Preface

This volume contains the proceedings of the 28th international conference on the Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 2008), organized
under the auspices of the Indian Association for Research in Computing Science (IARCS).

This year’s conference attracted 117 submissions. Each submission was reviewed by at
least three independent referees. The final selection of the papers making up the programme
was done through an electronic discussion on EasyChair, spanning two weeks, without a
physical meeting of the Programme Committee (PC). All PC members participated actively
in the discussion.

We have five invited speakers this year: Hubert Comon-Lundh, Uriel Feige, Erich
Gréddel, Simon Peyton Jones and Leslie Valiant. We thank them for having readily accepted
our invitation to talk at the conference and for providing abstracts (and even full papers) for
the proceedings.

We thank all the reviewers and PC members, without whose dedicated effort the con-
ference would not be possible. We thank the Organizing Committee for making the arrange-
ments for the conference.

This year, the conference is being held at the Indian Institute of Science, Bangalore, as
part of its centenary year celebrations. It is a great honour and privilege for the conference
to be recognized and associated with the institute on this occasion.

Finally, this year we have taken a decisive step in democratizing the conference by mov-
ing away from commercial publishers. Instead, we will be hosting the proceedings online,
electronically, via the Dagstuhl Research Online Publication Server (DROPS). A complete
copy of the proceedings will also be hosted on the FSTTCS website (www.fsttcs.org).

The copyrights to the papers will reside not with the publishers but with the respective
authors. The copyright is now governed by the Creative Commons attribution NC-ND.

We do hope this direction will be sustained in the future.

December 2008 Ramesh Hariharan,
Madhavan Mukund,
V Vinay

FSTTCS 2008

IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1771

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 1-12

Implicit Branching and Parameterized

Partial Cover Problems
(Extended Abstarct)

Omid Aminil, Fedor V. Fomin? and Saket Saurabh?

I Max-Planck-Institut fiir Informatik
Qm d. Am ni @i -i nf. npg. de

2 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway.
{f edor . fom n| saket. saurabh}@i . ui b. no

ABSTRACT. Covering problems are fundamental classical problems in optimization, computer sci-
ence and complexity theory. Typically an input to these problems is a family of sets over a finite
universe and the goal is to cover the elements of the universe with as few sets of the family as pos-
sible. The variations of covering problems include well known problems like SET COVER, VERTEX
COVER, DOMINATING SET and FACILITY LOCATION to name a few. Recently there has been a lot of
study on partial covering problems, a natural generalization of covering problems. Here, the goal
is not to cover all the elements but to cover the specified number of elements with the minimum
number of sets.

In this paper we study partial covering problems in graphs in the realm of parameterized complex-
ity. Classical (non-partial) version of all these problems have been intensively studied in planar
graphs and in graphs excluding a fixed graph H as a minor. However, the techniques developed for
parameterized version of non-partial covering problems cannot be applied directly to their partial
counterparts. The approach we use, to show that various partial covering problems are fixed param-
eter tractable on planar graphs, graphs of bounded local treewidth and graph excluding some graph
as a minor, is quite different from previously known techniques. The main idea behind our approach
is the concept of implicit branching. We find implicit branching technique to be interesting on its own
and believe that it can be used for some other problems.

1 Introduction

Covering problems are basic, fundamental and widely studied problems in algorithms and
combinatorial optimizations. In general these problems ask for selecting a least sized family
of sets to cover all the elements. One of the prominent covering problem is the classical
SET COVER problem. SET COVER problem consists of a family .# of sets over a universe
% and the goal is to cover this universe % with the least number of sets from .%. Other
classical problems in the framework of covering include well known problems like VER-
TEX COVER, DOMINATING SET, FACILITY LOCATION, k-MEDIAN, k-CENTER problems, on
which hundreds of papers have been written.

In this paper we study the generalization of these problems to the partial covering prob-
lems, where the objective is not to cover all the elements but to cover the pre-specified num-
ber of elements with minimum number of objects. More precisely, in the partial covering

© Amini, Fomin and Saurabh; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1736

IMPLICIT BRANCHING AND PARAMETERIZED PARTIAL COVER PROBLEMS

problem, for a given integer t > 0, we want to cover at least t elements rather than cov-
ering all the elements. For an example, in PARTIAL VERTEX COVER (PVC), the goal is to
cover at least t edges with minimum number of vertices not all the edges while in PARTIAL
SET COVER (PSC) the goal is to cover at least ¢ elements of % with minimum number of
sets from .%. Other problems are defined similarly. Partial covering problems are studied
intensively not only because they generalize classical covering problems, but also because
of many real life applications. They have received a lot of attention recently, see, for exam-
ple[4,5,7,18].

While different variations of PSC were studied intensively and many approximation al-
gorithm and non-approximability results exist in the literature, only few things are known
on their parameterized complexity. In this paper we fill this gap by initiating parameter-
ized algorithmic study of these problems on structural graphs like planar graphs, graphs
of bounded genus and graphs of bounded local treewidth. In parameterized algorithms,
for decision problems with input size n, and a parameter k, the goal is to design an algo-
rithm with runtime (k) - n°(), where 7 is a function of k alone. Problems having such an
algorithm are said to be fixed parameter tractable (FPT). There is also a theory of hardness
using which one can identify parameterized problems that are not amenable to such algo-
rithms. This hardness hierarchy is represented by W{i] for i > 1. For an introduction and
more recent developments see the books [15, 17, 21]. In this paper, we always parameterize
a problem by the size of the partial set cover, i.e. all our algorithms for finding a partial set
cover of size k that cover at least ¢ sets with input of size n are of running time (k) - no),

Our Approach and Results. The main ideas behind our approach can be illustrated by
planar instances of PARTIAL VERTEX COVER and PARTIAL DOMINATING SET. Let a planar
graph G = (V,E) on n vertices, and integers k, t, be an instance of PARTIAL VERTEX COVER.
Let S be the set vertices in G of degree at least t/k. If S is sufficiently big, say, its size is
at least 4k, then (by the Four color theorem), the subgraph of G induced on S contains an
independent set of size at least k. This yields that there are k vertices of S that are pairwise
non-adjacent in G, and since each of these vertices covers at least ¢t /k edges, we have that in
total they cover at least t edges. If the size of S is less than 4k, we apply explicit branching.
The crucial observation here is that if G has a partial vertex cover of size at most k, then
this cover must contain at least one vertex of S. Thus by making a guess on the vertices
x € S, whether x is in a partial vertex cover of size at most k, we can guarantee, that if the
problem has a solution, then at least one of our guesses is correct. For each of the guesses x,
we create a new subproblem for PARTIAL VERTEX COVER, where the input is the subgraph
of G induced on V' \ {x} and we are asked to cover t — deg(x) edges by k — 1 vertices, where
deg(x) is the number of edges adjacent to x. The number of subproblems we generate in this
way is at most 4k, and we call the procedure recursively on each subproblem. The depth
of the recursion is at most k, and the number of recursive calls at each steps is at most 4k,
resulting in total running time (4k)* - n°(). Actually, in our arguments we used planarity
only to conclude that a graph has large independent set. Definitely, this approach is valid
for many other graph classes with large independent sets, like bipartite graphs, degenerate
graphs and graphs excluding some graph as a minor. (We provide detailed consequences of
this approach in Section 5.)

The main drawback of explicit branching is that we cannot use it for many partial cov-

AMINI, FOMIN AND SAURABH FSTTCS 2008

ering problems, in particular for PARTIAL DOMINATING SET. Even for planar graphs, the
existence of a large independent set of vertices of degree at least ¢/k does not imply that k
vertices can dominate at least t vertices. To overcome this obstacle, we do the following. We
start as in the case of PARTIAL VERTEX COVER, by selecting the set S consisting of vertices
of degree at least t/k. If there are more than k vertices in S which are at distance at least
three from each other, we have the solution. Otherwise, we know that at least one vertex
from S should be in a partial dominating set but we cannot use explicit branching by trying
all vertices of S because the size of S can be too large. However, we show in this case that
the graph formed by S and their neighbors is of small diameter, and thus, by well known
properties of planar graphs, has small treewidth. (Very loosely small here means bounded
by some function of k.) In this case we apply implicit branching, which means that we do not
create a new subproblem for every vertex of S, but instead for every i, 1 <i < k, we make a
guess that exactly i vertices of S are in a partial dominating set. Thus we branch on k cases
and try to solve the problem recursively. We formulate these ideas in details in Sections 3.1
and 3.2 and show how it is sufficient to just know the size of an intersection of an optimal
partial dominating set with S rather than the actual intersection itself to solve the problem.

Again, the only property of planar graphs we mentioned here was the property that
non-existence of a large set of pairwise remote vertices in a graphs yields a small treewidth.
But this property can be shown not only for planar graphs, but more generally for graphs of
bounded local treewidth, the class of graphs containing planar graphs, graphs of bounded
genus, graphs of bounded vertex degree, and graphs excluding an apex graph as a mi-
nor. With more additional work we show that similar ideas can be used to prove that much
more general problem, namely a weighted version of the PARTIAL (k, 7, t)-CENTER problem,
where the goal is to cover at least t elements by balls of radius r centered around at most k
vertices, is FPT on graphs of bounded local treewidth. This result can be found in Section 3.2.
This is mainly of theoretical interest because the running time of the algorithm is kM . ,001),
Such a huge running time is due to the bounds on the treewidth of a graph, which is used
in implicit branching. Due to the generality of the result for graphs with bounded local
treewidth, we do not see any reasonable way of overcoming this problem. But because of
numerous application, we find it is worth to search for faster practical algorithms on sub-
classes of graphs of bounded local treewidth, in particular on planar graphs. As a step
in this direction, we obtain much better combinatorial bounds on the treewidth of planar
graphs in implicit branching, which results in algorithms of running time 200 . n9() on
planar graphs. The combinatorial arguments used for the exponential speedup (Section 3.3)
are interesting on their own. In Section 4, we show that the PARTIAL (k, 7, t)-CENTER prob-
lem is FPT on graphs excluding a fixed graph as a minor. The proof of this result is based
on the decompositions theorem of Robertson and Seymour from Graph Minors [24]. The
algorithm is quite involved, it uses two levels of dynamic programming and two levels of
implicit branching, and can be seen as a non-trivial extension of the algorithm of Demaine
et al. [10] for classical covering problems to partial covering problems.

Finally, let us remark that while DOMINATING SET is FPT on d-degenerated graphs
[3], there are strong arguments that our results cannot be extended to this class of sparse
graphs. This is because Golovach and Villanger [19] showed that PARTIAL DOMINATING
SET is W[1]-hard on d-degenerated graphs.

3

IMPLICIT BRANCHING AND PARAMETERIZED PARTIAL COVER PROBLEMS

2 Preliminaries

Let G = (V, E) be an undirected graph where V (or V(G)) is the set of vertices and E (or
E(G)) is the set of edges. We denote the number of vertices by n and number of edges
by m. For a subset V' C V, by G[V'] we mean the subgraph of G induced by V’. By
N(u) we denote (open) neighborhood of u that is set of all vertices adjacent to u and by
Nu] = N(u)U{u}. Similarly, for a subset D C V, we define N[D| = U,epN|v]. The distance
dg(u,v) between two vertices 1 and v of G is the length of the shortest path in G from u to
v. The diameter of a graph G, denoted by diam(G), is defined to be the maximum length of
a shortest path between any pair of vertices of V(G). By an abuse of notation, we define
diameter of a graph as the maximum of the diameters of its connected components. For
r > 0, the r-neighborhood of a vertex v € V is defined as N[[v] = {u | dg(v,u) < r}. We also
let B,(v) = N{[v] and call it a ball of radius r around v. Similarly B,(A) = U,c AN [0] for
A C V(G). Given a weight functionw : V. — Rand A C V(G), w(B,(A)) = Lyep,(a) w(u).

Given an edge e = (u,v) of a graph G, the graph G/e is obtained by contracting the
edge (u,v) that is we get G/e by identifying the vertices u and v and removing all the loops
and duplicate edges. A minor of a graph G is a graph H that can be obtained from a subgraph
of G by contracting edges. A graph class C is minor closed if any minor of any graph in C is
also an element of C. A minor closed graph class C is H-minor-free or simply H-freeif H & C.

We use the standard definitions of treewidth and tree decomposition. We use tw(G)
to denote the treewidth of a graph G. The definition of treewidth can be generalized to
take into account the local properties of G and is called local treewidth [16, 20]. The local
treewidth of a graph G is the function 1tw® : N — IN that associates with every integer
r € IN the maximum treewidth of an r-neighborhood of vertices of G, i.e., lth(r) =
max,ey () {tw(G[N;[v]])}. A graph class & has bounded local treewidth, if there exists a
function f : N — IN such that for each graph G € ¢, and for each integer r € IN, we have
1twC (1) < f(r). The class ¢ has linear local treewidth, if in addition the function f can be cho-
sen to be linear, thatis f(r) = cr where ¢ € R is a constant. For a given function f : N — N,
9y is the class of all graphs G of local tree-width at most f, that is, Itw© (r) < f(r) for every
r € IN. A well known graph classes which are known to have bounded local treewidth are
planar graphs, graphs of bounded genus, and graphs of bounded maximum degree. By a
result of Robertson and Seymour [22], f(r) can be chosen as 3r for planar graphs. Similarly
Eppstein [16] showed that f(r) can be chosen as c,g(X)r for graphs embeddable in a sur-
face X, where g(X) is the genus of the surface X and ¢, is a constant depending only on the
genus of the surface. Demaine and Hajiaghayi [11] extended this result and showed that the
concept of bounded local treewidth and linear local treewidth are the same for minor closed
tamilies of graphs.

3 FPT Algorithms for Weighted Partial-(k, r, t)-Center Problem

3.1 Developing a Step by Step Procedure

In this section we give a template of a generic algorithm for partial covering problems aris-
ing on graphs. We use this later to show that partial covering problems arising on graphs are
fixed parameter tractable in graphs of bounded local treewidth. We formulate the template

AMINI, FOMIN AND SAURABH FSTTCS 2008

through the following problem.

WEIGHTED PARTIAL-(k, 7, t)-CENTER (WP-(k, 7, t)-C): Given an undirected graph
G = (V,E), with weight function w : V — {0,1} and integers k, r and ¢. The
problems asks whether there exists a C C V of size at most k (k centers), such
that w(B,(C)) > t. Here k and r are the parameters.

When all the vertices have weight 1 this is a PARTIAL-(k, 7, t)-CENTER (P-(k,r, t)-C)
problem, and for r = 1 and w(v) = 1 for all v € V this is PARTIAL DOMINATING SET
problem. To formulate PSC problem as WP-(k, r, t)-C problem, we consider the incidence
bipartite graph associated with the instance of PSC problem and give weights 1 to the ver-
tices associated with elements and 0 to the vertices associated with sets. Since PVC can
be transformed to PSC problem, WP-(k, r, t)-C also generalizes PVC. One defines PARTIAL
HITTING SET similarly.

Unlike the non-partial and non-weighted version of WP-(k, 7, t)-C problem, the first
major challenge in partial covering problems is: which ¢ elements we choose to cover? To
find an answer to this we define the following set S and the corresponding graph G, which
forms the first step of the algorithm:

(T1) Define S ={v|v eV, w(B,(v)) >t/k}and G = U,es G[B+(v)].

The basic observation is that if there exists a subset C C V of size at most k such that

w(B,(C,r)) > tthen CN S # @. Given the graph G our second idea is to:

(T2) Check the diameter of G, and if diam(G) is large then we argue that this is a YES
instance by providing a subset C of size at most k and w(B,(C)) > t.

Now when the diam(G) is small, the treewidth of the graph G is bounded and hence dy-

namic programming over graphs with bounded treewidth can be used. But we still do not

know whether we can find the desired C among the vertices of §. Hence even if we find
out that there is no X C S such that |X| < k and w(B,(X)) > t, we can not guarantee that
this is a NO instance of the problem. So to overcome this difficulty we resort to an implicit
branching by using the earlier observation that there is no desired C whose intersection with

S is empty. Before we go further, given a vertex set S and G (as defined above), we define

u(S,i) = maxacs |a=i{w(B(A))}.

(T3) Using dynamic programming over graphs with bounded treewidth, compute (S, 1)
for G for 1 <i < k as well as a subset A; C S such that w(B,(A4;)) = u(S,i).

(T4) Now we make k recursive calls to reduce the size of k on the fact that if there exists a
C then its intersection with S is between 1 < i < k. Now we reduce the parameters ¢
tot — u(S,i) and k to k — i and try to solve the problem recursively.

In the recursive steps, we follow the above steps and either we move forward to a larger
G or we get a desired solution for the problem. More precisely, suppose we are at the i’ step
of recursion then we do as follows:

(T5) Enlarge G by adding some new vertices to S. Let S; be the set of new vertices added
to S that is those set of vertices which are not in S and w(B,(v)) > t/k where t and k
are the current parameters obtained after reductions done in previous recursive calls.

(T6) Either we bound the diameter and hence the treewidth of G. Else, we select a set C
of at most k vertices such that w(B,(C)) > t and C respects the guesses made on the
number of vertices we need to select from S;, 1 < j < i — 1. That is, the possible
number of vertices in CN §;.

5

IMPLICIT BRANCHING AND PARAMETERIZED PARTIAL COVER PROBLEMS

This completes the framework in which we will be working. In the next Section we
prove that WP-(k, r, t)-C Problem is FPT in graphs with bounded local treewidth by proving
the necessary technical lemmas needed for this generic algorithm to work.

3.2 An Algorithm for WP-(k, 7, t)-C in Graphs of Bounded Local Treewidth

We first give an upper bound on the treewidth of G, the graphs we obtained in the recursive
calls which is crucial for analysis of the algorithm.

LEMMA 1. Let G be a graph on n vertices and m edges and H be an induced subgraph of
G such that the diameter of each of the connected components of H is at most {. Let C be
a subset of V(H) of size at most k and A be a subset of V(G). Then there exists a function
g(k,r,¢) such that if diam(G[B,(A) U H]) > g(k,r,{), then there is a subset T C A such that
@) |T| > k; (b) forallu,v € T,dg(u,v) > 2r+1; and (c) for allu € T and for allv € C,
dg(u,v) > 2r + 1. In particular, one can take g(k,r,{) = (6r + 2)2k¢ and find the desired set
T in O(m + n) time.

PROOF. Since C is a subset of size at most k, we have that it intersects at most k connected
components of H. Let these connected components be Hy, ..., H,, where r < k. We contract
each of these connected components to a vertex and obtain a new graph G'. Let the contrac-
tions of Hj, ..., H, correspond to vertices vy, - - -, vy, in our new graph G’ and this set of
vertices be called X. For a vertex v € V(G), we define its image, im(v), in G' as vy, if it is in
H; for 1 <i < rand v otherwise. For a subset W C V, its image im(W) in V(G'), is defined
as the set {im(v) | v € W}.

For any subset W C V(G), we claim that diam(G'[im(W) U X]) > diam(G[W U H|) /¢
(let us remind that we define the diameter of the graph as the maximum diameter of its
connected components).

To prove the claim we observe that a path P’ in G'[im(W) U X] can be lifted to a path
P in G[W U H] by replacing every vertex in X on path P’ by local paths in each connected
component H; of H. As the diameter of each H; is bounded by /, in this way, the length
of a path can only be increased by at most a constant multiplicative factor ¢. This gives us
diam(G[W U H]) < £ - diam(G'[im(W) U X]), which completes the proof of the claim.

To finish the proof of the lemma we proceed as follows: We apply the above claim to
the subset W = B,(A). Since diam(G[B,(A) UH]) > g(k,r,{) = (6r + 2)2k{, we have that

diam(G[B,(A) U H]) - g(k,r,0)

diam(G'[im(B,(A)) UX]) > / [

= 2(6r + 2)k.

Thus there is a connected component € of G’[im(B,(A)) U X] of diameter more than 2(6r +
2)k. Let im(v1), ..., im(vy), k < k, be the image of vertices of C in this component. Observe
that im(A) U {im(v1),...,im(vc)} form an r-center in €. Since the diameter of this compo-
nent is at least 2(6r + 2)k, we can find a subset Y C im(A) U {im(v1),...,im(vc)} of size at
least 2k such that for any two vertices u,v € Y, dg/(u,v) > 4r + 1. To see this, let us assume
that P = uouyuy - - - ug, q > 2(6r + 2)k, is a path which realizes this diameter. Let V; C V()
be the subset of vertices of distance exactly i from ug. Since im(A) U {im(v1),...,im(v¢)}
forms an r-center, its intersection with U;er Vi, 1 < i < q— 2r, is non-empty. Now one

AMINI, FOMIN AND SAURABH FSTTCS 2008

can form Y by selecting a vertex of im(A) U {im(v1),...,im(v)} from U¥,V; and then
alternately not selecting any vertex from next 4r + 1 V;’s and then selecting a vertex of
im(A) U {im(v1),...,im(v,)} from one of the next 2r + 1 blocks of V;’s, and so on.

We put Z = Y N {im(vq),...,im(v)}. Let us remark that, for each vertex v in {im(v),
..., im(vc)} \ Z there is at most one vertex v in Y \ Z such that dg/ (1, v) < 2r. Otherwise it
will violate the condition that the distance between any two vertices from Y is at least 4r + 1
in G'. We construct the set T’ by removing all vertices from Y \ Z which are at distance
at most 2r from {im(vq),...,im(vc)} \ Z. The subset T" C im(A) satisfies the following
conditions: (a) |T’| > k; (b) for all u,v € T/, dg/(u,v) > 2r + 1; and (c) for all u € T’ and for
all zm(v]), 1 <] < k, dg(bl,iﬁ’l(i’j)) > 2r + 1.

Lifting the subset T’ to G one gets a T (by taking inverse image of vertices in T’) of the
desired kind. [

Another essential part of our algorithm is dynamic programming on graphs with bounded

treewidth which will be used in (T6). To do so we use a variation of the Theorem 4.1 of [9].

THEOREM 2. [x|* Let G be a graph on n vertices, given with (a) a weight functionw : V —
{0,1}, (b) a tree decomposition of width < b, and (c) positive integers k,r and t. Further-
more let Sy,---,S, be disjoint subsets of V(G) with an associated positive integer a; for
1 <i<pand Zle a; = a. Then we can check the existence of a weighted partia]—(k, r,t)-

center such that it contains a; elements from S;, 1 < i < p, in O((2r + 1)%2% - nt) time and,
in case of a positive answer, construct a weighted partial-(k,r,t)-center of G in the same
time.

The rest of the section is devoted to the proof of the following theorem.

THEOREM 3. Let f : N — N be a given function. Then WP-(k, r, t)-C problem can be solved
in time O(t(k,r) -t - (m + n)) for graphs in 9s, where 7 is a function of k and r. In particular,
WP-(k,r,t)-C problem is FPT for planar graphs, graphs of bounded genus and graphs of
bounded maximum degree.

Let us remark that for fixed k, r and ¢, our algorithm runs in linear time.
PROOF. The proof of the theorem is divided into three parts: Algorithm, correctness and
the time complexity. We first describe the algorithm.
Algorithm: First we set up notations used in the algorithm. By S we mean a family of
pairs (X, i) where X is a subset of V(G), i is a positive integer, and for any two elements
(X1,11), (X2, 12) € S, X1 N Xp = @. Given a family S, we define p(S) = Y (x jjes i and

1(w, S) = max {w(B,(D)) (D C V(G),|D| = p(8),¥(X,i) € S DN X| = i} ,

that is a subset D C U x,i)es X of size p(S), under the additional constraint that for each
element (X,7) of S we pick exactly i elements in X. A subset D realizing p(w, S) will be
called an S-center. Our detailed algorithm is given in Figure 1.
Correctness: The correctness of the algorithm follows (almost directly) from its detailed
descriptions in the earlier sections and hence we remark on the necessary points of the
proof. Whenever we answer YES, we output a set C which has weight at least ¢ that is
w(B,(C)) > tand C is of size at most k and hence these steps do not require any justification.

*Results marked with [«] will appear in the long version of the paper.

7

IMPLICIT BRANCHING AND PARAMETERIZED PARTIAL COVER PROBLEMS

Algorithm PCentre(G, , k, t, w, S, C, S, u(w, S))

(The algorithms takes as an input (a) a graph G = (V,E) € ¥, (b) positive integers k,r and ¢, (c) a

weight function w : V — {0,1}, (d) a family S of pairs (X, i), (¢) an S-center C, (f) a set S which is

equal to Ux iesX and (g) the value of y(w, S). It returns either a set C such that w(B,(C)) > t or

returns NO, if no such set exists. The algorithm is initialized with PCentre(G, r,k, t, w, 0,2, 2, 0)).

Step 0: If u(w,S) > t, then answer YES and return C.

Step 1: If k = 0and p(w,S) < t, then return NO and EXIT.

Step 2: First define A as follows: A = {v|v e V,v & S,w(B,(v)) > t/k}.If Ais empty return NO
and EXIT. Else let S = SU A and define G = (J,c5 G[B(v)].

Step 3: Compute the diameter, diam, of G.

Step 4: If diam > ((12r +4)(k + p(S)))!SI*! then apply Lemma 1 to find the subset T C A of size
k such that: (a) for all u,v € T, dg(u,v) > 2r+1; and (b) forallu € T and for all v € C,
dg(u,v) > 2r+1and return C = CU T and EXIT.

Step 5: Else, the graph G has bounded local treewidth, compute a tree decomposition of width
f(diam) of G.

Step 6: For every 1 < p < k, using the dynamic programming of Theorem 2, compute a
SU{(A, p)}-center D, of weight u(w, S U {(A, p)}). If for some recursive calls,1 < p <k,
PCentre(G, 7, k—p, t —u(w,SU{(A,p)}), w,SU{(A,p)}, Dy, S, u(w,SU{(A,p)}))
returns a set C then answer YES and return C else answer NO and EXIT.

Figure 1: Algorithm for Weighted Partial Center Problem

Our observation is that if there exists a subset C such that w(B,(C)) > t and |C| < k, then C
and A = {v|v €V, w(B,(v)) > t/k} have non empty intersection. Hence we recursively
solve the problem with an assumption that [CNA| = p, p € {1,2,---,k}. In recursive
steps we have a family S of pairs (X, i) such that we want to compute C with additional
constraints that for all (X,i) € S, |CN X| = i. At this stage the only way we can have
solution is when there exists a non-empty set A such that
CNA # @ where A = {v ‘ veV,0¢ (UxiesX) w(B:(v)) > t;féz(us‘?)} # Q.

Now based on the diameter of the graph G = U,cs G[B,(v)], where S = A U(xjjcs X, we
either apply Lemma 1 or make further recursive calls.
(1.) When we apply Lemma 1, the diameter of the graph is more than ((12r + 4)k) ,and
hence we obtain a set T C A such that T is of cardinality k — p(S) and the distance between
any two vertices in T and distance between vertices of T and C, C a S-center, is at least
2r+1.In|CUT| = |C|+|T| < p(S) +k—p(S) <k, and

w(B,(CUT)) = w(B,(C)) +w(B,(T)) > p(w,S) + (k- p(S)) x Tt >t
(2.) Else the diameter and hence the treewidth of the graph G is at most f(((12r + 4)k)ISI+1).
Hence in this case there is a solution to the problem precisely when there exists p, 1 < p <
k — p(S), for which recursive call to PCentre returns a solution in Step 6 of the algorithm.
This completes the correctness of the algorithm.

|S|+1

Time Complexity: The running time depends on the number of recursive calls we make and
the upper bound on the treewidth of the graphs G which we obtain during the execution of
the algorithm. First we bound the number of recursive calls. An easy bound is k* since the
number of recursive calls made at any step is at most k and the depth of the recursion tree is
also at most k. This bound can be improved as follows. Let N (k) be the number of recursive

AMINI, FOMIN AND SAURABH FSTTCS 2008

calls. Then N (k) satisfies the recurrence N (k) < Y¥_, N(k — i), which solves to 2*.

At every recursive call we perform a dynamic programming algorithm and since the
size of the family S is at most k — 1, the diameter of the graph does not exceed ((12r + 4)k)*
at any step of the algorithm. Let h(r,k) = 3 f(((12r + 4)k)¥) /2. Then the dynamic pro-
gramming algorithm can be performed in O((2r + 1)h025 - (0 + m)t) time in any recursive
step of the algorithm. Hence the total time complexity of the algorithm is upper bounded
by O((2r + 1)h(7'k)232*k - (n 4+ m)t). This completes the proof.

3.3 Improved Algorithm for Planar Graphs

In the last section we gave an algorithm for WP- (k,r)-C problem in graphs of bounded
local treewidth. The time complexity of the algorithm was dominated by the upper bound
on the treewidth of the graph G, which were considered in the recursive steps of the algo-
rithm. If the input to the algorithm Algorithm PCentre is planar, then a direct application
of Lemma 1 gives us that the treewidth of the graph G, obtained in the recursive steps of the
algorithm, is bounded by O((rk)°()). In this section we reduce this upper bound to O(rk)
using grid arguments. We also need to slightly modify Algorithm PCenter by replacing the

diameter arguments with treewidth based arguments. We give the modified steps here:

Modified Step 3: Compute the treewidth of .

Modified Step 4: If tw(G) > g(r, k) (to be specified later) find a subset T C A of size k such that: (a)
forallu,v € T, dg(u,v) > 2r+1;and (b) forallu € Tand forallv € C,dg(u,v) > 2r+1and
return C = CU T and EXIT.

Modified Step 5: Else, the graph G has bounded treewidth, compute a tree decomposition of width
at most g(r, k) of G.

To give the combinatorial bound on the treewidth of the graph G, we need the following
relation between the size of grids and the treewidth of the planar graph.

LEMMA 4.[23] Let s > 1 be an integer. The treewidth of every planar graph G with no
(s x s)-grid as a minor is upper bounded by 6s — 4.

The notations used in the next lemma is the same as in Algorithm PCentre.

LEMMA 5. [x] Let G = (V,E) be a planar graph on n vertices and m edges. Let k,r and t be
positive integers, and w be a weight functionw : V — {0,1}. Suppose that at some step in
Algorithm PCentre we are given a family S of pairs (X, i), an S-center C, asetS = Ux jcs X
and the value of j(w,S). Furthermorelet A = {v|v € V ,v ¢ S,w(B,(v)) > t/K'} # Q,
S*=SUA, wherek' =k — Y (xjesi- Finally, let G = Uycg G[Br(v)]. Then either there is a
subset T C A of size k' such that (a) forallu,v € T, dg(u,v) > 2r+1;and (b) forallu € T
and forallv € C,dg(u,v) > 2r +1 ortw(G) < O(rk).

Let us set g(r,k) = 6h(r,k). We can compute in O(|G|*) time a tree decomposition of
width w of G such that tw(G) < w < 1.5tw(G) [25]. Moreover, given a graph G, one can
also construct a grid minor of size (b/4) x (b/4) where the largest grid minor possible in G
is of order b x b, in time O(|G|?log |G|) [6]. Hence if w > g(r,k) then the tw(G) > 4h(r,k)
and then by applying the polynomial time algorithm to compute grid minor, we can obtain
a grid of size 5;h(r, k). Let us finally observe that the proof of Lemma 5 is constructive, in a

9

10

IMPLICIT BRANCHING AND PARAMETERIZED PARTIAL COVER PROBLEMS

sense that given the grid H, we can construct the desired set T in polynomial time. Hence
by setting h(r,k) = O(rk) in the time complexity analysis of Theorem 3 , we obtain the
following theorem.

THEOREM 6. WP-(k, 1, t)-C problem can be solved in time O(2°*") . 1)) on planar graphs.

4 H-minor free graphs

The arguments of the previous sections were based on a specific graph class property, namely,
that a graph with small diameter has bounded treewidth. Thus the natural limit of our
framework is the class of graphs of bounded local treewidth. We overcome this limit and
extend the framework on the class of graphs excluding a fixed graph H as minor. To do so
we need to use the structural theorem of Robertson and Seymour [24] and an algorithmic
version of this theorem by Demaine et al. [13]. The algorithm is quite involved, it uses two
levels of dynamic programming and two levels of implicit branching, and can be seen as a
non-trivial extension of the algorithm of Demaine et al. [10] for classical covering problems
to partial covering problems.

THEOREM 7. [] PDS is fixed parameter tractable for the class of H-minor free graphs and
the algorithm takes time O(t(k) - t - n“#), where T is the function of k only and Cy is the
constant depending only on the size of H.

5 Partial Vertex Cover

While the results of the previous section can be used to prove that PVC is FPT on H-minor
free graphs, we do not need that heavy machinery for this specific problem. In this section
we show how implicit branching itself does the job, even for more general classes of graphs.
We present a simple modification to our framework developed in the Section 3.1 and use it
to show that PVC problem is FPT in triangle free graphs. Given a graph G = (V,E) and a
subset S C V, by dS C E we denote the set of all edges having at least one end-point in S.
Our modification in the generic algorithm is in step (T2).

(T2') Bound the size of S as a function of the parameter in every recursive step.

We call a graph class ¢ hereditary if for any G € ¢, all the induced subgraphs of G also
belong to ¢. Let ¢ : N — IN be an increasing function. We say that a hereditary graph class
% has the ¢-bounded independent set property, or simply the property ISg, if for any G € ¢
there exists an independent set X C V(G) such that |V(G)| < ¢(|X]|) and X can be found in
time polynomial in the input size. There are various graph classes which have the property
of IS;. Every bipartite graph has an independent set of size at least 72/2 and hence we can
choose ¢, : N — N as ¢,(k) = 2k. A triangle free graph has an independent set of size at
least max{A,n/ (A + 1)} where A is the maximum degree of the graph which implies that a
triangle free graphs has an independent set of size at least \/7/2. In this case we can choose
the function & : N — IN by &(k) = 4k?. Every H-minor free graphs, and in particular
for planar graphs and graphs of bounded genus have chromatic number at most g(H) for
some function depending on H alone. In this case G has an independent set of size at least
n/g(|H|) and we can take ¢ (n) = g(H)n. For planar graphs g(H) is 4.

AMINI, FOMIN AND SAURABH FSTTCS 2008

We can show that if a graph class G has the property IS¢, then in the case of PVC for
every G € G either we can upper bound the size of S used in the implicit branching step by
¢(k) or we can find a subset V' of size at most k such that |0V’| > t. The main theorem of
this section is as follows.

THEOREM 8. [x| Let ¥ be a hereditary graph class with the property of ISz for some integer
function & Then PVC can be solved in O(t(k) - n°)) time in 4 where t(k) = &(k)¥.

6 Conclusion

In this paper we obtained a framework to give FPT algorithms for various partial covering
problems in graphs with locally bounded treewidth and graphs excluding a fixed graph
H as a minor. The main idea behind our approach was the concept of implicit branching
which is of independent interest. We believe that it will be useful for other problems as well.
We conclude with some open questions. For planar graphs (and even more generally, for
H-minor free graphs), many non-partial versions of parameterized problems can be solved
in subexponential time [12, 14]. We show that for planar graphs PARTIAL DOMINATING SET
can be solved in time 20() . nO() s this result tight, in a sense that up to some assumption
in the complexity theory, there is no time 2°(®) . nO(1) algorithm solving this problem on
planar graphs?

Many non-partial parameterized problems on planar graphs can be solved by reducing
to a kernel of linear size [2]. This does not seem to be the case for their partial counter-
parts and an interesting question here is, whether PARTIAL DOMINATING SET or PARTIAL
VERTEX COVER can be reduced to polynomial sized kernels on planar graphs.

References

[1] J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. A. Rosamond, and U.
Stege. A refined search tree technique for Dominating Set on planar graphs. Journal of Com-
puter and System Sciences, 71(4), 385-405 (2005).

[2]]J. Alber, M. R. Fellows and R. Niedermeier. Polynomial-time Data Reduction for Domi-
nating Set. Journal of ACM 51(3): 363-384 (2004).

[3] N. Alon and S. Gutner. Linear Time Algorithms for Finding a Dominating Set of Fixed Size
in Degenerated Graphs. In the Proc. of COCOON, LNCS 4598,394-405 (2007).

[4] S. Arora and G. Karakostas. A 2 + e Approximation Algorithm for the k-MST Problem. In
Proc. of Symposium on Discrete Algorithms (SODA), 754-759 (2000).

[5] Reuven Bar-Yehuda. Using Homogenous Weights for Approximating the Partial Cover
Problem. In Proc. of Symposium on Discrete Algorithms (SODA), 71-75 (1999).

[6] H. L. Bodlaender, A. Grigoriev, A. M. C. A. Koster. Treewidth Lower Bounds with Bram-
bles. In Proc. of European Symposium on Algorithms (ESA), LNCS 3669, 391-402,
(2005).

[7] M. Charikar, S. Khuller, D. Mount and G. Narasimhan. Algorithms for Facility Location
Problems with Outliers. In Proc. of Symposium on Discrete Algorithms (SODA), 642-
651 (2001).

11

12

IMPLICIT BRANCHING AND PARAMETERIZED PARTIAL COVER PROBLEMS

[8] J. Chen, I. A. Kanj and G. Xia. Improved Parameterized Upper Bounds for Vertex Cover. In
Proc. of Mathematical Foundations of Computer Science (MFCS), LNCS 4162, 238-249
(2006).

[9] E. D. Demaine, F. V. Fomin, M.T. Hajiaghayi and D. M. Thilikos. Fixed Parameter Al-
gorithms for (k,r)-Center in Planar Graphs and Map Graphs. ACM transactions on Algo-
rithms, 1(1): 33-47 (2005).

[10] E.D. Demaine, F. V. Fomin, M.T. Hajiaghayi and D. M. Thilikos. Subexponential Param-
eterized Algorithms on Bounded-genus Graphs and H-minor-free Graphs. Journal of ACM
52(6): 866-893 (2005).

[11] E. D. Demaine and M.T. Hajiaghayi. Equivalence of Local Treewidth and Linear Local
Treewidth and its Algorithmic Applications. In Proc. of Symposium on Discrete Algo-
rithms (SODA), 840-849 (2004).

[12] E. DEMAINE AND M. HAJIAGHAYI, The bidimensionality theory and its algorithmic appli-
cations, The Computer Journal, to appear.

[13] E. D. Demaine, M. T. Hajiaghayi and K. C. Kawarabayashi. Algorithmic Graph Minor
Theory: Decomposition, Approximation and Coloring. In Proc. of Foundations of Com-
puter Science (FOCS), 637-646 (2005).

[14] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms, Com-
puter Science Reviews, to appear.

[15] R.G. Downey and M.R. Fellows. Parameterized Complexity, Springer, (1999).

[16] D. Eppstein. Diameter and Treewidth in Minor Closed Graph Families, Algorithmica, 27
(3-4): 275-291 (2000).

[17] J. Flum and M. Grohe. Parameterized Complexity Theory, Springer, (2006).

[18] R. Gandhi, S. Khuller and A. Srinivasan. Approximation Algorithms for Partial Covering
Problems. Journal of Algorithms 53(1): 55-84 (2004).

[19] P. Golovach and Y. Villanger. Parameterized Complexity for Domination Problems on De-
generate Graphs. To appear in the proceedings of WG, LNCS, (2008).

[20] M. Grohe. Local Treewidth, Excluded Minors and Approximation Algorithms. Combinator-
ica, 23(4): 613-632 (2003).

[21] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, Oxford University Press,
(2006).

[22] N. Robertson and P. Seymour. Graph minors V, Excluding a Planar Graph. Journal of
Combinatorial Theory, Series B, 41(2): 92-114, (1986).

[23] N. Robertson, P. Seymour and R. Thomas. Quickly Excluding a Planar Graph. Journal of
Combinatorial Theory, Series B, 62(2): 323-348 (1994)

[24] N.Robertson and P. Seymour. Graph minors XV1I, Excluding a Non-planar Graph. Journal
of Combinatorial Theory, Series B, 81(1): 43-76 (2003).

[25] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217241, (1994).

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 13-24

Sound Lemma Generation for Proving
Inductive Validity of Equations

Takahito Aoto
RIEC, Tohoku University
aot o@ue. ri ec.tohoku. ac.jp

ABSTRACT. In many automated methods for proving inductive theorems, finding a suitable gener-
alization of a conjecture is a key for the success of proof attempts. On the other hand, an obtained
generalized conjecture may not be a theorem, and in this case hopeless proof attempts for the in-
correct conjecture are made, which is against the success and efficiency of theorem proving. Urso
and Kounalis (2004) proposed a generalization method for proving inductive validity of equations,
called sound generalization, that avoids such an over-generalization. Their method guarantees that
if the original conjecture is an inductive theorem then so is the obtained generalization. In this pa-
per, we revise and extend their method. We restore a condition on one of the characteristic argument
positions imposed in their previous paper and show that otherwise there exists a counterexample to
their main theorem. We also relax a condition imposed in their framework and add some flexibilities
to some of other characteristic argument positions so as to enlarge the scope of the technique.

1 Introduction

Reasoning on data structures or recursively defined domains is very common in formal
treatments of programs such as program verification and program transformation. Such a
reasoning often needs highly use of induction, that is, the properties of interest are not only
(general) theorems which hold in all models of the theory but inductive theorems which hold
only in a particular model, the initial model of the theory.

Although automated reasoning of inductive theorems has been investigated in many
years, comparing to the high degree of automation on automated proving of (general) the-
orems, automated proving of inductive theorems is still considered as a very challenging
problem [8]. Many approaches to automated proving of inductive theorems are known: ex-
plicit induction with sophisticated heuristics and /or decision procedures [4, 5, 6, 11, 13, 17],
implicit induction methods such as inductionless induction/coverset induction/rewriting
induction [3, 7,9, 14, 16, 19].

In all these approaches, it is commonly understood that an introduction of suitable
lemmas is an important key for the success of proof attempts. Thus techniques for finding
suitable lemmas in the course of proof attempts have been investigated [12, 15, 18, 21, 22].
Among them, one of the most basic methods is generalization—replacing some of equivalent
subterms of the conjecture by a fresh variable. Proving generalized conjecture is often easier
than the original conjecture because generalization often suppress the complexity at the in-
duction step and sometimes makes another induction scheme possible. On the other hand,
the generalized conjecture may not be a theorem any more—this phenomenon is often ref-
ereed to as over-generalization. Because hopeless proof attempts for the incorrect conjecture
is against the success and efficiency of theorem proving, any over-generalization is always
better to be avoided.

© Takahito Aoto; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1737

14

SOUND LEMMA GENERATION

Urso and Kounalis [21] proposed a generalization method called sound generalization,
which avoid such an over-generalization in automated inductive theorem proving of equa-
tions. Their method is sound in the sense it guarantees that if the original conjecture is an
inductive theorem then so is the obtained generalization. Thus the original conjecture can
be safely replaced by the obtained generalization if the criteria is satisfied. However, the
paper [21] contains an incorrect proof and, in fact, there exists a counterexample to their
main theorem.

Example 1 (counterexample) Let S = {Nat}, F = { plughat*Nat=Nat ¢Nat—Nat Nat—Nat
oNat 3 and

plus(0,y) — ¥

R plus(s(x),y) — s(plus(x,y))
f(0) — 5(s(0))
f(s(x)) — s(s(x))

Then R is a monomorphic TRS and the argument 1 is a downward position of f [21]. In a mathe-
matical notation, f is a function f like this:

|2 ifx=0
f(x)_{x—i—l ifx >0

Let s = s(f(plus(x,s(0)))), t = f(s(plus(x,s(0)))) and consider a conjecture s = t, i.e.

s(f(plus(x,5(0)))) = f(s(plus(x,5(0))))

Then clearly this is an inductive theorem (on natural numbers), since we have f(x +1) +1 =
(x+2)+1 = f(x+2). Now let us try a generalization of this conjecture based on the original
sound generalization [21]. We have 1.1.1 = BP(s) and 1.1.1 = BP(t) and thus 1.1 is a bottom path
of s and t. Since bot(s,1.1) = plus(x,s(0)) = bot(t,1.1) and s/1.1. = plus(x,s(0)) = t/1.1, the
generalization at 1.1 in s and at 1.1 in t is possible. Hence we obtain a generalized conjecture

However, this is not an inductive theorem since s(f(0)) —x s(s(s(0))) and f(s(0)) —x s(s(0)).
Therefore, this generalization is not sound contrary to the Theorem 37 of [21].

The purpose of this paper is to correct and extend the sound generalization proposed in
[21]. In the sound generalization, generalizable subterms are computed based on five types
of argument positions of functions—namely, reflective argument, downward position, up-
ward position, down-contextual position, and up-contextual position when the term rewrit-
ing system is monomorphic. We clarify that the notion of downward position should be
weakened as in their previous paper [20] that proposes induction on term partition, other-
wise there is a counterexample (as presented above) and that the notion of down-contextual
and up-contextual position can be enlarged so that more flexible rewrite rules are allowed
for functions to have such positions. We relax the definition of monomorphic signature
and localize the monomorphic and left-linearity conditions so as to enlarge the scope of the
sound generalization.

TAKAHITO AOTO FSTTCS 2008

The rest of the paper is organized as follows. After fixing basic notation (Section 2), we
introduce a relaxed definition of monomorphic signature and revised definitions of argu-
ment positions and prove the characterization lemmas for these argument positions (Sec-
tion 3). The term partition and sound generalization techniques are presented in Section 4.
Section 5 concludes.

2 Preliminaries

We assume familiarity with basic notations on (many-sorted) term rewriting ([2, 10]).

Let S be a set of sorts and F be a set of S-sorted function symbols. We assume there is
a function from F to S* x S, denoted by sort. For f € F, let sort(f) = (71 - - - Ty, T0). Then
(11 -+ Ty, T0) is called the sort of f and denoted by 73 X --- x T, — 1. If n = 0, we write
sort(f) = T and f is called a constant of sort 7.

Let VT be the set of variables of sort T € S. We assume there is a countably infinite set
VT of variables for each T € S. We denote by V the set ,cs V7. The set T(F, V)T of terms
of sort T € S over F,V is defined inductively as: (1) VT C T(F,V)T; 2)if f € F, sort(f) =
X XT —T(n>0),t € T(F,V)iforl <i<n,then f(t;,...,t,) € T(F, V). We
denote by T(F, V) the set U,cs T(F,V)T. We write 7 if t € T(F,V)". The set of variables
contained in a term ¢ is denoted by V(t). We use = to denote the syntactical equality.

A position is a (possibly empty) sequence of positive integers. The empty sequence is
denoted by € and the concatenation of positions p and g is by p.q. The set Pos(t) of positions
(or occurrence) in a term t and the subterm t/p of t at the position p are recursively defined
as follows: for t € V, Pos(t) = {e} and t/e = t; fort = f(t1,...,t,), Pos(t) = {e} U
Ur<i<nli-p | p € Pos(t;)}, t/e = t,and t/i.p = t;/p. If p € Pos(t) and sort(t/p) = sort(s),
we write t[s], the term obtained from t by replacing the subterm with s at the position p.
A variable x € V(t) is said to have a linear variable occurrence in t if there exists a unique
p € Pos(t) such that x = t/p. The prefix ordering < on positions are defined as p < g iff
g = p.r for some position r. We write p | g if neither p < gnor g < p hold. A set of position
P is said to be prefix-closed if p € P and q < p imply g € P. The function symbol that occurs
in t at a position p € Pos(t) is denoted by ¢(p). In particular, the root symbol of a term ¢ is
t(e).

Suppose L7 is a constant of sort T and {17 | 7 € S} NF = @. A context is an element in
T(Fu{O" | T € S8}, V). The special constants [J” are called holes. If the holes occurring in a
context C are (19, ..., 0% from left to right and ¢4, . . ., t, are terms of sorts 7y, . . ., T, respec-
tively, then we denote by C[ty, ..., t,] the term obtained by replacing the holes (07, ..., 0%
with the terms #4, .. ., t,. The superscript of holes is often omitted if no confusion arises. For
a position p, we write C[u], if C/p = .

A map o from V to T(F, V) is called a substitution if (1) o preserves sort, i.e. sort(x) =
sort(c(x)) and (2) the domain of ¢ is finite, where the domain of ¢ is given by dom(c) =
{x € V| o(x) # x}. A substitution ¢ such that dom(c) = {x1,...,x,} and o(x;) =
(1 <i < n)isalso written as {x1 := t1,...,x, := t, }. We identify the substitution ¢ and its
homomorphic extension. A term o (t) is called an instance of the term t; () is also written
as to.

A pair (I,) of terms |, r satisfying conditions (1) I(¢) € F and (2) V(r) C V(I) (3) sort(l) =

15

16

SOUND LEMMA GENERATION

sort(r) is said to be a rewrite rule. A rewrite rule (I, r) is denoted by I — r. A tuple (S, F,R)
is a term rewriting system (TRS). If no confusion arises, (S, F, R) is abbreviated as R. If there
exist a position p, a substitution ¢, and a rewrite rule | — r € R such thats/p = lo and
t = s[ro],, we write s —x t. We call s —x t a rewrite step, p a redex occurrence, and —r the
rewrite relation of the TRS R. The reflexive transitive closure and equivalence closure of
— are denoted by Srand Sy, respectively. A TRS R is terminating if —5 is noetherian
i.e. there is no infinite sequence t) —x t; —x - - -; is confluent if Lrobp C LR o &r. A
term is said to be normal if there exists no s such that t —% s. Any normal term s such that
t S s is called a normal form of t. One can easily show that if a TRS R is terminating and
confluent, any term s has a unique normal form; the normal form of s is denoted by s| 5, or
simply by s| if no confusion arises.

The set of defined function symbols is given by Dg = {l(€) | | — r € R} and the set of
constructor symbols by Cr = F \ Dg. The set of defined symbols appearing in a term ¢ is
denoted by Dx (). If R is obvious from its context, we omit the subscript z from Dg, Cx.
Terms in T(C, V) are said to be constructor terms.

An equation | = r is a pair (I,r) of terms of the same sort. When we write | = 7,
however, we do not distinguish (I, r) and (r,I). A term t is said to be ground if V(t) = @.
The set of ground terms is denoted by T(F). If to € T(F), to is called a ground instance
of t. The ground instance of an equation is defined analogously. A ground substitution is a
substitution o, such that g (x) € T(F) for any x € dom(c). Without loss of generality, we
assume that toy is ground (i.e. V(t) € dom(cy)) when we speak of an instance to, of t by a
ground substitution og; and so for ground instances of equations. An inductive theorem of a

TRS R is an equation that is valid on T(F), i.e. s = t is an inductive theorem if so, Sn tog
holds for any ground instance so; = to,. We write R ;4 s = tif s = t is an inductive
theorem. A TRS R is said to be sufficiently complete if for any ground term t, € T(F), there
exists a constructor ground term s, € T(C) such that f, Sn s¢. One can easily show that
if the TRS is sufficiently complete, terminating, and confluent then the normal form of any
ground term is a constructor term.

Throughout this paper, we only deal with the TRSs that are sufficiently complete, terminating,
and confluent.

3 Characterization of Monomorphic Equations

In this section, we introduce a relaxed definition of monomorphic signature and revised
definitions of argument positions—reflective argument position, downward and upward
argument positions, and contextual positions—and present lemmas that characterize these
positions.

The notion of monomorphic signature is introduced by Urso and Kounalis [20, 21]. We
here generalize the notion to monomorphic sorts, terms, etc.

DEFINITION 1.[monomorphic sort]
1. A sort T is said to be monomorphic if (i) there is only one constructor constant of the sort
T (denoted by "), (ii) for each non-constant constructor g € C of sortty X -+ X T, —
T, there exists a unique 1 < i < n such that T; = T, such i is called the reflective

TAKAHITO AOTO FSTTCS 2008

argument position of g and denoted by RA(g).
2. Avariable, term, equation, and rule are said to be monomorphic if its sort is monomor-
phic.

Intuitively, a sort is monomorphic if each normal term of that sort has a list structure.
For example, NatList (with nil : NatList and cons : Nat x NatList — NatList), Nat (with
0: Nat and s : Nat — Nat) are monomorphic while Tree, Bool are not.

We here removed one of the conditions contained in the original definition of monomor-
phicness. Let s be a relation on S given by T - p iff there exists a ground constructor
term sg[uf]” with T # p. In the original definition, the monomorphic signature is the one
with only monomorphic sorts such that there are no p, é such that p s J > p. The acyclic-
ity of >, however, turns out to be unnecessary in the subsequent development for sound
generalization. Moreover, the monomorphic condition can be localized so that the signature
may contain non-monomorphic sorts as well. This relaxation is useful, for example, to deal
with BoolList.

We introduce a notion of reflective positions in a monomorphic term as a successive
sequence of reflective argument positions from its root. Then, based on this, we define a join
operator. This is in contrast to the original definition in [20, 21] where the join operator is
defined as the replacement with L. The elimination of the extra restriction of monomorphic
signature is achieved due to our new definition.

DEFINITION 2.[reflective position] The set RPos(t) of reflective positions in t is defined as
follows: (i) € € RPos(t) (ii) if t = g(t1,...,t,) withg € C, i = RA(g), and p € RPos(t;) then
i.p € RPos(t;).

For example, we have RPos(s(s(0))) = {¢,1,1.1}. Since RPos(t) is total w.r.t. the prefix
ordering <, there exists a position p that is greatest (w.r.t. <) in RPos(¢).

DEFINITION 3.[greatest reflective position] Let t be a monomorphic term. The greatest el-
ement w.r.t. the prefix ordering in RPos(t) is called the greatest reflective position (grp) of
L.

DEFINITION 4.[join operator] For each monomorphic sort T, a join operator ®* on the set
T(C) is defined as follows: for ground constructor terms s, and t, of sort T, s, @ ty = sg[te],
where p is the grp of s;. We omit the superscript T if no confusion arises.

The following properties of join operator is easily verified.

LEMMA 5.[properties of join operator] Let sq, to, ug € T(C) be monomorphic terms.
1 Ifs; @ty =85, Qug thenty = ug. If s¢ @ty = ug @ to then sy = ug.
2. (sq@tg) DUy =5¢ @ (tg @ Ug).
3. p € RPos(ug) implies ug[sq @ to]p = ug[se]p @ tg.
4 L @ty =tgands, ® L = s,.

LEMMA 6.[decomposition at a reflective position] Suppose t,, u, € T(F) are monomorphic
and p € RPos(ty). Then tg[ug],| = to[L],] ® ugl.

PROOF. By induction on p. (B.S.) Suppose p = €. Then fo[ug),| = ug] = L ®@ug| =
Ll®ugl =t[L],] ®ugl. (LS.) Let p = igwitht, = g(ty,...,t4), g € C,i = RA(g), and

17

18 SOUND LEMMA GENERATION

g € RPos(t;). Then

teluglpl = g(tl,... [ug]q,...,tn)l by definition
= gl tiluglgl, .. tnl) bygeC
= g(tl,.... 6Ll ® ugl t,]) Dby the induction hypothesis
= g(tll il Ll ot l) ® ug| byi=RA(g)and Lemma5
= g(k,..., []q, ..,tn)L®ugl bygeC
=t [] pl ®@ugl.

In [20, 21], the notion of downward position is defined recursively; however, the mutual
recursion of the definition is not terminating and thus the downward positions may not be
uniquely defined for a TRS. To make this fact explicit, we introduce a notion of downward
argument map and that of compatibility of the map with a TRS.

DEFINITION 7.[downward argument map/downward position]

1. A downward argument map DP is a partial map from D to N such that for any f €
dom(DP), ifi = DP(f) then (1)1 <i < arity(f), and (2)if f : 7y X --- X t, — Ty then
T; = Tp and Ty is monomorphic.

2. Letp be a position in a term t. The set DPos(t) of downward positions in t is defined as
follows: (i) e € DPos(t) (ii) ift = g(t1,...,t,) withg € C,i = RA(g), and p € DPos(t;)
then i.p € DPos(t;). (iii) t = f(ty,...,t,) with f € D, i = DP(f), and p € DPos(t;)
theni.p € DPos(t;).

DEFINITION 8.[compatible downward argument map] A downward argument map DP is
compatible with a set R of rewrite rules if for any f € dom(DP) with i = DP(f) and for
any f(ly,...,lI,) — r € R, 1 is a linear variable occurrence of f(ly,...,1,) and there exists a
position p € DPos(r) such thatl; = r/p and r/p is a linear variable occurrence in r.

Contrary to the definition in [21] in which [; (= r/p) is allowed to be an arbitrary term
when p # €, we impose a restriction that /; must be a variable; this condition is imposed in
their previous paper [20] that proposes induction on term partition.

Example 2 Let S = {Nat}, F = { plushat>*Nat=Nat ‘{Nat—Nat oNat 1 5,7

. pIus(O,y) — y
R‘{ plus(s(x),y) — s(plus(x,) }

Then 1Nat = 0 and RA(s) = 1. A map DP with DP(plus) = 2 is a downward argument map

compatible with R.
Example 3 LetS = {Nat}, F = { fNathatHNat, gNatXNatHNat, SNatHNat, oNat } and
R— { foy) —y g(x0) — «x }
fs(x)y) — slelyx) elxsly)) — s(f(yx))

Then functions {f — 2,g +— 1} and @ are both downward arqument maps compatible with R. In
terms of [20, 21], it may possibly be (1) 2 is a downward position of f and 1 is a downward position
of g, and (2) both of f and g do not have downward positions. This is why we introduced the notion
of downward argument maps as remarked above.

TAKAHITO AOTO FSTTCS 2008

LEMMA 9.[preservation of a downward position] Suppose that DP is compatible with R.
Let z be a fresh variable.
1. Let p € DPos(sg) and s; —x to. Then either (1)s,/p = ty/q and s¢[z], —r tg|z]s or
(2) p = q,5¢4[z]p = telz]g, and sy /p —r te/g.
2. Let p € DPos(s,) and s, SR te. Then there exists g € DPos(t,) such that s¢[z],, .
telz]g and se/p g te/q.

PROOF. 1. Let the redex occurrence of s, —x tg be p’. If p’ | p then apparently (1)
holds and if p’ > p then apparently (2) holds. It remains to show the case p’ < p. Then
there exists f(Iy,...,I,) — r € R and a substitution ¢ such that sy /p’ = f(Iy,...,I,)o. By
p € DPos(sq), p'.i < pwithi = DP(f),l; = x € Visalinearin f(l,...,I,), and there
exists a unique u € DPos(r) such that r/u = x. Then we have p = p’.i.q’ for some g4'. Let
q=p'.ug. Thens,/p = tg/q. Since p € DPos(s,[rc],) = DPos(t,), 4 € DPos(xc), and
u € DPos(r), wehave g = p.u.q’ € DPos(t,). Furthermore, since [; = x € V and x is a linear
variablein f(Iy,...,I,) and r, we have s¢[z], —R t¢[z]4. 2. It follows from 1. I

LEMMA 10.[decomposition at a downward position] Suppose that DP is compatible with
R, tg, ug € T(F) are monomorphic, and p € DPos(t,). Then tglue],| = to[L],| @ ugl.

PROOF. By Lemma 9, there exist s¢, vg,q such that folug],| = s¢[ve]s, 4 € DPos(sy),
telz], —r Sg[z] and ug g v, By sufficient completeness, s¢[ve], € T(C) and thus
vg,5¢[L]; € T(C) and hence o[L],| = s¢[L];, and ug| = vg. Furthermore, since g €
DPos(sy) and s¢[L]; € T(C), it follows g € RPos(s,) by the definition of downward posi-
tion. Hence, by Lemma 6, we have s4[v,]; = s¢[L]; ® vg. Therefore, to[ug],| = to[L]p] ®

ugl.

Example 4 (counterexample) The lemma above does not hold for the definition of downward po-
sition in [21]. Let S = {Nat}, F = {fNat—Nat gNat=Nat gNat} 5

R {0 = s

Then we have f(s(0))] = s(s(0)) and f(0)] ®s(0)] = s(s(0)) ®@s(0)
f(s(0))1 £ f(0) L @5(0).

We now describe very roughly how the downward positions can be used to identify
the common subterms that can be generalized.
Example 5 Let S, F, R be as in Example 2. Consider a conjecture e and its generalization e’ like
this:

s(s(s(0))). Thus

e = plus(s[x]p, x) = plus(t[x]g, x), ¢’ = plus(s[x],,y) = plus(t[x]y, y).

Obviously, if the equation ¢’ is an inductive theorem then the equation e is an inductive theorem
(because e is a particular instance of ¢'). We explain, using the decomposition at a downward
position 2, that the other implication also holds. Suppose the equation e is an inductive theo-
rem. Then, by definition, plus(sog[ugly, ug) <>r plus(toglugly, ug) for any ground term ug and
ground substitution og. This means plus(sog(ug],, ug)| = plus(tog(ugly, ug)l. Thus, by Lemma
10, plus(sog[ig]p,0))| @ ugl = plus(togluglg,0))| & ugl, which implies plus(sog[ug]p,0))] =

19

20

SOUND LEMMA GENERATION

plus(tog[ug]s,0)) . Then, for any wg, plus(sog[ug],,0))] ® we| = plus(tog(uely,0))] ® we . By
Lemma 10, this implies €' is also an inductive theorem.

Throughout the paper, if no confusion arises, we assume that the downward arqument map DP
is compatible with the TRS 'R.

Next, we focus on the dual notion of downward position called upward position. The
notion of upward argument position UP is the same as the one given in [20, 21]. We, how-
ever, additionally introduce a notion of upward position in a term which will be used to
extend the definition of contextual positions.

DEFINITION 11.[upward argument position/upward position] Let f € D with f : 7 x
-+ X T, — tand 1 <i < nsuch that T; = T and T is monomorphic.
1. Theindexi is called a upward argument position of f (UP(f))if forany f(Iy,...,1,) —
r € R, eitherl; = L7 orl; = u[x], € T(C,V) and r = u[l[x];],, wherel = f(Iy,...,1,),
p € RPos(u), and x is a linear variable in I. Note that p # €; for, otherwise | = r and
contradicts termination of R.
2. The set UPos(t) of upward positions in t is defined as follows: UPos(t) = {i} U {i.p |
p € UPos(t;)} ift = f(t1,...,t,) with f € D and i = UP(f),; UPos(t) = @ otherwise.

The dual property of Lemma 10 holds for upward positions.

LEMMA 12.[decomposition at a upward position] Let ty, u, € T(F) be monomorphic terms.
1. Letty = f(ty,...,ty) witht; € T(C) forall1 < j < n. Ifi = UP(f) and p be the grp of
t; then tg i>73 ti[tg[J—]i]p'
2. Ifi = UP(ty(€)) thenty[ugli| = ug| @ te[L];l.
3. If p € UPos(t,) then tg[ug],| = ug] ® te[L]p].

PROOF.
1. By induction on |;].
2. Use confluence, sufficient completeness of R and 1.
3. By induction on p. Use 2.

Next, we focus on the notion of contextual argument positions. The definition is ex-
tended from the original one given in [20, 21].

DEFINITION 13.[contextual argument position] Let f € D with f : 9 X - -+ X T, — T with
monomorphic T and 1 < i < arity(f) such that 7; is monomorphic.
1. The index i is called a down-contextual argument position of f (DCP(f)) if for any
f(li,...,1n) — r € R, eitherl; = L andr = 1 hold or l; = ux], € T(C,V) and
r/q = l[x];, wherel = f(l1,...,1n), p € RPos(u), g € UPos(r), and x is a linear
variable in | and r. Note that p # €; for, otherwise r/q = | and contradicts termination
of R.
2. The index i is called an up-contextual argument position of f (UCP(f)) if for any
f(li,...,In) — r € R, eitherl; = 1 andr = 1 hold or I; = u[x], € T(C,V) and
r/q = l[x];, wherel = f(l1,...,1,), p € RPos(u), g € DPos(r), and x is a linear vari-
able in | and r. Note that p # €; for, otherwise r/q = | and contradicts termination of
R.

TAKAHITO AOTO FSTTCS 2008

The original definition of contextual positions use the conditions ¢ = UP(r(e)) and
g = DP(r(e)) instead of g € UPos(r) and g € DPos(r), respectively. Furthermore, when
li=Landr = 1, sort(l;) = sort(r) (and hence I; = r) is required in the original definition.
Since UP(r(e)) € UPos(r) and DP(r(e)) € DPos(r), our definition enlarges the scope of the
contextual positions.
Example 6 Let S = {Nat, List}, F = {dbNat—=Nat |gplList=Nat ‘g, yList=Nat ", NatxNat=Nat

ConSNathist—>List, n”List/ SNat—>Nat, ONat}, and
len(nil) — 0 dbl(0) — 0
R len(cons(x,xs)) — s(len(xs)) dbl(s(x)) — s(s(dbl(x)))
) plus(x,0) — X sum(nil) — 0
plus(x,s(y)) — s(plus(x,y)) sum(cons(x, xs)) — plus(x,sum(xs))

Then we have 1 = UCP(len), 1 = UCP(dbl), and 1 = DCP(sum). In the original definition in
[20, 21], however, none of these are defined.

LEMMA 14.[decompos1't1'on at contextual positions] Lett, € T(F), ug, vy € T(C) be monomor-

phic terms and f = tq(€).

1. Ifi = DCP(f) then te[L]il = L.

2. Ifi = DCP(f) then t¢[ug ® vg);| = te[vglil ® tg[uglil.

3. Ifi = UCP(f) then tg[1];| = L.

4. Ifi = UCP(f) then tg[ug ® vgl;| = to[ugli| ® te[vglil.
PROOF.

1. Straightforward.

2. By induction on |u,|. Use Lemma 6 and Lemma 12.

3. Same as 1 except using i = UCP(f) instead of i = DCP(f).
4. Same as 2 except using Lemma 10 instead of Lemma 12.

4 Term Partition and Sound Generalization

Based on the characterization of five types of argument positions, Urso and Kounalis ([20,
21]) developed techniques useful in inductive theorem proving—namely, term partition and
sound generalization. These techniques rely on the following observation.

DEFINITION 15.[term partition[20, 21]] Let R be a sufficiently complete, confluent, termi-
nating TRS. (so, s1) is said to be a term partition of s if (1) s) and s; have the same monomor-
phic sort T and (2) for any ground substitution 0, soflg | © s10,] = s |.

PROPOSITION 16.[term partition theorem (Theorem 1 of [20])] Let R be a sufficiently com-
plete, confluent, terminating TRS. Suppose (so,s1) is a term partition of s and (to,t1) is a
term partition of t. Then for eachi € {0,1}, if R bj,5 s; = t; then we have R F;,5 s = t iff
R Fing s1-1 = t1—i.

In [20, 21], Urso and Kounalis introduced a notion of prominent paths (called top path
and bottom path) based on the five types of argument positions of functions and a method to
compute some term partitions based on these paths.

21

22

SOUND LEMMA GENERATION

DEFINITION 17.[top/bottom paths[20, 21]] Let t be a monomorphic term. The set TPath(t)
of top paths in a term t and the set BPath(t) of bottom paths in a term t are defined as
follows:

(({e}U{ip|p e TPath(t;)} ift=f(t1,...,tn), i = RA(f)
{e}U{ip|p € TPath(t;)} ift=f(t1,...,tn), i = UP(f)
TPath(t) = ¢ {e}U{i.p|p € BPath(t;)} ift= f(t,...,tn), i = DCP(f)
{e}U{ip|p € TPath(t;)} ift=f(t1,...,tn), i =UCP(f)
L {e} otherwise
{e} U{i.p|p € BPath(t;)} ift= f(t1,..., tn), 1 = RA(f)
{e} U{i.p | p € BPath(t;)} ift= f(t1,...,tn), i = DP(f)
BPath(t) = ¢ {e}U{i.p|p € TPath(t;)} ift= f(t,...,tn), i = DCP(f)
{e} U{i.p | p € BPath(t;)} ift= f(t1,...,tn), i = UCP(f)
{e} otherwise

Clearly, TPath(t) and BPath(t) are totally ordered w.r.t. < and the greatest element in TPath(t)
and BPath(t) are called the maximum top path and the maximum bottom path and denoted
by TP(t) and BP(t), respectively.

DEFINITION 18.[head/tail parts[20, 21]] Let t be a monomorphic term. For each p € TPath(t),
its head context Ctop, , as well as for each q € BPath(t), its tail context Cbot; , are defined as
follows:

(O ifp=e

t[Ctopti,p,]i ifp=ip,t=f(t,...,ty), andi = RA(f)
Ctop,, = Ctop,, .y ifp=ip,t=f(t,...,ty), andi = UP(f)

t[Cbot,,)i ifp=ig,t=f(t,...,ty), andi = DCP(f)

t[Ctop,, ,|i ifp=ip,t=f(t,... ta), andi = UCP(f)

O ifg=ce€

Cboty, o ifg=iq,t=f(t,...,t,) andi = RA(f)
Cbotiy = Cboty, o ifg=1iq,t=f(t1,...,t,) andi = DP(f)

t[Ctop,, i ifq=ip',t=f(t,... ts) andi= DCP(f)

t[Cboty, ;i ifg=iq,t=f(h,..., t,) andi = UCP(f)

The head part is given by top(t, p) = Ctop, [t/ p] and the tail part is by bot(t,q) = Cboty[t/q].

The development of the term patition based on prominent paths is solely based on
the characterization lemmas for five types of argument positions. Thus this term partition
can be corrected and extended based on our revised definition of monomorphic signature
and argument positions given in the previous section. We refer to [20, 21] the definition of
ntp(t, p) and nbt(t, q) in the following proposition.

PROPOSITION 19.[term partition via prominent path (Theorem 36 of [21])] Let R be a suf-
ficiently complete, terminating, and confluent TRS. Let t be a monomorphic term. (1) For

TAKAHITO AOTO FSTTCS 2008

each top path p int, (top(t, p), ntp(t,p)) is a term partition of t. (2) For each bottom path q
int, (nbt(t,q),bot(t,q)) is a term partition of t.

The sound generalization is obtained from Proposition 19.

PROPOSITION 20.[sound generalization theorem (Theorem 37 of [21])] Let R be a suffi-
ciently complete, terminating, and confluent TRS. Let s = t be a monomorphic equation
and x be a fresh variable.
1. Let p be a top path in s and q a top path in t. Suppose thats/p = t/q and top(s, p) =
top(t,q). Then R tjq 5 = t iff R by s[x], = t[x],.
2. Let p be a bottom path in s and q a bottom path in t. Suppose thats/p = t/q and
bot(s,p) = bot(t,q). Then R g s = t iff R Fjq s[x], = t[x];.

5 Conclusion

We presented an example showing that the sound generalization proposed in [21] does not
work without a condition imposed in their previous paper [20] that proposes induction
based on term partition. We restored a condition in the definition of one of the argument
positions and gave the corrected proof of the characterization of the position. Based on this,
the correctness of sound generalization [21] was recovered. We note that all examples of
sound genereralization presented in [21] still works under the restored condition. We also
extended the technique by eliminating one of the restriction of monomorphic signature, lo-
calizing a part of the conditions for target term rewriting systems, and extending the notion
of contextual positions. The corrected part of sound generalization is implemented in our
experimental induction prover based on rewriting induction [1].

Despite the relaxation, some strong restrictions of monomorphicness are still imposed
on the sound generalization. Finding other types of sound generalization applicable for
non-monomorphic equations remains as a future work. Another future work is obtaining
a lemma discovery method other than term partition and sound generalization via deeper
analysis of monomorphicness.

Acknowledgments

Thanks are due to anonymous referees for helpful comments. This work was partially sup-
ported by a grant from JSPS, No. 20500002.

References

[1] T. Aoto. Designing a rewriting induction prover with an increased capability of non-
orientable equations. In Proc. of Symbolic Computation in Software Science Austrian-
Japanese Workshop, volume 08-08 of RISC Technical Report, pages 1-15, 2008.

[2] E Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[3] A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical induction.
Journal of Logic and Computation, 5(5):631-668, 1995.

23

24

SOUND LEMMA GENERATION

[4] R. Boyer and]J. Moore. A Computational Logic. Academic Press, 1979.

[5] A.Bundy. The automation of proof by mathmatical induction. In Handbook of Automated
Reasoning, volume 1, pages 845-908. MIT Press, 2001.

[6] A.Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-Level Guidance for Mathe-
matical Reasoning. Cambridge University Press, 2005.

[7] H. Comon. Inductionless induction. In Handbook of Automated Reasoning, volume 1,
pages 913-962. MIT Press, 2001.

[8] B. Gramlich. Strategic issues, problems and challenges in inductive theorem proving.
Electronic Notes in Theoretical Computer Science, 125:5-43, 2005.

[9] G. Huet and J.-M. Hullot. Proof by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25(2):239-266, 1982.

[10] G. Huet and D. C. Oppen. Equations and rewrite rules: a survey. Technical report,
Stanford University, Stanford, CA, USA, 1980.

[11] D. Hutter and C. Sengler. INKA: The next generation. In Proc. of the 13th International
Conference on Automated Deduction, pages 288-292, 1996.

[12] A.Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of Auto-
mated Reasoning, 16(1-2):79-111, 1996.

[13] D. Kapur, J. Giesl, and M. Subramaniam. Induction and decision procedures. Revista
de la real academia de ciencas (RACSAM) Serie A: Matematicas, 98(1):154-180, 2004.

[14] D. Kapur, P. Narendran, and H. Zhang. Automating inductionless induction using test
sets. Journal of Symbolic Computation, 11(1-2):81-111, 1991.

[15] D. Kapur and M. Subramaniam. Lemma discovery in automating induction. In Proc.
of the 13th International Conference on Automated Deduction, volume 1104 of LNCS, pages
538-552. Springer-Verlag, 1996.

[16] D. Kapur and H. Zhang. An overview of rewrite rule laboratory (RRL). Journal of
Computer Mathematics with Applications, 29(2):91-114, 1995.

[17] M. Kaufmann, P. Manolios, and]. S. Moore. Computer-Aided Reasoning: ACL2 Case
Studies. Kluwer Academic Publishers, 2000.

[18] S.Shimazu, T. Aoto, and Y. Toyama. Automated lemma generation for rewriting induc-
tion with disproof. In Proc. of the 8th [SSST Workshop on Programming and Programming
Languages, pages 75-89, 2006. In Japanese.

[19] S. Stratulat. A general framework to build contextual cover set induction provers.
Journal of Symbolic Computation, 32:403—445, 2001.

[20] P. Urso and E. Kounalis. Term partition for mathematical induction. In Proc. of the 14th
International Conference on Rewriting Techniques and Applications, volume 2706 of LNCS,
pages 352-366, 2003.

[21] P. Urso and E. Kounalis. Sound generalizations in mathematical induction. Theoretical
Computer Science, 323:443-471, 2004.

[22] T. Walsh. A divergence critic for inductive proof. Journal of Artificial Intelligence Research,
4:209-235, 1996.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 25-36

Some Sieving Algorithms for Lattice
Problems

V. Arvind and Pushkar S. Joglekar
Institute of Mathematical Sciences

C.I.T Campus,Chennai 600 113, India

{arvi nd, pushkar }@nsc.res.in

ABSTRACT. We study the algorithmic complexity of lattice problems based on the sieving technique
due to Ajtai, Kumar, and Sivakumar [AKS01]. Given a k-dimensional subspace M C R” and a full
rank integer lattice £ C Q", the subspace avoiding problem SAP, defined by Blomer and Naewe [BNO07],
is to find a shortest vector in £\ M. We first give a 20("+k108k) time algorithm to solve the subspace
avoiding problem. Applying this algorithm we obtain the following results.

1. We give a 20(") time algorithm to compute i*" successive minima of a full rank lattice £ C Q"
ifiis O(@)

2. We give a 20(") time algorithm to solve a restricted closest vector problem: CVP where the inputs
fulfil a promise about the distance of the input vector from the lattice.

3. We also show that unrestricted CVP has a 20(") exact algorithm if there is a 2°(") time exact
algorithm for solving CVP with additional input v; € £,1 < i < n, where ||v;|, is the i
successive minima of £ for each i.

We also give a new approximation algorithm for SAP and the Convex Body Avoiding problem which
is a generalization of SAP. Several of our algorithms work for gauge functions as metric, where the
gauge function has a natural restriction and is accessed by an oracle.

1 Introduction

Fundamental algorithmic problems concerning integer lattices are the shortest vector prob-
lem (SVP) and the closest vector problem(CVP). Given a lattice £ C IR" by a basis, the
shortest vector problem (SVP) is to find a shortest nonzero vector in £ w.r.t. some metric
given by a gauge function in general (usually the £, norm for some p). Likewise, the closest
vector problem (CVP) takes as input a lattice £ C R" and vector v € R" and asks for a
u € L closest to v w.r.t. a given metric. These problems have polynomial-time approxima-
tion algorithms based on the celebrated LLL algorithm for basis reduction [LLL82].

The fastest known exact deterministic algorithms for SVP and CVP have running time
20(nlogn) [Kan87] (also see [B100]). More recently, Ajtai, Kumar and Sivakumar in a semi-
nal paper [AKS01] gave a 20(") time randomized exact algorithm for SVP. Subsequently, in
[AKS02] they gave a 2°(") time randomized approximation algorithm for CVP. Their al-
gorithms are based on a generic sieving procedure (introduced by them) that exploits the
underlying geometry. Recently, Blomer and Naewe [BN07] gave a different 2°(") time ran-
domized approximation algorithm for CVP, also based on the AKS sieving technique.

For 1 < i < n, the i" successive minima Ai(L) is defined as the smallest r such that a
ball of radius r around origin contains at least i linearly independent lattice vectors. The
successive minimas A;(L£) are important lattice parameters. A classical problem is the suc-
cessive minima problem SMP of finding for a given lattice £, n linearly independent vectors

© V. Arvind and Pushkar S. Joglekar; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1738

26

SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

V1,02, ...,0, € L such that ||v;| is at most A;(L£). This problem clearly subsumes the short-
est independent vectors problem SIVP where one wants to find linearly independent vectors
v1,02,...,0y € L such that ||v;|| < A,(L). Given a k-dimensional subspace M C R" and a
full rank integer lattice £ C Q", the subspace avoiding problem SAP, is to find a shortest vector
in £\ M. The paper [BN07] gives 2°(") time approximation algorithm for these problems.

No exact 20(") time randomized algorithm is known for CVP or SMP. Recently, Miccian-
cio has shown [Mi08] that CVP is polynomial-time equivalent to several lattice problems,
including SIVP and SMP, under deterministic polynomial time rank-preserving reductions.
This perhaps explains the apparent difficulty of finding a 2°(") time exact algorithm for CVP
or SMP, because SVP reduces to all of these problems but no reduction is known in the other
direction. In particular, the reductions in [Mi08] yield 20(nlogn) time exact algorithms for
SAP, SMP and SIVP, whereas [BN07] gives 2°(") time randomized approximation algorithm
for these problems.

Our results

In this paper we consider some natural restrictions of these problems that can be exactly
solved in 20(") time. We obtain these results giving a 20" *k198%) algorithm to solve SAP
where 7 is the rank of the lattice and k is the dimension of the subspace.

As our first result we show that given a full rank lattice £ C Q" there is 2°(") time
randomized algorithm to compute linearly independent vectors vy, v, ...,v; € L such that

|loi|| = Ai(L) if i is O(lo’;n). Given a full rank lattice £ C Q" and v € Q" we also give

a 291 time algorithm to solve CVP(L, v) if the input (v, £) fulfils the promise d(v, L) <
o) (L).

logn

We show that CVP can be solved in 2°(") time if there is a 2°(") time algorithm to com-
pute a closest vector to v in £ where v € Q", £ C Q" is a full rank lattice and v1,vy,...,v, €
L such that [|;]|, is equal to i successive minima of £ for i = 1 to 1 are given as an ad-
ditional input to the algorithm. As a consequence, we can assume that successive minimas
are given for free as an input to the algorithm for CVP. We believe that using basis reduc-
tion techniques from [Kan87] one might be able to exploit the information about successive
minimas of the lattice to get a better algorithm for CVP.

We give a new 20("+k10g1/€) time randomized algorithm to solve 1 + € approximation
of SAP, where 7 is rank of the lattice and k is the dimension of subspace. We get better
approximation guarantee than the one in [BN07] parametrised on k. We also consider a
generalization of SAP (the convex body avoiding problem) and give a singly exponential ap-
proximation algorithm for the problem.

2 Preliminaries

A lattice £ is a discrete additive subgroup of R", n is called dimension of the lattice. For
algorithmic purposes we can assume that £ C Q", and even in some cases L C Z". A
lattice is usually specified by a basis B = {b,- - -, by}, where b; € Q" and b;’s are linearly
independent. m is called the rank of the lattice. If the rank is n the lattice is said to be a full
rank lattice. Although most results in the paper hold for general lattices, for convenience we

V. ARVIND AND PUSHKAR S. JOGLEKAR FSTTCS 2008

mainly consider only full-rank lattices. For x € Q" let size(x) denote the number of bits for
the standard binary representation as an n-tuple of rationals. Let size(L£) denote }; size(b;).
Next we recall the definition of gauge functions.

DEFINITION 1.[Si45] A function f : R" — R is called a gauge function if it satisfies follow-
ing properties:

1. f(x) >0forallx € R"\ {0} and f(x) =0ifx = 0.

2. f(Ax) =Af(x) forallx € R" and A € R.

3. f(x+y) < f(x)+ f(y) forall x,y € R".

For v € R" we denote f(v) by ||v|[s and call it norm of v with respect to the gauge
function f. It is easy to see that any I, norm satisfies all the above properties. Thus gauge
functions generalize the usual [, norms. A gauge function f defines a natural metric d
on R" by setting d¢(x,y) = f(x —y) for x,y € R". For x € R" and r > 0, let B(x,7)
denote the f-ball of radius r with center x with respect to the gauge function f, defined
as Bs(x,r) = {y € R"[f(x —y) < r}. We denote the metric balls with respect to usual
I, norm by B, (x,7). Unless specified otherwise we always consider balls in IR". The next
well-known proposition characterizes the class of all gauge functions.

PROPOSITION 2.[Si45] Let f : R" — IR be any gauge function then a unit radius ball around
origin with respect to f is a n dimensional bounded O-symmetric convex body. Conversely,
for any n dimensional bounded O-symmetric convex body C, there is a gauge function
f:R" — R such that B¢(0,1) = C.

Given an f-ball of radius r around origin with respect to a gauge function f, from the
Proposition 2 it follows that B (0, r) is an O-symmetric convex body. It is easy to check that
for any r > 0 and any constant ¢ we have vol(B(0,cr)) = c"vol(B¢(0,r)), where vol(C)
denotes the volume of the corresponding convex body C (see e.g. [Si45]).

We now place a natural restriction on gauge functions. A gauge function f, given by
oracle access, is a nice gauge function if it satisfies the following property: For some poly-
nomial p(1), B2(0,27P(M) C Bf(0,1) € By(0, 2P()), i.e. there exists a Euclidean sphere
of radius 27P(") inside the convex body B £(0,1), and Bf(0,1) is contained inside a Eu-
clidean sphere of radius 27("). Note that if f is a nice gauge function and v € Q" we have
size(f(v))=poly(n,size(v)). For a nice gauge function f we can sample points from convex
body By (0,7) almost uniformly at random in poly(size(r)n) time using the Dyer-Frieze-
Kannan algorithm [DFK91]. It is easy to check that all [, norms p > 1 define nice gauge
functions. The i successive minima of a lattice £ with respect to ¢, norm is smallest r > 0

such that B,(0,r) contains at least i linearly independent lattice vectors. It is denoted by
AP(L).
1

Remarks: In this paper we consider lattice problems with respect to nice gauge functions.
Let £ be a lattice with basis {b1,by,...,b,} and f be a nice gauge function. Suppose B is a
full rank 7 x n matrix with columns by, by, ..., b,. Note that the linear transformation B!
maps lattice £ isomorphically to the standard lattice Z". Furthermore, it is easy to see that
the set C = B~(B(0,1)) is an O-symmetric convex body. Hence, by Proposition 2 it follows
that C = Bg(0, 1) for some gauge function g. As f is a nice gauge function, it easily follows
that g is also a nice gauge function.

27

28

SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

Thus, our algorithms that work for nice gauge functions can be stated for the the stan-
dard lattice Z" and a nice gauge function g¢. However, some of our results hold only for £,
norms. Thus, to keep uniformity we allow our algorithms to take arbitrary lattices as input
even when the metric is give by a nice gauge function.

3 A Sieving Algorithm for SAP

In this section we present a different analysis of the AKS sieving [AKS01, Re04] applied
to the Subspace Avoiding Problem (SAP). Our analysis is quite different from that due to
Blomer and Naewe [BNO7] and gives us improved running time for computing a 1 + €
approximate solution.

Recall that an input instance of the subspace avoiding problem (SAP) consists of (£, M)
where £ C Q" is a full rank lattice and M C IR" is a subspace of dimension k. The SAP
problem is to find a vector v € £\ M with least norm with respect to a nice gauge function

f.

We give an intuitive outline of our approximation algorithm: Our analysis of AKS siev-
ing will use the fact that the sublattice £ N M of L is of rank k. We will use the AKS sieving
procedure to argue that we can sample 2°("+k108(1/€)) points from some coset of £ N M in
20(n+klog(1/€)) time. We can then apply a packing argument in the coset (which is only k-
dimensional) to obtain points in the coset that are close to each other. Then, with a standard
argument following the original AKS result [AKS01] we can conclude that their differences
will contain a good approximation.

Suppose, without loss of generality, that the input lattice £ C R" is n-dimensional
given by a basis {by,---,b,}, so that L = Y ' ; Z - b;. Let us fix a nice gauge function f and
let v € £ denote a shortest vector in £\ M with respect to gauge function f, i.e. f(x) for
x € L\ M attains minimum value at x = v. Let s = size(£, M) denote the input size (which
is the number of bits for representing the vectors b; and the basis for M). As v is a shortest
vector in £\ M and f is a nice gauge function it is quite easy to see that size(f (v)) is bounded
by a polynomial in s. Thus, we can scale the lattice £ to ensure that 2 < f(v) < 3. More
precisely, we can compute polynomially many scaled lattices from £, so that2 < f(v) <3
holds for at least one scaled lattice. Thus, we can assume that 2 < f(v) < 3 holds for the
lattice L.

We first describe the AKS sieving procedure [AKS01] for any gauge function, analyze
its running time and explain its key properties. The following lemma is crucially used in
the algorithm.

LEMMA 3.[Sieving Procedure] Let f : R" — R be any gauge function. Then there is a
sieving procedure that takes as input a finite set of points {v1,v2,v3,...,vN} C Bf(0,7),
and in NO(V) time it outputs a subset of indices S C [N] such that |S| < 5" and for each
i € [N] thereisaj € S with f(v; —v;) <r/2.

Proof. The sieving procedure is exactly as described in Regev’s lecture notes [Re04]. The
sieving procedure is based on a simple greedy strategy. We start with S = @ and run the

following step for all elements v;,1 < i < N. At the ith step we consider v;. If f(v; —v;) >
r/2 for all j € S include i in the set S and increment i. After completion, for all i € [N]

V. ARVIND AND PUSHKAR S. JOGLEKAR FSTTCS 2008

there is a j € S such that f(v; —v;) < r/2. The bound on |S| follows from a packing
argument combined with the fact that vol(Bf(0,cr)) = c"vol(Bf(0,r)) for any r > 0 and
a constant ¢ > 0. More precisely, for any two points v;,v; € S we have f(v; —v;) > r/2.
Thus, all the convex bodies Bf(v;,7/4) for v; € S are mutually disjoint and are contained
in B¢(0,7 +r/4). Also note that vol(B(0,dr)) = d"vol(Bf(0,r)) for any constant d > 0. It
follows that 5"vol(Bf(v;,7/4)) > vol(B¢(0,r +r/4)). Hence, |S| < 5". The second property
of S is guaranteed by the sieving procedure. |

Next, our algorithm follows the usual AKS random sampling procedure. Let R =
n - max;||b;|| . It is clear that size(R) is polynomial in s since f is a nice gauge function. Let
Bf(0,2) denote the f-ball of radius 2 around the origin. Since we have an oracle for mem-
bership in Bf(0,2) and f is a nice gauge function we can almost uniformly sample from
B f(0,2) using the Dyer-Frieze-Kannan algorithm [DFK91]. Let x1, xp,- - -, x5 denote such
a random sample, for N = 2¢("+klog(1/€)) . 150 R where the constant ¢ > 0 will be suitably
chosen. Now, using the lattice £ we can round off the points x;. More precisely, we express
x; = Xja;;b; for rationals «;;. Then, from each vector x; we compute the vector y; = X;8;b;,
where 0 < B;; < 1, by adding appropriate integral multiples of the b;’s to the expression
for x;. Thus, the points y, - - -, yn are in the interior of the fundamental parallelepiped of L,
and each x; — y; € £. We denote this by y; = x;(mod £). We now have the set of N pairs
P = {(x;,yi) | i € [N]}, where x; — y; are lattice points. Since y; lie inside the fundamental
parallelepiped we have ||y;||; < n - max;||b;||; = R fori =1to N.

Now, we apply the AKS sieving procedure in Lemma 3 to the set {y1,12,---,yn}. The
result is a subset S C [N] of at most 5" indices such that for each i € [N] there is some
j € Ssuch that f(y; —y;) < R/2. We remove from P all (xj,y;) for j € S and replace each
remaining (x;,y;) € P by a corresponding (x;,y; — (y; — xj)), where j € S is the first index
such that f(y; — y;) < R/2. After the sieving round, the set P has the property that for each
(xj,zi) € Pwehave x; —z; € L and f(x; —z;) < 4+ R/2, and P has shrunk in size by at
most 5”. We continue with O(log R) sieving rounds so that we are left with a set P with
N — O(log R)5" pairs (xj,z;) such that x; — z; € £ and f(x; —z;) < 8. We can ensure that
|P| > 2¢/(ntklog(1/€)) for an arbitrary constant ¢’ by appropriately choosing constant c. The
vectors, x; — z; for (x;,z;) € P follows some distribution among lattice points inside B (0, 8).
Next, we need following simple proposition.

PROPOSITION 4. Let L C R”" be a rank n lattice, v € L such that2 < f(v) < 3 for a
nice gauge function f. Consider the convex regions C = Bs(—v,2) N Bf(0,2) and C' =
B#(0,2) N Bf(0,2). Then C' = C +v and vol(C) = vol(C') = Q(%).

Proposition 4 is easy to prove since Bf(—v/Z, 1/2) C C, Bf(v/Z, 1/2) C C'. Note that
we have picked x1,...,xy uniformly at random from Bf(0,2),where N = ¢ (ntklog(1/e)) .
log R. By Proposition 4, the point x; is in C with probability at least 2-°("). Hence by
choosing the constant ¢ large enough we can ensure that with high probability there is a
subset Z C P such that |Z| > 2¢1(n+klog(1/€)) for a constant ¢; and for all (xi,z;)) € Z,x; € C.
We now prove the main theorem of this section.

29

30

SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

THEOREM 5. Let £ C Q" be a full rank lattice and letv € £\ M such that2 < f(v) <3 fora
given gauge function f and f(v) < f(x) forallx € L\ M. Lete > 0 be an arbitrary constant.
Then there is a randomized algorithm that in time 200" +K198(1/€)) poly(size(L)) computes a
set P of pairs (x;,z;) such that |P| > 2¢"(#+klog(1/€)) for a constant ¢’ and f(x; — z;) < 8 for
all (x;,z;) € P. Moreover, z; — x; € L are such that with probability 1 — 2-0() thereis a pair
of points (x;,z;), (x;,zj) € P such thatv +u = (x; — z;) — (xj — zj) for a vectoru € LN M
with f(u) <e.

Proof.

Consider the set P of pairs (x;,z;), obtained after the AKS sieving as described above,
such that |P| > ¢ (ntklog(1/€)) and f(x; —z;) < 8forall (x;,z;)) € P. We know that by
choosing c large enough we can ensure that with high probability there is Z C P such that
|Z| > 2c1(n+klog(1/€)) for any constant ¢; and for all (x;,z;) € Z, x; € C.

Note that £ N M is a rank k sublattice of £. We will now analyze Z using the cosets of
the sublattice £ N M.

Write Z as a partition Z = U}, Z;, where for each Z; there is a distinct coset (LNM)+
vj of LN M in L such that z; — x; € (LN M)+ vj for all (x;,z;) € Z;. Let Z]’- = {z; —x; |
(xi,zi) € Zj}. Suppose u; € Z; C (LN M) +vj for j =1 to m.

CLAIM 6.[Coset sampling] By choosing constant c; large enough we can ensure that there
isanindext, 1 <t < m such that |Z;| > 2¢2(ntklog(1/€)) for any constant c;.

Proof of Claim Note that u; and u; for i # j lie in different cosets of LN M. So u; —u; ¢ M.
Since v is a shortest f-vector in £\ M with 2 < f(v) < 3, we have f(u; —u;) > 2. Hence unit
radius f-balls around u;’s are disjoint. Note that Bs(u;, 1) C Bf(0,9) for i = 1 to m. Since
vol(B(0,9))/vol(Bs(0,1)) < 2% for some constant d, we have m < 29", We have |Z| >
pa1(n+klog(1/€)) and Z is partitioned as Z = UiL1 Zj. So it is clear that by choosing c; large
enough we can ensure that there is an index t, 1 < t < m such that |Z;| > c2(n+klog(1/€)) for
any constant ¢;. I

By renumbering the indices assume that Z; = {(x1,21),..., (x4,24)},9 > 2¢2(n+klog(1/€))
Let B; = z; — x; for (x;,z;) € Z;. Thus, each such B; lies in the same coset (£ N M) + v,.

CLAIM 7.[Packing argument] By choosing the constant c; large enough we can ensure that
there exists (x;,z;), (xj,z;) € Zt,i # j such that f(B; — B;) < €.

Proof of Claim Suppose for all (x;,z;),(xj,z;)) € Zi,i # j f(Bi — Bj) > €. We also have
f(Bi—Bj) < 16fori,j € [q]. Lety; = Bi—v, € LAM C M fori = 1toq. Itis clear
that f(vi — ;) = f(Bi — B;) for i,j € [q]. Let {by,...,bx} be an orthonormal basis of M.
Consider the linear transformation T : M — R such that T(b;) = ¢; for i = 1 to k, where
{e1,ea,...,ec} is a standard basis of R¥. Let §; = T(7;) fori = 1 to g. By standard linear
algebra it follows that T preserves distances between points with respect to any norm. In
particular, we have f(vy; — ;) = f(d; —9;) fori,j € [q]. So we have /2 < f(6; —¢;) <
16. As é; € RF for i € [g], it follows that k-dimensional balls of radius €/2 around ;s are

(e/2)F
for a constant f. This is a contradiction since choosing ¢, large enough we can ensure that
| Zy| > 2¢2(ntklog(1/€)) 5 of(klog(1/e)),

mutually disjoint. By a packing argument it follows that |Z;| <

V. ARVIND AND PUSHKAR S. JOGLEKAR FSTTCS 2008

We now complete the proof with a standard argument from [AKSO1, Re04] using a
modified distribution.

