand back to the original terminals; for higher k, since centers need to send demand

along k disjoint paths, this is no longer straightforward.

To deal with these issues, we perform a 2-stage aggregation process that is more com-

plex than previous methods: First, given centers with demand gi, we cluster demand to

produce a new set of centers with demand ui, using a result of [2]. Second, given centers

with demand ui, we use some ideas from Section 3 for RENT-OR-BUY to produce a new set

of centers with demand gi+1. The algorithm of [2] that we use in the first stage applies only

for k = 2; our ideas can be extended to arbitrary k. We describe the two-stage aggregation

process to go from a set of centers with demand gi to a new set of centers with demand gi+1

below; we can then recurse.

Given an instance of SS-k-BUY-AT-BULK with center set T in which all demands are at

least gi, we can effectively assume that an optimal solution only uses cables of type i to b;

let OPTi denote the cost of an optimal solution to this instance. Let H denote an optimal

solution to the SS-k-CONNECTIVITY instance with terminal set T, where the cost of edge e

is wice; the cost of H is a lower bound on OPTi. (Consider an optimal solution to the SS-k-

BUY-AT-BULK instance; the set of edges with installed cables k-connects T to the root, and

the cost on each edge is at least wice.) It follows from a clustering algorithm of [2] that for

k = 2, we can find a new set of centers T′ in polynomial time such that: (i) every t ∈ T

can route flow to 2 centers in T′ via disjoint paths in H; (ii) the total flow on any edge in H

is O(1)ui; (iii) the demand at each t′ ∈ T′ is at least ui and at most 7ui; and (iv) There is a

solution to the new buy-at-bulk instance on T′ of expected cost at most O(1)OPTi.
¶ This

completes the first aggregation stage.

We now have an instance of SS-k-BUY-AT-BULK with center set T in which each center

has demand≈ ui, andwith an optimal solution of cost at most OPT′
i = O(1)OPTi. Consider

a modified instance in which all demands are set equal to ui, the cable capacity ui+1 is set to

infinity and the cable-types i + 2 to ℓ are eliminated. Clearly, the cost of an optimal solution

to this modified instance is no more than OPT′
i; simply replace each cable of higher capacity

with a single cable of type i + 1. However, we now have an instance of RENT-OR-BUY with

M = gi+1/ui. We can now perform our second stage of aggregation; the key idea here is to

use Lemma 5 from Section 3 which guarantees a desired balance condition. This is sufficient

for the above described scheme to go through and yield the following result. Unlike the

k = 1 case, each aggregation step loses a logarithmic factor in the approximation and hence

the approximation we can guarantee is exponential in the number of cables.

THEOREM 6. There is an (O(log h))3b-approximation for SS-2-BUY-AT-BULK with b cable-
types.

¶The algorithm as described in [2] enforces a weaker version of condition (iii); the demand at each t′ ∈ T′ is
at least ui, and at many centers, the demand is at most 7ui. The centers of so-called star-like jumbo clusters may
have higher demand, but the algorithm can be extended so that such high demand centers have their demand
split into smaller units.
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4.1 Non-uniform Buy-at-Bulk

We now consider the non-uniform version of SS-k-BUY-AT-BULK. In this version, for each

edge e of the graph G there is a given sub-additive cost function fe and routing x units of

demand on e results in a cost of fe(x). The uniform version is a special case where fe = ce · f
for a single sub-additive function f . The non-uniform buy-at-bulk problem is considerably

harder than its uniform variant andwe refer the reader to [16, 5, 7] for prior work and related

pointers. We have already mentioned that prior to this work, for k ≥ 2 the SS-k-BUY-AT-

BULK problem did not admit a non-trivial approximation even for the (uniform) 2-cable

problem. For the non-uniform single-sink problem there are essentially two approximation

algorithms known for k = 1, one from [16] and the other from [5]. The algorithm of Charikar

and Kargiazova [5] admits a natural generalization for k ≥ 2 that we analyze using our

result for SS-k-CONNECTIVITY. We obtain a ratio of 2O(
√

log h) which is essentially the same

as the one shown in [5] for the multi-commodity problem (due to a similar recurrence in the

analysis). We remark that the [5] proves a bound of O(log2 h) for the single-sink problem.

However, for k ≥ 2 the analysis of the recurrence changes dramatically from that for k = 1.

Although the bound we show is not impressive, the randomized inflated greedy algorithm

of [5] is extremely simple and elegant. It is easy to implement and amenable to heuristic

improvement and has shown to be effective in some empirical evaluation [3]. We now

describe the algorithm of [5] adapted to SS-k-BUY-AT-BULK. We assume that each terminal

has unit demand to begin with.

RANDOM-INFLATED-GREEDY:
1. Pick a random permutation π of the terminals in T.
2. For i = 1 to h in that order, greedily route h/i units of demand from ti to the root r along k
disjoint paths using the cheapest cost paths in the network built by the previous i− 1 terminals.

Note that the algorithm routes h/i units of demand for ti although only one unit of

demand is required to be routed. We refer the reader to [5] for the background and intuition

behind the design of the above algorithm. Each terminal is routed greedily but the cost of

routing on an edge depends on the routing of the previous terminals. More precisely, if xi−1
e

is the amount of demand routed on an edge e by the first i − 1 terminals then the cost of

routing an additional h/i units for terminal i on e is given by cie = fe(xi−1
e + h/i)− fe(xi−1

e ).
One can use a min-cost flow computation with costs cie to find the cheapest k disjoint paths

from ti to r. It is easy to see that the algorithm is correct; in the case of k = 1, it is known to

have an approximation ratio of O(log2 h) for k = 1 [5]. However, for k ≥ 2 we are able to

establish the following theorem.

THEOREM 7. For any fixed k, RANDOM-INFLATED-GREEDY is a 2O(
√

log h)-approximation
for the non-uniform version of SS-k-BUY-AT-BULK with unit-demands. For arbitrary de-

mands there is a logD · 2O(
√

log h) approximation algorithm where D is the ratio of the max-
imum to minimum demands.

Acknowledgments: We are grateful to Sanjeev Khanna for several discussions on the k-
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Gupta for several useful discussions.
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ABSTRACT.
We consider an extension of Church’s synthesis problem to ordinals by adding limit transitions to
graph games. We consider game arenas where these limit transitions are defined using the sets of
cofinal states. In a previous paper, we have shown that such games of ordinal length are determined
and that the winner problem is PSPACE-complete, for a subclass of arenas where the length of plays
is always smaller than ωω. However, the proof uses a rather involved reduction to classical Muller
games, and the resulting strategies need infinite memory.
We adapt the LAR reduction to prove the determinacy in the general case, and to generate strategies
with finite memory, using a reduction to games where the limit transitions are defined by priorities.
We provide an algorithm for computing the winning regions of both players in these games, with a
complexity similar to parity games. Its analysis yields three results: determinacy without hypoth-
esis on the length of the plays, existence of memoryless strategies, and membership of the winner
problem in NP ∩ co-NP.

1 Introduction

Church’s problem, introduced in [Chu63], is fundamental in the theory of automata over

infinite strings. It considers a specification φ(X,Y) — usually a MSO formula — over pairs

of infinite sequences. A solution to this problem is a circuit which computes an output

sequence Y using a letter-by-letter transformation of the input sequence X. The Büchi-

Landweber theorem shows the decidability of this problem, and provides an automatic

procedure to compute a solution [BL69]. The proof builds onMcNaughton’s game-theoretic

presentation of this problem [McN65]. McNaughton games are perfect information two-

player games where at every stage n < ω, player X chooses first whether he accepts n, and

Y replies in kind. Player Y wins a play if the sets of integers accepted by X and Y verify φ. A

winning strategy for Y gives a solution to Church’s problem. Additionally, a winning strat-

egy can be computed by a finite ω-automaton with output or, equivalently, defined using

an MSO formula.

Church’s problem can be extended to sequences of arbitrary ordinal length. One possi-

ble extension is to fix the length of the plays in advance: in [RS08], Rabinovich and Shomrat

use a compositional method to show that for any countable ordinal α and MSO formula

φ(X,Y), the corresponding McNaughton game is determined and the winner problem is

decidable. Moreover, if α < ωω it’s possible to compute a formula defining a winning

strategy.
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Our approach is based on the graph games used in verification [Tho95], and Büchi’s

automata on words of ordinal length [Bü73]. In addition to the usual successor transi-

tions, limit transitions allow the game to continue past any limit ordinal. In this model,

the length of the plays is not fixed a priori, but depends on the actions of the players: the

game stops when one of the players wins. In the paper, we only consider reachability win-

ning conditions; however, any regular condition can be represented this way, because the

addition of limit transitions allows to embed more complex transitions in the game arena

itself. In [CH08], we studied a restriction of these games, disallowing limit transitions of

the form P → q ∈ P, which effectively reduces the scope of this work to plays shorter than

ωω. Another drawback is that the strategies we obtained needed infinite memory. In this

paper, we lift this restriction and prove the determinacy and existence of strategies with

finite memory. We first solve a particular case of games where the limit transitions are de-

fined using priorities, which are closely related to parity games of length ω. We present

an algorithm computing the winning regions for both players in these games. Determinacy

follows from its correctness, and further analysis gives positional winning strategies for

both players in their winning regions. We derive from this the membership of the winner

problem in NP ∩ co-NP. We also derive an alternative proof of the results of Rabinovich and

Shomrat on McNaughton games of length smaller than ωω: determinacy, decidability, de-

finable strategy and strategy synthesis. Using an adaptation of the Latest Appearance Records

of Gurevich and Harrington [GH82], we give a reduction from ordinal games to priority

ordinal games. From this extended LAR reduction and our former results, we derive the

determinacy of games of ordinal length, as well as the existence of finite-memory strategies

for both players.

Overview of the paper. In Section 2, we recall the definitions of graph games of ordinal

length, as well as their variant with priority-controlled transitions. Section 3 presents an

algorithm for solving priority ordinal games, and its theoretical consequences. Section 4

shows how to adapt the LAR reduction to games of ordinal length, in order to get general

determinacy and finite-memory strategies for all ordinal games. Finally, Section 5 sum-

marises our results, and presents perspectives for future work.

2 Definitions

Ordinals and words of ordinal length

An ordinal α is a set equipped with a well-founded linear order. Ordinals can be ordered

in a natural way, and we take the usual convention identifying each ordinal with the set of

the smaller ordinals. A word ρ of length α over an alphabet Σ is a mapping (ρβ)β<α from

α to Σ. We denote by |ρ| the length of the word. The prefix of ρ of length β ≤ |ρ|, noted
ρ<β, is defined as (ργ)γ<β. Similarly, we write ρ≥β for the suffix (ργ)β≤γ<|ρ|. The subset of

Σ appearing in ρ is Occ(ρ) = {ρβ | β < |ρ|}. Finally, if |ρ| is a limit ordinal, the limit of ρ,

noted lim ρ, is the set {s ∈ Σ | ∀β < |ρ|, ∃γ > β, ργ = s}.
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Games of ordinal length

A reachability game of ordinal length (ordinal game) G is played by two players called Eve

and Adam on an arena of the form (Q,QE,QA, T,λ). The tuple (Q, T) is a directed graph

and the set of vertices is partitioned between Adam’s vertices (QA, graphically represented

by 2), Eve’s vertices (QE, graphically represented by #), and a target vertex ⊚. The function

λ represents limit transitions; it maps P(QA ∪QE) to Q. We assume that every vertex except

⊚ has at least one successor. We give an example of reachability game of ordinal length

in Figure 1. Some limit transitions aren’t possible in this particular example, and are thus

omitted. In this paper, we consider the case where Q is finite.

λ({a}) = d λ({a, b}) = c λ({a, b, c}) = c

λ({a, b, d}) = a λ({a, b, c, d}) = ⊚

a

b
d c

Figure 1: Game of ordinal length

A play ρ on a game G is an ordinal word on Q such that for any α < |ρ|:
• if α = β + 1, then (ρβ, ρα) ∈ T;

• if α is a limit ordinal, then λ(lim ρ<α) = ρα.

The set of all plays is noted Ω. It can be divided into four disjoint subsets:

1. The set of plays which have a last state in QE. These plays can be extended through a

successor transition, chosen by Eve — a move of Eve.

2. The set of plays which have a last state in QA. These plays can be extended through a

successor transition, chosen by Adam— a move of Adam.

3. The set of plays which have ⊚ as last state. These plays are said to be winning for Eve.

Any other play is winning for Adam.

4. The set of plays without a last state. These plays can be extended through a unique

limit transition.

Notice that our definition for winning plays deviates from the classical interpretation

of infinite games, where there is no winner for the partial plays. This is necessary here, as

non-winning plays can go on without ever ending, even in the transfinite sense. It’s not

possible to easily distinguish between plays where Eve has not yet won, and plays that are

definitely won by Adam.

A strategy for Eve is a function σ : Ω→ Q such that if ρ ends in q ∈ QE, then (q, σ(ρ)) ∈
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T. A strategy with finite memory M for Eve is a finite transducer working over the states of

M. It is defined by three functions:

• σm : M×Q→ M is the memory update for successor transitions.

• σl : P(M)→ M is the memory update for limit transitions.

• σn : M×QE → Q outputs Eve’s next move.

One can define in the same way strategies and strategies with finite memory for Adam.

If M has only one element, σ is a positional strategy. A play ρ of length α is consistent with

a strategy σ for Eve if ρβ+1 = σ(ρ<β) for every β such that β + 1 < α and ρβ ∈ QE. A

strategy σ is winning for Eve if there is an ordinal α such that any play consistent with σ has

length less than α. Notice that this condition imposes that ⊚ is eventually reached, as plays

can otherwise always be extended. Conversely, a strategy τ is winning for Adam if no play

consistent with τ ends in ⊚. A game is determined if there is always a winning strategy for

one of the players.

If all limit transitions lead either to ⊚ or to a sink state, then all plays are shorter than

ω, and the game is a traditional Muller game.

In [CH08], we showed that a subclass of ordinal games are determined:

THEOREM 1.[CH08] Reachability games of ordinal length without transitions of the form
λ(P) = q ∈ P are determined.

Notice that this subclass is not a mere syntactic condition: it restricts the scope of The-

orem 1 to games where the plays have length less than ωω, as can be deduced from Theo-

rem 2:

THEOREM 2.[Cho78] In an automaton with n states where no limit transition is of the form
λ(P) = q ∈ P, all runs are shorter than ωn.

Priority ordinal games. A reachability game of ordinal length with priority transitions (pri-

ority ordinal game) is a game where the limit transition function λ is defined in a specific

way: a colouring function χ maps each state to a colour in {0, . . . , d− 1}; another function δ

maps each colour to a state of Q. Then, for any set P ⊆ Q, the limit transition is given by

λ(P) = δ(min{χ(q) | q ∈ P}).
Figure 2 gives an example of a priority game, with d = 6. In this game, Adam wins

from states c and d: from d he can go to c, and any limit transition will take the token back

to d. Eve wins from everywhere else: from b she goes to a and the token will reach the target

after playing (baω)ω; from e she goes to f and the token will eventually reach a.

Not all ordinal games can be represented by priority transitions. In the game of Fig-

ure 1, for example, the set {a, b, c, d} leads neither to the destination of {a, b, c}, nor to the

one of {a, b, d}. This cannot occur in a priority game, as minχ({a, b, c, d}) would be either

minχ({a, b, c}), or minχ({a, b, d}).

Subgames, attractors and traps. We recall here some classical concepts for infinite games

(see e.g. [Tho95]), which we use in the context of ordinal games.

Let G = (Q,QE,QA, T,λ) be an ordinal game, and Q′ a subset of Q. The tuple G′ =
(Q′,Q′E,Q

′
A, T

′,λ′) —where Q′E = Q′ ∩QE, Q
′
A = Q′ ∩QA, and T′ and λ′ are the restrictions
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0

a : 5 b : 3

c : 4 d : 5

e : 3 f : 2

δ(2) = a δ(3) = ⊚ δ(4) = d δ(5) = b

Figure 2: Priority Game

to Q′ of the transitions in G— is an ω-subgame of G if every state in G′ has a successor. We

write G′ = G \ P if Q′ = Q \ P.
Let P be a subset of states in a game G. The ω-attractor to P for Eve, noted AttrGE (P), is

the set of states such that Eve can ensure that P is reached after a finite number of moves; it

is defined as
⋃

i≥0Attri, where Attri is the least subset of Q such that:

• Attr0 = P;

• Attri ⊆ Attri+1;

• if q ∈ QE and q has a successor in Attri, then q ∈ Attri+1;

• if q ∈ QA and all successors of q in G are in Attri, then q ∈ Attri+1.

PROPOSITION 3. In an ω-attractor for Eve, she has a positional strategy to ensure that P is
reached in a finite number of moves.

An ω-trap for Eve is a subset P of states such that Adam can ensure that the token stays

in P for at least ω moves:

• if q ∈ P ∩QE, all its successors are in P;

• if q ∈ P ∩QA, q has a successor in P.

In all this paper, we use the terms attractor and trap to refer to ω-attractors and ω-traps,

without any assumption about what happens beyond ω. Computing ordinal attractors is,

indeed, the point of this work.

3 Solving priority ordinal games

Algorithm. Our main result is an algorithm computing the winning regions of both players

in a priority ordinal game. It is inspired by Zielonka’s algorithm for infinite (ω-length)

parity games in [Zie98].

In order to make the algorithm simpler, we assume without loss of generality that the

target ⊚ is the only state with priority 0, and that no state has priority 1. The priority 1

represents a virtual sink state, which is used to terminate the computation. The value of

δ(1) is thus unused, and we assume that it is not defined.
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Input: The game G

Output: The winning regions of Eve and Adam

v[0]← E1

To[0]← AttrGE (χ−1(0))2

for 0 < i < d do To[i]← ∅3

H← G \ To[0]4

i← 05

while (To[0] ∪ To[1]) 6= G do6

while (H 6= ∅) do7

i+ +8

if ∃j | δ(i) ∈ To[j] then9

v[i]← v[j]10

else11

v[i]← A12

To[i]← AttrH
v[i](χ−1(i))13

H← H \ To[i]14

Tmpto← To[i]15

Tmpv← v[i]16

repeat17

H← H∪ To[i]18

To[i]← ∅19

v[i]← A20

i−−21

until (v[i] = Tmpv)22

To[i]← To[i] ∪AttrHTmpv(Tmpto)23

H← H \ To[i]24

return (To[0], To[1])25

Figure 3: Algorithm for Priority Games

The major difference with Zielonka’s algorithm is that we have to determine which

player wants to reach a colour j. The algorithm uses two arrays, v and To, indexed by

colours, to store this information. At every step of the algorithm, v[j] is the player which

is presumed to want to reach j. This can change each time the attractor to j is computed:

v[j] = E if and only if there is a smaller colour i such that v[i] = E and δ(j) ∈ To[i]. Given a

colour j, To[j] ⊆ Q is a set of states where player v[j] can guarantee an invariant, which will

be precised later.

We compute embedded attractors, starting with the smallest (i.e. most important)

colour: we compute an attractor to that colour, then remove these states from the graph

and start again with the next colour. When all the graph is covered, the last computed at-

tractor, To[k], is mergedwith a former one, To[j]. We recompute then the attractors to colours

greater than j. The algorithm ends when all the states are either in To[0] or in To[1]. The for-
mer contains the winning region for Eve, and the latter is the winning region for Adam. The
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termination is guaranteed by the fact that a state can only be removed from “To[i]” when

another is added to “To[j]” with j < i, and that whenever line 14 is reached, every state

belongs to exactly one of the To[i]. Figure 3 presents this algorithm in pseudo-code.

Correctness. In order to prove the correctness of the algorithm, we use the notation H j for

Q \ ∪k<j To[k], and the following easy but useful properties obtained from the construction

of the array To.

PROPOSITION 4. H j is an ω-subgame of G.

PROPOSITION 5. For any colour j, AttrH
j

v[j](To[j]) = To[j].

The correctness of the algorithm is proved separately for the two players: the argu-

ments involved, while close, cannot be easily unified. In both cases, however, we define

a predicate referring to the plays of the game and a property derived from it, and show

that the property holds along the whole run. Its interpretation at the end of a run implies

correctness.

In Eve’s proof, we use the loop invariant I and the predicatesMj on the plays. The

corresponding predicates for Adam are J and N j, respectively.

Informally, the predicatesMj correspond to strong until predicates of the form “(> j)U (j)”.
Adam’s predicates N j correspond to weak until predicates of the form “(> j)W(j)”.

DEFINITION 6. The predicate Mj(ρ) is defined as “v[j] = E, and ∃α < ωd−j such that
Occ(ρ<α) ⊆ To[j] and either:

• |ρ| = α, or
• ρα ∈ To[j] ∩ χ−1(j), or
• ∃k < j such thatMk(ρ≥α) holds”.

DEFINITION 7. I is the property “Eve has a positional strategy σ such that, for any j such
that v[j] = E, and any play ρ starting in To[j] and consistent with σ,Mj(ρ) holds”.

I holds at the beginning of a run: before line 6, To[0] is the only non-empty set, and it

contains only AttrE(χ−1(0)). Propositions 8 and 9 guarantee that it remains true throughout

the execution.

PROPOSITION 8. Let us suppose that I holds at line 8. Then I holds at the next visit of
line 14.

SKETCH OF PROOF. If v[i] = A, the property I is unchanged after the iteration. If v[i] = E, an

attractor strategy for Eve guarantees a visit to i in less than ω moves, unless Adam chooses

to send the token outside of To[i]. If he does that, the structure of the array To as a series of

alternating embedded ω-attractors guarantees that the token is sent to a To[j] such that j < i

and v[j] = E.
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PROPOSITION 9. Let us suppose that I holds before a visit to line 17. Then I holds at the
next visit of line 24.

SKETCH OF PROOF. Once again, the interesting cases are those where Tmpv = E and the to-

ken remains in Tmpto long enough. As Tmpto is a trap for Adam, Eve’s strategy guarantees

an infinite number of visits to i (the corresponding colour) in less than ωd−i+1 moves. The

token is then sent to δ(i) which by definitions of v and i belongs to a To[j] such that j < i

and v[j] = E.

The structure of the proof for the states of Adam is quite similar, although the predicates

are slightly weaker. We can prove that J holds along the whole run.

DEFINITION 10. The predicate N j(ρ) is defined as “v[j] = A and ∃α such that Occ(ρ<α) ⊆
To[j] and either:
• |ρ| = α, or
• ρα ∈ To[j] ∩ χ−1(j), or
• ∃k < j such that N k(ρ≥α) holds.”

DEFINITION 11. J is the property “Adam has a positional strategy τ such that, for any j

such that v[j] = A, and any play ρ starting in To[j] and consistent with τ, N j(ρ) holds”.

Consequences. The interpretation of I and J at the end of a run leads to the following

Theorem:

THEOREM 12. Let G = (Q,QE,QA, T,χ, δ) be a priority ordinal game such that χ(Q \⊚) ⊆
[2, d− 1]. Then

1. G is determined;
2. Eve and Adam have positional winning strategies;
3. If Eve can win, then she can reach ⊚ in less than ωd moves.

COROLLARY 13. The problem of the winner in reachability games of ordinal length with
priority transitions belongs to NP ∩ co-NP.

PROOF. Let’s consider a game G = (Q,QE,QA, T,χ, δ) and a state q ∈ Q. The problem is

“Does Eve have a winning strategy if the token starts in q?”

co-NP-membership. If q is not winning for Eve, a winning strategy for Adam is a polynomial

counter-example. Using it, we define the automaton Aτ from G by removing the successor

transitions of the form (r, s) with r ∈ QA and s 6= τ(r). If τ is winning, then L(Aτ) = ∅. On

the other hand, if q is winning for Eve, L(Aτ) 6= ∅ for any τ. As the emptiness problem for

ordinal automata is decidable in polynomial time [Col07], this is a co-NP procedure.

NP-membership. We guess a positional strategy σ for Eve, and use it to define the automaton

Aσ by removing from G successor transitions of the form (r, s) with r ∈ QE and s 6= σ(r),
and making every state except ⊚ final. The strategy σ is winning if and only if the language

accepted by the product of Aσ and an automaton accepting runs of length greater than ωd

is empty.

This algorithm also yields an alternate proof of the following theorem by Rabinovich

and Shomrat, in the case of ordinals less than ωω. They consider two-player games Gα
φ
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defined by an MSO formula φ and an ordinal α. In such a game, each player builds a subset

of α in the following way: for every ordinal β < α, player 0 chooses whether he wants to

pick β, and player 1 responds. The set of positions picked by player 0 is noted X, those

positions chosen by player 1 form the set Y. Player 0 wins if φ(X,Y) is true.

THEOREM 14.[Theorem 29 of [RS08]] Let α be a countable ordinal and φ(X,Y) be a MSO-
formula.

Determinacy: One of the players has a winning strategy in the game Gα
φ.

Decidability: It is decidable which of the players has a winning strategy.
Definable strategy: If α < ωω, then the player who has a winning strategy also has a

definable winning strategy. For every α ≥ ωω, there is a formula for which this fails.
Synthesis algorithm: If α < ωω, we can compute a formula ψ(X,Y) that defines a winning

strategy for the winning player in Gα
φ.

PROOF. Both the MSO-formula φ and the ordinal α < ωω can be represented as finite

automata over ordinal words with priority transitions. The automaton corresponding to φ

gets pairs (Xi,Yi) of letters as input. The automaton for α accepts words of length exactly α.

The product of these two automata can be seen as an ordinal game, where at every step i < α

Adam chooses Xi and Eve then chooses Yi. Eve needs to ensure that after α moves from each

player, the φ automaton is in an accepting state, and thus she has a winning strategy if and

only if Y has a winning strategy in Gα
φ.

Determinacy and decidability follow from the correctness of Algorithm 3. Positional

strategies in this finite arena can be represented as finite automata, and thus are definable.

A synthesis algorithm can be derived from the proof of Algorithm 3.

Notice that it is not possible to represent a single ordinal greater than ωω as a finite

automaton on ordinal words. Thus, we can’t interpret McNaughton games of length greater

than ωω, as defined in [RS08], as finite graph games.

4 From priority transitions to ordinal games

In this section, we extend the results of Section 3 to themore general case of games of ordinal

length, through an ordinal game reduction: there is a bisimulation between the graphs, such

that equivalent states belong to the same player, and equivalent plays have limit transitions

to equivalent states.

The LAR reduction. The Latest Appearance Records (LAR) were introduced by Gurevich

and Harrington [GH82], in order to prove the Forgetful Determinacy of Muller ω-games

(i.e. the existence of finite memory strategies). A LAR for a game G with n states is a

pair (π, i), where π is a permutation over the states of G and i is an integer such that

1 ≤ i ≤ n. We reduce any ordinal game G = (Q,QE,QA, T,λ), to a priority ordinal game

G = (Q,QE,QA,T,χ, δ). The states and successor transitions are defined in the same way

as in the original reduction:

• Q = {(π, i) | π is a permutation over Q, 1 ≤ i ≤ n}
• QE = {(π, i) ∈ Q | π(1) ∈ QE}
• QA = {(π, i) ∈ Q | π(1) ∈ QA}
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• (π, i)
T−→ (µ, j) if and only if:

– π(1)
T−→ µ(1)

– ∀q, r ∈ Q \ {µ(1)}, π−1(q) < π−1(r)⇔ µ−1(q) < µ−1(r)
– π(j) = µ(1)

The limit transitions, by contrast, are much more involved than in the infinite setting.

As we need to keep track of some of the memory after a limit transition, we use a different

colour for each state of G — ordered so that i < j ⇒ χ(π, i) > χ(µ, j) (the exact ordering is

unimportant, as long as this condition is verified). By abuse of notation we describe δ as a

function from Q to Q: δ(π, i) is the LAR (µ, j) such that:

• λ(∪ij=1{π(j)}) = µ(1)

• ∀q, r ∈ Q \ {µ(1)}, π−1(q) < π−1(r)⇔ µ−1(q) < µ−1(r)
• π(j) = µ(1)
The target states for Eve are the states (π, i) such that π(1) is the target state in the

original game G. Obviously these states can be merged to get a unique target state.

cbad, 3 cabd, 3

bacd, 2 abcd, 2

acbd, 3 abcd, 1 dabc, 4

Figure 4: Detail of the LAR reduction of the game of Figure 1

Figure 4 gives a detail of the reduction of the game of Figure 1 (dashed arrows represent

limit transitions). The game bisimulation is proved as in the case of infinite games, with

some added fun due to the limit transitions.

LEMMA 15. There is a bisimulation between G and G such that two bisimilar plays without
a last state have a limit transition to two bisimilar states.

Results for ordinal games. The LAR reduction allows us to extend Theorem 12 to any

ordinal game:

THEOREM 16. Let G = (Q,QE,QA, T,λ) be an ordinal reachability game with n states.
Then

1. G is determined;
2. Eve and Adam have winning strategies with memory n!;
3. if Eve can win, then she can reach ⊚ in less than ωn! moves.

SKETCH OF PROOF. Theorem 16 follows from Theorem 12 and the LAR reduction. The LAR

reduction preserves the winner, which gives us the determinacy. The third part is ensured
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because the length of plays is preserved. For the second part, we translate a positional

strategy σ in G into a strategy ς = (ςm, ςl, ςn) in G:

• the memory states are LARs: M = Q

• the memory updates mimic the transitions of G:

– ςm((π, i), q) = {(µ, j) ∈ T(π, i) | µ(1) = q}
– ςl(P) = δ(min{χ(P)})

• the next-move function follows σ: ςn((π, i), q) = σ(ςm((π, i), q))

This amounts to considering an equivalent play on the reduced game G, keeping the whole

LAR in memory.

5 Conclusion

We present a new model of two-player games on finite graphs. These games have plays

of ordinal length, thanks to the addition of limit transitions. Our model is not comparable

in general with McNaughton games. In McNaughton games, the length of plays is fixed a

priori by the arena; this is not the case here, and it’s not even possible to define an arena

where plays have a fixed length α as soon as α ≥ ωω. In the case of games of length less

than ωω, though, these two models are close, as shows our alternative proof of Rabinovich

and Shomrat’s theorem from [RS08].

In comparison to [CH08], this work lifts the syntactic restriction on arenas which lim-

ited the scope of our games to plays of length less than ωω. We introduce the central problem

of arenas with priority transitions, which are a natural extension of parity games, and prove

that they admit positional strategies. We derive from their study some interesting results,

for example the existence of strategies with finite memory in the general case. This leads to

our solution to Church’s synthesis problem; and the existence of a bound on the number of

steps needed to reach the target.

Our approach is closer to techniques commonly used in verification andmodel-checking

than the composition method used in [RS08], and we think it could be useful in the context

of verification of timed open systems. This would allow us to deal with Zeno behaviours,

whereas most of the time, works on the subject consider models where they are forbid-

den [dAFH+03], or exclude Zeno runs from their results [AM99]. We would like to have a

more constructive approach on the problem, following for example [JT07].
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ABSTRACT. We consider the isomorphism and canonization problem for 3-connected planar graphs.
The problem was known to be L -hard and in UL ∩ coUL [TW08]. In this paper, we give a determin-
istic log-space algorithm for 3-connected planar graph isomorphism and canonization. This gives an
L -completeness result, thereby settling its complexity.

The algorithm uses the notion of universal exploration sequences from [Kou02] and [Rei05]. To our
knowledge, this is a completely new approach to graph canonization.

1 Introduction

The general graph isomorphism problem is a well studied problem in computer science.

Given two graphs, it deals with finding a bijection between the sets of vertices of these two

graphs, such that the adjacencies are preserved. The problem is in NP , but it is not known

to be complete for NP . In fact, it is known that if it is complete for NP , then the polynomial

hierarchy collapses to its second level. On the other hand, no polynomial time algorithm is

known. For general graph isomorphism NL and PL hardness is known [Tor00], whereas

for trees, L and NC1 hardness is known, depending on the encoding of the input [JT98].

In literature, many special cases of this general graph isomorphism problem have been

studied. In some cases like trees [Lin92], [Bus97], or graphs with coloured vertices and

bounded colour classes [Luk86], NC algorithms are known. We are interested in the case

where the graphs under consideration are planar graphs. In [Wei66], Weinberg presented

an O(n2) algorithm for testing isomorphism of 3-connected planar graphs. Hopcroft and

Tarjan [HT74] extended this for general planar graphs, improving the time complexity to

O(n log n). Hopcroft and Wong [HW74] further improved it to give a linear time algorithm.

Its parallel complexity was first considered by Miller and Reif [MR91] and Ramachandran

and Reif [RR90]. They gave an upper bound of AC1. Verbitsky [Ver07] gave an alternative

proof for the same bound. Recently Thierauf andWagner [TW08] improved it to UL ∩ coUL
for 3-connected planar graphs. They also proved that this problem is hard for L .

In this paper, we give a log-space algorithm for 3-connected planar graph isomorphism,

thereby proving L -completeness. Thus themain result of our paper can be stated as follows:
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THEOREM 1. Given two 3-connected planar graphs G and H, deciding whether G is iso-
morphic to H is complete for L .

Thierauf and Wagner use shortest paths between pairs of vertices of a graph to obtain

a canonical spanning tree. A systematic traversal of this tree generates a canonical form for

the graph. The best known upper bound for shortest paths in planar graphs is UL ∩ coUL
[TW08]. Thus the total complexity of their algorithm goes to UL ∩ coUL , despite the fact

that all other steps can be done in L .

We identify that their algorithm hinges on making a systematic traversal of the graph

in canonical way. Thus we bypass the step of finding shortest paths and give an orthogonal

approach for finding such a traversal. We use the notion of universal exploration sequences

(UXS) defined in [Kou02]. Given a graph on n vertices with maximum degree d, a UXS

is a polynomial length string over {0, . . . , d − 1}, that can be used to traverse the graph

for a chosen combinatorial embedding ρ, starting vertex u and a starting edge e = {u, v}.
Reingold [Rei05] proved that such a universal sequence can be constructed in L . Using this

result, we canonize a 3-connected planar graph in log-space.

In Section 2, we give some basic definitions that we use in the later sections. In Section

3, we describe our log-space algorithm. We conclude with a discussion of open problems in

Section 4.

2 Preliminaries

In this section, we recall some basic definitions related to graphs and universal exploration

sequences.

2.1 The Graph Isomorphism Problem

DEFINITION 2. Graph isomorphism: Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said
to be isomorphic if there is a bijection φ : V1 → V2 such that (u, v) ∈ E1 if and only if
(φ(u), φ(v)) ∈ E2.

Let GI be the problem of finding such a bijection φ given two graphs G1,G2. Let Planar-

GI be the special case of GI when the given graphs are planar. 3-connected planar graph

isomorphism problem is a special case of Planar-GI when the graphs are 3-connected pla-

nar graphs. We recall the definition and properties of 3-connected planar graphs in the

following section.

2.2 3-connected planar graphs

A graph G = (V, E) is connected if there is a path between any two vertices in G. A vertex

v ∈ V is an articulation point if G(V \ {v}) is not connected. A pair of vertices u, v ∈ V is a

separation pair if G(V \ {u, v}) is not connected. A biconnected graph contains no articulation

points. A 3-connected graph contains no separation pairs.

A planar combinatorial embedding ρ for a planar graph G specifies the cyclic (say, clock-

wise) ordering of edges around each vertex in some plane embedding of G. A graph G with

a fixed combinatorial embedding ρ is called an oriented graph (G, ρ).
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In general, a planar graph can have exponentially many planar embeddings. In

[Whi33], Whitney proved that 3-connected planar graphs have precisely two combinato-

rial embeddings. This is a special property of 3-connected planar graphs which we crucially

use in our log-space algorithm.

2.3 Universal Exploration Sequences

Let G = (V, E) be a d-regular graph, with given combinatorial embedding ρ. The edges

around any vertex u can be numbered {0, 1, . . . , d− 1} according to ρ arbitrarily in clockwise

order. A sequence τ1τ2 . . . τk ∈ {0, 1, . . . , d − 1}k and a starting edge e0 = (v−1, v0) ∈ E,

define a walk v−1, v0, . . . vk as follows: For 0 ≤ i ≤ k, if (vi−1, vi) is the sth edge of vi, let

ei = (vi, vi+1) be (s + τi)
th edge of vi modulo d.

DEFINITION 3. Universal Exploration sequences (UXS): A sequence τ1τ2 . . . τl ∈
{0, 1, . . . d− 1}l is a universal exploration sequence for d-regular graphs of size at most n if
for every connected d-regular graph on at most n vertices, any numbering of its edges, and
any starting edge, the walk obtained visits all the vertices of the graph. Such a sequence is
called an (n, d)-universal exploration sequence.

Following lemma suggests that UXS can be constructed in L [Rei05]:

LEMMA 4. There exists a log-space algorithm that takes as input (1n, 1d) and produces an
(n, d)-universal exploration sequence.

3 Log-space Algorithm for 3-connected Planar-GI

In this section, we give a log-space algorithm for 3-connected planar graph isomorphism.

This, combined with the L -hardness result by [TW08] proves our main theorem:

Theorem 1 Given two 3-connected planar graphs G and H, deciding whether G is isomorphic to H

is complete for L .

For general planar graphs, the best known parallel algorithm runs in AC1 [MR91].

Thierauf and Wagner [TW08] recently improved the bound for the case of 3-connected pla-

nar graphs to UL ∩ coUL . This case is easier due to a result by Whitney [Whi33] that every

planar 3-connected graph has precisely two planar embeddings on a sphere, where one em-

bedding is the mirror image of the other. Moreover, one can compute these embeddings in

L [AM00].

3.1 Overview of the UL ∩ coUL algorithm of [TW08]

For a 3-connected planar graph G, the algorithm by Thierauf and Wagner starts by con-

structing a code for every edge of G and for any of the two combinatorial embeddings.

Of all these codes, the lexicographically smallest one is the code for G. The codes for two

graphs are equal if and only if they are isomorphic. A code with this property is called a

canonical code for the graph.

The main steps involved in their algorithm are as follows:



158 3-CONNECTED PLANAR GRAPH ISOMORPHISM IS IN LOG-SPACE

1. Construct a canonical spanning tree T, which depends upon the planar embedding of

the graph and a fixed starting edge.

2. Traverse the tree and output a canonical list of edges.

3. Relabel the vertices of the graph according to this list to get the canonical code.

A canonical spanning tree in step 1 involves computation of shortest paths between pairs of

vertices of G. Bourke, Tewari and Vinodchandran [BTV07] proved that planar reachability

is in UL ∩ coUL . Thierauf andWagner extend their result for computing distances in planar

graphs in UL ∩ coUL . Once this spanning tree is constructed, the remaining steps can be

executed in L .

3.2 Outline of our approach

Our approach bypasses the spanning tree construction step in the algorithm of [TW08] out-

lined above and thus eliminates distance computations. In that sense, we believe that this is

a completely new approach for computing canonical codes for 3-connected planar graphs.

Our algorithm can be outlined as follows:

1. Given a 3-connected planar graph G = (V, E), find a planar embedding ρ of G.

2. Make the graph 3-regular canonically for this embedding ρ to obtain an edge-coloured

graph G′ as described in Algorithm 1.

3. Find the canon of G′ using Algorithm 2.

The step 1 is in log-space due to a result by Allender and Mahajan [AM00]. We prove that

steps 2 and 3 can also be done in log-space. Step 3 uses the idea of UXS introduced by

Koucký [Kou02]. Step 2 essentially does the preprocessing in order to make step 3 applica-

ble.

The canonical code thus constructed is specific to the choice of the combinatorial em-

bedding, the starting edge, and the starting vertex. Let the given 3-connected planar graphs

be G and H. For G, we fix an embedding, a starting edge, and a starting vertex arbitrarily

and cycle through both embeddings and all choices of the starting edge and the starting

vertex for H, comparing the codes for each of them. As there are only polynomially many

choices, a log-space transducer executing this loop runs only for polynomially many steps.

If the canonical codes of G and H match for any of the choices, we say that G and H are

isomorphic.

3.3 Making the graph 3-regular

In this section, we describe the procedure to make the graph 3-regular. In Section 3.4, we use

Reingold’s construction for UXS [Rei05] to come up with a canonical code. As Reingold’s

construction [Rei05] for UXS requires the graph to have constant degree, we do this pre-

processing step. In Lemma 5, we prove that two graphs are isomorphic if and only if they

are isomorphic after the preprocessing step. We note that after the preprocessing step, the

graph does not remain 3-connected, however, the embedding of the new graph is inherited

from the given graph. Hence even the new graph has only two possible embeddings.

We describe the preprocessing steps in Algorithm 1. Note that the new graph thus

obtained has 2|E| vertices.
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Algorithm 1 Procedure to get a 3-regular planar graph G′ from 3-connected planar graph

G.

Input: A 3-connected planar graph G with planar combinatorial embedding ρ.

Output: A 3-regular planar graph G′ on 2m vertices, with edges coloured 1 and 2 and

planar combinatorial embedding ρ′.

1: for all vi ∈ V do

2: Replace vi of by a cycle {vi1, . . . , vidi} on di vertices, where di is the degree of vi.

3: The di edges {ei1, . . . , eidi} incident to vi in G are now incident to {vi1, . . . , vidi} respec-

tively.

4: Colour the cycle edges with colour 1.

5: Colour ei1, . . . , eidi by colour 2.

6: end for

LEMMA 5. Given two 3-connected planar graphs G1,G2, G1
∼= G2 if and only if G′

1
∼= G′

2

where the isomorphism between G′
1 and G′

2 respects colours of the edges.

PROOF. Let G1 = (V1, E1) and G2 = (V2, E2) be two 3-connected planar graphs with pla-

nar combinatorial embeddings ρ1 and ρ2 respectively. Let φ : V1 → V2 be an isomorphism

between the oriented graphs (G1, ρ1) and (G2, ρ2). By isomorphism of oriented graphs we

mean that the graphs are isomorphic for the fixed embeddings, in our case ρ1 and ρ2.

Construct G′
1 and G′

2 as described in Algorithm 1, replacing each vertex v of degree d

by a cycle of length d, and colouring the new cycle edges with colour 1 and original edges

with colour 2. The algorithm preserves the orientation of original edges from G1 and G2 and

outputs the coloured oriented graphs (G′
1, ρ

′
1) and (G′

2, ρ
′
2).

Given an isomorphism φ between (G1, ρ1) and (G2, ρ2), we show how to derive an

isomorphism φ′ between (G′
1, ρ

′
1) and (G′

2, ρ
′
2). By our construction, edges around a vertex in

G1(respectively G2) get the same combinatorial embedding around the corresponding cycle

in G′
1 (G′

2). Consider an edge {vi, vj} in E1. Let φ(vi) = uk and φ(vj) = ul . {uk, ul} ∈ E2. Let

corresponding edge in G′
1 be {vip , viq} and that in G′

2 be {ukr , uks}. Then we define a map

φ′ : V ′
1 → V ′

2 which is inherited from φ such that φ′(vip) = ukr and φ′(vjq) = uks . It is easy to

see that φ′ is an isomorphism for edge-coloured oriented graphs (G′
1, ρ

′
1) and (G′

2, ρ
′
2).

Nowwe show how to obtain an isomorphism φ between (G1, ρ1) and (G2, ρ2), given an

isomorphism φ′ between (G′
1, ρ

′
1) and (G′

2, ρ
′
2). Let e = {vip , viq} ∈ E′

1 and the corresponding

edge e′ = {φ′(vip), φ
′(viq)} ∈ E′

2. Let vip and viq correspond to the same vertex vi in G1. Then

colour of e and e′ is 1. Thus φ′ maps copies of the same vertex of G1 to copies of a single

vertex of G2. Hence a map φ can be derived from φ′ in a natural way. It is easy to see that φ

is an isomorphism between oriented graphs (G1, ρ1) and (G2, ρ2).

3.4 Obtaining the canonical code

Lemma 5 from the previous section suggests that for given embeddings ρ1, ρ2 of G1 and

G2, it suffices to check the 3-regular oriented graphs (G′
1, ρ

′
1) and (G′

2, ρ
′
2) for isomorphism.

The Procedure canon(G, ρ, v, e = (u, v)) described in Algorithm 2 does this using universal

exploration sequences.
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Algorithm 2 Procedure canon(G, ρ, v, e = (u, v))

Input: Edge-coloured graph G = (V, E) with maximum degree 3 and combinatorial

embedding ρ, starting vertex v, starting edge e = (u, v).
Output: Canon of G.

1: Construct a (n, 3)-universal exploration sequence U.

2: With starting vertex v ∈ V and edge e = (u, v) incident to it, traverse G according to U

and ρ outputting the labels of the vertices.

3: Relabel the vertices according to their first occurrence in this output sequence, as in step

3 of [TW08].

4: For every (i, j) in this labelling, output whether (i, j) is an edge or not. If it is an edge,

output its colour. This gives a canon for the graph.

We prove correctness of Algorithm 2 in the following lemma:

LEMMA 6. Let σ1 = canon(G′
1, ρ

′
1, v1, e1 = (u1, v1)) and σ2 = canon(G′

2, ρ
′
2, v2, e2 = (u2, v2)).

If σ1 = σ2 then G′
1
∼= G′

2. Further, if G
′
1
∼= G′

2 then for some choice of ρ′2, v2, e2, σ1 = σ2.

PROOF. If G′
1
∼= G′

2, then there is a bijection φ : V ′
1 → V ′

2 for corresponding embeddings

ρ′1, ρ
′
2. Let e1 = (u, v) ∈ E′

1. Then e2 = (φ(u), φ(v)) ∈ E′
2. Let e1 and e2 be chosen as starting

edges and v and φ(v) as starting vertices for traversal using UXS U for (G′
1, ρ

′
1) and (G′

2, ρ
′
2)

respectively. Let T1 and T2 be the output sequences. If a vertex w ∈ V ′
1 occurs at position l

in T1 then φ(w) ∈ V ′
2 occurs at position l in T2 as the oriented graphs are isomorphic, and

the same UXS is used for their traversal. Thus the sequences are canonical when projected

down to the first occurrences and hence σ1 = σ2.

Let σ1 = σ2 = σ. The labels of vertices in σ are just a relabelling of vertices of V ′
1 and

V ′
2. These relabellings are some permutations, say π1 and π2. Then π1 · π−1

2 : V ′
1 → V ′

2 is a

bijection.

After constructing canonical code σ′ for a graph G′, it remains to construct canonical

code σ for the original graph G. For this, we need to give a unique label to every vertex of

graph G. It suffices to pick the minimum label among the labels of all its copies in G′. All

copies of a vertex can be found by traversing colour 1 edges, starting from one of its copies.

Thus the canonical code for graph G can be constructed in log-space as follows:

For each edge (i, j) of colour 2 in σ′, traverse along the edges coloured 1 starting from i

and find the minimum label among the vertices visited. Let it be p. Repeat the process for

j. Let the minimum label among the vertices visited along edges of colour 1 be q. Thus the

canonical labels for i and j are p and q respectively. Output the edge (p, q). The sequence

thus obtained contains n distinct labels for vertices, each between {1, 2, . . . , 2m}. This can
further be converted into a sequence with labels for vertices between {1, 2, . . . , n} by finding

the rank of each of the labels. This gives us σ. Correctness follows from the fact that vertices

connected with edges of colour 1 are copies of the same vertex in G, hence they should get

the same number.

Clearly, each of the above steps can be performed in L and hence the algorithm runs in

L . This proves Theorem 1.
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4 Conclusion

Our work settles the open question of the complexity of 3-connected planar graph isomor-

phism mentioned in [TW08] by giving a log-space algorithm. One of the most challenging

questions is to settle the complexity of the general graph isomorphism problem. The other

important goal is to improve upon the AC1 upper bound of [MR91] for planar graph iso-

morphism.
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ABSTRACT. We show that a randomly chosen 3-CNF formula over n variables with clauses-to-
variables ratio at least 4.4898 is asymptotically almost surely unsatisfiable. The previous best such
bound, due to Dubois in 1999, was 4.506. The first such bound, independently discovered by many
groups of researchers since 1983, was 5.19. Several decreasing values between 5.19 and 4.506 were
published in the years between. The probabilistic techniques we use for the proof are, we believe, of
independent interest.

1 Introduction

Satisfiability of Boolean formulas is a problem universally believed to be hard. Determin-

ing the source of this hardness will lead, as is often stressed, to applications in domains

even outside the realm of mathematics or computer science; moreover, and perhaps more

importantly, it will enhance our understanding of the foundations of computing.

In the beginning of the 90’s several groups of experimentalists chose to examine the

source of this hardness from the following viewpoint: consider a random 3-CNF formula

with a given clauses-to-variables ratio, which is known as the density of the formula. What

is the probability of it being satisfied and how does this probability depend on the density?

Their simulation results led to the conclusion that if the density is fixed and below a number

approximately equal to 4.27, then for large n, a randomly chosen formula is almost always

satisfiable, whereas if the density is fixed and above 4.27, a randomly chosen formula is,

for large n, almost always unsatisfiable. More importantly, around 4.27 the complexity of

several well known complete algorithms for checking satisfiability reaches a steep peak (see

e.g. [10, 15]). So, in a certain sense, 4.27 is the point where from an empirical, statistical

viewpoint the “hard” instances of SAT are to be found. Similar results were obtained for

other combinatorial problems, and also for k-SAT for values of k > 3.
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These experimental results were followed by an intense activity to provide “rigorous

results” (the expression often used in this context to refer to theorems). Perhaps the most

important advance is due to Friedgut: in [7] he proved that there is a sequence of reals (cn)n
such that for any ǫ > 0 the probability of a randomly chosen 3-CNF-formula with density

cn − ǫ being satisfiable approaches 1 (as n → ∞), whereas for density cn + ǫ, it approaches

0. Intuitively, this means that the transition from satisfiability to unsatisfiability is sharp,

however it is still not known if (cn)n converges.

Despite the fact that the convergence of (cn)n is still an open problem, increasingly

improved upper and lower bounds on its terms have been computed in a rigorous way by

many groups of researchers. The currently best lower bound is 3.52 [9, 2].

With respect to upper bounds, which is the subject of this work, the progress was

slower but better, in the sense that the experimentally established threshold is more closely

bounded from above, rather than from below. A naı̈ve application of the first moment

method yields an upper bound of 5.191 (see e.g., [6]). An important advance was made

in [8], where the upper bound was improved to 4.76. In the sequel, the work of several

groups of researchers, based on more refined variants of the first moment method, culmi-

nated in the value of 4.571 [4, 11] (see the nice surveys [12, 3] for a complete sequence of

the events). The core idea in these works was to use the first moment method by comput-

ing the expected number of not all satisfying truth assignments, but only of those among

them that are local maxima in the sense of a lexicographic ordering, within a degree of local-

ity determined by the Hamming distance between truth assignments (considered as binary

sequences). For degree of locality 1, this amounts to computing the expected number of sat-

isfying assignments that become unsatisfying assignments by flipping any of their “false”

values (value 0) to “true” (value 1). Such assignments are sometimes referred to as single-flip

satisfying assignments.

The next big step was taken by Dubois et al. [5], who showed that 4.506 is an upper

bound. Instead of considering further variations of satisfiability, they limited the domain

of computations to formulas that have a typical syntactic characteristic. Namely, they con-

sidered formulas where the cardinality of variables with given numbers of occurrences as

positive and negative literals, respectively, approaches a two dimensional Poisson distri-

bution. Asymptotically almost all formulas have this typical property (we say that such

formulas have a Poisson 2D degree sequence). It turns out that the expectation of the number

of single-flip satisfying assignments is exponentially reduced when computed for such for-

mulas. To get the afore mentioned upper bound, Dubois et al. further limited the domain of

computations to formulas that are positively unbalanced, i.e. formulas where every variable

has at least as many occurrences as a positive literal as it has as a negated one.

A completely different direction was recently taken in [13]. Their work was motivated

by results on the geometry of satisfying assignments, and especially the way they form clus-

ters (components where one can move from one satisfying assignment to another by hops

of small Hamming distance). Most of these results were originally based on analytical, but

non-rigorous, techniques of Statistical Physics; lately however important rigorous advances

were made [1, 14]. The value of the upper bound obtained byManeva and Sinclair (see [13])

was 4.453, far below any other upper bound presently known (including the one in this pa-

per). However it was proved assuming a conjecture on the geometry of the satisfying truth
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assignments which is presently proved only for k-SAT for k ≥ 8 in [1].

In this paper, we show that 4.4898 is an upper bound. Our approach builds upon pre-

vious work. It makes use (i) of single-flip satisfying truth assignments, (ii) of formulas with

a Poisson 2D degree sequence and (iii) of positively unbalanced formulas.

We add to these previously known techniques two novel elements that when combined

further reduce the expectation computed. Our approach is rigorous: although we make use

of computer programs, the outputs we use are formally justified. What is interesting is not

that much the numerical value we get, although it constitutes a further improvement to a

long series of results. The main interest lies, we believe, on one hand in the new techniques

themselves and on the other in the fact that putting together so many disparate techniques

necessitates a delicately balanced proof structure.

First, we start by recursively eliminating one-by-one the occurrences of pure literals

from the random formula, until we get its impure core, i.e. the largest sub-formula with no

pure literals (a pure literal is one that has at least one occurrence in the formula but whose

negation has none). Obviously this elimination has no effect on the satisfiability of the for-

mula. Since we consider random formulas with a given 2D degree sequence, we first have

to determine what is the 2D degree sequence of the impure core. For this, we use the dif-

ferential equation method. The setting of the differential equations is more conveniently

carried out in the so called configuration model, where the random formula is constructed

by starting with as many labelled copies of each literal as its occurrences and then by consid-

ering random 3D matchings of these copies. The matchings define the clauses. The change

of models from the standard one to the configuration model with a Poisson 2D degree se-

quence is formalized in Lemma 2. We also take care of the fact that the configuration model

allows formulas with (i) multiple clauses and (ii) multiple occurrences of the same variable

in a clause, whereas we are interested in simple formulas, i.e. formulas where neither (i) nor

(ii) holds. For our purposes, it is enough to bound from below the probability of getting a

simple formula in the configuration model by e−Θ(n1/3 log n), see Lemma 3. The differential

equations are then analytically solved, and we thus obtain the 2D degree sequence of the

core, see Proposition 4.

Second, we require that not only the 2D degree sequence is Poisson, but also that the

numbers of clauses with none, one, two and three positive literals, respectively, are close to

the expected numbers. Notice that these expected numbers have to reflect the fact that we

consider positively unbalanced formulas. This is formalized in Lemma 5.

The expectation of the number of satisfying assignments, in the framework determined

by all the restrictions above, is computed in Lemma 6. This expectation turns out to be

given by a sum of polynomially many terms of functions that are exponential in n. We

estimate this sum by its maximum term, using a standard technique. However in this case,

finding the maximum term entails maximizing a function of many variables whose number

depends on n. To avoid a maximization that depends on n we prove a truncation result

which allows us to consider formulas that have a Poisson 2D degree sequence only for light

variables, i.e. variables whose number of occurrences, either as positive or negated literals,

is at most a constant independent of n.

Then we carry out the maximization. The technique we use is the standard one by

Lagrange multipliers. We get a complex 3× 3 system which can be solved numerically. We
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formally prove that the system does not maximize on the boundary of the system and we

make a sweep over the domain which confirms the results of the numerical solution.

Due to lack of space, all proofs are omitted or just sketched in this extended abstract. As

usual, asymptotically almost surely (a.a.s.) will mean with probability tending to 1 as n → ∞.

All asymptotic expressions as 1− o(1) are always with respect to n. Our main result in the

paper is the following:

THEOREM 1. Let γ = 4.4898 and m = ⌊γn⌋. A random 3-CNF formula in Fn,m (i.e. with n

variables and m clauses, no repetition of clauses and no repetition of variables in a clause)
is not satisfiable a.a.s.

2 Background and Technical highlights.

Consider a given set of n Boolean variables, and let m = ⌊γn⌋. Let Fn,m be the set of

3-CNF formulas with n variables and m clauses, where repetition of clauses or repetition

of variables in a clause is not allowed. We also denote by Fn,m the probability space of

formulas in Fn,m drawn with uniform probability. Throughout the paper, we fix the value

γ = 4.4898 and prove that for that value a random 3-CNF formula is not satisfiable with

high probability.

Throughout the paper, scaled will always mean divided by n, and a scaled natural will

be a member of 1
nN. Given a formula φ ∈ Fn,m, we define the following parameters which

depend on φ: For any i, j ∈ N, let di,j be the scaled number of variables with i positive

occurrences and j negative occurrences in φ. Then,

∑
i,j∈N

di,j = 1. (1)

The sequence d = (di,j)i,j∈N is called the degree sequence of φ. The scaled number of clauses

of φ is denoted by c, and can be expressed by

c(d) =
1

3 ∑
i,j∈N

(i + j)di,j. (2)

Note that if φ ∈ Fn,m, then c must additionally satisfy c = ⌊γn⌋/n.
Given ǫ1 > 0 and any sequence ξ = (ξi,j)i,j∈N of nonnegative reals with ∑i,j∈N ξi,j = 1,

define

N (n, ξ, ǫ1) =
{

d = (di,j)i,j∈N : ∑
i,j∈N

di,j = 1,
n

3 ∑
i,j∈N

(i + j)di,j ∈ N, ∀i, j ∈ N di,jn ∈ N,

and |di,j − ξi,j| ≤ ǫ1, and if i > n1/6 or j > n1/6 then di,j = 0
}

.

Intuitively N (n, ξ, ǫ1) can be interpreted as the set of degree sequences d which are close

to the ideal sequence ξ, which in general is not a degree sequence since its entries ξi,j need

not be scaled naturals. However, if n is large enough, then N (n, ξ, ǫ1) 6= ∅. Now we con-

sider the 2D Poisson ideal sequence δ defined by δi,j = e−3γ(3γ/2)i+j/(i!j!). The following

lemma reflects the fact that almost all φ ∈ Fn,m have a degree sequence d which is close to

δ. A proof of an analogous result can be found in [5].
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LEMMA 2. Let d be the degree sequence of a random φ ∈ Fn,m. For any ǫ1 > 0, we have
that PrFn,m

(d ∈ N (n, δ, ǫ1)) = 1− o(1).

Given a fixed degree sequence d = (di,j)i,j∈N satisfying (1) and such that c = c(d) de-
fined by (2) is also a scaled natural, we wish to generate 3-CNF formulas with that particular

degree sequence d. A natural approach to this is to use the configuration model. A configu-

ration ϕ with degree sequence d = (di,j)i,j∈N is constructed as follows: consider n variables

and the corresponding 2n literals x1, x̄1 . . . , xn, x̄n; each literal has a certain number of dis-

tinct labelled copies in a way that the scaled number of variables with i positive copies and

j negative copies is di,j; then partition the set of copies into sets of size 3, which we the call

clauses of ϕ. Let Cn,d be the set of all configurations with degree sequence d, and we also

denote by Cn,d the probability space on the set Cn,d with the uniform distribution.

A 3-CNF multi-formula is a formula with possible repetition of variables in one clause

and/or possible repetition of clauses. A simple formula is a formula in Fn,m. Let π be the

projection from Cn,d to 3-CNF multi-formulas obtained by unlabelling the copies of each

literal. A configuration ϕ ∈ Cn,d is satisfiable if φ = π(ϕ) is satisfiable. A configuration

ϕ ∈ Cn,d is simple iff φ = π(ϕ) is a simple formula, i.e. does not have repetition of variables or

clauses. Notice that the number of anti-images of a simple formula φ with degree sequence

d under π does not depend on the particular choice of φ. Hence,

PrFn,m
(φ is SAT | d) = PrCn,d(ϕ is SAT | SIMPLE). (3)

We need a lower bound on the probability that a configuration is simple. The following

result gives a weak bound which is enough for our purposes.

LEMMA 3.

Let ǫ1 > 0 and d ∈ N (n, δ, ǫ1). Then

PrCn,d(SIMPLE) ≥ e−Θ(n1/3 log n),

where the e−Θ(n1/3 log n) bound is uniform for all d ∈ N (n, δ, ǫ1).

Given ϕ ∈ Cn,d, a pure variable of ϕ is a variable which has a non-zero number of

occurrences which are either all syntactically positive or all syntactically negative. The only

literal occurring in ϕ and all its copies are also called pure. If ϕ is satisfiable and x is a

pure variable of ϕ, then there exists some satisfying truth assignment of ϕ which satisfies

all copies of x in ϕ. Hence, in order to study the satisfiability of a ϕ ∈ Cn,d, we can satisfy

each pure variable in ϕ and remove all clauses containing a copy of that variable. For each

ϕ ∈ Cn,d, let ϕ̃ be the configuration obtained by greedily removing all pure variables and

their corresponding clauses from ϕ. This ϕ̃ is independent of the particular elimination

order of pure literals and is called the impure core of ϕ. In fact, in our analysis we will

eliminate only one clause containing one copy of a pure literal at a time (the ϕ̃ obtained still

remains the same). Note that ϕ is satisfiable iff ϕ̃ is satisfiable. Moreover, if ϕ is simple

then ϕ̃ is also simple (but the converse is not necessarily true).

Furthermore, let ϕ̂ be the configuration obtained from ϕ̃ by positively unbalancing all

variables, i.e. switching the syntactic sign of those variables having initially more negative

than positive occurrences in ϕ̃. Let ̂Cn,d denote the probability space of configurations ϕ̂,
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where ϕ was chosen from Cn,d with uniform probability. Note that the probability distri-

bution in ̂Cn,d is not necessarily uniform. Since the simplicity and the satisfiability of a

configuration are not affected by positively unbalancing the variables, we have

PrCn,d(ϕ is SAT ∧ SIMPLE) ≤ Pr
̂Cn,d(ϕ̂ is SAT ∧ SIMPLE). (4)

Let the random variable ̂d be the degree sequence of a random configuration in ̂Cn,d. We

prove in the following result that if the original d is close to the ideal sequence δ, then with

high probability ̂d must be close to the ideal sequence ̂δ = (̂δi,j)i,j∈N defined by

̂δi,j =















2e−3γb (3γb/2)i+j

i!j! , if i > j,

e−3γb (3γb/2)i+j

i!j! , if i = j,

0, if i < j,

where b = (1− tD/γ)2/3 and tD is the scaled number of steps in the pure literal elimination

algorithm.

PROPOSITION 4. Given ǫ2 > 0, there exists ǫ1 > 0 and 0 < β < 1 such that for any
d ∈ N (n, δ, ǫ1)

Pr
̂Cn,d

(

̂d ∈ N (n, ̂δ, ǫ2)
)

= 1−O(βn1/2).

Moreover, for each ̂d ∈ N (n, ̂δ, ǫ2), the probability space ̂Cn,d conditional upon having de-
gree sequence ̂d has the uniform distribution (i.e. ̂Cn,d conditional upon a fixed ̂d behaves
exactly as C

n,̂d).

Let ̂d ∈ N (n, ̂δ, ǫ2). Then, each ϕ ∈ C
n,̂d has a scaled number of clauses of ĉ = c(̂d)

(see (2)). Moreover, let ℓp and ℓn be the scaled number of copies in ϕ of positive and of

negative literals respectively. Then

ℓp(̂d) = ∑
i,j∈N

i ̂di,j, ℓn(̂d) = ∑
i,j∈N

j ̂di,j. (5)

Given any fixed ϕ ∈ C
n,̂d and for k ∈ {0, . . . , 3}, let ĉk be the scaled number of clauses in ϕ

containing exactly k positive copies (clauses of syntactic type k). We call ĉ = (ĉ0, . . . , ĉ3) the
clause-type sequence of ϕ. By definition

ĉ1 + 2ĉ2 + 3ĉ3 = ℓp, 3ĉ0 + 2ĉ1 + ĉ2 = ℓn, (6)

and by adding the equations in (6), ĉ0 + · · · + ĉ3 = ĉ. The ĉ0, . . . , ĉ3 are random variables in

Cn,̂d, but the next result shows that if ̂d is close enough to ̂δ, then ĉ0, · · · , ĉ3 as well as their

sum ĉ0 + · · · + ĉ3 = ĉ are concentrated with high probability. In order to see this, we need

to define γ̂ = c(̂δ), λp = ℓp(̂δ) and λn = ℓn(̂δ) (see (2) and (5)), which can be interpreted as

the limit of ĉ, ℓp and ℓn respectively when ̂d approaches ̂δ. In terms of these numbers, we

thus define for all k ∈ {0, . . . , 3}

γ̂k =

(

3

k

)

λp

kλn

3−k

(λp + λn)3
γ̂ (7)
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and also γ̂ = (γ̂0, . . . , γ̂3). Then we have γ̂1 + 2γ̂2 + 3γ̂3 = λp, 3γ̂0 + 2γ̂1 + γ̂2 = λn and

γ̂0 + γ̂1 + γ̂2 + γ̂3 = γ̂.

The next result shows that when ̂d is close enough to ̂δ, then each ĉk is close to the

corresponding γ̂k. Indeed, given ǫ > 0 and for any ̂d ∈ N (n, ̂δ, ǫ2), let Cǫ
n,̂d

be the set of all

ϕ ∈ C
n,̂d such that for k ∈ {0, . . . , 3}, |ĉk − γ̂k| ≤ ǫ. We also denote by Cǫ

n,̂d
the corresponding

uniform probability space.

LEMMA 5. Given ǫ > 0, there is ǫ2 > 0 and 0 < β < 1 such that for any ̂d ∈ N (n, ̂δ, ǫ2),

PrC
n,̂d

(Cǫ
n,̂d

) = 1−O(βn).

All the previous lemmata establish a connection between the uniform probability spaces

Fn,m and Cǫ
n,̂d

. In order to prove Theorem 1, it remains to bound the probability that a con-

figuration ϕ ∈ Cǫ
n,̂d

is simple and satisfiable, as it is done in the following result.

LEMMA 6. There exists ǫ > 0 and 0 < β < 1 such that for any ̂d ∈ N (n, ̂δ, ǫ),

PrCǫ
n,̂d

(SAT ∧ SIMPLE) = O(βn).

The proof of Lemma 6 is sketched in Section 3 below. The proof of Theorem 1 then

follows from all the previous lemmata (see the full version for the proof).

3 Proof of Lemma 6

Let N (n, ̂δ, γ̂, ǫ) be the set of tuples (̂d, ĉ) such that ̂d ∈ N (n, ̂δ, ǫ) and ĉ = (ĉk)0≤k≤3 is a

tuple of scaled naturals satisfying (6) (recall also from (5) the definition of ℓp and ℓn), and

moreover |ĉk − γ̂k| ≤ ǫ. For each (̂d, ĉ) ∈ N (n, ̂δ, γ̂, ǫ), we define C
n,̂d,̂c to be the uniform

probability space of all configurations with degree sequence ̂d and clause-type sequence ĉ.

In order to prove the lemma, it suffices to show that for any (̂d, ĉ) ∈ N (n, ̂δ, γ̂, ǫ) we have

PrC
n,̂d,̂c

(SAT ∧ SIMPLE) = O(βn). Hence, we consider ̂d, ĉ and the probability space Cn,̂d,̂c to
be fixed throughout this section, and we try to find a suitable bound for Pr(SAT ∧ SIMPLE).

We need some definitions. Let us fix any given configuration ϕ ∈ Cn,̂d,̂c. A light variable

of ϕ is a variable with i ≤ M positive occurrences and j ≤ M negative occurrences in ϕ (we

use in the numerical calculations the value M = 23). The other variables are called heavy. We

consider a weaker notion of satisfiability in which heavy variables are treated as jokers and

are always satisfied regardless of their sign in the formula and their assigned value. Given

a configuration ϕ ∈ C
n,̂d,̂c and a truth assignment A, we say that A |=♭ ϕ iff each clause of

ϕ contains at least one heavy variable or at least one satisfied occurrence of a light variable.

Let SAT
♭ be the set of configurations ϕ ∈ Cn,̂d,̂c for which there exists at least one truth

assignment A such that A |=♭ ϕ. Clearly, if A |= ϕ, then also A |=♭ ϕ, and hence SAT ⊂ SAT
♭.

We still introduce a further restriction to satisfiability in a way similar to [11] and [4], in

order to decrease the number of satisfying truth assignments of each configuration without

altering the set of satisfiable configurations (at least without alterating this set for simple

configurations). Given a configuration ϕ ∈ Cn,̂d,̂c and a truth assignment A, we say that
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A |=♭′ ϕ iff A |=♭ ϕ and moreover each light variable which is assigned the value zero by

A appears at least once as the only satisfied literal of a blocking clause (i.e. a clause with one

satisfied negative literal and two unsatisfied ones). Let SAT
♭′ be the set of configurations

which are satisfiable according to this latter notion. Notice that if ϕ ∈ SIMPLE, then ϕ ∈
SAT

♭′ iff ϕ ∈ SAT
♭ (by an argument analogous to the one in [11] and [4]). Therefore, we have

Pr(SAT ∧ SIMPLE) ≤ Pr(SAT
♭ ∧ SIMPLE) = Pr(SAT

♭′ ∧ SIMPLE) ≤ Pr(SAT
♭′). Let X be the

random variable counting the number of satisfying truth assignments of a randomly chosen

configuration ϕ ∈ Cn,̂d,̂c in the SAT
♭′ sense. We need to bound

Pr(SAT
♭′) = Pr(X > 0) ≤ EX =

|{(ϕ, A) : ϕ ∈ C
n,̂d,̂c, A |=♭′ ϕ}|

|C
n,̂d,̂c|

. (8)

In the following subsection, we obtain an exact but complicated expression for EX by a

counting argument, and then we give a simple asymptotic bound which depends on the

maximization of a particular continuous function over a bounded polytope. The next sub-

section contains the maximization of that function.

3.1 Asymptotic bound on EX

First, we compute the denominator of the rightmost member in (8).

|Cn,̂d,̂c| =

(

n

( ̂di,jn)i,j

)(

ℓpn

ĉ1n, 2ĉ2n, 3ĉ3n

)(

ℓnn

3ĉ0n, 2ĉ1n, ĉ2n

)

(3ĉ0n)!

(ĉ0n)!6ĉ0n
(2ĉ1n)!

2ĉ1n
(2ĉ2n)!

2ĉ2n
(3ĉ3n)!

(ĉ3n)!6ĉ3n

=
n!

∏i,j( ̂di,jn)!

(ℓpn)!(ℓnn)!

2ĉn3(ĉ0+ĉ3)n(ĉ0n)!(ĉ1n)!(ĉ2n)!(ĉ3n)!

In order to deal with the numerator in (8), we need some definitions. Let us consider any

fixed ϕ ∈ C
n,̂d,̂c and any assignment A such that A |=♭′ ϕ. We will classify the variables, the

clauses and the copies of literals in ϕ into several types, and define parameters counting the

scaled number of items of each type. Variables are classified according to their degree. A

variable is said to have degree (i, j) if it appears i times positively and j times negatively in

ϕ. Let L and H, respectively, be the set of possible degrees for light and heavy variables,

i.e. L = {(i, j) ∈ N
2 : 0 ≤ i, j ≤ M}, H = {(i, j) ∈ N

2 : i > M or j > M}. We also

consider an extended notion of degree for light variables which are assigned 0 by A. One

of such variables has extended degree (i, j, k) if it has degree (i, j) and among its j negative

occurrences k appear in a blocking clause (being the only satisfied literal of the clause). Let

L′ = {(i, j, k) ∈ N
3 : 0 ≤ i ≤ M, 1 ≤ k ≤ j ≤ M}, be the set of possible extended degrees

for these light 0-variables. For each (i, j) ∈ L, let ti,j be the scaled number of light variables

assigned 1 by A with degree (i, j) in ϕ. For each (i, j, k) ∈ L′, let fi,j,k be the scaled number

of light variables assigned 0 by A with extended degree (i, j, k) in ϕ. We must have

ti,j +
j

∑
k=1

fi,j,k = ̂di,j, ∀(i, j) ∈ L. (9)

On the other hand, we classify the copies of literals occurring in ϕ into five different types

depending on their sign in ϕ, their assignment by A and whether they belong or not to a
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blocking clause. Each copy receives a label from the set S = {ps, ns1, ns2, pu, nu}, where

the labels ps, pu, ns1, ns2 and nu denote positive-satisfied, positive-unsatisfied, negative-

satisfied in a blocking clause, negative-satisfied in a non-blocking clause and negative-

unsatisfied, respectively. It is useful to consider as well coarser classifications of the copies of

literals in ϕ and thus we define the types p, n and nswhich correspond to positive, negative

and negative-satisfied copies, respectively. Also, let S ′ = {ps, ns, pu, nu} and S ′′ = {p, n}.
For each of the types σ ∈ S ∪ S ′ ∪ S ′′ that we defined, let ℓσ be the scaled number of copies

of type σ. Note that ℓp and ℓn were already defined (see (5) and (6)). Also, let hσ be the scaled

number of copies of type σ which come from heavy variables (recall that these copies are al-

ways satisfied by definition regardless of their sign). In view of hps = ∑H i ̂di,j, hns = ∑H j ̂di,j
and of (5) and (6), we observe that ℓp, ℓn, hps and hns are constants which do not depend

on the particular choice of (ϕ, A). The parameters hns1 and hns2 depend on the particular

(ϕ, A) and satisfy

hns1 + hns2 = hns. (10)

The parameters ℓps, ℓpu, ℓns1, ℓns2 and ℓnu also depend on (ϕ, A) and can be expressed as

ℓps = ∑
L
iti,j + hps, ℓpu = ∑

L′
i fi,j,k, ℓns1 = ∑

L′
k fi,j,k + hns1,

ℓns2 = ∑
L′

(j− k) fi,j,k + hns2, ℓnu = ∑
L

jti,j. (11)

Finally, the clauses of ϕ are classified into 16 extended types (not to be mistaken with the

four syntactic types defined immediately before (6)). Each type is represented by a 2× 2 ma-

trix from the set A =

{

α =

(

ps(α) ns(α)
pu(α) nu(α)

)

∈ N
4 : ∑σ∈S ′ σ(α) = 3, ps(α) + ns(α) > 0

}

.

A clause is said to be of extended type α =

(

ps(α) ns(α)
pu(α) nu(α)

)

if for each σ ∈ S ′ the clause

contains σ(α) copies of literals of type σ. Notice that all clauses of extended type α also

contain the same number of copies of type σ for all other σ ∈ S ∪ S ′′ and thus we can define

σ(α) to be this number. For each α ∈ A, let cα be the scaled number of clauses of extended

type α (while ĉk, 0 ≤ k ≤ 3 is the number of clauses of syntactic type k, i.e. with k positive

literals). We have

∑
α∈A

p(α)=k

cα = ĉk. (12)

The parameters ℓps, ℓpu, ℓns1, ℓns2 and ℓnu can also be expressed in terms of the cα by

ℓσ = ∑
α∈A

σ(α)cα, ∀σ ∈ S . (13)

We now consider the following equations:

ℓps + ℓpu = ℓp ℓns1 + ℓns2 + ℓnu = ℓn (14)

ℓps = ∑
L
iti,j + hps ℓns1 = ∑

L′
k fi,j,k + hns1 ℓns2 = ∑

L′
(j− k) fi,j,k + hns2 (15)

ℓps = ∑
α∈A

ps(α)cα ℓns1 = ∑
α∈A

ns1(α)cα ℓns2 = ∑
α∈A

ns2(α)cα (16)
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In view of (5) and (6), the system of equations {(9), (10), (11), (12), (13)} is equivalent to {(9),
(10), (12), (14), (15), (16)}.

So far we verified that the constraints {(9), (10), (12), (14), (15), (16)} express necessary

conditions for the parameters of any particular (ϕ, A), with ϕ ∈ C
n,̂d,̂c and A |=♭′ ϕ. Nowwe

will see that they are also sufficient, in the sense that for each tuple of parameters satisfying

the above-mentioned constraints we will be able to construct pairs (ϕ, A).
Let t̄ = (ti,j)L, f̄ = ( fi,j,k)L′ , h̄ = (hns1, hns2), c̄ = (cα)α∈A, ℓ̄ = (ℓσ)σ∈S and K =

|L| + |L′| + 2 + |A| + |S| = (M + 1)2(1 + M/2) + 23. We define the bounded polytope

P(̂d, ĉ) ⊂ R
K as the set of tuples x̄ = (t̄, f̄ , h̄, c̄, ℓ̄) of non-negative reals satisfying {(9), (10),

(12), (14), (15), (16)}, and consider the following set of lattice points in P(̂d, ĉ): I(n, ̂d, ĉ) =

P(̂d, ĉ) ∩
(

1
nN
)K

. For any tuple of parameters x̄ ∈ I(n, ̂d, ĉ), we count the number of pairs

(ϕ, A), with ϕ ∈ C
n,̂d,̂c and A |=♭′ ϕ, satisfying these parameters. We denote this number by

T(x̄, n, ̂d, ĉ). We obtain (see the full version for details)

T(x̄, n, ̂d, ĉ) = 2∑H ̂di,jn
(

n

(ti,jn)L, ( fi,j,kn)L′ , ( ̂di,jn)H

)

(

∏
L′

(

j

k

) fi,j,kn
)

(

hnsn

hns1n, hns2n

)

∏
σ∈S

(

ℓσn

(σ(α)cαn)α∈A

)

∏
α∈A

W(α),

where W(α) = (w(α)cαn)!(cαn)!2−w(α)

(w(α)!)cαn
, and w(α) is the number of 0’s in the matrix α. Hence

EX = 1
|C

n,̂d,̂c
| ∑x̄∈I(n,̂d,̂c) T(x̄, n, ̂d, ĉ).

To characterize the asymptotic behaviour of T(x̄, n, ̂d, ĉ)/|C
n,̂d,̂c| with respect to n, we

define

F(x̄) =
∏σ∈S ℓσ

ℓσ

∏L ti,j
ti,j ∏L′

(

fi,j,k/( jk)
) fi,j,k

hns1
hns1hns2

hns2 ∏α∈A
(

(w(α)!/2)cα

)cα

and

B(̂d, ĉ) = 2∑H ̂di,jhns
hns ∏

L
̂d
̂di,j
i,j

3c0+c3c0
c0c1

c1c2
c2c3

c3

ℓp
ℓpℓn

ℓn
.

By Stirling’s inequality we obtain T(x̄,n,̂d,̂c)
|C

n,̂d,̂c
| ≤ poly1(n)

(

B(̂d, ĉ)F(x̄)
)n
, where poly1(n) is

some fixed polynomial in n which can be chosen to be independent of x̄, ̂d and ĉ (as long

as x̄ ∈ I(n, ̂d, ĉ) and (̂d, ĉ) ∈ N (n, ̂δ, γ̂, ǫ)). Moreover, since the size of I(n, ̂d, ĉ) is also

polynomial in n, we can write

EX ≤ poly2(n)

(

B(̂d, ĉ) max
x̄∈I(n,̂d,̂c)

F(x̄)

)n

≤ poly2(n)

(

B(̂d, ĉ) max
x̄∈P(n,̂d,̂c)

F(x̄)

)n

,

for some other fixed polynomial poly2(n). By continuity, if we choose ǫ to be small enough,

we can guarantee that

EX ≤
(

(1+ 10−7)B max
x̄∈P(n,̂δ,γ̂)

F(x̄)

)n

, (17)
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where (recall the definition in (7))

B = B(̂δ, γ̂) = 2∑H ̂δi,j

(

∑
H

ĵδi,j

)∑H ĵδi,j

∏
L
̂δ
̂δi,j
i,j

3γ̂0+γ̂3 γ̂
γ̂0

0 γ̂
γ̂1

1 γ̂
γ̂2

2 γ̂
γ̂3

3

λp

λpλn

λn

= 2∑H ̂δi,j

(

∑
H

ĵδi,j

)∑H ĵδi,j
∏L ̂δ

̂δi,j
i,j

(3γ̂)2γ̂
. (18)

3.2 Maximization of F(x̄)

We wish to maximize F or equivalently log F over the domain P(n, ̂δ, γ̂). We need the

following lemma:

LEMMA 7. F(x̄) does not maximize on the boundary of P(n, ̂δ, γ̂).

Since log F does not maximize on the boundary of its domain, the maximum must

be attained at a critical point of log F in the interior of P(n, ̂δ, γ̂). We use the Lagrange

multipliers technique and characterize each critical point of log F in terms of the solution of

a 3× 3 system. The system is numerically solved with the help of Maple, which finds just

one solution. We express the maximum of F over P(n, ̂δ, γ̂) in terms of this solution, and

multiply it by B given in (18), and from (17) we obtain the bound

EX ≤
(

(1+ 10−7)0.9999998965
)n

, (19)

which concludes the proof of Lemma 6, since (1+ 10−7)0.9999998965 < 1.

Note that the validity of our approach relies on the assumption that the solution of the

3 × 3 system found by Maple is unique, which implies that the critical point of log F we

found is indeed the global maximum (if an alternative solution exists it could happen that

at the corresponding critical point the function F attains a value greater than the maximum

obtained).

In order to be more certain about the correctness of (19) we performed the following

alternative experiment: Let Pℓ̄ be the polytope obtained by restricting P(n, ̂δ, γ̂) to the co-

ordinates ℓps, ℓpu, ℓns1, ℓns2, ℓnu. Observe that this is a 3-dimensional polytope in R
5, since

its elements are determined by the values of the coordinates ℓps, ℓns1, ℓns2. We performed a

sweep over this polytope by considering a grid of 100 equispaced points in each of the three

dimensions. For each of the 1003 fixed tuples of (ℓps, ℓns1, ℓns2) which correspond to the

points on the grid, we determine the remaining two coordinates of Pℓ̄, and maximize log F

restricted to those fixed values of ℓ̄. Observe that in this case log F is strictly concave and

thus has a unique maximum which can be efficiently found by any iterative Newton-like

algorithm. We checked, again using Maple, that the value obtained for each fixed tuple of ℓ̄

is below the maximum in (19).
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ABSTRACT.Counterexample-guided abstraction refinement (CEGAR) is used in automated soft-
ware analysis to find suitable finite-state abstractions of infinite-state systems. In this paper, we ex-
tend CEGAR to games with incomplete information, as they commonly occur in controller synthesis
and modular verification. The challenge is that, under incomplete information, one must carefully
account for the knowledge available to the player: the strategy must not depend on information the
player cannot see. We propose an abstraction mechanism for games under incomplete information
that incorporates the approximation of the players’ moves into a knowledge-based subset construc-
tion on the abstract state space. This abstraction results in a perfect-information game over a finite
graph. The concretizability of abstract strategies can be encoded as the satisfiability of strategy-tree
formulas. Based on this encoding, we present an interpolation-based approach for selecting new
predicates and provide sufficient conditions for the termination of the resulting refinement loop.

1 Introduction

Infinite games are a natural model of reactive systems as they capture the ongoing interac-

tion between a system and its environment. Many problems in automated software analy-

sis, including controller synthesis and modular verification, can be reduced to finding (or

deciding the existence of) a winning strategy. The design of algorithms for solving such

games is complicated by the following two challenges: First, games derived from software

systems usually have an infinite (or finite, but very large) state space. Second, the games

are usually played under incomplete information: it is unrealistic to assume that a system

has full access to the global state, e.g., that a process can observe the private variables of the

other processes.

The most successful approach to treat infinite state spaces in software verification is

predicate abstraction with counterexample-guided abstraction refinement (CEGAR) [3, 1].

For games with complete information [7, 4], CEGAR builds abstractions that overapprox-

imate the environment’s moves and underapproximate the system’s moves. If the system

wins the abstract game it is guaranteed to also win the concrete game. If the environment

wins the abstract game, one checks if the strategy is spurious in the sense that it contains an

abstract state from which the strategy cannot be concretized. If such a state exists, the state

is split to ensure that the strategy is eliminated from further consideration.

For games with incomplete information, the situation is more complicated, because the

strategic capabilities of a player depend not only on the available moves, but also on the
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knowledge about the state of the game. If the abstract game provides less information to

the system than the concrete game, then the environment may spuriously win the abstract

game, because the abstract system may be unable to distinguish a certain pair of states and

may therefore be forced to apply the samemove in the two states where the concrete system

can select different moves. An abstraction refinement approach for games with incomplete

information must therefore carefully account for the information collected by the system.

A first requirement is that the refinement should avoid predicates that mix variables that

are observable to the system with those that are hidden. Such mixed predicates lead to

the situation that the concrete system has partial information (the values of the observable

variables), while the abstract system does not know the value of the predicate at all. Since

the system may collect information over multiple steps of a play, however, just separating

the variables alone is not enough. Consider, for example, a situation where, in order to win,

the system has to react with output xo ≈ 0 if some hidden variable xh has value xh ≈ 0 and

with output xo ≈ 1 if xh ≈ 1. Now, suppose the system is able to deduce the value of xh
from the prefix that leads to the state, because an observable rational-valued variable xi is

either always positive or always negative if xh ≈ 0 and flips its sign otherwise. To rule out

the spuriously winning strategy for the environment, it is necessary to refine the abstraction

with the new predicate xi > 0, even though the system wins for any value of xi.

Contributions. In this paper, we propose the first CEGAR approach for games with incom-

plete information. We extend the abstraction of the game with a subset construction on the

abstract state space that ensures that the system only uses information it can see. The result

is a perfect-information game over a finite game graph that soundly abstracts the original

game under incomplete information.

The refinement of the abstraction accounts for two cases: we refine the abstract transition

relations by adding new predicates if the environment spuriouslywins because it usesmoves

that are impossible in the concrete game or because moves of the system are impossible in

the abstract game but possible in the concrete game; we refine the observation equivalence

by adding new predicates if the environment spuriously wins because the abstract system

has too little information. To ensure that the new predicates do not mix observable and

unobservable variables, we develop a novel constraint-based interpolation technique which

provides interpolants that meet arbitrary variable partitioning requirements.

The resulting refinement loop terminates for games for which a finite region algebra

(that satisfies certain conditions related to the observation-equivalence) exists. This includes

important infinite-state models such as timed games or games defined by bounded rectan-

gular automata, given that the observation-equivalence meets the requirement.

In the following, due to space constraints, all proofs and some technical details have

been omitted. We refer the reader to the full version of this paper [6].

Related work. The classic solution to games with incomplete information is the transla-

tion to perfect-information games with a knowledge-based subset construction due to Reif [9].

For games over infinite graphs, however, this construction is in general not effective. Our

approach is symbolic and is therefore suited to the analysis of games over infinite state

spaces. For incomplete-information games with finite state spaces, an alternative would

be to first use the knowledge-based subset construction to obtain a perfect-information con-

crete game and then apply the CEGAR technique of [7] in the usual way. However, since the
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subset construction leads to an exponential blow-up of the state space of the game, which

for realistic systems will make the problem practically infeasible, it is imperative to first

use predicate abstraction and obtain a much smaller state space and only then construct

the subsets of observation-equivalent prefixes. Symbolic fixed-point algorithms based on an-

tichains were proposed in [5, 2]. In the case of infinite game graphs, these algorithms are

applied on a given finite region algebra for the infinite-state game. Our approach, on the

other hand, automatically constructs a sufficiently precise finite abstraction. Interpolation

was applied successfully in verification for the generation of refinement predicates. There

one infers from an unconcretizable abstract counterexample-trace predicates, each of which

refers only to variables that describe a single state on that trace. In our case we need to

consider sets of traces each of which is concretizable and that are represented symbolically

using sets of variables whose intersection contains observable variables only. The straight-

forward application of existing interpolation methods ([8, 10]) would produce refinement

predicates that are either guaranteed to be observable or guaranteed not to relate two or

more states. These approaches are incapable of meeting both guarantee requirements. To

this end, we present our extension of the algorithm from [10] which provides interpolants

that meet arbitrary variable partitioning requirements.

2 Preliminaries

Variables, predicates and formulas. We model the communication between a system and

its environment with a finite set X of variables, which is partitioned into four pairwise dis-

joint sets: Xh,Xi,Xo and {t}. The environment updates (and can observe) the variables in

Xh and Xi and the system updates (and can observe) the variables in Xo. The variables in

Xi are the input variables for the system, i.e., it can read their value but not update them.

The variables in Xh are private variables for the environment, i.e., the system cannot even

observe them. The set Xo consists of the output variables of the system which can be only

read by the environment. The value of the auxiliary variable t determines whether it is the

system’s or the environment’s turn to make a transition, i.e., the two players take turns in

making a transition. The set X′ consists of the primed versions of the variables in X.

Sets of concrete and abstract states and transitions are represented as formulas over some

possibly infinite setAP of predicates (atomic formulas) over the variables in X ∪ X′. For a for-
mula ϕ, we denote with Vars(ϕ) and Preds(ϕ) the sets of variables and predicates, respec-

tively, that occur in ϕ. For a set P of predicates, the set Obs(P) consists of the predicates in
P that contain only observable variables, i.e., from Obs(X ∪ X′) = (X ∪ X′) \ (Xh ∪ X′

h).

Game structures. A game structure with perfect information C = (Ss, Se, s0,Rs,Re) consists
of a set of states S = Ss ∪ Se, which is partitioned into a set Ss of system states and a set Se of

environment states, a distinguished initial state s0 ∈ S, and a transition relation R = Rs ∪ Re,

where Rs ⊆ Ss × Se (when the system makes a transition, it always gives back the turn

to the environment) and Re ⊆ Se × S are the transition relations for the system and the

environment respectively. A game structure with incomplete information (Ss, Se, s0,≡,Rs,Re)
additionally defines an observation equivalence ≡ on S. The system has partial knowledge

about the current state, i.e., it knows the equivalence class of the current state, but not the

particular state in this class. We require that the relation ≡meets the following two require-



178 ABSTRACTION REFINEMENT FOR GAMES WITH INCOMPLETE INFORMATION

ments. The relation ≡ respects the partitioning of S into Ss and Se: If v1 ∈ Ss and v2 ∈ Se
then v1 6≡ v2. The system can distinguish between the different successors of a system state:

For every v ∈ Ss and w1,w2 ∈ Se, if (v,w1) ∈ Rs, (v,w2) ∈ Rs and w1 6= w2, then w1 6≡ w2.

The set of available transitions in a system state is the same for all observation-equivalent

states: For every states v1, v2 ∈ Ss and w1 ∈ Se such that v1 ≡ v2 and (v1,w1) ∈ Rs, there

exists a state w2 ∈ Se such that w1 ≡ w2 and (v2,w2) ∈ Rs. A state v for which there is no

w ∈ S with (v,w) ∈ R is called a dead-end.