We have (xi, Zi), (x]-, Z]) € Zy C Z,i 75 j, Xi, Xj € C such that f(‘Bl — :B]) < € and ﬁi —
Bi € LN M. Now, we apply the argument as explained in Regev’s notes [Re04] to reason
with a modified distribution of the x;. Note that in the sieving procedure described before
Theorem 5, each x; is picked independently and uniformly at random from B¢ (0,2). Now,
notice that we can replace the original distribution of x; with a modified distribution in
which we output x; if it lies in Bf(0,2) \ (CUC’) and if x; € C it outputs either x; or x; +
v with probability 1/2 each. Similarly, if x;, € C' = C + v it outputs either x; or x; — v
with probability 1/2 each. By Proposition 4 it follows that this modified distribution is also
uniform on Bf(0,2) (indeed, this distribution is required only for the purpose of analysis).
Furthermore, we can replace each x; by the modified distribution just before it is used in
the algorithm for the first time. The reason we can do this is because the distribution of y;’s
remains same even if we replace x; by the modified distribution because y; = x;(mod[)
and v € L. This is explained further in Regev’s notes [Re04]. Now recall that we have
(xi,zi),(xj,zj) € Z with x;,x; € C and f(B; — B;) < e. Putting it together with the above
argument, it follows that with good probability the points (x;,z;) and (x; + v, z;) are in the
set P, where P is the set of pairs left after the sieving. This is easily seen to imply that with
high probability we are likely to see the vector v + (B; — ;) as the difference of z; — x; and
zj — x; for some two pairs (x;, z;), (xj,z;) € P. The theorem now follows since f(B; — ;) < €.

u

By choosing M as the 0-dimensional subspace we get a 2°(") algorithm for SVP with
respect to any nice gauge function. As an immediate consequence of Theorem 5 we geta 1 +
€ approximation algorithm for SAP problem that runs in time 20(*+k108 . poly(size(L, M)).

Remarks: The 1+ € approximation algorithm in [BN07] for SAP has running time 2°("1°8 .
poly(size(£, M))). Our algorithm has running time 2°(**%108 &) for computing 1 + € approx-
imate solution. Put another way, for k = o(n) we get a 2°(*) time algorithm for obtaining
1+ 27"/K approximate solutions to SAP.

There is a crucial difference in our analysis of the AKS sieving and that given in [BNO7].
In [BN07] it is shown that with probability 1 — 2~°(") the sieving procedure outputsa 1+ €
approximate solution u € £\ M.

On the other hand, we show in Claim 6 that with probability 1 — 2-0(1) the sieving
procedure samples 20" +k108(1/€) Jattice points in some coset of the sublattice £ N M in L.
Then we argue that with probability 1 —2-9(") the sample contains a lattice point u in £ N
M + v such that such that d(u,v) is small, for some shortest vector v in £\ M. We argue
this in Claim 7 by a packing argument in the coset of £ N M. As £ N M has rank k, the
packing argument in k dimensions gives the improved running time for our approximation
algorithm for the problem.

The fact that the AKS sampling contains many points from the same coset of £L N M
also plays crucial role in our exact algorithm for SAP shown in Theorem 12.

31

32

SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

COROLLARY 8. Given a rank n lattice £ and a k-dimensional subspace M C ", there
is 1 + € randomized approximation algorithm for SAP (for any nice gauge function) with
running time 200" +klog o poly(size(L, M)).

Proof. The algorithm will examine all (z; — x;) — (zj — ;) for (x;,z;), (xj,z;) € P obtained
after sieving and output that element in £ \ M of minimum f-value. The proof of correctness
and running time guarantee follows immediately from Theorem 5. n

4 Convex Body Avoiding Problem

In this section we consider a generalization of SAP: given a lattice £ and a convex body C
the problem is to find a shortest vector (w.r.t. £, norm) in £\ C. We consider convex bodies
C that are bounded and O-symmetric. We refer to this problem as the Convex body Avoiding
Problem (CAP).

A set S C R" is O-symmetric if x € S if and only if —x € S. Notice that a subspace
M C R" is convex and O-symmetric (but not bounded).

The input to CAP is the lattice £ and the convex body C, where C is given by a mem-
bership oracle. An algorithm can query the oracle for any x € IR” to test if x € C.

We give an approximation algorithm to solve CAP.

THEOREM 9. Given an integer lattice L of rank n and an O-symmetric convex body C in R"
given by a membership oracle, there is 1 + € factor approximation algorithm to solve CAP
(w.r.t. any £, norm) with running time 2°0"108(1/€) . poly (size(L)).

Proof. It suffices to solve the problem for the case when C is n-dimensional. To see this,
suppose C is contained in some k-dimensional subspace M of R". We can find a basis for
M with high probability by sampling vectors from C using the polynomial-time almost
uniform sampling algorithm described in [DFK91]. Next, we compute the sublattice £ N M
and find a (1 + €) approximate solution u for the k-dimensional convex body avoidance
for the lattice £L N M and C. We also solve the SAP instance (£, M) and find a (1 + ¢€)
approximate solution v € £ \ M using Theorem 5. The shorter of vectors u and v is clearly
a (1 + €) approximate solution for the input CAP instance.

Thus, we can assume C is n-dimensional. Let v be a shortest vector in £\ C which, as
before, we can assume satisfies 2 < ||v||, < 3 by considering polynomially many scalings
of the lattice and the convex body. As in Theorem 5, we pick random points xq,---,xn
from B,(0,2) for N = 2¢"108(1/€) . poly(s). The constant ¢ > 0 will be suitably chosen later.
Let y; = xj(mod L) for i = 1 to N. We apply several rounds of the AKS sieving on the
set {(x1,v1), -, (xn,yn)} until we are left with a set S of 2¢171°8(1/€) pairs (x;, z;) such that
|xi — zi||, < 8. From proposition 4 it follows easily that with good probability we have
Z C S such that |Z| > 22"108(1/€) and for all (x;,z;) € Z we have x; € D U D’ where
D = B,(0,2) N B,(—v,2) and D" = B,(0,2) N B,(v,2). Note that the the constant c, can be
chosen as large as we like by appropriate choice of c. Let Z' = {z; — x; | (xj,z;) € Z}. Now
consider ¢, ball of radius €/2 centered at each lattice point B € Z’. It is clear that for all § €
Z',B,(B,e/2) C By(0,8+¢€/2). If forall B € Z' £, balls B,(p, €/2) are mutually disjoint, by

(8+€/2)"
(6/2)"

packing argument we get |Z'| < = 2¢'nlog(1/¢€) for a constant ¢’. We choose constant

V. ARVIND AND PUSHKAR S. JOGLEKAR FSTTCS 2008

c appropriately to ensure that c; > ¢’. This implies that there exists tuples (x;, z;), (xj,zj) € Z
such that [|8; — B;|| < €, where B; = z; — x; and B; = z; — x;. Let B = B; — ;. We claim that
it is not possible that both B + v, B — v lie inside the convex body C. Because this implies
v — B € Csince C is O-symmetric. Therefore v = w € C, which contradicts with
assumption v ¢ C. So without loss of generality assume that g + v ¢ C. Note that without
loss of generality we can also assume that x; € D’ with good probability. Now, we apply the
argument as explained in [Re04] to reason with a modified distribution of the x;. As x; € D’
we can replace x; by x; — v. It is easy to see that after sieving with good probability there
exists tuples (x;,z;), (xj,z;) € Ssuchthatr;; = (z; — x;) — (zj — xj) = v+ B; — B;. Hence,
rij = v+ B & Cand, clearly, ||r;;l|, < (1+¢€)||v|[, since [|B; — Bjll, < €. It is easy to see
that the algorithm runs in time 2°("198(1/€)) poly(size(L)). This completes the proof of the
theorem. n

5 Applications

The results of this section are essentially applications of ideas from Theorem 5 and Section 3.

First we describe an exact algorithm for SAP for £, norms. We prove our result for full
rank lattices, but it is easy to see that the result holds for general lattices as well. Let £ C Q"
be a full rank integer lattice given by a basis {by,---,b,} and let M C R" is a subspace of
dimension k < n. For any ¢, norm we give a randomized 20" +¥108%) poly/(s) time algorithm
to find a shortest vector in £ \ M, where s = size(L£, M). Our exact algorithm uses the same
sieving procedure and analysis described in the proof of Theorem 5 in Section 3. As before,
by considering polynomially many scalings of the lattice, we can assume that a shortest
vector v € L\ M satisfies 2 < ||v]|, < 3. We now describe the algorithm.

1. Let N = 2 log(n.max;||b;||»). Pick x1, x2, - - -, xn uniformly at random from B, (0,2).

2. Lety; = xj(mod L). Apply AKS sieving to the set {(x1,11),- - -, (xn,yn) } as described
in Section 3 until ||x; — z;||, < 8 for each pair (x;, z;) left after the sieving.

3. Let P = {(x;,z;)|i € T}, T C [N] be the set of tuples left after the sieving procedure.
Foralli,j € T compute lattice points v;; = (z; — x;) — (zj — x;).

4. Let w;; be a closest lattice vector to v;; in the rank k lattice £ N M (found using Kan-
nan’s exact CVP algorithm [Kan87]), and let r;; = v;; — w; ;. Output a vector of least
nonzero £, norm among all the vectors r; ; for i,j € T.

First we prove the correctness of the algorithm.

LEMMA 10. For an appropriate choice of the constant c in the algorithm, it outputs a shortest
nonzero vector in £ \ M with respect to £, norm.

Proof. Let v be a shortest vector in £\ M. Consider the set of pairs P = {(x;,z;)|i € T}, T C
[N], that remains after the sieving procedure in Step 3 of the algorithm. If we choose €
as a constant in Theorem 5, it follows that there is a constant ¢ such that with probability
1 — 279 there exists (x;,z), (xj,z;) € P such thatv+u = B; — B; for some u € LN M
where ; = z; — x; and B; = z; — x;. Hence, in Step 3 of the algorithm we have some
v;j = v + u for some vector u € LN M, i.e. v;j and v lie in same coset of LN M.

Letw;; € LN Mbe a closest vector to v; ;. So we have d(v; ;, w; ;) < d(v;;,u) = ||v|p, ie.
|0i; — wijll, < [|v]|p. But since we have v;; ¢ LN M and w;; € LN M clearly v;; — w;; ¢

33

34

SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

LN M and since v is a shortest vector in £\ M, this implies ||v;; — w; ||, = ||v||,. So with
probability 1 —2-9(") the algorithm will output (in Step 4) a vector rij with [|7;][, = [[o]],.
This proves the correctness of the algorithm. |

Next we argue that the running time of the algorithm is 20" +k198k) . yo]y/(s) where s is
the input size. In Step 1 of the algorithm we are sampling N = 2°(") points from B,(0,2),
a ball of radius 2 with respect to I, norm. Since B,(0,2) is a convex body, the task can be
accomplished using Dyer-Frieze-Kannan algorithm [DFK91] in time 2°(") - poly(s). It easily
follows that the sieving procedure in Step 2 can be performed in 2°(") time. Note that £ N M
is a rank k lattice and a basis for it can be computed efficiently. We need the following easy
lemma from [Mi08].

LEMMA 11.[Mi08, Lemma 1] There is a polynomial-time algorithm that takes as input a
lattice L C Q" and a subspace M C R" of dimension k < n outputs a basis for rank k lattice
LN M.

From the above lemma it is clear that a basis for £ M M can be efficiently computed in
polynomial time. In Step 4 of the algorithm we are solving 2°(") many instances of CVP
for the rank k lattice £ N M. For i,j € S a closest vector to v;; in the rank k lattice £ N
M can be computed in 201985 time using Kannan’s algorithm for CVP [Kan87]. Hence
the Step 4 takes 20("+k198K) time. Therefore the overall running time of the algorithm is
20(ntklogk) . 1oly(s). Note that by repeating above algorithm 2°(") times we can make the

success probability of the algorithm exponentially close to 1.

THEOREM 12. Given a full rank lattice L C Q" and a subspace M C RR" of dimension
k < n, There is a randomized algorithm to finds v € L\ M with least possible I, norm.
The running time of the algorithm is 2°("+k198k) times a polynomial in the input size and it
succeeds with probability 1 — 27" for an arbitrary constant c.

Blomer and Naewe [BN07] gave 2°(") time 1 + € factor approximation algorithms to
solve the SMP and SIVP problems. As a simple consequence of Theorem 12 we get a 20(")

time randomized algorithm to “partially” solve SMP: we can compute the first O(; og —) suc-

cessive minima in 2°(") time. More precisely, we can compute a set of i linearly independent
vectors {v1,0y,...,0;} C L such that ||v;||, = A]’.’(ﬁ) forj=1toiifiis O(logn).

Given a lattice £, let M = 0 C IR" be the zero-dimensional subspace in R" and consider
the SAP instance (£, M). Clearly, v; is a shortest vector in £\ M. Hence, by Theorem 12
we can compute v; in 20(") time. Now, inductively assume that we have computed linearly

independent vectors vy, 0y,...,0x € L such that [[v;|, = AJF(E). Consider the instance

(L, M) of SAP where M is the space generated by vy, ..., v, and compute v € £\ M using

Theorem 12 in time 200"+¥1o8k) Tt is clear that ||v||, = AL 41(£) and as v ¢ M the vectors

V1,02, ...,V v are linearly independent. If k is O(I 0’; n) it is clear that algorithm takes 20(n)

time. This proves Corollary 13.

COROLLARY 13. Given a full rank lattice L C Q" and a positive integer i < 1cf§n for

a constant c, there is a randomized algorithm with running time 2°0") - poly(size(L)) to

V. ARVIND AND PUSHKAR S. JOGLEKAR FSTTCS 2008

compute linearly independent vectors vy,vy,...,v; € L such that ||v;[|, = /\]’-J(E) forj =1
to1i.

The CVP problem is polynomial-time reducible to SAP, as noted in [BNO7]. Miccian-
cio [Mi08] has shown that CVP, SAP and SMP are all polynomial-time equivalent. Our
algorithm computes v € £\ M with least norm by solving 2°(") instances of CVP. We have
basically given a randomized 2°(") time Turing reduction from SAP to CVP. An interesting
property of our reduction is that we are solving instance (£, M) of SAP by solving 2°(")
many CVP instances (£ N M, v) where £ N M is a rank k lattice, where k is dimension of M.
In contrast, for the CVP instance (N, v) produced by the SAP to CVP reduction in [BN07]
the lattice N has rank O(n).

As a consequence of this property of our reduction we obtain Corollary 14 which states
that it suffices to look for a 20(*) randomized exact algorithm for CVP that can access all
successive minimas of the input lattice.

COROLLARY 14. Suppose for all m there is a 2°0") randomized exact algorithm for CVP
that takes as input a CVP instance (M, v) where M is full rank lattice of rank m and v € R"
(along with the extra input v; € M such that |v;|, = AY (M) fori = 1 to m where A (M) is
it" successive minima in M). Then, in fact, there is a 29(n) randomized exact algorithm for
solving CVP on any rank n lattice.

Proof. By [Mi08], CVP is polynomial-time equivalent to SMP (the successive minima prob-
lem). Consider the full rank lattice £ C Q" as input to SMP. It suffices to compute linearly
independent vectors v1,...,v, € £ with ||v;]|, = AP (L) fori = 1 to n in 2°(") time. We
proceed as in the proof of Corollary 13. Inductively assume that we have computed linearly
independent vectors vy, ..., v € £ with ||o]|, = AY(L). Let M be the space generated by
v1,. ..,k Asin proof of Theorem 12 we can solve the SAP instance (£, M) by solving 20(")
many instances of CVP (£ N M, v"). Note that £ N M is rank k lattice and it is clear that
l|vi]|JAY (£ N M) for i = 1 to k. Hence we can solve these instances in 2°(") time (although
L N M is not full rank lattice, but it is not difficult to convert all these instances of CVP to full
rank by applying a suitable linear transformation). This takes time 2°("+%) which is at most
20(n), Hence, it is clear that we can compute linearly independent vectors vy,...,v, € L
such that ||o;]|, = A/ (L) in time n - 2007, u

In the next corollary we give a 2°(") time algorithm to solve certain CVP instances
(£,v) for any £, norm. We prove the result only for £, norm and it is easy to generalize it
for general £, norms. Let A;(£) denote i th successive minima of the lattice £ with respect
to > norm.

COROLLARY 15. Let (£,v) be a CVP instance such that L is full rank with the promise

thatd(v, L) < v/3/2M(L), t < logn- Lhen thereis a 2001 . poly(size(L)) time randomized

algorithm that solves such a CVP instance exactly.

Proof. By Corollary 13 we first compute A;(L£). We now use ideas from Kannan’s CVP to
SVP reduction [Kan87]. Let by, by, - - -, b, be a basis for £. We obtain new vectors ¢; € Q"1
for i = 1to n by letting ¢/ = (b!,0). Likewise, define u € Q"™ as u” = (vT,1,/2). Let
M be the lattice generated by the n + 1 vectors u, ¢1, ¢z, - - - ¢4. Compute the vectors v; € M

35

36

SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

such that [|v;]|l» = Aj(M) for j = 1 to t using Corollary 13 in time 2°") - poly(size(L)). Write
vectors v as vj = uj + aju, uj € L(cy, -+, cn) and aj € Z. Clearly, |(x]-| < 1 since u has A;/2
asits (n+1)" entry. As d(v,£) < v/3/2A(L) we have d(u, M) < Ay(L). Hence, there
is at least one index i, 1 < i < t such that |a;/ = 1. Consider theset S = {u; |1 < i <

t,|a;| = 1}and let u; be the shortest vector in S. Writing u; = (ij,O), it is clear that the
vector —w; € L is closest vector to v if aj = 1 and w; is a closest vector to v if aj = —1. m
References

[AKSO1] M. AJTAl, R. KUMAR, D. SIVAKUMAR, A sieve algorithm for the shortest lattice
vector. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
266-275, 2001.

[AKS02] M. AJTAL R. KUMAR, D. SIVAKUMAR, Sampling short lattice vectors and the clos-
est lattice vector problem. In Proceedings of the 17th IEEE Annual Conference on Com-
putational Complexity-CCC, 53-57, 2002.

[BI0OO] J. BLOMER, Closest vectors, successive minima, and dual HKZ-bases of lattices. In
Proceedings of th 17th ICALP, Lecture Notes in Computer Science 1853, 248-259, Springer,
2000.

[BNO7] J. BLOMER, S. NAEWE Sampling Methods for Shortest Vectors, Closest Vectors and
Successive Minima of lattices. In Proceedings of ICALP, 65-77, 2007.

[DFK91] M. DYER, A. FRIEZE, R. KANNAN A random polynomial time algorithm for ap-
proximating the volume of convex bodies. Journal of the ACM , 38(1):1-17, 1991.

[Kan87] R. KANNAN Minkowski’s convex body theorem and integer programing. Mathe-
matics of Operational Rearch ,12(3):415-440, 1987.

[LLL82] A.K.LENSTRA, H. W. LENSTRA, JR. AND L. LOVASZ, Factoring Polynomials with
Rational Coefficients, Mathematische Annalen, 261:515-534, 1982.

[MGO02] D. MICCIANCIO, S. GOLDWASSER, Complexity of Lattice Problems. A Crypto-
graphic Perspective, Kluwer Academic Publishers, 2002.

[Mi08] D. MICCIANCIO, Efficient reductions among lattice problems,SODA,2008,84-93

[Re04] O. REGEYV, Lecture Notes — Lattices in Computer Science, lecture 8. Available at the
website: http://www.cs.tau.ac.il/ odedr/teaching/lattices_fall 2004 /index.html.

[Si45] C. L. SIEGEL Lectures on Geometry of Numbers. Springer-Verlag publishing com-
pany, 1988.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 37-48

Analyzing Asynchronous Programs
with Preemption

Mohamed Faouzi Atig, Ahmed Bouajjani, Tayssir Touili
LIAFA, CNRS and University Paris Diderot

France

{atig, abou,touili}@iafa.jussieu.fr

ABSTRACT. Multiset pushdown systems have been introduced by Sen and Viswanathan as an ad-
equate model for asynchronous programs where some procedure calls can be stored as tasks to be
processed later. The model is a pushdown system supplied with a multiset of pending tasks. Tasks
may be added to the multiset at each transition, whereas a task is taken from the multiset only when
the stack is empty. In this paper, we consider an extension of these models where tasks may be of dif-
ferent priority level, and can be preempted at any point of their execution by tasks of higher priority.
We investigate the control point reachability problem for these models. Our main result is that this
problem is decidable by reduction to the reachability problem for a decidable class of Petri nets with
inhibitor arcs. We also identify two subclasses of these models for which the control point reachabil-
ity problem is reducible respectively to the reachability problem and to the coverability problem for
Petri nets (without inhibitor arcs).

1 Introduction

In the last few year, a lot of effort has been devoted to the verification problem for models of
concurrent programs (see, e.g., [17,7, 15, 19, 4, 3, 2, 23, 13, 1]). Multiset Pushdown Systems
(MPDS) have been introduced in [22] as an adequate model for asynchronous programs.
These programs constitute an important class of program widely used in the management of
concurrent interactions with the environment, e.g., in building networked software systems,
distributed systems, etc. In these programs, procedure calls can be either synchronous,
which means that the caller waits as usual until the callee returns, or asynchronous, which
means that the callee is rather stored as a task to be processed later. Repetitively, pending
tasks are chosen and executed until completion, which may generate other pending tasks.

The MPDS model consists of a pushdown system supplied with a multiset store con-
taining pending tasks. When (and only when) the stack is empty, a task is taken from the
multiset and put into the stack. Then, the system starts executing the task using push-
down transition rules which, in addition to usual push and pop operations (modeling syn-
chronous procedure calls) can generate new tasks (modeling asynchronous procedure calls).
Notice that in this model, both the stack and the multiset store are of unbounded sizes. The
control point reachability problem has been proved to be decidable in [22], and an efficient
procedure for deciding this problem has been developed in [12].

In this paper, we consider a wider class of programs where tasks may have different
priority levels (assuming that there is a finite number of such levels), and that at any point
in time tasks are executed according to their priority level ordering. This means that tasks
can be preempted by tasks of higher priority level: When a task <y of level i generates a

© M.F Atig, A. Bouajjani, T. Touili; licensed under Creative Commons License-NC-ND

FSTTCS 2008

TARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1739

38

ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

task 7’ of level j > i, the task 7 is preempted and must wait until the task 9’ as well as
all its descendants (i.e., tasks it created) of level greater than i are done. We consider that
in general the task 9’ may also have descendant of level less or equal to i; these tasks are
stored among the other pending tasks of their level for later execution.

To reason about this class of programs, we introduce the model of k-MPDS correspond-
ing to MPDS with k + 1 priority levels and preemption (i.e., 0-MPDS coincides with the
model of [22]). We address the control point/configuration reachability problem in these
models. Our main result is that both of these problems are decidable. The proof is not triv-
ial. The main difficulty to face is that a preempted task can be resumed only when there
are no pending tasks of higher level. This involves a kind of test to 0 of some counters
(which count the number of pending tasks at each priority level). We show that in fact these
reachability problems can be reduced to the reachability problem in a class of Petri nets with
inhibitor arcs shown to be decidable by Reinhardt in [21].

Then, we consider two classes of k-MPDS obtained by introducing some restrictions
either on the way priority levels are assigned to newly created tasks, or on the allowed kind
of communication through return values between asynchronous calls. The first subclass of
models we consider, called hierarchical MPDS, corresponds to systems where each created
task is assigned a priority level which is at least as high as the one of its caller. We show
that this inheritance-based policy of priority assignment leads to a model for which both the
control point and the configuration reachability problem can be reduced to the reachability
problem in Petri nets without inhibitor arcs.

The second subclass we consider, called restricted MPDS, corresponds to systems
where return values are taken into account (1) for synchronous calls at any level, (2) for
asynchronous calls at level 0, and (3) between tasks of different levels when a preemption
or a resumption occurs. This means that returns values by asynchronous calls within lev-
els greater than 0 are not taken into account (i.e., they are abstracted away), but these calls
may have an influential side effect by creating new tasks at any level, and this is taken into
account in our model. We prove that for the corresponding models to this class of pro-
grams the control point and the configuration reachability problems are reducible to the
corresponding problems in Petri nets using Parikh image computations of context-free lan-
guages. This means in particular that the control point problem (which the relevant problem
for proving safety properties) for these models can be reduced to the coverability problem
in Petri nets. As far as we know, our results are not covered by any existing result in the
literature.

2 Preliminaries

Words and Languages. Let X be a finite alphabet. We denote by £* (resp. £.) the set of all
words (resp. non empty words) over X, and by € the empty word. A language is a (possibly
infinite) set of words. Given two disjoint finite alphabets % and ¥’ and a language L over
YUY/, the projection of L on X, denoted Ly, is the set of words a; ...a, € X* such that
(E X apy” - 2, X")N L # Q.

Finite State Automata. A Finite State Automaton (FSA)isatupleS = (S,%, 6, st sf) where
S is a finite set of states, X is a finite alphabet, 6 C S x (2 U {e}) x S is a set of rules, sses
is an initial state, and s/ € S is a final state. Let L(S) denotes the language accepted by S.

M.FE. ATIG, A. BOUAJJANI, T. TOUILI FSTTCS 2008

Multi-sets. Let X be a finite alphabet. A Multi-set over X is a function M : £ — IN. We
denote by M[X] the collection of all multi-sets over £ and by @ the empty multi-set. Given
two multi-sets M and M’, we write M’ < M iff M'(a) < M(a) for everya € ¥; and M + M’
(resp. M — M’ if M’ < M) to denote the multi-set where (M + M')(a) = M(a) + M'(a)
(resp. (M — M')(a) = M(a) — M'(a)) for every a € X. Foraword w € £*, |w| is the multi-
set formed by counting the number of symbols occurring in w; and for a language L C X%,
|L| = {|w]| : we L}. Aset M C M[X]is semi-linear iff there is a FSA S s.t. M = [L(S)].

Context-Free Grammars. A Context-Free Grammar (CFG) is a tuple G = (V,%,R,S)
where V is a set of non terminal symbols, X is an input alphabet, S € V is the start symbol
(called also axiom), and R C V x (V U Z) " is a finite set of production rules. Given two
words u,v € (VUZX)", we write u ¢ v iff 3(a, 8) € R such that u = ujaup and v = u;Bus
for some uq,up € (V U Z) *. We denote by ¢ the transitive and reflexive closure of -¢ and
by L(G) = {w € £* | S F§ w} the context free language generated by G.

Labeled Pushdown Systems. A Labeled Pushdown System (LPDS) is a tuple P =
(Q,%,T,0) where Q is a finite set of states, ¥ is an input alphabet, T is a stack alphabet,

and ¢ is a finite set of transition rules of the form: g7y R qgw' where q,4 € Q, v €T,
a € 2U{e}, and w € T*. A configuration of P is a tuple (q,0,w) where g € Q is a state,
o € X*is an input word, and w € I'* is a stack content. We define the binary relation =p

between configurations as follows: (g,ac,wy) =p (7,0, ww') iff gy <> g'w' € A. The
transition relation =7 is the reflexive transitive closure of =p.

Given a LPDS P, a pair of states 1,92 € Q, and a stack symbol v € I, we define
Lp(q1,92,7) as the set of words {c € X*|(q1,0,7) =% (q2,€,€)}. It is well-known that
Lp(q1,92,7) is a context-free language, and conversely, every context-free language can be
defined as a trace language of some LPDS.

Finally, we recall a result due to Parikh [18] which will be used later in the paper.

PROPOSITION 1. Givena LPDSP = (Q,%,T,0), two states q1,4> € Q, and a stack symbol
v € T, it is possible to construct a FSA S such that [Lp(q1,q2,77)] = [L(S)].

Petri Nets with Inhibitor arcs. A Petri net with inhibitor arcs is a pair V' = (P, T') where P
is a finite set of places, and T C 2P % P* x P* is a finite set of transitions. Given a transition
t = (I, w,w'), we define the relation >C M|[P] x M[P] as follows: W -5 W' iff W > |w],
W' =W+ || — |w]| and W(p) = 0 for every p € I. We define the transition relation —
on multi-sets over P by the union of the —t>, ie., == User !, The transition relation —>j‘\/
is the reflexive transitive closure of — .

A Petri net with weak inhibitor arcs is a Petri-net with inhibitor arcs (P, T) such that
there is a function f : P — IN\ {0} such that Vp,p’ € P, f(p) < f(p') = (V(Lw,w') €
T,p' € I = p € I). A Petri net can be seen as a subclass of Petri nets with inhibitor arcs
where all the transitions (I, w,w’) € T are such that [= @. In this case, the transitions T can
be described in P* x P*.

The reachability (resp. coverability) problem for a Petri net with inhibitor arcs N is the
problem of deciding for two given multi-sets W and W whether W =N W' (resp. there is a
multi-set W’ > W' such that W — 7, W"). Reachability and coverability problems for Petri

39

40

ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

nets with inhibitor arcs are undecidable [10]. Fortunately, they become decidable for Petri
nets Petri nets with weak inhibitor arcs.

THEOREM 2. Reachability and coverabilty problems for Petri nets with weak inhibitor arcs
are decidable [21]. Moreover, the reachability (resp. coverability) problem for Petri nets is
decidable and EXSPACE-hard (resp. EXSPACE-complete)[14, 20, 16, 5].

3 Multi-set Pushdown Systems with Preemption
3.1 Definition of the Model

We introduce multiset pushdown systems with preemptive task generation according to a
finite number of priority classes. The model of MPDS defined in [22] corresponds to the par-
ticular case where all tasks have the same priority (and therefore preemption never occurs).

DEFINITION 3. Let k be a natural number. A k-Multi-set Pushdown System with Preemp-
tion (k-MPDS) is a tuple A = (Q,To,...,Tx, A, A, qo,v0) where Q is a finite set of states,
I = Uogjgk [} is a finite set of multi-set symbols, qo € Q is the initial state, o € T is the
initial task, and the sets A C U;'(:o (QxTj) x (Qx Irx (TU {e})) and A" C Qx QxT
form together the transition rules.

For presentation matter, transitions in A (resp. A’) will be represented respectively by
qy — qw' > 7 (resp. ¢ — q' < y) withg,q' € Q, v € I, w' € I}, and o' € T for some
j € {0,...,k}. Intuitively, rules of the form gy — g'w’ > 7/ correspond, in addition to the
usual pushdown operations (popping v and then pushing w’ while changing the control
state from ¢ to q'), to generate the task 7. Rules of the form g < ¢’ < 7y correspond to move
the control state from ¢ to ¢’ and to start executing the pending task v if the priority level of
the topmost symbol in the stack is strictly less than the priority level of 1.

A configuration of A is a tuple (q,w, My, ..., My) where g € Q, w € T§ x--- x I},
and M; € M[I';], 0 < j < k, is a multiset representing the waiting tasks of priority j. The
content of the stack w is always of the form wow; ... w; where for every j € {0,...,i}, w; €
r ;“ is the tasks of priority j that are waiting in the stack. The initial configuration of A
is (qo,€, |70],9,...,@). The transition relation = 4 is defined as the union of the binary
relations —g<j<k, “0<j<k, and ~»o< < defined as follows:

e Move with task creation (—): (g, wyj, Mo, ..., M;, @D, .. ., D) 5 (¢, ww', My, ..., M; +
L’)/Z'J,. ey M]',@,. . ,@) iff (6]’)/] — q’w’ > ’)/Z) € A, Vi S].—']', Yi € I;u {6}, and i <]
Such transitions correspond to move the control state from g to q’, pop «y; from the top
of the stack, push w’ into the stack, and generate the task 7;.

e Move with task preemption (~): (g, wyj, Mo, ..., M;,D, .. %)) ~j (¢, ww'yi, My, ...,
M;,@,...,) iff (qv; — q'w' > v;) € A, v; € Tj, v; € Tj,and i > j. Such transitions
correspond to move the control state from g to g, pop 7; from the top of the stack,
push @’ into the stack, and to start executing the task 7;.

e Treatment of a new task (—): (q,w,Mo,...,M;+ |7j],D,...,@) —; (q',wyj Mo,
...,M]-,®,...,®) iff (9 — q < 7)) € A, v € Tj,and w € T x -+ X 1"]’-‘_1. Such
transitions correspond to move the control state from g to g’ and to start executing
the pending task v; if its priority level is strictly greater than the priority level of the
topmost symbol in the stack.

M.FE. ATIG, A. BOUAJJANI, T. TOUILI FSTTCS 2008

Finally, let =% denotes the reflexive and transitive closure of the binary relation = 4.

3.2 Reachability Problems

The configuration (resp. control state) reachability problem is to determine, given
a -MPDS A = (Q[Ty,..., I, A A,q0,7) and a configuration (gq,w, My,..., M)
(resp. a control state q), whether (qo,€, |70),9,...,©0) =% (9w, My,..., M) (resp.
(90,6 [0, D,...,0) =4 (qw,M,...,M;) for some w' and M,..., M;). The empty
stack configuration (resp. control state) reachability problem is to determine, given a k-
MPDS A = (Q,Ty,..., T, A, A, q0,70) and a control state g, whether (qo, €, |70],9,...,D)
=% (9,6,9,...,0) (resp. (qo0,€, |70, D,...,D) =% (9,6, My, D, ...,D) for some Mj).

LEMMA 4. The configuration (resp. control state) reachability problem is polynomially re-
ducible to empty stack configuration (resp. control state) reachability problem for k-MPDSs
and vice-versa.

From now, we sometimes use configuration (resp. control state) reachability problem
to denote the empty stack configuration (resp. control state) reachability problem.

3.3 Sub-classes of Multi-set Pushdown Systems with preemption

Two subclasses of our models can be defined by restricting either (1) the way the priorities
are assigned to newly created tasks, or (2) the way tasks returns values after their executions.

The first class we define, called Hierarchical k-MPDS, corresponds to systems where
created tasks inherit is a priority which at least as high as the one of their parents.

DEFINITION 5. A Hierarchical &-MPDS (k-HMPDS) A = (Q, To,...,Tx, A, A, qo, 7o) is a
k-MPDS such that A € U_y (Q x Tj) x (Q x T3 % (Ui T U {e})).

The second class we consider, called Restricted k-MPDS, corresponds to systems where
communication between tasks through shared memory can only happen (1) for tasks of level
0, or (2) between tasks at different levels (at the preemption and resumption operations). In
other words, intra-level communication cannot occur between asynchronous tasks of level
greater or equal to 1 (but value passing at synchronous procedure calls and returns is not
restricted). Formally, the restriction we consider can be modeled by the fact that for each
level j > 1, there is a designated state q; such that tasks of level j can be treated only if the
control state of the system is g;.

DEFINITION 6. A Restricted k-MPDS (k-RMPDS) is a tuple R = (Q,To,..., T, A, A, qo,
ee s Gk, v0) where A = (Q,Ty,..., Tk, A, A, qo,70) is an k-MPDS, g4, ...,qx € Q is a fixed
sequence of states, and A" C (Q x Q x Tp) U (U;-‘:1 ({g;} x {q;} xTj)).

4 (0-MPDSs vs Petri nets

In the case of 0-MPDS, the decidability of the control state reachability problem has been
shown to be decidable in [22]. We present hereafter an alternative proof based on a reduction
of this problem to the coverability problem for Petri nets. We show actually that 0-MPDS can
be simulated by Petri nets and vice-versa (in some sense that will be made clear later). Our
principal aim by showing this relationship between the two models is to introduce smoothly

41

42

ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

ideas and constructions which constitute the basis of the constructions presented in the next
sections that are our main contributions. Actually, the reduction we show provides also
a more robust proof principle, since it allows us to establish the decidability not only for
control state reachability problem but also for configuration reachability problem.

4.1 From 0-MPDSs to Petri nets

We prove that every 0-MPDS can be simulated by a Petri net in the following sense:

THEOREM 7. Given a 0-MPDS A = (Q,To, A, A, qo,70), it is possible to construct a Petri net
N such that (qo, €, | 70])) =% (9,6, M) iff [qo] + [v0] =3 M+ |q].

Proof (Sketch): First, we observe that for any run (qo,€, {70}) =7 (9,€, M) of A there are
90,90, - -+ Gn,qn € Q, M, ..., M, € M[I'g], and 7o, ..., € Tp such that:

(90,6, [70]) =0 (90, v0,€) =6 (91,6, My + [11]) =0 (91,71, M1) =5 (92,6, Ma + [72]) —o0
r =0 (G, € My + [ya-1]) =0 (@1, Yn—1, Mn—1) ¢ (G, €, Mu + [7a]) —o0
(@, Y1 Mn) =5 (4,6, M)

(Notice that ~+(is never used since there are no preemptions for 0-MPDS models.)

Then, the first step of the reduction is to show using Proposition 1 that, for every p, p’ €
Q and ¢ € Ty, the set M(p,p',v) = {M'|(p,7,D) —§ (p',e, M')} is a semi-linear set.
In fact, a transition rule p1y; — pow > 72 of A (and therefore of <) can be seen as a

transition rule p;7y4 NEY pow of the LPDS P = (Q,T,Tp,6). Thus, a word in the trace

language Lp(p, p’,y) corresponds to the set of waiting tasks added to the multi-set during

the execution of 7 to its completion, i.e. |[Lp(p,p’,v)] = M(p,p’,v). Hence, it is possible to
.. _ ; f

construct a finite state ellutomaton S(p,p’,’y) = (S(p,pw), Ty, ‘5(;7,;7’,7)' s’(p’p,ﬁ),s (p,p’,“r)) such that

LL(S(p,p’,'y))J =M (p/ P ’)’)'

In the second step, we prove that every run of A of the form: (p1,€ |v]) —o
(p2,7,D) —§ (p3s, e, M') can be simulated by a computation of the Petri net N, (pupay) =
(Ptps,ps, vy Tiprpam)) such that Py, 0y = QU (Up,e S(paps,y) UToand Ty, 4,) is the small-
est set of transitions containing:

e Initialization: A transition (p17, sé for every transition rule (p; — p2 < 7) in

)
A’. Such a transition takes a toker{[J }fé;i each of the places p; and < and puts a token
in the place Sl(lepsfr)' This allows to simulate the move (p1,€, | 7v]) —o0 (p2,7, D).
e Simulation of S(,, . ,): A transition (s,s'y’) (resp. (s,s')) for every (s,7',s") (resp.
(s,€,8))in (5(02,037)" Such transitions allow the simulation of computation of the form
(2,7, @) —5 (p3, e, M)
LEMMA 8. Given a multi-set M' € M][Ty|, states p1,p2,p3 € Q, and a task v € Ty,

(pr€ Lv]) =0 (P27, @) =5 (p3, e M) iff [pr] + 7] =%, M+ 1[s], .

Since any run that reaches a configuration (g,€, M) can be decomposed as a sequence
of runs of the form: (py, €, [7]) —o (p2,7,D) = (p3,€, M), then (qo, €, [70]) =7 (9,6, M)
can be simulated by the following Petri net N' = (P, T) where: P = Upi,pseQ,vero Piprpsm)
is a finite set of places, and T is the smallest set of transitions such that: Tipipsy) © T

P1.P3/7)

and (s{p2 p37)” p3) is in T for every p1,p2, p3 € Q and v € I'o. Hence, Theorem 7 follows

immediately from the following lemma:

M.FE. ATIG, A. BOUAJJANI, T. TOUILI FSTTCS 2008

LEMMA 9. Given a state g € Q and a multi-set M € M[Io], (qo,€, [v0]) =7 (9,6, M) iff

W’ = M + |q] is reachable by the Petri net N from W = |vo| + |40]. -

The following fact follows immediately from Proposition 4 and Theorem 7.

COROLLARY 10. Configuration and control state reachability for 0-MPDSs are decidable.
4.2 From Petri nets to 0-MPDSs

We show that every Petri net can be simulated by a 0-MPDS in the following sense:

THEOREM 11. Given a Petri net N' = (P, T), it is possible to construct a 0-MPDS A with a
special state qo such that W — . W' iff (q0,€, W) =" (q0,€, W’).

This can be done by adapting the construction given in [22] to prove the lower bound
on the complexity for control state reachability problem for 0-MPDS.

By Theorem 11 and the fact that the set of reachable multi-sets for Petri nets is in general
not semi-linear [11], it is possible to show that:

COROLLARY 12. The set of reachable multi-set configurations {M | (qo,€, [70]) =%
(q,€, M)} by an 0-MPDS A = (Q,To, A, A, qo, 7o) is in general not semi-linear.

5 Reachability Analysis for k-MPDSs

In this section, we prove that the configuration (resp. the control state) reachability problem
for k-MPDSs is decidable by reduction to the reachability (resp. coverability) problem for
Petri nets with weak inhibitor arcs.

THEOREM 13. Configuration and control state reachability are decidable for k-MPDSs.

Proof (Sketch): We consider here that k > 1 (since k = 0 has been already considered in
the previous section). To simplify the presentation of the proof, we consider first the case of
k = 1. The generalization to any k > 1 is given later.

Case k = 1: Let A = (Q,To,T1,A,A,90,7) be an 1-MPDS. Let =1=—1 U <7 and
=0=~»0 U =1 U <= be two transition relations. Thanks to Proposition 4, we con-
sider w.l.o.g configurations of the form (g,€, M,®) with M € M][I')]. We observe that
(q,€, M, D) is reachable by A iff there are some qo,4(,91,---,90n € Q, Yo,---,Tn-1 € To,
and My, ..., M, € M[Io] such that g, = g, M,, = M, and:

Path 0: (qo,€, [70), D) —0 (90, 70,2, D) =5 (q1,€, M1+ [711],D) —0 (41, 11, M1, D) =
<42; €, M2 + L72J16> -0 <q./2/ Y2, MZ/ ®) o <q:1711 ,)/ﬂ—llMﬂ—ll ®) :>8 (Qn/ €, Mn/ ®>

Indeed, any computation of A of the form (p,v,D,D) = (p',e, N, @) for some p,p’ €
Q, v € Ty, and N,N" € M[I'g], there are p'y, po, pi, Py, Pm € Q Yoo s Y m1 € T,
wy, Wy, WY, ..., Wy € T§,and Ny, N1, Nj, ..., Ny € M[Ig] such that:

Path 1: (p,7,D,D) < (po, w'o, N'o, D) ~0 (po, w170, N'0, @) =1 (p1, w1, N1,D) —;
(p&;wllz Nlll®) ~0 (pllwzf)//l/ N/1/®) :>I (P’z’; w2, N2/®) (_>8 <Pf2/ w/2/ N/2/®) ~0
(P2, w372, N'2, @) =1 (p5, w3, N3, @) =5 -+ =7 (P W, Nuw, @) —5 (p',€,N, D)

Then the proof is structured as follows:

43

44

ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

Computing N
ity 1.

For every g,¢' € Q and o/ € Iy, we construct a Petri net N, (’ % with a spe-
cial place ¢ counting the number of pending tasks of priority 1, such that the set of
reachable multi-sets when the place ¢ is empty is precisely Mi(g,¢’,7') = {N' €
MILo] | (3,7, @,@) = (8¢, N, @)},

For every p, p' € Qand v € Ty, we construct a Petri net N(P,PW) with weak in-
hibitor arcs that characterizes the set Mo(p,p’,v) = {N € M[Io]|(p,7,2,90) =
(p',e,N,@)}. The Petri net NV, ,,) simulates the runs of the form Path 1 by delegat-
ing the =} segments of these runs to the networks NV, (’ % introduced above.

The difficulties to face in doing that are: (1) transitions ~»(are not always taken when
the stack is empty (since at level 1 the context of the interrrupted task of level 0 is
still present in the stack), and (2) the effect of =] computations on the multiset of
pending tasks of level 0 must be computed precisely and this should be done only
for such computations that reach at their end a configuration where the multiset of
pending tasks of level 1 is empty. Since computations at level 1 can be as general as
computations of any Petri net, the latter problem needs to be addressed using some
notion of place emptyness testing. Then, inhibitor arcs are used to check at the end of
=1 computations that the place c of N /) is empty.

To tackle the first issue, the idea is to reason about the whole computations of level
0 by inserting instead of the level 1 segments a tuple (g1,$2,7") € Q x Q x I'y corre-
sponding to the guess that an interruption by a task 7’ of level 1 is able to bring the
control state from g1 to g2. So, we build a pushdown system labelled by the generated
task of level 0 as well as the guessed tuples (g1,92,7') defined as above. Then, the
key observation is that the information represented in the traces of this LPDS can be
represented by the traces of a finite state automata S. Indeed, (1) like in the previous
section, the ordering between tasks generated by level 0 computations between two
given control states does not need to be kept, and (2) it is sufficient to know for each
Path 1 computation how many times each guessing pair (91,82, v') occurs; the consis-
tency of these occurrences within the computation (i.e., these guesses can indeed be
inserted in the computation) can be checked using a finite control.

Then, to simulate the computations of the form Path 1, the Petri net (') simulates
in parallel the evolution of the control states and the finite-state automaton S by (1)
generating a level 0 task whenever the transition of the automaton is labelled by this
task, and (2) simulating the network N”(g1,£2,7") whenever the transition of S is
labelled by (g1, 2,7") where 7/ is a level 1 task (which is supposed to be the one
which preempts the current level 0 task).

The collection of all the networks N, .y with p,p’ € Q and ¢ € T are used to
build a network N, with weak inhibitor arcs that simulates all the runs that reaches a
configuration of the form (g, ¢, M, D) (i.e. computations of the form Path 2).

(o) et ¢" € Q be a pair of states and 7/ € T; be a task of prior-

Then, any computation of the form (g,9/,@,?) =7 (¢’,N’,M’) can be seen as

a computation of the 0-MPDS A; which mimics the execution of A over tasks of prior-
ity 1. Formally, A; is defined by the tuple (Q,ToUT4,Aq,A],g,9") where Ay = A and

A| =

'N(QxQxT). Thus, (g,7,2,2) =71 (¢, N',M')iff (¢,7,@) =% (¢, N +M).

M.FE. ATIG, A. BOUAJJANI, T. TOUILI FSTTCS 2008

Then, by adapting the construction given in the previous section (see Theorem 7) to A;, we
can construct a Petri net N 3 (08'7) = (P(’ 08') T(’ 08 7,)) which has two special places ¢ and

. The place c is used to count the number of pending task of priority 1. A token in the
place ty means that the guessed control state when all tasks of priority level 1 are done is

g The relation between A and /\/ (2.4'7")) 1s given by the following lemma:

LEMMA 14. Let g,¢' € Q be a pair of states and ' € Ty be a task of priority 1. Then,
(5,7,2,0) =1 (8,6, N. Q) ff [g] + [7') + lig) —3, 1g] +Lig] + V.

Computing N, (pp,y): Forevery p,p’ € Qand v € Iy, we construct a Petri net N, (p.p'7)
with weak inhibitor arcs that simulates computations of A of the form: (p,€, |[7]|,@) —o
(", v, 0,0) =4 (v, e, M',D). Then,let P’ = (Q,X,Ty,6') beaLPDSwithYX' = {(g,¢",7') |
2,8 € Qv €T} UT. Forevery g,¢' € Qand v’ € I'1, (¢,¢,7) is a new symbol which
represents the set M;(g,¢’,7') (we have showed in the previous paragraph how these sets
can be characterized by the Petri nets N The set ¢’ is defined as the smallest set of
transition rules such that:
o If 171 — Quw' >y €A, 7 €Ty, and 12 € To U {e}, then g171 it o' €;

o If o171 — Qw' > 9 €A, 7 €Ty, and 1, € Ty, then g1711 (gz'giih) gw' € ¢ for every

g3 € Q. Such a transition rule records in its label the fact that a guess is made at this
point of the computation: The level 1 task 7, interrupts the level 0 task 7o, and then
the level 1 computation of the form (g, 72, @,?) =7 (g3,€, N, @) brings the control
state from g» to gs.

Thanks to Proposition 1, it is possible to construct a finite state automaton S, s) =

<S(p”,p’,7)/ Z// (S(p”,p’,'y)/ Sl&p//,p/,,y), Sj((p“,p’,'y)) such that LL(S(p”,p’,’Y))J = LLP/<P”, p/, ’)’)J . Then,
we can define a Petri net with weak inhibitor arcs N, .,y = (P(T using the set
of automata S(p// Py) aS follows:

* Py = AT, LY UPU(UpegSprp,y) is a finite set of places where P =

Ue o rer, P!, . The places T and L are flags that indicate if the simulation of

88'€Q Y “ge') P &
S(p”,P’,’Y) has been initiated or not. When the simulation starts, the place T is emp-
tied and a token is put in L. This allows to ensure that the segments —q o = are
simulated in a serial manner and do not interfer.

e The set of transitions T is the set of the following transitions:

(8.8 “r))

pp'y)” P,P//Y))

por')

— Initialization: A transition (@, T p7, J‘Sl&p”,p’,v)) for each transition rule p — p” <
v in A'. This transition simulates the move (p, €, 7], @) —0o (p”, 7, D, D).

- Simulation of S, ,): A transition rule (@, Ls, Ls'y") (resp. (@, Ls, Ls")) for
each each transition (s, 7/, s") (resp. (s,€,5'))iné (p//’p/,,},) with ¢/ € Ty. A transition
rule (@, Ls, gty y's") for each transition (s, (g,8',7'),s") of S

— Simulation of N

pp.)

) The set of transitions T(') of the network N !) de-

(887 (887

fined previously for each g,¢’ € Q and o/ € I'y.

— Checking the guessed tuple (g,¢’,9'): A transition rule (c, g'ty, 1) foreach ¢’ € Q.
This rule checks if there are no more tasks of level 1 (i.e. |[¢] = @) and that the
control state at the resumption of the preempted task of level 0 is g’

45

46

ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

LEMMA 15. (p,€, [7],@) —o (p",7,0,@) =§ (v, e, M',D) iff the multi-set W = M’ +
sz((p”,p’,'y)J + | L] is reachable by/\/'(p,pw) fromW = |T|+ |v]+ [p]

Computing the Petri net Np: We observe that any run (qo,€, {70}, @) =% (9,6, M, D) of
A can be simulated by a sequence of executions of the Petri nets Ny,) with p, p’ € Q and
7 € T. This can be obtained by defining the Petri net Ny = (P, Tp) as follows:

e Py is a finite union of places P, , for every p, p’ € Q and 1y € T\,

e T is the smallest set of transitions satisfying the following conditions:
C T forevery p,p’ € Qand y € Ty,

(pp'7)
- (9, J_s{p,,) Tp') € Ty for every p”,p’ € Q and 7 € Iy, which makes possible
the iteration of the executions of Petri nets of the form N (0.07)"
Then, Theorem 13 follows immediately from the following lemma:

LEMMA 16. (40,€, [10),D) =7 (4,6, M, D) iff 0] + [qo] + [T] =3, M+ [g] + [T].

General Case: This construction can be extended to the case where we have an arbitrary
number k of priorities. In this case, we compute a Petri net with weak inhibitor arcs as
follows: we need k places cy, ..., cr, where ¢; counts the number of tasks in the multiset
of level i. Then, these places can be ordered as follows: ¢; > ¢ > --- > ¢. Indeed, in
the computed Petri net with inhibitor arcs, we need to check whether ¢; = 0 only if the
other counters Cj, j > i are also null. This ensures that the network we construct is a weak
inhibitor arcs Petri net. O

6 Reachability Analysis for k-RMPDSs and k-HMPDSs
6.1 Reachability Analysis of Restricted k-MPDSs

In this section, we prove that the configuration and control state reachability problems for
k-RMPDSs are decidable and reducible to the same problems for 0-MPDSs. In particular,
we show that the control state reachability problem for k-RMPDSs is reducible to the cover-
ability problem for Petri nets. This is based on the fact that it is possible to prove in this case
that the sets M1(g,8",7") = {N' € M[Io]| (g7, D,0) =7 (¢',e,N',D)} are semi-linear
and can be computed as Parikh images of context free languages. Notice that for the case of
(unrestricted) k-MPDS these sets are not semi-linear in general (see Corrollary 12).

THEOREM 17. For any k > 0, control state and configuration reachability problems for
k-RMPDSs are reducible to the same problems for some (k — 1)-RMPDSs.

Proof (Sketch): Let us fix a I-RMPDS R = (Q,T,T'1,A, A, q0,91,70) and its transition re-
lations =1=—1 U <1 and ==~ U =1—¢. Given g¢,¢’ € Q and v/ € Tj, we con-
struct a context free grammar Gg s) such that |L(Gg)] = Mi(g,8',7") = {N' €
Mol | (8,7, @,@) =7 (§',e,N',®)}. Indeed, let us observe that such computations can be
decomposed as follows:

(&7, @,@) =7 (q1,6, Ny, N{ + [71]) —1 (91,71, Ng, N{) =7 (q1,€ N§, Nf + [72]) —1
(qllr)/ZI Ng/ le) c_>’>1k T ;)T (qllel Ng/ N{l + L’)’nJ) —1 (CIlI'Yn/Ng/ N{l) ;)T (gllel N//®)
Then, given g1,9» € Q and 7y € I7, it is possible to characterize the set of com-

putations (g1,7,@,9) —i (82,6, No,N1) by a CFG G such that LL(GZ

(81,82,7) gl,gzm)J -

M.FE. ATIG, A. BOUAJJANI, T. TOUILI FSTTCS 2008

{No+ N1|(81,7,9D,9) —7 (g2,€,No, N1)} using a similar construction to the characteriza-
tion of < computations in 0-MPDS (see proof of Theorem 7). Now, we use the set of CFGs
GZ Ry Gz Sau) Gz o) and Gz Tg) to built Gy 0,1y as follows. Every computation
(g1,6D,|7]) =1 (81,7 D,D) —7 (g2,€, No, N1) is simulated by Gqq',y): 7Y is rewritten by
the axiom of Gz qL227) and then rules of Gz aug0) AT€ applied. This can be done because the
processing order of pending tasks of level 1 is not relevant due to the restriction in RMPDS
models (two pending tasks of level 1 cannot communicate).

By Proposition 1, we can construct a finite state automaton Sy . such that
[L(Sge0))) = [L(Geqn)] = Mi(g,g,7"). Then, we construct a 0-MPDS A’
over the alphabet I'g that mimics any computation of R over tasks of priority 0O, i.e.
2171 — LW > 72 (resp. g1 — g2 < 71) is a rule of A’ iff g171 — gw' > 2 (resp.
g1 — g2 < 7) is a transition rule of R and 1,72 € I'oU {e}. On the other hand, any
computation (g,7,2,?) =7 (¢',e, N',®), with g,¢’ € Q and o/ € I'y, can be simulated by
a computations of A’ that: (1) moves the control state from g to the initial state of S o1 ,);
(2) each transition (s,y”,s") of S(g,g/,w/) by rule that moves the control state from s to s’
and creates the task 7"; and (3) changes the control state from the final state Sy 4,/ to
g'. Hence, (qo,€, [70]), D) =% (9,6, M, D) iff (qo,€, [v0]) =% (9,6, M) for any g € Q and
M € M[Iy). O

6.2 Reachability Analysis of Hierarchical k-MPDSs

In this section, we study the reachability problem for Hierarchical k-MPDS. We show
that control state and configuration reachability problems for k-HMPDSs are decidable us-
ing reachability for Petri nets without inhibitor arcs. Here, we use the fact that the set
Mi(g,¢,7") = {N' € MIv] | (8,7, 2,0) =7 (§',e, N',D)} is empty. Indeed, in that case,
the only relevant information about level 1 computation segments when simulating Path 1
computations is whether, given two states g and g’ and a task oy € I'y, it is possible to have
a run from gy which reaches a configuration with control state g’ where no level 1 tasks
are left. This can be solved as a reachability problem in a Petri net simulating the level 1
computations of a configuration where there are no pending tasks of priority 1.

THEOREM 18. For any k > 0, the control state and configuration reachability problems for
(k)-HMPDSs are reducible to the corresponding problems for (k — 1)-HMPDSs using the
reachability problem for Petri nets.

7 Conclusion

We have investigated the reachability problem for a model of concurrent programs where
tasks (1) can be dynamically created, (2) may have different levels of priority, and (3) may
be preempted by tasks of higher priority level. We have shown that this problem is difficult
but decidable. Our proof is based on a reduction to the reachability problem in a class
of Petri nets with inhibitor arcs. We have also identified a class of models for which the
(control point) reachability problem can be reduced to the reachability problem in Petri nets
without inhibitor arcs, and another class of models for which the control point reachability
problem can be reduced, using Parikh image computations of context-free languages, to
the coverability problem in Petri nets. For the latter class, although the problem of solving

47

48

ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

the control point reachability problem remains complex (EXPSPACE-hard), we believe that
it can be handled in practice using efficient algorithms and tools for (1) computing CFL
Parikh images using a Newton method based technique for solving polynomial equations
in commutative Kleene algebras [6], and for (2) solving the coverability problem in Petri
nets using forward reachability analysis and complete abstraction techniques [8, 9].

References

[1] M. E. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks of push-
down systems. In CONCUR’08, LNCS, 2008.
[2] A.Bouajjani and J. Esparza. Rewriting models of boolean programs. In RTA, volume 4098 of
LNCS, pages 136-150. Springer, 2006.
[3] A.Bouajjani, M. Miiller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks of
pushdown systems. In CONCUR'05, LNCS, 2005.
[4] A. Bouajjani and T. Touili. On Computing Reachability Sets of Process Rewrite Systems. In
RTA’05. LNCS, 2005.
[5] J.Esparza. Decidability and complexity of Petri net problems —an introduction. In G. Rozenberg
and W. Reisig, editors, Lectures on Petri Nets I: Basic Models. Advances in Petri Nets, number 1491
in Lecture Notes in Computer Science, pages 374-428, 1998.
[6] J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over commutative semir-
ings. In STACS, volume 4393 of LNCS, pages 296-307. Springer, 2007.
[7] J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interprocedural parallel
flow graphs. In POPL’00. ACM, 2000.
[8] G. Geeraerts,].-E Raskin, and L. V. Begin. Expand, enlarge, and check: New algorithms for the
coverability problem of wsts. In FSTTCS, volume 3328 of LNCS, 2004.
[9] G. Geeraerts, J.-F. Raskin, and L. V. Begin. Expand, enlarge and check... made efficient. In CAV,
volume 3576 of LNCS, pages 394—407. Springer, 2005.
[10] M. Hack. Decision problems for petri nets and vector addition systems. Technical Report TR
161, 1976.
[11] J. E. Hopcroft and J. J. Pansiot. On the reachability problem for 5-dimensional vector addition
systems. Theor. Comput. Sci., 8:135-159, 1979.
[12] R.]Jhala and R. Majumdar. Interprocedural analysis of asynchronous programs. In POPL, pages
339-350, 2007.
[13] V.Kahlon, E. Ivancic, and A. Gupta. Reasoning about threads communicating via locks. In CAV,
volume 3576 of LNCS. Springer, 2005.
[14] R. Lipton. The reachability problem requires exponential time. Technical Report TR 66, 1976.
[15] D. Lugiez and P. Schnoebelen. The regular viewpoint on pa-processes. Theor. Comput. Sci.,
274(1-2):89-115,2002.
[16] E. W. Mayr. An algorithm for the general petri net reachability problem. In STOC '81, pages
238-246, New York, NY, USA, 1981. ACM Press.
[17] R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State Systems.
Phd. thesis, Technical University Munich, 1998.
[18] R. Parikh. On context-free languages. |. ACM, 13(4):570-581, 1966.
[19] S.Qadeer, S. Rajamani, and J. Rehof. Procedure Summaries for Model Checking Multithreaded
Software. In POPL’04. ACM, 2004.
[20] C. Rackoff. The covering and boundedness problem for vector addition systems. In TCS, 1978.
[21] K. Reinhardt. Reachability in petri nets with inhibitor arcs. Revised manuscript, 2006.
[22] K. Sen and M. Viswanathan. Model checking multithreaded programs with asynchronous
atomic methods. In CAV, pages 300-314, 2006.
[23] S. L. Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages. In
LICS, pages 161-170. IEEE, 2007.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 49-60

Runtime Monitoring of Metric
First-order Temporal Properties

David Basin !, Felix Klaedtke !, Samuel Miiller 2, Birgit Pfitzmann 3

'ETH Zurich, Switzerland
{basin, felixkl }@nf.ethz.ch

2IBM Zurich Research Lab and ETH Zurich, Switzerland
sm @urich.ibmcom

3IBM Watson Research Lab, USA
bpfitzmaus. i bm com

ABSTRACT. We introduce a novel approach to the runtime monitoring of complex system proper-
ties. In particular, we present an online algorithm for a safety fragment of metric first-order temporal
logic that is considerably more expressive than the logics supported by prior monitoring methods.
Our approach, based on automatic structures, allows the unrestricted use of negation, universal and
existential quantification over infinite domains, and the arbitrary nesting of both past and bounded
future operators. Moreover, we show how to optimize our approach for the common case where
structures consist of only finite relations, over possibly infinite domains. Under an additional restric-
tion, we prove that the space consumed by our monitor is polynomially bounded by the cardinality
of the data appearing in the processed prefix of the temporal structure being monitored.

1 Introduction

Runtime monitoring [1] is an approach to verifying system properties at execution time by us-
ing an online algorithm to check whether a system trace satisfies a temporal property. While
novel application areas such as compliance or business activity monitoring [13, 15] require
expressive property specification languages, current monitoring techniques are restricted in
the properties they can handle. They either support properties expressed in propositional
temporal logics and thus cannot cope with variables ranging over infinite domains [6,16,20,
23,29], do not provide both universal and existential quantification [4,12,17,23-25] or only in
restricted ways [4,28,30], do not allow arbitrary quantifier alternation [4,22], cannot handle
unrestricted negation [8,22,27,30], do not provide quantitative temporal operators [22,25],
or cannot simultaneously handle past and future temporal operators [8,22-24,26,27].

In this paper, we present a runtime monitoring approach for an expressive safety frag-
ment of metric first-order temporal logic (MFOTL) [8] that overcomes most of these limita-
tions. The fragment consists of formulae of the form [1¢, where ¢ is bounded, i.e., its tem-
poral operators refer only finitely into the future. Our monitor uses automatic structures [7]
to finitely represent infinite structures, which allows for the unrestricted use of negation and

© Basin, Klaedtke, Mller, Pfitzmann; licensed under Creative Commons License-NC-ND

FSTTCS 2008

TARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1740

50

RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

quantification in monitored formulae. Moreover, our monitor supports the arbitrary nest-
ing of both (metric) past and bounded future operators. This means that complex properties
can be specified more naturally than with only past operators.!

In a nutshell, our monitor works as follows: Given a MFOTL formula [J¢ over a sig-
nature S, where ¢ is bounded, we first transform ¢ into a first-order formula ¢ over an
extended signature S, obtained by augmenting S with auxiliary predicates for every tempo-
ral subformula in ¢. Our monitor then incrementally processes a temporal structure (D, T)
over S and determines for each time point i those elements in (D, 7) that violate ¢. This is
achieved by incrementally constructing a collection of automata that finitely represent the
(possibly infinite) interpretations of the auxiliary predicates and by evaluating the trans-
formed first-order formula —¢@ over the extended S-structure at every time point. In doing
so, our monitor discards any information not required for evaluating —¢ at the current and
future time points.

We also show how to adapt our monitoring approach to the common case where all
relations are required to be finite and hence relational databases can serve as an alternative
to automata. Under the additional (realistic) restriction that time increases after at most a
fixed number of time points, our incremental construction ensures that our monitor requires
only polynomial space in the cardinality of the data appearing in the processed prefix of the
monitored temporal structure. This is in contrast to complexity results for other approaches,
such as the logical data expiration technique proposed for 2-FOL [30]. While this logic is at
least as expressive as MFOTL, the space required for monitoring (syntactically-restricted)
2-FOL formulae is non-elementary in the cardinality of the data in the processed prefix.

Overall, we see our contributions as follows. First, the presented monitor admits a
substantially more expressive logic than previous monitoring approaches. In particular,
by supporting arbitrary bounded MFOTL formulae, it significantly extends Chomicki’s dy-
namic integrity checking approach for temporal databases [8]. Second, we extend runtime
monitoring to automatic structures, which allows for the unrestricted use of negation and
quantification in monitored formulae. Third, for the restricted setting where all relations are
finite, we show how to implement our monitor using relational databases. Here, we extend
the rewrite procedure of [11] to handle a larger class of temporal formulae. We then prove
that, under an additional restriction, the space consumed by our monitor is polynomially
bounded in the cardinality of the data appearing in the processed prefix of a monitored
temporal structure. Finally, our work shows how to effectively combine ideas from differ-
ent, but related areas, including database theory, runtime monitoring, model checking, and
model theory.

This paper is an extended abstract. Full details are presented in [5].

2 Metric First-order Temporal Logic

In this section, we introduce metric first-order temporal logic (MFOTL) [8], which extends
propositional metric temporal logic [19] in a standard way. In the forthcoming sections, we
present a method for monitoring requirements formalized within MFOTL.

1t is unknown whether the past-only fragment of MFOTL is as expressive as the fragment with both past
and bounded future operators and whether formulae in the past-only fragment can be expressed as succinctly
as those in the future-bounded fragment.

BASIN, KLAEDTKE, MULLER, PFITZMANN FSTTCS 2008

Syntax and Semantics. Let I be the set of nonempty intervals over IN. We often write an
interval in I as [c,d), where c € N, d € NU{oo}, and ¢ < d, i.e, [c,d) := {a € N|c <
a < d}. A signature S is a tuple (C,R, a), where C is a finite set of constant symbols, R is a
finite set of predicates disjoint from C, and the function a : R — IN associates each predicate
r € R with an arity a(r) € IN. For the rest of this paper, V denotes a countably infinite set of
variables, where we assume that V N (CUR) = @, for every signature S = (C,R,a). In the
following, let S = (C, R, a) be a signature.

DEFINITION 1. The formulae over S are inductively defined: (i) For t,t' € VUC, t ~ '
and t < t' are formulae. (ii) Forr € Rand ty,...,t,,) € VUG r(ty,..., t,,)) is a formula.
(iii) For x € V, if 6 and 8’ are formulae then (—6), (6 A 0’), and (3x.0) are formulae. (iv) For
[€1,if0 and €' are formulae then (@;0), (0;0), (0 S;6"), and (0 U; 6') are formulae.

To define the semantics of MFOTL, we need the following notions: A (first-order) struc-
ture D over S consists of a domain |D| # @ and interpretations c® € |D| and P C |D|*("),
for each ¢ € Cand r € R. A temporal (first-order) structure over S is a pair (D, T), where
D = (Do, Dj,...) is a sequence of structures over S and T = (7, 7y, ...) is a sequence of
natural numbers (time stamps), where:

1. The sequence T is monotonically increasing (i.e., ; < T;11, for all i > 0) and makes
progress (i.e., for every i > 0, there is some j > i such that 7; > T;).
2. D has constant domains, i.e., |D;| = |D;41], for all i > 0. We denote the domain by |D)|
and require that |D| is linearly ordered by the relation <.
3. Each constant symbol ¢ € C has a rigid interpretation, i.e., cPi = ¢Pit1 foralli > 0. We
denote the interpretation of ¢ by cP.
A valuation is a mapping v : V — |D|. We abuse notation by applying a valuation v also to
constant symbols ¢ € C, with v(c) = cP. For a valuation v, a variable vector * = (x1,...,xy),
and d = (dy,...,d,) € |D|", v[x/d] is the valuation that maps x; to d;, for i such that
1 <i <, and the valuation of the other variables is unaltered.

DEFINITION 2. Let (D, T) be a temporal structure over S, with D = (Dy, D, ...) and T =
(10, 7,...),0 aformulaoverS, v a valuation, and i € N. We define (D, 7,v,i) |= 0 as follows:

(D,t,0,i) Et=~t iff o(t) =o(t)

(D,t,0,i) =t <t iff o(t) <o(t)

(D, t,v,i) Er(ty, ... ty) iff — (v(t1),...,0(ty))) € P

(D,t,v,i) = (—67) iff (D,t,v,i) £ 6

(D,7,0,i) = (61 N 67) iff (D,1,v,i) =61 and (D, 1,0,i) |= 6,

(D, t,v,i) = (3x.67) iff (D, t,v[x/d],i) |E 6y, for somed € |D|

(D,t,v,i) = (@16) iff i>0,7—17-1€1I, and (D, 7,0v,i—1) =6,

(D,t,v,i) = (Or6) iff Ty1—T € land (D,t,0,i+1) 6

(D,7,v,i) = (61 S162) iff ~ forsomej <i, ;-7 €1, (D,7,0,j) = 02,
and (D, t,v,k) = 6y, forallk € [j+1,i+1)

(D,t,v,i) E (01U 67) iff forsomej>i, -1 €1, (D,1,0,j) = 0,

and (D, 7,v,k) = 60y, for allk € [i,)

Note that the temporal operators are augmented with lower and upper bounds. A
temporal formula is only satisfied if it is satisfied within the bounds given by the temporal
operator, which are relative to the current time stamp 1.

51

52

RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

Terminology and Notation. We use standard syntactic sugar such as the standard con-
ventions concerning the binding strength of operators to omit parentheses (e.g., temporal
operators bind weaker than Boolean connectives and quantifiers) and we use standard tem-
poral operators (e.g., 410 := true Sy 0, where true abbreviates dx.x ~ x). Note that the
non-metric variants of the temporal operators are easily defined (e.g., 16 := Ujg o) 0).

We call formulae of the form t ~ t/, t < ¢/, and r(ty,... ,ta(r)) atomic, and formulae
with no temporal operators first-order. The outermost connective (i.e., Boolean connective,
quantifier, or temporal operator) occurring in a formula 6 is called the main connective of
. A formula that has a temporal operator as its main connective is a temporal formula. A
formula 6 is bounded if the interval I of every temporal operator U occurring in 6 is finite.

MFOTL denotes the set of MFOTL formulae and FOL the set of first-order formulae. For
6 € MFOTL, we define its immediate temporal subformulae tsub(0) to be: (i) tsub(a) if 6 = -
or 0 =3x.a; (ii) tsub(a) U tsub(B) if 6 = a A B; (iii) {0} if 0 is a temporal formula; and (iv) @
otherwise. E.g., for 6 := (@ a) A ((O B) Sj1,9)), we have that tsub(0) = {@«, (O) Sj19) 7}

If 8 € MFOTL has the free variables given by the vector ¥ = (x3,...,x,), we define the
set of satisfying assignments at time instance 7 as

g(DTi) . {Je D" | (D, t,v[x/d],i) = 6, for some valuation v}.

For 0 € FOL, we write (D;,v) = 0 instead of (D, t,v,i) = 6 and 6 for 9(DTi) Note that
(D;,v) =6 agrees with the standard definition of satisfaction in first-order logic.

3 Monitoring by Reduction to First-order Queries

To effectively monitor MFOTL formulae, we restrict both the formulae and the temporal
structures under consideration. We discuss these restrictions in §3.1 and describe monitor-
ing in §3.2-63.5.

3.1 Restrictions

Throughout this section, let (D, T) be a temporal structure over the signature S = (C,R,a)
and ¢ the formula to be monitored. We make the following restrictions on ¢ and D. First,
we require ¢ to be of the form [1¢, where ¢ is bounded. It follows that ¢ describes a safety
property [3]. Note though that not all safety properties can be expressed by formulae of
this form [9]. This is in contrast to propositional linear temporal logic, where every safety
property can be expressed as [1 3, where contains only past-time operators [21].

Second, we require that each structure in D is automatic [18]. Roughly speaking, this
means that each structure in D can be finitely represented by a collection of automata over
finite words. Let us briefly recall some background on automatic structures [7,18]. Let X
be an alphabet and # a symbol not in X. The convolution of the words wy, ..., w, € X* with
w; = wjy - - - Wy, is the word

Wiy wyy
w1 R QW = G((ZU{#})k)*,
Wiy Wi
where ¢ = max{(s,...,{} and wj; = wy;, for j < ¢; and wj; = # otherwise. The padding
symbol # is added to the words w; to ensure that all of them have the same length.

BASIN, KLAEDTKE, MULLER, PFITZMANN FSTTCS 2008

DEFINITION 3. A structure A over a signature S = (C,R, a) is automatic if there is a reg-
ular language L, C L* and a surjective function v : L4 — |A| such that the languages
Lr:={u@v|uv € Ly withv(u) = v(v)} and L, := {u1 @ -+ @ Uy [U1, Uy €
Lip| with (v(u1),...,v(uy))) € r}, for eachr € R, are regular.

An automatic representation of the automatic structure A consists of (i) the function v :
Lia — |A], (i) a family of words (wc)cec with we € L4 and v(w,) = ¢#, for all ¢ € C,
and (iii) a collection (A} 4, Ax, (Ar)rer) of automata that recognize the languages L 4|, Lx,
and L, for all r € R. In the following, we assume that for an automatic structure, we
always have an automatic representation for it at hand. A relation 4 C |A|* is reqular if
the language {u1 ®@ - - @ uy | uy, ..., ux € L4 with (v(u1),...,v(ux)) € r} is regular. Note
that an automaton reads the components of the convolution of a representative of 2 € |A[F
synchronously.

In addition to the requirement that each structure in D is automatic, we require that D
has a constant domain representation. This means that the domain of each D; is represented
by the same regular language £ and each word in £|p, represents the same element in | D/,
i.e., each automatic representation has the same functionv : £p| — |D|. Finally, we assume
that |D| = IN and that < is the standard ordering on IN. This is without loss of generality
whenever the function v is injective, i.e., every element in |D| has only one representative in
L|p|- Furthermore, note that every automatic structure has an automatic representation in
which the function v is injective [18].

Note that for a first-order formula 6, we can effectively construct an automaton that
represents the set 6Pi. Moreover, various basic arithmetical relations are first-order defin-
able in the structure (IN, <) and thus regular. For example, the successor relation {(x,y) €
IN? |y = x + 1} and the relation {(x,y) € N? | x +d < y}, for any d € IN, are regular.

Before presenting our monitoring method, we give two examples of system proper-
ties expressed in the MFOTL fragment that our monitor can handle. First, the property
“whenever the program variable in stores the input x, then x must be stored in the pro-
gram variable out within 5 time units” can be expressed by [Vx.in(x) — Q) out(x).
Second, the property “the value of the program variable v increases by 1 in each step
from an initial value 0 until it becomes 5 and then it stays constant” can be formalized
as O(—(@true) — v(0)) A (Ji.o(i) Ni <5 — Oov(i+1))A(v(5) — Ov(5)). Note that we
use relations that are singletons to model program variables.

3.2 Overview of the Monitoring Method

To monitor the formula (J¢ over a temporal structure (D, T) we incrementally build a se-
quence of structures Dy, D, ... over an extended signature S. The extension depends on the
temporal subformulae of ¢. For each time point i, we determine the elements that violate ¢
by evaluating a transformed formula =¢ € FOL over D;. Observe that with future opera-
tors, we usually cannot do this yet when time point i occurs. Our monitor, which we present
in §3.5, therefore maintains a list of unevaluated subformulae for past time points. In the
following, we first describe how we extend S and transform ¢. Afterwards, we explain how
we incrementally build D;. Finally, we present our monitor and prove its correctness.

53

54

RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

3.3 Signature Extension and Formula Transformation

In addition to the predicates in R, the extended signature $ contains an auxiliary predicate
pa for each temporal subformula a of ¢. For subformulae of the form B &1y and B U v,
we introduce further predicates, which store information that allows us to incrementally
update the auxiliary relations.

DEFINITION 4. Let S := (C, R, 2) be the signature with C := C and R is the union of the sets
R, {p«|a temporal subformula of ¢}, {r, | « subformula of ¢ of the form S; v or BU; v},
and {s, | « subformula of ¢ of the form pU; y}. Forr € R, leta(r) := a(r). If w is a temporal
subformula with n free variables, then d(p,) := n, and 4(r,) := n+1 and a(s,) := n + 2, if
¢ and s, exist. We assume that py, 74,50 € CURU V.

We transform MFOTL formulae over the signature S into first-order formulae over the
extended signature S as follows.

DEFINITION 5. For € MFOTL, we define (i) § := —f if§ is of the from —p, (i) § := B A 4 if
0 is of the form B A v, (iii) @ := Jy. B if § is of the form Jy. B, (iv) O := py(X) if 0 is a temporal
formula with the vector of free variables %, and (v) 0 := 6 if 0 is an atomic formula.

We assume throughout this section, without loss of generality, that each subformula
of ¢ has the vector of free variables ¥ = (x1,...,%,). The formula transformation has the
following properties, which are easily shown by an induction over the formula structure.

LEMMA 6. Let 0 be a subformula of ¢. For all i € N, the following properties hold:
(i) If p2" = (P for all x € tsub(6), then 0 = 9(D.5i),
(i) If p is regular for all a € tsub(6), then 8% is regular.

3.4 Incremental Extended Structure Construction

We now show how the auxiliary relations in the D;s are incrementally constructed. Their in-
stantiations are computed recursively both over time and over the formula structure, where
evaluations of subformulae may also be needed from future time points. We later show that
this is well-defined and can be evaluated incrementally.

Forc € Cand r € R, we define Di .= ¢Di and rPi := yDi. We address the auxiliary
relations for each type of main temporal operator separately.

Previous and Next. Fora = @; 8 with I € I, we define pE" as BDH ifi>0and 7, — 71 €
I,and pl" := @ otherwise. Intuitively, a tuple a is in pe! if @ satisfies B at the previous time
point i — 1 and the difference of the two successive time stamps is in the interval I.

LEMMA 7. Leta = @; . Fori > 0, 1'1‘;7(?"’1 is regular and p?i’] = 6(DTi=1) forall § € tsub(B),

D,t,i) D,t,0)

then pE ! is regular and pE i = gl . Moreover, pE 0 is regular and pE 0= ol .

PROOF. For i = 0, the lemma obviously holds. For i > 0, the regularity of p,? " follows
from the assumption that the relations p?i’l are regular and Lemma 6(ii). The equality of
the two sets follows from Lemma 6(i) and the semantics of the temporal operator @;.

BASIN, KLAEDTKE, MULLER, PFITZMANN FSTTCS 2008

For « = O B with I € I, we define pEi as BDM if ;.1 — 1 €1I,and p,,l?i := 0 otherwise.
Note that the definition of p,,l? " depends on the relations of the next structure D;,; and on the
auxiliary relations for § € tsub(B) of the next extended structure D; ;. Hence, the monitor

instantiates p,,]? " with a delay of at least one time step.

LEMMA 8. Letax = O; . pr?”l is regular and p?i“ = 6(DTH) forall § € tsub(B), then p,,[?f

. D, ,
is regular and p;’ = a(P71),

Since and Until. We first address the past-time operator S; with I = [¢,d) € I. Assume
that « = B S;y. We start with the initialization and update of the auxiliary relations for 7,.

We define r° := 40 x {0} and for i > 0, we define
D= (4P x {0})U{(a,y) eN"! |ae B0, y<d, and (a,y) €D, fory' =y — T+ Ti1 }.

Intuitively, a pair (@, y) isin ry'if @ satisfies a at time point i independent of the lower bound
c, where the “age” y indicates how long ago the formula y was satisfied by a. If satisfies

7 at the time point i, it is added to re’ with the age 0. For i > 0, we additionally update the

tuples (a,y) € ry"~". First, a must satisfy f at the time point i. Second, the age is adjusted
by the difference of the time stamps 7;_; and 7;. Third, the new age must be less than d,
otherwise it is too old to satisfy «.

The arithmetic constraint y’ = y — 7; + 7;_1 in the definition of r? " fori > 0is first-order

definable in D. Note that 7; + T7;_1 is a constant value. Now it is not hard to see that r,,]? "is
regular if all its components are regular.

With the relation 75", we can determine the elements that satisfy at the time point i.
We define py' := {aeN"|(ay) e ry!, for some y > c}.

LEMMA 9. Leta = B S| 4) 7. Assume that p?j is regular and p?j = ¢(Pmi), forall j < i and
0 € tsub(p) U tsub(y). Then the following properties hold:

(i) The relation rf" is regular and foralla € N" andy € N,

_ D, - thereisaj € [0,i+1) suchthaty:‘ri—’fj<d,ﬁ€’y(D'T'j),
@y)ert T ndd e PO, forallk € [j+1,i+1).

(ii) The relation p,,l?i is regular and p,,]?i = «(DTd),
Note that the definition of rE * only depends on the relation r,,l? =1 if i > 0, and on the
relations in D; for which the corresponding predicates occur in the subformulae of j or 4.

Furthermore, the definition of p,,l? " only depends on rei,
We now address the bounded future-time operator U with I = [c,d) € Tand d € IN.
Assume that « = BU;<y. Foralli € N, let ; := max{j € N|7,; —; < d}. We call {; the

lookahead offset at time point i. For convenience, let /_; := 0. To instantiate the relation pE h

i

only the relations p?", e, p? are relevant, where ¢ € tsub(p) U tsub(-y). The definition of

pE " is based on the auxiliary relations r,,l? "and SE ! which we first show how to initialize and
update.

55

56

RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

We define r,,? " as the union of the sets N, and U,. N, contains the tuples that are new in
the sense that they are obtained from data at the time points i 4 ¢;_1,...,i + ¢;; U, contains
the updated data from the time points i,...,7 4+ ¢;_; — 1. Formally, we define

Ny == {(aj) e N"' |l <j<,aeqP%, and 1y — T > ¢}
U, = {(ﬁ,]) e N+l | (ﬁ,j+ 1) S T,,I?i_l and Tiyj— T > C} ifi >0,
%) otherwise.

Intuitively, r,,’? " stores the tuples satisfying the formula {;y at the time point i, where each
tuple in rl,l? is augmented by the index relative to i where the tuple satisfies .
Similarly to r, Di the relation SE is the union of a set N; for the new elements and a set
U for the updates. These two sets are defined as
Ny :={(a,j,j) e N"*2 |4, 1 <j<j </landa e pP+, forallk € [j,j' +1)}
and Us := @ ifi =0, and
Us:={(a,j,/) € N"2|(a,j+1,j +1) € st} U
{(a,j,/') € N"™2| (@,j+1,£;1) € s and (3,61, 7) € Ny}
otherwise. Intuitively, SE) " stores the tuples and the bounds of the interval (relative to 7) in
which B is satisfied.
With the relations r,,l? "and s,? "at hand, we define
pbi = {aeN"|(a,j) e rDi and (,0,]) € sP ,forsome] <j +1}.
LEMMA 10. Let« = BU; y. Assume that p?k is regular and p; De 6Tk for all k < i+ 4
and ¢ € tsub(B) U tsub(vy). Then the following properties hold:
(i) The relation r,)l? " is regular and for alla € IN and j € N,
(a,j) € rDi ifft e «PvH) and Ty~ €l
(ii)) The relation s? "isregular and for alla € N" and j,j’ € N,
(@j,j)esd iff j<j, ty—7<d andac pPH, forallk e [j,j +1).
(iii) The relation p,,l?" is regular and p?i = (D7),

3.5 Monitor and Correctness

Figure 1 presents the monitor M (¢). Without loss of generality, it assumes that each tem-
poral subformula occurs only once in ¢. In the following, we outline its operation.

The monitor uses two counters i and 4. The counter i is the index of the current element
(D;, 7;) in the input sequence (Do, 1), (D1, T1), - - . , which is processed sequentially. Initially,
i is 0 and it is incremented at the end of each loop iteration (lines 4-16). The counter g < i
is the index of the next time point g (possibly in the past, from the point of view of i) for
which we evaluate —¢ over the structure D,. The evaluation is delayed until the relations

pE 7 for a € tsub(¢) are all instantiated (lines 10-13). Furthermore, the monitor uses the list?

2We abuse notation by using set notation for lists. Moreover, we assume that Q is ordered in that («,,S)
occurs before (a/,',S’), whenever a is a proper subformula of &/, or & = &’ and j < j'.

BASIN, KLAEDTKE, MULLER, PFITZMANN FSTTCS 2008

1: i< 0 % current index in input sequence (Dy, 1), (D1, 71), .- -
2:9<0 % index of next query evaluation in sequence (Dy, 1), (D1, 11), - - -
3: Q — {((a,0,waitfor(x)) | « temporal subformula of ¢ }
4: loop
5: Carry over constants and relations of D; to D;.
6: forall («,j,@) € Qdo X X % respect ordering of subformulae
7 Build relations for a in Dj (e.g., build r,?f and pg Tifa = B Sy).
8 Discard auxiliary relations for a in D]-_l if j—1 >0 (e.g., discard r,?f’l ifa =B Sry).
9 Discard relations p?] , where ¢ is a temporal subformula of a.

10: while all relations p,?” are built for a € tsub(¢) do

11: Output valuations violating ¢ at time point g, i.e., output (—¢)Ps and g.

12: Discard structure Dq,l ifg—1>0.

13: g—q+1

14: Q « {(a,i+ 1, waitfor(a)) | « temporal subformula of ¢} U

{(‘X'j' UGEupdate(S,TiH—T,) waitfor(e)) { (Dé,j, S) € Q and S 7& ®}
15: i—i+1 % process next element in input sequence (D; 1, Ti41)
16: end loop

Figure 1: Monitor M(¢)

Q to ensure that the auxiliary relations of Dy, D, ... are built at the right time: if («,, @)
is an element of Q at the beginning of a loop iteration, enough time has elapsed to build
the relations for the temporal subformula a of the structure D;. The monitor initializes Q
in line 3. The function waitfor extracts the subformulae that cause a delay of the formula
evaluation. We define waitfor(6) to be: (i) waitfor(p) if 6 = —p, 6 = Ix.p, or 6 = @ f;
(i) waitfor(B) U waitfor(y) if 6 = BAyor 6 = B Sy, (iil) {6} if 6 = Oy B or 6 = BU; 7y, and
(iv) @ otherwise. The list Q is updated in line 14 before we increment i and start a new loop
iteration. For the update we use the function update that is defined as

updatE(U, A) = {‘B | O1 ‘B € U} U {‘3 u[max{O,c—A},d—A) 0% ‘ ,Bu[c,d) v e U, withd — A > O} U
{BlBUL4 v € UoryUgy p e U, withd—A <0},

for a formula set U and A € IN. The update adds a new tuple (a,i + 1, waitfor(a)) to Q,
for each temporal subformula « of ¢, and it removes the tuples of the form («, j, @) from Q.
Moreover, for tuples («,7,S) with S # @, the set S is updated using the functions waitfor
and update by taking into account the elapsed time to the next time point, i.e. 7,11 — 7.

In lines 6-9, we build the relations for which enough time has elapsed, i.e., the auxiliary
relations for « in D]- with («,7,@) € Q. Since a tuple (&', j, @) does not occur before a tuple
(a,j,@) in Q, where « is a subformula of &/, the relations in Dj for a are built before those
for a’. To build the relations, we use the incremental constructions described earlier in this
section. We thus discard certain relations after we have built the relations for « in Dj to
reduce space consumption. For instance, if j > 0 and « = B &; 1y, we discard the relation

D4

. D;_ D
r,’ ',and we discard 7,/ ' and s, when a = BU; 7.

In lines 10-13, the valuations violating ¢ at time point g are output together with g,
for all g where the relations pg 7 of all immediate temporal subformulae « of ¢ have been

built. After an output, the remainder of the extended structure D,_; is discarded and g is
incremented by 1.

57

58

RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

THEOREM 11. The monitor M (¢) from Figure 1 has the following properties:
(i) Whenever M(¢) outputs (—$)Ps, then (—~¢)P1 = (=¢)P74). Furthermore, the set
(wf))D 1 is effectively constructable and finitely representable.
(ii) For every n € IN, M(¢) eventually sets the counter q to n in some loop iteration.

4 MFQOTL Monitoring with Finite Relations

In this section, we sketch how to use relational databases as an alternative to automata for
implementing our monitor and analyze its space complexity. Details are provided in [5].

In the following, we assume that all relations are finite and thus can be stored in a rela-
tional database. When replacing “regular” by “finite”, however, our constructions from §3.4,
in particular Lemmas 7-10, become invalid. The problem is that the auxiliary relations
constructed for the temporal subformulae are possibly infinite. We overcome this prob-
lem by extending work from database theory on domain independence [14]. In particular,
we generalize the solutions for first-order queries [2] and non-metric first-order temporal
logic [8,10,11] to MFOTL formulae by trying to rewrite the given MFOTL formula ¢ so that
all temporal subformulae and their direct subformulae have only finitely many satisfying
valuations. After rewriting the formula ¢, we check, based on the syntax of the result ¢,
whether each 0 € {a |« = ¢, « is a temporal subformula of i, or « is a direct subformula of
a temporal subformula of ¢} is temporal domain independent. If ¢ passes this check, we know
that it can be handled by our monitor for finite relations. Otherwise, no conclusions can be
drawn. For the rest of this section, we assume that ¢, all temporal subformulae of ¢, and all
direct subformulae of temporal subformulae of ¢ are temporal domain independent.

We now analyze the memory consumption of our monitor for finite relations. To obtain
a polynomial bound on the memory consumption, we modify M (¢) as follows: (i) the
counters i and g are replaced by the relative counter i — g and (ii) the update constructions
for subformulae of the form « = 5|, v are modified to prevent the “age” y of a tuple

(4,y) € i from increasing forever. The analyze the resources consumed by monitors in
general, we introduce the following abstract notion. Let C be a class of temporal structures
over the signature S = (C, R, a) and let pre(C) denote the set of nonempty finite prefixes of
the temporal structures in C.

DEFINITION 12. Let f,g : pre(C) — N and s : N — IN be functions. We write f <° g if
f(D,7) <s(g(D,t)), forall (D, 7) € pre(C).

In our context, the function f : pre(C) — IN measures the consumption of a particular
resource (e.g., storage) of a monitor after it has processed the finite prefix (D, T). The func-
tion g : pre(C) — IN measures the size of the prefix (D, T). Intuitively, f <° ¢ means that,
at any time point, the resource consumption (measured by f) of the monitor is bounded by
the function s : IN — IN with respect to the size of the processed prefix (measured by g) of
an input from C. We use the following concrete functions f and g. Let (D, T) € pre(C) with
D= (DO/---/Di) and T = (TQ,...,Ti).

— We define ¢(D, T) := |adom(D)|, where adom(D) is the active domain of (D, T), i.e.,
adom(D) = {c” |c € C} UUp<<i Urerfd;| (d1,...,dyy) € rPrand 1 < j < a(r)}.

BASIN, KLAEDTKE, MULLER, PFITZMANN FSTTCS 2008

Note that ¢ only counts the number of elements of D that are constants or that occur
in some of D’s relations. It ignores the sizes of these elements as well as the number
of times and where an element appears in D. It also ignores the time stamps in 7.
— We define f(D, T) to be the sum of the cardinalities of the relations for r € R stored by
M(¢) after the (i + 1)stloop iteration, having processed the input (Do, 1), . . ., (Dj, ;).
Note that f <° g is a desirable property of a monitor. It says that the amount of data stored
does not depend on how long the monitor has been running but only on the number of
domain elements that appeared so far, and that the stored data is bounded by the func-
tion s. We remark that the property of a (polynomially) bounded history encoding [8] can
be formalized as f <° g, for some (polynomial) s : IN — IN.

THEOREM 13. Let C be a class of temporal databases. Assume that there is some { € IN
such that max{j| t;=Tiy1=...=Ty4;} < {, forall (D,t) € Cand alli € N. Then, we have
that f <® g, wheres : N — N is a polynomial of degree max{a(r) | r € R}.

Note that if such a bound ¢ on the sequence T of time stamps does not exist, we cannot
guarantee any upper bound on f. It is open whether Theorem 13 can be carried over to
temporal structures with possibly infinite relations and automatic representations.

5 Conclusion and Future Work

We have presented an automata-based monitoring approach for an expressive fragment of
a metric first-order temporal logic. The use of automata substantially generalizes both the
kinds of structures and the class of formulae that can be monitored. Moreover, it elimi-
nates the limitations that arise in databases, where relations must be finite. An interesting
question here is to what extent the use of automatic structures can be carried over to other
monitoring approaches, thereby solving the problems they have with infinite relations.
One direction for future work is to explore whether our approach can be used to moni-
tor temporal first-order logics that have an interval-based semantics instead of a point-based
semantics, or a combined interval and point-based semantics, which is useful for modeling
state and event predicates. Another direction is to conduct a refined complexity analysis for
our algorithm with automatic structures and to validate our results by implementation and
testing. In particular, we plan to design and evaluate data structures and algorithms for effi-
ciently incrementally updating relations, which is at the heart of our monitoring algorithm.

References

[1] Proceedings of the 1st to 8th Workshop on Runtime Verification (RV), 2001-2008.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[3] B. Alpern and F. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181-185, 1985.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In Veri-
fication, Model Checking, and Abstract Interpretation (VMCAI'04), vol. 2937 of LNCS, pp. 44-57.

[5] D. Basin, E Klaedtke, S. Miiller, and B. Pfitzmann. Runtime monitoring of metric first-order
temporal properties. Technical Report RZ 3702, IBM Research and ETH Zurich, 2008.

[6] A.Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties. In Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’06), vol. 4337 of LNCS, pp. 260-272.

59

60

RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

[7] A.Blumensath and E. Grddel. Finite presentations of infinite structures: Automata and inter-
pretations. Theory Comput. Syst., 37(6):641-674, 2004.

[8] J. Chomicki. Efficient checking of temporal integrity constraints using bounded history encod-
ing. ACM Trans. Database Syst., 20(2):149-186, 1995.

[9] J. Chomicki and D. Niwiniski. On the feasibility of checking temporal integrity constraints.
J. Comput. Syst. Sci., 51(3):523-535, 1995.

[10] J. Chomicki and D. Toman. Implementing temporal integrity constraints using an active DBMS.
IEEE Trans. on Knowl. and Data Eng., 7(4):566-582, 1995.

[11] J. Chomicki, D. Toman, and M. Béhlen. Querying ATSQL databases with temporal logic. ACM
Trans. Database Syst., 26(2):145-178, 2001.

[12] B.D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner, H. Sipma, S. Mehro-
tra, and Z. Manna. LOLA: Runtime monitoring of synchronous systems. In Termporal Represen-
tation and Reasoning (TIME’05), pp. 166-174.

[13] N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky. Checking traces for regulatory conformance. In
Runtime Verification (RV'08).

[14] R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952-985, 1982.

[15] C.Giblin, A. Liu, S. Miiller, B. Pfitzmann, and X. Zhou. Regulations expressed as logical models
(REALM). In Legal Knowledge and Information Systems (JURIX'05), vol. 134 of Frontiers in Artificial
Intelligence and Applications, pp. 37-48.

[16] K. Havelund and G. Rosu. Efficient monitoring of safety properties. Int. J. Softw. Tools Technol.
Transf., 6(2):158-173, 2004.

[17] J. Hakansson, B. Jonsson, and O. Lundqvist. Generating online test oracles from temporal logic
specifications. Int. J. Softw. Tools Technol. Transf., 4(4):456-471, 2003.

[18] B.Khoussainov and A. Nerode. Automatic presentations of structures. In Logical and Computa-
tional Complexity, vol. 960 of LNCS, pp. 367-392, 1995.

[19] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255-299, 1990.

[20] K. Kristoffersen, C. Pedersen, and H. Andersen. Runtime verification of timed LTL using dis-
junctive normalized equation systems. Electr. Notes Theor. Comput. Sci., 89(2):210-225, 2003.

[21] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logic of Programs, vol. 193 of
LNCS, pp. 196-218, 1985.

[22] U. Lipeck and G. Saake. Monitoring dynamic integrity constraints based on temporal logic. Inf.
Syst., 12(3):255-269, 1987.

[23] O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In Formal Modeling and
Analysis of Timed Systems (FORMATS’06), vol. 4202 of LNCS, pp. 274-289.

[24] D. Nickovic and O. Maler. AMT: A property-based monitoring tool for analog systems. In
Formal Modeling and Analysis of Timed Systems (FORMATS’07), vol. 4763 of LNCS, pp. 304-319.

[25] M. Roger and]. Goubault-Larrecq. Log auditing through model-checking. In Computer Security
Foundations Workshop (CSFW'01), pp. 220-234.

[26] G. Rosu and K. Havelund. Rewriting-based techniques for runtime verification. Autom. Softw.
Eng., 12(2):151-197, 2005.

[27] A. Sistla and O. Wolfson. Temporal triggers in active databases. IEEE Trans. Knowl. Data Eng.,
7(3):471-486, 1995.

[28] O.Sokolsky, U. Sammapun, L. Lee, and J. Kim. Run-time checking of dynamic properties. Electr.
Notes Theor. Comput. Sci., 144(4):91-108, 2006.

[29] P. Thati and G. Rosu. Monitoring algorithms for metric temporal logic specifications. Electr.
Notes Theor. Comput. Sci., 113:145-162, 2005.

[30] D. Toman. Logical data expiration. In Logics for Emerging Applications of Databases, pp. 203-238,
2003.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 61-72

Solvency Games

N. Berger!, N. Kapur?, L. J. Schulman?, V. V. Vazirani?

!Department of Mathematics
Hebrew University of Jerusalem, Israel
ber ger @mat h. ucl a. edu

ZDepartment of Computer Science
California Institute of Technology
{kapur, schul man}@al t ech. edu

3College of Computing
Georgia Institute of Technology
vazi rani @c. gat ech. edu

ABSTRACT. We study the decision theory of a maximally risk-averse investor — one whose objec-
tive, in the face of stochastic uncertainties, is to minimize the probability of ever going broke. With a
view to developing the mathematical basics of such a theory, we start with a very simple model and
obtain the following results: a characterization of best play by investors; an explanation of why poor
and rich players may have different best strategies; an explanation of why expectation-maximization
is not necessarily the best strategy even for rich players. For computation of optimal play, we show
how to apply the Value Iteration method, and prove a bound on its convergence rate.

1 Introduction

A key concern in computer science and operations research is decision-making under uncer-
tainty. We define a very simple game that helps us study the issue of solvency, or indefinite
survival, in the presence of stochastic uncertainties. In Section 1.1 below we provide some
motivating reasons for studying this issue.

We start by defining the model. A state of the game is an integer, which we call the
wealth of the player. An action (representing, say, an investment choice) is a finitely sup-
ported probability distribution on the integers; this distribution specifies the probabilities
with which various payoffs are received, if this action is chosen. Let w be the wealth of the
player at time ¢. Let A be a set of actions. Suppose that after choosing a particular action
from A, the random variable sampled from that action is a. Then at time f + 1 the wealth
of the player is w + a. The game terminates if the player goes broke (wealth becomes < 0).
A strategy 7t for the set A of actions is a function 7w : Z, — A specifying the action that is
chosen at each possible value of wealth. Corresponding to strategy 7, define

p”(w) = Pr[ever going broke, starting from wealth w],

for each w € Z,. The object of interest is a strategy that minimizes p”™ (w) for each value of
w € Z . In this notation there are two implicit assumptions regarding an optimal strategy:

© Berger, Kapur, Schulman and Vazirani; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1741

62

SOLVENCY GAMES

that the action depends only on current wealth (not past history), and that the action is
deterministic. Both assumptions can be made without loss of generality.

This model, which is a certain kind of infinite-state Markov Decision Process (MDP), is
a natural and elementary one to consider both from the point of view of probability theory,
and that of mathematical finance. As far as we have been able to determine it has not
previously been studied.

Before going into detail we pause for a simple illustration. Suppose two actions are
available, called A and B; let q;A denote the probability of winning i dollars with action A:

Action A: g%, =0.5, g%t =05 ActionB: g8, =05, g5, =05

Expected profit is ten times greater in action B, but it is easy to see that an investor with, say
$10, has probability of survival less than 1/2 if he plays B, and close to 1 if he chooses and
sticks to A. This illustrates how maximizing the likelihood of solvency can be quite different
from maximizing expected profit. The problem, of course, is to determine proper strategy
in less obvious situations.

1.1 Motivation

There are a couple of reasons to focus on maximization of the likelihood of indefinite sur-
vival. The first concerns investment strategies of individual, “middle class” investors. Eco-
nomic decision theory concerns itself largely (though not solely) with maximization of util-
ity as expressed by expected profit (or log profit). This framework may be appropriate to
the decision theory of a shareholder-owned firm, whose bankruptcy creates an unpleasant
but bounded effect on a balanced portfolio. But it is ill suited to the decision theory of an
individual investor, whose goal is often not maximization of wealth for its own sake, but
financial stability. For such a typical investor, bankruptcy, and its consequences for self and
family, are dearly to be avoided.

The second reason concerns investment (loan) strategies of banks, which are unlike
other corporations in that they are supposed to provide their depositors with a strong as-
surance of preservation of capital. The incompatibility between doing so and acting com-
petitively in the loan marketplace has led to banking crises which have been addressed in
part through government intervention including, in the USA, both federal deposit insurance
and mandatory holding requirements. These restrict the extent to which banks can pursue
purely profit-maximizing strategies (although we do not suggest that banks conversely act
to maximize probability of indefinite solvency).

We return to the clash between optimizing for profit or survival. Naturally, a good way
to avoid bankruptcy is to make a lot of money! But investment decisions entail a trade-off
between risk and reward. The most secure investments typically provide returns below or
only marginally above the inflation rate. So even a decision-maker whose sole purpose is to
avoid bankruptcy cannot escape risk entirely, and must weigh the alternatives. The purpose
of this paper is to develop some basic ingredients relevant to these decisions. In defining our
model, simplicity is a key criterion. As a result, the model does not capture complications
that always accompany realistic situations. On the other hand, this simplicity leads to clean
mathematics and a basis from which more elaborate models can be considered.

BERGER, KAPUR, SCHULMAN AND VAZIRANI FSTTCS 2008

1.2 Related work

As noted, the simple model defined above has apparently not been studied before. How-
ever, our motivation is very similar to that of previous authors, especially Ferguson [4],
Truelove [11] and Browne [2]. The models are different enough to make the conclusions
incomparable; some main differences are that in the previous work (a) The player has only
one investment choice at any one time, and is simply deciding how much to invest, (b) That
amount is unbounded except by the player’s wealth. In some of the results, even the last
restriction is dropped, and the player is permitted to borrow unlimited funds, sometimes
with and sometimes without interest. Put simply, these authors” models are more general in
allowing for investment scaling, and more special in not posing choices between dissimilar
types of investments. The latter issue is the grist of our work.

An early book in the area, more relevant to Ferguson, Truelove and Browne’s work than
ours, is Dubins and Savage [3]. Slightly less related, but still relevant in terms of the motiva-
tion, is work in mathematical finance, in which risk (volatility) vs. reward is often measured
with the Sharpe or Sterling ratios: see, e.g., [8]. Optimal investing by these criteria is less
risk-averse than by ours. Shifting attention from the finance aspect to the decision theory,
our work is more closely related to the large literature on the MDP model [10], a broad for-
malization of the study of decision-making under stochastic uncertainty. Specifically, the
“multi-arm bandit” problem concerns maximizing profit from a collection of actions, where
optimal play is characterized by the well-known Gittins index [6, 12]. Our problem does not
seem to fit into this model.

Perhaps closest to our work is an interesting paper that first appeared in June 2007 [5]*.
In this paper, Foster and Hart consider the question of measuring the riskiness of a gamble
(their “gamble” has the same definition as our “action”). Surprisingly enough, they show
that this can be boiled down to a single number — the critical wealth. If the wealth is strictly
smaller than this number, it is risky to play the action, i.e., it will lead to bankruptcy with
probability 1. Else, playing this action is guaranteed to not lead to bankruptcy, again with
probability 1.

1.3 Results

The specific questions we address include:

1. In a set A of actions, is there a rich man’s strategy — an investment that is always the
best choice once one’s wealth is above some threshold? Put another way, does the optimal
strategy have a “pure tail”?

Besides its obvious role in the decision theory of our model, this question gets at a real
phenomenon which we feel should be reflected in any good model of risk-averse investing:
that the poor do disproportionately worse than the rich because they can not afford to make
certain investments that are by-and-large profitable, yet risky.

2. If there is a “rich man’s strategy,” what characterizes it, and is there a bound on
the threshold where it takes over? If there isn’t one, then what does the tail of the optimal

*Most of our results date to 2004 and were presented at the 2004 AGATE Workshop on Algorithmic Game
Theory in Bertinoro, Italy, and at a Plenary talk in RANDOM 2004.

63

64

SOLVENCY GAMES

strategy look like?
3. Can the optimal strategy be computed “efficiently”?

In Sections 3 and 4 we provide answers to these questions. We show that under certain
technical conditions there does exist a rich man’s strategy, and we provide a bound on where
the pure tail begins. We also show that in general there is no such strategy — an interesting
phenomenon, since it says that optimal play in a small-stakes game can depend, say, on the
low-order bit of your bank balance. The MDP literature suggests three possible algorithms
for computing the optimal strategy in the pure tail case (where this strategy has a finite
description). For one of these algorithms, Value Iteration, we prove “linear convergence”
(i.e., exponentially decreasing relative error) to the failure function of the optimal strategy.

1.4 Notation, terminology and structure of the paper

An action is represented by a probability mass function on a finite set of integers. For an ac-
tion A, let q? be the probability that the payoff is j. For an action A, define /5 := —min{j <
0: q]A > 0} and 7o := max{j > 0 : qf‘ > 0}. The action is said to have positive drift if

Y2, jai > 0. The action is said to be irreducible if ged ({ jrat > 0}) = 1. In this paper all
actions will be assumed to be irreducible and positive drift, though some of our statements
hold more generally.

A strategy (sometimes also referred to as policy or decision rule) is a function 7 : Z —
A, where A is a set of actions. For a strategy 77, we define the following Markov chain.
Xi11 = Xt + Yy where Y; is defined as follows: If X; < 0 then Y; = 0, whereas if X; > 0 then
Y; is sampled according to 71(X;), but otherwise independently of Xy, ..., X;. The failure
probability at a positive integer w (i.e, the probability of ever going broke) corresponding
to 7t is defined as p™(w) := Pr[Jy=0 : Xm < 0 | X5 = w]. A strategy is said to be pure
if m(w) = (1) for all w > 1. It is said to have a pure tail if there is a w’ > 1 such that
(w) = r(w') forall w > w'.

In Section 2 we develop the fairly simple theory of the behavior of the game under
a pure strategy. Being basically a random walk, our results are mostly known. However,
those results serve as necessary tools for the study of optimal strategy. In Section 3 we prove
the main results of the paper - namely conditions for the existence of a rich man’s strategy.
In Section 4 we discuss algorithms for determining the optimal strategy. Missing proofs and
the Appendix can be found in the full paper, available online at ECCC [1].

2 Pure strategies

Consider a pure strategy 71 consisting only of the action A with [=I5 and r = r5. Then,
the failure probability p(w) = p™ (w) satisfies the linear recurrence

p(w)= Y gr(w+j), w=>1, (1)
j=—1

BERGER, KAPUR, SCHULMAN AND VAZIRANI FSTTCS 2008

where g; = q]A and with p(w) = 1 for all w < 0. The characteristic rational function of A is
defined as

1@ =g*@) = -1+ Y g7 @
=1

LEMMA 1. If'(1) > 0 then q has exactly | roots in the open unit disk. Furthermore q has a
unique positive root in the open unit disk.

Note that the condition is equivalent to positive drift of the action.
PROOF. It suffices to consider instead the roots of the polynomial
; I+r) .
A(z) :=2¢(z) := Zq]-,lz] —[1—qo]z".
j=0
j#l
Note that A’(1) = ¢/(1) > 0and A(1) = 0 so that A(1—) < 0. Furthermore A(0) =¢q_; >0

)
so by continuity, A has a root in (0,1), call it {. For e > 0 define Ac(z) := fe(z) + h(z),
where

I+r)
fo(z):= —(14€)(1—q0)2, h(z) := qu,lz].
=0
(o
Consider the circle |z| = {. There,
I+r)
fe@) = (1+e) (1= q0)' > (1—q0)¢" and |h(z)| <} g;17.
j=0
j#l

Since (is a zero of p, we have |fc(z)| > |h(z)| for all z with |z|] = . Hence by Rouché’s
theorem (see, e.g., [9]), fe and Ac have the same number of zeros inside |z| = {. But f, has
exactly I zeros inside |z| = ¢, and hence so does A.. Similarly A, has exactly I zeros |z| = 1,
so that there are no zeros of A¢ in { < |z| < 1. Now letting € | 0 yields that A has exactly
I zeros in the closed disk |z| < ¢ and none in the annulus { < |z| < 1 so that the first claim
of the lemma follows.

For the second claim note that if {; and {, are distinct positive zeros of p, an argument
similar to the one above yields that there are no zeros of p in the interval ({3, 2). The claim
then follows by letting {1 = { and {, = 1.

Remarks: The positive root of g in the open unit disk will be called the Perron root, for
reasons explained in Appendix A in [1]. Since (1) = 0, if 4’(1) < 0 then there exits z > 1
such g(z) < 0. Also g(z) > 0 for large enough z. It follows then that g has a positive zero
outside the closed unit disk and the proof of Lemma 1 reveals that this zero is unique.

Corollary 2 If a pure strategy 7 has positive drift then its failure probabilities are

d mjfl
pw) = p™ (w) = Y AC Y o, 3)
j=1 k=0

where Ay, ..., Ay are the distinct zeros of q in the interior of the unit disk in decreasing order of norm,
with multiplicities my, ..., my such that my + - - - +my = 1, and (cj,k) are constants.

65

66

SOLVENCY GAMES

PROOF. Let A be a zero of the characteristic rational function (2) with multiplicity m. Such
a zero contributes a linear combination of (w/)\w);ﬂ:’ol to p(w). Furthermore since we know
a priori (see Fact 3) that p(w) — 0 as w — oo, there cannot be any contribution from zeros
with modulus at least 1. Since the pure strategy has positive drift, we have (g%)'(1) > 0, so
by Lemma 1, g* has exactly | zeros in the unit disc and the result follows.

Remarks: Observe that the recurrence (1) defines a linear transformation mapping the initial
conditions p(w)q,<o monotonically to p(w),>1. In particular, if A is a zero of g, then (A")4<q
is mapped to (A™)y>1.

3 Optimal strategies

Let A = {Ay,..., A} be a finite set of actions with positive drifts. We consider strategies 7 :
7, — A. We start with a simple fact.
Fact 3 For every strateqy 1, p” (w) — 0as w — oo.

PROOF. Forj=1,...,k let {Y,Ej) no1 beiid.samples of Aj, and assume that for different

values of j, the sequences {Y,Sj)} are independent. The displacement at any time 7 is of

i=1"1 7/
variables. Fix €. Due to the positive drifts, for all N large enough,

the form YX_ an Y where the {n;} sum to 7 and are (arbitrarily dependent) random
j=1 j y dep

Pr [vn,j Y Y > N/ >1-e
i=1

But this shows that for all N large enough, p”(w) < e.
For w > 1, an action A and a sequence p, we define

Eu(p) = Py 9, p(w +). @
J=—tA

For this to make sense, we need to have values for p(w) for k < 0. Unless otherwise men-
tioned, we take p(w) to be 1 for all w < 0. Similarly for a strategy 77 we define

EZ(p) = E5™ (p) 5)

Clearly if p is the failure probability sequence of 7, then

p(w) = Eg(p) 6)
for every w > 1. Equation (6) determines p in the following sense:

LEMMA 4. Fix a strategy 7 and initial conditions b(w), w < 0. There exists a unique solution
to (6) satisfying p(w) = b(w) for allw < 0 and limy_. p(w) = 0.

PROOF. This proof follows a conventional outline. Existence follows from Fact 3, Re-
mark 2 and the fact that the probabilities satisfy (6). To see uniqueness, assume that p and
q both satisfy the conditions. Then, h = p — ¢ also satisfies (6), h(w) = 0 forallw < 0

BERGER, KAPUR, SCHULMAN AND VAZIRANI FSTTCS 2008

and limy—oh(w) = 0. Assume that there exists w’ such that h(w’) # 0. Without loss of
generality, h(w') > 0. Since h(w) — 0, there exists wy so that h(w) < h(w') for all w > wy.
Therefore, maxy, h(w) = max{h(w) : w < wp} and the maximum exists since it is taken over
a finite set. Let H be this maximum, and let @ = max{w : h(w) = H}. By (6), h(®) is the
average of numbers, all of which are no larger than H and some of which are strictly smaller
than H. Therefore h(@) < H, in contradiction to its definition. Therefore, h(w) = 0.
Definition 5 We say that p is harmonic with respect to 7t if (6) holds for every w > 1. We say
that p is subharmonic with respect to 7t if

p(w) < E5(p))
for every w > 1, and we say that p is superharmonic with respect to 7t if
p(w) > Ei(p) forevery w > 1. (8)

The usefulness of Definition 5 is expressed in the following lemma:

LEMMA 6. Let 7T be a strategy and p the unique solution to (6) with given initial condi-
tions b(w), w < 0. Let v be a sequence that satisfies the following conditions:

1. v(w) = b(w) for allw < 0.

2. limy e v(w) = 0.

3. v is subharmonic with respect to 7.
Thenv(w) < p(w) for every w. If instead v is superharmonic, then v(w) > p(w) for every w.

3.1 Structure of optimal strategies

We can define a natural partial order between strategies: 71 < 71, if for every w, p™ (w) <
p™2(w). We say that 7t* is optimal if 7 < 7 for every strategy 7. We say that o is locally
optimal if o < 71 for every 7 satisfying |[{w : o(w) # m(w)}| < 1.
Proposition 7 For every finite collection A of actions, there exists an optimal strategy. Further-
more, o is optimal if and only if it is locally optimal.
PROOF. We will start with the “furthermore” part: Let ¢ be locally optimal, and let T
be another strategy. Let s be the failure probability sequence for ¢, and let p be the failure
probability sequence for 7r. By local optimality of ¢, for every w, E}(s) > s(w). Therefore,
s is subharmonic with respect to 77, and by Lemma 6, p(w) > s(w) for every w, i.e,, 0 < 7
and ¢ is optimal.

In order to prove the proposition, all we need is to find a locally optimal strategy. By
compactness of the space of strategies (the product space of actions over all wealths), and
continuity of

L (). o)

in this topology (using the positive-drifts assumption), there exits a strategy ¢ minimizes
expression 9. We claim that ¢ is locally optimal. Indeed, let 7t be so that [{w : o(w) #
n(w)}| = 1, and let w be the unique index such that o(w) # 7t(w). Since ¢ and 7t disagree

67

68

SOLVENCY GAMES

at exactly one point, p” is either subharmonic or superharmonic with respect to 7. It has to
be subharmonic since p” minimizes (9), and therefore ¢ < 7 and ¢ is locally optimal.

For an action A, let /\g) > 0, /\f), . ..,/\SA) be the roots of its characteristic rational
function [recall (2)] in the open unit disk arranged in decreasing order of modulus.

We now present a characterization of optimal strategies. The next theorem exhibits the
existence of a “rich man’s strategy,” as indicated in the introductory section.

THEOREM 8. Let A be a finite set of actions and let A € A be an action so that AS) < AI(;)
for every B # A in A. Let t* be optimal for A. Then there exists M such that *(w) = A
for every w > M.

The existence of a “rich man’s strategy” may seem natural, and if so, the imposition
of technical hypotheses in Theorem 8 may seem disappointing. But this is not the case:
strikingly, such conditions are necessary, as demonstrated in:

THEOREM 9. Let A = {A,B} withly = Iy =2,AY) = A\, and A'Z) £ AQ). If * is optimal
for A, then for every W there exist w',w"” > W such that w*(w') = A and t*(w") = B.

Remarks: Theorem 9 can be generalized to the case where [or I is greater than 2 under
the assumption that the characteristic rational function of A has a root in the interior of the
unit disk that is not shared by B and vice versa. The proof is omitted.

Proof of Theorem 8: For convenience of notation, let A := /\g). Let 7 be a (fixed) strategy
such that for every M there exists w > M with m(w) # A. We will show that 77 is not
optimal. Let 7 be the pure-A strategy. Let a(—w) = A~% and p(—w) = 1 for w > 0. Let a”™
be the unique solution of a(w) = EZ(a) with a(w) — 0, and let 2™ be the unique solution
of a(w) = E™" (a) with a(w) — 0. Let p™ and p™ be the failure probabilities for 77 and 7.

It is sufficient to show that there exists w so that p”A (w) < p™(w). Let I be the absolute
value of the minimal number on the support of any of the actions in A, i.e., | := maxpe 4 [p.
Then by monotonicity (recall Remark 2), for every w,

a"(w) 2 p™(w) 2 Aa™(w)
a”A(w) > p"A(w) > Alg™

Therefore it will suffice if we prove that there exist w so that

A

a™ (w) < AMa™(w). (10)
In fact, we prove }
To see (11), first note that (see Remark 2)
0™ (w) = AY. (12)

LEMMA 10. ™" is subharmonic with respect to 7.

BERGER, KAPUR, SCHULMAN AND VAZIRANI FSTTCS 2008

4 Algorithms for determining optimal strategies

We now turn our attention to the problem of determining the optimal strategy. To that end
it will be useful to cast our problem in terms of Markov decision processes (MDPs). For back-
ground on MDPs, we refer the reader to the excellent book by Puterman [10]. Throughout,
A is a finite set of actions with [:= max{lg: B € A} and r := max{rg : B € A}.

41 MDP formulations

For our purposes, a Markov decision process is a collection of objects {S, As, p(- | s,a),7(s,a)}.
Here S is a set of possible states the system can occupy. For each s € S, the set of possible
actions is denoted by A;. The function p(- | s,a), called the transition probability function is a
distribution on the set of states S and the reward function r(s,a) is a real-valued function.

Under the assumptions of Theorem 8, we can modify our problem into an equivalent
finite Markov decision problem, which makes determining an optimal strategy tractable.
Let M be such that for some optimal strategy 7t*, 7*(w) = A for every w > M. Here A is
the action with the smallest Perron root. In Appendix B [1] we show how to explicitly bound
M, with a method that extends the arguments of Theorem 8. To find an optimal strategy we
need only consider strategies that have a pure-A tail starting at M. Let S = {=1+1,..., M+
r,00}. (The state co represents the possibility of never returning to {—1+1,..., M+r}.) The
actions fors € {1,..., M} are the original actions of the system. Fors € {M+1,..., M +r},
the only action available is the action A’ with the following transition probability function:

la
p(j|s A = ucffj; j=s—1,...,s—1pn; p(eo]|s,A)=1- sz]A =l
j=1

Here the values {zxﬁ} are the coefficients of the linear functional giving p,, as a function of
Pw—1,- - -, Pw—1 in the pure A strategy; see Appendix A [1] for further details. The action set
for the state oo as well as for any state in {—/ +1,...,0}, consists only of the trivial action
that leaves the state unchanged. The reward function is given by (13):

r(s,a):=—) 1{s >0andj < 0}p(j|s,a), s€S; acA. (13)
jes
Clearly the expected total reward is the negative of the failure probability.
Next, we present an algorithm that can be used to determine optimal decision rules.

4.2 Value iteration

An iterative procedure known as value iteration produces a sequence that converges to the
optimal expected total reward for each s € S. The critical thing of course will be the runtime
analysis.

1. Set v(s) = 0 for each s € S.

2. For each s € S, compute v"(s) using

v"1(s) = max {r(s,a) + Z p(j | s,a)v”(j)}

acA; jes

69

70

SOLVENCY GAMES

and increment 7.
The sequences converge monotonically to the optimal expected total reward v* [10]. We
show next that the order of convergence is linear.
To that end, let d* denote an optimal decision rule and consider the sequence defined
iteratively by u°(s) = 0 for each s € S and

u't(s) = r(s,d*(s)) + _ZS;PU |'s,d"(s))u"(j)- (14)
j€

This is just the sequence produced by value iteration when the only action available at a
state is the optimal action. Clearly u"(s) — v*(s) and a simple induction argument yields
v"(s) > u"(s) foreachs € Sand n > 0.

Writing (14) in matrix notation we have u"*! = Pu" + a, where u",a € RM*" and
P = P;;is the M +r x M + r matrix with P;; := p(j | i,d*(i)).

LEMMA 11. Let P = P(d*) denote the transition matrix for an optimal decision rule d*.
Then, p(P), the spectral radius of P is strictly less than 1.

PROOE. If ||P|ls« < 1, then the claim is true. Suppose ||P|l« = 1 so that p(P) < 1.
Suppose p(P) = 1. Since P is nonnegative an eigenvalue of maximum modulus must be 1.
Let Px = x, x = [x;] # 0 and suppose p is an index such that |x,| = || x|l # 0. Now 1 lies
on the boundary of G(P), the Ger§gorin region for the rows of P so that [7, Lemma 6.2.3(a)]

M-+r
1=Ppp=[1-Pyl| = Z Pyj,

=1

J#p
ie., Zj]\ir P, = 1sothatp € {1,..., M}. Since P is the transition matrix for an optimal strat-
egy there must be positive probability of reaching a statein { M + 1, ..., M +r} starting from
the state p. In other words, there exist a sequence of distinct integers k1 = p,ka, ..., kn =g
withg € {M+1,..., M +r} such that all of the matrix entries Py ,, - - ., P, _, are nonzero.
But then [7, Lemma 6.2.3(b)], |xt,| = |x,| for eachi = 1,...,m. In particular |x,| = |x,|, so
that again [7, Lemma 6.2.3(a)],

M++r l
1=1-Pyl=) Pj=) & <1, whichisa contradiction.
j=1 j=1

j;q

Remarks: Using the fact that all actions have positive drift, we can estimate the spectral
radius as follows. Let D be the diagonal matrix with entries (A +¢€, (A +¢€)?,..., (A +€)M*T),
where A is the largest Perron root among all roots of the characteristic rational functions of
the actions and € > 0 is arbitrarily small. We show that ||[D~!PD||c < § < 1. Indeed for
i €{1,..., M}, the ith row sum of D~!PD is given by

M+r . .
Pij(/\+€>]_l < qz(/\+€) +1:=9; (15)

j=1

BERGER, KAPUR, SCHULMAN AND VAZIRANI FSTTCS 2008

where g'(+) is the characteristic function of the action employed at state i. If A; is the unique
positive root of g inside the unit disk, then g'(A;) = ¢'(1) = 0 and g’ has no zero crossing in
(A;,1). Since i has positive drift we have (g')'(1) > 0 so that g(z) < 0 for z € (A;,1). Hence
the row-sum in (15) is bounded by §; < 1.

On the other hand fori € {M +1,..., M + r}, the ith row-sum of D~!PD is given by
25'21 zx;.“(/\ +€)7/ := & < 1, the last strict inequality following from the fact that if Ay <
A + € is the Perron root of the pure-A tail, then

! ‘
Y atr =1
j=1

Taking := maxj<;<p, J; gives us p(P) = p(D~'PD) < ||[D7!'PD||e < 6 < 1.
The preceding lemma and remark lead directly to the following result.

THEOREM 12. Let v* denote the optimal total expected value and v" the nth iterate of value
iteration. Then v" > u", where for some vector norm ||-|| andn > 1,

[—u"|| < cllo” —u" 7|

and ¢ < 1 satisfies

I
c <max{1+ max q°(A+e€),) aj(A+e) 7},

action B =1

where A is the largest of the Perron roots of the actions and € > 0 is arbitrarily small.

5 Discussion

In the MDP formulation, two other algorithms can be applied to computing the failure prob-
abilities of the optimal strategy: policy iteration and linear programming. Their adaptation
to our problem is discussed in Appendix C in [1].

It is clear that our results are at best a sketch of some elements of a larger theory. To
begin with an equally well-motivated (and more general) model is one in which players
are prohibited from taking actions that have nonzero probability of driving them immedi-
ately to a negative balance. (The player loses if no actions are available.) Our basic results
carry over to this model. Another natural variant allows for the payoffs to be arbitrary real
numbers. We have not explored this case.

It is natural to ask what happens if each available action can be scaled, at the player’s
discretion, by a positive constant. Allowing scaling by large constants is an interesting vari-
ant to study. (Allowing scaling by arbitrarily small constants trivializes the model: for any
positive-drift action the probabilities of failure can be made to tend to 0. More importantly,
it fails to match the motivating real-world scenarios. A bank deciding whether to issue a
particular $200, 000 mortgage cannot change the associated risks by renaming it as 200, 000
separate $1 mortgages.) Ideally in this context one would like to address a common exten-
sion of our model and those treated by Ferguson [4], Truelove [11] and Browne [2].

71

72 SOLVENCY GAMES

References

[1] N. Berger, N. Kapur, L. J. Schulman, and V. V. Vazirani. Solvency games. Available at
ECCC (Electronic Colloquium on Computational Complexity) Report TR08-089, 2008.

[2] S. Browne. Optimal investment policies for a firm with a random risk process: expo-
nential utility and minimizing the probability of ruin. Math. Oper. Res., 20(4):937-958,
1995.

[3] L. E. Dubins and L. J. Savage. How to gamble if you must. Inequalities for stochastic pro-
cesses. McGraw-Hill Book Co., New York, 1965.

[4] T.S. Ferguson. Betting systems which minimize the probability of ruin. J. Soc. Indust.
Appl. Math., 13:795-818, 1965.

[5] D.P. Foster and S. Hart. An operational measure of riskiness. Unpublished manuscript
2008. Available at:
http://www.ma.huji.ac.il/ hart/papers/risk.pdf.

[6]]J. C. Gittins and D. M. Jones. A dynamic allocation index for the sequential design
of experiments. In Progress in statistics (European Meeting Statisticians, Budapest, 1972),
pages 241-266. Colloq. Math. Soc. Janos Bolyai, Vol. 9. North-Holland, Amsterdam,
1974.

[7] R. A.Hornand C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge,
1990. Corrected reprint of the 1985 original.

[8] M. Magdon-Ismail, A. F. Atiya, A. Pratap, and Y. S. Abu-Mostafa. On the maximum
drawdown of a Brownian motion. J. Appl. Probab., 41(1):147-161, 2004.

[9] A.IL Markushevich. Theory of functions of a complex variable. Vol. 1, II, IIl. Chelsea Pub-
lishing Co., New York, english edition, 1977. Translated and edited by Richard A.
Silverman.

[10] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley
Series in Probability and Mathematical Statistics: Applied Probability and Statistics.
John Wiley & Sons Inc., New York, 1994. , A Wiley-Interscience Publication.

[11] A.]. Truelove. Betting systems in favorable games. Ann. Math. Statist., 41:551-556,
1970.

[12] J. N. Tsitsiklis. A short proof of the Gittins index theorem. Ann. Appl. Probab., 4(1):194-
199, 1994.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 73-82

On the Power of Imperfect
Information”®

Dietmar Berwanger! and Laurent Doyen?
1 RWTH Aachen, Germany

2EPFL Lausanne, Switzerland

ABSTRACT. We present a polynomial-time reduction from parity games with imperfect information
to safety games with imperfect information. Similar reductions for games with perfect information
typically increase the game size exponentially. Our construction avoids such a blow-up by using
imperfect information to realise succinct counters which cover a range exponentially larger than their
size. In particular, the reduction shows that the problem of solving imperfect-information games
with safety conditions is EXPTIME-complete.

1 Introduction

Nondeterminism is a notorious source of complexity in automata. The process of determin-
isation, which consists in monitoring the uncertainty about the flow of control in a nonde-
terministic device, typically involves a power-set construction and an exponential blow-up
of the state space. Reversing the argument, a nondeterministic automaton may be consider-
ably more succinct than any equivalent deterministic automaton.

When we shift from automata to games, a similar jump in complexity arises as an effect
of imperfect information of players about the history of a play. Already in the basic setting
of two-player zero-sum games, the construction of a perfect-information game monitoring
the uncertainty of a player about the flow of information in an imperfect-information game
requires a powerset construction [13, 5].

The shape of winning conditions constitutes a further source of complexity in games. In
particular in parity games, the range of the priority function is perceived as a key factor. For
games with perfect information, the current situation is as follows. While games with two
priorities can be solved in quadratic time, the complexity of the best known deterministic
algorithms is exponential in the number of priorities. Several procedures for reducing the
priorities in a parity game to a fixed small number have been proposed, all leading to an
exponential blow-up in the size of the game [3, 9, 15]. A polynomial-time reduction of this
kind would prove that parity games can be solved in polynomial time, which is a major
open problem.

The question of parity-range reduction has also been investigated in the context of
the modal p-calculus, an expressive logic that subsumes many important specification for-
malisms. The model-checking problem for this logic corresponds to the problem of solving
a parity game with as many priorities as there are alternations of fixed-point quantifiers in

*Research supported in part by the ESF programmes AutoMathA and GAMES, by the Swiss National Science
Foundation, and by the European COMBEST project.

© Dietmar Berwanger and Laurent Doyen; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1742

74

ON THE POWER OF IMPERFECT INFORMATION

the formula [7]. A uniform method for reducing the number of quantifier alternations in
formulae would thus lead to tractable model-checking games. For a particular fragment
of distributive formulae, a reduction to formulae with only one alternation is presented
in [12]. However, the fact that the p-calculus alternation hierarchy is strict [11, 4, 1], implies
that a uniform reduction, which depends only on the formula, cannot exist for the general
case. In [15], Seidl proposes a reduction that removes fixed-point alternations syntactically
in a non-uniform way, depending on the model, yielding one of the best algorithms for -
calculus model checking, or equivalently, for solving parity games with perfect information.

In this paper, we consider parity games with imperfect information. We present a
polynomial-time reduction of parity games into safety games that preserves the existence of
winning strategies. This shows that, in the setting of imperfect information, parity games
with only two priorities are able to simulate parity games with arbitrarily many priorities in
a succinct way. In other words, the complexity arising from imperfect information preempts
the complexity inherent to the winning condition.

The reduction implements a variant of the progress-measure algorithm for solving par-
ity games proposed by Jurdzinski in [8]. We use the power of imperfect information in two
ways: firstly, to design counters that cover a range exponentially larger than their size and,
secondly, to maintain the number of occurrences of all odd priorities simultaneously during
the play. The parity condition is monitored by synchronising the game graph with a small
counter gadget equipped with a safety condition.

Our construction illustrates a basic design pattern for applying imperfect information
as a synchronisation mechanism. Furthermore, the counting gadgets provide examples of
safety games in which winning strategies require memory of exponential size. Finally, our
reduction shows that the problem of solving imperfect-information games with safety con-
ditions is EXPTIME-complete.

2 Parity games with perfect information

We first describe the model of parity games with perfect information and introduce the
key properties needed for our reduction. In view of a uniform treatment of both perfect
and imperfect information models, our terminology sometimes deviates from the standard
literature.

2.1 Games and strategies

Let X be a finite alphabet of actions. A game structure with perfect information is a tuple G =
(L, £y, A) consisting of a finite set L of locations (or positions), a designated initial location ¢y €
L, and a transition relation A C L x ¥ x L. We assume that the transition relation is total,
i.e., for every location ¢/ € L and every action a € X, there exists at least one a-successor
¢ such that (£,a,¢") € A, and that all locations of L are reachable from ¢ via transitions
in A. Games on G are played by two players, Player 1 and Player 2, taking turns to move
a token along transitions of G. Initially, the token is located at ¢y. The game proceeds in
rounds. In every round, Player 1 first chooses an action a € ¥, then Player 2 moves the
token to an a-successor of the current location. Thus, playing the game yields an infinite

DIETMAR BERWANGER AND LAURENT DOYEN FSTTCS 2008

sequence of locations 77 = ¢4/, ..., called a play, such that ¢, = ¢y and (¢;,a,¢;;1) € A for all
i > 1. A history is a finite prefix /1 ...¢; of a play. A strategy for Player 1 in G is a function
o : LT — X that maps histories to actions. A play ¢1(, ... is consistent with ¢ if, for every
position i > 1, there is a transition (¢;,a,(;11) € A witha = o (¢4, ..., ;). We denote the set
of plays in G that are consistent with ¢ by Outcome(G,).

A winning condition for a game structure G is a set ¢ C L“. A strategy o for Player 1 is
winning for the condition ¢, if all plays consistent with ¢ are winning, i.e., Outcome(G, o) C
@. A game is a pair (G, ¢) consisting of a game structure G and a matching winning condi-
tion ¢. We say that Player 1 wins the game, if he has a winning strategy for the condition ¢.

We shall consider two kinds of winning conditions. Given a set T C L of target
locations, the safety condition requires that the play stay within the set T: Safe(T) =
{l16y... | ¢4; € Tforalli > 1}. We call the elements of L\ T bad locations. Given
a priority function () : L — IN that maps each location to a priority, the parity condi-
tion requires that the least priority visited infinitely often in a play be even: Parity(Q)) =
{l14y... | liminf; ., Q(¢;)iseven}. Parity conditions can be viewed as nested com-
binations of safety and reachability conditions, where reachability is the dual of safety:
Reach(T) = L\ Safe(L \ T). They provide a canonical form to express all w-regular win-
ning conditions [16].

The algorithmic problem of solving a game is to decide, given a game structure G and a
winning condition ¢, whether Player 1 wins the game (G, ¢). Safety conditions are specified
by a target set, and parity conditions are specified by a priority function.

A conceptually simple way of solving parity games is to provide a winning strategy
for Player 1. For this purpose, strategies that depend only on the last location of the history
of the play are of particular interest. A strategy o is memoryless if o(p - £) = o(p’ - £) for all
p,p" € L*. Ttis easy to see that, if Player 1 wins a game with safety or reachability condition,
then he also has a memoryless strategy to win the game. The following fundamental re-
sult establishes that memoryless strategies are sufficient even for perfect-information games
with parity conditions.

THEOREM 1.[[6]] Player 1 wins a parity game with perfect information if and only if he has
a memoryless winning strategy.

A memoryless strategy ¢ for a game structure G = (L, ¢y, A) can be represented as
a substructure G, obtained by removing from A all transitions (¢, 4, ') with a # o({). The
playsin G, are then precisely the plays in Outcome(G,). Accordingly, for a parity condition
¢, the strategy ¢ is winning if and only if all the plays in G, are winning, which amounts
to saying that on each cycle in G, reachable from ¢y, the least visited priority is even. This
remark provides the key argument for the transformation of parity games into safety games.

DEFINITION 2.Let n € IN. An infinite sequence p;p; ... of natural numbers is parity-n-fair
if, for every odd number r, each subsequence p;p;1 ... p; that contains the number r more
than » times also contains a number strictly smaller than r.

For a fixed game (G, Parity(Q2)), we say that a play 7 is parity-n-fair if the sequence of
priorities visited by 77 is parity-n-fair. Notice that every parity-n-fair play satisfies the parity
condition. Conversely, if G has n locations, then all plays consistent with a memoryless

75

76

ON THE POWER OF IMPERFECT INFORMATION

winning strategy o of Player 1 in G are parity-n-fair. Indeed, every subsequence of a play
consistent with ¢ that contains more than n occurrences of an odd priority » must follow
a cycle in Gy. As the least priority in every cycle of G, is even, every such subsequence
also contains a priority smaller than r. According to Theorem 1, we can hence restrict our
attention, without loss of generality, to strategies that enforce parity-n-fair plays.

PROPOSITION 3. Player 1 wins a parity game with perfect information of size n if and only
if he has a strategy o such that every play consistent with o is parity-n-fair.

Let us now turn to the computational complexity of solving a parity game with perfect
information G. A memoryless strategy ¢ for Player 1 can be guessed in linear time and we
can verify in polynomial time whether ¢ is winning, i.e., whether the minimal priorities on
all reachable cycles in G, are even. Thus, the problem of solving a game belongs to NP and,
by the Determinacy Theorem of [6], it follows that it is in NP N Co-NP. Hence the problem
is close to polynomial time, in terms of general complexity (see also [8]). The question
whether parity games can be solved in polynomial time is a major open problem. The best
known deterministic algorithms have running times that are polynomial with respect to the
size of the game structure, but exponential with respect to the number of different priorities
(see [10, 14]).

2.2 Priority-range reduction

Due to the apparent impact of the number of priorities on the complexity of solving parity
games, it would be very desirable to find efficient procedures for reducing the range of the
priority function.

An explicit reduction from parity to safety games with perfect information is presented
by Bernet, Janin, and Walukiewicz in [3]; it can be understood as an online-version of Ju-
rdzinski’s progress-measure algorithm for solving parity games [9]. The main ingredient
of the reduction is an internal memory device consisting of a vector of counters, one for
each odd priority which is maintained along the transitions of a play. Basically, the device
works as follows: if the current state has priority r, all counters corresponding to priori-
ties strictly higher than r are reset; additionally, if 7 is odd, the counter corresponding to
is incremented. The range of each counter is bounded by the number of locations in the
game. To transform a parity game into a safety game, the memory device is synchronised
with the game structure via a product operation. Finally, the safety condition requires that
no counter overflow occur. Essentially, the internal memory monitors whether the current
play is parity-n-fair and forces the play into a bad location when it detects that this is not the
case. The correctness of this reduction is justified by arguments similar to Proposition 3. No-
tice, however, that to monitor a game with 7 states and d priorities, a memory device with
O(n??) many states is needed. Accordingly, this reduction from parity to safety games
involves an exponential blow-up of the game structure.

3 Games with Imperfect Information

We consider a model of games with imperfect information that was originally introduced
in [13]. The set of locations is partitioned into information sets indexed by observations.

DIETMAR BERWANGER AND LAURENT DOYEN FSTTCS 2008

3.1 Observation-based model

In addition to the alphabet X of actions, we fix a finite alphabet I of observations. A game
structure with imperfect information over ¥ and T’ is a tuple G = (L, £y, A, y), where L, y, A are
defined as in the perfect-information case, and 7y : I' — 2%\ @ is an observability function that
maps each observation to a nonempty set of locations such that the sets (o) for o € T form
a partition of L. For each location ¢ € L, we write obs(/) to denote the unique observation o
such that £ € (o). For an action 2 € X and a set of locations s C L, we define post,(s) =
{{'eL|3es:(Lal)ecA}

The game on G is played in the same way as in the perfect information case, by moving
a token along the transitions of G and forming an infinite play. But now, only the observation
of the current location is revealed to Player 1. The effect of the uncertainty about the history
of the play is formally captured by the notion of strategy.

A strategy for Player 1 in G is a function ¢ : It — X that maps finite sequences of
observations to actions. Given a play 7w = ¢1/(3..., we set obs(71) = obs(¢1)obs(l3).... We
say that 77 is consistent with the strategy o, if for every position i > 1, there is a transition
(li,a,0i11) € Awitha = o(obs({7)...0bs(¢;)). As before, we denote the set of plays in G
that are consistent with ¢ by Outcome(G, o).

Following [5], we express winning conditions in terms of observations. A winning
condition for a game structure G = (L, %y, A, y) is a set ¢ C T'“ of infinite sequences of
observations. A strategy o for Player 1 is winning for the condition ¢ if obs(7r) € ¢ for
all 7 € Outcome(G,). The safety condition for a set T C T is Safe(T) = {0102... | 0; €
T foralli > 1}, and the parity condition for a priority function) : T — IN is defined by
Parity(Q)) = {0102... | liminf; .o p(0;) is even}.

Notice that games of perfect information correspond to the special case where I' = L
and y(¢) = {¢} forall ¢ € L.

3.2 Reduction to perfect-information games

To solve a game with imperfect information (G, ¢) over a structure G = (L, 4y, A,), the
basic algorithm proposed in [13] constructs a game of perfect information (GK, ¢’) over a
game structure GK = (S,s0,A’) with the action alphabet ¥ of G, such that Player 1 has
a winning strategy for ¢ in G if and only if he has a winning strategy for ¢’ in GK. The
structure GX is obtained by a subset construction which, intuitively, monitors the knowledge
that Player 1 has about the current location of the play. The set of locations S C 2L\ {®}
consists of the subsets of L reachable from the initial location sy = {/y} via transitions in
A" defined by (s1,4,s2) € A’ if and only if there exists an observation o € T such that s, =
post,(s1) Ny(0) # @. Notice that each location in GX corresponds to a unique observation in
G, in the sense that for all s € S, there is a unique o € I such thats C (o). A bijection y be-
tween strategies o in G and strategies ¢ in GX that preserves winning strategies is defined
as follows. For all strategies o in G, set u(0) = o such that 0¥ (s;...s,) = o(o0;...0,) for
all sequences s ...s, of locations in GX, where 01 ... 0, is the unique sequence of observa-
tions 07 ... 0, corresponding to s; ...s,. Conversely, given a strategy o¥in GK, the strategy
o = u1(oX) is such that for all 01 ...0, € T*, we have ¢(01...0,) = ¢"(s1...5,) where
s1 = sp and s; 11 = post, (s;) N y(0i41) with a; = oK (s1...s;) forall 1 <i < n. Observe that

77

78

ON THE POWER OF IMPERFECT INFORMATION

the plays consistent with ¢ in G visit the same sequences of priorities as the plays consistent
with oX = (o) in GK.

The construction transforms games with imperfect information into games of perfect
information with the same type of winning condition [5]. For a parity condition ¢ defined
by the priority function Q) : T — IN, the parity condition ¢’ is defined by the priority
function ()’ : S — IN such that)/ (s) = (o) forall s € Sand o € T such thats C o.

PROPOSITION 4.[[5]] Player 1 wins a game with imperfect information (G, Parity(Q))) if and
only if he wins the game with perfect information (G¥, Parity(Q)')).

4 Reduction of parity to safety games

To present our reduction from parity to safety games, let us fix a parity game with imperfect
information (G, Parity(Q))) with n locations and with priorities ranging from 1 to d; we set
[d] ={1,2,...,d}. Without loss of generality, we assume that d is even.

The game structure GX obtained by the subset construction of Section 3.2 has less
than 2" locations. According to Proposition 3, we can require that a winning strategy of
Player 1 in (GK, Parity(Q2)) (and thus also in (G, Parity(Q))) ensures that no odd priority is
visited more than 2" times between two consecutive occurrences of lower priorities. This is
a safety condition that can be checked by counting the occurrences of each odd priority in
the play. If the count exceeds 2" while no lower priority is visited, a bad location is entered.

The challenge is to design counters with a bound of at least 2" and to maintain simul-
taneously d/2 such counters, one for each odd priority, using only a polynomial number of
locations.

We use a counter gadget to store the number of occurrences of an odd priority r. When-
ever a priority smaller than r is visited, the counter is reset. For each visit to priority r,
Player 1 has to increment the counter via a click action that he can choose from the set
n] = {1,2,...,n}. The gadgets are constructed in such a way that in each step at least
one click can increment the counter, until the upper bound is reached. When this happens,
all clicks would lead to the bad location.

To each odd priority, we associate a counter gadget. In the first round of the game,
Player 2 can choose a counter associated to one particular odd priority r to be tracked. This
choice is not observable to Player 1. Thus, Player 1 has to ensure that every odd priority
occurs only a bounded number of times before a lower priority is visited. This translates
the parity condition (that the minimal priority seen infinitely often is even) into a safety
condition (that no counter ever overflows).

4.1 Succinct counters

For each odd priority r, the counter gadget C, is a game structure consisting of n disjoint
components (numbered 1,2,...,n), one for each click. Figure 1 shows a counter gadget
with 3 components. The i-th component has the shape of a loop over g; locations, where g;
is the i-th prime number. The locations of C, are all indistinguishable to Player 1. Therefore,
we may think of a virtual game played simultaneously on all components, as if there was a
token moving in each component of the gadget. The number of configurations of the tokens

DIETMAR BERWANGER AND LAURENT DOYEN FSTTCS 2008

Increment (solid edges) on priority p = r, with any click except 7 on edges Kfii — 0.
Reset (dashed edges) on all priorities p < r.
Idle (not depicted) on all priorities p > r (self-loops).

Figure 1: Counter gadget for priority r with 3 components that counts modulo 2 -3 -5 = 30.

in a counter is given by the primorial q,# = [g;. Clearly, we have g,# > 2" whereas the
number of locations in a counter is "7 ; g; = O(n?logn) and thus polynomially bounded
in n (cf. [2]).

The value of a counter is encoded by the position of the (virtual) tokens in each of its
components. A counter can be incremented by taking, simultaneously in all components, a
transition represented by a solid edge in Figure 1, it can be reset to 0 with the dashed edges,
and it can idle with self-loops on each location (not drawn in the figure). The transitions
of C, are labeled by all actions (4, p, k) € X x [d] x [n] such that p > ron allidle edges, p < r
on all reset edges, and p = r on all increment edges, except the last edge of each component
where the click k must be different from the number of the component (in Figure 1, the
label T is interpreted as “for all clicks” and —k is interpreted as “for all clicks except k”, for
k € IN). Finally, we complete the transition relation, by sending all missing transitions to a
sink location. Intuitively, whenever a counter is incremented, the value of the click k should
be chosen (by Player 1) in such a way that every component has an enabled increment
transition labeled with k, i.e., such that g; does not divide the incremented counter value.
This is always possible except when, in all components, the token is in the last location
before completing the cycle. In the example of Figure 1, this happens after2-3-5 -1 = 29
steps. From that moment on, Player 1 should avoid visiting priority r unless the counter is
reset by a visit to a lower priority.

LEMMA 5. Let Cy,Cg3,...,C4_1 be counter gadgets, each with n components. A sequence
pip2 ... of priorities p; € [d] is parity-(q.#)-fair if and only if there exist sequences aia; . ..
of actions and kik; ... of clicks such that (a1, p1,k1)(az2, p2,k2) ... is a play in each of the
components of Cy,...,Cy_1.

4.2 Reduction

For the parity game with imperfect information (G, Parity(Q2)) over alphabets ¥ and I', we
construct in polynomial time a safety game with imperfect information (G, Safe(T)) over

79

80

ON THE POWER OF IMPERFECT INFORMATION

Figure 2: Reduction overview.

extended alphabets ¥’ and I" such that Player 1 wins (G, Parity(Q2)) if and only if he wins
(G’,Safe(T)). The set T contains all locations of G’ except a designated sink location. The
game structure G’ consists of an initial location ¢ from which there is an outgoing transition
to the initial location of each of the n components of each counter gadget Cy,...,C;_1 and
to the initial location of a modified copy G of G, as in Figure 2.

The game structure G enriches the set ¥ of actions to synchronise with the counter
gadgets. The locations of G are those of G and a fresh location with odd priority. For each
transition (¢,a,¢') in G, there are transitions (¢, (a,p,k),?") for p = Q(obs(¢)) and for all
1 < k < n. Hence, the set of actions of G is ¥’ = £ x [d] x [n]. We complete the transition
relation of G by sending all missing transitions to the fresh location from which Player 1
cannot win. The game G is equivalent to G, as the strategies of Player 1 in G have access
to the observation of the current location (and therefore also to its priority) and can thus be
translated into equivalent strategies for G by simply choosing the priority p = Q(obs(¢)) of
the current location ¢ for the second component of the indicated action (the third component
is intended for synchronisation with the clicks and does not matter in G).

The observations in G’ are the same as in G, that is, [’ = I'. However, the observability
function 9’ of G’ is defined for all 0 € T by 7/(0) = y(0) U Lc where L¢ is the set of all loca-
tions of the counter gadgets. This defines overlapping observations, but we can construct in
polynomial time an equivalent safety game with partitioning observations (cf. [5, page 7]).

PROPOSITION 6. The problem of solving a parity game with imperfect information can be
reduced in polynomial time to the problem of solving a safety game with imperfect infor-
mation.

Proof. We show that Player 1 wins the game (G, Parity(Q})) if and only if he wins the game
(G',Safe(T)).

First, let us assume that Player 1 wins (G’,Safe(T)) and let us fix a winning strategy
o’ in G'. We construct a strategy ¢ in G such that for all p € T'", we have c(p) = a if
o' (p) = (a, p, k) for a priority p and a click k. Now we claim that ¢ is winning in G. To show
this, we argue that for all odd priorities r, if r occurs infinitely often in a path 77 of G, then a
smaller priority p < r also occurs infinitely often in 7r. Towards a contradiction, assume that
an odd priority r occurs infinitely often on a path 7 of G,, whereas all priorities lower than r

DIETMAR BERWANGER AND LAURENT DOYEN FSTTCS 2008

occur only finitely often. In particular, this implies that 77 is not a parity-g,#-fair path. By
Lemma 5 it follows that ¢/, which agrees with ¢ on the first component (on actions a € X),
cannot avoid an overflow of the counter C, leading the play to the sink state. Hence, ¢’ is
not a winning strategy in G'.

For the converse, assume that Player 1 wins (G, Parity(Q))). Then, there exists a winning
strategy o for Player 1 in G ensuring that every path in G, is parity-2"-fair, by Proposition 3
and via the bijection u between strategies of G and GK defined in Section 3.2. Therefore,
each path of G, can visit at most 2" < g,,# times an odd priority r without visiting a smaller
priority. Hence, each counter C, is reset before reaching the maximal value q,#. The win-
ning strategy ¢ can therefore be extended to a winning strategy in G’ by prescribing (a, 7, k)
whenever o prescribes a, where 7 is the priority of the current observation, and k is a click
allowed in the corresponding counter C, (i.e., such that g; is not a divisor of the number of
visits to priority r since the last visit to a smaller priority). In this way, the sink location of
the counters is never reached in G’ and thus, the strategy ¢ is winning. [|

If we view the counter gadgets as individual games, we obtain a family of examples of
safety games with an exponential lower bound for the memory size of a winning strategy.

COROLLARY 7. There exists a family (G,, Safe(T,)),en of safety games with imperfect in-
formation where Player 1 wins, such that each game G,, is of size polynomial in n, whereas
every winning strategy in G, requires memory of size at least exponential in n.

The problem of solving reachability and parity games of imperfect information is
known to be EXPTIME-complete [13, 5]. However, the question about a matching lower
bound for the complexity of safety games remained open. We can now settle this question
as a direct consequence of Proposition 6.

COROLLARY 8. The problem of solving safety games with imperfect information is
EXPTIME-complete.

References

[1] A. ARNOLD, The u-calculus alternation-depth is strict on binary trees, Inf. Théorique et
Applications, 33 (1999), pp. 329-339.

[2] E. BACH AND]. SHALLIT, Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT
Press, 1996.

[3] J. BERNET, D. JANIN, AND I. WALUKIEWICZ, Permissive strategies: from parity games to
safety games, Inf. Théorique et Applications, 36 (2002), pp. 261-275.

[4] J. BRADFIELD, The modal y-calculus alternation hierarchy is strict, Theoretical Computer
Science, 195 (1998), pp. 133-153.

[5] K. CHATTERJEE, L. DOYEN, T. A. HENZINGER, AND J.-F. RASKIN, Algorithms for
omega-regular games of incomplete information, Logical Methods in Computer Science,
3 (2007).

[6] E. A. EMERSON AND C. S. JUTLA, Tree automata, mu-calculus and determinacy, in Proc.
of FoCS 1991, IEEE, 1991, pp. 368-377.

81

82 ON THE POWER OF IMPERFECT INFORMATION

[7] E. GRADEL, W. THOMAS, AND T. WILKE, eds., Automata, Logics, and Infinite Games,
LNCS 2500, Springer-Verlag, 2002.

[8] M. JURDZINSKI, Deciding the winner in parity games is in UP N co-UP, Information Pro-
cessing Letters, 68 (1998), pp. 119-124.

[9] M. JURDZINSKI, Small progress measures for solving parity games, in Proc. of STACS:
Theor. Aspects of Comp. Sc., LNCS 1770, Springer, 2000, pp. 290-301.

[10] M. JURDZINSKI, M. PATERSON, AND U. ZWICK, A deterministic subexponential algorithm
for solving parity games, in Proc. of SODA: Symp. on Discrete Algorithms, ACM Press,
2006, pp. 117-123.

[11] G. LENZI, A hierarchy theorem for the mu-calculus, in Proc. of ICALP: Automata, Lan-
guages and Programming, LNCS 1099, Springer, 1996, pp. 87-97.

[12] D. NIWINSKI AND H. SEIDL, On distributive fixed-point expressions, Inf. Théorique et
Applications, 33 (1999), pp. 427-446.

[13] J. REIF, The complexity of two-player games of incomplete information, Journal of Computer
and System Sciences, 29 (1984), pp. 274-301.

[14] S. SCHEWE, Solving parity games in big steps, in Proc. of FSTTCS: Foundations of Soft-
ware Tech. and Theor. Comp. Sc., LNCS 4855, Springer, 2007, pp. 449-460.

[15] H. SEIDL, Fast and simple nested fixpoints, Information Processing Letters, 59 (1996),
pp. 303-308.

[16] W. THOMAS, Languages, automata, and logic, Handbook of Formal Languages, 3 (1997),
pp- 389-455.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 83-94

Boolean algebras of unambiguous
context-free languages

Didier Caucal
Institut Gaspard Monge, CNRS — Université Paris-Est
caucal @mni v-m v. fr

ABSTRACT. Several recent works have studied subfamilies of deterministic context-free languages
with good closure properties, for instance the families of input-driven or visibly pushdown lan-
guages, or more generally families of languages accepted by pushdown automata whose stack height
can be uniquely determined by the input word read so far. These ideas can be described as a notion
of synchronization. In this paper we present an extension of synchronization to all context-free
languages using graph grammars. This generalization allows one to define boolean algebras of non-
deterministic but unambiguous context-free languages containing regular languages.

1 Introduction

Several restrictions of pushdown automata were recently studied in order to define classes
of languages which generalize regular languages while retaining some of their closure prop-
erties, namely closure under boolean operations, concatenation and its iteration. All of these
approaches consist in defining a notion of synchronization between pushdown automata
[AM 04, Ca 06, NS 07] (see also [LMM 08] for complexity results). An approach which also
avoids a special treatment of the e-moves, is to define the synchronization at graph level
[CH 08]. More precisely, the transition graph of any pushdown automaton A can be gener-
ated by a (deterministic graph) grammar R [MS 85, Ca 07] using infinite parallel rewritings.
The stack height of a configuration of A is replaced by its weight, which is the minimal
number of steps of parallel rewriting by R necessary to produce it.

The notion of synchronization can be defined for all graph grammars. A grammar G
is synchronized by a grammar H if for any accepting path A of (the graph generated by) G,
there exists an accepting path y of H with the same label u such that A and u are synchro-
nized: for every prefix v of u, the prefixes of A and y labelled by v lead to vertices of the same
weight. By extending usual constructions from finite automata to grammars generating de-
terministic graphs, we have shown that the languages recognized by all grammars synchro-
nized with a given grammar form a boolean algebra lying between regular languages and
deterministic context-free languages [CH 08].

In this paper, we apply the notion of synchronization to graph grammars recognizing
unambiguous context-free languages, which are the languages generated by context-free
grammars with at most one derivation tree for each word. Although these languages form
a natural generalization of deterministic context-free languages, their equivalence prob-
lem remains a challenge in formal language theory [Gi 66]. Recent developments can be
found in [Wi04]. We present two classes of graph grammars, called unambiguous and
level-unambiguous, recognizing all unambiguous context-free languages. A grammar is
unambiguous if two accepting paths in the generated graph have distinct labels. More

© Didier Caucal; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1743

84

BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

generally, a grammar is level-unambiguous if two accepting paths with the same label are
synchronized. We show that the languages recognized by grammars synchronized with a
fixed level-unambiguous grammar form a boolean algebra containing the regular languages
(where the complement operation is relative to the language of the synchronizing gram-
mar). A direct consequence is the decidability of the inclusion problem between languages
recognized by two level-unambiguous grammars synchronized by a third one.

The paper is structured as follows: after recalling some notations and definitions in Sec-
tions 2 and 3, we present the notion of synchronization of arbitrary grammars in Section 4.
We then focus on the closure properties of level-unambiguous grammars in Section 5.

2 Notations

Let IN be the set of natural numbers. For a set E, we write |E| its cardinality, 2F its pow-
erset and for every n > 0, E" = {(e1,...,en) | €1,...,en € E} is the set of n-tuples of
elements of E. Thus E* = |J,>¢ E" is the free monoid generated by E for the concatenation:
(e1,....em) (€,ey) = (e1,...,em e},...e,), whose neutral element is the O-tuple (). A
tinite set E of symbols is an alphabet of letters, and E* is the set of words over E. Any word
u € E"is of length |u| = n and is also represented by a mapping from [n] = {1,...,n}
into E, or by the juxtaposition of its letters: u = u(1)...u(|u|). The neutral element is the
word of length 0 called the empty word and denoted by e. We denote by [0,1n] = {0,...,n}
for any n € IN. For any binary relation R, we also write xRy for (x,y) € R; as usual
Dom(R) = {x | 3y, xRy} and Im(R) = {y | 3x, xRy} are the domain and the image of R.

Let F be a set of symbols called labels, ranked by a mapping ¢ : F—IN associating to
each label f its arity o(f) > 0, and such that F, := {f € F | o(f) = n} is countable for every
n > 0. We consider simple, oriented and labelled hypergraphs: a hypergraph G is a subset of
Un>0 F.V", where V is an arbitrary set, such that

e itsvertex set Vg := {v € V | FV*0V* N G # @} is finite or countable,

e itslabel set Fg := {f € F | fV*N G # @} is finite.
Any fo1...0,5) € G is a hyperarc labelled by f and of successive vertices vy, ..., vy(f); it is
depicted according to the arity of f as follows:

e for o(f) > 2, as an arrow labelled f and successively linking v, .. ., Vo(f);

e for o(f) =1, as alabel f on vertex vy (f is called a colour of v1);

e for o(f) = 0, as an isolated label f called a constant.
This is illustrated in the next figures. Note that a vertex v is depicted by a dot named (v)
where parentheses are used to differentiate a vertex name from a vertex label (a colour).

For a subset E C F of labels, we write Vg := {v € V | EV'oV*' NG # @} = Vgrey:
the set of vertices of G linked by a hyperarc labelled in E. A graph G is a hypergraph whose
labels are only of arity 1 or 2: F; C F; U F>,. Hence a graph G is a set of arcs avv, identified
with the labelled transition v; %vz or directly v; 2,0, if G is understood, plus a set of
coloured vertices fov.

A tuple (v, a1,v1,...,44,v,) withn > 0 and vo%vl. U1 a—c”»vn is called a path from
v to vy, labelled by u = ay...a,; we write Uozzwn or directly vo==v, if G is understood.

For P,Q C Vi and u € F;, we write P:Z>Q if p:Z>q for some p € Pand g € Q and

DIDIER CAUCAL FSTTCS 2008

L(G,P,Q) :={u | P:Z> Q} is the language recognized by G from P to Q. In these notations,

we can replace P (and/or Q) by a colour o to designate the subset V; . In particular o:Z>Q

means that there is a path labelled by u from a vertex coloured by o to a vertex in Q, and
L(G, o, o) is the label set of the paths from a vertex coloured by o to a vertex coloured by .

In this paper, we use two colours o, € F; to mark respectively the initial vertices and
the final vertices. To depict an initial or final vertex, the dot is replaced by its colour, and
® represents a vertex which is initial and final. For any graph G, we denote by L(G) :=
L(G, o,) the language recognized by G. Recall that the reqular languages over an alphabet
T C F, form the set Reg(T*) := {L(G) | G finite A Fg C TU{o, e} }.

3 Graph grammars

In this section, we recall the definition of deterministic graph grammars, together with the
tamily of graphs they generate (called regular graphs). Using initial and final vertices, they
can be viewed as infinite automata, generalizing finite automata. We also define two re-
stricted classes of grammars recognizing all unambiguous context-free languages.

A graph grammar R is a finite set of rules of the form fx;...x,s) — H where fx;...x,f)
is a hyperarc joining pairwise distinct vertices x; 7 ... # x,(y) and H is a finite hypergraph;
we denote by Ng := {f € F | 3x1,...,x,(f), fX1...Xo(5) € Dom(R)} the non-terminals of R
(the labels of the left hand sides), by Tz := {f € F— Nz | 3H € Im(R),Vy s # @} the
terminals of R (the labels of R which are not non-terminals), and by Fr := Nr U T the labels
of R. We use grammars to generate graphs. Hence in the following, we assume that any
terminal is of arity 1 or 2: T C F; U .

Like a context-free grammar (on words), a graph grammar has an axiom, which is an
initial finite hypergraph. To specify this axiom, we assume that any grammar R has a con-
stant non-terminal Z € NrNFy which does not appear in any right hand side; the axiom of R
is the right hand side H of the rule corresponding to Z: Z—H A Z ¢ Fx for any K € Im(R).

Starting from the axiom, we want R to generate a unique graph up to isomorphism.
So we finally assume that any grammar R is deterministic, meaning that there is only one
rule per non-terminal: (X, H),(Y,K) € RAX(1) = Y(1) = (X,H) = (Y,K). For any
rule X — H, we say that Vx N Vy are the inputs of H and U{Vy | Y € HAY(1) € Ng}
are the outputs of H. For convenience and without loss of generality, it is simpler to assume
that any grammar R is terminal-outside [Ca 07], meaning that there should be at least one
non-input vertex in the support of any terminal arc or colour in a right hand side: H N
(TrRVxVxUTRrVx) = @ for any rule (X,H) € R. We use upper-case letters A, B,C, ... to
denote non-terminals and lower-case letters a,b, c . . . for terminals.

The next figure shows an example of a (deterministic graph) grammar Double with non-
terminals Z, A, B, terminals 4, b, o, and rule inputs 1,2,3 (except for the axiom rule which
has no input).

o) 1) L. 1 o 1)
z —_— o;A 7) -EA — 2) (B ;) -33 —_— (2
o ©)

@ @ 3)

ST

85

86

BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

Given a grammar R, the rewriting . is the binary relation between hypergraphs de-
fined as follows: M rewrites into N, wrltten M —>N if we can choose a non-terminal hy-

perarc X = Asy...sp in M and a rule Ax;...x, — H in R such that N can be obtained by
replacing X by H in M: N = (M — X) U h(H) for some function # mapping each x; to s;,
and the other vertices of H injectively to vertices outside of M; this rewriting is denoted by
M WN . The rewriting — of a hyperarc X is extended in an obvious way to the rewriting

— of any set E of non-terminal hyperarcs.
R,E

The complete parallel rewriting = is a simultaneous rewriting according to the set of
all non-terminal hyperarcs: M:>N 1f M —>N where E is the set of all non-terminal hyper-

arcs of M. We depict below the first three steps of the parallel derivation of the previous
grammar Double from its constant non-terminal Z:

o<. o< ...

z = ol A e o(s e o”—‘\>- A
—T
(o] (o] O<b— .
Given a deterministic grammar R and a hypergraph H, we denote by [H] := HN

TrV}; = HN (TrVyVeUTRrVE) the set of terminal arcs and of terminal coloured vertices of
H. A graph G is generated by R (from its axiom) if G belongs to the set of isomorphic graphs
RY:={U,>0[Hx] | Z—Ho—...Hy—Hy1.. .}. For instance by indefinitely iterating the

previous derivation, we get the following infinite graph:

oL . L. L.
\b \b \b

We call reqular a graph generated by a (deterministic graph) grammar. Given a (regular)
graph G = U, >o[Hx] generated by a grammar R, with ZTH0:R>') .Hn:R>Hn+1. .., we

define the level £(s) of a vertex s € V;, denoted also £ (s) to specify G and R, as the minimal
number of rewritings applied from the axiom to obtain s: /(s) := min{n | s € Vy,}. The
previous graph is represented by vertices of increasing level: vertices of the same level are
vertically aligned for clarity. For any grammar R and for G € R“, we denote by L(R) :=
L(G) the language recognized by R, which is well-defined since all graphs generated by a
grammar are isomorphic. For instance, the grammar Double above recognizes the language
L(Double) = {a"b" | n > 0} U {a"b*" | n > 0}.

A graph G is deterministic if o colours a unique vertex, and two arcs with the same source
have distinct labels: r—»s A r—»t = s = t. Deterministic graph grammars recognize the

family of context-free languages The restriction to grammars generating a deterministic
graph yields the family of deterministic context-free languages [Ca 07]. A grammar R is
unambiguous if any pair of accepting paths have distinct labels: for G € R%,

SOL51...LSH N toi)tl...&tn AN OSOrOtOI'Sn/’tn ceG = S; = ti Vi € [O,Tl].
G G G G

DIDIER CAUCAL FSTTCS 2008

Note that the previous grammar is unambiguous. Any grammar generating a determinis-
tic graph is unambiguous. However, unambiguous grammars recognize strictly more lan-
guages than deterministic ones.

PROPOSITION 1. Unambiguous grammars recognize the family of unambiguous context-
free languages.

Recall that there exist context-free languages which are not unambiguous i.e. which
cannot be generated by an unambiguous context-free grammar; they are called inherently
ambiguous context-free languages. An example of an ambiguous context-free language is
{a™b™a"b" | m,n > 0} U {a™b"a"b™ | m,n > 0}.

The synchronization relation we will soon define requires a slight generalization of un-
ambiguous grammars. A grammar R is called level-unambiguous if for any pair of accepting
paths A, u with the same label u and for every prefix v of u, the prefixes of A and y labelled
by v lead to vertices of the same level. Formally, for (any) G € R,

Soa—Gl>Sl. ..a—£>5n VAN t()a—Gl>t1. . .%tm N 08, clp,eS,, ety € G — Eé(sz) = Eé(tz) Vi e [O,l’l].

Note that any unambiguous grammar is also level-unambiguous. One can prove (Cf. Lem-
mas 12 and 13) that even though they are slightly more general, level-unambiguous gram-
mars do not recognize more languages than unambiguous ones.

PROPOSITION 2. Level-unambiguous grammars recognize the family of unambiguous
context-free languages.

4 Synchronization of grammars

The notion of synchronization was defined in earlier work as a binary relation between
grammars generating deterministic graphs [CH 08]. In this section, we extend it to all gram-
mars. To each grammar R, we associate the family Sync(R) of languages recognized by
grammars synchronized by R. We give closure properties of Sync(R) and show that this
family is independent of the way to generate R“.

A grammar R synchronizes a grammar S, and we write R> S or S < R if for (any) G € R
and (any) H € S“, whenever there exists a path tOLL1 .. .&tn with oty, of, € H, then there

exists so—>s1 —>sn with 059, s, € G and (R (s;) = (3,(t;) Vi € [0, 1], meaning that for any

accepting path U labelled by u in the graph generated by S, there must be an accepting path
A label by u in the graph generated by R such that for every prefix v of u, the prefixes of A
and y labelled by v lead to vertices of the same level.
For instance the grammar Double of the previous section synchronizes the following gram-
mar S:

I (1) l) \ (1) l) 71 (&) l \ l L l

@ ¢ @) @* @ o @:* @ e @ * @ e

whose generated graph is represented by vertices of increasing level as follows:

87

88

BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

a a a a a
. . . .

Vv Vv y ---

O o < o< o o ¢ o o o o o

b b b b b b b b b b

o

and whose accepted language is L(S) = {a?"*1b*"*2 | n > 0}.

Note in particular that S <R = L(S) C L(R). The relation t> is reflexive and transitive
but not antisymmetric. We denote by ><1 the bi-synchronization relation: R >< S if Rt> S and
S > R. The following lemma states that level-unambiguity is preserved for synchronized
grammars.

LEMMA 3. For any level-unambiguous grammar R:
a) SR = S islevel-unambiguous;
b) Sb<tR <= S<RandL(S) = L(R).

A useful transformation preserving bi-synchronization is to restrict to vertices accessi-
ble from o and co-accessible from e. The restriction G|p of a graph G to a subset P C V; of
vertices is the subgraph of G induced by P:

Gp = {SL>t|S%>t/\S,tEP}U{CS|CS€G/\SEP}.

We write RY, := {G|(;jo—s—s¢} | G € R} the restriction of R by accessibility from o
G G

and co-accessibility from . We can restrict synchronization to grammars generating graphs
accessible from their initial vertices and co-accessible from their final vertices.

LEMMA 4. Any grammar R can be transformed into a grammar S such that S ></ R and
S§¥ = RY,.

Another basic transformation, given in Lemma 6.1 of [Ca 07] allows us to restrict our-
selves to grammars with colours o and « only in the axiom (i.e. whose generated graph only
contains initial and final vertices at level 0). We say that a grammar R is initial when this is
the case, i.e. when (X, H) e RAX # Z = Vyo =D = Vpy.

This transformation works as follows. Let R be any grammar. We consider two arity 2
new symbols i, f € F> such that i, f € Fr and i, f are not vertices of R. To any non-terminal
A € NR — {Z}, we associate a new symbol A; ¢ of arity ¢(A) + 2. We consider the grammar:

R,i, f] = {(Z, HfU{oi,ef }) | (Z,H) € RYU{(A;fXif Hi¢) | (AX,H) € RANA # Z}
where H;r := ([H] —{o,¢}Vy) U{A;fXif | AX € HNA € Ng}

U{i#s]oseH}U{st\-seH}.

This grammar [R, i, f] is an initial grammar such that, for any G € R“ with i, f & Vg,
GifU{ei,ef} € [R,i, f]*. In particular L([R, i, f]) = iL(R) f. Moreover,

S<AR < [S,i,f]<[R,i,f] and [R,i,f]is (level-)Junambiguous if and only if R is.
Note that if R has an infinite number of initial (resp. final) vertices then the initial (resp.
final) vertex of [R, i, f]* is of infinite out-degree (resp. in-degree).

To any grammar R, we associate a family of synchronized languages

Sync(R) := {L(S) | S<R}

DIDIER CAUCAL FSTTCS 2008 89

which are thelanguages accepted by the grammars synchronized by R. Observe in particu-
lar that R><1S = Sync(R) = Sync(S), and Sync([R,i, f]) = {iLf | L € Sync(R)}.

For any alphabet T C F,, all the regular languages in T* can be synchronized by the
grammar Reg defined as the unique axiom rule Z—{0--0 | a € T} U {<0,+0} (in other
words, Sync(Reg) = Reg(T*)). Also note that any grammar R synchronizes any grammar
without colour o or e, thus @ € Sync(R). Let us generalize this fact.

PROPOSITION 5. For any grammar R, the family Sync(R) is closed under union, and con-
tains L(R)NM for any regular language M.

PROOF. Closure under union will not be detailed here, but is straightforward. Contain-
ment of all regular languages inside L(R) is done by synchronization product of R with a
finite automaton K [CH 08]. Let {q1, ..., 4.} = Vk be the vertex set of K. To each A € Ng, we
associate a new symbol A’ of arity nxo(A), and to each hyperarc Ary...r,, with m = g(A),
we associate the hyperarc (Ary...1) == A'(r1,q1)--.(*1,9n) - (tm, G1)- - -(¥m, qn). As an ex-
ception, we assimilate Z’ to Z. We then define the grammar RxK, which associates to each
rule (X, H) € R the rule:

X' — A{(s,p)==(tq) | s——tAp——qt U{(BU)" | BU € HAB € Ny}
U{o(s,p) | es € HAop € K} U{e(s,p) | s € HAep € K}.
It is easily shown that RxK <t R and L(RxK) = L(R)NL(K). I

For any grammar R, the family Sync(R) is in general not closed under intersection,
hence not closed under complement with respect to L(R), since LN'M = L(R) — [(L(R) —
L)U(L(R) — M)] for any L, M C L(R). For instance the following grammar:

i A a,b
. X
zZ —_— [OR ; . —_— . o A
M w

is not level-unambiguous, and for L = {a"b™a" | m,n > 0} and M = {a™b"a" | m,n > 0},
we have L, M € Sync(R) but LnM = {a"b"a" | n > 0} ¢ Sync(R).
For R“ deterministic, Sync(R) coincides with the family of synchronized languages
defined in [CH 08].
PROPOSITION 6. For any grammar R such that RY is deterministic,
Sync(R) = {L(S) | S< R A S¥ deterministic}.

As a corollary of Proposition 6, Sync(R) is a boolean algebra when R% is deterministic
[CH 08]. For instance, let Single be the following grammar:

'l ; [A,/‘A

(C20 (y) e—=*

We have L(Single) = {a"b" | n > 0} and Sync(Single) = {L(Gunu,I) | m > 0An > 0},
where L(Gy 4, I) is the language generated from I by the linear context-free grammar Gy, ,:
[=P+a"Ab" with P C{ab,...,a"b"}

A=Q+a"Ab" with Q C{ab,...,a"b"}.

90

BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

We conclude this section with a fundamental result concerning grammar synchroniza-
tion, which states that Sync(R) is independent of the way the graph RY is generated.

THEOREM 7. For any grammars R and S, R¥ = §“ = Sync(R) = Sync(S).

This theorem allows to transfer the concept of grammar synchronization to the level
of graphs: for any regular graph G, we can define Sync(G) as Sync(R) for any grammar R
generating G. For instance, the following regular graph:

b

defines by synchronization the family of visibly pushdown languages (with a pushing, b
popping and c internal) [AM 04].

5 Synchronization of level-unambiguous grammars

As previously stated, for any grammar R generating a deterministic graph, Sync(R) is an
effective boolean algebra. In this section, we show that this remains true when R is level-
unambiguous.

THEOREM 8. For any level-unambiguous grammar R, the family Sync(R) is an effective
boolean algebra with respect to L(R), containing all the regular languages included in L(R).

For instance, let us consider the initial and unambiguous grammar Double of Section 3.
We have Sync(Double) = {L(Gyupn, [) UL(Hyy w,I) | m,m" > 0An,n" > 0} where Gy, is
defined above and H,, , is the following linear context-free grammar:

I=P+a"Ab*" with PC {abb,...,ambzm}
A=Q+a"Ab*" with Q C {abb,...,a"b*"}.

This is indeed a boolean algebra with respect to L(Double). Finally for the regular graph G

Vﬂ b b
@\/'

=

- |

b b b

a
.

the family Sync(G) is the regular closure of Sync(Double).

A particular consequence of Theorem 8 is that we can decide the inclusion L(S) C L(S’)
for two grammars S and S’ synchronized by a common level-unambiguous grammar. Recall
that the inclusion problem is undecidable for the so-called simple languages [Fr 77].

The constructions from [CH 08] cannot be trivially extended because level-unambiguity
is a global property of accepted words and not a local property like graph determinism.
However we can still work locally thanks to the notions of synchronization and level-
unambiguity, which both only require to work level by level.

Closure under union was already stated in Proposition 5. We now proceed to prove the
closures under intersection (Lemma 9) and complement (Lemma 14).

DIDIER CAUCAL FSTTCS 2008

5.1 Closure under intersection

We will use other colours in addition to o and . For any set of colours C C F; — {o} and any
grammar R, we denote R¢ the grammar obtained from R by colouring every C-coloured
vertex with « and removing « on all other vertices:

Re:={(X,(H—{e}Vu)U{ep | 3c € C,cp € H}) | (X, H) € R}.

We define a level-preserving version of the grammar synchronization product. Let o, ¢, be
new colours. Let R and S be two grammars, G € R¥ and H € S“ two graphs they generate,
and let W := {(s, p) € VoxVy | (R(s) = £3,(p)}, the level synchronization product GxH is

GxH :={(s,p)==(t,9) | s=>t Ap——a A (s,p), (t,9) € W}

U{o(s,p) |os € GAop e HA(s,p) € W} U {e(s,p) |ess€ GAep e HA(s,p) € W}
U{e(s,p)|es€GAep € HA(s,p) €W} U {oy(5,p) | es € GAep € HA(s,p) € W}.
We then simply define RYxS“ as {GxH | G € R“ A H € §“}. The standard synchronization
product of two regular graphs can be non regular, but the level synchronization product

R“xS% can be generated by a grammar RxS that we define.

Let (A,B) € NrxNs be any pair of non-terminals, we consider binary relations E
over inputs such that Vi,j € [0(A)],E(i) NE(j) # @ = E(i) = E(j), where E(i) =
{j | (i,j) € E} denotes the image of i € [0(A)]. To any such A, B and E, we associate
a new symbol [A, B, E] of arity |E| (where [Z,Z,Q] is assimilated to Z). To each non-
terminal hyperarc Ary...r, of R (A € Ng and m = ¢(A)) and each non-terminal hyperarc
Bsi...s, of S (B € Ns and n = o(B)), we associate the hyperarc [Ary...1y, Bs1 ...y, E] :=
[A,B,E|(r1,s1), ... (ri,sn), - (rm,51) - .. (m,sn), With (ri,s;), = (ri,s;) if (i,j) € E, and ¢
otherwise. The grammar RxS is then defined as the set of rules

[AX, BY, E]— ([P]x[Q]) ; U{[CU, DV, E'] | CU € PAC € Ny ADV € QAD € Ns}
for each (AX,P) € R, each (BY,Q) € S, and each E C [o(A)]x[e(B)] with
E:= {(X(0),Y(j)) | (i,) € E}U (VP = Vx) x (Vo — V)
E':={(i,j) € [e(C)]x[e(D)] | (U(i), V(j)) € E}
and where the level synchronization product [P]x[Q] is defined according to
0 if seV 0 if teW
(O S w=4
1 if seVp—Vx 1 if tGVQ—Vy.

Finally we restrict RxS to the non-terminals accessible from Z. This grammar indeed gen-
erates the level synchronization product (RxS)“ = R“xS% of their generated graphs, and
also satisfies the following properties:

(RxS)ee, IR ; (RxS)ee,<1S ; SR == RxS><S.

This implies that for any level-unambiguous R, Sync(R) is closed under intersection.

LEMMA 9. For any S, S’ < R with R level-unambiguous, L(SxS") = L(S)NL(S').

91

92

BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

5.2 Level-wise determinization

Before proving the closure under complement of Sync(R) in the next subsection, we need to
define a suitable notion of level-wise determinism, and show that any level-unambiguous
grammar is equivalent, in terms of synchronised languages, to one generating a level-wise
deterministic graph. We say that a grammar R is level-deterministic if for any G € RY, there
is at most one initial vertex per level, and the targets of any pair of arcs with the same source
and label have distinct levels: os, ot € G V (r%s A r%t) = s =1tV Is(s) # Lg(t).

In other words, R is level-deterministic if and only if there exists no pair of level-
synchronized initial paths in RY. So any grammar generating a deterministic graph is level-
deterministic. We state another property oflevel-deterministic grammars.

LEMMA 10. Any level-deterministic and level-unambiguous grammar is unambiguous.

Another advantage of level-deterministic grammars is that the synchronization relation
is recursive when the synchronizer is level-deterministic (this is proved using the general-
ized grammar synchronization product defined in the next section).

LEMMA 11. We can decide whether R > S for R level-deterministic.

Similarly to way level synchronization is done, we perform the standard powerset con-
struction only level by level.

For R a grammar generating G, letIT1:= {P | @ # P C Vg AVp,q € P, 4(p) = ((q)}
be the set of subsets of vertices with same level, and let Succ,(P) be the set of successors of
vertices in P € I1 by a € FgNFy: Suce,(P) :={gq | dp € P(p%q)}. The level-determinization

of any grammar R is defined as Det(R?) := {Det(G) | G € R“}, where Det(G) is:

Det(G) :={P--Q | P,Q € IT A Q C Succ,(P) A Vq € Succ,(P) — Q,QU{gq} ¢ IT}
U{oP|PeIlIAVp e Plop € G)AVg(oq € GAg & P = PU{q} ¢ I1)}
U{cP|PellAce L —{c}ATpeP(cpeG)}

restricted to the vertices accessible from o.

Contrary to the level synchronization product, Det does not preserve regularity. How-
ever Det(R“) can be generated by a grammar when R is in a certain normal form which
preserves synchronised languages.

Let us define an arc grammar R as an initial grammar whose rules (except the axiom rule)
are all of the form A12— H4 where H is a finite graph with no terminal arc of target 1, or
of source 2, or of source 1 and target 2: sﬁt = s #2ANt #1N(s,t) # (1,2). We tranform

a grammar into an arc grammar by splitting non-terminal hyperarcs into non-terminal arcs
of arity 2 (hence the name).

LEMMA 12. Any initial grammar can be transformed into a bi-synchronized arc grammar,
while preserving unambiguity.

This lemma allows to prove Proposition 1 by translating any unambiguous arc gram-
mar R into an unambiguous context-free grammar generating L(R), and conversely.

For any arc grammar R, Det(R“) can be generated by a grammar Det(R) that we define.
Let R be an arc grammar generating a graph accessible from o. To any A € Ng — {Z}, we

DIDIER CAUCAL FSTTCS 2008

associate a new symbol A of arity 2 and we define the grammar R obtained from R by
adding the rules A12—Hy4 for all A € Ng — {Z}, and then by replacing in the right hand

. . B B
sides any non-terminal arc s—2 by s—2:

R:= {(Z,Hz)} U {(A12, (HA — NRVHAZ)U{ESZ ‘ B € NR ANBs2 € HA}) ‘ A € N — {Z}}
U {(A12,(Ha — NrVy,2)U{Bs2 | B€ Nx ABs2 € Ha}) | A€ Nr — {Z}}.

Let < be a linear order over 2Nz ~{Z} of smallest element @. For each P C Ny —{Z},P #Q,
we take a new symbol P’ of arity 2/”| and a hyperarc <P> = P'py...p, with {p1,..., pm} =

2Pand p; < ... < pu, and we define a graph Hp such that {Zi»A | A€ PyU{-Z}=Hp.
R

In the special case where P = @, we let <> = Z and Hp = Hj.

For every P C Ny — {Z}, we apply to Hp the level-determinization procedure de-
scribed above to get the graph H}, := Det(Hp)[@/{Z}] — {-@} whose vertex level mapping
¢ is defined by ¢/(A) =0forall A € P — Ng, {(A) = 1forall A € PNNg and /(s) = 2 for all
s € Vi, — (PU{Z}). Note that the level ¢(Z) of Z is not significant because there is no arc of
target Z in Hp. We define grammar Det(R) by associating to each P C Ny — {Z} the rule:

<P> — [Hl,j] U {<Q>[S/@] [UeeESg/E]@7gEgQ | S € VH}, AQ 7'é @}

with Q := {A € Ny | s%} and s%s A forany A € Q. Note that when R is unambiguous,
we can restrict <P> = P'py...pu to {p1,...,pm} = P.

LEMMA 13. For any arc grammar R, (Det(R))“ = Det(R?¥), Det(R) >R and Det(R) is
level-deterministic, hence Det(R) is unambiguous for R level-unambiguous.

5.3 Closure under complement

We now consider the closure under complement of Sync(R) for R level-unambiguous.
First we have to extend the level synchronization product RxS of any grammars R and
S in order to retain a path for all the words accepted by R. We take new colours !, e2 and a
fresh symbol L. For any grammars R and S, the generalized level synchronization product of
their generated graphs is RY«S“ := {GaeH | G € RY A H € 5“}, where GoH is defined as:

GoH :=GxHU {ol(S,J_) | oS € G} U {.Z(J_, P) | op S H}
U{(s,p)—=(t, L) | s—=t A ((s,p) € Voxu Vp = L) AVq(p—q = (q) # £(1))}
U{(s,p)==(L,q) | p==q A ((5,p) € Voxr Vs = L) AVH(s—t = L(t) # £(q))}

U{o(s, L) | os € GAVp(op € H=>l(p) # L(s))}
U{o(L,p)|op€ HAVs(os € G=>L(s) # {(p))}.

The definition of RxS from the previous section is extended to define a grammar ReS. The
symbol [A, B, E] is now of arity |E| + 0(A) + o(B) with the definition

[Ary...Ty, Bsi.. sy, E] := [A, B, E|(r1,51) ... (rm,5n) (11, L) ... (rm, L) (L 51). . (L, sn)

93

94

BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

and we replace ([P]x[Q]) £ by ([P]=[Q]) F U Vox {1} U {1}xvp I the right hand side of the
rule of [AX, BY, E|. The grammar RS generates R“©5%, and satisfies:

(R®S)',°1,ol >R (R@S)./.2/.2 >IS Vf S {0, ., 02}, (R®S)f > (RXS)f

The language L(R) — L(S) for S < R is the set of non accepting words labelling initial paths
in ReS which end in a vertex coloured by e, or !

L(R)—L(S) = L(R)— (L(R)NL(S)) = L((R@S).’.ll.l) — L(ReS) = L((R@S).ll.l) — L(RS)

When (R@S), , o is unambiguous, the language L((R®S), o1) — L(R&S) is the set of words
which label paths ending in non final vertices coloured by e, or e!. As (R@S)./.l,.l is level-

unambiguous when R is, we get the closure under complement of Sync(R) using Lemmas
12 and 13.

LEMMA 14. For R level-unambiguous and S <R, L(R) — L(S) & Sync(R).

6 Conclusion

For lack of space, we had to omit from this paper a condition on grammars ensuring that
their synchronized languages are closed under concatenation and Kleene star. Many other
examples of grammars and their families of synchronized languages also have to be studied.

Acknowledgements. Many thanks to Antoine Meyer for helping me prepare the final ver-
sion of this paper.

References

[AM04] R. ALUR and P. MADHUSUDAN Visibly pushdown languages, 36" STOC, ACM
Proceedings, L. Babai (Ed.), 202-211 (2004).

[Ca 07] D. CAUCAL Deterministic graph grammars, Texts in Logic and Games 2, Amsterdam Univer-
sity Press, J. Flum, E. Grddel, T. Wilke (Eds.), 169-250 (2007).

[Ca 06] D. CAUCAL Synchronization of pushdown automata, 10" DLT, LNCS 4036, O. Ibarra, Z. Dang
(Eds.), 120-132 (2006).

[CHO08] D.CAUCAL and S. HASSEN Synchronization of grammars, 3" CSR, LNCS 5010, E. Hirsch, A.
Razborov, A. Semenov, A. Slissenko (Eds.), 110-121 (2008).

[Fr 77] E. FRIEDMAN Equivalence problems for deterministic context-free languages and monadic recursion
schemes, JCSS 14, 344-359 (1977).

[Gi66] S. GINSBURG The mathematical theory of context free languages, McGraw-Hill (1966).

[LMM 08] N.LIMAYE, M. MAHAJAN and A. MEYER On the complexity of membership and counting in
height-deterministic pushdown automata, 3" CSR, LNCS 5010, E. Hirsch, A. Razborov, A. Semenov,
A. Slissenko (Eds.), 240-251 (2008).

[MS 85] D. MULLER and P. SCHUPP The theory of ends, pushdown automata, and second-order logic,
Theoretical Computer Science 37, 51-75 (1985).

[NS07] D. NOWOTKA and J. SRBA Height-deterministic pushdown automata, 321 MFCS, LNCS 4708,
L. Kucera, A. Kucera (Eds.), 125-134 (2007).

[Wi04] K. WICH Ambiguity functions of context-free grammars and languages, PhD Thesis, Universitat
Stuttgart (2004).

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 95-106

Increasing the power of the verifier in
Quantum Zero Knowledge

Andr é Chailloux and lordanis Kerenidis *
CNRS - LRI

Université Paris-Sud

{chail l ou,] keren}@ri.fr

ABSTRACT.

In quantum zero knowledge, the assumption was made that the verifier is only using unitary oper-
ations. Under this assumption, many nice properties have been shown about quantum zero knowl-
edge, including the fact that Honest-Verifier Quantum Statistical Zero Knowledge (HVQSZK) is
equal to Cheating-Verifier Quantum Statistical Zero Knowledge (QSZK) (see [17, 18]).

In this paper, we study what happens when we allow an honest verifier to flip some coins in addition
to using unitary operations. Flipping a coin is a non-unitary operation but doesn’t seem at first to
enhance the cheating possibilities of the verifier since a classical honest verifier can flip coins. In
this setting, we show an unexpected result: any classical Interactive Proof has an Honest-Verifier
Quantum Statistical Zero Knowledge proof with coins. Note that in the classical case, honest verifier
SZK is no more powerful than SZK and hence it is not believed to contain even NP. On the other
hand, in the case of cheating verifiers, we show that Quantum Statistical Zero Knowledge where the
verifier applies any non-unitary operation is equal to Quantum Zero-Knowledge where the verifier
uses only unitaries.

One can think of our results in two complementary ways. If we would like to use the honest verifier
model as a means to study the general model by taking advantage of their equivalence, then it is
imperative to use the unitary definition without coins, since with the general one this equivalence
is most probably not true. On the other hand, if we would like to use quantum zero knowledge
protocols in a cryptographic scenario where the honest-but-curious model is sufficient, then adding
the unitary constraint severely decreases the power of quantum zero knowledge protocols.

1 Introduction

Zero knowledge protocols propose an elegant way of doing formally secure identification.
In these interactive protocols, a prover P knows a secret s and he wants to convince a veri-
fier V that he knows s without revealing any information about s. The condition “"without
revealing any information” has been formalized in [3, 4] and this security condition has
been defined in the computational (CZK) and the information-theoretic setting (SZK). Zero
knowledge has been extensively studied and found numerous applications in theoretical
computer science and cryptography (see [16] and references therein).

In addition, zero knowledge is defined for the case of honest or cheating verifiers. In
the honest verifier model, we force the protocol to be zero knowledge only against a veri-
tier who follows the protocol but tries to extract as much information as possible from the

*Supported in part by ACI Securité Informatique SI/03 511 and ANR AlgoQP grants of the French Ministry
and in part by the European Commission under the Integrated Project Qubit Applications (QAP) funded by the
IST directorate as Contract Number 015848.

© Chailloux, Kerenidis; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1744

96

INCREASING THE POWER OF THE VERIFIER IN QUANTUM ZERO KNOWLEDGE

interaction. An honest verifier is equivalent to the ‘Honest-but-Curious” or ‘Semi-Honest’
adversary in cryptography. This model has been widely studied in cryptography and is
important in certain realistic scenarios (for example online protocols), where the protocols
are used in complex interactions with limited capacity of cheating ([5], ch. 7). Moreover,
in the case of classical zero knowledge it is particularly interesting, due to the fact that it is
equivalent to the general Zero-Knowledge model against cheating verifiers [6].

In 2002, Watrous proposed a quantum equivalent of zero knowledge proofs [17] for the
case of honest verifiers. In this definition, the prover and the verifier are allowed to use
only unitary operations and the zero knowledge property is defined in a seemingly weaker
way than in the classical case. Watrous proved many interesting results for this class, such
as complete problems, closure properties and a few years later, that honest verifier equals
cheating verifier (ie. HVQSZK = QSZK) [18]. These results provided strong a posteriori
evidence that Watrous’ definition is the right one for quantum Zero Knowledge.

In this paper, we revisit the definition of quantum zero knowledge and examine the
importance of the unitarity constraint. First, we increase the power of the honest verifier
by allowing him to flip classical coins in addition to performing unitary quantum opera-
tions. Note that flipping classical coins is not a unitary operation and that coin flips are also
allowed in the classical case. In this new setting, we also strengthen the definition of simula-
tion in order to still catch the essence of Zero-Knowledge protocols. In particular, the verifier
does not “forget” or “erase” these coins, since he remains honest but curious. Even though
this augmentation to the model seems minimal if not trivial, we prove that any classical
interactive proof has a quantum honest-verifier statistical zero-knowledge proof (Section 3)
with coins. Note that in the classical case, honest verifier SZK is no more powerful than
SZK and hence it is not believed to contain even NP. If, on the other hand, we look at
cheating verifiers, we show that the most general cheating strategies for quantum verifiers
are the unitary ones. In Section 4, we transform any general Zero Knowledge protocol into
a unitary protocol that retains completeness, soundness and the zero-knowledge property.