We use a symbolic representation of game structures. A symbolic game structure with

incomplete information C = (X, init, Ts, Te) consists of a set of variables X (partitioned into

Xh,Xi,Xo and {t}), a formula init over X and formulas Ts and Te over X ∪X′. For simplicity,

we assume that we have singleton sets Xh = {xh}, Xi = {xi} and Xo = {xo} (the extension

to the general case is trivial). The formulas are required to satisfy the following conditions:

(1) Te implies t ≈ 0 and x′o ≈ xo, (2) Ts implies t ≈ 1, t′ ≈ 0, x′h ≈ xh and x′i ≈ xi, (3) the

formula Ts{xh 7→ x1h} ↔ Ts{xh 7→ x2h} is valid.

Let H, I andO be the domains of xh, xi and xo respectively. We assume that the setO of

possible outputs for the system is finite. We denote with co the constant from the signature

corresponding to an element o ∈ O and with Co the set of all constants for elements of O.

The domain of t is {0, 1}. The setVal(X) consists of all total functions that map each variable

in X to its domain. For a formula ϕ over X, and v ∈ Val(X) we denote with ϕ[v] the truth

value of the formula ϕ for the valuation v of the variables. We write v |= ϕ iff ϕ[v] is true.
For a formula ϕ over X ∪ X′, v ∈ Val(X) and w ∈ Val(X′), ϕ[v,w] is defined analogously.

A symbolic game structure C = (X, init, Ts, Te) together with corresponding variable

domains defines a game structure with incomplete information C = (Ss, Se, s0,≡,Rs,Re) in
the following way. The sets Ss and Se consist of the valuations in Val(X) where t is mapped

to 1 and 0 respectively. Since the variable xh cannot be observed by the system, two states

are observation-equivalent if they agree on the valuation of the variables in Obs(X). We

require that init is satisfied by a single initial state s0. The formulas Ts and Te define the

transition relations, where (v,w) ∈ Rs iff Ts[v,w] is true, and Re is defined analogously.

For a formula ϕ and co ∈ Co, Pres(co, ϕ) is a formula such that v |= Pres(co, ϕ) iff there
exists w |= ϕ ∧ xo ≈ co such that (v,w) ∈ Rs, Pres(ϕ) =

∨

co∈Co
Pres(co, ϕ) and Pree(ϕ) is a

formula such that v |= Pree(ϕ) iff there exists w |= ϕ such that (v,w) ∈ Re.

Safety games. We consider safety games defined by a set of error states, which we

assume w.l.o.g. to be a subset of Se. The objective for the system is to avoid the error states.

Clearly, w.l.o.g. we can assume that S does not contain dead-ends and that for every v ∈ Ss
and co ∈ Co, v |= Pres(co, true). A safety game with perfect information (with incomplete

information) G = (C, E) consists of a game structure C with complete information (with

incomplete information) and a set of error states E. A symbolic safety game G = (C, err)
consists of a symbolic game structure C and a formula err denoting the set of error states.

Strategies. Let G be a safety game. A path in G is a finite sequence π = v0v1 . . . vn of

states such that for all 0 ≤ j < n, we have (vj, vj+1) ∈ R. The length |π| of π is n + 1.

For 0 ≤ j < |π|, π[j] is the j-th element of π and π[0, j] = v0 . . . vj. We define last(π) =
π[|π| − 1]. A prefix in G is a path π = v0v1 . . . vn such that v0 = s0. We call π a system

prefix if last(π) ∈ Ss, and an environment prefix otherwise. We denote with Prefs(G) the set of
prefixes in G, and with Prefss(G) and Prefse(G) the sets of system and environment prefixes,
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respectively. A play in G is either an infinite sequence ω = v0v1 . . . vj . . . with v0 = s0 and

for all j ≥ 0, (vj, vj+1) ∈ R or a prefix π such that last(π) is an error state. For an infinite

play ω, |ω| = ∞. The observation-equivalence ≡ can be extended in a natural way to

prefixes and plays. A strategy for the system is a function fs : Prefss(G) → Se such that if

fs(π) = v, then (last(π), v) ∈ Rs. Strategies for the environment are defined analogously.

A strategy fs for the system in an incomplete-information game is called consistent iff for

all π1,π2 ∈ Prefss(G) with π1 ≡ π2, it holds that fs(π1) ≡ fs(π2). The outcome of two

strategies fs and fe is a play ω = Outcome( fs, fe) such that for all 0 ≤ j < |ω| if ω[j] ∈ Ss
then ω[j + 1] = fs(ω[0, j]) and if ω[j] ∈ Se then ω[j + 1] = fe(ω[0, j]). A strategy fs for the

system is winning iff for every strategy fe for the environment, if ω = Outcome( fs, fe) then
for every j ≥ 0, ω[j] is not an error state. A strategy fe for the environment is winning iff for

every strategy fs for the system, if ω = Outcome( fs, fe) then for some j, ω[j] is an error state.

Strategy trees. A winning strategy fe for the environment in a safety game G can be

naturally represented as a finite tree T( fe), called strategy tree. Each node in T( fe) is labeled
by a state in S, such that the following are satisfied: (1) the root is labeled by the initial state

s0, (2) if an internal node is labeled by a state v and a child of that node is labeled by a state

w, then (v,w) ∈ R, (3) if an internal node π is labeled by v ∈ Ss, then for every w ∈ S with

(v,w) ∈ Rs, there exists exactly one child of π which is labeled by w, and Children(π, T( fe))
is the set of all children of π in T( fe), (4) if an internal node π is labeled by v ∈ Se, then

that node has exactly one child, denoted by Child(π, T( fe)), labeled by some w ∈ S with

(v,w) ∈ Re, (5) a node is a leaf iff it is labeled by an error state. Thus, each node corresponds

to a prefix in G, and a prefix in Prefs(G) is represented by at most one node. We identify

each node with the corresponding prefix and define Prefs( fe) as the set of prefixes in T( fe).

Knowledge-based subset construction. The knowledge-based subset construction of an

incomplete-information game G = ((Ss, Se, s0,≡,Rs,Re), E) is a perfect-information game

Gk = ((Sks , S
k
e , s

k
0,R

k
s ,R

k
e), E

k) defined as follows: Sks = {V ∈ 2Ss \ {∅} | ∀v1, v2 ∈ V. v1 ≡ v2};
Ske = {V ∈ 2Se \ {∅} | ∀v1, v2 ∈ V. v1 ≡ v2}; sk0 = {s0}; (V,W) ∈ Rk

s iff V ∈ Sks , W ∈ Ske and

(1) for every v ∈ V there is a w ∈ W such that (v,w) ∈ Rs, (2) for every w ∈ W there is a

v ∈ V such that (v,w) ∈ R and (3) if w1 ≡ w2, w1 ∈ W and there is a v ∈ V with (v,w2) ∈ R

then w2 ∈ W; (V,W) ∈ Rk
e iff V ∈ Ske , W ∈ Sks ∪ Ske and (1′), (2) and (3) are satisfied, where

(1′) there exist v ∈ V and w ∈ W such that (v,w) ∈ Re; E
k = {V ∈ Ske |V ∩ E 6= ∅}.

The game solving problem. The game solving problem is to determine whether there

exists a consistent winning strategy for the system player in a given safety game with in-

complete information. The strategy synthesis problem is to find such a strategy if one exists.

3 Abstraction

We use two subset constructions to abstract infinite-state games with incomplete informa-

tion into finite-state gameswith perfect information: first, we overapproximate themoves of

the environment and underapproximate the moves of the system in the abstract domain de-

fined by the predicate valuations. Then, we overapproximate the observation-equivalence

based on the observable predicates to obtain a sound abstraction.

Let G = (S , err) be a symbolic safety game. For a finite set of predicates P over X,

Vals(P) is the set of all valuations of the elements of P . For a ∈ Vals(P), and p ∈ P , [a] is
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the corresponding formula over P andwewrite a |= p iff the value of p in a is true. Similarly

for a formula ϕ over P . The concretization γP (a) of a ∈ Vals(P) is the set of concrete states
{s ∈ S | ∀p ∈ P : s |= p iff a |= p}. For A ⊆ Vals(P), we define γP (A) =

⋃

a∈A γP (a). For
a1 and a2 in Vals(P), we define a1 ≡a

P a2 iff for every p ∈ Obs(P), a1 |= p iff a2 |= p.

We abstract a concrete game w.r.t. a pair P = (Pse,Ps) of finite sets of predicates such

that Preds(init)∪ Preds(err)∪ {t ≈ 0} ⊆ Pse. The states in Se are abstracted w.r.t. Pse and the

states in Ss are abstracted w.r.t. the full set P = Pse ∪ Ps. We require that PredsSyst(Pse) ⊆
Ps, where PredsSyst(Q) =

⋃

a∈Vals(Obs(Q)) Preds(Pres([a])), to ensure the absence of dead-

ends in the abstract game. By refining Ps with predicates that are used to split only abstract

system states, we ensure the monotonicity of the abstraction of Rs. In the following, γ(a)
means γPse

(a) if a ∈ Vals(Pse) and γP (a) if a ∈ Vals(P). Similarly for ≡a.

For two pairs of sets of predicates P = (Pse,Ps) and Q = (Qse,Qs), we write P ⊆ Q
iff Pse ⊆ Qse and Ps ⊆ Qs, and define P ∪Q = (Pse ∪Qse,Ps ∪Qs).

The abstraction α(G,P) of G = (S , err) w.r.t. a pair P = (Pse,Ps) of finite sets of predi-

cates is the perfect-information safety game Ga = ((Sa
s , S

a
e , s

a
0,R

a
s ,R

a
e), E

a) defined below.

States. The set Sa of abstract states is the union of Sa
s ⊆ 2Vals(P) \ {∅} and Sa

e ⊆ 2Vals(Pse) \
{∅} which are defined as follows. An element A of 2Vals(P) \ {∅} belongs to Sa

s iff (1) for

every a ∈ A, a 6|= t ≈ 0 and γ(a) 6= ∅ and (2) for every a1, a2 ∈ A, a1 ≡a a2. Similarly, an

element A of 2Vals(Pse) \ {∅} belongs to Sa
e iff (1) for every a ∈ A, a |= t ≈ 0 and γ(a) 6= ∅

and (2) for every a1, a2 ∈ A, a1 ≡a a2. The initial abstract state sa0 consists of the single

element a0 of S
a such that a0 |= init and γ(a0) 6= ∅.

May transitions. The abstract transition relation Ra
e ⊆ Sa

e × Sa for the environment is de-

fined as: (A, A′) ∈ Ra
e iff the following are satisfied: (1 may) there exist a ∈ A, v ∈ γ(a),

a′ ∈ A′ and v′ ∈ γ(a′) with (v, v′) ∈ Re, (2) for every a′ ∈ A′ there exist a ∈ A, v ∈ γ(a) and
v′ ∈ γ(a′) such that (v, v′) ∈ R and (3) for every a′1 ∈ Vals(P) and a′2 ∈ Vals(P), if a′1 ∈ A′,
a′1 ≡a a′2 and there exist a ∈ A, v ∈ γ(a) and v′ ∈ γ(a′2) with (v, v′) ∈ R, then a′2 ∈ A′.
Must transitions. The abstract transition relation Ra

s ⊆ Sa
s × Sa

e for the system is defined as:

(A, A′) ∈ Ra
s iff the conditions (1 must), (2) and (3) are satisfied, where: (1 must) for every

a ∈ A and every v ∈ γ(a) there exist a′ ∈ A′ and v′ ∈ γ(a′) with (v, v′) ∈ Rs.

Error states. An abstract state A is an element of Ea iff there exists an a ∈ A with a |= err.

Concretization. The concretization γk( fe) of a winning strategy fe for the environment in

Ga is a set of winning environment strategies in the knowledge-based game Gk. For π ∈
Prefs(Ga), we define γk(π) = {πk ∈ Prefs(Gk) | |πk| = |π|, ∀j : 0 ≤ j < |π| ⇒ πk[j] ⊆
γ(π[j])} and γ(π) = {πc ∈ Prefs(G) | |πc| = |π|, ∀j : 0 ≤ j < |π| ⇒ πc[j] ∈ γ(π[j])}
(similarly for paths). Then γk( fe) is the set of all winning environment strategies f ke in Gk

such that for every πk ∈ Prefs( f ke ) there exists π ∈ Prefs( fe) with πk ∈ γk(π). Let P and Q
be pairs of sets of predicates with P ⊆ Q. If π and π′ are prefixes in α(G,P) and α(G,Q),
respectively, we write π′ ≤ π iff |π| = |π′| and for every 0 ≤ j < |π|, γ(π′[j]) ⊆ γ(π[j]).
If fe and f ′e are winning strategies for the environment in α(G,P) and α(G,Q) respectively,
then f ′e ≤ fe iff for every π′ ∈ T( f ′e) there exists π ∈ T( fe) such that π′ ≤ π.

THEOREM 1.[Soundness of the abstraction] If fs is a winning strategy for the system in the
perfect-information game α(G,P), then there exists a consistent winning strategy f cs for the
system in the symbolic game G with incomplete information.
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4 Abstract Counterexample Analysis

Awinning strategy fe for the environment in the game α(G,P) is a genuine counterexample

if it has a winning concretization in Gk. Otherwise it is called spurious. The analysis of the

strategy-tree T( fe) constructs a strategy-tree formula F( fe) that is satisfiable iff fe is genuine.

The key idea is to symbolically simulate a perfect-information game over the equivalence

classes of the prefixes of the concrete game structure G with incomplete information.

Traces and error paths. With each node π in T( fe), we associate a set Traces(π) of traces,

where a trace is a finite sequence τ ∈ C∗
o of system outputs, and define Traces( fe) = Traces(sa0).

Each trace induces a set of concrete error paths in G. If the strategy fe is genuine, then for

each τ ∈ Traces( fe), the concrete strategy in Gk should provide an error path ξτ in G. If π

is a leaf node (i.e., an error node), then Traces(π) = {ǫ}, otherwise, if π is a system node,

then Traces(π) = {coτ | co ∈ Co, ρ ∈ Children(π, T( fe)), τ ∈ Traces(ρ)}, and, if π is an en-

vironment node, then Traces(π) = Traces(Child(π, T( fe))). A path ξ in the concrete game

structure G is an error path of a trace τ if one of the following three conditions is satisfied: (i)

ξ[0] |= err, (ii) ξ[0] ∈ Se and ξ[1, |ξ|] is an error path for τ or (iii) ξ[0] ∈ Ss, τ = coσ, ξ[1] is a
co-successor of ξ[0] and ξ[1, |ξ|] is an error path for σ.

Trace formulas. For each τ ∈ Traces( fe) we define a formula F( fe, τ) which is satisfiable

iff there is a node ρ ∈ T( fe) such that there is an error path for τ in γ(ρ). Here, unlike

in the perfect-information case, in the concrete strategy the error paths ξτ1 and ξτ2 for two

different traces τ1, τ2 ∈ Traces( fe) may differ even before the first position in which τ1 and

τ2 are different, as long as their prefixes up to that position are equivalent. We encode this

constraint by indexing the variables in the trace formulas as explained below.

Consider a node π and a trace τ ∈ Traces( fe) such that τ = σ1σ2, σ1 corresponds to

the outputs on the prefix π and σ2 ∈ Traces(π). The variables in F( fe, τ) are indexed as

follows. The variables that represent a concrete state in γ(last(π)) are indexed with the

node π, so that there are different variables in the formula for different nodes. They are

indexed also with the part σ1 of τ, so that there are different variables in different trace

formulas after the first difference in the outputs. The unobservable variables have to be

indexed additionally with the remaining part σ2 of τ, in order to have different unobservable

variables for corresponding states in different trace formulas even before the first difference

in the outputs. To this end, with each node π ∈ T( fe) and σ1, σ2 ∈ C∗
o we associate a set

X(π,σ1,σ2) = {x(π,σ1,σ2)
h , x

(π,σ1)
i , x

(π,σ1)
o , t(π,σ1)} of variables and define substitutions which map

variables from the original set X ∪ X′ to variables in the sets X(π,σ1,σ2) and vice versa.

We define recursively a trace formula F(π, τ) for every node π ∈ T( fe) and trace τ ∈
Traces(π). We consider three cases that correspond to the three cases in the definition of

error paths: the auxiliary formulas ErrorState, EnvTrans and SystTrans account for cases (i),

(ii) and (iii) respectively. If π is a leaf node, then τ = ǫ and F(π, ǫ) = ErrorState(π). If

π is an internal environment node we define F(π, τ) = EnvTrans(π,π′, τ), where π′ =
Child(π, T( fe)). If π is an internal system node, then τ = coσ for some co and σ and we de-

fine F(π, coσ) =
∨

π′∈Children(π,T( fe)) SystTrans(π,π′, coσ). By the definition, the trace formula

F(π, τ) is satisfied by a sequence ξ of concrete states iff ξ is an error path for τ and there

exists a node ρ in the subtree of T( fe) below π such that ξ ∈ γ(ρ).

Strategy-tree formula. We define F( fe, τ) = F(sa0, τ) for every τ ∈ Traces( fe) and finally, the
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strategy-tree formula is F( fe) =
∧

τ∈Traces( fe) F( fe, τ). It can be constructed by annotating in

a bottom-up manner the nodes in T( fe) with the corresponding sets of traces and formulas.

THEOREM 2. Let fe be a winning strategy for the environment in the game α(G,P). The
formula F( fe) is satisfiable iff the strategy fe is genuine, i.e., iff γk( fe) 6= ∅.

5 Counterexample-Guided Refinement

If fe is a spuriouswinning strategy for the environment in α(G,P), we enhanceP = (Pse,Ps)
with sets of refinement predicates Rse( fe) and Rs( fe), such that in the refined game α(G, (Pse∪
Rse( fe),Ps ∪ Rs( fe))) the environment has no winning strategy f ′e with f ′e ≤ fe.

5.1 Refining the Abstract Transition Relations

If for some τ ∈ Traces( fe) the formula F( fe, τ) is unsatisfiable, then the occurrence of the

spurious abstract strategy is due to the approximations of the transition relations. There-

fore we compute refinement predicates for eliminating the approximations that cause the

existence of fe. Such predicates can be determined by a bottom-up analysis of the strat-

egy tree T( fe) that annotates each node π in the tree with a formula F̃(π, τ) for each trace

τ ∈ Traces(π). The formula F̃(π, τ) denotes the subset of γ(π) that consist of those con-

crete states from which there exists a concrete path that satisfies F( fe, τ). We denote with

RPGG( fe) (Refinement Predicates for the Game Graph) the pair (RPGGse( fe), RPGGs( fe)) of sets
of predicates computed at this step and used to enhance Pse and Ps, respectively.

State formulas. For π ∈ T( fe) and τ ∈ Traces(π), we define F̃(π, τ) as follows. If π

is a leaf node, then τ = ǫ and F̃(π, ǫ) =
∨

a∈last(π),a|=err[a]. Otherwise, τ = coσ and

F̃(π, τ) = [last(π)]∧Pres(co,
∨

π′∈Children(π,T( fe)) F̃(π′, σ)) if π is a system node, and F̃(π, τ) =

[last(π)] ∧ Pree(F̃(Child(π, T( fe)), τ)) otherwise. If τ 6∈ Traces(π), then F̃(π, τ) is F̃(π, σ),
where σ is the maximal prefix of τ such that σ ∈ Traces(π) if such exists, and false otherwise.

Refinement predicates. The set RPGGse( fe) of predicates withwhichwe enhancePse contains

all predicates that occur in the annotation formulas F̃(π, τ). We ensure that the refined

abstraction is precise w.r.t. the outputs from some trace τ ∈ Traces( fe) for which F̃( fe, τ) is
unsatisfiable, by adding the elements of OutPreds({τ}) for one such τ to RPGGse( fe), where

for a set T of traces, we have defined OutPreds(T) = {xo ≈ τ[j] | τ ∈ T, 0 ≤ j < |τ|}. The
set RPGGs( fe) is equal to the set PredsSyst(Pse ∪ RPGGse( fe)). By refining with these predicates

we ensure the monotonicity of the abstraction of the system’s transition relation.

5.2 Refining the Abstract Observation Equivalence

If for every τ ∈ Traces( fe) the formula F( fe, τ) is satisfiable, the predicates from RPGG( fe)
might not suffice to eliminate the counterexample, because the reason for its existence is the

coarseness of the abstract observation-equivalence. We propose an algorithm RPOE (Refine-

ment Predicates for the Observation Equivalence) for computing a set of observable refine-

ment predicates that allow us to distinguish the concrete error paths for different traces. The

predicates are obtained from interpolants for unsatisfiable conjunctions of trace formulas.
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According to the construction of these formulas, they share only observable variables and

hence the computed interpolants contain only observable predicates. The key challenge for

the interpolation computation in our case is to ensure that these predicates are localized, i.e.,

that the variables which occur in an atom correspond to a single concrete state and not to

a sequence of concrete states. We extend the algorithm from [10], which reduces the com-

putation of interpolants for linear arithmetic to linear programming problems, in order to

handle this additional condition on the variable occurrences. Our more general algorithm

LILA (Linear Interpolation with Localized Atoms) receives in addition a partitioning of the

variables which occur in the input systems of inequalities and as a result, each atom in the

generated interpolant is guaranteed to contain variables from exactly one partition. We first

present the algorithm RPOE and then describe the procedure LILA.

Algorithm:RPOE

Input: symbolic game G = (S , err), pair P = (Pse,Ps) of finite sets of predicates,
strategy tree T( fe) of an abstract winning environment strategy in α(G,P)

Output: pair of sets of refinement predicates (Rse,Rs)
Φ := {F( fe, τ) | τ ∈ Traces( fe)}; Rse := ∅;
while all elements of Φ are satisfiable do

pick Ψ ⊆ Φ, ϕ ∈ Φ \ Ψ such that ψ :=
∧

φ∈Ψ φ is satisfiable and ϕ ∧ ψ is unsatisfiable;

n := max(MaxIx(ϕ),MaxIx(ψ));
if Rse = ∅ then Rse := OutPreds({τ | F( fe, τ) ∈ {ϕ} ∪ Ψ});
θ := LILA(ϕ,ψ, (Vars0(ϕ) ∪Vars0(ψ), . . . ,Varsn(ϕ) ∪Varsn(ψ)));
Rse := Rse ∪ (Preds(θ)) substX; Φ := {θ ∧ φ | φ ∈ Ψ};

return (Rse,PredsSyst(Pse ∪ Rse));

Distinguishing abstract prefixes. Let Φ = {F( fe, τ) | τ ∈ Traces( fe)}. As all formulas

F( fe, τ) are satisfiable and the formula F( fe) is not, there exists a subset Ψ of Φ such that ψ =
∧

φ∈Ψ φ is satisfiable and there exists a formula ϕ ∈ Φ \ Ψ such that ϕ ∧ ψ is unsatisfiable.

The variables in
⋃

π∈T( fe),σ1,σ2∈C∗
o
X(π,σ1,σ2) (and hence the variables in ϕ and in ψ) are

partitioned according to the length of π: For j ∈ N, X j is the union of all sets X(π,σ1,σ2) with

|π| = j. For a formula φ,MaxIx(φ) is the maximal j with Varsj(φ) = Vars(φ) ∩ X j 6= ∅.

When ϕ and ψ are (disjunctions of) mixed systems of linear inequalities, we apply al-

gorithm LILA described in the next paragraph to compute an interpolant θ such that each

literal which occurs in θ is of the form ix ⊳ δ where ⊳ ∈ {≤,<} and the only variables

which occur in such an inequality are in the set {x(π,σ)
i , x

(π,σ)
o , t(π,σ)} for some π ∈ T( fe) and

σ ∈ C∗
o , i.e. the coefficients in front of all other variables are 0. By applying the substitution

substX to the atoms in θ, we obtain a set of predicates over observable variables from the

original set of variables X. Then, the set Φ is updated to be the set of conjunctions θ ∧ φ,

where φ ∈ Ψ and the process is repeated while all elements of the current set Φ are satisfi-

able. The predicates in RPOEse( fe) are the atoms from all computed interpolants, plus the set

of output predicates for the traces corresponding to the formulas in the initial set Ψ ∪ {ϕ}.
The predicates in RPOEs( fe) ensure the monotonicity of the abstraction.

Computing interpolants with localized atoms. We now present the algorithm LILA for

computing localized interpolants. A mixed system, denoted Ax 6 a, consists of strict and

non-strict linear inequalities. The input of algorithm LI from [10] consists of two mixed
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systems of inequalities Ax 6 a and Bx 6 b such that the conjunction Ax 6 a ∧ Bx 6 b

is not satisfiable. The output is a linear interpolant ix ⊳ δ where ⊳ ∈ {≤,<}. Algorithm

LILA receives in addition a partitioning (V0,V1, . . . ,Vn) of the variables in the vector x. The

output is an interpolant for Ax 6 a and Bx 6 b which is of the form
∧n

j=0 ijx ⊳j δj, where

⊳j ∈ {≤,<} and for each 0 ≤ j ≤ n, only variables from V j occur in ijx ⊳j δj. If such inter-

polant is not found, the element⊥ is returned. The variables λ,λ0,λ1, . . . ,λn denote vectors

which define linear combinations of inequalities in Ax 6 a. The subvectors λlt,λle,λlt

j ,λ
le

j

for j = 0, 1, . . . , n define linear combinations of strict and non-strict inequalities in Ax 6 a,

respectively. Similarly for µ, µlt, µle. For each 0 ≤ j ≤ n, the set of variables V j defines a set

Ix(j) of indices: Ix(j) = {k | k ∈ {1, . . . ,mA}, xk ∈ V j}, where mA is the number of columns

in A. Its complement {1, . . . ,mA} \ Ix(j) is denoted with Ix(j). For 1 ≤ k ≤ mA, the k-th

column of the matrix A is denoted with A|k. For disjunctions of mixed systems, i.e., for for-

mulas
∨

k Akx 6 ak and
∨

l Blx 6 bl in DNF, we proceed as in [10]: compute an interpolant

θkl for each pair of disjuncts and then take
∨

k

∧

l θkl .

THEOREM 3. Algorithm LILA is sound: If it returns a conjunction θ =
∧n

j=0 θj, then θ

is an interpolant for the pair of mixed systems Ax 6 a and Bx 6 b with the following
properties: (1) for each j, θj is of the form ijx ⊳j δj where ⊳j ∈ {≤,<}; (2) there exist row
vectors λ0, . . . ,λn such that for every 0 ≤ j ≤ n, λj ≥ 0, ij = λjA and δj = λja; (3) for each
0 ≤ j ≤ n, only variables from V j occur in θj. Algorithm LILA is complete: if an interpolant
θ =

∧n
j=0 θj with the properties (1),(2) and (3) exists, then the algorithm will find one.

Algorithm:LILA

Input: Ax 6 a and Bx 6 b: mixed systems, Ax 6 a ∧ Bx 6 b is unsatisfiable,
partitioning (V0,V1, . . . ,Vn) of the variables in x

Output: interpolant
∧n

j=0 ijx ⊳j δj where ⊳j ∈ {≤,<} and

only variables from V j occur in ijx ⊳j δj
χ1 := λ ≥ 0∧ µ ≥ 0∧ λA + µB = 0;
χ2 := λ = ∑

n
j=0 λj ∧

∧n
j=0(λj ≥ 0∧ ij = λjA ∧ δj = λja ∧

∧

k∈Ix(j) λjA|k = 0);

if exist λ, µ,λj, ij, δj, for 0 ≤ j ≤ n satisfying χ1 ∧ χ2 ∧ λa + µb ≤ −1
then return

∧n
j=0 ijx ≤ δj;

elif exist λ, µ,λj, ij, δj, for 0 ≤ j ≤ n satisfying χ1 ∧ χ2 ∧ λa + µb ≤ 0∧ λlt 6= 0
then return

∧

0≤j≤n,λlt
j 6=0 ijx < δj ∧

∧

0≤j≤n,λlt
j =0 ijx ≤ δj;

elif exist λ, µ,λj, ij, δj, for 0 ≤ j ≤ n satisfying χ1 ∧ χ2 ∧ λa + µb ≤ 0∧ µlt 6= 0
then return

∧n
j=0 ijx ≤ δj;

else return ⊥

5.3 Refinement Loop

In each iteration of the refinement loop, an abstract perfect-information game is solved.

If it is won by the system player, the algorithm terminates returning an abstract winning

strategy for the system. Otherwise, the abstraction is refined with the predicates R( fe),
computed for some abstract winning strategy fe for the environment. There are two cases.

If refining the transition relations suffices to eliminate fe, the abstraction is refined with the

predicates in RPGG( fe). Otherwise, the predicates in RPOE( fe) are used for refinement. In



DIMITROVA,FINKBEINER FSTTCS 2008 185

the second case, it is possible that in the game α(G,P ∪ RPOE( fe)), the environment has a

winning strategy f ′e with f ′e ≤ fe. Then, we also refine with the predicates in RPGG( f ′e) for

every such f ′e . The set Refine( fe,P ′) consists of all winning strategies for the environment in

α(G,P ′) subsumed by fe. It can be computed from the strategy fe and the predicates in P ′.

Algorithm:ARGII

Input: symbolic safety game G = (S , err) Output: pair (winner, abstract strategy)
P := (Pse,Ps),where Pse := Preds(init) ∪ Preds(err) ∪ {t ≈ 0} and Ps := PredsSyst(Pse);
solve α(G,P) and determine: winner and strategy;
while winner = env do

if F(strategy) is satisfiable then return (winner, strategy);
fe := strategy;
if ∃τ ∈ Traces( fe) : F( fe, τ) is unsatisfiable then compute R := RPGG( fe);
else

R := RPOE( fe); compute S := Refine( fe,R);
forall f ′e ∈ S do R := R ∪ RPGG( f ′e);

P := P ∪ R; solve α(G,P) and determine winner and strategy;

return (winner, strategy)

THEOREM 4.[Soundness of algorithm ARGII] The algorithm ARGII is sound: if it returns
(sys, f as ), then the concrete symbolic game (S , err) is won by the system and f as is a con-
cretizable abstract winning strategy for the system; if it returns (env, f ae ) then (S , err) is won
by the environment and f ae is a concretizable abstract winning strategy for the environment.

THEOREM 5.[Progress property of the refinement] Let fe be a spurious wining strategy for
the environment in the game α((S , err),P). In α((S , err),P ∪ R( fe)), the environment does
not have a winning strategy f ′e with f ′e ≤ fe.

6 Termination of the Abstraction Refinement Loop

In this section we provide sufficient conditions for termination of the refinement loop. In

order to guarantee that only finitely many different abstract states are generated during the

execution of the algorithm, we make standard assumptions about the concrete game graph,

which we extend with conditions related to the presence of incomplete information. As we

also have to account for the refinement predicates obtained from interpolants, we apply the

standard technique (e.g, [8]) of restricting the interpolants computed at each step to some

finite language Lb and maintaining completeness by gradually enlarging the restriction lan-

guage when this is needed. We make use of the fact that our algorithm reduces interpolant

computation to constraint solving, in order to achieve the restriction of the language by

imposing additional constraints on the generated inequalities.

Computing restricted linear interpolants. We restrict the language of the computed in-

terpolants to the set of rectangular predicates over the variables in Obs(X). A rectangular

predicate over Obs(X) is a conjunction of rectangular inequalities of the form ax ⊳ c, where

x ∈ Obs(X), a ∈ {−1, 1}, ⊳ ∈ {<,≤} and c is an integer constant. For m ∈ N, a rectangular

predicate ϕ is called m-bounded if for each conjunct ax ⊳ c of ϕ, |c| ≤ m. Let Lm be the set

of all m-bounded rectangular predicates over Obs(X). The modified algorithm LILAr gets
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as input also a bound b ∈ N and ensures that every conjunct in the computed interpolant

is in Lb. If such an interpolant does not exist, then the bound b is increased. The modified

algorithm partitions the variables into singleton sets and uses in conjunction with χ1 and χ2

the additional constraints: (1) χ3 defined as χ3 =
∧n

j=0(ij ≤ 1 ∧ ij ≥ −1 ∧ δj ≤ b ∧ δj ≥ −b)
and (2) the variables δj and the variables in the vector ij assume integer values.

Region algebra for an incomplete-information game. A region algebra for a symbolic safety

game (S , err) is a pair (R,Obs) of possibly infinite sets R ⊆ 2S and Obs ⊆ R of regions

with the following properties: (1) for every r1, r2 ∈ R, we have r1 ∪ r2, r1 ∩ r2, S \ r1 ∈ R;

(2) for every r1, r2 ∈ Obs, we have r1 ∪ r2, r1 ∩ r2, S \ r1 ∈ Obs; (3) the sets {v ∈ S | v |=
t ≈ 0} and {v ∈ S | v |= t ≈ 1} are in R; (4) for every r ∈ R and co ∈ Co, and every

p ∈ Preds(Pree(r)) ∪ Preds(Pres(co, r)) it holds that for every r′ ∈ R, either for every v ∈ r′,
v |= p or for every v ∈ r′, v |= ¬p; (5) for every co ∈ Co, the set {v ∈ S | v |= xo ≈ co} is in

Obs; (6) for every π1,π2 ∈ Prefs(G), if each of last(π1) and last(π2) is an error state and there

exists an index j such that π1[j] and π2[j] are system states and π1[j] 6≡ π2[j], then there exist

0 ≤ k ≤ j and r ∈ Obs such that π1[k] ∈ r and π2[k] 6∈ r.

THEOREM 6.[Termination] Consider a symbolic safety game (S , err) for which there exists
a finite region algebra (R,Obs) with Obs = Lm for some m ∈ N. If algorithm ARGII using
the modified algorithm LILAr is called with argument (S , err), then it terminates.
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1 Introduction

It is well known that finding the largest clique in a graph is NP-hard, [8]. Indeed, Hastad

[5] has shown that it is NP-hard to approximate the size of the largest clique in an n vertex

graph to within a factor n1−ǫ for any ǫ > 0. Not surprisingly, this has directed some re-

searchers attention to finding the largest clique in a random graph. Let Gn,1/2 be the random

graph with vertex set [n] in which each possible edge is included/excluded independently

with probability 1/2. It is known that whp the size of the largest clique is (2+ o(1)) log2 n,
but no known polymomial time algorithm has been proven to find a clique of size more

than (1+ o(1)) log2 n. Karp [9] has even suggested that finding a clique of size (1+ ǫ) log2 n
is computationally difficult for any constant ǫ > 0.

Significant attention has also been directed to the problem of finding a hidden clique,

but with only limited success. Thus let G be the union of Gn,1/2 and an unknown clique on

vertex set P, where p = |P| is given. The problem is to recover P. If p ≥ c(n log n)1/2 then,
as observed by Kucera [10], with high probability, it is easy to recover P as the p vertices

of largest degree. Alon, Krivelevich and Sudakov [1], using spectral analysis, were able to

improve this to p = Ω(n1/2). McSherry [11] gives some refinements of this method. In

conjunction with a negative result of Jerrum [6] that one possible Markov chain approach

fails for p = o(n1/2), p = Ω(n1/2) seems like a natural barrier for solving this problem. Feige

and Krauthgamer [4] considered finding a planted clique in the context of the semi-random

model. Juels and Peinado [7] considered the application of this problem to Cryptographic

Security.

Let AG denote the adjacency matrix of G. The spectral approach of [1] essentially max-

imizes xTAGx over vectors x with |x| = 1, expecting that the optimal solution is close to u,

defined by ui = p−1/21i∈P, (u is the scaled characteristic vector of P) so that we may recover

P from the optimal solution.
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In this paper, we define a natural 3-dimensional array A related to the given graph

: Ai,j,k will be ±1 depending on whether the parity of the number of edges among the

vertices i, j, k is odd or even respectively. Our main result here (Section 2) shows that

as long as p = Ω(n1/3(log n)4), the maximum of the cubic form or tensor A(x, x, x) =

∑i,j,k Ai,j,kxixjxk, x ∈ Bn = {x ∈ Rn : |x| = 1} is attained close to u. Thus if we can find

this maximimum, then we can recover the clique. However, unlike the case of the quadratic

form, where the maximization is an eigenvalue computation which is well-known to be

solvable in polynomial time, there are in general no known polynomial time algorithms for

maxmizing cubic forms. So, our existential result does not automatically lead to an algo-

rithm and this is left as an open question. We make the following conjecture which would

yield an algorithm if proved.

Conjecture Suppose that an n × n × n array A is constructed as above from Gn,1/2 plus a

planted clique of size p ∈ Ω(n1/3(log n)c). Then the function A(x, x, x) has a unique local maxi-

mum as x varies over Bn.

2 The cubic form and the main result

We define the 3-dimensional array :

Ai,j,k =







1 if i, j, k are distinct and G contains 1 or 3 edges of the triangle i, j, k.

−1 if i, j, k are distinct and G contains 0 or 2 edges of the triangle i, j, k.

0 if i, j, k are not distinct.

We assume that

p = C1n
1/3(log n)4.

Here C1,C2, . . . , are unspecified positive absolute constants.

For vectors x, y, z, we define

A(x, y, z) = ∑
i,j,k

Ai,j,kxiyjzk.

x, y, z will denote vectors of length 1 throughout. We will reserve u for the scaled character-

istic vector of P defined earlier. The following Theorem (which is the Main Theorem of the

paper) will imply (see Corollary 2 below) that if at least one of x, y, z is orthogonal to u, then

we have |A(x, y, z)| ≤ C2n
1/2(log n)4. In which case,

A(u, u, u) =
p(p− 1)(p− 2)

p3/2
∼ p3/2 = ω(A(x, y, z))

for all such x, y, z. (We use the notation an = ω(bn) to mean that an/bn → ∞ as n → ∞).

Let

P3∗ = {(i, j, k) ∈ P3 : i, j, k are distinct}
Define the 3-dimensional matrix D by

Di,j,k =

{

1 (i, j, k) ∈ P3∗,

0 otherwise
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and let B = A− D.

B(x, y, z) = A(x, y, z) − ∑
i,j,k∈P3∗

xiyjzk. (1)

The entries of A in P× P× P contribute ∑(i,j,k)∈P3∗ xiyjzk to the tensor A(x, y, z); so B(x, y, z)
is the contribution due to the random graph alone. The proof of Theorem 1 occupies all of

Section 3. We defer the proofs of the corollaries following it to Section 4.

THEOREM 1. There exists C3 such that

Pr
(

∃x, y, z : |B(x, y, z)| ≥ C3n
1/2(log n)4

)

= o(1).

Let

U∗ = {(x, y, z) : x.u = 0 or y.u = 0 or z.u = 0}.

COROLLARY 2. If (x, y, z) ∈ U∗ then

|A(x, y, z)| ≤ 2C3n
1/2(log n)4. (2)

So, whp , we have that

A(u, u, u) = ω

(

max
(x,y,z)∈U∗

A(x, y, z)

)

. (3)

COROLLARY 3. Suppose the maximum of the multilinear form A(x, y, z) as x, y, z vary over
the unit ball is attained at x∗, y∗, z∗. Then, min{x∗ · u, y∗ · u, z∗ · u} = 1− o(1).

The above corollary ensures that from x∗, y∗, z∗, we can find the clique P using the

Theorem below. (See Section 4.)

THEOREM 4. There is a polynomial time algorithm which given as input a unit vector v,

returns a set P′ of cardinality p satisfying the following: If v · u ≥ C4 log n

p1/2
, for sufficiently

large C4 then P′ = P.

Observe that it is trivial to get a vector v satisfying v · u ≥ 1/p1/2 by trying out all

n unit vectors. Getting a vector v satisfying the hypothesis of the Theorem in polynomial

time, however, seems to be non-trivial.

Remarks: We can assume that x∗ = y∗ = z∗ in Corollary 3. Indeed, for a fixed x, the

problem of maximising A(x, y, z) over the unit ball Bn amounts to maximizing yTAxz for

y, z ∈ Bn. Here Ax is the n× n matrix defined by Ax(i, j) = ∑k Ai,j,kxk. Ax is a symmetric

matrix and so for each x there is a maximum in which y = z. Now define a sequence of

vector triples xk, yk, zk, k = 0, 1, 2, . . . , where x0, y0, z0 = x∗, y∗, z∗ and x1 = x0 and y1 = z1
maximise yTAx1z over Bn. Now to obtain x2, y2 = y1, z2 we find x = z to maximise A(x, y1, z
and so on. Any limit point of this sequence x̂, ŷ, ẑ must maximise A(x, y, z) and must have

x̂ = ŷ = ẑ. If for example, x̂ 6= ŷ then we have the contradiction that there are points of the

form ξ, ξ, η arbitrarily close x̂, ŷ, ẑ.
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Remarks: By switching from 2-dimensional matrices to 3-dimensional matrices we have

reduced the necessary size of P from Õ(n1/2) to Õ(n1/3). An interesting open question is

whether using the natural k-dimensional matrices (whose entries are ±1 depending on the

parity of the number of edges of G in the induced sub-graphs on k vertices) will allow us to

go down to Õ(n1/k), for any fixed positive integer k.

Remarks: We note that x∗ is a local maximum of the function A(x, x, x) (with respect to first

and second order moves) over the unit ball iff

1. x∗ is the eigenvector corresponding to the highest eigenvalue of the matrix A(x∗) and
2. the second highest eigenvalue of A(x∗) is at most half the highest.

We can assume that |x| = 1. Let F(x) = A(x, x, x) and let h be small and let x · h = 0. Then

we write F
(

x+h
|x+h|

)

≤ F(x) as

F(x) + 3A(x, x, h) + 3A(x, h, h) +O(|h|3) ≤ F(x)(1+ 3|h|2/2+O(|h|4).

Then we will need x · h = 0 implies A(x, x, h) = 0 and maxh A(x, h, h) = λ2(Ax)|h|2.)

3 Proof of Theorem 1

Wewill have tomake a series of technical modfications. Thesemodifications reduce proving

Theorem 1 to Lemma 6 below. In the next Section 3.1, we carry out the central part, namely

the proof of Lemma 6.

The first modification is that it is easy to see that if we set to zero all the xi for which

|xi| ≤ 1/n2, as well as similarly for y, z, then the RHS of (1) changes by at most 1. So we will

assume that either xi = 0 or |xi| ≥ 1/n2, and similarly for y, z.

Now, here is our second technical modification: Let V1,V2,V3 form an arbitrary parti-

tion of V into three subsets, each of size m = n/3. Noting that by symmetry, each triangle

i, j, k appears in the same number of V1 ×V2 ×V3, one can see that

∑
(i,j,k)

Bi,j,kxiyjzk ≤
27

( n
m,m,m) ∑

V1,V2,V3

∑
(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk

So,
∣

∣

∣

∣

∣

∣

∑
(i,j,k)

Bi,j,kxiyjzk

∣

∣

∣

∣

∣

∣

≤ 27

( n
m,m,m) ∑

V1,V2,V3

∣

∣

∣

∣

∣

∣

∑
(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk

∣

∣

∣

∣

∣

∣

(4)

Now for any x, y, z we have

| ∑
(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk| ≤ (∑
i

|xi|)(∑
j

|yj|)(∑
k

|zk|) ≤ n3/2. (5)

We will prove below that for each fixed partition of V into three equal sized subsets -

V1,V2,V3, we have,

Pr



max
x,y,z

∣

∣

∣

∣

∣

∣

∑
(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk

∣

∣

∣

∣

∣

∣

≥ C5n
1/2(log n)4



 ≤ 1

n6
. (6)
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One can derive Theorem 1 from (4), (5) and (6) by the following simple argument: Say that a

partition V1,V2,V3 is bad for A, if maxx,y,z

∣

∣

∣∑(i,j,k)∈V1×V2×V3
Bi,j,kxiyjzk

∣

∣

∣
≥ C5n

1/2(log n)4 and

we let PB denote the set of bad partitions. Let

g(A) =
|PB|

( n
m,m,m)

.

Then, we know that EA(g(A)) ≤ 1/n6 from which it follows by Markov inequality that

PrA

(

g(A) ≥ 100

n4

)

≤ 1

100n2
.

For any A with g(A) ≤ 100/n4, we have from (5)

∑
V1,V2,V3

max
x,y,z

∣

∣

∣

∣

∣

∣

∑
(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk

∣

∣

∣

∣

∣

∣

≤
(

C5n
1/2(log n)4 +

100

n4
n3/2

)(

n

m,m,m

)

and Theorem 1 follows.

To prove (6), we fix attention from now on on one particular V1,V2,V3. We let

X(x, y, z) = ∑
(i,j,k)∈V1×V2×V3

Bi,j,kxiyjzk

and

(x∗, y∗, z∗) = argmaxx,y,z|X(x, y, z)|
and suppose that

|X(x∗, y∗, z∗)| ≥ C5n
1/2(log n)4. (7)

For sets R ⊆ V1, S ⊆ V2, T ⊆ V3 of vertices, we let B(R, S, T) be the set of triples of vectors

(x, y, z) satisfying

|x|, |y|, |z| ≤ 1.

R = {i : xi 6= 0}, S = {j : yj 6= 0}, T = {k : zk 6= 0}.
|xi/xj| ≤ 2, ∀i, j ∈ R, |yi/yj| ≤ 2, ∀i, j ∈ S, |zi/zj| ≤ 2, ∀i, j ∈ T.

Note that this implies

|xi| ≤
2

|R|1/2 , |yi| ≤
2

|S|1/2 , |zi| ≤
2

|T|1/2 , ∀i. (8)

Since 1
n2

≤ |x∗i |, |y∗j |, |z∗k | ≤ 1, we can write each of x∗, y∗, z∗ as the sum of log2(n
2) vectors,

each of which has the property that its non-zero components are within a factor of 2 of each

other. Thus, (7) implies that there exist R, S, T such that

max
(x,y,z)∈B(R,S,T)

|X(x, y, z)| ≥ C6n
1/2 log n.

So, we see that (7) would lead to the non-occurrence of the eventA in the following Lemma.
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LEMMA 5. For every fixed partition of V into three equal sized sets V1,V2,V3, we have that
with probability at least 1− 1

n6
, the following event A holds:

A: For all R, S, T, R ⊆ V1, S ⊆ V2, T ⊆ V3,

max
(x,y,z)∈B(R,S,T)

|X(x, y, z)| < C6n
1/2 log n.

This in turn will follow from the next lemma:

LEMMA 6. Suppose R, S, T are fixed pair-wise disjoint subsets of vertices, with |R| = r, |S| =
s, |T| = t. Then with probability at least 1− n−6(r+s+t), the following event which we will
call AR,S,T happens:

max
(x,y,z)∈B(R,S,T)

|X(x, y, z)| ≥ C6n
1/2 log n.

Lemma 5 follows from Lemma 6 by the following argument: For each set of integers

r, s, t, the number of subsets (R, S, T) of {1, 2, . . . n} with |R| = r, |S| = s, |T| = t is at most

nr+s+t. Thus we will concentrate on proving Lemma 6.

3.1 Proof of Lemma 6

Note that R can be partitioned into two parts - R ∩ P and R \ P, similarly also S, T. So, it

suffices to prove that for any fixed R, S, T, each either contained in P or disjoint from P, the

following event BR,S,T happens with probability at least 1− n−6(r+s+t):

BR,S,T : max
x,y,z∈B(R,S,T)

|X(x, y, z)| ≤ C7n
1/2 log n.

If R, S, T ⊆ P, then X(x, y, z) = 0. So, we may assume in what follows that

(R ⊆ P or R ∩ P = ∅), (S ⊆ P or S ∩ P = ∅), (T ⊆ P or T ∩ P = ∅), (R ∪ S ∪ T 6⊆ P)

We consider the following cases, which up to re-naming of R, S, T are exhaustive:

Case 1: S, T ⊆ P and R ∩ P = ∅ and |R| ≤ max{|S|, |T|} ≤ |P|.
In this case we use the Azuma-Hoeffding martingale tail inequality, see for example

[3]. We have E(X) = 0 and X = X(x, y, z) is determined by r(s + t) independent random

variables (the edges in R× (S∪ T)). Now adding or removing an edge in R× S (resp. R× T)

can change X by at most 8t
(rst)1/2

(resp. 8s
(rst)1/2

) (recall (8)). Applying the inequality we see

that

Pr(|X| ≥ C6n
1/2 log n) ≤ 2 exp

{

−C7n(log n)2

s + t

}

≤ n−20(r+s+t). (9)

(Remember that r, s, t ≤ p = n1/3+o(1)).

The above deals with one particular x, y, z ∈ B(R, S, T).

Note next that there is a 1/(r + s + t)2-net L of B(R, S, T) of size at most O((r + s +
t)6(r+s+t)). (I.e., there is a set L of O((r + s + t)6(r+s+t)) elements of B(R, S, T) so that for
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each element (x, y, z) of B(R, S, T), there is some element (x′, y′, z′) of L such that |(x −
x′, y− y′, z− z′)| ≤ 1/(r + s + t)2). Now, (9) implies that

Pr
(

∃(x′, y′, z′) ∈ L : |X(x′, y′, z′)| ≥ C6n
1/2 log n

)

≤ n−12(r+s+t).

Lemma 6 follows from this and

|A(x, y, z) − A(x′, y′, z′)| ≤
|A(x, y, z) − A(x′, y, z)| + |A(x′, y, z) − A(x′, y′, z)| + |A(x′, y′, z) − A(x′, y′, z′)|

≤ 4rst

(r + s + t)2

(

1

(st)1/2
+

1

(rt)1/2
+

1

(rs)1/2

)

.

Case 2 |R| ≥ |S|, |T| and either (i) R ⊆ P and S ∩ P = T ∩ P = ∅ or (ii) R ∩ P = ∅.

In either of the two sub-cases (i) and (ii), all the edges in G from R× (S∪ T) are from the

random graph, not from the planted clique. Also, fix attention on one particular (x, y, z) ∈
B(R, S, T).

In this case, to prove an upper bound on |X(x, y, z)|, we bound its ℓth moment, where

ℓ is an even integer to be chosen later.

Let I be the set of triples (i, j, k), where i, j, k are distinct and at most 2 of them are

in P. Let Ωℓ denote the set of ordered sequences of ℓ triangles T1, T2, . . . , Tℓ where Ti ∈
I ∩ (R× S× T) for i = 1, 2, . . . , ℓ. Let X = X(x, y, z). We have

E(Xℓ) = ∑
T ∈Ωℓ

E

(

ℓ

∏
i=1

A(Ti)

)

ℓ

∏
i=1

Z(Ti). (10)

where if Ti = (α, β,γ) then A(Ti) = Aα,β,γ and Z(Ti) = xαyβzγ.

Consider an edge e ∈ R× (S ∪ T) such that e appears in an odd number of triangles in

T . If we consider the measure preserving map fe which deletes e if it appears in G and adds

it otherwise then we see that

ℓ

∏
i=1

A( fe(Ti)) = −
ℓ

∏
i=1

A(Ti)

and so E
(

∏
ℓ
r=1 A(Tr)

)

= 0. This implies that it is sufficient to sum over those T in which

each edge of R × (S ∪ T) appears an even number of times. Let Ω∗
ℓ
(R, S, T) denote the

set of ordered sequences (i1, j1, k1), . . . , (iℓ, jℓ, kℓ) ∈ (I ∩ (R × S × T))ℓ such that each pair

(i, j) ∈ R× S and each pair (i, k) ∈ R× T appears an even number of times.

LEMMA 7.

|Ω∗
ℓ (R, S, T)| ≤ ℓ!

(

ℓ + r− 1

r− 1

)

(4st)ℓ/2.

Proof Fix di ≥ 0, i ∈ R and let us first count the sequences in Ω′
ℓ
(R, S, T) in which

i ∈ R appears di times. Note that ∑i∈R di = ℓ. Now fix i ∈ R and consider the di triangles

(i, s1, t1), . . . (i, sdi , tdi) which contain i. Then consider the bipartite multigraph Γ on S ∪ T
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with edges (s1, t1), . . . , (sdi , tdi). By assumption, each vertex of Γ is of even degree and so by

Lemma 8 (below) there are at most (4st)di/2 choices for Γ. Multiplying over i we see that

there are at most (4st)ℓ/2 choices for any given sequence d1, . . . , dr. The number of choices

for d1, . . . , dr is at most (ℓ+r−1
r−1 ) and the lemma follows by multiplying by ℓ! to get an ordered

sequence. 2

Let N(s, t, µ) denote the number of bipartite multigraphs with vertex sets S, T on the

two sides, with µ edges and such that each vertex has even degree.

LEMMA 8.

N(s, t, µ) ≤ (4st)µ/2.

Proof First note that for f ≥ 1

22 f

2 f 1/2
≤ (2 f )!

( f !)2
≤ 22 f .

Let 2e1, 2e2, . . . , 2es and 2 f1, 2 f2, . . . , 2 ft denote the degrees of vertices in S, T respectively.

Then

N(s, t, µ) ≤ ∑
2e1+···+2es=µ
2 f1+···+2 ft=µ

µ! min

{

∏
i∈S

1

(2ei)!
,∏
j∈T

1

(2 f j)!

}

≤ ∑
2e1+···+2es=µ
2 f1+···+2 ft=µ

µ!

(

∏
i∈S

1

(2ei)!
∏
j∈T

1

(2 f j)!

)1/2

≤ ∑
2e1+···+2es=µ
2 f1+···+2 ft=µ

(µ/2)!22µ ∏
i∈S

21/2e1/4i

2eiei!
∏
j∈T

21/2 f 1/4j

2 f j f j!

≤ 2µ

(

∑
e1+···+es=µ/2

(µ/2)!∏
i∈S

1

ei!

)(

∑
f1+···+ ft=µ/2

(µ/2)!∏
j∈T

1

f j!

)

= 2µsµ/2tµ/2,

the last because
(

∑e1+···+et=µ/2(µ/2)! ∏j∈T
1
ej !

)

is the number of ways of parititioning the

set {1, 2, . . . µ/2} into t subsets and this number also equals tµ/2. 2

Thus,

E(Xℓ) = ∑
T ∈Ω∗

ℓ

E

(

ℓ

∏
r=1

A(Tr)

)

ℓ

∏
r=1

Z(Tr)

≤ |Ω∗
ℓ | ·

8

(rst)ℓ/2

≤
(

ℓ + r− 1

r− 1

)

· 2
ℓ+3ℓ!

rℓ/2

≤ 2ℓ+4ℓℓ+1/2er

rℓ/2
.
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Now ℓ even implies that Xℓ ≥ 0 and so applying the Markov inequality, we see that for any

ξ > 0,

Pr(X > ξ) ≤ 2ℓ+4ℓℓ+1/2er

ξℓrℓ/2
.

Putting ξ = C6n
1/2 log n and ℓ = (r + s + t) log n, we see that

Pr(X(x, y, z) ≥ C6n
1/2 log n) ≤ n−20(r+s+t). (11)

This completes the proof of Lemma 6.

4 Proof of the Corollaries

Corollary 2 follows from Theorem 1 and the following:

∣

∣

∣

∣

∣

∣

∑
i,j,k∈P3∗

xiyjzk

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(

∑
i∈P

xi

)(

∑
j∈P

yj

)(

∑
k∈P

zk

)∣

∣

∣

∣

∣

+ |y · z|
∣

∣

∣

∣

∣

∑
P

xi

∣

∣

∣

∣

∣

+ |x · z|
∣

∣

∣

∣

∣

∑
P

yj

∣

∣

∣

∣

∣

+ |x · y|
∣

∣

∣

∣

∣

∑
P

zk

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
i∈P

xiyizi|
∣

∣

∣

∣

∣

≤ 3p1/2.

2

For Corollary 3 we write x∗ = (x∗ · u)u + x′, where x′ is orthogonal to u, similarly for

y∗, z∗. This splits A(x∗, y∗, z∗) into the sum of 8 parts. Using (3), we get

A(u, u, u) ≤ A(x∗, y∗, z∗) ≤ o(A(u, u, u)) + (x∗ · u)(y∗ · u)(z∗ · u)A(u, u, u),

and the corollary follows. 2

5 Proof of Theorem 4

Now, we prove Theorem 4. Let v with |v| = 1 be the given vector. Define a vector w by:

wi = max(vi, 0). Clearly, ∑i∈P wi ≥ ∑P vi. For ease of notation, we re-number the indices of

coordinates so that w1 ≥ w2 ≥ . . .wn. Since v is given, we can explicitly do this reordering.

Also for convenience, we let wn+1 = 0. After this renumbering, we let

Sk = {1, 2, . . . k}, Tk = Sk ∩ P, tk = |Tk| k = 1, 2, . . . , n. (12)

LEMMA 9. If ∑i∈P vi ≥ C8 log n, then for some integer k,

tk ≥ C8

√

k log n/3.
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Proof Assume for the sake of contradiction that ∑i∈P vi ≥ C8 log n and that for all

k, tk < C8

√

k log n/3.

∑
i∈P

wi =
n

∑
k=1

tk (wk − wk+1) ≤
1

3
C8

√

log n
n

∑
k=1

√
k(wk − wk+1)

=
1

3
C8

√

log n
n

∑
k=1

wk(
√
k−

√
k− 1) ≤ 2

3
C8

√

log n
n

∑
k=1

wk√
k

≤ 2

3
C8

√

log n|w|
(

n

∑
k=1

1

k

)1/2

≤ 3

4
C8 log n,

using 2√
k
≥

√
k−

√
k− 1 and also the Cauchy-Scwartz inequality. This contradiction proves

the Lemma. 2

Let G be the graph we are given (the random graph plus the planted clique.) Let M be

its adjacency matrix, where we put a +1 for an edge and -1 for a non-edge. For a subset S

of V, let GS denote the induced subgraph on S and MS the |S| × |S| adjacency matrix of GS.

(In our definition of adjacency matrix, we have 1’s on the diagonal). We may write

M = puuT + M̂− M̃, (13)

where M̂ is the adjacency matrix of the random graph and M̃ is the adjacency matrix of the

sub-graph induced on P of the random graph. [M̃ has 0 entries outside P × P.] We may

similary write for any S ⊆ V,

MS = tuSuS
T
+ M̂S − M̃S, (14)

where |S ∩ P| = t and uS denotes the vector with 1/
√
t in the S ∩ P positions and 0 else-

where.

LEMMA 10. With probability at least 1− n−3, we have that for all S ⊆ V,

max{λ1(M̂
S),λ1(M̃

S)} ≤ 100
√

|S| log n

where λ1 denotes the largest absolute value of an eigenvalue.

Proof For each fixed S, the matrix M̂S is a random symmetric matrix. It is known

[2] that with probability at least 1− 4e−10|S| log n, we have that |λ1(M̂
S)| ≤ 100

√

|S| log n.
For each s ∈ {1, 2, . . . n}, there are at most ns subsets S of V with |S| = s. So the probability

that the assertion of the Lemma does not hold is at most ∑
n
s=1 n

se−10s log n ≤ 1/(2n3). M̃S is

dealt with similarly.

2

For notational convenience, we let Mk denote MSk (see (12)) and similarly for M̂k, M̃k.

The first step of our algorithm is to run through k = 1, 2, . . . n, find λ1(M
k) and stop when

for the first time, we find a k such that

λ1(M
k) ≥ 1000

√

k log n. (15)
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LEMMA 11.

(i) If C8 ≥ 3000 then the algorithm will find a k satisfying (15).
(ii) For any k satisfying (15), we have:

(a) if a is the top eigenvector of Mk, then
∣

∣∑i∈Tk ai
∣

∣ ≥ 0.8
√
tk and

(b) tk ≥ 800
√

k log n.

Proof Let uk be a vector defined by uki = 1/
√
tk for i ∈ Tk and 0 elsewhere. Then,

uk
T
Mkuk = tk; this implies that λ1(M

k) ≥ tk. Now (i) follows from Lemma 9.

(ii) Suppose now k satisfies (15) and a is the top eigenvector of Mk. Then, we have

(recalling (14) and using Lemma 10),

1000
√

k log n ≤ aTMka = tk(u
k · a)2 + aTM̂ka− aTM̃ka ≤ tk + 200

√

k log n.

Thus,

tk ≥ 800
√

k log n.

Also,

tk ≤ λ1(M
k) ≤ tk(u

k · a)2 + 200
√

k log n ≤ tk

(

(uk · a)2 +
1

4

)

which implies (uk · a)2 ≥ 3/4. This proves (ii).

2

LEMMA 12. There is a polynomial time algorithm which given S ⊆ V and a unit length
vector a with support S, finds a P′ ⊆ V with the following property:

If |S ∩ P| ≥ 800
√

|S| log n and ∑i∈S∩P ai ≥ 0.8
√

|S ∩ P|, then P′ = P.

Proof Re-number the coordinates, so that a1 ≥ a2 ≥ . . . ≥ an. In particular this

implies that if ℓ ≤ |S| then [ℓ] ⊆ S. We wish to prove that there is an integer ℓ such that

|[ℓ] ∩ P| ≥ max{ℓ/100, 10 log n} (16)

First, if |S ∩ P| ≥ |S|/10, then we can take ℓ = |S|. So assume that t = |S ∩ P| < |S|/10 and

let ℓ = 4t. Now

∑
i≤ℓ;i∈P

ai ≤
√

|[ℓ] ∩ P|

and so

∑
i≥ℓ+1;i∈P

ai ≥ 0.8
√

|S ∩ P| −
√

|[ℓ] ∩ P| and ∑
i≤ℓ

ai ≥
ℓ

t

(

0.8
√

|S ∩ P| −
√

|[ℓ] ∩ P|
)

.

But,

∑
i≤ℓ

ai ≤
√

ℓ.

This implies
√

|[ℓ] ∩ P| ≥ 0.8
√

|S ∩ P| − 0.25
√

ℓ = .15
√

ℓ. (17)

Also, we have |S∩ P|2 ≥ 640000|S| log n and so |S∩ P| ≥ 640000 log n and then (16) follows

from (17) and |[ℓ] ∩ P| ≥ 4(.15)2|S ∩ P| .
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Now to construct P we try all values of ℓ. For each value of ℓ, we pick a random set Q1

of 10 log n from [ℓ]. For ℓ satisfying (16) there is at least a 10−20 log n chance thatQ1 ⊆ P. Now

whp no set of 10 log n vertices in P have more than 2 log n common neighbours outside P.

Indeed the probability of the contrary event is at most

(

p

10 log n

)(

n

2 log n

)

2−20(log n)2 = o(1).

So let Q2 be the set of common neighbours of Q1. By assumption we have P ⊆ Q2 and

|Q2 \ P| ≤ 2 log n. Also, whp for every 10 log n-subset Q of P, no common neighbour

outside P has 3p/4 neighbours in P. Indeed the probability of the contrary event is at most

n

(

p

10 log n

)(

n

2 log n

)

2−p/12 = o(1).

Thus P is the set of vertices of degree at least 7p/8 in the subgraph of G induced by Q2. 2

AcknowledgementWe thank Santosh Vempala for interesting discussions on this prob-

lem.
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ABSTRACT. In many optimization problems, a solution can be viewed as ascribing a “cost” to each
client, and the goal is to optimize some aggregation of the per-client costs. We often optimize some
Lp-norm (or some other symmetric convex function or norm) of the vector of costs—though different
applications may suggest different norms to use. Ideally, we could obtain a solution that optimizes
several norms simultaneously. In this paper, we examine approximation algorithms that simultane-
ously perform well on all norms, or on all Lp norms.

A natural problem in this framework is the Lp Set Cover problem, which generalizes SET COVER and
MIN-SUM SET COVER. We show that the greedy algorithm simultaneously gives a (p + ln p +O(1))-
approximation for all p, and show that this approximation ratio is optimal up to constants under reasonable
complexity-theoretic assumptions.

We additionally show how to use our analysis techniques to give similar results for the more general
submodular set cover, and prove some results for the so-called pipelined set cover problem. We then
go on to examine approximation algorithms in the “all-norms” and the “all-Lp-norms” frameworks
more broadly, and present algorithms and structural results for other problems such as k-facility-
location, TSP, and average flow-time minimization, extending and unifying previously known re-
sults.

1 Introduction
When the solution to an optimization problem affects multiple people or organizations,
there is often a trade-off between various efficiency and fairnessmeasures. Typically, there is
an abstract “cost” associated with each participant and the objective function is some aggre-
gation of the individual costs. The method of aggregation represents our relative priorities
concerning efficiency and fairness. E.g., in k-median, given demand points D ⊆ V in a met-
ric space (V, d), we must select k facilities to open: the cost associated with each participant
d ∈ D is its distance to the nearest open facility. Each solution thus induces a cost vector

C ∈ R
|D|
+ , and the objective is to minimize ‖C‖1 = ∑d∈D Cd, the sum of the participant costs:

hence, this method of aggregation favors global efficiency over fairness. Another extreme is
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k-center, where we minimize the fairer objective function ‖C‖∞, the maximum participant
cost. Other examples where such trade-offs appear include:

• Sequencing problems: Cmeasures the “time” of service for each participant, for example
the cover times of the elements in a set cover instance, or the times to reach the vertices
in a TSP instance.
• Scheduling problems: C could be the load of the machines or the flow-times of the indi-

vidual jobs.
• Allocation problems: C measures the quality of service of each participant, for example

congestion or dilation in routing problems, and distances in facility location problems.

In general, there are many aggregation functions we might wish to consider. However, if
we are feeling particularly ambitious, we might ask if we can efficiently find solutions that
simultaneously approximate the optimal solutions for each member of a large class of aggre-
gation functions. Formally, we are given a minimization problem and a class of aggregation
functions F . For each f ∈ F , let C∗f be the feasible vector minimizing f (·). Then for as small

an α as possible, we want to find a feasible cost vector C such that f (C) ≤ α · f (C∗f ) for all
f ∈ F . Such a vector C is a simultaneous α approximation for F .

In this paper, wewill consider two classes of aggregation functions: the class ofMinkowski
Lp norms {Lp | p ∈ R≥1} ∪ {L∞} (i.e., All Lp Norm results), and the class of all symmetric
norms (i.e., AllNorm results). The Lp norm of C, which is ‖C‖p := (∑i C

p
i )

1/p for a real value
1 ≤ p < ∞ and maxi Ci for p = ∞, provides a nicely parameterized way of quantifying the
efficiency/fairness trade-off.

The question of all-norm minimization was investigated by Kleinberg et al. [KRT01]
in their study of fair resource allocation algorithms for routing and load balancing, and the
problem of all Lp-norms minimization was considered by Azar et al. [AERW04] for ma-
chine scheduling. Subsequent work on these topics was done in the papers [KK00, GMP01,
GM06]—the concepts studied here are closely linked to submajorization of vectors [HLP88],
which is even stronger than simultaneously approximating all symmetric norms (and hence
all Minkowski norms), see [GM06] for details and many interesting results derived there-
from. For the comprehensive treatment of submajorization and AllNorm approximation, see
books by Hardy et al. [HLP88] or Steele [Ste04].

1.1 All Lp-norms Set Cover

The classical set cover problem wants to pick a small number of sets one-by-one to cover
the elements early in the worst-case, whereas the min-sum set cover problem tries to pick the
sets to cover the elements early “on average”. In this paper, the first question we consider
is how to pick sets so that the second (or higher) moments are small: this is just the Lp-Set
Cover (Lp SC) problem. We show that the greedy algorithm is, in fact, a (p + ln p + 3)-
approximation for all Lp norms simultaneously! Moreover, for any fixed p, we cannot hope
to do much better using any other algorithm, and hence greedy is essentially the best.

Formally, a set cover instance consists of a ground set U of n elements, a collection F
of subsets of U , and a cost function c : F → R+. An algorithm picks sets S1, S2, . . . , St (in
that order) so that their union ∪iSi is U . On this ordering, let ci be the cost of the set Si; i.e.,
ci = c(Si). Informally, we may think of Si as corresponding to an action ai that covers the
elements of Si, and ci is the time required to execute ai. Let the cover index of an element
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e ∈ U be defined as index(e) = min{i : e ∈ Si}; i.e., the position of the first set that contains
e. The cover time of an element e ∈ U is defined to be the time required to cover e if we
execute actions in this order: i.e., time(e) = ∑

index(e)
i=1 ci. Note that for the case of unit costs,

the cover index and cover time are the same. Given the sequence of sets that the algorithm
picks, we obtain a cover time vector C ∈ R

n
+, where Ce is the cover time of the element e ∈ U .

The Lp set cover problem is then to find the ordering that minimizes ‖C‖p. It is easy to see
that using the L1 norm and unit costs we obtain the MIN-SUM SET COVER problem [FLT04],
whereas using the L∞ norm we obtain the classical set cover problem [Chv79, Lov75, Joh74].

We prove the greedy algorithm achieves an approximation ratio of (1+ o(1))min{p, ln n}
for Lp set cover (which is simultaneously optimal for all Lp norms), and also an O(log n)-
approximation in the AllNorm model. Moreover, even if we focus on any fixed value of p,
we show that it is impossible to approximate the Lp set cover problem better than Ω(p)

unless NP ⊆ DTIME(nO(log log n)). This lower bound holds for all functions p(n) such
that 1 ≤ p(n) ≤ 1−ǫ

2 ln(n) for all n. We also show that the greedy algorithm achieves an
(p + ln p + 3)-approximation in the Lp Submodular Set Cover problem, which is a generaliza-
tion of the Lp set-cover problem to arbitrary submodular functions.

To the best of our knowledge, there has not been any prior work on All Lp Norm ap-
proximation for Set Covering problems seeking to minimize all ‖C‖p; of course, there is
much work for special values of p. For the classical MINIMUM SET COVER problem (min-
imize ‖C‖∞), an (1 + o(1)) ln n-approximation is known both by greedy and by LP round-
ing [Joh74, Lov75, Chv79, Sla97, Sri99]. Moreover, one cannot get an (1− ǫ) ln n-approximation
unless NP ⊆ DTIME(nO(log log n)) [Fei98]. For the MIN-SUM SET COVER problem (mini-
mize ‖C‖1), we know that greedy is an optimal 4-approximation [FLT04] (see also [BNBH+98,
CFK03]).

1.2 Overview of our Other Results and Related Work

Pipelined Set Cover: This problem was studied in the All Lp Norm framework by Munagala
et al. [MBMW05], and seeks to minimize ‖R‖p where Ri is the number of uncovered elements
before the ith set is chosen. To put this in context, the L1 norm for this problem is the MIN-
SUM SET COVER problem, and the L∞ norm is just |U |. Munagala et al. show that the output
of the greedy algorithm is simultaneously a 91/p-approximation for the Lp norm, and also
give a local-search algorithm that is a 41/p approximation. We show how our proof ideas

from MIN-SUM SET COVER give an (1 + ln p
p + 3

p )-approximation guarantee for the greedy

algorithm for this problem; while slightly worse than the previous known guarantee (note

1 + ln(4)
p ≤ 41/p ≤ 1 + 3

p for all p ≥ 1), it extends to the case of non-uniform costs where no

guarantee was known for the greedy algorithm.

Norm Sampling: We consider the problem of finding a good representative set for the
class of all Lp norms with p ∈ R≥1 ∪ {∞}—namely a set S ⊂ R≥1 ∪ {∞} such that an
simultaneous α-approximation for all Lp norms with p ∈ S implies a simultaneous O(α)-
approximation for all Lp norms with p ∈ R≥1 ∪ {∞}. This leads us to a notion of norm
sampling, and we give tight bounds for the size of S necessary and sufficient to well repre-
sent (various subsets of) the Lp norms, as well as explicit constructions of such sets.

Facility Location Problems: We return to the example at the beginning of the introduction,
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where we seek to open k facilities to minimize ‖C‖p, where C is the vector of assignment
costs of demands. It is known that one can getO(1)-approximation algorithm for all norms
provided we open O(k log n) facilities [KK00, GM06], and such a O(log n) blow-up in the
number of open facilities cannot be avoided [KK00]. In contrast, we use the above norm-
sampling ideas to give an O(1)-approximation algorithm for all Lp norms with integer val-
ues of p provided we open O(k

√

log n) facilities, and show that opening Ω(k · (logk n)1/3)
facilities may be necessary in some instances.

Results via Partial Covering: For sequencing problems such as TSP, where the cost vector
is the time to reach each of the n vertices in some graph, or sequencing versions of cov-
ering problems (of which Lp set cover is a good example), we show how to use partial
covering results to generate AllNorm approximations. For example, we give an AllNorm 16-
approximation result for the TSP by drawing on the elegant techniques of Blum et al. [BCC+94]
and the large body of subsequent and related work. To extend the result to other problems
(like vertex cover and Multicut on trees), we use results from the well-studied area of partial
covering problems, and the papers of [GKS04, KPS06] in particular.

Flow-Time Scheduling: Some scheduling problems naturally lend themselves to a job-
centric perspective. We consider scheduling jobs on parallel machines and look at the
vector of flow times for each job: given ε-factor extra speed for each machine, we get an
O(1/εO(1))- approximation algorithms for all norms. This extends previouswork of Chekuri
et al. [CGKK04] (who proved the result for all Lp norms), Bansal and Pruhs [BP03] (who gave
an All Lp Norm result for a single machine). Related work includes results in the machine-
centric model (see, e.g., [AERW04, GM06, AT04, AE05]).

1.3 Preliminaries and Notations

A norm ‖·‖ on vectors of length n is a function from R
n → R that satisfies the following:

‖α X‖ = |α| ‖X‖ for any α ∈ R and X ∈ R
n, and secondly ‖X +Y‖ ≤ ‖X‖ + ‖Y‖ for

X,Y ∈ R
n. The Minkowski Lp norm of X is ‖X‖p = (∑i X

p
i )

1/p for a real value 1 ≤ p < ∞;
the L∞ norm is just ‖X‖∞ = maxi Xi. It is well-known that for all X ∈ R

n and p < q,
‖X‖p ≥ ‖X‖q [HLP88].

All of the problems we consider in this paper have the property that a solution to the
problem induces a vector of length n; thus, for each instance I of such a problem, we have a
set V(I) consisting of all vectors that are induced by some feasible solution to the instance.
For a norm ‖·‖, let ‖X‖ denote the norm of the vector X. We state two well-known facts for
easy reference: the latter follows directly from the convexity of xp.

Fact 1 (Generalized AM-GM [Ste04]) 1
pA + p−1

p B ≥ A1/pB(p−1)/p

Fact 2 (The Discrete Differential) Let p ≥ 1. If the real numbers a, b, and c satisfy c = a− b ≥
0, then ap − bp ≤ c · p · ap−1.

2 The Lp Set Cover Problem
We show that the greedy algorithm simultaneously gives an (p + ln p + 3)-approximation
for the Lp Set Cover problem for all p, hence generalizing the fact that it is an O(log n)-
approximation for MIN SET COVER (i.e., the L∞ ≈ Llog n case) and 4-approximation for the
L1 case. We then show that for any p, we give a hardness of approximation result of Ω(p).
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2.1 An Upper Bound for the Greedy Algorithm

Consider the familiar setup. We have a universe U of n elements and a family F of subsets
of U . The greedy algorithm picks sets S1, S2, . . . , St from F until ∪iSi = U , such that each Si
satisfies |Si \ (∪j<iSj)| = maxS∈F{|S \ (∪j<iSj)|}.

Let ci be the cost of the set Si. Let si be the cumulative cost of the first i sets picked by
the greedy algorithm. That is, s0 = 0 and si+1 = si + ci+1. Let Xi = Si\(∪j<iSj) be the set

of elements with cover index i. Let Ri = U −⋃i−1
j=1 Xj be the elements uncovered just before

the ith set is picked. We use S∗i , c
∗
i , s
∗
i , X

∗
i and R∗i to denote the analogous quantities for the

optimal algorithm.
For a fixed value of p, the cost of the greedy algorithm (denoted by greedy) can be

written in terms of the values Xi and Ri as follows:

greedy =
(

∑i>0 s
p
i |Xi|

)1/p
(1)

=
(

∑i>0(s
p
i − s

p
i−1)|Ri|

)1/p
, (2)

where the second expression follows from the fact that |Ri+1| = |Ri| − |Xi|. The cost of the
optimal algorithm can be expressed in a similar fashion.

The following lemma upper bounds the cost of greedy by a somewhat exotic expression,
which will later turn out to be crucial to our analysis.

Lemma 3 (Upper-bound on Greedy)

greedyp ≤ (greedy′)p
def
= ∑

i>0

(

p · ci
|Ri|
|Xi|

)p

· |Xi|

PROOF. Let Ai =
(

p · ci |Ri |
|Xi |

)p
· |Xi| be the ith term in the summation above. Taking the

ith terms in the expressions (1) and (2) measuring the cost of the greedy algorithm, and
raising them to the pth powers, define Bi = (s

p
i − s

p
i−1) |Ri| and Ci = s

p
i |Xi|. It follows from

Fact 1 that 1
p Ai +

p−1
p Ci ≥ A

1/p
i C

(p−1)/p
i = p · ci · sp−1i |Ri| ≥ Bi. The last inequality follows

from Fact 2 and the observation that ci = si − si−1. Now, rearranging terms, we have that
Ai ≥ p Bi − (p− 1)Ci; summing this over all i and noting that ∑i Bi = ∑i Ci = greedyp, we

get that ∑i

(

p · ci |Ri |
|Xi |

)p
· |Xi| = ∑i Ai ≥ p ∑i Bi − (p− 1) ∑i Ci = greedyp, which completes

the proof.

Given this upper bound on the cost of the greedy algorithm, we now compare this to
the optimal Lp set cover cost. While the structure of the remainder of the proof follows
that by Feige et al. [FLT04] for the L1 case, we need a few new ingredients, most notably
obtaining the correct “price” function.

Theorem 4 (Lp Approximation Guarantee) The greedy algorithm gives a (1+ p)1+1/p ≤ (p +
ln p + 3)-approximation for the Lp set cover problem.

PROOF. Recall that greedy and opt denote the cost of the greedy algorithm and the optimal
algorithm, respectively. We show opt graphically as in Figure 1 (left). The horizontal axis
is divided into n equal columns, corresponding to the elements of the universe U . The
elements are arranged from left to right in the order that the optimal algorithm covers them.



204 ALL-NORMS AND ALL-Lp-NORMS APPROXIMATION ALGORITHMS

The column corresponding to the element x has height (s∗
index∗(x))

p. Thus the area under the

curve is optp.

As Lemma 3 shows, greedyp can be upper-bounded by the expression (greedy′)p. The
right panel of Figure 1 models the quantity (greedy′)p. The diagram has n columns cor-
responding to the elements of U appearing from left to right in the order that the greedy
algorithm covers them. For each element of Xi, its corresponding column has height [p ·
ci|Ri|/|Xi|]p.

Elements of U

s∗
1

p

s∗
2

p

s∗
3

p

s∗
4

p

Area = optp.

Elements of U

Area = (greedy′)p.

Figure 1: Graphical representations of the cost of the optimal algorithm (left) and an upper
bound of the cost of the greedy algorithm (right).

We will now show that the area of the (greedy′)p curve is at most pp(1 + p)(1 + 1/p)p

times the area of the optp curve. To prove this, we scale the (greedy′)p curve down by [p(1+
1/p)]p vertically and by 1 + p horizontally, and place this scaled curve so that its bottom-
right is aligned with the bottom-right of the optp curve. Now consider a point q = (x, y)
on the original (greedy′)p curve. Suppose the point q corresponds to an element of Xi, so
y ≤ [p · ci|Ri|/|Xi|]p. Also the distance to q from the right side is at most |Ri|. Therefore, the
height of the point q after scaling, which we denote by h, is at most

(

1
1+1/p ·

|Ri |
|Xi |/ci

)p
, and

the distance from the right (after scaling), denoted by r, is at most |Ri|/(1+ p).
In order to show that the point q (after scaling) lies within the optp curve, it suffices to

show that when the optimal algorithm’s cover time is h1/p, at least r points remain uncov-
ered. Consider the set Ri. Within this set, the greedy algorithm covers the most elements
per unit increase in cover time. Therefore, the number of elements from Ri that the opti-

mal algorithm can cover in time h1/p is at most
(

1
1+1/p ·

|Ri |
|Xi |/ci

)

|Xi |
ci
≤ 1

1+1/p |Ri|, and so

at least 1
1+p |Ri| elements remain uncovered at time h1/p. Since |Ri|/(1 + p) ≥ r, this im-

plies that q (after scaling) lies within the optp curve, and hence the scaled-down version
of the (greedy′)p curve is completely contained within the optp curve. Quantitatively, this
implies that greedyp ≤ (1 + p)[p(1 + 1/p)]p optp = (1 + p)p+1 optp. It can be shown that
(1+ p)1+1/p ≤ p + ln p + 3 for p ≥ 1, which completes the proof.

Having shown that the greedy algorithm gives an O(p) approximation for any fixed p,
in the full version we give an example for which the greedy algorithm is an Ω(p) approxi-
mation.

Theorem 5 (Tight Example for Greedy) There is a set system on which greedy yields an Ω(p)
approximation.
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2.2 A Matching Hardness Result for Lp Set Cover

In this section, we show that the greedy algorithm achieves the best possible approximation
factor up to constant factors; indeed, we show that even if we fix a value of p, there is no
polynomial-time algorithm approximating Lp set cover problem better than Ω(p) unless

NP ⊆ DTIME(nO(log log n)). We first prove a technical lemma.

Lemma 6 Let #OPT(I) denote the number of sets an optimal algorithm (for the classical min set
cover) needs to cover the set-cover instance I. Let ǫ > e2. Let t : N → R+ be a non-decreasing
function such that 1 ≤ t(n) ≤ logǫ n for all n. If there exists an efficient algorithm A such that

for all n > 0, for all instance I with n elements, A covers at least n · (1− ǫ−t(n)) elements with
t(n) · #OPT(I) sets, then NP ⊆ DTIME(nO(log log n)).

The proof is standard and can be found in the full version [GGKT07].

Lemma 7 Suppose δ > 0, and p(n) = ω(1) is non-decreasing and 1 ≤ p(n) ≤ ( 12 − δ) ln n for all

n. Then the Lp set-cover problem is Ω(p)-hard to approximate unless NP ⊆ DTIME(nO(log log n)).

PROOF. Assume NP * DTIME(nO(log log n)). Let p (the norm parameter), ǫ > e2 be given,
and let t(n) = p(n). (Note that since t(n) must be less than logǫ n, and ǫ > e2, we need
the upper bound of ( 12 − δ) ln n on p(n).) As a direct consequence of Lemma 6 and our
complexity assumption, we know that for all efficient algorithm A, there is n > 0 such that
there is an instance I of size n such that using t(n) · #OPT(I) sets, A has at least n · ǫ−t(n)

elements remaining.
Let A be any polynomial-time algorithm for solving Lp set cover. Fix n and such an

instance I. Let opt denote the Lp cost of any optimal algorithm on the instance I, and let alg

denote the Lp cost of the algorithm A. As before, let Xi denote the elements with cover index
i and let Ri denote the elements with cover index i or greater A’s solution, and let X∗i and

R∗i denote the analogous sets for the optimal solution. We know that optp = ∑
k
i=1 i

p|X∗i | ≤
n · [#OPT(I)]p, because the classical solution is also a solution of the Lp version. On the
other hand, algp ≥ sp · |Rs| for all s > 0. In particular, with s = p · #OPT(I) and our
lower bound on |Rs| from Lemma 6, we conclude algp ≥ (#OPT(I) · p)p · n

ǫp Therefore,

alg/opt ≥
(

(p/ǫ)p
)1/p

= p/ǫ = Ω(p).

Lemma 8 For p(n) = O(1), it is impossible to approximate Lp set cover better than Ω(p) unless
P = NP.

PROOF. Feige et al. [FLT04] shows that, for all c0, ǫ > 0, there are set cover instances such
that it is NP-hard to distinguish between the following two cases: (1) There is a set cover of
size t, or (2) For all integers x such that 1 ≤ x ≤ c0t, every collection of x sets leaves at least
a fraction of (1− 1/t)x − ǫ of the elements uncovered.

It follows that if we guess t, any algorithm leaving fewer than ((1− 1/t)x − ǫ) n ele-
ments uncovered after buying x sets, for any x ∈ [1, c0t], allows us to solve anNP-Complete
problem. Thus unless P = NP, every polynomial time algorithm run on these instances has
at least ((1− 1/t)x − ǫ) n elements uncovered after buying x sets, for any x ∈ [1, c0t].

Now fix p and a polynomial time algorithm A and let algp be the pth power its cost
for the Lp set-cover problem. Let optp denote the corresponding quantity for the optimal
solution. Let g(x) := xp − (x − 1)p. Recall algp = ∑x |Rx| · g(x), where Rx is the set of
elements with cover index at least x. Suppose that there is a set cover of size t. In that case
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it is not too hard to show that optp ≤ ∑
t
x=1

(

n
t

)

xp, since after buying x sets the optimal
solution covers at least n

t x elements. Thus optp ≤ n · tp. On the other hand:

algp = ∑
x≥1
|Rx|g(x) ≥

c0·t
∑
x=1

(

(1− 1

t
)x − ǫ

)

n · g(x) ≈ n
∫ c0·t

x=1

(

e−
x
t − ǫ

)

g(x)dx

Note that t = ω(1), so (1− 1/t)x ≈ e−x/t is an arbitrarily accurate approximation. If we
can set c0 > (p+ 1) and ǫ ≤ e−(p+1)/2 it is not too hard to show algp = Ω(ntp

( p
e

)p
), simply

by considering the contribution of ∑
(p+1)·t
x=pt

(

e−x/t − ǫ
)

n · g(x) to algp. Thus algp/optp =

Ω(
( p
e

)p
), and we obtain a gap of alg/opt = Ω(p) for all constant p.

Combining Lemma 7 and Lemma 8 immediately yields the following theorem.

Theorem 9 Unless NP ⊆ DTIME(nO(log log n)), for all δ > 0 and p = p(n) such that 1 ≤
p(n) ≤ ( 12 − δ) ln(n), it is impossible to approximate Lp set cover better than Ω(p).

2.3 Submodular Set Cover

We now consider a generalization of the Lp set cover problem. Our setting now assumes a
(monotone) submodular function f : 2V → R+. Using techniques similar to those above,
we can analyze the greedy algorithm’s performance on this generalization, and obtain the
same approximation guarantee. Thus, if action xi takes ci time to perform, and we perform
actions x1, x2, . . . , xk in that order, the total cost will be

(

∑
k
i=1 ( f (Si)− f (Si−1)) ·

(

∑
i
j=1 cj

)p)1/p

where Si := {x1, x2, . . . , xi}. The objective is to select the permutation that minimizes this
cost. The proof of the following theorem appears in the full version [GGKT07].

Theorem 10 (Submodular Lp Approximation Guarantee) The greedy algorithm gives a (1 +
p)1+1/p ≤ p + ln p + 3-approximation for the submodular Lp set cover problem.

2.4 The Pipelined Set Cover Problem

Closely related to the Lp set cover problem is the Lp pipelined set cover problem. In Lp-
pipelined set cover, the cost function is given by:

cost =
(

∑i≥0 ci|Ri|p
)1/p

This formulation follows [MBMW05] but incorporates the notion of cost for each set. §

When p = 1, this cost function is the same that for the Lp case (and the min sum set cover
problem). For this problem, we use the technique in the proof of Theorem 4 to argue that the
greedy algorithm achieves the following approximation ratio; previous work [MBMW05]
gave no approximation guarantee the general costs case. The proof is given in the full ver-
sion.

Theorem 11 (Pipelined Set-Cover Approximation Guarantee) The standard greedy algorithm

gives a (1+ ln p
p + 3

p )-approximation for the Lp pipelined set-cover problem.

§This expression, in fact, differs from that defined by Munagala et al. [MBMW05]: their objective raises ci to

the pth power. However, this only changes the quantity minimized in the greedy step, and hence we use this
expression for convenience.
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3 All Lp Norm Approximations via Sampling Norms
We now ask the following question: Is there a small “basis” set of Lp norms that “approximate”
all other Lp norms? Formally, given two vectors X and Y of length n each, is there a set S
of indices such that if ‖X‖p ≤ ‖Y‖p for all p ∈ S, then the same inequality holds (up to
a constant approximation) for all Lp norms? Given such a set S, we can imagine finding a
solution for each Lp with p ∈ S, and then “composing” them together to get solution that is
good for all Lp norms. In this section, we will show that there is indeed such a set S of size
O(log n); if we are interested in maintaining Lp norms only for integer p, then we can get a
set of size O(

√

log n). Moreover, we show that both these bounds are tight. Proofs omitted
from this section appear in the full version [GGKT07].

Definition 12 (α-Sampling) For a domain D ⊆ R≥1 ∪ {∞}, a set S ⊆ D is an α-sampling of
D of order n if for all pairs of non-negative vectors X,Y ∈ R

n
≥0

‖X‖p ≤ ‖Y‖p for all p ∈ S ⇒ ‖X‖p ≤ α · ‖Y‖p for all p ∈ D.

Such samplings prove useful in the All Lp Norm framework in the following way.

Theorem 13 Given a minimization problem whose objective function is the Lp norm of some cost
vector, and an α-sampling S of D ⊆ R≥1 ∪ {∞}, then a cost vector C that is a simultaneous β-
approximation for the class {Lp | p ∈ S} is a simultaneous αβ-approximation for the class {Lp | p ∈
D}.

We prove the following tight bounds on the size of O(1)-samplings.

Theorem 14 (Tight Bounds on O(1)-Samplings) There exists an O(1)-sampling of the domain
Dreals = R≥1 ∪ {∞} of order n with size |S| = O(log n), and an O(1)-sampling of the domain
Dints = Z≥1 ∪ {∞} of order n with size O(

√

log n). Moreover, one cannot obtain smaller O(1)-
samplings for either of these domains.

3.1 All Lp Norm Approximations for Facility Location Problems

In this section, we show how the O(1)-samplings immediately give algorithms for the
All Lp Norm k-facility location problems. As mentioned in the introduction, we can imag-
ine an abstract facility location problem where given a metric space (V, d) with demand
points D ⊆ V, we open a set of at most k facilities F ⊆ V and assign each demand to a
facility. This naturally gives a vector C of assignment costs for the demands with each solu-
tion: the k-median problem now minimizes ‖C‖1, the k-means problem looks at ‖C‖2, and
the k-center problem at ‖C‖∞, etc. Let optp(k) denote a solution opening k facilities that
minimizes the Lp norm of the vector of assignment costs. For any set of open facilities F,
let Costp(F) denote the ℓp norm of the resulting vector of assignment costs. The following
theorem shows how to get an All Lp Norm approximation to such problems.