We like to see the consequences of our results from two different points of view. On one
hand, if we want to use the honest verifier model as a means for the study of general zero
knowledge, then the most important property that we would like is the equivalence of the
two models. This way, one only needs to prove that a protocol is zero knowledge against
honest verifiers and immediately conclude that it can also be made zero knowledge against
cheating verifiers. Our results show that in this case, Watrous” definition with unitaries is
indeed the right one, since we give strong evidence that this equivalence does not hold in
the non-unitary case. Moreoover, we prove that the use of non-unitaries does not change
the power of a cheating verifier.

On the other hand, the Honest-but-Curious model (that corresponds to the honest ver-
ifier) is not only a means for the study of the malicious model (that corresponds to the
cheating verifier) but an important model in itself pertinent to many realistic cryptographic
scenarios. For example, in certain settings, we can assume that the verifier is semi-honest
when he interacts with the prover via a secure interface, eg. an ATM or a secure web in-
terface. In this case, it might suffice to assume that the verifier does not open the ATM by
force or hack the webpage, instead he can only provide well-chosen legal inputs to these
machines and try to extract as much information as possible from the interaction.

CHAILLOUX, KERENIDIS FSTTCS 2008

2 Definitions of classical and quantum Statistical Zero Knowl-
edge

An interactive proof system for a problem IT is an interactive protocol between a computa-
tionally unbounded prover P and a probabilistic polynomial-time verifier V that satisfies
the following two properties:
o Completeness: if x is a YES instance of II (x € Ily), then V will accept with probability
greater than 2/3 after interacting with P on common input x.
e Soundness: if x is a NO instance of I (x € Ily), then for every (even computationally
unbounded) prover strategy P*, V will accept with probability less than 1/3 after
interacting with P* on common input x.

DEFINITION 1. We say that a protocol (P, V) solves Il if and only if (P, V) is an interactive
proof system for 1.

In the classical Zero-Knowledge setting, we want the Verifier to learn nothing from
the interaction with the Prover, other than the fact that the input is a Yes instance of the
problem (x € Ily) when it is the case. The way this is formalized is that for x € Ily, one can
simulate in probabilistic polynomial-time the Verifier’s view of the protocol view p v (x), i.e.
his private coins, the messages he received from the Prover and the messages he sent to the
Prover. Note that the view is a distribution depending on the random coins of the Prover
and the Verifier and contains all the information that the Verifier gains by interacting with
the Prover. Specifically,

DEFINITION 2. A protocol (P, V) has the zero-knowledge property for I1 if there exists a
probabilistic polynomial-time simulator S and a negligible function y such that for Vx € Ily,
the simulator outputs a distribution S(x) such that |view p) (x) — S(x)[1 < p(]x|).

In our discussion so far, we have considered the case where the Verifier honestly follows
the protocol but tries to extract as much information as possible from the interaction with
the Prover. In order to do that, the Honest Verifier would keep a copy of all the messages and
his coins throughout the protocol and would not erase or discard any of this information.

We can now define the class of Honest Verifier Statistical Zero Knowledge (HV SZK):

DEFINITION 3. IT € HVSZK iff there exists an interactive protocol (P, V) that solves IT and
that has the zero-knowledge property for I1.

2.1 Honest Verifier Quantum Statistical Zero Knowledge

Quantum Statistical Zero Knowledge proofs are a special case of Quantum Interactive Proofs.

They were defined for honest verifiers by Watrous in [17] and have been also studied in
[8, 18, 9]. We can think of a quantum interactive protocol (P, V)(x) for a promise problem
IT as a circuit (Vi (x), Py (x),..., Vi(x), P(x)) actingon V ® M @ P. V are the Verifier’s pri-
vate qubits, M the message qubits and P the Prover’s private qubits. V;(x) (resp. P;(x))
represents the i action of the Verifier (resp. of the prover) during the protocol and is de-
cribed by a super-operator acting on V ® M (resp. on M ® P). B; corresponds to the state

97

98

INCREASING THE POWER OF THE VERIFIER IN QUANTUM ZERO KNOWLEDGE

in V ® M @ P after the i*" action of the protocol. In other words, By is the initial state, B; is
the state after P; and B,;_1 the one after V.

Defining the Zero-Knowledge property in the quantum setting is not straightforward,
even for the Honest Verifier case. We would still like to say that a quantum protocol has the
zero knowledge property if there exists an efficient way to simulate the Verifier’s view of
the protocol. The main difficulty, however, is the definition of the view of the Verifier, since
in the quantum case there is no notion of transcript. Indeed, the Verifier and Prover send the
same qubits back and forth during the protocol and hence an Honest-but-curious Verifier
cannot follow the protocol and simultaneously keep a copy of all the quantum messages
that have been previously sent.

Watrous ([17]) tried to resolve these problems by defining honest verifier quantum zero
knowledge in the following way: the view of the Honest Verifier for every round j is the
Verifier’s part of the state f;, i.e. viewp) (j) = Trp(B;). We say that the Verifier’s view can
be simulated if there is a negligible function u such that on any input x and for each step j
we can create in quantum polynomial-time a state 0} such that ||o; — viewy p) () || < p(]x|).

We also distinguish the Verifier’s view depending on whether the last action was made
by the Verifier or the Prover. We note py the input state, p; the Verifier’s view after P; and
¢; the Verifier’s view after V;. Note that for a state o with ||o — p;|| < u(]x|) it is easy to see
that 0/ = V;11(0) is close to §;11 = Viy1(p;) in the sense that |0’ — & 1|| < u(]x|). Hence,
we just need to simulate the p;’s and hence

DEFINITION 4. A protocol (P, V) has the zero-knowledge property for Il if there is a neg-
ligible function p such that Vx € Ily and Vj we can create 0; with quantum polynomial
computational power such that ||o; — pjl[r < p(]x]).

Let us look more closely to the ‘round-by-round” definition of the simulation. First,
the fact that we simulate the verifier’s view at every round and not just at the end of the
protocol ensures that the zero knowledge property is retained even if the Honest Verifier
follows the protocol up to some round and then decides to abort.

Second, in order for this definition to be pertinent in the honest but curious model, we
need to ensure that the verifier will retain all the information that he acquires during the
protocol and not forget any of it. One way to ensure this is by restricting the verifier to use
only unitary operations. The intuition is that since unitary operations are reversible, they
do not allow for ‘forgetting” any information. This is precisely the way Watrous defined the
class of Honest Verifier Quantum Statistical Zero Knowledge (HV QSZK):

DEFINITION 5. IT € HVQSZK iff there exists a quantum protocol (P, V) with V using only
unitaries that solves IT and that has the zero-knowledge property for I1.

The above intuition was later confirmed by the fact that indeed Honest Verifier Quan-
tum Statistical Zero Knowledge with unitaries is equivalent to general cheating verifiers

([18]).
2.2 The coin model for Honest Verifier Quantum Zero-Knowledge

As we said, we would like to investigate the importance of the unitarity constraint in the
power of quantum zero knowledge. For this, we define and study a new model for quantum

CHAILLOUX, KERENIDIS FSTTCS 2008

zero-knowledge protocols, where we just allow the verifier to flip classical coins in addition
to performing unitary operations. This is equivalent to saying that the verifier starts with a
private random string r* or in a quantum language that the verifier starts with some private
qubits initialized to |0) — acting as the verifier usual workspace, and additionally some
qubits in the totally mixed state I — acting as the verifier’s initial coins. The verifier uses his
coins (the state II) only as control bits. More formally, if we suppose that the verifier starts
with the state I ® |0) (0| in the space A ® B, then he can only use the space A by applying
unitaries of the form:

U(|x),ly)) = [x) @ |y @ f(x)) with|x) € Aand |y) € B

Note that this constraint just implies that the verifier doesn’t forget his coins. In particular,
he does not discard these bits by sending them to the prover.

In this case, of course, one needs to be very careful with the definition of the simulation
since now, the Verifier has the extra classical information of the coins. Since the interaction
is quantum we still have to consider a ‘round-by-round’ simulation. However, in our defini-
tion of the ‘round-by-round” simulation we need to insist that one must simulate the entire
private random string of the verifier in addition to the quantum view of the Verifier.

Note that apart from these additional initial coins, the verifier is allowed to use only
unitaries like in the original definition of HVQSZK. We can now define H VQSZKE:

DEFINITION 6. II € HVQSZKC iff, there exists a quantum protocol (P,V), where the
verifier’s initial state is (|0) (0])®" ® I,,, that solves I1 and has the zero-knowledge property
for I1. The verifier uses only unitaries and uses his coins (the state I,,) only as control bits.

This model is meant to be a very small augmentation of the original model proposed by
Watrous. Note that the verifier is not able to create by himself the totally mixed state using
only unitaries. It is important to notice that the requirement “the prover uses the state I, as
control bits” means that these coins are always part of his view of the protocol or in other
words that he never forgets his coins.

2.3 The hidden-bits model for Statistical Zero-Knowledge

The hidden-bits model was first defined for Non-Interactive Zero-Knowledge [2], however,
it naturally extends to the interactive case.

DEFINITION 7. We say that the prover has a hidden-bit r with security parameter k iff:
e 1 is a truly random bit known to the prover.
e The verifier has no information about r.
e The prover can reveal the value of the bit r to the Verifier. If he tries to convince the
Verifier that the value is 7 then he will be caught with probability (1 —27F).

DEFINITION 8. IT € HVSZK"B iff there exists a classical protocol (P, V) that solves IT and
has the zero-knowledge property for I1 where the prover starts with a polynomial number
of hidden bits.

We can also define the associated quantum class

99

100

INCREASING THE POWER OF THE VERIFIER IN QUANTUM ZERO KNOWLEDGE

DEFINITION 9. IT € HVQSZK!B iff there exists a quantum protocol (P, V) that solves
IT and has the zero-knowledge property for I1 where the prover starts with a polynomial
number of hidden bits.

Note that the existence of hidden-bits is a very strong assumption. In particular, we
can remark that hidden-bits imply that the prover and verifier can perform bit commitment
with perfect hiding and statistically binding conditions. Bit commitment is a primitive used
in many cryptographic protocols. More formally:

DEFINITION 10. A bit commitment scheme with perfect hiding condition and statistically
binding condition with security parameter k is a scheme with a commit phase and a reveal
phase such that:

e Commit phase: the prover chooses a bit c and commits to it by interacting with the
veritier. At the end of the interaction, the verifier has no information about c (perfectly
hiding).

e Reveal phase: the prover sends a message to the verifier and reveals the commited bit
c. If the prover tries to cheat and reveal ¢ then he will be caught by the verifier with
probability greater than (1 — 27%) (statistically binding).

Note that both classically and quantumly, bit commitment schemes with k > 1 do not
exist unconditionally [11, 12]. However, there is an easy way to do bit commitment which is
perfectly hiding and statistically binding with security parameter k from a hidden bit » with
security parameter k. The prover commits to a bit c by sending ¢ @ r and later reveals r. After
the commit phase the verifier has no information about r (and hence c) and during the reveal
phase the prover cannot lie about r (and hence c) without being caught with probability at
least (1 —27%). Hence, this scheme is a commitment scheme which is perfectly hiding and
statistically binding with security parameter k.

Classically, if we suppose the existence of such a bit commitment scheme, we can create
zero-knowledge protocols for all interactive proofs [1] and since Shamir showed that IP =
PSPACE [15], we have

PSPACE = IP C HVSZK"P

3 The role of coins in Quantum Statistical Zero-Knowledge

In this section we prove our main result, that H VSZKHB C HVQSZKC which implies that
PSPACE C HVQSZKC. We will first present a general method to create hidden-bits out of
shares. We will then show a way to achieve these shares with a quantum honest verifier that
has coins.

3.1 A general method for creating hidden-bits

The method described here is the one used in [14] to create hidden bits from secret help,
which in turn uses ideas from [7] in order to do Oblivious Transfer. For clarity of exposition,
we show how to hide a single bit, but the construction naturally generalizes to n bits by
repeating in parallel.

CHAILLOUX, KERENIDIS FSTTCS 2008

PROPOSITION 11. Let three random bits (so, sl,b) be such that: the prover knows sY and
s! and has no information about b; the verifier knows b and the associated bit s’ but has no

information about s. Then we can create a hidden bit r with security parameter k = 1.

PROOF. From these bits, the associated hidden bit will be r = s° @ s! and s, s! will be
called the shares of r. The way the prover will reveal r is by sending these two shares to the
verifier who checks that they correspond with the one share he has. We now show that r is
a hidden bit with security parameter 1:

e Since s’ and s! are random and known to the prover, then so is 7.

e Since the verifier knows s? but has no information about s, he has no information
about r.
e If the prover tries to lie about r then he has to flip exaclty one of the two shares. He
will get caught if he flips s’ and will not get caught if he flips s’. Since he has no
information about b, he will be caught cheating with probability 1/2.
Note that if we have for each hidden bit r, k independent random couples of shares
(s,s;) such that s) @ s} = r then similarly, we can suppose that r is a hidden-bit with

security parameter k.

3.2 A quantum way of achieving Hidden Bits

From the coins of the verifier, we now show how to create the shares described in the previ-
ous part. As before, we describe the construction of one hidden-bit which easily generalizes
to n bits. We use three qubits of the verifier’s initial totally mixed state (three coins) as
Ypstcefony 0,87, ¢) (b, cl.

As in the previous part, the bit b corresponds to which share the Verifier has and s
corresponds to the value of that share. The bit ¢ corresponds to the value of the other share
in the Hadamard basis, i.e. we define |[c*) = %(|0> + (—1)€|1)). The verifier performs the

unitary U, » . that depends on (b, s, c) and sends the outcome to the Prover.
Uy +[0)]0) — [s7)]c*) and Uyg,:10)]0) — [c*)]s”)

The prover has two qubits which he measures in the computational basis and the out-
comes of this measurement will correspond to the two shares. One of this measurements

will give s” and the other one will give a random bit s'. The hidden bit r is equal to s” @ s
LEMMA 12. The above construction results in a hidden bit r with security parameter 1.

PROOF. B
e The bit r = s” @ 5" is random since the verifier picks s” at random and the outcome
of the measurement of |c*) in the computational basis is also random (hence s’ is
random). Since the prover knows the two shares he knows r.
o The verifier knows a share s” which is random since b is random. He has no infor-
mation about the share s’ since the outcome of the Prover’s measurement of |c*) is

independent of the Verifier’s coins. Hence he has no information about r.

101

102

INCREASING THE POWER OF THE VERIFIER IN QUANTUM ZERO KNOWLEDGE

e b is unknown to the prover: to show this, let p, be the state of the prover conditioned
on the verifier’s coin b

wp.1/4 10,+) wp.1/4 |+,0)

) wp.1/4 |0,—)) wp.1/4 |+,1)
=N wp1/a L+ B PITN wp/a —0)
wp.1/4 [1,-) wp.1/4 |—,1)

We can easily see that pg = p; hence the prover has no information about b. Moreover,
since pg = p1 = I, the prover’s state is equivalent to a mixture of classical pairs of
shares. Since he has no information about b, the prover cannot cheat for any of those
classical pairs of shares with probability striclty greater than 1/2.

We can easily extend the above construction to a hidden-bit with security parameter k
for any polynomial k (by creating k independent pairs of shares for this hidden-bit) and also
to n hidden-bits with security parameter k by just repeating this process n times.

Note also that the unitary used by the verifier uses his coins only as control bits. There-
fore, we can use this construction to create hidden bits in a way which is consistent with our
enhanced notion of simulation and show that HVSZKH"B C HVQSZKC. Let us prove this
fact formally:

PROPOSITION 13. HVSZKHE C HVQSZKC

PROOF.

Let IT a problem in HVSZK"® and (P, V) a classical zero-knowledge protocol with
hidden-bits that solves IT. We create the following quantum protocol (P’, V') where the
verifier starts with the state : (]0)(0|)®" ® I, (acting as his workspace and coins).

e The verifier V' views his coins as the coins of the original verifier V and the coins
needed in order to create hidden bits.

¢ In the beginning of the protocol the verifier uses our construction and creates hidden
bits with security parameter k.

e Then, the prover and verifier both follow the original classical protocol (P, V). Note
that this is possible since any classical circuit C can be transformed into a quantum
unitary circuit Uc such that Uc(|x,0)) = |x, C(x)).

Note that since V' uses his coins as the private randomness of V, he can perform the
classical protocol (P, V) using unitaries.

We now prove that (P, V') is a Zero-Knowledge protocol that solves I1. Completeness
is straightforward from the completeness of the original protocol and the fact that in our
construction the prover can always reveal the correct hidden bits. Concerning soundness:

1. If the prover reveals all the hidden-bits correctly, the soundness of (P, V') is the same
as the soundness of (P, V).

2. If the prover lies on at least one of the hidden-bits he reveals, then the soundness of
(P', V') will be smaller than 2~ since the hidden-bits created have security parameter
k.

To show the zero-knowledge property, we use the fact that we can already simulate the
verifier’s view in the protocol (P, V). This includes the private coins of V, the messages and
in particular, all the hidden-bits ; revealed by the prover.

CHAILLOUX, KERENIDIS FSTTCS 2008

In order to simulate the verifier’s view in the new protocol (P, V) we have to addition-
ally simulate the following:

e all the coins that the verifier V' used in order to create hidden bits.
e The k pairs of shares (s?,s});,j € [k] for every revealed hidden bit r;.

First, the simulator just flips some coins in order to simulate all the random bits the
verifier uses to construct the hidden bits. In particular, for every revealed hidden bit r;, the
simulator has the corresponding bits (b;,s?,¢;);,j € [k]. From these bits and the value of r;
(which we know from the original simulation), we can now create all the couples of shares

(s?,5});. This allows us to simulate the view of the verifier in the protocol (P’, V’).

THEOREM 14. PSPACE C HVQSZKC

PROOFE. From Section 2.3 we know that: PSPACE C HVSZK"B. We now use the fact that
HVSZKHB C HVQSZKC and conclude.

One might think that this surprising result comes from the fact that the round-by-round
simulation is too weak in our setting and that a satisfactory zero-knowledge property is not
achieved. In fact, if we assume that the verifier follows the protocol, then our notion of
simulation is as strong as in the unitary case. The only extra information that the verifier
has in our protocols is the initial random string which we always simulate at every round.

4 Non-unitaries and cheating verifiers
4.1 Definitions

The goal of this section is to describe Watrous’ definition of Quantum Statistical Zero Knowl-
edge (QSZK) for cheating verifiers. Consider a quantum zero-knowledge protocol between
a prover P and a verifier V where the verifier starts with an auxiliary input w. Additionally,
the prover and verifier have as common input the input of the promise problem which is
a classical string. All the operations described hereafter will depend on this input and this
dependence will be omitted.
We will use the following Hilbert spaces for our analysis.
e P the space of the prover.
e M the space where the prover and verifier store the messages they send.
e V the verifier’s workspace initialized to |0).
e W the verifier’s space where the auxiliary input is initially stored.
Let(P,V) = (P, V4,...,P,;, V). Each P;actson P ® M and each V;actson M ®@V @ W.
We can tensor these operations with the identity and suppose that they all act on the space:
PoM®V®W. We can therefore see the whole protocol as a big operation O acting on
P oMoV ®W. More formally:

DEFINITION 15. For any protocol (Py, V4, ..., P,, V) where each V; and P; acts on P ®
M@V ®W (in fact by tensoring the V;’s and P;’s with the identity) we denote by Op,y the
following admissible mapping:

Op,v E(W) H,C,(’P®./\/l®V®T/\/>
W — Vu(Pa(... (Vi(Pr(& ®\w/)))))

ePaMzy W

103

104

INCREASING THE POWER OF THE VERIFIER IN QUANTUM ZERO KNOWLEDGE

where L(X,)) is the set of linear operators from X to), and L(X) = L(X,X). In
particular, any mixed state in X’ can be represented as an element of £(X).

The zero-knowledge property concerns only what the verifier has at the end of the
protocol. Without loss of generality, we can suppose that M is empty since a cheating
verifier can always move the information from M to V at the end of the protocol. Hence,
we will be interested in:

Oy :LW) — LIVRW)

Cw — Trpeom | Va(Pa(... (V1(Py(& ®\Z‘j,)))))
ePoMey €W

which for short we will also denote as Oy = Trpg\Op,v. More generally, for any super-
operator X that outputs in A ® 3, we denote Tr 4 X the super-operator such that (Tr 4 X) (p) =
Tr4(X(p)). We say that Oy is the mapping that corresponds to the verifier’s view of the
protocol. We want to be able to simulate this mapping i.e. be able to create in quantum
polynomial time a mapping > which will act like Oy and this for every auxiliary input w.
We can now define QSZK:

DEFINITION 16. We say that I1 € QSZK if there is a protocol (P,V) = (P, Vi,..., Py, V)
such that:
e Completeness: Vx € Ily, the verifier accepts with probability greater than2/3.
e Soundness: Vx € Ily, and for all prover’s strategies P*, the veritier accepts with prob-
ability smaller than 1/3.
e Zero-knowledge: for any cheating verifier V* (where Oy~ is the mapping associated
to (P,V*)), there is a function y and a mapping X : L(W) — L(V ® W) that can be
computed in quantum polynomial time such that Vx € Ily, we have

[1Ov- = Z[lo < p([x]).

where for any super-operator ®, [|®||, = sup{[|® @ I (z)||w, Z isacomplex Euclidean
space} (see [10] for more details on this diamond norm).

Note that if ¥ uses V* only as a black box, then we can change the order of quantifiers
and have a single mapping X for all possible V*.

In the definition of QSZK, the verifier and the prover can use any physically admissible
operation. We will show that in fact, if the zero-knowledge property holds against cheating
verifiers that only use unitaries then it also holds for cheating verifiers that use any physi-
cally admissible operation. In other words, cheating strategies with unitary operations are
the most general ones.

DEFINITION 17. We say that IT € QSZKUY if there is a protocol (P, V) = (P1,V4,..., Py, Vi)
such that:
e Completeness: Vx € Ily, the verifier accepts with probability greater than2/3.
e Soundness: Vx € Iy, and for all prover’s strategies P*, the veritier accepts with prob-
ability smaller than 1/3.

CHAILLOUX, KERENIDIS FSTTCS 2008

e Zero-knowledge: for any cheating verifier V* that uses unitaries (where Oy- is the
mapping associated to (P, V*)), there is a function y and a mapping ¥ : L(W) —
L(V ® W) that can be computed in quantum polynomial time such that Vx € Ily, we
have

1Oy = Zflo < u(lx])-

4.2 Unitary cheating verifiers are as powerful as general cheating verifiers

In this section, we show that in the case of cheating verifiers, coin flips — and more gen-
erally any non-unitary operations — do not add anything to the power of quantum Zero-
Knowledge. In other words, we show that

PROPOSITION 18. QSZK = QSZKY

PROOF. We have by definition that QSZK C QSZKY. We show now the other inclu-
sion. The main idea is to say that each time the verifier uses a non-unitary, he can use a
larger unitary which will act as a purification of this non-unitary which will only give him
more information. More formally, we use the following fact that is a direct corollary of the
purification lemma. (see [13]).

LEMMA 19. Let C a quantum non-unitary circuit acting on a space A. There is a space B of
same dimension as A and a unitary circuit C acting on A @ B such that TrzC = C.

Now consider a protocol (P,V) = (P, V4,...,P,, V) which has the zero-knowledge
property for any unitary cheating verifier V. Consider a cheating verifier V*, the protocol
(P,V*) = (P, V},..., P, V) and its associated mapping Oy- from L(V) to L(V @ W).
Recall that:

Ov+ = Trpgpm (PpoV, o...0oP o V[)

Consider now n additional Hilbert spaces .4 through A, and admissible mappings ‘71* such
that
ViTr Vi =V

The spaces A; are Hilbert spaces that the verifier possesses. Let us look at the protocol
(P,V*) = (P, V},..., Py, Vi) and Oy. the associated mapping for the verifier. This mapping
is a mapping from L(W) to L(A1 ® ... ® A, ® V ® W). We know that there is a mapping
. computable in quantum polynomial time such that ||Oy. — X||o < p(|x]).

By construction, we know that Oy« = Tr 4,4..9.4,Oy.. Consider Y =Trpge. 04,2 We
can easily conclude that

[10v: = 2'[|o < p(|x])

and that X’ is quantum polynomial time computable which concludes our proof.

References

[1] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Hastad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In
CRYPTO ’88: Proceedings on Advances in cryptology, pages 37-56, New York, NY, USA,
1990. Springer-Verlag New York, Inc.

105

106

INCREASING THE POWER OF THE VERIFIER IN QUANTUM ZERO KNOWLEDGE

[2] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1-28, 2000.

[3] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM |. Comput., 18(1):186-208, 1989.

[4] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690-
728,1991.

[5] Oded Goldreich. Foundations of Cryptography, volume Basic Tools. Cambridge Univer-
sity Press, 2001.

[6] Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In STOC ‘98: Proceedings of the
thirtieth annual ACM symposium on Theory of computing, pages 399-408, New York, NY,
USA, 1998. ACM.

[7] Joe Kilian. Founding crytpography on oblivious transfer. In STOC "88: Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 20-31, New York,
NY, USA, 1988. ACM Press.

[8] Hirotada Kobayashi. Non-interactive quantum perfect and statistical zero-knowledge.
ISAAC '03: International Symposium on Algorithms And Computation, 2906:178-188, 2003.

[9] Hirotada Kobayashi. General Properties of Quantum Zero-Knowledge Proofs. ArXiv
Quantum Physics e-prints, quant-ph/0705.1129, May 2007.

[10] A.Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation. Amer-
ican Mathematical Society, Boston, MA, USA, 2002.

[11] Hoi-Kwong Lo and H. F. Chau. Is quantum bit commitment really possible? Phys. Rev.
Lett., 78(17):3410-3413, Apr 1997.

[12] Dominic Mayers. Unconditionally secure quantum bit commitment is impossible.
Phys. Rev. Lett., 78(17):3414-3417, Apr 1997.

[13] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information.
Cambridge University Press, New York, NY, USA, 2000.

[14] Rafael Pass and abhi shelat. Unconditional Characterizations of Non-Interactive Zero-
Knowledge. In CRYPTO 05, pages 118-134. Springer Berlin / Heidelberg, 2005.

[15] Adi Shamir. IP = PSPACE.]. ACM, 39(4):869-877, 1992.

[16] Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, 1999.
Supervisor-Shafi Goldwasser.

[17] John Watrous. Limits on the power of quantum statistical zero-knowledge. In FOCS
'02: Proceedings of the 43rd Symposium on Foundations of Computer Science, pages 459-468,
Washington, DC, USA, 2002. IEEE Computer Society.

[18] John Watrous. Zero-knowledge against quantum attacks. In STOC ’06: Proceedings of
the thirty-eighth annual ACM Symposium on Theory of Computing, pages 296-305, New
York, NY, USA, 2006. ACM Press.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 107-118

Algorithms for Game Metrics*

Krishnendu Chatterjee !, Luca de Alfaro !, Rupak Majumdar 2,
Vishwanath Raman !

! University of California, Santa Cruz
{c_krish,luca, vi shwa}@oe. ucsc. edu

2 University of California, Los Angeles
rupak@s. ucl a. edu

ABSTRACT. Simulation and bisimulation metrics for stochastic systems provide a quantitative gen-
eralization of the classical simulation and bisimulation relations. These metrics capture the similarity
of states with respect to quantitative specifications written in the quantitative y-calculus and related
probabilistic logics.

We present algorithms for computing the metrics on Markov decision processes (MDPs), turn-
based stochastic games, and concurrent games. For turn-based games and MDPs, we provide a
polynomial-time algorithm based on linear programming for the computation of the one-step metric
distance between states. The algorithm improves on the previously known exponential-time algo-
rithm based on a reduction to the theory of reals. We then present PSPACE algorithms for both
the decision problem and the problem of approximating the metric distance between two states,
matching the best known bound for Markov chains. For the bisimulation kernel of the metric, which
corresponds to probabilistic bisimulation, our algorithm works in time O(n*) for both turn-based
games and MDPs; improving the previously best known O(n? - log(n)) time algorithm for MDPs.
For a concurrent game G, we show that computing the exact distance between states is at least as
hard as computing the value of concurrent reachability games and the square-root-sum problem
in computational geometry. We show that checking whether the metric distance is bounded by
a rational 7, can be accomplished via a reduction to the theory of real closed fields, involving a

formula with three quantifier alternations, yielding O(|G|?(C")) time complexity, improving the

previously known reduction with O(\G|O(|G‘7)) time complexity. These algorithms can be iterated
to approximate the metrics using binary search.

1 Introduction

System metrics constitute a quantitative generalization of system relations. The bisimula-
tion relation captures state equivalence: two states s and ¢ are bisimilar if and only if they
cannot be distinguished by any formula of the p-calculus [4]. The bisimulation metric cap-
tures the degree of difference between two states: the bisimulation distance between s and ¢
is a real number that provides a tight bound for the difference in value of formulas of the
quantitative y-calculus at s and t [9]. A similar connection holds between the simulation
relation and the simulation metric.

The classical system relations are a basic tool in the study of boolean properties of sys-
tems, that is, the properties that yield a truth value. As an example, if a state s of a transition

*This research was supported in part by the NSF grants CCR-0132780 and CNS-0720884.

© Chatterjee, de Alfaro, Majumdar, Raman; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1745

108 ALGORITHMS FOR GAME METRICS

system can reach a set of target states R, written s = OR in temporal logic, and ¢ can simu-
late s, then we can conclude ¢t |= OR. System metrics play a similarly fundamental role in
the study of the quantitative behavior of systems. As an example, if a state s of a Markov
chain can reach a set of target states R with probability 0.8, written s |= P>ogOR, and if
the metric simulation distance from ¢ to s is 0.3, then we can conclude ¢ = P>o5¢OR. The
simulation relation is at the basis of the notions of system refinement and implementation,
where qualitative properties are concerned. Similarly, simulation metrics provide a notion
of approximate refinement and implementation for quantitative properties.

We consider three classes of systems:

e Markov decision processes. In these systems there is one player. At each state, the player
can choose a move; the current state and the move determine a probability distribution
over the successor states.

o Turn-based games. In these systems there are two players. At each state, only one of the
two players can choose a move; the current state and the move determine a probability
distribution over the successor states.

e Concurrent games. In these systems there are two players. At each state, both players
choose moves simultaneously and independently; the current state and the chosen
moves determine a probability distribution over the successor states.

System metrics were first studied for Markov chains and Markov decision processes (MDPs)
[9, 18, 19], and they have recently been extended to two-player turn-based and concurrent
games [8]. The fundamental property of the metrics is that they provide a tight bound for the
difference in value that formulas belonging to quantitative specification languages assume
at the states of a system. Precisely, let gy indicate the quantitative u-calculus, a specification
language in which many of the classical specification properties, including reachability and
safety properties, can be written [7]. The metric bisimulation distance between two states s
and t, denoted [s ~, t], has the property that [s ~, t] = SUP g |@(s) — ¢(t)|, where ¢(s)
and ¢(t) are the values ¢ assumes at s and f. A metric is associated with a kernel: the kernel
of a metric is the relation that relates pairs of states at distance 0; to each metric corresponds
a metric kernel relation. The kernel of the simulation metric is probabilistic simulation; the
kernel of the bisimulation metric is probabilistic bisimulation [15].

We investigate algorithms for the computation of the metrics. The metrics can be com-
puted in iterative fashion, following the inductive way in which they are defined. A metric
d can be computed as the limit of a monotonically increasing sequence of approximations
do, dq, dy, ..., where dy(s, t) is the difference in value that variables can have at states s and
t. For k > 0, di1 is obtained from dj via dy,1 = H(dy), where the operator H depends on
the metric (bisimulation, or simulation), and on the type of system. Our main results are as
follows:

1. Metrics for turn-based games and MDPs. We show that for turn-based games, and
MDPs, the one-step metric operator H for both bisimulation and simulation can be
computed in polynomial time, via a reduction to linear programming (LP). The only
previously known algorithm, which can be inferred from [8], had EXPTIME complex-
ity and relied on a reduction to the theory of real closed fields; the algorithm thus
had more a complexity-theoretic, than a practical value. The key step in obtaining our
polynomial-time algorithm consists in transforming the original sup-inf non-linear op-

CHATTERJEE, DE ALFARO, MAJUMDAR, RAMAN FSTTCS 2008

timization problem (which required the theory of reals) into a quadratic-size inf linear
optimization problem that can be solved via LP. We then present PSPACE algorithms
for both the decision problem of the metric distance between two states and for the
problem of computing the approximate metric distance between two states for turn-
based games and MDPs. Our algorithms match the complexity of the best known
algorithms for the sub-class of Markov chains [17].

2. Metrics for concurrent games. For concurrent games, our algorithms for the H opera-
tor still rely on decision procedures for the theory of real closed fields, leading to an
EXPTIME procedure. However, the algorithms that could be inferred from [8] had
time-complexity O(|G|®(C")), where |G| is the size of a game; we improve this result
by presenting algorithms with O(|G|©(CG)) time-complexity.

3. Hardness of metric computation in concurrent games. We show that computing the exact
distance of states of concurrent games is at least as hard as computing the value of
concurrent reachability games [10], which is known to be at least as hard as solving
the square-root-sum problem in computational geometry. These two problems are
known to lie in PSPACE, and have resisted many attempts to show that they are in
NP.

4. Kernel of the metrics. We present polynomial time algorithms to compute the simu-
lation and bisimulation kernel of the metrics for turn-based games and MDPs. Our
algorithm for the bisimulation kernel of the metric runs in time O(n*) (assuming a
constant number of moves) as compared to the previous known O(n? - log(n)) algo-
rithm of [21] for MDPs, where 7 is the size of the state space. For concurrent games the
simulation and the bisimulation kernel can be computed in time O(| G|©UGP)), where
|G| is the size of a game.

Our formulation of probabilistic simulation and bisimulation differs from the one pre-
viously considered for MDPs in [1]: there, the names of moves (called “labels”) must be
preserved by simulation and bisimulation, so that a move from a state has at most one
candidate simulator move at another state. Our problem for MDPs is closer to the one con-
sidered in [21], where labels must be preserved, but where a label can be associated with
multiple probability distributions (moves).

For turn-based games and MDPs, the algorithms for probabilistic simulation and bisim-
ulation can be obtained from the LP algorithms that yield the metrics. For probabilistic sim-
ulation, the algorithm we obtain coincides with the algorithm of [21]. The algorithm requires
the solution of feasibility-LP problems with a number of variables and inequalities that is
quadratic in the size of the system. For probabilistic bisimulation, we are able to improve on
this result by providing an algorithm that requires the solution of feasibility-LP problems
that have linearly many variables and constraints. Precisely, as for ordinary bisimulation,
the kernel is computed via iterative refinement of a partition of the state space [14]. Given
two states that belong to the same partition, to decide whether the states need to be split in
the next partition-refinement step, we present an algorithm that requires the solution of a
teasibility-LP problem with a number of variables equal to the number of moves available
at the states, and number of constraints linear in the number of equivalence classes. The
proofs omitted due to lack of space are available in [6].

109

110 ALGORITHMS FOR GAME METRICS

2 Definitions

Valuations and distributions. Let [61,60,] C IR be a fixed, non-singleton real interval. Given a
set of states S, a valuation over S is a function f : S +— [0y, 6] associating with every state
s € Savalue 6, < f(s) < 6y, we let F be the set of all valuations. For ¢ € [0, 6,], we denote
by c the constant valuation such that ¢(s) = c atall s € S. We order valuations pointwise:
for f,g € F,wewrite f < giff f(s) < g(s) atall s € S; we remark that F, under <, forms a
lattice. Given a,b € R, we write aLlb = max{a, b}, and aMb = min{a, b}; we extend M, L to
valuations by interpreting them in pointwise fashion. For a finite set A, let Dist(A) denote
the set of probability distributions over A. We say that p € Dist(A) is deterministic if there is
a € A such that p(a) = 1. We assume a fixed finite set V of observation variables.

Game structures. A (two-player, concurrent) game structure G = (S, [-], Moves, T'1,T,5) con-
sists of the following components: (a) a finite set S of states; (b) a variable interpreta-
tion [-] : V +— S > [01,0:], which associates with each variable v € V a valuation
[0]; (c) a finite set Moves of moves; (d) two move assignments I'y,[p: S — 2Mowes \ @
: for i € {1,2}, the assignment I'; associates with each state s € S the nonempty set
I'i(s) € Moves of moves available to player i at state s; and (e) a probabilistic transition
function d: S x Moves x Moves — Dist(S), that gives the probability (s, a1,a2)(f) of a tran-
sition from s to t when player 1 plays move a; and player 2 plays move a;.

Atevery state s € S, player 1 chooses a move a; € I'(s), and simultaneously and inde-

pendently player 2 chooses a move a; € I'>(s). The game then proceeds to a successor state
t € S with probability 6(s,a1,a2)(t). We let Dest(s,a1,a2) = {t € S | §(s,a1,a2)(t) > 0}. The
propositional distance p(s,t) between two states s, € S is the maximum difference in valu-
ation over all variables: p(s,t) = max,cy |[0](s) — [0](#)]. The kernel of the propositional
distance induces an equivalence on states: for states s,t, we let s = ¢t if p(s,t) = 0. In the
following, unless otherwise noted, the definitions refer to a game structure G with compo-
nents (S, [-], Moves, T'1, T2,). We indicate the opponent of a playeri € {1,2} by ~i =3 —i.
We consider the following subclasses of games.
Turn-based game structures and MDPs. A game structure G is turn-based if S = 51 U S, with
S1 NSy = @ where s € Sy implies |T2(s)| = 1, and s € S, implies |T'1(s)| = 1, and further,
there exists a special variable turn € V, such that [turn|s = 6, iff s € Sy, and [turn]s = 60, iff
s € Sp. Fori € {1,2}, we say that a structure is an i-MDP if Vs € S, |T'.;(s)| = 1. For MDPs,
we omit the (single) move of the player without a choice of moves, and write (s, a) for the
transition function.

Moves and strategies. A mixed move is a probability distribution over the moves avail-
able to a player at a state. We denote by D;(s) C Dist(Moves) the set of mixed moves
available to player i € {1,2} ats € S, where: D;(s) = {D € Dist(Moves) | D(a) >
0 impliesa € Ti(s)}. The moves in Moves are called pure moves. We extend the tran-
sition function to mixed moves by defining, for s € S and x; € Di(s), xo2 € Da(s),
5(s,x1,%2)(t) = Yajery(s) Lasera(s) 6(5,a1,a2)(t) - x1(a1) - x2(a2). A path o of G is an infi-
nite sequence s, 51,52, ... of states in s € S, such that for all k > 0, there are mixed moves
xk € Dy (s¢) and x5 € Dy (s¢) with 6(sg, x%, x5) (sx1) > 0. We write T for the set of all paths,
and X the set of all paths starting from state s.

A strategy for player i € {1,2} is a function 7t; : ST +— Dist(Moves) that associates with

CHATTERJEE, DE ALFARO, MAJUMDAR, RAMAN FSTTCS 2008

every non-empty finite sequence ¢ € S* of states, representing the history of the game, a
probability distribution 77;(c), which is used to select the next move of player i; we require
that for all o € S* and states s € S, if 7r;(0s)(a) > 0, then a € T;(s). We write IT; for the set
of strategies for player i. Once the starting state s and the strategies 7r; and 71, for the two
players have been chosen, the game is reduced to an ordinary stochastic process, denoted
G4, which defines a probability distribution on the set ¥ of paths. We denote by Pr"/72(+)
the probability of a measurable event with respect to this process, and denote by E"™(-)
the associated expectation operator. For k > 0, we let X : ¥ — S be the random variable
denoting the k-th state along a path.

One-step expectations and predecessor operators. Given a valuation f € F, a state s € S, and
two mixed moves x; € Di(s) and x, € Dy(s), we define the expectation of f from s under
x1, X2 by B3 2(f) = Yes 6(s,x1,%2)(t) f(t). For a game structure G, for i € {1,2} we
define the valuation transformer Pre; : F — F: forall f € F ands € S, Pre;(f)(s) =
SUP, cp,(s) INfy ep (s Es" (). Intuitively, Pre;(f)(s) is the maximal expectation player
i can achieve of f after one step from s: this is the standard “one-day” or “next-stage”
operator of the theory of repeated games [11].

Game bisimulation and simulation metrics. A directed metric is a function d : S> — IR which
satisfies d(s,s) = 0 and the triangle inequality d(s,t) < d(s,u) +d(u,t) for all s, t,u € S. We
denote by M C S? — R the space of all directed metrics; this space, ordered pointwise,
forms a lattice which we indicate with (M, <). Since d(s, t) may be zero for s # t, these
functions are pseudo-metrics as per prevailing terminology [18]. In the following, we omit
“directed” and simply say metric when the context is clear.

For a metric d, we indicate with C(d) the set of valuations k € F where k(s) — k(t) <
d(s,t) for every s,t € S. A metric transformer H<, : M — M is defined as follows, for all
d e Mands,t € S: Hx,(d)(s, t) = p(s,t) Usupyccq) (Prei (k) (s) — Preq(k)(t)). The player 1
game simulation metric [<1] is the least fixpoint of H,; the game bisimulation metric [~] is the
least symmetrical fixpoint of H<, and is defined as follows, for alld € M and s,t € S:

He, (d)(s,1) = He, (d)(s,8) U Ho, (d) (15) - M

The operator H<, is monotonic, non-decreasing and continuous in the lattice (M, <). We
can therefore compute H, using Picard iteration; we denote by [<}] = H” (0) the n-iterate
of this. From the determinacy of concurrent games with respect to w-regular goals [12], we
have that the game bisimulation metric is reciprocal, in that [~] = [~]; we will thus simply
write [~,]. Similarly, for all s, € S we have [s <1 t] = [t <2 s].

The main result in [8] about these metrics is that they are logically characterized by the
quantitative p-calculus of [7]. We omit the formal definition of the syntax and semantics
of the quantitative y-calculus (see [7] for details). Given a game structure G, every closed
formula ¢ of the quantitative p-calculus defines a valuation [¢] € F. Let gu (respectively,
qu;) consist of all quantitative p-calculus formulas (respectively, all quantitative y-calculus
formulas with only the Pre; operator and all negations before atomic propositions). The
result of [8] shows that for all states s,t € S,

[s =1 t] = sup ([¢l(s) - [¢] (1)) [s =g] = sup [[¢](s) = [@]()] . ()

pequf pEqu

111

112 ALGORITHMS FOR GAME METRICS

Metric kernels. The kernel of the metric [~,] defines an equivalence relation ~, on the states
of a game structure: s ~, t iff [s ~, t] = 0; the relation ~, is called the game bisimulation
relation [8]. We define the game simulation preorder s <; t as the kernel of the directed
metric [<1], thatis, s <y tiff [s <; t] = 0. For notational ease, given a relation R C S x S,
we denote by 1z : S x S +— {0, 1} its characteristic set, defined as 1g(s, t) = 1iff (s,t) € R.
Given a relation R C S x S, let B(R) C F consist of all valuations k € F such that, for all
s, t € S,if sRt then k(s) < k().

3 Algorithms for Turn-Based Games and MDPs

In this section, we present algorithms for computing the metric and its kernel for turn-based
games and MDPs. We first present a polynomial time algorithm to compute the operator
H< (d) that gives the exact one-step distance between two states, for i € {1,2}. We then
present a PSPACE algorithm to decide whether the limit distance between two states s and
t (i.e., [s =1 t]) is at most a rational value r. Our algorithm matches the best known bound
for the special class of Markov chains [17]. Finally, we present improved algorithms for the
important case of the kernel of the metrics. For the bisimulation kernel our algorithm is
significantly more efficient compared to previous algorithms.

Algorithms for the metrics. For turn-based games and MDPs, only one player has a choice
of moves at a given state. We consider two player 1 states. A similar analysis applies to
player 2 states. We remark that the distance between states in S; and S..; is always 6, — 6;
due to the existence of the variable turn. For a metricd € M, and states s, t € S;, computing
H<,(d)(s,t), given that p(s, t) is trivially computed by its definition, entails evaluating the
eXPIession, SUPy.c (4 SUPyep, (s) iNfyep, () (ES (k) — IE/(k)). By expanding the expectations,
we get the following form,

sup sup inf () Y 6(s,a)(u)-x(a)-k(u) =) Y &(tb)(v)-y(b)-k(v)). (3)

keC(d) x€D1(s) yeD1(t) ueSacly(s) vES beT (t)

We observe that the one-step distance as defined in (3) is a sup-inf non-linear (quadratic) op-
timization problem. The following lemma transforms (3) to an inf linear optimization prob-
lem, which can be solved by linear programming.

Lemma 1 For all turn-based game structures G, for all player i states s and t, given a metric
d € M, the following equality holds,

sup sup inf (EX(k) —E/(k)) = sup inf sup (E’(k)—E/(k)).
keC(d) xeD;(s) yeD;(t) a€l;(s) yeD;(t) keC(d)

Therefore, given d € M, we can write the player 1 one-step distance between states s
and t as follows,

OneStep(s,t,d) = sup inf sup (E?(k) —E](k)) . 4)
a€Tq(s) yeDy(t) keC(d)

Hence we compute the expression OneStep(s, t,d,a) = inf ., (1) SUPkec(a) (E?(k) — EJ (k))
for all a € Ty(s), and then choose the maximum: max,cr,) OneStep(s, ,d,a). We now

CHATTERJEE, DE ALFARO, MAJUMDAR, RAMAN FSTTCS 2008 113

present a lemma that helps to reduce the above inf-sup optimization problem to a linear
program. We first introduce some notation. Let A denote the set of variables A, ,, for u,v €
S. Givend € M, a € Ty(s), and a distribution y € D;(t), we write A € ®(d,a,y) if the
following linear constraints are satisfied:

(1) forallo € S:) Ayy = 6(s,a)(v); @ forallueS:) Ayo= Y. y(b)-56(tb)(u);
ues vES bel(t)
@) forallu,v e S:A,, >0.

Lemma 2 For all turn-based games and MDPs, for alld € M, and for all s,t € S, we have

sup inf sup (E?(k) —E{(k)) = sup inf inf) d(u,v)-/\u,v> :
acTy(s) yeDy(t) keC(d) acTq(s) yeD1(t) Ae®(d,a,y) "u,veS

Using the above result we obtain the following LP for OneStep(s, t,d,a) over the vari-
ables: (a) { Ao fuves, and (b) y, for b € Ty (#):

Minimize Z d(u,v)-Ayy subject to (5)

u,veS

(1) forallv e S: Z Ao = 6(s,a)(v); (2)forallu € S : Z/\u,v = Z Yy - 6(8,b)(u);

ues veS bel (1)
@) forallu,v e S: A, >0; (4)forallb € T1(t) :yp > 0; 5) Z yp=1.
berl(t)

Theorem 1 For all turn-based games and MDPs, given d € M, for all states s,t € S, we can
compute H<, (d)(s, t) in polynomial time by the LP (5).

Iteration of OneStep(s, t,d) converges to the exact distance. However, in general, there
are no known bounds for the rate of convergence. We now present a decision procedure
to check whether the exact distance between two states is at most a rational value r. We
first show a way to express the predicate d(s,) = OneStep(s, t,d), for a given d € M. We
observe that since Hx, is non-decreasing, we have OneStep(s, t,d) > d(s,t). It follows that
the equality d(s, t) = OneStep(s, t, d) holds iff all the linear inequalities of LP (5) are satisfied,
and d(s,t) = Y, ves d(u,v) - Ay holds. It then follows that d(s, t) = OneStep(s, t,d) can be
written as a predicate in the theory of real closed fields. Given a rational r, two states s and
t, we present an existential theory of reals formula to decide whether [s <; t] < r. Since
[s <1 t] is the least fixed point of H<,, we define a formula ®(r) that is true iff [s <7 {] <7,
as follows: ®(r) = 3d € M.[(OneStep(s,t,d) = d(s,t)) A (d(s,t) < r)]. If the formula ®(r)
is true, then there is a fixpoint that is bounded by r, which means that the least fixpoint is
bounded by r. Conversely, if the least fixpoint is bounded by r, then the least fixpoint is a
witness d for ®(r) being true. Since the existential theory of reals is decidable in PSPACE [5],
we have the following result.

Theorem 2 (Decision complexity for exact distance). For all turn-based games and MDPs,
Qiven a rational r, and two states s and t, whether [s <1 t] < r can be decided in PSPACE.

114 ALGORITHMS FOR GAME METRICS

Approximation. For a rational € > 0, using binary search and O(log(@)) calls to check
®(r), we can obtain an interval [/, u] with u — I < e such that [s <; ¢] lies in the interval
(1, u].

Algorithms for the kernel. The kernel of the simulation metric <1 can be computed as
the limit of the series <9, <1, <2, ..., of relations. For all s,t € S, we have (s,t) €=<{ iff
s = t. Forall n > 0, we have (s, t) ng”'l iff OneStep(s, t, 157) = 0. Checking the condition
OneStep(s, t, 1<x) = 0, corresponds to solving an LP feasibility problem for every a € I'i(s),
as it suffices to replace the minimization goal v = },, ,es 1<# (4, 0) - Ayp with the constraint
v = 0in the LP (5). This is the same LP feasibility problem that was introduced in [21] as
part of an algorithm to decide simulation of probabilistic systems in which each label may
lead to one or more distributions over states.

For the bisimulation kernel, we present a more efficient algorithm, which also improves
on the algorithms presented in [21]. The idea is to proceed by partition refinement, as usual
for bisimulation computations. The refinement step is as follows: given a partition, two
states s and t belong to the same refined partition iff every pure move from s induces a
probability distribution on equivalence classes that can be matched by mixed moves from ¢,
and vice versa. Precisely, we compute a sequence oY ol 92 ..., of partitions. Two states
s, t belong to the same class of QY iff they have the same variable valuation (i.e., iff s = ¢).
For n > 0, since by the definition of the bisimulation metric given in (1), [s ~¢ t] = 0 iff
[s <1 t] = 0and [t =1 s] = 0, two states s, f in a given class of Q" remain in the same class
in Q"*1iff both (s, t) and (t,s) satisfy the set of feasibility LP problems OneStepBis(s, t, Q")
as given below:

OneStepBis(s, t, Q) consists of one feasibility LP problem for each a € I'(s). The
problem for a € I'(s) has set of variables {x; | b € T'(t)}, and set of constraints:

(1) forallb € T(t) : x5, >0, (2) Z xp =1,

bel(t)
G forallVe Q: Y Y x-6(tb)(u)>) 6(s,a)(u).
bel(t) ucV ueV

Complexity. The number of partition refinement steps required for the computation of both
the simulation and the bisimulation kernel is bounded by O(|S|?) for turn-based games and
MDPs, where S is the set of states. At every refinement step, at most O(|S|?) state pairs
are considered, and for each state pair (s, t) at most |I'(s)| LP feasibility problems needs to
be solved. Let us denote by LPF(n, m) the complexity of solving the feasibility of m linear
inequalities over n variables. We obtain the following result.

Theorem 3 For all turn-based games and MDPs G, the following assertions hold: (a) the sim-
ulation kernel can be computed in O (n* - m - LPF(n® + m, n* 4+ 2n + m + 2)) time; and (b) the
bisimulation kernel can be computed in O (n* - m - LPF(m, n + m + 1)) time; where n = |S| is the
size of the state space, and m = maxges |T'(s)].

Remarks: The best known algorithm for LPF(n, m) works in time O(n?° - log(n)) [20] (as-
suming each arithmetic operation takes unit time). The previous algorithm for the bisim-
ulation kernel checked two way simulation and hence has the complexity O(n* - m - (n? +
m)23 -log(n? + m)), whereas our algorithm works in time O(n* - m - m?> - log(m)). For most

CHATTERJEE, DE ALFARO, MAJUMDAR, RAMAN FSTTCS 2008

practical purposes, the number of moves at a state is constant (i.e., m is constant). For the
case when m is constant, the previous best algorithm worked in O (n° - log(n)) time, whereas
our algorithm works in time O(n*).

4 Algorithms for Concurrent Games

In this section we first show that the computation of the metric distance is at least as hard as
the computation of optimal values in concurrent reachability games. The exact complexity
of the latter is open, but it is known to be at least as hard as the square-root sum problem,
which is in PSPACE but whose inclusion in NP is a long-standing open problem [10]. Next,
we present algorithms based on a decision procedure for the theory of real closed fields, for
both checking the bounds of the exact distance and the kernel of the metrics. Our reduction
to the theory of real closed fields removes one quantifier alternation when compared to the
previous known formula (inferred from [8]). This improves the complexity of the algorithm.

Reduction of reachability games to metrics. We will use the following terms in the result.
A proposition is a boolean observation variable, and we say a state is labeled by a proposition
q iff q is true at s. For a proposition g, let &g denote the set of paths that visit a state labeled
by g at least once. In concurrent reachability games, the objective is g, for a proposition .
Theorem 4 Consider a concurrent game structure G, with a single proposition q. We can con-
struct in linear-time a concurrent game structure G', with one additional state t', such that for all
s € S, we have
[s <1 ¥]= sup inf Pr[v™(<0gq).
melly mell,

Algorithms for the metrics. We present a lemma that helps obtain reduced-complexity
algorithms for concurrent games. The lemma states that the distance [s <;] is attained by
restricting player 2 to pure moves at state ¢, for all states s,t € S.

Lemma 3 Given a game structure G and a distance d € M, we have

sup sup inf sup inf (EX*2(k))—E{""(k))
kEC(d) x1€Ds (S) yleDl(t) yzEDZ(f) XzEDz(S)
= sup sup inf sup inf (EJ*(k)—]E;jl’b(k)) . (6)
kEC(d) x1€D, (S) Y1 EDl(t) berz(t) JCQGDz(S)

We now present algorithms for metrics in concurrent games. Due to the reduction
from concurrent reachability games, shown in Theorem 4, it is unlikely that we have an
algorithm in NP for the metric distance between states. We therefore construct statements
in the theory of real closed fields, firstly to decide whether [s <; t] < 7, for a rational 7, so
that we can approximate the metric distance between states s and ¢, and secondly to decide
if [s <1 t] = 0in order to compute the kernel of the game simulation and bisimulation
metrics.

The statements improve on the complexity that can be achieved by a direct translation
of the statements of [8] to the theory of real closed fields. The complexity reduction is based
on the observation that using Lemma 3, we can replace a sup operator with finite conjunc-
tion, and therefore reduce the quantifier complexity of the resulting formula. Fix a game

115

116 ALGORITHMS FOR GAME METRICS

structure G and states s and t of G. We proceed to construct a statement in the theory of
reals that can be used to decide if [s <1 t] <7, for a given rational r.

In the following, we use variables x1, y; and x, to denote a set of variables {x;(a) | a €
T1(s)}, {yi(a) | a € T1(t)} and {x2(b) | b € T2(s)} respectively. We use k to denote the set
of variables {k(u) | u € S}, and d for the set of variables {d(u,v) | u,v € S}. The variables
a, o, B, B’ range over reals. For convenience, we assume I'p(t) = {by,...,0;}.

First, notice that we can write formulas that state that a variable x is a mixed move for
a player at state s, and k is a constructible predicate (i.e., k € C(d)):

IsDist(x,T1(s)) = A\ x(a) >0A A x(a) <1A) x(a)=1

acly(s) aeTq(s) acTy(s)

kBounded(k,d) = N\ |k(u) > 61 ANk(u) < 0| A\ (k(u) —k(v) < d(u,0)) .

ues u,0eS

In the following, we write bounded quantifiers of the form “3x; € D;(s)” or “Vk € C(d)”
which mean respectively Jx;.IsDist(x1,T'1(s)) A - - - and Vk.kBounded(k,d) — - - -.

Let 77(k, x1, X2, y1, b) be the polynomial EX*2 (k) — IEY" (k). Notice that is a polynomial
of degree 3. We construct the formula for game simulation in stages. First, we construct a
formula ®4(d, k, x, «) with free variables d, k, x, & such that ®,(d, k, x1, «) holds for a valua-
tion to the variables iff & = inf, cp, (1) SUPyer, (1) infryey (s (EX™ (k) —]Egl'b(k)). We use the
following observation to move the innermost inf ahead of the sup over the finite set I'>(¢)
(for a function f):

sup inf f(b,xp,x)= inf ... inf max(f(bl,xgl,x),...,f(bl,xg’,x)).

bel, () ¥2€D2(s) BLEDy(s) x) eDy(s)

Using the above observation the formula ®4(d, k, x1, &) can be written as a V3 formula (i.e.,
with one quantifier alternation) in the theory of reals (see [6] for the formula). Using &4,
we construct a formula ®(d, «) with free variables d and a such that ®(d, «) is true iff: & =

. . b .
SUPgec(d) SUPy, D, () 1Ny, ep, (1) SUPpery (1) INfryepy(s) (B3 (k) — E/""(k)). The formula ® is
defined as follows:

Vk € C(d).Vx; € D1(s).VB.Va'.

q)l(d/klxlfﬁ) - (ﬁ < a)/\ 7)
(VK" € C(d).Vx} € Di(s). VB .D1(d, K, x}, B)NB < ') = a <o
Finally, given a rational r, we can check if [s <; t| < r by checking if the following sentence
is true: 3d € M.3a € M.[®(d,a) A (d = a) A (d(s,t) < r)]. The above sentence is true
iff the least fixpoint is bounded by r. Like in the case of turn-based games and MDPs,
given a rational € > 0, using binary search and O(log(@)) calls to a decision procedure
to check the above sentence, we can compute an interval [/, u] with u — 1 < ¢, such that
[s <1 t] € [l ul.

Complexity. Note that ® is of the form V3V, because @, is of the form V3, and appears in
negative position in ®. The formula ® has (|S| + |T'1(s)| + 3) universally quantified vari-

ables, followed by (|S| + [T1(s)| +3 +2(|T1(£)| + |T2(s)| - [T2(t)| + |T2(¢)| + 2)) existentially

CHATTERJEE, DE ALFARO, MAJUMDAR, RAMAN FSTTCS 2008

quantified variables, followed by 2(|T'1(f)| + |T2(s)| - |T2(t)| + |T2(¢)| + 1) universal vari-
ables. The sentence for the least fixpoint introduces |S|? + |S|? existentially quantified vari-
ables ahead of ®. The matrix of the formula is of length at most quadratic in the size of
the game, and the maximum degree of any polynomial in the formula is 3. We define the
size of a game G as: |G| = [S| + |T|, where |T| = Y ;c5 Y1 peMoves [0(5,a,b)(t)|. From the
complexity of deciding a formula in the theory of real closed fields [2] we get the following
result.

Theorem 5 (Decision complexity for exact distance). For all concurrent games G, given a
rational v, and two states s and t, whether [s <4 t] < r can be decided in time O(|G|©S)),

In contrast, the formula to check whether [s <1 t] < r, for a rational r, as implied by the
definition of H<,(d)(s,t), that does not use Lemma 3, has five quantifier alternations due
to the inner sup, which when combined with the 2 - |S|? existentially quantified variables in
the sentence for the least fixpoint, yields a decision complexity of O (|G|},

Computing the kernels. Similar to the case of turn-based games and MDPs, the kernel of
the simulation metric <; for concurrent games can be computed as the limit of the series
jg, j%, j%, ..., of relations. For all s, € S, we have (s, t) ej(l) iff s=t. Foralln > 0, we
have (s,) Ej’f“ iff the following sentence ®; is true: Va.®(=<",a) — a < 0, where P is
defined as in (7). At any step in the iteration, the distance between any pair of states u,v € S
is defined as follows: for all u,v € S we have d(u,v) = 0if (s, t) €=, else if (s,t) €=} then
d(u,v) = 1. To compute the bisimulation kernel, we again proceed by partition refinement.
For a set of partitions Q°, Q1,..., (s,t) €x~"*1 iff the following sentence ®,, is true for the
state pairs (s, t) and (¢,s): Va.®(Q",a) — a <0.

Complexity. In the worst case we need O(|S|?) partition refinement steps for computing both
the simulation and the bisimulation relation. At each partition refinement step the number
of state pairs we consider is bounded by O(|S|?). We can check if ®; and @y, are true using a
decision procedure for the theory of real closed fields. Therefore, we need O(|S|*) decisions
to compute the kernels. The partitioning of states based on the decisions can be done by any
of the partition refinement algorithms.

Theorem 6 For all concurrent games G, states s and t, whether s =1 t can be decided in
O(|G|OUSP)) time, and whether s ~, t can be decided in O(|G|USP)) time.

References

[1] C. Baier. Polynomial time algorithms for testing probabilistic bisimulation and simula-
tion. In CAV, volume 1102 of LNCS, pages 50-61. Springer-Verlag, 1996.

[2] S. Basu. New results on quantifier elimination over real closed fields and applications
to constraint databases. |. ACM, 46(4):537-555, 1999.

[3] D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.
Vol.1&2.

[4] M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures
in propositional temporal logic. Theoretical Computer Science, 59:115-131, 1988.

[5] J. E. Canny. Some algebraic and geometric computations in pspace. In STOC, pages
460-467. ACM Press, 1988.

117

118 ALGORITHMS FOR GAME METRICS

[6] Krishnendu Chatterjee, Luca de Alfaro, Rupak Majumdar, and Vishwanath Raman.
Algorithms for game metrics (full version). CoRR, abs/0809.4326, 2008.

[7] L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games. Journal
of Computer and System Sciences, 68:374-397, 2004.

[8] L. de Alfaro, R. Majumdar, V. Raman, and M. Stoelinga. Game relations and metrics.
In LICS, pages 99-108. IEEE Computer Society Press, 2007.

[9]]J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled Markov
systems. In CONCUR, volume 1664 of LNCS, pages 258-273. Springer-Verlag, 1999.

[10] K. Etessami and M. Yannakakis. Recursive concurrent stochastic games. In ICALP (2),
volume 4052 of LNCS, pages 324-335. Springer-Verlag, 2006.

[11] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.

[12] D.A. Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,
63(4):1565-1581, 1998.

[13] J.E. Mertens and A. Neyman. Stochastic games. International Journal of Game Theory,
10:53-66, 1981.

[14] R. Milner. Operational and algebraic semantics of concurrent processes. In Handbook
of Theoretical Computer Science, volume B, pages 1202-1242. Elsevier Science Publishers,
1990.

[15] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. In
CONCUR, volume 836 of LNCS, pages 481-496. Springer-Verlag, 1994.

[16] L.S. Shapley. Stochastic games. Proc. Nat. Acad. Sci. USA, 39:1095-1100, 1953.

[17] E. van Breugel, B. Sharma, and J. Worrell. Approximating a behavioural pseudometric
without discount for probabilistic systems. CoRR, abs/0803.3796, 2008.

[18] F. van Breugel and J. Worrell. An algorithm for quantitative verification of probabilis-
tic transition systems. In CONCUR, volume 2154 of LNCS, pages 336-350. Springer-
Verlag, 2001.

[19] F. van Breugel and J. Worrell. Towards quantitative verification of probabilistic transi-
tion systems. In ICALP, volume 2076 of LNCS, pages 421-432. Springer-Verlag, 2001.

[20] Y. Ye. Improved complexity results on solving real-number linear feasibility problems.
Math. Program., 106(2):339-363, 2006.

[21] L. Zhang and H. Hermanns. Deciding simulations on probabilistic automata. In ATVA,
volume 4762 of LNCS, pages 207-222. Springer-Verlag, 2007.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 119-130

Pruning 2-Connected Graphs
(Extended Abstract)

Chandra ChekuriF, Nitish Korulaﬁ

Dept. of Computer Science

University of Illinois

Urbana, IL 61801

{chekuri, nkorul a2}@s. ui uc. edu

ABSTRACT. Given an edge-weighted undirected graph G with a specified set of terminals, let the
density of any subgraph be the ratio of its weight/cost to the number of terminals it contains. If G is
2-connected, does it contain smaller 2-connected subgraphs of density comparable to that of G? We
answer this question in the affirmative by giving an algorithm to prune G and find such subgraphs
of any desired size, at the cost of only a logarithmic increase in density (plus a small additive factor).
We apply the pruning techniques to give algorithms for two NP-Hard problems on finding large 2-
vertex-connected subgraphs of low cost; no previous approximation algorithm was known for either
problem. In the k-2VC problem, we are given an undirected graph G with edge costs and an integer
k; the goal is to find a minimum-cost 2-vertex-connected subgraph of G containing at least k vertices.
In the Budget-2VC problem, we are given the graph G with edge costs, and a budget B; the goal
is to find a 2-vertex-connected subgraph H of G with total edge cost at most B that maximizes the
number of vertices in H. We describe an O(lognlogk) approximation for the k-2VC problem, and

a bicriteria approximation for the Budget-2VC problem that gives an O(% log® 1) approximation,
while violating the budget by a factor of at most 3 + €.

1 Introduction

Connectivity and network design problems play an important role in combinatorial opti-
mization and algorithms both for their theoretical appeal and their usefulness in real-world
applications. Many of these problems, such as the well-known minimum cost Steiner tree
problem, are NP-hard, and there has been a large and rich literature on approximation al-
gorithms. A number of elegant and powerful techniques and results have been developed
over the years. In particular, the primal-dual method [1, 17] and iterated rounding [19]
have led to some remarkable results. Occasionally, interesting and useful variants of classi-
cal problems are introduced, sometimes motivated by their natural appeal and sometimes
motivated by practical applications. One such problem is the k-MST problem introduced
by Ravi et al. [24]: Given an edge-weighted graph G and an integer k, the goal is to find a
minimum-cost subgraph of G that contains at least k vertices. It is not hard to see that the
k-MST problem is at least as hard as the Steiner tree problem; moreover an a-approximation
for the k-MST problem implies an a-approximation for the Steiner tree problem. The k-MST
problem has attracted considerable attention in the approximation algorithms literature and
its study has led to several new algorithmic ideas and applications [3, 15, 14, 7, 5]. Closely
related to the k-MST problem is the budgeted or Max-Prize Tree problem [21, 5]; here we

* Partially supported by NSF grants CCF 0728782 and CNS-0721899, and a US-Israeli BSF grant 2002276.
*Partially supported by NSF grant CCF 0728782.

© Chekuri, Korula; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1746

120 PRUNING 2-CONNECTED GRAPHS

are given G and a budget B, and the goal is to find a subgraph H of G of total cost no more
than B, that maximizes the number of vertices (or terminals) in H. Interestingly, it is only
recently that the rooted version of the Max-Prize Tree problem was shown to have an O(1)-
approximation [5], although an O(1)-approximation was known for the k-MST problem
much earlier [6].

Recently, Lau et al. [22] considered the natural generalization of k-MST to higher con-
nectivity. In particular they defined the (k, A)-subgraph problem to be the following: Find
a minimum-cost subgraph of the given graph G that contains at least k vertices and is A-
edge connected. We use the notation k-AEC to refer to this problem. In [22, 23] a poly-
logarithmic approximation was derived for the k-2EC problem. In this paper, we consider
the vertex-connectivity generalizations of the k-MST and Budgeted Tree problems. We de-
fine the k-AVC problem as follows: Given an integer k and a graph G with edge costs,
find the minimum-cost A-vertex-connected subgraph of G that contains at least k vertices.
Similarly, in the Budget-AVC problem, given a budget B and a graph G with edge costs,
the goal is to find a A-vertex-connected subgraph of G of cost at most B, that maximizes
the number of vertices it contains. In particular we focus on k = 2 and develop approxi-
mation algorithms for both the k-2VC and Budget-2VC problems. We note that the k-AEC
problem reduces to the k-AVC problem in an approximation preserving fashion, though
the opposite reduction is not known. The k-AEC and k-AVC problems are NP-hard and
also APX-hard for any k > 1. Moreover, Lau et al. [22] give evidence that, for large A, the
k-AEC problem is likely to be harder to approximate by relating it to the approximability of
the dense k-subgraph problem [12].

Problems such as k-MST, Budget-2VC, k-2VC are partly motivated by applications in
network design and related areas where one may want to build low-cost networks including
(or servicing) many clients, but there are constraints such as a budget on the network cost, or
a minimum quota on the number of clients. Algorithms for these problems also find other
uses. For instance, a basic problem in vehicle routing applications is the s-f Orienteering
problem in which one seeks an s-t path that maximizes the number of vertices in it subject
to a budget B on its length. Approximation algorithms for this problem [5, 4, 11] have been
derived through approximation algorithms for the k-MST and the related k-stroll problems;
in the latter, the goal is to find a minimum-cost path containing k vertices.

How do we solve these problems? The k-MST problem required several algorithmic
innovations which eventally led to the current best approximation ratio of 2 [14]. The main
technical tool which underlies O(1) approximations for the k-MST problem [6, 15, 14] is a
special property that holds for a LP relaxation of the prize-collecting Steiner tree problem
[17] which is a Lagrangian relaxation of the Steiner tree problem. Unfortunately, one cannot
use these ideas (at least directly) for more general problems such as k-2VC (or the k-Steiner
forest problem [18]) since the LP relaxation for the prize-collecting variant is not known to
satisfy the above mentioned property. We therefore rely on alternative techniques that take
a more basic approach.

Our algorithms for k-2VC and Budget-2V C use the same high-level idea, relying on the
notion of density: the density of a subgraph is the ratio of its cost to the number of vertices
it contains. The algorithms greedily combine subgraphs of low density until the union of
these subgraphs has the desired number of vertices or has cost equal to the budget. They

CHEKURI, KORULA FSTTCS 2008

fail only if we find a subgraph H of good density, but that is far too large. One needs, then,
a way to prune H to find a smaller subgraph of comparable density. Our main structural
result for pruning 2-connected graphs is the following:

THEOREM 1. Let G be a 2-connected edge-weighted graph with density p, and a desig-
nated vertex r € V(G) such that every vertex of G has 2 vertex-disjoint paths to r of to-
tal weight/cost at most L. There is a polynomial-time algorithm that, given any integer
k < |V(G)|, finds a 2-connected k-vertex subgraph H of G containing r, of total cost at most
O(logk)pk + 2L.

Intuitively, the algorithm of Theorem 1 allows us to find a subgraph of any desired
size, at the cost of only a logarithmic increase in density. Further, it allows us to require any
vertex r to be in the subgraph, and also applies if we are given a terminal set S, and the output
subgraph must contain k terminals. (In this case, the density of a subgraph is the ratio of its
cost to the number of terminals it contains.) In addition, it applies if the terminals/vertices
have arbitrary weights, and the density of a subgraph is the ratio of its cost to the sum of
the weights of its terminals. All our algorithms apply to these weighted instances, but for
simplicity of exposition, we discuss the more restricted unweighted versions throughout.
We observe that pruning a tree (a 1-connected graph) is easy and one loses only a constant
factor in the density; the theorem above allows one to prune 2-connected graphs. A technical
ingredient that we develop is the following theorem: we believe that Theorems|1 and [2 are
interesting in their own right and will find other applications besides algorithms for k-2VC
and Budget-2VC.

THEOREM 2. Let G be a 2-vertex-connected graph with edge costs and let S C V be a set of
terminals. Then, there is a simple cycle C containing at least 2 terminals (a non-trivial cycle)
such that the density of C is at most the density of G. Moreover, such a cycle can be found
in polynomial time.

Using the above theorem and an LP approach we obtain the following.

COROLLARY 3. Given a graph G(V, E) with edge costs and ¢ terminals S C V, there is an
O(log¢) approximation for the problem of finding a minimum-density non-trivial cycle.

Note that Theorem 2 and Corollary|3/are of interest because we seek a cycle with at least
two terminals. A minimum-density cycle containing only one terminal can be found by us-
ing the well-known min-mean cycle algorithm in directed graphs [2]. We remark, however,
that although we suspect that the problem of finding a minimum-density non-trivial cycle is
NP-hard, we currently do not have a proof. Theorem 2 shows that the problem is equivalent
to the dens-2VC problem, defined in the next section.

Armed with these useful structural results, we give approximation algorithms for both the
k-2VC and Budget-2VC problems. Our results in fact hold for the more general versions
of these problems where the input also specifies a subset S C V of terminals and the goal
is to find subgraphs with the desired number of terminals, or to maximize the number of
terminals ¥

tFor k-2EC and k-AEC , the problem with specified terminal set S can be reduced to the problem where
every vertex in V is a terminal. Such a reduction does not seem possible for the k-2VC and k-AVC , so we work
directly with the terminal version.

121

122 PRUNING 2-CONNECTED GRAPHS

THEOREM 4. There is an O(log (¢ - log k) approximation for the k-2VC problem, where ¢ is
the number of terminals.

COROLLARY 5. There is an O(log (¢ - log k) approximation for the k-2EC problem, where {
is the number of terminals.

THEOREM 6. There is a polynomial time bicriteria approximation algorithm for Budget-
2VC that, for any 0 < € < 1, outputs a subgraph of edge-weight (3 + €)B containing Q)(e -
OPT/(lognlog OPT)) terminals, where OPT is the number of terminals in an optimum
solution of cost B. For the rooted version, the subgraph has weight at most (2 + €)B.

Most of the proofs are omitted from this version due to space limitations. The reader
can find a full version on the websites of the authors.

1.1 Overview of Technical Ideas

We focus on the rooted version of k-2VC : the goal is to find a min-cost subgraph that 2-
connects at least k terminals to a specified root vertex r. It is easy to reduce k-2VC to its
rooted version. We draw inspiration from algorithmic ideas that led to poly-logarithmic
approximations for the k-MST problem.

For a subgraph H that contains r, let k(H) be the number of terminals that are 2-
connected to r in H. Then the density of H is simply the ratio of the cost of H to k(H). The
dens-2VC problem is to find a 2-connected subgraph of minimum density. An O(log ¢) ap-
proximation for the dens-2VC problem (where ¢ is the number of terminals) can be derived
in a some what standard way by using a bucketing and scaling trick on a linear program-
ming relaxation for the problem. We exploit the known bound of 2 on the integrality gap of
a natural LP for the SNDP problem with vertex connectivity requirements in {0, 1,2} [13].

Our algorithm for k-2VC uses a greedy approach at the high level. We start with an
empty subgraph G’ and use the approximation algorithm for dens-2VC in an iterative fash-
ion to greedily add terminals to G’ until at least K > k terminals are in G’. This approach
would yield an O(log ¢logk) approximation if k' = O(k). However, the last iteration of
the dens-2VC algorithm may add many more terminals than desired with the result that
k" > k. In this case we cannot bound the cost of the solution obtained by the algorithm. To
overcome this problem, one can try to prune the subgraph H added in the last iteration to
only have the desired number of terminals. For the k-MST problem, H is a tree and pruning
is quite easy.

Our main technical contribution is Theorem [1, to give a pruning step for the k-2VC
problem. To accomplish this, we use two algorithmic ideas. The first is encapsulated in
the cycle finding algorithm of Theorem 2. Second, we use this cycle finding algorithm to
repeatedly merge subgraphs until we get the desired number of terminals in one subgraph;
this latter step requires care. The cycle merging scheme is inspired by a similar approach
from the work of Lau et al. [22] on the k-2EC problem and in our previous work [11] on
the directed orienteering problem. These ideas yield an O(log ¢ - log2 k) approximation. We
give a modified cycle-merging algorithm with a more sophisticated and non-trivial analysis
to obtain an improved O(log ¢ - log k) approximation.

CHEKURI, KORULA FSTTCS 2008

Some remarks are in order to compare our work to that of [22] on the k-2EC problem.
The combinatorial algorithm in [22] is based on finding a low-density cycle or a related
structure called a bi-cycle. The algorithm in [22] to find such a structure is incorrect. Fur-
ther, the cycles are contracted along the way which limits the approach to the k-2EC problem
(contracting a cycle in 2-node-connected graph may make the resulting graph not 2-node-
connected). In our algorithm we do not contract cycles and instead introduce dummy termi-
nals with weights to capture the number of terminals in an already formed component. This
requires us to now address the minimum-density non-trivial simple cycle problem which
we do via Theorem[2land Corollary(3| In independent work, Lau et al. [23] obtain a new and
correct O(log nlog k)-approximation for k-2EC . They also follow the same approach that
we do in using the LP for finding dense subgraphs followed by the pruning step. However,
in the pruning step they use a very different approach; they use the sophisticated idea of
nowhere-zero 6-flows [25]. Although the use of this idea is elegant, the approach works
only for the k-2EC problem, while our approach is less complex and leads to an algorithm
for the more general k-2VC problem.

2 The Algorithms for the k-2VC and Budget-2VC Problems

We work with graphs in which some vertices are designated as terminals. Henceforth, we
use 2-connected graph to mean a 2-vertex-connected graph. Recall that the goal of the k-
2VC problem is to find a minimum-cost 2-connected subgraph on at least k terminals. In the
rooted k-2VC problem, we wish to find a min-cost subgraph on at least k terminals in which
every terminal is 2-connected to the specified root r. The (unrooted) k-2VC problem can
be reduced to the rooted version by guessing 2 vertices u, v that are in an optimal solution,
creating a new root vertex r, and connecting it with 0-cost edges to u and v. It is not hard to
show that any solution to the rooted problem in the modified graph can be converted to a
solution to the unrooted problem by adding 2 minimum-cost vertex-disjoint paths between
u and v. (Since u and v are in the optimal solution, the cost of these added paths cannot
be more than OPT.) Similarly, one can reduce Budget-2VC to its rooted version. However,
note that adding a min-cost set of paths between the guessed vertices # and v might require
us to pay an additional amount of B, so to obtain a solution for the unrooted problem of cost
(3 4 €)B, we must find a solution for the rooted instance of cost (2 + €)B.

Note that k-2VC and Budget-2VC are equivalent from the viewpoint of exact optimiza-
tion, but this is not true from an approximation perspective. Still, we solve them both via the
dens-2VC problem, where the goal is to find a subgraph H of minimum density in which all
terminals of H are 2-connected to the root. We use the following lemma, which relies on a
2-approximation, via a natural LP for the min-cost 2-connectivity problem, due to Fleischer,
Jain and Williamson [13], and some standard techniques.

LEMMA 7. There is an O(log {)-approximation algorithm for the dens-2VC problem, where
¢ is the number of terminals in the given instance.

We first describe our algorithm for the k-2VC problem. Let OPT be the cost of an op-
timal solution to the k-2VC instance. We assume knowledge of OPT; this can be dispensed
with using standard methods. We pre-process the graph by deleting any terminal that does

123

124 PRUNING 2-CONNECTED GRAPHS

not have 2 vertex-disjoint paths to the root r of total cost at most OPT. The high-level de-
scription of the algorithm for the rooted k-2VC problem is given below.
k" —k, G'is the empty graph.
While (k" > 0):
Use the approximation algorithm for dens-2VC to find a subgraph H in G.
If (k(H) < K):
G —G'UH, K « Kk —k(H).
Mark all terminals in H as non-terminals.
Else:
Prune H to obtain H' that contains k" terminals.
G =G UH, K o
Output G'.
At the beginning of any iteration of the while loop, the graph contains a solution to the

dens-2VC problem of density at most O,}/) . Therefore, the graph H returned always has

density at most O(log¢) OIE T g k(H) < k', we add H to G’ and decrement k’; we refer
to this as the augmentation step. Otherwise, we have a graph H of good density, but with
too many terminals. In this case, we prune H to find a graph with the required number of
terminals; this is the pruning step. A simple set-cover type argument shows the following
lemma:

LEMMA 8. If, at every augmentation step, we add a graph of density at most O(log /) O}F

(where k' is the number of additional terminals that must be selected), the total cost of all
the augmentation steps is at most O(log ¢ - log k) OPT.

Therefore, it remains only to bound the cost of the graph H' added in the pruning step,
and Theorem 1, proved in Section 4, is precisely what is needed. Our main result for the
k-2VC problem, Theorem 4| follows easily from Lemma 8 and Theorem 1|

We now describe the similar algorithm for the Budget-2VC problem. Given budget
B, preprocess the graph as before by deleting vertices that do not have 2 vertex-disjoint
paths to r of total cost at most B. Let OPT denote the number of vertices in the optimal
solution, and k = OPT/clog¢log OPT, for some constant c = O(1/€). We run the same
greedy algorithm, using the O(log ¢)-approximation for the dens-2VC problem. Note that
at each stage, the graph contains a solution to dens-2VC of density at most B/ (OPT — k) <
2B/OPT. Therefore, we have the following lemma:

LEMMA 9. If, at every augmentation step of the algorithm for Budget-2VC, we add a graph
of density at most O(log ¢)(2B/OPT), the total cost of all augmentation steps is at most
O(B/1logOPT) < €B.

Again, to prove Theorem 6, giving a bicriteria approximation for Budget-2VC, we only
have to bound the cost of the pruning step.
PROOF OF THEOREM |6l From the previous lemma, the total cost of the augmentation
steps is at most €B. The graph H returned by the dens-2VC algorithm has density at most
O(log?¢ - B/OPT), and k(H) > k' terminals. Now, from Theorem|1, we can prune H to
find a graph H’ containing k’ terminals and cost at most O(logk’log¢ - B/OPT) - k' + 2B.
Ask’ <k = OPT/(clog¢log OPT), a suitable choice of ¢ ensures that the total cost of the
pruning step is at most €B + 2B.

CHEKURI, KORULA FSTTCS 2008

It remains only to prove Lemma|7, that there is an O(log ¢)-approximation for the dens-
2VC problem, and the crucial Theorem 1, bounding the cost of the pruning step. We omit
the proof of Lemma 7/ from this extended abstract. Before the latter is proved in Section
we develop some tools in Section 3; chief among these tools is Theorem 2|

3 Finding Low-density Non-trivial Cycles

A cycle C C G is non-trivial if it contains at least 2 terminals. We define the min-density
non-trivial cycle problem: Given a graph G(V,E), with S C V marked as terminals, edge
costs and terminal weights, find a minimum-density cycle that contains at least 2 terminals.
Note that if we remove the requirement that the cycle be non-trivial (that is, it contains at
least 2 terminals), the problem reduces to the min-mean cycle problem in directed graphs,
and can be solved exactly in polynomial time (see [2]). Algorithms for the min-density non-
trivial cycle problem are a useful tool for solving the k-2VC and k-2EC problems. In this
section, we give an O(log ¢)-approximation algorithm for the minimum-density non-trivial
cycle problem.

THEOREM 10. Let G be a 2-connected graph with at least 2 terminals. G contains a simple
non-trivial cycle X such that density(X) < density(G).

PROOF SKETCH. Let C be an arbitrary non-trivial simple cycle; such a cycle always exists
since G is 2-connected and has at least 2 terminals. If density(C) > density(G), we give an
algorithm that finds a new non-trivial cycle C’ such that density(C") < density(C). Repeat-
ing this process gives us the desired cycle. Let G’ be the graph formed by contracting the
given cycle C to a single vertex v. In G’, v is not a terminal, and so has weight 0. Consider
the 2-connected components of G’ (each such component is formed by adding v to a con-
nected component of G’ — v), and pick the one of minimum density. If H is this component,
density(H) < density(G) by an averaging argument.

H contains at least 1 terminal. If it contains 2 or more terminals, recursively find a non-
trivial cycle C’ in H such that density(C’) < density(H) < density(C). If C’ exists in the given
graph G, we are done. Otherwise, C’ contains v, and the edges of C’ form an ear of C in
the original graph G. The density of this ear is less than the density of C, and we can find a
non-trivial cycle in the union of C and the ear of density at most that of G.

Finally, if H has exactly 1 terminal u, find any 2 vertex-disjoint paths using edges of
H from u to distinct vertices in the cycle C. (Since G is 2-connected, there always exist
such paths.) The cost of these paths is at most cost(H), and concatenating these 2 paths
corresponds to an ear of C in G. The density of this ear is less than density(C); again, the
union of the ear and C has a desired non-trivial cycle.

We remark that the algorithm of Theorem 10/ does not lead to a polynomial-time al-
gorithm, even if all edge costs and terminal weights are polynomially bounded. We give
a strongly polynomial time algorithm to find such a cycle in the full version of this paper.
Note that neither of these algorithms may directly give a good approximation to the min-
density non-trivial cycle problem, because the optimal non-trivial cycle may have density
much less than that of G. However, we can use Theorem10/to prove the following theorem:

125

126 PRUNING 2-CONNECTED GRAPHS

THEOREM 11. There is an x-approximation to the (unrooted) dens-2VC problem if and
only if there is an a-approximation to the problem of finding a minimum-density non-trivial
cycle.

Theorem 11/and Lemma|7 imply an O(log ¢)-approximation for the minimum-density
non-trivial cycle problem; this proves Corollary|(3.

4 Pruning 2-connected Graphs of Good Density

In this section, we prove Theorem 1. We are given a graph G and S C V, a set of at least k
terminals. Further, every terminal in G has 2 vertex-disjoint paths to the root r of total cost
at most L. Let £ be the number of terminals in G, and cost(G) its total cost; p = % is the
density of G. We describe an algorithm that finds a subgraph H of G that contains at least k
terminals, each of which is 2-connected to the root, and of total edge cost O(logk)pk + 2L.

We can assume ¢ > (8logk) - k, or the trivial solution of taking the entire graph G
suffices. The main phase of our algorithm proceeds by maintaining a set of 2-connected
subgraphs that we call clusters, and repeatedly finding low-density cycles that merge clus-
ters of similar weight to form larger clusters. (The weight of a cluster X, denoted by wy, is
(roughly) the number of terminals it contains.) Clusters are grouped into tiers by weight;
tier i contains clusters with weight at least 2’ and less than 2/*1. Initially, each terminal is
a separate cluster in tier 0. We say a cluster is large if it has weight at least k, and small
otherwise. The algorithm stops when most terminals are in large clusters.

We now describe the algorithm MERGECLUSTERS (see next page). To simplify notation,
let a be the quantity 2[logk|p. We say that a cycle is good if it has density at most «; that is,
good cycles have density at most O(log k) times the density of the input graph.

MERGECLUSTERS:
For (eachiin {0,1,...,([log, k| —1)}) do:
If (i = 0):
Every terminal has weight 1
Else:

Mark all vertices as non-terminals
For (each small 2-connected cluster X in tier i) do:
Add a (dummy) terminal vy to G of weight wx
Add (dummy) edges of cost 0 from vy to two (arbitrary) distinct vertices of X
While (G has a non-trivial cycle C of density at most « = 2[log k|p):
Let X1, X, ... X; be the small clusters that contain a terminal or an edge of C.
(Note that the terminals in C belong to a subset of {X,... X,}.)
Form a new cluster Y (of a higher tier) by merging the clusters X, ... X
wy — Z?Zl wx;
If (i = 0):
Mark all terminals in Y as non-terminals
Else:
Delete all (dummy) terminals in Y and the associated (dummy) edges.
We briefly remark on some salient features of this algorithm and our analysis before
presenting the details of the proofs.
1. In iteration 7, terminals correspond to tier i clusters. Clusters are 2-connected sub-

graphs of G, and by using cycles to merge clusters, we preserve 2-connectivity as the

CHEKURI, KORULA FSTTCS 2008

clusters become larger.

2. When a cycle C is used to merge clusters, all small clusters that contain an edge of C
(regardless of their tier) are merged to form the new cluster. Therefore, at any stage
of the algorithm, all currently small clusters are edge-disjoint. Large clusters, on the
other hand, are frozen; even if they intersect a good cycle C, they are not merged with
other clusters on C. Thus, at any time, an edge may be in multiple large clusters and
up to one small cluster.

3. In iteration i of MERGECLUSTERS, the density of a cycle C is only determined by its
cost and the weight of terminals in C corresponding to tier i clusters. Though small
clusters of other (lower or higher) tiers might be merged using C, we do not use their
weight to pay for the edges of C.

4. The ith iteration terminates when no good cycles can be found using the remaining
tier i clusters. At this point, there may be some terminals remaining that correspond
to clusters which are not merged to form clusters of higher tiers. However, our choice
of a (which defines the density of good cycles) is such that we can bound the num-
ber of terminals that are “left behind” in this fashion. Therefore, when the algorithm
terminates, most terminals are in large clusters.

We prove that after MERGECLUSTERS terminates most terminals are in large clusters
and that each large cluster has good density. The proof proceeds via several properties that
we establish formally.

Remarks: Throughout the algorithm, the graph G is always 2-connected. The weight of a
cluster is at most the number of terminals it contains.

LEMMA 12. The clusters formed by MERGECLUSTERS are all 2-connected.

LEMMA 13. The total weight of small clusters in tier i that are not merged to form clusters
of higher tiers is at most 3ogk] -

COROLLARY 14. When the algorithm MERGECLUSTERS terminates, the total weight of large
clusters is at least £ /2 > (4logk) - k.

So far, we have shown that most terminals reach large clusters, all of which are 2-
connected, but we have not argued about the density of these clusters. The next lemma
says that if we can find a large cluster of good density, we can find a solution to the k-2VC
problem of good density.

LEMMA 15. Let Y be a large cluster formed by MERGECLUSTERS. If Y has density at most
0, we can find a graph Y’ with at least k terminals, each of which is 2-connected to r, of total
cost at most 26k + 2L.

The following lemma allows us to show that every large cluster has density at most O (log” k).

LEMMA 16. For any cluster Y formed by MERGECLUSTERS during iteration i, the total cost
of edges inY is at most (i + 1) - awy.

Let Y be an arbitrary large cluster; since we have only [logk] tiers, the previous lemma
implies that the cost of Y is at most [logk] - awy = O(log? k)pwy. That is, the density of Y

127

128 PRUNING 2-CONNECTED GRAPHS

is at most O(log® k)p, and we can use this fact together with Lemma|15/to find a solution
to the rooted k-2VC problem of cost at most O(log® k)pk + 2L. This completes the ‘weaker’
analysis, but this does not suffice to prove Theorem 1; to prove the theorem, we would need
to use a large cluster Y of density O(logk)p, instead of O(log? k)p.

For the purpose of the more careful analysis, implicitly construct a forest 7 on the clus-
ters formed by MERGECLUSTERS. Initially, the vertex set of F is just S, the set of terminals,
and F has no edges. Every time a cluster Y is formed by merging X;, X»,... X, , we add a
corresponding vertex Y to the forest 7, and add edges from Y to each of Xy,... X; Y is the
parent of Xj, ... X;. We also associate a cost with each vertex in F; the cost of the vertex Y is
the cost of the cycle used to form Y from Xj, ... X;. We thus build up trees as the algorithm
proceeds; the root of any tree corresponds to a cluster that has not yet become part of a
bigger cluster. The leaves of the trees correspond to vertices of G; they all have cost 0. Also,
a large cluster Y formed by the algorithm is at the root of its tree; we refer to this tree as Ty.

For each large cluster Y after MERGECLUSTERS terminates, say that Y is of type i if Y
was formed during iteration i of MergeClusters. We now define the final-stage clusters of Y:
They are the clusters formed during iteration i that became part of Y. (We include Y itself in
the list of final-stage clusters; even though Y was formed in iteration i of MERGECLUSTERS,
it may contain other final-stage clusters. For instance, during iteration i, we may merge
several tier i clusters to form a cluster X of tier j > i. Then, if we find a good-density cycle
C that contains an edge of X, X will merge with the other clusters of C.) The penultimate
clusters of Y are those clusters that exist just before the beginning of iteration i and become
a part of Y. Equivalently, the penultimate clusters are those formed before iteration i that
are the immediate children in Ty of final-stage clusters. Figure 1 illustrates the definitions
of final-stage and penultimate clusters.

Figure 1: A part of the Tree Ty corresponding to Y, a large cluster of type i. The number
in each vertex indicates the tier of the cluster. Only final-stage and penultimate clusters are
shown: final-stage clusters are shown with a double circle; the rest are penultimate.

An edge of a large cluster Y is said to be a final edge if it is used in a cycle C that produces
a final-stage cluster of Y. All other edges of Y are called penultimate edges; note that any
penultimate edge is in some penultimate cluster of Y. We define the final cost of Y to be the
sum of the costs of its final edges, and its penultimate cost to be the sum of the costs of its
penultimate edges; clearly, the cost of Y is the sum of its final and penultimate costs. We
bound the final costs and penultimate costs separately.

Recall that an edge is a final edge of a large cluster Y if it is used by MERGECLUSTERS to

CHEKURI, KORULA FSTTCS 2008

form a cycle C in the final iteration during which Y is formed. The reason we can bound the
cost of final edges is that the cost of any such cycle is at most « times the weight of clusters
contained in the cycle, and a cluster does not contribute to the weight of more than one cycle
in an iteration. (This is also the essence of Lemma(16.) We formalize this intuition below.

LEMMA 17. The final cost of a large cluster Y is at most awy, where wy is the weight of Y.

LEMMA 18. IfY; and Y; are distinct large clusters of the same type, no edge is a penultimate
edge of both Y1 and Y>.

THEOREM 19. After MERGECLUSTERS terminates, at least one large cluster has density at
most O(logk)p.

PROOF. We define the penultimate density of a large cluster to be the ratio of its penultimate
cost to its weight. Consider the total penultimate costs of all large clusters: For any i, each
edge ¢ € E(G) can be a penultimate edge of at most 1 large cluster of type i. This implies
that each edge can be a penultimate edge of at most [logk]| clusters. Therefore, the sum of
penultimate costs of all large clusters is at most [log k|cost(G). Further, the total weight of
all large clusters is at least £//2. Therefore, the (weighted) average penultimate density of
large clusters is at most 2[log k| % = 2[logk]p, and hence there exists a large cluster Y
of penultimate density at most 2[logk|p. The penultimate cost of Y is, therefore, at most
2[log k|pwy, and from Lemma (17, the final cost of Y is at most awy. Therefore, the density

of Y is at most a + 2[logk|p = O(logk)p. |

Theorem |19 and Lemma 15 together imply that we can find a solution to the rooted
k-2VC problem of cost at most O(log k)pk + 2L. This completes our proof of Theorem 1.
Acknowledgments: We thank Mohammad Salavatipour for helpful discussions on k-2EC
and related problems. We thank Erin Wolf Chambers for useful suggestions on notation.

References

[1] A.Agrawal, P.N. Klein, and R. Ravi. When trees collide: An Approximation Algorithm
for the Generalized Steiner Problem on Networks. SIAM J. on Computing, 24(3):440-456,
1995.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Appli-
cations. Prentice Hall, Upper Saddle River, NJ, 1993

[3] B. Awerbuch, Y. Azar, A. Blum and S. Vempala. New Approximation Guarantees
for Minimum Weight k-Trees and Prize-Collecting Salesmen. SIAM]. on Computing,
28(1):254-262, 1999. Preliminary version in Proc. of ACM STOC, 1995.

[4] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation Algorithms for
Deadline-TSP and Vehicle Routing with Time-Windows. Proc. of ACM STOC, 166-174,
2004.

[5] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approxima-
tion Algorithms for Orienteering and Discounted-Reward TSP. SIAM |. on Computing,
37(2):653-670, 2007.

[6] A.Blum, R. Raviand S. Vempala. A Constant-factor Approximation Algorithm for the
k-MST Problem. |. of Computer and System Sciences, 58:101-108, 1999.

129

130 PRUNING 2-CONNECTED GRAPHS

[7] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency
tours. Proc. of IEEE FOCS, 36-45, 2003.

[8] C.Chekuri, G. Even, A. Gupta, and D. Segev. Set Connectivity Problems in Undirected
Graphs and the Directed Steiner Network Problem. Proc. of ACM-SIAM SODA, 532-
541, 2008.

[9] C. Chekuri, M. T. Hajiaghayi, G. Kortsarz, and M. R. Salavatipour. Approximation
algorithms for Non-uniform Buy-at-bulk Network Design. Proc. of IEEE FOCS, 677-
686, 2006.

[10] C. Chekuri, M. T. Hajiaghayi, G. Kortsarz, and M. R. Salavatipour. Approximation Al-
gorithms for Node-weighted Buy-at-bulk Network Design. Proc. of ACM-SIAM SODA,
1265-1274, 2007.

[11] C. Chekuri, N. Korula, and M. P4l. Improved Algorithms for Orienteering and Related
Problems. Proc. of ACM-SIAM SODA, 661-670, 2008.

[12] U. Feige, G. Kortsarz and D. Peleg. The Dense k-Subgraph Problem. Algorithmica,
29(3):410-421, 2001. Preliminary version in Proc. of IEEE FOCS, 1993.

[13] L. Fleischer, K. Jain, D. P. Williamson. Iterative Rounding 2-approximation Algorithms
for Minimum-cost Vertex Connectivity Problems. J]. of Computer and System Sciences,
72(5):838-867, 2006.

[14] N. Garg. Saving an e: A 2-approximation for the k-MST Problem in Graphs. Proc. of
ACM STOC, 396402, 2005.

[15] N. Garg. A 3-approximation for the Minimum Tree Spanning k Vertices. Proc. of IEEE
FOCS, 302-309, 1996.

[16] M. X. Goemans and D. P. Williamson. A General Approximation Technique for Con-
strained Forest Problems. SIAM J. on Computing, 24(2):296-317, 1995.

[17] M. X. Goemans and D. P. Williamson. The Primal-Dual method for Approximation
Algorithms and its Application to Network Design Problems. In D. S. Hochbaum,
editor, Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, 1996.

[18] M. T. Hajiaghayi and K. Jain. The Prize-Collecting Generalized Steiner Tree Problem
via a New Approach of Primal-Dual Schema. Proc of ACM-SIAM SODA, 631-640, 2006.

[19] K. Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem Combinatorica, 21(1):39-60, 2001.

[20] D.S. Johnson. Approximation Algorithms for Combinatorial Problems. . of Computer
and System Sciences, 9(3):256-278, 1974.

[21] D.S. Johnson, M. Minkoff, and S. Phillips. The Prize Collecting Steiner Tree Problem:
Theory and Practice. Proc. of ACM-SIAM SODA, 760-769, 2000.

[22] L.C. Lau, J. Naor, M. Salavatipour and M. Singh. Survivable Network Design with
Degree or Order Constraints. Proc. of ACM STOC, 2007.

[23] L.C. Lau, J. Naor, M. Salavatipour and M. Singh. Survivable Network Design with
Degree or Order Constraints. To Appear in SIAM |. on Computing.

[24] R. Ravi, R. Sundaram, M. Marathe, D. Rosenkrantz, and S. Ravi. Spanning trees short
and small. SIAM]. Disc. Math. 9 (2): 178-200, 1996.

[25] P. D. Seymour. Nowhere-zero 6-flows. . Comb. Theory B, 30: 130-135, 1981.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 131-142

Single-Sink Network Design with

Vertex Connectivity Requirements
(Extended Abstract)

Chandra ChekuriF, Nitish Korulaﬁ

Dept. of Computer Science

University of Illinois

Urbana, IL 61801

{chekuri, nkorul a2}@s. ui uc. edu

ABSTRACT. We study single-sink network design problems in undirected graphs with vertex con-
nectivity requirements. The input to these problems is an edge-weighted undirected graph G =
(V,E), a sink/root vertex r, a set of terminals T C V, and integer k. The goal is to connect each
terminal t € T to r via k vertex-disjoint paths. In the connectivity problem, the objective is to find a
min-cost subgraph of G that contains the desired paths. There is a 2-approximation for this prob-
lem when k < 2 [9] but for k > 3, the first non-trivial approximation was obtained in the recent
work of Chakraborty, Chuzhoy and Khanna [4]; they describe and analyze an algorithm with an
approximation ratio of O(ko(k2> log4 n) wheren = |V|.

In this paper, inspired by the results and ideas in [4], we show an O(k°¥) log | T|)-approximation
bound for a simple greedy algorithm. Our analysis is based on the dual of a natural linear pro-
gram and is of independent technical interest. We use the insights from this analysis to obtain an
O(k°®k) log | T|)-approximation for the more general single-sink rent-or-buy network design problem
with vertex connectivity requirements. We further extend the ideas to obtain a poly-logarithmic ap-
proximation for the single-sink buy-at-bulk problem when k = 2 and the number of cable-types is
a fixed constant; we believe that this should extend to any fixed k. We also show that for the non-
uniform buy-at-bulk problem, for each fixed k, a small variant of a simple algorithm suggested by
Charikar and Kargiazova [5] for the case of k = 1 gives an 20(log|TI) approximation for larger k.
These results show that for each of these problems, simple and natural algorithms that have been
developed for k = 1 have good performance for small k > 1.

1 Introduction

We consider several single-sink network design problems with vertex connectivity require-
ments. Let G = (V, E) be a given undirected graph on n nodes with a specified sink/root
vertex r and a subset of terminals T C V, with |T| = h. Each terminal ¢ has a demand d; > 0
that needs to be routed to the root along k vertex-disjoint paths (d; is sent on each of the k
paths). In the following discussion, we assume for simplicity that d; = 1 for each terminal
t. The goal in all the problems is to find a routing (a selection of paths) for the terminals
so as to minimize the cost of the routing. We obtain problems of increasing generality and
complexity based on the cost function on the edges. In the basic connectivity problem, each
edge e has a non-negative cost c,, and the objective is to find a minimum-cost subgraph H

* Partially supported by NSF grants CCF 0728782 and CNS 0721899, and a US-Israeli BSF grant 2002276.
*Partially supported by NSF grant CCF 0728782.

© Chekuri, Korula; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1747

132 SINGLE-SINK NETWORK DESIGN WITH VERTEX CONNECTIVITY REQUIREMENTS

of G that contains the desired disjoint paths for each terminal. We then consider general-
izations of the connectivity problem where the cost of an edge depends on the number of
terminals whose paths use it. In the rent-or-buy problem there is a parameter M with the
following interpretation: An edge e can either be bought for a cost of c, - M, in which case
any number of terminals can use it, or e can be rented at the cost of ¢, per terminal. In other
words, the cost of an edge e is ¢, - min{ M, | T| } where T, is the set of terminals whose paths
use e. In the uniform buy-at-bulk problem, the cost of an edge e is c. - f(|T,|) for some given
sub-additive function f : Rt — R™. In the non-uniform buy-at-bulk problem the cost of
an edge e is f.(|Te|) for some edge-dependent sub-additive function f, : RT — R™. All of
the above problems are NP-hard and also APX-hard to approximate even for k = 1. Note
that when k = 1 the connectivity problem is the well-known Steiner tree problem. In this
paper we focus on polynomial-time approximation algorithms for the above network de-
sign problem when k > 1. We refer to the above three problems as SS-k-CONNECTIVITY,
SS-k-RENT-OR-BUY and SS-k-BUY-AT-BULK respectively.

Motivation: Our work is motivated by several considerations. First, connectivity and net-
work design problems are of much interest in algorithms and combinatorial optimization.
A very general problem in this context is the survivable network design problem (SNDP).
An instance of SNDP consists of an edge-weighted graph G = (V, E) and an integer con-
nectivity requirement r,, for each pair of nodes uv. The goal is to find a minimum-cost
subgraph H of G such that H contains r,, disjoint paths between u and v for each pair uv.
EC-SNDP refers to the variant in which the paths are required only to be edge-disjoint and
VC-SNDP refers to the variant where the paths are required to be vertex-disjoint. SNDP
captures many connectivity problems as special cases. Jain’s [13] seminal work on iterated
rounding showed a 2-approximation for EC-SNDP, improving previous results [18]. This
was extended to element-connectivity SNDP and to VC-SNDP when r,, € {0,1,2} [9]. An
important question is to understand the approximability of VC-SNDP when the connectiv-
ity requirements exceed 2.

Kortsarz, Krauthgamer and Lee [14] showed that VC-SNDP is hard to approximate to
within a factor of 218 " even when r,, € {0,k} for all uo. However, the hardness requires
k to be n° for some constant § > 0; in this same setting they show that SS-k-CONNECTIVITY
is hard to approximate to within Q)(logn) factor. A natural question to ask is whether SS-
k-CONNECTIVITY and more generally VC-SNDP admits a good approximation when k (or
in general, the maximum requirement) is small. This question is quite relevant from a prac-
tical and theoretical perspective. In fact, no counterexample is known to the possibility of
iterated rounding yielding a ratio of max,, 4, for VC-SNDP (see [9] for more on this). Al-
though there is a 2-approximation for VC-SNDP when max,, v < 2, until very recently
there was no non-trivial (that is, o(|T|)) approximation for SS-k-CONNECTIVITY even when
k = 3! Chakraborty, Chuzhoy and Khanna [4] developed some fundamental new insights in
recent work and showed an O(k9%*) log* n)-approximation for SS-k-CONNECTIVITY via the
setpair relaxation; we mention other relevant results from [4] later. Our paper is inspired by
the results and ideas in [4]. We show that a simple greedy algorithm yields an improved ap-
proximation for SS-k-CONNECTIVITY. Perhaps of equal importance is our analysis, which
is based on the dual of the linear programming relaxation. This new dual-based perspective

CHEKURI, KORULA FSTTCS 2008

allows us to analyze simple algorithms for the more complex problems SS-k-RENT-OR-BUY
and SS-k-BUY-AT-BULK.

Another motivation for these problems comes from the buy-at-bulk network design
problem [17]; this arises naturally in the design of telecommunication networks [17, 1, 6].
Economies of scale imply that bandwidth on a link can be purchased in integer units of dif-
ferent cable-types; that is, there are some b cable-types with capacities u; < up < ... < uy,
and costs wy < wp < ... < wy such that wy/u; > ... > wy/up. Antonakapoulos et al.
[2], motivated by real-world fault-tolerant models in optical network design [6] introduced
the protected buy-at-bulk network design problem. In [2] this problem was reduced to the
corresponding single-sink problem at the expense of a poly-logarithmic ratio in the approx-
imation. An O(1) approximation for the single-sink problem was derived in [2], however,
the techniques in [2] were applicable only to the case of a single-cable. An open question
raised in [2] is whether one can find a good approximation for the single-sink problem even
for the case of two cable-types. In this paper we show that natural and simple algorithms
can be obtained for this problem for any fixed number of cable-types. We also analyze a
simple randomized greedy inflation algorithm (suggested by Charikar and Kargiazova [5]
for k = 1) for the non-uniform buy-at-bulk problem and show that it achieves a non-trivial
approximation for each fixed k. Our starting point for the buy-at-bulk problem is the rent-
or-buy cost function which can be modeled with two cable-types, one with unit capacity
and the other with essentially infinite capacity. This simple cost function, in addition to its
inherent interest, has played an important role in the development of algorithms for several
problems [12].

Results and Technical Contributions: We analyze simple combinatorial algorithms for the
three single-sink vertex-connectivity network design problems that we described. We prove
bounds on the approximation ratio of the algorithms using the dual of natural LP relax-
ations; the LP relaxation is used only for the analysis. This leads to the following results:

e An O(k*log |T|) approximation for SS-k-CONNECTIVITY.

e An O(k*log |T|) approximation for SS-k-RENT-OR-BUY.

e AnO((log|T|)°")) approximation for the SS-k-BUY-AT-BULK with b cable-types when

k=2.

o A 20(Vlogh) approximation for the non-uniform SS-k-BUY-AT-BULK for each fixed k.
Our result for SS-k-CONNECTIVITY improves the ratio of O(kO®) log* 1) from [4]. For the
SS-k-RENT-OR-BUY problem, ours is the first non-trivial result for any k > 2. For the SS-
k-BUY-AT-BULK problem, an O(1) approximation is known for k = 2 in the single-cable
setting, but no non-trivial algorithm was known even for the case of k = 2 with two or more
cables. Some other results can be derived from the above. Following the observation in
[4], the SS-k-CONNECTIVITY approximation ratio applies also to the subset-k-connectivity
problem; here the objective is to find a min-cost subgraph such that T is k-connected. It is
also easy to see that the approximation ratio only worsens by a factor of k if the terminals
have different connectivity requirements in {1,2,...,k}. For k = 2, our algorithms for rent-
or-buy and buy-at-bulk can be used to obtain algorithms for the multicommodity setting
using the ideas in [2].

Our algorithms are natural extensions of known combinatorial algorithms for the k = 1
case. For SS-k-CONNECTIVITY a (online) greedy algorithm is to order the terminals arbitrar-

133

134 SINGLE-SINK NETWORK DESIGN WITH VERTEX CONNECTIVITY REQUIREMENTS

ily and add terminals one by one while maintaining a feasible solution for the current set
of terminals. This greedy algorithm gives an O(log |T|) approximation for the Steiner tree
problem which is the same as SS-k-CONNECTIVITY when k = 1. However, it can be shown
easily that this same algorithm, and in fact any deterministic online algorithm, can return so-
lutions of value Q(|T|)OPT even for k = 2. Interestingly, we show that a small variant that
applies the greedy strategy in reverse yields a good approximation ratio! For SS-k-RENT-
OR-BUY, our algorithm is a straightforward generalization of the simple random-marking
algorithm of Gupta et al. [12] for k = 1. Our algorithm for SS-k-BUY-AT-BULK is also based
on a natural clustering strategy previously used for k = 1. We remark that the hardness
results of [14] imply that the approximation ratio has to depend on k in some form. The
exponential dependence on k is an artifact of the analysis. In particular, we extend a combi-
natorial lemma from [4]; we believe that the analysis of this lemma can be tightened to show
a polynomial dependence on k. Some very recent work [8] achieves results in this direction;
see the end of this section for more on this subject.

Although the algorithms are simple and easy extensions of the known algorithms for
k = 1, the analysis requires several new sophisticated ideas even for k = 2. The main
technical difference between k = 1 and k > 1 is the following. For k = 1, metric methods can
be used since the problem remains unchanged even if we take the metric closure of the given
graph G. However this fails for k > 1 in a fundamental way. Chakaraborty, Chuzhoy and
Khanna [4] developed new insights for k > 1. Unfortunately we are unable to elaborate on
their ideas due to space limitations. We do mention that they use a primal approach wherein
they use an optimal fractional solution to argue about the costs of connecting a terminal ¢
to other terminals via disjoint paths. Our analysis is different and is based on analyzing
the dual of a natural linear programming relaxation. This is inspired by the dual-packing
arguments that have been used earlier for connectivity problems. These prior arguments
were for k = 1, where distance-based arguments via balls grown around terminals can be
used. For k > 2 these arguments do not apply. Nevertheless, we show the effectiveness of
the dual-packing approach by using non-uniform balls.

Due to space limitations we defer discussion of the large literature on network design
and related work to a full version of the paper. We refer the reader to [15] for a recent survey
and to [4, 8]. Chuzhoy and Khanna [8] have independently and concurrently obtained re-
sults for SS-k-CONNECTIVITY; they obtain an O(klog |T|)-approximation with edge-costs,
and an O(k” log? n)-approximation with vertex-costs. Their result for SS-k-CONNECTIVITY
has a much better dependence on k than ours. Our dual-based analysis differs from their
analysis, and is crucial to our algorithms for SS-k-RENT-OR-BUY and SS-k-BUY-AT-BULK
which are not considered in [8].

We omit all proofs and many technical details in this extended abstract. The reader can
find a longer version on the websites of the authors.

2 Connectivity

In this section we analyze a simple reverse greedy algorithm for SS-k-CONNECTIVITY. For-
mally, the input to the problem is an edge-weighted graph G = (V,E), an integer k, a
specified root vertex r, and a set of terminals T C V. The goal is to find a min-cost edge-

CHEKURI, KORULA FSTTCS 2008

induced subgraph H of G such that H contains k vertex-disjoint paths from each terminal ¢
tor.

The key concept is that of augmentation. Let T' C T be a subset of terminals and let H’
be a subgraph of G that is feasible for T’. For a terminal t € T\ T/, a set of k paths p1, ..., px
is said to be an augmentation for t with respect to T” if (i) p; is a path from ¢ to some vertex in
T' U {r} (ii) the paths are internally vertex disjoint and (iii) a terminal #' € T” is the endpoint
of at most one of the k paths. Note that the root is allowed to be the endpoint of more than
one path. The following proposition is easy to show via a simple min-cut argument.

PROPOSITION 1. If p1,pa, ..., px is an augmentation for t with respect to T' and H' is a
feasible solution for T' then H U (U; p;) is a feasible solution for T' U {t}.

Given T’ and ¢, the augmentation cost of t with respect to T’ is the cost of a min-cost
set of paths that augment ¢t w.r.t. to T". If T is not mentioned, we implicitly assume that
T' = T\ {t}. With this terminology and Proposition 1, it is easy to see that the algorithm
below finds a feasible solution.

REVERSE-GREEDY:

Let t € T be a terminal of minimum augmentation cost.

Recursively solve the instsance of SS-k-CONNECTIVITY on G, with terminal set T/ = T — {t}.
Augment ¢ with respect to T/, paying (at most) its augmentation cost.

The rest of the section is devoted to showing that REVERSE-GREEDY achieves a good
approximation. As we mentioned already, there is an Q(|T|) lower bound on the perfor-
mance of any online algorithm. Thus, the order of terminals is of considerable importance
in the performance of the greedy algorithm. Note that for k = 1, namely the Steiner tree
problem, the greedy online algorithm does have a performance ratio of O(log |T]).

The key step in the analysis of the algorithm is to bound the augmentation cost of ter-
minals. We do this by constructing a natural linear program for the problem and using a
dual-based argument. The primal and its dual linear programs for SS-k-CONNECTIVITY are
shown below. We remark that our linear program is based on a path-formulation unlike the
standard cut-based (setpair) formulation for VC-SNDP [10, 9]. However, the optimal solu-
tion values of the two relaxations are the same. The path-formulation is more appropriate
for our analysis.

In the primal linear program below, and throughout the paper, we let Pf denote the
collection of all sets of k vertex-disjoint paths from ¢ to the root r. We use the notation P to
abbreviate {p1, pa, ... px}, an unordered set of k disjoint paths in PF. Finally, we say that
an edge e € P if there is some pj € P such that e € pj- In the LP, the variable x, indicates
whether or not the edge e is in the solution. For each P € Pf, the variable fp is 1if terminal
t selects the k paths of P to connect to the root, and 0 otherwise.

135

136 SINGLE-SINK NETWORK DESIGN WITH VERTEX CONNECTIVITY REQUIREMENTS

Primal-Conn mianexe Dual-Conn maxzfxt
ecE teT
Yo fs =1 (VteT) Y B < e (Ve € E)
Pepf t
Y fs < x (VteTeck) wo < LB (vPep)
PePklecP ecP
X, fs € [0,1] ar, By > 0

The value f; can be thought of as the amount of “flow” sent from ¢ to the root along
the set of paths in P. The first constraint requires that for each terminal, a total flow of at
least 1 unit must be sent along various sets of k disjoint paths. Our analysis of the algorithm
REVERSE-GREEDY is based on the following technical lemma.

LEMMA 2. Given an instance of SS-k-CONNECTIVITY with h terminals, let OPT be the cost
of an optimal fractional solution to Primal-Conn. For each terminal t, let Cost(t) denote the
augmentation cost of t. Then min; Cost(t) < f(k)k* - 2L where f(k) = 3%k!. It also follows
that Y, Cost; < 2f(k)k*logh - OPT.

Lemma 2 and a simple inductive proof give the following theorem.

THEOREM 3. REVERSE-GREEDY is an O(f (k)k? log h)-approximation for SS-k-CONNECTIVITY.

2.1 Overview of the Dual-Packing Analysis

We prove Lemma 2 based on a dual-packing argument. In order to do this we first interpret
the variables and constraints in Dual-Conn. There is a dual variable a; for each t € T. We
interpret a; as the total cost that ¢ is willing to pay to connect to the root. In addition there
is a variable B} which is the amount that f is willing to pay on edge e. The dual constraint
Y B. < c, requires that the total payment on an edge from all terminals is at most ¢,. In
addition, for each terminal ¢, the total payment «; should not exceed the min-cost k-disjoint
paths to the root with costs given by the B, payments of t on the edges.

Let « = min; Cost(t). To prove Lemma 2/it is sufficient to exhibit a feasible setting for
the dual variables in which a; > &/ (f(k)k?). How do we do this? To understand the overall
plan and intuition, we first consider the Steiner tree problem (the case of k = 1). In this case,
« = min; Cost(t) is the shortest distance between any two terminals. For each ¢ consider the
ball of radius «/2 centered around ¢; these balls are disjoint. Hence, setting a; = «/2 and
Bl = c. for each e in t’s ball (and B, = 0 for other edges) yields a feasible dual solution. This
interpretation is well-known and underlies the O(log |T|) bound on the competitiveness of
the greedy algorithm for the online Steiner tree problem. Extending the above intuition to
k > 1 is substantially more complicated. We again to wish to define balls of radius Q(«)
that are disjoint. As we remarked earlier, for k = 1 one can work with distances in the graph
and the ball of radius /2 is well defined.

CHEKURI, KORULA FSTTCS 2008

For k > 1, there may be multiple terminals at close distance d from
a terminal f, but nevertheless Cost(t) could be much larger than d. The
reason for this is that f needs to reach k terminals via vertex disjoint paths
and there may be a vertex v whose removal disconnects ¢ from all the nearby
terminals. Consider the example in the figure, where filled circles denote
other terminals: The terminal ¢ is willing to pay for e and edges on P but
not ¢’. There does not appear to be a natural notion of a ball; however, we
show that one can define some auxiliary costs on the edges (that vary based on ¢) which can
then be used to define a ball for t. The complexity of the analysis comes from the fact that
the balls for different t are defined by different auxiliary edge costs. Now we show how the
auxiliary costs can be defined.

We can obtain the augmentation cost of a terminal f via a min-cost flow computation
in an associated directed graph G;(V;, E;) constructed from G in the following standard way:
make 2 copies v and v~ of each vertex v # t, with a single edge/arc between them, and
for each undirected edge uv in G, edges from u™ to v~ and v™ to u~. Further, we add a new
vertex 7; as sink, and for each terminal f other than ¢, add a 0-cost edge from F+ to 4. Recall
that an augmentation for ¢ is a set of k disjoint paths from t that end at distinct terminals in
T \ {t}, or the root. While constructing G, then, the root is also considered a terminal, and
we make k copies of it to account for the fact that multiple paths in the augmentation can end
at the root; each such copy is also connected to the sink ;. We now ask for a minimum cost
set of k disjoint paths from ¢ to rit; these correspond to a minimum-cost augmentation for ¢.
It is useful to use a linear programming formulation for the min-cost flow computation. The
linear program for computing the augmentation cost of t, and its dual are shown below. We
refer to these as Primal-Aug(f) and Dual-Aug(t) respectively.

k11— !
min) c.fe fax ;ZE
ecE;
M—rm(u) < cot+zh (Ve= (u,r))
Yecs-(m) fo = k C _
m(v) —m(u) < c.+z, (Ve=(u,0),
Zee&*(u) fe = Ze:ﬁ(v) fe (Vo#tr)
u#to#£r
fe S 1 (Ve € Et) ¢
m(v) < c+z, (Ve=(tv)€E)
Z, 2> 0 (e € Et)

Note that the cost of an optimal solution to Primal-Aug(t) is equal to Cost(t). The
interesting aspect is the interpretation of the dual variables. The variables z! are auxiliary
costs on the edges. One can then interpret the dual Dual-Aug(#) as setting z! values such
that the distance from #, with modified cost of each edge e set to c, + z!, is equal to IT for
every other terminal #'. Thus the modified costs create a ball around ¢ in which all terminals
are at equal distance!

Thus, the overall game plan of the proof is the following. For each t solve Primal-
Aug(t) and find an appropriate solution to Dual-Aug(t) (this requires some care). Use

#Note that we do not make two copies of t, as we will never use an incoming edge to t in a min-cost set of
paths. All edges are directed out of the unique copy of t.

137

138 SINGLE-SINK NETWORK DESIGN WITH VERTEX CONNECTIVITY REQUIREMENTS

these dual variables to define a non-uniform ball around ¢ in the original graph G. This
leads to a feasible setting of variables in Dual-Conn (with the balls being approximately
disjoint). Although the scheme at a high level is fairly natural, the technical details are non-
trivial and somewhat long. In particular, one requires an important combinatorial lemma
on intersecting path systems that was formulated in [4] — here we give an improved proof
of a slight variant that we need. The use of this lemma leads to the exponential dependence
on k. A certain natural conjecture regarding the non-uniform balls, if true, would lead to a
polynomial dependence on k. We refer the reader to the full version for the details.

3 Rent-or-Buy

In this section we describe and analyze a simple algorithm for the SS-k-RENT-OR-BUY prob-
lem. Recall that the input to this problem is the same as that for SS-k-CONNECTIVITY with
an additional parameter M. The goal is to find for each terminal t € T, k vertex-disjoint
paths P € Pf to the root r. The objective is to minimize the total cost of the chosen paths
where the cost of an edge e is ¢, - min{M, |T,|} where T, is the set of terminals whose paths
contain e. In other words an edge can either be bought at a price of Mc, in which case any
number of terminals can use it or an edge can be rented at a cost of c, per terminal. Our
algorithm given below is essentially the same as the random marking algorithm that has
been shown to give an O(1) approximation for the case of k = 1 [12].

RENT-OR-BUY-SAMPLE:

1. Sample each terminal independently with probability 1/ M.

2.1 Find a subgraph H in which every sampled terminal is k-connected to the root.

2.2 Buy the edges of H, paying Mc, for each edge e € H.

3. For each non-sampled terminal, greedily rent disjoint paths to k distinct sampled terminals.

It is easy to see that the algorithm is correct. Note that a non-sampled terminal can
always find feasible paths since the root can be the endpoint of all k paths. The algorithm
and analysis easily generalize to the case where each terminal has a demand d; to be routed
to the root. The algorithm can be analyzed using the strict cost-shares framework of Gupta et
al. [12] for sampling algorithms for rent-or-buy and related problems. It is not hard to show
that the REVERSE-GREEDY algorithm directly implies the desired strict-cost shares needed
for the framework. This allows us to conclude that the approximation ratio of RENT-OR-
BUY-SAMPLE is no more than two times that of REVERSE-GREEDY.

THEOREM 4. There is a O(f(k)k?log h)-approximation for the SS-k-RENT-OR-BUY problem.

We omit the formal proof of the above theorem in this version. In fact we give a direct
and somewhat complex analysis that proves a slightly weaker bound than the above for
reasons that we discuss now. One of our motivations to understand SS-k-RENT-OR-BUY is
for its use in obtaining algorithms for the SS-k-BUY-AT-BULK problem. For k = 1, previous
algorithms for SS-k-BUY-AT-BULK [11, 12] could use an algorithm for SS-k-RENT-OR-BUY
essentially as a black box. However, for k > 2 there are important technical differences
and challenges that we outline in Section 4 We cannot, therefore, use an algorithm for
SS-k-RENT-OR-BUY as a black box. In a nutshell, the extra property that we need is the
following. In the sampling algorithm RENT-OR-BUY-SAMPLE, there is no bound on the

CHEKURI, KORULA FSTTCS 2008

number of unsampled terminals that may route to any specific sampled terminal. In the
buy-at-bulk application we need an extra balance condition which ensures that unsampled
terminals route to sampled terminals in such a way that no sampled terminal receives more
than BM demand where B > 1 is not too large. We prove the following technical lemma
that shows that § can be chosen to be O(f (k)klog? It).

LEMMA 5. Consider an instance of RENT-OR-BUY and let OPT be the value of an opti-
mal fractional solution to the given instance. Then for each terminal t we can find paths
Pi, Pi,..., P! with the following properties: (i) 0 > (k —1/2)M and (ii) the paths originate
att and end at distinct terminals or the root and (iii) no edge e is contained in more than M
paths for any terminal t. Moreover the total rental cost of the paths is O(f (k)e®**) - k> log h) -
M - OPT and no terminal is the end point of more than O(f(k)klog®h - M) paths.

The proof of the above lemma is non-trivial. We are able to prove it by first analyzing
the sampling based algorithm directly via the natural LP relaxation for SS-k-RENT-OR-BUY.
Although the underlying ideas are inspired by the ones for SS-k-CONNECTIVITY, the proof
itself is fairly technical.

4 Buy-at-Bulk Network Design

In this section we consider the SS-k-BUY-AT-BULK problem. We first consider the uniform
version; Section 4.1 discusses the non-uniform version.

Each terminal t € T wishes to route one unit of demand to the root along k vertex
disjoint paths. More generally, terminals may have different demands, but we focus on the
unit-demand case for ease of exposition. There are b cable-types; the ith cable has capacity
u; and cost w; per unit length. Let f : Rt — R™ be a sub-additive function$ where f(x)
is the minimum-cost set of cables whose total capacity is at least x. The goal is to find a
routing for the terminals so that }_, ¢, - f(x,) is minimized where x, is the total flow on edge
e. One can assume that the cables exhibit economy of scale; that is, w;/u; > w;1/u;41 for
each i. Therefore, there is some parameter g;.1, with u; < g;11 < u;;1, such that if the flow
on an edge is at least g;;1, it is more cost-effective to use a single cable of type i 4+ 1 than
gi+1/u; cables of type i. Consistent with this notation, we set g1 = 1; since all our cables
have capacity at least 11, if an edge has non-zero flow, it must use a cable of type at least 1.

Our overall algorithm follows the same high-level approach as that of the previous
single-sink algorithms for the k = 1 problem [11, 12]. The basic idea is as follows: Given
an instance in which the demand at each terminal is of value at least g;, it is clear that
cable types 1 to i — 1 can be effectively ignored. The goal is now to aggregate or cluster the
demand from the terminals to some cluster centers such that the aggregated demand at the
cluster centers is at least ;1. Suppose we can argue the following two properties of the
aggregation process: (i) the cost of sending the demand from the current terminals to the
cluster centers is comparable to that of OPT and (ii) there exists a solution on the cluster
centers of cost not much more than OPT. Then we have effectively reduced the problem
to one with fewer cables, since the demand at the cluster centers is at least g;1. We can
thus recurse on this problem. For k = 1 this outline can be effectively used to obtain an

$ Any sub-additive f can conversely be approximated by a collection of cable-types.

139

140 SINGLE-SINK NETWORK DESIGN WITH VERTEX CONNECTIVITY REQUIREMENTS

O(1) approximation independent of the number of cable types. There are several obstacles
to using this approach for k > 1. The most significant of these is that it is difficult to argue
that there is a solution on the new cluster centers of cost not much more than OPT. In the
case of k = 1, this is fairly easy, as the new cluster centers can pretend to randomly send
the demand back to the original terminals; for higher k, since centers need to send demand
along k disjoint paths, this is no longer straightforward.

To deal with these issues, we perform a 2-stage aggregation process that is more com-
plex than previous methods: First, given centers with demand g;, we cluster demand to
produce a new set of centers with demand u;, using a result of [2]. Second, given centers
with demand u;, we use some ideas from Section 3/for RENT-OR-BUY to produce a new set
of centers with demand g;1. The algorithm of [2] that we use in the first stage applies only
for k = 2; our ideas can be extended to arbitrary k. We describe the two-stage aggregation
process to go from a set of centers with demand g; to a new set of centers with demand g;4
below; we can then recurse.

Given an instance of SS-k-BUY-AT-BULK with center set T in which all demands are at
least g;, we can effectively assume that an optimal solution only uses cables of type i to b;
let OPT; denote the cost of an optimal solution to this instance. Let H denote an optimal
solution to the SS-k-CONNECTIVITY instance with terminal set T, where the cost of edge e
is wjc,; the cost of H is a lower bound on OPT;. (Consider an optimal solution to the SS-k-
BUY-AT-BULK instance; the set of edges with installed cables k-connects T to the root, and
the cost on each edge is at least w;c,.) It follows from a clustering algorithm of [2] that for
k = 2, we can find a new set of centers T’ in polynomial time such that: (i) every t € T
can route flow to 2 centers in T’ via disjoint paths in H; (ii) the total flow on any edge in H
is O(1)u;; (iii) the demand at each t' € T’ is at least u; and at most 7u;; and (iv) There is a
solution to the new buy-at-bulk instance on T’ of expected cost at most O(l)OPTlﬁ This
completes the first aggregation stage.

We now have an instance of SS-k-BUY-AT-BULK with center set T in which each center
has demand = u;, and with an optimal solution of cost at most OPT; = O(1)OPT;. Consider
a modified instance in which all demands are set equal to u;, the cable capacity u; is set to
infinity and the cable-types i 4 2 to £ are eliminated. Clearly, the cost of an optimal solution
to this modified instance is no more than OPT;; simply replace each cable of higher capacity
with a single cable of type i + 1. However, we now have an instance of RENT-OR-BUY with
M = gi+1/u;. We can now perform our second stage of aggregation; the key idea here is to
use Lemma 5 from Section|3 which guarantees a desired balance condition. This is sufficient
for the above described scheme to go through and yield the following result. Unlike the
k =1 case, each aggregation step loses a logarithmic factor in the approximation and hence
the approximation we can guarantee is exponential in the number of cables.

THEOREM 6. There is an (O(log h))% -approximation for SS-2-BUY-AT-BULK with b cable-
types.

IThe algorithm as described in [2] enforces a weaker version of condition (iii); the demand at each t' € T’ is
at least u;, and at many centers, the demand is at most 7u;. The centers of so-called star-like jumbo clusters may
have higher demand, but the algorithm can be extended so that such high demand centers have their demand
split into smaller units.

CHEKURI, KORULA FSTTCS 2008

41 Non-uniform Buy-at-Bulk

We now consider the non-uniform version of SS-k-BUY-AT-BULK. In this version, for each
edge e of the graph G there is a given sub-additive cost function f, and routing x units of
demand on e results in a cost of f,(x). The uniform version is a special case where f, = c, - f
for a single sub-additive function f. The non-uniform buy-at-bulk problem is considerably
harder than its uniform variant and we refer the reader to [16, 5, 7] for prior work and related
pointers. We have already mentioned that prior to this work, for k > 2 the SS-k-BUY-AT-
BULK problem did not admit a non-trivial approximation even for the (uniform) 2-cable
problem. For the non-uniform single-sink problem there are essentially two approximation
algorithms known for k = 1, one from [16] and the other from [5]. The algorithm of Charikar
and Kargiazova [5] admits a natural generalization for k > 2 that we analyze using our

result for SS-k-CONNECTIVITY. We obtain a ratio of 2°(v°5") which is essentially the same
as the one shown in [5] for the multi-commodity problem (due to a similar recurrence in the
analysis). We remark that the [5] proves a bound of O(log? 1) for the single-sink problem.
However, for k > 2 the analysis of the recurrence changes dramatically from that for k = 1.
Although the bound we show is not impressive, the randomized inflated greedy algorithm
of [5] is extremely simple and elegant. It is easy to implement and amenable to heuristic
improvement and has shown to be effective in some empirical evaluation [3]. We now
describe the algorithm of [5] adapted to SS-k-BUY-AT-BULK. We assume that each terminal
has unit demand to begin with.

RANDOM-INFLATED-GREEDY:

1. Pick a random permutation 7t of the terminals in T.

2. For i = 1 to h in that order, greedily route /i units of demand from ¢; to the root r along k
disjoint paths using the cheapest cost paths in the network built by the previous i — 1 terminals.

Note that the algorithm routes //i units of demand for ¢; although only one unit of
demand is required to be routed. We refer the reader to [5] for the background and intuition
behind the design of the above algorithm. Each terminal is routed greedily but the cost of
routing on an edge depends on the routing of the previous terminals. More precisely, if x. !
is the amount of demand routed on an edge e by the first i — 1 terminals then the cost of
routing an additional //i units for terminal i on e is given by ¢, = f,(xi1 +h/i) — fo(xi71).
One can use a min-cost flow computation with costs ¢’ to find the cheapest k disjoint paths
from t; to r. It is easy to see that the algorithm is correct; in the case of k = 1, it is known to
have an approximation ratio of O(log 1) for k = 1 [5]. However, for k > 2 we are able to
establish the following theorem.

THEOREM 7. For any fixed k, RANDOM-INFLATED-GREEDY is a 2°(V198") _approximation
for the non-uniform version of SS-k-BUY-AT-BULK with unit-demands. For arbitrary de-

mands there is alog D - 2°(v log) approximation algorithm where D is the ratio of the max-
imum to minimum demands.

Acknowledgments: We are grateful to Sanjeev Khanna for several discussions on the k-
connectivity problem and for explaining the results and ideas in [4]. We also thank Anupam
Gupta for several useful discussions.

141

142 SINGLE-SINK NETWORK DESIGN WITH VERTEX CONNECTIVITY REQUIREMENTS

References

[1] M. Andrews and L. Zhang. The access network design problem. Proc. of IEEE FOCS,
40-49, 1998.

[2] S. Antonakapoulos, C. Chekuri, B. Shepherd and L. Zhang. Buy-at-Bulk Network De-
sign with Protection. Proc. of IEEE FOCS, 634—644, 2007.

[3] S. Antonakapoulos and L. Zhang. Heuristics for Fiber Installation in Optical Network
Optimization. Proc. of IEEE Globecom, 2342-2347, 2007 .

[4] T. Chakraborty, J. Chuzhoy and S. Khanna. Network Design for Vertex Connectivity.
Proc. of ACM STOC, 2008.

[5] M. Charikar and A. Karagiozova. On non-uniform multicommodity buy-at-bulk net-
work design. Proc. of ACM STOC, 176-182, 2005.

[6] C. Chekuri, P. Claisse, R. Essiambre, S. Fortune, D. Kilper, W. Lee, K. Nithi, I. Saniee,
B. Shepherd, C. White, G. Wilfong, and L. Zhang. Design tools for transparent optical
networks. Bell Labs Technical Journal, 11(2):129-143, 2006.

[7] C. Chekuri, M. Hajiaghayi, G. Kortsarz, and M. Salavatipour. Approximation algo-
rithms for non-uniform buy-at-bulk network design problems. Proc. of IEEE FOCS,
677-686, 2006.

[8] J. Chuzhoy and S. Khanna. Algorithms for Single-Source Vertex-Connectivity. Proc. of
IEEE FOCS, October 2008.

[9] L. Fleischer, K. Jain, and D.P. Williamson. An iterative rounding 2-approximation algo-
rithm for the element connectivity problem. JCSS, 72(5):838-867, 2006.

[10] A.Frank and T. Jordan. Minimal edge-covers pairs of sets. . of Combinatorial Theory, B,
65(1):73-110, 1995.

[11] S. Guha, A. Meyerson, and K. Munagala. A constant factor approximation for the
single sink edge installation problem. Proc. of ACM STOC, 383-388, 2001.

[12] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden. Approximation via cost-sharing.
JACM, 54(3), 2007.

[13] K. Jain. A factor 2 approximation algorithm for the generalized steiner network prob-
lem. Combinatorica, 21(1):39-60, 2001.

[14] G. Kortsarz, R. Krauthgamer and]. Lee. Hardness of approximation for vertex-
connectivity network design problems. SIAM |. on Computing, 33(3):704-720, 2004.

[15] G. Kortsarz and Z. Nutov. Approximating min-cost connectivity problems. Chapter in
Handbook on Approximation Algorithms and Metaheuristics, CRC Press, 2006.

[16] A.Meyerson, K. Munagala, and S. Plotkin. Cost-distance: Two metric network design.
Proc. of IEEE FOCS, 383-388, 2000.

[17] ES. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Buy at bulk network design:
Approximating the single-sink edge installation problem. SIAM J. on Optimization,
11(3):595-610, 2000.

[18] D.P. Williamson, M.X. Goemans, M. Mihail and V.V. Vazirani. A primal-dual approxi-
mation algorithm for generalized Steiner network problems. Combinatorica, 15:534-454,
December 1995.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 143-154

Graph Games on Ordinals®

Julien Cristau !, Florian Horn 12
{jcristau, horn}@iafa.jussieu.fr

LLIAFA, Université Paris 7, Case 7014, F-75205 Paris 13, France

2 Lehrstuhl fiir Informatik VII, RWTH, Ahornstrafle 55, 52056 Aachen, Germany

ABSTRACT.

We consider an extension of Church’s synthesis problem to ordinals by adding limit transitions to
graph games. We consider game arenas where these limit transitions are defined using the sets of
cofinal states. In a previous paper, we have shown that such games of ordinal length are determined
and that the winner problem is PSPACE-complete, for a subclass of arenas where the length of plays
is always smaller than w®. However, the proof uses a rather involved reduction to classical Muller
games, and the resulting strategies need infinite memory.

We adapt the LAR reduction to prove the determinacy in the general case, and to generate strategies
with finite memory, using a reduction to games where the limit transitions are defined by priorities.
We provide an algorithm for computing the winning regions of both players in these games, with a
complexity similar to parity games. Its analysis yields three results: determinacy without hypoth-
esis on the length of the plays, existence of memoryless strategies, and membership of the winner
problem in NP N co-NP.

1 Introduction

Church’s problem, introduced in [Chu63], is fundamental in the theory of automata over
infinite strings. It considers a specification ¢(X, Y) — usually a MSO formula — over pairs
of infinite sequences. A solution to this problem is a circuit which computes an output
sequence Y using a letter-by-letter transformation of the input sequence X. The Biichi-
Landweber theorem shows the decidability of this problem, and provides an automatic
procedure to compute a solution [BL69]. The proof builds on McNaughton’s game-theoretic
presentation of this problem [McN65]. McNaughton games are perfect information two-
player games where at every stage n < w, player X chooses first whether he accepts n, and
Y replies in kind. Player Y wins a play if the sets of integers accepted by X and Y verify ¢. A
winning strategy for Y gives a solution to Church’s problem. Additionally, a winning strat-
egy can be computed by a finite w-automaton with output or, equivalently, defined using
an MSO formula.

Church’s problem can be extended to sequences of arbitrary ordinal length. One possi-
ble extension is to fix the length of the plays in advance: in [RS08], Rabinovich and Shomrat
use a compositional method to show that for any countable ordinal « and MSO formula
$(X,Y), the corresponding McNaughton game is determined and the winner problem is
decidable. Moreover, if x < w® it’s possible to compute a formula defining a winning
strategy.

*This paper was supported in part by the French ANR DOTS.

© Julien Cristau, Florian Horn; licensed under Creative Commons License-NC-ND

FSTTCS 2008

TARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1768

144 GRAPH GAMES ON ORDINALS

Our approach is based on the graph games used in verification [Tho95], and Biichi’s
automata on words of ordinal length [Bii73]. In addition to the usual successor transi-
tions, limit transitions allow the game to continue past any limit ordinal. In this model,
the length of the plays is not fixed a priori, but depends on the actions of the players: the
game stops when one of the players wins. In the paper, we only consider reachability win-
ning conditions; however, any regular condition can be represented this way, because the
addition of limit transitions allows to embed more complex transitions in the game arena
itself. In [CHO8], we studied a restriction of these games, disallowing limit transitions of
the form P — g € P, which effectively reduces the scope of this work to plays shorter than
w®. Another drawback is that the strategies we obtained needed infinite memory. In this
paper, we lift this restriction and prove the determinacy and existence of strategies with
finite memory. We first solve a particular case of games where the limit transitions are de-
fined using priorities, which are closely related to parity games of length w. We present
an algorithm computing the winning regions for both players in these games. Determinacy
follows from its correctness, and further analysis gives positional winning strategies for
both players in their winning regions. We derive from this the membership of the winner
problem in NP N co-NP. We also derive an alternative proof of the results of Rabinovich and
Shomrat on McNaughton games of length smaller than w®: determinacy, decidability, de-
finable strategy and strategy synthesis. Using an adaptation of the Latest Appearance Records
of Gurevich and Harrington [GHS82], we give a reduction from ordinal games to priority
ordinal games. From this extended LAR reduction and our former results, we derive the
determinacy of games of ordinal length, as well as the existence of finite-memory strategies
for both players.

Overview of the paper. In Section 2, we recall the definitions of graph games of ordinal
length, as well as their variant with priority-controlled transitions. Section 3 presents an
algorithm for solving priority ordinal games, and its theoretical consequences. Section 4
shows how to adapt the LAR reduction to games of ordinal length, in order to get general
determinacy and finite-memory strategies for all ordinal games. Finally, Section 5 sum-
marises our results, and presents perspectives for future work.

2 Definitions
Ordinals and words of ordinal length

An ordinal « is a set equipped with a well-founded linear order. Ordinals can be ordered
in a natural way, and we take the usual convention identifying each ordinal with the set of
the smaller ordinals. A word p of length a over an alphabet X is a mapping (0g)s<, from
a to X. We denote by |p| the length of the word. The prefix of p of length B < |p|, noted
p<p, is defined as (p,)q<p. Similarly, we write p> for the suffix (p,)g<<|o|- The subset of
X appearing in p is Occ(p) = {pp | B < |p|}. Finally, if |p| is a limit ordinal, the limit of p,
noted limp, is the set {s € X | VB < |p|, Iy > B, p, = s}.

JULIEN CRISTAU, FLORIAN HORN FSTTCS 2008

Games of ordinal length

A reachability game of ordinal length (ordinal game) G is played by two players called Eve
and Adam on an arena of the form (Q, Qg, Qa, T, A). The tuple (Q, T) is a directed graph
and the set of vertices is partitioned between Adam’s vertices (Q 4, graphically represented
by 0), Eve’s vertices (Qf, graphically represented by O), and a target vertex ©. The function
A represents limit transitions; it maps P(Qa U Qg) to Q. We assume that every vertex except
© has at least one successor. We give an example of reachability game of ordinal length
in Figure 1. Some limit transitions aren’t possible in this particular example, and are thus
omitted. In this paper, we consider the case where Q is finite.

M =d Mlabh=c Adabec}) =c
A{a,b,d})=a A{a,b,c,d}) =®

Figure 1: Game of ordinal length

A play p on a game G is an ordinal word on Q such that for any a < |p|:
o ifa = B+ 1, then (pg,0a) € T;
e if a is a limit ordinal, then A(limp-,) = pq.
The set of all plays is noted Q). It can be divided into four disjoint subsets:

1. The set of plays which have a last state in Q. These plays can be extended through a
successor transition, chosen by Eve — a move of Eve.

2. The set of plays which have a last state in Q 4. These plays can be extended through a
successor transition, chosen by Adam — a move of Adam.

3. The set of plays which have © as last state. These plays are said to be winning for Eve.
Any other play is winning for Adam.

4. The set of plays without a last state. These plays can be extended through a unique
limit transition.

Notice that our definition for winning plays deviates from the classical interpretation
of infinite games, where there is no winner for the partial plays. This is necessary here, as
non-winning plays can go on without ever ending, even in the transfinite sense. It’s not
possible to easily distinguish between plays where Eve has not yet won, and plays that are
definitely won by Adam.

A strategy for Eve is a function o : 3 — Q such thatif pendsing € Qg, then (q,0(p)) €

145

146 GRAPH GAMES ON ORDINALS

T. A strategy with finite memory M for Eve is a finite transducer working over the states of
M. 1t is defined by three functions:
e 0" : M x Q — Mis the memory update for successor transitions.
e 0! : P(M) — M is the memory update for limit transitions.
e 0" : M x Qg — Q outputs Eve’s next move.
One can define in the same way strategies and strategies with finite memory for Adam.
If M has only one element, ¢ is a positional strategy. A play p of length « is consistent with
a strategy o for Eve if pgy1 = 0(p-p) for every B such that B+ 1 < a and pg € Qr. A
strategy ¢ is winning for Eve if there is an ordinal « such that any play consistent with ¢ has
length less than a. Notice that this condition imposes that © is eventually reached, as plays
can otherwise always be extended. Conversely, a strategy T is winning for Adam if no play
consistent with T ends in ©. A game is determined if there is always a winning strategy for
one of the players.
If all limit transitions lead either to © or to a sink state, then all plays are shorter than
w, and the game is a traditional Muller game.
In [CHO8], we showed that a subclass of ordinal games are determined:

THEOREM 1.[CHO8] Reachability games of ordinal length without transitions of the form
A(P) = q € P are determined.

Notice that this subclass is not a mere syntactic condition: it restricts the scope of The-
orem 1 to games where the plays have length less than w*, as can be deduced from Theo-
rem 2:

THEOREM 2.[Cho78] In an automaton with n states where no limit transition is of the form
A(P) = g € P, all runs are shorter than w".

Priority ordinal games. A reachability game of ordinal length with priority transitions (pri-
ority ordinal game) is a game where the limit transition function A is defined in a specific
way: a colouring function x maps each state to a colour in {0, ...,d — 1}; another function §
maps each colour to a state of Q. Then, for any set P C Q, the limit transition is given by
A(P) = é(min{x(q) | 4 € P}).

Figure 2 gives an example of a priority game, with d = 6. In this game, Adam wins
from states ¢ and d: from d he can go to ¢, and any limit transition will take the token back
to d. Eve wins from everywhere else: from b she goes to a and the token will reach the target
after playing (ba“)“; from e she goes to f and the token will eventually reach a.

Not all ordinal games can be represented by priority transitions. In the game of Fig-
ure 1, for example, the set {a,b,c,d} leads neither to the destination of {a,b,c}, nor to the
one of {a,b,d}. This cannot occur in a priority game, as min x({a,b,c,d}) would be either
min x({a,b,c}), or min x({a,b,d}).

Subgames, attractors and traps. We recall here some classical concepts for infinite games
(see e.g. [Tho95]), which we use in the context of ordinal games.

Let G = (Q,Qk,Qa, T, A) be an ordinal game, and Q" a subset of Q. The tuple G’ =
(Q,Q, Q4 T, ') —where Qr = Q'NQE, Qs = Q' NQ4,and T' and A’ are the restrictions

JULIEN CRISTAU, FLORIAN HORN FSTTCS 2008

Figure 2: Priority Game

to Q' of the transitions in G— is an w-subgame of G if every state in G’ has a successor. We
write G =G\ Pif Q' =Q\P.

Let P be a subset of states in a game G. The w-attractor to P for Eve, noted Attr& (P), is
the set of states such that Eve can ensure that P is reached after a finite number of moves; it
is defined as (J;-(Attr;, where Attr; is the least subset of Q such that:

o Attrg = P;
Attri - Attrl‘+1,'
if g € Qf and q has a successor in Attr;, then g € Attr;,4;
if g € Q4 and all successors of g in G are in Attr;, then g € Attr; ;.

PROPOSITION 3. In an w-attractor for Eve, she has a positional strategy to ensure that P is
reached in a finite number of moves.

An w-trap for Eve is a subset P of states such that Adam can ensure that the token stays
in P for at least w moves:
e if g € PN Qg, all its successors are in P;
e if g € PN Q4, g has a successor in P.
In all this paper, we use the terms attractor and trap to refer to w-attractors and w-traps,
without any assumption about what happens beyond w. Computing ordinal attractors is,
indeed, the point of this work.

3 Solving priority ordinal games

Algorithm. Our main result is an algorithm computing the winning regions of both players
in a priority ordinal game. It is inspired by Zielonka’s algorithm for infinite (w-length)
parity games in [Zie98].

In order to make the algorithm simpler, we assume without loss of generality that the
target © is the only state with priority 0, and that no state has priority 1. The priority 1
represents a virtual sink state, which is used to terminate the computation. The value of
5(1) is thus unused, and we assume that it is not defined.

147

148 GRAPH GAMES ON ORDINALS

Input: The game G
Output: The winning regions of Eve and Adam

1 v[0] — E

2 To[0] « Attr& (x~1(0))

3 for0 <i<ddoTo[i] — @

4 H— G\ To[0]

510

6 while (To[0] UTo[1]) # G do
7 while (H # @) do

8 i++

9 if 3j | 6(i) € To[j] then
10 ‘ v[i] < v[]]

11 else

12 ‘ v[i] «— A

13 Toli] « Attrs[i] (x7'(1))
14 H« H\ To[i]

15 Tmpto «— Toli]

16 Tmpo «— vl[i]

17 repeat

18 H«— HUTo[i]

19 Toli] «— @

20 v[i] «— A

21 i—-—

22 | until (v[i] = Tmpo)

23 | Toli] — To[i] U Attr},,,,(Tmpto)
24 | H+ H\To[i]

N
(6]

return (Tol0], To[1])

Figure 3: Algorithm for Priority Games

The major difference with Zielonka’s algorithm is that we have to determine which
player wants to reach a colour j. The algorithm uses two arrays, v and To, indexed by
colours, to store this information. At every step of the algorithm, v[j] is the player which
is presumed to want to reach j. This can change each time the attractor to j is computed:
v[j] = E if and only if there is a smaller colour i such that v[i] = E and 6(j) € To[i]. Given a
colour j, To[j] C Q is a set of states where player v[j| can guarantee an invariant, which will
be precised later.

We compute embedded attractors, starting with the smallest (i.e. most important)
colour: we compute an attractor to that colour, then remove these states from the graph
and start again with the next colour. When all the graph is covered, the last computed at-
tractor, To[k|, is merged with a former one, To[j]. We recompute then the attractors to colours
greater than j. The algorithm ends when all the states are either in To[0] or in To[1]. The for-
mer contains the winning region for Eve, and the latter is the winning region for Adam. The

JULIEN CRISTAU, FLORIAN HORN FSTTCS 2008

termination is guaranteed by the fact that a state can only be removed from “To[i]” when
another is added to “To[j]” with j < i, and that whenever line 14 is reached, every state
belongs to exactly one of the To[i]. Figure 3 presents this algorithm in pseudo-code.

Correctness. In order to prove the correctness of the algorithm, we use the notation H/ for
Q \ Uk<; To[k], and the following easy but useful properties obtained from the construction
of the array To.

PROPOSITION 4. H/ is an w-subgame of G.

PROPOSITION 5. For any colour j, Attr‘%} (Tolj]) = Tolj].

The correctness of the algorithm is proved separately for the two players: the argu-
ments involved, while close, cannot be easily unified. In both cases, however, we define
a predicate referring to the plays of the game and a property derived from it, and show
that the property holds along the whole run. Its interpretation at the end of a run implies
correctness.

In Eve’s proof, we use the loop invariant Z and the predicates M/ on the plays. The
corresponding predicates for Adam are 7 and A/, respectively.

Informally, the predicates M/ correspond to strong until predicates of the form “(> j)U (j)

7”7

Adam’s predicates N7 correspond to weak until predicates of the form “(> j)W(j)”.

DEFINITION 6. The predicate MI(p) is defined as “v[j] = E, and Ja < w®~/ such that
Occ(p<n) C To[j] and either:

 [p|=wa 0r

* pu € To[j] N x71(j), or

e Jk < j such that M*(p>,) holds”.

DEFINITION 7. T is the property “Eve has a positional strategy ¢ such that, for any j such
that v[j] = E, and any play p starting in To[j] and consistent with o, M/(p) holds”.

7 holds at the beginning of a run: before line 6, To[0] is the only non-empty set, and it
contains only Attrg(x~!(0)). Propositions 8 and 9 guarantee that it remains true throughout
the execution.

PROPOSITION 8. Let us suppose that T holds at line 8. Then I holds at the next visit of
line 14.

SKETCH OF PROOF. If v[i] = A, the property Z is unchanged after the iteration. If v[i] = E, an
attractor strategy for Eve guarantees a visit to i in less than w moves, unless Adam chooses
to send the token outside of To[i]. If he does that, the structure of the array To as a series of
alternating embedded w-attractors guarantees that the token is sent to a To[j] such that j < i
and v[j] = E.

149

7

150 GRAPH GAMES ON ORDINALS

PROPOSITION 9. Let us suppose that 7 holds before a visit to line 17. Then 7 holds at the
next visit of line 24.

SKETCH OF PROOF. Once again, the interesting cases are those where Tmpv = E and the to-
ken remains in Tmpto long enough. As Tmpto is a trap for Adam, Eve’s strategy guarantees
an infinite number of visits to i (the corresponding colour) in less than «w~*! moves. The
token is then sent to 6(i) which by definitions of v and i belongs to a To|j] such that j < i
and v[j] = E.

The structure of the proof for the states of Adam is quite similar, although the predicates
are slightly weaker. We can prove that 7 holds along the whole run.

DEFINITION 10. The predicate N/ (p) is defined as “v[j] = A and 3« such that Occ(p,) C
To[j] and either:

o o] =g, or

o b € Tolj] N x (), or

e 3k < j such that N*(p>,) holds.”

DEFINITION 11. 7 is the property “Adam has a positional strategy T such that, for any j
such that v[j] = A, and any play p starting in To[j] and consistent with T, N7(p) holds”.

Consequences. The interpretation of 7 and J at the end of a run leads to the following
Theorem:

THEOREM 12. Let G = (Q, Qr, Qa, T, x, 9) be a priority ordinal game such that x(Q \ ®) C
[2,d —1]. Then

1. G is determined;

2. Eve and Adam have positional winning strategies;

3. If Eve can win, then she can reach ® in less than w? moves.

COROLLARY 13. The problem of the winner in reachability games of ordinal length with
priority transitions belongs to NP M co-NP.

PROOF. Let’s consider a game G = (Q, Qr,Qa, T, x,6) and a state g € Q. The problem is
“Does Eve have a winning strategy if the token starts in g?”

co-NP-membership. If q is not winning for Eve, a winning strategy for Adam is a polynomial
counter-example. Using it, we define the automaton .4, from G by removing the successor
transitions of the form (r,s) withr € Q4 and s # 7(r). If T is winning, then L(A;) = @. On
the other hand, if g is winning for Eve, £(A;) # @ for any 7. As the emptiness problem for
ordinal automata is decidable in polynomial time [Col07], this is a co-NP procedure.
NP-membership. We guess a positional strategy ¢ for Eve, and use it to define the automaton
Ay by removing from G successor transitions of the form (r,s) withr € Qp and s # o(r),
and making every state except © final. The strategy ¢ is winning if and only if the language
accepted by the product of A, and an automaton accepting runs of length greater than «*
is empty. |

This algorithm also yields an alternate proof of the following theorem by Rabinovich
and Shomrat, in the case of ordinals less than w®. They consider two-player games Gy

JULIEN CRISTAU, FLORIAN HORN FSTTCS 2008

defined by an MSO formula ¢ and an ordinal «. In such a game, each player builds a subset
of a in the following way: for every ordinal B < «a, player 0 chooses whether he wants to
pick B, and player 1 responds. The set of positions picked by player 0 is noted X, those
positions chosen by player 1 form the set Y. Player 0 wins if ¢(X, Y) is true.

THEOREM 14.[Theorem 29 of [RS08]] Let a be a countable ordinal and ¢(X,Y) be a MSO-
formula.
Determinacy: One of the players has a winning strategy in the game Gg.
Decidability: It is decidable which of the players has a winning strategy.
Definable strategy: If « < w®, then the player who has a winning strategy also has a
definable winning strategy. For every & > w", there is a formula for which this fails.
Synthesis algorithm: If « < w®, we can compute a formula (X, Y) that defines a winning
strategy for the winning player in G

PROOF. Both the MSO-formula ¢ and the ordinal # < w® can be represented as finite
automata over ordinal words with priority transitions. The automaton corresponding to ¢
gets pairs (X;, Y;) of letters as input. The automaton for a accepts words of length exactly «.
The product of these two automata can be seen as an ordinal game, where at every stepi < «
Adam chooses X; and Eve then chooses Y;. Eve needs to ensure that after « moves from each
player, the ¢ automaton is in an accepting state, and thus she has a winning strategy if and
only if Y has a winning strategy in Gg.

Determinacy and decidability follow from the correctness of Algorithm 3. Positional
strategies in this finite arena can be represented as finite automata, and thus are definable.
A synthesis algorithm can be derived from the proof of Algorithm 3. |

Notice that it is not possible to represent a single ordinal greater than w® as a finite
automaton on ordinal words. Thus, we can’t interpret McNaughton games of length greater
than w®, as defined in [RS08], as finite graph games.

4 From priority transitions to ordinal games

In this section, we extend the results of Section 3 to the more general case of games of ordinal
length, through an ordinal game reduction: there is a bisimulation between the graphs, such
that equivalent states belong to the same player, and equivalent plays have limit transitions
to equivalent states.

The LAR reduction. The Latest Appearance Records (LAR) were introduced by Gurevich
and Harrington [GHS82], in order to prove the Forgetful Determinacy of Muller w-games
(i.e. the existence of finite memory strategies). A LAR for a game G with n states is a
pair (7t,i), where 7T is a permutation over the states of G and i is an integer such that
1 <i < n. We reduce any ordinal game G = (Q, Qg,Qa, T, A), to a priority ordinal game
G = (Q,Qf,Q4, T, x,0). The states and successor transitions are defined in the same way
as in the original reduction:

e Q= {(m,i) | misapermutation over Q,1 <i < n}

Qe = {(m,i) € Q| 7(1) € Qp}
o Qu={(mi)eQ|n(1) € Qa}

151

152 GRAPH GAMES ON ORDINALS

o (71,i) LN (u,7) if and only if:
- (1) & ()
= Vg,re Q\{p(M)}, 7 Hq) <7 (r) & pH(g) <p7'(r)
= 7i(j) = u(1)
The limit transitions, by contrast, are much more involved than in the infinite setting.
As we need to keep track of some of the memory after a limit transition, we use a different
colour for each state of G — ordered so thati < j = x(7,i) > x(y,j) (the exact ordering is
unimportant, as long as this condition is verified). By abuse of notation we describe J as a
function from Q to Q: 6(7, 1) is the LAR (y, j) such that:
o AU {()}) = u(1)
o ¥g,r € Q\{u(1)}, mH(q) < 7H(r) & () <pH(r)
o 71(j) = p(1)
The target states for Eve are the states (77,i) such that 7r(1) is the target state in the
original game G. Obviously these states can be merged to get a unique target state.

Figure 4: Detail of the LAR reduction of the game of Figure 1

Figure 4 gives a detail of the reduction of the game of Figure 1 (dashed arrows represent
limit transitions). The game bisimulation is proved as in the case of infinite games, with
some added fun due to the limit transitions.

LEMMA 15. There is a bisimulation between G and G such that two bisimilar plays without
a last state have a limit transition to two bisimilar states.

Results for ordinal games. The LAR reduction allows us to extend Theorem 12 to any
ordinal game:

THEOREM 16. Let G = (Q,Qg,Qa, T, A) be an ordinal reachability game with n states.
Then

1. G is determined;

2. Eve and Adam have winning strategies with memory n!;

3. if Eve can win, then she can reach ® in less than w™ moves.

SKETCH OF PROOF. Theorem 16 follows from Theorem 12 and the LAR reduction. The LAR
reduction preserves the winner, which gives us the determinacy. The third part is ensured

JULIEN CRISTAU, FLORIAN HORN FSTTCS 2008

because the length of plays is preserved. For the second part, we translate a positional
strategy ¢ in G into a strategy ¢ = (¢®, ¢, ¢") in G:
e the memory states are LARs: M = Q
e the memory updates mimic the transitions of G:
- ¢*((m,1),q) = {(n,j) € T(m,i) | u(1) = q}
- ¢(P) = o(min{x(P)})
e the next-move function follows o: ¢*((7,i),q) = oc(¢"((7,1),q))
This amounts to considering an equivalent play on the reduced game G, keeping the whole
LAR in memory.

5 Conclusion

We present a new model of two-player games on finite graphs. These games have plays
of ordinal length, thanks to the addition of limit transitions. Our model is not comparable
in general with McNaughton games. In McNaughton games, the length of plays is fixed a
priori by the arena; this is not the case here, and it’s not even possible to define an arena
where plays have a fixed length a as soon as &« > w®. In the case of games of length less
than w?, though, these two models are close, as shows our alternative proof of Rabinovich
and Shomrat’s theorem from [RSO08].

In comparison to [CHO8], this work lifts the syntactic restriction on arenas which lim-
ited the scope of our games to plays of length less than w®. We introduce the central problem
of arenas with priority transitions, which are a natural extension of parity games, and prove
that they admit positional strategies. We derive from their study some interesting results,
for example the existence of strategies with finite memory in the general case. This leads to
our solution to Church’s synthesis problem; and the existence of a bound on the number of
steps needed to reach the target.

Our approach is closer to techniques commonly used in verification and model-checking
than the composition method used in [RS08], and we think it could be useful in the context
of verification of timed open systems. This would allow us to deal with Zeno behaviours,
whereas most of the time, works on the subject consider models where they are forbid-
den [dAFH™03], or exclude Zeno runs from their results [AM99]. We would like to have a
more constructive approach on the problem, following for example [JT07].

Bibliography

[AM99] Eugene Asarin and Oded Maler. As soon as possible: Time optimal control for
timed automata. In Proceedings of the Second International Workshop on Hybrid
Systems: Computation and Control, HSCC’99, volume 1569 of Lecture Notes in
Computer Science, pages 19-30. Springer, 1999.

[BL69] J. Richard Biichi and Lawrence H. Landweber. Solving sequential conditions
by finite-state strategies. Trans. Amer. Math. Soc., 138:295-311, 1969.
[Bi73] J. R. Biichi. The monadic second-order theory of all countable ordinals. volume

328 of Lecture Notes in Mathematics, pages 1-127. Springer, 1973.

153

154 GRAPH GAMES ON ORDINALS

[CHOS]

[Cho78]
[Chu63]

[Col07]

[dAFHT03]

[GHS2]

[JT07]

[McN65]

[RSO8]

[Tho95]

[Zie98]

Julien Cristau and Florian Horn. On reachability games of ordinal length. In
Prodeedings of the 34th International Conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM’08, volume 4910 of Lecture Notes in Com-
puter Science, pages 211-221. Springer, 2008.

Yaacov Choueka. Finite automata, definable sets, and regular expressions over
w"-tapes. Journal of Computer and Systems Sciences, 17(1):81-97, 1978.

Alonzo Church. Logic, arithmetic, and automata. In Proc. Int. Congr. Math.
1962, pages 23-35, 1963.

Thomas Colcombet. Factorisation forests for infinite words. In Proceedings of
the 16th International Symposium on Fundamentals of Computation Theory, FCT'07,
volume 4639 of Lecture Notes in Computer Science, pages 226-237. Springer, 2007.
Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and
Marielle Stoelinga. The element of surprise in timed games. In Proceedings
of the 14th International Conference on Concurrency Theory, CONCUR'03, volume
2761 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Proceedings
of the 14th Annual ACM Symposium on Theory of Computing, STOC’82, pages 60—
65. ACM, 1982.

Marcin Jurdziniski and Ashutosh Trivedi. Reachability-time games on timed
automata. In Proceedings of the 34th International Colloquium on Automata, Lan-
guages and Programming, ICALP’07, volume 4596 of Lecture Notes in Computer
Science, pages 838-849. Springer, 2007.

Robert McNaughton. Finite-state infinite games. Technical report, Mas-
sachusetts Institute of Technology, 1965. Project MAC.

Alexander Rabinovich and Amit Shomrat. Selection and uniformization prob-
lems in the monadic theory of ordinals: A survey. In Arnon Avron, Nachum
Dershowitz, and Alexander Rabinovich, editors, Pillars of Computer Science, vol-
ume 4800 of Lecture Notes in Computer Science, pages 571-588. Springer, 2008.
Wolfgang Thomas. On the synthesis of strategies in infinite games. In Pro-
ceedings of the 12th Annual Symposium on Theoretical Aspects of Computer Science,
STACS’95, pages 1-13. Springer, 1995.

Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theor. Comput. Sci., 200(1-2):135-183, 1998.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 155-162

3-connected Planar Graph Isomorphism
is in Log-space

Samir Datta!, Nutan Limaye?, Prajakta Nimbhorkar?

1 Chennai Mathematical Institute
Chennai, India

2 The Institute of Mathematical Sciences,
Chennai, India

ABSTRACT. We consider the isomorphism and canonization problem for 3-connected planar graphs.
The problem was known to be L -hard and in UL N coUL [TWO08]. In this paper, we give a determin-
istic log-space algorithm for 3-connected planar graph isomorphism and canonization. This gives an
L -completeness result, thereby settling its complexity.

The algorithm uses the notion of universal exploration sequences from [Kou02] and [Rei05]. To our
knowledge, this is a completely new approach to graph canonization.

1 Introduction

The general graph isomorphism problem is a well studied problem in computer science.
Given two graphs, it deals with finding a bijection between the sets of vertices of these two
graphs, such that the adjacencies are preserved. The problem is in NP , but it is not known
to be complete for NP . In fact, it is known that if it is complete for NP , then the polynomial
hierarchy collapses to its second level. On the other hand, no polynomial time algorithm is
known. For general graph isomorphism NL and PL hardness is known [Tor00], whereas
for trees, L and NC! hardness is known, depending on the encoding of the input [JT98].

In literature, many special cases of this general graph isomorphism problem have been
studied. In some cases like trees [Lin92], [Bus97], or graphs with coloured vertices and
bounded colour classes [Luk86], NC algorithms are known. We are interested in the case
where the graphs under consideration are planar graphs. In [Wei66], Weinberg presented
an O(n?) algorithm for testing isomorphism of 3-connected planar graphs. Hopcroft and
Tarjan [HT74] extended this for general planar graphs, improving the time complexity to
O(nlogn). Hopcroft and Wong [HW74] further improved it to give a linear time algorithm.
Its parallel complexity was first considered by Miller and Reif [MR91] and Ramachandran
and Reif [RR90]. They gave an upper bound of AC!. Verbitsky [Ver07] gave an alternative
proof for the same bound. Recently Thierauf and Wagner [TW08] improved it to UL N coUL
for 3-connected planar graphs. They also proved that this problem is hard for L .

In this paper, we give a log-space algorithm for 3-connected planar graph isomorphism,
thereby proving L -completeness. Thus the main result of our paper can be stated as follows:

© Samir Datta, Nutan Limaye, Prajakta Nimbhorkar; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1749

156 3-CONNECTED PLANAR GRAPH ISOMORPHISM IS IN LOG-SPACE

THEOREM 1. Given two 3-connected planar graphs G and H, deciding whether G is iso-
morphic to H is complete for L .

Thierauf and Wagner use shortest paths between pairs of vertices of a graph to obtain
a canonical spanning tree. A systematic traversal of this tree generates a canonical form for
the graph. The best known upper bound for shortest paths in planar graphs is UL N coUL
[TWO08]. Thus the total complexity of their algorithm goes to UL N coUL , despite the fact
that all other steps can be donein L .

We identify that their algorithm hinges on making a systematic traversal of the graph
in canonical way. Thus we bypass the step of finding shortest paths and give an orthogonal
approach for finding such a traversal. We use the notion of universal exploration sequences
(UXS) defined in [Kou02]. Given a graph on n vertices with maximum degree d, a UXS
is a polynomial length string over {0,...,d — 1}, that can be used to traverse the graph
for a chosen combinatorial embedding p, starting vertex u and a starting edge e = {u, v}.
Reingold [Rei05] proved that such a universal sequence can be constructed in L . Using this
result, we canonize a 3-connected planar graph in log-space.

In Section 2, we give some basic definitions that we use in the later sections. In Section
3, we describe our log-space algorithm. We conclude with a discussion of open problems in
Section 4.

2 Preliminaries

In this section, we recall some basic definitions related to graphs and universal exploration
sequences.

2.1 The Graph Isomorphism Problem

DEFINITION 2. Graph isomorphism: Two graphs G; = (V4,Eq) and G, = (V,, E) are said
to be isomorphic if there is a bijection ¢ : Vi — V, such that (u,v) € E; if and only if

(¢(u),¢(v)) € Ea.

Let GI be the problem of finding such a bijection ¢ given two graphs Gy, G,. Let Planar-
GI be the special case of GI when the given graphs are planar. 3-connected planar graph
isomorphism problem is a special case of Planar-GI when the graphs are 3-connected pla-
nar graphs. We recall the definition and properties of 3-connected planar graphs in the
following section.

2.2 3-connected planar graphs

A graph G = (V, E) is connected if there is a path between any two vertices in G. A vertex
v € V is an articulation point if G(V \ {v}) is not connected. A pair of vertices u,v € Vis a
separation pair if G(V \ {u,v}) is not connected. A biconnected graph contains no articulation
points. A 3-connected graph contains no separation pairs.

A planar combinatorial embedding p for a planar graph G specifies the cyclic (say, clock-
wise) ordering of edges around each vertex in some plane embedding of G. A graph G with
a fixed combinatorial embedding p is called an oriented graph (G, p).

SAMIR DATTA, NUTAN LIMAYE, PRAJAKTA NIMBHORKAR FSTTCS 2008

In general, a planar graph can have exponentially many planar embeddings. In
[Whi33], Whitney proved that 3-connected planar graphs have precisely two combinato-
rial embeddings. This is a special property of 3-connected planar graphs which we crucially
use in our log-space algorithm.

2.3 Universal Exploration Sequences

Let G = (V,E) be a d-regular graph, with given combinatorial embedding p. The edges
around any vertex u can be numbered {0, 1, ...,d — 1} according to p arbitrarily in clockwise
order. A sequence T1Tz...7 € {0,1,...,d — 1}* and a starting edge ep = (v_1,v0) € E,
define a walk v_1, vy, ... vy as follows: For 0 < i < k, if (v;_1,0;) is the sth edge of v;, let
e; = (v;,v;41) be (s + 7;)""" edge of v; modulo d.

DEFINITION 3. Universal Exploration sequences (UXS): A sequence TiT...T €
{0,1,...d — 1} is a universal exploration sequence for d-regular graphs of size at most n if
for every connected d-regular graph on at most n vertices, any numbering of its edges, and
any starting edge, the walk obtained visits all the vertices of the graph. Such a sequence is
called an (n, d)-universal exploration sequence.

Following lemma suggests that UXS can be constructed in L [Rei05]:

LEMMA 4. There exists a log-space algorithm that takes as input (1",19) and produces an
(n,d)-universal exploration sequence.

3 Log-space Algorithm for 3-connected Planar-Gl

In this section, we give a log-space algorithm for 3-connected planar graph isomorphism.
This, combined with the L -hardness result by [TWO08] proves our main theorem:

Theorem 1 Given two 3-connected planar graphs G and H, deciding whether G is isomorphic to H
is complete for L .

For general planar graphs, the best known parallel algorithm runs in AC! [MR91].
Thierauf and Wagner [TWO08] recently improved the bound for the case of 3-connected pla-
nar graphs to UL N coUL . This case is easier due to a result by Whitney [Whi33] that every
planar 3-connected graph has precisely two planar embeddings on a sphere, where one em-
bedding is the mirror image of the other. Moreover, one can compute these embeddings in
L [AMOO].

3.1 Overview of the UL N coUL algorithm of [TWO08]

For a 3-connected planar graph G, the algorithm by Thierauf and Wagner starts by con-
structing a code for every edge of G and for any of the two combinatorial embeddings.
Of all these codes, the lexicographically smallest one is the code for G. The codes for two
graphs are equal if and only if they are isomorphic. A code with this property is called a
canonical code for the graph.

The main steps involved in their algorithm are as follows:

157

158 3-CONNECTED PLANAR GRAPH ISOMORPHISM IS IN LOG-SPACE

1. Construct a canonical spanning tree T, which depends upon the planar embedding of
the graph and a fixed starting edge.

2. Traverse the tree and output a canonical list of edges.

3. Relabel the vertices of the graph according to this list to get the canonical code.
A canonical spanning tree in step 1 involves computation of shortest paths between pairs of
vertices of G. Bourke, Tewari and Vinodchandran [BTV07] proved that planar reachability
isin UL N coUL . Thierauf and Wagner extend their result for computing distances in planar
graphs in UL N coUL . Once this spanning tree is constructed, the remaining steps can be
executed in L .

3.2 Outline of our approach

Our approach bypasses the spanning tree construction step in the algorithm of [TW08] out-
lined above and thus eliminates distance computations. In that sense, we believe that this is
a completely new approach for computing canonical codes for 3-connected planar graphs.

Our algorithm can be outlined as follows:

1. Given a 3-connected planar graph G = (V, E), find a planar embedding p of G.

2. Make the graph 3-regular canonically for this embedding p to obtain an edge-coloured

graph G’ as described in Algorithm 1.

3. Find the canon of G’ using Algorithm 2.
The step 1 is in log-space due to a result by Allender and Mahajan [AM00]. We prove that
steps 2 and 3 can also be done in log-space. Step 3 uses the idea of UXS introduced by
Koucky [Kou02]. Step 2 essentially does the preprocessing in order to make step 3 applica-
ble.

The canonical code thus constructed is specific to the choice of the combinatorial em-
bedding, the starting edge, and the starting vertex. Let the given 3-connected planar graphs
be G and H. For G, we fix an embedding, a starting edge, and a starting vertex arbitrarily
and cycle through both embeddings and all choices of the starting edge and the starting
vertex for H, comparing the codes for each of them. As there are only polynomially many
choices, a log-space transducer executing this loop runs only for polynomially many steps.
If the canonical codes of G and H match for any of the choices, we say that G and H are
isomorphic.

3.3 Making the graph 3-regular

In this section, we describe the procedure to make the graph 3-regular. In Section 3.4, we use
Reingold’s construction for UXS [Rei05] to come up with a canonical code. As Reingold’s
construction [Rei05] for UXS requires the graph to have constant degree, we do this pre-
processing step. In Lemma 5, we prove that two graphs are isomorphic if and only if they
are isomorphic after the preprocessing step. We note that after the preprocessing step, the
graph does not remain 3-connected, however, the embedding of the new graph is inherited
from the given graph. Hence even the new graph has only two possible embeddings.

We describe the preprocessing steps in Algorithm 1. Note that the new graph thus
obtained has 2|E| vertices.

SAMIR DATTA, NUTAN LIMAYE, PRAJAKTA NIMBHORKAR FSTTCS 2008

Algorithm 1 Procedure to get a 3-regular planar graph G’ from 3-connected planar graph
G.
Input: A 3-connected planar graph G with planar combinatorial embedding p.
Output: A 3-regular planar graph G’ on 2m vertices, with edges coloured 1 and 2 and
planar combinatorial embedding p’.

1: forallv; € V do

2. Replace v; of by a cycle {vj1, ..., vj4. } on d; vertices, where d; is the degree of v;.

3. Thed;edges {ej,..., e} incident to v; in G are now incident to {vj, ..., vj4, } respec-
tively.

4: Colour the cycle edges with colour 1.

5. Colourej, ..., eq, by colour 2.

6: end for

LEMMA 5. Given two 3-connected planar graphs G1, Gy, G1 = G, if and only if G = G}
where the isomorphism between G} and G} respects colours of the edges.

PROOF. Let G; = (V4,Eq) and G, = (V;, Ez) be two 3-connected planar graphs with pla-
nar combinatorial embeddings p; and p; respectively. Let ¢ : Vi — V, be an isomorphism
between the oriented graphs (Gi,p1) and (G, p2). By isomorphism of oriented graphs we
mean that the graphs are isomorphic for the fixed embeddings, in our case p; and p;.

Construct G} and G as described in Algorithm 1, replacing each vertex v of degree d
by a cycle of length d, and colouring the new cycle edges with colour 1 and original edges
with colour 2. The algorithm preserves the orientation of original edges from G; and G, and
outputs the coloured oriented graphs (G}, p}) and (G}, p5).

Given an isomorphism ¢ between (G, p1) and (Gy, p2), we show how to derive an
isomorphism ¢’ between (G}, p}) and (G}, p5). By our construction, edges around a vertex in
Gi (respectively G;) get the same combinatorial embedding around the corresponding cycle
in G| (Gj). Consider an edge {v;,v;} in E;. Let ¢(v;) = uy and ¢(v;) = u;. {ug, u;} € Ep. Let
corresponding edge in Gj be {v;,,v; } and that in G, be {uy,, uy, }. Then we define a map
¢' : V] — V; which is inherited from ¢ such that ¢'(v;,) = uy, and ¢'(v;,) = uy,. Itis easy to
see that ¢’ is an isomorphism for edge-coloured oriented graphs (G}, p}) and (G}, p53).

Now we show how to obtain an isomorphism ¢ between (G, p1) and (Gy, p2), given an
isomorphism ¢’ between (Gj, p7) and (Gy, p3). Lete = {v;,, v; } € Ej and the corresponding
edgee’ = {¢'(vi,), ¢'(vi,) } € Ej. Letv;, and v;, correspond to the same vertex v; in G;. Then
colour of e and ¢’ is 1. Thus ¢’ maps copies of the same vertex of G; to copies of a single
vertex of G,. Hence a map ¢ can be derived from ¢’ in a natural way. It is easy to see that ¢
is an isomorphism between oriented graphs (G, p1) and (G, p2).

3.4 Obtaining the canonical code

Lemma 5 from the previous section suggests that for given embeddings p1, p» of Gy and
Gy, it suffices to check the 3-regular oriented graphs (G, ;) and (G}, p5) for isomorphism.
The Procedure canon(G, p,v,e = (u,v)) described in Algorithm 2 does this using universal
exploration sequences.

159

160 3-CONNECTED PLANAR GRAPH ISOMORPHISM IS IN LOG-SPACE

Algorithm 2 Procedure canon(G,p,v,e = (u,v))

Input: Edge-coloured graph G = (V, E) with maximum degree 3 and combinatorial
embedding p, starting vertex v, starting edge e = (1,).
Output: Canon of G.

1: Construct a (n,3)-universal exploration sequence U.

2: With starting vertex v € V and edge e = (u,v) incident to it, traverse G according to U
and p outputting the labels of the vertices.

3: Relabel the vertices according to their first occurrence in this output sequence, as in step
3 of [TWO8].

4: For every (i,) in this labelling, output whether (i,) is an edge or not. If it is an edge,
output its colour. This gives a canon for the graph.

We prove correctness of Algorithm 2 in the following lemma:

LEMMA 6. Let 01 = canon(Gy,p},v1,e1 = (u1,v1)) and 0» = canon(G}, 5, v2, €2 = (12, v2)).
If o1 = 0, then G| = G),. Further, if G} = G} then for some choice of p, v, €2, 01 = 0.

~Y

PROOF. If G} = G), then there is a bijection ¢ : V] — V] for corresponding embeddings
01,05 Lete; = (u,v) € Ej. Thene, = (¢(u),¢(v)) € E}. Let g and e, be chosen as starting
edges and v and ¢(v) as starting vertices for traversal using UXS U for (G}, p}) and (G5, p5)
respectively. Let T and T, be the output sequences. If a vertex w € V| occurs at position !
in Ty then ¢p(w) € V; occurs at position | in T, as the oriented graphs are isomorphic, and
the same UXS is used for their traversal. Thus the sequences are canonical when projected
down to the first occurrences and hence o4 = 0.

Let oy = 0» = 0. The labels of vertices in ¢ are just a relabelling of vertices of V| and
Vj. These relabellings are some permutations, say 71 and 71,. Then 7ty - 7, : V] — Vj is a
bijection.

After constructing canonical code ¢’ for a graph G/, it remains to construct canonical
code ¢ for the original graph G. For this, we need to give a unique label to every vertex of
graph G. It suffices to pick the minimum label among the labels of all its copies in G'. All
copies of a vertex can be found by traversing colour 1 edges, starting from one of its copies.
Thus the canonical code for graph G can be constructed in log-space as follows:

For each edge (i, j) of colour 2 in ¢’, traverse along the edges coloured 1 starting from i
and find the minimum label among the vertices visited. Let it be p. Repeat the process for
j- Let the minimum label among the vertices visited along edges of colour 1 be q. Thus the
canonical labels for i and j are p and g respectively. Output the edge (p,q). The sequence
thus obtained contains n distinct labels for vertices, each between {1,2,...,2m}. This can
further be converted into a sequence with labels for vertices between {1,2,...,n} by finding
the rank of each of the labels. This gives us o. Correctness follows from the fact that vertices
connected with edges of colour 1 are copies of the same vertex in G, hence they should get
the same number.

Clearly, each of the above steps can be performed in L and hence the algorithm runs in
L . This proves Theorem 1.

SAMIR DATTA, NUTAN LIMAYE, PRAJAKTA NIMBHORKAR FSTTCS 2008

4 Conclusion

Our work settles the open question of the complexity of 3-connected planar graph isomor-
phism mentioned in [TWO08] by giving a log-space algorithm. One of the most challenging
questions is to settle the complexity of the general graph isomorphism problem. The other
important goal is to improve upon the AC! upper bound of [MR91] for planar graph iso-
morphism.

5 Acknowledgement

We thank Jacobo Tordn, V. Arvind, and Meena Mahajan for helpful discussions, and the
anonymous referees for helpful comments.

References

[AMOO] Eric Allender and Meena Mahajan. The complexity of planarity testing. In STACS
'00: Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, pages 87-98, 2000.

[BTV07] Chris Bourke, Raghunath Tewari, and N V Vinodchandran. Directed planar reach-
ability is in unambiguous logspace. In to appear in Proceedings of IEEE Conference on
Computational Complexity CCC, pages —, 2007.

[Bus97] Samuel R. Buss. Alogtime algorithms for tree isomorphism, comparison, and can-
onization. In KGC '97: Proceedings of the 5th Kurt Godel Colloquium on Computational
Logic and Proof Theory, pages 18-33, 1997.

[HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing.]. ACM, 21(4):549-568,
1974.

[HW74]]. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs (preliminary report). In STOC '74: Proceedings of the sixth annual ACM sym-
posium on Theory of computing, pages 172-184, 1974.

[JT98] P. McKenzie B. Jenner and]J. Tordn. A note on the hardness of tree isomorphism.
In COCO '98: Proceedings of the Thirteenth Annual IEEE Conference on Computational
Complexity. IEEE Computer Society, 1998.

[Kou02] Michal Koucky. Universal traversal sequences with backtracking. J. Comput. Syst.
Sci., 65(4):717-726, 2002.

[Lin92] Steven Lindell. A logspace algorithm for tree canonization (extended abstract).
In STOC "92: Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing, pages 400-404, 1992.

[Luk86] Eugene M. Luks. Parallel algorithms for permutation groups and graph isomor-
phism. In FOCS, pages 292-302, 1986.

[MRI1] Gary L. Miller and John H. Reif. Parallel tree contraction part 2: further applica-
tions. SIAM J. Comput., 20(6):1128-1147, 1991.

[Rei05] Omer Reingold. Undirected st-connectivity in log-space. In STOC "05: Proceedings
of the thirty-seventh annual ACM symposium on Theory of computing, pages 376-385,
2005.

161

162 3-CONNECTED PLANAR GRAPH ISOMORPHISM IS IN LOG-SPACE

[RR90]

[Tor00]
[TWO08]
[Ver07)
[Wei66]

[Whi33]

Vijaya Ramachandran and John Reif. Planarity testing in parallel. Technical report,
1990.

J. Toran. On the hardness of graph isomorphism. In FOCS "00: Proceedings of the
41st Annual Symposium on Foundations of Computer Science, page 180, 2000.
Thomas Thierauf and Fabian Wagner. The isomorphism problem for planar 3-
connected graphs is in unambiguous logspace. In STACS, pages 633-644, 2008.
Oleg Verbitsky. Planar graphs: Logical complexity and parallel isomorphism tests.
In STACS, pages 682-693, 2007.

H. Weinberg. A simple and efficient algorithm for determining isomorphism of
planar triply connected graphs. Circuit Theory, 13:142148, 1966.

H. Whitney. A set of topological invariants for graphs. American Journal of Mathe-
matics, 55:235-321, 1933.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 163-174

A new upper bound for 3-SAT*

J. Diaz!, L. Kirousis %3, D. Mitsche 1, X. Pérez-Gim énez!

! Llenguatges i Sistemes Informatics, UPC
E-08034 Barcelona
{di az, dm tsche, xperez}@si . upc. edu

2 RA Computer Technology Institute
GR-26504 Rio, Patras

3 Computer Engineering and Informatics, University of Patras
GR-26504 Rio, Patras
ki rousi s@ei d. upatras. gr

ABSTRACT. We show that a randomly chosen 3-CNF formula over n variables with clauses-to-
variables ratio at least 4.4898 is asymptotically almost surely unsatisfiable. The previous best such
bound, due to Dubois in 1999, was 4.506. The first such bound, independently discovered by many
groups of researchers since 1983, was 5.19. Several decreasing values between 5.19 and 4.506 were
published in the years between. The probabilistic techniques we use for the proof are, we believe, of
independent interest.

1 Introduction

Satisfiability of Boolean formulas is a problem universally believed to be hard. Determin-
ing the source of this hardness will lead, as is often stressed, to applications in domains
even outside the realm of mathematics or computer science; moreover, and perhaps more
importantly, it will enhance our understanding of the foundations of computing.

In the beginning of the 90’s several groups of experimentalists chose to examine the
source of this hardness from the following viewpoint: consider a random 3-CNF formula
with a given clauses-to-variables ratio, which is known as the density of the formula. What
is the probability of it being satisfied and how does this probability depend on the density?
Their simulation results led to the conclusion that if the density is fixed and below a number
approximately equal to 4.27, then for large 1, a randomly chosen formula is almost always
satisfiable, whereas if the density is fixed and above 4.27, a randomly chosen formula is,
for large n, almost always unsatisfiable. More importantly, around 4.27 the complexity of
several well known complete algorithms for checking satisfiability reaches a steep peak (see
e.g. [10, 15]). So, in a certain sense, 4.27 is the point where from an empirical, statistical
viewpoint the “hard” instances of SAT are to be found. Similar results were obtained for
other combinatorial problems, and also for k-SAT for values of k > 3.

*Partially supported by the and the Spanish CYCIT: TIN2007-66523 (FORMALISM). The first and second
authors were also partially supported by La distincié per a la promocié de la recerca de la Generalitat de Catalunya,
2002, and by the EU within the 7th Framework Programme under contract 215270 (FRONTS).

© Diaz, Kirousis, Mitsche, Pérez-Giménez; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1750

164 A NEW UPPER BOUND FOR 3-SAT

These experimental results were followed by an intense activity to provide “rigorous
results” (the expression often used in this context to refer to theorems). Perhaps the most
important advance is due to Friedgut: in [7] he proved that there is a sequence of reals (¢,),
such that for any € > 0 the probability of a randomly chosen 3-CNF-formula with density
¢y, — € being satisfiable approaches 1 (as n — ©0), whereas for density ¢, + €, it approaches
0. Intuitively, this means that the transition from satisfiability to unsatisfiability is sharp,
however it is still not known if (¢,), converges.

Despite the fact that the convergence of (c,), is still an open problem, increasingly
improved upper and lower bounds on its terms have been computed in a rigorous way by
many groups of researchers. The currently best lower bound is 3.52 [9, 2].

With respect to upper bounds, which is the subject of this work, the progress was
slower but better, in the sense that the experimentally established threshold is more closely
bounded from above, rather than from below. A naive application of the first moment
method yields an upper bound of 5.191 (see e.g., [6]). An important advance was made
in [8], where the upper bound was improved to 4.76. In the sequel, the work of several
groups of researchers, based on more refined variants of the first moment method, culmi-
nated in the value of 4.571 [4, 11] (see the nice surveys [12, 3] for a complete sequence of
the events). The core idea in these works was to use the first moment method by comput-
ing the expected number of not all satisfying truth assignments, but only of those among
them that are local maxima in the sense of a lexicographic ordering, within a degree of local-
ity determined by the Hamming distance between truth assignments (considered as binary
sequences). For degree of locality 1, this amounts to computing the expected number of sat-
isfying assignments that become unsatisfying assignments by flipping any of their “false”
values (value 0) to “true” (value 1). Such assignments are sometimes referred to as single-flip
satisfying assignments.

The next big step was taken by Dubois et al. [5], who showed that 4.506 is an upper
bound. Instead of considering further variations of satisfiability, they limited the domain
of computations to formulas that have a typical syntactic characteristic. Namely, they con-
sidered formulas where the cardinality of variables with given numbers of occurrences as
positive and negative literals, respectively, approaches a two dimensional Poisson distri-
bution. Asymptotically almost all formulas have this typical property (we say that such
formulas have a Poisson 2D degree sequence). It turns out that the expectation of the number
of single-flip satisfying assignments is exponentially reduced when computed for such for-
mulas. To get the afore mentioned upper bound, Dubois et al. further limited the domain of
computations to formulas that are positively unbalanced, i.e. formulas where every variable
has at least as many occurrences as a positive literal as it has as a negated one.

A completely different direction was recently taken in [13]. Their work was motivated
by results on the geometry of satistying assignments, and especially the way they form clus-
ters (components where one can move from one satisfying assignment to another by hops
of small Hamming distance). Most of these results were originally based on analytical, but
non-rigorous, techniques of Statistical Physics; lately however important rigorous advances
were made [1, 14]. The value of the upper bound obtained by Maneva and Sinclair (see [13])
was 4.453, far below any other upper bound presently known (including the one in this pa-
per). However it was proved assuming a conjecture on the geometry of the satistying truth

Diaz, KIROUSIS, MITSCHE, PEREZ-GIMENEZ FSTTCS 2008

assignments which is presently proved only for k-SAT for k > 8 in [1].

In this paper, we show that 4.4898 is an upper bound. Our approach builds upon pre-
vious work. It makes use (i) of single-flip satisfying truth assignments, (ii) of formulas with
a Poisson 2D degree sequence and (iii) of positively unbalanced formulas.

We add to these previously known techniques two novel elements that when combined
further reduce the expectation computed. Our approach is rigorous: although we make use
of computer programs, the outputs we use are formally justified. What is interesting is not
that much the numerical value we get, although it constitutes a further improvement to a
long series of results. The main interest lies, we believe, on one hand in the new techniques
themselves and on the other in the fact that putting together so many disparate techniques
necessitates a delicately balanced proof structure.

First, we start by recursively eliminating one-by-one the occurrences of pure literals
from the random formula, until we get its impure core, i.e. the largest sub-formula with no
pure literals (a pure literal is one that has at least one occurrence in the formula but whose
negation has none). Obviously this elimination has no effect on the satisfiability of the for-
mula. Since we consider random formulas with a given 2D degree sequence, we first have
to determine what is the 2D degree sequence of the impure core. For this, we use the dif-
ferential equation method. The setting of the differential equations is more conveniently
carried out in the so called configuration model, where the random formula is constructed
by starting with as many labelled copies of each literal as its occurrences and then by consid-
ering random 3D matchings of these copies. The matchings define the clauses. The change
of models from the standard one to the configuration model with a Poisson 2D degree se-
quence is formalized in Lemma 2. We also take care of the fact that the configuration model
allows formulas with (i) multiple clauses and (ii) multiple occurrences of the same variable
in a clause, whereas we are interested in simple formulas, i.e. formulas where neither (i) nor
(ii) holds. For our purposes, it is enough to bound from below the probability of getting a
simple formula in the configuration model by eO(n"logn) see Lemma 3. The differential
equations are then analytically solved, and we thus obtain the 2D degree sequence of the
core, see Proposition 4.