Theorem 15 There exists a set F of O(k log n) facilities F such thatCostp(F) ≤ O(1) ·Costp(optp(k))
for all p ≥ 1. If we want this to hold for all Lp norms for integer values of p only, then we need only
O(k

√

log n) facilities. Moreover, we can find these facilities in polynomial time in both cases.

The proof is immediate from Theorems 13 and 14, and the fact that for any 1 ≤ p < ∞,
one can use existing techniques to get anO(1)-approximation algorithm for minimizing the
ℓp norm ‖C‖p. Indeed, all the approximation algorithms for the k-median problem cited
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above have the following additional property—if the underlying space only satisfies a λ-
relaxed triangle-inequality (i.e., the distances satisfy d(x, y) ≤ λ · (d(x, z) + d(y, z) for the
parameter λ ≥ 1), then these algorithms give an O(λ)-approximation algorithm for the k-
median problem. The problem of minimizing the (pth power of) the ℓp norm of assignment
cost can be thought of as the k-median problem where distance between two points x and y
is given by d(x, y)p. Now these distances satisfy the λ = 2p-relaxed triangle-inequality, and
hence we get an [O(2p)]1/p-approximation algorithm for the ℓp norm.

Kumar and Kleinberg showed that we need to open Ω(k log n) facilities to get an O(1)-
AllNorm-approximation. That proof does not work for the All Lp Norm case; however, we can
show the following result.

Theorem 16 Given a parameter α, there exists a metric space over n demand points such that for a

set of facilities F satisfying Costp(F) ≤ α · optp(k) for all integer p ≥ 1, |F| ≥ Ω
(

k
( log n
log(αk)

)
1
3
)

. In

fact, the lower bound holds even for Lp norms with integer p.

It is an interesting open problem if we can open o(k log n) facilities and still beO(1)-competitive
against all Lp norms.

4 AllNorm Approximation Algorithms
In the previous sections, we were interested in All Lp Norm approximations, and situations
where focusing on Lp norms (instead of all symmetric norms) would give more nuanced
results. In this section, we give results for the AllNorm case; complete proofs of the theorems
in this section appear in the full version [GGKT07].

For a vector X, define
←−
X as the vector obtained by sorting the coordinates of X in

descending order. Given vectors X and Y of length n each, we say that X is α-submajorized
by Y (written as X ≺α Y) if for all i ∈ [n], ∑j≤i

←−
X j ≤ α ∑j≤i

←−
Y j (i.e., the partial sums of←−

X are at most α times the partial sums in
←−
Y ). Intuitively, this means that the k unhappiest

elements in X are together at most α times worse off than the k unhappiest elements of Y:
we will want to find solutions X which are α-submajorized by any other solution Y (for small
α). The following result is well-known (see, e.g., [Ste04]).

Theorem 17 Let X and Y be two vectors of equal length, such that X is α-submajorized by Y. Then
f (X) ≤ f (α · Y) for all real symmetric convex functions. In particular, if f is a symmetric norm,
then f (X) ≤ α f (Y).

4.1 AllNorm Approximation from Partial Covering Algorithms

We now show how solutions for “partial covering” problems can be used to prove sub-
majorization results; these submajorization results immediately lead to AllNorm approxima-
tions for these problems by Theorem 17. Partial covering problems include the k-MST prob-
lem (find a tree of minimum cost spanning at least k nodes), or the k-vertex cover problem
(find a set of nodes of minimum size/cost that covers at least k edges). In this paper, we
show how an O(1)-approximation to the k-MST problem implies an O(1)-submajorization
result, and how these ideas extend to other partial cover problems.

Theorem 18 For a TSP instance on a graph G = (V, E), given a tour π, let ti be the time at which
the salesperson reaches vertex vi, and let Tπ = (t1, t2, . . . , tn) be the vector of these arrival times
sorted in ascending order. Then there is a solution where the arrival time vector is α-submajorized by
the corresponding vector in any other solution, where α ≤ 16.
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The ideas behind this theorem can be used to show that Set Cover problem admits
an O(log n)-AllNorm approximation, Vertex Cover an 8-AllNorm approximation, etc. Let us
sketch the idea for Vertex Cover: first use the fact that k-vertex cover admits a 2-approximation [BB98,
Hoc98, BY01, GKS04]. This gives us an algorithm that given a budget B, finds a solution of
cost 2B in poly-time which covers at least as many edges as any other solution of cost B.
Setting the value of B to be successive powers of 2, we can argue that if any other algorithm
covers k elements with cost at most 2i−1, then we would have covered at least k elements
with cost at most 4 · 2i; this gives us an 8-submajorization. See the papers [GKS04, KPS06]
for results on partial covering problems (all of which can be similarly extended).

4.2 AllNorm Algorithms for Flow Time on Parallel Machines

Finally, we consider the problem of scheduling jobs on parallel machines: given a schedule
A, the vector of interest is the vector FA of flow times, where the flow time is the difference be-
tween its completion time and release date—hence, the ℓ1 norm of this vector is the problem
of minimizing the average flow time on parallel machines: see, [CKZ01] and the references
therein for several polynomial-time logarithmic-approximation algorithms.

It is known that for any scheduleA, the All Lp Norm-guarantee αALN(FA) is unbounded
even if there is only one machine [BP04]: hence results have been given in the resource
augmentation framework by giving our machines (1 + ε)-speed. In particular, Bansal and
Pruhs [BP04], and Chekuri et al. [CGKK04] gave results showing that given any constant
ε > 0, we can get an O( 1

εO(1) )-approximation algorithm for all ℓp norms. In this paper, we
show that one can extend their results to a submajorization, and hence AllNorm result.

Theorem 19 There exists a schedule A such that FA β-submajorizes FB for all schedules B, where
β is a constant (depending only on ε).
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ABSTRACT. We consider the construction of finite automata from their corresponding regular ex-
pressions by a series of digraph-transformations along the expression’s structure. Each intermediate
graph represents an extended finite automaton accepting the same language. The character of our
construction allows a fine-grained analysis of the emerging automaton’s size, eventually leading to
an optimality result.

1 Introduction

Regular expressions provide a description of regular languages in a manner convenient for

the human reader. On the machine level, however, the most appropriate representation

is arguably that of finite automata. Thus, considerable effort has been put into ways of

constructing automata describing the same language as a given expression. All algorithms

known to the authors work by either incorporating the expression’s syntactic structure into

the state graph of the emerging automaton [OF61, Kle65, Tho68, SSS88, IY03] or by look-

ing for first-time occurrences of symbols in subexpressions [Glu61, MY60, BS86]. The first

kind of construction generally results in an NFA with ǫ-transitions (ǫNFA, for short), the

latter produces no such transitions and may even provide a DFA. An exhaustive overview

is given in [Wat94].

Our construction yields an ǫNFA. No tight bound for the size of such an automaton rep-

resenting a given expression has been published yet. Ilie & Yu [IY03] came pretty close,

proving a lower bound of 4
3 times the size of a given expression while constructing an ǫNFA

smaller than 3
2 times the expression length. We close this gap by raising the lower bound

and giving a construction reaching that bound in the worst case. Note, however, that plenty

of definitions of the sizes of automata and regular expressions are afloat, some of which are

compared in [EKSW05]. For comparability, we stick by the definition given in [IY03].

The algorithm presented in this paper is basically an extension to the one given in [OF61],

which is, together with a variation of Thompson’s algorithm in [Wat94], the only top-down

algorithm among a variety of bottom-up procedures. It turns out that the top-down char-

acter is very helpful in the analysis, since it allows systematic construction of an expression

yielding the worst ratio of automaton-to-expression sizes. This construction relies on ex-

tremal combinatorial arguments for inferring structural properties of a worst-case input. To

our knowledge this is a novel approach to this kind of problem.
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2 Preliminaries

Enclosing braces for singleton sets will be omitted. Let A be a finite set of symbols, called

alphabet, the elements of A∪ǫ will be called literals. The set of regular expressions over A,
denoted Reg(A), is the closure ofA∪ǫ under product •, sum + and Kleene-star ∗. Operator

precedence is ∗, •,+. Wewill casually speak of expressions only. In the following, α and β will

always be expressions. The regular language expressed by α is denoted L(α). We will call α

and β equivalent, denoted α≡β, if L(α)=L(β). The number of products (sums, stars) in α will

be denoted |α|• (|α|+, |α|∗). Likewise, the number of literals in α, counted with multiplicity,

will be denoted |α|A. The size of an expression is defined as |α|:=|α|•+|α|++|α|∗+|α|A. We

call α complex, if |α| ≥ 2. The set of subexpressions of α will be denoted sub(α).

Both iterated products and sums will be denoted as is common in arithmetic, defining

n

∏
i=1

αi := α1 • α2 • . . . • αn and
n

∑
i=1

αi := α1 + α2 + . . . + αn

Each αi as above will be called an operand to the product or sum. An iterated product (sum)

which is not operand to a product (sum) itself, will be called maximal. If all operands in a

maximal product (sum) are starred, it will be called star-maximal.

An extended finite automaton, short EFA, is a 5-tuple E=(Q,A, δ, q0, F), where q0∈Q, F⊆Q,

and δ⊂Q×Reg(A)×Q. This renders conventional FAs a special case of EFAs. An EFA is

called normalized, if |F|=1. A pair (q,w) ∈ Q×A∗ is called configuration of E, valid changes in

E’s configuration are denoted by ⊢, writing (q, vw) ⊢ (q′,w) if (q, α, q′)∈δ and v∈L(α). The
language accepted by E is L(E)={w|(q0,w) ⊢∗ (q f , ǫ), q f ∈ F}, where ⊢∗ is the reflexive-

transitive closure of ⊢.

The class of regular languages is not extended by allowing regular expressions as labels in

automata, see [Woo87] for a proper introduction. The size of an EFA E is |E|:=|Q|+|δ|. The
sets of transitions leaving and reaching some q∈Q are given by q+:=δ∩(q×Reg(A)×Q) and
q−:=δ∩(Q×Reg(A)×q), respectively. A set of transitions γ = {(qi, αi, qi+1)|1≤i≤n−1} ∪
(qn, αn, q1) is called cycle.

Let A be a FA generated from α by some algorithm C. We call |A||α| the conversion-ratio of C
with respect to α. The maximal conversion-ratio of C with respect to any expression, will

simply be called conversion-ratio of C. An expression reaching this bound is said to be

worst-case.

3 A Lower Bound

First we improve on a lower bound for any construction of FAs from expressions, given

by Ilie & Yu in [IY03], by a slight variation of their argument. To this end, a property of

digraphs is shown, in which we refer to both vertices and arcs as elements.

PROPOSITION 1. Consider a digraph (V, A). Let L,R be nonempty, disjoint subsets of V
such that
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1. there is a path from each l ∈ L to each r ∈ R,
2. there is no path connecting any two vertices l, l′ ∈ L or any r, r′ ∈ R.

Then at least min{|L||R|, |L|+|R|+1} elements are necessary to realize these paths.

PROOF. Two cases need to be considered:

1. There is no vertex on any path connecting l with r. This can only be realized with

|L||R| arcs, by pairwise connections.

2. There is at least one vertex b on a path connecting lb∈Lwith rb∈R, this path contains at

least 3 elements. To connect lb with the vertices of R\rb at least |R|−1 further arcs are

necessary. An additional |L|−1 arcs are leaving the vertices of L\lb. These numbers

total to |L|+|R|+1.

Next we show the actual lower bound. Both states and transitions of an FA A will be called

elements, the number of elements is simply |A|.
THEOREM 2. Let xi,j be distinct literals, consider the expression

α =
n

∏
i=1

(x∗2i−1,1 + x∗2i−1,2)(x
∗
2i,1 + x∗2i,2 + x∗2i,3)

= (x∗1,1+x∗1,2)(x
∗
2,1+x∗2,2+x∗2,3) . . . (x

∗
2n−1,1+x∗2n−1,2)(x

∗
2n,1+x∗2n,2+x∗2n,3)

Any normalized automaton A satisfying L(A) = L(α) has at least size 22n + 1.

PROOF. In A, each xi,j is read on some cycle γi,j comprising at least one transition in-

cident to a state qi,j, i.e., 2 elements. The γi,j are disjoint, since literals of the same factor

occur mutually exclusive and literals of different factors are ordered by α. Thus 5n cycles,

accounting for at least 10n elements, are required. As for the connectivity of cycles, no path

may lead from γi,j to γi,k, if j 6= k, however, there need to be paths from γi,j to γi+1,k. This

carries over to the connectivity of the qi,j, thus each two sets of states qi,j and qi+1,j′ satisfy

the conditions given in Prop. 1. Since one of the sets contains 2, the other one 3 states, by

Prop. 1 at least 6 Elements are needed to ensure connectivity. As there are 2n−1 such pairs,

12n−6 elements are needed to connect them. This totals to 22n−6 elements, additionally, 2

states and 5 transitions are necessary to ensure a normalized FA.

For the following, note that α from Thm. 2 has size 15n− 1.

COROLLARY 3. The conversion-ratio of any algorithm converting expressions to normal-
ized FAs is bounded from below by

|A|
|α| ≥

22n + 1

15n− 1
>

22

15
+

1

|α| = 1.46̄+
1

|α|

4 Construction

The idea is to expand an initial EFA according to the structure of the expression, by introduc-

ing as few states and transitions as possible, while decomposing transition labels. Certain

substructures in the expanded automata will be replaced by smaller equivalents. This is

done until an ǫNFA emerges, i.e., there are no more complex labels.
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DEFINITION 4.[Expansion] Let E = (Q,A, δ, q0, F) be an EFA with a complex labeled tran-
sition t. We call an EFA E′ = (Q′,A, δ′, q0, F) the expansion of E, if it is derived from E

according to the label of t as follows:
- if t = (p, αβ, q) then Q′ = Q∪̇p′, δ′ = δ \ t ∪ {(p, α, p′), (p′, β, q)}
- if t = (p, α + β, q) then Q′ = Q, δ′ = δ \ t ∪ {(p, α, q), (p, β, q)}
- if t = (p, α∗, q), we distinguish several cases
∗0: if p = q, replace α∗ with α,

let Q′ = Q, δ′ = δ \ t ∪ (q, α, q)
∗1: if |p+| = |q−| = 1, merge q into p:

let Q′ = Q \ q, δ′ = δ \ (q+ ∪ q−) ∪ {(p,γ, r)|(q,γ, r) ∈ δ} ∪ (p, α, p)
∗2: if |p+| > 1, |q−| = 1, introduce a loop in q:

let Q′ = Q, δ′ = δ \ t ∪ {(p, ǫ, q), (q, α, q)}
∗3: if |p+| = 1, |q−| > 1, introduce a loop in p:

let Q′ = Q, δ′ = δ \ t ∪ {(p, α, p), (p, ǫ, q)}
∗4: if |p+| > 1, |q−| > 1, introduce a new state p′:

let Q′ = Q∪̇p′, δ′ = δ \ t ∪ {(p, ǫ, p′), (p′, α, p′), (p′, ǫ, q)}
Cases are sketched in Fig. 1. Expansions will be denoted relational, writing E ⊳t E

′ if E′

results from expansion of t in E. Occasionally we write ⊳•,⊳+,⊳∗i to indicate which case of

Def. 4 is applied, or simply E ⊳ E′, if both t and the case are irrelevant. The latter might be

formalized as ⊳ = ⊳• ∪⊳+ ∪
⋃

0≤i≤4 ⊳∗i. The n-fold iteration of ⊳ will be denoted ⊳
n, thus

if E⊳
n E′ there is a series of EFAs Ei, 0 ≤ i ≤ n, such that E = E0, Ei ⊳ Ei+1, En = E′. Usually

we refer to⊳(q,α,q′) bymentioning α’s operator, e.g, ’•-expansion’. Distinct ∗-expansions will

be referred to as ’∗0-expansion’ to ’∗4-expansion’ according to Def. 4.

DEFINITION 5.[Primal EFA] Let A be the least alphabet satisfying α ∈ Reg(A). The EFA
A0

α = ({q0, q f },A, (q0, α, q f ), q0, q f }) is called the primal EFA representing α. We denote by
Ai

α any automaton satisfying A0
α ⊳

i Ai
α.

Thus, Ai
α denotes any EFA derived from the primal automaton representing α in a series of

i expansions. Note that generally, Ai
α is not unique. However, a most useful property of ⊳

is that the order of expansion is irrelevant, or formally:

LEMMA 6. ⊳ is locally confluent, i.e., if A ⊳ A′ and A ⊳ A′′, then ∃A′′′ : A′ ⊳ A′′′ and
A′′ ⊳ A′′′.

PROOF. Given in the appendix.

COROLLARY 7. ⊳ is confluent.

PROOF. Since ⊳ is terminating, the claim follows from Lem. 6. Detailed proof of this

argument can be found, e.g., in [Hue80].

We introduce two further conversions of different nature, altering EFAs with respect to ǫ-

labeled substructures.

DEFINITION 8.[State-Elimination] Let E=(Q,A, δ, q0, F) be an EFA, q ∈ Q\F. We consider
two types of state-elimination, based on q+ and q−:

- Y-Type : q−=(p, ǫ, q), q+={(q, α1, r1), . . . , (q, αn, rn)}.
Then, let δ′ = δ \ (q+∪q−) ∪ {(p, α1, r1), . . . , (p, αn, rn)}
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ααβ β
⊳

(a) product

αα + β

β
⊳

(b) sum

αα∗

⊳

(c) superfluous star, ∗0

α

α∗
⊳

(d) state-merging star, ∗1

ǫ

α

α∗
⊳

(e) target-looping star, ∗2

ǫ

α

α∗
⊳

(f) source-looping star, ∗3

ǫǫ

α

α∗
⊳

(g) state-introducing star, ∗4

Figure 1: Expansions of complex labeled transitions.

ǫ q
α1 α1

αn αn

⊲q

(a) Y-Type, schematic

ǫǫ

ǫ ǫ

ǫ
ǫ
ǫ

ǫ
q ⊲q

(b) X-Type, schematic

ǫ

ǫ

ǫ qγ

α
1α1

⊲γγ
β1

β1

β2β2

(c) Cycle-elimination, exemplary

Figure 2: State-eliminations (a,b) and cycle-elimination (c)

- X-Type : q− = {(p1, ǫ, q), (p2, ǫ, q)}, q+ = {(q, ǫ, r1), (q, ǫ, r2)}.
Then, let δ′ = δ \ (q+∪q−) ∪ {(p1, ǫ, r1), (p1, ǫ, r2), (p2, ǫ, r1), (p2, ǫ, r2)}.

The q-reduct of E is defined as E′ = (Q\q,A, δ′, q0, F) and we write E⊲q E
′.

By reverting the transitions for Y-Type elimination, a further rule—though not structurally

different from the given Y-Type—is obtained.

DEFINITION 9.[ǫCycle-Elimination] Let γ={(qi, ǫ, q′i)|1≤i≤n} be a cycle of E=(Q,A, δ, q0, F).
LetQ′ = Q\{q1, . . . , qn} ∪ qγ and δ′ = δ\γ∪ {(p, α, qγ)|(p, α, qi) ∈ δ} ∪ {(qγ, β, r)|(qi, β, r) ∈
δ}. The γ-reduct of E is defined as E = (Q′,A, δ′, q0, F).

Note that both state- and cycle-eliminations strictly reduce the size of an EFA without re-

introducing complex labels. Eliminations are illustrated in Fig.2.

Exhaustive application of expansions and eliminations to A0
α (or any EFA, for that matter)

yields an ǫNFA. A primitive algorithm is given below.
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Algorithm 1 RegEx→ ǫNFA

A← A0
α

while A is not an NFA do

choose a complex-labeled transition t in A

let A⊳t A
′

if ⊳t introduced some e = (q, ǫ, q′) then
if q can be eliminated then

let A′ ⊲q A
′′

A′ ← A′′

if q′ can be eliminated then

let A′ ⊲q′ A
′′

A′ ← A′′

if e is part of some ǫ-cycle γ then

let A′ ⊲γ A′′

A′ ← A′′

A← A′

end while

⊳• ⊳+ ⊳∗0 ⊳∗1 ⊳∗2, ⊳∗3 ⊳∗4 ⊲γ ⊲q

∆(|Q|) 1 0 0 -1 0 1 -(|γ| − 1) -1

∆(|δ|) 1 1 0 0 1 2 -|γ| -1 or 0

Table 1: Number of elements introduced (i.e., removed, if negative) upon expansion and elimination,
broken down to states and transitions.

5 Analysis

Let Aα denote an ǫNFA constructed by our algorithm from A0
α. We start by bounding |Aα|

from above. To this end, we refine the definition of |α|∗. Let |α|∗i denote the number of stars

in α, that will be ∗i-expanded. Clearly, |α|∗ = ∑0≤i≤4 |α|∗i.

THEOREM 10. The size of an automaton built from α by our algorithm is bounded by

|Aα| ≤ |α|+ 2|α|∗4 − |α|+ + 2

If this bound is tight then neither state-elimination nor ∗0, ∗1-expansion is applied.

PROOF. A0
α is of size 3. The number of elements introduced upon expansion is determined

by |α|•, |α|+, . . ., weighted by the entries in Tab. 1. Using |α|A=|α|•+|α|++1 and |α| =
|α|• + |α|+ + |α|∗0 + . . .+|α|∗4+|α|A, this yields:

|Aα| ≤ 2|α|• + |α|+ − |α|∗1 + |α|∗2,3 + 3|α|∗4 + 3

= |α|+ |α|• − |α|∗0 − 2|α|∗1 + 2|α|∗4 − |α|A + 3

≤ |α|+ |α|• + 2|α|∗4 − |α|A + 3

= |α|+ 2|α|∗4 − |α|+ + 2
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(x∗1+x2+x∗3 )∗

x∗1+x2+x∗3 x∗1

x∗3

x1

x2x2

x3

⊳ ⊳
2

⊳
2

(a) (∑ αi)
∗ ≡ (∑ αi)

∗ by ∗0-expansions.

x1
x1

x2

x2

(x∗1 x
∗
2 )∗

x∗1 x
∗
2

⊳⊳
γ

⊲γ

(b) (∏ α∗i )
∗ ≡ (∑ αi)

∗ by elimination of ǫ-cycles.

Figure 3: Transformations respect the equivalences given in Prop. 12 (ǫ-labels are omitted).

The first inequality results from state- and ǫ-cycle eliminations, the second from ∗0- and
∗1-expansions, thus equality holds in absence of these transformations.

The conversion ratio of a worst-case expression can be read immediately from this term;

since we will refer to this quotient rather often, we restate it explicitly in

COROLLARY 11. Let α be worst-case, then

|Aα|
|α| = 1+

2|α|∗4 − |α|+ + 2

|α|

PROPOSITION 12. Both sides in each of the following equivalences will be expanded to the
same (sub)automaton:

(α∗)∗≡α∗ and (∑ αi)
∗≡(∑ αi)

∗ and (∏ α∗i )
∗ ≡ (∑ αi)

∗

where αi = βi, if αi = β∗i and αi otherwise.

PROOF. The first two equivalences are realized by ∗0-expansion, the third by ǫ-cycle-

elimination. Examples are given in Fig. 3.

COROLLARY 13. Let α be worst-case, then |α|∗0=|α|∗1=0, further both a sum with starred
operands and a maximally starred product are not starred themselves.

PROOF. By Prop. 12we know that such sums and products would lead to ∗0-/∗1-expansions
and eliminations. Since for worst-case expressions equality in Thm. 10 holds and thus said

conversions do not occur, the claim follows.

We proceed with a series of results, each putting additional constraints to the structure of a

worst-case expression. Almost all proofs work by a line of argumentation that is common

in extremal combinatorics: assume α is worst-case, i.e., extremal with respect to conversion-

ratio, then infer some further property by contradicting extremality of α.

PROPOSITION 14. A worst-case expression contains stars.

PROOF. Let α be worst-case with |α|∗=0. Cor. 11 implies |Aα|
|α| ≤ 1+ 2

|α| , the right-hand side

of which drops below 1.4, if |α| ≥ 5. Since by Cor. 3, the conversion-ratio is bounded from

below by 1.46̄, the assumption |α|∗=0 is wrong, if α is worst-case.
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LEMMA 15. Let γ∗ be a proper subexpression of α. Then γ∗ will be ∗4-expanded iff
- it is operand to a sum which is not starred, or
- without loss of generality it occurs rightmost in a star-maximal product.

PROOF. The first case is clear by looking at the expansion of some γ∗+β: If a transition la-

beled like this is a loop, γ∗ will be ∗0-expanded, otherwise it will definitely be ∗4-expanded.
The second case is more involved: If γ∗ is an infix, say, α1γ∗α2, we distinguish 3 cases: If

both αi are non-starred, γ∗ will be ∗1-expanded. If only one of the αi is non-starred, then

γ∗ can be ∗2- or ∗3-expanded by introducing a loop at the state incident to the transition

labeled with the non-starred αi. Finally, if both αi are starred, we can by confluence assume

that expansions will be applied from left to right. Then, every starred factor will be ∗2-
expanded until the final one necessitates ∗4-expansion. This embraces all possible cases,

giving both directions of the statement.

LEMMA 16. Let α be worst-case, assume γ∗∈sub(α) is ∗4-expanded. Then γ∗ is operand to
a sum.

PROOF. By Lem. 15, γ∗ is either operand to a sum or rightmost in a star-maximal product.

Assume the latter, thus π = π∗1 • . . . • π∗n−1 • γ∗. Construct α′ from α by replacing π with

σ = π∗1+ . . . + π∗n−1+γ∗. Then |α|=|α′|, however 2|α′|∗4−|α′|+ = 2|α|∗4−|α|++n−1. Since
by Prop. 12 π is not starred in α, the stars in σ will not accidentally become ∗0. By Cor. 11,
|Aα′ |
|α′| >

|Aα|
|α| , thus α is not worst-case. Therefore γ∗ is necessarily operand to a sum.

The interrelation between sums and stars in a worst-case expression is further tightened in

the following

LEMMA 17. Let α be worst-case. Then
1. every starred subexpression in α is operand to a sum and
2. all operands in a maximal sum are starred.

PROOF.

1. Assume γ∗∈sub(α) will not be ∗4-expanded. Construct α′ from α by replacing γ∗ with

γ. Since |α′|=|α|−1, yet |α′|∗4=|α|∗4, Cor. 11 again yields
|Aα′ |
|α′| >

|Aα|
|α| , thus α is not

worst-case. Therefore each star in a worst-case expression is subject to ∗4-expansion,
thus by Lem. 16 operand to a sum.

2. Let ∑ σi be maximal with some σj unstarred, i.e., a product. Construct α′ from α by

replacing σj with σ∗j . This newly starred expressions will be ∗4-expanded (Lem. 15).

Then |α′| = |α|+1, |α′|∗4 = |α|∗4+1 and by Cor. 11, |Aα′ | = |Aα|+2. Now

|Aα′ |
|α′| =

|Aα|+ 2

|α|+ 1
>
|Aα|
|α| iff |Aα| < 2|α|

We proceed similar to the proof of Thm. 10, additionally using that the previous item

implies |α|∗4 ≤ 2|α|+:
|Aα| ≤ 2|α|• + |α|+ − |α|∗1 + |α|∗2,3 + 3|α|∗4 + 3

= 2|α| − |α|+ − 3|α|∗1 − |α|∗2,3 + |α|∗4 + 3− 2|α|A
= 2|α| − 2|α|+ − |α|• − 3|α|∗1 − |α|∗2,3 + |α|∗4 + 2− |α|A
≤ 2|α| − |α|+ − 2|α|• + 1
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By assumption, |α|+ ≥ 1, any further binary operator pushes the right-hand side

strictly below 2|α′|. Indeed, the only expression containing only one + as binary op-

erator, that reaches a conversion-ratio of 2, is x∗1 + x∗2 , which is of claimed structure.

LEMMA 18. A worst-case expression α has no subexpression of the form

φ = (∏
i

∑
j

σ∗ij)
∗

PROOF. If φ ∈ sub(α), ǫ-cycle elimination would occur upon expansion. By Cor. 11 then

α would not be worst-case.

This allows us to provide a pretty detailed template of a worst-case expression:

LEMMA 19. Let α be worst-case. Then the structure of α is

α =
n

∏
i=1

ki

∑
j=1

σ∗ij where σi,j ∈ A

PROOF. By Prop. 14, a worst-case expression contains starred subexpressions, so fix some

σ∗ij which is by Lem. 17 operand to a sum. A maximal sum with stars is a factor, since it may

not be starred itself and is already maximal. Further, σij is necessarily a maximal product.

If its operands were maximally starred sums, this would contradict Lem. 18, thus σij is a

product of literals. Then, σij influences the conversion-ratio as given in Cor. 11 only by its

length, which has to be minimized in order to maximize the ratio. Thus σij is a symbol from

the alphabet. From Lem. 18 it also follows that α itself may not be starred.

It remains to analyze the influence of the number of summands (the ki in Lem. 19) on

conversion-ratio. This is done in the proof of our main

THEOREM 20. An expression α is worst-case, if its structure is

α =
n

∏
i=1

2+(i mod 2)

∑
j=1

x∗ij where xij ∈ A

PROOF. Let α be of the general structure given in Lem. 19, the FA produced by a series of

expansions from A0
α is sketched in Fig. 4. The sizes of these objects are

|α| = (n− 1) +
n

∑
i=1

(3ki − 1) = 3
n

∑
i=1

ki − 1

|Aα| =
n

∑
i=1

4ki + n− 1 = 4
n

∑
i=1

ki + n− 1

thus the ratio is
|Aα|
|α| =

4∑ ki + n− 1

3∑ ki − 1
= 1+

∑ ki + n

3∑ ki − 1

The fraction on the right-hand side is maximized, if n is maximal with respect to ∑ ki, or

equivalently, if ∑ ki is minimal. Two restrictions result from prohibiting state-elimination,

namely that ∀i : ki ≥ 2 and if ki=2 then ki−1>2 and ki+1>2 (if they exist). Thus ∑ ki is

minimal, if ki alternates between 2 and 3, i.e., ki = 2+ (imod 2).
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x11

x12

x1k1

x21

x22

x2k2

xn1

xn2

xnkn

Figure 4: Automaton constructed from an expression as given in Lem. 19 (ǫ-labels are omitted).

COROLLARY 21. The size of an automaton produced by our construction is bounded by
22
15 |α|+ 1. The construction is optimal.

PROOF. The value is reached by the expression given in Thm. 20, which was proven to

give the maximal ratio of sizes. Since by Cor. 3 22
15 |α|+ 1 is also a lower bound, the bound is

tight, hence the construction is optimal.

6 Conclusions & Remarks

We have given a construction for converting regular expressions into equivalent ǫNFAs. To

our knowledge it is the only provably optimal construction so far. It should be mentioned

that the generated automata differ from these constructed in [IY03] only by the effects of

state-elimination. This element is crucial however, both for raising the lower bound as well

as for upper bound analysis as we did. On a practical detail, preprocessing the input to

reduced expressions (as done in [IY03]) is in part realized upon execution of our algorithm.

Treatment of ∅ in expressions can easily be added to our algorithm by considering it a literal

throughout the expansion/reduction-sequence and adding a final step: removing ∅-labeled

transitions followed by running some reachability algorithm. The final step will reduce the

size of the automaton, thus the bound is maintained even if ∅ does not count into the ex-

pressions’ size. Since we consider ∅ as being of no practical relevance, it was omitted from

formal treatment.

Maybe more interesting, Kleene-+ can be implemented by reformulating ∗-expansions,
where additional ǫ-transitions need to be introduced. This yields smaller FAs than by ap-

plying the equivalence α+ ≡ αα∗ (which would double the number of elements introduced

by α), yet it is not feasible with the given bound.

Finally note that the construction not unique in the general case, since state-eliminations is

not confluent. This can be remedied by adding rules that take the in- and out-degrees of the

states adjacent to the eliminated one into consideration, however this is not at the attention

of this paper. A closer analysis will be available in a future article.
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A Appendix

LEMMA 6. ⊳ is locally confluent modulo isomorphism.

PROOF. First, assume one of the transitions is labeled by either a product or a sum:

- Let t1 = (q, α • β, q′). Upon expansion a bridge-state q′′ will be introduced, however

the number of arcs leaving and reaching q and q′ will remain constant. The structure

of A will change insofar as that an arc will be elongated. Since any ⊳t2 will at most

have the effect on t1 that one of its states might be renamed (upon ∗1-expansion), the
order of ⊳t1 ,⊳t2 is irrelevant.

- If t1=(q, α + β, q′), informal reasoning is that an arc is merely doubled. Looking at

Def. 4, the booleans q+>1 etc. are not changed by such an operation.

Now let both ti be star-labeled. Note that the statement is trivial, if expansions take place

in ’different parts’ of the EFA, so let t1, t2 share at least a common state. If the transitions

are parallel, both will be ∗4-expanded anyway. Further, ∗0-expansion does not change the

structure of the state-graph at all, i.e., neither of t1, t2 is a loop. So assume t1 = (p, α∗, q),
t2 = (q, α∗, r) where p 6= q 6= r. Some of the possible combinations are shown in Fig. 5, the

remaining are a simple exercise.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.
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Figure 5: Examples for confluence of expanding consecutive starred transitions. Isomorphism is
denoted by ≃.
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ABSTRACT. The unfolding of (1-)safe Petri nets to occurrence nets is well understood. There is a
universal characterization of the unfolding of a safe net which is part and parcel of a coreflection
from the category of occurrence nets to the category of safe nets. The unfolding of general Petri
nets, nets with multiplicities on arcs whose markings are multisets of places, does not possess a di-
rectly analogous universal characterization, essentially because there is an implicit symmetry in the
multiplicities of general nets, and that symmetry is not expressed in their traditional occurrence net
unfoldings. In the present paper, we show how to recover a universal characterization by represent-
ing the symmetry in the behaviour of the occurrence net unfoldings of general Petri nets. We show
that this is part of a coreflection between enriched categories of general Petri nets with symmetry
and occurrence nets with symmetry.

1 Introduction

There is a wide array of models for concurrency. In [16], it is shown how category theory can

be applied to describe the relationships between them by establishing adjunctions between

their categories; the adjunctions often take the form of coreflections. This leads to uniform

ways of defining constructions on models and provides links between concepts such as

bisimulation in the models [5].

Only partial results have been achieved in relating Petri nets to other models for con-

currency since, in general, there is no coreflection between occurrence nets andmore general

forms of net that allow transitions to deposit more than one token in any place or in which

a place can initially hold more than one token. The reason for this, as we shall see, is that

the operation of unfolding such a net to form its associated occurrence net does not account

for the symmetry in the behaviour of the original net due to places being marked more than

once. In this paper, we define the symmetry in the unfolding and use this to obtain a core-

flection between general nets and occurrence nets up to symmetry.

Of course, there are undoubtedly several ways of adjoining symmetry to nets. The

method we use was motivated by the need to extend the expressive power of event struc-

tures and the maps between them [14, 15]. Roughly, a symmetry on a Petri net is described

as a relation between its runs as causal nets, the relation specifying when one run is similar

to another up to symmetry; of course, if runs are to be similar then they should have similar

futures as well as pasts. Technically and generally, a relation of symmetry is expressed as a

span of open maps which form a pseudo equivalence.

This general algebraic method of adjoining symmetry is adopted to define symmetry in

(the paths of) nets, which we use to relate the categories of general nets with symmetry and

occurrence nets with symmetry. Another motivation for this work is that Petri nets provide

a useful testing ground for the general method of adjoining symmetries. For example, the

∗An extended version is available as a Computer Laboratory Technical Report.
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present work has led us to drop the constraint in [14, 15] that the morphisms of the span

should be jointly monic, in which case the span would be an equivalence rather than a

pseudo equivalence. (A similar issue is encountered in the slightly simpler setting of nets

without multiplicities [4].) Motivated by the categories of nets encountered, the method

for adjoining symmetry is also extended to deal with more general forms of model such as

those without all pullbacks.

2 Varieties of Petri nets

We begin by introducing Petri nets. It is unfortunately beyond the scope of the current paper

to give anything but the essential definitions of the forms of net that we shall consider; we

instead refer the reader to [9, 16] for a fuller introduction.

DEFINITION 1. A general Petri net is a 5-tuple,

G = (P, T, Pre, Post,M),

comprising a set P of places (or conditions); a set T of transitions (or events) disjoint from
P; a pre-place multirelation, Pre ⊆µ T × P; a post-place ∞-multirelation, Post ⊆µ∞

T × P;
and a set M of ∞-multisets of P forming the set of initial markings of G. Every transition
must consume at least one token:

∀t ∈ T ∃p ∈ P. Pre[t, p] > 0.

This is amild generalization of the standard definition of Petri net in that we allow there

to be a set of initial markings rather than just one initial marking, and will prove important

later. In the case where a general net has precisely one initial marking, we say that the net

is singly-marked.

A morphism of general nets embeds the structure of one net into that of another in way

that preserves the token game for nets — see [13].

DEFINITION 2.Let G = (P, T, Pre, Post,M) and G′ = (P′, T′, Pre′, Post′,M′) be general Petri
nets. A morphism (η, β) : G → G′ is a pair consisting of a partial function η : T →∗ T′ and
an ∞-multirelation β ⊆µ∞

P× P′ which jointly satisfy:

• for all M ∈ M: β · M ∈ M
′

• for all t ∈ T: β · (Pre · t) = Pre′ · η(t) and β · (Post · t) = Post′ · η(t)

We write η(t) = ∗ if η(t) is undefined and in the above requirement regard ∗ as the

empty multiset, so that if η(t) = ∗ then β · (Pre · t) and β · (Post · t) are both empty.

The category of general Petri nets with multiple initial markings is denoted Gen♯, and

we denote by Gen the category of singly-marked general nets (nets with one initial mark-

ing).

One simplification of general nets is to require that multirelations Pre and Post are

relations rather than (∞)-multirelations and that every initial marking must be a set of places

rather than an ∞-multiset. We shall call such nets P/T nets. The relations Pre and Post of a
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P/T net may equivalently be seen as a flow relation F⊆ (P× T) ∪ (P× T) describing how

places and transitions are connected:

p F t
△⇐⇒ Pre(p, t) t F p

△⇐⇒ Post(t, p).

Any P/T net can therefore be defined as a 4-tuple G = (P, T, F,M) by giving its flow rela-

tion. An important property that a P/T net can possess is (1-)safety, which means that any

reachable marking is a set (i.e. there is no reachable marking that has more than one token

in any place) — we say that a marking is reachable if it can be reached by any sequence of

transitions from any initial marking according to the standard token game for nets.

Safe nets can be refined further to obtain occurrence nets.

DEFINITION 3. An occurrence net O = (B, E, F,M) is a safe net satisfying the following
restrictions:

1. ∀M ∈ M : ∀b ∈ M : (Pre · b = ∅)
2. ∀b′ ∈ B : ∃M ∈ M : ∃b ∈ M : (b F∗ b′)
3. ∀b ∈ B : (|Pre · b| ≤ 1)
4. F+ is irreflexive and, for all e ∈ E, the set {e′ | e′ F∗ e} is finite
5. # is irreflexive, where

e#me
′ ⇐⇒ e ∈ E & e′ ∈ E & e 6= e′ & Pre · e ∩ Pre · e′ 6= ∅

b#mb
′ ⇐⇒ ∃M,M′ ∈ M : (M 6= M′ & b ∈ M & b′ ∈ M′)

x#x′ ⇐⇒ ∃y, y′ ∈ E ∪ B : y#my
′ & y F∗ x & y′ F∗ x′

Singly-marked occurrence nets can be seen to coincide with the original definition of

occurrence net [8].

By ensuring that any condition occurs as the postcondition of at most one event, the

constraints above allow the flow relation F to be seen to represent causal dependency. Since

the flow relation is required to be irreflexive, as is the conflict relation #, every condition can

occur in some reachable marking and every event can take place in some reachable marking.

Two elements of the occurrence net are in conflict if the occurrence of one precludes the

occurrence of the other at any later stage.

The concurrency relation coO⊆ (B ∪ E) × (B ∪ E), indicating that two elements of the

occurrence net are concurrent (may occur at the same time in some reachable marking) if

they neither causally depend on nor conflict with each other, is defined as:

x coO y
△⇐⇒ ¬(x#y or x F+ y or y F+ x)

We often drop the subscript O and write co for the relation. The concurrency relation is

extended to sets of conditions A in the following manner:

co A
△⇐⇒ (∀b, b′ ∈ A : b co b′) and {e ∈ E | ∃b ∈ A.e F∗ b} is finite

The final class of net that we shall make use of is causal nets. These are well-known

representations of paths of general nets, recording how a set of consistent events (events

that do not conflict) causally depend on each other through the encountered markings of

conditions.
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DEFINITION 4.A causal net C = (B, E, F,M) is an occurrence net with at most one initial
marking for which the conflict relation # is empty.

2.1 Unfolding

Occurrence nets can be used to give the semantics of more general forms of net. The process

of forming the occurrence net semantics of a net is called unfolding, first defined for safe

nets in [8]. The result of unfolding a net G is an occurrence net U (G) accompanied by a

morphism εG : U (G) → G relating the unfolding back to the original net.

For a safe net N, we are able to say that the occurrence net U (N) and morphism εN :

U (N) → N are cofree. That is, for any occurrence net O and morphism (π,γ) : O → N,

there is a unique morphism (θ, α) : O → U (N) such that the following triangle commutes:

U (N)
εN // N

O

(π,γ)

<<yyyyyyyyy
(θ,α)

OO

This result, first shown in [12] (for singly-marked nets; the generalization to multiply-

marked nets is straightforward), ensures that Occ♯ is a coreflective subcategory of the cate-

gory of safe nets, the operation of unfolding giving rise to a functor that is right-adjoint to

the obvious inclusion functor. In fact, the result also applies to give a coreflection between

occurrence nets and P/T nets and, more generally still, to give a coreflection between oc-

currence nets and nets with single multiplicity in the post-places of each transition and that

have at most one token in each place in their initial markings, as shown in [6].

A coreflection is not, however, obtained when we consider the unfoldings of arbitrary

general nets (either singly- or multiply-marked). The problem does not lie in defining the

unfolding of general nets, which is characterized as follows:

PROPOSITION 5. The unfolding U (G) = (B, E, F, M0) of G = (P, T, Pre, Post,M) is the
unique occurrence net to satisfy

B = {(M, p, i) | M ∈ M & p ∈ P & 0 ≤ i < M[p]}
∪ {({e}, p, i) | e ∈ E & p ∈ P & 0 ≤ i < (Post · η(e))[p]}

E = {(A, t) | A ⊆ B & t ∈ T & co A & β · A = Pre · t}
b F (A, t) ⇐⇒ b ∈ A

(A, t) F b ⇐⇒ ∃p, i : (b = ({(A, t)}, p, i))
M0 = {{(M, p, i) | (M, p, i) ∈ B} | M ∈ M},

where co and # are the concurrency and conflict relations arising from F on B and E. Fur-
thermore, η : E → P defined as η(A, t) = t and β : B → P defined as β(X, p, i) = p form a
morphism εG = (η, β) : U (G) → G in Gen♯, regarding the function β as a multirelation.

The reason why we do not obtain a coreflection between the categories Occ♯ and Gen♯

(or Occ and Gen) is that the uniqueness property required for cofreeness fails. That is,
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b1 = (M, p, 1)

b2 = (M, p, 2)

Figure 1: Non-uniqueness of mediating morphism (all multiplicities 1)

the morphism (θ, α) need not be the unique such morphism making the diagram above

commute. In Figure 1, we present a general net G, its unfolding U (G) with morphism

εG and an occurrence net O (which happens to be isomorphic to U (G)) with morphism

(π,γ) : O → G alongside two distinct morphisms (θ, α), (θ′, α′) : O → U (G) making the

diagram commute.

In the net U (G) in Figure 1, the two conditions b1 and b2 are symmetric: they arise

from there being two indistinguishable tokens in the initial marking of G in the place p. The

events ({b1}, t) and ({b2}, t) are also symmetric since they are only distinguished by their

symmetric pre-conditions; they have common image under εG. Our goal shall be to show

that there is a unique mediating morphism up to symmetry, i.e. any two morphisms from

O to U (G) making the diagram commute are only distinguished through their choice of

symmetric elements of the unfolding. We first summarize the part of the cofreeness property

that does hold.

THEOREM 6. Let G be a general Petri net, O be an occurrence net and (π,γ) : O → G

be a morphism in Gen♯. There is a morphism (θ, α) : O → U (G) in Gen♯ such that the
following diagram commutes:

U (G)
(η,β)=εG // G

O

(π,γ)

77ooooooooooooooo

(θ,α)

OO

Furthermore, if the net G is a P/T net then (θ, α) is the unique such morphism.

It will be of use later to note that if the multirelation γ above is a function then so is α.

2.2 Pullbacks

The framework for defining symmetry in general nets, to be described in the next section,

will require a subcategory which has pullbacks. Whereas it was shown in [3] that the cate-

gory of singly-marked safe nets has pullbacks, the category of singly-marked general nets

does not. Roughly, this is for two reasons: the category with multirelations as morphisms

does not have pullbacks; and allowing only singly-marked nets obstructs the existence of

pullbacks. It is the latter obstruction that led us to the earlier relaxation of the definition
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of nets, to permit them to have a set of initial markings rather than precisely one initial

marking. To obtain a category of general nets with pullbacks, we restrict attention to folding

morphisms between general nets (with multiple initial markings):

DEFINITION 7. Amorphism (η, β) : G → G′ is a folding if both η and β are total functions.

Denote the category of general nets with folding morphisms Gen♯

f , its full subcategory

of occurrence nets Occ♯

f , and the full subcategory of causal nets Caus♯

f .

PROPOSITION 8. The category Gen♯

f has pullbacks.

The category Occ♯ has pullbacks, though we will only need pullbacks of folding mor-

phisms. Pullbacks inOcc♯

f are obtained by taking the corresponding pullbacks inGen♯

f . The

following lemma expresses how pullbacks in subcategories with folding morphisms are not

disturbed in moving to larger categories with all morphisms, though in the case of general

nets we have to settle for them becoming weak pullbacks.†

LEMMA 9. (i) The inclusion functor Occ♯

f →֒ Occ♯ preserves pullbacks.

(ii) The inclusion functor Occ♯

f →֒ Gen♯

f preserves pullbacks.

(iii) The inclusion functor Gen♯

f →֒ Gen♯ preserves weak pullbacks.

3 Categories with symmetry

It is shown in [14] how symmetry can be defined between the paths of event structures, and

more generally on any category of models satisfying certain properties. The absence of pull-

backs in the category Gen♯ obliges us to extend the method when introducing symmetry to

general nets and their unfoldings.

The definition of symmetry makes use of openmorphisms [5]. Let C0 be a category (typ-

ically a category of models such as Petri nets) with a distinguished subcategory P of path

objects (such as causal nets), to describe the shape of computation paths, and morphisms

specifying how a path extends to another. A morphism f : X → Y in C0 is P-open if, for

any morphism s : P → Q in P and morphisms p : P → X and q : Q → Y, if the diagram

on the left commutes, i.e. f ◦ p = q ◦ s, then then there is a morphism h : Q → X such that

the diagram on the right commutes, i.e. h ◦ s = p and f ◦ h = q:

P
p

//

s
��

X

f

��
Q

q
// Y

P
p

//

s
��

X

f

��
Q

q
//

h
??�������
Y

The path-lifting property expresses that via f any extension of a path in Y can be matched

by an extension in X, and captures those morphisms f which are bisimulations, though

understood generally with respect to a form of path specified by P . It can be shown purely

†Recall a weak pullback is defined in a similar way to a pullback, but without insisting on uniqueness of the
mediating morphism.
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diagrammatically that openmorphisms compose, and therefore form a subcategory, and are

preserved under pullbacks in C0.
Assume categories

P ⊆ C0 ⊆ C
where P is a distinguished subcategory of path objects and path morphisms, C0 has pull-

backs and shares the same objects as the (possibly larger) category C, with the restriction

that the inclusion functor C0 →֒ C preserves weak pullbacks. Then, we will be able to add

symmetry to C, and at the same time maintain constructions dependent on pullbacks of

open morphisms which will be central to constructing symmetries on unfoldings.‡ (The

earlier method for introducing symmetry used in [14] corresponds to the situation where C0
and C coincide.)

The role of P ⊆ C0 is to determine open morphisms; the role of the subcategory P is to

specify the form of path objects and extension, while the, generally larger, category C0 fixes
the form of paths p : P → C from a path object P in an object C of C0. Now, just as earlier,

we can define open morphisms in C0, and so by definition those in C.
Now we show how C can be extended with symmetry to yield a category SC. The

objects of SC are tuples (X, S, l, r) consisting of an object X of C and two P-open morphisms

l, r : S → X in C0 which make l, r a pseudo equivalence [1] in the category C (see Appendix

A). The requirements on l and r are slightly weaker than those in [14] in that we do not

require that the morphisms l and r are jointly monic.§

The morphisms of SC are morphisms of C that preserve symmetry. Let f : X → X′ be a
morphism in C and (X, S, l, r) and (X′, S′, l′, r′) be objects of SC. The morphism f : X → X′

preserves symmetry if there is a morphism h : S → S′ such that the following diagram

commutes:

X

f
��

S
loo

h
��

r // X

f
��

X′ S′
l′

oo
r′

// X′

With the definition of symmetry on objects, we can define the equivalence relation ∼
expressing when morphisms are equal up to symmetry:

Let f , g : (X, S, l, r) → (X′, S′, l′, r′) be morphisms in SC. Define f ∼ g iff there is a mor-

phism h : X → X′ in C such that following diagram commutes in C:

X
f

~~}}
}}

}}
} g

  A
AA

AA
AA

h
��

X′ S′
l′oo r′ // X′

Composition of morphisms in SC coincides with composition in C and the two cate-

gories share the same identity morphisms. The category SC is more fully described as a

category enriched in equivalence relations.

‡We have chosen general conditions that work for our purposes here. It might become useful to replace the
role of P ⊆ C0 by an axiomatization of a subcategory of open morphisms in C and in this way broaden the class
of situations in which we can adjoin symmetry.

§See [4] for an example of a symmetry on a safe net that cannot be expressedwith the jointly-monic condition.
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(b1, b2)(b2, b2) (b2, b1)(b1, b1)

b2 b1b1 b2

rl

Figure 2: Symmetry in a net with two places

For nets, a reasonable choice for the paths P would be Caus♯

f , taking path objects to

be causal nets and expressing path extensions by foldings between them. (There are other

possibilities, say restricting to finite causal nets, or the causal nets associated with finite el-

ementary event structures, which would lead to less refined equivalences up to symmetry.)

The categories Caus♯

f ⊆ Gen♯

f ⊆ Gen♯ meet the requirements needed to construct SGen♯

— in particular by Lemma 9 (iii), so adjoining symmetry to general nets. The requirements

are also met by Caus♯

f ⊆ Occ♯

f ⊆ Occ♯ yielding SOcc♯ (this time using Lemma 9 (ii)).

We remark that a folding morphism between general nets is Caus♯

f -open in Gen♯

f iff it

is Caus♯-open in Gen♯, and a folding morphism between occurrence nets is Caus♯

f -open in

Occ♯

f iff it is Caus
♯-open in Occ♯.

4 Symmetry in unfolding

In Section 2.1, we showed how a general Petri net may be unfolded to form an occurrence

net. This was shown not to yield a coreflection due to themediatingmorphism not necessar-

ily being unique. The key observation was that uniqueness might be obtained by regarding

the net up to the evident symmetry between paths in the unfolding. This led us to define

a category of general nets with symmetry. To give an example of the forms of symmetry

that can be expressed, consider the simple net with two places, b1 and b2, both initially

marked once. Suppose that we wish to express that the two places are symmetric; for in-

stance, the net might be thought of as the unfolding of the general net with a single place

initially marked twice. The span to express that symmetry is presented in Figure 2. Without

our extension of the definition of net to allow multiple initial markings, this simple symme-

try would be inexpressible. This accompanies the fact that the category of singly-marked

general nets (even when restricted to folding morphisms) does not have pullbacks.

In general, the symmetry in an unfolding is obtained by unfolding the kernel of the

morphism εG : U (G) → G, which is the pullback of εG against itself in Gen♯

f :

S
_

�

r //

l
��

U (G)

εG

��
U (G) εG

// G

To see that (U (G),U (S), l ◦ εS, r ◦ εS) is a symmetry, we must show that the morphisms

l ◦ εS and r ◦ εS are Caus♯

f -open and form a pseudo equivalence. The latter point follows a
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purely diagrammatic argument. Open morphisms from occurrence nets into general nets

can be characterized in the following way:

PROPOSITION 10. Let O be an occurrence net and G be a general net. A morphism f :

O → G is Caus♯

f -open in Gen♯

f if, and only if, it reflects any initial marking of G to an initial
marking of O and satisfies the following property:

for any subset A of conditions of O such that co A for which there exists a tran-
sition t of G such that f · A = PreG · t, there exists an event e of O such that
A = PreO · e and f (e) = t.

The morphism εG : U (G) → G of Proposition 5 is readily seen to satisfy this property

for any G, and is therefore Caus♯

f -open. The pullback of open morphisms is open [5] so

the morphisms l and r are Caus♯

f -open, and therefore l ◦ εS and r ◦ εS are both open since

open morphisms compose to form open morphisms [5]. Note that a morphism between

occurrence nets is Caus♯

f -open in Occ♯

f iff it is Caus
♯

f -open in Gen♯

f .

PROPOSITION 11. The tuple (U (G),U (S), l ◦ εS, r ◦ εS) is an occurrence net with symmetry.

With the symmetry on U (G) at our disposal, we obtain the equivalence relation ∼ on

morphisms from any occurrence net to U (G). This is used to extend Theorem 6 to obtain

cofreeness ‘up to symmetry’.

THEOREM 12. Let G be a general Petri net and O be an occurrence net. For any morphism
(π,γ) : O → G in Gen♯, there is a morphism (θ, α) : O → U (G) in Gen♯ such that

U (G)
εG // G

O

(θ,α)

OO

(π,γ)

<<zzzzzzzzz

commutes, i.e. εG ◦ (θ, α) = (π,γ). Furthermore, any morphism (θ′, α′) : O → U (G) in
Gen♯ such that εG ◦ (θ′, α′) = (π,γ) satisfies (θ, α) ∼ (θ′, α′) with respect to the symmetry
(S, l, r) on U (G) defined above (and the identity symmetry on O).

5 A coreflection up to symmetry

We show how the results of the last section are part of a more general coreflection from

occurrence nets with symmetry to general nets with symmetry. In the last section, we showed

how to unfold a general net to an occurrence net with symmetry. For the coreflection, we

need to extend this construction to unfold general nets themselves with symmetry.

To show that the ‘inclusion’ I : SOcc♯ → SGen♯ taking an occurrence net with sym-

metry (O, S, l, r) to a general net with symmetry is a functor, it is necessary to show that

the transitivity property holds of the symmetry in SGen♯. For this it is important that pull-

backs are not disturbed in moving from Occ♯

f to the larger category Gen♯

f , as is assured by

Lemma 9.

We now have a functor I : SOcc♯ → SGen♯, respecting ∼, regarding an occurrence

net with symmetry (O, S, l, r) itself directly as a general net with symmetry.
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It remains for us to define the unfolding operation on objects of the category of general

nets with symmetry. Its extension to a pseudo functor will follow from the biadjunction. Let

(G, SG, l, r) be a general net with symmetry. Let εG : U (G) → G be the folding morphism

given earlier in Proposition 5. It is open by Proposition 10. The general net (G, SG, l, r) is

‘unfolded’ to the occurrence net with symmetry U (G, SG, l, r) = (U (G), S0, l0, r0); its sym-

metry, S0 , U (S′), l0 , l′ ◦ εS′ and r0 , r′ ◦ εS′ , is given by unfolding the inverse image S′, l′,
r′ of the symmetry in G along the open morphism εG : U (G) → G:

U (S′)

εS′
��
S′
?�

zzuuuuuuuuu

=
l′

��

r′

=

��

$$I
IIIIIIII

·
?�

{{vvvvvvvv

$$H
HH

HH
HH

HH ·
?�

zzvv
vv

vv
vv

v

##H
HHHHHHH

U (G)

εG ##G
GG

GG
GG

G
SG

r
##G

GGGGGGG

l{{wwwwwwww
U (G)

εG{{ww
ww

ww
ww

G G

The pullbacks are in Gen♯

f . The diagram makes clear that εG is a morphism preserving

symmetry.

The construction of the symmetry above depends crucially on the existence of pullbacks

in C0 and the property that pullbacks of open morphisms are open (here weak pullbacks do

not suffice) — without this we would not know that l′ and r′ were open.

Now that we have the inclusion I : SGen♯ → SOcc♯ and the operation of unfolding a

general net with symmetry, we are able to generalize Theorem 6 to give a cofreeness result:

THEOREM 13. Let ̂G = (G, SG, lG, rG) be a general net with symmetry and ̂O = (O, SO, lO, rO)
be an occurrence net with symmetry. For any (π,γ) : ̂O → ̂G in SGen♯, there is a mor-
phism (θ, α) : ̂O → U ( ̂G) in SGen♯ such that the following diagram commutes:

U ( ̂G)
εG //

̂G

̂O

(π,γ)

=={{{{{{{{{
(θ,α)

OO

Furthermore, (θ, α) is unique up to symmetry: any (θ′, α′) : ̂O → U ( ̂G) such that ε
̂G ◦

(θ′, α′) ∼ (π,γ) satisfies (θ, α) ∼ (θ′, α′).

Technically, we have a biadjunction from SOcc♯ to SGen♯ with I left biadjoint to U
(which extends to a pseudo functor). Its counit is ε and its unit is a natural isomorphism
̂O ∼= U ( ̂O). In this sense, we have established a coreflection from SOcc♯ to SGen♯ up to

symmetry.
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6 Conclusion

Occurrence nets were first introduced in [8] together with the operation of unfolding singly-

marked safe nets. The coreflection between occurrence nets and safe nets was first shown

in [11]. A number of attempts have been made since then to characterize the unfoldings of

more general forms of net.

Engelfriet defines the unfolding of (singly-marked) P/T nets in [2]. Rather than giving

a coreflection between the categories, the unfolding is characterized as the greatest element

of a complete lattice of occurrence nets embedding into the P/T net.

A coreflection between a subcategory of (singly-marked) general nets and a category

of embellished forms of transition system is given in [7]. There, the restriction to particular

kinds of net morphism is of critical importance; taking the more general morphisms of gen-

eral Petri nets presented here would have resulted in the cofreeness property failing for an

analogous reason to the failure of cofreeness of the unfolding of general nets to occurrence

nets without symmetry.

An adjunction between a subcategory of singly-marked general nets and the category

of occurrence nets is given in [6]. The restriction imposed on the morphisms of general

nets there, however, precludes in general there being a morphism from U (G) to G in their

category of general nets if U (G), the occurrence net unfolding of G, is regarded directly as

a general net. To obtain an adjunction, the functor from the category of occurrence nets

into the category of general nets is not regarded as the direct inclusion, but instead occurs

through a rather detailed construction and does not yield a coreflection apart from when

restricted to the subcategory of semi-weighted nets.

In this paper, we have shown that there is an implicit symmetry between paths in the

unfolding of a general net arising from multiplicities in its initial marking and multiplici-

ties on arcs from its transitions. By placing this symmetry on the unfolding, extending the

scheme in [14], we are able to obtain its cofreeness up to symmetry, thus characterizing the

unfolding up to the symmetry. We then adjoin symmetry to the categories of general nets

and occurrence nets (using the standard definition of net morphism) to obtain a coreflection

up to symmetry.

It is becoming clear from this and other work [10] that sometimes, in adjoining symme-

try, models do not fit the simple scheme outlined in [14] appropriate to event structures and

stable families. For example, the category of general nets with allmorphisms does not have

pullbacks as is required for the scheme in [14]. Alongside [10], the consideration of how

symmetry may be placed on nets here and in [4] has suggested that we allow more liberal

axioms on categories of models which enable their extension with symmetry.

The generalization of nets presented here to allow them to have more than one initial

marking is also necessary for equipping other, less general, forms of net, such as safe nets

or occurrence nets, with symmetry. In the companion paper [4], we extend the existing

coreflection between singly-marked occurrence nets and P/T nets to this setting and show

that this yields a coreflection between occurrence nets with symmetry and P/T nets with

symmetry. In [4], we exhibit coreflections between event structures and multiply-marked

occurrence nets.
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A Pseudo equivalences

Assume a category C. Let l, r : S → G be a pair of morphisms in C. They form a pseudo

equivalence (and if jointly monic, an equivalence) iff there exist morphisms ρ, σ and τ such

that the following diagrams commute, where Q, f , g is the pullback of l against r:
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ABSTRACT. Regular games provide a very useful model for the synthesis of controllers in reactive
systems. The complexity of these games depends on the representation of the winning condition: if
it is represented through a win-set, a coloured condition, a Zielonka-DAG or Emerson-Lei formulae,
the winner problem is PSPACE-complete; if the winning condition is represented as a Zielonka tree,
the winner problem belongs to NP and co-NP. In this paper, we show that explicit Muller games can
be solved in polynomial time, and provide an effective algorithm to compute the winning regions.

1 Introduction

There has been a long history of using infinite games to model reactive processes [BL69,

PR89]. The system is represented as a game arena, i.e. a graph whose states belong either to

Eve (controller) or to Adam (environment). The desired behaviour is represented as an ω-

regular winning condition, which naturally expresses temporal specifications and fairness

assumptions of transition systems [MP92]. The game is played by moving a token on the

arena: when it is in one of Eve’s states, she chooses its next location among the successors

of the current state; when it is in one of Adam’s states, he chooses its next location. The

result of playing the game for ω moves is an infinite path of the graph. Eve wins if the path

satisfies the specification, and Adam wins otherwise.

A fundamental determinacy result of Büchi and Landweber shows that from any initial

state, one of the players has a winning strategy [BL69]. The problem of the winner is in
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PSPACE for any reasonable representation of the winning condition [McN93,NRY96], but

its exact complexity depends on how the winning condition is represented. For example, if

the winning condition is represented as a Zielonka tree [Zie98], the problem of the winner

is in NP ∩ co-NP [DJW97]. Hunter and Dawar list in [HD05] five other “general purpose”

representations: explicit Muller, win-set, Muller, Zielonka DAGs, Emerson-Lei. They show

that the problem of the winner is PSPACE-hard for the last four representations, and leave

the complexity of explicit Muller games as an open question. In this paper, we answer this

question: the winner problem in explicit Muller games belongs to PTIME. We provide an

effective cubic algorithm computing the winning regions of the players.

Outline of the paper. Section 2 recalls the classical notions about regular games, and Sec-

tion 3 gives an overview of the different representations of regular winning conditions. In

Section 4, we introduce the notions of semi-alternation and sensibleness, and show that any

explicit Muller game can be translated in polynomial time into a semi-alternating and sen-

sible game. We also study the family of games where Eve wins if all the states are visited

infinitely often. These games are used repeatedly in our algorithm, which is the subject of

Section 5.

2 Definitions

We recall here several classical notions about regular games, and refer the reader to [GTW02]

for more details.

Arenas.

An arena A is a directed graph (Q, T ) without deadlocks whose states are partitioned be-

tween Eve’s states (QE, represented as #’s) and Adam’s states (QA, represented as 2’s). A

sub-arena A|B of A is the restriction of A to a subset B of Q such that each state of B has a

successor in B.

Plays and Strategies.

A play on the arena A is a (possibly infinite) sequence ρ = ρ0ρ1 . . . of states such that ∀i <

|ρ|−2, (ρi, ρi+1) ∈ T . The set of occurring states is Occ(ρ) = {q | ∃i ∈ N, ρi = q}, and the set

of limit states is Inf(ρ) = {q | ∃∞i ∈ N, ρi = q}.
A strategy of Eve on the arenaA is a function σ fromQ∗QE toQ such that ∀w ∈ Q∗, ∀q ∈

QE, (q, σ(wq)) ∈ T . Strategies can also be defined as strategies with memory. In this case, σ is

a triple (M, σu, σn), where M is the (possibly infinite) set ofmemory states, σu : (M×Q)→ M

is the memory update function, and σn : (M ×Q) → Q is the next-move function. Adam’s

strategies are defined in a similar way. A strategy is finite-memory if M is a finite set, and

memoryless if M is a singleton.

A (finite or infinite) play ρ is consistent with σ if, ∀i < |ρ|−2, ρi ∈ QE ⇒ ρi+1 =
σ(ρ0 . . . ρi).
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Traps and Attractors.

The attractor of Eve to the set U in the arena A, denoted AttrE(U,A), is the set of states from

where Eve can force the token to go to the set U. It is defined inductively by:

U0 = U

Ui+1 = Ui ∪ {q ∈ QE, ∃r ∈ Ui | (q, r) ∈ T }
Ui ∪ {q ∈ QA | ∀r, (q, r) ∈ E⇒ r ∈ Ui}

AttrE(U,A) =
⋃

i>0

Ui

The corresponding attractor strategy to U for Eve is a positional strategy σU such that for

any state q ∈ QE ∩ (AttrE(U,A) \U), q ∈ Ui+1 ⇒ σU(q) ∈ Ui.

The dual notion of a trap for Eve denotes a set from where Eve cannot escape, unless

Adam allows her to do so: a set U is a trap for Eve if and only if ∀q ∈ U ∩QE, (q, r) ∈ T ⇒
r ∈ U and ∀q ∈ U ∩QA, ∃r ∈ U | (q, r) ∈ T . Notice that a trap is always a sub-arena.

Regular Winning Conditions.

A regular winning condition is a specification Φ ⊆ Qω on infinite plays which depends only

on the set of states visited infinitely often: Inf(ρ) = Inf(ν) ⇒ (ρ ∈ Φ ⇔ ν ∈ Φ). Eve wins

a play ρ if ρ ∈ Φ. Adam wins if ρ /∈ Φ. Regular winning conditions can be described in

different ways, which are presented in the next section.

Winning Strategies.

Given a winning condition Φ and a state q ∈ Q, a strategy σ is winning for Eve from q if any

play starting in q and consistent with σ is winning for Eve. The winning region of Eve is the

set of states from where she has a winning strategy. Adam’s winning strategies and regions

are defined in a similar way.

3 Representations of regular conditions

The most straightforward way to represent a regular condition F is to provide an explicit

list of sets of states F1, . . . ,Fℓ: F = {Fi | 1 ≤ i ≤ ℓ}. A play ρ is winning for Eve if and

only if Inf(ρ) ∈ F . The complexity of these explicit Muller games is the subject of this paper.

There are several other ways to represent regular conditions. In win-set games [McN93],

the winner depends only on a subset R of relevant states, and the winning condition R lists

only subsets of R: ρ is winning for Eve if Inf(ρ) ∩ R ∈ R. Muller games extend this idea by

adding a colouring function χ, from the states to a set of colours C. The winning condition

F lists subsets of C, and ρ is winning for Eve if χ(Inf(ρ)) ∈ F . Emerson-Lei games [EL85]

provide a boolean formula ϕ, whose variables are the states of Q. A play ρ is winning for

Eve if the valuation Inf(ρ)← true and Q \ Inf(ρ)← false satisfies ϕ.
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Zielonka’s representation of regular conditions [Zie98] proceeds from a different ap-

proach: it focuses on alternation between sets winning for Eve and sets winning for Adam.

In his split tree (usually called “Zielonka tree”), the nodes are labelled by sets of colours, the

children are subsets of their parent with C at the root, and a child and its parent are never

winning for the same player. Finally, Zielonka DAGs [HD05] are the result of merging the

nodes of the Zielonka tree with the same labels.

The complexity of regular games depends directly on the representation of the winning

condition:

THEOREM 1.[DJW97] The problem of thewinner in regular gameswhosewinning condition
is represented by a Zielonka tree is in NP ∩ co-NP .

THEOREM 2.[HD05] The problem of the winner in win-set games, Muller games, Zielonka
DAG games, and Emerson-Lei games are PSPACE-complete.

For explicit Muller games, the best complexity result so far was the membership of

the winner problem in PSPACE, derived from the “all-purpose” algorithms of [McN93] and

[NRY96]. The main result of this paper is Theorem 3:

THEOREM 3. The winner problem of explicit Muller games can be solved in polynomial
time.

4 Useful notions for explicit Muller games

We first define three properties of explicit Muller games. A game is:

1. semi-alternating if there is no transition between two states of Adam (but there can be

between two states of Eve);

2. sensible if each set in F induces a sub-arena of A;
3. ordered for inclusion if i < j⇒ Fi + Fj.

Our algorithm for explicit Muller games, Algorithm 1, relies on the fact that its in-

put satisfies these three properties. However, this does not restrict the generality of our

result, since any explicit Muller game can be transformed in polynomial time into an equiv-

alent semi-alternating, sensible, and ordered game of polynomial size. The semi-alternation

transformation consists in replacing each state q ∈ QA of Adam by a pair of states r ∈
QE, s ∈ QA, as in Figure 1. Each set containing q in the winning condition is modified ac-

cordingly: F ← (λq.(r, s))F . This is where the classical alternation transformation fails:

adding a state to each transition leads to an exponential blow-up in the size of the winning

condition.

A game can be made sensible by removing from F all the sets that do not induce a

sub-arena of A: no matter how Eve and Adam play, the limit of the play is a a sub-arena,

so the modification is transparent with respect to deciding the winning nature of a play, a

strategy, or a state. Finally, ordering the sets for inclusion can be done in quadratic time.

The games of the form (A, {Q}), where Eve wins if and only if the token visits all

the states infinitely often, play an important part in our solution to explicit Muller games.

These games, which have also been studied in routing problems [DK00, IK02], are easy to

solve and there is always only one winner in the whole game:
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q

(a) Original arena A

r s

(b) Semi-alternating arena A

Figure 1: Semi-alternating arena construction

PROPOSITION 4. Let A be an arena, and G be the game (A, {Q}). Either, for any state
q ∈ Q, Eve’s attractor to q is equal to Q, and Eve wins everywhere in G, or there is a state
q ∈ Q such that AttrE({q},A) 6= Q, and Adam wins everywhere in G.
PROOF. In the first case, Eve can win with a strategy whose memory states are the states

of Q: in the memory state q, she plays the attractor strategy to q, until the token reaches it.

She updates then her memory to the next state r, in a circular way. In the second case, Adam

can win surely with any trapping strategy out of AttrE({q},A): if the token ever gets out of

AttrE({q},A), it never goes back.

5 Solving explicit Muller games in PTIME

Our algorithm takes as input a semi-alternating, sensible explicit Muller game whose win-

ning condition is ordered for inclusion; it returns the winning regions of the players. Each

set in F is considered at most once, starting with the (smallest) set F1. At each step, the

operation of a set Fi modifies the arena and the winning condition in one of the following

ways:

If Adam wins (A|Fi
, {Fi}), Fi is removed from F .

If Eve wins (A|Fi
, {Fi}), and Fi is a trap for Adam in A, Eve’s attractor to Fi in A,

AttrE(Fi,A), is removed from A (and added to the winning region of Eve), and all the sets

intersecting AttrE(Fi,A) are removed from F .
If Eve wins (A|Fi

, {Fi}), and Fi is not a trap for Adam in A, a new state Fi, described

in Figure 2, is added to A with the following attributes:

• Fi is a state of Adam;

• the predecessors of Fi are all the states of Eve in Fi;

• the successors of Fi are the successors outside Fi of the states of Adam in Fi.

Furthermore, the state Fi is added to all the supersets of Fi in F , and Fi itself is removed

from F .
The important case, from an intuitive point of view, is the last one: it corresponds to a

“threat” of Eve to win by visiting exactly the states of Fi. Adam has to answer by getting

out, but he can choose his exit from any of his states. Notice that it would not do to simply

replace the whole region Fi by the state Fi: as in Figure 2, Adam may be able to avoid a
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ab

c

F = {{a, b}, {a, b, c}}

(a) Before

ab

c“{a, b}”

F = {{a, b, c, “{a, b}”}}

(b) After

Figure 2: Removal of a set in an explicit Muller condition

state of Fi in a larger arena, even if he is incapable of doing so in A|Fi
.

As only one state is added each step, the number of states in the game is bounded by

|A|+ |F |. The whole procedure is described as Algorithm 1.

In the proof of correctness, we use typewriter fonts to denote the modified arena and

condition, and calligraph fonts to denote the original game. Furthermore, we denote by F|Fi

the intersection of F and P(Fi), i.e. the sets of F that are also subsets of Fi. We can now

proceed to the three main lemmas:

LEMMA 5. If, in the course of a run of Algorithm 1, the game (A|Fi , {Fi}) is winning for Eve
at line 6, then Eve wins everywhere in the game (A|Fi

,F|Fi
).

PROOF. LetH1, . . . ,Hk be the sets of F|Fi
such that (A|Hj , {Hj}) was winning for Eve in the

run of Algorithm 1. Notice that Fi itself is one of these states, say Hk. The σj’s denote her

corresponding winning strategies. We build a strategy σ for Eve in A|Fi
, whose memory

states are stacks of pairs (Hj, ρj). At any time, ρj is a play of A|Hj which can be extended

by the current state q. The initial memory state is (Hk, ε), and the operation of σ when the

memory state is (Hj,w) and the current state is q is described below:

1. If q /∈ Hj, the top pair is removed, and the procedure restarts at step 1 with the new

memory. Notice that it may involve further pops if q still does not belong to the top

set.

2. If q is a state of Eve, and σj(wq) is a new state H
h, thememory ismodified as follows: w

becomes wqH
h, and a new pair (Hh, ε) is pushed at the top of the stack. The procedure

restarts at step 2 with the new memory. Notice that it may involve further pushes if

σh(q) is also a new state.

3. The new memory state is (Hj,wq); if q belongs to Eve, she plays σj(wq).

We claim that σ is winning for Eve in the game (A|Fi
,F|Fi

). Let ρ be a play consistent with

σ, and Hj be the highest set that is never unstacked. We denote by ρj the (infinite) limit of

the “play” part. As ρj is consistent with σj, Inf(ρj) = H
j. Furthermore, Inf(ρ) ⊇ Inf(ρj) ∩Q

and Inf(ρ) ⊆ Hj. So, Inf(ρ) = Hj ∈ F , and Lemma 5 follows.
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Input: An explicit Muller game (A,F )
Output: The winning regions of Eve and Adam

A = (Q, QE, QA, T)← A = (Q,QE,QA, T );1

F← F ;2

WE ← ∅;3

while F 6= ∅ do4

Fi ← pop(F);5

if Eve wins (A|Fi , {Fi}) then6

if Fi is a trap for Adam in A then7

remove AttrE(Fi, A) from A and add it to WE;8

remove all the sets intersecting AttrE(Fi, A) from F;9

else10

add a state Fi to QA;11

add transitions from Fi ∩ QE to Fi;12

add transitions from Fi to T(Fi ∩ QA) \ Fi;13

add Fi to all the supersets of Fi in F;14

end15

end16

end17

return WE ∩Q, Q∩Q18

Algorithm 1: Polynomial algorithm for explicit Muller games

For Adam, the problem is a little more complex: we need two lemmas, whose proofs

are mutually recursive:

LEMMA 6. If, in the course of a run of Algorithm 1, the game (A|Fi , {Fi}) is winning for
Adam at line 6, then Adam wins everywhere in the game (A|Fi

,F|Fi
).

LEMMA 7. If, in the course of a a run of Algorithm 1, the game (A|Fi , {Fi}) is winning for
Eve at line 6, then Adam wins everywhere in the game (A|Fi

,F|Fi
\ {Fi}).

PROOF. We start with the (simpler) proof of Lemma 7. Let H1, . . . ,Hk be the maximal

sets, with respect to inclusion, of F|Fi
. There is a winning strategy τ j for Adam in each Hj:

if Adam won (A|Hj , {Hj}), it is a winning strategy for the game (A|Hj ,F|Hj) (recursive use of

Lemma 6); if Eve won (A|Hj , {Hj}), it is a strategy for the game (A|Hj ,F|Hj \ Hj) (recursive

use of Lemma 7). The strategy τ for Adam in (A|Fi
, {F|Fi

}) uses k top-level memory states

to switch between the {τ j}1≤j≤k. Adam remains in a top-level memory state j only as long

as the token is in Hj. As soon as it gets out, he updates it to (j mod k) + 1. His actions

when the top-level memory state is j are described below:

• if he won (A|Hj , {Hj}), he plays τ j;

• if Eve won (A|Hj , {Hj}), he plays τ j unless he can get out ofHj.

We claim that τ is winning for Adam in (A|Fi
,F|Fi

). Any play ρ consistent with τ falls

in exactly one of the three following categories:
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• The top-level memory of τ is not ultimately constant; thus Inf(ρ) is not included in

any of theHj’s, and ρ is winning for Adam.

• The top-level memory of τ is ultimately constant at j, and (A|Hj , {Hj}) was winning for

Adam; ρ is ultimately a play of A|Hj consistent with τ j, so ρ is winning for Adam.

• The top-level memory of τ is ultimately constant at j, and (A|Hj , {Hj}) was winning for

Eve; ρ is ultimately a play of A|Hj consistent with τ j, so Eve can win only by visiting

all the states of Hj. But Hj is not a trap for Adam, and the definition of τ implies that

Adam leaves as soon as possible. So, at least one of the states of Hj was not visited,

and ρ is winning for Adam.

This completes the proof of Lemma 7. The proof of Lemma 6 is more involved, due to

the necessity to avoid at least one of the states of Fi. By Proposition 4 there is a state q in Fi

such that X = AttrE({q}, A|Fi) is not equal to A|Fi . It follows from the definition of A|Fi that
neither Fi ∩ X nor Fi \ X is empty. Adam’s strategy is then exactly the same as in the proof

of Lemma 7, with the provision that Adam never moves from Fi \ X to X: this guarantees

that the token cannot visit infinitely often all the states of Fi, and completes the proof of

Lemma 6.

The correctness of Algorithm 1 follows from Lemmas 5, 6, and 7: the first one guaran-

tees that the states in WE ∩Q are winning for Eve, and the others that the states remaining at

the end of Algorithm 1 are winning for Adam.

About complexity, there are at most |F | loops in a run, and the most time-consuming

operation is to compute the winner of the games (A|Fi , {Fi}), which are quadratic in |A| ≤
(|A|+ |F |). Thus, the worst-case time complexity of Algorithm 1 is O(|F | · (|A|+ |F |)2),
which completes the proof of Theorem 3.

6 Conclusion

We have shown that the complexity of the winner problem in explicit Muller game belongs

to PTIME, and provided a cubic algorithm computing the winning regions of both players.

It follows from the usual reduction between two-player games and tree automata that

the emptiness problem of explicit Muller tree automata can also be solved in polynomial

time; a natural question is whether this is also the case for other automata problems.

The existence of a polynomial algorithm for parity games remains an open problem:

representing explicitly a parity condition incurs an exponential blow-up in size.
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ABSTRACT. Two complexity results are shown for the output languages generated by compositions
of macro tree transducers. They are in NSPACE(n) and hence are context-sensitive, and the class is
NP-complete.

1 Introduction

Macro tree transducers (mtts) [12, 14] are a finite-state machine model of tree-to-tree trans-

lations. They are motivated by syntax-directed semantics of programming languages and

recently have been applied to XML transformations and query languages [18, 21]. Mtts are a

combination of top-down tree transducersandmacro grammars [13]. They process the input

tree top-down while accumulating several output trees using their context parameters. Se-

quential composition of mtts gives rise to a powerful hierarchy (the “mtt-hierarchy”) of tree

translations which contains most known classes of tree translations such as those realized

by attribute grammars, by MSO-definable tree translations [5], or by pebble tree transduc-

ers [20]. Consider the range, or output language, of a tree translation; it is a set of trees. If we

apply “yield” to these trees, i.e., concatenate their leaf symbols from left to right, we obtain

a string language. The string languages obtained in this way from the mtt-hierarchy form

a large class (containing for instance the IO- and OI-hierarchies [6]) with good properties,

such as being a full AFL and having decidable membership, emptiness, and finiteness [7].

In this paper we study the complexity of the output (string or tree) languages of the

mtt-hierarchy. Note that we do not explicitly distinguish between string or tree output lan-

guages here, because the translation “yield” which turns a tree into its frontier string (seen

as a monadic tree) is a particular simple macro tree translation itself and hence the cor-

responding classes have the same complexity. Small subclasses of our class of languages

considered here are the IO-macro languages (or, equivalently, the yields of context-free-

tree languages under IO-derivation) and the string languages generated by attribute gram-

mars. Both of these classes are LOG(CFL)-complete by [2] and [10], respectively. Another

subclass of our class is that of OI-macro languages, which are equivalent to the indexed

languages [1], by [13]. This class is known to be NP-complete [22]. Hence, our class is

NP-hard too (even already at level 2). Our first main result is that output languages of

the mtt-hierarchy are NP-complete; thus, the complexity remains in NP when going from
c© K. Inaba and S. Maneth; licensed under Creative Commons License-NC-ND
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indexed languages to the full mtt-hierarchy. In terms of space complexity, languages gen-

erated by compositions of top-down tree transducers (mtts without context parameters) are

known to be in DSPACE(n) [3]. This result was generalized in [17] to compositions of to-

tal deterministic mtts. Our second main result is that output languages of the mtt-hierarchy

(generated by compositions of nondeterministic mtts) with regular tree languages as inputs

are in NSPACE(n) and thus are context-sensitive. The approach of our proof can be seen as

a generalization of the proofs in [3] and [17]; moreover, we make essential use of the idea

of compressed representation of backtracking information, used by Aho in [1] for showing

that the indexed languages are in NSPACE(n).

We first solve the “translation membership” problem for a single mtt M. That is, we

show that, given trees s and t, we can determine whether or not the pair (s, t) is in M’s

translation, in linear space and polynomial time with respect to |s|+ |t| on a nondetermin-

istic Turing Machine (|s| denotes the size of the tree s). The challenge here is the space

complexity; we use a compressed representation of M’s output trees for input s, inspired

by [19], and then check if t is contained using a recursive procedure in which nodes needed

for backtracking are compressed using a trie, similar to Aho’s compression of index strings

in [1]. Then, we generalize these results from one mtt to compositions of mtts. Here, the

challenge is the existence of intermediate trees. Consider the composition τ of two transla-

tions realized by mtts: τ1 followed by τ2. To check (s, t) ∈ τ, we nondeterministically guess

an intermediate tree u, and check whether (s, u) ∈ τ1 and (u, t) ∈ τ2. From the complexity

result of single mtts, we know that this can be done in O(|s| + |u| + |t|) space. This can,

however, be much larger thanO(|s|+ |t|); the size |u| of the intermediate tree u can actually

be double-exponentially larger than |s| and |t|. The basic idea to prove the linear size com-

plexity for compositions of mtts is to bound the sizes of all such intermediate input trees.

This is achieved by putting the mtts in certain normal forms such that they do not delete

much of their input, in the sense that every output tree t has a corresponding input tree of

size only linearly larger than |t|. Although our approach is similar to [17], the existence of

context parameters and nondeterminism together adds new challenges in every step of the

proof. For example, consider the mtt Mdexp with the following three rules r0, r1, and r2:

〈q0, a(x)〉 → 〈q, x〉(〈q, x〉(e)) (r0) 〈q, e〉(y)→ +(b(y, y), c(y, y)) (r2)

〈q, a(x)〉(y)→ 〈q, x〉(〈q, x〉(y)) (r1)

Here, + denotes a nondeterministic choice; e.g., when the state q reads an input node la-

beled e, it generates an output node labeled either b or c. This mtt takes a tree of form

a(a(· · · a(e) · · · )) as input (with n occurrences of a) and generates a full binary tree of height

2n (note that, without parameters, the height growth can only be linear) with each non-leaf

node arbitrarily labeled either b or c. Therefore, the size of the set of possible output trees is

22
2n

. To decide whether (s, t) ∈ τMdexp
for given trees s and t, we essentially have to find the

correct choice among the triple exponentially many candidates. To address the issue, we (1)

instead of solving the membership problem for all mtts, only deal with mtts in the above

mentioned non-deleting normal form, and which are linear with respect to the input vari-

ables, and (2) exploit the compressed representation of outputs of mtts [19] for manipulating

the output set.
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2 Preliminaries

The notation used in this paper will be the same as that used in [17], except that we denote

the sequential composition by the operator ; instead of ◦, and the label of a tree node by

label(t, ν) instead of t[ν]. We denote by pos(t) ⊆ N
∗ the set of nodes of a tree t.

Amacro tree transducer (mtt) M is a tuple (Q,Σ,∆, q0,R), where Q is the ranked alphabet

of states, Σ and ∆ are the input and output alphabets, q0 ∈ Q(0) is the initial state, and R is

the finite set of rules of the form 〈q, σ(x1, . . . , xk)〉(y1, . . . , ym) → r where q ∈ Q(m), σ ∈ Σ(k),

and r is a tree in T∆∪(Q×Xk)∪Ym
. Rules of such form are called 〈q, σ〉-rules, and the set of

right-hand sides of all 〈q, σ〉-rules is denoted by Rq,σ. We always assume Σ(0) and ∆(0) (and

thus, TΣ and T∆) are non-empty. The rules of M are used as term rewriting rules in the

usual way. We denote by⇒M the derivation relation of M on T(Q×TΣ)∪∆, and by u↓M the set

{t ∈ T∆ | u⇒∗M t}. Note that “state-calls” 〈q, xi〉 can be nested and therefore different orders

of evaluation yield different trees. Unless otherwise specified, we assume the outside-in (OI)

derivation in which we always rewrite the outermost (= top-most) state calls. By Corollary

3.13 of [12], this order of evaluation yields the same set of output trees as the unrestricted

order, i.e., the case where no restriction is imposed on the order of evaluation. The translation

realized by M is the relation τM = {(s, t) ∈ TΣ × T∆ | t ∈ 〈q0, s〉↓M}. We denote by MT the

class of translations realized by mtts. An mtt is called a top-down tree transducer (tt) if all

its states are of rank 0; the corresponding class of translations is denoted by T. We call an

mtt deterministic (total, respectively) if for every 〈q, σ〉 ∈ Q× Σ, the number |Rq,σ| of rules
is at most (at least) one; the corresponding classes of translations are denoted by prefix D

(t). An mtt is linear (denoted by prefix L) if in every right-hand side of its rules each input

variable xi ∈ X occurs at most once. The same notation is used for tts; for instance, DtT

denotes the class of translations realized by total deterministic tts.

For a technical reason, we define a slight extension of mtts. We fix the set of choice

nodes C = {θ(0),+(2)} and assume it to be disjoint with other alphabet. An mtt with choice

and failure (mttcf ) M is a tuple (Q,Σ,∆, q0,R) defined as for normal mtts, except that the

right-hand sides of rules are trees in T∆∪(Q×Xk)∪Ym∪C. The derivation relations (⇒M and

↓M) and the realized translation (τM) are defined similarly as for mtts, with two additional

rewrite rules: +(t1, t2) ⇒M t1 and +(t1, t2) ⇒M t2. Thus, + denotes nondeterministic

choice and θ denotes failure (because there is no rule for it). Again, we assume the outside-

in evaluation order. For a right-hand side r of an mttcf, we say a position ν ∈ pos(r) is

top-level if for all proper prefixes ν′ of ν, label(r, ν′) ∈ ∆ ∪ C. We say an mttcf is canonical

if for every right-hand side r and for every top-level position ν ∈ pos(r), label(r, ν) /∈ C.

The idea of the choice and failure nodes comes from [12]. There they show that any MT

generating trees in T∆ can be regarded as a DtMT generating “choice trees” in T∆∪C; a choice
tree each of the choice trees denotes the set of possible output trees by interpreting θ as the

empty set and +(c1, c2) as the union of the sets denoted by c1 and c2.

3 Complexity of a Single MTT

In this section we show that for any canonical mttcf M having properties called path-linear

and non-erasing, there is a nondeterministic Turing Machine that decides whether a given
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pair (s, t) of trees is in τM in O(|s| + |t|) space and in polynomial time with respect to

|s| + |t|. Thus, this “translation membership” problem is in NSPACE(n) and NP. Two

previous works on the same membership problem for restricted classes of macro tree trans-

ducers – for total deterministic mtts [17] and for nondeterministic mtts without parame-

ters (top-down tree transducers) [3] – both give DSPACE(n) algorithms. First let us briefly

explain where the difficulty arises in our case, i.e., with nondeterminism and parameters.

For total deterministic mtts, the DSPACE(n) complexity is proved via a reduction to the

case of linear total deterministic mtts, and then to attribute grammars (which are deter-

ministic by default), whose output languages are LOG(CFL)-complete and therefore have

DSPACE(log(n)2)membership test[10]. For nondeterministic tts, the complexity is achieved

by a straightforward backtracking-based algorithm; given the input tree s and the output

tree t, it generates each possible output of s by simulating the recursive execution of state

calls, while comparing with t. The following two facts imply the DSPACE(n) complexity:

(1) the depth of the recursion is at most the height of s, and (2) to backtrack we only need to

remember for each state call the rule that was applied (which requires constant space). Note

that neither (1) nor (2) hold for mtts; the recursion depth can be exponential and the actual

parameters passed to each state call must also be remembered for backtracking.

Here we concentrate on a restricted class of mttcfs, namely, canonical, non-erasing, and

path-linear mttcfs, which is exactly the class of mttcfs needed later in Section 4, to obtain

the complexity result for the output languages of the mtt-hierarchy. For a canonical mtt,

we define a right-hand side of a rule to be non-erasing if it is not in Y. A canonical mttcf is

non-erasing if the right-hand sides of all its rules are non-erasing. An mttcf is path-linear if a

subtree of the form 〈q, xi〉(· · · 〈p, xj〉(· · · ) · · · ) in its rules implies i 6= j.