Second, we require that not only the 2D degree sequence is Poisson, but also that the
numbers of clauses with none, one, two and three positive literals, respectively, are close to
the expected numbers. Notice that these expected numbers have to reflect the fact that we
consider positively unbalanced formulas. This is formalized in Lemma 5.

The expectation of the number of satisfying assignments, in the framework determined
by all the restrictions above, is computed in Lemma 6. This expectation turns out to be
given by a sum of polynomially many terms of functions that are exponential in n. We
estimate this sum by its maximum term, using a standard technique. However in this case,
finding the maximum term entails maximizing a function of many variables whose number
depends on n. To avoid a maximization that depends on n we prove a truncation result
which allows us to consider formulas that have a Poisson 2D degree sequence only for light
variables, i.e. variables whose number of occurrences, either as positive or negated literals,
is at most a constant independent of n.

Then we carry out the maximization. The technique we use is the standard one by
Lagrange multipliers. We get a complex 3 x 3 system which can be solved numerically. We

165

166 A NEW UPPER BOUND FOR 3-SAT

formally prove that the system does not maximize on the boundary of the system and we
make a sweep over the domain which confirms the results of the numerical solution.

Due to lack of space, all proofs are omitted or just sketched in this extended abstract. As
usual, asymptotically almost surely (a.a.s.) will mean with probability tending to 1 as n — oo.
All asymptotic expressions as 1 — 0(1) are always with respect to 7. Our main result in the
paper is the following;:

THEOREM 1. Let y = 4.4898 and m = |yn|. A random 3-CNF formula in F,, ,, (i.e. with n
variables and m clauses, no repetition of clauses and no repetition of variables in a clause)
is not satistiable a.a.s.

2 Background and Technical highlights.

Consider a given set of n Boolean variables, and let m = |yn|. Let F,, be the set of
3-CNF formulas with n variables and m clauses, where repetition of clauses or repetition
of variables in a clause is not allowed. We also denote by F, ,, the probability space of
formulas in F,, ;, drawn with uniform probability. Throughout the paper, we fix the value
v = 4.4898 and prove that for that value a random 3-CNF formula is not satisfiable with
high probability.

Throughout the paper, scaled will always mean divided by n, and a scaled natural will
be a member of 2IN. Given a formula ¢ € F,,,,, we define the following parameters which
depend on ¢: For any i,j € IN, let d;; be the scaled number of variables with i positive
occurrences and j negative occurrences in ¢. Then,

Y dij=1. (1)
i,jeN
The sequence d = (d;;); jen is called the degree sequence of ¢. The scaled number of clauses
of ¢ is denoted by c, and can be expressed by

1 .
c(d) =3 Y (i+j)di. 2
i,jeN
Note that if ¢ € F,, ;,, then ¢ must additionally satisfy ¢ = [yn]/n.
Given €; > 0 and any sequence & = (§;)ijen of nonnegative reals with }; icn 6ij = 1,
define

N(n,&e)= {d = (dij)ijen : Y, dij=1,

i,jeN

g Z (l +j)di,j €N, VZ,] €N dz-,]-n €N,
i,jeN

and |d;j—¢&j| <e, andifi>n'®orj>n'®thend;; = 0}.

Intuitively N (n, &, €1) can be interpreted as the set of degree sequences d which are close
to the ideal sequence ¢, which in general is not a degree sequence since its entries ¢; ; need
not be scaled naturals. However, if 1 is large enough, then NV'(n,&,e1) # @. Now we con-
sider the 2D Poisson ideal sequence J defined by &;; = e~37(3/2)"*//(ilj!). The following
lemma reflects the fact that almost all ¢ € F,,, have a degree sequence d which is close to
é. A proof of an analogous result can be found in [5].

Diaz, KIROUSIS, MITSCHE, PEREZ-GIMENEZ FSTTCS 2008

LEMMA 2. Let d be the degree sequence of a random ¢ € F,,,. For any €, > 0, we have
thatPrr, (d € N'(n,0,e1)) =1—o0(1).

Given a fixed degree sequence d = (d;;); jen satisfying (1) and such that ¢ = c(d) de-
fined by (2) is also a scaled natural, we wish to generate 3-CNF formulas with that particular
degree sequence d. A natural approach to this is to use the configuration model. A configu-
ration ¢ with degree sequence d = (d;;); e is constructed as follows: consider n variables
and the corresponding 2n literals x1, %7 ..., x,, X,; each literal has a certain number of dis-
tinct labelled copies in a way that the scaled number of variables with 7 positive copies and
j negative copies is d; ;; then partition the set of copies into sets of size 3, which we the call
clauses of ¢. Let C, 4 be the set of all configurations with degree sequence d, and we also
denote by C, 5 the probability space on the set C,, ; with the uniform distribution.

A 3-CNF multi-formula is a formula with possible repetition of variables in one clause
and/or possible repetition of clauses. A simple formula is a formula in F,,,,. Let 7T be the
projection from C, 4 to 3-CNF multi-formulas obtained by unlabelling the copies of each
literal. A configuration ¢ € C, 4 is satisfiable if ¢ = 71(¢) is satisfiable. A configuration
¢ € Cpqissimpleiff ¢ = (@) is a simple formula, i.e. does not have repetition of variables or
clauses. Notice that the number of anti-images of a simple formula ¢ with degree sequence
d under 7t does not depend on the particular choice of ¢. Hence,

Prr, . (¢is SAT | d) = Prc, (¢ is SAT | SIMPLE). (3)

We need a lower bound on the probability that a configuration is simple. The following
result gives a weak bound which is enough for our purposes.

LEMMA 3.
Lete; > 0andd € N (n,d,¢1). Then

_ 1/3
Pre, ,(SIMPLE) > ¢~ ©("logn),

where the e~©(""*1081) bound is uniform for all d € N(n,8,¢e).

Given ¢ € C,g4, a pure variable of ¢ is a variable which has a non-zero number of
occurrences which are either all syntactically positive or all syntactically negative. The only
literal occurring in ¢ and all its copies are also called pure. If ¢ is satisfiable and x is a
pure variable of ¢, then there exists some satisfying truth assignment of ¢ which satisfies
all copies of x in ¢. Hence, in order to study the satisfiability of a ¢ € C, 4, we can satisfy
each pure variable in ¢ and remove all clauses containing a copy of that variable. For each
¢ € Cyq, let ¢ be the configuration obtained by greedily removing all pure variables and
their corresponding clauses from ¢. This ¢ is independent of the particular elimination
order of pure literals and is called the impure core of ¢. In fact, in our analysis we will
eliminate only one clause containing one copy of a pure literal at a time (the ¢ obtained still
remains the same). Note that ¢ is satisfiable iff ¢ is satisfiable. Moreover, if ¢ is simple
then ¢ is also simple (but the converse is not necessarily true).

Furthermore, let ¢ be the configuration obtained from ¢ by positively unbalancing all
variables, i.e. switching the syntactic sign of those variables having initially more negative
than positive occurrences in ¢. Let CAn,d denote the probability space of configurations ¢,

167

168 A NEW UPPER BOUND FOR 3-SAT

where ¢ was chosen from C, ;4 with uniform probability. Note that the probability distri-
bution in C, 4 is not necessarily uniform. Since the simplicity and the satisfiability of a
configuration are not affected by positively unbalancing the variables, we have

Prcn,d((p is SAT A SIMPLE) < Prs d((ﬁ is SAT A SIMPLE). (4)

Let the random variable d be the degree sequence of a random configuration in é\n,d. We

prove in the following result that if the original d is close to the ideal sequence &, then with

high probability d must be close to the ideal sequence § = (J;;); jen defined by
2e—37b%, ifi>j,

5= - b/2)
Sij=1e 3'yb(7i!j!) ,

0, ifi <j,

ifi=j,

where b = (1 — tp/v)*/3 and tp is the scaled number of steps in the pure literal elimination
algorithm.

PROPOSITION 4. Given €, > 0, there exists ¢, > 0 and 0 < B < 1 such that for any
de N(Tl, o, 61)

1/2

).

Moreover, for each de N(n,d,e), the probability space Cy . conditional upon having de-
gree sequence d has the uniform distribution (i.e. Cn 4 conditional upon a fixed d behaves
exactly asC,).

Prp (2 e N(n,?s, €2)> =1-0(p"

Letd € N(n,6,€;). Then, each ¢ € C, ; has a scaled number of clauses of ¢ = = c(d)
(see (2)). Moreover, let £, and /; be the scaled number of copies in ¢ of positive and of
negative literals respectlvely Then

bo(d) =Y idyy, () =Y jdi ()
i,jeN ijeN
Given any fixed ¢ € C, 5 and for k € {0,...,3}, let ¢; be the scaled number of clauses in ¢
containing exactly k posmve copies (clauses of syntactic type k). We call ¢ = (¢y, ..., C3) the
clause-type sequence of ¢. By definition

€]+ 26, 4+ 303 = gp, 3¢y +2¢1 + ¢ = 4y, (6)

and by adding the equations in (6), ¢ + - - - + ¢3 = C. The ¢y, . .., ¢3 are random variables in
Cn/a, but the next result shows that if d is close enough to 3, then ¢y, - - - , 3 as well as their
sum ¢ + - - - + 3 = C are concentrated with high probability. In order to see this, we need
to define 7 = c(3), Ap = ¢ (5 Jand A, = 4y () (see (2) and (5)), which can be interpreted as

the limit of ¢, £, and E respectlvely when d approaches 4. In terms of these numbers, we

thus define for all ke{0,...,3}
3\ AR

Diaz, KIROUSIS, MITSCHE, PEREZ-GIMENEZ FSTTCS 2008

and also 4 = (90,...,73). Then we have 41 + 292 + 373 = A;, 370 + 291 + 92 = An and
Y+Nn+n+r=7 R R

The next result shows that when d is close enough to J, then each ¢ is close to the
corresponding 7. Indeed, given € > 0 and for any de N (n, 3, €), let Ce be the set of all

¢ € C 5suchthatfork € {0,...,3}, [k — 7k| < . We also denote by Ce 5 the corresponding
uniform probability space.

LEMMA 5. Givene > 0, thereisex > 0 and 0 < < 1 such that for anya e N(n, 3, €),

Pre, ,(CS;) =1-0(B").

All the previous lemmata establish a connection between the uniform probability spaces
Fum and C* . In order to prove Theorem 1, it remains to bound the probability that a con-

figuration (p 6 C - - is simple and satisfiable, as it is done in the following result.
LEMMA 6. There existse > 0 and 0 < B < 1 such that for anyd e N(n,3,¢),

Prcea(SAT A SIMPLE) = O(B").

The proof of Lemma 6 is sketched in Section 3 below. The proof of Theorem 1 then
follows from all the previous lemmata (see the full version for the proof).

3 Proof of Lemma 6

Let N'(1,3,7,€) be the set of tuples (d,¢) such that d € N (n,48,¢€) and € = (Gk)o<k<s is a
tuple of scaled naturals satisfying (6) (recall also from (5) the definition of /; and /,), and
moreover [Cx — x| < e. For each (d,¢) € N(n,d,%,€), we define C, 5 to be the uniform

probability space of all configurations with degree sequence d and clause type sequence C.
In order to prove the lemma, it suffices to show that for r any (d,¢) € N'(n,6,%,€) we have
Prcn,E'E(SAT A SIMPLE) = O(p"). Hence, we consider d, € and the probability space C pdeto
be fixed throughout this section, and we try to find a suitable bound for Pr(SAT A SIMPLE).

We need some definitions. Let us fix any given configuration ¢ € C, 5. A light variable
of ¢ is a variable with i < M positive occurrences and j < M negative occurrences in ¢ (we
use in the numerical calculations the value M = 23). The other variables are called heavy. We
consider a weaker notion of satisfiability in which heavy variables are treated as jokers and
are always satisfied regardless of their sign in the formula and their assigned value. Given
a configuration ¢ € C, 5. and a truth assignment A, we say that A = ¢ iff each clause of
] contams at least one heavy variable or at least one satisfied occurrence of a light variable.
Let SAT’ be the set of configurations ¢ € C,q¢ for which there exists at least one truth

assignment A such that A |=" ¢. Clearly, if A = ¢, then also A |=" ¢, and hence SAT C SAT’.
We still introduce a further restriction to satisfiability in a way similar to [11] and [4], in
order to decrease the number of satisfying truth assignments of each configuration without
altering the set of satisfiable configurations (at least without alterating this set for simple
configurations). Given a configuration ¢ € C, 5, and a truth assignment A, we say that

169

170 A NEW UPPER BOUND FOR 3-SAT

A =" ¢ iff A |=° ¢ and moreover each light variable which is assigned the value zero by
A appears at least once as the only satisfied literal of a blocking clause (i.e. a clause with one
satisfied negative literal and two unsatisfied ones). Let SAT” be the set of configurations
which are satisfiable according to this latter notion. Notice that if ¢ € SIMPLE, then ¢ €
SAT” iff @ SAT’ (by an argument analogous to the one in [11] and [4]). Therefore, we have
Pr(SAT A SIMPLE) < Pr(SAT’ A SIMPLE) = Pr(SAT” A SIMPLE) < Pr(SAT”). Let X be the
random variable counting the number of satisfying truth assignments of a randomly chosen
configuration ¢ € C_+-. in the SAT” sense. We need to bound

{(9,A) : 9€C, a0 AE" ¢}
|Cn,a,ﬁ| ‘

n,d,c

Pr(SAT”) = Pr(X > 0) < EX =

(8)

In the following subsection, we obtain an exact but complicated expression for EX by a
counting argument, and then we give a simple asymptotic bound which depends on the
maximization of a particular continuous function over a bounded polytope. The next sub-
section contains the maximization of that function.

3.1 Asymptotic bound on EX

First, we compute the denominator of the rightmost member in (8).

ot = (2) (ea) (s o) ol @t 2t o)

d,-,]-n)i,j c1n,2con,3c3n 3¢on,2c1n, con 6\01’1)!630” 2an 20m ((/3\311)!6%"
n! (Lon)!(lan)!

0 (dyyn)! 23 e (@) | (Em) (o)1 (Ean)!

In order to deal with the numerator in (8), we need some definitions. Let us consider any
fixed ¢ € C, 5, and any assignment A such that A =" ¢. We will classify the variables, the
clauses and the copies of literals in ¢ into several types, and define parameters counting the
scaled number of items of each type. Variables are classified according to their degree. A
variable is said to have degree (i,) if it appears i times positively and j times negatively in
¢. Let £ and H, respectively, be the set of possible degrees for light and heavy variables,
ie. L={(i,j) e N* : 0<ij< M}, H={(ij €N>:i>Morj> M} Wealso
consider an extended notion of degree for light variables which are assigned 0 by A. One
of such variables has extended degree (i, j, k) if it has degree (i, j) and among its j negative
occurrences k appear in a blocking clause (being the only satisfied literal of the clause). Let
L'={(i,jk) €N : 0<i<M,1<k<j< M}, be the set of possible extended degrees
for these light 0-variables. For each (i,]) € L, let t;; be the scaled number of light variables
assigned 1 by A with degree (i,]) in ¢. For each (i,], k) € L', let f; ; be the scaled number
of light variables assigned 0 by A with extended degree (i, j, k) in ¢. We must have

/ -
tij+ Zfi,j,k =d,j, V(i j) € L.)
k=1

On the other hand, we classify the copies of literals occurring in ¢ into five different types
depending on their sign in ¢, their assignment by A and whether they belong or not to a

Diaz, KIROUSIS, MITSCHE, PEREZ-GIMENEZ FSTTCS 2008

blocking clause. Each copy receives a label from the set S = {ps,ns1,ns2, pu,nu}, where
the labels ps, pu, ns1, ns2 and nu denote positive-satisfied, positive-unsatisfied, negative-
satisfied in a blocking clause, negative-satisfied in a non-blocking clause and negative-
unsatisfied, respectively. It is useful to consider as well coarser classifications of the copies of
literals in ¢ and thus we define the types p, n and ns which correspond to positive, negative
and negative-satisfied copies, respectively. Also, let S’ = {ps,ns,pu,nu} and §” = {p,n}.
For each of the types 0 € SUS" U S” that we defined, let {, be the scaled number of copies
of type ¢. Note that £, and ¢, were already defined (see (5) and (6)). Also, let i, be the scaled
number of copies of type o which come from heavy variables (recall that these copies are al-
ways satisfied by definition regardless of their sign). In view of hi,s = } i&;,j, has = Y]dAlj
and of (5) and (6), we observe that ¢}, ¢;, hps and hys are constants which do not depend
on the particular choice of (¢, A). The parameters hns1 and hpso depend on the particular
(¢, A) and satisfy

hnsl + hns2 = hns- (10)
The parameters {ps, {pu, Ins1, {ns2 and ln, also depend on (¢, A) and can be expressed as
Eps = thz,] + hpS/ Epu = Zifi,j,k/ los1 = Zkfi,j,k + has1,
L L L'
gnsQ - 2(] - k)fi,j,k + hnsQ/ gnu = ZJtz,] (11)
L' L

Finally, the clauses of ¢ are classified into 16 extended types (not to be mistaken with the
four syntactic types defined immediately before (6)). Each type is represented by a 2 x 2 ma-

trix from the set A = {oc = <§1$12z§ 2?1223) EN* : ¥, coo(a) =3, ps(a) +ns(a) > O} .
A clause is said to be of extended type a = <£i§z; zigzg
contains o(a) copies of literals of type o. Notice that all clauses of extended type a also
contain the same number of copies of type ¢ for all other ¢ € S US” and thus we can define
o(a) to be this number. For each & € A, let ¢, be the scaled number of clauses of extended
type a (while ¢, 0 < k < 3 is the number of clauses of syntactic type k, i.e. with k positive

literals). We have

> if for each ¢ € S’ the clause

Z Cy = E\k. (12)
aeA
p(a)=k
The parameters (g, {pu, /ns1, fns2 and £y, can also be expressed in terms of the ¢, by
ace A

We now consider the following equations:

éps + Epu - gp gnsl + gnsQ + gnu - gn (14)
gps = Ziti,f + hps gnsl = Zkfi,j,k =+ hnsl 61132 = Z(] — k)fz',j,k + hnsg (15)
L !

L L
EPS = Z pS(lX)CD(Ensl = Z nSj'(‘x)Cﬂé gnSQ = Z nSQ(DC)C,X (16)
acA acA xeA

171

172 A NEW UPPER BOUND FOR 3-SAT

In view of (5) and (6), the system of equations {(9), (10), (11), (12), (13)} is equivalent to {(9),
(10), (12), (14), (15), (16)}.

So far we verified that the constraints {(9), (10), (12), (14), (15), (16)} express necessary
conditions for the parameters of any particular (¢, A), with¢p € C, ;. and A =" ¢. Now we
will see that they are also sufficient, in the sense that for each tuple of parameters satisfying
the above-mentioned constraints we will be able to construct pairs (¢, A).

Let t = (ZJ)E/ f - (fz]k)ﬁ’/ h = (hnslz hnsz); ¢ = (Ctx)aeA/ = (EU)O'GS and K =
L]+ L] +2+ Al +[S] = (M + 1)2(1 4+ M/2) + 23. We define the bounded polytope
P(d,¢) C RX as the set of tuples & = (F, f, /1, ¢, {) of non-negative reals satisfying {(9), (10),
(12), (14), (15), (16)}, and consider the following set of lattice points in P(d C):Z(n, d, c) =
P(d,e)N (%]N)K . For any tuple of parameters & € Z(n,d,¢), we count the number of pairs
(p,A), withg €C, 5 and A =" @, satisfying these parameters. We denote this number by

T(x,n, d, C). We obtain (see the full version for details)

T(%,n, H,E) — oL dijn ((ti]'n)ﬁ’ (fi,]‘,:n)g, (@j”)H)
fijan } .
@ Y) (ratean) T (twreomc) L

where W() = (w(a)c(“ () ()C.ﬂ)“cﬁ)nﬂ_W(a), and w(wa) is the number of 0’s in the matrix a. Hence
EX = ¢l Teeruan TEM40)
To characterize the asymptotic behaviour of T(%,,d,¢)/ |C,, 4l with respect to 1, we
define
F(x) = Moes o'
fz k "
H i,j]HL’ (fl]k/()) ! nslhnSlhns2hnsz HaeA ((ZU(IX)!/Z)C,X)C
and

3C0+C3COC0C1C1 c2C2C3C3
ly
Gl

B(d,2) = 2Xnin, h“SHd”

By Stirling’s inequality we obtain (g ndd) o poly, (n) (B(d,€)F(x))", where poly, (n) is

azl
e chosen to be independent of %, d and ¢ (as long
€)). Moreover, since the size of Z(n,d,¢) is also

some fixed polynomial in n which ca
as ¥ € I(n,d,¢) and (d,¢) € N(n
polynomial in 1, we can write

nb
/6,9,

)P(x)) < poly,(n) (B(a,) max F(%)))

€P(n,d,e)

for some other fixed polynomial poly, (7). By continuity, if we choose € to be small enough,
we can guarantee that

EX < ((1+107)B max F(f)) , (17)
xeP(n,d,%)

Diaz, KIROUSIS, MITSCHE, PEREZ-GIMENEZ FSTTCS 2008

where (recall the definition in (7))

ZH]SI‘,/ A A F B

DN~ . o~ 3 3’70+’Y3 ,),'YO ,),’Yl ,)/’Yz ,Y%

B = B(6,7) = 2L’ (Zﬂi/) [Ta:7 A ())\p/\lAnz :

H L P n
Zngi,j 1—[33\1,]
5 - 0
=250 |} b, i (18)

(; 7) (39)27

3.2 Maximization of F(%)

We wish to maximize F or equivalently log F over the domain P(n, 3,7). We need the
following lemma:

LEMMA 7. F(X) does not maximize on the boundary of P(n, 3,7%).

Since log F does not maximize on the boundary of its domain, the maximum must
be attained at a critical point of log F in the interior of P(n,g,ﬁ). We use the Lagrange
multipliers technique and characterize each critical point of log F in terms of the solution of
a 3 x 3 system. The system is numerically solved with the help of Maple, which finds just
one solution. We express the maximum of F over P(n, 3,7) in terms of this solution, and
multiply it by B given in (18), and from (17) we obtain the bound

EX < ((1+1077)0.9999998965)" , (19)

which concludes the proof of Lemma 6, since (1 + 1077)0.9999998965 < 1.

Note that the validity of our approach relies on the assumption that the solution of the
3 x 3 system found by Maple is unique, which implies that the critical point of log F we
found is indeed the global maximum (if an alternative solution exists it could happen that
at the corresponding critical point the function F attains a value greater than the maximum
obtained).

In order to be more certain about the correctness of (19) we performed the following
alternative experiment: Let P; be the polytope obtained by restricting P (#, 3,7) to the co-
ordinates (pg, {pu, lns1, {ns2, {nu. Observe that this is a 3-dimensional polytope in R5, since
its elements are determined by the values of the coordinates (y, /151, fns2. We performed a
sweep over this polytope by considering a grid of 100 equispaced points in each of the three
dimensions. For each of the 100° fixed tuples of (lps, fns1, ¢ns2) Which correspond to the
points on the grid, we determine the remaining two coordinates of P;, and maximize log F
restricted to those fixed values of /. Observe that in this case log F is strictly concave and
thus has a unique maximum which can be efficiently found by any iterative Newton-like
algorithm. We checked, again using Maple, that the value obtained for each fixed tuple of ¢
is below the maximum in (19).

References

[1] D. Achlioptas and F. Ricci-Tersenghi. On the solution-space geometry of random con-
straint satisfaction problems. In 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 130-139, 2006.

173

174 A NEW UPPER BOUND FOR 3-SAT

[2] D. Coppersmith, D. Gamarnik, M. T. Hajiaghayi, and G. Sorkin. Random Max SAT,
Random Max Cut, and their phase transitions. Random Structures and Algorithms,
24:502-545, 2004.

[3] O. Dubois. Upper bound on the satisfiability threshold. Theoretical Computer Science,
265:187-197, 2001.

[4] O. Dubois and Y. Boufkhad. A general upper bound for the satisfiability threshold of
random r-SAT formulae. Journal of Algorithms, 24:395-420, 1997.

[5] O.Dubois, Y. Boufkhad, and J. Mandler. Typical random 3-SAT formulae and the satis-
fiability threshold. In Proceedings of the 11th Symposium on Discrete Algorithms (SODA),
pages 126-127, 2000.

[6] J. Franco and M. Paull. Probabilistic analysis of the Davis-Putnam procedure for solv-
ing the satisfiability problem. Discrete Applied Mathematics, 5:77-87, 1983.

[7] E. Friedgut and]J. Bourgain. Sharp thresholds of graph properties, and the k-SAT prob-
lem. Journal of the American Mathematical Society, 12:1017-1054, 1999.

[8] A.Kamath, R. Motwani, K. Palem, and P. Spirakis. Tail bounds for occupancy and the
satisfiability threshold conjecture. Random Structures and Algorithms, 7:59-80, 1995.

[9] A. C. Kaporis, L. M. Kirousis, and E. G. Lalas. The probabilistic analysis of a greedy
satisfiability algorithm. Random Structures and Algorithms, 28:444-480, 2006.

[10] S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random Boolean
expressions. Science, 264(5163):1297-1301, 1994.

[11] L. M. Kirousis, E. Kranakis, D. Krizanc, and Y. C. Stamatiou. Approximating the unsat-
isfiability threshold of random formulas. Random Structures and Algorithms, 12:253-269,
1998.

[12] L. M. Kirousis, Y. C. Stamatiou, and M. Zito. The satisfiability threshold conjecture:
Techniques behind upper bound. In A. P. G. Istrate and C. Moore, editors, Computa-
tional Complexity and Statistical Physics. Oxford University Press, 2005.

[13] E. Maneva and A. Sinclair. On the satisfiability threshold and clustering of solutions of
random 3-SAT formulas. Theoretical Computer Science, 2008.

[14] M. Mézard and R. Zecchina. Random k-satisfiability: from an analytic solution to a
new efficient algorithm. Physics Review, E-66, 056126:1357-1361, 2002.

[15] R. Monasson and R. Zecchina. Statistical mechanics of the random k-SAT problem.
Physics Review, E-56:1357-1361, 1997.

[16] N. C. Wormald. The differential equation method for random graph processes and
greedy algorithms. In M. Karoniski and H. J. Promel, editors, Lectures on approximation
and randomized algorithms, pages 73-155. PWN, Warsaw, 1999.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 175-186

Abstraction Refinement for Games with
Incomplete Information™

Rayna Dimitrova T, Bernd Finkbeiner
Universitit des Saarlandes
{di mi trova, fi nkbei ner }@s. uni - sh. de

ABSTRACT.Counterexample-guided abstraction refinement (CEGAR) is used in automated soft-
ware analysis to find suitable finite-state abstractions of infinite-state systems. In this paper, we ex-
tend CEGAR to games with incomplete information, as they commonly occur in controller synthesis
and modular verification. The challenge is that, under incomplete information, one must carefully
account for the knowledge available to the player: the strategy must not depend on information the
player cannot see. We propose an abstraction mechanism for games under incomplete information
that incorporates the approximation of the players’ moves into a knowledge-based subset construc-
tion on the abstract state space. This abstraction results in a perfect-information game over a finite
graph. The concretizability of abstract strategies can be encoded as the satisfiability of strategy-tree
formulas. Based on this encoding, we present an interpolation-based approach for selecting new
predicates and provide sufficient conditions for the termination of the resulting refinement loop.

1 Introduction

Infinite games are a natural model of reactive systems as they capture the ongoing interac-
tion between a system and its environment. Many problems in automated software analy-
sis, including controller synthesis and modular verification, can be reduced to finding (or
deciding the existence of) a winning strategy. The design of algorithms for solving such
games is complicated by the following two challenges: First, games derived from software
systems usually have an infinite (or finite, but very large) state space. Second, the games
are usually played under incomplete information: it is unrealistic to assume that a system
has full access to the global state, e.g., that a process can observe the private variables of the
other processes.

The most successful approach to treat infinite state spaces in software verification is
predicate abstraction with counterexample-guided abstraction refinement (CEGAR) [3, 1].
For games with complete information [7, 4], CEGAR builds abstractions that overapprox-
imate the environment’s moves and underapproximate the system’s moves. If the system
wins the abstract game it is guaranteed to also win the concrete game. If the environment
wins the abstract game, one checks if the strategy is spurious in the sense that it contains an
abstract state from which the strategy cannot be concretized. If such a state exists, the state
is split to ensure that the strategy is eliminated from further consideration.

For games with incomplete information, the situation is more complicated, because the
strategic capabilities of a player depend not only on the available moves, but also on the

*This work was partly supported by the German Research Foundation (DFG) as part of the Transregional
Collaborative Research Center Automatic Verification and Analysis of Complex Systems (SFB/TR 14 AVACS).
tSupported by a Microsoft Research European PhD Scholarship and by an IMPRS-CS PhD Scholarship.

© Dimitrova,Finkbeiner; licensed under Creative Commons License-NC-ND

FSTTCS 2008

TARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1751

176 ABSTRACTION REFINEMENT FOR GAMES WITH INCOMPLETE INFORMATION

knowledge about the state of the game. If the abstract game provides less information to
the system than the concrete game, then the environment may spuriously win the abstract
game, because the abstract system may be unable to distinguish a certain pair of states and
may therefore be forced to apply the same move in the two states where the concrete system
can select different moves. An abstraction refinement approach for games with incomplete
information must therefore carefully account for the information collected by the system.
A first requirement is that the refinement should avoid predicates that mix variables that
are observable to the system with those that are hidden. Such mixed predicates lead to
the situation that the concrete system has partial information (the values of the observable
variables), while the abstract system does not know the value of the predicate at all. Since
the system may collect information over multiple steps of a play, however, just separating
the variables alone is not enough. Consider, for example, a situation where, in order to win,
the system has to react with output x, ~ 0 if some hidden variable x;, has value x; ~ 0 and
with output x, ~ 1if x;, = 1. Now, suppose the system is able to deduce the value of x
from the prefix that leads to the state, because an observable rational-valued variable x; is
either always positive or always negative if x;, ~ 0 and flips its sign otherwise. To rule out
the spuriously winning strategy for the environment, it is necessary to refine the abstraction
with the new predicate x; > 0, even though the system wins for any value of x;.

Contributions. In this paper, we propose the first CEGAR approach for games with incom-
plete information. We extend the abstraction of the game with a subset construction on the
abstract state space that ensures that the system only uses information it can see. The result
is a perfect-information game over a finite game graph that soundly abstracts the original
game under incomplete information.

The refinement of the abstraction accounts for two cases: we refine the abstract transition
relations by adding new predicates if the environment spuriously wins because it uses moves
that are impossible in the concrete game or because moves of the system are impossible in
the abstract game but possible in the concrete game; we refine the observation equivalence
by adding new predicates if the environment spuriously wins because the abstract system
has too little information. To ensure that the new predicates do not mix observable and
unobservable variables, we develop a novel constraint-based interpolation technique which
provides interpolants that meet arbitrary variable partitioning requirements.

The resulting refinement loop terminates for games for which a finite region algebra
(that satisfies certain conditions related to the observation-equivalence) exists. This includes
important infinite-state models such as timed games or games defined by bounded rectan-
gular automata, given that the observation-equivalence meets the requirement.

In the following, due to space constraints, all proofs and some technical details have
been omitted. We refer the reader to the full version of this paper [6].

Related work. The classic solution to games with incomplete information is the transla-
tion to perfect-information games with a knowledge-based subset construction due to Reif [9].
For games over infinite graphs, however, this construction is in general not effective. Our
approach is symbolic and is therefore suited to the analysis of games over infinite state
spaces. For incomplete-information games with finite state spaces, an alternative would
be to first use the knowledge-based subset construction to obtain a perfect-information con-
crete game and then apply the CEGAR technique of [7] in the usual way. However, since the

DIMITROVA,FINKBEINER FSTTCS 2008

subset construction leads to an exponential blow-up of the state space of the game, which
for realistic systems will make the problem practically infeasible, it is imperative to first
use predicate abstraction and obtain a much smaller state space and only then construct
the subsets of observation-equivalent prefixes. Symbolic fixed-point algorithms based on an-
tichains were proposed in [5, 2]. In the case of infinite game graphs, these algorithms are
applied on a given finite region algebra for the infinite-state game. Our approach, on the
other hand, automatically constructs a sufficiently precise finite abstraction. Interpolation
was applied successfully in verification for the generation of refinement predicates. There
one infers from an unconcretizable abstract counterexample-trace predicates, each of which
refers only to variables that describe a single state on that trace. In our case we need to
consider sets of traces each of which is concretizable and that are represented symbolically
using sets of variables whose intersection contains observable variables only. The straight-
forward application of existing interpolation methods ([8, 10]) would produce refinement
predicates that are either guaranteed to be observable or guaranteed not to relate two or
more states. These approaches are incapable of meeting both guarantee requirements. To
this end, we present our extension of the algorithm from [10] which provides interpolants
that meet arbitrary variable partitioning requirements.

2 Preliminaries

Variables, predicates and formulas. We model the communication between a system and
its environment with a finite set X of variables, which is partitioned into four pairwise dis-
joint sets: Xj, X;, X, and {t}. The environment updates (and can observe) the variables in
Xy and X; and the system updates (and can observe) the variables in X,. The variables in
X; are the input variables for the system, i.e., it can read their value but not update them.
The variables in X}, are private variables for the environment, i.e., the system cannot even
observe them. The set X, consists of the output variables of the system which can be only
read by the environment. The value of the auxiliary variable t determines whether it is the
system’s or the environment’s turn to make a transition, i.e., the two players take turns in
making a transition. The set X’ consists of the primed versions of the variables in X.

Sets of concrete and abstract states and transitions are represented as formulas over some
possibly infinite set AP of predicates (atomic formulas) over the variables in X U X'. For a for-
mula ¢, we denote with Vars(¢) and Preds(¢) the sets of variables and predicates, respec-
tively, that occur in ¢. For a set P of predicates, the set Obs(P) consists of the predicates in
P that contain only observable variables, i.e., from Obs(X U X') = (XU X') \ (X, U X]).

Game structures. A game structure with perfect information C = (Ss, S, so, Rs, R¢) consists
of a set of states S = S; U S,, which is partitioned into a set Ss of system states and a set S, of
environment states, a distinguished initial state so € S, and a transition relation R = R; UR,,
where R; C S; x S, (when the system makes a transition, it always gives back the turn
to the environment) and R, C S, x S are the transition relations for the system and the
environment respectively. A game structure with incomplete information (Ss,Se, 50, =,Rs, Re)
additionally defines an observation equivalence = on S. The system has partial knowledge
about the current state, i.e., it knows the equivalence class of the current state, but not the
particular state in this class. We require that the relation = meets the following two require-

177

178 ABSTRACTION REFINEMENT FOR GAMES WITH INCOMPLETE INFORMATION

ments. The relation = respects the partitioning of S into S; and S.: If v; € S and v, € S,
then v; # vy. The system can distinguish between the different successors of a system state:
For every v € S; and wy, wy € S, if (v,w1) € Ry, (v, W) € Ry and w1 # wy, then wy # wy.
The set of available transitions in a system state is the same for all observation-equivalent
states: For every states v1,v; € Ss and wy € S, such that v1 = v; and (v1,w1) € R;, there
exists a state wy € S, such that wy; = wy and (v, wp) € Rs. A state v for which there is no
w € S with (v, w) € Ris called a dead-end.

We use a symbolic representation of game structures. A symbolic game structure with
incomplete information C = (X, init, T;,7,) consists of a set of variables X (partitioned into
Xy, Xi, X, and {t}), a formula init over X and formulas 7; and 7, over X U X’. For simplicity,
we assume that we have singleton sets X, = {x;}, X; = {x;} and X, = {x,} (the extension
to the general case is trivial). The formulas are required to satisfy the following conditions:
(1) 7. implies t ~ 0 and x, ~ x,, (2) s implies t ~ 1, t' = 0, x}, = x; and x} ~ x;, (3) the
formula To{x; — x}} < To{x), — x7} is valid.

Let H, I and O be the domains of xy, x; and x, respectively. We assume that the set O of
possible outputs for the system is finite. We denote with ¢, the constant from the signature
corresponding to an element 0 € O and with C, the set of all constants for elements of O.
The domain of ¢ is {0,1}. The set Val(X) consists of all total functions that map each variable
in X to its domain. For a formula ¢ over X, and v € Val(X) we denote with ¢[v] the truth
value of the formula ¢ for the valuation v of the variables. We write v |= ¢ iff ¢[v] is true.
For a formula ¢ over XU X', v € Val(X) and w € Val(X'), ¢[v, w] is defined analogously.

A symbolic game structure C = (X, init, 7, 7,) together with corresponding variable
domains defines a game structure with incomplete information C = (Ss, S, S0, =, Rs, R) in
the following way. The sets S and S, consist of the valuations in Val(X) where ¢ is mapped
to 1 and 0 respectively. Since the variable x; cannot be observed by the system, two states
are observation-equivalent if they agree on the valuation of the variables in Obs(X). We
require that init is satisfied by a single initial state so. The formulas 7; and 7, define the
transition relations, where (v, w) € R; iff 7;[v, w] is true, and R, is defined analogously.

For a formula ¢ and ¢, € C,, Pres(c,,) is a formula such that v |= Pre;(c,, ¢) iff there
exists w |= ¢ A x, = ¢, such that (v,w) € R, Pres(@) = V., c, Pres(co, ¢) and Pre,(¢) is a
formula such that v |= Pre,(¢) iff there exists w = ¢ such that (v, w) € R,.

Safety games. We consider safety games defined by a set of error states, which we
assume w.lL.o.g. to be a subset of S.. The objective for the system is to avoid the error states.
Clearly, w.l.o.g. we can assume that S does not contain dead-ends and that for every v € S;
and ¢, € Cy, v |= Pres(c,, true). A safety game with perfect information (with incomplete
information) G = (C,E) consists of a game structure C with complete information (with
incomplete information) and a set of error states E. A symbolic safety game G = (C,err)
consists of a symbolic game structure C and a formula err denoting the set of error states.

Strategies. Let G be a safety game. A path in G is a finite sequence 7 = vyv; ... v, of
states such that for all 0 < j < n, we have (v;,v;41) € R. The length |7t| of 7 is n + 1.
For 0 < j < |rt|, mt[j] is the j-th element of 7w and 7t[0,j] = vo...v;. We define last(rr) =
nt]|mt| —1]. A prefix in G is a path m = vgv; ... v, such that vg = so. We call 7t a system
prefix if last(71) € Ss, and an environment prefix otherwise. We denote with Prefs(G) the set of
prefixes in G, and with Prefs (G) and Prefs,(G) the sets of system and environment prefixes,

DIMITROVA,FINKBEINER FSTTCS 2008

respectively. A play in G is either an infinite sequence w = vyv;...v;... with v9 = sp and
forall j > 0, (vj,vj41) € R or a prefix 7t such that last(77) is an error state. For an infinite
play w, |w| = oo. The observation-equivalence = can be extended in a natural way to
prefixes and plays. A strategy for the system is a function f; : Prefs (G) — S, such that if
fs(m) = v, then (last(7r),v) € Rs. Strategies for the environment are defined analogously.
A strategy fs for the system in an incomplete-information game is called consistent iff for
all ty, 1o € Prefs,(G) with my = 71, it holds that f;(711) = fs(712). The outcome of two
strategies f; and f, is a play w = Outcome(fs, f.) such that for all 0 < j < |w| if w[j] € S
then w[j + 1] = fs(w]0,/]) and if w[j] € S, then w[j + 1] = fe(w[0,]]). A strategy f; for the
system is winning iff for every strategy f. for the environment, if w = Outcome(fs, f.) then
for every j > 0, w[j] is not an error state. A strategy f, for the environment is winning iff for
every strategy f; for the system, if w = Outcome(fs, f.) then for some j, w[j] is an error state.

Strategy trees. A winning strategy f, for the environment in a safety game G can be
naturally represented as a finite tree T(f,), called strategy tree. Each node in T(f,) is labeled
by a state in S, such that the following are satisfied: (1) the root is labeled by the initial state
so, (2) if an internal node is labeled by a state v and a child of that node is labeled by a state
w, then (v, w) € R, (3) if an internal node 7 is labeled by v € S;, then for every w € S with
(v,w) € R;, there exists exactly one child of 7t which is labeled by w, and Children(r, T(f.))
is the set of all children of 7 in T(f.), (4) if an internal node 7 is labeled by v € S,, then
that node has exactly one child, denoted by Child(m, T(f,)), labeled by some w € S with
(v,w) € R,, (5) anode is a leaf iff it is labeled by an error state. Thus, each node corresponds
to a prefix in G, and a prefix in Prefs(G) is represented by at most one node. We identify
each node with the corresponding prefix and define Prefs(f,) as the set of prefixes in T(f,).

Knowledge-based subset construction. The knowledge-based subset construction of an
incomplete-information game G = ((Ss, S, S0, =, Rs, Re), E) is a perfect-information game
Gk = ((Sk, Sk, sk, RE, RY), EF) defined as follows: Sk = {V € 25\ {@} | Vv, 02 € V. 01 = 02}
Sk={V €25\ {@}|Vv1,02 € V.o = 0o} sk = {s0}; (V,W) € REiff V € Sk, W € Skand
(1) for every v € V thereis a w € W such that (v,w) € R;, (2) for every w € W there is a
v € V such that (v,w) € R and (3) if w; = wy, w1 € W and thereisav € V with (v,w;) € R
then w, € W; (V,W) € REiff V € SE, W € Sk U Sk and (1), (2) and (3) are satisfied, where
(1') there exist v € V and w € W such that (v,w) € R,; EX = {V € SK|VNE # @}.

The game solving problem. The game solving problem is to determine whether there
exists a consistent winning strategy for the system player in a given safety game with in-
complete information. The strategy synthesis problem is to find such a strategy if one exists.

3 Abstraction

We use two subset constructions to abstract infinite-state games with incomplete informa-
tion into finite-state games with perfect information: first, we overapproximate the moves of
the environment and underapproximate the moves of the system in the abstract domain de-
tined by the predicate valuations. Then, we overapproximate the observation-equivalence
based on the observable predicates to obtain a sound abstraction.

Let G = (S, err) be a symbolic safety game. For a finite set of predicates P over X,
Vals(P) is the set of all valuations of the elements of P. For a € Vals(P), and p € P, [a] is

179

180 ABSTRACTION REFINEMENT FOR GAMES WITH INCOMPLETE INFORMATION

the corresponding formula over P and we write a |= p iff the value of p in a is frue. Similarly
for a formula ¢ over P. The concretization yp(a) of a € Vals('P) is the set of concrete states
{seS|VpeP:skypiffal=p}. For A C Vals(P), we define yp(A) = Uzca vr(a). For
a1 and ay in Vals(P), we define a; =4, a; iff for every p € Obs(P), a1 |= piff ax |= p.

We abstract a concrete game w.r.t. a pair P = (Ps,, Ps) of finite sets of predicates such
that Preds(init) U Preds(err) U {t ~ 0} C Ps. The states in S, are abstracted w.r.t. Ps, and the
states in S, are abstracted w.r.t. the full set P = Ps, U P;. We require that PredsSyst(Ps.) C
Ps, where PredsSyst(Q) = Ucvais(obs(g)) Preds(Pres([a])), to ensure the absence of dead-
ends in the abstract game. By refining Ps with predicates that are used to split only abstract
system states, we ensure the monotonicity of the abstraction of R;. In the following, y(a)
means vp,, (a) if a € Vals(Ps) and yp(a) if a € Vals(P). Similarly for =*.

For two pairs of sets of predicates P = (Ps, Ps) and Q = (Qs, Qs), we write P C Q
iff Ps, C Qg and Ps C Q;, and define P U Q = (Pse U Qge, Ps U Qs).

The abstraction «(G,P) of G = (S, err) w.r.t. a pair P = (P, Ps) of finite sets of predi-
cates is the perfect-information safety game G = ((S¢, S¢,s§, RZ, R%), E*) defined below.
States. The set S” of abstract states is the union of $? C 2V#5(P)\ {@} and §7 C 2Vs(P) \
{@} which are defined as follows. An element A of 2V75(F) \ {@} belongs to S iff (1) for
everya € A,a =t~ 0and y(a) # @ and (2) for every ay,a; € A, a; =* ap. Similarly, an
element A of 2V75(P«) \ {@} belongs to S¢ iff (1) for everya € A, a =t ~ 0 and y(a) # @
and (2) for every aj,ap € A, a1 =" ap. The initial abstract state sj consists of the single
element ag of 5% such that ag = init and y(ap) # @.

May transitions. The abstract transition relation R} C S? x S” for the environment is de-
fined as: (A, A’) € RY iff the following are satisfied: (1 may) there exista € A, v € 7(a),
a' € A'and v € y(a') with (v,7") € R,, (2) for every a’ € A’ there exista € A, v € y(a) and
v’ € (a’) such that (v,v') € R and (3) for every a} € Vals(P) and a}, € Vals(P), if a] € A/,
ay = a} and there exista € A, v € y(a) and v’ € y(a)) with (v,7’) € R, thena), € A'.

Must transitions. The abstract transition relation Rf C S¢ x S{ for the system is defined as:
(A, A’) € R? iff the conditions (1 must), (2) and (3) are satisfied, where: (1 must) for every
a € Aand every v € 7y(a) there exista’ € A" and v’ € y(a') with (v,7") € R;.

Error states. An abstract state A is an element of E? iff there exists ana € A with a |= err.
Concretization. The concretization 7*(f,) of a winning strategy f, for the environment in
G" is a set of winning environment strategies in the knowledge-based game G*. For 7 €
Prefs(G*), we define (1) = {n* € Prefs(G¥) | |7*| = |n|,Vj: 0 < j < || = #F[j] C
Y(lj])} and 7(7) = {7 € Prefs(G) | | = |ml,¥j : 0 < j < || = n<[j] € v(nlj])}
(similarly for paths). Then 7*(f,) is the set of all winning environment strategies f¥ in G¥
such that for every 7 € Prefs(f) there exists 7t € Prefs(f,) with 7% € 7*(7). Let P and Q
be pairs of sets of predicates with P C Q. If 7 and 77’ are prefixes in (G, P) and «(G, Q),
respectively, we write 77/ < 7 iff || = || and for every 0 < j < |7t|, v(7'[j]) C y(7x[j]).
If f, and f; are winning strategies for the environment in «(G, P) and a(G, Q) respectively,
then f; < f, iff for every i’ € T(f;) there exists 7 € T(f,) such that 7’ < 7.

THEOREM 1.[Soundness of the abstraction] If f; is a winning strategy for the system in the
perfect-information game «(G, P), then there exists a consistent winning strategy f¢ for the
system in the symbolic game G with incomplete information.

DIMITROVA,FINKBEINER FSTTCS 2008

4 Abstract Counterexample Analysis

A winning strategy f. for the environment in the game a(G, P) is a genuine counterexample
if it has a winning concretization in G¥. Otherwise it is called spurious. The analysis of the
strategy-tree T(f,) constructs a strategy-tree formula F(f,) that is satisfiable iff f, is genuine.
The key idea is to symbolically simulate a perfect-information game over the equivalence
classes of the prefixes of the concrete game structure G with incomplete information.

Traces and error paths. With each node 7 in T(f,), we associate a set Traces(7) of traces,

where a trace is a finite sequence T € C; of system outputs, and define Traces(f.) = Traces(s{).

Each trace induces a set of concrete error paths in G. If the strategy f. is genuine, then for
each T € Traces(f,), the concrete strategy in G* should provide an error path & in G. If
is a leaf node (i.e., an error node), then Traces(7t) = {e}, otherwise, if 77 is a system node,
then Traces(7t) = {c,T | co € Co,p € Children(rt,T(f.)), T € Traces(p)}, and, if 7 is an en-
vironment node, then Traces(7t) = Traces(Child(7t, T(f.))). A path ¢ in the concrete game
structure G is an error path of a trace T if one of the following three conditions is satisfied: (i)
¢[0] [= err, (ii) ¢[0] € S, and &[1,|E|] is an error path for T or (iii) [0] € S5, T = ¢,0, {[1] is a
co-successor of ¢[0] and &[1,|¢|] is an error path for o.

Trace formulas. For each T € Traces(f,) we define a formula F(f,, 7) which is satisfiable
iff there is a node p € T(f,) such that there is an error path for 7 in ¢(p). Here, unlike
in the perfect-information case, in the concrete strategy the error paths ¢, and ¢, for two
different traces 7y, T» € Traces(f,) may differ even before the first position in which 73 and
T, are different, as long as their prefixes up to that position are equivalent. We encode this
constraint by indexing the variables in the trace formulas as explained below.

Consider a node 7t and a trace T € Traces(f.) such that T = 0702, 07 corresponds to
the outputs on the prefix r and 0> € Traces(7r). The variables in F(f,, T) are indexed as
follows. The variables that represent a concrete state in y(last(7r)) are indexed with the
node 7, so that there are different variables in the formula for different nodes. They are
indexed also with the part o7 of 7, so that there are different variables in different trace
formulas after the first difference in the outputs. The unobservable variables have to be
indexed additionally with the remaining part 0, of 7, in order to have different unobservable
variables for corresponding states in different trace formulas even before the first difference
in the outputs. To this end, with each node 7w € T(f,) and 07,02 € C; we associate a set
X(moe) — {xénmxfz), xgn’al), xS”"’l), t(”'al)} of variables and define substitutions which map
variables from the original set X U X’ to variables in the sets X(™71%2) and vice versa.

We define recursively a trace formula F(m,) for every node w € T(f.) and trace T €
Traces(7t). We consider three cases that correspond to the three cases in the definition of
error paths: the auxiliary formulas ErrorState, EnvTrans and SystTrans account for cases (i),
(i) and (iii) respectively. If 7 is a leaf node, then T = € and F(7m,€) = ErrorState(r). If
7 is an internal environment node we define F(7r,7) = EnvTrans(m, 7', T), where /' =
Child(rt, T(f.)). If 7t is an internal system node, then T = ¢,0 for some ¢, and ¢ and we de-
fine F(7t,co0) =\ yrechitdren(r,1(f,)) SystTrans(7t, 7', co0). By the definition, the trace formula
F(m, 7) is satisfied by a sequence ¢ of concrete states iff ¢ is an error path for T and there
exists a node p in the subtree of T(f,) below 7 such that & € y(p).

Strategy-tree formula. We define F(f., 7) = F(s}, T) for every T € Traces(f.) and finally, the

181

182

ABSTRACTION REFINEMENT FOR GAMES WITH INCOMPLETE INFORMATION

strategy-tree formula is F(fe) = Aretaces(f,) F(fe, T). It can be constructed by annotating in
a bottom-up manner the nodes in T(f,) with the corresponding sets of traces and formulas.

THEOREM 2. Let f, be a winning strategy for the environment in the game «(G, P). The
formula F(f,) is satisfiable iff the strategy f. is genuine, i.e., iff Y*(f,) # @.

5 Counterexample-Guided Refinement

If f, is a spurious winning strategy for the environmentin «(G, P), we enhance P = (Ps, Ps)
with sets of refinement predicates R, (f.) and R;(f.), such that in the refined game a (G, (Ps. U
Rse(fe), Ps URs(fe))) the environment has no winning strategy f; with f, < f,.

5.1 Refining the Abstract Transition Relations

If for some T € Traces(f,) the formula F(f,, T) is unsatisfiable, then the occurrence of the
spurious abstract strategy is due to the approximations of the transition relations. There-
fore we compute refinement predicates for eliminating the approximations that cause the
existence of f.. Such predicates can be determined by a bottom-up analysis of the strat-
egy tree T(f,) that annotates each node 7 in the tree with a formula F(7, T) for each trace
T € Traces(7r). The formula F(7, T) denotes the subset of y(7) that consist of those con-
crete states from which there exists a concrete path that satisfies F(f,, 7). We denote with
RPGG(f.) (Refinement Predicates for the Game Graph) the pair (RPGGs,(f.), RPGGs(f,)) of sets
of predicates computed at this step and used to enhance Ps, and Ps, respectively.

State formulas. For m € T(f,) and T € Traces(7r), we define F(7,T) as follows. If 7
is a leaf node, then T = € and F(71,€) = V,cpusi(r)aer[d]. Otherwise, T = c,0 and
F(rt,) = [last(7t)] A Pres(co, \ yechiiren(,7(£.)) F (7T, @)) if 7t is a system node, and F(rr, 7) =
[last(71)] A Pre.(F(Child(7t, T(fe)), 7)) otherwise. If T & Traces(7t), then F(7,) is F(m,0),
where ¢ is the maximal prefix of T such that o € Traces(7r) if such exists, and false otherwise.

Refinement predicates. The set RPGGs,(f.) of predicates with which we enhance Ps, contains
all predicates that occur in the annotation formulas F(7r, 7). We ensure that the refined
abstraction is precise w.r.t. the outputs from some trace T € Traces(f,) for which F(f,, 7) is
unsatisfiable, by adding the elements of OutPreds({t}) for one such T to RPGGs, (f,), where
for a set T of traces, we have defined OutPreds(T) = {x, ~ t[j] | T € T,0 < j < |t|}. The
set RPGG;(f,) is equal to the set PredsSyst(Ps. URPGGs.(f¢)). By refining with these predicates
we ensure the monotonicity of the abstraction of the system’s transition relation.

5.2 Refining the Abstract Observation Equivalence

If for every T € Traces(f,) the formula F(f,, T) is satisfiable, the predicates from RPGG(f,)
might not suffice to eliminate the counterexample, because the reason for its existence is the
coarseness of the abstract observation-equivalence. We propose an algorithm RPCE (Refine-
ment Predicates for the Observation Equivalence) for computing a set of observable refine-
ment predicates that allow us to distinguish the concrete error paths for different traces. The
predicates are obtained from interpolants for unsatisfiable conjunctions of trace formulas.

DIMITROVA,FINKBEINER FSTTCS 2008

According to the construction of these formulas, they share only observable variables and
hence the computed interpolants contain only observable predicates. The key challenge for
the interpolation computation in our case is to ensure that these predicates are localized, i.e.,
that the variables which occur in an atom correspond to a single concrete state and not to
a sequence of concrete states. We extend the algorithm from [10], which reduces the com-
putation of interpolants for linear arithmetic to linear programming problems, in order to
handle this additional condition on the variable occurrences. Our more general algorithm
LI LA (Linear Interpolation with Localized Atoms) receives in addition a partitioning of the
variables which occur in the input systems of inequalities and as a result, each atom in the
generated interpolant is guaranteed to contain variables from exactly one partition. We first
present the algorithm RPOE and then describe the procedure LI LA

Algorithm:RPCE

Input: symbolic game G = (S, err), pair P = (Ps, Ps) of finite sets of predicates,
strategy tree T(f,) of an abstract winning environment strategy in (G, P)
Output: pair of sets of refinement predicates (Rs, Rs)
D := {F(fe, T) | T € Traces(fe)}; Rse := D;
while all elements of ® are satisfiable do
pick ¥ C &, ¢ € @\ ¥ such that ¢ := ey ¢ is satisfiable and ¢ A\ ¢ is unsatisfiable;
n := max(MaxIx(¢p), MaxIx(¢));
if Rse = @ then Ry, := OutPreds({t | F(f,,7) € {9} UY});
0 := LI LA(g, ¢, (Vars?(¢) U Vars® (), ..., Vars" () U Vars" ()));
Rse := Rse U (Preds(0)) substx; @ :={0N¢p | p € ¥};

return (Rg,, PredsSyst(Pse U R));

Distinguishing abstract prefixes. Let ® = {F(f,,7) | T € Traces(f.)}. As all formulas
F(f., T) are satisfiable and the formula F(f,) is not, there exists a subset ¥ of ® such that ¢ =
Npev ¢ is satistiable and there exists a formula ¢ € @\ ¥ such that ¢ A ¢ is unsatisfiable.

The variables in Urer(f.),01,mec: X(me1%2) (and hence the variables in ¢ and in ¥) are

partitioned according to the length of 7: For j € IN, X/ is the union of all sets X(™1:2) with
|7t| = j. For a formula ¢, MaxIx(¢) is the maximal j with Vars/ (¢p) = Vars(¢) N X/ # @.

When ¢ and ¢ are (disjunctions of) mixed systems of linear inequalities, we apply al-
gorithm LI LA described in the next paragraph to compute an interpolant 6 such that each
literal which occurs in 6 is of the form ix < where <« € {<, <} and the only variables
which occur in such an inequality are in the set {xf”’a) x5, t(t9)} for some 7 € T(f,) and
o € C;, i.e. the coefficients in front of all other variables are 0. By applying the substitution
substx to the atoms in 6, we obtain a set of predicates over observable variables from the
original set of variables X. Then, the set ® is updated to be the set of conjunctions 0 A ¢,
where ¢ € ¥ and the process is repeated while all elements of the current set ® are satisfi-
able. The predicates in RPOE,(f,) are the atoms from all computed interpolants, plus the set
of output predicates for the traces corresponding to the formulas in the initial set ¥ U {¢}.
The predicates in RPOE; (f,) ensure the monotonicity of the abstraction.

Computing interpolants with localized atoms. We now present the algorithm LI LA for
computing localized interpolants. A mixed system, denoted Ax < a4, consists of strict and
non-strict linear inequalities. The input of algorithm LI from [10] consists of two mixed

183

184 ABSTRACTION REFINEMENT FOR GAMES WITH INCOMPLETE INFORMATION

systems of inequalities Ax < a and Bx < b such that the conjunction Ax < aABx < b
is not satisfiable. The output is a linear interpolant ix < § where <1 € {<, <}. Algorithm
LI LAreceives in addition a partitioning (VO,V1,..., V") of the variables in the vector x. The
output is an interpolant for Ax < a and Bx < b which is of the form /\;7:0 ijx <j (Sj, where
qj € {<, <} and for each 0 < j < n, only variables from VI occur in 1jx < 6;. If such inter-
polant is not found, the element _L is returned. The variables A, Ag, A4, ..., A, denote vectors
which define linear combinations of inequalities in Ax < a. The subvectors At Ale Al A}e
forj = 0,1,...,n define linear combinations of strict and non-strict inequalities in Ax < a,
respectively. Similarly for u, u't, u'®. For each 0 < j < n, the set of variables V/ defines a set
Ix(j) of indices: Ix(j) = {k | k € {1,...,ma}, xx € V/}, where m , is the number of columns
in A. Its complement {1,...,m4} \ Ix(j) is denoted with Ix(j). For 1 < k < my, the k-th
column of the matrix A is denoted with A ;. For disjunctions of mixed systems, i.e., for for-
mulas \/; Axx < a; and \/; Bjx < by in DNEF, we proceed as in [10]: compute an interpolant
0k for each pair of disjuncts and then take \/; A; 0.

THEOREM 3. Algorithm LI LA is sound: If it returns a conjunction 6 = /\;7:0 0, then 6
is an interpolant for the pair of mixed systems Ax < a and Bx < b with the following
properties: (1) for each j, 0; is of the form i;x <; §; where <; € {<, <}, (2) there exist row
vectors A, ..., A, such that forevery 0 < j < n, A; > 0,i; = A;A and §; = Aja; (3) for each
0 < j < n, only variables from V! occur in ¢;. Algorithm LI LA is complete: if an interpolant
0= /\;;0 0; with the properties (1),(2) and (3) exists, then the algorithm will find one.

Algorithm:LI LA

Input: Ax < a and Bx < b: mixed systems, Ax < a A Bx < b is unsatisfiable,
partitioning (VO, vi ..., V") of the variables in x
Output: interpolant Aj_ i;x <j d; where <; € {<, <} and
only variables from V/ occur in i;x <; §;
X1 =A2>20Au>0NAA+uB=0;
X2 = A= E?:O)L/ A /\720(/\] >0AN Z] = /\]A /\5]' = /\]'a A /\kem/\jA|k = O),’
if exist A, 1, Aj, i, 6j, for 0 < j < nsatisfying x1 A xa AAa+ub < —1
then return /\;7:O ijx <94
elif exist A, p, /\j, ij, (5]~, fo'r 0 <j < n satisfying X1 Axa ANAa+ub <0A Alt #0
then return /\Ogjgn,)\}t#o ijx < 6 A /\Ogjgn,/\}‘:o ijx <5
elif exist A, i, A, ij, 6j, for 0 < j < n satisfying x1 A x2 A Aa+pb <O A u't#£0
then return /\7:0 ijx <9
else return L

5.3 Refinement Loop

In each iteration of the refinement loop, an abstract perfect-information game is solved.
If it is won by the system player, the algorithm terminates returning an abstract winning
strategy for the system. Otherwise, the abstraction is refined with the predicates R(f,),
computed for some abstract winning strategy f, for the environment. There are two cases.
If refining the transition relations suffices to eliminate f,, the abstraction is refined with the
predicates in RPGG(f,). Otherwise, the predicates in RPOE(f,) are used for refinement. In

DIMITROVA,FINKBEINER FSTTCS 2008 185

the second case, it is possible that in the game «(G, P URPOE(f,)), the environment has a
winning strategy f; with f; < f,. Then, we also refine with the predicates in RPGG(f) for
every such f;. The set Refine(f., P’) consists of all winning strategies for the environment in
a(G,P') subsumed by f,. It can be computed from the strategy f. and the predicates in P’.

Algorithm:ARG |

Input: symbolic safety game G = (S, err) Output: pair (winner, abstract strategy)
P := (Pse, Ps), where Py, := Preds(init) U Preds(err) U {t ~ 0} and Ps := PredsSyst(Ps.);
solve «(G, P) and determine: winner and strategy;
while winner = env do
if F(strategy) is satisfiable then return (winner, strategy);
fe := strategy;
if 37 € Traces(fe) : F(fe, T) is unsatisfiable then compute R := RPGG(f,);
else
R := RPCE(f,); compute S := Refine(fe, R);
L forall f; € Sdo R := RURPGG(f});

| P :=PUR;solve a(G, P) and determine winner and strategy;

return (winner, strategy)

THEOREM 4.[Soundness of algorithm ARG | | The algorithm ARG | is sound: if it returns
(sys, f), then the concrete symbolic game (S, err) is won by the system and f¢ is a con-
cretizable abstract winning strategy for the system; if it returns (env, f7) then (S, err) is won
by the environment and f/ is a concretizable abstract winning strategy for the environment.

THEOREM 5.[Progress property of the refinement] Let f, be a spurious wining strategy for
the environment in the game a((S,err), P). Ina((S,err), P U R(f.)), the environment does
not have a winning strategy f, with f; < f..

6 Termination of the Abstraction Refinement Loop

In this section we provide sufficient conditions for termination of the refinement loop. In
order to guarantee that only finitely many different abstract states are generated during the
execution of the algorithm, we make standard assumptions about the concrete game graph,
which we extend with conditions related to the presence of incomplete information. As we
also have to account for the refinement predicates obtained from interpolants, we apply the
standard technique (e.g, [8]) of restricting the interpolants computed at each step to some
finite language £}, and maintaining completeness by gradually enlarging the restriction lan-
guage when this is needed. We make use of the fact that our algorithm reduces interpolant
computation to constraint solving, in order to achieve the restriction of the language by
imposing additional constraints on the generated inequalities.

Computing restricted linear interpolants. We restrict the language of the computed in-
terpolants to the set of rectangular predicates over the variables in Obs(X). A rectangular
predicate over Obs(X) is a conjunction of rectangular inequalities of the form ax < ¢, where
x € Obs(X),a € {—1,1}, < € {<, <} and c is an integer constant. For m € N, a rectangular
predicate ¢ is called m-bounded if for each conjunct ax < c of ¢, |c| < m. Let L,, be the set
of all m-bounded rectangular predicates over Obs(X). The modified algorithm LILA, gets

186 ABSTRACTION REFINEMENT FOR GAMES WITH INCOMPLETE INFORMATION

as input also a bound b € IN and ensures that every conjunct in the computed interpolant
is in £;. If such an interpolant does not exist, then the bound b is increased. The modified
algorithm partitions the variables into singleton sets and uses in conjunction with x; and x»
the additional constraints: (1) x3 defined as 3 = /\7:0(1']' <IN 2 =1N6 <bAG > —b)
and (2) the variables §; and the variables in the vector i; assume integer values.

Region algebra for an incomplete-information game. A region algebra for a symbolic safety
game (S, err) is a pair (R, Obs) of possibly infinite sets R C 25 and Obs C R of regions
with the following properties: (1) for every r1,72 € R, we have r1 Urp, 11 N1y, S\ 711 € R;
(2) for every r1,r, € Obs, we have r1 U1y, 11 N1y, S\ 11 € Obs; (3) thesets {v € S | v |=
t~0tand {v € S| v =t ~ 1} arein R; (4) for every r € R and ¢, € C,, and every
p € Preds(Pre.(r)) U Preds(Pres(c,, 1)) it holds that for every r’ € R, either for every v € 7/,
v = porforeveryv € v, v = —p; (5) for every ¢, € Co, theset {v € S| v = x, = ¢, } isin
Obs; (6) for every 711, Ty € Prefs(G), if each of last(7r1) and last(7y) is an error state and there
exists an index j such that 711 [j] and 715 [j] are system states and 711 [j] # 712[j], then there exist
0 <k <jandr € Obs such that 71 [k] € r and m[k] & r.

THEOREM 6.[Termination] Consider a symbolic safety game (S, err) for which there exists
a finite region algebra (R, Obs) with Obs = L,, for some m € IN. If algorithm ARG | using
the modified algorithm LILA, is called with argument (S, err), then it terminates.

References

[1] T.Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations in software pred-
icate abstraction. In TACAS, volume 2988 of LNCS, pages 388—403. Springer, 2004.

[2] K. Chatterjee, L. Doyen, T. A. Henzinger, and].-F. Raskin. Algorithms for omega-
regular games of incomplete information. In Proc. CSL, volume 4207 of LNCS. 2006.

[3] S.Das and D. L. Dill. Counter-example based predicate discovery in predicate abstrac-
tion. In Proc. FMCAD, pages 19-32, London, UK, 2002. Springer-Verlag.

[4] L. de Alfaro and P. Roy. Solving games via three-valued abstraction refinement. In
Proc. CONCUR, volume 4703, pages 74-89. Springer-Verlag, 2007.

[5] M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of imperfect
information. In Proc. HSCC, LNCS, pages 153-168. Springer-Verlag, 2006.

[6] R. Dimitrova and B. Finkbeiner. Abstraction refinement for games with incomplete
information. Reports of SFB/TR 14 AVACS 43, SFB/TR 14 AVACS, October 2008.

[7] T. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In Proc.
ICALP’03, volume 2719 of LNCS, pages 886-902. Springer-Verlag, 2003.

[8] R. Jhala and K. L. McMillan. A practical and complete approach to predicate refine-
ment. In Proc. TACAS, volume 3920, pages 459-473. Springer-Verlag, 2006.

[9] J. H. Reif. The complexity of two-player games of incomplete information. J. Comput.
Syst. Sci., 29(2):274-301, 1984.

[10] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation. In

Proc. VMCAI, volume 4349 of LNCS, pages 346-362. Springer-Verlag, 2007.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 187-198

A new approach to the planted clique
problem

Alan Frieze'* Ravi Kannan?

! Department of Mathematical Sciences,
Carnegie Mellon University.

Pittsburgh PA15213

USA

al an@ andom nat h. cnu. edu

2 Microsoft Research Laboratories,
India
kannanl100@mai | . com

1 Introduction

It is well known that finding the largest clique in a graph is NP-hard, [8]. Indeed, Hastad
[5] has shown that it is NP-hard to approximate the size of the largest clique in an n vertex
graph to within a factor n!~€ for any € > 0. Not surprisingly, this has directed some re-
searchers attention to finding the largest clique in a random graph. Let G, 1/, be the random
graph with vertex set [n] in which each possible edge is included/excluded independently
with probability 1/2. It is known that whp the size of the largest clique is (2 4 0(1)) log, n,
but no known polymomial time algorithm has been proven to find a clique of size more
than (1+0(1)) log, n. Karp [9] has even suggested that finding a clique of size (1 + €) log, n
is computationally difficult for any constant € > 0.

Significant attention has also been directed to the problem of finding a hidden clique,
but with only limited success. Thus let G be the union of G, 1/, and an unknown clique on
vertex set P, where p = |P| is given. The problem is to recover P. If p > c(nlogn)'/? then,
as observed by Kucera [10], with high probability, it is easy to recover P as the p vertices
of largest degree. Alon, Krivelevich and Sudakov [1], using spectral analysis, were able to
improve this to p = Q(n!/?). McSherry [11] gives some refinements of this method. In
conjunction with a negative result of Jerrum [6] that one possible Markov chain approach
fails for p = o(n'/?), p = Q(n'/?) seems like a natural barrier for solving this problem. Feige
and Krauthgamer [4] considered finding a planted clique in the context of the semi-random
model. Juels and Peinado [7] considered the application of this problem to Cryptographic
Security.

Let A denote the adjacency matrix of G. The spectral approach of [1] essentially max-
imizes xT Agx over vectors x with |x| = 1, expecting that the optimal solution is close to u,
defined by u; = pfl/ 21;ep, (u is the scaled characteristic vector of P) so that we may recover
P from the optimal solution.

*Supported in part by NSF grant ccr0200945

© Frieze,Kannan; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1752

188 PLANTED CLIQUE PROBLEM

In this paper, we define a natural 3-dimensional array A related to the given graph
: Ajjx will be +1 depending on whether the parity of the number of edges among the
vertices i,j,k is odd or even respectively. Our main result here (Section 2) shows that
as long as p = Q(n'/3(logn)*), the maximum of the cubic form or fensor A(x,x,x) =
Yijk AijrXiXjxXy, X € By = {x € R": |x[=1} is attained close to u. Thus if we can find
this maximimum, then we can recover the clique. However, unlike the case of the quadratic
form, where the maximization is an eigenvalue computation which is well-known to be
solvable in polynomial time, there are in general no known polynomial time algorithms for
maxmizing cubic forms. So, our existential result does not automatically lead to an algo-
rithm and this is left as an open question. We make the following conjecture which would
yield an algorithm if proved.

Conjecture Suppose that an n x n x n array A is constructed as above from G, 1/, plus a
planted clique of size p € Q(n'/3(logn)°). Then the function A(x,x,x) has a unique local maxi-
mum as x varies over B,,.

2 The cubic form and the main result

We define the 3-dimensional array :

1 if i, j, k are distinct and G contains 1 or 3 edges of the triangle 7, j, k.
Ajjxk =4 —1 ifi,j karedistinct and G contains 0 or 2 edges of the triangle i, j, k.
0 if i, j, k are not distinct.

We assume that

1/3(

p = Cin'/3(logn)*.

Here Cy,C, .. ., are unspecified positive absolute constants.
For vectors x, y,z, we define

A(x,y,2) = Y Aijrxiyizx.
ijk
x, Y,z will denote vectors of length 1 throughout. We will reserve u for the scaled character-
istic vector of P defined earlier. The following Theorem (which is the Main Theorem of the
paper) will imply (see Corollary 2 below) that if at least one of x, y, z is orthogonal to u, then
we have |A(x,y,z)| < Con'/?(logn)*. In which case,

A(u,u,u) = plp _;3)/(219 ~2) ~ % = w(A(x,y,2))

for all such x,y, z. (We use the notation a,, = w(b,) to mean that a,, /b, — o0 as n — o).
Let
P = {(i,],k) € pP3. i,],k are distinct}

Define the 3-dimensional matrix D by

b1 Gk e P,
“E 10 otherwise

FRIEZE, KANNAN FSTTCS 2008 189

andletB= A — D.
B(x,y,2z) = Alx,y,2) — Y. Xz (1)

i,j,keP3

The entries of A in P x P x P contribute Y ; ;) ps- Xiy/zx to the tensor A(x,y,z); so B(x,y, z)
is the contribution due to the random graph alone. The proof of Theorem 1 occupies all of
Section 3. We defer the proofs of the corollaries following it to Section 4.

THEOREM 1. There exists C3 such that

Pr (Elx,y,z : |B(x,y,z)| > C3n1/2(logn)4) =o0(1).

Let
U ={(x,y,z): xu=0oryu=0orzu=0}.

COROLLARY 2. If (x,y,z) € U* then

|A(x,y,2)| <2C3n'/*(logn)*. (2)
So, whp , we have that
A(u,u,u) =w < max A(x,y,z)) . 3)
(xy,z)eUu*

COROLLARY 3. Suppose the maximum of the multilinear form A(x,y,z) as x,y, z vary over
the unit ball is attained at x*,y*,z*. Then, min{x* - u,y* - u,z* -u} =1 —o(1).

The above corollary ensures that from x*,y*,z*, we can find the clique P using the
Theorem below. (See Section 4.)

THEOREM 4. There is a polynomial time algorithm which given as input a unit vector v,

returns a set P’ of cardinality p satisfying the following: If v - u > C‘*p 98" for sufficiently

large C4 then P! = P.

Observe that it is trivial to get a vector v satisfying v-u > 1/p!/? by trying out all
n unit vectors. Getting a vector v satisfying the hypothesis of the Theorem in polynomial
time, however, seems to be non-trivial.

Remarks: We can assume that x* = y* = z* in Corollary 3. Indeed, for a fixed x, the

problem of maximising A(x,y,z) over the unit ball B, amounts to maximizing y’ A,z for
Y,z € B,. Here Ay is the n x n matrix defined by Ay(i,j) = ¥ Aijxxk- Ay is a symmetric
matrix and so for each x there is a maximum in which y = z. Now define a sequence of
vector triples xy, yx, zr, k = 0,1,2,..., where xo,y0,z0 = x*,y*,z" and x;1 = xp and y; = z;
maximise yTAx] z over B,,. Now to obtain x2, y» = y1, 22 we find x = z to maximise A(x, y1,z
and so on. Any limit point of this sequence %, 7, £ must maximise A(x,y,z) and must have
% = § = Z. If for example, £ # 7 then we have the contradiction that there are points of the
form ¢, ¢, n7 arbitrarily close %, 7, 2.

190 PLANTED CLIQUE PROBLEM

Remarks: By switching from 2-dimensional matrices to 3-dimensional matrices we have
reduced the necessary size of P from O(n'/2) to O(n'/3). An interesting open question is
whether using the natural k-dimensional matrices (wWhose entries are +1 depending on the
parity of the number of edges of G in the induced sub-graphs on k vertices) will allow us to
go down to O(n!/¥), for any fixed positive integer k.

Remarks: We note that x* is a local maximum of the function A(x, x, x) (with respect to first
and second order moves) over the unit ball iff
1. x* is the eigenvector corresponding to the highest eigenvalue of the matrix A(x*) and
2. the second highest eigenvalue of A(x*) is at most half the highest.
We can assume that |x| = 1. Let F(x) = A(x, x, x) and let & be small and let x - & = 0. Then

we write F (|§iZ|> < F(x) as

F(x) +3A(x,x,h) +3A(x,h,h) +O(|h?) < F(x)(1+3[h[*/2+O(|h|*).
Then we will need x - h = 0 implies A(x, x,h) = 0 and max;, A(x,h,h) = Ay(Ax)|h|?)

3 Proof of Theorem 1

We will have to make a series of technical modfications. These modifications reduce proving
Theorem 1 to Lemma 6 below. In the next Section 3.1, we carry out the central part, namely
the proof of Lemma 6.

The first modification is that it is easy to see that if we set to zero all the x; for which
|x;] < 1/n?, as well as similarly for y, z, then the RHS of (1) changes by at most 1. So we will
assume that either x; = 0 or |x;| > 1/n?, and similarly for y, z.

Now, here is our second technical modification: Let Vj, V,, V3 form an arbitrary parti-
tion of V into three subsets, each of size m = n/3. Noting that by symmetry, each triangle
i, j, k appears in the same number of V; x V, x V3, one can see that

27
2 Bijrxiyjz < ()). Y Bikxiyjzk
(i,.k) mmm) ViV Vs (i,j k) EVI X Vax Vs
So,
27
Z Bijxxiyjzi| < () Z Z Bijxxiyjzk (4)
(i,j,k) mmm/’ Vi,Vo,V3 (i/j,k)E‘/]XVZXV3

Now for any x,y,z we have

!) B jexiyize) < (%) (X yil) (X |z]) < n*/2. (5)
i 7 k

(i,j,k) ceVixVoxVs

We will prove below that for each fixed partition of V into three equal sized subsets -
V1, Vz, V3, we have,

1
Pr (max) B;jxxiyjzk| > Csn'/2(log n)4) < s (6)

YE k) eV X Vax Vs

FRIEZE, KANNAN FSTTCS 2008

One can derive Theorem 1 from (4), (5) and (6) by the following simple argument: Say that a
partition Vi, V3, V3 is bad for A, if maxy,y .)Z(i,j,k)evl «Vyxvs BijkXiyize| = Csn'/?(logn)* and
we let Pp denote the set of bad partitions. Let

Then, we know that E4(g(A)) < 1/n° from which it follows by Markov inequality that

100 1
P A)> D) oL
4 <g(= n4>—100n2

For any A with g(A) < 100/n*, we have from (5)

100 n
1/2 4 3/2
) max) B;jxxiyizk| < <C5n (logn) +?n > (m,m,m)

ViV, vs TYE (i,j,k)EVy x Vax V3

and Theorem 1 follows.
To prove (6), we fix attention from now on on one particular Vi, V3, V3. We let

X(x,y,z) = Z Bjjkxiyjzk
(i,j,k) eVixVoxVs

and
(x*,y",2") = argmax, . [X(x,y,2)|
and suppose that
| X(x*,y%,z%)| > C5n1/2(10gn)4. (7)
For sets R C V3,5 C V,, T C Vj of vertices, we let B(R, S, T) be the set of triples of vectors
(x,y,z) satisfying
x|, [yl [z] < 1.

R:{i:xi#O}, S:{]y]#(]}, T:{k:zk;«éO}.
\xi/xj\ < 2, VI,] € R, |yl/]/]‘ < 2, VI,] S S, |Zi/Z]‘| < 2, Vl,] cT.

Note that this implies

2

2 2 .
|xi| < [R[172" lyil < S[172" |zi| < ==, Vi. 8)

Since % < |x7|,]y;‘ |, 1zi] <1, we can write each of x*, y*, z* as the sum of logz(nz) vectors,
each of which has the property that its non-zero components are within a factor of 2 of each
other. Thus, (7) implies that there exist R, S, T such that

ma X(x,y,z)| > Cen’?logn.
(x’y,Z)EB(XR,S,T)’ (y)’_ 6 og

So, we see that (7) would lead to the non-occurrence of the event A in the following Lemma.

191

192 PLANTED CLIQUE PROBLEM

LEMMA 5. For every fixed partition of V into three equal sized sets V1, V,, V3, we have that
with probability at least 1 — %, the following event A holds:
A:ForallR,S,T,RCV,,SCV,, TCV;,

X(x,v,2)| < Cen'/?log n.
(X/%Z)rgg()%,s,n' (%, y,2)| on/“logn

This in turn will follow from the next lemma:

LEMMA 6. Suppose R, S, T are fixed pair-wise disjoint subsets of vertices, with |R| = r, |S| =
s,|T| = t. Then with probability at least 1 — n=°"+s+t) the following event which we will
call Ar st happens:

X rJrs > C 1/21)
(x/ylzggé{,sj)‘ (x y Z)‘ = Lgn ogn

Lemma 5 follows from Lemma 6 by the following argument: For each set of integers
r,s,t, the number of subsets (R, S, T) of {1,2,...n} with |R| = r,|S| = s, |T| = t is at most
n" 5+ Thus we will concentrate on proving Lemma 6.

3.1 Proof of Lemma 6

Note that R can be partitioned into two parts - RN P and R \ P, similarly also S, T. So, it
suffices to prove that for any fixed R, S, T, each either contained in P or disjoint from P, the
following event By s T happens with probability at least 1 — n =00 +5+4):

B : max X(x,y,2)| < Cn'’?logn.
RST x,y,zEB(R,S,T)’ (Y)|_ 7 &

IfR,S, T C P, then X(x,y,z) = 0. So, we may assume in what follows that
(RCPorRNP=Q), (SCPorSNP=0), (TCPorTNP=0), (RUSUT ¢ P)

We consider the following cases, which up to re-naming of R, S, T are exhaustive:

Case1: S, T C Pand RNP = @ and |R| < max{|S|,|T|} < |P].

In this case we use the Azuma-Hoeffding martingale tail inequality, see for example
[3]. We have E(X) = 0 and X = X(x,y,z) is determined by r(s + t) independent random
variables (the edges in R x (SUT)). Now adding or removing an edgein R x S (resp. R x T)
can change X by at most (rsfﬁ (resp. (r:fﬁ) (recall (8)). Applying the inequality we see
that

2
Pr(|X| > Cen'/?logn) < 2exp {_ers(ljgt”)} < = 20(r+s+t) (9)

(Remember that r,s,t < p = n!/3+o1)),

The above deals with one particular x,y,z € B(R, S, T).

Note next that there is a 1/(r + s + t)?>-net £ of B(R, S, T) of size at most O((r + s +
£)60+s5+1)) (Le., there is a set £ of O((r + s + £)50 5+ elements of B(R, S, T) so that for

FRIEZE, KANNAN FSTTCS 2008

each element (x,y,z) of B(R,S,T), there is some element (x/,y/,z") of £ such that |(x —
X', y—vy,z—2')| <1/(r+s+1t)?). Now, (9) implies that

Pr (El(x/, y,Z) e L |X(x,y,2)| > Cenl/? log n) < 12045+,
Lemma 6 follows from this and

Ax,y,2) — AKX, Y, 2)] <
Ax,y,2) — A, y,2)| + 1A, y,2) — AKX, Y,2)| + A1, 2) — Ay, 2)

4rst 1 1 1
ST rstie <(st)1/2 T T (rs)1/2> '

Case 2 |R| > |S|,|T| and either) RC Pand SNP=TNP=Qor(ii)) RNP = .

In either of the two sub-cases (i) and (ii), all the edges in G from R x (SUT) are from the
random graph, not from the planted clique. Also, fix attention on one particular (x,y,z) €
B(R,S,T).

In this case, to prove an upper bound on |X(x,y,z)|, we bound its /th moment, where
¢ is an even integer to be chosen later.

Let I be the set of triples (i,], k), where i,],k are distinct and at most 2 of them are
in P. Let)y denote the set of ordered sequences of ¢ triangles Ty, Ty,..., Ty where T; €
IN(RxSxT)fori=1,2,...,0. Let X = X(x,y,z). We have

EX) =Y E(: A(Ti)> ﬁZ(Ti). (10)
i=1 i=1

TeQy

where if T; = («, B,7) then A(T;) = A, g, and Z(T;) = xay/pZ,-

Consider an edge e € R x (S U T) such that e appears in an odd number of triangles in
7. If we consider the measure preserving map f. which deletes ¢ if it appears in G and adds
it otherwise then we see that

and so E (Hle A(Tr)> = 0. This implies that it is sufficient to sum over those 7 in which

each edge of R x (SUT) appears an even number of times. Let Oj(R,S,T) denote the
set of ordered sequences (i1, j1,k1), ..., (i¢, jo, k¢) € (IN (R x S x T))" such that each pair
(i,j) € R x S and each pair (i, k) € R x T appears an even number of times.

LEMMA 7.

1Q;(R,S,T)| < E!((4st)"/2.

{+r—1
r—1
Proof Fix d; > 0,i € R and let us first count the sequences in ())(R, S, T) in which

i € R appears d; times. Note that) ;,crd; = ¢. Now fix i € R and consider the d; triangles
(i,s1,t1),...(i,54,ts;) which contain i. Then consider the bipartite multigraph I' on SU T

193

194 PLANTED CLIQUE PROBLEM

with edges (s1,t1),. .., (54, t4,). By assumption, each vertex of I is of even degree and so by
Lemma 8 (below) there are at most (4st)%/2 choices for I'. Multiplying over i we see that
there are at most (4st)*/? choices for any given sequence d, ..., d,. The number of choices
fordy,...,d, is at most (“r 1) and the lemma follows by multlplymg by ¢! to get an ordered
sequence. O

Let N(s,t, i) denote the number of bipartite multigraphs with vertex sets S, T on the
two sides, with u edges and such that each vertex has even degree.

LEMMA 8.
N(s, t,u) < (4st)”/2

Proof First note that for f > 1

of
2Ny

2172 = (f17 =
Let 2e1,2e,...,2¢5 and 2f1,2f>,...,2f; denote the degrees of vertices in S, T respectively.
Then
N(s, t,u) < Z],t!min{l_[! ,H L }
ey -+t 2e, =1 ics (2¢:)! jeT (2f)!
2f1+-+2fr=p
1/2
< £ w(Tgapy)
2eq -+t 2e, =1 ics (2e)! jeT (2fj)!
2f1+-+2fr=p
1/231/4 21/2f@/4
< Y w2rrr]
2e14--+2es=p ieS 2661 jeT 2f]f]
2fi+A2fi=p
<2 r owaTl)(£ owal))
e1ttes=pu/2 i€eS e;! fitetfi=u/2]€T
— 2ysu/2ty/2/

the last because (261 totre=n/2(W/ 2) T Tjer %) is the number of ways of parititioning the

set {1,2,...1/2} into t subsets and this number also equals t*/2. O
Thus,

! l
E(X) =) E (HA(T»)I_IZ(T»

TeqQ; \r=1
8
< Q- —
C4+r—1\ 253
r—1 2
l+4pl+1/2,r

072

FRIEZE, KANNAN FSTTCS 2008

Now ¢ even implies that X’ > 0 and so applying the Markov inequality, we see that for any
¢ >0,
2€+4€f+1/26r

Pr(X >¢) < R

Putting & = Cen'/?logn and ¢ = (r +s + t) log n, we see that
Pr(X(x,y,z) > Cen'/?logn) < p~200r+s+t) (11)
This completes the proof of Lemma 6.

4 Proof of the Corollaries

Corollary 2 follows from Theorem 1 and the following:

i,jkepP3+ ieP jep kep
+ly -z | Yo x|+ ez |y + eyl |z + | Y iz | < 3ptA
P P P icp
O

For Corollary 3 we write x* = (x* - u)u + x’, where x’ is orthogonal to u, similarly for
y*,z*. This splits A(x*,y*,z*) into the sum of 8 parts. Using (3), we get

A(u,u,u) < A(x*,y*,z%) <o(A(u,u,u)) + (" - u)(y* - u)(z" - u)A(u, u,u),

and the corollary follows. O

5 Proof of Theorem 4

Now, we prove Theorem 4. Let v with |v| = 1 be the given vector. Define a vector w by:
w; = max(v;,0). Clearly, Y ;cp w; > Y_p v;. For ease of notation, we re-number the indices of
coordinates so that wy > wy > ... w;,. Since v is given, we can explicitly do this reordering.
Also for convenience, we let w,, 1 = 0. After this renumbering, we let

Sk:{l,z,...k}, Tk:SkﬂP, tk:|Tk| k:1,2,...,1’l. (12)

LEMMA 9. If} ;. pv; > Cglogn, then for some integer k,

t > Cg/klogn/3.

195

196 PLANTED CLIQUE PROBLEM

Proof Assume for the sake of contradiction that) ;.pv; > Cglogn and that for all

k, tk < Cg\/W/g’
n 1 n
Yowi =) b (wp —wip) < ng\/@ D V(g — wii1)
k=1

ieP k=1
- %ng/lognZwk(\/%—\/k—l) < gng/lognZ%
k=1 k=1

n

1/2
2 1
< gng/logn|w\ (Z k> < ZCglogn,

k=1

using % > vk — vk — 1 and also the Cauchy-Scwartz inequality. This contradiction proves
the Lemma. O

Let G be the graph we are given (the random graph plus the planted clique.) Let M be
its adjacency matrix, where we put a +1 for an edge and -1 for a non-edge. For a subset S
of V, let G° denote the induced subgraph on S and M® the |S| x |S| adjacency matrix of G°.
(In our definition of adjacency matrix, we have 1’s on the diagonal). We may write

M = puu® + M — M, (13)

where M is the adjacency matrix of the random graph and M is the adjacency matrix of the
sub-graph induced on P of the random graph. [M has 0 entries outside P x P.] We may
similary write forany S C V,

MS = tuSuS" + MS — NI, (14)

where |SN P| = t and u® denotes the vector with 1/+/t in the S N P positions and 0 else-
where.

LEMMA 10. With probability at least 1 — n—3, we have that forall S C V,

max{A; (M), A (M®)} < 1004/|S|logn

where A1 denotes the largest absolute value of an eigenvalue.

Proof For each fixed S, the matrix M® is a random symmetric matrix. It is known
[2] that with probability at least 1 — 4e~1015/1°8" we have that |A(M5)| < 1004/]S|log 1.
For each s € {1,2,...n}, there are at most n° subsets S of V with |S| = s. So the probability
that the assertion of the Lemma does not hold is at most Y""_; n®e~ 1051087 < 1/(2n%). M5 is
dealt with similarly.
O
For notational convenience, we let M¥ denote M5k (see (12)) and similarly for NIk, Mk
The first step of our algorithm is to run through k = 1,2,...n, find A;(M*) and stop when
for the first time, we find a k such that

A1 (M) > 1000+/klog 1. (15)

FRIEZE, KANNAN FSTTCS 2008

LEMMA 11.
(i) If Cg > 3000 then the algorithm will find a k satisfying (15).
(ii) For any k satisfying (15), we have:
(a) ifa is the top eigenvector of M¥, then ‘ZieTk ai‘ > 0.8/t and

(b) t; > 8004/klogn.

Proof Let u* be a vector defined by uf = 1//f fori € Ty and 0 elsewhere. Then,
uk" Mkuk = t,; this implies that A1 (M) > t;. Now (i) follows from Lemma 9.

(ii) Suppose now k satisfies (15) and a is the top eigenvector of M*. Then, we have
(recalling (14) and using Lemma 10),

1000/ klogn < al Mk = tk(uk . a)2 +a"Mra —a" Mra < . + 200+/klogn.

Thus,
ty > 800+/klogn.

Also,
1
te < A (MF) < t(u® - a)? +200/klogn < ty <(uk -a)? 4 4>

which implies (u* - a)? > 3/4. This proves (ii).
O

LEMMA 12. There is a polynomial time algorithm which given S C V and a unit length
vector a with support S, finds a P’ C V with the following property:

If|SNP| >800/|S|logn and ¥ ;csnpa; > 0.84/|S N P|, then P" = P.

Proof Re-number the coordinates, so that a; > a, > ... > a,. In particular this
implies that if ¢ < |S| then [¢] C S. We wish to prove that there is an integer ¢ such that

|[¢] N P| > max{¢/100,101logn} (16)

First, if |[SN P| > |S|/10, then we can take ¢ = |S|. So assume that t = |SN P| < |S|/10 and
let ¢ = 4t. Now

Y a<y/|lNP)

i<t;ieP

and so

Y a>08/1snP|— /I[N P and gai > f (0.8\/|smpy - \/|[emp|).

i>(+1;ieP

But,

Zai < \/Z

i<t

VI[N P| > 0.84/]SNP| —0.25V¢ = 15V/7. (17)

Also, we have |SN P|? > 640000/S|log # and so |S N P| > 640000 log 1 and then (16) follows
from (17) and |[¢] N P| > 4(.15)?|SN P| .

This implies

197

198 PLANTED CLIQUE PROBLEM

Now to construct P we try all values of ¢. For each value of /, we pick a random set Q
of 101log n from [¢]. For ¢ satisfying (16) there is at least a 1072°1°8" chance that Q; C P. Now
whp no set of 10logn vertices in P have more than 2logn common neighbours outside P.
Indeed the probability of the contrary event is at most

p n —20(logn)* _
<1010g n> <210gn>2 o(1).

So let Q; be the set of common neighbours of Q;. By assumption we have P C Q; and
|Q2 \ P| < 2logn. Also, whp for every 10logn-subset Q of P, no common neighbour
outside P has 3p/4 neighbours in P. Indeed the probability of the contrary event is at most

p n —p/12 _
n(lOlogn) <210gn>2 =o(1).

Thus P is the set of vertices of degree at least 7p/8 in the subgraph of G induced by Q,. O
Acknowledgement We thank Santosh Vempala for interesting discussions on this prob-
lem.

References

[1] N. Alon, M. Krivelevich and B. Sudakov, Finding a large hidden clique in a random
graph, Random Structures and Algorithms 13 (1998) 457-466.

[2] N. Alon, M. Krivelevich and V. H. Vu, On the concentration of eigenvalues of random
symmetric matrices”, Israel Journal of Mathematics 131 (2002) 259-267.

[3] N. Alon and J.H. Spencer, The Probabilistic Method, Wiley, (second edition) 2000.

[4] U. Feige and R.Krauthgamer, Finding and certifying a large hidden clique in a semi-
random graph, Random Structures and Algorithms, 13 (1998) 457-466.

[5] J. Hastad, Clique is hard to approximate within n'~¢, Proceedings of the 37th Annual
IEEE Symposium on Foundations of Computing, (1997) 627-636.

[6] M. Jerrum, Large cliques elude the Metropolis process, Random Structures and Algo-
rithms 3 (1992) 347-359.

[7] A. Juels and M. Peinado, Hiding Cliques for Cryptographic Security, Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, (1998) 678-684.

[8] R.Karp, Reducibility among combinatorial problems, in The complexity of computer com-
putations, R. Miller and]J. Thatcher (eds.) Plenum Press, New York (1972) 85-103.

[9] R. Karp, The probabilistic analysis of some combinatorial search algorithms, in Algo-
rithms and Complexity: New Directions and Recent Results,].F. Traub, ed., Academic Press
(1976) 1-19.

[10] L. Kucera, Expected complexity of graph partitioning problems, Discrete Applied Math-
ematics 57 (1995) 193-212.
[11] E McSherry, Spectral Partitioning of random graphs, FOCS 2001, 529-537.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 199-210

All-Norms and All-Ly,-Norms
Approximation Algorithms

Daniel Golovin'*, Anupam Gupta!,
Amit Kumar?#, Kanat Tangwongsan'?

! Computer Science Department
Carnegie Mellon University, Pittsburgh PA, USA 15213.

2 Department of Computer Science & Engineering
Indian Institute of Technology, Hauz Khas, New Delhi, India 110016.

ABSTRACT. In many optimization problems, a solution can be viewed as ascribing a “cost” to each
client, and the goal is to optimize some aggregation of the per-client costs. We often optimize some
Ly-norm (or some other symmetric convex function or norm) of the vector of costs—though different
applications may suggest different norms to use. Ideally, we could obtain a solution that optimizes
several norms simultaneously. In this paper, we examine approximation algorithms that simultane-
ously perform well on all norms, or on all L, norms.

A natural problem in this framework is the L, Set Cover problem, which generalizes SET COVER and
MIN-SUM SET COVER. We show that the greedy algorithm simultaneously gives a (p +Inp + O(1))-
approximation for all p, and show that this approximation ratio is optimal up to constants under reasonable
complexity-theoretic assumptions.

We additionally show how to use our analysis techniques to give similar results for the more general
submodular set cover, and prove some results for the so-called pipelined set cover problem. We then
go on to examine approximation algorithms in the “all-norms” and the “all-L,-norms” frameworks
more broadly, and present algorithms and structural results for other problems such as k-facility-
location, TSP, and average flow-time minimization, extending and unifying previously known re-
sults.

1 Introduction

When the solution to an optimization problem affects multiple people or organizations,
there is often a trade-off between various efficiency and fairness measures. Typically, there is
an abstract “cost” associated with each participant and the objective function is some aggre-
gation of the individual costs. The method of aggregation represents our relative priorities
concerning efficiency and fairness. E.g., in k-median, given demand points D C V in a met-
ric space (V,d), we must select k facilities to open: the cost associated with each participant
d € D is its distance to the nearest open facility. Each solution thus induces a cost vector

C e R'?! and the objective is to minimize ||C||; = Y_scp Cy4, the sum of the participant costs:
hence, this method of aggregation favors global efficiency over fairness. Another extreme is

*Supported in part by NSF ITR grants CCR-0122581 (The Aladdin Center) and IIS-0121678

fSupported in part by an NSF CAREER awards CCF-0448095 and CCF-0729022, and by an Alfred P. Sloan
Fellowship.

¥Part of this work done while visiting Max-Planck-Institut fiir Informatik, Saarbriicken, Germany.

© Golovin, Gupta, Kumar, Tangwongsan; licensed under Creative Commons License-NC-ND

FSTTCS 2008

TARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1753

200 ALL-NORMS AND ALL-L,-NORMS APPROXIMATION ALGORITHMS

k-center, where we minimize the fairer objective function ||C||«, the maximum participant
cost. Other examples where such trade-offs appear include:

e Sequencing problems: C measures the “time” of service for each participant, for example
the cover times of the elements in a set cover instance, or the times to reach the vertices
in a TSP instance.

o Scheduling problems: C could be the load of the machines or the flow-times of the indi-
vidual jobs.

o Allocation problems: C measures the quality of service of each participant, for example
congestion or dilation in routing problems, and distances in facility location problems.

In general, there are many aggregation functions we might wish to consider. However, if
we are feeling particularly ambitious, we might ask if we can efficiently find solutions that
simultaneously approximate the optimal solutions for each member of a large class of aggre-
gation functions. Formally, we are given a minimization problem and a class of aggregation
functions F. For each f € F, let C;} be the feasible vector minimizing f(+). Then for as small
an « as possible, we want to find a feasible cost vector C such that f(C) < a - f (C;Z) for all
f € F. Such a vector C is a simultaneous « approximation for F.

In this paper, we will consider two classes of aggregation functions: the class of Minkowski
L, norms {L, | p € R>1} U{Le} (i.e., All L, Norm results), and the class of all symmetric
norms (i.e., AllNorm results). The L, norm of C, which is ||C||, := (¥; C!)!/? for a real value
1 < p < co and max; C; for p = oo, provides a nicely parameterized way of quantifying the
efficiency/fairness trade-off.

The question of all-norm minimization was investigated by Kleinberg et al. [KRT01]
in their study of fair resource allocation algorithms for routing and load balancing, and the
problem of all L,-norms minimization was considered by Azar et al. [AERW04] for ma-
chine scheduling. Subsequent work on these topics was done in the papers [KK00, GMP01,
GMO6]—the concepts studied here are closely linked to submajorization of vectors [HLP88],
which is even stronger than simultaneously approximating all symmetric norms (and hence
all Minkowski norms), see [GMO06] for details and many interesting results derived there-
from. For the comprehensive treatment of submajorization and AllNorm approximation, see
books by Hardy et al. [HLP88] or Steele [Ste04].

1.1 All Lp-norms Set Cover

The classical set cover problem wants to pick a small number of sets one-by-one to cover
the elements early in the worst-case, whereas the min-sum set cover problem tries to pick the
sets to cover the elements early “on average”. In this paper, the first question we consider
is how to pick sets so that the second (or higher) moments are small: this is just the L,-Set
Cover (L, SC) problem. We show that the greedy algorithm is, in fact, a (p + Inp + 3)-
approximation for all L, norms simultaneously! Moreover, for any fixed p, we cannot hope
to do much better using any other algorithm, and hence greedy is essentially the best.
Formally, a set cover instance consists of a ground set U/ of n elements, a collection F
of subsets of U/, and a cost function c: 7 — Ry. An algorithm picks sets 51, S5, ..., S (in
that order) so that their union U;S; is /. On this ordering, let ¢; be the cost of the set S;; i.e.,
ci = ¢(S;). Informally, we may think of S; as corresponding to an action 4; that covers the
elements of S;, and c; is the time required to execute a;. Let the cover index of an element

GOLOVIN, GUPTA, KUMAR, TANGWONGSAN FSTTCS 2008 201

e € U be defined as index(e) = min{i : e € S;}; i.e., the position of the first set that contains
e. The cover time of an element ¢ € U is defined to be the time required to cover e if we
execute actions in this order: i.e., time(e) = Zﬁidfx(e) ci- Note that for the case of unit costs,
the cover index and cover time are the same. Given the sequence of sets that the algorithm
picks, we obtain a cover time vector C € IR",, where C, is the cover time of the element e € U.
The L, set cover problem is then to find the ordering that minimizes ||C||,. It is easy to see
that using the L1 norm and unit costs we obtain the MIN-SUM SET COVER problem [FLT04],
whereas using the Lo, norm we obtain the classical set cover problem [Chv79, Lov75, Joh74].

We prove the greedy algorithm achieves an approximation ratio of (1+0(1)) min{p,Inn}
for L, set cover (which is simultaneously optimal for all L, norms), and also an O(logn)-
approximation in the AllNorm model. Moreover, even if we focus on any fixed value of p,
we show that it is impossible to approximate the L, set cover problem better than Q)(p)
unless NP C DTIME(1n°(081087)) " This lower bound holds for all functions p(n) such
that 1 < p(n) < 15€1In(n) for all n. We also show that the greedy algorithm achieves an
(p + Inp + 3)-approximation in the L, Submodular Set Cover problem, which is a generaliza-
tion of the L, set-cover problem to arbitrary submodular functions.

To the best of our knowledge, there has not been any prior work on All L, Norm ap-
proximation for Set Covering problems seeking to minimize all ||C||,; of course, there is
much work for special values of p. For the classical MINIMUM SET COVER problem (min-
imize ||C||), an (1 4 0(1)) In n-approximation is known both by greedy and by LP round-
ing [Joh74, Lov75, Chv79, Sla97, Sri99]. Moreover, one cannot get an (1 — €) In n-approximation
unless NP C DTIME (n°(°8108")) [Fei98]. For the MIN-SUM SET COVER problem (mini-
mize ||C||1), we know that greedy is an optimal 4-approximation [FLT04] (see also [BNBH 198,
CFKO03]).

1.2 Overview of our Other Results and Related Work

Pipelined Set Cover: This problem was studied in the All L, Norm framework by Munagala
etal. [MBMWO05], and seeks to minimize ||R||, where R; is the number of uncovered elements
before the i set is chosen. To put this in context, the L; norm for this problem is the MIN-
SUM SET COVER problem, and the Lo, norm is just [{/|. Munagala et al. show that the output
of the greedy algorithm is simultaneously a 9'/7-approximation for the L, norm, and also

give a local-search algorithm that is a 4!/7 approximation. We show how our proof ideas

from MIN-SUM SET COVER give an (1 + lnTP + %)—approximation guarantee for the greedy

algorithm for this problem; while slightly worse than the previous known guarantee (note
In(4)

1+ > <4V <14 % for all p > 1), it extends to the case of non-uniform costs where no

guarantee was known for the greedy algorithm.

Norm Sampling: We consider the problem of finding a good representative set for the
class of all L, norms with p € R>q U {co}—namely a set S C R>; U {oo} such that an
simultaneous a-approximation for all L, norms with p € S implies a simultaneous O(«)-
approximation for all L, norms with p € R>; U {co}. This leads us to a notion of norm
sampling, and we give tight bounds for the size of S necessary and sufficient to well repre-
sent (various subsets of) the L, norms, as well as explicit constructions of such sets.

Facility Location Problems: We return to the example at the beginning of the introduction,

202 ALL-NORMS AND ALL-L,-NORMS APPROXIMATION ALGORITHMS

where we seek to open k facilities to minimize ||C||,, where C is the vector of assignment
costs of demands. It is known that one can get O(1)-approximation algorithm for all norms
provided we open O(klogn) facilities [KK00, GM06], and such a O(logn) blow-up in the
number of open facilities cannot be avoided [KKO0O0]. In contrast, we use the above norm-
sampling ideas to give an O(1)-approximation algorithm for all L, norms with integer val-
ues of p provided we open O(ky/logn) facilities, and show that opening Q(k - (log, n)'/3)
facilities may be necessary in some instances.

Results via Partial Covering: For sequencing problems such as TSP, where the cost vector

is the time to reach each of the n vertices in some graph, or sequencing versions of cov-
ering problems (of which L, set cover is a good example), we show how to use partial
covering results to generate AllNorm approximations. For example, we give an AllNorm 16-
approximation result for the TSP by drawing on the elegant techniques of Blum et al. [BCC*94]
and the large body of subsequent and related work. To extend the result to other problems
(like vertex cover and Multicut on trees), we use results from the well-studied area of partial
covering problems, and the papers of [GKS04, KPS06] in particular.

Flow-Time Scheduling: Some scheduling problems naturally lend themselves to a job-
centric perspective. We consider scheduling jobs on parallel machines and look at the
vector of flow times for each job: given e-factor extra speed for each machine, we get an
O(1/£9M)- approximation algorithms for all norms. This extends previous work of Chekuri
et al. [CGKKO04] (who proved the result for all L, norms), Bansal and Pruhs [BP03] (who gave
an All L, Norm result for a single machine). Related work includes results in the machine-
centric model (see, e.g., [AERW04, GM06, AT04, AE05]).

1.3 Preliminaries and Notations

A norm ||| on vectors of length 7 is a function from R" — R that satisfies the following:
|la X]| = |a] ||X]| for any &« € R and X € R", and secondly || X + Y| < [|X]| + |Y] for
X,Y € R". The Minkowski L, norm of X is ||X||, = (¥; X!)!/7 for a real value 1 < p < oo;
the Lo norm is just || X||ec = max; X;. It is well-known that for all X € R" and p < g,
X1l > | X|l, [HLPS].

All of the problems we consider in this paper have the property that a solution to the
problem induces a vector of length n; thus, for each instance 7 of such a problem, we have a
set V(Z) consisting of all vectors that are induced by some feasible solution to the instance.
For a norm ||-||, let || X|| denote the norm of the vector X. We state two well-known facts for
easy reference: the latter follows directly from the convexity of x”.

Fact 1 (Generalized AM-GM [Ste04]) 1A+ 2B > AV/PB(r=1)/p

Fact 2 (The Discrete Differential) Let p > 1. If the real numbers a, b, and c satisfyc =a —b >
0, thena? —bP <c-p-af~1

2 The L, Set Cover Problem

We show that the greedy algorithm simultaneously gives an (p + In p + 3)-approximation
for the L, Set Cover problem for all p, hence generalizing the fact that it is an O(logn)-
approximation for MIN SET COVER (i.e., the Lo &~ Loz, case) and 4-approximation for the
L, case. We then show that for any p, we give a hardness of approximation result of Q(p).

GOLOVIN, GUPTA, KUMAR, TANGWONGSAN FSTTCS 2008

2.1 An Upper Bound for the Greedy Algorithm

Consider the familiar setup. We have a universe U/ of n elements and a family F of subsets
of U. The greedy algorithm picks sets Sy, So, ..., S¢ from F until U;S; = U, such that each S;
satisfies [S; \ (Uj<;S;)| = maxser{|S \ (Uj<iS))[}.

Let c; be the cost of the set S;. Let s; be the cumulative cost of the first i sets picked by
the greedy algorithm. That is, sy = 0 and s;;1 = s; +¢i1. Let X; = 5;\(U;<;S;) be the set
of elements with cover index i. Let R; = U — ;;% X; be the elements uncovered just before

the i'" set is picked. We use S7, c7, sf, X;" and R; to denote the analogous quantities for the
optimal algorithm.

For a fixed value of p, the cost of the greedy algorithm (denoted by greedy) can be
written in terms of the values X; and R; as follows:

1/
greedy = (Lo] [Xi[) " (1)
1/
= (Ei>0(51}‘7 - S?_l) |Rz‘|) 7, (2)
where the second expression follows from the fact that |R; 11| = |R;| — |X;|. The cost of the

optimal algorithm can be expressed in a similar fashion.
The following lemma upper bounds the cost of greedy by a somewhat exotic expression,
which will later turn out to be crucial to our analysis.

Lemma 3 (Upper-bound on Greedy)

R: P
greedy” < (greedy’)? €} <P'Ci‘Xl‘) - [Xil
i>0 | Xi]

R
| Xil
i'" terms in the expressions (1) and (2) measuring the cost of the greedy algorithm, and
raising them to the p'" powers, define B; = (s/ —s!) |R;| and C; = s/ | X;|. It follows from
Fact 1 that %Ai + ‘%1 C > Ag/p Cl.(p_l)/p =p-c- sf_1|R,'\ > B,. The last inequality follows
from Fact 2 and the observation that ¢; = s; — s;_1. Now, rearranging terms, we have that
A; > pB; — (p — 1) Cj; summing this over all i and noting that } ; B; = }_; C; = greedy”, we

get that), (p - Cj @’:Dp Xil =Y A > pYiBi— (p—1) L C; = greedy?, which completes

the proof. n

p
PROOF. Let A; = (p - Cj > -|X;| be the i" term in the summation above. Taking the

Given this upper bound on the cost of the greedy algorithm, we now compare this to
the optimal L, set cover cost. While the structure of the remainder of the proof follows
that by Feige et al. [FLT04] for the L, case, we need a few new ingredients, most notably
obtaining the correct “price” function.

Theorem 4 (L, Approximation Guarantee) The greedy algorithm gives a (1+ p)1*1/P < (p+
In p + 3)-approximation for the L, set cover problem.

PROOF. Recall that greedy and opt denote the cost of the greedy algorithm and the optimal
algorithm, respectively. We show opt graphically as in Figure 1 (left). The horizontal axis
is divided into n equal columns, corresponding to the elements of the universe /. The
elements are arranged from left to right in the order that the optimal algorithm covers them.

203

204 ALL-NORMS AND ALL-LP-NORMS APPROXIMATION ALGORITHMS

The column corresponding to the element x has height (s? . . (x))p . Thus the area under the
curve is opt”.

As Lemma 3 shows, greedy” can be upper-bounded by the expression (greedy’)?. The
right panel of Figure 1 models the quantity (greedy’)?. The diagram has n columns cor-
responding to the elements of U/ appearing from left to right in the order that the greedy
algorithm covers them. For each element of Xj, its corresponding column has height [p -
ci|Ril /] Xi]]P-

D
s3]

I

Area = opt?. Area = (greedy’)?.

857

"
51

»

" Elements of U S T 7 7 Elements of U

Figure 1: Graphical representations of the cost of the optimal algorithm (left) and an upper
bound of the cost of the greedy algorithm (right).

We will now show that the area of the (greedy’)? curve is at most p#(1+ p)(1+1/p)?
times the area of the opt? curve. To prove this, we scale the (greedy’)? curve down by [p(1 +
1/p)]? vertically and by 1 + p horizontally, and place this scaled curve so that its bottom-
right is aligned with the bottom-right of the opt” curve. Now consider a point 4 = (x,y)
on the original (greedy’)? curve. Suppose the point g corresponds to an element of X;, so
y < [p-ci|Ri|/|X;i|]P. Also the distance to q from the right side is at most |R;|. Therefore, the

height of the point g after scaling, which we denote by /, is at most (ﬁ . %) p, and
the distance from the right (after scaling), denoted by r, is at most |R;|/(1 + p).

In order to show that the point g (after scaling) lies within the opt? curve, it suffices to
show that when the optimal algorithm’s cover time is h'/7, at least r points remain uncov-
ered. Consider the set R;. Within this set, the greedy algorithm covers the most elements
per unit increase in cover time. Therefore, the number of elements from R; that the opti-
1. IR}) Xl ~ 1
1+1/p |Xil/ci) ¢ — 141/p
at least ﬁmi’ elements remain uncovered at time 4'/7. Since |R;|/(1+ p) > r, this im-
plies that g (after scaling) lies within the opt” curve, and hence the scaled-down version
of the (greedy’)” curve is completely contained within the opt” curve. Quantitatively, this

implies that greedy” < (1+ p)[p(1+1/p)]P opt? = (14 p)P"! opt?. It can be shown that
(1+p)' /P < p+1Inp+3for p > 1, which completes the proof. n
Having shown that the greedy algorithm gives an O(p) approximation for any fixed p,

in the full version we give an example for which the greedy algorithm is an Q)(p) approxi-
mation.

mal algorithm can cover in time h!/? is at most (|R;|, and so

Theorem 5 (Tight Example for Greedy) There is a set system on which greedy yields an Q(p)
approximation.

GOLOVIN, GUPTA, KUMAR, TANGWONGSAN FSTTCS 2008

2.2 A Matching Hardness Result for L, Set Cover

In this section, we show that the greedy algorithm achieves the best possible approximation
factor up to constant factors; indeed, we show that even if we fix a value of p, there is no
polynomial-time algorithm approximating L, set cover problem better than ((p) unless
NP C DTIME(n°(°8108") We first prove a technical lemma.

Lemma 6 Let #OPT(I) denote the number of sets an optimal algorithm (for the classical min set
cover) needs to cover the set-cover instance I. Let € > % Let t: N — R, be a non-decreasing
function such that 1 < t(n) < log,_n for all n. If there exists an efficient algorithm A such that
for all n > 0, for all instance I with n elements, A covers at least n - (1 — e*t(”)) elements with
t(n) - #OPT(I) sets, then NP C DTIME(nC(l0glogn)),

The proof is standard and can be found in the full version [GGKTO07].

Lemma 7 Suppose § > 0, and p(n) = w(1) is non-decreasing and 1 < p(n) < (3 — &) Inn for all

n. Then the L, set-cover problem is Q)(p)-hard to approximate unless NP C DTIME (nO(loglos),

PROOF. Assume NP ¢ DTIME (1n0(°81°8) Let p (the norm parameter), € > ¢2 be given,
and let t(n) = p(n). (Note that since () must be less than log. 7, and € > ¢?, we need
the upper bound of (3 —6)Inn on p(n).) As a direct consequence of Lemma 6 and our
complexity assumption, we know that for all efficient algorithm A, there is n > 0 such that
there is an instance I of size n such that using t(1) - #OPT(I) sets, A has at least n - (")
elements remaining.

Let A be any polynomial-time algorithm for solving L, set cover. Fix n and such an
instance I. Let opt denote the L, cost of any optimal algorithm on the instance I, and let alg
denote the L, cost of the algorithm A. Asbefore, let X; denote the elements with cover index
i and let R; denote the elements with cover index i or greater A’s solution, and let X7 and
R} denote the analogous sets for the optimal solution. We know that opt? = Yk b 1 X <
n - [#OPT(I)]”, because the classical solution is also a solution of the L, version. On the
other hand, alg? > s? - |Rs| for all s > 0. In particular, with s = p - #OPT(I) and our
lower bound on |R;| from Lemma 6, we conclude alg? > (#OPT(I) - p)” - % Therefore,

alg/opt > ((p/e)P)""" = p/e = Q(p). .

Lemma 8 For p(n) = O(1), it is impossible to approximate L, set cover better than Q)(p) unless
P = NP.

PROOF. Feige et al. [FLT04] shows that, for all cy, e > 0, there are set cover instances such
that it is NP-hard to distinguish between the following two cases: (1) There is a set cover of
size t, or (2) For all integers x such that 1 < x < ¢ot, every collection of x sets leaves at least
a fraction of (1 — 1/t)* — € of the elements uncovered.

It follows that if we guess t, any algorithm leaving fewer than ((1 —1/t)* —¢€) n ele-
ments uncovered after buying x sets, for any x € [1, cpt], allows us to solve an NP-Complete
problem. Thus unless P = NP, every polynomial time algorithm run on these instances has
atleast ((1 —1/t)* — €) n elements uncovered after buying x sets, for any x € [1, cot].

Now fix p and a polynomial time algorithm A and let alg” be the p'" power its cost
for the L, set-cover problem. Let opt” denote the corresponding quantity for the optimal
solution. Let g(x) := x¥ — (x — 1)?. Recall alg? = Y, |Ry| - g(x), where R is the set of
elements with cover index at least x. Suppose that there is a set cover of size t. In that case

205

206 ALL-NORMS AND ALL-L,-NORMS APPROXIMATION ALGORITHMS

it is not too hard to show that opt? < Y., (%) x?, since after buying x sets the optimal
solution covers at least 7x elements. Thus opt? < 7 - tF. On the other hand:

ag = Y [Rilg(x) >) (- —e) s = [(T —e) st

x>1 x=1 =1
Note thatt = w(1),s0 (1 -1/ t)x ~ e~*/!is an arbitrarily accurate approximation. If we
cansetcy > (p+1)and e < e~ (PH1) /2t is not too hard to show alg? = Q(nt? (£)"), simply
by considering the contribution of ¥, v H "e/t —€)n - g(x) to alg’. Thus alg?/opt? =
Q((£)"), and we obtain a gap of g/oipt Q(p) for all constant p. o
Combining Lemma 7 and Lemma 8 immediately yields the following theorem.

Theorem 9 Unless NP C DTIME(1nCU08108%)) for all § > 0 and p = p(n) such that 1 <
p(n) < (5 —6)In(n), it is impossible to approximate L, set cover better than Q)(p).

2.3 Submodular Set Cover

We now consider a generalization of the L, set cover problem. Our setting now assumes a
(monotone) submodular function f: 2" — R,. Using techniques similar to those above,
we can analyze the greedy algorithm’s performance on this generalization, and obtain the
same approximation guarantee. Thus, if action x; takes c; time to perform, and we perform
actions x1, xo, ..., x; in that order, the total cost will be

(£ (750 - £5-0)- (Eag))

where S; := {x1,x2,...,x;}. The objective is to select the permutation that minimizes this
cost. The proof of the following theorem appears in the full version [GGKTO07].

Theorem 10 (Submodular L, Approximation Guarantee) The greedy algorithm gives a (1 +
p)YYP < p+1Inp + 3-approximation for the submodular L, set cover problem.

2.4 The Pipelined Set Cover Problem

Closely related to the L, set cover problem is the L, pipelined set cover problem. In L,-
pipelined set cover, the cost function is given by:

1
cost = (Y=o cilRil?) v

This formulation follows [MBMWO05] but incorporates the notion of cost for each set. 5
When p = 1, this cost function is the same that for the L, case (and the min sum set cover
problem). For this problem, we use the technique in the proof of Theorem 4 to argue that the
greedy algorithm achieves the following approximation ratio; previous work [MBMW05]
gave no approximation guarantee the general costs case. The proof is given in the full ver-
sion.

Theorem 11 (Pipelined Set-Cover Approximation Guarantee) The standard greedy algorithm
gives a (1 RN) -approximation for the L, pipelined set-cover problem.

SThis expression, in fact, differs from that defined by Munagala et al. [MBMWO05]: their objective raises c; to
the p" power. However, this only changes the quantity minimized in the greedy step, and hence we use this
expression for convenience.

GOLOVIN, GUPTA, KUMAR, TANGWONGSAN FSTTCS 2008 207

3 All L, Norm Approximations via Sampling Norms

We now ask the following question: Is there a small “basis” set of L, norms that “approximate”
all other L, norms? Formally, given two vectors X and Y of length n each, is there a set S
of indices such that if || X||, < [|Y||, for all p € S, then the same inequality holds (up to
a constant approximation) for all L, norms? Given such a set S, we can imagine finding a
solution for each L, with p € S, and then “composing” them together to get solution that is
good for all L, norms. In this section, we will show that there is indeed such a set S of size
O(logn); if we are interested in maintaining L, norms only for integer p, then we can get a
set of size O(y/log n). Moreover, we show that both these bounds are tight. Proofs omitted
from this section appear in the full version [GGKT07].

Definition 12 (x-Sampling) For a domain D C R>q U {co}, aset S C D is an a-sampling of
D of order n if for all pairs of non-negative vectors X, Y € R%

I1Xll, <Yl forallpeS = | X||, <a-[|Y]|, forallpeD.

Such samplings prove useful in the All L, Norm framework in the following way.

Theorem 13 Given a minimization problem whose objective function is the L, norm of some cost
vector, and an a-sampling S of D C R>q U {oo}, then a cost vector C that is a simultaneous B-
approximation for the class {L, | p € S} is a simultaneous aB-approximation for the class {L, | p €
D}.

We prove the following tight bounds on the size of O(1)-samplings.

Theorem 14 (Tight Bounds on O(1)-Samplings) There exists an O(1)-sampling of the domain
Dyeais = R>1 U {oo} of order n with size |S| = O(logn), and an O(1)-sampling of the domain
Dints = Z>1 U {0} of order n with size O(y/logn). Moreover, one cannot obtain smaller O(1)-
samplings for either of these domains.

3.1 All L, Norm Approximations for Facility Location Problems

In this section, we show how the O(1)-samplings immediately give algorithms for the
All L, Norm k-facility location problems. As mentioned in the introduction, we can imag-
ine an abstract facility location problem where given a metric space (V,d) with demand
points D C V, we open a set of at most k facilities F C V and assign each demand to a
facility. This naturally gives a vector C of assignment costs for the demands with each solu-
tion: the k-median problem now minimizes ||C||, the k-means problem looks at ||C||2, and
the k-center problem at ||C||, etc. Let opt,(k) denote a solution opening k facilities that
minimizes the L, norm of the vector of assignment costs. For any set of open facilities F,
let Cost, (F) denote the ¢, norm of the resulting vector of assignment costs. The following
theorem shows how to get an All L, Norm approximation to such problems.

Theorem 15 There exists a set F of O(klog n) facilities F such that Cost,(F) < O(1) - Cost, (opt,(k))
forall p > 1. If we want this to hold for all L, norms for integer values of p only, then we need only
O(k+/log n) facilities. Moreover, we can find these facilities in polynomial time in both cases.

The proof is immediate from Theorems 13 and 14, and the fact that forany 1 < p < oo,
one can use existing techniques to get an O(1)-approximation algorithm for minimizing the
¢, norm [|C||,. Indeed, all the approximation algorithms for the k-median problem cited

208 ALL-NORMS AND ALL-L,-NORMS APPROXIMATION ALGORITHMS

above have the following additional property—if the underlying space only satisfies a A-
relaxed triangle-inequality (i.e., the distances satisfy d(x,y) < A - (d(x,z) + d(y,z) for the
parameter A > 1), then these algorithms give an O(A)-approximation algorithm for the k-
median problem. The problem of minimizing the (p'" power of) the £, norm of assignment
cost can be thought of as the k-median problem where distance between two points x and y
is given by d(x,y)”. Now these distances satisfy the A = 2P-relaxed triangle-inequality, and
hence we get an [O(27)]'/P-approximation algorithm for the £, norm.

Kumar and Kleinberg showed that we need to open Q)(klog n) facilities to get an O(1)-
AllNorm-approximation. That proof does not work for the All L, Norm case; however, we can
show the following result.

Theorem 16 Given a parameter a, there exists a metric space over n demand points such that for a

set of facilities F satisfying Cost,(F) < a - opt, (k) for all integer p > 1, |F| > Q(k(lsg(g&)) %). In

fact, the lower bound holds even for L, norms with integer p.
Itis an interesting open problem if we can open o(k log 1) facilities and still be O(1)-competitive
against all L, norms.

4 AllNorm Approximation Algorithms

In the previous sections, we were interested in All L, Norm approximations, and situations
where focusing on L, norms (instead of all symmetric norms) would give more nuanced
results. In this section, we give results for the AllNorm case; complete proofs of the theorems
in this section appear in the full version [GGKTO07].

For a vector X, define X as the vector obtained by sorting the coordinates of X in
descending order. Given vectors X and Y of length 1 each, we say that X is a-submajorized
Ey Y (written as X <, Y) if foralli € ”LZJQ X <) Y (i.e., the partial sums of
X are at most a times the partial sumsin Y'). Intultlvely, this means that the k unhappiest
elements in X are together at most « times worse off than the k unhappiest elements of Y:
we will want to find solutions X which are a-submajorized by any other solution Y (for small
«). The following result is well-known (see, e.g., [Ste04]).

Theorem 17 Let X and Y be two vectors of equal length, such that X is a-submajorized by Y. Then
f(X) < f(a-Y) for all real symmetric convex functions. In particular, if f is a symmetric norm,

then f(X) <a f(Y).
4.1 AllNorm Approximation from Partial Covering Algorithms

We now show how solutions for “partial covering” problems can be used to prove sub-
majorization results; these submajorization results immediately lead to AlINorm approxima-
tions for these problems by Theorem 17. Partial covering problems include the k-MST prob-
lem (find a tree of minimum cost spanning at least k nodes), or the k-vertex cover problem
(find a set of nodes of minimum size/cost that covers at least k edges). In this paper, we
show how an O(1)-approximation to the k-MST problem implies an O(1)-submajorization
result, and how these ideas extend to other partial cover problems.

Theorem 18 For a TSP instance on a graph G = (V, E), given a tour 7, let t; be the time at which
the salesperson reaches vertex v;, and let T = (t1,t2,...,t,) be the vector of these arrival times
sorted in ascending order. Then there is a solution where the arrival time vector is x-submajorized by
the corresponding vector in any other solution, where x < 16.

GOLOVIN, GUPTA, KUMAR, TANGWONGSAN FSTTCS 2008 209

The ideas behind this theorem can be used to show that Set Cover problem admits
an O(logn)-AllNorm approximation, Vertex Cover an 8-AllNorm approximation, etc. Let us
sketch the idea for Vertex Cover: first use the fact that k-vertex cover admits a 2-approximation [BB98,
Hoc98, BY01, GKS04]. This gives us an algorithm that given a budget B, finds a solution of
cost 2B in poly-time which covers at least as many edges as any other solution of cost B.
Setting the value of B to be successive powers of 2, we can argue that if any other algorithm
covers k elements with cost at most 2:~1, then we would have covered at least k elements
with cost at most 4 - 2%; this gives us an 8-submajorization. See the papers [GKS04, KPS06]
for results on partial covering problems (all of which can be similarly extended).

4.2 AllNorm Algorithms for Flow Time on Parallel Machines

Finally, we consider the problem of scheduling jobs on parallel machines: given a schedule
A, the vector of interest is the vector FA of flow times, where the flow time is the difference be-
tween its completion time and release date—hence, the /1 norm of this vector is the problem
of minimizing the average flow time on parallel machines: see, [CKZ01] and the references
therein for several polynomial-time logarithmic-approximation algorithms.

It is known that for any schedule A, the All L, Norm-guarantee a4y (F4) is unbounded
even if there is only one machine [BP04]: hence results have been given in the resource
augmentation framework by giving our machines (1 + ¢)-speed. In particular, Bansal and
Pruhs [BP04], and Chekuri et al. [CGKKO04] gave results showing that given any constant
e > 0, we can get an O(golw)—approximation algorithm for all £, norms. In this paper, we
show that one can extend their results to a submajorization, and hence AllNorm result.

Theorem 19 There exists a schedule A such that FA B-submajorizes FB for all schedules B, where
B is a constant (depending only on ¢).

References

[AE05] Yossi Azar and Amir Epstein. Convex programming for scheduling unrelated parallel machines.
In STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 331-337,
New York, 2005. ACM.

[AERWO04] Yossi Azar, Leah Epstein, Yossi Richter, and Gerhard J. Woeginger. All-norm approximation algo-
rithms. J. Algorithms, 52(2):120-133, 2004.

[ATO04] Yossi Azar and Shai Taub. All-norm approximation for scheduling on identical machines. In Al-
gorithm theory—SWAT 2004, volume 3111 of Lecture Notes in Comput. Sci., pages 298-310. Springer,
Berlin, 2004.

[BB98] Nader H. Bshouty and Lynn Burroughs. Massaging a linear programming solution to give a 2-
approximation for a generalization of the vertex cover problem. In STACS 98 (Paris, 1998), volume
1373 of Lecture Notes in Comput. Sci., pages 298-308. Springer, Berlin, 1998.

[BCCT94] Avrim Blum, Prasad Chalasani, Don Coppersmith, Bill Pulleyblank, Prabhakar Raghavan, and
Madhu Sudan. The minimum latency problem. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pages 163-171. ACM Press, 1994.

[BNBH98] Amotz Bar-Noy, Mihir Bellare, Magnas M. Halldérsson, Hadas Shachnai, and Tami Tamir. On
chromatic sums and distributed resource allocation. Inform. and Comput., 140(2):183-202, 1998.

[BPO3] Nikhil Bansal and Kirk Pruhs. Server scheduling in the L, norm: a rising tide lifts all boat. In
Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages 242-250, New
York, 2003. ACM.

[BP0O4] Nikhil Bansal and Kirk Pruhs. Server scheduling in the weighted I, norm. In LATIN 2004: The-
oretical informatics, volume 2976 of Lecture Notes in Comput. Sci., pages 434-443. Springer, Berlin,
2004.

[BY01] Reuven Bar-Yehuda. Using homogeneous weights for approximating the partial cover problem. J.

Algorithms, 39(2):137-144, 2001.

210 ALL-NORMS AND ALL-LP-NORMS APPROXIMATION ALGORITHMS

[CFKO03]

[CGKKO04]

[Chv79]
[CKZ01]

[Fei98]
[FLT04]

[GGKTO7]

[GKS04]
[GMO6]
[GMPO01]
[HLP8S8]

[Hoc98]

[Joh74]

[KKO00]

[KPS06]

[KRTO1]
[Lov75]

[MBMWO05]

[S1a97]
[Sri99]

[Ste04]

Edith Cohen, Amos Fiat, and Haim Kaplan. Efficient sequences of trials. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), pages 737—
746, New York, 2003. ACM.

Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit Kumar. Multi-processor scheduling to
minimize flow time with € resource augmentation. In Proceedings of the 36th Annual ACM Sympo-
sium on Theory of Computing, pages 363-372, New York, 2004. ACM.

V. Chvatal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233-235, 1979.
Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted flow time.
In Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pages 84-93 (elec-
tronic), New York, 2001. ACM.

U. Feige. A threshold of In# for approximating set cover. |. ACM, 45(4):634—652, 1998.

Uriel Feige, Laszl6 Lovasz, and Prasad Tetali. Approximating min sum set cover. Algorithmica,
40(4):219-234, 2004.

Daniel Golovin, Anupam Gupta, Amit Kumar, and Kanat Tangwongsan. All-Norms and All-L-
Norms approximation algorithms. Technical Report CMU-CS-07-153, School of Computer Science,
Carnegie Mellon University, September 2007.

Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. Approximation algorithms for partial cov-
ering problems. J. Algorithms, 53(1):55-84, 2004.

Ashish Goel and Adam Meyerson. Simultaneous optimization via approximate majorization for
concave profits or convex costs. Algorithmica, 44(4):301-323, 2006.

Ashish Goel, Adam Meyerson, and Serge Plotkin. Combining fairness with throughput: online
routing with multiple objectives. J. Comput. System Sci., 63(1):62-79, 2001.

G. H. Hardy, J. E. Littlewood, and G. Pélya. Inequalities. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge, 1988. Reprint of the 1952 edition.

Dorit S. Hochbaum. The t-vertex cover problem: extending the half integrality framework with
budget constraints. In Approximation algorithms for combinatorial optimization (Aalborg, 1998), vol-
ume 1444 of Lecture Notes in Comput. Sci., pages 111-122. Springer, Berlin, 1998.

David S. Johnson. Approximation algorithms for combinatorial problems.]. Comput. System Sci.,
9:256-278, 1974.

Amit Kumar and Jon Kleinberg. Fairness measures for resource allocation. In 41st Annual Sympo-
sium on Foundations of Computer Science (Redondo Beach, CA, 2000), pages 75-85. IEEE Comput. Soc.
Press, Los Alamitos, CA, 2000.

Jochen Kénemann, Ojas Parekh, and Danny Segev. A unified approach to approximating partial
covering problems. In ESA’06: Proceedings of the 14th conference on Annual European Symposium,
pages 468-479, London, UK, 2006. Springer-Verlag.

Jon Kleinberg, Yuval Rabani, and Eva Tardos. Fairness in routing and load balancing. J. Comput.
System Sci., 63(1):2-20, 2001. Special issue on internet algorithms.

L. Lovasz. On the ratio of optimal integral and fractional covers. Discrete Math., 13(4):383-390,
1975.

Kamesh Munagala, Shivnath Babu, Rajeev Motwani, and Jennifer Widom. The pipelined set cover
problem. In Database theory—ICDT 2005, volume 3363 of Lecture Notes in Comput. Sci., pages 83-98.
Springer, Berlin, 2005.

Petr Slavik. A tight analysis of the greedy algorithm for set cover.]. Algorithms, 25(2):237-254,
1997.

Aravind Srinivasan. Improved approximation guarantees for packing and covering integer pro-
grams. SIAM J. Comput., 29(2):648-670, 1999.

J. Michael Steele. The Cauchy-Schwarz master class. MAA Problem Books Series. Mathematical Asso-
ciation of America, Washington, DC, 2004. An introduction to the art of mathematical inequalities.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 211-222

An Optimal Construction of Finite
Automata from Regular Expressions

Stefan Gulan, Henning Fernau
Universitét Trier
{gul an, fernau}@mni-trier.de

ABSTRACT. We consider the construction of finite automata from their corresponding regular ex-
pressions by a series of digraph-transformations along the expression’s structure. Each intermediate
graph represents an extended finite automaton accepting the same language. The character of our
construction allows a fine-grained analysis of the emerging automaton’s size, eventually leading to
an optimality result.

1 Introduction

Regular expressions provide a description of regular languages in a manner convenient for
the human reader. On the machine level, however, the most appropriate representation
is arguably that of finite automata. Thus, considerable effort has been put into ways of
constructing automata describing the same language as a given expression. All algorithms
known to the authors work by either incorporating the expression’s syntactic structure into
the state graph of the emerging automaton [OF61, Kle65, Tho68, SSS88, IY03] or by look-
ing for first-time occurrences of symbols in subexpressions [Glu61, MY60, BS86]. The first
kind of construction generally results in an NFA with e-transitions (eNFA, for short), the
latter produces no such transitions and may even provide a DFA. An exhaustive overview
is given in [Wat94].

Our construction yields an eNFA. No tight bound for the size of such an automaton rep-
resenting a given expression has been published yet. Ilie & Yu [IY03] came pretty close,
proving a lower bound of 3 times the size of a given expression while constructing an eNFA
smaller than 3 times the expression length. We close this gap by raising the lower bound
and giving a construction reaching that bound in the worst case. Note, however, that plenty
of definitions of the sizes of automata and regular expressions are afloat, some of which are
compared in [EKSWO05]. For comparability, we stick by the definition given in [IY03].

The algorithm presented in this paper is basically an extension to the one given in [OF61],
which is, together with a variation of Thompson’s algorithm in [Wat94], the only top-down
algorithm among a variety of bottom-up procedures. It turns out that the top-down char-
acter is very helpful in the analysis, since it allows systematic construction of an expression
yielding the worst ratio of automaton-to-expression sizes. This construction relies on ex-
tremal combinatorial arguments for inferring structural properties of a worst-case input. To
our knowledge this is a novel approach to this kind of problem.

© Gulan, Fernau; licensed under Creative Commons License-NC-ND

FSTTCS 2008

TARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1754

212 AN OPTIMAL CONSTRUCTION OF FINITE AUTOMATA FROM REGULAR EXPRESSIONS

2 Preliminaries

Enclosing braces for singleton sets will be omitted. Let A be a finite set of symbols, called
alphabet, the elements of AUe will be called literals. The set of regular expressions over A,
denoted Reg(.A), is the closure of AUe under product e, sum + and Kleene-star *. Operator
precedence s *, o, +. We will casually speak of expressions only. In the following, x and g will
always be expressions. The regular language expressed by « is denoted L(«). We will call «
and B equivalent, denoted a=p, if L(«)=L(p). The number of products (sums, stars) in a will
be denoted |a|e (Ja|+, |a]«). Likewise, the number of literals in &, counted with multiplicity,
will be denoted |«| 4. The size of an expression is defined as |a|:=|a|o+ ||+ 4|+ || 4. We
call a complex, if |a| > 2. The set of subexpressions of a will be denoted sub(«).

Both iterated products and sums will be denoted as is common in arithmetic, defining

n n
Hlxi:zuqoazo...oucn and Zuci::ucl—l—zxz—i—...—f—ucn
i=1 i=1

Each «; as above will be called an operand to the product or sum. An iterated product (sum)
which is not operand to a product (sum) itself, will be called maximal. If all operands in a
maximal product (sum) are starred, it will be called star-maximal.

An extended finite automaton, short EFA, is a 5-tuple E=(Q, A, 9, qo, F), where qo€Q, FCQ,
and 6CQxReg(A)xQ. This renders conventional FAs a special case of EFAs. An EFA is
called normalized, if |F|=1. A pair (q,w) € Qx.A* is called configuration of E, valid changes in
E’s configuration are denoted by I, writing (g, vw) F (¢, w) if (q,«,q9")€6 and veL(a). The
language accepted by E is L(E)={w|(q0,w) " (qf,€),9f € F}, where -* is the reflexive-
transitive closure of |-.

The class of regular languages is not extended by allowing regular expressions as labels in
automata, see [Woo087] for a proper introduction. The size of an EFA E is |E|:=|Q|+]é|. The
sets of transitions leaving and reaching some g€Q are given by g7:=6N(gx Reg(.A)x Q) and
g :=0N(QxReg(A)xq), respectively. A set of transitions v = {(q;, a;, gi+1)|1<i<n—1} U
(qn, an, q1) is called cycle.

Let A be a FA generated from a by some algorithm C. We call % the conversion-ratio of C
with respect to «. The maximal conversion-ratio of C with respect to any expression, will
simply be called conversion-ratio of C. An expression reaching this bound is said to be

worst-case.
3 A Lower Bound

First we improve on a lower bound for any construction of FAs from expressions, given
by Ilie & Yu in [IY03], by a slight variation of their argument. To this end, a property of
digraphs is shown, in which we refer to both vertices and arcs as elements.

PROPOSITION 1. Consider a digraph (V, A). Let L, R be nonempty, disjoint subsets of V
such that

GULAN, FERNAU FSTTCS 2008 213

1. there is a path from each! € L toeachr € R,
2. there is no path connecting any two verticesl,I’ € L oranyr,r" € R.
Then at least min{|L||R|, |L|+|R|+1} elements are necessary to realize these paths.

PROOF. Two cases need to be considered:

1. There is no vertex on any path connecting / with r. This can only be realized with
|L||R| arcs, by pairwise connections.

2. Thereis at least one vertex b on a path connecting I, € L with r, €R, this path contains at
least 3 elements. To connect [, with the vertices of R\r; at least |[R|—1 further arcs are
necessary. An additional |L|—1 arcs are leaving the vertices of L\J,. These numbers
total to |L|+|R|+1.

Next we show the actual lower bound. Both states and transitions of an FA A will be called
elements, the number of elements is simply | A].

THEOREM 2. Let x;; be distinct literals, consider the expression

n

& = H(ﬁpm + 25 12) (X311 + X5;0 + X3, 3)
i=1

= (0 Fx72) (001 +%00+%33) - (%20 1,1+X201,2) (X201 T %20, X2n.3)
Any normalized automaton A satisfying L(A) = L(«) has at least size 22n + 1.

PROOF. In A, each x;; is read on some cycle v;; comprising at least one transition in-
cident to a state g, , i.e., 2 elements. The 7;; are disjoint, since literals of the same factor
occur mutually exclusive and literals of different factors are ordered by a. Thus 5n cycles,
accounting for at least 101 elements, are required. As for the connectivity of cycles, no path
may lead from 7;; to 7;, if j # k, however, there need to be paths from 1;; to ;1. This
carries over to the connectivity of the g; ;, thus each two sets of states g;; and g; 1, satisty
the conditions given in Prop. 1. Since one of the sets contains 2, the other one 3 states, by
Prop. 1 at least 6 Elements are needed to ensure connectivity. As there are 2n—1 such pairs,
12n—6 elements are needed to connect them. This totals to 22n—6 elements, additionally, 2
states and 5 transitions are necessary to ensure a normalized FA.

For the following, note that « from Thm. 2 has size 151 — 1.

COROLLARY 3. The conversion-ratio of any algorithm converting expressions to normal-
ized FAs is bounded from below by

Al _2n+1_ 22 1 1
A S 2T 22 4+ —
« —1Bn—1" 15 ' Ja] Tl

4 Construction

The idea is to expand an initial EFA according to the structure of the expression, by introduc-
ing as few states and transitions as possible, while decomposing transition labels. Certain
substructures in the expanded automata will be replaced by smaller equivalents. This is
done until an eNFA emerges, i.e., there are no more complex labels.

214 AN OPTIMAL CONSTRUCTION OF FINITE AUTOMATA FROM REGULAR EXPRESSIONS

DEFINITION 4.[Expansion] Let E = (Q, A, J,qo, F) be an EFA with a complex labeled tran-
sition t. We call an EFA E' = (Q', A,d',q0, F) the expansion of E, if it is derived from E
according to the label of t as follows:
- if t = (p,ap,q) then Q"= QUp', &' =6\ tU{(p,a, p'), (p", B,q)}
-if t=(p,a+p,q)thenQ =Q, & =5\tU{(p,a,q), (p,Bq)}
- if t = (p,a*,q), we distinguish several cases
0: if p = q, replace a with o,
letQ'=Q,8 =6\tU(q,4,9)
«1: if |p*| =|q~| =1, mergeq into p:
let Q"=0Q\q, 0" =5\ (g"Uq) U{(p,7.7)(q77) €5}U(p,ap)
«2: if |p*| > 1, |[g7| = 1, introduce a loop in g:
letQ =Q, ¢ =0\tU{(p€9q),(qua7q)}
x3: if |p*| =1, |g7| > 1, introduce a loop in p:
letQ'=Q, ¢ =5\tU{(pap) (peq)}
x4: if |p™| > 1, |g~| > 1, introduce a new state p’:
let Q"= QUp", &' =6\ tU{(p,e,p'), (P a,p'), (. eq)}

Cases are sketched in Fig. 1. Expansions will be denoted relational, writing E <; E" if E’
results from expansion of t in E. Occasionally we write <., <14, <l,; to indicate which case of
Def. 4 is applied, or simply E < E/, if both t and the case are irrelevant. The latter might be
formalized as <1 = <l¢ U <1y U Ug<j<4 <4i- The n-fold iteration of <t will be denoted <", thus
if E <" E' there is a series of EFAS E;, 0 < i < n, such that E = Ey, E; < E;;+1, E, = E’. Usually
we refer to <, , -) by mentioning a’s operator, e.g, “e-expansion’. Distinct *-expansions will
be referred to as "*x0-expansion’ to "+4-expansion” according to Def. 4.

DEFINITION 5.[Primal EFA] Let A be the least alphabet satisfying &« € Reg(A). The EFA
AY = ({q0,95}, A, (q0,4,q¢), 90,95}) is called the primal EFA representing «. We denote by
Al any automaton satistying A <t Al.

Thus, A}, denotes any EFA derived from the primal automaton representing « in a series of

i expansions. Note that generally, Al is not unique. However, a most useful property of <
is that the order of expansion is irrelevant, or formally:

LEMMA 6. < is locally confluent, ie., if A9 A" and A < A", then 3A" : A’ < A" and
AN<]A///.

PROOF. Given in the appendix.
COROLLARY 7. < is confluent.

PROOF. Since < is terminating, the claim follows from Lem. 6. Detailed proof of this
argument can be found, e.g., in [Hue80].

We introduce two further conversions of different nature, altering EFAs with respect to e-
labeled substructures.

DEFINITION 8.[State-Elimination] Let E=(Q, A, ,qo, F) be an EFA, g € Q\F. We consider
two types of state-elimination, based on q" and g~ :
- YType:q =(p,€,q), g ={(qa1,11),...,(q,an,74)}.
Then, leté' =5\ (g7Uq) U{(p,a1,71),..., (P, &n,n)}

GULAN, FERNAU

0.0 q0r-0bf-0
(a) product
o o

(c) superfluous star, 0

A A O
?P“%Ii<>?eﬂii

(e) target-looping star, *2

FSTTCS 2008

00 4 05=0
(b) sum
OIX
SO0 @ 207

(d) state-merging star, 1
14
/£>a%\</o4%\

(f) source-looping star, *3

N, \ (‘3‘) /-
SO0 < >QLOLO<

</ \ / \’

(g) state-introducing star, *4

Figure 1: Expansions of complex labeled transitions.

e, om0 e g

)/ /]/' & & € >
a\\ m /@ Dq% ’)ﬁz ! ®\§3

(a) Y-Type, schematic

—»

(b) X-Type, schematic (c) Cycle-elimination, exemplary

Figure 2: State-eliminations (a,b) and cycle-elimination (c)

- X-T.ype : qi = {(plfef ”/)/ (er €, 5/)}/ q+ = (5]/ €/ 7’]), (q/ €/ 1’2)}.
Then, leté' =6\ (g7Uq™) U{(p1,€,1), (p1,€,712), (p2,€,71), (P2, €, 12) }-
The g-reduct of E is defined as E' = (Q\q, A, ¢',qo, F) and we write E >, E'.

By reverting the transitions for Y-Type elimination, a further rule—though not structurally
different from the given Y-Type—is obtained.

DEFINITION 9.[eCycle-Elimination] Let y={(q;,€,4})|1<i<n} bea cycle of E=(Q, A, 6, 90, F).

LetQ" = Q\{q1,---,qn} Ugy and &' = \yU{(p, &, 9,)|(p, 2, 9i) € 6} U{(q4,B,7)|(q:, B, 7) €

0}. The y-reduct of E is defined as E = (Q', A, &', qo, F).

Note that both state- and cycle-eliminations strictly reduce the size of an EFA without re-
introducing complex labels. Eliminations are illustrated in Fig.2.

Exhaustive application of expansions and eliminations to A} (or any EFA, for that matter)
yields an eNFA. A primitive algorithm is given below.

215

216 AN OPTIMAL CONSTRUCTION OF FINITE AUTOMATA FROM REGULAR EXPRESSIONS

Algorithm 1 RegEx — eNFA
A— Al
while A is not an NFA do
choose a complex-labeled transition t in A
let A<ty A
if <; introduced some e = (g,¢€,4’) then
if g can be eliminated then
let A" >, A”
A/ - A/I
if 4’ can be eliminated then
let A'>, A"
A/ P Al/
if e is part of some e-cycle 7y then
let A’ >, A”

A/ (_A//
A— A
end while
[<o | <4 | <uo| Qe [D2, < [| Dy | Dy
A(QD | 1 00| -1 0 1 -(v[=D] -1
A 111070 1 2 vl |[Tor0

Table 1: Number of elements introduced (i.e., removed, if negative) upon expansion and elimination,
broken down to states and transitions.

5 Analysis

Let A, denote an eNFA constructed by our algorithm from AY. We start by bounding |A,|
from above. To this end, we refine the definition of |«|.. Let |a|,; denote the number of stars
in «, that will be *i-expanded. Clearly, |a|. = Y g<;<q &/

THEOREM 10. The size of an automaton built from a by our algorithm is bounded by
[Aal < Il + 21t — [0l +2

If this bound is tight then neither state-elimination nor x0, x1-expansion is applied.

PROOF. AYis of size 3. The number of elements introduced upon expansion is determined
by |ale, |a|+, ..., weighted by the entries in Tab. 1. Using |a|4=|a|e+|a|++1 and |a| =
|ale + ||+ + [a]s0 + . .. +|a|ia+|a] 4, this yields:

Adl < 2lade+ [l — |l + [ali2 + 3lala + 3
=l + lcle — [0 — 2ll1 + 2la]cs — [4 +3
<l + lalo +2lafes — [4 +3
= o] 4+ 2lls — laly +2

GULAN, FERNAU FSTTCS 2008

)(1+Jc2+x3 xz
(x} +xp+x5)*
O—+—"">0 =«

@ (Ca;)" = (by *0-expan31ons.

xixh xlC /‘\ ¥ n
OO - Q A\ / @

(b) (ITa})* = ()" by ehmmatlon of e-cycles.

Figure 3: Transformations respect the equivalences given in Prop. 12 (e-labels are omitted).

The first inequality results from state- and e-cycle eliminations, the second from *0- and
*1-expansions, thus equality holds in absence of these transformations.

The conversion ratio of a worst-case expression can be read immediately from this term;
since we will refer to this quotient rather often, we restate it explicitly in

COROLLARY 11. Let « be worst-case, then

Aal _y , 2lalea— ol +2
« «

PROPOSITION 12. Both sides in each of the following equivalences will be expanded to the
same (sub)automaton:

(a")*=a* and () _a))'=()_m)* and (J]a))* = ())"

where &; = B;, ifx; = B} and «; otherwise.

PROOF. The first two equivalences are realized by *0-expansion, the third by e-cycle-
elimination. Examples are given in Fig. 3.

COROLLARY 13. Let a be worst-case, then |a|.0=|a|,.1=0, further both a sum with starred
operands and a maximally starred product are not starred themselves.

PROOF. By Prop. 12 we know that such sums and products would lead to *0-/*1-expansions
and eliminations. Since for worst-case expressions equality in Thm. 10 holds and thus said
conversions do not occut, the claim follows.

We proceed with a series of results, each putting additional constraints to the structure of a
worst-case expression. Almost all proofs work by a line of argumentation that is common
in extremal combinatorics: assume « is worst-case, i.e., extremal with respect to conversion-
ratio, then infer some further property by contradicting extremality of «.

PROPOSITION 14. A worst-case expression contains stars.

PROOF. Let a be worst-case with |a|,=0. Cor. 11 implies |ﬁj| < 1+ﬁ, the right-hand side

of which drops below 1.4, if |«| > 5. Since by Cor. 3, the conversion-ratio is bounded from
below by 1.46, the assumption |a|.=0 is wrong, if « is worst-case.

217

218 AN OPTIMAL CONSTRUCTION OF FINITE AUTOMATA FROM REGULAR EXPRESSIONS

LEMMA 15. Let 7v* be a proper subexpression of a. Then * will be x4-expanded itf
- it is operand to a sum which is not starred, or
- without loss of generality it occurs rightmost in a star-maximal product.

PROOF. The first case is clear by looking at the expansion of some *+f: If a transition la-
beled like this is a loop, 7* will be x0-expanded, otherwise it will definitely be *4-expanded.
The second case is more involved: If o* is an infix, say, a1y*a,, we distinguish 3 cases: If
both &; are non-starred, v* will be x1-expanded. If only one of the &; is non-starred, then
7" can be *2- or *3-expanded by introducing a loop at the state incident to the transition
labeled with the non-starred a;. Finally, if both a; are starred, we can by confluence assume
that expansions will be applied from left to right. Then, every starred factor will be *2-
expanded until the final one necessitates *4-expansion. This embraces all possible cases,
giving both directions of the statement.

LEMMA 16. Let « be worst-case, assume y*€sub(a) is *4-expanded. Then * is operand to
a sum.

PROOF. By Lem. 15, 7" is either operand to a sum or rightmost in a star-maximal product.
Assume the latter, thus 7 = 717 o ... e 7" | @ v*. Construct «’ from a by replacing 7t with
o =m{+...+ 1 _+7". Then |a|=|a’|, however 2|a'|,4—|a'| = 2|a|4—|a|++n—1. Since
by Prop. 12 7t is not starred in «, the stars in ¢ will not accidentally become *0. By Cor. 11,
>
The interrelation between sums and stars in a worst-case expression is further tightened in

the following

thus & is not worst-case. Therefore " is necessarily operand to a sum.

LEMMA 17. Let « be worst-case. Then
1. every starred subexpression in « is operand to a sum and
2. all operands in a maximal sum are starred.

PROOF.
1. Assume y*€sub(a) will not be *4-expanded. Construct a’ from « by replacing y* with
9. Since |o'|=|a|—1, yet |a'|.4=]|a|.4, Cor. 11 again yields |ﬁﬁl\‘ > "&“l, thus « is not
worst-case. Therefore each star in a worst-case expression is subject to *4-expansion,
thus by Lem. 16 operand to a sum.
2. Let }_0; be maximal with some 0 unstarred, i.e., a product. Construct a’ from « by
replacing oj with o7". This newly starred expressions will be x4-expanded (Lem. 15).

Then |o| = |a|+1, |&|.4 = |a|a+1 and by Cor. 11, |Ay| = |Ax|+2. Now

‘Aa" _ ’Arx"”z > ‘Aa‘
==
'] | +1 7 |af

iff Ay < 2|a|

We proceed similar to the proof of Thm. 10, additionally using that the previous item
implies |a |4 < 2|a|4:
[Aal = 2fale +fals — fafa + lafios +3lafa +3
= 2la| — [afy = 3lala — |afos + |ala +3 = 2[af4
= 2la| = 2lals — [als — 3lal.1 — al.23 + ol +2— a4
2la| — |al 1 — 2lafe +1

IN

GULAN, FERNAU FSTTCS 2008

By assumption, |a|4 > 1, any further binary operator pushes the right-hand side
strictly below 2|a’|. Indeed, the only expression containing only one + as binary op-
erator, that reaches a conversion-ratio of 2, is x] + x5, which is of claimed structure.

LEMMA 18. A worst-case expression x has no subexpression of the form

= ([1x%)
i

PROOF. If ¢ € sub(a), e-cycle elimination would occur upon expansion. By Cor. 11 then
« would not be worst-case.
This allows us to provide a pretty detailed template of a worst-case expression:

LEMMA 19. Let « be worst-case. Then the structure of « is

ki
n = ﬁzcri’; where 0;; € A

i=1j=1

PROOF. By Prop. 14, a worst-case expression contains starred subexpressions, so fix some
0;; which is by Lem. 17 operand to a sum. A maximal sum with stars is a factor, since it may
not be starred itself and is already maximal. Further, 0;; is necessarily a maximal product.
If its operands were maximally starred sums, this would contradict Lem. 18, thus ojj is a
product of literals. Then, ¢;; influences the conversion-ratio as given in Cor. 11 only by its
length, which has to be minimized in order to maximize the ratio. Thus 0;; is a symbol from
the alphabet. From Lem. 18 it also follows that « itself may not be starred.

It remains to analyze the influence of the number of summands (the k; in Lem. 19) on
conversion-ratio. This is done in the proof of our main

THEOREM 20. An expression « is worst-case, if its structure is

n 2+(i mod 2)
a=]]). =« where xjecA

ij
=1 j=1

PROOF. Let a be of the general structure given in Lem. 19, the FA produced by a series of
expansions from A{ is sketched in Fig. 4. The sizes of these objects are

n n

o] = (n—1)+ Z (3k; — 1) Z
i=1 i=1
‘A(x‘ = i4ki—|—n—1:42ki—|—n—1
i=1 i=1

thus the ratio is

Ad _4Eki+n—1_ Tk+n

lzx\ 32](1'—1 32](1‘—1
The fraction on the right-hand side is maximized, if n is maximal with respect to }_k;, or
equivalently, if }_k; is minimal. Two restrictions result from prohibiting state-elimination,
namely that Vi : k; > 2 and if k;=2 then k;_1>2 and k;1>2 (if they exist). Thus) k; is
minimal, if k; alternates between 2 and 3, i.e., k; = 2 + (imod 2).

219

220 AN OPTIMAL CONSTRUCTION OF FINITE AUTOMATA FROM REGULAR EXPRESSIONS

AN/ N
\Q Q ------------------------------ O : \©

e 2
wihel

Figure 4: Automaton constructed from an expression as given in Lem. 19 (e-labels are omitted).

COROLLARY 21. The size of an automaton produced by our construction is bounded by
% |a| + 1. The construction is optimal.

PROOF. The value is reached by the expression given in Thm. 20, which was proven to
give the maximal ratio of sizes. Since by Cor. 3 £2|a| + 1 is also a lower bound, the bound is
tight, hence the construction is optimal.

6 Conclusions & Remarks

We have given a construction for converting regular expressions into equivalent eNFAs. To
our knowledge it is the only provably optimal construction so far. It should be mentioned
that the generated automata differ from these constructed in [IY03] only by the effects of
state-elimination. This element is crucial however, both for raising the lower bound as well
as for upper bound analysis as we did. On a practical detail, preprocessing the input to
reduced expressions (as done in [IY03]) is in part realized upon execution of our algorithm.

Treatment of @ in expressions can easily be added to our algorithm by considering it a literal
throughout the expansion/reduction-sequence and adding a final step: removing @-labeled
transitions followed by running some reachability algorithm. The final step will reduce the
size of the automaton, thus the bound is maintained even if @ does not count into the ex-
pressions’ size. Since we consider @ as being of no practical relevance, it was omitted from
formal treatment.

Maybe more interesting, Kleene-+ can be implemented by reformulating *-expansions,
where additional e-transitions need to be introduced. This yields smaller FAs than by ap-
plying the equivalence a™ = aa* (which would double the number of elements introduced
by «), yet it is not feasible with the given bound.

Finally note that the construction not unique in the general case, since state-eliminations is
not confluent. This can be remedied by adding rules that take the in- and out-degrees of the
states adjacent to the eliminated one into consideration, however this is not at the attention
of this paper. A closer analysis will be available in a future article.

GULAN, FERNAU FSTTCS 2008

References

[BS86] Gerard Berry and Ravi Sethi. From regular expressions to deterministic au-
tomata. Theoretical Computer Science, 48:117-126, 1986.

[EKSWO05] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-Wei Wang. Regular ex-
pressions: new results and open problems. Journal of Automata, Languages and
Combinatorics, 10(4):407—-437, 2005.

[Glu6l] Victor Michailowitsch Glushkov. The abstract theory of automata. Russian Math-
ematical Surveys, 16:1-53, 1961.

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797-821, 1980.

[IY03] Lucian Ilie and Sheng Yu. Follow automata. Information and Computation,
(186):140-162, 2003.

[Kle65] Stephen Cole Kleene. Representation of Events in Nerve Nets and Finite Automata,
pages 3—41. Annals of Mathematics Studies. 1965.

[MY60] Robert McNaughton and Hisao Yamada. Regular expressions and state graphs
for automata. IRE Transactions on Electronic Computers, 9(1):39—-47, 1960.

[OF61] Gene Ott and Neil H. Feinstein. Design of sequential machines from their regular
expressions. Journal of the ACM, 8(4):585-600, 1961.

[SSS88] Seppo Sippu and Eljas Soisalin-Soininen. Parsing Theory. EATCS Monographs
on Theoretical Computer Science. Springer, 1988.

[Tho68] Ken Thompson. Regular expression search algorithm. Communications of the
ACM, 11(6):419-422, 1968.

[Wat94] Bruce W. Watson. A taxonomy of finite automata construction algorithms. Tech-
nical Report Computing Science Note 93/43, Eindhoven University of Technol-
ogy, may 1994.

[Woo87] Derick Wood. Theory of Computation. John Wiley & Sons, Inc., 1987.

A Appendix

LEMMA 6. < is locally confluent modulo isomorphism.
PROOF. First, assume one of the transitions is labeled by either a product or a sum:

- Lett; = (gq,a @ B,q9’). Upon expansion a bridge-state q” will be introduced, however
the number of arcs leaving and reaching ¢ and g4’ will remain constant. The structure
of A will change insofar as that an arc will be elongated. Since any <i;, will at most
have the effect on t; that one of its states might be renamed (upon *1-expansion), the
order of <, <y, is irrelevant.

- If 1=(q,a + B,¢’), informal reasoning is that an arc is merely doubled. Looking at
Def. 4, the booleans g >1 etc. are not changed by such an operation.

Now let both t; be star-labeled. Note that the statement is trivial, if expansions take place
in 'different parts” of the EFA, so let t1, t; share at least a common state. If the transitions
are parallel, both will be *4-expanded anyway. Further, x0-expansion does not change the
structure of the state-graph at all, i.e., neither of t1,t; is a loop. So assume t; = (p,a*,q),
ty = (q,a*,r) where p # q # r. Some of the possible combinations are shown in Fig. 5, the
remaining are a simple exercise.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

221

222 AN OPTIMAL CONSTRUCTION OF FINITE AUTOMATA FROM REGULAR EXPRESSIONS

& o p
X SefeoT 9 et
et f o ﬁ 2 ﬁ
AV 14
. O GO
St 9 e
(a)
S A b
i —TER
T~ * * 7
ot fe 2
ORS L/@\i <)@L@L;@\i
(b)
B x P
NSO NSO O
RS0 9 S0—@—@—o_
W L /N /N
>@L@ﬁ—~/®\i 2
, X , o B
VN O X/, O

(©

Figure 5: Examples for confluence of expanding consecutive starred transitions. Isomorphism is
denoted by ~~.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 223-234

The unfolding of general Petri nets*

Jonathan Hayman and Glynn Winskel
Computer Laboratory, University of Cambridge, England

ABSTRACT. The unfolding of (1-)safe Petri nets to occurrence nets is well understood. There is a
universal characterization of the unfolding of a safe net which is part and parcel of a coreflection
from the category of occurrence nets to the category of safe nets. The unfolding of general Petri
nets, nets with multiplicities on arcs whose markings are multisets of places, does not possess a di-
rectly analogous universal characterization, essentially because there is an implicit symmetry in the
multiplicities of general nets, and that symmetry is not expressed in their traditional occurrence net
unfoldings. In the present paper, we show how to recover a universal characterization by represent-
ing the symmetry in the behaviour of the occurrence net unfoldings of general Petri nets. We show
that this is part of a coreflection between enriched categories of general Petri nets with symmetry
and occurrence nets with symmetry.

1 Introduction

There is a wide array of models for concurrency. In [16], it is shown how category theory can
be applied to describe the relationships between them by establishing adjunctions between
their categories; the adjunctions often take the form of coreflections. This leads to uniform
ways of defining constructions on models and provides links between concepts such as
bisimulation in the models [5].

Only partial results have been achieved in relating Petri nets to other models for con-
currency since, in general, there is no coreflection between occurrence nets and more general
forms of net that allow transitions to deposit more than one token in any place or in which
a place can initially hold more than one token. The reason for this, as we shall see, is that
the operation of unfolding such a net to form its associated occurrence net does not account
for the symmetry in the behaviour of the original net due to places being marked more than
once. In this paper, we define the symmetry in the unfolding and use this to obtain a core-
flection between general nets and occurrence nets up to symmetry.

Of course, there are undoubtedly several ways of adjoining symmetry to nets. The
method we use was motivated by the need to extend the expressive power of event struc-
tures and the maps between them [14, 15]. Roughly, a symmetry on a Petri net is described
as a relation between its runs as causal nets, the relation specifying when one run is similar
to another up to symmetry; of course, if runs are to be similar then they should have similar
futures as well as pasts. Technically and generally, a relation of symmetry is expressed as a
span of open maps which form a pseudo equivalence.

This general algebraic method of adjoining symmetry is adopted to define symmetry in
(the paths of) nets, which we use to relate the categories of general nets with symmetry and
occurrence nets with symmetry. Another motivation for this work is that Petri nets provide
a useful testing ground for the general method of adjoining symmetries. For example, the

*An extended version is available as a Computer Laboratory Technical Report.

© J. Hayman and G. Winskel; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1755

224 THE UNFOLDING OF GENERAL PETRI NETS

present work has led us to drop the constraint in [14, 15] that the morphisms of the span
should be jointly monic, in which case the span would be an equivalence rather than a
pseudo equivalence. (A similar issue is encountered in the slightly simpler setting of nets
without multiplicities [4].) Motivated by the categories of nets encountered, the method
for adjoining symmetry is also extended to deal with more general forms of model such as
those without all pullbacks.

2 Varieties of Petri nets

We begin by introducing Petri nets. It is unfortunately beyond the scope of the current paper
to give anything but the essential definitions of the forms of net that we shall consider; we
instead refer the reader to [9, 16] for a fuller introduction.

DEFINITION 1. A general Petri net is a 5-tuple,
G = (P, T, Pre, Post, M),

comprising a set P of places (or conditions); a set T of transitions (or events) disjoint from
P; a pre-place multirelation, Pre C,, T x P; a post-place co-multirelation, Post C,, T X P;
and a set M of co-multisets of P forming the set of initial markings of G. Every transition
must consume at least one token:

YVt € T dp € P. Prelt, p] > 0.

This is a mild generalization of the standard definition of Petri net in that we allow there
to be a set of initial markings rather than just one initial marking, and will prove important
later. In the case where a general net has precisely one initial marking, we say that the net
is singly-marked.

A morphism of general nets embeds the structure of one net into that of another in way
that preserves the token game for nets — see [13].

DEFINITION 2.Let G = (P, T, Pre, Post, M) and G’ = (P, T’, Pre’, Post’,IM") be general Petri
nets. A morphism (1,) : G — G’ is a pair consisting of a partial functiony : T —, T’ and
an co-multirelation B C,,, P x P" which jointly satisfy:

o foralMe M: p-MeM

o forallt € T: B- (Pre-t) = Pre’ -n(t) and B - (Post - t) = Post’ - n(t)

We write 7(t) = * if #(t) is undefined and in the above requirement regard * as the
empty multiset, so that if 7(t) = * then B - (Pre - t) and B - (Post - t) are both empty.

The category of general Petri nets with multiple initial markings is denoted Gen’, and
we denote by Gen the category of singly-marked general nets (nets with one initial mark-
ing).

One simplification of general nets is to require that multirelations Pre and Post are
relations rather than (co)-multirelations and that every initial marking must be a set of places
rather than an co-multiset. We shall call such nets P/T nets. The relations Pre and Post of a

J. HAYMAN AND G. WINSKEL FSTTCS 2008

P/T net may equivalently be seen as a flow relation FC (P x T) U (P x T) describing how
places and transitions are connected:

pFt JEN Pre(p,t) tFp PEN Post(t, p).

Any P/T net can therefore be defined as a 4-tuple G = (P, T, F, M) by giving its flow rela-
tion. An important property that a P/T net can possess is (1-)safety, which means that any
reachable marking is a set (i.e. there is no reachable marking that has more than one token
in any place) — we say that a marking is reachable if it can be reached by any sequence of
transitions from any initial marking according to the standard token game for nets.

Safe nets can be refined further to obtain occurrence nets.

DEFINITION 3. An occurrence net O = (B, E,F,M) is a safe net satisfying the following
restrictions:
1. YMeM:Ybe M: (Pre-b=0Q)
Vo'e B:IMeM:FbeM: (bF V)
Vb e B: (|Pre-b| <1)
F* isirreflexive and, for alle € E, the set {¢' | ¢’ F* e} is finite
is irreflexive, where

e#ne = eCcE&e cE&e#¢e¢ &Pre-eNPre-¢ #©
bl = IMM eM:(M#AM&beM&l € M)
x#x' < Jy,yY EEUB:y#nmy &y F x&y F X

Gk LN

Singly-marked occurrence nets can be seen to coincide with the original definition of
occurrence net [8].

By ensuring that any condition occurs as the postcondition of at most one event, the
constraints above allow the flow relation F to be seen to represent causal dependency. Since
the flow relation is required to be irreflexive, as is the conflict relation #, every condition can
occur in some reachable marking and every event can take place in some reachable marking.
Two elements of the occurrence net are in conflict if the occurrence of one precludes the
occurrence of the other at any later stage.

The concurrency relation cooC (BUE) x (B UE), indicating that two elements of the
occurrence net are concurrent (may occur at the same time in some reachable marking) if
they neither causally depend on nor conflict with each other, is defined as:

X coo Y IEN —(x#tyorx F* yory F' x)

We often drop the subscript O and write co for the relation. The concurrency relation is
extended to sets of conditions A in the following manner:

A £ (Vb,b' € A: bcob')and {e € E| 3b € A.e F* b} is finite

The final class of net that we shall make use of is causal nets. These are well-known
representations of paths of general nets, recording how a set of consistent events (events
that do not conflict) causally depend on each other through the encountered markings of
conditions.

225

226 THE UNFOLDING OF GENERAL PETRI NETS

DEFINITION 4.A causal net C = (B, E,F,M) is an occurrence net with at most one initial
marking for which the conflict relation # is empty.

2.1 Unfolding

Occurrence nets can be used to give the semantics of more general forms of net. The process
of forming the occurrence net semantics of a net is called unfolding, first defined for safe
nets in [8]. The result of unfolding a net G is an occurrence net U (G) accompanied by a
morphism e¢ : U(G) — G relating the unfolding back to the original net.

For a safe net N, we are able to say that the occurrence net ¢/ (N) and morphism ey :
U(N) — N are cofree. That is, for any occurrence net O and morphism (77,7) : O — N,
there is a unique morphism (6, &) : O — U(N) such that the following triangle commutes:

UNN) >N
0,u
()T (7t7)
O

This result, first shown in [12] (for singly-marked nets; the generalization to multiply-
marked nets is straightforward), ensures that Occ* is a coreflective subcategory of the cate-
gory of safe nets, the operation of unfolding giving rise to a functor that is right-adjoint to
the obvious inclusion functor. In fact, the result also applies to give a coreflection between
occurrence nets and P/T nets and, more generally still, to give a coreflection between oc-
currence nets and nets with single multiplicity in the post-places of each transition and that
have at most one token in each place in their initial markings, as shown in [6].

A coreflection is not, however, obtained when we consider the unfoldings of arbitrary
general nets (either singly- or multiply-marked). The problem does not lie in defining the
unfolding of general nets, which is characterized as follows:

PROPOSITION 5. The unfolding U(G) = (B,E,F My) of G = (P, T, Pre, Post, M) is the
unique occurrence net to sa tisfy

B = {(M,pi)|MeM&peP&0<i<M|p|}
U {({e},pi)|ec E&peP&0<i< (Post-n(e))pl}
E = {(At)|]ACB&tceT& coA&p-A=Pre-t}
bF(At) < be A
(A/t) Fb <~ dp,i: (b: ({(A,t)},p,i))
Mo = {{(M,pi) | (M,p,i)€B} | Me M,

where co and # are the concurrency and conflict relations arising from F on B and E. Fur-
thermore, 7 : E — P defined as (A, t) = tand B : B — P defined as (X, p,i) = p form a
morphism e = (1, B) : U(G) — G in Gen, regarding the function f as a multirelation.

The reason why we do not obtain a coreflection between the categories Occ* and Gen*
(or Occ and Gen) is that the uniqueness property required for cofreeness fails. That is,

J. HAYMAN AND G. WINSKEL FSTTCS 2008

T __ G f’sc
Ly T I G DR
b= (M,p1) (@] L p , b = (M,p.1) ()—] S p ,
Sl &—>] / —|

T YL I AR L

by = (M,V,Z,/i @ﬁ/’ﬂ ({hzi‘,_f)/ .- /" by = (M, p,z)/@ﬁiﬂ ({bz_},_f) - —"

Figure 1: Non-uniqueness of mediating morphism (all multiplicities 1)

the morphism (6, «) need not be the unique such morphism making the diagram above
commute. In Figure 1, we present a general net G, its unfolding ¢/(G) with morphism
ec and an occurrence net O (which happens to be isomorphic to ¢/(G)) with morphism
(7r,7v) : O — G alongside two distinct morphisms (6, «), (6/,a’) : O — U(G) making the
diagram commute.

In the net U(G) in Figure 1, the two conditions by and b, are symmetric: they arise
from there being two indistinguishable tokens in the initial marking of G in the place p. The
events ({b1},t) and ({b2},t) are also symmetric since they are only distinguished by their
symmetric pre-conditions; they have common image under eg. Our goal shall be to show
that there is a unique mediating morphism up to symmetry, i.e. any two morphisms from
O to U(G) making the diagram commute are only distinguished through their choice of
symmetric elements of the unfolding. We first summarize the part of the cofreeness property
that does hold.

THEOREM 6. Let G be a general Petri net, O be an occurrence net and (7,7y) : O — G
be a morphism in Gen®. There is a morphism (6,&4) : O — U(G) in Gen* such that the
following diagram commutes:

U(G) (U':B)ZeC G
[
()T (t,7)

Furthermore, if the net G is a P/ T net then (6, «) is the unique such morphism.

It will be of use later to note that if the multirelation y above is a function then so is «.

2.2 Pullbacks

The framework for defining symmetry in general nets, to be described in the next section,
will require a subcategory which has pullbacks. Whereas it was shown in [3] that the cate-
gory of singly-marked safe nets has pullbacks, the category of singly-marked general nets
does not. Roughly, this is for two reasons: the category with multirelations as morphisms
does not have pullbacks; and allowing only singly-marked nets obstructs the existence of
pullbacks. It is the latter obstruction that led us to the earlier relaxation of the definition

227

228 THE UNFOLDING OF GENERAL PETRI NETS

of nets, to permit them to have a set of initial markings rather than precisely one initial
marking. To obtain a category of general nets with pullbacks, we restrict attention to folding
morphisms between general nets (with multiple initial markings):

DEFINITION 7. A morphism (17, B) : G — G’ is a folding if both 1 and B are total functions.

Denote the category of general nets with folding morphisms Gen?, its full subcategory

of occurrence nets Occg, and the full subcategory of causal nets Causg.

PROPOSITION 8. The category Gen? has pullbacks.

The category Occ* has pullbacks, though we will only need pullbacks of folding mor-
phisms. Pullbacks in Occii are obtained by taking the corresponding pullbacks in Genﬁ. The
following lemma expresses how pullbacks in subcategories with folding morphisms are not
disturbed in moving to larger categories with all morphisms, though in the case of general

nets we have to settle for them becoming weak pullbacks."

LEMMA 9. (i) The inclusion functor Occii < Occ preserves pullbacks.

(i) The inclusion functor Occii — Gen}i preserves pullbacks.

(iii) The inclusion functor Gen% < Gen' preserves weak pullbacks.

3 Categories with symmetry

It is shown in [14] how symmetry can be defined between the paths of event structures, and
more generally on any category of models satisfying certain properties. The absence of pull-
backs in the category Gen’ obliges us to extend the method when introducing symmetry to
general nets and their unfoldings.

The definition of symmetry makes use of open morphisms [5]. Let Cy be a category (typ-
ically a category of models such as Petri nets) with a distinguished subcategory P of path
objects (such as causal nets), to describe the shape of computation paths, and morphisms
specifying how a path extends to another. A morphism f : X — Y in Cy is P-open if, for
any morphisms : P — Qin P and morphisms p : P — X and g : Q — Y, if the diagram
on the left commutes, i.e. f o p = g o5, then then there is a morphism /i : Q — X such that
the diagram on the right commutes, i.e. hos = pand foh = g:

p—-x p—-x
|)
Q——>Y Q——>Y

The path-lifting property expresses that via f any extension of a path in Y can be matched
by an extension in X, and captures those morphisms f which are bisimulations, though
understood generally with respect to a form of path specified by P. It can be shown purely

TRecall a weak pullback is defined in a similar way to a pullback, but without insisting on uniqueness of the
mediating morphism.

J. HAYMAN AND G. WINSKEL FSTTCS 2008

diagrammatically that open morphisms compose, and therefore form a subcategory, and are
preserved under pullbacks in Cy.
Assume categories

PCCyCC

where P is a distinguished subcategory of path objects and path morphisms, Cy has pull-
backs and shares the same objects as the (possibly larger) category C, with the restriction
that the inclusion functor Cy — C preserves weak pullbacks. Then, we will be able to add
symmetry to C, and at the same time maintain constructions dependent on pullbacks of
open morphisms which will be central to constructing symmetries on unfoldings.* (The
earlier method for introducing symmetry used in [14] corresponds to the situation where Cy
and C coincide.)

The role of P C (y is to determine open morphisms; the role of the subcategory P is to
specify the form of path objects and extension, while the, generally larger, category Cy fixes
the form of paths p : P — C from a path object P in an object C of Cyp. Now, just as earlier,
we can define open morphisms in Cy, and so by definition those in C.

Now we show how C can be extended with symmetry to yield a category SC. The
objects of SC are tuples (X, S, 1, r) consisting of an object X of C and two P-open morphisms
I,r + S — Xin Cy which make [, r a pseudo equivalence [1] in the category C (see Appendix
A). The requirements on [and r are slightly weaker than those in [14] in that we do not
require that the morphisms / and r are jointly monic.$

The morphisms of SC are morphisms of C that preserve symmetry. Let f : X — X' be a
morphism in C and (X, S,1,r) and (X', S’,1’,1") be objects of SC. The morphism f : X — X’
preserves symmetry if there is a morphism & : S — S’ such that the following diagram
commutes:

X<t -s—T-x

T

XI l/ S/ r/ XI

With the definition of symmetry on objects, we can define the equivalence relation ~
expressing when morphisms are equal up to symmetry:
Let f,g : (X,S,1,r) — (X',S',I',") be morphisms in SC. Define f ~ g iff there is a mor-
phism /1 : X — X’ in C such that following diagram commutes in C:

X
yh{
14 v v

X/ < S/ > X/

Composition of morphisms in SC coincides with composition in C and the two cate-
gories share the same identity morphisms. The category SC is more fully described as a
category enriched in equivalence relations.

fWe have chosen general conditions that work for our purposes here. It might become useful to replace the
role of P C Cy by an axiomatization of a subcategory of open morphisms in C and in this way broaden the class
of situations in which we can adjoin symmetry.

$See [4] for an example of a symmetry on a safe net that cannot be expressed with the jointly-monic condition.

229

230 THE UNFOLDING OF GENERAL PETRI NETS

(b1,b1) (b2, b2)(b1,b2) (b2, b1)
© @© ® ®

Figure 2: Symmetry in a net with two places

For nets, a reasonable choice for the paths P would be Caus?, taking path objects to

be causal nets and expressing path extensions by foldings between them. (There are other
possibilities, say restricting to finite causal nets, or the causal nets associated with finite el-
ementary event structures, which would lead to less refined equivalences up to symmetry.)
The categories Causii - Genﬁi C Gen® meet the requirements needed to construct SGen*
— in particular by Lemma 9 (iii), so adjoining symmetry to general nets. The requirements
are also met by Caus§ - Occi1 C Occ? yielding S Occ’ (this time using Lemma 9 (ii)).

We remark that a folding morphism between general nets is Causﬁ-open in Genii iff it
is Caus-open in Gen’, and a folding morphism between occurrence nets is Caus?—open in

Occii iff it is Caus*-open in Occ’.

4 Symmetry in unfolding

In Section 2.1, we showed how a general Petri net may be unfolded to form an occurrence
net. This was shown not to yield a coreflection due to the mediating morphism not necessar-
ily being unique. The key observation was that uniqueness might be obtained by regarding
the net up to the evident symmetry between paths in the unfolding. This led us to define
a category of general nets with symmetry. To give an example of the forms of symmetry
that can be expressed, consider the simple net with two places, b; and b, both initially
marked once. Suppose that we wish to express that the two places are symmetric; for in-
stance, the net might be thought of as the unfolding of the general net with a single place
initially marked twice. The span to express that symmetry is presented in Figure 2. Without
our extension of the definition of net to allow multiple initial markings, this simple symme-
try would be inexpressible. This accompanies the fact that the category of singly-marked
general nets (even when restricted to folding morphisms) does not have pullbacks.

In general, the symmetry in an unfolding is obtained by unfolding the kernel of the

morphism eg : U(G) — G, which is the pullback of ¢ against itself in Gen?:

S~ "~ U(G)
I
UG) ——G

To see that (U(G),U(S),l oeg, roeg) is a symmetry, we must show that the morphisms
loesand roeg are Causg—open and form a pseudo equivalence. The latter point follows a

J. HAYMAN AND G. WINSKEL FSTTCS 2008

purely diagrammatic argument. Open morphisms from occurrence nets into general nets
can be characterized in the following way:

PROPOSITION 10. Let O be an occurrence net and G be a general net. A morphism f :
O—Gis Causg—open in Genit if, and only if, it reflects any initial marking of G to an initial
marking of O and satisties the following property:

for any subset A of conditions of O such that co A for which there exists a tran-

sition t of G such that f - A = Preg - t, there exists an event e of O such that

A = Preg-eand f(e) =t.

The morphism e¢ : U(G) — G of Proposition 5 is readily seen to satisfy this property

for any G, and is therefore Caus?-open. The pullback of open morphisms is open [5] so

the morphisms / and r are Causfﬁ-open, and therefore / o 5 and r o €5 are both open since
open morphisms compose to form open morphisms [5]. Note that a morphism between

occurrence nets is Caus?—open in Occﬁt iff it is CausE—open in Gen?.

PROPOSITION 11. The tuple (U(G),U(S),l o eg, 1 o €g) is an occurrence net with symmetry.

With the symmetry on ¢/ (G) at our disposal, we obtain the equivalence relation ~ on
morphisms from any occurrence net to U/ (G). This is used to extend Theorem 6 to obtain
cofreeness ‘up to symmetry’.

THEOREM 12. Let G be a general Petri net and O be an occurrence net. For any morphism
(77,7) : O — G in Gen’, there is a morphism (6,&) : O — U(G) in Gen* such that

UG) =g
0
(“)T (7t7)
o)

commutes, i.e. £g o (0,«) = (7,7). Furthermore, any morphism (0',2') : O — U(G) in
Gen’ such thateg o (0/,0') = (7,7) satisfies (6,&) ~ (0,a’) with respect to the symmetry
(S,1,r) onU(G) defined above (and the identity symmetry on O).

5 A coreflection up to symmetry

We show how the results of the last section are part of a more general coreflection from
occurrence nets with symmetry to general nets with symmetry. In the last section, we showed
how to unfold a general net to an occurrence net with symmetry. For the coreflection, we
need to extend this construction to unfold general nets themselves with symmetry.

To show that the ‘inclusion’ I : SOcc® — SGen’ taking an occurrence net with sym-
metry (O, S,1,r) to a general net with symmetry is a functor, it is necessary to show that
the transitivity property holds of the symmetry in SGen’. For this it is important that pull-
backs are not disturbed in moving from Occg to the larger category Gen?, as is assured by
Lemma 9.

We now have a functor I : SOcc — SGen?, respecting ~, regarding an occurrence
net with symmetry (O, S, [, r) itself directly as a general net with symmetry.

231

232 THE UNFOLDING OF GENERAL PETRI NETS

It remains for us to define the unfolding operation on objects of the category of general
nets with symmetry. Its extension to a pseudo functor will follow from the biadjunction. Let
(G,Sg, 1, 1) be a general net with symmetry. Leteg : U(G) — G be the folding morphism
given earlier in Proposition 5. It is open by Proposition 10. The general net (G, S, [, r) is
‘unfolded’ to the occurrence net with symmetry U (G, Sg,1,r) = (U(G), So, lo, 70); its sym-
metry, So £ U(S'),lp £ ' oeg and rg £ 7' o e, is given by unfolding the inverse image S', I,
r" of the symmetry in G along the open morphism ¢ : U(G) — G:

The pullbacks are in Gen?. The diagram makes clear that e; is a morphism preserving

symmetry.

The construction of the symmetry above depends crucially on the existence of pullbacks
in Cp and the property that pullbacks of open morphisms are open (here weak pullbacks do
not suffice) — without this we would not know that I’ and #’ were open.

Now that we have the inclusion I : SGen* — SOcc* and the operation of unfolding a
general net with symmetry, we are able to generalize Theorem 6 to give a cofreeness result:

THEOREM 13. LetG = (G, Sq, I, rc) be a general net with symmetryand@ = (O, So,1o,70)
be an occurrence net with symmetry. For any (rr,77) : O — Gin S Gen’, there is a mor-
phism (,a) : O — U(G) in SGen’ such that the following diagram commutes:

~_ € e
)G*>G

U(

0,

()T A)
o)

Furthermore, (6,«) is unique up to symmetry: any (6,&') : O — U(G) such that €go
(0',a’) ~ (7, 7) satisfies (0,a) ~ (8/,a’).

Technically, we have a biadjunction from SOcc’ to SGen* with I left biadjoint to U
(which extends to a pseudo functor). Its counit is € and its unit is a natural isomorphism
O = U(0). In this sense, we have established a coreflection from SOcc’ to SGen’ up to
symmetry.

J. HAYMAN AND G. WINSKEL FSTTCS 2008

6 Conclusion

Occurrence nets were first introduced in [8] together with the operation of unfolding singly-
marked safe nets. The coreflection between occurrence nets and safe nets was first shown
in [11]. A number of attempts have been made since then to characterize the unfoldings of
more general forms of net.

Engelfriet defines the unfolding of (singly-marked) P/T nets in [2]. Rather than giving
a coreflection between the categories, the unfolding is characterized as the greatest element
of a complete lattice of occurrence nets embedding into the P/T net.

A coreflection between a subcategory of (singly-marked) general nets and a category
of embellished forms of transition system is given in [7]. There, the restriction to particular
kinds of net morphism is of critical importance; taking the more general morphisms of gen-
eral Petri nets presented here would have resulted in the cofreeness property failing for an
analogous reason to the failure of cofreeness of the unfolding of general nets to occurrence
nets without symmetry.

An adjunction between a subcategory of singly-marked general nets and the category
of occurrence nets is given in [6]. The restriction imposed on the morphisms of general
nets there, however, precludes in general there being a morphism from ¢/(G) to G in their
category of general nets if U/ (G), the occurrence net unfolding of G, is regarded directly as
a general net. To obtain an adjunction, the functor from the category of occurrence nets
into the category of general nets is not regarded as the direct inclusion, but instead occurs
through a rather detailed construction and does not yield a coreflection apart from when
restricted to the subcategory of semi-weighted nets.

In this paper, we have shown that there is an implicit symmetry between paths in the
unfolding of a general net arising from multiplicities in its initial marking and multiplici-
ties on arcs from its transitions. By placing this symmetry on the unfolding, extending the
scheme in [14], we are able to obtain its cofreeness up to symmetry, thus characterizing the
unfolding up to the symmetry. We then adjoin symmetry to the categories of general nets
and occurrence nets (using the standard definition of net morphism) to obtain a coreflection
up to symmetry.

It is becoming clear from this and other work [10] that sometimes, in adjoining symme-
try, models do not fit the simple scheme outlined in [14] appropriate to event structures and
stable families. For example, the category of general nets with all morphisms does not have
pullbacks as is required for the scheme in [14]. Alongside [10], the consideration of how
symmetry may be placed on nets here and in [4] has suggested that we allow more liberal
axioms on categories of models which enable their extension with symmetry.

The generalization of nets presented here to allow them to have more than one initial
marking is also necessary for equipping other, less general, forms of net, such as safe nets
or occurrence nets, with symmetry. In the companion paper [4], we extend the existing
coreflection between singly-marked occurrence nets and P/T nets to this setting and show
that this yields a coreflection between occurrence nets with symmetry and P/T nets with
symmetry. In [4], we exhibit coreflections between event structures and multiply-marked
occurrence nets.

233

234 THE UNFOLDING OF GENERAL PETRI NETS

References

[1] A.Carboniand E. M. Vitale. Regular and exact completions. Journal of Pure and Applied
Algebra, 125(1-3):79-116, March 1998.
[2] J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575-591, 1991.
[3] E. Fabre. On the construction of pullbacks for safe Petri nets. In Proc. ICATPN ’06,
volume 4024 of Lecture Notes in Computer Science, 2006.
[4]]J. Hayman and G. Winskel. Symmetry in Petri nets. To appear.
[5] A.]Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. In Proc. LICS "93,
volume 127(2) of Information and Computation, 1995.
[6] J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Place/Transition Petri
nets. Mathematical Structures in Computer Science, 7:359-397, 1996.
[7] M. Mukund. Petri nets and step transition systems. International Journal of Foundations
of Computer Science, 3(4):443-478, 1992.
[8] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains, Part
1. Theoretical Computer Science, 13:85-108, 1981.
[9] W. Reisig. Petri Nets. EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 1985.
[10] G. Winskel. The symmetry of stability. Forthcoming.
[11] G. Winskel. A new definition of morphism on Petri nets. In Proc. STACS ‘84, volume
166 of Lecture Notes in Computer Science, 1984.
[12] G. Winskel. Event structures. In Advances in Petri Nets, Part 1I, volume 255 of Lecture
Notes in Computer Science. 1986.
[13] G. Winskel. Petri nets, algebras, morphisms and compositionality. Information and
Computation, 72(3):197-238, 1987.
[14] G. Winskel. Event structures with symmetry. Electronic Notes in Theoretical Computer
Science, 172, 2007.
[15] G. Winskel. Symmetry and concurrency. In Proc. CALCO "07, May 2007. Invited talk.
[16] G. Winskel and M. Nielsen. Models for concurrency. In Handbook of Logic and the Foun-
dations of Computer Science, volume 4, pages 1-148. Oxford University Press, 1995.

A Pseudo equivalences

Assume a category C. Let[,r : S — G be a pair of morphisms in C. They form a pseudo

equivalence (and if jointly monic, an equivalence) iff there exist morphisms p, o and T such

that the following diagrams commute, where Q, f, g is the pullback of / against r:
Reflexivity Symmetry Transitivity

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 235-243

Explicit Muller Games are PTI ME*

Florian Horn
horn@ i af a. j ussi eu. fr

LIAFA

Université Paris 7
Case 7014,

75205 Paris cedex 13
France

LI7

RWTH
Ahornstrafle 55
52056 Aachen
Germany

LABRI

Université Bordeaux 1
351, cours de la Libération
33405 Talence cedex
France

ABSTRACT. Regular games provide a very useful model for the synthesis of controllers in reactive
systems. The complexity of these games depends on the representation of the winning condition: if
it is represented through a win-set, a coloured condition, a Zielonka-DAG or Emerson-Lei formulae,
the winner problem is PSPACE-complete; if the winning condition is represented as a Zielonka tree,
the winner problem belongs to NP and co-NP. In this paper, we show that explicit Muller games can
be solved in polynomial time, and provide an effective algorithm to compute the winning regions.

1 Introduction

There has been a long history of using infinite games to model reactive processes [BL69,
PR89]. The system is represented as a game arena, i.e. a graph whose states belong either to
Eve (controller) or to Adam (environment). The desired behaviour is represented as an w-
regular winning condition, which naturally expresses temporal specifications and fairness
assumptions of transition systems [MP92]. The game is played by moving a token on the
arena: when it is in one of Eve’s states, she chooses its next location among the successors
of the current state; when it is in one of Adam’s states, he chooses its next location. The
result of playing the game for w moves is an infinite path of the graph. Eve wins if the path
satisfies the specification, and Adam wins otherwise.

A fundamental determinacy result of Biichi and Landweber shows that from any initial
state, one of the players has a winning strategy [BL69]. The problem of the winner is in

*This work was supported in part by the French ANR AVERISS.

© Florian Horn; licensed under Creative Commons License-NC-ND

FSTTCS 2008

IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1756

236 EXPLICIT MULLER GAMES ARE PTI ME

PSPACE for any reasonable representation of the winning condition [McN93, NRY96], but
its exact complexity depends on how the winning condition is represented. For example, if
the winning condition is represented as a Zielonka tree [Zie98], the problem of the winner
is in NP N co-NP [DJW97]. Hunter and Dawar list in [HDO05] five other “general purpose”
representations: explicit Muller, win-set, Muller, Zielonka DAGs, Emerson-Lei. They show
that the problem of the winner is PSPACE-hard for the last four representations, and leave
the complexity of explicit Muller games as an open question. In this paper, we answer this
question: the winner problem in explicit Muller games belongs to PTI ME. We provide an
effective cubic algorithm computing the winning regions of the players.