Making MTTCFs Total Deterministic Let M be a canonical, non-erasing, and path-

linear mttcf. It is easy to see that we can always construct a total deterministic mttcf M′

equivalent to M by simply taking 〈q, σ(· · · )〉(· · · )→+(r1, · · ·,+(rn, θ)· · ·) for {r1, . . . , rn} =
Rq,σ. Then, M′ = (Q,Σ,∆, q0,R

′) can be seen as a total deterministic mtt N = (Q,Σ,∆ ∪
C, q0,R

′) whose outputs are the choice trees denoting sets of output trees of M. The canon-

icity and the non-erasure of M implies that in any right-hand side r ∈ R′ and every position

ν ∈ pos(r) with label(ν) ∈ Y, there exists a proper prefix ν′ of ν with label(ν′) 6= +. Path-

linearity is preserved from M to M′.

Compressed Representation Our approach is to represent the output choice tree

τN(s) in a compact (linear size) structure, and then compare it to the given output tree t.

Given a total deterministic mtt N and an input tree s ∈ TΣ, we can, in time O(|s|), calcu-
late a straight-line context-free tree grammar (or SLG, a context-free tree grammar that has

no recursion and generates exactly one output) of size O(|s|) that generates τN(s), using
the idea of [19]. Rather than repeating the full construction of [19], we here give a direct

representation of the nodes of τN(s).

Let N be a total, deterministic, non-erasing, and path-linear mtt with output alphabet

∆ ∪ C and let s be an input tree. Let E = {(r, ν) | q ∈ Q, σ ∈ Σ, r ∈ Rq,σ, ν ∈ pos(r)}. For
a list e = (r0, ν0) . . . (rn, νn) of elements of E, we define orig(e) (the origin of e) as ǫ.i0 . . . ik−1
where k is the smallest index satisfying label(rk, νk) /∈ Q × X (or, let k = n + 1 when all

labels are in Q× X) and ij is the number such that 〈q, xij〉 = label(rj, νj) for some q. We call e
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well-formed if label(ri, νi) ∈ Q× X for every i < n, label(rn, νn) ∈ ∆ ∪ C, and orig(e) ∈ pos(s).
Intuitively, e is a partial derivation or a “call stack” of the mtt N. Each node of τN(s) can

be represented by a well-formed list, which can be stored in O(|s|) space because its length
is at most 1 + (height of s) and the size of each element depends only on the size of the

fixed mtt, not on |s|. Note that e can represent many nodes in τN(s) if the mtt is non-

linear in the parameters. For instance, for Mdexp from the Introduction and the input tree

s3 = a(a(a(e))), the list (r0, ǫ.1)(r1, ǫ.1)(r1, ǫ.1)(r2, ǫ.1) represents all b-nodes at depth 16 of

the tree τMdexp
(s3), of which there are 28 many. The label c-label(e) of the node represented

by e is label(rn, νn). The operation c-child(e, i) which calculates the representation of the i-

th child of the node represented by e is defined in terms of the following three operations.

For a well-formed list e = (r0, ν0) . . . (rn, νn) with rank(c-label(e)) = m, we define downi(e)
for 1 ≤ i ≤ m as (r0, ν0) . . . (rn, νn.i). For e = (r0, ν0) . . . (rn, νn) such that label(rn, νn) =
yi ∈ Y, we define pop(e) = (r0, ν0) . . . (rn−1, νn−1.i). For a list e = (r0, ν0) . . . (rn, νn) where

label(rn, νn) = 〈q, xj〉 ∈ Q× X, we define expand(e) = (r0, ν0) . . . (rn, νn)(rn+1, ǫ) where rn+1

is the right-hand side of the unique 〈q, label(s, orig(e))〉-rule. Then, the operation c-child(e, i)
is realized by the following algorithm: first apply downi to e, then repeatedly apply pop as

long as possible, and then repeatedly apply expand as long as possible. The non-erasure of

N ensures that this yields a well-formed list; in the last step, when expand cannot be applied

to e = . . . (rn, νn), label(rn, νn) is obviously not in Q × X and by non-erasure is not in Y,

hence it is in ∆ ∪ C. Since the length of a well-formed list is bounded by |s| and pop (and

expand, respectively) always decreases (increases) the length of the list by one, each of them

are executed at most |s| times in the calculation of c-child. Hence, c-child runs in polynomial

time with respect to |s|. Similarly, the representation of the root of τN(s) is obtained in

polynomial time by repeatedly applying expand as long as possible to e0 = (r0, ǫ) where

r0 denotes the right-hand side of the unique 〈q0, label(s, ǫ)〉-rule. Note that a similar list

representation is used in the proof of Theorem 3 in [4].

MATCH (e, v)
1: while label(e) = + do
2: e← c-child(e, k) where k = 1 or 2,

nondeterministically chosen
3: if c-label(e) 6= label(v) then
4: return false
5: else if rank(label(v)) = 0 then
6: return true
7: else
8: for i = 1 to rank(label(v)) do
9: if not MATCH(c-child(e, i), child(v, i)) then
10: return false
11: return true

Figure 1: Matching Algorithm

Matching Algorithm with NP Time Com-

plexity Let t ∈ T∆. Figure 1 shows the non-

deterministic algorithm MATCH that decides,

given a well-formed list e and a node v of

t, whether the set of trees represented by the

choice tree at e contains the subtree of t rooted

at v. The operations c-label and c-child are de-

fined as above. The operations label, rank, and

child are basic tree operations, assumed to run in

polynomial time with respect to |t|. If we apply

MATCH to the representations of the root nodes

of τN(s) and v = ǫ, we can decide whether

(s, t) ∈ τM. Since this is the standard top-down recursive comparison of two trees, the

correctness of the algorithm should be clear.

In each nondeterministic computation, MATCH is called once for each node of t. In

each call, the while-loop iterates at most c|s| times for a constant c. This is due to non-

erasure, i.e., for every Y-node in right-hand sides there exists a non-+ ancestor node. If we

once expand a list for obtaining c-child, we never see Y-nodes in right-hand sides (thus never
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pop) before seeing some ∆-node. Thus, during the while-loop, the sequence of applied op-

erations must be: first pop’s and down’s are applied, and then expand is applied (if any), and

after that no pop is applied, i.e., the only operations applied are expand or down. In other

words, it has to be in the regular set (pop|down)∗(expand|down)∗. However, since the length

of a well-formed list is at most |s|, we can continuously pop without expanding at most |s|
times, and the same for expand without popping. Also, the numbers of continuous down’s

are bounded by the height of the right-hand sides of the rules of N. Thus, the loop ter-

minates after at most 2 · (1 + the maximum height of right-hand sides of N) · |s| iterations.
Altogether, the total running time is polynomial in |s|+ |t|.

Linear Space Complexity The MATCH algorithm takes O((|s|+ log |t|)|t|) space if

naively implemented, because in the worst case the depth of recursion isO(|t|) and we have

to remember e (which costsO(|s|) space) and v (O(log(|t|)) space at least, depending on the

tree node representation) in each step of the recursion. However, note that the lists of nodes

share common prefixes! Suppose the root node is represented by (r0, ν0)(r1, ν1)(r2, ν2)(r3, ν3)
and its child node is obtained by applying down1, pop, and expand. Then the child node is of

the form (r0, ν0)(r1, ν1)(r2, ν
′
2)(r

′
3, ν
′
3), which shares the first two elements with the root node

representation. We show that if we store lists of nodes with common prefixes maximally

shared, then, in the case of path-linear mtts, their space consumption becomes O(|s|+ |t|).
The idea of sharing lists resembles the proof of context-sensitivity of indexed languages [1].

We encode a list of well-formed lists as a tree, written in parenthesized notation on the

tape. For example, the list of three lists [ρ1ρ2ρ3, ρ1ρ2ρ4, ρ1ρ5ρ6] is encoded as ρ1(ρ2(ρ3, ρ4),
ρ5(ρ6)). Since the number of parentheses is≤ 2n and that of commas is≤ nwhere n denotes

the number of nodes, the size of this representation is O(n). When the function MATCH is

recursively called, we add the current e to the end of the list. The addition is represented as

an addition to the rightmost path. As an example, let e = ρ1ρ5ρ7ρ8. The common prefix ρ1ρ5
with the current rightmost path ρ1ρ5ρ6 is shared, and the suffix ρ7ρ8 is added as the right-

most child of the ρ5-node. Then, we have a new tree ρ1(ρ2(ρ3, ρ4), ρ5(ρ6, ρ7(ρ8))). Removal

of the last list, which happens when MATCH returns, is the reverse operation of addition;

the rightmost leaf and its ancestors that have only one descendant leaf are removed. Note

that, since by definition a well-formed list cannot be a prefix of any other well-formed lists,

each well-formed list always corresponds to a leaf node of the tree. It is straightforward to

implement these two operations in linear space and in polynomial time.

Let us consider what happens if we apply this encoding to the output of a path-linear

mtt. In the algorithm MATCH we only proceed downwards in the trees, i.e., the parameter

e′ to the recursive calls is always obtained by applying c-child several times to the previous

parameter e. Thus, the lists [e0, e1, . . . , en] of node representations we have to store during

the recursive computation always satisfy the relation ej ∈ c-child+(ei) for every i < j. Let

e = (r0, ν0) . . . (rm, νm) and e′ = (r′0, ν
′
0) . . . (r

′
m, ν

′
m) be proper prefixes of different elements

in the same list satisfying the condition (here we assume that e is taken from the element

preceding the one where e′ is taken). Then, orig(e) = orig(e′) only if e = e′. This can be

proved by contradiction. Suppose orig(e) = orig(e′) and e 6= e′, and the j-th elements are

the first difference between e and e′. Recall that e′ is a prefix of a well-formed list obtained

by repeatedly applying c-child to another well-formed list, of which e is a prefix. Then it
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must be the case that rj = r′j (by definition of expand, rj and r′j are uniquely determined from

(r0, ν0) . . . (rj−1, νj−1) and (r′0, ν
′
0) . . . (r

′
j−1, ν

′
j−1), which are equal) and νj is a proper prefix of

ν′j . However, due to path-linearity, the input variable at νj and ν′j must be different, which

contradicts orig(e) = orig(e′). Therefore, we can associate a unique node in pos(s) with

each proper prefix of the lists, which means that the number of distinct proper prefixes is

at most |s|. Similarly, it can be shown that adding only to the rightmost path is sufficient

for maximally sharing all common prefixes. Suppose not, then there must be in the list

three nodes of the forms e1 = e.(r, ν).e′1, e2 = e.(r, ν′).e′2, and e3 = e.(r, ν).e′3 with ν 6= ν′ in
this order. Note that if this happened, then the prefix e.(r, ν) would not be shared by the

rightmost addition. However, e2 ∈ c-child+(e1) implies that ν is a proper prefix of ν′, and
by e3 ∈ c-child+(e2), ν′ is a proper prefix of ν, which is a contradiction. Hence, the number

of nodes except leaves in the tree encoding equals the number of distinct proper prefixes,

which is at most |s|. We can bound the number of leaves by |t|, the maximum depth of

the recursion. So, the size of the tree encoding of a list of nodes is O(|s| + |t|). We can

easily remember the whole list of v’s in O(|t|) space. Since in the lists [v1, . . . , vn], vi+1 is

always a child node of vi, we only need to remember the child number for each node. For

example, the list [ǫ, ǫ.2, ǫ.2.1] can be encoded as [ǫ, 2, 1]. Thus, we only need ≤ height(t)
many numbers, each of which is between 1 and the maximal rank of symbols in ∆, which is

a constant.

THEOREM 1. Let M be a canonical, non-erasing, and path-linear mttcf. There effectively
exists a nondeterministic Turing Machine which, given any s and t as input, determines
whether (s, t) ∈ τM in O(|s|+ |t|) space and in polynomial time with respect to |s|+ |t|.

4 Complexity of Compositions of MTTs

As explained in the Introduction, the key idea for obtaining linear-size complexity for com-

positions of mtts is to bound the size of all intermediate input trees, and this is achieved

by putting the mtts into “non-deleting” forms. In the same way as for total deterministic

mtts [17], we classify the “deletion” in mtts into three categories – erasing, input-deletion, and

skipping (a similar classification without erasing, which is a specific use of parameters, is

also used in the case of nondeterministic tts [3]). The resolution of each kind of deletion,

however, requires several new techniques and considerations compared to previous work,

due to the interaction of nondeterminism and parameters. In the rest of this paper, we first

explain how we eliminate each kind of deletion, and then show the main results.

Erasing We first consider “erasing” rules – rules of the form 〈q, σ(· · · )〉(y1, . . . , ym)→
yi, as defined in Section 3. An application of such a rule consumes one input σ-node without

producing any new output symbols; hence it is deleting a part of the input. Note that if the

rank of σ is non-zero, then a rule as above is at the same time also input-deleting, which

is handled in Section 4. In the case of total deterministic mtts, “non-erasing” is a normal

form, i.e., for every total deterministic mtt there is an equivalent one without erasing rules.

Unfortunately, we could not find such a normal form for nondeterministic mtts with OI se-

mantics. Note that for OI context-free tree grammars (essentially mtts without input: think

of 〈q, xi〉 as a nonterminal Nq, or equivalently, think of macro grammars [13] or indexed
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grammars [1], with trees instead of strings in right-hand sides), it has been shown [16] that

there is no non-erasing normal form. The problems is, that “inline expansion”, as used to

obtain non-erasing total deterministic mtts, generates copies of evaluated trees, which may

not correctly model the OI semantics of the original transducer. Therefore, we move from

normal mtts tomtts with choice and failure. The example above can be represented by anmttcf

rule 〈q1, a(x1, x2)〉 → 〈q2, x1〉(+(B,+(C, A(B, C)))), for instance. We will show that every mtt

can be simulated by a non-erasing mttcf.

LEMMA 2. Let M be a mtt. There effectively exists a linear tt E and a canonical mttcf M′

such that M′ is non-erasing and τE ; τM′ = τM. Path-linearity is preserved from M to M′.

PROOF. The idea is, we first predict all erasing beforehand and annotate each input node

by the information of erasing, by using a preprocessing linear tt. Then we replace all erasing

state calls (e.g., 〈q, x1〉(u1) with the rule 〈q, . . .〉(y1) → y1) in the right-hand sides of rules

with the result of the erasing call (e.g., u1). Note that we have to deal with nondeterminism.

Suppose we have two rules 〈q, σ〉(y1, y2) → y1 and 〈q, σ〉(y1, y2) → y2 and a state call

〈q, x1〉(u1, u2) in a right-hand side. In order to preserve the nondeterminism, we replace the

state call by +(u1, u2).

Let M = (Q,Σ,∆, q0,R). We define E to be a nondeterministic linear tt with the set

of states P = [Q → 2{1,...,n}] ∪ {p0} (functions from Q to 2{1,...,n} where n is the maxi-

mum rank of the states of Q, and one distinct state p0, which is the initial state), the in-

put alphabet Σ, the output alphabet Σp = {(σ, p1, . . . , pk)
(k) | σ(k) ∈ Σ, pi ∈ P}, and the

following rules for every σ(k) ∈ Σ and p1, . . . , pk ∈ [Q → 2{1,...,n}]: 〈p, σ(x1, . . . , xk)〉 →
(σ, p1, . . . , pk)(〈p1, x1〉, . . . , 〈pk, xk〉) where p ∈ {p0, (q 7→

⋃{ f (r) | 〈q, . . .〉(. . . ) → r ∈ R})}
with f recursively defined as follows: f (yi) = {i}, f (δ(. . . )) = ∅, and f (〈q′, xj〉(r1, . . . , rm))

=
⋃{ f (ri) | i ∈ pj(q

′)}. The transducer E modifies the label σ(k) of each input node into the

form (σ(k), p1, . . . , pk). The annotated information pi intuitively means “if a state q of M is

applied to the i-th child of the node, it will erase and return directly the e-th parameter for

e ∈ pi(q)”. If pi(q) = ∅ then no erasing will happen. The rule of E is naturally understood

if it is read from right to left, as a bottom-up translation. Formally speaking, the following

claim holds. It is easily proved by induction on the structure of s.

Claim: (1) For each s ∈ TΣ and q ∈ Q(m), there is a unique p ∈ P \ {p0} such that 〈p, s〉↓E 6=
∅, and e ∈ p(q) if and only if ye ∈ 〈q, s〉(y1, . . . , ym)↓M. (2) Let us denote by [s] such p

determined by s. The output s′ ∈ τE(s) is unique. For b ∈ pos(s) = pos(s′), label(s′, b) =
(label(s, b), [s|b.1], . . . , [s|b.k]) where s|ν is the subtree of s rooted at the node ν.

Then, let M′ = (Q,Σp,∆, q0,R
′) with R′ = {〈q, (σ, p1, . . . , pk)(x1, . . . , xk)〉(y1, . . . , ym)→

r′ | r ∈ Rq,σ, r
′ ∈ ne(r), r′ /∈ Y} where the set ne(r) is defined inductively by ne(r) = {yj}

if r = yj and ne(r) = {δ(r′1, . . . , r′l) | r′i ∈ ne(ri)} if r = δ(r1, . . . , rl), and ne(r) =
⋃{ne(ri) |

i ∈ pj(q
′)} ∪ {〈q′, xj〉(nep(r1), . . . , nep(rl))} if r = 〈q′, xj〉(r1, . . . , rl), and nep defined as fol-

lows: nep(yj) = yj, nep(δ(r1, . . . , rl)) = δ(nep(r1), . . . , nep(rl)), and nep(〈q′, xj〉(r1, . . . , rl))=
+(u1,+(u2, . . . ,+(uz, θ)· · ·)) where {u1, . . . , uz} = ne(〈q′, xj〉(r1, . . . , rl)). The correctness of

this construction is proved by induction on the structure of the input tree s.

Input-Deletion The second kind of deletion we investigate is “input-deletion”. For

instance, if there is the rule 〈q0, a(x1, x2)〉 → A(〈q0, x2〉) for the initial state q0 and the input
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is of the form a(t1, t2), then the subtree t1 is never used for the output calculation. Although

total deterministic mtts can be made nondeleting (i.e., to always traverse all subtrees of ev-

ery input tree) by preprocessing with a deleting linear tt [17], it becomes more difficult for

nondeterministic mtts. The point is, under nondeterminism, we cannot argue the input-

deleting property of each transducer. Rather, we can only argue whether each computation is

input-deleting or not. This is a weaker version of the nondeletion condition used for total

deterministic mtts, but it is sufficient for our purpose.

In order to speakmore formally, here we define the notion of computation tree (following

the method of [3], but extending it to deal with accumulating parameters). For any finite

set P, we define the ranked alphabet P = {p(1) | p ∈ P}. Let M = (Q,Σ,∆, q0,R) be an

mttcf and s ∈ TΣ. The set COMP(M, s) is the set of trees comp〈q0, ǫ〉↓ ⊆ T∆∪pos(s) called

computation trees (or sometimes, simply computations). The derivation comp〈q0, ǫ〉↓ is carried
out under the following set of rewriting rules with outside-in derivation: +(u1, u2) → u1,

+(u1, u2) → u2, and comp〈q, ν〉(~y) → fν(r) for q ∈ Q, ν ∈ pos(s), r ∈ Rq,label(s,p) where

fν is inductively defined as fν(yi) = yi, fν(δ(r1, . . . , rk)) = ν(δ( fν(r1), · · · , fν(rk)), and
fν(〈q′, xj〉(r1, . . . , rk)) = comp〈q′, ν.j〉( fν(r1), · · · , fν(rk))). Intuitively, COMP(M, s) is the set
of trees 〈q0, s〉↓ where the parent of each ∆-node is a monadic node labeled by the posi-

tion in the input tree s that generated the ∆-node. For example, the output tree ǫ(α(ǫ.1(β),
ǫ.2(γ(ǫ(δ))))) means that the α and δ nodes are generated at the root node of the input tree,

and the β and γ nodes are generated at the first and the second child of the root node, re-

spectively. Let delpos be the translation that removes all ν ∈ pos(s) nodes. It is easily proved

by induction on the number of derivation steps that delpos(COMP(M, s)) = 〈q0, s〉↓M, i.e., if

we remove all pos(s) nodes from a computation tree, we obtain an output tree of the original

mtt.

We say that a computation tree u is non-input-deleting if for every leaf position ν ∈
pos(s), there is at least one node in u labeled by ν. Note that the rewriting rules of comp

corresponding to erasing rules do not generate any pos(s) node. Thus, non-input-deletion

implies that not only some state is applied to every leaf, but also a non-erasing rule of some

state must be applied.

LEMMA 3. Let M be a canonical non-erasing mttcf. There effectively exists a linear tt I

and a canonical non-erasing mttcf M′ such that τM = τI ; τM′ , and for every input-output
pair (s, t) ∈ τM, there exists a tree s′ and a computation tree u ∈ COMP(M′, s′) such that
(s, s′) ∈ τI , t = delpos(u), and u is non-input-deleting. Also, M′ is path-linear if M is.

PROOF. Let M = (Q,Σ,∆, q0,R). We define I as ({d},Σ,Σ′, d,U) where Σ′ = {(σ, i1, . . . ,

im)(m) | σ(k) ∈ Σ, 1 ≤ i1 < · · · < im ≤ k} andU = {〈d, σ(x1, . . . , xk)〉→ (σ, i1, . . . , im)(〈d, xi1〉,
. . . , 〈d, xim〉) | (σ, i1, . . . , im) ∈ Σ′}. The transducer I reads the input and nondeterministi-

cally deletes subtrees while encoding the numbers of the non-deleted subtrees in the current

label. We define the mttcf M′ as (Q,Σ′,∆, q0,R
′) where

R′ = {〈q, (σ, i1, . . . , im)(x1, . . . , xm)〉(~y)→ r′

| r ∈ Rq,σ such that for all top-level calls 〈q′, xp〉 in r, p ∈ {i1, . . . , im}, and r′ is obtained

by replacing 〈q′, xij〉 in r with 〈q′, xj〉 and 〈q′, xp〉 with θ for p /∈ {i1, . . . , im}}.



K. INABA AND S. MANETH FSTTCS 2008 253

The transducer M′ has basically the same rules as M, except that state calls on ‘deleted’

children are replaced by θ (or, if it is at the top-level then the rule is removed, to preserve

canonicity). It should be easy to see that M′ is canonical and non-erasing, and preserves

the path-linearity of M. The correctness of the construction is proved by taking as s′ the
minimal substructure of s that contains all nodes used for calculating t.

Skipping The third and last kind of deletion is “skipping”. A computation tree u is

skipping if there is a node ν ∈ pos(s) labeled by a rank-1 symbol such that no node in u is

labeled ν. For a canonical, non-erasing, and path-linear mttcf, skipping is caused by either

one of the following two forms of rules. One type is of the form 〈q, σ(x1)〉(y1, . . . , ym) →
〈q′, x1〉(u1, . . . , uv) where ui ∈ TY∪C, and such rules are called skipping. The others are

rules which are not skipping but are of the form 〈q, σ(x1)〉(y1, . . . , ym)→ 〈q′, x1〉(u1, . . . , uv)
where ui ∈ T∆∪Y∪C, and such rules are called quasi-skipping. Note that, since the mttcf is

path-linear, there are no nested state calls in right-hand sides of rules for input symbols of

rank 1. Also note that if the root node of the right-hand side of a rule is not a state call, then

it must be a ∆-node since the mttcf is canonical and non-erasing. So an application of such

a rule generates a ∆-node and thus a ν ∈ pos(s) node for the current input node. Therefore,
it is sufficient to consider only skipping and quasi-skipping rules.

Quasi-skipping rules may cause skipping computations due to parameter deletion: for

example, consider the quasi-skipping rule 〈q, σ(x1)〉(y1) → 〈q′, x1〉(δ(y1)); if there is a q′-
rule with a right-hand side not using y1, then the σ-node may be skipped. For total deter-

ministic mtts [17], there is a “parameter non-deleting” normal form, i.e., every total deter-

ministic mtt is equivalent to one that uses all parameters in the right-hand sides of its rules,

and thus only skipping rules (without choice nodes) were considered there. Unfortunately,

as for non-erasure, we could not find such a normal form for nondeterministic mtts. Instead,

we add some auxiliary skipping rules to mttcfs, so that we only need to consider skipping

rules. Note that quasi-skipping rules cause skipping computations only when parameters

are deleted. The idea is, if a parameter in some rule is never used for a computation, then re-

placing the parameter by a failure symbol θ does not change the translation, and moreover,

such replacement changes a quasi-skipping rule into a skipping rule.

LEMMA 4. Let M be an canonical, non-erasing, and path-linear mttcf. There effectively ex-
ists a linear tt S and a canonical, non-erasing, and path-linearmttcfM′ such that (1) τS ; τM′ =
τM and (2) for every input tree s and non-input-deleting computation tree u ∈ COMP(M, s),
there exists a tree s′ and a computation tree u′ such that s′ ∈ τS(s), u

′ ∈ COMP(M′, s′),
delpos(u′) = delpos(u), and u′ is both non-input-deleting and non-skipping.

PROOF. First, we construct a new set R of skipping rules from quasi-skipping rules of M,

by replacing all ∆ nodes in each quasi-skipping rule by the failure symbol θ. We then prove

that adding rules in R to M does not change the translation, and moreover, the addition

implies that all skipping computations of M have a derivation that does not apply quasi-

skipping rules to skipped nodes. Thus we may assume that all skipping computations are

caused by skipping rules, and hence we can straightforwardly extend the proofs for total

deterministic mtts [17] and nondeterministic tts [3].
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LEMMA 5. Let M = (Q,Σ,∆, q0,R) be an mttcf, s an input tree, and u a non-input-deleting,
non-skipping computation tree in COMP(M, s) with delpos(u) = t. Then |s| ≤ 2|t|.
PROOF. Since u is non-input-deleting and non-skipping, for all nodes ν ∈ pos(s) of rank

zero or one, there exists a node labeled ν in u, and by definition of computation trees, its

child node is labeled by a symbol in ∆. Thus, leaves(s) + rank1nodes(s) ≤ |t| where leaves(s)
is the number of leaf nodes of s and rank1nodes(s) is the number of nodes of s labeled by

rank-1 symbols. Since |s| ≤ 2× leaves(s) + rank1nodes(s) (this holds for any tree s), we have

|s| ≤ 2|t| as desired.
Main Results

LEMMA 6. LetK ∈ {NSPACE(n), NP} and F a class ofK languages effectively closed under
LT. Then LMT(F) and T(F) are also in K.
PROOF. Let M be a linear mtt or a tt. Note that in both cases, M is path-linear. First, we

make it non-erasing; by Lemma 2, there exist a linear tt E and a canonical, non-erasing, and

path-linear mttcf M1 such that τE ; τM1
= τM. Next, we make each computation non-input-

deleting; by Lemma 3, there exist a linear tt I and a canonical, non-erasing, and path-linear

mttcf M2 such that τI ; τM2
= τM1

. For every (s1, t) ∈ τM1
, there is an intermediate tree s2 and

a non-input-deleting computation u ∈ COMP(M2, s2) such that (s1, s2) ∈ τI and delpos(u) =
t. Then, we make each computation non-skipping; by Lemma 4, there exist a linear tt S and

a canonical, non-erasing, and path-linear mttcf M3 such that τS ; τM3
= τM2

. For every non-

input-deleting computation u ∈ COMP(M2, s2), there is an intermediate tree s3 and a non-

input-deleting, non-skipping computation u′ ∈ COMP(M3, s3) such that (s2, s3) ∈ τS and

delpos(u′) = delpos(u). Altogether, we have τE ; τI ; τS ; τM3
= τM, and for every (s, t) ∈ τM

there exists a tree s3 such that (s, s3) ∈ τE ; τI ; τS and a non-input-deleting, non-skipping

computation u′ ∈ COMP(M3, s3) such that delpos(u′) = t. By Lemma 5, |s3| ≤ 2|t|.
Let L be a language in F. To checkwhether t ∈ τM(L), we nondeterministically generate

every tree s′ of size |s′| ≤ 2|t| and for each of them, test whether (s′, t) ∈ τM3
and s′ ∈

(τE ; τI ; τS)(L). By Theorem 1, the former test can be done nondeterministically in O(|s′|+
|t|) = O(|t|) space and polynomial time with respect to |t|. By the assumption that F is

closed under LT, the language (τE ; τI ; τS)(L) is also inK. Thus the latter test is in complexity

K with respect to |s′| = O(|t|).
Note that, for T, the result is known to hold also forK = DSPACE(n) (Theorem 1 of [3]).

LEMMA 7. LetK ∈ {NSPACE(n), NP} and F a class ofK languages effectively closed under
LT. Then MT(F) is also in K and effectively closed under LT.

PROOF. The closure under LT immediately follows from the following known results:

MT = DtMT ;T (Corollary 6.12 of [12]), T ; LT = DtQREL ; T (Lemma 2.11 of [9]), and

DtMT ;DtQREL⊆ DtMT (Lemma 11 of [11]). By Lemma 2.11 of [9] and Theorem 2.9 of [8],

T ; LT ⊆ LT ; T, which implies that T(F) is also closed under LT. By the decomposition

MT = DtT ; LMT (page 138 of [12]), MT(F) ⊆ LMT(T(F)). By applying Lemma 6 twice,

LMT(T(F)) is in K.
By REGT, we denote the class of regular tree languages [15].
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THEOREM 8. MT∗(REGT) ⊆ NSPACE(n) ∩NP-complete.

PROOF. The class REGT is closed under LT (Propositions 16.5 and 20.2 of [15]) and is in

NSPACE(n) ∩ NP (see, e.g., [15]). By induction on k ≥ 1 it follows from Lemma 7 that

MTk(REGT) is in NSPACE(n) and NP. As noted in the Introduction, NP-hardness follows

from [22] and the fact that the indexed languages, which are equivalent to the yields of

context-free-tree languages under OI-derivation, are in MT2(REGT).

Although we only have considered outside-in evaluation order up to here, the previous

result holds for compositions of mtts in inside-out evaluation order. This is because MT∗IO =
MT∗ by Theorem 7.3 of [12], where MTIO denotes the class of translations realized by mtts

in inside-out evaluation order. The yield translation, which translates a tree into its string of

leaf labels from left to right (seen as a monadic tree), is in DtMT. Therefore the output string

languages yield(MT∗(REGT)) of mtts are also in the same complexity class as Theorem 8.

Especially, this class contains the IO- and OI- hierarchies [6]. Note that the IO-hierarchy is

in DtMT∗(REGT) and hence in DSPACE(n) by Corollary 17 of [17]. The first level of the

OI-hierarchy are the indexed languages [13] which are NP-complete [22].

COROLLARY 9. The OI-hierarchy is in NSPACE(n) ∩NP-complete.

Thanks This work was partly supported by the Japan Society for the Promotion of Science.

References
[1] A. V. Aho. Indexed grammars—an extension of context-free grammars. J. ACM, 15:647–671, 1968.
[2] P. R. J. Asveld. Time and space complexity of inside-out macro languages. Int. J. Comp. Math., 10:3–14,

1981.
[3] B. S. Baker. Generalized syntax directed translation, tree transducers, and linear space. SIAM J. Comp.,

7:376–391, 1978.
[4] G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document trees. Inf. Syst.,

33:456–474, 2008.
[5] B. Courcelle. Monadic second-order definable graph transductions: A survey. TCS, 126:53–75, 1994.
[6] W. Damm. The IO- and OI-hierarchies. TCS, 20:95–207, 1982.
[7] F. Drewes and J. Engelfriet. Decidability of the finiteness of ranges of tree transductions. Inf. and Comp.,

145:1–50, 1998.
[8] J. Engelfriet. Bottom-up and top-down tree transformations – a comparison. Math. Sys. Th., 9:198–231,

1975.
[9] J. Engelfriet. Top-down tree transducers with regular look-ahead. Math. Sys. Th., 10:289–303, 1977.
[10] J. Engelfriet. The complexity of languages generated by attribute grammars. SIAM J. Comp., 15:70–86, 1986.
[11] J. Engelfriet and S. Maneth. Output string languages of compositions of deterministic macro tree trans-

ducers. J. Comp. Sys. Sci., 64:350–395, 2002.
[12] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comp. Sys. Sci., 31:71–146, 1985.
[13] M. J. Fischer. Grammars with Macro-Like Productions. PhD thesis, Harvard University, Cambridge, 1968.
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ABSTRACT. We study the problem of space-efficient polynomial-time algorithms for directed st-
connectivity (STCON). Given a directed graph G, and a pair of vertices s, t, the STCON problem is to
decide if there exists a path from s to t in G. For general graphs, the best polynomial-time algorithm
for STCON uses space that is only slightly sublinear. However, for special classes of directed graphs,
polynomial-time poly-logarithmic-space algorithms are known for STCON. In this paper, we con-
tinue this thread of research and study a class of graphs called unique-path graphs with respect to source
s, where there is at most one simple path from s to any vertex in the graph. For these graphs, we
give a polynomial-time algorithm that uses Õ(nε) space for any constant ε ∈ (0, 1]. We also give a
polynomial-time, Õ(nε)-space algorithm to recognize unique-path graphs. Unique-path graphs are
related to configuration graphs of unambiguous log-space computations, but they can have some
directed cycles. Our results may be viewed along the continuum of sublinear-space polynomial-
time algorithms for STCON in different classes of directed graphs - from slightly sublinear-space
algorithms for general graphs toO(log n) space algorithms for trees.

1 Introduction

We study the directed st-connectivity (STCON) problem, where given a directed graph G, a

source vertex s and a terminal vertex t, we are interested in finding whether there is a path

from s to t in G. The STCON problem can be solved in polynomial time using standard

search algorithms (for eg. Depth First Search (DFS) or Breadth First Search (BFS)). These

algorithms run in O(m + n) time and use O(n log n) space on a graph with n vertices and

m edges. Improving the space complexity of STCON is a well-studied and fundamental

problem. The best known deterministic upper bound is given by Savitch’s theorem [18],

which solves STCON in O(log2 n) space. On the other hand, STCON is known to be NL-

complete [13]; i.e. giving anO(log n) space algorithmwill imply L = NL. A comprehensive

survey on the complexity of STCON can be found in [19].

An interesting related question is the time-space trade-off involved in solving STCON

[8]. Savitch’s theorem usesO(log2 n) space, but takes super-polynomial (nO(log n)) time. DFS

or BFS takes linear time but its standard implementation requiresO(n log n) space. The only
algorithm known till date that breaks the linear space barrier but takes polynomial time

is due to Barnes et al [6]. This algorithm uses n/2Θ(
√

log n) space to solve STCON in any

directed graph.
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On the other hand, the space complexity of the undirected counterpart of STCON,

namely USTCON, has been recently resolved by Reingold [15], who showed that USTCON

∈ L. USTCON can also be solved in randomized O(log n) space and O(mn) time using

random walks [1].

STCON has been studied in more restricted models of computation than the Turing

machine model. For example in the JAG (Jumping Automaton for Graphs)model proposed by

Cook and Rackoff, it has been shown that STCON has a lower bound of Ω(log2 n/ log log n)
on space complexity [10]. The same lower bound has also been shown by Berman and

Simon [7] for the Randomized JAG model. Poon further defined a stronger Node Named

JAG (NNJAG) model [14] and showed a time-space lower bound of T = 2
Ω(

log2(n log n/S)
log log n ) ×

√

nS/ log n on both the JAG and the NNJAG model [12] (where T denotes the time and

S denotes the space), underscoring the difficulty in designing polynomial-time sublinear-

space algorithms for STCON.

One important complexity class in the study of STCON and reachability problems is

Unambiguous Log-Space (UL or USPACE(log n)) [5]. This is a subclass of NL and character-

izes the class of problems accepted by logarithmic-space-bounded non-deterministic Tur-

ing Machines with at most one accepting computation path for each input. Though this

appears to be a strong restriction on the computation power of non-deterministic log-space

machines, UL/poly has been shown to be identical to NL/poly in [17]. Further subclasses of

ULwith stronger requirements in terms of uniqueness of the computation path between two

configurations have been defined [9]. The complexity class Reach Unambiguous Log-Space

(RUSPACE(log n)) requires any two configurations reachable from the start configuration

to have a unique computation path in between them and in Strong Unambiguous Log-Space

(StUSPACE(log n)) any two configurations should have at most one path between them.

Clearly StUSPACE(log n) ⊆ RUSPACE(log n) ⊆ UL. In RUSPACE(log n) the set of vertices

reachable from the source vertex forms a tree whereas in StUSPACE(log n) the set of vertices

reachable from any vertex forms a tree. Configuration graphs for StUSPACE(log n) have also

been described as Mangroves in [4].

Though both the space complexity and the time-space tradeoff for STCON have not

been resolved till date for general directed graphs, these problems have been studied ex-

tensively on interesting subclasses of directed graphs. Given an oracle to access the set

of incoming edges and outgoing edges for a node in the graph, the STCON problem can

be easily solved in polynomial time using O(log n) space on a tree. Allender et al have

given a polynomial-time O(log2 n/ log log n) space algorithm to solve the STCON problem

on StUSPACE(log n) that also works for RUSPACE(log n) [4]. On planar DAGs with single

source STCON has been shown to be solvable using O(log n) space [3]. But none of these

graph families allow the presence of cycles. A recent survey of Allender [2] highlights the

results on the complexity of reachability in UL and its subclasses and on other special sub-

classes of directed graphs. Also Reingold’s technique has been generalized in [16] to solve

STCON in O(log n) space for regular directed graphs, where there is a value d such that the

in-degrees and out-degrees of all vertices are d.

In this paper we define a subclass of directed graphs that we call unique-path graphs

with respect to source vertex s. These graphs are defined by the existence of at most one
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simple path from s to any vertex in the graph. We will show later that this class of graphs is

characterized by the absence of forward or cross edges with respect to any DFS-tree rooted

at a vertex reachable from the source vertex. But some back edges may be present, i.e., we

allow the presence of some cycles in these graphs.

Configuration graphs for UL and its subclasses are closely related to unique-path graphs.

Unique-path graphs strictly contain trees and configuration graphs for StUSPACE(log n)

and RUSPACE(log n), since we allow some cycles. But, a configuration graph for UL is not

necessarily a unique-path graph, and vice-versa. Figure 1 shows examples of unique-path

graphs and configuration graphs of different subclasses of UL.

s

(a) UL (b) RUSPACE(log n) (d) Unique Path Graph(c) Mangrove

tttt

s s s

Figure 1: Examples of unique-path graphs and configuration graphs of UL and its subclasses

Our Results. As noted above, upper bounds on the space complexity of polynomial-

time algorithms for STCON ranges from O(log n) (on trees), O(log2 n/ log log n) (on man-

groves) to n/2Θ(
√

log n) (on general directed graphs). In this paper, we show that for any

ε ∈ (0, 1], the STCON problem can be solved in unique-path graphs in nO( 1
ε ) time using

Õ( n
ε

ε ) space §; this gives a polynomial time algorithm that uses Õ(nε) space for any constant

ε. We also show that we can recognize unique-path graphs in Õ( n
ε

ε ) space and nO( 1
ε ) time.

Our algorithm uses a sublinear-space implementation of DFS in unique-path graphs.

The standard implementation of DFS uses linear space for two purposes: (i) to maintain a

stack for backtracking from a vertex v after exploring all vertices reachable from it, and (ii)

to keep track of all vertices already visited and avoid rediscovering them. We show that,

in unique-path graphs, these purposes can be served by maintaining a sublinear-space data

structure which we call landmark vertices. We first give an Õ(
√
n)-space polynomial-time

algorithm for STCON in unique-path graphs. Extending our techniques further, we obtain

an algorithm which improves the space requirement to Õ( n
ε

ε ).

Organization. The rest of the paper is organized as follows. In Section 2 we define a

unique-path graph and discuss some useful properties of unique-path graphs. In Section 3

we give an Õ( n
ε

ε )-space nO( 1
ε )-time algorithm for any ε ∈ (0, 1] to solve STCON in unique-

path graphs. In Section 4 we show how to decide if an input directed graph is a unique-path

graph in Õ( n
ε

ε ) space and nO( 1
ε ) time. Section 5 contains conclusions and some directions for

future work.

§Õ( f (n)) denotes O( f (n) logk n), for some constant k.
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2 Preliminaries

Given a directed graph G, we will use V(G) and E(G) to denote the set of vertices and

edges, respectively, in G. We assume that there are no self loops or parallel edges in the

graph. A path where no intermediate vertices is repeated is called a simple path; a simple

cycle is defined similarly. Two simple paths p1, p2 are called distinct if they differ in at least

one edge. Next we define a unique-path graph.

DEFINITION 1. A directed graph G is a unique-path graph with respect to a source vertex s

if there is at most one simple path from s to any vertex v ∈ V(G).

w

(b) (c)(a)

v

u

u

v

sss

Figure 2: Examples of unique-path graphs ((a)) and non-unique-path graphs ((b) and (c))

It is easy to see that a directed graph G is a unique-path graph with source vertex s iff

there is at most one simple path between any two distinct vertices u, v ∈ V(G), where both

u and v are reachable from s. If a directed graph is not a unique-path graph, we call it a non-

unique-path graph. Examples of unique-path and non-unique-path graphs are shown in Fig-

ure 2. The graph in Figure 2(a) is a unique-path graphwith source vertex s, but the graphs in

Figure 2(b) and (c) are non-unique-path graphs - in both cases there are two distinct simple

paths from s to u. The definition of unique-path graphs does not put any restriction on the

vertices which are not reachable from the source vertex s; they can have arbitrary number

of simple paths between them. Even there can be multiple simple paths from a vertex u to

a vertex v where v is reachable from s but u is not. Also note that while there is at most one

simple path between any pair of distinct vertices reachable from s, a vertex reachable from s

(such as w in Figure 2(a)) can lie on many different simple cycles.

For any vertex x in a graph G, we denote by N−(x) (resp. N+(x)) the set of vertices that
have an out-going edge to (in-coming edge from) x in G. We assume that the input graph

G is represented in an adjacency-list format, where for each vertex x ∈ V(G), N+(x) and

N−(x) are specified as lists. Given u, v ∈ N+(x) (or N−(x)) u is called a successor of v if u

immediately follows v in the list. We assume access to the incoming and the outgoing edges

of a node v and therefore the neighbors of v via queries to an oracle that answers as follows:

given vertices v and w, the oracle can answer if w ∈ N+(v) (or in N−(v)), i.e., we can check

if (v,w) (or (w, v)) ∈ E(G). Also we can query the oracle to return the successor (if any) of

w in N+(v) or in N−(v).
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2.1 Properties of Unique-Path Graphs

The algorithmwe present to solve STCON in unique-path graphs relies on depth first search

(DFS) from the source vertex s. We therefore begin by making a few observations about DFS

in unique-path graphs. DFS from a vertex v ∈ V(G) generates a tree called theDFS-treewith

v as the root of the tree. The edges used in the tree are called tree edges. Apart from tree edges,

DFS on general directed graphs yield three other types of edges: back edges, forward edges and

cross edges (see, for instance [11]). The parent of a vertex v is the vertex u ∈ N−(v) such that

(u, v) is a tree edge and will be denoted by π(v). Lemma 2 states a necessary and sufficient

condition for a directed graph G to be a unique-path graph with respect to a vertex s and

Lemma 3 describes the structure of back edges in a unique-path graph. The proofs are easy

and are omitted due to space constraint.

LEMMA 2. A directed graph G is a unique-path graph with respect to s ∈ V(G) iff DFS
invoked from any vertex reachable from s does not produce any forward or cross edges.

For a back edge (u, v) in a DFS-tree, let SPAN(u, v) denote the set of vertices on the path in

the DFS-tree from v to u including v and u.

LEMMA 3. Let G be a unique-path graph. Let (u, v), (x, y) ∈ E(G) be back edges in the DFS-
tree with w as the root, where w is reachable from s. Then |SPAN(u, v) ∩ SPAN(x, y)| ≤ 1.

3 Algorithm for STCON in Unique-path Graphs

We assume that G is a directed unique-path graphwith respect to source s in this section. We

will solve STCON in unique-path graphs by implementing DFS from s in polynomial time

using O(nε) space. A typical implementation of DFS relies on remembering the set of ver-

tices that have already been visited (to avoid rediscovering previously visited vertices), and

remembering the current exploration path for backtracking from a vertex v after all vertices

reachable from v have been visited (using a stack). Both these tasks can be accomplished us-

ing linear space. We show that, for unique-path graphs, these steps can be implemented in

polynomial time using sublinear space by maintaining some sparse auxiliary information.

Our final aim is to design an O(nε) space polynomial-time algorithm to implement

STCON in unique-path graphs for a constant ε ∈ (0, 1] ¶. In Section 3.1 we give an O(
√
n)

space polynomial-time algorithm to present our techniques. In Section 3.2 we will use our

techniques recursively to get an O(nε)-space polynomial-time algorithm. We will assume

that the oracle takes one unit of time to answer any query, though we get a polynomial-time

algorithm as long as the time taken by the oracle is bounded by a polynomial. We will refer

to the last vertex discovered by the DFS with an unfinished DFS call as the current vertex,

and the path using the tree edges from s to the current vertex as the active path.

3.1 An O(
√
n)-Space Algorithm

We prove the following theorem in this section.

¶From now on, “O( f (n)) space” will refer to the space needed to store O( f (n)) words; the bit complexity
will be O( f (n) log n) = Õ( f (n)).
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Algorithm 1 An O(
√
n)-space, polynomial-time algorithm for STCON on a unique-path

graph G with source vertex s and terminal vertex t
1: CURRENT:

2: – Suppose the control of the DFS is at the current vertex x (initially x = s).

3: – Either DFS has backtracked to x from some vertex v ∈ N+(x), or x is a newly discov-

ered vertex.

4: if DFS has backtracked to x from v then

5: – Ask the oracle to return the successor of v in N+(x).
6: else {x is a newly discovered vertex}
7: – Ask the oracle to return the first vertex in N+(x).
8: end if

9: NEXT:

10: if the oracle returns that there are no more vertices in N+(x) then {either the DFS has

backtracked from the last child of x in N+(x) or N+(x) is empty)}
11: if x is same as the source vertex s then {the search from s is complete}
12: – Exit with the answer ‘there are no paths from s to t in G’.

13: end if

14: – Perform the backtrack step for x to reach u = π(x).
15: – Set x = u, pass the control to (new) x and jump to Step CURRENT.

16: else

17: – The oracle returns y as the next vertex in N+(x).
18: – Perform the discovery step for the edge (x, y).
19: if (x, y) is a back edge then {y has been visited before,}
20: – Ask the oracle to return the successor of y in N+(x) and jump to Step NEXT.

21: else {y is a newly discovered vertex}
22: if y is same as the terminal vertex t then

23: – Exit with the answer ‘there is a path from s to t in G’.

24: end if

25: – Set x = y, pass the control to (new) x and jump to Step CURRENT.

26: end if

27: end if

THEOREM 4. STCON is solvable in O(mn + m2
√
n) time with O(

√
n) space in unique-path

graphs.

Overview of the Algorithm Algorithm 1 describes how STCON in unique-path graphs can

be implemented in O(
√
n) space and polynomial time. It relies on a sublinear-space imple-

mentation of two key subroutines. The first subroutine is to backtrack from a vertex x, i.e., to

return the control to the parent π(x) once the DFS finishes at x. The second subroutine is

the discovery step for an edge (x, y), which is called from a current vertex x to determine if

an edge (x, y) being considered by the DFS is a back edge. Now in order to complete the

description of the algorithm, it suffices to describe howwe implement the backtrack and the

discovery steps. Note that Algorithm 1 and later the procedures for the backtrack and the

discovery steps always start the search on G from a vertex reachable from s. Thus we only
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need the unique-path property of the vertices reachable from the source vertex s and do not

have any restriction on the rest. First we introduce the notion of L-bounded DFS, which is

used as a subroutine in the procedures for the backtrack and the discovery steps.

L-bounded DFS

DEFINITION 5. A DFS search is called L-bounded if it backtracks whenever the length of
the active path exceeds L.

For a unique-path graph, if we store the entire active path, the backtrack and the discov-

ery steps can be easily implemented. The next lemma follows from the above observation;

we omit the proof due to space constraint.

LEMMA 6. Given a unique-path graph G with respect to source s, a vertex v ∈ V(G) reach-
able from s and and an integer L, an L-bounded DFS from v can be implemented in O(L)
space and O(n + mL) time. Moreover, it visits every vertex within distance L from v, and
does not visit any vertex at distance greater than L from v.

We note that an O(
√
n) space, polynomial-time algorithm for STCON in unique-path

graphs can be obtained from the above lemma with the approach of [6]. But there is no

obvious way of improving the space complexity beyond O(
√
n) using this approach. We

present here another approach for solving STCON in unique-path graphs in O(
√
n) space.

This will be the starting point to obtain an algorithm that reduces the space requirement to

O(nε).
Next we describe the implementation of the backtrack and discovery steps. The main

idea in implementing these steps is maintaining landmark vertices which are a few evenly

spaced vertices on the active path from s to the current vertex x. The landmark vertices

will be denoted by zi, i = 0, 1, · · ·, where the landmark vertex zi is at distance i⌊
√
n⌋ from s

along the current active path (s = z0); i is called the index of the landmark vertex zi. We will

consider the current vertex x as an additional landmark vertex zp, where z0, z1, · · · , zp−1

is the the set of landmark vertices maintained along the active path to x. Since it is easy

to maintain the length of the active path from s to the current vertex x in Algorithm 1,

the landmark vertices can be maintained by a simple modification of the algorithm. The

space needed to maintain the landmark vertices isO(
√
n), because the number of landmark

vertices is O(
√
n). As in standard DFS, Algorithm 1 performs O(n) backtrack and O(m)

discovery steps; thus to implement the whole algorithm in O(
√
n) space and polynomial

time it suffices to show that the backtrack and the discovery steps can be implemented in

O(
√
n) space and polynomial time.

Backtrack Step

Let x be the current vertex and let v1, v2, ..., vq be the vertices in N−(x). Suppose vi = π(x)
in the DFS-tree. Since G is a unique-path graph with respect to source s, the unique simple

path from s to x is through the edge (vi, x). Recall that if z0, · · · , zp are the landmark vertices

then current vertex x = zp and zp−1 is the previous landmark vertex.
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Procedure 2 Procedure to implement the backtrack step from the current vertex x

1: – Let v1, v2, ..., vq be the vertices in N−(x).
2: for each vj ∈ N−(x) do
3: – Perform a

√
n-bounded DFS from zp−1 in the graph G− (vj, x).

4: if zp = x is not reached then

5: – Return vj as π(x).
6: end if

7: end for

LEMMA 7. In the graph G − (vi, x) the current vertex zp = x is not discovered by a
√
n-

bounded DFS from zp−1 iff vi is the parent of x in the original DFS-tree.

PROOF. (if) Assume vi = π(x) and there is a path from zp−1 to x in the graph G− (vi, x).
Then there are two distinct paths from zp−1 to x, one uses the tree edge (vi, x) and the other

does not. Thus there are two distinct paths from s to x - this contradicts that G is a unique-

path graph. (only if) Let vj ∈ N−(x) and vj 6= π(x). As the landmark vertices are placed
√
n

distance apart along the active path, by Lemma 6, x will be discovered by a
√
n-bounded

DFS from the last landmark vertex zp−1 in the graph G− (vj, x).

The number of
√
n-bounded DFS to implement the backtrack step from x is at most |N−(x)|.

From Lemma 6, each
√
n-bounded DFS takes time O(n + m

√
n). Hence all the backtrack

steps performed in G can be implemented in O(mn + m2
√
n) time and O(

√
n) space.

Discovery Step

The goal of the discovery step at a current vertex x is to check if a vertex y ∈ N+(x) has

already been visited by the DFS. By Lemma 3, a DFS from s in the unique-path graph G

cannot produce any forward or cross edges; hence this is equivalent to checking if the edge

(x, y) is a back edge.

Procedure 3 gives the implementation of the discovery step. If y is one of the landmark

vertices then clearly (x, y) is a back edge, i.e., Case 1 in Procedure 3 returns the correct

output. Otherwise let Z = Z(y) be the set of landmark vertices reachable from y by a
√
n-

bounded DFS. Consider any back edge (x, y) such that y lies between the landmark vertices

zj−1 and zj (j ≥ 1); then at least zj ∈ Z. Hence if Z is empty, we know that (x, y) is not a back
edge. Let zk ∈ Z be the landmark vertex with the highest index k in Z. Note that if (x, y) is
a back edge, then k ≥ 1. So the outputs of Case 2 and Case 3 are correct. But a

√
n-bounded

DFS from y can discover more than one landmark vertex, since there can be successive back

edges. The relation between zj and zk is described by the following lemma when (x, y) is a
back edge.

LEMMA 8. (a) If j < p− 1 or j = p, then zj is the landmark vertex with the highest index j

in Z. (b) If j = p− 1, then zp−1 or zp is the landmark vertex with the highest index j in Z.

PROOF. As distance of zj from y is ≤ √
n, by Lemma 6, zj will be discovered by a

√
n-

bounded DFS from y, i.e., zj ∈ Z. (a) If j = p, then zp has the highest index p in Z since zp is

the last landmark vertex. If j < p− 1, the distance between y and zℓ is >
√
n for any ℓ > j.
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Procedure 3 Procedure to implement the discovery step for the edge (x, y)

1: – Let z0 = s, z1, · · · , zp = x be the current set of landmark vertices.

2: if y ∈ {z0, · · · , zp−1} then {(Case 1): y is one of the landmark vertices}
3: – Return ‘(x, y) is a back edge’ (y 6= zp, since there are no self loops).

4: end if

5: – Perform a
√
n-bounded DFS from y and let Z be the set of landmark vertices reached

by this DFS.

6: if Z is empty then {(Case 2): no landmark vertex is reached}
7: – Return ‘y has not been visited’.

8: else

9: – Let zj ∈ Z be the landmark vertex with the highest index j.

10: if j = 0 then {(Case 3): Z = {z0(= s)}}
11: –Return ‘y has not been visited’.

12: else if (j < p) then {(Case 4)}
13: – Perform a second

√
n-bounded DFS from zj−1, and terminate the DFS as soon as

one of zj or y is discovered.

14: if y is discovered then

15: – Return ‘(x, y) is a back edge’.

16: else

17: – Return ‘y has not been visited’.

18: end if

19: else {(Case 5): zp(= x) is the landmark vertex zj with highest index j}
20: – Perform a 2

√
n-bounded DFS from zp−2 and terminate the DFS as soon as one of

x or y is discovered. (if p = j = 1, perform a
√
n-bounded DFS from z0).

21: if y is discovered then

22: – Return ‘(x, y) is a back edge’.

23: else

24: – Return ‘y has not been visited’.

25: end if

26: end if

27: end if

Hence by Lemma 6 the
√
n-bounded DFS from y cannot discover zℓ. (b) If j = p− 1, then

zp−1 ∈ Z, but depending on the distance of the current vertex zp = x from zp−1, zp may or

may not belong to Z.

The following lemma proves the correctness of Case 4; the correctness of Case 5 can be

proved similarly.

LEMMA 9. An edge (x, y) is a back edge iff we terminate with the discovery of vertex y by
a
√
n-bounded DFS from zj−1 (i.e. y is discovered before zj).

PROOF. (only if) Suppose (x, y) is a back edge. Thus y is an ancestor of x. A
√
n-bounded

DFS from y discovers exactly one landmark vertex that is a descendant of y since landmark

vertices are spaced
√
n apart. Since the highest-indexed landmark vertex discovered from
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y is zj, zj is a descendant of y and hence y is on the unique path from zj−1 to zj. Therefore

y will be discovered before zj by the
√
n-bounded DFS from zj−1. (if) Suppose y is a newly

discovered vertex. Then no landmark vertex is a descendant of y and the unique path from

zj−1 to y is through zj. So the
√
n-bounded DFS from zj−1 cannot discover y before zj−1.

Thus the discovery step involves at most two
√
n-bounded (or 2

√
n-bounded) DFS.

From Lemma 6, each discovery step takes time O(n + m
√
n). So all the discovery steps

in the graph G can be performed in time O(mn + m2
√
n) time and O(

√
n) space. This

completes the proof of Theorem 4.

3.2 Improving to O(nε) Space

Applying the ideas above recursively, we can improve the space bound to nε for any ε ∈
(0, 1] while still achieving a polynomial time bound. We will prove the following theorem

in this section.

THEOREM 10. For any ε ∈ (0, 1], STCON in unique-path graphs is solvable with O( n
ε

ε )

space in nO( 1
ε ) time.

We first modify the definition of the landmark vertices. Now the landmark vertices

will be spaced n1−ε distance apart on the current search path, so that they can be stored

using O(nε) space. Note that the immediate problem in increasing the spacing of the land-

mark vertices is that, in both the backtrack and discovery steps, landmark vertices may not

be reachable by a nε-bounded DFS. So we need to apply the ideas of the previous section

recursively.

We define the procedure D-REACH(u,U,H, d), where H is a subgraph of the unique-

path graph G with source s‖, u ∈ V(H) and u is reachable from s, U ⊆ V(H), 1 ≤ d ≤
|V(H)| − 1. This procedure decides if there exists a vertex v ∈ U within distance d from

u in H. If such a v ∈ U exists, then the procedure returns the first such vertex v and ter-

minates; otherwise it outputs that no such vertex in U exists. A variant called D-REACH-

ALL(u,U,H, d) determines all vertices in U reachable in distance d from u. This variant

has the same time and space complexity as D-REACH. The STCON problem is same as

D-REACH(s, {t},G, n− 1).

LEMMA 11. If |U| ≤ nε, the procedure D-REACH(u,U,H, nε), can be implemented inO(n+
mnε) time using O(nε) space.

PROOF. The set U, |U| ≤ nε, can be stored in O(nε) space. Since u is reachable from

s, D-REACH(u,U,H, nε) can be implemented like an L-bounded DFS by storing the entire

active path; thus the backtrack step takesO(1) time for each vertex. For each edge (x, y), the
discovery step is performed by checking (i) if y belongs to the active path (of ≤ nε length)

and (ii) if y is a new vertex, then whether it belongs to U, where |U| ≤ nε (and in that case

the procedure returns with output y). Clearly the discovery step can be performed in O(nε)

time. Hence O(n + mnε) time suffices to implement D-REACH(u,U,H, nε).

‖G1 is a subgraph of G2 if V(G1) ⊆ V(G2) and E(G1) ⊆ E(G2).
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Suppose we are at the current vertex x and z0 = s, z1, · · · , zp = x is the set of landmark

vertices stored at the top-most level of the recursion. In the backtrack step, similar to Pro-

cedure 2, for each u ∈ N−(x) we need to check if the landmark vertex zp−1 can reach the

current vertex zp = x in the graph G− (u, x). As the distance of x from zp−1 can be at most

n1−ε, for each u ∈ N−(x), we recursively call D-REACH(zp−1, {x},G− (u, x), n1−ε). For the
entire graph G, we have to make at most m such calls. Similarly for each discovery step, we

have to call a n1−ε-bounded D-REACH-ALL procedures first, and then we may have to call

either a n1−ε-bounded or a 2n1−ε-bounded D-REACH procedure (depending on the cases in

Procedure 3). Using the same notations as in Section 3.1, these recursive procedures are:

(i) D-REACH-ALL(y,Zcur,G, n
1−ε) (where Zcur is the current set of landmark vertices at the

top-most level), (ii) if zj is the highest indexed landmark vertex found, a second call is made

either to D-REACH(zj−1, {zj, y},G, n1−ε) (in Case 4) or to D-REACH(zp−2, {zp, y},G, 2n1−ε)
(in Case 5). Hence, there are at most 2m calls to n1−ε-bounded D-REACH procedures (in-

voked by the backtrack and discovery steps) and at most m calls to n1−ε-bounded or 2n1−ε-

bounded D-REACH procedures (invoked by the discovery step).

Let T(m, n, d) denote the running time of D-REACH(u,U,H, d) (|U| ≤ nε), when H has

at most n nodes and m edges. Note that, in each call to the D-REACH and D-REACH-ALL

procedures used by our algorithm, |U| ≤ nε (since U is a subset of the landmark vertices).

Hencewe have the following recursion. T(m, n, n) ≤ 2mT(m, n, n1−ε) +mmax(T(m, n, n1−ε),
T(m, n, 2n1−ε)) +O(m+ n), i.e. T(m, n, n) ≤ 3mT(m, n, 2n1−ε) +O(m+ n). As the base case

we have, T(m, n, nε) = O(n + mnε) = (m + n)O(1). The first two parameters in the recur-

rence relation are not changed at any step and they do not play active role in the solution of

the recurrence. The solution to this recurrence is (m + n)O(1+ 1
ε ) = nO( 1

ε ), which is a polyno-

mial when ε is a constant.

Next we analyze the increased space requirement due to these recursive calls. Note

that, at any point of time we have to remember the landmark vertices at all levels of the

recursion. But we can reuse the space allocated to landmark vertices in successive DFS calls

at the same recursion level. The recursion depth is at most 1
ε . Hence we have to remember

at most O( n
ε

ε ) vertices. So the overall space complexity of this recursive algorithm is O( n
ε

ε ).
This proves Theorem 10.

4 Recognition of Unique-Path Graphs

We prove the following theorem in this section. But due to space constraint, we omit the

proof of the theorem.

THEOREM 12. Given a directed graph G and a vertex s ∈ V(G), there is an O( n
ε

ε )-space,

nO( 1
ε )-time algorithm to decide whether G is a unique-path graph with respect to source s.

5 Conclusions

An interesting open question is whether there are polynomial-time, polylog-space algo-

rithms for STCON in unique-path graphs. It would also be interesting to see if our ideas

can be extended to obtain an O(nε)-space polynomial-time algorithm for STCON in a more

general family of graphs.
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ABSTRACT. We consider the problem of maintaining information about the rank of a matrix M
under changes to its entries. For an n× nmatrix M, we show an amortized upper bound ofO(nω−1)
arithmetic operations per change for this problem, where ω < 2.376 is the exponent for matrix
multiplication, under the assumption that there is a lookahead of up to Θ(n) locations. That is, we
know up to the next Θ(n) locations (i1, j1), (i2, j2), . . . , whose entries are going to change, in advance;
however we do not know the new entries in these locations in advance. We get the new entries in
these locations in a dynamic manner.

1 Introduction

The dynamic matrix rank problem is that of computing the rank of an n × n matrix M =
{mij} under changes to the entries of M. The rank of a matrix M is the maximum number

of linearly independent rows (or equivalently, columns) in M. The entries of M come from

a field F, and the operation changeij(v) changes the value of the (i, j)-th entry of M to v,

where i, j ∈ {1, . . . , n} and v ∈ F. We have a sequence of changeij(v) operations and the

dynamic matrix rank problem is that of designing an efficient algorithm to return the rank

of M under every change operation.

Here we consider a simpler variant of the above problem, where we assume that we

can lookahead up to Θ(n) operations in advance so that we know location indices (i, j) of the
entries of M that the next Θ(n) operations changeij are going to change. Note that we get

to know the new value v of mij only when the operation changeij(v) actually happens, the

assumption of lookahead is only regarding the location indices.

1.1 Earlier Work

The dynamic matrix rank problem was first studied by Frandsen and Frandsen [2] in 2006.

They showed an upper bound ofO(n1.575) and a lower bound of Ω(n) for this problem (the

lower bound is valid for algebraically closed fields). Frandsen and Frandsen present two

algorithms for the dynamic matrix rank problem - the first algorithm is quite elementary

and finds the rank by recomputing a reduced row echelon form of M for every change. This

takesO(n2) time per change. This bound is valid also when a change alters arbitrarily many

entries in a single column of the matrix. The second algorithm uses an implicit represen-

tation of the reduced row echelon form and this implicit representation is kept sufficiently

compact by using fast rectangular matrix multiplication for global rebuilding. This yields

a complexity of O(n1.575) arithmetic operations per change, and this bound is valid when a

change alters up to O(n0.575) entries in a single column of M.
c© T. Kavitha; licensed under Creative Commons License-NC-ND

FSTTCS 2008 
IARCS Annual Conference on  
Foundations of Software Technology and Theoretical Computer Science 
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Sankowski [7] in 2004 gave several dynamic algorithms for computing matrix inverse,

matrix determinant and solving systems of linear equations. The best of these algorithms

obtains a worst case time of O(n1.495) per change/query. These algorithms assume that the

matrix M remains non-singular during the changes. In 2007 Sankowski [8] showed a ran-

domized (there is a small probability of error here) reduction from the dynamic matrix rank

problem to the dynamic matrix inverse problem: this yields a randomized upper bound of

O(n1.495) for the dynamic matrix rank problem.

Dynamic problems with lookahead. Dynamic graph problems with lookahead were con-

sidered by Khanna et al. in [5]. However their results have been superseded by dynamic

algorithms without lookahead. Very recently, Sankowski and Mucha [9] worked on the dy-

namic transitive closure problem with lookahead. They present a randomized one-sided

error algorithm with changes and queries in O(nω(1,1,ǫ)−ǫ) time given a lookahead of nǫ op-

erations, where ω(1, 1, ǫ) is the exponent of multiplication of an n× n matrix by an n× nǫ

matrix. For ǫ ≤ 0.294, this yields an algorithm with queries and changes in O(n2−ǫ) time,

whereas for ǫ = 1, the time is O(nω−1), where ω < 2.376 is the exponent for matrix mul-

tiplication. Their algorithm is based on a dynamic algorithm with lookahead for matrix

inverse. This algorithm also assumes that the matrix M remains non-singular during the

changes, which need not be true for the dynamic matrix rank problem. However using the

randomized reduction of Sankowski [8] mentioned above, this algorithm for dynamic ma-

trix inverse implies a Monte Carlo algorithm with the same bounds for the dynamic matrix

rank problem with lookahead.

In this paper we use a direct approach for solving the dynamic matrix rank problem

rather than routing through the dynamic matrix inverse problem. The dynamic matrix rank

problem was also originally motivated by its application to the maximum rank matrix com-

pletion problem. The maximum rank matrix completion problem is that of assigning values

to the undefined entries in a mixed matrix (this is a matrix where some entries are unde-

fined) such that the rank of the resulting fully defined matrix is maximized. Geelen [3]

gave a simple O(n9) time algorithm for the maximum rank completion problem that uses

a data structure for dynamic matrix rank. However this application has been superseded

by newer results: Berdan [1] reduced this complexity to O(n4) and Harvey et al. [4] gave

anO(n3 log n) algorithm for the maximum rank completion problem using a different tech-

nique.

Here we show a deterministic upper bound of O(nω−1) for the dynamic matrix rank

problem assuming that we are given a lookahead ofO(n) location indices. The trade-off be-

tween the number of locations that we can lookahead and the running time of our algorithm

is: if we are allowed a lookahead of s ≤ n locations, then our amortized time per change

is O(nω/s + nsω−2). Taking s = Θ(n) balances the two terms. Our algorithm relies on the

idea of maintaining some “important entries” of certain matrices related to M. We describe

this in more detail in the next section.

Organization of the paper. We discuss preliminaries in Section 2. Our algorithm for dynamic

matrix rank is presented in Section 3. Our update subroutine is described and analyzed in

Section 4. Due to lack of space, we omit some proofs from this version of the paper.
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2 Preliminaries

We are given an n× n matrix M with entries from a field F. Our problem is that of comput-

ing the rank of M as elements of M change under the change() operations.
As a preprocessing step, in O(nω) time, where ω < 2.376, we compute matrices U and

E such that UM = E where E has a special form, similar to reduced row-echelon form.

Every row in E that is not the all-zeros row has a special element, whose value is non-zero;

let us call this element the “leading element” of its row - such an element is the unique

non-zero element in its column. We call such columns clean columns (a clean column is a

vector with exactly one non-zero coordinate, which is the leading element of its row) and the

remaining columns of E are the dirty columns. In E we have rank(M) many clean columns,

n− rank(M) many dirty columns, n− rank(M) many rows that are all-zeros and rank(M)
many non-zero rows. As an example, let us consider the matrix M0 below to be our starting

matrix. To the right we have U0M0 = E0 where U0 is our transformation matrix and E0 is in

our special form. In the preprocessing step we compute U0 and E0.

M0 =









1 2 3 4

2 4 6 8

1 1 0 1

2 0 0 5









;









0 0 0 0.5

−2 1 0 0

0 0 −1 0.5

2 0 −4 1

















1 2 3 4

2 4 6 8

1 1 0 1

2 0 0 5









=









1 0 0 2.5

0 0 0 0

0 −1 0 1.5

0 0 6 9









In the matrix E0 above, the first, second, and third columns are clean, while the fourth is

a dirty column. Let us use the following terminology - right after the preprocessing step,

we will define a function π0 : [n] → {0, 1, 2, . . . , n} that tells us which coordinate of a clean

column of E0 contains the unique non-zero element of that column. That is, only the π0(i)-
th coordinate of a clean column i is non-zero. So in the example above, we have π0(1) = 1,

π0(2) = 3, and π0(3) = 4. We define π0(i) = 0 if column i is a dirty column. We will also

use the function Zero0 : [n] → {true, f alse}where Zero0(i) = true if and only if row i of E0 is

an all-zeros row. In our example, Zero0(2) = true while Zero0(w) = f alse for w ∈ {1, 3, 4}.
At the beginning of Step t we have the matrix Mt−1 and let us see what we need to do

in Step t, when the operation changeij(v) happens: here we are given the new value v of mij

and say, the previous value of mij is u. So the new matrix Mt = Mt−1 + Z, where Z is the

all-zeros matrix except for its (i, j)-th coordinate that is v − u. Let E′
t−1 denote the matrix

Ut−1(Mt−1 + Z).
Let the symbols r(X, s) and c(X, ℓ) denote the s-th row and ℓ-th column of matrix X,

respectively. E′
t−1 is the same as Et−1, except for its j-th column which is c(Et−1, j) + (v−

u)c(Ut−1, i). Even if we assume that we had the matrix Et−1 with us at the beginning of

Step t, we now need to “clean up” E′
t−1 by elementary row operations to obtain Et in our

special form and this could take as much as Θ(n2) time. (Repeating these row operations

on Ut−1 yields Ut.) Thus we will not be able to maintain the matrices Uk, Ek at the end of

Step k, for each k.

Thus at the beginning of Step t we in fact do not know the matrices Ut−1 and Et−1.

However we will know certain important entries of Et−1 and Ut−1. For this purpose, we

need to recall the functions π and Zero defined earlier; πt−1(i) is 0 if column i is a dirty

column of Et−1, else it gives the row coordinate of the unique non-zero element of column
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i; Zerot−1(i) is true if row i is an all-zeros row in Et−1, else Zerot−1(i) is f alse. What we will

ensure at the beginning of Step t (to process changeij(·)) is the following:

• we will know the entire πt−1(j)-th row of Et−1: this is r(Et−1,πt−1(j))
• we will know the i-th column of Ut−1 in its πt−1(j)-th coordinate and all those coordi-

nates w such that Zerot−1(w) = true; we call this the sub-column c̃(Ut−1, i).
We describe our algorithm in Section 3 and show that these entries suffice to determine

the rank of E′
t−1. Now in Step twe also compute certain rows of Et and certain entries of the

matrix Ut. We postpone the work of computing the other rows of Et and the other entries

of Ut for now and this postponed work will be executed in batches at various points in the

algorithm. The technique of postponing work for a while and executing this postponed

work in batches at some other time in the algorithm has been used for other problems too

(for instance, for computing maximum matchings in [6]). The novelty in our paper is that

when we run our update step (to compute certain entries of Et and Ut), we do not update

entire columns since that is too expensive. Instead, we are able to identify these columns

in their “critical” coordinates and update columns only in their critical coordinates. We are

able to identify these critical coordinates in advance due to the function π on column indices

of E and the function Zero on row indices of E that we maintain throughout our algorithm

and also due to the lookahead on location indices that our problem assumes.

3 The algorithm for dynamic matrix rank

Let us assume that we have a lookahead of up to s locations; for convenience let s be a

power of 2. After the preprocessing step, our algorithm can process 2s change operations as

follows: let changeij(v) be the t-th change operation, where 1 ≤ t ≤ 2s. When this change

operation occurs, we do the following:

∗ first call rank(i, j, v, r(Et−1,πt−1(j)), c̃(Ut−1, i)); this returns the rank of the matrix Mt.

∗ if t < 2s then call update({t + 1, . . . , t + k}) where k is the largest power of 2 that

divides t. This subroutine computes the rows πt(jt+1), . . . ,πt(jt+k) of Et and the sub-

columns it+1, . . . , it+k of Ut, where (it+1, jt+1), . . . , (it+k, jt+k) are the location indices of

the change operations in Steps t + 1, . . . , t + k.

We consider processing 2s change operations as described above as one phase. Each

phase starts with the preprocessing step of computing the matrices U and E corresponding

to the current M so that UM = E. Then we process 2s change operations. This finishes

one phase. We will show in Section 4 that the update({t + 1, . . . , t + k}) subroutine takes

O(nkω−1) time. Thus the total running time, T(2s), for all the update subroutines in a phase

is given by: T(2s) = O(nsω−1 + 2n(s/2)ω−1 + 4n(s/4)ω−1 + . . . + sn(s/s)ω−1), which is

O(nsω−1).
In Section 3.1 we describe the rank() subroutine and show that its running time isO(n).

Hence the time for processing 2s change operations in a phase, after the initialization step, is

O(nsω−1). We incur a cost ofO(nω) per phase for the initialization step and for every phase

other than the first, let us distribute the cost of the initialization step of that phase among

the 2s change operations of the previous phase. Thus the amortized cost of processing each

change isO(nω/s+ nsω−2). With s = Θ(n), our algorithm has a cost ofO(nω−1) per change,
which proves the following theorem.
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THEOREM 1. Dynamic matrix rank over an arbitrary field can be solved using amortized
O(nω−1) arithmetic operations per change (where ω < 2.376) with a preprocessing cost of
O(nω), provided that we are allowed a lookahead of up to Θ(n) locations.

3.1 The subroutine rank(i, j, v, r(Et−1,πt−1(j)), c̃(Ut−1, i))

The rank subroutine is called after every change operation. Let changeij(v) be the current

change operation - this changes the matrix Mt−1 to Mt. The input to rank() consists of

i, j, v, the πt−1(j)-th row of Et−1, and the i-th column of Ut−1 restricted to certain critical

coordinates. Let u be the value of (i, j)-th coordinate of Mt−1. We can assume that the new

value v 6= u since Mt = Mt−1 if v = u.

Recall that we defined E′
t−1 to be the matrix Ut−1Mt. Below we determine the rank of

E′
t−1 and it is easy to see that rank(Mt) = rank(E′

t−1) since Ut−1 is just a transformation

matrix that is a product of elementary row operations (adding a scalar multiple of one row

to another row).

Let the rank of Mt−1 be ρ. Then the rank of Mt is one of ρ − 1, ρ, ρ + 1. To decide which

of these 3 numbers is the rank of Mt, we need to read only those entries of E′
t−1 as given by

checks (1), (2), and (3) below. It can be shown that these entries suffice to determine the rank

of E′
t−1.

(1) We first check if there exists any row index w such that Zerot−1(w) = true and the w-th

coordinate of c(Ut−1, i) is non-zero.

CLAIM 2. If j is a dirty column in Et−1, then rank(E′
t−1) = ρ + 1 if there is a w such that

Zerot−1(w) = true and the w-th coordinate of c(Ut−1, i) is non-zero; else rank(E
′
t−1) = ρ.

Thus the case when j is a dirty column in Et−1 (i.e., πt−1(j) = 0) is easy. Just knowing

those coordinates w of column c(Ut−1, i) such that Zerot−1(w) = true suffices to determine

the rank of Et. The case when j is a clean column is only a little more difficult. If πt−1(j) 6= 0,

then we also do the checks as given by (2) and (3).

(2) We check if there exists any index d such that πt−1(d) = 0 and the d-th coordinate of

r(Et−1,πt−1(j)) is non-zero.
(3) If there is neither a d of check (2) nor a w of check (1), then we check if E′

t−1[πt−1(j), j] is
non-zero or 0. This tells us if the πt−1(j)-th row of Et will be all-zeros or not.

CLAIM 3. If j is a clean column in Et−1, then we have the following cases:
(i) If there is a w with Zerot−1(w) = true and Ut−1[w, i] 6= 0 and if there is a d with

πt−1(d) = 0 and Et−1[πt−1(j), d] 6= 0, then the rank of E′
t−1 is ρ + 1.

(ii) If there is no w with Zerot−1(w) = true and Ut−1[w, i] 6= 0 and the row πt−1(j) in E′
t−1

is all 0’s, then the rank of E′
t−1 is ρ − 1.

(iii) Else the rank of E′
t−1 is ρ.

Thus at the end of this step we know the rank of Mt. In summary, note that we did not

really need to know the entire column c(Ut−1, i) here - its entries in coordinates w such that

Zerot−1(w) = true and in its πt−1(j)-th coordinate are what we needed; also we needed to

know the row r(Et−1,πt−1(j)) in the dirty column coordinates and in its πt−1(j)-th coordi-

nate in order to know if this row remains a non-zero row or if it becomes the all-zeros row in
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Et. Thus the two vectors: r(Et−1,πt−1(j)) and c̃(Ut−1, i) were sufficient for us to determine

the rank of Mt.

Now we compute the functions πt and Zerot from the functions πt−1 and Zerot−1. The

only values w for which πt−1(w) and πt(w) might be possibly different are w = j, w = d

(where d is a dirty column in Et−1 but will be a clean column in Et). The only rows r for

which Zerot(r) and Zerot−1(r) might be possibly different are row πt−1(j) and row w (where

w is a zero row in Et−1 but will be a non-zero row in Et). We omit the details of computing

the functions πt and Zerot here.

It is easy to see that the time taken by the rank subroutine isO(n). Hence the following

lemma can be concluded.

LEMMA 4. The subroutine rank(i, j, v, r(Et−1,πt−1(j)), c̃(Ut−1, i)) computes the rank of the
matrix Mt inO(n) time. It also maintains the functions πt (on column indices) and Zerot (on
row indices).

4 The update() subroutine

In each update subroutine, we will compute certain rows of Et and certain columns of Ut in

“critical coordinates” that will be useful in the next few change operations. In particular, we

will compute k rows of Et and k sub-columns of Ut, where k ≥ 1 is the largest power of 2

that is a divisor of t (recall that the current change operation is the t-th change operation in

this phase).

Let the change operations that will occur in in the next k steps be in the locations

(x1, y1), . . ., (xk, yk), respectively. Note that we know (x1, y1), . . . , (xk, yk) due to the looka-

head allowed to us. Define the set St = {πt(y1), . . . ,πt(yk), o1, . . . , oh} where o1, . . . , oh are

all the row indices o such that Zerot(o) = true. The set St is the set of critical coordinates for

update({t + 1, . . . , t + k}).
In update({t + 1, . . . , t + k}), we will compute the k rows πt(y1), . . . ,πt(yk) of Et (note

that this implies that we know all those rows s of Et, for s ∈ St since rows o1, . . . , oh are

all-zeros in Et) and the k columns x1, . . . , xk of Ut in the coordinates s for s ∈ St. Once we

compute the above rows and sub-columns, we will store them so that we can use/reuse

them at later steps of this phase. In our current update subroutine, we will be reusing the

rows and sub-columns that we computed in the update subroutine of Step t− k.

Let us see what rows and sub-columns were computed in the update subroutine of

Step t− k. Let us use the symbol γ to denote t− k. Let changeiℓ jℓ(vℓ) be the change operation
in Step ℓ, for γ + 1 ≤ ℓ ≤ t. Since the number k is the largest power of 2 that is a divisor of

t, it follows that γ = t− k is a multiple of 2k. Hence the set of critical coordinates for Step γ,

call it Sγ, contains {πγ(jγ+1), . . . ,πγ(jt), πγ(y1), . . . ,πγ(yk), z1, . . . , zg} where z1, . . . , zg are

the row indices for which Zeroγ is true. We have the following claim stated as Proposition 5.

Its proof is omitted here.

PROPOSITION 5. St ⊆ Sγ.

Since the update subroutine of Step t computes the rows s of Et for s ∈ St, it follows that

the update subroutine of Step γ computed the rows s′ of Eγ for s′ ∈ Sγ. Lemma 6 follows

from this fact and Proposition 5.
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LEMMA 6. The update subroutine of Step γ computes the rows πt(y1), . . . ,πt(yk) of Eγ and
the columns x1, . . . , xk of Uγ restricted to the coordinates of St.

Now we are in a position to specify what tasks have to be performed in our current

update subroutine, i.e., update({t + 1, . . . , t + k}). Here we have to perform the following

tasks:

(i) update the row r(Eγ,πt(yh)) to r(Et,πt(yh)), for 1 ≤ h ≤ k

(ii) update the sub-column c̃(Uγ, xh) to c̃(Ut, xh), for 1 ≤ h ≤ k (all these sub-columns are

restricted to the coordinates s ∈ St)

Theorem 7 is our main tool here to perform the updates given by (i) and (ii) above.

During each Step ℓ, where γ + 1 ≤ ℓ ≤ t, recall that the matrix Mℓ−1 gets changed to Mℓ by

a changeiℓ jℓ(vℓ) operation; we have Uℓ−1Mℓ = E′
ℓ−1. In order to “clean” the matrix E′

ℓ−1 we

might need to clean up to 2 columns (column jℓ and a dirty column dℓ) of E
′
ℓ−1. The cleaning

of column jℓ will be done by the row πℓ(jℓ) and the cleaning of column dℓ will be done by

the row πℓ−1(jℓ). Let us use the symbols aℓ and bℓ for πℓ−1(jℓ) and for πℓ(jℓ), respectively.
The row operations performed on E′

ℓ−1 have to be then performed on Uℓ−1 and this yields

Uℓ.

Let us use the symbol Ẽ′
ℓ−1 (similarly, Ũℓ−1) to denote the matrix E′

ℓ−1 (resp.,Uℓ−1) after

the “cleaning” of column jℓ and before the “cleaning” of column dℓ. Let ejℓ denote the unit

vector with a 1 in its jℓ-th coordinate.

Note that the equalities given in Theorem 7 hold for all row indices s ∈ {1, . . . , n},
however we focus only on row indices s ∈ St here. (For simplicity of exposition, we will

not qualify statements on a row πℓ(s) of E with “if πℓ(s) 6= 0”, thus we might refer to a row

r′ where r′ = 0 - such a row will be the all 0’s row.) The proof of Theorem 7 is omitted here.

THEOREM 7. For each s ∈ St, we have the following relation between row s of Et and row s

of Eγ:

r(Et, s) = r(Eγ, s) −
t

∑
ℓ=γ+1

δs,ℓ · ejℓ −
t

∑
ℓ=γ+1

αs,ℓ · r(Ẽ′
ℓ−1, aℓ)

and the following relation between row s of Ut and row s of Uγ:

r(Ut, s) = r(Uγ, s) −
t

∑
ℓ=γ+1

βs,ℓ · r(Uℓ, bℓ) −
t

∑
ℓ=γ+1

αs,ℓ · r(Ũℓ−1, aℓ)

where the scalars δs,ℓ, αs,ℓ and βs,ℓ are defined as follows:

∗ If bℓ = 0, then δs,ℓ = (uℓ − vℓ) ·Uℓ−1[s, iℓ].

Else δs,ℓ =

{

(uℓ − vℓ) ·Uℓ−1[bℓ, iℓ] if s = bℓ

Eℓ−1[s, jℓ] otherwise

∗ If bℓ = 0 then βs,ℓ = 0.

Else βs,ℓ =

{

0 if s = bℓ

E′
ℓ−1[s, jℓ]/E

′
ℓ−1[bℓ, jℓ] otherwise
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∗ If aℓ = 0 or aℓ = bℓ then αs,ℓ = 0.
Else let dℓ be the leading element of row aℓ in Eℓ, i.e., πℓ(dℓ) = aℓ. We have:

αs,ℓ =

{

0 if s = aℓ

E′
ℓ−1[s, dℓ]/E

′
ℓ−1[aℓ, dℓ] otherwise

The above theorem can be written in matrix form as follows. For simplicity let us call

the elements of St as s1, . . . , sp, and the δs,ℓ, βs,ℓ and αs,ℓ values for s ∈ St and 1 ≤ ℓ ≤ k as

δ1,1, . . . , δp,k, β1,1, . . . , βp,k and α1,1, . . . , αp,k, respectively.







r(Et, s1)
...

r(Et, sp)






=







r(Eγ, s1)
...

r(Eγ, sp)






−







δ1,1 α1,1 . . . δ1,k α1,k
...

...
...

...
...

δp,1 αp,1 . . . δp,1 αp,k













ejγ+1

...

r(Ẽ′
t−1, at)






(1)







r(Ut, s1)
...

r(Ut, sp)






=







r(Uγ, s1)
...

r(Uγ, sp)






−







β1,1 α1,1 . . . β1,k α1,k
...

...
...

...
...

βp,1 αp,1 . . . βp,k αp,k













r(Uγ, bγ+1)
...

r(Ũt−1, at)






(2)

Our goal is to determine the matrices on the left of Eqns. (1) and (2). However notice

that these matrices can be quite large. Each matrix on the left is a p × n matrix, where

p = |St|. The value of |St| could be Θ(n) and then we would spend Θ(n2) time only to just

write down all the entries of such amatrix. We certainly do not want to spend Θ(n2) time for

update({t + 1, . . . , t + k}). Recall that we promised to show that update({t + 1, . . . , t + k})
takes O(nkω−1) time. Hence we do not perform all the matrix arithmetic as specified by

Eqns. (1) and (2).

Instead, to compute the relevant rows of Et, we restrict the matrices of Eqn. (1) solely

to the row indices πt(y1), . . . ,πt(yk) since job (i) only needs these rows of Et. This involves

multiplying a k× 2kmatrix (of α’s and δ’s) with a 2k× nmatrix which takesO(nkω−1) time,

once we know the matrices involved. To compute the sub-columns of Ut, we restrict the

matrices of Eqn. (2) only to the column indices x1, . . . , xk, since job (ii) only needs columns

x1, . . . , xk of Ut, restricted to coordinates in St. This involves multiplying a p× 2k matrix (of

α’s and β’s) with a 2k× kmatrix of sub-rows, which again takesO(nkω−1) time. Observe that

we need the entire p× 2k matrix of β’s and α’s written above for this matrix multiplication.

Determining the β’s, α’s, and δ’s is, in fact, the crux of the update subroutine. We will show

the following lemma here. Section 4.1 contains the algorithm that proves this lemma.

LEMMA 8. The δs,ℓ, αs,ℓ, βs,ℓ values for all s ∈ St and γ + 1 ≤ ℓ ≤ t can be computed in time
O(nkω−1).

Once we compute the matrix of α’s and δ’s, task (i) of update({t + 1, . . . , t + k}) is es-

sentially done since we now know all the matrices on the right of Eqn. (1): the matrix whose

rows are r(Eγ, s) for s ∈ {πt(y1), . . . ,πt(yk)} is known to us (by Lemma 6) and each odd

indexed row in the rightmost matrix is a unit vector (ejℓ is the (2(ℓ − γ) − 1)-th row). Re-

garding the even indexed rows, the vector r(E′
ℓ−1, aℓ) was a part of the input to the rank sub-

routine of Step ℓ (recall that aℓ = πℓ−1(jℓ)) and we have r(Ẽ′
ℓ−1, aℓ) = r(E′

ℓ−1, aℓ)− βaℓ,ℓ · ejℓ .
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Completing task (ii) of update({t + 1, . . . , t + k}) is more difficult, the rightmost matrix

of Eqn. (2) is unknown to us. We describe how we compute this matrix after we present the

proof of Lemma 8.

4.1 Proof of Lemma 8

We compute the δs,ℓ, αs,ℓ, βs,ℓ values for all s ∈ St and γ + 1 ≤ ℓ ≤ t using a recursive subrou-

tine UpdateColumns({γ + 1, . . . , t}). This subroutine computes these scalars by determining

the sub-columns c̃(Uℓ−1, iℓ), c̃(Eℓ−1, jℓ), c̃(Eℓ−1, dℓ) in the coordinates of St for γ + 1 ≤ ℓ ≤ t;

recall that these sub-columns determine the δs,ℓ, αs,ℓ, βs,ℓ values by Theorem 7.

Here we describe a generic subroutineUpdateColumns({w+ 1, . . . ,w+ q}) (this is either
the original subroutineUpdateColumns({γ + 1, . . . , t}) or a subroutine invoked in a recursive

call). This subroutine will compute δs,ℓ, αs,ℓ, βs,ℓ values for all s ∈ St and w + 1 ≤ ℓ ≤ w + q.

We will maintain the invariant that we know (restricted to the coordinates of St) the sub-

columns jℓ, dℓ of Ew and the sub-columns iℓ of Uw, for w + 1 ≤ ℓ ≤ w + q, at the time

UpdateColumns({w + 1, . . . ,w + q}) is called. Observe that this invariant is true at the onset

when UpdateColumns({γ + 1, . . . , t}) is called, since we know the vectors c̃(Eγ, jℓ), c̃(Eγ, dℓ),
c̃(Uγ, iℓ) in the coordinates of St for γ + 1 ≤ ℓ ≤ t (by the update subroutine of Step γ and

because Sγ ⊇ St).

UpdateColumns({w + 1, . . . ,w + q}):
• If q = 1 then it is the base case: we compute the values δs,w+1, βs,w+1 and αs,w+1

for all s ∈ St from c̃(Ew, jw+1), c̃(Ew, dw+1), c̃(Uw, iw+1), and scalars vw+1, uw+1 using

Theorem 7.

• Else

(1) Call UpdateColumns({w + 1, . . . ,w + q/2}) recursively.
(2) Perform a bulk update step to update

(I) the sub-columns jℓ, dℓ of Ew to Ew+q/2 for w + q/2+ 1 ≤ ℓ ≤ w + q

(II) the sub-columns iℓ of Uw to Uw+q/2 for w + q/2+ 1 ≤ ℓ ≤ w + q

(3) Call UpdateColumns({w + q/2+ 1, . . . ,w + q}) recursively.
Remark. Observe that Step (2) enables us to maintain the following invariant that is nec-

essary when UpdateColumns({w + q/2 + 1, . . . ,w + q}) is called in Step (3): we know the

columns c̃(Ew+q/2, jℓ), c̃(Ew+q/2, dℓ), c̃(Uw+q/2, iℓ) in the coordinates of St for w + q/2+ 1 ≤
ℓ ≤ w + q.

The base case is easy since we had maintained the invariant that we know the sub-

columns c̃(Ew, jw+1), c̃(Ew, dw+1), c̃(Uw, iw+1) in the coordinates s, where s ∈ St, when the

subroutine UpdateColumns({w+ 1}) is called. The base case takesO(n) time. Thus we have

the following recurrence for the running time T′(q) of UpdateColumns({w + 1, . . . ,w + q}):

T′(q) =

{

2T′(q/2) + time for the bulk update step if q > 1

O(n) if q = 1
(3)

Nowwe need to describe the bulk update step. The bulk update step has to perform the

updates given by (I) and (II) of Step (2) in the algorithm UpdateColumns({w+ 1, . . . ,w+ q})
described above. We describe first how we do (I) and then (II).
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(I): Update columns jℓ, dℓ of Ew to Ew+q/2. Here we need to update the columns jℓ, dℓ

of Ew to Ew+q/2, for w + q/2 + 1 ≤ ℓ ≤ w + q. This amounts to updating the coordinates

jw+q/2+1, . . . , jw+q, dw+q/2+1, . . . , dw+q of certain rows of Ew to Ew+q/2. These row indices are

the numbers s in St. The updates on these rows of Ew are given by equations analogous to

the ones in Theorem 7. We have for each s ∈ St the following equation:

r(Ew+q/2, s) = r(Ew, s) −
w+q/2

∑
ℓ=w+1

δs,ℓ · ejℓ −
w+q/2

∑
ℓ=w+1

αs,ℓ · r(Ẽ′
ℓ−1, aℓ)

where the δs,ℓ’s and αs,ℓ’s are defined in Theorem 7. Note that we already know all δs,ℓ, αs,ℓ, βs,ℓ

values forw+ 1 ≤ ℓ ≤ w+ q/2, sincewe computed these values in theUpdateColumns({w+
1, . . . ,w+ q/2}) subroutine, that was called in Step 1 of UpdateColumns({w+ 1, . . . ,w+ q}).
The above equations in matrix form become:







r(Ew+q/2, s1)
...

r(Ew+q/2, sp)






=







r(Ew, s1)
...

r(Ew, sp)






−







δ1,1 . . . α1,q/2
...

...
...

δp,1 . . . αp,q/2













ejw+1

...

r(Ẽ′
w+q/2−1, aw+q/2)






(4)

where the rows of the Ematrices are restricted to the coordinates jw+q/2+1, . . . , jw+q, dw+q/2+1,

. . . , dw+q. Recall that s1, . . . , sp are the elements of St and for convenience, we called the δs,ℓ
and αs,ℓ values that we computed in UpdateColumns({w + 1, . . . ,w + q/2}) as δ1,1, . . . , δp,q/2
and α1,1, . . . , αp,q/2.

We know all the matrices on the right in Eqn. (4) (regarding the rows of the right-

most matrix, refer to the paragraph after the statement of Lemma 8). Since we multiply a

p× q matrix with a q× q matrix in Eqn. (4), the time taken for this matrix multiplication is

O((p/q)qω), which is O(nqω−1). We thus determine for each s ∈ St, the row s of Ew+q/2 re-

stricted to coordinates jℓ, dℓ, for w+ q/2+ 1 ≤ ℓ ≤ w+ q, inO(nqω−1) time; in other words,

we know the columns jℓ, dℓ, for w + q/2 + 1 ≤ ℓ ≤ w + q, of Ew+q/2, in the coordinates of

elements in St in O(nqω−1) time.

(II): Update columns iℓ of Uw to Uw+q/2. Here we need to update columns iℓ, for w +
q/2 + 1 ≤ ℓ ≤ w + q of Uw to Uw+q/2. We follow the same method that we used to update

the columns of Ew to Ew+q/2. For each s ∈ St we have the following equation:

r(Uw+q/2+1, s) = r(Uw, s) −
w+q/2

∑
ℓ=w+1

βs,ℓ · r(Uℓ−1, bℓ) −
w+q/2

∑
ℓ=w+1

αs,ℓ · r(Ũℓ−1, aℓ)

where the βs,ℓ’s and αs,ℓ’s are defined in Theorem 7. The bulk update step for the rows of

U (written in matrix form) is analogous to Eqn. (4) - note that here these rows are restricted

to the coordinates iℓ for w + q/2 + 1 ≤ ℓ ≤ w + q. However, here we cannot claim that we

know all the matrices on the right of the analogous equation of Eqn. (4) for U. The right-

most matrix, whose rows are the sub-rows r(Uw, bw+1), r(Ũw, aw+1), . . . , r(Ũw+q/2−1, aw+q/2)
is unknown to us and we have to determine it now. We will compute the rows of this ma-

trix using the same recursive strategy as was used in the UpdateColumns algorithm. The

subroutine UpdateRowsU({w + 1, . . . ,w + q/2}), described below, computes these rows.
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Wepresent a generic subroutineUpdateRowsU({z+ 1, . . . , z+ l}) (this is either the origi-
nal subroutine UpdateRowsU({w+ 1, . . . ,w+ q/2}) or one invoked in a recursive call). Note

that w + 1 ≤ z + 1 ≤ z + l ≤ w + q/2. We maintain the invariant that at the time of

calling UpdateRowsU({z + 1, . . . , z + l}), we have the rows bz+1, . . . , az+l of Uz in the coor-

dinates of iw+q/2+1, . . . , iw+q; in this subroutine we update these sub-rows to the sub-rows

r(Uz, bz+1), . . ., r(Ũz+l−1, az+l)), respectively. Observe that this invariant is true at the onset

when we call UpdateRowsU({w + 1, . . . ,w + q/2}) by the invariant that we had maintained

when UpdateRowsU({w + 1, . . . ,w + q}) was called.

UpdateRowsU({z + 1, . . . , z + l}):
• If l = 1 then it is the base case: by our invariant, we have the rows r(Uz, bz+1) and

r(Uz, az+1) in the coordinates iw+q/2+1, . . . , iw+q. We need to update r(Uz, az+1) to

r(Ũz, az+1). This is easily done.

• Else

– Call UpdateRowsU({z + 1, . . . , z + l/2}).
– Simultaneously update the sub-rows bz+l/2+1, . . . , az+l (call these row indices

s′1, . . . , s
′
l for convenience) of Uz to Uz+l/2 as follows:







r(Uz+l/2, s
′
1)

...

r(Uz+l/2, s
′
l)






=







r(Uz, s
′
1)

...

r(Uz, s
′
l)






−







β1,1 . . . α1,l/2
...

...
...

βl,1 . . . αl,l/2













r(Uz, (bz+1)
...

r(Ũz+l/2−1, az+l/2)







We know all the matrices on the right side above, since we have already com-

puted the matrix of α’s and β’s corresponding to {z + 1, . . . , z + l} during the

subroutine UpdateColumns({w + 1, . . . ,w + q/2}) and the rightmost matrix was

computed in the earlier recursive call UpdateRowsU({z + 1, . . . , z + l/2}).
– Call UpdateRowsU({z + l/2 + 1, . . . , z + l}). [Note that the update of the above

step ensures that our invariant is maintained for this call of UpdateRowsU.]

It is easy to see that the recurrence relation for the running time T′′(l) of the above

algorithm UpdateRowsU({z + 1, . . . , z + l}) is:

T′′(l) =

{

2T′′(l/2) +O(qlω−1) if l > 1

O(q) if l = 1

T′′(l) solves to O(qlω−1). Thus T′′(q) is O(qω). This is the time taken to compute the right-

most matrix in the equation analogous to Eqn. (4) forU. Once this matrix is determined, the

matrix multiplication is performed in O(nqω−1) time. Thus we determine the sub-rows s of

Uw+q/2 for s ∈ St in the coordinates iw+q/2+1, . . . , iw+q. In other words, we computed the

columns iw+q/2+1, . . . , iw+q ofUw+q/2 in the coordinates of St. This completes the description

of the bulk update step of the subroutine UpdateColumns({w + 1, . . . ,w + q}).
We can now analyse the running time T′(q) of UpdateColumns({w + 1, . . . ,w + q}) (see

Eqn. (3)). We have T′(q) = 2T′(q/2) + O(nqω−1) and T′(1) = O(n). Thus T′(q) solves to

O(nqω−1). Hence T′(k), the running time of UpdateColumns({γ + 1, . . . , t}), is O(nkω−1).

This proves Lemma 8.
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Completing task (ii) of update({t + 1, . . . , t + k}). We have to determine all the matrices

on the right hand side of Eqn. (2) - we currently know two of these matrices: the matrix

whose rows are r(Uγ, s) restricted to columns iγ+1, . . . , it (by Lemma 6) and the matrix of α’s

and β’s that we just computed. The rightmost matrix of Eqn. (2) is currently unknown to

us; however we know the matrix whose rows are b1, a1, . . . , bk, ak of Uγ. We need to update

this matrix to the desired matrix. This is done by calling the subroutine UpdateRowsU({γ +
1, . . . , t}) described in the previous section. This takes O(nkω−1) time by our analysis given

there. Now we know all the matrices on the right of Eqn. (2). Thus we can compute the

matrix on the left of Eqn. (2) in timeO(nkω−1). This completes the description of the update

subroutine. We have thus shown the following theorem.

THEOREM 9. The update({t+ 1, . . . , t+ k}) subroutine obtains the rows r(Et,πt(jh)) and the
sub-columns c̃(Ut, ih) in the coordinates s for s ∈ St, for γ + 1 ≤ h ≤ t, in time O(nkω−1).

Conclusions

We showed that the dynamic matrix rank problem for an n × n matrix with entries from

any field can be solved using amortized O(nω−1) arithmetic operations per change (where

ω < 2.376) with a preprocessing cost of O(nω), provided that we are allowed a lookahead

of up to Θ(n) locations. An open problem is to show such a bound without lookahead.
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ABSTRACT. Given a bipartite graph G = (Vc,Vt, E) and a non-negative integer k, the NP-complete
MINIMUM-FLIP CONSENSUS TREE problem asks whether G can be transformed, using up to k edge
insertions and deletions, into a graph that does not contain an induced P5 with its first vertex in Vt

(a so-called M-graph or Σ-graph). This problem plays an important role in computational phyloge-
netics, Vc standing for the characters and Vt standing for taxa. Chen et al. [IEEE/ACM TCBB 2006]
showed that MINIMUM-FLIP CONSENSUS TREE is NP-complete and presented a parameterized al-
gorithm with running time O(6k · |Vt| · |Vc|). Recently, Böcker et al. [IWPEC ’08] presented a refined
search tree algorithm with running time O(4.83k(|Vt| + |Vc|) + |Vt| · |Vc|). We complement these
results by polynomial-time executable data reduction rules yielding a problem kernel with O(k3)
vertices.

1 Introduction

The MINIMUM-FLIP CONSENSUS TREE problem arises in computational phylogenetics in

the context of supertree construction. Given a binary matrix, the task is to “flip” a mini-

mum number of entries of the matrix in order to obtain a binary matrix that admits what is

called a perfect phylogeny. These are matrices from which a rooted phylogenetic tree can be

inferred [15, 21].

In this work, we employ a graph-theoretic formulation of the problem, whichwas intro-

duced by Chen et al. [4]: the binary input matrix A is represented by a bipartite graph G =
(Vc,Vt, E) where an edge between two vertices i ∈ Vc and j ∈ Vt is drawn iff Ai,j = 1.

The matrix then admits a perfect phylogeny iff the graph does not contain an M-graph as

an induced subgraph. An M-graph is a path of five vertices with the first vertex belonging

to Vt. An example of such an M-graph is depicted in Fig. 1. Then, the flipping of a matrix

entry Ai,j from 0 to 1 corresponds to the insertion of the edge {i, j}, and from 1 to 0 corre-

sponds to the deletion of the edge {i, j}. The MINIMUM-FLIP CONSENSUS TREE problem is

then defined as follows.

Instance: A bipartite graph G = (Vc,Vt, E) and an integer k ≥ 0.

Question: CanG be changed by up to k edgemodifications into an M-free graph,

that is, a graph without an induced M-graph?
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c1 c2

t1 t2 t3

Figure 1: An M-subgraph with t1, t2, t3 ∈ Vt and c1, c2 ∈ Vc.

Chen et al. [4] showed that MINIMUM-FLIP CONSENSUS TREE is NP-complete, which

motivates the study of the MINIMUM-FLIP CONSENSUS TREE problem in the context of

parameterized algorithmics [19]. Other than previous work [1, 4] on parameterized algo-

rithms for MINIMUM-FLIP CONSENSUS TREE, which mainly dealt with the development of

depth-bounded search trees, here we deal with polynomial-time data reduction with prov-

able performance guarantee, that is, kernelization. Kernelization is considered as one of the

theoretically and practically most interesting algorithmic methods of parameterized algo-

rithmics [6, 14, 17, 19]. Roughly speaking, the goal is to derive a problem kernel which is an

instance “equivalent” to the original one but with (hopefully) much smaller size; in partic-

ular, the size of the problem kernel shall only be a function of the parameter k. Moreover,

the problem kernel needs to be computable in polynomial-time—so this is closely related to

polynomial-time preprocessing.

Known results and previous work. The MINIMUM-FLIP CONSENSUS TREE was intro-

duced by Chen et al. [4] who also proved its NP-completeness and described a factor-2d

approximation algorithm for graphs with maximum degree d. Furthermore, they showed

fixed-parameter tractability with respect to the number of flips k by describing a simpleO(6k ·
mn) search tree algorithm that is based on the forbidden induced subgraph characterization

with M-graphs. Recently, Böcker et al. [1] improved the running time to O(4.83k(|Vc| +
|Vt|) + |Vc| · |Vt|) by employing a refined branching strategy that leads to a search tree of

size O(4.83k). This theoretically proven running time acceleration was also practically con-

firmed by computational experiments [1].

From a graph-theoretic point of view, MINIMUM-FLIP CONSENSUS TREE belongs to the

class of so-called Π-EDGE MODIFICATION problems: Given a graph G, a graph property Π,

and an integer k ≥ 0, the question is whether G can be transformed by at most k edge modi-

fications into a graph with property Π. A lot of work has been put into classifying Π-EDGE

MODIFICATION problems with respect to their classical complexity [3, 18, 24]. Recently, pa-

rameterized algorithmics—in particular kernelizations—for Π-EDGE MODIFICATION prob-

lems have attracted special attention. For instance, there is a series of papers studying the

kernelizability of CLUSTER EDITING and some of its variations [7, 9, 11, 13, 22]. Also vertex

deletion problems such as UNDIRECTED FEEDBACK VERTEX SET with its cubic-size prob-

lem kernel [2]—very recently improved to a quadratic-vertex problem kernel [23]—have

been studied, underpinning the importance of kernelization in the wide area of graph mod-

ification problems. Furthermore, even exponential-size kernels such as those for CLIQUE

COVER [10] and BICLIQUE COVER [8] are of importance, since they often provide the only

known way to show that a problem is fixed-parameter tractable. Damaschke [5] investi-

gated kernelization in the context of enumerating all inclusion-minimal solutions of size
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at most k. In this scenario, when designing reduction rules one has to guarantee that all

inclusion-minimal solutions of size at most k are preserved. Kernels that fulfill these addi-

tional constraints are called full kernels. In this setting, Damaschke [5] presents a full kernel

consisting of O(6k) matrix entries for the following problem closely related to MINIMUM-

FLIP CONSENSUS TREE: Given a binary matrix and a non-negative integer k, enumerate all

inclusion-minimal sets of at most k flips that transform the matrix into a matrix that admits

an unrooted perfect phylogeny.

Our contributions. In this work, we provide several polynomial-time data reduction rules

for MINIMUM-FLIP CONSENSUS TREE that lead to a problem kernel containing O(k3) ver-

tices. This is the first non-trivial kernelization result for MINIMUM-FLIP CONSENSUS TREE.

Combining our kernelization algorithmwith the search tree by Böcker et al. [1], we achieve a

running time ofO(4.83k + poly(|Vc|, |Vt|)) instead of the previousO(4.83k · poly(|Vc|, |Vt|)).
Furthermore, we describe one of the data reduction rules in a fairly abstract and general

way, making it applicable to a wide range of Π-EDGE MODIFICATION problems. Due to the

lack of space, several details are deferred to a full version of the paper.

2 Preliminaries

The open neighborhood NG(v) of a vertex v ∈ V is the set of vertices that are adjacent to v

in G = (V, E). For a set of vertices V ′ ⊆ V, the induced subgraph G[V ′] is the graph over

the vertex set V ′ with edge set {{v,w} ∈ E | v,w ∈ V ′}. For V ′ ⊆ V we use G − V ′

as abbreviation for G[V \ V ′] and for a vertex v ∈ V let G − v denote G − {v}. For two

sets X and Y with X ∩ Y = ∅, let EX,Y denote the set {{x, y} | x ∈ X ∧ y ∈ Y}. As an

abbreviation for E{x},Y we write Ex,Y. For two sets E and F, define E∆F := (E \ F) ∪ (F \ E)
(the symmetric difference). Further, for a bipartite graph G = (Vc,Vt, E) and a set F ⊆
EVc,Vt define G∆F := (Vc,Vt, E∆F). Sometimes we refer to a vertex c ∈ Vc as c-vertex, and

to a vertex t ∈ Vt as t-vertex. A graph property Π is called hereditary if it holds for all

induced subgraphs of a graph G with Π. That is, the class of graphs with a hereditary

graph property Π is closed under vertex deletion. Clearly, all graph properties that can be

described by a (possibly non-finite) set of forbidden induced subgraphs (such as M-freeness

for example) are hereditary. Two c-vertices c1 and c2 are said to be in conflict if there exists an

induced M-graph containing both of them. It is not hard to see that two vertices c1, c2 ∈ Vc

are in conflict iff

(NG(c1) \ NG(c2) 6= ∅) ∧ (NG(c1) ∩ NG(c2) 6= ∅) ∧ (NG(c2) \ NG(c1) 6= ∅).

For our data reduction we crucially use a structure called critical independent set.

DEFINITION 1. Given an undirected graph G = (V, E), a set I ⊆ V is called a critical inde-

pendent set if for any two vertices v,w ∈ I it holds that v and w are non-adjacent, NG(v) =
NG(w), and I is maximal with respect to this property.

All critical independent sets of a graph can be found in linear time [16]. Given a

graph G = (V, E) and the collection I = {I1, I2, . . . , Iq} of its critical independent sets,
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where q ≤ n, the critical independent set graph ofG is the undirected graph (I , E)with {Ii, Ij} ∈
E iff ∀u ∈ Ii, v ∈ Ij : {u, v} ∈ E.

A bipartite graph G = (X,Y, E) is called a chain graph if the neighborhoods of the ver-

tices in X form a chain [24]. That is, there is an ordering of the vertices in X, say x1, x2, . . . , x|X|,
such that NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(x|X|). It is easy to see that the neighborhoods of Y

also form a chain if G is a chain graph. Moreover, a bipartite graph is a chain graph iff it

is 2K2-free [24] (herein, a 2K2 is the graph that consists of two independent edges). Since

every M-graph contains an induced 2K2, the set of chain graphs is contained in the class

of M-free graphs. One of our data reduction rules is based on identifying and reducing the

size of subgraphs of the input graphs that are chain graphs and additionally have a special

neighborhood structure.

Parameterized algorithmics [19] aims at a multivariate complexity analysis of prob-

lems. This is done by studying relevant problem parameters and their influence on the

computational complexity. The decisive question is whether a given parameterized prob-

lem is fixed-parameter tractable (FPT) with respect to the parameter k. In other words, here

we ask for the existence of a solving algorithm with running time f (k) · poly(n) for some

computable function f . A core tool in the development of parameterized algorithms that has

been recognized as one of the most important contribution of parameterized algorithmics to

practical computing [6, 14, 17, 19] is polynomial-time preprocessing by data reduction rules,

often yielding a problem kernel. Herein, the goal is, given any problem instance G with pa-

rameter k, to transform it in polynomial time into a new instance G′ with parameter k′ such
that the size of G′ is bounded from above by some function only depending on k, k′ ≤ k,

and (G, k) is a yes-instance iff (G′, k′) is a yes-instance. We call a data reduction rule correct

if the new instance after an application of this rule is a yes-instance iff the original instance

is a yes-instance. An instance is called reduced with respect to some data reduction rule if

the data reduction rule has been exhaustively applied.

3 A Universal Rule for Critical Independent Sets

In this section, we describe a polynomial-time data reduction rule for parameterized graph

modification problems that applies to a certain kind of hereditary graph property and is a

generalization of a rule that was developed for BICLUSTER EDITING [22]. Here, we prove

the new result that this reduction rule can be applied to a wide range of Π-EDGE MODIFI-

CATION problems, including MINIMUM-FLIP CONSENSUS TREE.

The basic idea of the data reduction is to show that, for some graph properties, vertices

that belong to the same critical independent set are subject to the “same” edge modifica-

tions. Therefore, large critical independent sets can be reduced. First, we give a description

of these graph properties. Let Π be a hereditary graph property. We call Π critical indepen-

dent set preserving (cisp) whenever for all forbidden induced subgraphs F of Π, there are no

two vertices u, v ∈ V(F) that form a critical independent set in F (that is, all critical indepen-

dent sets of F have size one). Note that M-freeness is a cisp graph property: all vertices in

an induced M-graph have different neighborhoods. Therefore, the following lemmas and

reduction rule apply directly to MINIMUM-FLIP CONSENSUS TREE. First, we can show that

cisp graph properties are closed under a certain vertex-addition operation.
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LEMMA 2. Let G = (V, E) be a graph fulfilling a cisp graph property Π. Let G′ be the graph
that results by adding to G a new vertex x 6∈ V and making it adjacent to NG(v) for an
arbitrary vertex v ∈ V. Then, G′ also fulfills Π.

Using Lemma 2, we can show that for graph modification problems for cisp properties

there is an optimal solution that treats the vertices of a critical independent set equally.

LEMMA 3. Let I ⊆ V be a critical independent set in G = (V, E), and let Π be a cisp graph
property. Then there exists a minimum-cardinality edge modification set S such that G′ :=
G∆S fulfills Π and I is part of a critical independent set in G′.

With Lemma 3 at hand, the following data reduction rule is not hard to see.

REDUCTION RULE 1. Let I ⊆ V be a critical independent set. If |I| > k+ 1, then delete |I| −
(k + 1) arbitrary vertices from I.

LEMMA 4. Reduction Rule 1 is correct and can be exhaustively applied inO(|V|+ |E|) time.

This general data reduction rule also applies to the COMPLETION and DELETION ver-

sion of a Π-EDGE MODIFICATION problem for a cisp graph property Π. Examples for graph

modification problems to which this rule can be applied are CHAIN DELETION and CO-

TRIVIALLY PERFECT DELETION.‡

4 Specific Data Reduction Rules for Minimum-Flip Consensus
Tree

In this section, we present three further polynomial-time data reduction rules that together

with Reduction Rule 1 produce an O(k3)-vertex kernel. The first reduction rule is obvious.

REDUCTION RULE 2. Remove M-free connected components from the input graph.

The next reduction rule removes c-vertices from G that do not appear in an M-graph.

REDUCTION RULE 3. Let G = (Vc,Vt, E) be a bipartite graph. If there exists a vertex c ∈ Vc

that is not in conflict with any other vertex in Vc, then remove c.

LEMMA 5. Reduction Rule 3 is correct and can be exhaustively applied in O(|Vc|2 · |Vt|)
time.

PROOF. Let G be the original graph and let G′ := G − c, where c ∈ Vc is not in conflict

with any other c-vertex. First, we prove the correctness of Reduction Rule 3. To this end, we

show the following.

Claim: (G, k) is a yes-instance iff (G′, k) is a yes-instance.

“⇒:” Follows directly because M-freeness is a hereditary graph property.

“⇐:” This direction is based on the observation that graph G′ can be decomposed into

two edge disjoint subgraphs G1 and G2 that can be solved independently from each other,

‡Definitions and kernelization results for these problems have been obtained by Guo [12].
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a) b)

c Vr
V≤c V>c

G1

G2

Figure 2: Correctness of Reduction Rule 3. a) Partition of the vertices in Vc depending on

their relation to c. The neighbors of c are colored gray. b) The graphs G1 (induced by V≤c

and N(c)) and G2 (induced by V>c,Vr, and Vt) .

without creating a new conflict containing c. We need the following notation.

V>c := {c′ ∈ Vc | N(c) ( N(c′)},
V≤c := {c′ ∈ (Vc \ {c}) | N(c′) ⊆ N(c)}, and
Vr := Vc \ (V≤c ∪V>c).

See Fig. 2 a) for an example. Note that, since c is not in conflict with any other vertex c′ ∈
Vc − c, either NG(c) ∩ NG(c′) = ∅ or c′ ∈ (V≤c ∪ V>c). In particular, this implies that for

every vertex c′ ∈ Vr it holds that NG(c) ∩ NG(c′) = ∅.

Let F′ be a solution for (G′, k). We show that from F′ we can compute a solution F

for (G, k). Let V2 := Vr ∪ V>c. Consider the two graphs G1 := G[V≤c ∪ NG(c)] and G2 :=
G[V2 ∪ Vt]. See Fig. 2 b) for an example. Observe that F1 := F′ ∩ EV≤c,NG(c) is a solution

for G1 and F2 := F′ ∩ EV2,Vt is a solution for G2, since G1 and G2 are induced subgraphs of G′.
Furthermore, note that F1 ∩ F2 = ∅ since V≤c ∩ V2 = ∅. As a consequence, |F1| + |F2| ≤
|F′| ≤ k.

Consider the graph G2. It is easy to observe that NG(c) is contained in a critical indepen-

dent set in G2. This can be seen as follows: since NG(c) ⊂ NG(c′) for every vertex c′ ∈ V>c

and NG(c) ∩ NG(c′′) = ∅ for every vertex c′′ ∈ Vr, every vertex t ∈ NG(c) is adjacent in G2

to exactly the vertices in V>c. Since NG(c) is a critical independent set in G2, according to

Lemma 3 there exists a minimum-cardinality solution F′2 for G2 such that NG(c) is contained
in a critical independent set in G2∆F′2. Clearly, |F′2| ≤ |F2|.

Based on these facts, we show that F := F1 ∪ F′2 is a solution for (G, k). First of all, note
that by the discussion above |F| = |F1|+ |F′2| ≤ |F1|+ |F2| ≤ k. Second, no two vertices in Vc

are in conflict, and hence, G∆F is M-free. This can be seen as follows. Since F1 is a solution

for G1, any two vertices c1, c2 ∈ V≤c are not in conflict in G∆F. The same holds true for any

two vertices in V2, since G2∆F′2 is M-free. Moreover, since for every vertex c′ ∈ V≤c it holds

that NG∆F(c
′) = NG1∆F1(c

′) ⊆ NG(c) = NG∆F(c), c is not in conflict with any vertex in V≤c.

Finally, since NG(c) is a critical independent set in G2∆F′2, we know that for every c′ ∈ V2

either NG∆F(c
′) ∩ NG(c) = ∅ or NG(c) ⊆ NG∆F(c

′) and hence c′ is not in conflict with any
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vertex c′′ ∈ V≤c ∪ {c}. Therefore, G∆F is M-free.

For the running time consider the following. For each pair of vertices c1, c2 ∈ Vc, we

can determine in O(Vt) time whether they are in conflict by checking for each vertex t ∈ Vt,

whether it is adjacent to c1, c2, or both. Each c-vertex that is in conflict with some other

vertex is marked. Finally, unmarked vertices are removed from the graph. This can be

performed in O(|E|) time. The overall running time is thus O(|Vc|2 · |Vt|).
The structurally “deepest” reduction rule shrinks subgraphs of the input graph that

resemble “local” chain graphs. We call such a subgraph P-structure:

DEFINITION 6. LetG = (Vc,Vt, E) be a bipartite graph. A tuple (CP, TP) of two subsets CP ⊆
Vc and TP ⊆ Vt forms a P-structure if the following three properties are fulfilled:

1. G[CP ∪ TP] is a chain graph,
2. for all c′, c′′ ∈ CP it holds that N(c′) \ TP = N(c′′) \ TP, and
3. for all t′, t′′ ∈ TP it holds that N(t′) \ CP = N(t′′) \ CP.

It is easy to see that for a P-structure (CP, TP) of a bipartite graph G the neighborhoods

in G of the vertices in CP (and TP) also form a chain (since “outside” of the P-structure they

have the same neighbors). Moreover, note that the vertices of a P-structure form a subgraph

that is M-free.

REDUCTION RULE 4. Let (CP, TP) be a P-structure in a bipartite graph G = (Vc,Vt, E).
Let TP = {t1, t2, . . . , tl} such that N(t1) ⊆ N(t2) ⊆ . . . ⊆ N(tl). If l > 2(k + 1), then remove
tk+2, tk+3, . . . , tl−(k+1) from G.

LEMMA 7. Reduction Rule 4 is correct and can be exhaustively applied in polynomial time.

We can find P-structures in polynomial time by trying all possibilities for choosing the

four “endpoints” t1, tl , c1, cq of the chain, where N(t1) ⊆ N(tl) and N(cq) ⊆ N(c1). It is not
hard to see that in the case that t1, tl , c1, cq are indeed endpoints of a P-structure, we can

reconstruct the corresponding P-structure as follows:

CP = (N(tl) \ N(t1)) ∪ {c1} ∪ {c′ ∈ Vv | N(c′) = N(c1)}

and analogously

TP = (N(c1) \ N(cq)) ∪ {tl} ∪ {t′ ∈ Vt | N(t′) = N(tl)}.

To recognize the cases that t1, tl , c1, cq are not the endpoints of a chain, we have to check

whether the found vertex sets indeed form a P-structure. This approach works clearly in

polynomial time, although there seems to be room for improving the efficiency, a task for

future research.

5 Mathematical Analysis of the Problem Kernel Size

In this section, we bound the maximum number of vertices in a reduced instance. We need

the following notation concerning rooted trees. We use node to refer to a vertex of a tree. For

a rooted tree T let L(T) denote the leaves of T (that is, the nodes of degree one). The nodes
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Figure 3: An M-free graph G and the corresponding tree Tcis(G).

in V(T) \ L(T) are denoted as inner nodes. The root of T is denoted by r(T). Moreover, for a

node v ∈ V(T), the subtree rooted at v is denoted by Tv. We classify the children of a node

as follows. We refer to a child of a node as its leaf child if it is a leaf , otherwise it is called

its non-leaf child. We speak of the leaves (inner nodes) of a forest to refer to the union of the

leaves (inner nodes) of the trees of the forest.

Given a connected and M-free graph G = (Vc,Vt, E), one can construct a rooted tree T

with node set Vt ∪ Vc and with L(T) = Vt such that ti ∈ Vt is a descendant of cj ∈ Vc

iff ti ∈ NG(cj), see [4, 15, 21] for details. Note that the critical independent set graph of

an M-free graph is M-free. Hence, we can find a tree with the property that every leaf

one-to-one corresponds to a critical independent set of the t-vertices and every inner vertex

one-to-one corresponds to a critical independent set of the c-vertices. For an M-free graph G,

this tree is denoted by Tcis(G). Figure 3 shows an M-free graph G together with Tcis(G).

The following easy observations are helpful in the analysis of the kernel size.

1. Every inner vertex of Tcis has at most one leaf child, and

2. every inner vertex with at most one non-leaf child has exactly one leaf

child.

Now, we arrive at our main result.

THEOREM 8. MINIMUM-FLIP CONSENSUS TREE admits an O(k3)-vertex problem kernel .

PROOF. Consider a reduced instance (G = (Vc,Vt, E), k). We show that if (G, k) is a

yes-instance, then the number of vertices in Vc ∪Vt is bounded by O(k3).

If (G, k) is a yes-instance, then there exists an optimal solution S of size at most k. That

is, the graph GS := G∆S is M-free. Vertices that are involved in an edge modification are

called affected in the following. Let Xc denote the c-vertices that are affected by an edge

modification in S and let Yc denote the c-vertices that are not affected by any edge modifi-

cation. Analogously, we define Xt and Yt. Note that since every edge modification involves

a c-vertex and a t-vertex, we have that |Xc| ≤ k and |Xt| ≤ k.

Let GS,1,GS,2, . . . ,GS,p denote the connected components of GS. Recall that for every

connected component Ti := Tcis(GS,i) denotes the rooted tree corresponding to the critical

independent set graph of GS,i. Moreover, let T denote the forest containing all Ti. Recall that

the leaves of T one-to-one correspond to the critical independent sets of Vt in GS and that
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the inner nodes of T one-to-one correspond to the critical independent sets of Vc in GS. For

a node z ∈ V(T), let C(z) denote the set of vertices contained in the critical independent set

corresponding to z. Moreover, for Z ⊆ V(T), we define C(Z) :=
⋃

z∈Z C(z).
We partition the set of inner nodes into three sets A, B, and Q as follows. The set A

contains all inner nodes z for which it holds that either C(z)∩ Xc 6= ∅ or z has a leaf child w

with C(w) ∩ Xt 6= ∅. Note that A has cardinality at most 2k since there are at most 2k

affected vertices. Moreover, let B contain the inner nodes that are not contained in A and

that have at least two non-leaf children. Finally, Q contains all inner nodes not contained

in A ∪ B.

Next, we bound the number of the vertices contained in the critical independent sets

corresponding to the nodes in A ∪ B and their leaf children. To this end, we show the

following.

1. For every inner node x not contained in A, there exists at least one node y ∈ V(Tx)
with y ∈ A.

2. The cardinality of B is at most 2k.

3. Let LA,B denote the leaves adjacent to the nodes in A ∪ B. The number of vertices

contained in the critical independent sets corresponding to the nodes in A ∪ B ∪ LA,B

is O(k2).
1.) Assume that there exists an inner node x ∈ V(T) \ (L(T)∪ A) such thatV(Tx)∩ A =

∅. That is, no vertex in C(V(Tx)) is affected. Consider a vertex c ∈ C(x). We show that c

is not contained in any conflict in G, contradicting the fact that G is reduced with respect

to Reduction Rule 3. First, for every vertex y ∈ C(V(Tx)), it holds that NG(y) ⊆ NG(c)
since NGS

(y) ⊆ NGS
(c) and S does not affect c or y. Second, for every vertex y ∈ C(V(T) \

V(Tx)), it holds that NGS
(c) ∩ NGS

(y) = ∅ or NGS
(c) ⊆ NGS

(y). But since neither c nor any
vertex in NGS

(c) is modified, this implies that NG(c) ∩ NG(y) = ∅ or NG(c) ⊆ NG(y). This
means that c is not contained in any conflict in G.

2.) Consider the forest T′ that results from deleting all leaves of T. Note that B is

a subset of the nodes from T′ with at least two children. From 1) it follows directly that

the leaves of T′ are contained in A and, hence, their number is bounded by 2k. Since the

number of inner nodes with at least two children is bounded by the number of leaves, we

get that |B| ≤ 2k.

3.) First, note that |A ∪ B| ≤ 4k since A and B each have cardinality at most 2k. More-

over, |LA,B| ≤ 4k since every inner node has at most one leaf child. For every node y ∈
A ∪ B ∪ LA,B, define C ′(y) := C(y) \ (Xc ∪ Xt). For every y ∈ A ∪ B ∪ LA,B, since no ver-

tex in C ′(y) is affected, C ′(y) forms a critical independent set in G and—since G is reduced

with respect to Reduction Rule 1—we thus get that |C ′(y)| ≤ k + 1. Putting all together, we

obtain

|C(A ∪ B ∪ LA,B)| ≤ |Xc| + |Xt| + ∑
y∈A∪B∪LA,B

|C ′(y)| ≤ 2k + 4k(k + 1).

It remains to bound the number of the vertices contained in C(Q ∪ LQ), where LQ de-

notes the leaves adjacent to the nodes in Q. Observe that each inner node contained in Q

(and hence not contained in A ∪ B) has exactly one leaf and one non-leaf child. That is,

in the the forest T′ := T − L(T) these vertices have degree two. Recall that all leaves

of T′ (see 2.) above) are contained in A and hence |L(T′)| ≤ 2k. Consider a path P =
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Figure 4: A degree-two-path P and the corresponding chain graph. Herein, C(y1) = {c1, c2},
C(y2) = {c3}, C(y3) = {c4, c5}, and C(y4) = {c6}.

({x, y1}, {y1, y2}, . . . , {yl−1, yl}, {yl , z}) in T′ with yi ∈ Q for all 1 ≤ i ≤ l and x, z ∈
A ∪ B. Such a path is called a degree-two-path in the following since by the above discus-

sion degT′(yi) = 2 for all 1 ≤ j ≤ l. Further, for every yi, let wi denote the leaf child

of yi in T. Note that in the forest T′, there are at most 8k degree-two-paths since L(T′) ⊆
A and |A ∪ B| ≤ 4k. In the following, we bound the length of each degree-two-path

by 2(k + 1). Hence, for each such path we have

l

∑
i=1

(|C(yi)| + |C(wi)|) ≤ l · (2(k + 1)) ≤ (2(k + 2)) · 2(k + 1)

vertices in G. Adding up over the at most 8k degree-two-paths, this amounts to 8k · 2(k +
1)(2(k + 2)) ≤ 32k(k + 1)(k + 2) vertices, yielding the bound of O(k3) vertices in total.

Next, we bound the length of each degree-two-path. To this end, consider such a

degree-two-path P = ({x, y1}, {y1, y2}, . . . , {yl−1, yl}, {yl , z}) in T′, that is, x, z ∈ A ∪ B

and yi ∈ Q for all 1 ≤ i ≤ l. Without loss of generality, we assume that yl is a descendent

of y1. See Fig. 4 for an example. Let CP :=
⋃l

i=1 C(yi) and TP :=
⋃l

i=1 C(wi).
We show that (CP, TP) forms a P-structure in G. First, note that CP ⊆ Vc and TP ⊆

Vt. Next, note that G[CP ∪ TP] forms a chain graph. This can seen as follows. In GS a

vertex in C(y1) is clearly adjacent to all vertices in TP, a vertex in C(y2) is adjacent to all

vertices in TP \ C(w1), a vertex in C(y3) is adjacent to all vertices in TP \ C({w1,w2}), and
so on. Hence, GS[CP ∪ TP] is a chain graph and, since no vertex in CP is involved in an

edge modification, we have that G[CP ∪ TP] forms a chain graph, too (see Fig. 4). Next,

we show that CP and TP fulfill the second and third property of a P-structure. On the one

hand, every vertex in CP is adjacent in GS to all vertices contained in the critical independent

sets corresponding to the leaves in Tz and, hence, for all c, c
′ ∈ CP, we have NGS

(c) \ TP =
NGS

(c′) \ TP. Since no vertex in CP is affected, this implies that NG(c) \ TP = NG(c′) \ TP for
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all c, c′ ∈ CP. On the other hand, every vertex t ∈ TP is adjacent in GS (and hence in G) to

all c-vertices contained in a critical independent set on the path from the root r to z. Hence,

for any two vertices t, t′ ∈ TP it holds that NG(t) \ TP = NG(t′) \ TP. In summary, (CP, TP)
forms a P-structure.

Finally, we show that l ≤ 2(k + 1). Assume towards a contradiction that l > 2(k +
1). This implies that |TP| > 2(k + 1), too, since every yi has exactly one leaf child that

corresponds to a (non-empty) critical independent set of Vt. Hence, |TP| > 2(k + 1) and

thus all conditions to apply Reduction Rule 4 are fulfilled: a contradiction to the fact that G

is reduced.

Applying the technique of interleaving [20] to our kernelization and the search tree

algorithm by Böcker et al. [1], we obtain an “additive FPT” algorithm for MINIMUM-FLIP

CONSENSUS TREE.

COROLLARY 9. MINIMUM-FLIP CONSENSUS TREE can be solved in running timeO(4.83k +
poly(|Vc|, |Vt|)).

6 Conclusion

As to future research, first of all, we want to implement and test the efficiency of our data

reduction rules. Second, improving the polynomial running time of our data reduction

rules is desirable. Obviously, obtaining data reduction rules that lead to a quadratic-vertex

or linear-vertex kernel remains as an open question. Moreover, studying edge-weighted

problem variants would be theoretically interesting. Finally, it would be interesting to adapt

our data reduction to yield a full kernel (see [5]) for MINIMUM-FLIP CONSENSUS TREE.
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[10] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Data reduction, exact, and heuristic

algorithms for clique cover. In Proc. 8th ALENEX, pages 86–94. SIAM, 2006. Long

version to appear in ACM Journal of Experimental Algorithmics.

[11] J. Guo. A more effective linear kernelization for Cluster Editing. In Proc. 1st ESCAPE,

volume 4614 of LNCS, pages 36–47. Springer, 2007. Long version to appear in Theoretical

Computer Science.

[12] J. Guo. Problem kernels for NP-complete edge deletion problems: split and related

graphs. In Proc. 18th ISAAC, volume 4835 of LNCS, pages 915–926. Springer, 2007.
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ABSTRACT. Tight connections between leafs languages and strings compressed via straight-line
programs (SLPs) are established. It is shown that the compressed membership problem for a lan-
guage L is complete for the leaf language class defined by L via logspace machines. A more difficult
variant of the compressed membership problem for L is shown to be complete for the leaf language
class defined by L via polynomial timemachines. As a corollary, a fixed linear visibly pushdown lan-
guage with a PSPACE-complete compressed membership problem is obtained. For XML languages,
the compressed membership problem is shown to be coNP-complete.

1 Introduction

Leaf languages were introduced in [7, 25] and became an important concept in complexity

theory. Let us consider a nondeterministic Turing machine M. For a given input x, one con-

siders the yield string of the computation tree (i.e. the string obtained by listing all leafs from

left to right), where accepting (resp. rejecting) leaf configurations yield the letter 1 (resp.

0). This string is called the leaf string corresponding to the input x. For a given language

K ⊆ {0, 1}∗ let LEAF(M,K) denote the set of all inputs for M such that the corresponding

leaf string belongs to K. By fixing K and taking for M all nondeterministic polynomial time

machines, one obtains the polynomial time leaf language class LEAFPa (K). The index a in-

dicates that we allow Turing machines with arbitrary (non-balanced) computation trees. If

we restrict to machines with balanced computation trees, we obtain the class LEAFPb (K), see
[13, 16] for a discussion of the different shapes for computation trees.

Many complexity classes can be defined in a uniform way with this construction. For

instance, NP = LEAFPx (0
∗1{0, 1}∗) and coNP = LEAFPx (1

∗) for both x = a and x = b.

In [14], it was shown that PSPACE = LEAFPb (K) for a fixed regular language K. In [16],

logspace leaf language classes LEAFL
a (K) and LEAFL

b (K), where M varies over all (resp.

all balanced) nondeterministic logspace machines, were investigated. Among other results,

a fixed deterministic context-free language K with PSPACE = LEAFL
a (K) was presented.

In [8], it was shown that in fact a fixed deterministic one-counter language K as well as a

fixed linear deterministic context-free language [15] suffices in order to obtain PSPACE. Here

“linear” means that the pushdown automaton makes only one turn.

In [6, 24], a tight connection between leaf languages and computational problems for

succinct input representations was established. More precisely, it was shown that the mem-

bership problem for a language K ⊆ {0, 1}∗ is complete (w.r.t. polynomial time reductions

in [6] and projection reductions in [24]) for the leaf language class LEAFP
b (K), if the input

string x is represented by a Boolean circuit. A Boolean circuit C(x1, . . . , xn) with n inputs

represents a string x of length 2n in the natural way: the i-th position in x carries a 1 if
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and only if C(a1, . . . , an) = 1, where a1 · · · an is the n-bit binary representation of i. In this

paper we consider another more practical compressed representation for strings, namely

straight-line programs (SLPs) [23]. A straight-line program is a context-free grammar A that

generates exactly one string val(A). In an SLP, repeated subpatterns in a string have to be

represented only once by introducing a nonterminal for the pattern. An SLP with n produc-

tions can generate a string of length 2n by repeated doubling. Hence, an SLP can be seen

indeed as a compressed representation of the string it generates. Several other dictionary-

based compressed representations, like for instance Lempel-Ziv (LZ) factorizations, can be

converted in polynomial time into SLPs and vice versa [23]. This implies that complexity

results can be transfered from SLP-encoded input strings to LZ-encoded input strings.

Algorithmic problems for SLP-compressed strings were studied e.g. in [5, 18, 19, 20, 22,

23]. A central problem in this context is the compressed membership problem for a language

K: it is asked whether val(A) ∈ K for a given SLP A. In [19] it was shown that there ex-

ists a fixed linear deterministic context-free language with a PSPACE-complete compressed

membership problem. A straightforward argument shows that for every language K, the

compressed membership problem for K is complete for the logspace leaf language class

LEAFL
a (K) (Prop. 2). As a consequence, the existence of a linear deterministic context-free

language with a PSPACE-complete compressed membership problem [19] can be deduced

from the above mentioned LEAFL
a -characterization of PSPACE from [8], and vice versa. For

polynomial time leaf languages, we reveal a more subtle relationship to SLPs. Recall that

the convolution u⊗ v of two strings u, v ∈ Σ∗ is the string over the paired alphabet Σ×Σ that

is obtained from gluing u and v in the natural way (we cut off the longer string to the length

of the shorter one). We define a fixed projection homomorphism ρ : {0, 1} × {0, 1} → {0, 1}
such that for every language K, the problem of checking ρ(val(A) ⊗ val(B)) ∈ K for two

given SLPs A, B is complete for the class LEAFPb (K) (Cor. 4). By combining Cor. 4 with the

main result from [14] (PSPACE = LEAFPb (K) for a certain regular language K), we obtain

a regular language L for which it is PSPACE-complete to check whether the convolution

of two SLP-compressed strings belongs to L (Cor. 6). Recently, the convolution of SLP-

compressed strings was also studied in [5], where for every n ≥ 0, SLPs An,Bn of size n
O(1)

were constructed such that every SLP for val(An) ⊗ val(Bn) has size Ω(2n/2).

From Cor. 6 we obtain a strengthening of one of the above mentioned results from [8]

(PSPACE = LEAFL
a (K) for a linear deterministic context-free language K as well as a deter-

ministic one-counter language K) to visibly pushdown languages [1]. The latter constitute a

subclass of the deterministic context-free languages which received a lot of attention in re-

cent years due to its nice closure and decidability properties. Visibly pushdown languages

can be recognized by deterministic pushdown automata, where it depends only on the input

symbol whether the automaton pushes or pops. Visibly pushdown languages were already

introduced in [27] as input-driven languages. In [9] it was shown that every visibly push-

down language can be recognized in NC1; thus the complexity is the same as for regular

languages [2]. In contrast to this, there exist linear deterministic context-free languages as

well as deterministic one-counter languages with an L-complete membership problem [15].

We show that there exists a linear visibly pushdown language with a PSPACE-complete

compressed membership problem (Thm. 7). Together with Prop. 2, it follows that PSPACE

= LEAFL
a (K) for a linear visibly pushdown language K (Cor. 8).
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In [21], nondeterministic finite automata (instead of polynomial time (resp. logspace)

Turing-machines) were used as a device for generating leaf strings. This leads to the def-

inition of the leaf language class LEAFFA(K). It was shown that CFL ( LEAFFA(CFL) ⊆
DSPACE(n2) ∩DTIME(2O(n)), and the question for sharper upper and lower bounds was

posed. Here we give a partial answer to this question. For the linear visibly pushdown

language mentioned in the previous paragraph, the class LEAFFA(K) contains a PSPACE-

complete language (Thm. 9).

Finally, in Sec. 5 we consider XML-languages [4], which constitute a subclass of the vis-

ibly pushdown languages. XML-languages are generated by a special kind of context-free

grammars (XML-grammars), where every right-hand side of a production is enclosed by a

matching pair of brackets. XML-grammars capture the syntactic features of XML document

type definitions (DTDs), see [4]. We prove that, unlike for visibly pushdown languages, for

every XML-language the compressed membership problem is in coNP and that there are

coNP-complete instances.

Proofs that are omitted due to space restriction will appear in a long version.

2 Preliminaries

Let Γ be a finite alphabet. The empty word is denoted by ε. Let s = a1 · · · an ∈ Γ∗ be a

word over Γ (n ≥ 0, a1, . . . , an ∈ Γ). The length of s is |s| = n. For 1 ≤ i ≤ n let s[i] = ai
and for 1 ≤ i ≤ j ≤ n let s[i, j] = aiai+1 · · · aj. If i > j we set s[i, j] = ε. We denote with

Γ = {a | a ∈ Γ} a disjoint copy of Γ. For a ∈ Γ let a = a. For w = a1 · · · an ∈ (Γ ∪ Γ)∗ let

w = an · · · a1. For two strings u, v ∈ Γ∗ we define the convolution u⊗ v ∈ (Γ × Γ)∗ as the

string of length ℓ = min{|u|, |v|} with (u⊗ v)[i] = (u[i], v[i]) for all 1 ≤ i ≤ ℓ.

A sequence (u1, . . . , un) of natural numbers is superdecreasing if ui > ui+1 + · · · + un
for all 1 ≤ i ≤ n. An instance of the subsetsum problem is a tuple (w1, . . . ,wk, t) of binary

coded natural numbers. It is a positive instance if there are x1, . . . , xk ∈ {0, 1} such that t =
x1w1 + · · · + xkwk. Subsetsum is a classical NP-complete problem. The superdecreasing sub-

setsum problem is the restriction of subsetsum to instances (w1, . . . ,wk, t), where (w1, . . . ,wk)
is superdecreasing. In [17] it was shown that superdecreasing subsetsum is P-complete

([17] deals with the superincreasing subsetsum problem; but the results from [17] can be eas-

ily transfered to superdecreasing subsetsum). In fact, something more general is shown

in [17]: Let C(x1, . . . , xm) be a Boolean circuit with variable input gates x1, . . . , xm (and

some additional input gates that are set to fixed Boolean values). Then from C(x1, . . . , xm)
an instance (t(x1, . . . , xm),w1, . . . ,wk) of superdecreasing subsetsum is constructed. Here,

t(x1, . . . , xm) = t0 + x1t1 + · · · + xmtm is a linear expression such that:

• t1 > t2 > · · · > tm and the ti are pairwise distinct powers of 4. Hence also the sequence

(t1, . . . , tm) is superdecreasing.
• For all a1, . . . , am ∈ {0, 1}: C(a1, . . . , am) evaluates to true if and only if ∃b1, . . . , bk ∈
{0, 1} : t0 + a1t1 + · · · + amtm = b1w1 + · · · + bkwk.

• t0 + t1 + · · · + tm ≤ w1 + · · · + wk

We encode a superdecreasing sequence (w1, . . . ,wk) by the string S(w1, . . . ,wk) ∈ {0, 1}∗ of
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length w1 + · · · + wk + 1 such that for all 0 ≤ p ≤ w1 + · · ·+ wk:

S(w1, . . . ,wk)[p + 1] =

{

1 if ∃x1, . . . , xk ∈ {0, 1} : p = x1w1 + · · ·+ xkwk

0 otherwise
(1)

Since (w1, . . . ,wk) is superdecreasing, the number of 1’s in S(w1, . . . ,wk) is 2
k.

The lexicographic order on N
∗ is denoted by �, i.e. u � v if either u is a prefix of v or

there exist w, x, y ∈ N
∗ and i, j ∈ N such that u = wix, v = wjy, and i < j. A finite ordered

tree is a finite set T ⊆ N
∗ such that for all w ∈ N

∗, i ∈ N: if wi ∈ T then w,wj ∈ T for every

0 ≤ j < i. The set of children of u ∈ T is uN ∩ T. A node u ∈ T is a leaf of T if it has no

children. We say that T is a full binary tree if (i) every node has at most two children, and (ii)

every maximal path in T has the same number of branching nodes (i.e., nodes with exactly

two children). A left initial segment of a full binary tree is a tree T such that there exists a full

binary tree T′ and a leaf v ∈ T′ such that T = {u ∈ T′ | u � v}.

2.1 Leaf languages

A nondeterministic Turing-machine (NTM) M is adequate, if (i) for every input w ∈ Σ∗, M
does not have an infinite computation on input w and (ii) the set of finitely many transition

tuples of M is linearly ordered. For an input w for M, we define the computation tree

by unfolding the configuration graph of M from the initial configuration. By condition (i)

and (ii), the computation tree can be identified with a finite ordered tree T(w) ⊆ N
∗. For

u ∈ T(w) let q(u) be the M-state of the configuration that is associated with the tree node

u. Then, the leaf string leaf(M,w) is the string α(q(v1)) · · · α(q(vk)), where v1, . . . , vk are all

leafs of T(w) listed in lexicographic order, and α(q) = 1 (resp. α(q) = 0) if q is an accepting

(resp. rejecting) state.

An adequate NTM M is balanced, if for every input w ∈ Σ∗, T(w) is a left initial segment

of a full binary tree. With a language K ⊆ {0, 1}∗ we associate the language LEAF(M,K) =
{w ∈ Σ∗ | leaf(M,w) ∈ K} and the following four complexity classes:

LEAFPa (K) = {LEAF(M,K) | M is an adequate polynomial time NTM}
LEAFPb (K) = {LEAF(M,K) | M is a balanced polynomial time NTM}
LEAFL

a (K) = {LEAF(M,K) | M is an adequate logarithmic space NTM}
LEAFL

b (K) = {LEAF(M,K) | M is a balanced logarithmic space NTM}

The first two (resp. last two) classes are closed under polynomial time (resp. logspace)

reductions. More details on leaf languages can be found in [7, 13, 14, 16].

2.2 Straight-line programs

Following [23], a straight-line program (SLP) over the terminal alphabet Γ is a context-free

grammar A = (V, Γ, S, P) (V is the set of variables, Γ is the set of terminals, S ∈ V is the

initial variable, and P ⊆ V × (V ∪ Γ)∗ is the finite set of productions) such that: (i) for

every A ∈ V there exists exactly one production of the form (A, α) ∈ P for α ∈ (V ∪ Γ)∗,
and (ii) the relation {(A, B) ∈ V × V | (A, α) ∈ P, B occurs in α} is acyclic. Clearly, the
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language generated by the SLP A consists of exactly one word that is denoted by val(A).
The size of A is |A| = ∑(A,α)∈P |α|. Every SLP can be transformed in polynomial time into

an equivalent SLP in Chomsky normal form, i.e. all productions have the form (A, a) with

a ∈ Γ or (A, BC) with B,C ∈ V.

As an example, consider the SLP A (in Chomsky normal form) that consists of the

productions A1 → b, A2 → a, and Ai → Ai−1Ai−2 for 3 ≤ i ≤ 7. The start variable is A7.

Then val(A) = abaababaabaab, which is the 7-th Fibonacci word. We have |A| = 12.

One may also allow exponential expressions of the form Ai for A ∈ V and i ∈ N in

right-hand sides of productions. Here the number i is coded binary. Such an expression can

be replaced by a sequence of ⌈log(i)⌉ many ordinary productions.

Let us state some simple algorithmic problems that can be easily solved in polynomial

time (but not in deterministic logspace under reasonable complexity theoretic assumptions:

problem (a) is #L-complete, problems (b) and (c) are complete for functional P [18]):

(a) Given an SLP A, calculate |val(A)|.
(b) Given an SLP A and a number i ∈ {1, . . . , |val(A)|}, calculate val(A)[i].
(c) Given an SLP A and two positions 1 ≤ i ≤ j ≤ |val(A)|, calculate an SLP for the

string val(A)[i, j].

In [22], Plandowski presented a polynomial time algorithm for testing whether val(A) =
val(B) for two given SLPs A and B. For a language L ⊆ Σ∗, we denote with CMP(L)
(compressed membership problem for L) the following computational problem:

INPUT: An SLP A over the terminal alphabet Σ

QUESTION: val(A) ∈ L?

The following result was shown in [3, 16, 20]:

THEOREM 1. For every regular language L, CMP(L) can be decided in polynomial time.
Moreover, there exists a fixed regular language L such that CMP(L) is P-complete.

In [18], we constructed in logspace from a given superdecreasing sequence (w1, . . . ,wk)
an SLP A over {0, 1} such that val(A) = S(w1, . . . ,wk), where S(w1, . . . ,wk) is the string-

encoding from (1). This construction was used in order to prove P-hardness of the problem

(b) above. Let us briefly repeat the construction. For 1 ≤ i ≤ k let

di =

{

wk − 1 if i = k

wi − (wi+1 + · · · + wk) − 1 if 1 ≤ i ≤ k− 1
(2)

Moreover define strings S1, . . . , Sk ∈ {0, 1}∗ by the recursion

Sk = 10dk1 Si = Si+10
diSi+1 (1 ≤ i ≤ k− 1). (3)

Then S(w1, . . . ,wk) = S1. Note that the SLP that implements the recursion (3) can be con-

structed in logspace from the binary encoded sequence (w1, . . . ,wk) (in [18] only the exis-

tence of an NC-construction is claimed). The only nontrivial step is the calculation of all

suffix sums wi+1 + · · · + wk for 1 ≤ i ≤ k− 1 in (2), see e.g. [26].
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3 Straight-line programs versus leaf languages

In [6, 24], it was shown that the membership problem for a language K ⊆ {0, 1}∗ is com-

plete (w.r.t. polynomial time reductions in [6] and projection reductions in [24]) for the leaf

language class LEAFPb (K), if the input string is represented by a Boolean circuit. For SLP-

compressed strings, we obtain a similar result:

PROPOSITION 2. For every language K ⊆ {0, 1}∗, the problem CMP(K) is complete w.r.t.
logspace reductions for the class LEAFL

a (K).

The proposition can be easily shown by translating configuration graphs of logspace

machines into SLPs and vice versa. We now prove a more subtle relationship between SLP-

compressed strings and polynomial time leaf languages. Let ρ : ({0, 1} × {0, 1})∗ → {0, 1}∗
be the morphism defined by

ρ(0, 0) = ρ(0, 1) = ε, ρ(1, 0) = 0, ρ(1, 1) = 1. (4)

THEOREM 3. Let M be a balanced polynomial time NTM. From a given input w ∈ Σ∗ for M
we can construct in polynomial time two SLPs A and B such that |val(A)| = |val(B)| and
leaf(M,w) = ρ(val(A) ⊗ val(B)).

PROOF. Let w be an input for M. Our construction consists of five steps:

Step 1. By simulating M e.g. along the right-most computation path, we can compute in

polynomial time the number m of branching nodes along every maximal path in the com-

putation tree T(w). Thus, maximal paths in T(w) can be represented by strings from {0, 1}m.
Step 2. Using the classical Cook-Levin construction, we compute in logspace a Boolean

circuit Cw(x1, . . . , xm) from w such that for all a1, . . . , am ∈ {0, 1}: Cw(a1, . . . , am) evaluates

to true if and only if the machine M accepts on the computation path that is specified by the

bit string a1 · · · am. The circuit Cw(x1, . . . , xm) has input gates x1, . . . , xm together with some

additional input gates that carry fixed input bits.

Step 3. The construction from [17] (see Sec. 2) allows us to compute from Cw(x1, . . . , xm) in
logspace a superdecreasing subsetsum instance (t(x1, . . . , xm),w1, . . . ,wk) with w1, . . . ,wk ∈
N and t(x1, . . . , xm) = t0 + x1t1 + · · · + xmtm such that

• t1 > t2 > · · · > tm and the sequence (t1, . . . , tm) is superdecreasing,
• for all a1, . . . , am ∈ {0, 1}: Cw(a1, . . . , am) evaluates to true if and only if ∃b1, . . . , bk ∈
{0, 1} : t0 + a1t1 + · · · + amtm = b1w1 + · · · + bkwk,

• t0 + t1 + · · · + tm ≤ w1 + · · · + wk.

Step 4. By [18] (see the end of Sec. 2.2), we can construct in logspace from the two superde-

creasing sequences (t1, . . . , tm), (w1, . . . ,wk) SLPs A
′ and B over {0, 1} such that val(A

′) =
S(t1, . . . , tm) and val(B) = S(w1, . . . ,wk) (see (1)). Note that |val(A

′)| = t1 + · · ·+ tm + 1 ≤
w1 + · · ·+ wk + 1 = |val(B)|.
Step 5. Now, we compute in polynomial time the right-most path of the computation tree

T(w). Assume that this path is represented by the bit string r = r1 · · · rm ∈ {0, 1}m. Let

p = r1t1 + · · · + rmtm. Thus, if r is the lexicographically n-th string in {0, 1}m, then p + 1 is

the position of the n-th 1 in val(A
′). From the SLP A

′ we can finally compute in polynomial
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time an SLP A with val(A) = 0t0 S(t1, . . . , tm)[1, p + 1] 0w1+···+wk−t0−p. Then |val(A)| =
|val(B)| and for all positions q ∈ {0, . . . , |val(A)| − 1}:

• val(A)[q + 1] = 1 if and only if ∃a1, . . . , am ∈ {0, 1} : q = t0 + a1t1 + · · ·+ amtm
• val(B)[q + 1] = 1 if and only if ∃b1, . . . , bk ∈ {0, 1} : q = b1w1 + · · · + bkwk.

Due to the definition of the projection ρ in (4), we finally have

ρ(val(A) ⊗ val(B)) = ∏
x∈{0,1}m, x�r

α(x),

where α(x) ∈ {0, 1} and α(x1 · · · xm) = 1 if and only if there exist b1, . . . , bk ∈ {0, 1} such that

t0 + x1t1 + · · · xmtm = b1w1 + · · ·+ bkwk. Hence, α(x1 · · · xm) = 1 if and only if M accepts on

the computation path specified by x1 · · · xm � r. Thus, leaf(M,w) = ρ(val(A)⊗ val(B)).

Thm. 3 implies the hardness part in the following corollary. The proof of the upper

bound is not difficult and left to the reader.

COROLLARY 4. For every language K ⊆ {0, 1}∗, the following problem is complete for the
class LEAFPb (K) w.r.t. polynomial time reductions:

INPUT: Two SLPs A and B over {0, 1}
QUESTION: ρ(val(A) ⊗ val(B)) ∈ K?

In order to get completeness results w.r.t. logspace reductions in the next section, we

need a variant of Thm. 3. We say that an NTM is fully balanced, if for every input w, T(w) is
a full binary tree (and not just a left initial segment of a full binary tree).

THEOREM 5. Let M be a fully balanced polynomial time NTM such that for some polyno-
mial p(n), every maximal path in a computation tree T(w) has exactly p(|w|) many branch-
ing nodes. From a given input w ∈ Σ∗ for M we can construct in logspace two SLPs A and
B such that leaf(M,w) = ρ(val(A) ⊗ val(B)) and |val(A)| = |val(B)|.
PROOF. Only step 1 and 5 in the proof of Thm. 3 cannot be done in logspace, unless L = P.

Under the additional assumptions of Thm. 5, we have to compute in step 1 onlym = p(|w|),
which is possible in logspace, since p(n) is a fixed polynomial. In step 5, we just have to

compute in logspace an SLP A with val(A) = 0t0 S(t1, . . . , tm) 0w1+···+wk−(t0+···+tm).

4 Applications

COROLLARY 6. There exists a fixed regular language L ⊆ ({0, 1} × {0, 1})∗ such that the
following problem is PSPACE-complete w.r.t. logspace reductions:

INPUT: Two SLPs A and B over {0, 1}
QUESTION: val(A) ⊗ val(B) ∈ L?

PROOF. Membership in PSPACE is obvious. Let us prove the lower bound. By [14], there

exists a regular language K ⊆ {0, 1}∗ and a balanced polynomial time NTM M such that

the language LEAF(M,K) is PSPACE-complete. Using the padding technique from [16,

Prop. 2.3], we can even assume that M is fully balanced and that the number of branching

nodes along every maximal path of T(w) is exactly p(|w|) for a polynomial p(n). Let L =
ρ−1(K), which is a fixed regular language, since ρ from (4) is a fixed morphism. Let w
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be an input for M. By Thm. 5, we can construct in logspace two SLPs A and B such that

ρ(val(A)⊗ val(B)) = leaf(M,w). Hence, the corollary follows from w ∈ LEAF(M,K) ⇐⇒
leaf(M,w) = ρ(val(A) ⊗ val(B)) ∈ K ⇐⇒ val(A) ⊗ val(B) ∈ L.

From Thm. 5 it follows that that even the set of all SLP-pairs 〈A,B〉 with val(A) ⊗
val(B) ∈ L and |val(A)| = |val(B)| (or |val(A)| ≤ |val(B)|) is PSPACE-complete w.r.t.

logspace reductions. We need this detail in the proof of the next theorem.

In [19] we constructed a linear deterministic context-free language with a PSPACE-

complete compressed membership problem. As noted in the introduction, this result fol-

lows also from PSPACE = LEAFL
a (K) for a linear deterministic context-free language K [8]

together with Prop. 2. We now sharpen this result to linear visibly pushdown languages.

Let Σc and Σr be two disjoint finite alphabets (call symbols and return symbols) and

let Σ = Σc ∪ Σr. A visibly pushdown automaton (VPA) [1] over (Σc,Σr) is a tuple V =
(Q, q0, Γ,⊥,∆, F), where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set

of final states, Γ is the finite set of stack symbols, ⊥ ∈ Γ is the initial stack symbol, and

∆ ⊆ (Q× Σc ×Q× (Γ \ {⊥})) ∪ (Q× Σr × Γ ×Q)

is the set of transitions. In [1], the input alphabet may also contain internal symbols, on

which the automaton does not touch the stack at all. For our lower bound, we will not need

internal symbols. A configuration of V is a triple from Q× Σ∗ × Γ∗. For two configurations

(p, au, v) and (q, u,w) (with a ∈ Σ, u ∈ Σ∗) we write (p, au, v) ⇒V (q, u,w) if
• a ∈ Σc and w = γv for some γ ∈ Γ with (p, a, q,γ) ∈ ∆, or

• a ∈ Σr and v = γw for some γ ∈ Γ with (p, a,γ, q) ∈ ∆, or

• a ∈ Σr, u = v = ⊥, and (p, a,⊥, q) ∈ ∆.

The language L(V) is defined as L(V) = {w ∈ Σ∗ | ∃ f ∈ F, u ∈ Γ∗ : (q0,w,⊥) ⇒∗
V ( f , ε, u)}.

The VPA V is deterministic if for every p ∈ Q and a ∈ Σ the following hold:

• If a ∈ Σc, then there is at most one pair (q,γ) ∈ Q× Γ with (p, a, q,γ) ∈ ∆.

• If a ∈ Σr, then for every γ ∈ Γ there is at most one q ∈ Q with (p, a,γ, q) ∈ ∆.

For every VPA V there exists a deterministic VPA V ′ with L(V) = L(V ′) [1]. A 1-turn VPA

is a VPA V with L(V) ⊆ Σ∗
cΣ∗

r . In this case L(V) is called a linear visibly pushdown language.

By a classical result from [11], there exists a context-free language with a LOGCFL-

complete membership problem. For visibly pushdown languages the complexity of the

membership problem decreases to the circuit complexity class NC1 [9] and is therefore of the

same complexity as for regular languages [2]. In contrast to this, by the following theorem,

compressed membership is in general PSPACE-complete even for linear visibly pushdown

languages, whereas it is P-complete for regular languages (Thm. 1):

THEOREM 7. There exists a linear visibly pushdown language K such that CMP(K) is
PSPACE-complete w.r.t. logspace reductions.

PROOF. Membership in PSPACE holds even for an arbitrary context-free language K [23].

For the lower bound, we reduce the problem from Cor. 6 to CMP(K) for some linear visibly

pushdown language K. Let L ⊆ ({0, 1} × {0, 1})∗ be the regular language from Cor. 6

and let A = (Q, {0, 1} × {0, 1}, δ, q0, F) be a deterministic finite automaton with L(A) = L.

W.l.o.g. assume that the initial state q0 has no incoming transitions.
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From two given SLPs A and B over {0, 1} we can easily construct in logspace an SLP

C over Σ = {0, 1, 0, 1} with val(C) = val(B) val(A). Let V = (Q, q0, {⊥, 0, 1},⊥,∆, F) be

the 1-turn VPA over ({0, 1}, {0, 1}) with the following transitions:

∆ = {(q0, x, q0, x) | x ∈ {0, 1}} ∪ {(q, x, y, p) | x, y ∈ {0, 1}, δ(q, (x, y)) = p}.

Thus, V can only read words of the form vu with u, v ∈ {0, 1}∗ and |v| ≥ |u| (recall that
q0 has no incoming transitions). When reading such a word vu, V first pushes the word v

(reversed) on the stack and then simulates the automaton A on the string u⊗ v and thereby

pops from the stack. From the construction of V, we obtain

val(C) = val(B) val(A) ∈ L(V) ⇐⇒ val(A)⊗ val(B) ∈ L(A) ∧ |val(A)| ≤ |val(B)|.

By Cor. 6 (and the remark after the proof), this concludes the proof.

Prop. 2 and Thm. 7 imply:

COROLLARY 8. PSPACE = LEAFL
a (K) for some linear visibly pushdown language K.

In [21], a suitable variant of nondeterministic finite automata were used as leaf string

generating devices. A finite leaf automaton (FLA) is a tuple A = (Q,Σ, Γ, δ, ρ, q0), where

Q is a finite set of states, Σ and Γ are finite alphabets, δ : Q × Σ → Q+ is the transition

mapping, ρ : Q → Γ is the output mapping, and q0 ∈ Q is the initial state. For every

state q ∈ Q and every input word w ∈ Σ∗, we define by induction the string ̂δ(q,w) as

follows: ̂δ(q, ε) = q and ̂δ(q, au) = ̂δ(q1, u) · · · ̂δ(qn, u) if a ∈ Σ and δ(q, a) = q1 · · · qn. Let
leaf(A,w) = ρ(̂δ(q0,w)), where ρ : Q → Γ is extended to a morphism on Q∗. For K ⊆ Γ∗ let
LEAF(A,K) = {w ∈ Σ∗ | leaf(A,w) ∈ K} and LEAF(K) = {LEAF(A,K) | A is an FLA }.
THEOREM 9. There exists a fixed linear visibly pushdown language K and an FLA A such
that LEAF(A,K) is PSPACE-complete w.r.t. logspace reductions.

PROOF. We use the linear visibly pushdown language K from the proof of Thm. 7. Notice

that the question whether val(C) ∈ K is already PSPACE-complete for a quite restricted

class of SLPs. By tracing the construction of the SLP C (starting from the proof of Thm. 5),

we see that it is already PSPACE-complete to check for a number t0 and two superdecreasing

sequences (t1, . . . , tm), (w1, . . . ,wk) (all numbers are encoded binary) whether

S(w1, . . . ,wk) 0
t0 S(t1, . . . , tm) 0w1+···+wk−(t0+···+tm) ∈ K. (5)

Herewe use again the encoding of superdecreasing sequences from (1). So, it remains to find

an FLA Awith the following property: from given input data t0, (t1, . . . , tm), (w1, . . . ,wk) as
above we can construct in logspace a string w such that leaf(A,w) is exactly the string in (5).

We only present an FLA A and a logspace construction of a string w from a superdecreasing

sequence (w1, . . . ,wk) such that leaf(A,w) = S(w1, . . . ,wk). From this FLA, an FLA for pro-

ducing the leaf string (5) can be easily derived. We use the following logspace-computable

exponent-encoding of a natural number d = 2e1 + 2e2 + · · · + 2em (e1 < e2 < · · · < em):

e(d) = ae1$ae2$ · · · aem−1$aem˜$ ∈ {a, $}∗˜$.
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Next, we derive in logspace from the superdecreasing sequence (w1, . . . ,wk) the sequence

(d1, . . . , dk) of differences as defined in (2) and encode it by the string

e(d1, . . . , dk) =

(k−1

∏
i=1

#e(di)

)

˜#e(dk) ∈ {a, $,˜$, #,˜#}∗

Our fixed FLA is A = ({q0, pr, pℓ, r0, r1}, {a, $,˜$, #,˜#}, {0, 1}, δ, ρ, q0), where the transition

function δ is defined as follows:

δ(q0, #) = q0prq0 δ(pr, a) = pℓpr δ(pℓ, a) = pℓpℓ

δ(q0, x) = q0 for x ∈ {a, $,˜$} δ(pr, $) = r0pr δ(pℓ, x) = r0 for x ∈ {$,˜$}
δ(q0,˜#) = r1prr1 δ(pr,˜$) = r0 δ(ri, x) = ri for x ∈ Σ, i ∈ {0, 1}

The δ-values that are not explicitly defined can be set arbitrarily. Finally, let ρ(r0) = 0 and

ρ(r1) = 1; all other ρ-values can be defined arbitrarily. We claim that leaf(A, e(d1, . . . , dk)) =
S(w1, . . . ,wk). First note that ̂δ(pr, ae$) = r2

e

0 pr and ̂δ(pr, ae˜$) = r2
e

0 . Since δ(r0, x) = r0 for all

input symbols x, we have ̂δ(pr, e(d)) = rd0 for every number d and therefore:

̂δ(q0, #e(d)) = ̂δ(q0, e(d)) ̂δ(pr, e(d)) ̂δ(q0, e(d)) = q0r
d
0q0

̂δ(q0,˜#e(d)) = ̂δ(r1, e(d)) ̂δ(pr, e(d)) ̂δ(r1, e(d)) = r1r
d
0r1

Hence, the FLA A realizes the recurrence (3) when reading the input e(d1, . . . , dk).

5 Compressed membership in XML languages

In this section, we consider a subclass of the visibly pushdown languages, which is moti-

vated in connection with XML. Let B be a finite set of opening brackets and let B be the set of

corresponding closing brackets. An XML-grammar [4] is a tuple G = (B, (Rb)b∈B, a) where

a ∈ B (the axiom) and Rb is a regular language over the alphabet {Xc | c ∈ B}. We identify

G with the context-free grammar, where (i) {Xb | b ∈ B} is the set of variables, (ii) B ∪ B

is the set of terminals, (iii) Xa is the start variable, and (iv) the (infinite) set of productions

is {Xb → b w b | b ∈ B,w ∈ Rb}. Since Rb is regular, this set is equivalent to a finite set of

productions. One can show that L(G) is a visibly pushdown language [1]. XML-grammars

capture the syntactic features of XML document type definitions (DTDs), see [4] for details.

THEOREM 10. For every XML-grammar G, CMP(L(G)) belongs to coNP. Moreover, there
is an XML-grammar G such that CMP(L(G)) is coNP-complete w.r.t. logspace reductions.

For the proof of the upper bound in Thm. 10 we need a few definitions. Let us fix an

XML-grammar G = (B, (Rb)b∈B, a) for the further considerations. The set DB ⊆ (B ∪ B)+

of all Dyck primes over B is the set of all well-formed strings over B ∪ B that do not have a

non-empty proper prefix, which is well-formed as well. Formally, DB is the smallest set such

that w1, . . . ,wn ∈ DB (n ≥ 0) implies bw1 · · ·wnb ∈ DB. For b ∈ B let Db = DB ∩ b(B ∪ B)∗b.
The set of all Dyck words over B ∪ B is D∗

B. Note that L(G) ⊆ Da.

Letw ∈ D∗
B, and let 1 ≤ i ≤ |w| be a positionwithw[i] ∈ B, i.e. the i-th symbol inw is an

opening bracket. Since w ∈ D∗
B, there exists a unique position γ(w, i) > iwith w[i,γ(w, i)] ∈
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DB. The string w[i + 1,γ(w, i) − 1] belongs to D∗
B. Since DB is a code, there exists a unique

factorization w[i + 1,γ(w, i) − 1] = w1 · · ·wn with n ≥ 0 and w1, . . . ,wn ∈ DB. Moreover,

for every 1 ≤ i ≤ n let bi be the unique opening bracket such that wi ∈ Dbi . Finally, define

surface(w, i) = Xb1Xb2 · · ·Xbn . The term “surface” is motivated by the surface of b ∈ B from

[4]. A straightforward induction shows:

LEMMA 11. Letw ∈ (B∪B)∗. Thenw ∈ L(G) if and only if (i)w ∈ Da and (ii) surface(w, j) ∈
Rb for every position 1 ≤ j ≤ |w| such that w[j] = b ∈ B.

The next lemma was shown in [19, Lemma 5.6]:

LEMMA 12. CMP(D∗
B) can be solved in polynomial time. Moreover, for a given SLP A such

that w := val(A) ∈ D∗
B and a given (binary coded) position 1 ≤ i ≤ |w| with w[i] ∈ B one

can compute the position γ(w, i) in polynomial time.

Lemma 12 and the fact w ∈ DB ⇐⇒ (w ∈ D∗
B and γ(w, 1) = |w|) implies:

PROPOSITION 13. CMP(DB) can be solved in polynomial time.

For the proof of Thm. 10 we need one more technical lemma, whose proof has to be

omitted in this short version:

LEMMA 14. For a given SLP A such that w := val(A) ∈ D∗
B and a given (binary coded)

position 1 ≤ i ≤ |w| with w[i] ∈ B one can compute an SLP for the string surface(w, i) in
polynomial time.

Now we can prove Thm. 10: For the coNP upper bound, let G = (B, (Rb)b∈B, a) be an

XML grammar and let A be an SLP over the terminal alphabet B ∪ B with w = val(A). By
Lemma 11 we have to check that (i) w ∈ Da = DB ∩ a(B∪ B)∗a and (ii) surface(w, j) ∈ Rb for

all 1 ≤ j ≤ |w| with w[j] = b ∈ B. Condition (i) can be checked in deterministic polynomial

time by Prop. 13; condition (ii) belongs to coNP by Lemma 14 and Thm. 1. The proof of the

coNP lower bound is similar to the proof of [19, Thm. 5.2] and therefore omitted.
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ABSTRACT. For a given (terminating) term rewriting system one can often estimate its derivational
complexity indirectly by looking at the proof method that established termination. In this spirit we
investigate two instances of the interpretation method: matrix interpretations and context dependent
interpretations. We introduce a subclass of matrix interpretations, denoted as triangular matrix in-
terpretations, which induce polynomial derivational complexity and establish tight correspondence
results between a subclass of context dependent interpretations and restricted triangular matrix in-
terpretations. The thus obtained new results are easy to implement and considerably extend the
analytic power of existing results. We provide ample numerical data for assessing the viability of the
method.

1 Introduction

Term rewriting is a conceptually simple but Turing-complete model of computation. The

foundation of rewriting is equational logic and term rewrite systems are conceivable as sets

of directed equations. This orientation of equations naturally gives rise to computations,

where a term is rewritten by successively replacing subterms by equal terms until no fur-

ther reduction is possible. Such a sequence of rewrite steps is also called a derivation. In

order to assess the complexity of a (terminating) term rewrite system (TRS for short) it is

natural to look at the maximal length of derivations, as suggested by Hofbauer and Laute-

mann in [10]. More precisely, the derivational complexity function with respect to a (terminat-

ing) TRS R relates the length of a longest derivation sequence to the size of the initial term.

Observe that the derivational complexity function is conceivable as a measure of proof com-

plexity. Suppose an equational theory is representable as a convergent (i.e. a confluent and

terminating) TRS, then rewriting to normal form induces an effective procedure to decide

whether two terms are equal over a given equational theory. Thus the derivational com-

plexity with respect to a convergent TRS essentially amounts to the proof complexity of this

proof of identity.

For a given terminating TRS one can often estimate its derivational complexity indi-

rectly by looking at the proof method that established termination. For example polynomial
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interpretations induce double-exponential derivational complexity (see [10], but also com-

pare [8, 19, 9, 14, 7, 5, 12] for the derivational complexity induced by other termination

techniques). The following example illustrates the situation.

Example 1 ([9]). Consider the following TRS R over the signature F = {◦, c}.

(x ◦ y) ◦ z → x ◦ (y ◦ z) .

It is easy to see that the polynomial interpretation A on the carrier N − {0} given through

the interpretation functions ◦A(n, m) = 2n + m and cA = 1, is compatible with R. Now,

consider the (ground) terms (tn)n∈N, defined as t0 := c and tn+1 = tn ◦ c. Note that the

evaluation [tn]A of tn with respect to the algebra A is exponential in n. Hence the maximal

length of a derivation starting from tn is (at most) exponential in n.

However the upper bound given in Example 1 is not optimal: The derivation length

can be easily seen to be bounded quadratically in n. This overestimation is typical for poly-

nomial interpretations. Hofbauer introduced context dependent interpretations as a remedy,

cf. [9]. These interpretations extend traditional interpretations by introducing an additional

parameter. The parameter changes in the course of evaluating a term, which makes the

interpretation dependent on the context. With respect to Example 1 an interpretation can

be found that estimates the derivation length optimally, compare [9]. Recently the first and

second author introduced a technique to automatically search for context dependent inter-

pretations, cf. [15]. This was achieved by delineating two subclasses of context dependent

interpretations that made automation possible. However, up to now, we couldn’t handle

the TRS in Example 1 automatically.

In this paper we introduce an (easily automatable) technique to overcome this obstacle.

We restrict matrix interpretations for terms (see [5], but compare also [11]) in such a way that

we only employ matrices of particular simple form in the interpretation functions. Such in-

terpretations (called triangular matrix interpretations) induce at most polynomial derivational

complexity, where the degree of the polynomial depends on the dimension of the matrix.

Moreover, we identify a subclass of context dependent interpretations and a subclass

of (two-dimensional) matrix interpretations which correspond to each other with respect to

orientability: For any context dependent interpretation C from this class that is compatible

with a TRS R there exists a matrix interpretation A compatible with R and vice versa.

This theoretical result is interesting in its own right as it links two different termination

techniques, which were previously conceived as incomparable.

The obtained new techniques are easy to implement and considerably extend the ana-

lytic power of existing results. We provide ample numerical data for assessing the viability

of the method. In particular, we want to emphasise that Example 1 can be handled fully

automatically and the resulting estimation on the derivational complexity is optimal.

The remainder of this paper is organised as follows. In the next section we recall basic

notions. Section 3 introduces triangular matrix interpretations, while in Section 4 we recall

context dependent interpretations and state the correspondence result mentioned above. In

Section 5 we provide the experimental data for our implementation. Finally in Section 6 we

conclude and mention possible future work.
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2 Preliminaries

We assume familiarity with term rewriting [2, 18] but briefly review basic concepts and

notations. Let V denote a countably infinite set of variables and F a signature. The set of

terms over F and V is denoted by T (F ,V). Var(t) denotes the set of variables occurring in

a term t and the size |t| of a term is defined as the number of symbols in t, i.e., for example

the size of the term f(a, x) is 3. The depth dp(t) of a term t is defined as follows: (i) dp(t) := 0,

if t is a variable or a constant and (ii) dp( f (t1, . . . , tn)) := 1 + max{dp(ti) | 1 6 i 6 n}.

A term rewrite system (TRS for short) R over T (F ,V) is a finite set of rewrite rules l → r,

such that l /∈ V and Var(l) ⊇ Var(r). A relation on T (F ,V) is a rewrite relation if it is

compatible with F -operations and closed under substitutions. The smallest rewrite relation

that contains R is denoted by →R. The transitive and reflexive closure of →R is denoted by

→∗
R. We simply write → for →R if R is clear from context. A term s ∈ T (F ,V) is called a

normal form if there is no t ∈ T (F ,V) such that s → t.

A TRS is called confluent if for all s, t1, t2 ∈ T (F ,V) with s →∗ t1 and s →∗ t2 there

exists a term t3 such that t1 →∗ t3 and t2 →∗ t3. We call a TRS terminating if no infinite

rewrite sequence exists. Let s and t be terms. If exactly n steps are performed to rewrite s to

t we write s →n t. The derivation length of a terminating term t with respect to a TRS R is

defined as: dl(s,→R) = max{n | ∃t s →n
R t}. The derivational complexity (with respect to R)

is defined as follows:

dcR(n) = max{dl(t,→R) | |t| 6 n} .

We sometimes say the derivational complexity of R is linear, quadratic, or polynomial if

dcR(n) is bounded linearly, quadratically, or polynomially in n, respectively.

A proper order is a transitive and irreflexive relation. A proper order ≻ is well-founded if

there is no infinite decreasing sequence t1 ≻ t2 ≻ t3 · · · . A well-founded proper order that

is also a rewrite relation is called a reduction order. We say a reduction order ≻ and a TRS R
are compatible if R ⊆ ≻. It is well-known that a TRS is terminating if and only if there exists

a compatible reduction order. An F -algebra A consists of a carrier set A and a collection

of interpretations fA for each function symbol in F . A well-founded and monotone algebra

(WMA for short) is a pair (A,≻), where A is an algebra and ≻ is a well-founded proper

order on A such that every fA is monotone in all arguments. An assignment α : V → A

is a function mapping variables to elements in the carrier. Let [α]A(·) denote the usual

evaluation function associated with A. A WMA naturally induces a proper order ≻A on

terms: s ≻A t if [α]A(s) ≻ [α]A(t) for all assignments α : V → A.

3 Matrix Interpretations That Induce Polynomial
Derivational Complexity

In this section we introduce a specific form of matrix interpretations, called triangular ma-

trix interpretations, which induce a polynomial upper bound on the derivational complexity.

This contrasts with general matrix interpretations, which yield an exponential upper bound,

cf. [5]. Hence the introduced restriction defines a strict subclass of those TRSs that admit a

matrix interpretation.
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We start by recalling the concept of matrix interpretations (see [5] but compare also [11]).

Let F denote a signature. We fix a dimension d ∈ N and use the set N
d as the carrier of an

algebra A, together with the following extension of the natural order > on N:

(x1, x2, . . . , xd) > (y1, y2, . . . , yd) :⇐⇒ x1 > y1 ∧ x2 > y2 ∧ . . . ∧ xd > yd .

For each n-ary function symbol f , we choose as an interpretation a linear function of the

following shape:

fA : (N
d)n → N

d : (~v1, . . . ,~vn) 7→ F1~v1 + . . . + Fn~vn + ~f ,

where~v1, . . . ,~vn are (column) vectors of variables, F1, . . . , Fn are matrices (each of size d× d),

and ~f is a vector over N. Moreover, for any i (1 6 i 6 n) the top left entry (Fi)1,1 is positive.

It is easy to see that the algebra forms a well-founded monotone algebra.

The following lemma states how compatibility of a matrix interpretation A with a given

rewrite system can be easily verified (compare [5, Lemma 4]).

LEMMA 2. Let A be a matrix interpretation and let R be a TRS. Let l → r ∈ R, let k

denote the number of variables in l (and r) and let α be an assignment. Then there exist

matrices L1, . . . , Lk, R1, . . . , Rk and vectors~l,~r such that [α]A(l) = ∑
k
i=1 Li~xi +~l and [α]A(r) =

∑
k
i=1 Ri~xi +~r. Moreover l >A r if and only if~l > ~r and Li > Ri for all 1 6 i 6 k. (Here >

refers to the point-wise extension of the standard order on natural numbers to matrices.)

We are now going to restrict the shape of the matrices, in order to obtain better bounds

on derivational complexities.

DEFINITION 3. An upper triangular matrix is a matrix M in N
d×d such that for all d > i >

j > 1, we have Mi,j = 0, and for all d > i > 1, we have Mi,i 6 1.

We say that a TRS R admits a triangular matrix interpretation (TMI for short) if R is

compatible with a matrix interpretation A and all matrices employed in A are of upper

triangular form.

Example 4 (continued from Example 1). We define a triangular matrix interpretation A, as

follows:

◦A(~x,~y) =

(

1 1

0 1

)

·~x +

(

1 0

0 1

)

·~y +

(

0

1

)

It is easy to see that A is compatible with R, i.e., [α]A((x ◦ y) ◦ z) > [α]A(x ◦ (y ◦ z)) holds

for all assignments α.

LEMMA 5. Let M be an upper triangular matrix in N
d×d and n ∈ N. Then all entries of

Mn are polynomially bounded in n. More precisely, if i > j then (Mn)i,j = 0, otherwise
(Mn)i,j 6 (j − i)!(an)j−i, where a = max{Mi,j | 1 6 i, j 6 d}.

PROOF. The case i > j is easy to see. In the other case, we have j > i. Then the lemma

follows by a straightforward induction on j − i.

Due to Lemma 5, for any finite subset M ⊆ N
d×d of upper triangular matrices, there

is a polynomial p of degree d − 1 such that for each sequence M1 ∈ M, . . . , Mn ∈ M, and
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for each i, j, it holds that (M1 · . . . · Mn)i,j 6 p(n). Such products occur when computing

values of matrix interpretations on (ground) terms: For example, let A denote a matrix

interpretation, α an arbitrary assignment and t = f(g(a, b), c). Then

[α]A(t) = F1G1~a + F1G2
~b + F1~g + F2~c + ~f .

Clearly the length of each product is at most the depth of the term, which is smaller or equal

to its size. Hence the entries in each product are polynomially bounded (with degree d − 1)

in the size of t. The number of products equals the number of subterms of t, which is exactly

the size of t. Therefore, the entries in [α]A(t) are bounded by a polynomial of degree d in

the size of t. This observation leads us directly to the main result of this section.

THEOREM 6. If a TRS R admits a triangular matrix interpretation A of dimension d, then
the derivational complexity of R is bounded by a polynomial of degree d.

PROOF. Any k-step derivation s →k
R t implies [α]A(s) >k [α]A(t), referring to the k-th

iterate of the relation > on N
d defined earlier. This implies [α]A(s)1 ≥ k + [α]A(t)1 ≥ k.

So the top entry in [α]A(s) bounds the length of any derivation starting at s. In conjunction

with the above observation, this suffices to prove the theorem.

Example 7. It is easy to see that the derivational complexity of the following TRS R1 =
{a(b(x)) → b(a(x)), c(a(x)) → b(c(x)), c(b(x)) → a(c(x)))} is (at least) cubic. The follow-

ing TMI A is compatible with R1.

aA(~x) =





1 0 1

0 1 1

0 0 1



~x +





0

0

1



 bA(~x) =





1 0 0

0 1 1

0 0 1



~x +





0

0

1





cA(~x) =





1 1 3

0 1 0

0 0 1



~x +





1

0

0





Applying Theorem 6 we conclude that the derivational complexity function with respect to

R1 is cubic.