Outline of the paper. Section 2 recalls the classical notions about regular games, and Sec-
tion 3 gives an overview of the different representations of regular winning conditions. In
Section 4, we introduce the notions of semi-alternation and sensibleness, and show that any
explicit Muller game can be translated in polynomial time into a semi-alternating and sen-
sible game. We also study the family of games where Eve wins if all the states are visited
infinitely often. These games are used repeatedly in our algorithm, which is the subject of
Section 5.

2 Definitions

We recall here several classical notions about regular games, and refer the reader to [GTW02]
for more details.

Arenas.

An arena A is a directed graph (Q,7") without deadlocks whose states are partitioned be-
tween Eve’s states (QF, represented as O’s) and Adam’s states (Q 4, represented as 0O’s). A
sub-arena A of A is the restriction of A to a subset B of Q such that each state of B has a
successor in B.

Plays and Strategies.

A play on the arena A is a (possibly infinite) sequence p = pgps ... of states such that Vi <
lo|—2, (pi,pi+1) € T. The set of occurring states is Occ(p) = {¢q | Ji € N, p; = q}, and the set
of limit states is Inf(p) = {gq | 3¥i € N, p; = q}.

A strategy of Eve on the arena A is a function ¢ from Q* Qf to Q such that Vw € Q*,Vg €
Ok, (q,0(wq)) € T. Strategies can also be defined as strategies with memory. In this case, 0 is
atriple (M, 0, ™), where M is the (possibly infinite) set of memory states, c* : (M x Q) — M
is the memory update function, and o™ : (M x Q) — Q is the next-move function. Adam’s
strategies are defined in a similar way. A strategy is finite-memory if M is a finite set, and
memoryless if M is a singleton.

A (finite or infinite) play p is consistent with o if, Vi < |p|—2, pi € Qp = pi+1 =
a(po-..pi)-

FLORIAN HORN FSTTCS 2008 237

Traps and Attractors.

The attractor of Eve to the set U in the arena A, denoted Attrg (U, .A), is the set of states from
where Eve can force the token to go to the set U. It is defined inductively by:

Uy = U
Uy = WU{qge Qg 3rel;|(qr)eT}
U{g€Qal|Vr(qr)eE=rel;}
Attrg(U,A) = U

i>0

The corresponding attractor strategy to U for Eve is a positional strategy oy; such that for
any state g € Qp N (Attrg(U, A)\ U), q € Uiy = oulq) € U,.

The dual notion of a trap for Eve denotes a set from where Eve cannot escape, unless
Adam allows her to do so: a set U is a trap for Eveifand only if Vg € UN Qf, (q,7) € T =
relUandVge UNQu,3r € U] (q,r) € T. Notice that a trap is always a sub-arena.

Regular Winning Conditions.

A regular winning condition is a specification & C Q% on infinite plays which depends only
on the set of states visited infinitely often: Inf(p) = Inf(v) = (p € ® < v € ®). Eve wins
aplay pif p € ®. Adam wins if p ¢ ®. Regular winning conditions can be described in
different ways, which are presented in the next section.

Winning Strategies.

Given a winning condition ® and a state g € Q, a strategy ¢ is winning for Eve from q if any
play starting in g and consistent with ¢ is winning for Eve. The winning region of Eve is the
set of states from where she has a winning strategy. Adam’s winning strategies and regions
are defined in a similar way.

3 Representations of regular conditions

The most straightforward way to represent a regular condition F is to provide an explicit
list of sets of states Fy,..., Fpi: F = {F; | 1 <i < (}. A play p is winning for Eve if and
only if Inf(p) € F. The complexity of these explicit Muller games is the subject of this paper.

There are several other ways to represent regular conditions. In win-set games [McN93],
the winner depends only on a subset R of relevant states, and the winning condition R lists
only subsets of R: p is winning for Eve if Inf(p) "R € R. Muller games extend this idea by
adding a colouring function x, from the states to a set of colours C. The winning condition
F lists subsets of C, and p is winning for Eve if x(Inf(p)) € F. Emerson-Lei games [EL85]
provide a boolean formula ¢, whose variables are the states of Q. A play p is winning for
Eve if the valuation Inf(p) < true and Q \ Inf(p) < false satisfies ¢.

238 EXPLICIT MULLER GAMES ARE PTI ME

Zielonka’s representation of regular conditions [Zie98] proceeds from a different ap-
proach: it focuses on alternation between sets winning for Eve and sets winning for Adam.
In his split tree (usually called “Zielonka tree”), the nodes are labelled by sets of colours, the
children are subsets of their parent with C at the root, and a child and its parent are never
winning for the same player. Finally, Zielonka DAGs [HDO5] are the result of merging the
nodes of the Zielonka tree with the same labels.

The complexity of regular games depends directly on the representation of the winning
condition:

THEOREM 1.[DJW97] The problem of the winner in regular games whose winning condition
is represented by a Zielonka tree is in NP N co-NP .

THEOREM 2.[HDO05] The problem of the winner in win-set games, Muller games, Zielonka
DAG games, and Emerson-Lei games are PSPACE-complete.

For explicit Muller games, the best complexity result so far was the membership of
the winner problem in PSPACE, derived from the “all-purpose” algorithms of [McN93] and
[NRY96]. The main result of this paper is Theorem 3:

THEOREM 3. The winner problem of explicit Muller games can be solved in polynomial
time.

4 Useful notions for explicit Muller games

We first define three properties of explicit Muller games. A game is:
1. semi-alternating if there is no transition between two states of Adam (but there can be
between two states of Eve);
2. sensible if each set in F induces a sub-arena of A;
3. ordered for inclusion if i < j = F; 2 F;.

Our algorithm for explicit Muller games, Algorithm 1, relies on the fact that its in-
put satisfies these three properties. However, this does not restrict the generality of our
result, since any explicit Muller game can be transformed in polynomial time into an equiv-
alent semi-alternating, sensible, and ordered game of polynomial size. The semi-alternation
transformation consists in replacing each state ¢ € Q4 of Adam by a pair of states r €
Qk,s € Qa, as in Figure 1. Each set containing g in the winning condition is modified ac-
cordingly: F « (Aq.(r,s))F. This is where the classical alternation transformation fails:
adding a state to each transition leads to an exponential blow-up in the size of the winning
condition.

A game can be made sensible by removing from F all the sets that do not induce a
sub-arena of A: no matter how Eve and Adam play, the limit of the play is a a sub-arena,
so the modification is transparent with respect to deciding the winning nature of a play, a
strategy, or a state. Finally, ordering the sets for inclusion can be done in quadratic time.

The games of the form (A, {Q}), where Eve wins if and only if the token visits all
the states infinitely often, play an important part in our solution to explicit Muller games.
These games, which have also been studied in routing problems [DKO0O, IK02], are easy to
solve and there is always only one winner in the whole game:

FLORIAN HORN FSTTCS 2008

N
e

q r s
a) Original arena A (b) Semi-alternating arena A
& &

Figure 1: Semi-alternating arena construction

PROPOSITION 4. Let A be an arena, and G be the game (A,{Q}). Either, for any state
q € Q, Eve’s attractor to q is equal to Q, and Eve wins everywhere in G, or there is a state
q € Q such that Attrg({gq}, A) # Q, and Adam wins everywhere in G.

PROOF. In the first case, Eve can win with a strategy whose memory states are the states
of Q: in the memory state g, she plays the attractor strategy to g, until the token reaches it.
She updates then her memory to the next state 7, in a circular way. In the second case, Adam
can win surely with any trapping strategy out of Attrg({g}, A): if the token ever gets out of
Attre({q}, A), it never goes back.

5 Solving explicit Muller games in ~ PTI ME

Our algorithm takes as input a semi-alternating, sensible explicit Muller game whose win-
ning condition is ordered for inclusion; it returns the winning regions of the players. Each
set in F is considered at most once, starting with the (smallest) set F;. At each step, the
operation of a set F; modifies the arena and the winning condition in one of the following
ways:

If Adam wins (A z, {F:}), F; is removed from F.

If Eve wins (A £, {¥;}), and F; is a trap for Adam in A, Eve’s attractor to F; in A,
Attrg(F;, A), is removed from A (and added to the winning region of Eve), and all the sets
intersecting Attrg (F;, A) are removed from F.

If Eve wins (A‘ 7,{Fi}), and F; is not a trap for Adam in .4, a new state IF;, described
in Figure 2, is added to .4 with the following attributes:

e [F; is a state of Adam;

e the predecessors of IF; are all the states of Eve in F;;

e the successors of IF; are the successors outside F; of the states of Adam in F;.
Furthermore, the state IF; is added to all the supersets of F; in F, and F; itself is removed
from F.

The important case, from an intuitive point of view, is the last one: it corresponds to a
“threat” of Eve to win by visiting exactly the states of F;. Adam has to answer by getting
out, but he can choose his exit from any of his states. Notice that it would not do to simply
replace the whole region F; by the state IF;: as in Figure 2, Adam may be able to avoid a

239

240 EXPLICIT MULLER GAMES ARE PTI ME

OEST OSEST

F ={{a,b},{a,b,c}} F={{a,b,c,"{a,b}"}}

(a) Before (b) After

Figure 2: Removal of a set in an explicit Muller condition

state of F; in a larger arena, even if he is incapable of doing so in A, £..

As only one state is added each step, the number of states in the game is bounded by
|A| + | F|. The whole procedure is described as Algorithm 1.

In the proof of correctness, we uset ypewr i t er fonts to denote the modified arena and
condition, and calligraph fonts to denote the original game. Furthermore, we denote by F £,
the intersection of F and P(F;), i.e. the sets of F that are also subsets of F;. We can now
proceed to the three main lemmas:

LEMMA 5. If, in the course of a run of Algorithm 1, the game (A, {F;}) is winning for Eve
at line 6, then Eve wins everywhere in the game (A‘ Fir Il)

PROOF. Let H!,..., H" be the sets of 7|z, such that (A {W}) was winning for Eve in the
run of Algorithm 1. Notice that F; itself is one of these states, say HK. The ¢/’s denote her
corresponding winning strategies. We build a strategy ¢ for Eve in Az, whose memory
states are stacks of pairs (H/,p/). At any time, p/ is a play of Ay which can be extended
by the current state g. The initial memory state is (¥, ¢), and the operation of & when the
memory state is (H/,w) and the current state is g is described below:

1. If ¢ ¢ 'H/, the top pair is removed, and the procedure restarts at step 1 with the new
memory. Notice that it may involve further pops if g still does not belong to the top
set.

2. Ifgis astate of Eve, and o/ (wq) is a new state IH", the memory is modified as follows: w
becomes wqH", and a new pair (H", ¢) is pushed at the top of the stack. The procedure
restarts at step 2 with the new memory. Notice that it may involve further pushes if
o' (g) is also a new state.

3. The new memory state is (H/, wq); if g belongs to Eve, she plays ¢/ (wgq).

We claim that ¢ is winning for Eve in the game (A £, F 7). Let p be a play consistent with
o, and H/ be the highest set that is never unstacked. We denote by pf the (infinite) limit of
the “play” part. As p/ is consistent with ¢/, Inf(p/) = H. Furthermore, Inf(p) 2 Inf(p/) N Q
and Inf(p) C H/. So, Inf(p) = H/ € F, and Lemma 5 follows.

FLORIAN HORN FSTTCS 2008

Input: An explicit Muller game (A, F)
Output: The winning regions of Eve and Adam

1A= (Q,QkQnT) — A=(9Q QF Q4,7T);

2 F«— F;
3 Wg «— ©;
4 whileF # @ do
5 F; — pop(F);
6 if Eve wins (Ajg, {F;}) then
7 if F; is a trap for Adam in A then
8 remove Attrg(F;, A) from A and add it to Wg;
9 remove all the sets intersecting Attrg(F;, A) from F;
10 else
11 add a state IF; to Qu;
12 add transitions from F; N Qg to [F;;
13 add transitions from FF; to T(F; N Qa) \ Fi;
14 add F; to all the supersets of F; in F;
15 end
16 end
17 end

18 return Wg N Q,Q N Q
Algorithm 1: Polynomial algorithm for explicit Muller games

For Adam, the problem is a little more complex: we need two lemmas, whose proofs
are mutually recursive:

LEMMA 6. If, in the course of a run of Algorithm 1, the game (A, {F;}) is winning for
Adam at line 6, then Adam wins everywhere in the game (A, r,, F|z,)-

LEMMA 7. If, in the course of a a run of Algorithm 1, the game (A, {F;}) is winning for
Eve at line 6, then Adam wins everywhere in the game (A, z, F|z \ {Fi})-

PROOF. We start with the (simpler) proof of Lemma 7. Let H!, ..., H* be the maximal
sets, with respect to inclusion, of . There is a winning strategy 7/ for Adam in each H/:
if Adam won (A, {H'}), it is a winning strategy for the game (A, F3;) (recursive use of
Lemma 6); if Eve won (A, {H'}), it is a strategy for the game (Ay, Fj3; \ H/) (recursive
use of Lemma 7). The strategy T for Adam in (A5, {F|z }) uses k top-level memory states
to switch between the {7/}, <j<. Adam remains in a top-level memory state j only as long
as the token is in H/. As soon as it gets out, he updates it to (j mod k) + 1. His actions
when the top-level memory state is j are described below:

e if he won (A, {#}), he plays /;

o if Eve won (A, {W}), he plays 7/ unless he can get out of /.

We claim that 7 is winning for Adam in (A, £, F|z,). Any play p consistent with 7 falls

in exactly one of the three following categories:

241

242 EXPLICIT MULLER GAMES ARE PTI ME

e The top-level memory of T is not ultimately constant; thus Inf(p) is not included in
any of the H/’s, and p is winning for Adam.

e The top-level memory of 7 is ultimately constant at j, and (Ay;, {W'}) was winning for
Adam; p is ultimately a play of A consistent with 7/, 50 p is winning for Adam.

e The top-level memory of 7 is ultimately constant at j, and (4, {W}) was winning for
Eve; p is ultimately a play of A}, consistent with 7/, so Eve can win only by visiting
all the states of H/. But H/ is not a trap for Adam, and the definition of T implies that
Adam leaves as soon as possible. So, at least one of the states of H/ was not visited,
and p is winning for Adam.

This completes the proof of Lemma 7. The proof of Lemma 6 is more involved, due to
the necessity to avoid at least one of the states of F;. By Proposition 4 there is a state g in F;
such that X = Attrg({q}, A,) is not equal to Apg,. It follows from the definition of A, that
neither F; N X nor F; \ X is empty. Adam’s strategy is then exactly the same as in the proof
of Lemma 7, with the provision that Adam never moves from F; \ X to X: this guarantees
that the token cannot visit infinitely often all the states of F;, and completes the proof of
Lemma 6.

The correctness of Algorithm 1 follows from Lemmas 5, 6, and 7: the first one guaran-
tees that the states in Wg N Q are winning for Eve, and the others that the states remaining at
the end of Algorithm 1 are winning for Adam.

About complexity, there are at most || loops in a run, and the most time-consuming
operation is to compute the winner of the games (A, {F;}), which are quadratic in |A| <
(|A] + | F]). Thus, the worst-case time complexity of Algorithm 1is O(|F]| - (|A] + |F])?),
which completes the proof of Theorem 3.

6 Conclusion

We have shown that the complexity of the winner problem in explicit Muller game belongs
to PTI ME, and provided a cubic algorithm computing the winning regions of both players.
It follows from the usual reduction between two-player games and tree automata that
the emptiness problem of explicit Muller tree automata can also be solved in polynomial
time; a natural question is whether this is also the case for other automata problems.
The existence of a polynomial algorithm for parity games remains an open problem:
representing explicitly a parity condition incurs an exponential blow-up in size.

Bibliography

[BL69] J. Richard Biichi and Lawrence H. Landweber. Solving Sequential Conditions by
Finite-State Strategies. Transactions of the American Mathematical Society, 138:295—-
311, 1969.

[DJW97] Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How Much
Memory is Needed to Win Infinite Games? In Proceedings of the 12th Annual IEEE
Symposium on Logic in Computer Science, LICS’97, pages 99-110. IEEE Computer
Society, 1997.

FLORIAN HORN FSTTCS 2008

[DKOO]

[EL85]

[GTWO02]

[HDO5]

[1K02]

[McN93]
[MP92]

[NRY96]

[PR8Y]

[Zie98]

Michael J. Dinneen and Bakhadyr Khoussainov. Update Networks and Their
Routing Strategies. In Proceedings of the 26th International Workshop on Graph-
Theoretic Concepts in Computer Science, WG'00, volume 1928 of Lecture Notes in
Computer Science, pages 127-136. Springer-Verlag, 2000.

E. Allen Emerson and Chin-Laung Lei. Modalities for Model Checking: Branch-
ing Time Strikes Back. In Proceedings of the 12th Annual ACM Symposium on Prin-
ciples of Programming Languages, POPL’85, pages 84-96, 1985.

Erich Gradel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics,
and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, Febru-
ary 2001], volume 2500 of Lecture Notes in Computer Science. Springer-Verlag, 2002.
Paul Hunter and Anuj Dawar. Complexity Bounds for Regular Games. In Pro-
ceedings of the 30th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS’05, volume 3618 of Lecture Notes in Computer Science, pages
495-506. Springer-Verlag, 2005.

Hajime Ishihara and Bakhadyr Khoussainov. Complexity of Some Infinite Games
Played on Finite Graphs. In Proceedings of the 28th International Workshop on Graph-
Theoretic Concepts in Computer Science, WG'02, volume 2573 of Lecture Notes in
Computer Science, pages 270-281. Springer-Verlag, 2002.

Robert McNaughton. Infinite Games Played on Finite Graphs. Annals of Pure and
Applied Logic, 65(2):149-184, 1993.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer-Verlag, 1992.

Anil Nerode, Jeffrey B. Remmel, and Alexander Yakhnis. McNaughton Games
and Extracting Strategies for Concurrent Programs. Amnnals of Pure and Applied
Logic, 78(1-3):203-242, 1996.

Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. In Proceed-
ings of the 16th Annual ACM Symposium on Principles of Programming Languages,
POPL’89, pages 179-190, 1989.

Wieslaw Zielonka. Infinite Games on Finitely Coloured Graphs with Applica-
tions to Automata on Infinite Trees. Theoretical Computer Science, 200(1-2):135-
183, 1998.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

243

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 244-255

The Complexity of Tree Transducer
Output Languages

Kazuhiro Inaba! and Sebastian Maneth??
! The University of Tokyo, ki naba@s. s. u-t okyo. ac. j p
2 National ICT Australia, sebast i an. manet h@i ct a. com au

3 University of New South Wales, Sydney

ABSTRACT. Two complexity results are shown for the output languages generated by compositions
of macro tree transducers. They are in NSPACE(7) and hence are context-sensitive, and the class is
NP-complete.

1 Introduction

Macro tree transducers (mtts) [12, 14] are a finite-state machine model of tree-to-tree trans-
lations. They are motivated by syntax-directed semantics of programming languages and
recently have been applied to XML transformations and query languages [18, 21]. Mtts are a
combination of top-down tree transducersand macro grammars [13]. They process the input
tree top-down while accumulating several output trees using their context parameters. Se-
quential composition of mtts gives rise to a powerful hierarchy (the “mtt-hierarchy”) of tree
translations which contains most known classes of tree translations such as those realized
by attribute grammars, by MSO-definable tree translations [5], or by pebble tree transduc-
ers [20]. Consider the range, or output language, of a tree translation; it is a set of trees. If we
apply “yield” to these trees, i.e., concatenate their leaf symbols from left to right, we obtain
a string language. The string languages obtained in this way from the mtt-hierarchy form
a large class (containing for instance the IO- and Ol-hierarchies [6]) with good properties,
such as being a full AFL and having decidable membership, emptiness, and finiteness [7].
In this paper we study the complexity of the output (string or tree) languages of the
mtt-hierarchy. Note that we do not explicitly distinguish between string or tree output lan-
guages here, because the translation “yield” which turns a tree into its frontier string (seen
as a monadic tree) is a particular simple macro tree translation itself and hence the cor-
responding classes have the same complexity. Small subclasses of our class of languages
considered here are the IO-macro languages (or, equivalently, the yields of context-free-
tree languages under IO-derivation) and the string languages generated by attribute gram-
mars. Both of these classes are LOG(CFL)-complete by [2] and [10], respectively. Another
subclass of our class is that of Ol-macro languages, which are equivalent to the indexed
languages [1], by [13]. This class is known to be NP-complete [22]. Hence, our class is
NP-hard too (even already at level 2). Our first main result is that output languages of
the mtt-hierarchy are NP-complete; thus, the complexity remains in NP when going from

© K. Inaba and S. Maneth; licensed under Creative Commons License-NC-ND

FSTTCS 2008

TARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1757

K. INABA AND S. MANETH FSTTCS 2008

indexed languages to the full mtt-hierarchy. In terms of space complexity, languages gen-
erated by compositions of top-down tree transducers (mtts without context parameters) are
known to be in DSPACE(n) [3]. This result was generalized in [17] to compositions of to-
tal deterministic mtts. Our second main result is that output languages of the mtt-hierarchy
(generated by compositions of nondeterministic mtts) with regular tree languages as inputs
are in NSPACE(n) and thus are context-sensitive. The approach of our proof can be seen as
a generalization of the proofs in [3] and [17]; moreover, we make essential use of the idea
of compressed representation of backtracking information, used by Aho in [1] for showing
that the indexed languages are in NSPACE(n).

We first solve the “translation membership” problem for a single mtt M. That is, we
show that, given trees s and t, we can determine whether or not the pair (s,) is in M’s
translation, in linear space and polynomial time with respect to |s| + || on a nondetermin-
istic Turing Machine (|s| denotes the size of the tree s). The challenge here is the space
complexity; we use a compressed representation of M’s output trees for input s, inspired
by [19], and then check if ¢ is contained using a recursive procedure in which nodes needed
for backtracking are compressed using a trie, similar to Aho’s compression of index strings
in [1]. Then, we generalize these results from one mtt to compositions of mtts. Here, the
challenge is the existence of intermediate trees. Consider the composition T of two transla-
tions realized by mtts: 7; followed by 7. To check (s, t) € T, we nondeterministically guess
an intermediate tree 1, and check whether (s,u) € 7y and (u,f) € T». From the complexity
result of single mtts, we know that this can be done in O(|s| + |u| + |t|) space. This can,
however, be much larger than O(|s| + |¢|); the size |u| of the intermediate tree u can actually
be double-exponentially larger than |s| and |¢|. The basic idea to prove the linear size com-
plexity for compositions of mtts is to bound the sizes of all such intermediate input trees.
This is achieved by putting the mtts in certain normal forms such that they do not delete
much of their input, in the sense that every output tree t has a corresponding input tree of
size only linearly larger than |¢|. Although our approach is similar to [17], the existence of
context parameters and nondeterminism together adds new challenges in every step of the
proof. For example, consider the mtt Mgexp with the following three rules rg, r1, and r:

{q0,2(x)) — {9, %)({q,x)(e)) (r0) (@.e)(y) =+ y) cly,y) ()
(g.a(x) () = (@00 0)@) (1)

Here, 4 denotes a nondeterministic choice; e.g., when the state g reads an input node la-
beled e, it generates an output node labeled either b or c. This mtt takes a tree of form
a(a(---a(e) - --)) asinput (with n occurrences of a) and generates a full binary tree of height
2" (note that, without parameters, the height growth can only be linear) with each non-leaf
node arbitrarily labeled either b or c. Therefore, the size of the set of possible output trees is

—
—

22" To decide whether (s,t) € Ty, for given trees s and t, we essentially have to find the
correct choice among the triple exponentially many candidates. To address the issue, we (1)
instead of solving the membership problem for all mtts, only deal with mtts in the above
mentioned non-deleting normal form, and which are linear with respect to the input vari-
ables, and (2) exploit the compressed representation of outputs of mtts [19] for manipulating
the output set.

245

246 THE COMPLEXITY OF TREE TRANSDUCER OUTPUT LANGUAGES

2 Preliminaries

The notation used in this paper will be the same as that used in [17], except that we denote
the sequential composition by the operator ; instead of o, and the label of a tree node by
label(t,v) instead of t[v]. We denote by pos(t) C IN* the set of nodes of a tree t.

A macro tree transducer (mtt) M is a tuple (Q, X, A, go, R), where Q is the ranked alphabet
of states, ¥. and A are the input and output alphabets, go € Q) is the initial state, and R is
the finite set of rules of the form (g, (x1, ..., X)) (Y1, ..., Ym) — r where g € Q"), ¢ € (0,
and 7 is a tree in Tpy(gxx,)uy,- Rules of such form are called (g, 0)-rules, and the set of
right-hand sides of all (g, o)-rules is denoted by R, ,. We always assume 2 and A©® (and
thus, Ty and Tp) are non-empty. The rules of M are used as term rewriting rules in the
usual way. We denote by = the derivation relation of M on T(g 1,)ua, and by u |y the set
{t € Tp | u =3, t}. Note that “state-calls” (g, x;) can be nested and therefore different orders
of evaluation yield different trees. Unless otherwise specified, we assume the outside-in (OI)
derivation in which we always rewrite the outermost (= top-most) state calls. By Corollary
3.13 of [12], this order of evaluation yields the same set of output trees as the unrestricted
order, i.e., the case where no restriction is imposed on the order of evaluation. The translation
realized by M is the relation Ty = {(s,t) € Tx. X Tp | t € (qo,5)|lm}. We denote by MT the
class of translations realized by mtts. An mtt is called a top-down tree transducer (tt) if all
its states are of rank 0; the corresponding class of translations is denoted by T. We call an
mtt deterministic (total, respectively) if for every (g,0) € Q x X, the number |R; | of rules
is at most (at least) one; the corresponding classes of translations are denoted by prefix D
(). An mtt is linear (denoted by prefix L) if in every right-hand side of its rules each input
variable x; € X occurs at most once. The same notation is used for tts; for instance, D;T
denotes the class of translations realized by total deterministic tts.

For a technical reason, we define a slight extension of mtts. We fix the set of choice
nodes C = {0, +(@} and assume it to be disjoint with other alphabet. An mtt with choice
and failure (mttcf) M is a tuple (Q, %, A, qo, R) defined as for normal mtts, except that the
right-hand sides of rules are trees in Tp; (o x,)uy,uc- The derivation relations (= and
Im) and the realized translation (7js) are defined similarly as for mtts, with two additional
rewrite rules: +(t1,t2) =um t1 and +(#,t2) =um f2. Thus, + denotes nondeterministic
choice and 6 denotes failure (because there is no rule for it). Again, we assume the outside-
in evaluation order. For a right-hand side r of an mttcf, we say a position v € pos(r) is
top-level if for all proper prefixes v of v, label(r,v") € AUC. We say an mttcf is canonical
if for every right-hand side r and for every top-level position v € pos(r), label(r,v) ¢ C.
The idea of the choice and failure nodes comes from [12]. There they show that any MT
generating trees in T can be regarded as a DiMT generating “choice trees” in Tp,c; a choice
tree each of the choice trees denotes the set of possible output trees by interpreting 0 as the
empty set and +(c1, ¢2) as the union of the sets denoted by ¢; and c».

3 Complexity of a Single MTT

In this section we show that for any canonical mttcf M having properties called path-linear
and non-erasing, there is a nondeterministic Turing Machine that decides whether a given

K. INABA AND S. MANETH FSTTCS 2008

pair (s,t) of trees is in Ty in O(|s| + |t|) space and in polynomial time with respect to
|s| + [t|. Thus, this “translation membership” problem is in NSPACE(n) and NP. Two
previous works on the same membership problem for restricted classes of macro tree trans-
ducers — for total deterministic mtts [17] and for nondeterministic mtts without parame-
ters (top-down tree transducers) [3] — both give DSPACE(n) algorithms. First let us briefly
explain where the difficulty arises in our case, i.e., with nondeterminism and parameters.
For total deterministic mtts, the DSPACE(n) complexity is proved via a reduction to the
case of linear total deterministic mtts, and then to attribute grammars (which are deter-
ministic by default), whose output languages are LOG(CFL)-complete and therefore have
DSPACE (log(1)?) membership test[10]. For nondeterministic tts, the complexity is achieved
by a straightforward backtracking-based algorithm; given the input tree s and the output
tree t, it generates each possible output of s by simulating the recursive execution of state
calls, while comparing with t. The following two facts imply the DSPACE(n) complexity:
(1) the depth of the recursion is at most the height of s, and (2) to backtrack we only need to
remember for each state call the rule that was applied (which requires constant space). Note
that neither (1) nor (2) hold for mtts; the recursion depth can be exponential and the actual
parameters passed to each state call must also be remembered for backtracking.

Here we concentrate on a restricted class of mttcfs, namely, canonical, non-erasing, and
path-linear mttcfs, which is exactly the class of mttcfs needed later in Section 4, to obtain
the complexity result for the output languages of the mtt-hierarchy. For a canonical mtt,
we define a right-hand side of a rule to be non-erasing if it is not in Y. A canonical mttcf is
non-erasing if the right-hand sides of all its rules are non-erasing. An mttcf is path-linear if a
subtree of the form (g, x;)(- - (p,x;)(-- -) - - -) in its rules implies i # j.

Making MTTCFs Total Deterministic Let M be a canonical, non-erasing, and path-
linear mttcf. It is easy to see that we can always construct a total deterministic mttcf M’
equivalent to M by simply taking (g,0(---))(---)—+(r1,- -, +(rn,0)--) for{ry,...,rn} =
Rye. Then, M" = (Q,%, A, qo,R’) can be seen as a total deterministic mtt N = (Q, %, AU
C, g0, R") whose outputs are the choice trees denoting sets of output trees of M. The canon-
icity and the non-erasure of M implies that in any right-hand side r € R’ and every position
v € pos(r) with label(v) € Y, there exists a proper prefix v’ of v with label(v') # +. Path-
linearity is preserved from M to M'.

Compressed Representation Our approach is to represent the output choice tree
T~ (s) in a compact (linear size) structure, and then compare it to the given output tree ¢.
Given a total deterministic mtt N and an input tree s € Ty, we can, in time O(|s|), calcu-
late a straight-line context-free tree grammar (or SLG, a context-free tree grammar that has
no recursion and generates exactly one output) of size O(|s|) that generates Ty(s), using
the idea of [19]. Rather than repeating the full construction of [19], we here give a direct
representation of the nodes of Ty (s).

Let N be a total, deterministic, non-erasing, and path-linear mtt with output alphabet
A UC and let s be an input tree. Let E = {(r,v) | g € Q,0 € ¥, € R;,v € pos(r)}. For
aliste = (rg, 1) ... (rn,vs) of elements of E, we define orig(e) (the origin of e) as €.ig . . . ix_1
where k is the smallest index satisfying label(r, v,) ¢ Q x X (or, let k = n + 1 when all
labels are in Q x X) and i; is the number such that (g, x;,) = label(r;, v;) for some g. We call e

247

248 THE COMPLEXITY OF TREE TRANSDUCER OUTPUT LANGUAGES

well-formed if label(r;,v;) € Q x X for every i < n, label(r,,v,) € AUC, and orig(e) € pos(s).
Intuitively, e is a partial derivation or a “call stack” of the mtt N. Each node of ty(s) can
be represented by a well-formed list, which can be stored in O(|s|) space because its length
is at most 1 + (height of s) and the size of each element depends only on the size of the
fixed mtt, not on |s|. Note that e can represent many nodes in ty(s) if the mtt is non-
linear in the parameters. For instance, for Mgeyp from the Introduction and the input tree
s3 = a(a(a(e))), the list (rg,€.1)(r1,€.1)(r1,€.1)(rp, €.1) represents all b-nodes at depth 16 of
the tree Ty, (s3), of which there are 2° many. The label c-label(e) of the node represented
by e is label(ry,,v,). The operation c-child(e, i) which calculates the representation of the i-
th child of the node represented by e is defined in terms of the following three operations.
For a well-formed list e = (7, 10) ... (ry, V) with rank(c-label(e)) = m, we define down;(e)
for1 < i < mas (ro,v)...(rn,vyi). Fore = (ro,10)...(rn,vy) such that label(r,,v,) =
y; € Y, we define pop(e) = (ro,v) ... (rn—1,vy—1.i). Foraliste = (ro,v) ... (*n,vy) where
label(rn, vn) = (q,xj) € Q x X, we define expand(e) = (ro,v0) ... (n, Vn)(rns1,€) Where 1
is the right-hand side of the unique (g, label(s, orig(e)))-rule. Then, the operation c-child(e, i)
is realized by the following algorithm: first apply down; to e, then repeatedly apply pop as
long as possible, and then repeatedly apply expand as long as possible. The non-erasure of
N ensures that this yields a well-formed list; in the last step, when expand cannot be applied
toe = ...(rn,Vn), label(ry,vy) is obviously not in Q x X and by non-erasure is not in Y,
hence it is in A U C. Since the length of a well-formed list is bounded by |s| and pop (and
expand, respectively) always decreases (increases) the length of the list by one, each of them
are executed at most |s| times in the calculation of c-child. Hence, c-child runs in polynomial
time with respect to |s|. Similarly, the representation of the root of Tn(s) is obtained in
polynomial time by repeatedly applying expand as long as possible to eg = (ro,€) where
ro denotes the right-hand side of the unique (qo, label(s, €))-rule. Note that a similar list
representation is used in the proof of Theorem 3 in [4].

Matching Algorithm with NP Time Com- MATCH (¢,0)

. . hile label(¢) = + d
plexity Lett € T,. Figure 1 shows the non- wmer :_C(;i)ld(ej{) where k = 1 or 2

deterministic algorithm MATCH that decides, nondeterministically chosen

N

given a well-formed list e and a node v of i it C‘Teﬁigf‘)fzslgbel(v) then

t, whether the set of trees represented by the 5: elseif rank(label(v)) = 0 then

choice tree at e contains the subtree of t rooted gf elsemt“m true

at v. The operations c-label and c-child are de- 8: for i = 1 to rank(label(v)) do

fined as above. The operations label, rank, and 9f if not MATCH (c-child(e,), child (v,)) then
.] A 10 return false

child are basic tree operations, assumed to runin 11: return true

polynomial time with respect to |t|. If we apply
MATCH to the representations of the root nodes
of Ty(s) and v = ¢, we can decide whether
(s,t) € tm. Since this is the standard top-down recursive comparison of two trees, the
correctness of the algorithm should be clear.

In each nondeterministic computation, MATCH is called once for each node of ¢. In
each call, the while-loop iterates at most c|s| times for a constant ¢. This is due to non-
erasure, i.e., for every Y-node in right-hand sides there exists a non-+ ancestor node. If we
once expand a list for obtaining c-child, we never see Y-nodes in right-hand sides (thus never

Figure 1: Matching Algorithm

K. INABA AND S. MANETH FSTTCS 2008

pop) before seeing some A-node. Thus, during the while-loop, the sequence of applied op-
erations must be: first pop’s and down’s are applied, and then expand is applied (if any), and
after that no pop is applied, i.e., the only operations applied are expand or down. In other
words, it has to be in the regular set (pop|down)* (expand|down)*. However, since the length
of a well-formed list is at most |s|, we can continuously pop without expanding at most |s|
times, and the same for expand without popping. Also, the numbers of continuous down’s
are bounded by the height of the right-hand sides of the rules of N. Thus, the loop ter-
minates after at most 2 - (1 + the maximum height of right-hand sides of N) - |s| iterations.
Altogether, the total running time is polynomial in |s| + |£].

Linear Space Complexity The MATCH algorithm takes O((|s| + log ||)|t|) space if
naively implemented, because in the worst case the depth of recursion is O(|t|) and we have
to remember e (which costs O(|s|) space) and v (O(log(|t|)) space at least, depending on the
tree node representation) in each step of the recursion. However, note that the lists of nodes
share common prefixes! Suppose the root node is represented by (o, vo) (1, v1) (r2, v2) (13, v3)
and its child node is obtained by applying down;, pop, and expand. Then the child node is of
the form (7o, vo) (11, v1) (r2, v4) (5, v4), which shares the first two elements with the root node
representation. We show that if we store lists of nodes with common prefixes maximally
shared, then, in the case of path-linear mtts, their space consumption becomes O(|s| + [t|).
The idea of sharing lists resembles the proof of context-sensitivity of indexed languages [1].

We encode a list of well-formed lists as a tree, written in parenthesized notation on the
tape. For example, the list of three lists [p10203, p10204, P10506] is encoded as p1(p2(p3, pa),
p5(ps)). Since the number of parentheses is < 21 and that of commas is < n where n denotes
the number of nodes, the size of this representation is O(n). When the function MATCH is
recursively called, we add the current e to the end of the list. The addition is represented as
an addition to the rightmost path. As an example, let e = p;p507ps. The common prefix p105
with the current rightmost path p1p5p6 is shared, and the suffix p;ps is added as the right-
most child of the ps-node. Then, we have a new tree p1(02(03,04), 5(p6s, 07(0s))). Removal
of the last list, which happens when MATCH returns, is the reverse operation of addition;
the rightmost leaf and its ancestors that have only one descendant leaf are removed. Note
that, since by definition a well-formed list cannot be a prefix of any other well-formed lists,
each well-formed list always corresponds to a leaf node of the tree. It is straightforward to
implement these two operations in linear space and in polynomial time.

Let us consider what happens if we apply this encoding to the output of a path-linear
mtt. In the algorithm MATCH we only proceed downwards in the trees, i.e., the parameter
¢’ to the recursive calls is always obtained by applying c-child several times to the previous
parameter e. Thus, the lists [eg, ey, ..., e,] of node representations we have to store during
the recursive computation always satisfy the relation e; € c-child " (e;) for every i < j. Let
e = (ro,w)...("m,vm) and ¢’ = (r{,v}) ... (1}, v;,) be proper prefixes of different elements
in the same list satisfying the condition (here we assume that e is taken from the element
preceding the one where ¢’ is taken). Then, orig(e) = orig(¢’) only if e = ¢’. This can be
proved by contradiction. Suppose orig(e) = orig(e’) and e # ¢/, and the j-th elements are
the first difference between e and ¢’. Recall that ¢’ is a prefix of a well-formed list obtained

by repeatedly applying c-child to another well-formed list, of which e is a prefix. Then it

249

250 THE COMPLEXITY OF TREE TRANSDUCER OUTPUT LANGUAGES

must be the case that r; = r;. (by definition of expand, r; and r;. are uniquely determined from
(ro,v0) ... (rj—1,vj-1) and (ry, vp) . .. (r;-fl, 1/]’-71), which are equal) and v; is a proper prefix of
1/]’- . However, due to path-linearity, the input variable at v; and 1/]'» must be different, which
contradicts orig(e) = orig(e’). Therefore, we can associate a unique node in pos(s) with
each proper prefix of the lists, which means that the number of distinct proper prefixes is
at most |s|. Similarly, it can be shown that adding only to the rightmost path is sufficient
for maximally sharing all common prefixes. Suppose not, then there must be in the list
three nodes of the forms e; = e.(r,v).e}, eo = e.(r,v').¢), and e3 = e.(r,v).ef with v # v/ in
this order. Note that if this happened, then the prefix e.(r,v) would not be shared by the
rightmost addition. However, e € c-child" (e1) implies that v is a proper prefix of v/, and
by e3 € c-child T (ep), V' is a proper prefix of v, which is a contradiction. Hence, the number
of nodes except leaves in the tree encoding equals the number of distinct proper prefixes,
which is at most |s|. We can bound the number of leaves by ||, the maximum depth of
the recursion. So, the size of the tree encoding of a list of nodes is O(|s| + |t|). We can
easily remember the whole list of v’s in O(|t|) space. Since in the lists [v1,...,0,], vi41 iS
always a child node of v;, we only need to remember the child number for each node. For
example, the list [¢,€.2,€.2.1] can be encoded as [€,2,1]. Thus, we only need < height(t)
many numbers, each of which is between 1 and the maximal rank of symbols in A, which is
a constant.

THEOREM 1. Let M be a canonical, non-erasing, and path-linear mttcf. There effectively
exists a nondeterministic Turing Machine which, given any s and t as input, determines
whether (s, t) € Ty in O(]s| + |t|) space and in polynomial time with respect to |s| + |t.

4 Complexity of Compositions of MTTs

As explained in the Introduction, the key idea for obtaining linear-size complexity for com-
positions of mtts is to bound the size of all intermediate input trees, and this is achieved
by putting the mtts into “non-deleting” forms. In the same way as for total deterministic
mtts [17], we classify the “deletion” in mtts into three categories — erasing, input-deletion, and
skipping (a similar classification without erasing, which is a specific use of parameters, is
also used in the case of nondeterministic tts [3]). The resolution of each kind of deletion,
however, requires several new techniques and considerations compared to previous work,
due to the interaction of nondeterminism and parameters. In the rest of this paper, we first
explain how we eliminate each kind of deletion, and then show the main results.

Erasing We first consider “erasing” rules — rules of the form (g,0(- -)) (Y1, .., Yym) —
i, as defined in Section 3. An application of such a rule consumes one input c-node without
producing any new output symbols; hence it is deleting a part of the input. Note that if the
rank of ¢ is non-zero, then a rule as above is at the same time also input-deleting, which
is handled in Section 4. In the case of total deterministic mtts, “non-erasing” is a normal
form, i.e., for every total deterministic mtt there is an equivalent one without erasing rules.
Unfortunately, we could not find such a normal form for nondeterministic mtts with OI se-
mantics. Note that for OI context-free tree grammars (essentially mtts without input: think
of (g,x;) as a nonterminal Ny, or equivalently, think of macro grammars [13] or indexed

K. INABA AND S. MANETH FSTTCS 2008

grammars [1], with trees instead of strings in right-hand sides), it has been shown [16] that
there is o non-erasing normal form. The problems is, that “inline expansion”, as used to
obtain non-erasing total deterministic mtts, generates copies of evaluated trees, which may
not correctly model the OI semantics of the original transducer. Therefore, we move from
normal mtts to mtts with choice and failure. The example above can be represented by an mttcf
rule (q1,a(x1,x2)) — (g2, x1)(+(B,+(C,A(B,C)))), for instance. We will show that every mtt
can be simulated by a non-erasing mttcf.

LEMMA 2. Let M be a mtt. There effectively exists a linear tt E and a canonical mttcf M’
such that M’ is non-erasing and t¢ ; Tyy = Ty. Path-linearity is preserved from M to M'.

PROOF. The idea is, we first predict all erasing beforehand and annotate each input node
by the information of erasing, by using a preprocessing linear tt. Then we replace all erasing
state calls (e.g., (g, x1)(u1) with the rule (g,...)(y1) — y1) in the right-hand sides of rules
with the result of the erasing call (e.g., u1). Note that we have to deal with nondeterminism.
Suppose we have two rules (g,0)(y1,y2) — y1 and (q,0)(y1,¥2) — y2 and a state call
(g, x1)(u1,u2) in a right-hand side. In order to preserve the nondeterminism, we replace the
state call by +(uq, uz).

Let M = (Q,%,A,q0,R). We define E to be a nondeterministic linear tt with the set

mum rank of the states of Q, and one distinct state py, which is the initial state), the in-
put alphabet ¥, the output alphabet £, = {(c, p1,...,px)¥ | ¢¥) € =, p; € P}, and the
following rules for every o) € £ and py,...,pr € [Q — 20" (p,o(xy,...,x)) —
(@ Pt r P (P11}, (pio i) whete p € {po, (9 — ULF(F) | (@, 0(..) — 7 € R})}
with f recursively defined as follows: f(y;) = {i}, f(6(...)) = @, and f({q’, xj)(r1, ..., Tm))
= U{f(r;) | i € pj(7')}. The transducer E modifies the label ¢'*) of each input node into the
form (c®), py,..., pr). The annotated information p; intuitively means “if a state g of M is
applied to the i-th child of the node, it will erase and return directly the e-th parameter for
e € pi(q)”. If pi(q) = @ then no erasing will happen. The rule of E is naturally understood
if it is read from right to left, as a bottom-up translation. Formally speaking, the following
claim holds. It is easily proved by induction on the structure of s.
Claim: (1) For each s € Ty, and g € Q("), there is a unique p € P\ {po} such that (p,s) | r #
@, and e € p(q) if and only if y, € (9,5)(y1,.-.,Ym)l M- (2) Let us denote by [s] such p
determined by s. The output s’ € 7£(s) is unique. For b € pos(s) = pos(s'), label(s’,b) =
(label(s,b), [s|p1], - -, [s|px]) where s|, is the subtree of s rooted at the node v.

Then, let M' = (Q,%,, A, q0, R") with R = {{(q, (¢, p1, .- ., pr) (X1, -, X)) (Y1, - Ym) —
1| r € Ryo,v" € ne(r),r" ¢ Y} where the set ne(r) is defined inductively by ne(r) = {y;}
if r = y; and ne(r) = {6(ry,..., 1)) | rj € ne(r;)}if r = 6(r1,..., 1), and ne(r) = U{ne(r;) |
icpi(qd)}u{ld, xj)(nep(ri),...,nep(r;))} if r = (q',x;)(r1,...,71), and nep defined as fol-
lows: nep(y;) = yj, nep(6(ry,...,11)) = 6(nep(r1),...,nep(r;)), and nep((q’, x;)(r1,...,7)) =
+(uy, +(uz, ..., +(uz,0)--) where {uy,...,u} =ne({q',x;)(r1,...,71)). The correctness of
this construction is proved by induction on the structure of the input tree s. I

Input-Deletion The second kind of deletion we investigate is “input-deletion”. For
instance, if there is the rule (go, a(x1, x2)) — A({qo, x2)) for the initial state o and the input

251

252 THE COMPLEXITY OF TREE TRANSDUCER OUTPUT LANGUAGES

is of the form a(ty, f;), then the subtree t; is never used for the output calculation. Although
total deterministic mtts can be made nondeleting (i.e., to always traverse all subtrees of ev-
ery input tree) by preprocessing with a deleting linear tt [17], it becomes more difficult for
nondeterministic mtts. The point is, under nondeterminism, we cannot argue the input-
deleting property of each transducer. Rather, we can only argue whether each computation is
input-deleting or not. This is a weaker version of the nondeletion condition used for total
deterministic mtts, but it is sufficient for our purpose.

In order to speak more formally, here we define the notion of computation tree (following
the method of [3], but extending it to deal with accumulating parameters). For any finite
set P, we define the ranked alphabet P = {p") | p € P}. Let M = (Q,%,A,qo, R) be an
mttcf and s € Tx. The set COMP(M,s) is the set of trees comp(qo,€)| C Taupos(s) called
computation trees (or sometimes, simply computations). The derivation comp(qo, €) | is carried
out under the following set of rewriting rules with outside-in derivation: +(uq,u2) — uy,
+(u1,u2) — uz, and comp(q,v)(¥) — fu(r) forq € Q, v € pos(s), r € Ry upei(s,p) Where
fv is inductively defined as f,(vi) = vyi, fu(6(r1,...,1x)) = v(6(fu(r1), -, fu(re)), and
fo{q', xj) (r1, ..., 1)) = comp(q’,v.j) (fu(r1),- - -, fu(rx))). Intuitively, COMP (M, s) is the set
of trees (qo,s)| where the parent of each A-node is a monadic node labeled by the posi-
tion in the input tree s that generated the A-node. For example, the output tree e(a(e.1(B),
€.2(v(e(6))))) means that the « and nodes are generated at the root node of the input tree,
and the B and -y nodes are generated at the first and the second child of the root node, re-
spectively. Let delpos be the translation that removes all v € pos(s) nodes. It is easily proved
by induction on the number of derivation steps that delpos(COMP (M, s)) = (qo,s) | m, i-e., if
we remove all pos(s) nodes from a computation tree, we obtain an output tree of the original
mitt.

We say that a computation tree u is non-input-deleting if for every leaf position v €
pos(s), there is at least one node in u labeled by v. Note that the rewriting rules of comp
corresponding to erasing rules do not generate any pos(s) node. Thus, non-input-deletion
implies that not only some state is applied to every leaf, but also a non-erasing rule of some
state must be applied.

LEMMA 3. Let M be a canonical non-erasing mttcf. There effectively exists a linear tt |
and a canonical non-erasing mttcf M’ such that Ty = 1;; Tyy, and for every input-output
pair (s, t) € Ty, there exists a tree s’ and a computation tree u € COMP(M',s') such that
(s,s") € 11, t = delpos(u), and u is non-input-deleting. Also, M’ is path-linear if M is.

PROOF. Let M = (Q,%,A,q0,R). We define I as ({d},%,%/,d, U) where ¥/ = {(c,iy,...,
im)(m)] e ey 1<ij<- - <ip< k}and U = {(d,0(x1,...,x¢)) = (0, i1, ..., im)({d, xi,),
v d,xi) | (0,01, ..., i) € X'}, The transducer I reads the input and nondeterministi-
cally deletes subtrees while encoding the numbers of the non-deleted subtrees in the current
label. We define the mttcf M’ as (Q, %/, A, g0, R') where

R'={{q,(o,i1, .. im)(x1, .-, xm)) (i) — 7
| ¥ € Ry such that for all top-level calls (q, xp)inr,p € {iy,...,in}, and ' is obtained
by replacing (g, x;.) in r with (¢, x;) and (¢, x) with 6 for p & {i1, ..., im}}.

K. INABA AND S. MANETH FSTTCS 2008

The transducer M’ has basically the same rules as M, except that state calls on ‘deleted’
children are replaced by 6 (or, if it is at the top-level then the rule is removed, to preserve
canonicity). It should be easy to see that M’ is canonical and non-erasing, and preserves
the path-linearity of M. The correctness of the construction is proved by taking as s the
minimal substructure of s that contains all nodes used for calculating ¢. I

Skipping The third and last kind of deletion is “skipping”. A computation tree u is
skipping if there is a node v € pos(s) labeled by a rank-1 symbol such that no node in u is
labeled v. For a canonical, non-erasing, and path-linear mttcf, skipping is caused by either
one of the following two forms of rules. One type is of the form (q,0(x1))(y1,.-.,Ym) —
(q',x1)(uy, ..., up) where u; € Ty, and such rules are called skipping. The others are
rules which are not skipping but are of the form (g,0(x1)) (y1, ..., ym) — (4, x1) (U1, ..., up)
where u; € Tauyuc, and such rules are called quasi-skipping. Note that, since the mttcf is
path-linear, there are no nested state calls in right-hand sides of rules for input symbols of
rank 1. Also note that if the root node of the right-hand side of a rule is not a state call, then
it must be a A-node since the mttcf is canonical and non-erasing. So an application of such
a rule generates a A-node and thus a v € pos(s) node for the current input node. Therefore,
it is sufficient to consider only skipping and quasi-skipping rules.

Quasi-skipping rules may cause skipping computations due to parameter deletion: for
example, consider the quasi-skipping rule (g, (x1))(y1) — (¢, x1)(6(y1)); if there is a g'-
rule with a right-hand side not using v, then the c-node may be skipped. For total deter-
ministic mtts [17], there is a “parameter non-deleting” normal form, i.e., every total deter-
ministic mtt is equivalent to one that uses all parameters in the right-hand sides of its rules,
and thus only skipping rules (without choice nodes) were considered there. Unfortunately,
as for non-erasure, we could not find such a normal form for nondeterministic mtts. Instead,
we add some auxiliary skipping rules to mttcfs, so that we only need to consider skipping
rules. Note that quasi-skipping rules cause skipping computations only when parameters
are deleted. The idea is, if a parameter in some rule is never used for a computation, then re-
placing the parameter by a failure symbol 8 does not change the translation, and moreover,
such replacement changes a quasi-skipping rule into a skipping rule.

LEMMA 4. Let M be an canonical, non-erasing, and path-linear mttcf. There effectively ex-
ists a linear tt S and a canonical, non-erasing, and path-linear mttcf M’ such that (1) ts ; Tyy =
M and (2) for every input tree s and non-input-deleting computation tree u € COMP(M,s),
there exists a tree s' and a computation tree u’ such thats’ € ts(s), u' € COMP(M',s"),
delpos(u') = delpos(u), and u’ is both non-input-deleting and non-skipping.

PROOF. First, we construct a new set R of skipping rules from quasi-skipping rules of M,
by replacing all A nodes in each quasi-skipping rule by the failure symbol 6. We then prove
that adding rules in R to M does not change the translation, and moreover, the addition
implies that all skipping computations of M have a derivation that does not apply quasi-
skipping rules to skipped nodes. Thus we may assume that all skipping computations are
caused by skipping rules, and hence we can straightforwardly extend the proofs for total
deterministic mtts [17] and nondeterministic tts [3]. 0

253

254 THE COMPLEXITY OF TREE TRANSDUCER OUTPUT LANGUAGES

LEMMA 5. Let M = (Q, %, A, qo, R) be an mttcf, s an input tree, and u a non-input-deleting,
non-skipping computation tree in COMP (M, s) with delpos(u) = t. Then |s| < 2|t|.

PROOF. Since u is non-input-deleting and non-skipping, for all nodes v € pos(s) of rank
zero or one, there exists a node labeled v in u, and by definition of computation trees, its
child node is labeled by a symbol in A. Thus, leaves(s) + rankInodes(s) < |t| where leaves(s)
is the number of leaf nodes of s and rankInodes(s) is the number of nodes of s labeled by
rank-1 symbols. Since |s| < 2 x leaves(s) + rankInodes(s) (this holds for any tree s), we have
|s| < 2|t| as desired. 0

Main Results

LEMMA 6. Let K € {NSPACE(n),NP} and F a class of K languages effectively closed under
LT. Then LMT(F) and T(F) are also in K.

PROOF. Let M be a linear mtt or a tt. Note that in both cases, M is path-linear. First, we
make it non-erasing; by Lemma 2, there exist a linear tt E and a canonical, non-erasing, and
path-linear mttcf M; such that 75 ; Ty, = Tm. Next, we make each computation non-input-
deleting; by Lemma 3, there exist a linear tt I and a canonical, non-erasing, and path-linear
mttcf My such that 17 ; Ty, = Ty, For every (s1,t) € Ty, there is an intermediate tree s, and
a non-input-deleting computation u € COMP (M3, s7) such that (s1,s2) € 17 and delpos(u) =
t. Then, we make each computation non-skipping; by Lemma 4, there exist a linear tt S and
a canonical, non-erasing, and path-linear mttcf M3 such that 75 ; Ty, = Ta,. For every non-
input-deleting computation u € COMP (M, s7), there is an intermediate tree s3 and a non-
input-deleting, non-skipping computation u#’ € COMP(M3,s3) such that (s,s3) € 75 and
delpos(u') = delpos(u). Altogether, we have T¢; 77; Ts; T, = Tm, and for every (s, t) € Ty
there exists a tree s3 such that (s,s3) € T¢;77; 75 and a non-input-deleting, non-skipping
computation u’ € COMP(Ms, s3) such that delpos(u’) = t. By Lemma 5, |s3] < 2|¢t|.

Let L be alanguage in F. To check whether t € Ty;(L), we nondeterministically generate
every tree s’ of size |s'| < 2|t| and for each of them, test whether (s/,t) € Ty, and s’ €
(te;71;Ts)(L). By Theorem 1, the former test can be done nondeterministically in O(|s'| +
|t|]) = O(]t|) space and polynomial time with respect to |t|. By the assumption that F is
closed under LT, the language (1 ; 71; Ts) (L) is also in K. Thus the latter test is in complexity
IC with respect to [s'| = O(]t]).

Note that, for T, the result is known to hold also for £ = DSPACE(n) (Theorem 1 of [3]).

LEMMA 7. Let K € {NSPACE(n),NP} and F a class of K languages effectively closed under
LT. Then MT(F) is also in K and effectively closed under LT.

PROOF. The closure under LT immediately follows from the following known results:
MT = DMT;T (Corollary 6.12 of [12]), T;LT = D{QREL;T (Lemma 2.11 of [9]), and
DMT ; DiQREL € DiMT (Lemma 11 of [11]). By Lemma 2.11 of [9] and Theorem 2.9 of [8],
T;LT C LT;T, which implies that T(F) is also closed under LT. By the decomposition
MT = DiT;LMT (page 138 of [12]), MT(F) C LMT(T(F)). By applying Lemma 6 twice,
LMT(T(F)) is in K. 0

By REGT, we denote the class of regular tree languages [15].

K. INABA AND S. MANETH FSTTCS 2008 255

THEOREM 8. MT*(REGT) C NSPACE(n) N NP-complete.

PROOF. The class REGT is closed under LT (Propositions 16.5 and 20.2 of [15]) and is in
NSPACE(n) N NP (see, e.g., [15]). By induction on k > 1 it follows from Lemma 7 that
MT¥(REGT) is in NSPACE(#) and NP. As noted in the Introduction, NP-hardness follows
from [22] and the fact that the indexed languages, which are equivalent to the yields of
context-free-tree languages under Ol-derivation, are in MT?(REGT). I

Although we only have considered outside-in evaluation order up to here, the previous
result holds for compositions of mtts in inside-out evaluation order. This is because MTjy =
MT”* by Theorem 7.3 of [12], where MTjo denotes the class of translations realized by mitts
in inside-out evaluation order. The yield translation, which translates a tree into its string of
leaf labels from left to right (seen as a monadic tree), is in D{MT. Therefore the output string
languages yield(MT*(REGT)) of mtts are also in the same complexity class as Theorem 8.
Especially, this class contains the IO- and OI- hierarchies [6]. Note that the IO-hierarchy is
in DIMT*(REGT) and hence in DSPACE(n) by Corollary 17 of [17]. The first level of the
Ol-hierarchy are the indexed languages [13] which are NP-complete [22].

COROLLARY 9. The Ol-hierarchy is in NSPACE(n) N NP-complete.

Thanks This work was partly supported by the Japan Society for the Promotion of Science.

References

[1] A.V. Aho. Indexed grammars—an extension of context-free grammars. J. ACM, 15:647-671, 1968.

[2] P.R.]. Asveld. Time and space complexity of inside-out macro languages. Int. |. Comp. Math., 10:3-14,
1981.

[3] B.S. Baker. Generalized syntax directed translation, tree transducers, and linear space. SIAM]. Comp.,
7:376-391, 1978.

[4] G.Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document trees. Inf. Syst.,
33:456-474, 2008.

[5] B. Courcelle. Monadic second-order definable graph transductions: A survey. TCS, 126:53-75, 1994.

[6] W. Damm. The IO- and OI-hierarchies. TCS, 20:95-207, 1982.

[7] E Drewes and J. Engelfriet. Decidability of the finiteness of ranges of tree transductions. Inf. and Comp.,
145:1-50, 1998.

[8] J. Engelfriet. Bottom-up and top-down tree transformations — a comparison. Math. Sys. Th., 9:198-231,
1975.

[9] J. Engelfriet. Top-down tree transducers with regular look-ahead. Math. Sys. Th., 10:289-303, 1977.

[10] J. Engelfriet. The complexity of languages generated by attribute grammars. SIAM |. Comp., 15:70-86, 1986.

[11] J. Engelfriet and S. Maneth. Output string languages of compositions of deterministic macro tree trans-
ducers. J. Comp. Sys. Sci., 64:350-395, 2002.

[12] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comp. Sys. Sci., 31:71-146, 1985.

[13] M.]. Fischer. Grammars with Macro-Like Productions. PhD thesis, Harvard University, Cambridge, 1968.

[14] Z.Filop and H. Vogler. Syntax-Directed Semantics: Formal Models Based on Tree Transducers. Springer-Verlag,

1998.

[15] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal
Languages, Vol 3: Beyond Words, pages 1-68. Springer-Verlag, 1997.

16] B. Leguy. Grammars without erasing rules. the OI case. In Trees in Algebra and Programming, 1981.

17] S. Maneth. The complexity of compositions of deterministic tree transducers. In FSTTCS, 2002.

18] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with macro tree transducers. In PODS,

2005.

19] S. Maneth and G. Busatto. Tree transducers and tree compressions. In FoSSaCS, 2004.

20] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. In PODS, 2000.

21] T. Perst and H. Seidl. Macro forest transducers. Information Processing Letters, 89:141-149, 2004.

22] W. C. Rounds. Complexity of recognition in intermediate-level languages. In FOCS, 1973.

—_ O

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 256-267

STCON in Directed Unique-Path
Graphs

Sampath Kannan*, Sanjeev Khanna', Sudeepa Roy?
University of Pennsylvania

Philadelphia, PA, USA

{kannan, sanj eev, sudeepa}@i s. upenn. edu

ABSTRACT. We study the problem of space-efficient polynomial-time algorithms for directed st-
connectivity (STCON). Given a directed graph G, and a pair of vertices s, t, the STCON problem is to
decide if there exists a path from s to f in G. For general graphs, the best polynomial-time algorithm
for STCON uses space that is only slightly sublinear. However, for special classes of directed graphs,
polynomial-time poly-logarithmic-space algorithms are known for STCON. In this paper, we con-
tinue this thread of research and study a class of graphs called unique-path graphs with respect to source
s, where there is at most one simple path from s to any vertex in the graph. For these graphs, we
give a polynomial-time algorithm that uses O(n¢) space for any constant ¢ € (0,1]. We also give a
polynomial-time, O(n¢)-space algorithm to recognize unique-path graphs. Unique-path graphs are
related to configuration graphs of unambiguous log-space computations, but they can have some
directed cycles. Our results may be viewed along the continuum of sublinear-space polynomial-
time algorithms for STCON in different classes of directed graphs - from slightly sublinear-space
algorithms for general graphs to O(log 1) space algorithms for trees.

1 Introduction

We study the directed st-connectivity (STCON) problem, where given a directed graph G, a
source vertex s and a terminal vertex f, we are interested in finding whether there is a path
from s to t in G. The STCON problem can be solved in polynomial time using standard
search algorithms (for eg. Depth First Search (DFS) or Breadth First Search (BES)). These
algorithms run in O(m + n) time and use O(nlogn) space on a graph with n vertices and
m edges. Improving the space complexity of STCON is a well-studied and fundamental
problem. The best known deterministic upper bound is given by Savitch’s theorem [18],
which solves STCON in O(log? 1) space. On the other hand, STCON is known to be NL-
complete [13]; i.e. giving an O(log 1) space algorithm will imply L = NL. A comprehensive
survey on the complexity of STCON can be found in [19].

An interesting related question is the time-space trade-off involved in solving STCON
[8]. Savitch’s theorem uses O(log? 1) space, but takes super-polynomial (1°1°87)) time. DFS
or BFS takes linear time but its standard implementation requires O(n log 1) space. The only
algorithm known till date that breaks the linear space barrier but takes polynomial time

is due to Barnes et al [6]. This algorithm uses 1/2°(V1°8™) space to solve STCON in any
directed graph.

*Supported by NSF Award CT-ISG 0716172.
fSupported in part by a Guggenheim Fellowship, an IBM Faculty Award, and by NSF Award CCF-0635084.
fSupported by NSF Award I1S-0803524.

© S.Kannan, S. Khanna, S. Roy; licensed under Creative Commons License-NC-ND

FSTTCS 2008

TARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1758

S. KANNAN, S. KHANNA, S. ROy FSTTCS 2008

On the other hand, the space complexity of the undirected counterpart of STCON,
namely USTCON, has been recently resolved by Reingold [15], who showed that USTCON
€ L. USTCON can also be solved in randomized O(logn) space and O(mn) time using
random walks [1].

STCON has been studied in more restricted models of computation than the Turing
machine model. For example in the JAG (Jumping Automaton for Graphs) model proposed by
Cook and Rackoff, it has been shown that STCON has a lower bound of Q(log? 11/ log log 1)
on space complexity [10]. The same lower bound has also been shown by Berman and
Simon [7] for the Randomized JAG model. Poon further defined a stronger Node Named

logz(nlogn/s)

JAG (NNJAG) model [14] and showed a time-space lower bound of T = 2 wogiogn)
/nS/logn on both the JAG and the NNJAG model [12] (where T denotes the time and
S denotes the space), underscoring the difficulty in designing polynomial-time sublinear-
space algorithms for STCON.

One important complexity class in the study of STCON and reachability problems is
Unambiguous Log-Space (UL or USPACE(logn)) [5]. This is a subclass of NL and character-
izes the class of problems accepted by logarithmic-space-bounded non-deterministic Tur-
ing Machines with at most one accepting computation path for each input. Though this
appears to be a strong restriction on the computation power of non-deterministic log-space
machines, UL/poly has been shown to be identical to NL/poly in [17]. Further subclasses of
UL with stronger requirements in terms of uniqueness of the computation path between two
configurations have been defined [9]. The complexity class Reach Unambiguous Log-Space
(RUSPACE(log n)) requires any two configurations reachable from the start configuration
to have a unique computation path in between them and in Strong Unambiguous Log-Space
(StUSPACE(logn)) any two configurations should have at most one path between them.
Clearly StUSPACE(logn) C RUSPACE(logn) C UL. In RUSPACE(log 1) the set of vertices
reachable from the source vertex forms a tree whereas in StUSPACE(log 1) the set of vertices
reachable from any vertex forms a tree. Configuration graphs for StUSPACE(log 1) have also
been described as Mangroves in [4].

Though both the space complexity and the time-space tradeoff for STCON have not
been resolved till date for general directed graphs, these problems have been studied ex-
tensively on interesting subclasses of directed graphs. Given an oracle to access the set
of incoming edges and outgoing edges for a node in the graph, the STCON problem can
be easily solved in polynomial time using O(logn) space on a tree. Allender et al have
given a polynomial-time O(log” 1/ loglog 1) space algorithm to solve the STCON problem
on StUSPACE(log n) that also works for RUSPACE(log 1) [4]. On planar DAGs with single
source STCON has been shown to be solvable using O(log 1) space [3]. But none of these
graph families allow the presence of cycles. A recent survey of Allender [2] highlights the
results on the complexity of reachability in UL and its subclasses and on other special sub-
classes of directed graphs. Also Reingold’s technique has been generalized in [16] to solve
STCON in O(logn) space for reqular directed graphs, where there is a value d such that the
in-degrees and out-degrees of all vertices are 4.

In this paper we define a subclass of directed graphs that we call unique-path graphs
with respect to source vertex s. These graphs are defined by the existence of at most one

257

258

STCON IN DIRECTED UNIQUE-PATH GRAPHS

simple path from s to any vertex in the graph. We will show later that this class of graphs is
characterized by the absence of forward or cross edges with respect to any DFS-tree rooted
at a vertex reachable from the source vertex. But some back edges may be present, i.e., we
allow the presence of some cycles in these graphs.

Configuration graphs for UL and its subclasses are closely related to unique-path graphs.
Unique-path graphs strictly contain trees and configuration graphs for StUSPACE(log 1)
and RUSPACE(log 1), since we allow some cycles. But, a configuration graph for UL is not
necessarily a unique-path graph, and vice-versa. Figure 1 shows examples of unique-path
graphs and configuration graphs of different subclasses of UL.

CE s Qs E Qs
Ot é) t %{% t
(a) UL (b) RUSPACE(log n) (c) Mangrove (d) Unique Path Graph

Figure 1: Examples of unique-path graphs and configuration graphs of UL and its subclasses

Our Results. As noted above, upper bounds on the space complexity of polynomial-
time algorithms for STCON ranges from O(log 1) (on trees), O(log? 1/ loglog n) (on man-

groves) to n/ 20(/log) (on general directed graphs). In this paper, we show that for any
e € (0,1], the STCON problem can be solved in unique-path graphs in nOt) time using
O(”{) space §; this gives a polynomial time algorithm that uses O(n¢) space for any constant
e. We also show that we can recognize unique-path graphs in () space and n°(¢) time.
Our algorithm uses a sublinear-space implementation of DFS in unique-path graphs.
The standard implementation of DFS uses linear space for two purposes: (i) to maintain a
stack for backtracking from a vertex v after exploring all vertices reachable from it, and (ii)
to keep track of all vertices already visited and avoid rediscovering them. We show that,
in unique-path graphs, these purposes can be served by maintaining a sublinear-space data
structure which we call landmark vertices. We first give an O(+/n)-space polynomial-time
algorithm for STCON in unique-path graphs. Extending our techniques further, we obtain

an algorithm which improves the space requirement to O(%-).

Organization. The rest of the paper is organized as follows. In Section 2 we define a
unique-path graph and discuss some useful properties of unique-path graphs. In Section 3
we give an O(%)-space nO(t)time algorithm for any ¢ € (0,1] to solve STCON in unique-
path graphs. In Section 4 we show how to decide if an input directed graph is a unique-path
graph in O(%) space and nO() time. Section 5 contains conclusions and some directions for

future work.

SO(f(n)) denotes O(f (1) log* n), for some constant k.

S. KANNAN, S. KHANNA, S. ROy FSTTCS 2008

2 Preliminaries

Given a directed graph G, we will use V(G) and E(G) to denote the set of vertices and
edges, respectively, in G. We assume that there are no self loops or parallel edges in the
graph. A path where no intermediate vertices is repeated is called a simple path; a simple
cycle is defined similarly. Two simple paths py, p; are called distinct if they differ in at least
one edge. Next we define a unique-path graph.

DEFINITION 1. A directed graph G is a unique-path graph with respect to a source vertex s
if there is at most one simple path from s to any vertexv € V(G).

T~0Os Cl) s s
y !
w > v
%%\o :
ou
@ (b) (©

Figure 2: Examples of unique-path graphs ((a)) and non-unique-path graphs ((b) and (c))

It is easy to see that a directed graph G is a unique-path graph with source vertex s iff
there is at most one simple path between any two distinct vertices u,v € V(G), where both
u and v are reachable from s. If a directed graph is not a unique-path graph, we call it a non-
unique-path graph. Examples of unique-path and non-unique-path graphs are shown in Fig-
ure 2. The graph in Figure 2(a) is a unique-path graph with source vertex s, but the graphs in
Figure 2(b) and (c) are non-unique-path graphs - in both cases there are two distinct simple
paths from s to u. The definition of unique-path graphs does not put any restriction on the
vertices which are not reachable from the source vertex s; they can have arbitrary number
of simple paths between them. Even there can be multiple simple paths from a vertex u to
a vertex v where v is reachable from s but u is not. Also note that while there is at most one
simple path between any pair of distinct vertices reachable from s, a vertex reachable from s
(such as w in Figure 2(a)) can lie on many different simple cycles.

For any vertex x in a graph G, we denote by N~ (x) (resp. N (x)) the set of vertices that
have an out-going edge to (in-coming edge from) x in G. We assume that the input graph
G is represented in an adjacency-list format, where for each vertex x € V(G), N*(x) and
N~ (x) are specified as lists. Given u,v € NT(x) (or N~ (x)) u is called a successor of v if u
immediately follows v in the list. We assume access to the incoming and the outgoing edges
of a node v and therefore the neighbors of v via queries to an oracle that answers as follows:
given vertices v and w, the oracle can answer if w € N1 (v) (or in N~ (v)), i.e., we can check
if (v, w) (or (w,v)) € E(G). Also we can query the oracle to return the successor (if any) of
win N*(v) orin N~ (v).

259

260 STCON IN DIRECTED UNIQUE-PATH GRAPHS

2.1 Properties of Unique-Path Graphs

The algorithm we present to solve STCON in unique-path graphs relies on depth first search
(DES) from the source vertex s. We therefore begin by making a few observations about DFS
in unique-path graphs. DFS from a vertex v € V(G) generates a tree called the DFS-tree with
v as the root of the tree. The edges used in the tree are called tree edges. Apart from tree edges,
DFS on general directed graphs yield three other types of edges: back edges, forward edges and
cross edges (see, for instance [11]). The parent of a vertex v is the vertex u € N~ (v) such that
(u,v) is a tree edge and will be denoted by 7(v). Lemma 2 states a necessary and sufficient
condition for a directed graph G to be a unique-path graph with respect to a vertex s and
Lemma 3 describes the structure of back edges in a unique-path graph. The proofs are easy
and are omitted due to space constraint.

LEMMA 2. A directed graph G is a unique-path graph with respect to s € V(G) iff DFS
invoked from any vertex reachable from s does not produce any forward or cross edges.

For a back edge (u,v) in a DFS-tree, let SPAN(u, v) denote the set of vertices on the path in
the DFS-tree from v to u including v and u.

LEMMA 3. Let G be a unique-path graph. Let (u,v), (x,y) € E(G) be back edges in the DFS-
tree with w as the root, where w is reachable from s. Then |SPAN(u,v) N SPAN(x,y)| < 1.

3 Algorithm for STCON in Unique-path Graphs

We assume that G is a directed unique-path graph with respect to source s in this section. We
will solve STCON in unique-path graphs by implementing DFS from s in polynomial time
using O(n°) space. A typical implementation of DFS relies on remembering the set of ver-
tices that have already been visited (to avoid rediscovering previously visited vertices), and
remembering the current exploration path for backtracking from a vertex v after all vertices
reachable from v have been visited (using a stack). Both these tasks can be accomplished us-
ing linear space. We show that, for unique-path graphs, these steps can be implemented in
polynomial time using sublinear space by maintaining some sparse auxiliary information.

Our final aim is to design an O(n®) space polynomial-time algorithm to implement
STCON in unique-path graphs for a constant ¢ € (0,1] 1. In Section 3.1 we give an O(y/n)
space polynomial-time algorithm to present our techniques. In Section 3.2 we will use our
techniques recursively to get an O(n°)-space polynomial-time algorithm. We will assume
that the oracle takes one unit of time to answer any query, though we get a polynomial-time
algorithm as long as the time taken by the oracle is bounded by a polynomial. We will refer
to the last vertex discovered by the DFS with an unfinished DFS call as the current vertex,
and the path using the tree edges from s to the current vertex as the active path.

3.1 An O(/n)-Space Algorithm

We prove the following theorem in this section.

TFrom now on, “O(f(n)) space” will refer to the space needed to store O(f(n)) words; the bit complexity

will be O(f(n)logn) = O(f(n)).

S. KANNAN, S. KHANNA, S. ROy FSTTCS 2008

Algorithm 1 An O(/n)-space, polynomial-time algorithm for STCON on a unique-path
graph G with source vertex s and terminal vertex ¢
1: CURRENT:
2: — Suppose the control of the DFS is at the current vertex x (initially x = s).
3. — Either DFS has backtracked to x from some vertex v € N*(x), or x is a newly discov-
ered vertex.
if DFS has backtracked to x from v then
— Ask the oracle to return the successor of vin N (x).
else {x is a newly discovered vertex}
— Ask the oracle to return the first vertex in N*(x).
end if
NEXT:
10: if the oracle returns that there are no more vertices in N* (x) then {either the DFS has
backtracked from the last child of x in N* (x) or N*(x) is empty)}
11: if x is same as the source vertex s then {the search from s is complete}

12: — Exit with the answer ‘there are no paths from s to t in G’.

13: endif

14: - Perform the backtrack step for x to reach u = 7(x).

15: —Set x = u, pass the control to (new) x and jump to Step CURRENT.
16: else

17: —The oracle returns y as the next vertex in N* (x).

18: - Perform the discovery step for the edge (x,y).
19: if (x,y) is a back edge then {y has been visited before, }

20: — Ask the oracle to return the successor of y in N™ (x) and jump to Step NEXT.
21: else {y is a newly discovered vertex}

22: if y is same as the terminal vertex ¢ then

23: — Exit with the answer ‘there is a path from s to t in G’.

24: end if

25: —Set x = y, pass the control to (new) x and jump to Step CURRENT.

26: end if

27: end if

THEOREM 4. STCON is solvable in O(mn + m?\/n) time with O(/n) space in unique-path
graphs.

Overview of the Algorithm Algorithm 1 describes how STCON in unique-path graphs can
be implemented in O(y/n) space and polynomial time. It relies on a sublinear-space imple-
mentation of two key subroutines. The first subroutine is to backtrack from a vertex x, i.e., to
return the control to the parent 77(x) once the DFS finishes at x. The second subroutine is
the discovery step for an edge (x,y), which is called from a current vertex x to determine if
an edge (x,y) being considered by the DFS is a back edge. Now in order to complete the
description of the algorithm, it suffices to describe how we implement the backtrack and the
discovery steps. Note that Algorithm 1 and later the procedures for the backtrack and the
discovery steps always start the search on G from a vertex reachable from s. Thus we only

261

262 STCON IN DIRECTED UNIQUE-PATH GRAPHS

need the unique-path property of the vertices reachable from the source vertex s and do not
have any restriction on the rest. First we introduce the notion of L-bounded DFS, which is
used as a subroutine in the procedures for the backtrack and the discovery steps.

L-bounded DFS

DEFINITION 5. A DFS search is called L-bounded if it backtracks whenever the length of
the active path exceeds L.

For a unique-path graph, if we store the entire active path, the backtrack and the discov-
ery steps can be easily implemented. The next lemma follows from the above observation;
we omit the proof due to space constraint.

LEMMA 6. Given a unique-path graph G with respect to source s, a vertexv € V(G) reach-
able from s and and an integer L, an L-bounded DFS from v can be implemented in O(L)
space and O(n + mL) time. Moreover, it visits every vertex within distance L from v, and
does not visit any vertex at distance greater than L from v.

We note that an O(y/n) space, polynomial-time algorithm for STCON in unique-path
graphs can be obtained from the above lemma with the approach of [6]. But there is no
obvious way of improving the space complexity beyond O(y/n) using this approach. We
present here another approach for solving STCON in unique-path graphs in O(y/n) space.
This will be the starting point to obtain an algorithm that reduces the space requirement to
O(n®).

Next we describe the implementation of the backtrack and discovery steps. The main
idea in implementing these steps is maintaining landmark vertices which are a few evenly
spaced vertices on the active path from s to the current vertex x. The landmark vertices
will be denoted by z;,i = 0,1, - - -, where the landmark vertex z; is at distance i| /] from s
along the current active path (s = z); i is called the index of the landmark vertex z;. We will
consider the current vertex x as an additional landmark vertex z,, where zg,z1,---,zp1
is the the set of landmark vertices maintained along the active path to x. Since it is easy
to maintain the length of the active path from s to the current vertex x in Algorithm 1,
the landmark vertices can be maintained by a simple modification of the algorithm. The
space needed to maintain the landmark vertices is O(y/n), because the number of landmark
vertices is O(y/n). As in standard DFS, Algorithm 1 performs O(n) backtrack and O(m)
discovery steps; thus to implement the whole algorithm in O(y/n) space and polynomial
time it suffices to show that the backtrack and the discovery steps can be implemented in
O(y/n) space and polynomial time.

Backtrack Step

Let x be the current vertex and let v, vy, ..., v, be the vertices in N~ (x). Suppose v; = 7(x)
in the DFS-tree. Since G is a unique-path graph with respect to source s, the unique simple
path from s to x is through the edge (v;, x). Recall that if z, - - -, zp are the landmark vertices
then current vertex x = z, and z, 1 is the previous landmark vertex.

S. KANNAN, S. KHANNA, S. ROy FSTTCS 2008

Procedure 2 Procedure to implement the backtrack step from the current vertex x

1: —Letvy,vy, ..., v, be the vertices in N~ (x).

2: foreachv; € N™(x) do

3 —Perform a \/n-bounded DFS from z,_; in the graph G — (v}, x).
4. if z, = x is not reached then
5 —Return v; as 7(x).

6: end if

7: end for

LEMMA 7. In the graph G — (v;, x) the current vertex z, = x is not discovered by a /n-
bounded DFS from z,_1 iff v; is the parent of x in the original DFS-tree.

PROOF. (if) Assume v; = 71(x) and there is a path from z, i to x in the graph G — (v;, x).
Then there are two distinct paths from z,_; to x, one uses the tree edge (v;, x) and the other
does not. Thus there are two distinct paths from s to x - this contradicts that G is a unique-
path graph. (only if) Let v; € N~ (x) and v; # 7(x). As the landmark vertices are placed \/n
distance apart along the active path, by Lemma 6, x will be discovered by a y/n-bounded
DFS from the last landmark vertex z, 1 in the graph G — (v;, x). I

The number of \/n-bounded DFS to implement the backtrack step from x is at most [N~ (x)]|.
From Lemma 6, each y/n-bounded DFS takes time O(n + m/n). Hence all the backtrack
steps performed in G can be implemented in O(mn + m?+/n) time and O(y/n) space.

Discovery Step

The goal of the discovery step at a current vertex x is to check if a vertex y € N*(x) has
already been visited by the DFS. By Lemma 3, a DFS from s in the unique-path graph G
cannot produce any forward or cross edges; hence this is equivalent to checking if the edge
(x,y) is a back edge.

Procedure 3 gives the implementation of the discovery step. If y is one of the landmark
vertices then clearly (x,y) is a back edge, i.e., Case 1 in Procedure 3 returns the correct
output. Otherwise let Z = Z(y) be the set of landmark vertices reachable from y by a /n-
bounded DFS. Consider any back edge (x, y) such that y lies between the landmark vertices
zj_1and z;j (j > 1); then at least z; € Z. Hence if Z is empty, we know that (x, y) is not a back
edge. Let z; € Z be the landmark vertex with the highest index k in Z. Note that if (x,y) is
a back edge, then k > 1. So the outputs of Case 2 and Case 3 are correct. But a \/n-bounded
DFS from y can discover more than one landmark vertex, since there can be successive back
edges. The relation between z; and z; is described by the following lemma when (x,y) is a
back edge.

LEMMA 8. (a) Ifj < p — 1 orj = p, then z; is the landmark vertex with the highest index j
inZ. (b)Ifj=p—1, thenz, 1 orz, is the landmark vertex with the highest index j in Z.

PROOF. As distance of zj from y is < N by Lemma 6, zj will be discovered by a V-
bounded DFS from y, i.e., z; € Z. (a) If j = p, then z,, has the highest index p in Z since z,, is
the last landmark vertex. If j < p — 1, the distance between y and z; is > /n for any £ > .

263

264 STCON IN DIRECTED UNIQUE-PATH GRAPHS

Procedure 3 Procedure to implement the discovery step for the edge (x, y)

1: —Letzo =s,z1, - ,z, = x be the current set of landmark vertices.

2: ify € {zo,---,zp_1} then {(Case 1): y is one of the landmark vertices}
3: —Return ‘(x,y) is a back edge’ (y # z, since there are no self loops).
4: end if
5. — Perform a y/n-bounded DFS from y and let Z be the set of landmark vertices reached
by this DFS.
6: if Z is empty then {(Case 2): no landmark vertex is reached }
7: —Return “y has not been visited’.
8: else
9: —Letz; € Z be the landmark vertex with the highest index ;.
10: if j = 0 then {(Case 3): Z = {zo(=s)}}
11: —-Return “y has not been visited’.
12: elseif (j < p) then {(Case 4)}
13: — Perform a second /n-bounded DFS from zj—1, and terminate the DFS as soon as
one of z; or y is discovered.
14: if y is discovered then
15: — Return “(x, y) is a back edge’.
16: else
17: — Return “y has not been visited’.
18: end if
19: else {(Case 5): z,(= x) is the landmark vertex z; with highest index j}
20: — Perform a 2/n-bounded DFS from zp—2 and terminate the DFS as soon as one of
x or y is discovered. (if p = j = 1, perform a y/n-bounded DFS from zj).
21: if y is discovered then
22: — Return “(x, y) is a back edge’.
23: else
24: — Return “y has not been visited’.
25: end if
26: end if
27: end if

Hence by Lemma 6 the \/n-bounded DFS from y cannot discover z;. (b) If j = p — 1, then
zp—1 € Z, but depending on the distance of the current vertex z, = x from z, 1, z, may or

may not belong to Z.

The following lemma proves the correctness of Case 4; the correctness of Case 5 can be
proved similarly.

LEMMA 9. An edge (x,y) is a back edge iff we terminate with the discovery of vertex y by
a \/n-bounded DFS from zj—1 (i.e. y is discovered before z;).

PROOF. (only if) Suppose (x,) is a back edge. Thus y is an ancestor of x. A y/n-bounded
DFS from y discovers exactly one landmark vertex that is a descendant of y since landmark
vertices are spaced /n apart. Since the highest-indexed landmark vertex discovered from

S. KANNAN, S. KHANNA, S. ROy FSTTCS 2008

Yy is zj, zj is a descendant of y and hence y is on the unique path from z; 1 to z;. Therefore
y will be discovered before z; by the y/n-bounded DFS from z;_;. (if) Suppose y is a newly
discovered vertex. Then no landmark vertex is a descendant of y and the unique path from
zj_1 to y is through z;. So the \/n-bounded DFS from z;_; cannot discover y before z;_;.

Thus the discovery step involves at most two \/n-bounded (or 21/n-bounded) DFS.
From Lemma 6, each discovery step takes time O(n + m+/n). So all the discovery steps
in the graph G can be performed in time O(mn + m?y/n) time and O(y/n) space. This
completes the proof of Theorem 4.

3.2 Improving to O(n®) Space

Applying the ideas above recursively, we can improve the space bound to n® for any ¢ €
(0, 1] while still achieving a polynomial time bound. We will prove the following theorem
in this section.

THEOREM 10. For any e € (0,1], STCON in unique-path graphs is solvable with O(™)

0(3)

space inn time.

We first modify the definition of the landmark vertices. Now the landmark vertices
will be spaced n!~¢ distance apart on the current search path, so that they can be stored
using O(n°) space. Note that the immediate problem in increasing the spacing of the land-
mark vertices is that, in both the backtrack and discovery steps, landmark vertices may not
be reachable by a n®*-bounded DFS. So we need to apply the ideas of the previous section
recursively.

We define the procedure D-REACH(u, U, H,d), where H is a subgraph of the unique-
path graph G with source sl u e V(H) and u is reachable from s, U C V(H),1 < d <
|V(H)| — 1. This procedure decides if there exists a vertex v € U within distance d from
uin H. If such a v € U exists, then the procedure returns the first such vertex v and ter-
minates; otherwise it outputs that no such vertex in U exists. A variant called D-REACH-
ALL(u,U, H,d) determines all vertices in U reachable in distance d from u. This variant
has the same time and space complexity as D-REACH. The STCON problem is same as
D-REACH(s, {t},G,n —1).

LEMMA 11. If|U| < n®, the procedure D-REACH (u, U, H, n®), can be implemented in O(n +
mn®) time using O(n®) space.

PROOF. The set U, |U| < nf, can be stored in O(n®) space. Since u is reachable from
s, D-REACH(u, U, H, n®) can be implemented like an L-bounded DFS by storing the entire
active path; thus the backtrack step takes O(1) time for each vertex. For each edge (x,y), the
discovery step is performed by checking (i) if y belongs to the active path (of < nf length)
and (ii) if y is a new vertex, then whether it belongs to U, where |U| < n* (and in that case
the procedure returns with output y). Clearly the discovery step can be performed in O(n®)
time. Hence O(n + mn®) time suffices to implement D-REACH (u, U, H, n). 0

IG; is a subgraph of G, if V(G1) C V(Gz) and E(G;) C E(Gy).

265

266 STCON IN DIRECTED UNIQUE-PATH GRAPHS

Suppose we are at the current vertex x and zp = s,z1, - - +,z, = x is the set of landmark
vertices stored at the top-most level of the recursion. In the backtrack step, similar to Pro-
cedure 2, for each u € N~ (x) we need to check if the landmark vertex z,_; can reach the
current vertex z, = x in the graph G — (u, x). As the distance of x from z,_; can be at most
n'~¢, for each u € N~ (x), we recursively call D-REACH(zp—1, {x},G — (u,x), n'~¢). For the
entire graph G, we have to make at most m such calls. Similarly for each discovery step, we
have to call a n!~*-bounded D-REACH-ALL procedures first, and then we may have to call
either a n!~*-bounded or a 2n' ~¢-bounded D-REACH procedure (depending on the cases in
Procedure 3). Using the same notations as in Section 3.1, these recursive procedures are:
(i) D-REACH-ALL(Y, Zcwr, G, nl_g) (where Z.,, is the current set of landmark vertices at the
top-most level), (ii) if z; is the highest indexed landmark vertex found, a second call is made
either to D-REACH(zj_1, {2, ¥}, G,n') (in Case 4) or to D-REACH(z,-2,{2p,y},G,2n' %)
(in Case 5). Hence, there are at most 2m calls to n' ~*-bounded D-REACH procedures (in-
voked by the backtrack and discovery steps) and at most m calls to n!~¢-bounded or 21! -
bounded D-REACH procedures (invoked by the discovery step).

Let T(m,n,d) denote the running time of D-REACH(u, U, H,d) (|U| < n®), when H has
at most n nodes and m edges. Note that, in each call to the D-REACH and D-REACH-ALL
procedures used by our algorithm, |U| < n® (since U is a subset of the landmark vertices).
Hence we have the following recursion. T(m,n,n) <2mT(m,n,n'~¢) +mmax(T(m,n,n'~¢),
T(m,n,2n'=¢)) +O(m + n),ie. T(m,n,n) < 3mT(m,n,2n'~¢) + O(m + n). As the base case
we have, T(m,n,n%) = O(n+ mn?) = (m + n)°(). The first two parameters in the recur-
rence relation are not changed at any step and they do not play active role in the solution of
the recurrence. The solution to this recurrence is (m + n)o(”%) = n9(%), which is a polyno-
mial when ¢ is a constant.

Next we analyze the increased space requirement due to these recursive calls. Note
that, at any point of time we have to remember the landmark vertices at all levels of the
recursion. But we can reuse the space allocated to landmark vertices in successive DFS calls
at the same recursion level. The recursion depth is at most 1. Hence we have to remember
at most O('2) vertices. So the overall space complexity of this recursive algorithm is O(™%).
This proves Theorem 10.

4 Recognition of Unique-Path Graphs

We prove the following theorem in this section. But due to space constraint, we omit the
proof of the theorem.

THEOREM 12. Given a directed graph G and a vertexs € V(G), there is an O(’-)-space,

nO(t)-time algorithm to decide whether G is a unique-path graph with respect to source s.

5 Conclusions

An interesting open question is whether there are polynomial-time, polylog-space algo-
rithms for STCON in unique-path graphs. It would also be interesting to see if our ideas
can be extended to obtain an O(n®)-space polynomial-time algorithm for STCON in a more
general family of graphs.

S. KANNAN, S. KHANNA, S. ROy FSTTCS 2008

References

[1] R. ALELIUNAS, R. M. KARP, R. J. LIPTON, L. LovAasz, AND C. RACKOFF. Random
walks, universal traversal sequences, and the complexity of maze problems, FOCS,
(1979) 218-223.

[2] E. ALLENDER. Reachability Problems: An Update, CiE, (2007) 25-27.

[3] E. ALLENDER, D. A. M. BARRINGTON, T. CHAKRABORTY, S. DATTA, AND S. ROY.
Grid Graph Reachability Problems, CCC, (2006) 299-313.

[4] E. ALLENDER AND K.-J. LANGE. RUSPACE(log 1) C DSPACE (log” 11/ log log 1), The-
ory Comput. Syst., 31(5), (1998) 539-550.

[5] C. ALVAREZ AND B. JENNER. A very hard log-space counting class, Theor. Comput. Sci.,
107(1), (1993) 3-30.

[6] G. BARNES, J. F. Buss, W. L. RuzzO, AND B. SCHIEBER. A Sublinear Space, Poly-
nomial Time Algorithm for Directed s-t Connectivity, SIAM |. Comput., 27(5), (1998)
1273-1282.

[7] P. BERMAN AND J. SIMON. Lower Bounds on Graph Threading by Probabilistic Ma-
chines (Preliminary Version), FOCS, (1983) 304-311.

[8] A.BORODIN. Time Space Tradeoffs (Getting Closer to the Barrier?), ISAAC, (1993) 209-
220.

[9] G. BUNTROCK, B. JENNER, K.-J. LANGE, AND P. ROSSMANITH. Unambiguity and
Fewness for Logarithmic Space, FCT, (1991) 168-179.

[10] S. A. COOK AND C. RACKOFF. Space Lower Bounds for Maze Threadability on Re-
stricted Machines, SIAM J. Comput., 9(3), (1980) 636—652.

[11] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN. Introduction to Algo-
rithms, Second Edition, The MIT Press, (2001).

[12] J. EDMONDS AND C. K. POON. A nearly optimal time-space lower bound for directed
st-connectivity on the NNJAG model, STOC, (1995) 147-156.

[13] C. M. PAPADIMITRIOU. Computational complexity, Addison-Wesley, (1994).

[14] C. K. POON. Space Bounds for Graph Connectivity Problems on Node-named JAGs
and Node-ordered JAGs, FOCS, (1993) 218-227.

[15] O. REINGOLD. Undirected ST-connectivity in log-space, STOC, (2005) 376-385.

[16] O. REINGOLD, L. TREVISAN, AND S. P. VADHAN. Pseudorandom walks on regular
digraphs and the RL vs. L problem, STOC, (2006) 457-466.

[17] K. REINHARDT AND E. ALLENDER. Making Nondeterminism Unambiguous, FOCS,
(1997) 244-253.

[18] W. J. SAVITCH. Relationships between nondeterministic and deterministic tape Rela-
tionships Between Nondeterministic and Deterministic Tape Complexities, J. Comput.
Syst. Sci., 4(2), (1970) 177-192.

[19] A. WIGDERSON. The Complexity of Graph Connectivity, MFCS, (1992) 112-132.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

267

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 268-279

Dynamic matrix rank with partial

lookahead

Telikepalli Kavitha

Indian Institute of Science, Bangalore, India
kavitha@sa.iisc.ernet.in

ABSTRACT. We consider the problem of maintaining information about the rank of a matrix M
under changes to its entries. For an n x n matrix M, we show an amortized upper bound of O(n“~1)
arithmetic operations per change for this problem, where w < 2.376 is the exponent for matrix
multiplication, under the assumption that there is a lookahead of up to ©(n) locations. That is, we
know up to the next ©(n) locations (i1, j1), (i2, j2), - - ., whose entries are going to change, in advance;
however we do not know the new entries in these locations in advance. We get the new entries in
these locations in a dynamic manner.

1 Introduction

The dynamic matrix rank problem is that of computing the rank of an n X n matrix M =
{mj} under changes to the entries of M. The rank of a matrix M is the maximum number
of linearly independent rows (or equivalently, columns) in M. The entries of M come from
a field F, and the operation change;j(v) changes the value of the (i, j)-th entry of M to v,
where i,j € {1,...,n} and v € F. We have a sequence of change;;(v) operations and the
dynamic matrix rank problem is that of designing an efficient algorithm to return the rank
of M under every change operation.

Here we consider a simpler variant of the above problem, where we assume that we
can lookahead up to ®(n) operations in advance so that we know location indices (i, j) of the
entries of M that the next @(n) operations change;; are going to change. Note that we get
to know the new value v of m;; only when the operation change;;(v) actually happens, the
assumption of lookahead is only regarding the location indices.

1.1 Earlier Work

The dynamic matrix rank problem was first studied by Frandsen and Frandsen [2] in 2006.
They showed an upper bound of O(n°7?) and a lower bound of Q)(1) for this problem (the
lower bound is valid for algebraically closed fields). Frandsen and Frandsen pre