Despite Example 7 the criterion is in general not complete. There exist TRSs of poly-

nomial derivational complexity that do not admit a compatible TMI. One such example

can be found in [5]: R2 = {f(a, b) → f(b, b), f(b, a) → f(a, a)}. Then R2 has linear

derivational complexity, but in fact no compatible matrix interpretation can exist, cf. [5].

Even if there is a compatible matrix interpretation and the complexity of the system is

polynomial, it might be lacking a triangular interpretation. Consider the following TRS:

R3 = {a(a(x)) → b(c(x)), b(b(x)) → a(c(x)), c(c(x)) → a(b(x))}, a straightforward adap-

tion of the string rewrite system z086 introduced by Zantema as TRS. We conjecture that

R3 admits at most polynomial derivational complexity and is not compatible with a trian-

gular matrix interpretation. (This is related to the open problem number 105 in the RTA list

of open problems, see http://rtaloop.pps.jussieu.fr/.)

We conclude this section by considering the following example, that can be handled

automatically by TMIs, but not with any other known method. (See Section 5 for further

details about the implementation.)
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Example 8. Consider the TRS R4 with the following rewrite rules, which is example 4.30

from [17]:

f(nil) → nil g(nil) → nil

f(nil ◦ y) → nil ◦ f(y) g(x ◦ nil) → g(x) ◦ nil

f((x ◦ y) ◦ z) → f(x ◦ (y ◦ z)) g(x ◦ (y ◦ z)) → g((x ◦ y) ◦ z)

It is not difficult to check that the following TMI A of dimension 4 is compatible with R4.

◦A(~x,~y) =









1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 1









·~x +









1 0 0 0

0 0 0 1

0 0 1 0

0 0 0 1









·~y +









0

0

0

1









nilA =









0

1

1

1









fA(~x) =









1 0 1 0

0 0 0 1

0 0 1 0

0 0 0 1









·~x +









0

1

0

0









gA(~x) =









1 1 0 0

0 0 0 1

0 0 0 1

0 0 0 1









·~x +









1

0

1

0









Due to Theorem 6 we conclude that dcR4
can be asymptotically bounded by a polynomial

of degree 4. Notice that this bound is not optimal, as it is easy to see that the derivational

complexity is quadratic.

4 Context Dependent Interpretations and Matrices

In this section, we show a tight correspondence between (triangular) matrix interpretations

as introduced in Section 3 and context dependent interpretations, see [9]. More precisely we

define a subclass of context dependent interpretations such that any such interpretation C
gives rise to a restricted TMI A and vice versa. Moreover C is compatible with a TRS R if

and only if A is compatible with R.

We recall context dependent interpretations. For that we follow the presentation in [15]

in a simplified form. See [9, 15] for motivating examples and intuitions behind the defini-

tions. A context dependent F -algebra (CDA for short) C is a family of F -algebras over the reals.

A CDA C associates to each function symbol f ∈ F of arity n, a collection of n + 1 mappings

fC : R
+ × (R

+
0 )n → R

+
0 and f i

C : R
+ → R

+ for all 1 6 i 6 n. As usual fC is called the inter-

pretation function, while the mappings f i
C are called the parameter functions. In addition C is

equipped with a set {>∆| ∆ ∈ R
+} of strict orders, where we define: z >∆ z′ if and only if

z − z′ > ∆. Let C be a CDA and let a ∆-assignment denote a mapping α : R
+ ×V → R

+
0 . We

define a mapping [α, ∆]C from the set of terms into the set R
+
0 of non-negative reals:

[α, ∆]C (t) :=

{

α(∆, t) if t ∈ V
fC(∆, [α, f 1

C (∆)]C (t1), . . . , [α, f n
C (∆)]C(tn)) if t = f (t1, . . . , tn) .

We fix some notational conventions: Due to the special role of the additional variable

∆, we often write fC [∆](z1, . . . , zn) instead of fC(∆, z1, . . . , zn). If t is a ground term, we

sometimes write [∆]C (t) instead of [α, ∆]C (t). We say that a CDA C is ∆-monotone if for all
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∆ ∈ R
+ and for all a1, . . . , an, b ∈ R

+
0 with ai > f i

C(∆) b for some i ∈ {1, . . . , n}, we have

fC [∆](a1, . . . , ai, . . . , an) >∆ fC [∆](a1, . . . , b, . . . , an). A CDA C and a TRS R are compatible if

for every rewrite rule l → r ∈ R, every ∆ ∈ R
+, and any ∆-assignment α: [α, ∆](l) >∆

[α, ∆](r) holds.

DEFINITION 9. A ∆2-interpretation is a CDA C with interpretation functions and parameter
functions of the following form:

fC(∆, z1, . . . , zn) =
n

∑
i=1

a( f ,i)zi +
n

∑
i=1

b( f ,i)zi∆ + g f + h f ∆ (†)

f i
C(∆) =

c( f ,i) + d( f ,i)∆

a( f ,i) + b( f ,i)∆
, (‡)

where a( f ,i) > 0 or b( f ,i) > 0 (for each f ∈ F , 1 6 i 6 n) and the occurring coefficients are
natural numbers.

The following lemma is a direct consequence of the definitions.

LEMMA 10. Let C denote a ∆2-interpretation. If for all f ∈ F , 1 6 i 6 n in (‡), we have

d( f ,i) > 1, then C is ∆-monotone.

In [15] two (strict) subclasses of ∆2-interpretations were studied: ∆-linear interpreta-

tions and ∆-restricted interpretations. A ∆-linear interpretation is a ∆2-interpretation, where

for the parameter functions as presented in (‡) we have c( f ,i) = 0 and d( f ,i) = 1 for all f ∈ F ,

1 6 i 6 n, and a ∆-restricted interpretation is a ∆-linear interpretation with the additional re-

quirement that a( f ,i) ∈ {0, 1}.

Example 11 (continued from Example 1). Consider the following ∆-linear interpretation C:

◦C [∆](x, y) = (1 + ∆)x + y + 1 ◦1
C (∆) =

∆

1 + ∆
◦2
C (∆) = ∆

For all ground terms r, s, t, we have [∆]C ((r ◦ s) ◦ t) − [∆]C (r ◦ (s ◦ t)) > ∆. This is shown

in [9, Lemma 3] by an inductive argument. However, this argument is not well-suited for

automation: The implementation described in [15] doesn’t find this interpretation.

Example 12 (continued from Example 11). The ∆-linear interpretation C is also a ∆-restricted

interpretation. Due to [15, Theorem 29] we conclude quadratic derivational complexity for

R. Note that this upper bound is optimal.

It seems worthy of note, that the matrix interpretation A employed in Example 4 is

obtained fully automatically, while the context dependent interpretation C is obtained by

hand. On the other hand A and C use exactly the same coefficients. We exploit this obser-

vation below.

DEFINITION 13. Let C be a CDA and let A be a matrix interpretation over two dimensions.

We say the ∆-assignment α : R
+ × V → R

+
0 and the assignment α

′ : V → N
2 are corre-

sponding if for all variables x and all ∆ ∈ R
+: α(∆, x) = a + b∆ if and only if α

′(x) =

(

b

a

)

.

We arrive at the main lemma of this section, whose technical, but not difficult proof has

been omitted due to space restrictions.
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LEMMA 14. Let C denote a ∆2-interpretation:

fC(∆, z1, . . . , zn) =
n

∑
i=1

a( f ,i)zi +
n

∑
i=1

b( f ,i)zi∆ + g f + h f ∆

f i
C(∆) =

c( f ,i) + d( f ,i)∆

a( f ,i) + b( f ,i)∆
,

and let A denote a matrix interpretation of the following form:

fA(x1, . . . , xn) =
(

n

∑
i=1

(

d( f ,i) b( f ,i)

c( f ,i) a( f ,i)

)

· xi

)

+

(

h f

g f

)

,

where d( f ,i) > 1, and either a( f ,i) > 0 or b( f ,i) > 0 for all f ∈ F and 1 6 i 6 n. Then for any
term t

[α, ∆]C (t) = s1 + s2∆ ⇐⇒ [α′]A(t) =

(

s2

s1

)

,

whenever α and α
′ are corresponding.

We say a matrix interpretation A corresponds to a ∆2-interpretation C, if A and C are

defined as in Lemma 14.

Example 15. Consider the triangular matrix interpretation A introduced in Example 4 and

the ∆-restricted interpretation C from Example 11. Then it is easy to see that A and C are

corresponding.

THEOREM 16. Let R be a TRS and let C be a ∆2-interpretation such that R is compatible with
C. Then there exists a corresponding matrix interpretation A (of dimension 2) compatible

with R.

PROOF. Let α : V → N
2 be arbitrary, but fixed. To prove the theorem, it suffices to verify

that for any rule l → r ∈ R: [α]A(l) > [α]A(r) holds, where A is the matrix interpretation

constructed in Lemma 14. To apply Lemma 14, we choose a ∆-assignment α
′ : R

+ ×V → R
+
0

that corresponds to α. For every l → r ∈ R, for every ∆ ∈ R
+, and every α

′ : R
+ ×V → R

+
0 ,

we have
(

[α′, ∆]C (l) − [α′, ∆]C(r)
)

= a + b∆. Here we make use of the fact that for any term

t: [α′, ∆]C(t) = c + d∆. This follows from an inductive argument employing the assumed

form of the assignment α
′. Moreover, as a + b∆ > ∆, we conclude a > 0 and b > 1. Thus an

application of Lemma 14 yields

(

[α]A(l) − [α]A(r)
)

=

(

b

a

)

>

(

1

0

)

,

from which compatibility with A directly follows.

An easy consequence of Theorem 16 in conjunction with Theorem 6 is that ∆2-inter-

pretations induce at most exponential derivational complexity. In particular, we obtain the

following corollary. (A direct proof of this result, i.e., a proof that argues only about context

dependent interpretations, can be found in [15].)
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COROLLARY 17. Let R be a TRS and let C denote a ∆-linear interpretation compatible with
R. Then R is terminating and dcR(n) = 2O(n). Moreover, if C is a ∆-restricted interpretation,
then dcR(n) = O(n2). Observe that the bounds are tight, i.e., we can find TRSs R that fulfill

these requirements, such that dcR is an exponential or quadratic function, respectively.

Theorem 16 raises the question, whether the other direction may hold for ∆2-inter-

pretations: Given a matrix interpretation, compatible with R, does there exist a ∆2-inter-

pretation that is compatible with R? Recall that a CDA C is compatible with a TRS R, if

for every l → r ∈ R, for every ∆ ∈ R
+, and every α : R

+ × V → R
+
0 , we have [α, ∆]C (l) −

[α, ∆]C (r) > ∆. The next example shows that this definition of compatibility is too general

in this context.

Example 18 (continued from Example 4). The ∆-restricted interpretation C is not compatible

with R as defined above, i.e. we do not have [α, ∆]C ((x ◦ y) ◦ z)− [α, ∆]C (x ◦ (y ◦ z)) > ∆ for

arbitrary assignments α. To construct a counter-example we set α(∆, x) := ∆2, and α(∆, u)
is arbitrary for u 6= x. Following the proof of Lemma 3 in [9], we obtain

[α, ∆]C ((x ◦ y) ◦ z) − [α, ∆]C (x ◦ (y ◦ z)) = (1 + 2∆)[α,
∆

1 + 2∆
]C(x)+

+∆ − (1 + ∆)[α,
∆

1 + ∆
]C(x) = ∆ +

∆2

1 + 2∆
− ∆2

1 + ∆
6> ∆ .

This violates the compatibility condition.

Example 18 motivates the next definition.

DEFINITION 19. We say a ∆-assignment α : ∆ × V → R
+
0 is linear, if there exist natural

numbers a and b, such that α(∆, x) = a + b∆.

Example 20 (continued from Example 18). For any linear ∆-assignment α, we have [α, ∆]C ((x ◦
y) ◦ z) − [α, ∆]C (x ◦ (y ◦ z)) > ∆. This can be seen by just applying a linear ∆-assignment

of the following parametric form: α(∆, x) = x1 + x2∆, α(∆, y) = y1 + y2∆, and α(∆, z) =
z1 + z2∆.

LEMMA 21. Let σ be a ground substitution and let C be a ∆2-interpretation. Then there
exists a linear ∆-assignment α such that [∆]C (tσ) = [α, ∆]C (t) for all ∆ ∈ R

+ and terms t.

PROOF. We set α(∆, x) = [∆]C (xσ) for any x ∈ dom(σ) and α(∆, x) = 0 otherwise. The

fact that [∆]C (xσ) has a linear shape can be shown by an easy induction on xσ.

By now, the following main result of this section, is an easy consequence of Lemma 14,

Theorem 16 and Lemma 21.

THEOREM 22. Let A be a monotone matrix interpretation of dimension 2 such that no zero
column occurs in any matrix, let C be the corresponding ∆2-interpretation and let R be a
TRS. Then A is compatible with R if and only if for all linear ∆-assignments α, all ∆ ∈ R

+

and all rules l → r ∈ R, we have [α, ∆]C (l) >∆ [α, ∆]C (r).

Note that the restriction on zero columns expressed in the assumptions of the theorem

appears to be negligible, if we consider the automation of the introduced techniques. This

is the subject of the next section.
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Table 1: Termination Methods as Complexity Analysers

BOUNDS CDI TMI TMI+BOUNDS

dimension 2 3 4 5 3

# successes 125 85 143 158 154 156 216

avg. success time 0.68 3.84 0.19 1.33 0.56 2.39 8.65

# timeouts 328 272 66 224 237 244 237

5 Experiments

We have implemented the methods described in this paper, and tested their viability to

analyse polynomial derivational complexity on version 4.0 of the Termination Problem Data

Base (TPDB for short), which is used in the annual RTA termination competition. (Available

at http://www.lri.fr/~marche/tpdb/, but we also included the secret systems from

the competition 2007.) This database contains a total of 1381 TRSs, 957 of which are known

to be terminating. Arguably, the TPDB is an imperfect choice as it has been designed to test

the strength of termination provers in rewriting, not as a testbed to analyse feasible bounds

on the derivational complexity of TRSs. Examples such as TRS encodings of the Ackermann

function and the Hydra Battle reinforce this point. On the other hand, the TPDB is the only

relatively large collection of TRSs that is publicly available.

We briefly sketch our implementation: Similar to [3], we build a set of Diophantine

constraints which express all necessary restrictions on the matrix interpretation. Then, we

put a finite upper bound on the variables in the constraints and encode these constraints

as a problem of propositional logic (see [6] but also [5]). We give the final SAT problem to

MiniSAT [4] and use a satisfying assignment to construct a suitable matrix interpretation,

where we use the fact that all matrix products are upper triangular, so values for entries

below the main diagonal can be ignored.

In order to compare ∆-restricted interpretations (referred to by CDI) and triangular ma-

trix interpretations (TMI) to other results, we compared them to the implementation of the

match-bound technique (BOUNDS for short) as in [13]: Linear TRSs are tested for match-

boundedness, non-linear, but non-duplicating TRSs are tested for match-raise-boundedness.

It is not difficult to see that this technique implies linear derivational complexity. Last, we

tested the union of the two strongest methods (BOUNDS and TMI for dimension 3) by using

half of the time on TMI and the rest on BOUNDS. For both CDI and TMI, we restricted all

coefficients to at most 15 (allowing us to use at most 4 bits to encode each coefficient).

All tests were executed single-threaded on a server equipped with 8 AMD Opteron™

2.8 GHz dual core processors with 64GB of RAM. We used a timeout of 60 seconds for each

TRS. The results of the tests are shown in Table 1 (see

http://cl-informatik.uibk.ac.at/users/aschnabl/experiments/08msw/
for the full experimental evidence). The times given in the table are seconds. (In examples

for which the according method was neither successful nor had a timeout, the proof attempt

was given up before the timeout.)

As we can see, triangular matrix interpretations are clearly the most powerful method

for proving polynomial derivational complexity of rewriting on our testbed. As suggested
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by our results in Section 4, the systems that can be handled by ∆-restricted interpretations

are a strict subset of the problems solved by TMI with matrices of dimension 2. We want to

note that out of the latter 143 systems, 140 can still be handled with the restriction on zero

columns in Theorem 22. In total, TMIs of dimensions 2 to 5 are successful in 162 instances.

It is worthy of note that “full” matrix interpretations (for dimensions 2 to 5 and coef-

ficients at most 15) can handle (only) 222 TRSs. Hence a clear majority of those systems

that can in principle shown to be terminating with matrix interpretations have polynomial

derivational complexity.

6 Conclusion

In this paper we studied the complexity of rewrite systems R as expressed by the deriva-

tional complexity function dcR. The following diagram provides a condensed view of the

studied classes of matrix and context dependent interpretations, where the right column

gives the induced derivational complexity. (The arrows depict set inclusions and the dashed

arrows refer to the additional restriction on the zero columns.)

exponentialmatrix

polynomial

matrix (dim. 2)

TMI

quadraticTMI (dim. 2)

∆2-int.
Thm 16

Thm 22

∆-restricted
Thm 16

Thm 22

We emphasise the pictured correspondence result: Consider ∆2-interpretations and tri-

angular matrix interpretations of dimension 2, where no zero columns occur, then these

interpretations are equivalent for orientability. This correspondence sheds light on the ex-

pressivity of matrix interpretations and (significantly) extends the class of rewrite systems

whose compatibility with context dependent interpretations can be shown automatically.

As witnessed by Example 1, it is sometimes possible to automatically obtain a context-

dependent interpretation via the correspondence result, where the direct approach fails. The

mentioned techniques have been implemented and the experimental data clearly shows that

triangular matrix interpretations extend the power of previously known methods to auto-

matically analyse polynomial derivational complexity. In particular, the TMI method is the

only known automatic method to prove polynomial complexity for Example 1, 7, and 8.

In concluding, we note that matrix interpretations for termination of string rewriting

systems are also known as N-rational series in the theory of weighted (tree) automata, and

they have been investigated in connection with the growth of DT0L systems (see [16]). It

remains to connect this knowledge to the present application. Other directions for research

are concerned with extending the presented direct termination techniques with transfor-

mation techniques like the dependency pair method [1] or with multi-step termination proofs as

invoked in [5]. Although these extensions are necessary to increase the power of the studied

techniques further, already simple examples show the challenging nature of this endeavour,

compare [5].
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ABSTRACT. A sup-interpretation is a tool which provides upper bounds on the size of the values
computed by the function symbols of a program. Sup-interpretations have shown their interest to
deal with the complexity of first order functional programs. This paper is an attempt to adapt the
framework of sup-interpretations to a fragment of object-oriented programs, including loop and
while constructs and methods with side effects. We give a criterion, called brotherly criterion, which
uses the notion of sup-interpretation to ensure that each brotherly program computes objects whose
size is polynomially bounded by the inputs sizes. Moreover we give some heuristics in order to
compute the sup-interpretation of a given method.

1 Introduction

Computer security is defined as ensuring confidentiality, integrity and availability require-

ments in whatever context [6]. For example, a secured system should resist to a buffer-

overflow. In this paper, we focus on analyzing the complexity of object-oriented programs,

that is the number of objects created by a program during its execution, by static analysis.

For that purpose, we use semantics interpretation tools called sup-interpretations. Sup-

interpretations were introduced in [14, 15] in order to study the complexity of first order

functional programs. A sup-interpretation consists in a function which provides an up-

per bound on the size of the values computed by some symbol of a given program. The

notion of sup-interpretation strictly generalizes the notion of quasi-interpretation [8] (i.e.

analyzes the complexity of strictly more algorithms) which has already been used to per-

form Bytecode verification [4] and which has been extended to reactive programs [5, 10].

Sup-interpretations allow to characterize complexity classes and, in particular, the class of

NCk functions [7, 16].

A major challenge consists in the adaptation of such an analysis to object-oriented pro-

grams with respect to the following points. Firstly, we have to carefully translate the notion

of sup-interpretation from the functional paradigm to the object-oriented paradigm, tak-

ing into account the new object features such as method calls or side effects. Secondly,

we also want to ensure the viability of our study by obtaining heuristics to compute sup-

interpretations.
c© J.Y Marion and R. Péchoux; licensed under Creative Commons License-NC-ND
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The considered language is inspired by the Featherweight Java of [12] and is a fragment

of the Java language of [11] which includes side effects and to which we add loop and while

constructs. This language is a purely object-oriented language like SmallTalk. For simplicity,

inheritance, typing and subtyping are not considered in this paper. However, the analysis

presented in this paper can be extendedwithout restriction to a Java-like language including

primitives types such as characters, integers or booleans.

Our work is a continuation of recent studies on the Implicit Computational Complexity

of imperative programs [18, 13]. Contrarily to these seminal works, we work on polynomial

algebra instead of matrix algebra. There are at least two reasons for such an approach.

Firstly, the use of polynomials gives a clearest intuition and pushes aside a lot of technicali-

ties. Secondly, polynomials give more flexibility in order to deal with method calls, which is

essential in order to study the object oriented paradigm. Some studies on the cost analysis of

Java Bytecode have already been developed in [1, 2]. In this paper, wemake a distinct choice

by considering a more formal and restricted language. We perform the analysis at the lan-

guage level and not at the Bytecode level. The pros are that our study has more formal basis

and more portability (i.e. it can easily be adapted to distinct object-oriented languages). The

cons are the restrictions on the considered language. However, these restrictions are put in

order to make the study more comprehensible and we claim that they could be withdraw

without any difficulty.

The paper is organized as follows. After introducing our language and the notion of

sup-interpretation of an object-oriented program, we give a criterion, called brotherly crite-

rion, which ensures that each brotherly program computes objects whose size is polynomi-

ally bounded by the input size. Then, we extend this criterion to methods, thus obtaining

heuristics for synthesizing sup-interpretations of non-recursive methods.

2 Object-oriented Programs

2.1 Syntax of programs

A program is composed by a sequence of classes, including a main class, which are named

by class identifiers in Class . A class C ∈ Class is composed by a sequence of attribute

declarations, a constructor and a sequence of methods. The main class main is only com-

posed by attribute declarations and commands, i.e. there is nomethod and no constructor in

main . var X; corresponds to the declaration of the attribute X, where X represents a field

of a given class and belongs to a fixed setX . Amethod is composed by amethod identifier f
belonging to a set F , a sequence of arguments x1, . . . , xn ∈ P , also called parameters, and a

command Cmand is of the shape f (x1, . . . , xn) {Cm; return X; }, where the attribute X cor-

responds to the field returned as output. A constructor C(x1, ..., xn) {X1 := x1; . . . ;Xn := xn}
assigns a parameter to each attribute of the corresponding class. Throughout the paper, we

use capital letters X,Y,Z and lower-case letters x, y, z in order to make the distinction be-

tween attributes and, respectively, parameters. A command is either the skip command, a

variable assignment, a sequence of commands Cm1;Cm2, a loop command, a while command

or a conditional command. An expression is either a parameter x, an attribute X, the null

reference or the creation of a new object using a constructor. A method call is of the shape
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X.f (e1, . . . , en), with f ∈ F , X ∈ X and with e1, . . . , en expressions. The precise syntax of

the language is summed up by the following grammar:

Attributes ∋ A ::= var X; | var X; A
Expressions ∋ e ::= x | X | null | new C(e1, . . . , en)
Method call ∋ a ::= X.f (e1, . . . , en)
Commands ∋ Cm ::= skip | X := a | X := e | Cm1;Cm2 | loop X {Cm}

| if (e)then {Cm1}else {Cm2} | while e {Cm}
Methods ∋ M ::= f (x1, . . . , xn) {Cm; return X; }
Constructors ∋ Cons ::= C(x1, ..., xn) {X1 := x1; . . . ;Xn := xn}
Class ∋ C ::= Class C {A Cons M1 . . .Mn}

main ::= Class main {A Cm}

Notation 1 We will use the notation e to represent the sequence e1, . . . , en when n is clear from the

context.

The sets X , P , F and Class are pairwise disjoint. All attributes occurring in the meth-

ods of a given class Cmust belong to the attributes of this class. All parameters occurring in

the command Cmof a given method must belong to the parameters x1, . . . , xn. Let FC and

XC be respectively the sets of methods and attributes declared in the class C.

We add the following syntactic restrictions to our language: We suppose that C 6= C′

implies FC∩ FC′ = XC∩ XC′ = ∅. There is no method overloading. A program is not

allowed to write the attribute X during the execution of a loop X {Cm}. There are neither
local variables, nor static variables. All these restrictions are put in order to simplify the

discussion. However we claim that they also could be analyzed by our framework.

Example 1 (Linked list) Consider the linked list class described in figure 1. X and Y represent the

head and tail attributes whereas W and Z store intermediate computations. Notice that W and Z are

required since the considered language has no local variables.

Class List { var X; var Y; var W; var Z; W := Y;
List (x, y,w, z) {X := x; Y := y; W := w; Z := z; } loop Y {

getHead () {skip ; return X; } Z := new List (W.getHead (),Z,null );
getTail () {skip ; return Y; } W := W.getTail ();

setTail (y) {Y := y ; return X; } } ;
r everse () { Z := new List (X,null ); return Z; }

}

Figure 1: Linked list

2.2 Semantics

In this section, we define a semantics without references. This semantic weakening is not a

hard restriction since we are more concerned with providing a semantics which takes into

account the number of object creations than by giving a precise semantics of object-oriented

programs, as it will be illustrated by remark 2.2. The domain of computation is the set of
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objects (values) described in [12] and is defined inductively by:

Objects ∋ o ::= null | new C(o1, . . . , on)

where C∈ Class is a class having n attributes and o1, . . . , on are objects. Notice that objects

are particular expressions, only using class constructors.

DEFINITION 1.[Size] The size |o| of an object o is defined inductively by |o| = 0, if o =
new C(), and |o| = ∑

n
i=1 |oi|+ 1, if o = new C(o1, . . . , on).

Objects are created through explicit requests, using a constructor and the new construct.

Consequently, an attribute Xmay be successively attached to distinct objects during the pro-

gram execution. The operational semantics of our language is inspired by the operational

semantics of the Java fragment given in [11]. It is closer to [11] than to [12] since we use

variable assignments (i.e. there are side effects). Contrarily to [11], we do not make explicit

use of references since the object description suggested above is sufficient to control pro-

gram complexity (i.e. the number of object creations). In general, an object of the shape

new C(o1, . . . , on) can be viewed as an object of the class Cwith n implicit references to the

objects o1, . . . , on.

A store σ is a partial mapping from attributesX and parametersP to objects inObjects .

A store can be extended to expressions andmethod calls by null σ = null , new C(e1, . . . , en)
σ = new C(e1σ, . . . , enσ) and X.f (e1, . . . , en)σ = Xσ.f (e1σ, . . . , enσ). Given a store σ, the no-

tation σ {⋄1 ← o1, ..., ⋄n ← on} means that the object stored in ⋄i ∈ X ∪ P is updated to the

object oi in σ, for each i ∈ {1, n}. Given an expression (or a method call) d and a store

σ, the notation 〈d, σ〉 ↓ 〈o, σ′〉 means that d is evaluated to o and that the store σ is up-

dated to the store σ′ during this evaluation. Given a command Cm, we use the notation

〈Cm,σ〉 ↓ 〈σ′〉, if σ is updated to σ′ during the execution of Cm. Given a programp of main

class Class main {A;Cm} and a store σ, p computes a store σ′ defined by 〈Cm,σ〉 ↓ 〈σ′〉.
The expression null is evaluated to null . Given a store σ, a variable or a parameter

⋄ is evaluated to ⋄σ. The expression new C(e1, . . . , en) is evaluated to new C(o1, . . . , on), if
the expressions e1, . . . , en are evaluated to the objects o1, . . . , on. The operational semantics

of expressions is described in figure 2.

⋄ ∈ X ∪ P
〈⋄, σ〉 ↓ 〈⋄σ, σ〉 〈null , σ〉 ↓ 〈null , σ〉

∀i ∈ {1, n} 〈ei, σ〉 ↓ 〈oi, σ〉
C∈ Class

〈new C(e1, . . . , en), σ〉 ↓ 〈new C(o1, . . . , on), σ〉

Figure 2: Operational semantics of an expression

The command skip does nothing. The command X := d assigns the object computed

by d to the attribute X in the store. The command Cm1;Cm2 corresponds to the sequential

execution of Cm1 and Cm2. if (e)then {Cm1}else {Cm2} executes either the command Cm1 or
the command Cm2 depending on whether the expression e is evaluated to the object null
or to any other object. The command loop X {Cm} executes |o| times the command Cm,
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if o is the object stored in X. Finally, the command while e {Cm} is evaluated to skip ,

if e is evaluated to the object null , and to Cm;while e {Cm} otherwise. The operational

semantics of commands is described in figure 3.

〈skip , σ〉 ↓ 〈σ〉
〈d, σ〉 ↓

〈

o, σ′
〉

〈X := d〉 ↓
〈

σ′ {X ← o}
〉

〈e, σ〉 ↓ 〈null , σ〉
〈i f (e)then {Cm1}else {Cm2}, σ〉 ↓ 〈Cm1, σ〉

〈e, σ〉 ↓ 〈o, σ〉 o 6= null

〈i f (e)then {Cm1}else {Cm2}, σ〉 ↓ 〈Cm2, σ〉

〈Cm1, σ〉 ↓
〈

σ′
〉 〈

Cm2, σ
′〉 ↓

〈

σ′′
〉

〈Cm1;Cm2, σ〉 ↓
〈

σ′′
〉

〈X, σ〉 ↓ 〈o, σ〉
〈l oop X {Cm} , σ〉 ↓ 〈 Cm; . . . ;Cm

︸ ︷︷ ︸

|o| times

, σ 〉

〈e, σ〉 ↓ 〈o, σ〉 o 6= null

〈while e {Cm} , σ〉 ↓ 〈Cm;while e {Cm} , σ〉
〈e, σ〉 ↓ 〈null , σ〉

〈while e {Cm} , σ〉 ↓ 〈skip , σ〉

Figure 3: Operational semantics of a command

If f is a method defined by f (x1, . . . , xm) {Cm; return Xk; } in a class C having n at-

tributes X1, . . . ,Xn, then, given a store σ s.t. Xσ = new C(o1, . . . , on), the evaluation of

X.f (e1, . . . , em) is performed first by evaluating the expressions ej to the objects pj, then, by

evaluating the command Cmwith a store σ{x1 ← p1, . . . , xm ← pm,X1 ← o1, . . . ,Xn ← on}
and, finally, by returning the object stored in Xk. The operational semantics of method call

is described in figure 4.

∀i 〈ei, σ〉 ↓ 〈pi, σ〉 Class C
{

. . . var Xj; . . . f (x1, . . . , xm) {Cm; return Xk; }
}

Xσ = new C(o1, . . . , on) 〈Cm,σ {X1 ← o1, . . . ,Xn ← on, x1 ← p1, . . . , xm ← pm}〉 ↓ 〈σ′〉
〈X.f (e1, . . . , em), σ〉 ↓

〈

Xkσ′, σ′{X ← new C(X1σ′, . . . ,Xnσ′)}
〉

Figure 4: Operational semantics of a method call

Example 2 Consider the following program together with the class of example 1:

Class main { var U; var V; var T; V := new List (U,null ); l oop T {U := V.setTail (V); } }
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Given a store σ such that Uσ = oU and Tσ = oT we have:
〈

V := new List (U,null ), σ
〉

↓
〈

σ
{

V ← new List (oU ,null )
}〉

〈U := V.setTail (V), σ〉 ↓
〈

σ
{

V ← new List (oU ,new List (oU ,null ),null )
}〉

〈loop T {U := V.setTail (V)} , σ〉 ↓
〈

σ
{

V ← f|o
T |(null )

}〉

where f(x) = new List (oU , x,null ) and ∀n ∈ N− {0} , fn+1 = f ◦ fn.

Remarks: The considered domain of computation is a set of terms without references and,

consequently, it roughly approximates complex data structures such as cyclic data structure.

For example, given a store σ, a main program of the shape:

X1 := new List (X,null ); X0 := X1.setTail (X2);
X2 := new List (Y,null ); X0 := X2.setTail (X1);

computes a store σ′ such that:

X1σ′ = new List (Xσ,new List (Yσ,null ),null )

X2σ′ = new List (Yσ,new List (Xσ,new List (Yσ,null ),null ),null )

However, this is not a serious drawback since the concern of this paper is to provide upper

bounds to the number of object creations and such data are preserved by the representation

of objects by terms.

3 Sup-interpretations and weights

3.1 Assignments

Let R
+ be the set of positive real numbers.

DEFINITION 2.[Class assignment] Given a class Cwith n attributes, the assignment IC of the
class C is a mapping of domain dom(IC) ⊆ FC∪ {C}, where FC is the set of the methods
of the class C. It assigns a function IC(f ) : (R

+)m+1 7−→ R
+ to each method symbol f ∈

dom(IC) of arity m and a function IC(C) : (R
+)n 7−→ R

+ to the constructor C.

DEFINITION 3.[Program assignment] Given a program p, the assignment I of p consists
in the union of the assignments of each class C of Class , i.e. I(b) =de f IC(b) whenever
b ∈ dom(IC).

DEFINITION 4.[Canonical extension] A program assignment I is defined over an expression
or method call d if each symbol of F ∪ Class in d belongs to dom(I). Suppose that the
assignment I is defined over d, the partial assignment of d w.r.t. I, that we note I∗(d) is the
canonical extension of the assignment I defined as follows:

1. If ⋄ is an attribute or a parameter (in X ∪ P), then I∗(⋄) = @, with @ a new variable
ranging over R

+, s.t. the restriction of I∗ to X ∪ P is an injective function.
2. If C is a constructor of a class C∈ Class having n attributes and e1, . . . , en are expres-

sions then we have I∗(new C(e1, . . . , en)) = I(C)(I∗(e1), . . . , I∗(en)).
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3. If f ∈ F is a method of arity m and e, e1, . . . , em are expressions, then:
I∗(e.f (e1, . . . , em)) = I(f )(I∗(e1), . . . , I∗(em), I∗(e))

Notice that the assignment I∗(d) of an expression or method call d with m parameters

x1, . . . , xm occurring in a class C having n attributes X1, . . . ,Xn denotes a function φ from

(R
+)n+m → R

+ satisfying φ(I∗(X1), . . . , I
∗(Xn), I∗(x1), . . . , I∗(xm)) = I∗(d). Throughout

the paper, we use the notation I∗(e)(a1, . . . , an, b1, . . . , bm) to denote φ(a1, . . . , an, b1, . . . , bm).

DEFINITION 5. Let Max-Poly {R+} be the set of functions defined to be constant functions
in R

+, projections, max, +, × and closed by composition. Given a class with n attributes,
an assignment I is said to be polynomial if for every symbol b of dom(I), I(b) is a function
ofMax-Poly {R+}.

DEFINITION 6. The assignment of a constructor Cof arity n is additive if:

I(C)(⋄1, . . . , ⋄n) =
n

∑
i=1

⋄i + αC, where αC ≥ 1, if n > 0

I(C) = 0 if n = 0

If the assignment of each constructor C ∈ Class is additive then the program assignment
is additive.

LEMMA 7. Given a program p having an additive assignment I, there is a constant α such
that for each attribute X and each store σ, the following inequalities are satisfied:

|Xσ| ≤ I∗(Xσ) ≤ α× |Xσ|

PROOF. Define α = maxC∈Class (αC), where αC is taken to be the constant of definition 6,

if C is of strictly positive arity, and αC is equal to the constant 0 otherwise. The inequalities

follow directly by induction on the size of an object.

3.2 Sup-interpretations

DEFINITION 8. Given a program p, a sup-interpretation of p is an assignment θ of p which
satisfies:

1. The assignment θ is weakly monotonic. i.e. for each symbol b ∈ dom(θ), the function
θ(b) satisfies ∀⋄1, . . . , ⋄n, ⋄′1, . . . , ⋄′n ∈ R

+, ⋄i ≥ ⋄′i ⇒ θ(b)(. . . , ⋄i, . . .) ≥ θ(b)(. . . , ⋄′i, . . .).
2. For each object o ∈ Object, θ∗(o) ≥ |o|
3. For each method f ∈ dom(θ) of arity m, for each o1, . . . , om ∈ Objects and for each

store σ, if 〈X.f (o1, . . . , om), σ〉 ↓ 〈o, σ′〉 then:
• θ(f )(θ∗(o1), . . . , θ∗(om), θ∗(Xσ)) ≥ θ∗(o)
• θ(f )(θ∗(o1), . . . , θ∗(om), θ∗(Xσ)) ≥ θ∗(Xσ′)

A sup-interpretation is polynomial if it is a polynomial assignment.

Notice that the last condition on methods allows to bound both the sup-interpretation

of the output θ∗(o) and the sup-interpretation of the side effect θ∗(Xσ′).
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Example 3 Consider the program of example 1. We claim that the partial assignment θ defined
by θ(null ) = 0, θ(setTail )(@y,@) = @y + @ and θ(List )(@X,@Y,@W ,@Z) = @X + @Y +
@W +@Z + 1 is a sup-interpretation of this program. Indeed, the considered functions are monotonic.
Since this assignment is additive, by lemma 7, we obtain that for each list l, θ(l) ≥ |l|. Finally,
given a store σ such that 〈X.setTail (o), σ〉 ↓ 〈v, σ′〉 and Xσ = new List (h, t, oW , oZ), for
some objects h, t oW and oZ, we have that v = h and σ′ = σ{X ← new List (h, o, oW , oZ)}.
Consequently, we check that θ is a sup-interpretation:

θ(setTail )(θ∗(o), θ∗(new List (h, t, oW , oZ))) ≥ θ∗(o) + θ∗(new List (h, t, oW , oZ))

≥ θ∗(o) + θ∗(h) + θ∗(t) + θ∗(oW) + θ∗(oZ) + 1

≥ max(θ∗(v), θ∗(Xσ′))

LEMMA 9. Given a program p having a sup-interpretation θ defined over X.f (e1, . . . , en), for
each store σ, if 〈X.f (e1, . . . , en), σ〉 ↓ 〈o, σ′〉, then θ∗(X.f (e1, . . . , en)σ) ≥ max(θ∗(o), θ∗(Xσ′)).

PROOF. We show this lemma in two steps. First, we can show easily by structural induc-

tion on an expression e that, for each store σ, if 〈e, σ〉 ↓ 〈o, σ〉 then θ∗(eσ) = θ∗(o). Second,
suppose that a = X.f (e1, . . . , en), 〈a, σ〉 ↓ 〈o, σ′〉 and that, for each i ∈ {1, n} 〈ei, σ〉 ↓ 〈oi, σ〉.

θ∗(aσ) ≥ θ∗(Xσ.f (e1σ, . . . , enσ)) By definition of σ

≥ θ(f )(θ∗(e1σ), . . . , θ∗(enσ), θ∗(Xσ)) By definition of θ

≥ θ(f )(θ∗(o1), . . . , θ
∗(on), θ∗(Xσ)) By step 1

≥ max(θ∗(o), θ∗(o′)) By definition 8

Example 4 Consider the linked list class of example 1, a method call V.setTail (U) and a store σ
such that Uσ = new List (null, new List (null ),null ) and Vσ = new List (h, t,null ),
for some objects h and t. The method call V.setTail (U) updates the tail of the object contained in
V to the object contained in U and then returns the head of the object contained in V. Consequently,
we obtain that:

〈V.setTail (U), σ〉 ↓
〈

h, σ{V ← new List (h,new List (null, new List (null ),null ),null )}
〉

Taking the sup-interpretation θ defined in example 3, we check that:

θ∗(V.setTail (U)σ) ≥ θ(setTail )(θ∗(Uσ), θ∗(Vσ))

≥ θ∗(new List (h, t,null )) + θ∗(new List (null ,new List (null ),null ))

≥ θ∗(h) + θ∗(t) + 3

≥ max(θ∗(h), θ∗(h) + 3)

≥ max(θ∗(h), θ∗(new List (h,new List (null ,new List (null ),null ),null )))

3.3 Weights

The notion of weight allows to control the size of the objects (and a fortiori the number of

instantiated objects) during loop iterations. A weight is a partial mapping over commands.
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DEFINITION 10.[Context] A context C[•1, . . . , •n] is a special command defined by the fol-
lowing grammar:

C[•] ::=skip | •1 | . . . | •n | X := a | X := e | C1[•];C2[•] | l oop X {C1[•]}
| i f (e)then {C1[•]}else {C2[•]} | while e {C1[•]}

Let C[Cm1, . . . ,Cmn] denote the substitution of each •i by the command Cmi in C[•1, . . . , •n].
A one-hole context is a context having exactly one occurrence of each •i. One-hole contexts
induce a partial ordering ⊑ (resp. strict partial ordering ⊏) over commands defined by
Cm1 ⊑ Cm2 (resp. Cm1 ⊏ Cm2) if and only if there is a one-hole context C[•] (resp. distinct
from •) such that Cm2 = C[Cm1].

DEFINITION 11.[Minimal, while and loop commands] A command Cmis:
- aminimal command if there is no context of the shapeC[•1, •2] = if (e)then {•1}else {•2}
or C[•1, •2] = •1; •2 such that Cm= C[Cm1,Cm2], for some commands Cm1 and Cm2.

- a while command if there are a one-hole contextC[•] and a commandCm1 = while e {Cm2}
such that Cm= C[Cm1].

- a loop command if Cmis not a while command and there are a one-hole context C[•] and a
command Cm1 = loop X {Cm2} such that Cm= C[Cm1].

Example 5 We illustrate the distinct notions introduced above by the following example:

Class main {var X; var Y; var Z;

Cm1 : X := Y; loop X {while Y { Y = Y.getTail (); }} ;
Cm2 : loop X {Cm3 : Z := Z.getTail (); } ; }

The command Cm1 is a while command but neither a minimal command nor a loop command. The

command Cm2 is a minimal and loop command. The command Cm3 is only a minimal command.

DEFINITION 12.[Weight] Given a program p having a main class with n attributes, the
weight ω is a partial mapping which assigns to every minimal and loop command Cm, a
total function ωCmfrom (R

+)n+1 to R
+ which satisfies:

1. ωCmis weakly monotonic ∀i, @i ≥ @
′
i ⇒ ωCm(. . . ,@i, . . .) ≥ ωCm(. . . ,@′i, . . .)

2. ωCmhas the subterm property ∀i, ∀@i ∈ R
+ ωCm(. . . ,@i, . . .) ≥ @i

A weight ω is polynomial if each ωCmis a function of Max-Poly {R+}.
Example 6 The program of example 5 has three attributes and exactly one minimal and loop com-

mand Cm2. Consequently, the mapping ω defined by ωCm2(@,@X,@Y,@Z) = @ +max(@X,@Y,@Z)
is a polynomial weight.

4 Criteria to control resources

4.1 Brotherly criterion

The brotherly criterion gives constraints on weights and sup-interpretations in order to

bound the size of the objects computed by the program by some polynomial in the size

of the inputs.
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DEFINITION 13. A program having a main class with n attributes X1, . . . ,Xn is brotherly if
there are a total, polynomial and additive sup-interpretation θ and a polynomial weight ω

such that:
• For every minimal and loop command Cmof the main class:

– For every method call a of the shape Xj.f (e1, . . . , em) occurring in Cm:

ωCm(@+ 1, θ(X1), . . . , θ(Xn)) ≥ ωCm(@, θ(X1), . . . , θ(Xj−1), θ
∗(a), θ(Xj+1), . . . , θ(Xn))

where @ is a fresh variable.
– For every variable assignment Xi := d ⊑ Cm:

ωCm(@+ 1, θ(X1), . . . , θ(Xn)) ≥ ωCm(@, θ(X1), . . . , θ(Xi−1), θ
∗(d), θ(Xi+1), . . . , θ(Xn))

where @ is a fresh variable.
• For every minimal and while command Cmof the main class:

– For every variable assignment Xi := d ⊑ Cm,max(θ(X1), . . . , θ(Xn)) ≥ θ∗(d)

Intuitively, the first condition on loop commands ensures that the size of the objects

held by the attributes remains polynomially bounded. The fresh variable @ can be seen as a

temporal factor which takes into account the number of iterations allowed in a loop. Such a

number is polynomially bounded by the size of the objects held by the attributes in the store.

The second condition onwhile commands ensures that a computation is non-size-increasing

since we have no piece of information about the termination of while commands.

THEOREM 14. Given a brotherly program p of main class Class main {A Cm}, having n

attributes X1, . . . ,Xn, there exists a polynomial P such that for any store σ and any command
Cm1 ⊑ Cmif 〈Cm1, σ〉 ↓ 〈σ′〉 then P(|X1σ|, . . . , |Xnσ|) ≥ maxi=1..n(|Xiσ

′|).
PROOF. We can build the polynomial P by structural induction on commands.

Example 7 Consider the following program

Class main {Var U; Var V; Var T; loop T {U := V.reverse ()} ;U.setTail (T)}
Cm= loop T {U := V.reverse ()} is the only minimal and loop command. Consequently, we

have to find a polynomial weight ω and a polynomial and additive sup-interpretation θ such that:

ωCm(@ + 1, θ(U), θ(V), θ(T)) ≥ ωCm(@, θ(U), θ(V.reverse ()), θ(T))

ωCm(@ + 1, θ(U), θ(V), θ(T)) ≥ ωCm(@,V.reverse (), θ(V), θ(T))

in order to check the brotherly criterion. We let the reader check that the assignment θ defined by

θ(reverse )(@) = @ together with the assignment of example 3 defines a total (i.e. defined for

every method symbol), polynomial and additive sup-interpretation.

Moreover, taking ωCm(@,@U ,@V ,@T) = @ + @U + @V + @T, we obtain that this program is

brotherly by checking that the above inequalities are satisfied.

4.2 Heuristics for method sup-interpretation synthesis

The previous criterion is very powerful. However, before being applied, it requires to know

the sup-interpretation of the methods. Consequently, an interesting issue is to give some

criterion on a method of some class in order to build its sup-interpretation.
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DEFINITION 15.[Method weight] The weight of a method D having m parameters and
belonging to a class C having n attributes is a monotonic and subterm function ωD from
(R

+)m+2 to R
+.A weight ωD is polynomial if it belongs to Max-Poly {R+}.

DEFINITION 16. Given a class C with n attributes X1, . . . ,Xn, a method D of C of the
shape f (x1, . . . , xm) {Cm; return X; } is brotherly if there is a polynomial and additive
sup-interpretation θ s.t.:

1. If Cmis a while command then for every variable assignment Xi := d ⊑ Cm, we have:
max(θ(x1), . . . , θ(xm), θ(X1), . . . , θ(Xn)) ≥ θ∗(d)

2. Else there is a polynomial method weight ωD such that:
• For every method call a = Xj.f (e1, . . . , em) occurring in Cm:

ωD(@+ 1, θ(x1), . . . , θ(xm),∑n
k=1 θ(Xk)) ≥ ωD(@, θ(x1), . . . , θ(xm),∑n

k 6=j,k=1 θ(Xk)+ θ∗(a))
• For every variable assignment Xi := d ⊑ Cm, we have:

ωD(@+ 1, θ(x1), . . . , θ(xm),∑n
k=1 θ(Xk)) ≥ ωD(@, θ(x1), . . . , θ(xm),∑n

k 6=i,k=1 θ(Xk)+ θ∗(d))
where @ is a fresh variable.

THEOREM 17. Given a program p, a class C having n attributes X1, . . . ,Xn and a sup-
interpretation θ such that the method D = f (x1, . . . , xm) {Cm; return Xi; } of C is brotherly,
we have:

• If Cmis a while command then θ(f )(@1, . . . ,@m,@) =de f max(@1, . . . ,@m,@) is a sup-
interpretation of f .

• Else, if R is a polynomial upper bound on the number of variable assignments occur-
ring during the execution of Cmthen θ(f )(@1, . . . ,@m,@) =de f ωD(R(@),@1, . . . ,@m,@)
is a sup-interpretation of f .

PROOF. The proof is similar to the proof of theorem 14. The only distinction is that pa-

rameters can appear in the commands.

Remarks: Since a command loop X {Cm} cannot write in the attribute X, the polynomial

R can be computed by static analysis. Consequently, if we manage to check the brotherly

criterion for a given method then we obtain a sup-interpretation of the method.

Example 8 Consider the method setTail of example 1. The command Y := y is not a while
command. Consequently, we have to find a polynomial weight ωD : (R

+)3 → R
+ satisfying:

ωD(@ + 1, θ(y), ∑
K∈{X,Y,W,Z}

θ(K)) ≥ ωD(@, θ(y), ∑
K∈{X,W,Z}

θ(K) + θ(y))

This inequality is satisfied by taking ωD(@,@y,@
′) = @ × @y + @

′. We know that there is ex-

actly one variable assignment in the execution of such a method (i.e. R = 1) and, by theorem 17,

θ(setTail )(@y,@) = 1× @y + @ = @y + @ is a sup-interpretation of setTail .

5 Conclusion and perspectives

We have suggested a high level approach for analyzing the complexity of object oriented

programs. This static analysis is performed using semantics interpretations and provides

upper bounds on the number of object creations during the execution of a given program.
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Consequently, this study is complementary to the works of [9, 17, 3] using abstract interpre-

tations which guarantee that there is no buffer overflow in the memory locations of a given

program. Our study allows to perform a resource analysis of a huge number of programs.

Some improvements can obviously be performed in several directions: Currently, a while

iteration cannot compute more than a maximum function. A more precise analysis of while

iterations should be performed using the work of [19] on the termination of imperative

while programs. The criterion for sup-interpretation synthesis has no sense when consider-

ing recursive (and a fortiori mutual recursive) methods (Since we have to previously know

the sup-interpretation of the considered symbol). As a consequence, we have to develop a

criterion in the general recursive case, even if side effects make such a study difficult.
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ABSTRACT. Formalisms involving some degree of nondeterminism are frequent in computer sci-
ence. In particular, various programming or specification languages are based on term rewriting
systems where confluence is not required. In this paper we examine three concrete possible seman-
tics for non-determinism that can be assigned to those programs. Two of them –call-time choice and
run-time choice– are quite well-known, while the third one –plural semantics– is investigated for the
first time in the context of term rewriting based programming languages. We investigate some basic
intrinsic properties of the semantics and establish some relationships between them: we show that
the three semantics form a hierarchy in the sense of set inclusion, and we prove that call-time choice
and plural semantics enjoy a remarkable compositionality property that fails for run-time choice;
finally, we show how to express plural semantics within run-time choice by means of a program
transformation, for which we prove its adequacy.

1 Introduction

Term rewriting systems (TRS’s) [4] have a long tradition as a suitable basic formalism to ad-

dress a wide range of tasks in computer science, in particular, many specification languages

[5, 7], theorem provers [21, 6] and programming languages are based on TRS’s. For instance,

the syntax and theory of TRS’s was the basis of the first formulations of functional logic pro-

gramming (FLP) through the idea of narrowing [9]. On the other hand, non-determinism

is an expressive feature that has been used for a long time in system specification (e.g.,

non-deterministic Turing machines or automata) or for programming (the constructions of

McCarthy and Dijkstra are classical examples). One of the appeals of term rewriting is its

elegant way to express non-determinism through the use of a non-confluent TRS, obtaining

a clean and high level representation of complex systems. In the field of FLP, non-confluent

TRS’s are used as programs to support non-strict non-deterministic functions, which are

one of the most distinctive features of the paradigm [8, 3]. Those TRS’s follow the construc-

tor discipline also, corresponding to a value-based semantic view, in which the purpose of

computations is to produce values made of constructors.

Therefore non-confluent constructor-based TRS’s can be used as a common syntactic

framework for FLP and rewriting. The set of rewrite rules constitutes a program and so we

also call them program rules. Nevertheless the behaviour of current implementations of FLP
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and rewriting differ substantially, because the introduction of non-determinism in a func-

tional setting gives rise to a variety of semantic decisions, that were explored in [20]. There

the different language variants that result after adding non-determinism to a basic func-

tional language were expounded, structuring the comparison as a choice among different

options over several dimensions: strict/non-strict functions, angelic/demonic/erratic non-

deterministic choices and singular/plural semantics for parameter passing. In the present

paper we assume non-strict angelic non-determinism, and we are concerned about the last

dimension only. The key difference is that under a singular semantics, in the substitutions

used to instantiate the program rules for function application, the variables of the program

rules should range over single objects of the set of values considered; in a plural semantics

those range over sets of objects. This has been traditionally identified with the distinction

between call-time choice and run-time choice [11] parameter passing mechanisms. Under call-

time choice a value for each argument is computed before performing parameter passing,

this corresponds to call-by-value in a strict setting and to call-by-need in a non-strict setting,

in which a partial value instead of a total value is computed. On the other hand, run-time-

choice corresponds to call-by-name, each argument is copied without any evaluation and

so the different copies of any argument may evolve in different ways afterwards. Thus, tra-

ditionally it has been considered that call-time choice parameter passing inducts a singular

semantics while run-time choice inducts a plural semantics.

EXAMPLE 1. Consider the TRS P = { f (c(X)) → d(X,X),X ? Y → X,X ? Y → Y}. With
call-time choice/singular semantics to compute a value for the term f (c(0?1)) we must
first compute a (partial) value for c(0?1), and then we may continue the computation with
f (c(0)) or f (c(1)) which yield d(0, 0) or d(1, 1). Note that d(0, 1) and d(1, 0) are not correct
values for f (c(0?1)) in that setting.
On the other hand with run-time choice/plural semantics to evaluate the term f (c(0?1)):

- Under the run-time choice point of view, the step f (c(0?1)) → d(0?1, 0?1) is sound,
hence not only d(0, 0) and d(1, 1) but also d(0, 1) and d(1, 0) are valid values for
f (c(0?1)).

- Under the plural semantics point of view, we consider the set {c(0), c(1)} which is a
subset of the set of values for c(0?1) in which every element matches the argument
pattern c(X). Therefore the set {0, 1} can be used for parameter passing obtaining a
kind of “set expression” d({0, 1}, {0, 1}), which evaluation yields the values d(0, 0),
d(1, 1), d(0, 1) and d(1, 0).

In general, call-time choice/singular semantics produces less results than run-time choice/
plural semantics.

A standard formulation for call-time choice† in FLP is the CRWL‡ logic [8], which is im-

plemented by current FLP languages like Toy [15] or Curry [10]; traditional term rewriting

may be considered the standard semantics for run-time choice§, and is the basis for the se-

mantics of languages like Maude [5], but has been rarely [1] thought as a valuable global

alternative to call-time choice for the value-based view of FLP. However, there might be

†In fact angelic non-strict call-time choice.
‡Constructor-based ReWriting Logic.
§In fact angelic non-strict run-time choice.
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parts in a program or individual functions for which run-time choice could be a better op-

tion, and therefore it would be convenient to have both possibilities (run-time/call-time) at

programmer’s disposal [13]. Nevertheless the use of an operational notion like term rewrit-

ing as the semantic basis of a FLP language can lead us to confusing situations, not very

compatible with the value-based semantic view that we wanted for the constructor-based

TRS’s used in FLP.

EXAMPLE 2. Starting with the TRS of Example 1 we want to evaluate the expression f (c(0)
? c(1)) with run-time choice/plural semantics:

- Under the run-time choice point of view, that is, using term rewriting, the evaluation
of the subexpression c(0)?c(1) is needed in order to get an expression that matches
the left hand side f (c(X)). Hence the derivations f (c(0)?c(1)) → f (c(0)) → d(0, 0)
and f (c(0)?c(1)) → f (c(1)) → d(1, 1) are sound and compute the values d(0, 0) and
d(1, 1), but neither d(0, 1) nor d(1, 0) are correct values for f (c(0)?c(1)).

- Under the plural semantics point of view, we consider the set {c(0), c(1)} which is a
subset of the set of values for c(0)?c(1) in which every element matches the argument
pattern c(X). Therefore the set {0, 1} can be used for parameter passing obtaining a
kind of “set expression” d({0, 1}, {0, 1}) that yields the values d(0, 0), d(1, 1), d(0, 1)
and d(1, 0).

Which of these is the more suitable perspective for FLP?

This problem did not appear in [20] because no patternmatching was present, nor in [11] be-

cause only call-time choice was adopted (and this conflict does not appear between the call-

time choice and the singular semantics views). Choosing the run-time choice perspective of

term rewriting has some unpleasant consequences. First of all the expression f (c(0?1)) has
more values than the expression f (c(0)?c(1)), even when the only difference between them

is the subexpressions c(0?1) and c(0)?c(1), which have the same values both in call-time

choice, run-time choice and plural semantics. This is pretty incompatible with the value-

based semantic view we are looking for in FLP. And this has to do with the loss of some

desirable properties, present in CRWL, when switching to run-time choice. We will see how

plural semantics recovers those properties, which are very useful for reasoning about com-

putations. Furthermore it allows natural encodings of some programs that need to do some

collecting work, as we will see later (Example 8). Hence we claim that the plural semantics

perspective is more suitable for a value-based programming language.

The rest of the paper is organized as follows. Section 2 contains some technical prelim-

inaries and notations about CRWL and term rewriting systems. In Section 3 we introduce

πCRWL, a variation of CRWL to express plural semantics, and present some of its proper-

ties. In Section 4 we discuss about the different properties of these semantics and prove the

inclusion chain CRWL ⊆ rewriting ⊆ πCRWL, that constitutes a hierarchy of semantics for

non-determinism. Section 5 recalls that no straight simulation of CRWL in term rewriting

can be done by a program transformation, and vice versa, and shows a novel transformation

to simulate πCRWL using term rewriting. Finally Section 6 summarizes some conclusions

and future work. Fully detailed proofs, including some auxiliary results, can be found in

[19].
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2 Preliminaries

2.1 Constructor based term rewriting systems

We consider a first order signature Σ = CS∪ FS, where CS and FS are two disjoint set of con-

structor and defined function symbols respectively, all them with associated arity. We write

CSn (FSn resp.) for the set of constructor (function) symbols of arity n. We write c, d, . . .

for constructors, f , g, . . . for functions and X,Y, . . . for variables of a numerable set V . The
notation o stands for tuples of any kind of syntactic objects. Given a set A we denote by

A∗ the set of finite sequences of elements of that set. For any sequence a1 . . . an ∈ A∗ and

function f : A → {true, f alse} , by a1 . . . an | f we denote the sequence constructed taking

in order every element from a1 . . . an for which f holds.

The set Exp of expressions is defined as Exp ∋ e ::= X | h(e1, . . . , en), where X ∈ V ,
h ∈ CSn ∪ FSn and e1, . . . , en ∈ Exp. The set CTerm of constructed terms (or c-terms) is defined

like Exp, but with h restricted to CSn (so CTerm ⊆ Exp). The intended meaning is that Exp

stands for evaluable expressions, i.e., expressions that can contain function symbols, while

CTerm stands for data terms representing values. We will write e, e′, . . . for expressions and
t, s, . . . for c-terms. The set of variables occurring in an expression ewill be denoted as var(e).
We will frequently use one-hole contexts, defined as Cntxt ∋ C ::= [ ] | h(e1, . . . , C, . . . , en),
with h ∈ CSn ∪ FSn. The application of a context C to an expression e, written by C[e], is
defined inductively as [ ][e] = e and h(e1, . . . , C, . . . , en)[e] = h(e1, . . . , C[e], . . . , en).

Substitutions θ ∈ Subst are finite mappings θ : V −→ Exp, extending naturally to

θ : Exp −→ Exp. We write ǫ for the identity (or empty) substitution. We write eθ for the ap-

plication of θ to e, and θθ′ for the composition, defined by X(θθ′) = (Xθ)θ′. The domain and

range of θ are defined as dom(θ) = {X ∈ V | Xθ 6= X} and vran(θ) =
⋃

X∈dom(θ) var(Xθ).
If dom(θ0) ∩ dom(θ1) = ∅, their disjoint union θ0 ⊎ θ1 is defined by (θ0 ⊎ θ1)(X) = θi(X), if
X ∈ dom(θi) for some θi; (θ0 ⊎ θ1)(X) = X otherwise. Given W ⊆ V we write θ|W for the

restriction of θ to W, and θ|\D is a shortcut for θ|(V\D). We will sometimes write θ = σ[W]
instead of θ|W = σ|W . C-substitutions θ ∈ CSubst verify that Xθ ∈ CTerm for all X ∈ dom(θ).

A constructor-based term rewriting system P (CS) is a set of c-rewrite rules of the form

f (t) → r where f ∈ FSn, e ∈ Exp and t is a linear n-tuple of c-terms, where linearity

means that variables occur only once in t. In the present work we restrict ourselves to CS’s

not containing extra variables, i.e., CS’s for which var(r) ⊆ var( f (t)) holds for any rewrite

rule; the extension of this work to rules with extra variables is a subject of future work. We

assume that every CS P contains the rules {X ? Y → X,X ? Y → Y, i f true then X → X},
defining the behaviour of ? ∈ FS2, i f then ∈ FS2, both used in mixfix mode, and that

those are the only rules for that function symbols. For the sake of conciseness we will often

omit these rules when presenting a CS.

Given a TRS P , its associated rewrite relation →P is defined as: C[lσ] →P C[rσ] for any

context C, rule l → r ∈ P and σ ∈ Subst. We write
∗→P for the reflexive and transitive

closure of the relation →P . In the following, we will usually omit the reference to P or

denote it by P ⊢ e → e′ and P ⊢ e →∗ e′.
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(RR)
X _ X

X ∈ V (DC)
e1 _ t1 . . . en _ tn

c(e1, . . . , en) _ c(t1, . . . , tn)
c ∈ CSn

(B)
e _⊥ (OR)

e1 _ p1θ . . . en _ pnθ rθ _ t
f (e1, . . . , en) _ t

f (p1, . . . , pn) → r ∈ P
θ ∈ CSubst⊥

Figure 1: Rules of CRWL

2.2 The CRWL framework

In the CRWL framework [8], programs are CS’s, also called CRWL-programs (or simply ‘pro-

grams’) from now on. To deal with non-strictness at the semantic level, we enlarge Σ with

a new constant constructor symbol ⊥. The sets Exp⊥, CTerm⊥, Subst⊥, CSubst⊥ of partial

expressions, etc., are defined naturally. Notice that ⊥ does not appear in programs. Partial

expressions are ordered by the approximation ordering ⊑ defined as the least partial order-

ing satisfying ⊥⊑ e and e ⊑ e′ ⇒ C[e] ⊑ C[e′] for all e, e′ ∈ Exp⊥, C ∈ Cntxt. This partial

ordering can be extended to substitutions: given θ, σ ∈ Subst⊥ we say θ ⊑ σ if Xθ ⊑ Xσ for

all X ∈ V .
The semantics of a program P is determined in CRWL by means of a proof calculus

able to derive reduction statements of the form e _ t, with e ∈ Exp⊥ and t ∈ CTerm⊥,
meaning informally that t is (or approximates to) a possible value of e, obtained by iterated

reduction of e using P under call-time choice. The CRWL-proof calculus is presented in

Figure 1. Rule B (bottom) allows any expression to be undefined or not evaluated (non-

strict semantics). Rule OR (outer reduction) expresses that to evaluate a function call we

must choose a compatible program rule, perform parameter passing (bymeans of a CSubst⊥
θ) and then reduce the right-hand side. The use of partial c-substitutions in OR is essential

to express call-time choice, as only single partial values are used for parameter passing.

We write P ⊢CRWL e _ t to express that e _ t is derivable in the CRWL-calculus using

the program P . Given a program P , the CRWL-denotation of an expression e ∈ Exp⊥ is

defined as [[e]]
sg
P = {t ∈ CTerm⊥ | P ⊢CRWL e _ t}. In the following, we will usually omit

the reference to P .

3 πCRWL: a plural semantics for FLP

The new calculus πCRWL is defined by modifying the rules of CRWL to consider sets of

partial values for parameter passing instead of single partial values: hence, only the rule

OR should be modified. To avoid the need to extend the syntax with new constructions

to represent those “set expressions” that we talked about in the introduction, we will ex-

ploit the fact that [[e1 ? e2]] = [[e1]] ∪ [[e2]]. Therefore the substitutions used for parameter

passing will map variables to “disjunctions of values”. We define the set CSubst?⊥ = {θ ∈
Subst⊥ | ∀X ∈ dom(θ), θ(X) = t1 ? . . . ? tn such that t1, . . . , tn ∈ CTerm⊥, n > 0}, for which

CSubst⊥ ⊆ CSubst?⊥ ⊆ Subst⊥ obviously holds. The operator ? : CSubst∗⊥ → CSubst?⊥ con-

structs the CSubst?⊥ corresponding to a non empty sequence of CSubst⊥, and is defined as

?(θ1 . . . θn)(X) = X if X 6∈ ⋃

i∈{1,...,n} dom(θi); ?(θ1 . . . θn)(X) = ρ1(X) ? . . . ? ρm(X), where

ρ1 . . . ρm = θ1 . . . θn | λθ.(X ∈ dom(θ)), otherwise. Then dom(?(θ1 . . . θn)) =
⋃

i dom(θi). This
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(RR)
X _ X

X ∈ V (DC)
e1 _ t1 . . . en _ tn

c(e1, . . . , en) _ c(t1, . . . , tn)
c ∈ CSn

(B)
e _⊥ (POR)

e1 _ p1θ11
. . .

e1 _ p1θ1m1

. . .
en _ pnθn1

. . .
en _ pnθnmn rθ _ t

f (e1, . . . , en) _ t
( f (p) → r) ∈ P , θ =?{θ11, . . . , θ1m1

} ⊎ . . .⊎ ?{θn1, . . . , θnmn}
∀i, j θij ∈ CSubst⊥ ∧ dom(θij) = var(pi), ∀i mi > 0

Figure 2: Rules of πCRWL

operator is overloaded to handle non empty sets Θ ⊆ CSubst⊥ as ?Θ =?(θ1 . . . θn) where

the sequence θ1 . . . θn corresponds to an arbitrary reordering of the elements of Θ.

The πCRWL-proof calculus is presented in Figure 2. The only difference with the cal-

culus in Figure 1 is that the rule OR has been replaced by POR (plural outer reduction),

in which we may compute more that one partial value for each argument, and then use

a substitution from CSubst?⊥ instead of CSubst⊥ for parameter passing, achieving a plural

semantics¶. This calculus derives reduction statements of the form P ⊢πCRWL e _ t that

express that t is (or approximates to) a possible value for e in this semantics, under the pro-

gram P . The πCRWL-denotation of an expression e ∈ Exp⊥ under a program P in πCRWL

is defined as [[e]]
pl
P = {t ∈ CTerm⊥ | P ⊢πCRWL e _ t}.

EXAMPLE 3. Consider the program of Example 1, that is P = { f (c(X)) → d(X,X), X ? Y →
X, X ? Y → Y}. The following is a πCRWL-proof for the statement f (c(0)?c(1)) _ d(0, 1)
(some steps have been omitted for the sake of conciseness):

0 _ 0
DC

c(0) _ c(0)
DC

c(1) _⊥ B
c(0) _ c(0)

c(0)?c(1) _ c(0)
POR

c(0)?c(1) _ c(1)
0?1 _ 0 0?1 _ 1

d(0?1, 0?1) _ d(0, 1)
DC

f (c(0)?c(1)) _ d(0, 1)
POR

πCRWL enjoys some nice properties, like the following monotonicity property, where for

any proof we define its size as the number of applications of rules of the calculus.

LEMMA 4. For any CRWL-program, e, e′ ∈ Exp⊥, t, t′ ∈ CTerm⊥ if e ⊑ e′ and t′ ⊑ t then
P ⊢πCRWL e _ t implies P ⊢πCRWL e′ _ t′ with a proof of the same size or smaller.

One of the most important properties is its compositionality, a property very close to the

DET-additivity property for algebraic specifications of [11]:

THEOREM 5. For any CRWL-program, C ∈ Contx and e ∈ Exp⊥, [[C[e]]]pl =
⋃

{t1,...,tn}⊆[[e]]pl

[[C[t1 ? . . . ? tn]]]pl, for any arrangement of the elements of {t1, . . . , tn} in t1 ? . . . ? tn.

The proof for that theorem is based upon the commutativity, associativity of ?, and the idem-

potence of its partial application (see [19]). With Theorem 5 at hand is very easy to prove the

following distributivity property for πCRWL , also known as the bubbling operational rule

[2]:

¶In fact angelic non-strict plural non-determinism.
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THEOREM 6.[Correctness of bubbling] For any CRWL-program, C ∈ Contx and e1, e2 ∈
Exp⊥, [[C[e1 ? e2]]]

pl = [[C[e1] ? C[e2]]]pl .

πCRWL also has some monotonicity properties related to substitutions. We define the pre-

order ⊑π over CSubst?⊥ by θ ⊑π θ′ iff ∀X ∈ V , given θ(X) = t1 ? . . . ? tn and θ(X) =
t′1 ? . . . ? t′m then ∀t ∈ {t1, . . . , tn}∃t′ ∈ {t′1, . . . , t′m} such that t ⊑ t′; and the preorder E over

Subst⊥ by σ E σ′ iff ∀X ∈ V , [[σ(X)]]pl ⊆ [[σ′(X)]]pl.

LEMMA 7. For any CRWL-program, e ∈ Exp⊥, t ∈ CTerm⊥, σ, σ′ ∈ Subst⊥, θ, θ′ ∈ CSubst?⊥:
1. Strong monotonicity of Subst⊥: If ∀X ∈ V , s ∈ CTerm⊥ given P ⊢πCRWL σ(X) _ s

with size K we also have P ⊢πCRWL σ′(X) _ s with size K′ ≤ K, then ⊢πCRWL eσ _ t

with size L implies ⊢πCRWL eσ′
_ t with size L′ ≤ L.

2. Monotonicity of CSubst⊥: If θ, θ′ ∈ CSubst⊥ and θ ⊑ θ′ then P ⊢πCRWL eθ _ t with
size K implies P ⊢πCRWL eθ′ _ t with size K′ ≤ K.

3. Monotonicity of Subst⊥: If σ E σ′ then [[eσ]]pl ⊆ [[eσ′]]pl .
4. Monotonicity of CSubst?

⊥
: If θ ⊑π θ′ then [[eθ]]pl ⊆ [[eθ′]]pl .

We end this section with an example of the use of πCRWL to model problems in which some

collecting work has to be done.

EXAMPLE 8. Wewant to represent the database of a bank in which we hold some data about
its employees, this bank has several branches and we want to organize the information
according to them. So we define a non-deterministic function branches to represent the set
of branches: a set is identified then with a non-deterministic expression. In this line we
define a non-deterministic function employees which conceptually returns the set of records
containing the information regarding the employees that work in a branch. Now, to search
for the names of two clerks we define the function twoclerks which is based upon f ind,
which forces the desired pattern e(N, S, clerk) over the set defined by employees(branches).

P = {branches → madrid, branches → vigo, employees(madrid) → e(pepe,men, clerk), employees(madrid) →
e(paco,men, boss), employees(vigo) → e(maria,women, clerk), employees(vigo) → e(jaime,women, boss),
twoclerks → f ind(employees(branches)), f ind(e(N, S, clerk)) → (N,N)}
With term rewriting twoclerks → f ind(employees(branches)) 6→∗ (pepe,maria), because in
that expression the evaluation of branches is needed and so one of the branches must be
chosen. On the other hand with πCRWL (some steps have been omitted for the sake of
conciseness): . . .

employees(branches) _ e(pepe,⊥, clerk)
POR

. . .

employees(branches) _ e(maria,⊥, clerk)
POR

. . .

(pepe ? maria, pepe ? maria) _ (pepe,maria)
DC

f ind(employees(branches)) _ (pepe,maria)
POR

twoclerks _ (pepe,maria)
POR

where
branches _ madrid

POR
. . .

e(pepe,men, clerk) _ e(pepe,⊥, clerk)
DC

employees(branches) _ e(pepe,⊥, clerk)
POR

4 Comparison: a hierarchy of semantics

When comparing these semantics is not surprising finding that CRWL and πCRWL have

similar properties. For example the monotonicity Lemma 4 also holds for CRWL; this lemma
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does not even make sense for term rewriting, as it only works with total terms. On the other

hand term rewriting is closed under Subst (e →∗ e′ implies eσ →∗ e′σ, for any σ ∈ Subst);

CRWL is not closed under Subst but under CSubst⊥, as corresponds to call-time choice;

πCRWL is closed under CSubst⊥ too (see [19]), and we conjecture that for θ ∈ CSubst?⊥ if

⊢πCRWL e _ t then [[tθ]]pl ⊆ [[eθ]]pl . For CRWL a compositionality result similar to Theorem

5 also holds, and bubbling is correct too [14]. This is not the case for term rewriting, as we

saw when switching from f (c(0?1)) to f (c(0)?c(1)) in examples 1 and 2.

4.1 The hierarchy

As πCRWL is a modification of CRWL, the relation between them is very direct.

THEOREM 9. For any CRWL-program P , e ∈ Exp⊥, t ∈ CTerm⊥ given a CRWL-proof for
P ⊢ e _ t we can build a πCRWL-proof for P ⊢πCRWL e _ t just replacing every OR step

by the corresponding POR step. As a consequence [[e]]
sg
P ⊆ [[e]]

pl
P .

Concerning the relation of CRWL and πCRWL with term rewriting, we will use the

notion of shell |e| of an expression e that represents the outer constructor (and thus computed)

part of e, defined as | ⊥ | =⊥, |X| = X, c(e1, . . . , en) = c(|e1|, . . . , |en|), | f (e1, . . . , en)| =⊥
(for X ∈ V , c ∈ CS, f ∈ FS). We also define the denotation of e ∈ Exp under term rewriting

as [[e]]rw = {t ∈ CTerm⊥ | ∃e′ ∈ Exp . e →∗ e′ ∧ t ⊑ |e′|}. In a previous joint work the

author explored the relation between CRWL and term rewriting ([12], Theorem 9), recast in

the following theorem:

THEOREM 10. For any CRWL-program P , e ∈ Exp, [[e]]sg ⊆ [[e]]rw. The converse inclusion
does not hold in general.

As we saw in Example 1, in general call-time choice semantics like CRWL produce less

results than run-time choice semantics like the one induced by term rewriting. We will see

that this kind of relation also holds for term rewriting and πCRWL.

THEOREM 11. For any CRWL-program P , e ∈ Exp, [[e]]rw ⊆ [[e]]pl. The converse inclusion
does not hold in general.

The key for proving Theorem 11 is a lemma stating that ∀e, e′ ∈ Exp if e → e′ then
[[e′]]pl ⊆ [[e]]pl, that is, that every rewriting step is sound wrt. πCRWL. The evident corollary

for these theorems is the announced inclusion chain.

COROLLARY 12. For any CRWL-program P , e ∈ Exp, [[e]]sg ⊆ [[e]]rw ⊆ [[e]]pl. Hence ∀t ∈
CTerm, ⊢CRWL e _ t implies e →∗ t which implies ⊢πCRWL e _ t.

5 Simulating plural semantics

In [12, 13] it was shown that neither CRWL can be simulated by term rewriting with a simple

program transformation, nor vice versa. Nevertheless, plural semantics can be simulated by

rewriting using the transformation presented in the current section, which could be used as

the basis for a first implementation of πCRWL that we might use for experimentation. First

we will present a naive version of this transformation, and show its adequacy; later we will

propose some simple optimizations for it.
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5.1 A simple transformation

DEFINITION 13. Given a CRWL-program P, for every rule ( f (p1, . . . , pn) → r) ∈ P such
that f 6∈ { ? , i f then } we define its transformation as:

pST( f (p1, . . . , pn) → r) = f (Y1, . . . ,Yn) → i f match(Y1, . . . ,Yn) then r[Xij/projectij(Yi)]

- ∀i ∈ {1, . . . , n}, {Xi1, . . . ,Xiki} = var(pi) ∩ var(r) and Yi ∈ V is fresh.
- match ∈ FSn fresh is defined by the rule match(p1, . . . , pn) → true.
- Each projectij ∈ FS1 is a fresh symbol defined by the single rule projectij(pi) → Xij.

For f ∈ { ? , i f then } the transformation leaves its rules untouched.

The function match is used to impose a “guard” that enforces the matching of each

argument with its corresponding pattern. If we dropped this condition the translation of, for

example, to rule (null(nil) → true), would be (null(Y) → true), which is clearly unsound

as then null(0 : nil) → true. Besides each pattern pi has been replaced by a fresh variable

Yi, to which any expression can match, hence the arguments may be replicated freely by

the rewriting process without demanding any evaluation and thus keeping its denotation

untouched: this is the key to achieve completeness wrt. πCRWL. Later on, the functions

projectij will just make the projection of each variable when needed.

EXAMPLE 14. Applying this to Example 1 we get { f (Y) → i f match(Y) then d(project(Y),
project(Y)),match(c(X)) → true, project(c(X)) → X} , under which we can do:

f (c(0)?c(1)) → i f match(c(0)?c(1)) then d(project(c(0)?c(1)), project(c(0)?c(1)))

→∗ i f true then d(project(c(0)?c(1)), project(c(0)?c(1)))

→ d(project(c(0)?c(1)), project(c(0)?c(1))) →∗ d(project(c(0)), project(c(1))) →∗ d(0, 1)

Concerning the adequacy of the transformation:

THEOREM 15. For any CRWL-program P , e ∈ Exp⊥ built up on the signature of P ,

[[e]]
pl

pST(P)
⊆ [[e]]

pl
P .

THEOREM 16. For any CRWL-program P , e ∈ Exp, t ∈ CTerm⊥ built up on the signature
of P , if P ⊢πCRWL e _ t then exists some e′ ∈ Exp built using symbols of the signature of
pST(P) such that pST(P) ⊢ e →∗ e′ and t ⊑ |e′|.

COROLLARY 17. For any CRWL-program P , e ∈ Exp built using symbols of the signature

of P , [[e]]
pl
P = [[e]]rw

pST(P). Hence ∀t ∈ CTerm P ⊢πCRWL e _ t iff pST(P) ⊢ e →∗ t.

5.2 An optimized transformation

Concerning the transformation, if a pattern is ground then no parameter passing will be

done for it and so no transformation is needed: for null(nil) → true we get {null(Y) →
i f match(Y) then true, match(nil) → true}, which is equivalent. Besides, if the pattern

is a variable then any expression matches it and the projection functions are trivial, so no

transformation is needed neither, as happens with pair(X) → (X,X) for which {pair(Y) →
i f match(Y) then (project(Y), project(Y)),match(X) → true, project(X) → X} are returned.
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DEFINITION 18.Given a CRWL-program P, for every rule ( f (p1, . . . , pn) → r) ∈ P we
define its transformation as:

pST( f (p1, . . . , pn) → r)

=







f (p1, . . . , pn) → r if ρ1 . . . ρm is empty

f (τ(p1), . . . , τ(pn)) →
i f match(Y1, . . . ,Ym)

then r[Xij/projectij(Yi)]
otherwise

where ρ1 . . . ρm = p1 . . . pn | λp.(p 6∈ V ∧ var(p) 6= ∅).
- ∀ρi, {Xi1, . . . ,Xiki} = var(ρi) ∩ var(r) and Yi ∈ V is fresh.
- τ : CTerm → CTerm is defined by τ(p) = p if p ∈ V ∨ var(p) = ∅ and τ(p) = Yi otherwise,
for p ≡ ρi.
- match ∈ FSm fresh is defined by the rule match(ρ1, . . . , ρm) → true.
- Each projectij ∈ FS1 is a fresh symbol defined by the single rule projectij(ρi) → Xij.

Wewill not give a formal proof for the adequacy of the optimization. Nevertheless note

how this transformation leaves untouched the rules for ? and i f then without defining an

special case for them. As the simple transformation worked well for that rules that suggests

that we are doing the right thing. We end this section with an example application of the

optimized transformation, over the program of Example 8:

EXAMPLE 19. The only rule modified is the one for f ind: { f ind(Y) → i f match(Y) then

(project(Y), project(Y)),match(e(N, s, clerk)) → true, project(e(N, s, clerk)) → N} so:

twoclerks → f ind(employees(branches))

→ i f match(employees(branches)) then (project(employees(branches)), project(employees(branches)))

→∗ i f match(e(pepe,men, clerk)) then (project(employees(branches)), project(employees(branches)))

→∗ (project(employees(branches)), project(employees(branches)))

→∗ (project(e(pepe,men, clerk)), project(e(maria,women, clerk)) →∗ (pepe,maria)

6 Conclusions

In this work we have pointed the different interpretations of run-time choice and plural

semantics caused by pattern matching. To the best of our knowledge this distinction is

stablished in the present paper for the first time, because in [20] no pattern matching was

present and in [11] only call-time choice was adopted. We argue that the run-time choice

semantics induced by term rewriting is not the best option for a value-based programming

language like current implementations of FLP. For that context a plural semantics has been

proposed for which the compositionality properties lost when turning from call-time choice

to rewriting are recovered. Nevertheless, for other kind of rewriting based languages like

Maude, which are not limited to constructor-based TRS’s, term rewriting has been proven

to be an effective formalism.

Our concrete contributions can be summarized as follows:

- We have presented the proof calculus πCRWL, a novel formulation of plural semantics

for left-linear constructor-based TRS’s, which are the kind of TRS’s used in FLP. Some basic

properties of the new semantics have been stated and proved, and by some examples we

have shown how it allows natural encodings of some programs that need to do some col-

lecting work (Sect. 3).
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- We have compared the new calculus with CRWL and term rewriting, which are standard

formulations for call-time choice and run-time choice respectively. The different properties

of these calculi have been discussed and the inclusion chain CRWL ⊆ rewriting ⊆ πCRWL

has been proved (Sect. 4).

- We have recalled some previous results about the impossibility of a straight simulation of

CRWL in term rewriting or viceversa by a simple program transformation. Besides we have

proposed a novel program transformation to simulate plural semantics with term rewriting,

and proved its adequacy (Sect. 5).

From a practical point of view, it might be unrealistic to think that a monolithic seman-

tic view is adequate for addressing all non-determinism present in a large program. In [13]

we have started to investigate the combination of call-time choice and run-time choice in

a unified framework. But as πCRWL seems to be more suitable than run-time choice for a

value-based language, we are planning to extend that work to plural semantics.

We contemplate other relevant subjects of future work:

- Extending the current results to programs with extra variables, that is, with rules l → r in

which var(r) ⊆ var(l) does not hold in general. We should also deal with conditional rules

and equality constraints to cover the basic features of FLP languages.

- Studying the relation between the determinism of programs underCRWL [12] and πCRWL,

which we conjecture is equivalent. We also conjecture that for deterministic programs

∀e ∈ Exp, [[e]]sg = [[e]]rw = [[e]]pl. Getting results about the relation of confluence and de-

terminism of programs could be useful for analyzing the confluence of a TRS through its

determinism. In the same line, the inclusion chain CRWL ⊆ rewriting ⊆ πCRWL could be

used to study the termination of a TRS through its termination in CRWL and πCRWL.

- Developing a more operational rewrite notion for πCRWL in the line of [12], which could

be extended to narrowing like in [14]. A complexity study would be needed to ensure that

the extra nondeterminism does not preclude the design of an efficient implementation. On

the other hand the natural value for πCRWL seems to be P(CTerm⊥) instead of CTerm⊥, a
formulation in the line of [16] could be useful to forget about the tricky use of ? .

- Finally, for the immediate future, it could be interesting implementing the transforma-

tion to simulate πCRWL in some term rewriting based language like Maude [5]. Maybe the

context-sensitive rewriting [18] features of Maude could be used to improve the laziness of

the transformed program like in [17]. Besides, the matching-module capacities of Maude

could be used to enhance the expressivity of plural semantics.
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ABSTRACT. An average-time game is played on the infinite graph of configurations of a finite
timed automaton. The two players, Min and Max, construct an infinite run of the automaton by
taking turns to perform a timed transition. Player Min wants to minimize the average time per
transition and player Max wants to maximize it. A solution of average-time games is presented
using a reduction to average-price game on a finite graph. A direct consequence is an elementary
proof of determinacy for average-time games. This complements our results for reachability-time
games and partially solves a problem posed by Bouyer et al., to design an algorithm for solving
average-price games on priced timed automata. The paper also establishes the exact computational
complexity of solving average-time games: the problem is EXPTIME-complete for timed automata
with at least two clocks.

1 Introduction

Real-time open systems are computational systems that interact with environment and whose

correctness depends critically on the time at which they perform some of their actions. The

problem of design and verification of such systems can be formulated as two-player zero-sum

games. A heart pacemaker is an example of a real-time open system as it interacts with the

environment (heart, body movements, and breathing) and its correctness depends critically

on the time at which it performs some of its actions (sending pace signals to the heart in

real time). Other examples of safety-critical real-time open systems include nuclear reac-

tor protective systems, industrial process controllers, aircraft-landing scheduling systems,

satellite-launching systems, etc. Designing correct real-time systems is of paramount im-

portance. Timed automata [2] are a popular and well-established formalism for modeling

real-time systems, and games on timed automata can be used to model real-time open sys-

tems. In this paper, we introduce average-time games which model the interaction between

the real-time open system and the environment; and we are interested in finding a strategy

of the system which results in minimum average-time per transition, assuming adversarial

environment.

Related Work. Games with quantitative payoffs can be studied as a model for optimal-

controller synthesis [3, 1, 6]. Among various quantitative payoffs the average-price pay-

off [9, 8] is the most well-studied in game theory, Markov decision processes, and planning

literature [8, 14], and it has numerous appealing interpretations in applications. Most al-

gorithms for solving Markov decision processes [14] or games with average-price payoff
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work for finite graphs only [15, 8]. Asarin and Maler [3] presented the first algorithm for

games on timed automata (timed games) with a quantitative payoff: reachability-time pay-

off. Their work was later generalized by Alur et al. [1] and Bouyer et al. [6] to give partial

decidability results for reachability-price games on linearly-priced timed automata. The ex-

act computational complexity of deciding the value in timed games with reachability-time

payoff was shown to be EXPTIME in [11, 7]. Bouyer et al. [5] also studied the more difficult

average-price payoffs, but only in the context of scheduling, which in game-theoretic termi-

nology corresponds to 1-player games. They left open the problem of proving decidability

of 2-player average-reward games on linearly-priced timed automata. We have recently ex-

tended the results of Bouyer et al. to solve 1-player games onmore general concavely-priced

timed automata [12]. In this paper we address the important and non-trivial special case of

average-time games (i.e., all locations have unit costs), which was also left open by Bouyer

et al.

Our Contributions. Average-time games on timed automata are introduced. This paper

gives an elementary proof of determinacy for these games. A new type of region [2] based

abstraction—boundary region graph—is defined, which generalizes the corner-point ab-

straction of Bouyer et al. [5]. Our solution allows computing the value of average-time

games for an arbitrary starting state (i.e., including non-corner states). Finally, we establish

the exact complexity of solving average-time games: the problem is EXPTIME-complete for

timed automata with at least two clocks.

Organization of the Paper. In Section 2 we discuss average-price games (also known as

mean-payoff games) on finite graphs and cite some important results for these games. In

Section 3 we introduce average-time games on timed automata. In Section 4 we introduce

some region-based abstractions of timed automata, including the closed region graph, and

its subgraphs: the boundary region graph, and the region graph. While the region graph is

semantically equivalent to the corresponding timed automaton, the boundary region graph

has the property that for every starting state, the reachable state space is finite. We introduce

average-time games on these graphs and show that if we have the solution of the average-

time game for any of these graphs, then we get the solution of the average-time game for

the corresponding timed automaton. In Section 5 we discuss the computational complexity

of solving average-time games.

Notations. We assume that, wherever appropriate, sets Z of integers, N of non-negative

integers and R of reals contain a maximum element ∞, and we write N+ for the set of

positive integers and R⊕ for the set of non-negative reals. For n ∈ N, we write LnMN for the

set {0, 1, . . . , n}, and LnMR for the set {r ∈ R : 0 ≤ r ≤ n} of non-negative reals bounded

by n. For a real number r ∈ R, we write |r| for its absolute value, we write ⌊r⌋ for its integer
part, i.e., the largest integer n ∈ N, such that n ≤ r, and we write *r+ for its fractional part,

i.e., we have *r+ = r− ⌊r⌋.

2 Average-Price Games

A (perfect-information) two-player average-price game [15, 8] Γ = (V, E,VMax,VMin, p) con-

sists of a finite directed graph (V, E), a partition V = VMax ∪ VMin of vertices, and a price

function π : E → Z. A play starts at a vertex v0 ∈ V. If v0 ∈ Vp, for p ∈ {Max,Min }, then
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player p chooses a successor of the current vertex v0, i.e., a vertex v1, such that (v0, v1) ∈ E,

and v1 becomes the new current vertex. When this happens then we say that player p has

made a move from the current vertex. Players keep making moves in this way indefinitely,

thus forming an infinite path r = (v0, v1, v2, . . . ) in the game graph. The goal of player Min

is to minimize AMin(r) = lim supn→∞(1/n) · ∑
n
i=1 π(vi−1, vi) and the goal of player Max is

to maximize AMax(r) = lim infn→∞(1/n) · ∑
n
i=1 π(vi−1, vi).

Strategies for players are defined as usual [15, 8]. We write ΣMin (ΣMax) for the set

of strategies of player Min (Max) and ΠMin (ΠMax) for the set of positional strategies of

player Min (Max). For strategies µ ∈ ΣMin and χ ∈ ΣMax, and for an initial vertex v ∈
V, we write run(v, µ,χ) for the unique path formed if players start in the vertex v and

then they follow strategies µ and χ, respectively. For brevity, we write AMin(v, µ,χ) for

AMin(run(v, µ,χ)) and we write AMax(v, µ,χ) for AMax(run(v, µ,χ)).

For v ∈ V, we define the upper value val(v) = infµ∈ΣMin
supχ∈ΣMax

AMin(v, µ,χ), and
the lower value val(v) = supχ∈ΣMax

infµ∈ΣMin
AMax(v, µ,χ). Note that the inequality val(v) ≤

val(v) always holds. A game is determined if for every v ∈ V, we have val(v) = val(v). We

then write val(v) for this number and we call it the value of the average-price game at the

vertex v.

We say that the strategies µ∗ ∈ ΣMin and χ∗ ∈ ΣMax are optimal for the respective

players, if for every vertex v ∈ V, we have that supχ∈ΣMax
AMin(v, µ

∗,χ) = val(v) and

infµ∈ΣMin
AMin(v, µ

∗,χ) = val(v). Liggett and Lippman [13] show that all perfect-information

(stochastic) average-price games are positionally determined.

THEOREM 1. [13] Every average-price game is determined, and optimal positional strate-
gies exist for both players, i.e., for all v ∈ V, we have:

inf
µ∈ΠMin

sup
χ∈ΣMax

AMin(v, µ,χ) = sup
χ∈ΠMax

inf
µ∈ΣMin

AMax(v, µ,χ).

The decision problem for average-price games is in NP ∩ co-NP; no polynomial-time

algorithm is currently known for the problem.

3 Average-Time Games

3.1 Timed Automata

Before we present the syntax of the timed automata, we need to introduce some concepts.

Fix a constant k ∈ N for the rest of this paper. Let C be a finite set of clocks. Clocks in

timed automata are usually allowed to take arbitrary non-negative real values. For the sake

of simplicity and w.l.o.g [4], we restrict them to be bounded by some constant k, i.e., we

consider only bounded timed automata models. A (k-bounded) clock valuation is a function

ν : C → LkMR; we write V for the set [C → LkMR] of clock valuations. If ν ∈ V and t ∈ R⊕
then we write ν + t for the clock valuation defined by (ν + t)(c) = ν(c) + t, for all c ∈ C.

For a set C′ ⊆ C of clocks and a clock valuation ν : C → R⊕, we define reset(ν,C′)(c) = 0 if

c ∈ C′, and reset(ν,C′)(c) = ν(c) if c 6∈ C′. A corner is an integer clock valuation, i.e., α is a

corner if α(c) ∈ LkMN, for every clock c ∈ C.
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The set of clock constraints over the set of clocks C is the set of conjunctions of simple clock

constraints, which are constraints of the form c ⊲⊳ i or c− c′ ⊲⊳ i, where c, c′ ∈ C, i ∈ LkMN,

and ⊲⊳ ∈ {<,>,=,≤,≥}. There are finitely many simple clock constraints. For every clock

valuation ν ∈ V , let SCC(ν) be the set of simple clock constraints which hold in ν ∈ V .
A clock region is a maximal set P ⊆ V , such that for all ν, ν′ ∈ P, SCC(ν) = SCC(ν′).
In other words, every clock region is an equivalence class of the indistinguishability-by-

clock-constraints relation, and vice versa. Note that ν and ν′ are in the same clock region

iff all clocks have the same integer parts in ν and ν′, and if the partial orders of the clocks,

determined by their fractional parts in ν and ν′, are the same. For all ν ∈ V , we write [ν] for
the clock region of ν. A clock zone is a convex set of clock valuations, which is a union of a

set of clock regions. Note that a set of clock valuations is a zone iff it is definable by a clock

constraint. ForW ⊆ V , we write clos(W) for the smallest closed set in V which containsW.

Observe that for every clock zoneW, the set clos(W) is also a clock zone.

Let L be a finite set of locations. A configuration is a pair (ℓ, ν), where ℓ ∈ L is a location

and ν ∈ V is a clock valuation; we write Q for the set of configurations. If s = (ℓ, ν) ∈ Q

and c ∈ C, then we write s(c) for ν(c). A region is a pair (ℓ, P), where ℓ is a location and P

is a clock region. If s = (ℓ, ν) is a configuration then we write [s] for the region (ℓ, [ν]). We

writeR for the set of regions. A set Z ⊆ Q is a zone if for every ℓ ∈ L, there is a clock zoneWℓ

(possibly empty), such that Z = {(ℓ, ν) : ℓ ∈ L and ν ∈ Wℓ}. For a region R = (ℓ, P) ∈ R,

we write clos(R) for the zone {(ℓ, ν) : ν ∈ clos(P)}.
A timed automaton T = (L,C, S, A, E, δ, ̺) consists of a finite set of locations L, a finite

set of clocks C, a set of states S ⊆ Q, a finite set of actions A, an action enabledness function

E : A → 2S, a transition function δ : L× A → L, and a clock reset function ̺ : A → 2C. We

require that S, and E(a) for all a ∈ A, are zones.

Clock zones, from which zones S, and E(a), for all a ∈ A, are built, are typically speci-

fied by clock constraints. Therefore, when we consider a timed automaton as an input of an

algorithm, its size should be understood as the sum of sizes of encodings of L, C, A, δ, and

̺, and the sizes of encodings of clock constraints defining zones S, and E(a), for all a ∈ A.

Our definition of a timed automaton may appear to differ from the usual ones [2, 4], but the

differences are superficial.

For a configuration s = (ℓ, ν) ∈ Q and t ∈ R⊕, we define s + t to be the configuration

s′ = (ℓ, ν + t) if ν + t ∈ V , and we then write s −⇀t s′. We write s −→t s′ if s −⇀t s′ and
for all t′ ∈ [0, t], we have (ℓ, ν + t′) ∈ S. For an action a ∈ A, we define succ(s, a) to be

the configuration s′ = (ℓ′, ν′), where ℓ′ = δ(ℓ, a) and ν′ = reset(ν, ̺(a)), and we then write

s
a−⇀ s′. We write s

a−→ s′ if s
a−⇀ s′; s, s′ ∈ S; and s ∈ E(a). For technical convenience,

and without loss of generality, we will assume throughout that for every s ∈ S, there exists

a ∈ A, such that s
a−→ s′. For s, s′ ∈ S, we say that s′ is in the future of s, or equivalently, that

s is in the past of s′, if there is t ∈ R⊕, such that s −→t s
′; we then write s −→∗ s′.

For R,R′ ∈ R, we say that R′ is in the future of R, or that R is in the past of R′, if for all
s ∈ R, there is s′ ∈ R′, such that s′ is in the future of s; we then write R −→∗ R′. Similarly, for

R,R′ ∈ R, we write R
a−→ R′ if there is s ∈ R, and there is s′ ∈ R′, such that s

a−→ s′.

A timed action is a pair τ = (t, a) ∈ R⊕ × A. For s ∈ Q, we define succ(s, τ) =

succ(s, (t, a)) to be the configuration s′ = succ(s + t, a), i.e., such that s −⇀t s
′′ a−⇀ s′, and we
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then write s
a−⇀t s

′. We write s
a−→t s

′ if s −→t s
′′ a−→ s′, and we then say that (s, (t, a), s′) is a

transition of the timed automaton. If τ = (t, a) then we write s
τ−⇀ s′ instead of s

a−⇀t s
′, and

s
τ−→ s′ instead of s

a−→t s
′.

An infinite run of a timed automaton is a sequence r = 〈s0, τ1, s1, τ2, . . .〉, such that

for all i ≥ 1, we have si−1
τi−→ si. A finite run of a timed automaton is a finite sequence

〈s0, τ1, s1, τ2, . . . , τn, sn〉 ∈ S× ((A×R⊕)× S)∗, such that for all i, 1 ≤ i ≤ n, we have si−1
τi−→

si. For a finite run r = 〈s0, τ1, s1, τ2, . . . , τn, sn〉, we define length(r) = n, and we define

last(r) = sn to be the state in which the run ends. For a finite run r = 〈s0, τ1, s1, τ2, . . . , sn〉,
we define time of the run as time(r) = ∑

n
i=1 ti. We write Runsfin for the set of finite runs.

3.2 Strategies

An average-time game Γ is a triple (T , LMin, LMax), where T = (L,C, S, A, E, δ, ̺) is a timed

automaton and (LMin, LMax) is a partition of L. We define QMin = {(ℓ, ν) ∈ Q : ℓ ∈ LMin},
QMax = Q \ QMin, SMin = S ∩ QMin, SMax = S \ SMin, RMin = {[s] : s ∈ QMin}, and
RMax = R \RMin.

A strategy for Min is a function µ : Runsfin → A× R⊕, such that if last(r) = s ∈ SMin

and µ(r) = τ then s
τ−→ s′, where s′ = succ(s, τ). Similarly, a strategy for player Max is a

function χ : Runsfin → A× R⊕, such that if last(r) = s ∈ SMax and χ(r) = τ then s
τ−→ s′,

where s′ = succ(s, τ). We write ΣMin for the set of strategies for player Min, and we write

ΣMax for the set of strategies for player Max. If players Min and Max use strategies µ and

χ, resp., then the (µ,χ)-run from a state s is the unique run run(s, µ,χ) = 〈s0, τ1, s1, τ2, . . .〉,
such that s0 = s, and for every i ≥ 1, if si ∈ SMin, or si ∈ SMax, then µ(runi(s, µ,χ)) = τi+1,

or χ(runi(s, µ,χ)) = τi+1, resp., where runi(s, µ,χ) = 〈s0, τ1, s1, . . . , si−1, τi, si〉.
We say that a strategy µ for Min is positional if for all finite runs r, r′ ∈ Runsfin, we have

that last(r) = last(r′) implies µ(r) = µ(r′). A positional strategy for player Min can be

then represented as a function µ : SMin → A× R⊕, which uniquely determines the strategy

µ∞ ∈ ΣMin as follows: µ∞(r) = µ(last(r)), for all finite runs r ∈ Runsfin. Positional strategies

for player Max are defined and represented in the analogous way. We write ΠMin and ΠMax

for the sets of positional strategies for player Min and for player Max, respectively.

3.3 Value of Average-Time Game

If player Min uses the strategy µ ∈ ΣMin and player Max uses the strategy χ ∈ ΣMax then

playerMin loses the valueAMin(s, µ,χ) = lim supn→∞(1/n) · time(runn(s, µ,χ)), and player

Max wins the value AMax(s, µ,χ) = lim infn→∞(1/n) · time(runn(s, µ,χ)). In an average-

time game player Min is interested in minimizing the value she loses and player Max is

interested in maximizing the value he wins. For every state s ∈ S of a timed automaton,

we define its upper value by val
T
(s) = infµ∈ΣMin

supχ∈ΣMax
AMin(s, µ,χ), and its lower value

valT (s) = supχ∈ΣMax
infµ∈ΣMin

AMax(s, µ,χ).

The inequality valT (s) ≤ val
T
(s) always holds. An average-time game is determined

if for every state s ∈ S, its lower and upper values are equal to each other; then we say

that the value valT (s) exists and valT (s) = valT (s) = val
T
(s). For strategies µ ∈ ΣMin and
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χ ∈ ΣMax, we define valµ(s) = supχ∈ΣMin
AMin(s, µ,χ), and valχ(s) = infµ∈ΣMin

AMax(s, µ,χ).
For an ε > 0, we say that a strategy µ ∈ ΣMin or χ ∈ ΣMax is ε-optimal if for every s ∈ S we

have that valµ(s) ≤ valT (s) + ε or valχ(s) ≥ valT (s) − ε, respectively. Note that if a game is

determined then for every ε > 0, both players have ε-optimal strategies.

We say that a strategy χ ∈ ΣMax of player Max is a best response to a strategy µ ∈ ΣMin

of player Min if for all s ∈ Swe have thatAMin(s, µ,χ) = supχ′∈ΣMax
AMin(s, µ,χ

′). Similarly

we say that a strategy µ ∈ ΣMin of player Min is a best response to a strategy χ ∈ ΣMax of

player Max if for all s ∈ S we have that AMax(s, µ,χ) = infµ′∈ΣMin
AMax(s, µ

′,χ).

4 Region Abstractions

4.1 Region Graphs

The region automaton, originally proposed by Alur and Dill [2], is a useful abstraction of a

timed automaton as it preserves the validity of qualitative reachability, safety, and ω-regular

properties. The region automaton [2] RA(T ) = (R,M) of a timed automaton T consists of:

• the set R of regions of T , and

• M ⊆ R× (R× A) ×R, such that for all a ∈ A, and for all R,R′,R′′ ∈ R, we have

that (R,R′′, a,R′) ∈ M iff R −→∗ R′′ a−→ R′.
The region automaton, however, is not sufficient for solving average-time games as it

abstract away the timing information. Corner-point abstraction, introduced by Bouyer et

al. [5], is a refinement of region automaton which preserves some timing information. For-

mally, the corner-point abstraction CP(T ) of a timed automaton T is a finite graph (V, E)
such that:

• V ⊆ Q×R such that (s,R) ∈ V iff s = (ℓ, ν) ∈ clos(R) and ν is a corner. Since timed

automata we consider are bounded, there are finitely many regions, and every region

has a finite number of corners. Hence the set of vertices finite.

• E ⊆ V× (R⊕ ×R× A)×V such that for (s,R), (s′,R′) ∈ V and (t,R′′, a) ∈ R⊕ ×R×
A, we have ((s,R), (t,R′′, a), (s′,R′)) ∈ E iff R −→∗ R′′ a−→ R′ and (s + t)

a−⇀ s′. Notice

that such a t is always a natural number.

Bouyer et al. [5] showed that the corner-point abstraction is sufficient for deciding one-

player average-price problem if the initial state is a corner-state, i.e., a state whose clock

valuation is a corner. It follows from our results that the corner-point abstraction can be

used to solve average-time games on timed automata if the initial state is a corner state.

We introduce the boundary region graph, which is a generalization of the corner-point

abstraction. We prove that the value of the average-time game on a timed automaton is

equal to the value of the average-time game on the corresponding boundary region graph,

for all starting states, not just for corner states. In the process, we introduce two other re-

finements of the region automaton, which we call the closed region graph and the region graph.

The analysis of average-time games on those objects allows us to establish equivalence of

average-time games on the original timed automaton and the boundary region graph.

Closed Region Graph. A closed region graph T = (Q, E) of a timed automaton T is a re-

finement of its region automaton, where Q =
{

(s,R) : s ∈ clos(R) and R ∈ R
}

and

E ⊆ Q× (R⊕×R× A)×Q, such that for all (s,R), (s′,R′) ∈ Q and (t,R′′, a) ∈ R⊕×R× A,
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we have ((s,R), (t,R′′, a), (s′,R′)) ∈ E iff s′ = succ(s, t, a), (R,R′′, a,R′) ∈ M, and s + t ∈
clos(R′′). For a region R ∈ R we define the set Q(R) ⊆ Q to be {(s,R) : (s,R) ∈ Q}.
Boundary Region Graph. For a timed automaton T , its boundary region graph ̂T = ( ̂Q, ̂E)
is a sub-graph of its closed region graph T = (Q, E) with ̂Q = Q and ̂E ⊆ E, such that for

all (s,R), (s′,R′) ∈ ̂Q and (t,R′′, a) ∈ R⊕ ×R× A, we have ((s,R), (t,R′′, a), (s′,R′)) ∈ ̂E if:

either R ∈ RMin and t = inf{t : s + t ∈ clos(R′′)}, or R ∈ RMax and t = sup{t : s + t ∈
clos(R′′)}. Boundary region graphs have the following property.

PROPOSITION 2. For every configuration in a boundary region graph the set of reachable
configurations is finite.

We say that a configuration q = (s = (ℓ, ν),R) is corner configuration if ν is a corner.

PROPOSITION 3. The reachable sub-graph of the a boundary region graph ̂T from a corner
configuration is same as the corner-point abstraction CP(T ).

Region Graph. The region graph ˜T = ( ˜Q, ˜E) of a timed automaton T is a sub-graph of its

closed region graph T = (Q, E)with ˜Q = Q and ˜E ⊆ E, such that ((s,R), (t,R′′, a), (s′,R′)) ∈
˜E if s + t ∈ R′′. The timed automaton T and the corresponding region graph ˜T are equiva-

lent in the following sense.

PROPOSITION 4. Let T be a timed automaton and ˜T = ( ˜Q, ˜E) be its region graph. For every

s, s′ ∈ S and (t, a) ∈ R⊕ × A, we have s
a−→t s

′ if and only if ((s, [s]), (t, [s + t], a), (s′, [s′])) ∈
˜E.

Runs of Region Graphs. An infinite run of the closed region graph T is an infinite sequence

〈q0, τ1, q1, τ1, . . .〉, such that for all i ≥ 1, we have (qi−1, τi, qi) ∈ E. A finite run of the closed

region graph T is a finite sequence 〈q0, τ1, q1, τ1, . . . , qn〉 ∈ Q× ((R⊕ ×R× A) ×Q)∗, such
that for all 1 ≤ i ≤ n, we have (qi−1, τi, qi) ∈ E. Runs of the boundary region graph and the

region graph are defined analogously. For a graph G ∈ {T , ̂T , ˜T }, we write RunsGfin for the

set of its finite runs and RunsGfin(q) for the set of its finite runs from a configuration q ∈ Q.

Notice that for all q ∈ Q we have that Runs
̂T (q) ⊆ RunsT (q) and Runs

˜T (q) ⊆ RunsT (q).
For a finite run r = 〈q0, (t1,R1, a1), q1, (t2,R2, a2), . . . , qn〉 we define time(r) = ∑

n
i=1 ti, and

we denote the last configuration of the run by last(r) = qn.

Run Types of Region Graphs. Type of a finite run 〈(s0,R0), (t1,R
′
1, a1), (s1,R1), . . . , (sn,Rn)〉

is the finite sequence 〈R0, (R′
1, a1),R1, (R

′
2, a2), . . . ,Rn〉. The type of an infinite run is defined

analogously. For a (finite or infinite) run r, we write JrKR for its type. We write Typesfin and

Types for the set of types of finite runs and the set of types of infinite runs, respectively.

4.2 Simple Functions and Boundary Timed Actions

A function F : Q → R is simple [3, 11] if either: there is e ∈ Z, such that for every (s,R) ∈ Q,

we have F(s,R) = e; or there are e ∈ Z and c ∈ C, such that for every (s,R) ∈ Q we

have F(s,R) = e− s(c). We say that a function F : Q → R is regionally simple or regionally

constant, respectively, if for every region R ∈ R the function F, over domain Q(R), is simple

or constant, respectively.

Define the finite set of boundary timed actions A = LkMN ×C× A×R. For q = (s,R) ∈ Q

and α = (b, c, a,R′′) ∈ A, we define t(s, α) = b − s(c). If s + t(s, α) ∈ clos(R′′) then the
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function succ(q, α) is defined and we have q′ = (succ(s, τ(α)),R′), where τ(α) = (t(s, α), a)

and R′′ a−→ R′. We sometimes write q
α−→ q′ if q′ = succ(q, α).

4.3 Strategies

Let Γ = (T , LMin, LMax) be an average-time game. The partition (LMin, LMax) naturally gives

rise to average-time games on the closed region graph Γ = (T ,QMin,QMax), the boundary

region graph ̂Γ = ( ̂T , ̂QMin, ̂QMax), and the region graph ˜Γ = ( ˜T , ˜QMin, ˜QMax).

In a closed region graph, a strategy of player Min µ is a (partial) function µ : RunsTfin →
R⊕ ×R× A, such that for a run r ∈ RunsTfin, if last(r) = (s,R) ∈ QMin then µ(r) = (t,R′, a)
is defined, and it is such that (s + t) ∈ clos(R′) and (R, (R′, a),R′′) ∈ M, for some R′′ ∈ R.

Strategies of player Max is defined analogously. We write ΣMin and ΣMax for the set of

strategies of player Min and player Max, respectively. We say that a strategy σ is positional

if for all runs r1, r2 ∈ RunsTfin, last(r1) = last(r2) implies µ(r1) = µ(r2). We define the

run starting from configuration q ∈ Q and following strategies µ and χ, of player Max and

playerMin, respectively, in a straightfowardmanner andwewrite run(q, µ,χ) to denote this

run. For every n ≥ 1, we write runn(q, µ,χ) for the prefix of the run run(q, µ,χ) of length n.

We say that a strategy σ is an admissible strategy if for all finite runs r ∈ RunsTfin, we

have σ(r) = (t,R′, a) such that s + t ∈ R′, where (s,R) = last(r). Note that both players

have only admissible strategies on the region graph. We write ˜ΣMin and ˜ΣMax for the set of

admissible strategies of player Min and player Max, respectively.

We say that a strategy µ of player Min is a boundary strategy if for all finite runs r ∈
RunsTfin, we have µ(r) = (t,R′, a), such that t = inf{t : s + t ∈ clos(R′)}, where (s,R) =
last(r). We say that a strategy χ of player Max is a boundary strategy if for all finite runs

r ∈ RunsTfin, we have χ(r) = (t,R′, a), such that t = sup{t : s + t ∈ clos(R′)}, where

(s,R) = last(r). Both players have only boundary strategies in the boundary region graph.

We write ̂ΣMin and ̂ΣMax for the set of boundary strategies of player Min and player Max,

respectively.

PROPOSITION 5. For every boundary strategy σ and for every run r, if σ(r) = (t,R′, a)
then there exists a boundary timed action α = (b, c, a,R′) ∈ A such that t(s, α) = t, where
(s,R) = last(r).

By Proposition 5 a run of the closed region graph in which both players use boundary

strategies, can be represented as a sequence 〈q0, α1, q1, α2, . . .〉. Such a run is called a boundary

run. For a boundary strategy σ, we define the function σ̂ : RunsTfin → A as follows: if for

a run r we have σ(r) = (t,R′, a), then σ̂(r) = (b, c, a,R′), such that b − s(c) = t, where

(s,R) = last(r).
Type-Preserving Boundary Strategies. We say that a boundary strategy σ is type-preserving,

if for all finite runs r1, r2 ∈ RunsTfin such that Jr1KR = Jr2KR, we have that σ̂(r1) = σ̂(r2).
We write ΞMin and ΞMax for the sets of type-preserving boundary strategies of players Min

and Max, respectively. Notice that for type-preserving boundary strategies µ ∈ ΞMin and

χ ∈ ΞMax, for every region R ∈ R and for all configurations q, q′ ∈ Q(R), we have that

Jrun(q, µ,χ)KR = Jrun(q′, µ,χ)KR.
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Note that the following inclusions hold.

ΞMin ⊆ ̂ΣMin ⊆ ΣMin and ˜ΣMin ⊆ ΣMin, and

ΞMax ⊆ ̂ΣMax ⊆ ΣMax and ˜ΣMax ⊆ ΣMax

PROPOSITION 6. For every n ≥ 1, and for all type-preserving boundary strategies µ ∈ ΞMin

and χ ∈ ΞMax, the function time(runn(·, µ,χ)) is regionally simple.

Given a type-preserving boundary strategy σ and ε > 0, we define an admissible strat-

egy σε as follows: for a finite run r ∈ RunsTfin, if σ̂(r) = (b, c, a,R′) then σε(r) = (t,R′, a) such
that b− s(c) − ε ≤ t ≤ b− s(c) + ε, where (s,R) = last(r).

Given a boundary strategy σ and a configuration q ∈ Q, we define the type-preserving

boundary strategy σ[q], which agrees with the strategy σ on all the runs starting from the

configuration q. Formally, for a given σ the type-preserving boundary strategy σ[q] is such

that for all runs r ∈ Runsfin(q), we have ̂σ[q](r) = σ̂(r).

4.4 Value of Average-Time Game

For the strategies µ ∈ ΣMin and χ ∈ ΣMax of respective players and a configuration q ∈
Q we define AMin(q, µ,χ) = lim supn→∞(1/n) · time(runn(q, µ,χ)) and AMax(q, µ,χ) =

lim infn→∞(1/n) · time(runn(q, µ,χ)). For average-time games on a graph G ∈ {T , ̂T , ˜T }
we define the lower-value valG(q), the upper-value val

G
(q) and the value valG(q) of a con-

figuration q ∈ Q in a straightfoward manner.

4.5 Determinacy of Average-Time Games on the Boundary Region Graph

Positional determinacy of average-time games on the boundary region graph is immediate

from Proposition 2 and Theorem 1.

THEOREM 7. The average-time game on ̂T is determined, and there are optimal positional
strategies in ̂T , i.e., for every q ∈ Q, we have:

val
̂T (q) = inf

µ∈̂ΠMin

sup
χ∈̂ΣMax

AMin(q, µ,χ) = sup
χ∈̂ΠMax

inf
µ∈̂ΣMin

AMax(q, µ,χ).

PROPOSITION 8. For all µ ∈ ΞMin and χ ∈ ΞMax, the functionsAMin(·, µ,χ) andAMax(·, µ,χ)
are regionally constant.

LEMMA 9. In ̂T , if µ ∈ ̂ΣMin and χ ∈ ̂ΣMax are mutual best responses from q ∈ Q, then
µ[q] ∈ ΞMin and χ[q] ∈ ΞMax are mutual best responses from every q′ ∈ Q([q]).

PROOF. We argue that χ[q] is a best response to µ[q] from q′ ∈ Q([q]) in ̂T ; the other case

is analogous. For all χ′ ∈ ̂ΣMax, we have the following:

AMin(q
′, µ[q],χ[q]) = AMin(q, µ[q],χ[q]) ≥ AMin(q, µ[q],χ′[q′]) =

AMin(q
′, µ[q],χ′[q′]) = AMin(q

′, µ[q],χ′).
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The first equality follows from Proposition 8; the inequality follows because χ is a best

response to µ from q; the second equality follows from Proposition 8 again; and the last

equality is straightforward.

THEOREM 10. There are optimal type-preserving boundary strategies in ̂T , i.e., for every
q ∈ Q, we have:

val
̂T (q) = inf

µ∈ΞMin

sup
χ∈̂ΣMax

AMin(q, µ,χ) = sup
χ∈ΞMax

inf
µ∈̂ΣMin

AMax(q, µ,χ).

PROOF. Let µ∗ ∈ ΞMin and χ∗ ∈ ΞMax be mutual best responses in ̂T ; existence of such

strategies follows from Lemma 9. Moreover, we can assume that the strategies µ∗ and χ∗

have finite memory; this can be achieved by taking positional strategies µ ∈ ̂ΣMin and χ ∈
̂ΣMax in Lemma 9. We then have the following:

inf
µ∈ΞMin

sup
χ∈̂ΣMax

AMin(q, µ,χ) ≤ sup
χ∈̂ΣMax

AMin(q, µ
∗,χ) = AMin(q, µ

∗,χ∗) =

AMax(q, µ
∗,χ∗) = inf

µ∈̂ΣMin

AMax(q, µ,χ
∗) ≤ sup

χ∈ΞMax

inf
µ∈̂ΣMin

AMax(q, µ,χ).

The first and last inequalities are straightforward because µ∗ ∈ ΞMin and χ∗ ∈ ΞMax. The

first equality holds because χ∗ is a best response to µ∗ in ̂T , and the third equality holds

because µ∗ is a best response to χ∗ in ̂T . Finally, the second equality holds because strate-

gies µ∗ and χ∗ have finite memory.

4.6 Determinacy of Average-Time Games on the Closed Region Graph

LEMMA 11. In T , for every strategy in ΞMin there is a best response in ΞMax, and for every
strategy in ΞMax there is a best response in ΞMin.

THEOREM 12. The average-time game on T is determined, and there are optimal type-
preserving boundary strategies in T , i.e., for every q ∈ Q, we have:

valT (q) = inf
µ∈ΞMin

sup
χ∈ΣMax

AMin(q, µ,χ) = sup
χ∈ΞMax

inf
µ∈ΣMin

AMax(q, µ,χ) = val
̂T (q).

PROOF. We have the following:

inf
µ∈ΞMin

sup
χ∈ΣMax

AMin(q, µ,χ) = inf
µ∈ΞMin

sup
χ∈ΞMax

AMin(q, µ,χ) =

sup
χ∈ΞMax

inf
µ∈ΞMin

AMax(q, µ,χ) = sup
χ∈ΞMax

inf
µ∈ΣMin

AMax(q, µ,χ),

where the first and last equalities follow from Lemma 11, and the second equality follows

from Theorem 10. Now it is routine to show that valT (q) ≥ val
̂T (q) and val

T
(q) ≤ val

̂T
(q).

It concludes the proof that the average-time game on T is determined, and there are optimal

type-preserving boundary strategies in T .
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4.7 Determinacy of Average-Time Games on the Region Graph

LEMMA 13. If the strategies µ∗ ∈ ΞMin and χ∗ ∈ ΞMax are optimal for respective players in
T then for every ε > 0, we have that

sup
χ∈ΣMax

AMin(q, µ
∗
ε ,χ) ≤ valT (q) + ε and inf

µ∈ΣMin

AMax(q, µ,χ
∗
ε ) ≥ valT (q) − ε.

THEOREM 14. The average-time game on ˜T is determined, and for every q ∈ Q, we have

val
˜T (q) = valT (q).

PROOF. Let µ∗ ∈ ΞMin be an optimal strategy of player Min in T . Let us fix an ε > 0.

val
˜T
(q) = inf

µ∈˜ΣMin

sup
χ∈˜ΣMax

AMin(q, µ,χ) ≤ sup
χ∈˜ΣMax

AMin(q, µ
∗
ε ,χ) ≤

sup
χ∈ΣMax

AMin(q, µ
∗
ε ,χ) ≤ valT (q) + ε.

The second inequality follows because µ∗
ε ∈ ˜ΣMin and the third inequality follows because

˜ΣMax ⊆ ΣMax. The last inequality follows from Lemma 13 because µ∗ ∈ ΞMin is an optimal

strategy in T . Similarly we show that for every ε > 0 we have that val
˜T (q) ≥ valT (q) − ε.

Hence it follows that val
˜T (q) exists and its value is equal to valT (q).

4.8 Determinacy of Average-Time Games on Timed Automata

THEOREM 15. The average-time game on T is determined, and for every s ∈ S, we have:

valT (s) = val
˜T (s, [s]) = valT (s, [s]) = val

̂T (s, [s]).

5 Complexity

The main decision problem for average-time game is as follows: given an average-time

game Γ = (T , LMin, LMax), a state s ∈ S, and a number B ∈ R⊕, decide whether val(s) ≤ B.

From Theorem 15 we know that in order to solve an average-time game starting from

an initial state of a timed automaton, it is sufficient to solve the average-time game on the set

of states of the boundary region graph of the automaton that are reachable from the initial

state. Observe that every region, and hence also every configuration of the game, can be

represented in space polynomial in the size of the encoding of the timed automaton and

of the encoding of the initial state, and that every move of the game can be simulated in

polynomial time. Therefore, the value of the game can be computed by a straightforward

alternating PSPACE algorithm, and hence the problem is in EXPTIME because APSPACE =
EXPTIME.

One can prove EXPTIME-hardness of average-time games on timed automata with at

least two clocks by a reduction from countdown games [10], similar to the reduction from

countdown games to reachability-time games on timed automata [11].
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THEOREM 16. Average-time games are EXPTIME-complete on timed automata with at least
two clocks.
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Framework

It is clear for everybody that security protocols need to be proven. Indeed, a security breach
in one of these distributed programs, may have a dramatic impact. A typical example are
the (electronic) voting protocols, which we fear will be soon widely used.

But what does “proven” mean? A formal proof requires a formal model, both for the
protocol executions and for the security properties. There are however several such mod-
els and it may happen that a protocol is secure in one model and insecure in the other.
Furthermore, there is no clear hierarchy in such models as the most accurate ones are not
well-suited for formal proofs, because they require much too complicated proof steps, that
are always performed in a very sketchy way.

There are two main classes of security models: the first one, later named symbolic, has
been developed over years by the community of automated theorem proving and concur-
rency theory [22, 19, 3, 14, 2, 21]. The second one, later named computational, is more recent;
it is an extension to protocols of the well-developed area of “provable security”[10, 7, 20, 17].
Symbolic models are much simpler, as an attacker is only given a fixed finite set of function-
alities and there is no probabilistic choices or complexity issues. They are therefore better
suited for (automated) formal proofs. However, because they are simpler, they might miss
some attacks that rely on other attacker’s capibilities, which are only considered in the com-
putational model.

The relationship between these two classes of protocol models has been investigated in
a series of recent works, starting with M. Abadi and Ph. Rogaway [4]. The idea is to ex-
plicit under which computational assumptions the symbolic models are sound; the sound-
ness theorems show that reasoning in the symbolic model is sufficient: the extra attacker’s
capabilities are useless for mounting attacks.

Soundness results were first proven in the passive attacker case: such an attacker is not
allowed to forge messages nor to send fake messages. Depending on the security primitives
and the computational assumptions, there are several soundness results such as [4, 1, 9].

For protocol verification, it is however more relevant to consider an active attacker,
who may control the communications. There is then a series of results showing a trace
mapping property [18, 13, 15]. Roughly speaking, they show that a sequence of events in the
computational model is, with overwhelming probability, also represented by a sequence of
events in the symbolic model. Such trace mappings are showed for particular primitives
and particular symbolic and computational models and assume computational properties
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FSTTCS 2008 
IARCS Annual Conference on  
Foundations of Software Technology and Theoretical Computer Science 
http://drops.dagstuhl.de/opus/volltexte/2008/1766



HUBERT COMON-LUNDH FSTTCS 2008 353

of the security primitives. Furthermore, on the security properties side, these results show
that we may reason at the symbolic level, but only for some specific security properties,
typically “trace properties”.

Another series of soundness results are obtained in a series of papers on simulatability
[7, 6, 8]. Simulatability implies trace mapping, as pointed out in [5], but the converse might
not be true. Roughly speaking, what is missing in trace mapping is the adaptative soundness
[16].

Finally, an even stronger result (which might be equivalent to simulatability) is the
soundness of observational equivalence [11]: for a given set of cryptographic primitives, the
authors show that trace mapping together with tree soundness implies that computational
indistinguishability can be soundly abstracted as observational equivalence. This shows in
particular, though in a different setting, what is missing in [5], in order to get a converse
implication.

A few remarks on the state of the art

In all these works, the computational attacker is a polynomial time randomized interactive
Turing machine. However, as discussed in [8, 17], there are several possible complexity
notions for such machines. Also, using a Turing machine model yields often quite sketchy
proofs, as the machines (in particular the simulators) are never constructed explicitly. Fi-
nally, there is no evidence that worst case polynomial time is an adequate complexity class,
though it is convenient because of composition properties. It is actually not clear that Turing
machines are an appropriate model. As a conclusion: we would like to abstract from this
particular computation model.

On the formal model side, there are many schools, each promoting its own process
calculus. There are also issues concerning the expressivity: are the result still valid if we
consider protocols with branching tests? recursive protocols? We would like to avoid com-
mitting to a particular process calculus, while keeping the features that are essential for
security definitions.

Concerning the relationships between the models, is there a general way of defining
relationships between models? Is it possible to state something useful, independently of
the models considered? Is there a methodology to decompose the tasks when proving a
mapping property between two models?

Models of security protocols

In this paper, mostly consisting of definitions, we revisit the models of security protocols:
we show that the symbolic and the computational models (as well as others) are instances
of a same generic model. Our definitions are also parametrized by the security primitives,
the notion of attacker and, to some extent, the process calculus.

We rely on a set of function symbols, predicate symbols and names (representing any
randomized input), which are interpreted in some algebra. This can be a term algebra, or a
computational algebra (as defined in [9]), whose domain is the set of bitstrings (or any other
first-order structure on the given vocabulary).
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A thread (also called a protocol role or a lightweight process) is any sequential pro-
gram, generating data, receiving inputs from an environment and sending messages to the
environment. The operational semantics of threads is defined through predicates that relate
two consecutive states and a message (whether received or emitted). Again, this can be in-
terpreted in a symbolic or computational world, depending on the interpretation structure
that we consider.

Threads can be composed, using parallel composition (they may run concurrently),
replication (a same program may be executed several times), name hiding and external
inputs. This yields protocols.

Next, attackers are simply (deterministic) stateful functions that compute a message
from a sequence of messages. They could be symbolic or computational and we may impose
some restrictions, such as polynomial time computation bounds: this is again a model choice
and we do not commit to any one in particular.

In order to define some asymptotic security notions, we need to include in the model
families of probability distributions for the interpretation of names. In case of symbolic
models, such distributions will be trivial: probabilities of events are either 0 or 1.

Finally, we define indistinguishability, without committing to any particular model: this
yields for instance static equivalence in the case of a symbolic interpretation. This is also
generalized to tree-indistinguishability, for families of term sequences.

Relationships between models

In this general setting, we define trace mapping: this is a relation between any two inter-
pretations, each of which yielding some notion of possible sequences of events. In both
interpretations, the attacker computes fake messages and send them to the network. How-
ever, he does not schedule the events according to his computation results. (The attacker is
not “adaptative”). Among the models, the symbolic one has a universal property: there is
always a trace mapping from the symbolic model to any other model. The converse impli-
cation depends however on the assumptions on the function interpretations.

The tree soundness property also relates two interpretations M1 and M2. This states
that, if two trees, labeled with sequences of terms, are indistinguishable in the model M1,
then they are also indistinguishable in the model M2. For this soundness notion, the at-
tacker is adaptative, but cannot compute his own fake messages: he may only choose among
the available directions.

In the most general case, the attacker is both allowed to compute fake messages and
to schedule adaptatively the events. In that case, two programs (or protocols) are observa-
tionally equivalent if there is no attacker that can distinguish them. We show that relating
observational equivalence in two models can be reduced to trace mapping and tree sound-
ness in that models:

Trace mapping + Tree soundness ⇒ Soundness of observational equivalence
This has been shown in [11], for a particular pair of models and process calculus. In

[11] we further proved the trace mapping and the tree soundness for symmetric encryption,
under some strong security assumptions.
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Conclusion

We hope that revisiting the definitions will clarify what is relevant. We also believe that
trace mapping and tree soundness are two (independent) relevant properties: this could
be a guideline when trying to reduce security proofs in some model to symbolic security
proofs. As a clue, the computational assumptions are often different for tree soundness and
for trace mapping [12].

The main issue now is to decompose further the trace mapping property and the tree
soundness property into more elementary tasks. Typically, we would like to get composition
results, allowing to merge two sets of function symbols, instead of a having to restart from
scratch each time we add a new primitive (which is the case in all current models).
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[16] S. Kremer and L. Mazaré. Adaptive soundness of static equivalence. In J. Biskup and
J. Lopez, editors, Proceedings of the 12th European Symposium on Research in Computer
Security (ESORICS’07), volume 4734 of Lecture Notes in Computer Science, pages 610–
625, Dresden, Germany, Sept. 2007. Springer.
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ABSTRACT.
In a combinatorial optimization problem, when given an input instance, one seeks a feasible solution
that optimizes the value of the objective function. Many combinatorial optimization problems are
NP-hard. A way of coping with NP-hardness is by considering approximation algorithms. These
algorithms run in polynomial time, and their performance is measured by their approximation ratio:
the worst case ratio between the value of the solution produced and the value of the (unknown)
optimal solution.
In some cases the design of approximation algorithms includes a nonconstructive component. As
a result, the algorithms become estimation algorithms rather than approximation algorithms: they
allow one to estimate the value of the optimal solution, without actually producing a solution whose
value is close to optimal.
We shall present a few such examples, and discuss some open questions.

1 Introduction
In a combinatorial optimization problem, when given an input instance, one seeks a feasible
solution that maximizes (or minimizes) the value of the objective function. For example, in
the Travelling Salesperson (TSP) problem, given an input graph with edge lengths, one is to
find a tour (Hamiltonian cycle) of minimum length. Combinatorial optimization problems
are very common in practice, and are also of great theoretical interest. Many combinatorial
optimization problems are NP-hard (informally meaning that we know of no polynomial
time algorithm that solves every instance optimally). A way of coping with NP-hardness
is by considering approximation algorithms. These algorithms run in polynomial time (or
sometimes, random polynomial time), but are not guaranteed to produce optimal solutions.
Their performance is measured by their approximation ratio. For a maximization problem, an
approximation algorithm is said to have approximation ratio 0 ≤ ρ ≤ 1 if on every instance,
the value of the solution output by the algorithm is at least ρ times the value of the optimal
solution. (For minimization problems, ρ ≥ 1, and the value of the solution output by the
algorithm is at most ρ times the optimal.) It is often the case that the approximation ratio of
an algorithm is not a fixed constant that holds for all input sizes n, but rather it deteriorates
as the input size grows. In this case, rather than just saying that the approximation ratio
is 0 (for maximization problems) or unbounded (for minimization problems), we measure
the rate at which the the approximation ratio deteriorates (as a function of n). For example,
the greedy algorithm for set cover has approximation ratio ln n. The approximation ratio
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of an optimization problem is the best approximation ratio achieved by any approximation
algorithm for the problem. For more details see for example [24, 26, 6, 37].

We say that a combinatorial optimization problem has a threshold at ρ if there is a poly-
nomial time (randomized) algorithm for it with approximation ratio ρ, and it is NP-hard to
approximate it within a ratio better than ρ. (Here we ignore low order terms in the approx-
imation ratio.) Problems that have approximation ratios arbitrarily close to 1 (a so called
Polynomial Time Approximation Scheme, PTAS) have a threshold at 1. Perhaps surpris-
ingly, many other problems (such as k-center, set cover, max coverage, max 3SAT) also have
approximation thresholds, though the locations of the thresholds may differ among prob-
lems.

Needless to say, for many problems (such as metric TSP, max SAT, min bisection and
dense k-subgraph) we do not know if they have a threshold or not. Problems with no known
threshold are the ones relevant to the discussion that follows.

At this point it will be convenient to distinguish between notions that we shall call
here approximation algorithms and estimation algorithms. For the approximation problem,
one is required to find a feasible solution whose value is close to that of the value of the
optimal solution. For estimation algorithms, one is required to estimate the value of the
optimal solution, without necessarily outputting a solution that meets this estimate. This is
potentially an easier task. It turns out that hardness of approximation results are essentially
always also hardness of estimation results, within the same ratio. That is, our techniques
for establishing hardness of approximation do not distinguish between approximation and
estimation. On the algorithmic side, most positive results apply equally well to estimation
and approximation. However, there are some exceptions where at the moment the known
estimation ratios are better than the known approximation ratios.

2 Some research directions

The distinction between estimation algorithms and approximation algorithms offers inter-
esting research directions.

Prove new estimation ratios. For some problems there are large gaps between the
known approximation ratios and the known hardness of approximation results. For such
problems, try to establish estimation ratios that are better than the known approximation
ratios.

Close the gaps between estimation and approximation ratios. For some problems
there are large gaps between the known approximation ratios and the known estimation
ratios. For such problems, try to improve the approximation ratio (hopefully, replacing the
nonconstructive arguments that lead to the estimation ratios by constructive arguments that
lead to the same approximation ratio).

Relating between open questions. Introduce complexity classes that capture current
gaps between estimation and approximation (similar in spirit to the work of [32]). That is,
we would like to be able to show that if this gap is closed for one problem, this automatically
implies that the gap will be closed for other problems.

Relating to external open questions. At the moment we do not have convincing evi-
dence that there should be a gap between approximation ratios and estimation ratios. For
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many optimization problems these ratios provably match (when there is a known approx-
imation threshold, such as for max-3SAT or min set cover), in others they currently match
(such as for min vertex cover or sparsest cut), and in the remaining cases the theory of NP-
completeness does not appear to apply, because it deals with decision problems rather than
search problems. Try to establish connections between previously defined concepts (such
as PPAD-completeness) and gaps between approximation and estimation. (To appreciate
the subtleties involved consider the following example. Finding a locally maximal cut is
PLS-complete, but the known approximation ratios for max-cut [25] are better than those
that local search gives. Hence PLS-completeness by itself is not an obstacle to bridging the
gap between estimation and approximation.)

Development of techniques. There are some proof techniques that originally were
nonconstructive, and algorithmic versions of them (or of special cases) were discovered
only later. See for example [7] for the local lemma and [4] for the regularity lemma. Design
algorithmic versions of nonconstructive arguments, regardless of any immediate applica-
bility to combinatorial optimization.

Random instances. Nonconstructive arguments often show that random instances
(such as random 3CNF formulas) are likely to either have or not have solutions (depend-
ing on the density of the underlying instance). Find algorithmic versions of these results.
These type of questions have indirect connections to approximation algorithms, and may
well require similar sets of techniques (see [15] for example).

3 Examples

Below we list some examples of current gaps between approximation ratios and estimation
ratios (or conjectured estimation ratios).

Max-min allocation.
In max-min allocation problems, there is a threshold t, a set of m items, a set of n players,

and nonnegative valuations vij that for every player i and item j specify the value of item
j to player i. The goal is to allocate items to the players in a way that every player gets
total value (sum of his values for the items allocated to him) at least t. This problem is
NP-hard. A linear program relaxation of this problem provides an upper bound on the
maximum possible value of t. It is known that the gap between this upper bound and true
optimum may be Ω(

√
n). However, in an interesting special case, the restricted assignment

version, there is a nonconstructive proof (in fact, two different nonconstructive proofs by
now, [18] using the local lemma, [5] using local search) that the gap is at most constant.
Hence the value of the linear program provides a constant factor estimation for the restricted
assignment version of the max-min allocation problem. No constant factor approximation
ratio is known for this problem.

Metric TSP.
The Held-Karp conjecture states that the value of a certain linear program provides a

4/3 estimation for metric TSP in undirected graphs. If true, this conjecture provides a 4/3
estimation ratio for metric TSP, which is better than the known approximation ratio of 3/2.

For undirected graphs it is known that the integrality gap of the LP is no better than
4/3 and no worse than 3/2. For directed graphs, the integrality gap is known to be no better
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than 2, and no sublogarithmic approximation ratios are known.
Edge colorings in multigraphs.
There is a famous theorem by Vizing that states (and gives an algorithm) that in every

simple graph there is a legal edge coloring with one more color than the maximum degree
in the graph. This gives an approximation of the edge chromatic number within additive 1.
It was conjectured (e.g., by Seymour) that a similar result can be extended to multigraphs,
using a linear programming relaxation. If true this would provide an estimation algorithm
for the edge chromatic number within an additive error of 1. There are nonconstructive
proofs (using the local lemma) that give a 1 + ε multiplicative estimation when the edge
chromatic number of multigraphs is sufficiently large [29].

Discrepency.
Many discrepancy problems can be viewed as coloring problems on hypergraphs. The

goal is to color the vertices such that every hyperedge remains nearly balanced (has roughly
the same number of vertices of each color). Techniques used in the proofs that low dis-
crepancy colorings exist are sometimes constructive (such as the Beck-Fiala theorem that
iteratively uses basic feasible solutions of linear programs), and sometimes nonconstructive
(such as the first use of the Lovasz local lemma, or Spencer’s proof that ”six standard de-
viations suffice” that uses the pigeon hole principle in a nonconstructive way). The reader
is referred to [9, 31] were references to these and other results can be found. In general, it
is often the case that statements involving discrepancy involve nonconstructive proofs (see
also [2, 16]).

It would be desirable to replace some of the nonconstructive proofs in discrepancy the-
ory by algorithmic proofs (as was done by Beck in the context of the local lemma). Perhaps
more ambitiously, improve some of the known discrepancy bounds. (For example, it is
conjectured that the Beck-Fiala theorem can be improved when the degrees are large.)

Graph bandwidth.
A linear arrangement of a graph is a numbering of its n vertices from 1 to n. The

bandwidth of the linear arrangement is the maximum difference between numberings of
endpoints of an edge. The bandwidth of a graph is the bandwidth of its minimum bandwidth
linear arrangement. The local density of a graph is a natural lower bound on the bandwidth.
It is known that the gap between bandwidth and local density can be Ω(log n), and there
is an algorithm that finds a linear arrangement of bandwidth O(log3.5 n) times the local
density [14]. It is reasonable to conjecture that the maximum ratio between bandwidth and
local density is O(log n). If true, then local density provides an O(log n) estimation ratio
for the bandwidth. The best approximation ratio known for the bandwidth is currently
O(log3 n) [13].

Random 3CNF.
Work on refuting dense random 3CNF formulas offers a lot of interplay between exis-

tential and algorithmic arguments. For example, it is shown in [20] that formulas of density
above n0.4 are likely to have polynomial size witnesses for nonsatisfiability. There is no
known efficient algorithm for finding these witnesses. Or another example, the notion of
even covers, originally studied in coding theory, is used in [20, 17] as part of refutation algo-
rithms and witnesses. Further progress is hampered because we are missing an existential
result – we do not know how to prove that small even covers must exist at densities below
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√
n, and because we are missing an algorithmic result – we do not know how to find small

even covers when they do exist.

4 Conclusions

The list of references is not based on a careful study of all related references. Hence it
may miss some important references, and include some papers whose relevance to this
manuscript is questionable. A short overview of the topics addressed by some of the refer-
ences is provided.

A well known nonconstructive proof technique is the Lovasz local lemma (see for ex-
ample [3]). It had been used in the design of estimation algorithms [30, 22, 19, 18]. In some
cases, algorithmic versions of the local lemma are known [7, 12].

The use of linear programming relaxations is common in approximation algorithms.
Sometimes general principles (such as the existence of basic feasible solutions) can be used
in order to show show the existence of high quality integer solutions (as in [8]). In some
cases the underlying linear programs are of exponential size (as in [2, 16]). These lead nat-
urally to estimation algorithms rather than approximation algorithms. Sometimes, the re-
sult inferred from the exponential LP may be obtained by a more direct efficient algorithm
(see [23] for one such example), leading to approximation algorithms.

In the context of random instances of CNF formulas there are many nonconstructive
arguments that lack a constructive counterpart. See examples of work in this area in [1, 11,
15, 17, 20, 21].

Local search is a common algorithmic tool that does not always lead to polynomial
time algorithms [27, 28, 33, 35]. When used for optimization problems, it might result in
estimation algorithms rather than approximation algorithms [5].

There are certain complexity classes that attempt to capture nonconstructive principles.
See [32, 10] for example.

In the context of counting problems [36] there are many randomized approximation
algorithms (such as [34]). In our terminology, we would view them as estimation algorithms
rather than approximation algorithms, since they are only required to output an estimation
for the number of solutions, rather than to list the solutions (which in typical situations
would require exponential output size).

In conclusion, the distinction between approximation and estimation algorithms has
been an explicit or implicit part of research for many years. The purpose of this manuscript
is to bring this distinction and the research opportunity that it offers to the awareness of
more researchers.
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ABSTRACT. We survey determinacy, definability, and complexity issues of Banach-Mazur games on
finite and infinite graphs.
Infinite games where two players take turns to move a token through a directed graph, thus tracing
out an infinite path, have numerous applications in different branches of mathematics and computer
science. In the usual format, the possible moves of the players are given by the edges of the graph;
in each move a player takes the token from its current position along an edge to a next position. In
Banach-Mazur games the players instead select in each move a path of arbitrary finite length rather
than just an edge. In both cases the outcome of a play is an infinite path. A winning condition is thus
given by a set of infinite paths which is often specified by a logical formula, for instance from S1S,
LTL, or first-order logic.
Banach-Mazur games have a long tradition in descriptive set theory and topology, and they have re-
cently been shown to have interesting applications also in computer science, for instance for planning
in nondeterministic domains, for the study of fairness in concurrent systems, and for the semantics
of timed automata.
It turns out that Banach-Mazur games behave quite differently than the usual graph games. Of-
ten they admit simpler winning strategies and more efficient algorithmic solutions. For instance,
Banach-Mazur games with ω-regular winning conditions always have positional winning strate-
gies, and winning positions for finite Banach-Mazur games with Muller winning condition are com-
putable in polynomial time.

1 Banach-Mazur Games

Game playing is a powerful metaphor that fits situations in which interaction between au-

tonomous agents plays a central role. Indeed, numerous problems in computer science and

other fields can be understood, mathematically treated, and solved in terms of appropriate

mathematical models of games. There is of course a large variety of game models, leading

to vastly different mathematical theories of games.

A prominent class of games, which is particularly useful for problems such as the syn-

thesis and verification of interactive systems (with non-terminating behaviour and ongoing

interaction between system and environment), or for the evaluation of fixed point logics and

other important specification formalisms, are infinite games, where two players take turns

to move a token through a directed graph thus tracing out an infinite path. The objectives of

the players are given by suitable properties of infinite paths, often specified by logical for-

mulae, for instance frommonadic second order logic (S1S), linear-time temporal logic (LTL),

or first-order logic (FO). Some central mathematical questions concerning such games are:

Which games are determined (in the sense that from each position, exactly one player has a

winning strategy)? How to compute winning positions? Are there optimal strategies, and if

so, what is their complexity and how to compute them efficiently? Howmuch knowledge of

the play history is necessary to compute an optimal next action? In what logical formalisms

can we define winning positions and winning strategies? And so on.
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These questions are not just of theoretical interest. They are in fact standard design and

verification problems (of interactive systems) in purified form. For background on such

methodologies, based on the interplay between logic, automata, and games, see e.g. [8].

In the usual format of infinite games on graphs, the possible moves of the players are

given by the edges of the graph; in each move a player takes the token from its current

position along an edge to a next position. Here we study a different variant of graph games

where, in each move, the players select a path of arbitrary finite length rather than just an

edge. We call these games Banach-Mazur games on graphs.

DEFINITION 1. A Banach-Mazur game BM(G, v,Win) is given by an a directed graph G =
(V, E) without terminal nodes, an initial position v ∈ V, and a winning condition Win ⊆
Paths(G, v) where Paths(G, v) ⊆ Vω denotes the set of infinite paths through G that start at

node v.

The game BM(G, v,Win) is played by two players, called Player 0 and Player 1. In the

opening move, Player 0 selects a finite, non-empty path x0 from v through G. The players

take turns, extending in each move the finite path x0x1 . . . xm−1 played so far by a new

segment xm (which again has to be a non-empty and finite path). In an infinite number of

moves, the players thus trace out an infinite path π ∈ Paths(G, v). Player 0 wins the play, if

π ∈ Win, otherwise Player 1 wins.

In somewhat different forms, Banach-Mazur games have been extensively studied in

descriptive set theory (see [13, Chapter 6] or [14, Chapter 8.H]) and topology (see e.g. [21]).

In their original variant (see [15, pp. 113–117]), the winning condition is a set W of real

numbers; in the first move, one of the players selects an interval d1 on the real line, then

her opponent chooses an interval d2 ⊂ d1, then the first player selects a further refinement

d3 ⊂ d2 and so on. The first player wins if the intersection
⋂

n∈ω dn of all intervals contains

a point ofW, otherwise her opponent wins.

A similar game can be played on any topological space. Let V be a family of subsets

of a topological space X such that each V ∈ V contains a non-empty open subset of X, and

each nonempty open subset of X contains an element V ∈ V . In the Banach-Mazur game

defined on X,V with winning winning condition W ⊆ X, the players take turns to choose

sets V0 ⊃ V1 ⊃ V2 ⊃ . . . in V , and Player 0 wins the play if
⋂

n<ω Vn ∩Win 6= ∅. We refer

to [21] for a survey on topological games and their applications to set-theoretical topology.

Notice that Banach-Mazur games on graphs are just a special case of this general topological

setting. Indeed, the set Paths(G, v) of infinite paths through G from v is a topological space

whose basic open sets are O(x), the sets of infinite prolongations of some finite path x ∈
FinPaths(G, v). Thus, when a player prolongs the finite path x played so far to a new path

xy, she reduces the set of possible outcomes of the play from O(x) to O(xy), and she wins

an infinite play x0x1 . . . if, and only if
⋂

n<ω O(x0 . . . xn−1) ∩Win 6= ∅.

Applications of Banach-Mazur games. Banach-Mazur games on graphs have recently ap-

peared in several application areas in computer science. Pistore and Vardi used a variation

of Banach-Mazur games for planning in nondeterministic domains [20]. In their scenario,

the desired infinite behaviour of a system, which should be enforced by a plan, is specified

by formulae in linear temporal logic LTL. It is assumed that the outcome of actions may be
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nondeterministic. Hence a plan does not have only one possible execution path in the plan-

ning domain, but an execution tree. Between weak planning (some possible execution path

satisfies the specification) and strong planning (all possible outcomes are consistent with

the specification), there is a spectrum of intermediate cases such as strong cyclic planning:

every possible partial execution of the plan can be extended to an execution reaching the

desired goal. In this context, planning can be modelled by a game between a friendly player

E and a hostile player A selecting the outcomes of nondeterministic actions. The game is

played on the execution tree of the plan, and the question is whether the friendly player E

has a strategy to ensure that the outcome (a path through the execution tree) satisfies the

given LTL-specification. In contrast to the general scenario of Banach-Mazur games, the

main interest here are games with finitely many alternations between players. Pistore and

Vardi show that the planning problems in this context can be solved by automata-based

methods in 2EXPTIME.

Banach-Mazur games appear also in the characterisation of fair behaviour in concurrent

systems. There are many different notions of fairness. A very convincing one [23] defines a

fairness property in a transition system as a set of (infinite) runs that is topologically large

(co-meager). This is equivalent to say that, in an associated Banach-Mazur game, the first

player (the scheduler) has a winning strategy to ensure fairness. It is a consequence of

the positional determinacy of Banach-Mazur games with ω-regular winning conditions (see

Theorem 17 below) that, on finite graphs, ω-regular fairness properties coincide with ω-

regular properties that are probabilistically large under positive Markov measures. Hence

, any ω-regular fairness property has probability one under randomised scheduling. As a

further consequence, one can use results about finite Markov chains for checking whether a

finite system is fairly correct with respect to LTL or ω-regular specifications.

Finally, Banach-Mazur games have recently been used to describe the semantics of

timed automata [1, 2]. Timed automata are an important model for verification, but for

many purposes, its idealizedmathematical features such as infinite precision, instantaneous

events lead to violations of specifications due to unlikely sequences of events. Therefore al-

ternative semantics for the satisfaction of LTL specifications have been proposed, based on

probability or on topological largeness, to rule out unlikely runs. By means of Banach-

Mazur games, it has been established, that the two semantics coincide.

Here we study Banach-Mazur games on graphs, and focus on the above-mentioned

central mathematical questions, such as determinacy, the structure and algorithmic proper-

ties of winning strategies, and the definability of winning regions.

Acknowledgement. This survey is based on joint research with Dietmar Berwanger and

Stephan Kreutzer.

2 Topology and determinacy

For any arena (G, v) of a Banach-Mazur game, the space Paths(G, v) is endowed with a

topology whose basic open sets are O(x), the sets of infinite prolongations of some finite

path x ∈ FinPaths(G, v). A set X ⊆ Paths(G, v) is open if it is a union of basic open sets

O(x), i.e., if X = W ·Vω ∩ Paths(G, v) for some setW ⊆ V∗. A tree T ⊆ FinPaths(G, v) is a
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set of finite paths that is closed under prefixes. It is easily seen that X ⊆ Paths(G, v) is closed
(i.e., the complement of an open set) if, and only if, it is the set of infinite branches of some

tree T, denoted X = [T]. Notice that Paths(G, v) itself is a closed set in the space Vω, the set

of all infinite sequences on V.

The class of Borel sets is the closure of the open sets under countable union and com-

plementation. Borel sets form a natural hierarchy of classes Σ
0
η for 1 ≤ η < ω1, whose first

levels are Σ
0
1 (or G), the collection of all open sets, Π

0
1 (or F), the closed sets, Σ

0
2 (or Fσ), the

countable unions of closed sets, and Π
0
2 (or Gδ), the countable intersections of open sets. In

general, Π
0
η contains the complements of the Σ

0
η-sets, Σ

0
η+1 is the class of countable unions

of Π
0
η-sets, and Σ

0
λ =

⋃

η<λ Σ
0
η for limit ordinals λ.

We recall that a set X in a topological space is dense, if its intersection with every (basic)

non-empty open set is non-empty.

LEMMA 2. For any strategy g of Player 1 in a Banach-Mazur game on a graph (G, v), the set
Plays(g) of all plays that are consistent with g is a countable intersection of dense open sets.

PROOF. Clearly, Plays(g) =
⋂

n∈ω Playsn(g) where Playsn(g) is the set of all plays that may

arise if Player 1moves according to g during her first nmoves. Obviously, Playsn(g) is open.
But it is also dense, since every finite path x can be used by Player 0 as her opening move,

so there must be a prolongation of x in Playsn(g), which means that O(x) ∩ Playsn(g) 6= ∅.

Notice that, if X ⊆ Paths(G, v) is a dense open set, then any finite path x has a finite

prolongation xy such that O(xy) ⊆ X. In a topological sense, the dense open sets are large

sets, and so is any countable intersection of such. Hence, by any strategy in a Banach-Mazur

game, Player 1 can exclude only a topologically small set of plays. This means that she can

only have a winning strategy if the set Win of winning plays for Player 0 is small, and her

own set of winning plays, Paths(G, v) \W, is large.

For strategies of Player 0, the situtation is slightly different, since she starts the play.

Hence, for any strategy f of Player 0, Plays( f ) ⊆ O(x) where x is the opening move by

f . After the first move, the remaining game is one where the role of the players have been

switched (i.e. Player 1 now moves first). By the same argument as in the previous lemma

we infer that the set of plays consistent with a strategy of Player 0 is large inside some basic

open set of plays.

LEMMA 3. For any strategy f of Player 0 in a Banach-Mazur game, Plays( f ) is a countable
intersection of dense open subsets of O(x), where x is the opening move by f .

The observations that we made on the set of plays that are consistent with strategies in

Banach-Mazur games give a quite precise characterisation, in term of topological notions,

of the games for which Players 0 and 1 have winning strategies.

A set in a topological space is nowhere dense if it is not dense in any open set or, equiva-

lently, if its complement contains a dense open set. A set is meager (or topologicaly small) if

it is a union of countably many nowhere dense sets, and co-meager (or topologically large) if

its complement is meager. A topological space is called a Baire space if no non-empty set is

both open and meager, or equivalently, if any countable intersection X =
⋂

n<ω Xn of dense

open sets Xn is dense. The spaces Paths(G, v) are Baire spaces since, for any finite path x,
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we find an infinite extension xy0y1 · · · ∈ X by choosing, for each n, a finite prolongation

xy0 . . . yn of xy0 . . . yn−1 such that O(xy0 . . . yn) ⊆ Xn. In Baire spaces a set is co-meager if,

and only if, it contains a dense Π
0
2 set.

Hence we have shown that, in Banach-Mazur games, Plays(g) is co-meager for every

strategy g of Player 1 and Plays( f ) is co-meager in some basic open set for every strategy f

of Player 0. Conversely, for any meager set W ⊆ Paths(G, v), Player 1 has a strategy g such

that Plays(G) ∩W = ∅. Indeed, if W =
⋃

n<ω Xn with Xn nowhere dense, then in her n-th

move, Player 1 prolongs the path constructed so far to a path xn such that O(xn) ∩ Xn = ∅

which is always possible since the complement of Xn contains a dense open set. Clearly

every play consistent with this strategy avoids W. Analogously, for every set that is co-

meager in some basic open set, Player 0 has a strategy f such that Plays( f ) ⊆ W.

Our observations are summarized by the Banach-Mazur-Theoremwhich gives a precise

characterisation of the games where Player 0 or Player 1 has a winning strategy.

THEOREM 4.[Banach-Mazur]

(1) Player 1 has a winning strategy for the game BM(G, v,Win) if, and only if, Win ⊆
Paths(G, v) is meager.

(2) Player 0 has a winning strategy for BM(G, v,Win) if, and only if, there exists a finite
path x ∈ FinPaths(G, v) such that O(x) \Win is meager in Paths(G, v) (i.e., Win is
co-meager in some basic open set).

This result appears, in different terms, in the Scottish Book [15, Problem 43] where it

is mentioned as a conjecture due to Mazur, with an addendum by Banach, dated August 4,

1935 saying that “Mazur’s conjecture is true”. The Banach-Mazur-Theorem was published

for the first time by Mycielski, Świerczkowski, and Zieba [18], without proof; the first pub-

lished proof is due to Oxtoby [19].

¿From Theorem 4 we easily get strong results on determinacy of Banach-Mazur games.

COROLLARY 5. Every Banach-Mazur game BM(G, v,Win) such thatWin ⊆ Paths(G, v) has
the Baire property is determined.

Recall that a set X in a topological space has the Baire property if its symmetric dif-

ference with some open set is meager. Since Borel sets have the Baire property, it follows

that Banach-Mazur games are determined for Borel winning conditions. Standard winning

conditions used in computer science applications (in particular the ω-regular winning con-

ditions) are contained in very low levels of the Borel hierarchy.

A converse to Corollary 5 in terms of specific games does not hold. Indeed one can

construct determined games with winning conditions of arbitrary complexity by combining

a trivial game won by Player 0 with an arbitrarily complex game in such a way that Player 0

can avoid the complicated part.

A more interesting question is whether one can prove a converse for winning condi-

tions that guarantee determinacy in the following sense. LetW ⊆ Cω be a set of infinite words

on some alphabet C. On every graph G = (V, E) equipped with a function Ω : V → C, the

set W defines a winning condition Ω−1(W) := {π ∈ Paths(G, v) : Ω(π) ∈ W}. We then

say that W guarantees determinacy for Banach-Mazur games if all games with a winning

condition Ω−1(W) are determined.
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We can link the Baire property with the determinacy of Banach-Mazur game in the

following class-wise sense.

THEOREM 6. For every class Γ ⊆ P(Cω) the following are equivalent.

(1) All winning conditionsW ∈ Γ guarantee determinacy for Banach-Mazur.
(2) All setsW ∈ Γ have the Baire property.

PROOF. IfW ⊆ Cω has the Baire property then so has Ω−1(W), for all functions Ω : V → C

that label the nodes of a graph G = (V, E) with elements of C. Thus, by Corollary 5 W

guarantees determinacy.

For the converse, suppose that W ⊆ Cω does not have the Baire property. To construct

a non-determined game, let G(C) be the complete directed graph on C itself (and let Ω be

the identity function on C). We do not useW directly as a winning condition, but modify it

as follows. Let S := {x ∈ C∗ : O(x) \W is meager} and let Z be the symmetric difference

ofW with the open set Y =
⋃

x∈S O(x).
We claim that the Banach-Mazur game on G(C) with winning condition Z is not de-

termined. Since Z is the symmetric difference of W with an open set, it cannot be meager

(otherwiseW would have the Baire property), hence Player 1 does not have a winning strat-

egy. So suppose that Player 0 has a winning strategy. This can only happen if Z is co-meager

in some basic open set O(x). For x ∈ S, this is impossible since O(x) ∩ Z = O(x) \W is

meager. Hence x ∈ C∗ \ S. But then O(x) ∩ Y = ∅. Otherwise we would have some y ∈ S

such that O(x) ∩ O(y) 6= ∅, which means that O(x) ⊆ O(y) or O(y) ⊆ O(x). In either

case, since O(y) ∩ Z = O(y) \W is meager, Z cannot be co-meager in O(x).
Now, since O(x) ∩ Y = ∅, we have O(x) ∩ Z = O(x) ∩W, and if this set were co-

meager in O(x) then x ∈ S, a contradiction.

Thus, none of the players has a winning strategy.

A specific example of a non-determined Banach-Mazur game can be obtained by modi-

fying a well-known construction on the basis of ultrafilters. Let G2 be the complete directed

graph with vertices 0,1, and for any setU ⊆ P(ω), let letWU be the set of infinite sequences

x0x1x2 · · · ∈ {0, 1}ω such that {n : xn = 0} ∈ U.

An ultrafilter over ω is a set U ⊆ P(ω) that does not contain ∅, that includes with any

set also all its supersets, with any two sets also their intersection, and such that for any set

x ⊆ ω either x ∈ U or ω \ x ∈ U. An ultrafilter is free if it contains all co-finite sets. As a

consequence, it does not contain any finite set. The Boolean Prime Ideal Theorem (a weak

form of the Axiom of Choice) implies that free ultrafilters exist.

PROPOSITION 7. If U is a free ultrafilter, then the Banach-Mazur game on G2 with winning
conditionWU is not determined.

PROOF. Without loss of generality, we may assume that Player σ plays in each move a

finite word in σ+. Hence the game is equivalent to the game where the players play a

strictly increasing sequence a0 < a1 < a2 < . . . and Player 0 wins the resulting infinite play

if, and only if, the set [0, a0) ∪ [a1, a2) ∪ [a3, a4) ∪ . . . belongs to U.

Assume that Player 0 has a winning strategy f which maps any increasing sequence

a0 < a1 < · · · < a2n−1 of even length to a2n = f (a0a1 . . . a2n−1) > a2n−1. We consider two

intertwined counter-strategies of Player 1, essentially forcing Player 0 to simultaneously



370 BANACH-MAZUR GAMES ON GRAPHS

perform two plays against herself. In reply to the first move a0, Player 1 selects an arbitrary

a1 > a0 and then sets up the two plays as follows: In the first one she replies to a0 by a1 and

waits for the answer a2 = f (a0a1) by Player 0. She then uses a2 as her own reply to a0 in the

second play and gets the answer a3 = f (a0a2) by Player 0, which she now uses as her next

move in the first play. There Player 0 responds by a4 = f (a0a1a2a3) which is again used by

Player 1 as her answer to a0a2a3 in the second play. And so on.

In this way, the two infinite plays result in sequences a0 < a1 < a2 < . . . and a0 <

a2 < a3 < . . . . Since Player 0 plays with her winning strategy in both plays. it follows that

X = [0, a0)
⋃

n∈ω[a2n+1, a2n+2) ∈ U, but also X′ = [0, a0] ∪
⋃

n>0[a2n, a2n+1) ∈ U. By closure

under intersection, it follows that X ∩X′ = [0, a0) ∈ U. ButU is a free ultrafilter, so it cannot

contain a finite set.

It follows by the same argument that Player 1 cannot have a winning strategy.

3 Determinacy by simple strategies

In general, strategies can be very complicated as they may depend on the entire history of

a play. However, there are interesting classes of games that are determined via relatively

simple winning strategies. We will discuss several kinds of restricted strategies:

(1) Decomposition invariant strategies are strategies that depend only on the finite path

that has been produced so far, and not on its decomposition into the moves of the

players. Thus, a decomposition invariant strategy is a function assigning to each fi-

nite path a finite prolongation. We will show that, whenever a player has a winning

strategy in a Banach-Mazur game, then she also has one that is decomposition invari-

ant.

(2) Positional strategies (also called memoryless strategies) depend only on the current

position, and not on the history of the play. On a game graph G = (V, E) a po-

sitional strategy is a function f : V → V∗ assigning to every node v a finite path

f (v) ∈ FinPaths(G, v). It is easy to find determined games that require non-positional

winning stategies, but we will prove that all Banach-Mazur games with ω-regular

objectives are determined via positional winning strategies.

(3) More generally, strategies with memory M depend on the history of the play in a re-

stricted way, via a memory structure M, consisting of a set of memory locations and

an update function that changes the memory location as the play proceeds. Strategies

with a finite memory structure can be implemented by a finite automaton. We will

show that, for Banach-Mazur games, finite memory structures are irrelevant in the

sense that winning strategies with finite memory can always be transformed into po-

sitional winning strategies. This is in sharp contrast to the usual graph games where

already quite simple ω-regular winning conditions (such as, in particular, Muller con-

ditions) lead to games that are determined by finite-memory strategies , but not by

positional ones.

3.1 Decomposition invariant strategies
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DEFINITION 8. A decomposition invariant strategy in a Banach-Mazur game on a graph

(G, v) is a function f : FinPaths(G, v) → FinPaths(G, v) such that x ≤ f (x) for all x.

THEOREM 9. Every Banach-Mazur game that is determined is also determined via a decom-
position invariant strategy.

PROOF. Suppose that Player 1 has a winning strategy for the game BM(G, v,Win). Then
Win =

⋃

n<ω Xn with Xn nowhere dense. This means that the complement of each Xn

contains a dense open setYn. Hence there exists a function gn assigning to each finite path y a

prolongation gn(y) such that O(gn(y)) ⊆ Yn. We define a decomposition-invariant strategy

g as follows. Given a finite path x ∈ FinPaths(G, v), there are only finitely many n < ω such

that gn(y) ≤ x for some y ∈ FinPaths(G, v). Take the minimal n such that this is not the case

and set g(x) = gn(x).
It remains to show that g is a winning strategy for Player 1. Let π be any infinite play

that is consistent with g. For every n < ω there exists a prefix y such that gn(y) < π. Hence

π ∈ Yn for all n, which means that π is won by Player 1.

The argument for Player 0 is analogous

3.2 Positional determinacy

To start, we present a simple example of a Banach-Mazur game that is determined, but does

not admit a positional winning strategy.

Example 10 Let G2 be the completely connected directed graph with nodes 0 and 1, and let the
winning condition for Player 0 be the set of infinite sequences with infinitely many initial segments
that contain more ones than zeros. Clearly, Player 0 has a winning strategy for this game, but not a
positional one.

Note that this winning condition is on the Π2-level of the Borel hierarchy. As we show

next, this is the lowest level with such an example.

PROPOSITION 11. If Player 0 has a winning strategy for a Banach-Mazur game with a
winning conditionWin ∈ Σ

0
2, then she also has a positional winning strategy.

PROOF. Suppose that Player 0 has awinning strategy f for the Banach-Mazur game BM(G, v,Win)
such that Win is a countable union of closed sets. We have Win =

⋃

n<ω[Tn] where each

Tn ⊆ FinPaths(G, v) is closed under prefixes. Further, we can assume that the winning

strategy f is decomposition invariant. We claim that, in fact, Player 0 can win with one

move, i.e. there is a finite path x such that O(x) ⊆ Win.

We construct this move by induction. Let x1 be the initial path chosen by Player 0

according to f . Let i ≥ 1 and suppose that we have already constructed a finite path xi 6∈
⋃

n<i Tn. If xiy ∈ Ti for all finite y, then all infinite plays extending xi remain in Win, hence

Player 0 wins with the initial move w = xi. Otherwise choose some yi such that xiyi 6∈ Ti,

and suppose that Player 1 prolongs the play from xi to xiyi. Let xi+1 := f (xiyi) the result of
the next move of Player 0, according to her winning strategy f .

If this process did not terminate, then it would produce an infinite play that is consistent

with f and won by Player 1. Since f is a winning strategy, this is impossible. Hence there
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exists somem < ω such that xmy ∈ Tm for all y. Thus, if Player 0 moves to xm in her opening

move, then she wins, no matter how the play proceeds afterwards. In particular, Player 0

wins with a positional strategy.

While many important winning conditions are outside Σ
0
2, they may well be Boolean

combinations of Σ
0
2-sets. For instance, this is the case for parity conditions, Muller condi-

tions, and more generally, all ω-regular winning conditions. In the classical framework of

infinite games on graphs (where moves are along single edges rather than paths) it is well-

known that parity games admit positional winning strategies [6, 17, 9], whereas there are

simple games with Muller conditions that require strategies with some memory. We will

see that for Banach-Mazur games, the class of winning conditions guaranteeing positional

winning strategies is much larger than for classical graph games.

3.3 Banach-Mazur games with Muller winning conditions

A Muller condition is any property of infinite sequences x ⊆ Cω that depends only on

which symbols c ∈ C occur infinitely often in x. Muller conditions are of crucial importance

in automata theory and in the theory of infinite games. It is one of the standard acceptance

conditions for automata on infinite words or infinite trees

DEFINITION 12. A Muller condition on a set C is written in the form (F0,F1) where F0 ⊆
P(C) and F1 = P(C) \ F0. Given a game graph G = (V, E) whose nodes are labelled by

a function Ω : V → C, a play π ∈ Paths(G, v) is won by Player σ if, and only if, the set of

colours occurring infinitely often on π belongs to Fσ.

Usually it is assumed that the set C of colours is finite. In that case there is a pre-

cise characterisation, due to Zielonka [24] of the Muller winning conditions that guarantee

positional determinacy for the classical form of graph games. It sates that all games with

winning condition (F0,F1) are positionally determined if, and only if, neither F0 nor F1

contains a strong split, which means that there do not exist two sets X,Y ∈ Fσ such that

X ∩Y 6= ∅ and X ∪Y ∈ F1−σ.

However, as we show now, all Muller conditions (on a finite set of colours) guarantee

positional determinacy for Banach-Mazur games.

PROPOSITION 13. All Banach-Mazur games BM(G, v0, (F0,F1)) with a Muller winning
condition on a finite set of colours are positionally determined.

PROOF. We write w ≥ v to denote that position w is reachable from position v. For every

position v ∈ V, let C(v) be the set of colours reachable from v, that is, C(v) := {Ω(w) : w ≥
v}. Obviously, C(w) ⊆ C(v) whenever w ≥ v. In case C(w) = C(v) for all w ≥ v, we call v

a stable position. Note that from every u ∈ V some stable position is reachable. Further, if v

is stable, then every reachable position w ≥ v is stable as well.

We claim that Player 0 has a winning strategy in BM(G, v, (F0,F1)) if, and only if, there

is a stable position w that is reachable from the initial position v, so that C(w) ∈ F0.

To see this, let us assume that there is such a stable position v with C(w) ∈ F0 for a

stable position w ≥ v. Then, for every u ≥ w, we choose a path p from u so that, when

moving along p, each colour of C(u) = C(w) is visited at least once, and set f (u) := p. In
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case v is not reachable from w, let f (v) be some path that leads from v to w. Now f is a

positional winning strategy for Player 0 because, after the first move, no colours other then

those in C(w) are seen. Moreover, every colour in C(w) is visited at each move of Player 0,

hence, infinitely often.

Conversely, if for every stable position w reachable from v we have C(w) ∈ F1, we can

construct a winning strategy for Player 1 in a similar way.

Note that in a finite arena all positions of a strongly connected component that is termi-

nal, i.e., with no outgoing edges, are stable. Thus, the above characterisation translates as

follows: Player 0 wins the game if, and only if, there is a terminal component whose set of

colours belongs to F0. Obviously this can be established in linear time w.r.t. the size of the

arena and a suitable description of the Muller condition.

COROLLARY 14. On a finite arenaG, Banach-Mazur gameswith aMuller winning condition
(F0,F1) can be solved in time O(|G| · |Fσ|).

We remark that solving single-step graph games with Muller winning conditions is

PSPACE-complete. This is not too difficult to derive from the analysis presented in [5]. A

detailed complexity analysis, for a number of different presentations of Muller conditions,

can be found in [11].

3.4 Elimination of finite memory

We introduce a general notion of a memory structure and of a strategy with memory. The

memory can be finite, as in the finite memory strategies studied for instance in [5], or infinite

is in the strategies used in [7].

DEFINITION 15. A memory structure for a game graph G = (V, E) is given by a triple

M = (M,m0, update), with a set of memory states M, an initial state m0 and a memory up-

date function update : M× V → M. The size of the memory is the cardinality of the set M.

A strategy with memory M for a Banach-Mazur game on G is given by a next-move function

f : V × M → V∗ such that f (v,m) ∈ FinPaths(G, v) for all v ∈ V,m ∈ M.

Notice that the local memory update function extends to a function memory : M ×
V∗ → V, where memory(m, x) is the memory state that is reached by a sequence of updates

along a path x, starting with memory state m. This function is defined inductively by

memory(m, ε) = m, memory(m, xv) := update(memory(m, x), v).

In particular, if a play has gone from initial position v0 through a finite path x ∈
FinPaths(G, v0) ending at node v, then the memory state is m = memory(m0, x), and the

strategy defined by M and F will prolong x by the path F(v,m).

Wewill say that a game is determined viamemoryM if one of the players has awinning

strategy with memory M.
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THEOREM 16. ABanach-Mazur game that is determined via a finite-memory winning strat-
egy is in fact positionally determined.

PROOF. Let us assume that Player 0 wins a Banach-Mazur game on (G, v0) with a strategy

f : V × M → V∗ based on a finite memory structure M = (M,m0, update). For any node

v ∈ V, we denote by M(v) the set of memory locations memory(m0, x) such that x is path

from v0 to v that may arise as an initial segment of some play consistent with f .

M(v) := {memory(m0, x) : x prolongs f (v0,m0) and leads to v}.
Let {m1,m2, . . . ,mn} be an enumeration of M(v), in which the initial memory m0 is

taken first, in case it belongs toM(v). We construct paths y1 < y2 < · · · < yn ∈ FinPaths(G, v).
First, set y1 := f (v,m1). Then, for 1 ≤ i < n, let yi+1 be the concatenation of yi with the path

f (vi,memory(mi, yi)) where vi is the end node of yi. Finally, set f
′(v) := yn.

Clearly f ′ is a positional strategy. We claim that it is a winning strategy for Player 0.

Consider any play π that is consistent with f ′. Cleary f (v0,m0) is an initial segment of π.

Further, suppose that after some finite number of moves, an initial segment x ending at

position v has been produced. Player 0 now prolongs x by the path f ′(v).
We claim that the path f ′(v) can be written in the form z1z2z3 such that there exist

v′ ∈ V and m′ ∈ M with

• z1 ends at node v
′

• memory(m0, xz1) = m′,
• z2 = f (v′,m′)
Indeed, if M(v) = {m1, . . . ,mn}, we have memory(m0, x) = mi for some i ≤ n. Let

z1 := yi. Then v′ = vi, m
′ = memory(m0, xyi) = memory(mi, yi), and f ′(v) = z1 f (v

′,m′)z3
for appropriate z3.

In other words, every move of Player 0 has some “good part” z2 that would also have

been produced by the strategy f if Player 0 had to choose at the position v′ with current

memeory state m′. But this means that the play cannot be distinguished from a play where

Player 0 always moved according to the strategy f while all the “bad parts” were produced

by Player 1. Hence the play is also consistent with f and therefore won by Player 0.

The same construction works for Player 1, if we define M(v) := {memory(m0, x) :

x is a path from v0 to v}.
This result has very interesting consequences for Banach-Mazur games with ω-regular

winning conditions. Let G = (V, F) be a game graph with a colouring Ω : V → C of

the nodes by a finite number of colours and consider winning conditions given by an ω-

regular setW ⊆ Cω. Such conditions can by defined by a formula in some appropriate logic

over infinite paths. In the most general case, we have S1S-formulae (i.e. MSO-formulae on

infinite paths with vocabulary {<}∪ {Pc : c ∈ C}). It is well known that every S1S-definable

class of infinite words can be recognised by a deterministic Muller or parity automaton (see

e.g. [8]). Hence, by a standard construction, any game on a graph G with an ω-regular

winning condition can be reformulated as a game on a graph G × M, for a finite memory

structure M, with a Muller (or parity) winning condition. This means that we get for G a

winning strategy with memory M for one of the players. Theorem 16 tells us that in the case

of Banach-Mzur games, we can get rid of this finite memory.
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THEOREM 17. All Banach-Mazur gameswith ω-regular winning conditions are positionally
determined.

4 Definability

We now discuss the question in what logics (MSO, µ-calculus, FO, CTL∗, . . . ) winning po-

sitions of Banach-Mazur games with ω-regular winning conditions can be defined. Given

any formula ϕ from a logic on infinite paths (like S1S or LTL), we define the game formula

aϕ, to be evaluated over game graphs, with the meaning that

G |= aϕ(v) ⇐⇒ Player 0 wins the Banach-Mazur game BM(G, v, ϕ).

Note that the operation ϕ 7→ aϕ maps a formula over infinite paths to a formula on

graphs. Given a logic L over infinite paths, and a prefix let Game-L := {aϕ : ϕ ∈ L}. As

usual we write L ≤ L′ to denote that every formula in the logic L is equivalent to some

formula from the logic L′.
Our main definability result can be stated as follows.

THEOREM 18.

(1) Game-S1S ≤ Lµ

(2) Game-LTL ≡ Game-FO ≤ CTL∗.

Obviously, the properties expressed by formulae aϕ are invariant under bisimulation.

This has two relevant consequences:

(a) We can restrict attention to trees (obtained for instance by unravelling the given game

graph from the start node).

(b) It suffices to show that, on trees, Game-S1S ≤ MSO, and Game-FO ≤ MPL where

MPL is monadic path logic, i.e., monadic second-order logic where second-order quan-

tification is restricted to infinite paths.

Indeed, it has been proved by Janin and Walukiewicz [12] that every bisimulation-

invariant class of trees that is MSO-definable is also definable in the modal µ-calculus. Simi-

larly, it is known from results by Hafer and Thomas [10] and byMoller and Rabinovitch [16],

that every bisimulation invariant property of trees expressible in MPL is also expressible in

CTL∗.

PROPOSITION 19. On trees, Game-S1S ≤ MSO.

PROOF. Let x ≤ y denote that y is reachable from x. A (decomposition-invariant) strategy

for Player 0 in a game BM(T, r,Win) on a tree T = (V, E) with root r is a partial function

f : V → V, such that w < f (w) for every w; it is winning if every infinite path through T

containing r, f (r), y1, f (y1), y2, f (y2) . . ., where f (yi) < yi+1 for all i, is contained inWin. An

equivalent description can be given in terms of the set X = f (V). A set X ⊆ V defines a

winning strategy for Player 0 in the game BM(T, r,Win) if

(1) (∀x ∈ X)∀y(x < y → (∃z ∈ X)(y < z))
(2) every path hitting X infinitely often is in Win (i.e. it is winning for Player 0)

(3) X is non-empty.
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Clearly these conditions are expressible in MSO.

To deal with winning conditions defined in first-order logic (or equivalently, LTL), we

use a normal form for first-order logic on infinite paths (with <) that has been established by

Thomas [22]. A first-order formula ϕ(x) is bounded if it only contains bounded quantifiers

of form (∃y ≤ xi) or (∀y ≤ xi).

PROPOSITION 20. On infinite paths, every first-order formula is equivalent to a formula of
the form

∨

i

(

∃x(∀y ≥ x)ϕi ∧ ∀y(∃z ≥ y)ϑi

)

where ϕi and ϑi are bounded.

THEOREM 21. On trees, Game-FO ≤ FO.

PROOF. Let ψ =
∨

i

(

∃x(∀y ≥ x)ϕi ∧ ∀y(∃z ≥ y)ϑi

)

be a first-order formula on infinite

paths describing a winning condition. We claim that, on trees, aψ is equivalent to the first-

order formula

ψ∗ := (∃p1)(∀p2 ≥ p1)(∃p3 ≥ p2)
∨

i∈I

ψ
(b)
i where

ψ
(b)
i := (∃x ≤ p1)(∀y . x ≤ y ≤ p2)ϕi ∧ (∀y ≤ p2)(∃z . y ≤ z ≤ p3)ϑi.

Let T = (V, E) and suppose first that Player 1 has a winning strategy for BM(T, r,ψ).
We prove that T |= ¬ψ∗. To see this we have to define an appropriate Skolem function

g : p1 7→ p2 such that, for all p3 ≥ p2 and all i ∈ I,

T |= ¬ψ
(b)
i (p1, p2, p3).

Fix any p1 that we can consider as the first move of Player 0 in the game BM(T, r,ψ) and
any play P (i.e., any infinite path through T) that prolongs this move and that is consistent

with the winning strategy of Player 1. Since Player 1 wins, we have that P |= ¬ψ. Hence,

there exists some J ⊆ I such that

P |=
∧

i∈J

∀x(∃y ≥ x)¬ϕi ∧
∧

i∈I−J

∃y(∀z ≥ y)¬ϑi.

To put it differently, there exist

• for every i ∈ J and every a ∈ P, a witness hi(a) ∈ P such that P |= ¬ϕi(a, hi(a)), and
• for every i ∈ I − J, an element bi such that P |= (∀z ≥ bi)¬ϑi(bi, z).

Now set

p2 := max({hi(a) : a ≤ p1, i ∈ J} ∪ {bi : i ∈ I − J}).

For any p3 we now obviously have that T |= ¬ψ
(b)
i (p1, p2, p3).

For the converse, let f : V → V be a winning strategy for Player 0 in BM(T, r,ψ). We

claim that T |= ψ∗. Toward a contradiction, suppose that T |= ¬ψ∗. Hence there exists a

Skolem function g : V → V assigning to each p1 an appropriate p2 ≥ p1 such that T |=
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¬ψ
(b)
i (p1, p2, p3) for all p3 ≥ p2 and all i ∈ I. We can view g as a strategy for Player 1 in

the game BM(T, r,ψ). If Player 0 plays according to f and Player 1 according to g, then the

resulting infinite play f ˆg = q1q2q3 . . . satisfies ψ (because f is a winning strategy). Hence

there exists some i ∈ I such that

f ˆg |= ∃x(∀y ≥ x)ϕi ∧ ∀y(∃z ≥ y)ϑi.

Let a be a witness for x so that f ˆg |= (∀y ≥ a)ϕi(a, y). Choose the minimal odd k,

such that a ≤ qk, and set p1 := qk. Then qk+1 = g(qk) = g(p1) = p2. Since f ˆg |= ∀y(∃z ≥
y)ϑi(y, z), we have, in particular, for every b ≤ p2 a witness h(b) ≥ b on f ˆg such that

f ˆg |= ϑi(b, h(b)). Choose p3 = max{h(b) : b ≤ p2}. It follows that f ˆg |= ψ
(b)
i (p1, p2, p3).

Since ψ
(b)
i is bounded, its evaluation on T is equivalent to its evaluation on f ˆg. Hence we

have shown that there exists p1 such that for p2 = g(p1), given by the Skolem function g,

we can find a p3 with T |= ψ
(b)
i (p1, p2, p3). But this contradicts the assumption that g is an

appropriate Skolem function for ¬ψ∗.

We have shown that whenever Player 0 has a winning strategy for BM(T, r,ψ) then

T |= ψ∗ and whenever Player 1 has a winning strategy, then T |= ¬ψ∗. By contraposition

and determinacy, the reverse implications also hold.

Theorem 18 is implied by Proposition 19 and Theorem 21.

We have seen that for every fixedwinning condition expessible in S1S, the winner of the

associated Banach-Mazur games is uniformly definable in the µ-calculus. Notice however

that this requires that we consider games with a fixed number of local parameters (colours)

by which this winning condition is defined. But in the theory of infinite game, a number of

algorithmic question concerns classes of games where the number of coulours to define the

winning condition is not fixed, but may depend on the game graph.

The most important example is the parity condition: Given a function Ω : V → ω,

Player 0 wins those infinite plays in which the least value appearing infintely often is even.

For the usual format of graph games, one of the most prominent open problems is the ques-

tion whether the winning regions of parity games are computable in polynomial time. This

problem is equivalent to the question whether the modal µ-calculus admits a polynomial-

time model checking algorithm. Even if the range of Ω, i.e. the number of colours, is as-

sumed to be finite, it is not bounded.

For parity games with a fixed number d of colours, which can be viewed as struc-

tures (V, E, P0, . . . , Pd−1), it is well-known that the winner is computable in polynomial-

time and definable by a µ-calculus formula (with d alternations between least and greatest

fixed points). The interesting problem concerns the case of an unbounded number of prior-

ities, and the current algorithms for solving parity games only have upper time-complexity

bounds that are exponential in the number of colours.

What about the definability of winning positions in parity games with an unbounded

number of colours? First, of all we have to represent the structures in a different way, to

avoid an infinite vocabulary. For instance we can describe game graphs as structures

(V, E,≺, Odd)
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where u ≺ v means that u has a smaller colour than v, and Odd is the set of nodes with an

odd colour. We denote this class of structures by PG.
The descriptive complexity of parity games, i.e. the question in which logics, winning

regions of parity games are definable, has been considered in [4]. The descriptive complex-

ity of a problem provides an insight into the structure of the problem, and the sources of

algorithmic difficulty, as the logical resources needed to specify the problem are closely tied

to its structure. In the case of parity games, the questions that naturally arise are whether

the problem is definable in the least fixed-point logic (LFP) and in monadic second-order

logic (MSO), as these are logics with which it is closely associated.

It has been proved in [4] that on arbitrary (finite or infinite) game graphs, parity games

are not definable in the least fixed point logic LFP. On finite games graphs, it turned out that

the winning regions are LFP-definable if, and only if, they are computable in polynomial-

time (despite the fact that, on unordered finite structures, LFP is weaker than PTIME).

Again, it turns out that the analogous question for Banach-Mazur games is simpler.

THEOREM 22. Winning regions of Banach-Mazur games with the parity winning condition
are uniformly definable in least fixed-point logic LFP.

PROOF. In the proof of Proposition 13 we have shown that Player 0 wins a Banach-Mazur

game on (G, v) with a Muller condition (F0,F1) if, and only if, there is a stable position w,

reachable from v, such that C(w) ∈ F0. For parity games C(w) ∈ F0 means that the least

colour in C(w) is even. Clearly, this condition is uniformly definable in least-fixed point

logic on PG.
This result in fact applies to weaker logics than LFP. It suffices that reachability state-

ments “there is a path from x to y” are expressible. Also, the result may apply to stronger

classes of Muller conditions, but it depends on how these are described. In what ever way,

such a condition (F0,F1) is presented on the given game graphs, the necessary condition to

express is that C(w) ∈ F0.

5 Path games with bounded alternations

Banach-Mazur games have an infinite sequence of alternating moves of the two players.

There is an interesting variation of such games where one of the player only makes finitely

many moves and eventually one player plays alone. To describe the alternation patterns of

such games, we now call the players Ego and Alter, and denote a move where Ego selects a

finite path by E, and an ω-sequence of such moves by Eω; for Alter, we use corresponding

notation A and Aω.

Hence, for any graph G initial position v, and winning condition Win we have the

following games.

• (EA)ω(G, v,Win) is the ususal Banach-Mazur games with infinite alternation between

the two players. By exchanging the roles of the players, we get the game (AE)ω(G, v,Win).
• (EA)kEω(G, v,Win) and A(EA)kEω(G, v,Win), for arbitrary k ∈ ω, are the games end-

ing with an infinite path extension by Ego.

• (AE)kAω(G, v,W) and E(AE)kAω(G, v,W) are the games where Alter chooses the fi-

nal infinite lonesome ride.
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All these games together form the collection Path(G, v,W) of path games. (Obviously

two consecutive finite path moves by the same players correspond to a single move, so

there is no need for quantifier strings containing EE or AA.)

Pistore and Vardi [20] used path games of this form for task planning in nondetermin-

istic domains.

5.1 Comparison of path games

For two games G and H we write G � H if, from the point of view of Ego, H is better than

G. More precisely, G � H if, whenever Ego has a winning strategy for G then he also has

one for H, and if Alter has a winning strategy for H then he has one also for G. Finally,

G ≡ H if G � H and H � G.
It turns out that this infinite collection of games defined by the game quatifier prefixes

over E and A collapses in a uniform way to a finite lattice of just eight different games. This

has been observed independently in [3] and [20].

THEOREM 23. For every arena G and every winning condition Win, we have

Eω(G, v,Win) � EAEω(G, v,Win) � AEω(G, v,Win)

g| g|

(EA)ω(G, v,Win) � (AE)ω(G, v,Win)

g| g|

EAω(G, v,Win) � AEAω(G, v,Win) � Aω(G, v,Win)

Further, every path game H ∈ Path(G, v,Win) is equivalent to one of these eight games.

PROOF. The comparison relations in the diagram follow by trivial arguments. We just

illustrate them for one case. To show that G � H for G = EAEω(G, v,Win) and H =
(EA)ω(G, v,Win), consider first a winning strategy f of Ego in H. Ego can use this strategy

also for G: he just plays as if he would play G, making an arbitrary move whenever it would

be Alter’s turn in H. Any play in G that is consistent with this strategy, is also a play in H
that is consistent with f , and is therefore won by Ego. Second, consider a winning strategy

g of Alter in G. In H = (EA)ω(G, v,Win), Alter answers the first move of Ego as prescribed

by g, and moves arbitrarily in all further moves. Again, every play that can be produced

against this strategy is also a play of G that is consistent with g, and is therefore won by

Alter. In all other cases the arguments are analogous.

To see that any other path game over (G, v,Win) is equivalent to one of those displayed,

it suffices to show that

(1) (EA)kEω(G, v,Win) ≡ EAEω(G, v,Win), for all k ≥ 1, and

(2) A(EA)kEω(G, v,Win) ≡ AEω(G, v,Win), for all k ≥ 0.

By duality, we can then infer that (AE)kAω(G, v,Win) ≡ AEAω(G, v,Win) for k ≥ 1 and

E(AE)kAω(G, v,Win) ≡ EAω(G, v,Win) for all k ≥ 0.
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The equivalences (1) and (2) follow with similar reasoning. Ego can modify a strategy

f for EAEω(G, v,Win) to a strategy for (EA)kEω(G, v,Win). He chooses the first move ac-

cording to f and makes arbitrary moves the next k − 1 times; he then considers the entire

A(EA)k−1-sequence of moves, which were played after his first move, as one single move

of A in EAEω(G, v,Win) and completes the play again according to f . The resulting play

of (EA)kEω(G, v,Win) is also consistent with f in EAEω(G, v,Win). Conversely a strategy

of Ego for (EA)kEω also works if his opponent lets Ego move for him in all moves after the

first one, i.e., in the game EAEω(G, v,Win). All other equalities are treated in a similar way.

The question arises whether the eight games displayed in the diagram are really differ-

ent or whether they can be collapsed further. The answer depends on the game graph and

thewinning condition but for each comparison� in the diagramwe find simple cases where

it is strict. Indeed, standard winning conditionsWin ⊆ {0, 1}ω on the completely connected

graph G2 with nodes 0 and 1 show that the eight games in the diagram are distinct.

If the winning condition requires a particular initial segment then Ego wins the path

games where he moves first and loses those where Alter moves first. Thus, starting con-

ditions separate the left half of the diagram from the right one. Games with reachability

conditions and safety conditions separate games in which only one player moves, i.e. with

prefix Eω or Aω respectively, from the other ones. A game with a Büchi condition is won by

Ego if he has infinite control and lost if he only has a finite number of finite moves (prefix

ending with Aω). Similarly, Co-Büchi conditions separate the games which are controlled

by Ego from some time onwards (with prefix ending in Eω) from the others.

5.2 Positional determinacy of ω-regular path games

We have seen that Banach-Mazur games are positionally determined for any ω-regular win-

ning condition. Does this also hold for path games with bounded alternation between the

players?

To establish positional determinacy for ω-regular Banach-Mazur games, we first no-

ticed that the reduction of S1S to deterministic parity automata gives us determinacy by

finite-memory strategies. In a second step, we proved that for Banach-Mazur games we

can eliminate the finite memory, and reduce finite memory strategies to positional ones.

The first of these two steps does not depend on the alternation pattern in the game, and

therefore also holds for path games with bounded alternation.

PROPOSITION 24. For any winning condition ψ ∈ S1S and any game prefix γ, the path
games γ(G,ψ) admit finite-memory winning strategies.

However, the reduction from finite memory strategies to positional ones in the proof

of Theorem 16 does rely on infinite alternation between the players. For games where the

players alternate only finitely often the situation changes. Intuitively, a winning strategy of

the solitaire player eventually forms an infinite path which may not be broken apart into

finite pieces to serve as a positional strategy.
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PROPOSITION 25. For any prefix γ with finitely many alternations between the players,
there are arenas G and winning conditions ψ ∈ S1S so that no positional strategy is winning
in the game γ(G, v,ψ).

PROOF. Consider, for instance, the arena G2 from Example 10 and a winning condition ψ ∈
S1S that requires the number of zeroes occurring in a play to be odd. When starting from

position 1 Ego obviously has winning strategies for each of the games Eω(G,ψ), AEω(G,ψ),

and EAEω(G,ψ), but no positional ones.

Nevertheless, these games are positionally determined for one of the players. Indeed,

if a player wins a game γ(G, v,ψ) that is finally controlled by his opponent, he always

has a positional winning strategy. This is trivial when γ ∈ {Eω, Aω, AEω, EAω}; for the
remaining cases EAEω and AEAω a positional strategy can be constructed as in the proof of

Theorem 16.

Finally we consider winning conditions that do not depend on initial segments. We say

that ψ is prefix independent, if, for any ω-word π and any finite words x and y, we have

xπ |= ψ if, and only if, yπ |= ψ .

THEOREM 26. For any prefix-independent winning condition ψ ∈ S1S and every γ, the
games γ(G, v,ψ) admit positional winning strategies.
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[9] E. GRÄDEL AND I. WALUKIEWICZ, Positional determinacy of games with infinitely many

priorities, Logical Methods in Computer Science, (2006).

[10] T. HAFER AND W. THOMAS, Computation tree logic CTL∗ and path quantifiers in the

monadic theory of the binary tree, in Automata, Languages and Programming, 14th Inter-

national Colloquium, ICALP87, Lecture Notes in Computer Science Nr. 267, Springer,

1987, pp. 269–279.

[11] P. HUNTER, Complexity and Infinite Games on Finite Graphs, PhD thesis, University of

Cambridge, 2007.

[12] D. JANIN AND I. WALUKIEWICZ, On the expressive completeness of the propositional mu-

calculus with respect to monadic second order logic, in Proceedings of 7th International

Conference on Concurrency Theory CONCUR ’96, no. 1119 in Lecture Notes in Com-

puter Science, Springer-Verlag, 1996, pp. 263–277.

[13] A. KANAMORI, The Higher Infinite, Springer, 1991.

[14] A. KECHRIS, Classical Descriptive Set Theory, Springer, 1995.

[15] R. MAULDIN, ed., The Scottish Book. Mathematics from the Scottish Café, Birkhäuser, 1981.
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ABSTRACT. If you want to program a parallel computer, a purely functional language like Haskell
is a promising starting point. Since the language is pure, it is by-default safe for parallel evalua-
tion, whereas imperative languages are by-default unsafe. But that doesn’t make it easy! Indeed it
has proved quite difficult to get robust, scalable performance increases through parallel functional
programming, especially as the number of processors increases.
A particularly promising and well-studied approach to employing large numbers of processors is
data parallelism. Blelloch’s pioneering work on NESL showed that it was possible to combine a
rather flexible programming model (nested data parallelism) with a fast, scalable execution model
(flat data parallelism). In this paper we describe Data Parallel Haskell, which embodies nested
data parallelism in a modern, general-purpose language, implemented in a state-of-the-art compiler,
GHC. We focus particularly on the vectorisation transformation, which transforms nested to flat data
parallelism.

1 Introduction
Computers are no longer getting faster; instead, we will be offered computers containing
more and more CPUs, each of which is no faster than the previous generation. As the
number of CPUs increases, it becomes more and more difficult for a programmer to deal
with the interactions of large numbers of threads. Moreover, the physical limitations of bus
bandwidth will mean that memory access times will be increasingly non-uniform (even if
the address space is shared), and locality of reference will be increasingly important.

In the world of massively-parallel computing with strong locality requirements there
is already a well-established, demonstrably successful brand leader, namely data parallelism.
In a data-parallel computation one performs the same computation on a large collection of
differing data values. Well-known examples of data-parallel programming environments are
High Performance Fortran (HPF) [For97], the collective operations of the Message Passing
Interface (MPI) [GHLL+98], NVIDIA’s Compute Unified Device Architecture (CUDA) API
for graphics processors [NVI07], and Google’s map/reduce framework [DG04].

All these systems support only flat data parallelism, in which the computation that is
performed on each data element must itself be (a) sequential and (b) of a similar execution
time to the computation on the other data elements. In practice, this severely limits the
applications of data-parallel computing, especially for sparse or irregular problems [PCS99].
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(!:) :: [:a:] -> Int -> a
sliceP :: [:a:] -> (Int,Int) -> [:a:]
replicateP :: Int -> a -> [:a:]
mapP :: (a->b) -> [:a:] -> [:b:]
zipP :: [:a:] -> [:b:] -> [:(a,b):]
zipWithP :: (a->b->c) -> [:a:] -> [:b:] -> [:c:]
filterP :: (a->Bool) -> [:a:] -> [:a:]

concatP :: [:[:a:]:] -> [:a:]
concatMapP :: (a -> [:b:]) -> [:a:] -> [:b:]
unconcatP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]
transposeP :: [:[:a:]:] -> [:[:a:]:]
expandP :: [:[:a:]:] -> [:b:] -> [:b:]

combineP :: [:Bool:] -> [:a:] -> [:a:] -> [:a:]
splitP :: [:Bool:] -> [:a:] -> ([:a:], [:a:])

Figure 1: Type signatures for parallel array operations

Thus motivated, Blelloch and Sabot developed the idea of nested data parallelism in the early
90’s, and embodied it in their language NESL [BS90].

NESL was a seminal breakthrough but, fifteen years later it remains largely un-exploited.
Our goal is to adopt the key insights of NESL, embody them in a modern, widely-used func-
tional programming language, namely Haskell, and implement them in a state-of-the-art
Haskell compiler (GHC). The resulting system, Data Parallel Haskell, will make nested data
parallelism available to real users.

Doing so is not straightforward. NESL a first-order language, has very few data types,
was focused entirely on nested data parallelism, and its implementation is an interpreter.
Haskell is a higher-order language with an extremely rich type system; it already includes
several other sorts of parallel execution; and its implementation is a compiler.

This paper makes two main contributions:

• We give a tutorial, programmer’s-eye view of what programming in Data Parallel
Haskell is like. Rather than a series of tiny examples, we give a serious application
that is very hard to fully parallelise in a flat data-parallel setting, namely the Barnes-
Hut algorithm for N-body simulation.

• We give a detailed tutorial overview of the key vectorisation transformation. There are
two major innovations over NESL: one is the non-parametric representation of arrays
(Section 4) and one is the treatment of first-class functional values (Section 5).

All the technical innovations in this paper have appeared, piecemeal, in our earlier
publications. Our hope, however, is that this paper draws together a somewhat-complex
set of technical strands into a comprehensible whole.
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2 The programmer’s view on DPH
We begin by describing Data Parallel Haskell (DPH) purely from the point of view of the
programmer, illustrating the description with a non-trivial example, the Barnes-Hut algo-
rithm [BH86]. GHC supports other forms of concurrency besides data parallelism, but we
focus here exclusively on the latter. Singh [SJ08] gives a tutorial covering a broader scope,
including semi-implicit parallelism (par), explicit threads, transactional memory, as well as
Data Parallel Haskell.

DPH is simply Haskell with the following extra features:
• A type of parallel arrays, denoted [:e:] for arrays of type e. These arrays are indexed

by values of type Int. From a semantic point of view an array [:a:] is very similar
to a list [a] – the difference is in the execution pragmatics. An array can contain
elements of any type, including arrays and functions.

• A large number of parallel operations that operate collectively on entire arrays. As far
as possible, these operations have the same names as Haskell’s standard list functions,
but with the suffix P added—i.e., mapP, filterP, unzipP, and so forth. Figure 1 lists
the operations that we will use in this paper.

• Syntactic sugar, called parallel array comprehensions, which are similar to list compre-
hensions but operate on parallel arrays.

In addition to the parallel evaluation semantics, lists and parallel arrays also differ with
respect to strictness: more precisely, demand for any element of a parallel array results in
the evaluation of all elements.

2.1 N-Body Barnes-Hut Simulation Algorithm

We will demonstrate the use of DPH features using the Barnes-Hut n-body simulation al-
gorithm as an example. We discuss the algorithm in some detail because it is a particularly
striking example of the power of nested data parallelism, and of the utility of user-defined
data types in data-parallel programs. We will, for the sake of clarity, restrict ourselves to
two dimensions and neglect complications such as bodies that are very close to each other.

An n-body simulation computes the motion under gravitational forces of n bodies, or
particles. A naive solution is to compute the force between every pair of particles which
requires n2 calculations in each time step. The Barnes-Hut algorithm reduces the work com-
plexity to the order of n log n interactions by grouping together particles which are close
to each other and calculating the centre of gravity, or centroid of the cluster. The centroids
are then used to approximate the effect the particles have on other particles which are suffi-
ciently far away. The stricter we are in determining what exactly constitutes “sufficiently far
away”, the more precise the final result is, and the algorithm can be parametrised accord-
ingly.

The first phase of the algorithm determines the hierarchical grouping of the particles,
computes the centroids of the clusters, and stores the result in a tree structure. To be more
precise, the area is split into four subareas of equal size, the particles are grouped according
to the subarea they are located in. We repeat this step for each subarea, and terminate if an
area contains either none or only a single particle. Figure 2 illustrates the tree construction
process for particles p1 . . . p9. In the first iteration, the particles are split into four groups,



386 HARNESSING THE MULTICORES

Figure 2: Subdivision of area

Figure 3: Rosetree

depending on which quadrant they are located in. The upper right quadrant already con-
tains only a single particle, so it isn’t divided up any further. Both the upper left and the
lower right quadrant require only one more iteration, the lower left two iterations.

Figure 3 shows the resulting hierarchical tree structure: the root node contains the cen-
troid of all particles and four subtrees (since all subareas contain at least one particle). Each
of the subtrees contains the centroid of the corresponding subarea – which is the particle
itself in case of a singular particle.

The second phase of the algorithm now calculates the forces that affect each particle
p, by traversing the tree from the root downwards: for every subtree, if the particle p is
sufficiently far away from the centroid stored in the root of that subtree, the force on p is
calculated using this centroid without looking at the rest of the tree. Otherwise, we add up
the forces on p from the subtrees of the current root – and so on recursively.

2.2 Encoding Barnes-Hut in DPH

Since the only way to express parallelism in DPH is to apply collective operations to par-
allel arrays, we need to store all data that we want to process in parallel in such an ar-
ray. For instance, the function oneStep, which computes one step in the simulation, takes
a parallel array of particles as arguments, and returns an array of the same length, with
the position and velocity of each particle adjusted according to the gravitational forces:
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-- Compute one step of the n-body simulation
oneStep :: [:Particle:] -> [:Particle:]
oneStep particles = moveParticles particles forces
where
tree = buildTree initialArea particles
forces = calcForces (lengthOf initialArea) tree particles

buildTree :: Area -> [:Particle:] -> Tree
calcForces :: Float -> Tree -> [:Particle:] -> [:Force:]
moveParticles :: [:Particle:] -> [:Force:] -> [:Particle:]
lengthOf :: Area -> Float

The function oneStep, as discussed before, is comprised of three data parallel phases. First,
buildTree decomposes the particles into sub-areas, returning the resulting Tree. This tree
is then used by calcForces to compute the forces on the particles, returning a new array
of forces with one element for each particle. Finally, moveParticles uses these forces to
adjust the positions and velocities the particles.

The data types involved in the computation are defined exactly as the would be in reg-
ular Haskell. For example, a Particle is a record of its mass, its location, and its velocity:
type Vector = (Float, Float)
type Area = (Vector, Vector)
type Force = Vector
type Velocity = Vector
type Location = Vector

data Particle = Particle { mass :: Float
, location :: Location
, velocity :: Velocity}

Some functions are conveniently defined using the parallel array counterparts of ordinary
list processing functions (see Figure 1). For example, we can define moveParticles like
this:
moveParticles :: [:Particle:] -> [:Force:] -> [:Particle:]
moveParticles ps fs = zipWithP moveParticle ps fs

moveParticle :: Particle -> Force -> Particle
moveParticle (Particle { mass = m

, location = loc
, velocity = vel })

force
= Particle { mass = m

, location = loc + vel * timeStep
, velocity = vel + accel * timeStep }

where
accel = force / m

Now we turn our attention to the Tree data type and its construction. When building and
traversing a Tree, we want to process its sub-trees in parallel, and so we must use a parallel
array for the children:
data Tree = Node Mass Location [:Tree:]

-- Rose tree for spatial decomposition
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This time, unlike the flat array of particles (which may be very long), the array of sub-trees
has at most four elements at any level (recall that we are working with only 2 dimensions).
To build a tree, we perform recursive descent over the area:
-- Perform spatial decomposition and build the tree
buildTree :: Area -> [:Particle:] -> Tree
buildTree area [: p :] = Node (mass p) (location p) [::]
buildTree area particles = Node m l subtrees
where
(m,l) = calcCentroid subtrees
subtrees = [: buildTree a ps

| a <- splitArea area
, let ps = [:p | p <- particles, inArea a p:]
, lengthP ps > 0 :]

inArea :: Area -> Particle -> Bool
inArea ((lx,ly),(hx,hy)) (Particle { location = (x,y) })
= lx <= x && x <= hx && ly <= y && y <= hy

splitArea :: Area -> [:Area:]
-- splitArea returns the four sub-areas in a parallel array

calcCentroid :: [:Tree:] -> (Mass, Location)

The first equation deals with the case of a single particle: we simply record its mass and
location. In the recursive case, the array comprehension for subtrees iterates in parallel
over (splitArea area), an array of exactly four elements. For each such area a, we
compute the set of particles ps that lie inside a and, if that set is non-empty, we recursively
call buildTree. The “if non-empty” test discards sub-areas which do not contain any
particles at all, so the length of subtrees can be anything between 1 and 4. We omit the
implementations of inArea and calcCentroid, since they are straightforward.

The nested comprehension in the where clause of buildTree makes sure that inArea
is called on every subarea/particle combination in a single parallel step. Another source of
nested parallelism in buildTree are the recursive calls to the parallel function buildTree,
which are performed simultaneously on however many sub-areas contain particles (from
one to four). The number of parallel steps is hence proportional to the depth of the rose tree.

Lastly, we have to write the function calcForces, which, given a Tree and an array
of particles, calculates the forces applied by the Tree on those particles. It can do so by
dividing the particles into two groups: those that are “far” from the centre of gravity of the
Tree (as determined by a function isFar), and those that are “near”. Here is the code:
calcForces :: Float -> Tree -> [:Particle:] -> [:Force:]
calcForces len (Node m l ts) ps
= let

far_forces = [: forceOn p m l | p <- ps, isFar len l p :]
near_ps = [: p | p <- ps, not (isFar len l p) :]
near_forces_s = [: calcForces (len / 2) t near_ps | t <- ts :]
near_forces = [: sumForces p_forces

| p_forces <- transposeP near_forces_s :]
in
combineP [:isFar len l p | p <- ps:] far_forces near_forces
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forceOn :: Particle -> Mass -> Location -> Force
isFar :: Float -> Location -> Particle -> Bool
sumForces :: [:Force:] -> Force

The function calcForces divides the particles into two groups: those that are “near”
the centroid l of tree, and those that are not. For the far particles, we simply use forceOn
to compute the force on each such particle from the tree, giving far_forces. For particles
near to l, near_ps, we recursively use calcForces (in parallel) to compute the force on
each particle from each sub-tree giving near_forces_s, a short vector with one element
for each sub-tree. Each element is a vector with one element for each particle, giving the
force on that particle from the sub-tree. All that remains is to transpose this nested structure,
and add up the forces on each particle. Finally, we must re-combine the near and far forces,
using combineP, which interleaves two vectors as directed by a boolean mask.

2.3 Communication and locality

Here is an alternative, simpler way to write calcForces:
calcForces :: Tree -> [:Particle:] -> [:Force:]
calcForces tree ps = mapP (calc t) ps

where
calc (Node m l ts) p

| isFar l p = forceOn p m l
| otherwise = sumForces [: calc t p | t <- ts :]

For each particle (the mapP), it recurses down the tree, stopping when the centroid of the
sub-tree is far away from the particle.

Which version should we prefer? Different ways of writing the code give rise to dif-
ferent patterns of data communication. In this latter version you can see that every particle
needs a copy of (at least the top part of) the tree, so the danger here is that most of the tree
ends up being copied to most of the processors. In the earlier version, the particles migrate
(in smaller and smaller groups) to the tree, rather than the other way around.

It undoubtedly complicates the programmer’s life to have to think about these mat-
ters, but there is no silver bullet. Parallel programming is complicated, and programmers
must think about concurrency and communication, as well as correctness. However, one
of the advantages of the data-parallel style is that it gives us a much better handle on the
program’s cost model (both computation and communication) than un-structured parallel
programming [Ble96].

2.4 Summary

The algorithm we have described makes extensive use of data parallelism. For example,
buildTree is called in parallel on the four sub-areas of the area under consideration; and
for each of those sub-areas we compute the relevant subset of the particles in parallel.
Similarly calcForces is called in parallel on the four sub-trees; and the computation of
far_forces is done in parallel over all the particles. In each case, the recursive calls over
the sub-trees express nested data parallelism, because the computation that is performed
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on the sub-tree is itself a data-parallel computation. This is really quite difficult to express
using flat data parallel frameworks; indeed tree construction is often not parallelised.

The rest of this paper uses the parallel Barnes-Hut algorithm as a running example to
explain the successive steps through which the program is compiled to run efficiently on
parallel shared-memory machines.

3 Compiling DPH programs

The compiler must translate high-level nested data parallel programs, as described in the
previous section, into efficient low-level code. This translation consists of four main steps:
• Desugaring removes syntactic sugar, reducing the program to a simple lambda lan-

guage. This intermediate language, GHC’s “Core” language, is still strongly typed.
• Vectorisation transforms nested data parallelism into flat data parallelism; it is a Core-

to-Core transformation.
• Fusion optimises the Core program, by eliminating redundant synchronisation points

and intermediate arrays, thus dramatically improves locality of reference;
• Gang parallelism divides the parallel operations spatially into chunks, each chunk being

executed by a thread from a gang of threads. Typically a gang contains a thread for
each CPU. Gang parallelism is expressed by giving library implementations of the
“vector instructions”, rather than by built-in compiler support.

GHC implements these steps using a large number of Core-to-Core program transforma-
tions. Many of these transformations have been part of GHC’s optimiser for a long time,
in particular a sophisticated inliner, worker-wrapper unboxing, and constructor specialisa-
tion [Pey96, PM02, PL91, PTH01]. In the course of the Data Parallel Haskell project, we
are adding more, array-specific transformations. Due to GHC’s generic support for pro-
gram transformations — specifically, the inliner and rewrite rules [PM02, PTH01] — we
can implement most of these new transformations as library code, as opposed to extending
the compiler itself. Indeed, apart from the vectorisation pass, the rest of the optimisation
pipeline operates in ignorance of the fact that the program being optimised is a data parallel
one.

In this paper we focus mainly on vectorisation, starting at Section 3.2, after taking a
brief diversion to describe how array comprehensions are desugared (Section 3.1).

3.1 Desugaring array comprehensions

In the Barnes-Hut code we used both array comprehensions, and ordinary functions over par-
allel arrays such as zipP and mapP. However, just as in the case of list comprehensions,
the former is just a convenient syntactic sugar for the latter. More precisely, Figure 4 gives
rules for desugaring array comprehensions. They are quite standard [JW07], and practically
identical to those for lists, so we do not discuss them further. These rules are simple, but
they should be thought of as a specification rather than an implementation, because they
generate somewhat inefficient code. In GHC’s actual implementation we use slightly more
complicated rules.
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Expressions e ::= . . . | [:e | q:]
Qualifiers p, q ::= x<-e | e | p,q | p|q

D[[[:e| q:]]] = mapP (λqv.e) Q[[q]]

Q[[q]] computes the parallel array of the tuples generated by q
Q[[x<-e]] = e
Q[[e]] = if e then [:():] else [::]

Q[[p,q]] = concatMapP (λpv.mapP (λqv.(pv, qv)) Q[[q]])Q[[p]]
Q[[p|q]] = zipP Q[[p]] Q[[q]]

qv is a tuple of the variables bound by q
(x<-e)v = x

(g)v = ()
(p,q)v = (pv, qv)
(p|q)v = (pv, qv)

Figure 4: Desugaring rules for array comprehensions

3.2 Informal overview of vectorisation

The purpose of vectorisation is to take a program that uses nested data parallelism, and
transform it into a program that uses only flat data parallelism. Consider this tiny example

f :: Float -> Float
f x = x*x + 1

For every such function we build its lifted version fL thus:
fL :: [:Float:] -> [:Float:]
fL x = (x *L x) +L (replicateP n 1)

where
n = lengthP x

Internally, fL uses “vector instructions” like +L to do its work, where
+L :: [:Float:] -> [:Float:] -> [:Float:]

Notice that it must also replicate the constant 1 so that argument has the type that +L expects.
So, roughly speaking (we give the true story later), to form the definition of fL we transform
the body of f in the following way:
• Replace a constant by a call to replicateP.
• Replace a function by its lifted versions (e.g. + becomes +L).
• Replace a parameter (e.g. x) by itself.

This new definition obeys the equation fL = mapP f, so it takes an array to an array. In effect,
it is a specialised variant of mapP – specialised by fixing the function argument. The idea
is that whenever we see the call (mapP f) we will replace it by fL. But there is a problem!
Suppose we have

g :: [:Float:] -> [:Float:]
g xs = mapP f xs
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First we replace (mapP f) by fL to get:
g :: [:Float:] -> [:Float:]
g xs = fL xs

But now we must lift g too, in case there are calls to (mapP g). If we try, we get this:
gL :: [:[:Float:]:] -> [:[:Float:]:]
gL xs = fLL xs

Not good: we need the doubly-lifted version of f! If the depth of nesting is not statically
bounded (and it isn’t in Barnes-Hut) then we are in trouble. Blelloch’s clever solution is to
observe that we can define fLL in terms of fL, thus:

fLL :: [:[:Float:]:] -> [:[:Float:]:]
fLL xss = unconcatP xss (fL (concatP xss))

That is: first concatenate all the rows of xss to make a single flat vector; then map f over
that vector; then chop up the result to form a vector of vectors again, guided by the original
shape of xss. (Note that the incoming vector might well be “ragged”, so that not all the sub-
vectors have the same length.) At first, this idea looks terribly inefficient, because of all the
flattening and un-flattening but, as we shall see, if we choose the right data representation,
concatP and unconcatP take constant time and involve no copying.

This is the core of the vectorisation transformation. We have left many details vague.
What about higher order functions? What about user-defined data types? We now start
to tighten our description up. We begin by discussing how to represent arrays (Section 4)
and functions (Section 5) in vectorised code. These representation choices in turn drive the
vectorisation transformation (Section 6). More details are given in previous work [KC98,
CK00, LCK06, CLP+07].

4 Representing arrays in vectorised code

Standard arrays in Haskell are parametric; i.e., the array representation is independent of
the type of array elements. This is achieved by using arrays of pointers referring to the
actual element data. Such a boxed representation is very flexible, but it is also detrimental to
performance. The indirections consume additional memory, increase memory traffic, and
decrease locality of memory access. The resulting runtime penalty can be very significant.

The parallel arrays [:a:] offered by the DPH source language are also parametric,
as can be seen from the polymorphic type signatures in Figure 1. One of the tasks of the
vectoriser is to change the array representation, by systematically transforming a function
that manipulates values of type [:(Int,Int):], say, to one that manipulates values of
type PA (Int,Int). These new PA arrays have a non-parametric representation; that is, the
representation depends on the element type [CK00]. For example, a value of type PA Int is held
as a contiguous memory area containing unboxed 32-bit integer values — not as a block of
pointers to Int-valued thunks, as is the case in vanilla Haskell.

Although PA is not visible to the user, such non-parametric data types are an inde-
penently-useful source-language feature, already implemented in GHC, which we call an
associated data type [CKPM05]. We will therefore explain PA using the notation of associated
data types.
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Since the representation of an array depends on the type of its elements, there can be
no useful polymorphic functions over PA. For example, we cannot define

lengthPA :: PA a -> Int -- WRONG!

because lengthPA, being polymorphic in a, knows nothing about the representation of
PA a. This is just what type classes are for. So we declare the type PA in association with a
class PAElem that defines operations over the type, thus:
class PAElem a where
data PA a
indexPA :: PA a -> Int -> a
lengthPA :: PA a -> Int
replicatePA :: Int -> a -> PA a
...more operations...

Given a type a that is allowed to be an element of a parallel array, there is a corresponding
data type PA a, and operations indexPA, lengthPA, replicatePA, and so on. These
operations therefore have overloaded types, thus:

indexPA :: PAElem a => PA a -> Int -> a
lengthPA :: PAElem a => PA a -> Int
...etc...

All the parametric operations of Figure 1 have PA variants with the same types apart from
the additional (PAElem a) constraint. (Our concrete implementation is more complex
with more operations, but the code shown here conveys the basic idea.)

An instance declaration fills in an implementation for each of these elements. For ex-
ample, the instance declaration for integers takes the following form:

class PAElem Int where
data PA Int = AInt ByteArray
indexPA (AInt ba) i = indexIntArray ba i
lengthPA (AInt ba) = lengthIntArray ba
replicatePA n i = AInt (replicateIntArray n i)
...more operations...

We represent the array by a contiguous region of bytes (aka ByteArray) with primitives
such as indexIntArray that operate on individual 32-bit integers from a ByteArray.
(The code again simplifies the concrete implementation by omitting the use of unboxed
types.)

4.1 Arrays of structured data

The PAElem instance for Float, and other primitive types, follows the same pattern. But
what about more complex data structures, such as an array of pairs? It is quite unacceptable
to represent it by an array of pointers to (heap-allocated) records, because the indirection
costs would be too heavy. Instead, we represent it by a pair of arrays:
class (PAElem a, PAElem b) => PAElem (a, b) where

data PA (a,b) = ATup2 Int (PA a) (PA b)
indexPA (ATup2 _ arr1 arr2) i = (indexPA arr1 i, indexPA arr2 iv)
lengthPA (ATup2 n _ _) = n
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Thus, a PA (Float,Float) is represented by a pair of unboxed arrays, each storing a
vector of floating point values. Crucially, the two arrays must have the same length; and we
record that length in the Int field of the ATup2 constructor. This length field is convenient,
but usually redundant — but not always! Consider an array of () elements:

class PAElem () where
data PA () = ATup0 Int
indexPA (ATup0 _) i = ()
lengthPA (ATup0 n) = n

We need no data storage to store a vector of () values, but we must still remember its length.
Notice that the representation is compositional; that is, the representation of an array of

pairs is given by combining the representations of an array of the first and second elements
of the pair, and so on recursively.

The representation also allows us to combine two arrays element-wise into an array of
pairs in constant time, with unzipping being equally easy:

zipPA :: PAElem a => PA a -> PA b -> PA (a,b)
zipPA as bs = ATup2 (lengthPA as) as bs

unzipPA :: PA (a,b) -> (PA a, PA b)
unzipPA (ATup 2 _ as bs) = (as,bs)

This stands in contrast to lists, where zipping and unzipping take linear time.
Lastly, since records are converted into product types by the desugarer, the Particle

arrays in Barnes-Hut are represented by tuples of arrays.

4.2 Nested arrays

Even more interesting is the representation of nested arrays. A classic example is that of
sparse matrices, in which we represent a sparse matrix as a vector of rows, each row con-
sisting of a vector of (index,value) pairs, where only the non-zero values in the row are
represented. Thus

type SparseMatrix a = [:[:(Int,a):]:]
Since our ultimate goal is to eliminate nested parallelism, it is not surprising that we also
want to represent nested arrays in terms of flat ones. Indeed, a nested array PA (PA a) can
be encoded by
• a flat data array of type PA a which contains the data elements and
• a segment descriptor of type PA (Int, Int) which stores the starting position and

length of the subarrays embedded in the flat data array.
This is captured by the following instance:
class PAElem a => PAElem (PA a) where

data PA (PA a) = AArr (PA a) (PA (Int, Int))
indexPA (AArr arr segd) i = slicePA arr (indexPA segd i)
lengthPA (AArr _ seg) = lengthPA seg

where sliceP extracts a subarray from a larger array in constant time. Thus, the sparse
matrix

[:[:(0,15),(2,9),(3,20):], [::], [:(3,46):]:]
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Figure 5: Value of type [:Tree:] and its vectorised representation

will be represented as
AArr (ATup2 [#0,2,3,3#] [#15,9,20,46#]) -- Data

(ATup2 [#0,3,3#] [#3,0,1#]) -- Segment descriptor

where we write [#...#] for a literal ByteArray. The first ByteArray contains all the
column indexes, the second one all the Floats, and the third and fourth the start indexes
and lengths of the segments, respectively. Since all four ByteArray are unboxed, programs
which process such matrices can be compiled to highly efficient code.

Remarkably, we can now give constant-time implementations of the two functions
concatPA and unconcatPA, as promised in Section 3.2:

concatPA :: PA (PA a) -> PA a
concatPA (AArr cts _) = cts

unconcatPA :: PA (PA a) -> PA b -> PA (PA b)
unconcatPA (AArr _ shape) cts = AArr cts shape

4.3 Recursive types

If the array elements are recursive, the non-parametric representation of the array has to be
recursive, too. For instance, arrays of Tree from Section 2.2 are represented as follows:

instance PAElem Tree where
data PA Tree = ATree Int (PA Mass) (PA Location) (PA (PA Tree))

Since Tree is a product, the representation is similar to arrays of tuples. It stores the masses
and locations of the centroids and a nested array containing the subtrees of each node. As
described in the previous section, the latter is encoded by a flat array of trees together with
a segment descriptor. In effect, this means that an array of trees is represented by a list
with each element containing the centroids and segmentation information for one tree level.
This allows all data in one level to be processed in parallel, although the levels have to be
processed one after another. Figure 5 illustrates this representation. User-defined types are
discussed in more detail in Section 6.4.

4.4 Polymorphism

If we were only interested in monomorphic code, or if we would use a whole-program com-
piler that specialises a polymorphic to a monomorphic program, as was the case in NESL,
then life would have been much easier. We could implement the non-parametric array type
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by statically replacing PA Int by PAInt, say, where the latter is a perfectly ordinary data
type, defined as

data PAInt = AInt ByteArray

Now we do not need non-parametric types; in the vectorised code, original types [:Int:],
[:(Int,Float):], etc, are simply replaced by PAInt, PAPair PAInt PAFloat, and so
on, where all these are ordinary data types.

Alas, this does not work for polymorphic functions. For example, how could we translate
the type of this function? What would we statically replace [:a:] by?

firstRow :: [:[:a:]:] -> [:a:]

We also cannot turn polymorphic functions into families of monomorphic functions, as we
support separate compilation and polymorphic recursion. No — if we want polymorphism,
we must use something akin to type classes, as we have described in this section. A key
component of our work is the extension of the non-parametric representation idea to work in
a polymorphic setting. In particular, our Core language regards PA as a type-level function
from types to types [SCPD07].

5 Representing functions in vectorised code

Haskell is a higher order language, so we have to consider how to vectorise programs that
manipulate functions. Vectorising higher-order programs raises two distinct problems.

5.1 Functions are pairs

Consider this (contrived) definition:
ho :: (Int->Bool) -> (Bool, [:Bool:])
ho f = (f 2, mapP f [:1,2,3:])

In our overview (Section 3.2), we said that we should replace (mapP f) with a call to fL,
the lifted version of f. But since f is lambda-bound, it is not so easy to call “the lifted version
of f”. Clearly the caller must pass the lifted version of f as a parameter to ho. But there
is an ordinary, scalar call (f x) in the body of ho, so we can’t pass only the lifted version.
The obvious alternative is to pass a pair that gives both the lifted and unlifted versions. With
such a representation, mapP can just extract the lifted variant of its argument (a pair), while
the vanilla application of f extracts the unlifted variant.

5.2 Functions are closures

There is a second challenge. In Section 4 we discussed the efficient, non-parametric repre-
sentation of data-parallel arrays. A higher order language forces us to confront the question
of how to represent an array of functions. For example:

distance :: [:Float:] -> [: Float->Float :]
distance xs = mapP (λx y. sqrt (x*x + y*y)) xs

distY :: [:Float:] -> Float -> Float
distY xs y = sumP [: d y | d <- distance xs :]
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There are more direct ways to write distY, of course, but arrays of functions also arise
inevitably when we think about lifting. If we start with

f :: (Int->Int) -> Int

then the lifted version of f has the type
fL :: [: Int->Int :] -> [:Int:]

How should we represent such an array of functions? A possible answer is “as an array
of pointers to function closures”. Bad answer! In data-parallel computations, all the pro-
cessors are supposed to execute the same code in parallel, but if every function closure in
the array is potentially different, they clearly cannot do that. Furthermore, a pointer-based
representation destroys locality.

Happily, there is no need for the generality of a distinct function pointer for each array
element. Consider the result of distance, for example. Every element of this array is
a function with the same code, but a different value for the function’s free variable x. This
makes the solution obvious: we must represent an array of functions by a pair of a single
code pointer and an array of environment records, which give the per-element bindings for
the free variables.

5.3 Putting it together

Putting our two solutions together, we see that in vectorised code a function must be repre-
sented by a triple:

1. The scalar version of the function
2. The lifted version of the function
3. An environment record of the free variables of the function

To be concrete, here is the data type declaration for vectorised functions:
data (a :-> b) = forall e. PAElem e =>

Clo { env :: e
, clos :: e -> a -> b
, clol :: PA e -> PA a -> PA b }

This declaration says that (:->) is an algebraic data type (written infix), with a single con-
structor Clo. The constructor Clo has an existentially-quantified type variable e, and three
fields, env, clos, and clol . The vectorisation transformation will transform every function
type τ1->τ2 to τ′1:->τ′2, where τ′1 is the transformed version of τ1 and similarly for τ2. In
effect, the vectorisation transform performs closure conversion [AJ89].

With this definition in hand, we can now explain how arrays of values of type (a :-> b)
are represented:

instance PAElem (a :-> b) where
data PA (a :-> b) = forall e. PAElem e

=> AClo { aenv :: PA e
, aclos :: e -> a -> b
, aclol :: PA e -> PA a -> PA b }

lengthPA (AClo env fs fl) = lengthPA env
indexPA (AClo env fs fl) n = Clo (indexPA env n) fs fl
replicatePA n (Clo env fs fl) = AClo (replicatePA n env) fs fl
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To represent an array of functions, we keep a single code pointer for each of the scalar and
lifted code, but have an array of environment records. Notice that Clo and AClo differ only
in the type of the environment field; their clos and clol fields are identical.

As in the case of other types, it is worth noting that this representation supports very
simple and direct implementations of indexing, replication, and so on. It does not efficiently
support literal arrays of various different functions, such as [:sin,cos:]. This is quite
deliberate: in a data-parallel computation all the processors should be performing the same
computation at the same time. Nevertheless, such arrays can be handled, essentially using
conditionals which ensure that different functions are executed one after another.

In Section 6.2, we will see how Clo and AClo are used in the transformation of the ho
example. Before we can do so, we must first specify the vectorisation transformation more
precisely.

6 Vectorisation
We are finally ready to discuss the vectorisation transformation itself. Consider a top-level
function definition f :: τ = e, where τ is the type of f . The full vectorisation transformation
produces a definition for the vectorised version of f called fV, thus:

fV :: VtJτK = V JeK

Here, f V is the fully vectorised variant of f , whose right-hand side is generated by the full
vectorisation transform V J·K. As we have already seen, vectorisation returns an expression
of a different type to the input, so the type of f V is obtained by vectorising the type τ,
thus VtJτK. In general, if e :: τ then V JeK :: VtJτK. Figure 6 gives the functions for both
type and term vectorisation. In our compiler, the transformation applies to an explicitly-
typed program, but we omit all type information in Figure 6, in order to concentrate on the
essentials.

Vectorisation is applied separately to each top level function in the program, so it is a
whole-program transformation. In real programs, only a part will be data-parallel, while
much of it is not (e.g. input/output, user interaction etc). We ignore this issue here, but in
reality our compiler performs selective vectorisation – see Section 6.5 and [CLJK08].

The type transformation VtJτK transforms a source-program type to the corresponding
type in the vectorised program. As can be seen in Figure 6, its effect is simple: it transforms
every function arrow (->) to a vectorised function arrow (:->), and every parametric
array constructor [::] to a non-parametric parallel array constructor PA. A user-defined
algebraic data type might have nested uses of (->) or [::] — for example, Tree does so
— and for these we must generate a vectorised variant (TreeV) of the data type itself. We
elaborate this point in Section 6.4.

This type transformation forces the vectorised program to differ quite radically from
the original. In particular, since a “function” is now a triple constructed with Clo, we need
an infix application operator $: to extract the scalar copy:

($:) :: (a :-> b) -> a -> b
($:) (Clo env fs fl) = fs env

and a lifted version
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VtJτK :: Type→ Type is the vectorisation transformation on types

VtJτ1->τ2K = VtJτ1K :-> VtJτ2K Functions
VtJ[:τ:]K = LtJτK Parallel arrays
VtJIntK = Int Primitive scalar types

VtJFloatK = Float
VtJT τ1 . . . τnK = TV VtJτ1K . . . VtJτnK Algebraic data types (e.g. lists)

LtJτK = PA VtJτK

V JeK :: Term→ Term is the full vectorisation transformation on terms
Invariant: if xi : σi ` e : τ then xi : VtJσiK ` V JeK : VtJτK

V JkK = k k is a literal
V J f K = fV f is bound at top level
V JxK = x x is locally bound (lambda, let, etc)

V Je1 e2K = V Je1K $: V Je2K
V Jλx.eK = Clo {env = (y1, . . . , yk)

,clos = λe x.case eof (y1, . . . , yk)→ V JeK
,clol = λe x.case eof ATupk n y1 . . . yk → L JeK n}

where{y1, . . . , yk} = free variables of λx.e

V

u

v
if e1
then e2

else e3

}

~ = ifV Je1K thenV Je2K elseV Je3K

L JeK n :: Term→ Term→ Term is the lifting transformation on terms
Invariant: if xi : σi ` e : τ then xi : LtJσiK ` L JeK n : LtJτK

where n is the length of the result array

L JkK n = replicatePA n k k is a literal
L J f K n = replicatePA n fV f is bound at top level
L JxK n = x x is locally bound (lambda, let, etc)

L Je1 e2K n = L Je1K n $:L L Je2K n
L Jλx.eK n = AClo {aenv = ATupk n y1 . . . yk,

,aclos = λe x.case eof (y1, . . . , yk)→ V JeK
,aclol = λe x.case eof ATupk n′ y1 . . . yk → L JeK n′}

where{y1, . . . , yk} = free variables of λx.e

L

u

v
if e1
then e2

else e3

}

~ n = combinePA e′1 e′2 e′3
where e′1 = L Je1K n

e′2 = case ys2 of ATupk n2 y1 . . . yk → L′ Je2K n2

e′3 = case ys3 of ATupk n3 y1 . . . yk → L′ Je3K n3

(ys2, ys3) = splitPA e′1 (ATupk n y1 . . . yk)
{y1, . . . , yk} = free variables of e2, e3

L′ JeK n = if n==0 then emptyPA else L JeK n

Figure 6: The vectorisation transformation
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($:L) :: PA (a:->b) -> PA a -> PA b
($:L) (AClo env fs fl) = fl env

The transformation rules in Figure 6 are given with their type invariants, which make
the rules much more comprehensible. For example, consider the rule for V Je1 e2K. Since
e1 : τ1->τ2, we know that V Je1K : VtJτ1K:->VtJτ2K; that is why we need the application
function ($:) to transform the application to an expression of type VtJτ2K.

Similarly, the rule for V Jλx.eK must produce a value of type VtJτ1K:->VtJτ2K, and that
in turn must be built with a Clo constructor. We build an environment tuple (y1, . . . , yk),
of the free variables of (λx.e). Now the type of the arguments of Clo tell us what functions
we must build. The scalar function simply requires a recursive use of V JeK, while the lifted
function requires us to generate a lifted version of the code for e, L JeK n.

The rules for L JeK n can be read in the same way. The main new complication is with
conditionals. First we compute in parallel e′1, the vector of booleans (of length n) for the
discriminant of the conditional. Then we use that vector to split the a vector of environment
tuples into two parts, ys2 (for which corresponding elements of e′1 is true), and ys3 (for which
e′1 is false). The lengths n2, n3 of these vectors will sum to n. Then we compute each of e′2
and e′3 in parallel, and finally interleave them together with combinePA.

Why do we need to pack and split the free variables in the conditional rule? Each free
variable yi is bound to an n-vector; but in the then branch we need a (shorter) n2-vector
(namely ys2) of the elements of yi for which e is True; and dually for the else branch. We
must also test for n2 or n3 being zero (done by L′ JeK n), otherwise when transforming a re-
cursive function we would generate a program that recurses infinitely deep. The operational
behaviour of the translated function will compute e′1, e′2 and e′3 in sequence; as in any data-
parallel machine, the “then” and “else” branches of a conditional are computed separately.

Figure 6 is the core of this paper. Our real system handles let expressions, case ex-
pressions, and constructors, and hence is a bit more complicated. But Figure 6 describes all
the essential ideas.

Since V invokes both V and L (as does L) you might worry about a code explosion.
But notice that the clos field in V is identical to the aclos field in L, and both are closed
functions that can be named, and bound at top level; and similarly for the clol and aclol
fields. Hence, as we will see in the examples that follow, we can avoid the code explosion
simply by naming and sharing these functions.

6.1 A simple example

Here is the simplest possible example:
inc :: Float -> Float
inc = λx. x + 1

The full vectorisation transformation in Figure 6 gives us this:
incV :: Float :-> Float
incV = Clo () incS incL

incS :: () -> Float -> Float
incS = λe x. case e of () -> (+)V $: x $: 1
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incL :: PA () -> PA Float -> PA Float
incL = λe x. case e of ATup0 n -> (+)V $:L x $:L (replicatePA n 1)

To aid explanation we have named incS and incL, but otherwise we have simply applied
Figure 6 blindly. Notice the way we have systematically transformed inc’s type, replacing
(->) by (:->). Notice too that this transformation neatly embodies the idea that we need
two versions of every top-level function inc, a scalar version incS and a lifted version incL.
These two versions paired together to form the fully vectorised version incV.

The vectorised code makes use of vectorised addition (+), which is part of a fixed,
hand-written library of vectorised primitives:

(+)V :: Float :-> Float :-> Float
(+)V = Clo () (+)S (+)L

(+)S :: () -> Float -> Float :-> Float
(+)S = λe x. Clo x addFloatS addFloatL

(+)L :: PA () -> PA Float -> PA (Float:->Float)
(+)L = λe xs. AClo xs addFloatS addFloatL

-- Implemented in the back end
addFloatS :: Float -> Float -> Float
addFloatL :: PA Float -> PA Float -> PA Float

The intermediate functions (+)S and (+)L deal with partial applications of (+). Finally we
reach ground truth: invocations of addFloatS and addFloatL, which are implemented
by the back end. The former is the ordinary floating point addition instruction; the latter
is a “vector instruction”, which will be implemented differently on different targets. On a
sequential machine it will be implemented as a loop; on a GPU it will be implemented using
vector hardware; on a cluster it will be implemented using a loop on each CPU with barrier
synchronisation at the end. Section 7 elaborates.

These functions look grotesquely inefficient, especially considering how trivial the orig-
inal function inc was. Fortunately, most of the clutter is introduced to account for the possi-
bility of higher order programming, and can be removed by straightforward optimisations.

For example, consider the sub-term (+)V $: x $: 1 in the definition of incS. We can
simplify it in the following way:

(+)V $: x $: 1)
=⇒ Inline (+)V

(Clo () (+)S (+)L) $: x $: 1
=⇒ Definition of $:
(+)S () x $: 1

=⇒ Inline (+)S

(Clo x addFloatS addFloatL) $: 1
=⇒ Definition of $:
addFloatS x 1
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All the intermediate closure data structures are removed. (To save generating huge interme-
diates during compilation, we are exploring whether the vectorisation transformation could
have special cases to avoid introducing them in the first place.)

6.2 The higher order example again

It is instructive to see a case where the use of higher order functions prevents complete
removal of intermediate closures. Let us return to the ho example of Section 5.1:

ho :: (Int->Bool) -> (Bool, [:Bool:])
ho f = (f 2, mapP f [:1,2,3:])

Again applying the vectorisation transformation blindly we get this:
hoV :: (Int :-> Bool) :-> (Bool, PA Bool)
hoV = Clo () hoS hoL

hoS :: () -> (Int :-> Bool) -> (Bool, PA Bool)
hoS () f = (f $: 2, mapPV $: f $: [:1,2,3:])

hoL :: PA () -> PA (Int :-> Bool) -> PA (Bool, PA Bool)
hoL (ATup_0 n) fs
= (,)L (fs $:L replicatePA n 2)

(replicatePA n mapPV $:L fs $:L replicatePA n [:1,2,3:])
We have taken a short-cut here by using optimised transformation rules for pairs:

V J(e1, e2)K = (V Je1K ,V Je2K)
L J(e1, e2)K n = (, )L n (L Je1K n) (L Je2K n)

The reader may verify the correctness of this optimised rule by seeing what happens instead
if we use the normal translation (,)V $: V Je1K $: V Je1K, and the definition of (,)V, which
in turn is very like that for (+). Because of our array representation, the lifted pairing
function (,)L is a constant-time operation:
(,)L :: Int -> PA a -> PA b -> PA (a,b)
(,)L n xs ys = ATup2 n xs ys

6.3 How flattening happens

In our informal overview (Section 3.2) we said that we “replace a call (mapP f) by fL”.
Higher order flattening takes that static decision and makes it dynamic, by representing f by
a pair of functions, thereby allowing mapP to select at runtime. (With the usual compile-time
optimisations when f is known, of course.) The code for mapP itself is therefore the heart of
the way in which nested data parallelism is transformed to flat data parallelism. Here it is:

mapPV :: (a :-> b) :-> PA a :-> PA b
mapPV = Clo () mapP1 mapP2

mapP1 :: () -> (a :-> b) -> PA a :-> PA b
mapP1 _ f = Clo f mapPS mapPL
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mapP2 :: PA () -> PA (a :-> b) -> PA (PA a :-> PA b)
mapP2 _ fs = AClo fs mapPS mapPL

mapPS :: (a :-> b) -> PA a -> PA b
mapPS (Clo env fs fl) xss
= fl (replicatePA (lengthPA xss) env) xss

mapPL :: PA (a :-> b) -> PA (PA a) -> PA (PA b)
mapPL (AClo env _ fl) xss

= unconcatPA xss (fl (expandPA xss env) (concatPA xss))
-- xss :: PA (PA a)
-- env :: PA e
-- fl :: PA e -> PA a -> PA b

In mapPS we exploit the key observation from Section 3.2, namely that we can define the
doubly-lifted function using the singly-lifted one fl, using constant-time reshaping opera-
tions on the data. Unfortunately, to account for free variables, we face a small complication:
the environment env contains one element for each subarray of xss. Thus, before apply-
ing fl we must expand env, i.e., repeat each element as many times as the corresponding
subarray of xss has elements. For top-level functions, the environment will be empty and
expandPA performs no work.

Of course, mapP is not the only function that the library must implement. All of (the
PA versions of) the functions in Figure 1 must be provided in vectorised form. For example,
here is the lifted version of zipP (the definition of zipPA is given in Section 4.1):
zipPL :: PA (PA a) -> PA (PA b) -> PA (PA a,b)
zipPL (AArr segd xs) (AArr ys) = AArr segd (zipPA xs ys)

These library functions are the heart of flattening: they make nested data parallelism “go”.
Everything is organised to make their implementation, especially their lifted variants, work
efficiently.

6.4 User-defined data types

One of Haskell’s strengths is the ease with which programmers can declare new algebraic
data types, and process them using pattern matching. DPH allows all of this expressiveness
in fully-vectorised code as well. There are two main complications: occurrences of (->)
and [::] in user-defined data types; and representing arrays of values drawn from such
types. We discuss each in turn.

Vectorising user-defined data types

In Figure 6, the type transform VtJτK replaces a user-defined data type T by its vectorised
counterpart TV. But what exactly is TV? Consider

data Fun = MkFun (Int -> Int)
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Remember that in the vectorised program, each function arrow (->) must be replaced by
a function closure (:->) — and of course that must also happen inside data types. So we
must generate a vectorised version of Fun, thus:
data FunV = MkFunV (Int :-> Int)

This must be done recursively: if a constructor of data type T mentions Fun, then T too must
have a vectorised version. So the vectorised variant of each data type obtained by simply
applying the VtJK transform to every type in the data type declaration. The Tree type of
Section 2.2 is another good example, because we must replace [::] by PA:

data TreeV = NodeV Mass Location (PA Tree)

While we can generate a vectorised version of every data type, it is unnecessary to do
so for data types that do not mention functions or parallel arrays. Happily, almost all data
types fall into this category; for example Bool, Maybe, lists, tuples, and so on. We quietly
took advantage of this in the Tree example, by not transforming Mass to MassV (and simi-
larly Location) because Mass = MassV. In Section 6.5 we will see a second reason to avoid
vectorising a data type unless it is absolutely necessary to do so.

Arrays of user-defined data types

The ideas of Section 4.1 can readily be extended to work for arbitrary user-defined algebraic
data types. We have already seen how this works for Tree in Section 4.3. Here is another
example, a sum type:

data Maybe a = Nothing | Just a

How can we represent an array of Maybe Float values? The natural dense representation
is as a pair of (a) an array of booleans (True for Nothing, and False for Just), and (b) an
array of Float containing only the Just values:

instance PAElem a => PAElem (Maybe a) where
data PA Maybe a = AMaybe (PA Bool) (PA a)
indexPA (AMaybe bs vs) i

| indexPA bs i = Nothing
| otherwise = indexPA vs (indexPA just indices i)
where

just indices = scanPA (+) 0 (mapPA boolToInt bs)
lengthPA (AMaybe bs _) = lengthPA bs

In practice, to avoid computing just_indices on each indexing operation we precompute
the index vector, and cache it in an extra field of the AMaybe constructor.

In our real implementation, we avoid generating a big instance declaration for every
such user-defined data type, by instead generating code to convert it to a simple sum-of-
products representation, and then using a set of fixed instances for PAElem at those repre-
sentation types.

6.5 What we have swept under the carpet

Vectorisation is a complicated transformation, and to keep it comprehensible we have sim-
plified several aspects. In this section we briefly mention some of them.
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Types and dictionaries

The alert and Haskell-savvy reader will have noticed the following discontinuity in our
presentation. We described PA type in association with a type class, PAElem. However, type
classes are dealt with by the type inference system, right at the front end of the compiler,
and are completely translated out in the passage to the Core intermediate language. In this
desugaring, a function with an overloaded type, such as nub :: Eq a => [a] -> [a]
is given a second parameter which is a record, or “dictionary”, of the functions that imple-
ment the operations of the Eq class.

In the desugared program, nub has type EqD a -> [a] -> [a], where EqD is an
ordinary data type, thus:

data EqD a = EqD { (==) :: a -> a -> Bool
, (/=) :: a -> a -> Bool }

Correspondingly, the desugarer injects an extra argument at every call to nub, namely the
correct method suite for that particular call site.

The vectoriser generates many calls to replicatePA, splitPA, etc, which have type-
class-constrained types, yet the vectoriser runs after typechecking and desugaring are complete. So
the vectoriser cannot take advantage of the implicit injection of extra arguments; instead it
must insert them itself. In the real implementation of Figure 6, the vectoriser therefore adds
appropriate dictionary abstractions and applications. (In fact, since GHC’s Core language
is an explicitly-typed variant of System F, we also inject type abstractions and applications.)
All this is tiresome but routine; showing the implicit abstractions and applications in Fig-
ure 6 would have dramatically obfuscated an already-dense figure.

Selective vectorisation

As mentioned earlier, we do not really vectorise the whole program; rather, we selectively
vectorise parts of it. We must also generate marshaling code to allow us to “cross the bor-
der” between vectorised and unvectorised code. For example, in Barnes-Hut, we presum-
ably want to vectorise the oneStep function, which will give us

oneStepV :: PA Particle :-> PA Particle

If we want to be able to call oneStep from ordinary scalar code, we must generate the
following marshalling code:

oneStep :: [:Particle:] -> [:Particle:]
oneStep ps = fromPA (oneStepV $: (toPA ps))

toPA :: PAElem a => [:a:] -> PA a
fromPA :: PAElem a => PA a -> [:a:]

Marshaling may also be necessary for user-defined data types.. For example, suppose we
vectorise a function f :: Int -> Fun, so that fV :: Int :-> FunV (cf. Section 6.4 for
the definition of Fun). If we want to call f from normal scalar code, we must generate:

f :: Int -> Fun
f n = case fV n of

MkFunV tf -> MkFun (($:) tf)
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Of course, it gets worse if the data type is recursive, because the marshaling code has to
traverse the whole structure. On the other hand, no marshaling is needed for types that
have have no functions or arrays inside them, which is a strong reason for exploiting that
special case (Section 6.4).

Marshaling has a run-time cost. In particular, the calls to toPA and fromPA change
the data representation for parallel arrays, and so are potentially very expensive. In fact, it
is possible to choose a representation for [:a:] that mitigates these costs somewhat but in
general, marshaling data across the border should be avoided.

The question of just which parts of the program to vectorise is therefore an interesting
one. We want to vectorise code that can run in parallel; we want to reduce marshaling to
a minimum; and we do not want to vectorise code where there is little or no benefit. We
suggest automatic approaches in [CLJK08], but it may also be reasonable to seek help from
the programmer (e.g. “vectorise module X but not module Y”).

Laziness

Consider this function:
f :: Int -> Int
f x = h x (1/x)

Although x might be zero, let us assume that h only evaluates its second argument if its
first argument is non-zero. Haskell’s lazy evaluation therefore ensures that no divide-by-
zero exception is raised.

The lifted version will look something like this:
fL :: PA Int -> PA Int -> PA Int
fL xs = hL xs (replicatePA (lengthPA xs) 1 /L xs)

The trouble is that a demand for any element of hL’s second argument will force all the
elements to be evaluated, including the divisions by zero. Something very similar arises in
a more local context when we have let expressions:

f x = let y = 1/x in
if x==0 then 0 else y+1

Although this is something of a corner case, we do not yet have a very satisfying solution.
We currently simply ignore the problem, and accept the slight change in semantics. A better
solution might be to reify the exception into an exceptional value (like a IEEE NaN); but
that carries an efficiency cost. Lastly, we might treat the argument as a nullary function,
accepting the loss of sharing that would result.

7 Multicore execution model

The vectorisation transformation turns all nested data parallelism into parallel operations
on flat arrays, as used by the instances of the PAElem class. The transformation is crucial to
express parallel algorithms on a high-level of abstraction and in a modular fashion. How-
ever, purely functional array operations, even if restricted to flat arrays, are still a far cry
from the hardware model of multicore CPUs.
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In particular, the vectorised code uses many superfluous intermediate arrays, which
increase the overhead of memory management and whose creation involves extra synchro-
nisation between parallel CPUs. Even worse, the repeated traversal of large structures com-
promises locality of reference, and so, has a very negative effect on execution performance.
Finally, we need to map the data parallel array operations onto the multi-threaded execu-
tion model of multicore CPUs by way of the Single Program Multiple Data (SPMD) model
[Dar01].

In contrast to the vectorisation transformation, we can implement the mapping from
flat data-parallel code to SPMD code using existing transformation and optimisation phases
of GHC; in particular, we make heavy use of GHC’s inliner and rewrite rules [PM02, PTH01],
which enable library-specific optimisations as part of library source code, in the form of
compiler pragmas. Consequently, we can implement these transformations without alter-
ing GHC’s source code, which greatly simplifies experimentation with different transforma-
tions.

In the reminder of this section, we illustrate the transformation of flat data-parallel code
into SPMD code by way of an example. Further details are in [KC99, CK03, CSL07, CLS07,
CLP+07].

7.1 Running example

As an example, we consider the computation of the value far_forces, in the function
calcForces of Section 2.2, by way of the array comprehension,

[: forceOn p m l | p <- ps, isFar len l p :]

After vectorisation and simplification to remove intermediate closure data structures, we
have

forceOn’L (filterPS (isFar len l) ps) m l

The code performs two collective operations on the input array ps in sequence. Firstly, the
application of filterPS to remove all particles that are not far, and secondly, a computation
that corresponds to lifting forceOn only on its first argument (here called, forceOn’L):

forceOn’L :: PA Particle -> Mass -> Location -> PA Force

Such pipelines of collective operations are typical for data-parallel code.

7.2 The SPMD execution model

The implementation of collective array operations, such as mapP and filterP, needs to
distribute the workload evenly across the the available processing elements (PEs), such as
multiple cores and CPUs. In the data-parallel model, the workload of a PE is dependent
on the number of array elements residing on that PE. Hence, we balance work by suitably
distributing the array elements. By default, we choose an even distribution; i.e., given p PEs
and an array of length n, each PE gets about n/p array elements.

In the SPMD model, the individual PEs process local array elements until they arrive at
a point in the computation where they require non-local data, and need to cooperate with
other PEs. In our example, the result of filterPS is such a point. Even if the input to
filterPS is an array that is evenly spread across the PEs, the output of filterPS might
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be wildly unbalanced, depending on which elements of the array are selected by the pred-
icate. If so, any further processing of that array would have an equally unbalanced work
distribution.

To avoid a work imbalance, arrays need to be re-distributed when their size changes.
Redistribution is a cooperative process in which all PEs need to coordinate. However, re-
distribution is not the only such operation in an SPMD implementation of data parallelism.
Other prominent cooperative operations are reductions (such as foldP), pre-scans (such as
scanlP), and permutation operations. Overall, a parallel program executing in SPMD-style
alternates between processing phases, where the PEs operate independently on local data, and
communication phases, where the processing elements interact and exchange data.

Communication phases are typically expensive because they include data exchange
and blocking to allow any slower PEs to catch up. Hence, compiler optimisations that
remove communication phases in favour of longer-running processing phases are often
worthwhile. In particular, the redistribution of arrays after operations that change the array
length, such as filterPS, does not necessarily improve overall runtime. An inexpensive,
purely local operation may be faster, even if work is not ideally balanced, than an expensive
redistribution followed by the same local operation with a perfectly balanced workload.

7.3 Gang parallelism

Our implementation of the SPMD model for data parallelism is based on the coordinated ex-
ecution of a gang of threads, with one thread per PE. GHC includes a Haskell library for con-
current programming with explicit thread forking and thread communication primitives. It
forms the lowest level of abstraction in our data-parallel array framework and enables us to
implement the entire library in Haskell without any special compiler support or the need to
resort to C code.

We need to make the distributed nature of computations in the SPMD model explicit to
further compile the code resulting from vectorisation, such as

forceOn’L (filterPS (isFar len l) ps) m l

In this context, distribution does not imply that the data is necessarily located on physically
distinct memory banks, but that different threads are responsible for the processing of dif-
ferent portions of parallel arrays. By being explicit about distribution, we are automatically
also explicit about the distinction of processing phases versus communication phases.

Our main vehicle for distinguishing between these two phases and making distribu-
tion explicit is the type Dist a of distributed values. For instance, Dist Int, pronounced
“distributed Int”, denotes a collection of local integers, such that there is one local integer
value per gang thread. Arrays can be distributed, too: Dist [:Float:] is a collection of
local array chunks, again one per gang member, which together make up the array. Arrays
are distributed across gang members and joined back together by the following functions:

splitD :: PA a -> Dist (PA a)
joinD :: Dist (PA a) -> PA a

Distributed values support a number of operations, most importantly mapping:
mapD :: (a -> b) -> Dist a -> Dist b
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While splitD and joinD denotes communication, mapD is the main means of implement-
ing parallel processing phases: the gang members concurrently apply the (purely sequen-
tial) function to their respective local values.

7.4 Inlining of gang code

Given a sequential filter function operating on a single chunk of a parallel array
filterS :: (a -> Bool) -> PA a -> PA b

we can define filterPS as a distributed gang computation as follows:
filterPS p arr = joinD (mapD (filterS p) (splitD arr))

Given a global parallel array, which is not distributed, splitD distributes the array across
the gang, mapD (filterS p) applies the sequential filter function in parallel to all chunks
of the distributed array, and finally, joinD combines the various chunks, which may now
be of varying length, into one global array.

Similarly, forceOn’L internally consists of mapDs that compute the force for each par-
ticle. The force computations for the individual particles are entirely independent, so we
can assume forceOn’L to have the following structure:

forceOn’L ps m l
= joinD (mapD (mapS (λp. forceOn p m l)) (splitD ps))

where forceOn is the original, sequential function from the source of our Barnes-Hut im-
plementation and mapS is a purely sequential array mapping function.

GHC’s inliner will inline the definition of both filterPS and forceOn’L; i.e., it will
perform the following rewriting:

forceOn’L (filterPS (isFar len l) ps) m l
=⇒Inlining
joinD (mapD (mapS (λp. forceOn p m l)) (
splitD (joinD (mapD (filterS (isFar len l)) (splitD ps)))))

Of special interest here is the function splitD which is applied to the immediate result
of joinD (in the second line of the resulting expression). This turns a distributed array into
a global array and distributes it again. In contrast to the original array, the newly distributed
one is guaranteed to be distributed evenly; hence, a splitD/joinD combination performs
load balancing.

However, as we remarked earlier, it is often an advantage to accept some load imbal-
ance in favour of avoiding communication phases in an SPMD computation. In GHC, we
easily achieve that by specifying the following rewrite rule:

"splitD/joinD" forall xs. splitD (joinD xs) = xs
GHC has support for specifying such rewrite rules directly in the library source code as
compiler pragmas [PTH01]. Applications of the splitD/joinD rule frequently produce
two adjacent applications of mapD, which signal two adjacent purely sequential and thread-
local computations. We can combine them, and hence eliminate a synchronisation point,
using the well known map fusion law:

"mapD/mapD" forall f g xs.
mapD f (mapD g xs) = mapD (f . g) xs
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Applying both rules to our example, we get
joinD (mapD (mapS (λp. forceOn p m l)) (
splitD (joinD (mapD (filterS (isFar len l)) (splitD ps)))))

=⇒Apply splitD/joinD
joinD (mapD (mapS (λp. forceOn p m l)) (
mapD (filterS (isFar len l)) (splitD ps)))

=⇒Apply mapD/mapD
joinD (mapD (mapS (λp. forceOn p m l) . filterS (isFar len l))

(splitD ps)))

At this point, the question arises whether we can combine adjacent sequential array com-
binators, such as mapS and filterS, to reduce the number of array traversals and inter-
mediate data structures. Indeed, we aggressively remove such inefficiencies using a fusion
framework known as stream fusion [CSL07, CLS07, CLP+07], but we will refrain from dis-
cussing this in detail.

This concludes our brief overview of the post-vectorisation aspects of Data Parallel
Haskell. A somewhat more detailed discussion can be found in [CLP+07].

8 Related work

We discussed prior work on the implementation of language support for nested data par-
allelism in detail in [CLP+07]. In this paper, we will only give a brief overview of existing
work, and how they compare to our approach.

The starting point for our work was the nested data parallel programming model of
NESL [Ble90, BCH+94], which we extended and implemented in the context of a general-
purpose language and GHC, a state-of-the-art compiler. Consequently, we have to deal
with a multitude of issues not previously addressed, as for example the combination of
user-defined and parallel data structures, selective vectorisation, higher-order functions,
separate compilation, and aggressive cross-function optimisation.

Prins et al. worked on various aspects of the vectorisation of nested data parallel pro-
grams; see, e.g., [PP93, PPW95]. Most of their work was also in the context of a functional
language, but one that like NESL lacks many of Haskell’s features. Their work is largely
orthogonal to ours.

The Proteus system [MNPR94] promised a combination of data and control parallelism,
but Proteus had a particular focus on manual refinement of algorithms, where data paral-
lel components were automatically vectorised, this again was a complete whole-program
transformation. Moreover, the system was never fully implemented.

Manticore [FFR+07] supports a range of forms of parallelism including nested data
parallelism. Manticore employs some of the same techniques that we use, but does not
implement flattening yet [FRRS08]. According to the project web page, a preliminary im-
plementation of the Manticore system should be available around the time when this paper
is published.

So et al. [SGW06] developed a parallel library of immutable arrays for C/C++ support-
ing what they call sub-primitive fusion. Their choice of immutable arrays, despite working
with imperative languages, is to enable aggressive program transformations, much like in
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our approach. However, where we apply transformations statically during compile time,
their library builds a representation of the to be executed computation at runtime. Conse-
quently, they require less compiler support and do not have to worry about inlining and
similar optimisations. However, they incur a runtime penalty by performing optimisations
at runtime and need to amortise that penalty by further optimisations. Like us, they also
strive for a seamless integration of data parallelism and explicit concurrency within a single
program.

9 Conclusion
We are excited about Data Parallel Haskell because it gives us some chance of writing par-
allel programs that can in principle efficiently exploit very large parallel machines working
on large data sets.

In this paper we have outlined solutions to the challenges of polymorphism, higher
order functions, and user-defined data types. There is much to do, however, before we
can declare victory. The very generality of Data Parallel Haskell makes it an ambitious
undertaking. Many components have to work together smoothly to generate efficient code
— and that is before we start to consider matters such as using SSE vector instructions or
GPUs, or mapping to a distributed memory architecture. Nevertheless, we regard nested
data parallelism general, and Data Parallel Haskell in particular, as a very promising and
exciting approach to harnessing the multicores.
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ABSTRACT. Endowing computers with the ability to apply commonsense knowledge with human-
level performance is a primary challenge for computer science, comparable in importance to past
great challenges in other fields of science such as the sequencing of the human genome. The right
approach to this problem is still under debate. Here we shall discuss and attempt to justify one ap-
proach, that of knowledge infusion. This approach is based on the view that the fundamental objective
that needs to be achieved is robustness in the following sense: a framework is needed in which a
computer system can represent pieces of knowledge about the world, each piece having some un-
certainty, and the interactions among the pieces having even more uncertainty, such that the system
can nevertheless reason from these pieces so that the uncertainties in its conclusions are at least
controlled. In knowledge infusion rules are learned from the world in a principled way so that sub-
sequent reasoning using these rules will also be principled, and subject only to errors that can be
bounded in terms of the inverse of the effort invested in the learning process.

1 Introduction
One of the most important challenges for computer science is that of understanding how
systems that acquire and manipulate commonsense knowledge can be created. By common-
sense knowledge we mean knowledge of the kind that humans can successfully manipulate
but for which no systematic theory is known. For example, conducting appropriate ev-
eryday conversations among humans requires such commonsense knowledge, while the
prediction of the trajectory of a projectile can be accomplished using the systematic theory
offered by physics.

We argue that to face this challenge one first needs a framework in which inductive
learning and logical reasoning can be both expressed and their different natures reconciled.
The learning provides the necessary robustness to the uncertainties of the world. It enables a
system to go to the world for as much data as needed to resolve uncertainties. The reasoning
is needed to provide a principled basis for manipulating and reaching conclusions from the
uncertain knowledge that has been learned. The process by which we can infuse a system
with commonsense knowledge, in a form suitable for such reasoning, we call knowledge
infusion or KI [13, 15].

Robust logic [14] is a concrete proposal for realizing KI. It offers a formalism for learn-
ing rules that are suitable for later chaining together for the purpose of reasoning. In this
system both learning and reasoning can be performed in polynomial time, and, further, the
reasoning has certain soundness and completeness properties, and the errors in learning
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and reasoning can be upper bounded in terms of the inverse of a polynomial function of the
effort expended in the learning.

For brevity we shall refer to a system that can successfully reason with commonsense
knowledge as an intelligent system. Recent headlines in the New York Times - with one word
omitted in each case - included “Can Weeds Help Solve the ..... Crisis?” and “Oil Hits New
High as Dow Flirts With ..... Territory.” It would be reasonable to expect intelligent systems
to be able to make reasonable guesses of the missing words. To achieve such capabilities
there is a need both for access to commonsense knowledge, as well as for an ability to apply
such knowledge to situations not previously experienced.

We suggest that for such a word completion, or any other, task to be a valid test for
intelligent systems, it will need to have two properties in common with the Turing Test [11].
First, there should be no a priori restrictions, to any limited subdomain or microworld, on
the domain of knowledge treated. Second, there needs to be some numerical evaluation of
performance relative to some baseline. We regard these two properties as the most funda-
mental prerequisites for tests of progress in this area.

Recently we have reported on the results of experiments that test whether KI is ef-
fective for such an unrestricted word completion task [8]. These experiments, performed
on a data set of a half a million natural language sentences, showed that this task of pre-
dicting a deleted word from a sentence could be performed to a higher accuracy by this
method than by a baseline learning method that did not use reasoning. In this experiment
the learned rules contained commonsense knowledge about the world, while the baseline
method could be regarded as a more syntactic learning method, in the sense of n-gram
methods in natural language processing but using more powerful Winnow based learning
methods as developed by Roth and his coworkers [4]. The experiments highlight the tech-
nical challenges of learning from noisy data reliably enough that the learned rules could be
chained together fruitfully. In particular there is a need for algorithms that have good run
times and good generalization properties, and for methods of chaining rules that preserve
the generalization guarantees.

Technical descriptions of the approach described can be found in references [8, 14, 15]
and we shall not detail any of that here. In this note we shall attempt to summarize infor-
mally the general justification of our approach in comparison with some alternatives. Since
the effort needed to endow computer systems with usable commonsense knowledge can
be expected to be very considerable, it seems worthwhile to invest effort into evaluating
carefully the various available approaches.

2 Achieving Robustness

As soon as the feasibility of large scale computations became evident in the middle of the
twentieth century an immediate concern was whether the execution of millions of instruc-
tions, each one highly accurate in itself, would inevitably lead to errors accumulating and
giving totally incorrect final answers. For processing commonsense knowledge this robust-
ness problem would appear to be an especially important concern, since significant uncer-
tainties may appear here even in individual steps. This paper is predicated on the proposi-
tion that any theory of commonsense reasoning that fails to include robustness in its subject
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matter will also fail as a basis for intelligent systems as these scale up.
That some theoretical basis is required for intelligent systems to be successfully realized

is widely acknowledged. The system is expected to make determinations for circumstances
that may not be foreseen by the designer, and these determinations will need therefore to
be derived using some principled basis. In this pursuit the most widely advocated theo-
ries have been the equivalents of the predicate calculus [6], on the one hand, and Bayesian
reasoning [10], on the other, or some combination of these. These theories do have much to
offer, being mathematically consistent theories that attempt to address directly the represen-
tation of knowledge. Their main drawback from our perspective is that they do not address
directly the issue of robustness. Indeed, as a broad generalization, it has proved in practice
that systems based on these theories are brittle, in the sense that, as the knowledge bases in
such systems grow, the predictions made by them degrade significantly. This phenomenon
is not difficult to explain. These theories guarantee accuracy of predictions only if the model
created in terms of them is consistent and accurate. Such guarantees of accuracy and con-
sistency are not available in areas, such as commonsense knowledge, which we define here
to be just those for which no exact axiomatization is known.

We regard the Bayesian framework as an elaboration of the classical logical one. It is ap-
propriate in cases where the knowledge being axiomatized contains probabilistic processes,
and there is some hope of an axiomatization. Since it is just an elaboration of logic, and in
that sense at least as difficult to apply to model complex knowledge, we do not regard it
as helpful in cases where even the deterministic aspects of the knowledge being modeled
is so ill understood that there has been no success in modeling even that part. Putting it
another way, the Bayesian framework would be a panacea if the only obstacle to model-
ing commonsense knowledge wete that it was some probabilistic version of something that
could be successfully modeled otherwise. However, we believe that the obstacles are of
a different and more severe nature: The basic concepts in this knowledge, as represented
typically by natural language words, do not generally have unambiguous meanings. They
may number tens or hundreds of thousands, as they do in the experiments reported in [8].
Typically, an observed situation contains much incomplete information - the truth value of
most concepts in any one situation is unstated and unknown. Finally, there is no reason
to believe that an accurate model of the totality of the possible relationships among these
multitudinous concepts exists.

While the predicate calculus and Bayesian reasoning may be useful intellectual aids
in designing systems, by themselves they do not offer the guarantee of robustness that is
needed: significant aspects of the world are difficult enough to describe accurately, and
when conclusions are to be drawn from conjoining a series of these aspects then the errors
are likely to grow out of control.

Our proposal is that the only guarantee of robustness that is viable for complex ma-
nipulations on uncertain unaxiomatized pieces of knowledge is that offered by learning
processes that have access to instances of the world to which the knowledge refers. The
knowledge in the system can then be constantly tested and updated against real world ex-
amples. The behavior of the system will then be guaranteed in a statistical sense to be cor-
rect with high probability on examples drawn from the same probability distribution from
which the learning experience was drawn. Thus the semantics we advocate for systems that
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manipulate commonsense knowledge is PAC semantics [12], which we shall discuss below.
We shall require not just the learning aspects but also the outcomes of the reasoning processes to
be predictably accurate in that sense. An argument for why an a priori guarantee of accuracy,
as guaranteed by PAC semantics, is needed for all aspects of the system can be illustrated
by distinguishing three situations:

In a first kind of situation, which we call (A), we have a candidate intelligent system
at hand. To test whether its behavior is effective we can run it on live examples. We will
for sure get a reliable statistical assessment of the system’s accuracy on the distribution of
examples on which it is tested.

In another situation, which we shall label (C), we do not have a candidate system at
hand, but are asking whether one can be built at all, and wondering on what principles it
might be built so as to be able to pass a live test as described above. The PAC-model of
learning is designed exactly for this situation. It promises that a system, based on certain al-
gorithms and trained on enough examples of a fixed but arbitrary function that is within the
capabilities of the learning algorithm, will with high probability be able to pass the live test
described in situation (A). The PAC model guarantees that the processes are computationally
feasible, needing only a polynomial amount of computation and data. Equally importantly,
the model acknowledges the possibility that errors will be made in the predictions, but these
errors will be controlled in the sense that they can be made arbitrarily small by increasing, in a
polynomially bounded manner, the amount of data and computation that is being invested.
The PAC model, which captures and quantifies both the computational and statistical as-
pects of learning, is designed to capture exactly the desiderata of any system that draws its
knowledge from, and needs to perform well in, a world that is too complex to be modeled
exactly.

It is conceivable, of course, that systems based on principles, such as Bayesian infer-
ence or the predicate calculus, that do not guarantee robustness a priori in this way will by
chance offer such robustness. This has not happened to date. We would argue that if such
robustness is found then that too will be a phenomenon of PAC semantics, and therefore
most fruitfully described in those terms. Whatever thought aids may have been used in the
design, the only sense in which the result can be declared a success is in the PAC sense that
the system is accurate in its ultimate task on natural examples, and requires only efficiently
computable processes.

Returning to our enumeration of the different situations, we note that there is also an
intermediate situation (B). There we have a candidate system at hand, as in (A), but instead
of testing it against live data we are given a set of examples on which the system has per-
formed well, with the promise that the examples were once chosen live from a distribution,
but no promise that the system was designed independently of these examples. We can vali-
date the system against the examples, as in (A), but we have reason to be suspicious that the
system was tailor made to fit the data. However, ignoring the computational aspects of the
PAC model and retaining only the statistical ones, we can obtain confidence in the system
if the system is simple enough in terms of the amount of corroborating data, whether this
simplicity is measured in terms of the number of bits [1] or the VC-dimension [2] of the sys-
tem description. This situation (B) is also interesting because it, like situation (A), provides
a principled reason for having confidence in a system even if the design methodology of the
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system did not guarantee such confidence.
We conclude that what we need ideally is a design methodology that guarantees ro-

bustness in the PAC sense, as in situation (C). We may be lucky and derive systems with
similar performance in the PAC sense, as verified in situations (A) or (B), without having
used a methodology that is guided by a PAC guarantee. However, based on the past history
of such attempts, we estimate the likelihood of this succeeding as being small.

We are not suggesting that heuristics, or algorithms whose success is not well under-
stood, be avoided altogether. In robust logic we first learn rules that are accurate in the
PAC sense, and then we chain these together in a way that gives predictions that are also
accurate in the PAC sense if the learned rules were. It may be valid to use heuristics in each
of the two halves if sight is not lost of the overall goal that the final predictions have to be
accurate in the PAC sense. For example, the first half is a standard machine learning task.
There is ample evidence for the existence of algorithms, such as various decision tree algo-
rithms, that appear to be effective PAC learning algorithms for some useful set of functions
and distributions that have yet to be characterized. There is no reason for not using these
if these are shown to be effective in practice. What we are saying, however, is that if we do
not plan for PAC accuracy at every stage, in the manner of robust logic, for example, then
we are unlikely to get PAC accuracy in the final predictions.

3 Teaching Materials

The problem of creating systems that realize KI has two parts. The first is the design of
the specific learning and reasoning algorithms that are to be used, as discussed for example
in [14]. The second is the manner in which the real world knowledge is presented to the
system. It may be possible to arrive at reasonable proposals for the former algorithmic
questions once and for all. However, the second aspect, which we call the preparation of
teaching materials, may be an endless task reflective of the endless effort humans put into the
analogous process in the education of the young.

While we emphasize that the main characteristic of commonsense knowledge is that no
axiomatization is known, we welcome the use of any attempted axiomatizations of parts of
the knowledge. For example, when processing natural language texts dictionaries of syn-
onyms and antonyms, as provided, for example, by WordNet [9], are extremely useful, and
are used, in fact, in the experiments reported in [8]. Similarly, hand-designed ontologies
of knowledge, as developed for example in [5], may have an important role in providing
information that is difficult to acquire elsewhere. We shall regard such hand-designed at-
tempted axiomatizations also as teaching materials. When these are used in a KI system
they should be regarded as having PAC semantics also, and subject to modification in the
light of experience. For example, if a dictionary contains some inconsistencies then this will
be discovered in the course of applying this knowledge to examples. Of course, equally
welcome as teaching materials to hand-crafted methods, are automatic methods of obtain-
ing reliable knowledge, even when these are of restricted forms (e.g. [3]).

The teaching materials can be expected to have some hand-designed architecture. For
example, the knowledge may be layered, so that the most fundamental knowledge is in-
fused first, and subsequent layers that depend on that first layer are infused later. Of course,
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the creation of teaching materials for even one layer may be expected to be challenging.
Naturally occurring sources, such as books or the web, may omit essential knowledge that
humans acquire by other means. We hope that progress in building useful systems will
be made, nevertheless, once the problem of constructing teaching materials is raised to the
status of a first-class intellectual activity.

A fundamental difficulty may arise in bootstrapping this process. For example, if the
lowest layer of concepts on which the multi-layered learning is performed consists of visual
primitives, which are at least partially available at birth in biological systems, or of knowl-
edge of three dimensional space at a level not explicitly taught to children, then there re-
mains the problem of providing these primitives to the system. It is conceivable that this can
be done by programming. However, there remains the possibility that, just as with higher
level concepts, the only practical way of putting these into a machine in a robust enough
manner is by learning. Now evolution can also be regarded as a learning process, and re-
cently a theory of evolvability has been formulated in the PAC framework [16]. Hence one
can envisage constructing teaching materials for intelligent systems to correspond not only
to knowledge learned by individual humans, but also to knowledge acquired by them from
their ancestors through evolution. We believe that biology provides an existence proof that
cognitive systems based on pure learning and appropriate teaching materials are feasible.
It remains, however, a significant research endeavor to find pragmatic ways of constructing
useful systems by means of these methods, with or without programmed components.

4 Further Issues

What we have attempted to argue here is that there is no hope of creating intelligent systems
if one fails to incorporate mechanisms, in the manner of KI, that guarantee robustness of the
decisions made by the system. Over the decades researchers have identified many other
difficulties in the pursuit of intelligent systems. The question arises as to whether KI makes
some of these difficulties even less tractable, or contributes to alleviating these.

The first general point we make is that, at least from a cognitive perspective, the PAC
semantics of KI should be viewed as substantially assumption-free and not as imposing
substantive constraints. The definition does presuppose that the function being learned is
within the capabilities of the learning algorithm. However, as long as we are learning con-
cepts that are learnable at all, for example by a biological system, then we have an existence
proof that such a learning algorithm exists. We note that an actual system will attempt to
learn many concepts simultaneously. It will succeed for those for which it has enough data,
and that are simple enough when expressed in terms of the previously reliably learned con-
cepts that they lie in the learnable class. The system can recognize which concepts it has
learned reliably and which not, and will only use the former for reasoning. In this way a
system will have a principled way of discovering which fragments of the knowledge offer
useful predictive power, without having to embark on the hopeless task of modeling all of
it.

Second, we argue that the statistical notion of correctness against a real world distribu-
tion of examples in the PAC sense is the best we can hope for. Of course, in many areas of
science, particularly physics, strong predictive models of the world whether deterministic
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or probabilistic do hold. This is because these models are based on an axiomatization of
a restricted aspect of the world. Clearly, for any aspect of the world that can be similarly
axiomatized (i.e. for which an accurate generative model can be designed) whether in terms
of differential equations, mathematical logic, or explicit probabilistic models, such models
can lead to predictions that work in all cases with quantifiable error and are superior. How-
ever, commonsense reasoning addresses areas where such axiomatizations and generative
models have met with limited success. In particular systems based on them have not scaled.
The considerable success of machine learning as compared with programmed systems, in
speech recognition, computer vision and natural language processing, we interpret as de-
riving from the fact that the robustness that learning offers outweighs the possible benefits
of partially correct axiomatizations. For the general commonsense reasoning problem we
expect this tradeoff to tilt considerably further towards machine learning.

Finally, we ask whether PAC semantics offers solutions to the difficulties that have been
identified for other approaches? This issue has been discussed in [13]. There it is argued
that such issues as conflict resolution, context, incomplete information, and nonmonotonic
phenomena, which are problematic to various degrees for classical logic, are not inherently
problematic in PAC semantics. In fact, interesting new possibilities arise, for example, in the
treatment of incomplete information [7].
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