FOREWORD

JEAN-YVES MARION! AND THOMAS SCHWENTICK 2

! Nancy University, LORIA

E-mail address: Jean-Yves.Marion@loria.fr

2 TU Dortmundt
FE-mail address: Thomas.Schwentick@udo.edu

The Symposium on Theoretical Aspects of Computer Science (STACS) is held alter-
nately in France and in Germany. The conference of March 4-6, 2010, held in Nancy, is
the 27th in this series. Previous meetings took place in Paris (1984), Saarbriicken (1985),
Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg
(1991), Cachan (1992), Wiirzburg (1993), Caen (1994), Miinchen (1995), Grenoble (1996),
Liibeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002),
Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), Bor-
deaux (2008), and Freiburg (2009). The interest in STACS has remained at a high level
over the past years. The STACS 2010 call for papers led to over 238 submissions from
40 countries. Each paper was assigned to three program committee members. The com-
mittee selected 54 papers during a two- week electronic meeting held in November. As
co-chairs of the program committee, we would like to sincerely thank its members and the
many external referees for their valuable work. In particular, there were intense and inter-
esting discussions. The overall very high quality of the submissions made the selection a
difficult task. We would like to express our thanks to the three invited speakers, Mikotaj
Bojanczyk, Rolf Niedermeier, and Jacques Stern. Special thanks go to Andrei Voronkov
for his EasyChair software (www.easychair.org). Moreover, we would like to warmly thank
Wadie Guizani for preparing the conference proceedings and continuous help throughout the
conference organization. For the third time, this year’s STACS proceedings are published
in electronic form. A printed version was also available at the conference, with ISBN. The
electronic proceedings are available through several portals, and in particular through HAL
and LIPIcs series . The proceedings of the Symposium, which are published electronically in
the LIPIcs (Leibniz International Proceedings in Informatics) series, are available through
Dagstuhl’s website. The LIPIcs series provides an ISBN for the proceedings volume and
manages the indexing issues. HAL is an electronic repository managed by several French
research agencies. Both, HAL and the LIPIcs series, guarantee perennial, free and easy
electronic access, while the authors will retain the rights over their work. The rights on the
articles in the proceedings are kept with the authors and the papers are available freely,
under a Creative Commons license (see www.stacs- conf.org/faq.html for more details).

AN
AV
) FEm

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Y ves Marion, Thomas Schwentick

Leibniz International Proceedingsin Informatics (LI1PIcs), Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2439

© Jean-Yves Marion and Thomas Schwentick
© Creative Commons Attribution-NoDerivs License

2 JEAN-YVES MARION AND THOMAS SCHWENTICK

STACS 2010 received funds from Nancy-University (UHP, Nancy 2 and INPL), from
Région Lorraine, from CUGN, from GIS 3SG, from GDR IM and from Mairie de Nancy.
We thank them for their support!

February 2010 Jean-Yves Marion and Thomas Schwentick

FOREWORD

Conference Organisation
STACS 2010 was organized by INRIA Nancy-Grand-Est at LORIA, Nancy University.

Members of the program committee

Markus Bléser
Harry Buhrman
Thomas Colcombet
Anuj Dawar
Arnaud Durand
Sandor Fekete
Ralf Klasing
Christian Knauer
Piotr Krysta
Sylvain Lombardy
P. Madhusudan
Jean-Yves Marion
Pierre McKenzie
Rasmus Pagh
Boaz Patt-Shamir
Christophe Paul
Georg Schnitger

Thomas Schwentick

Helmut Seidl

Jiff Sgall
Sebastiano Vigna
Paul Vitanyi

Saarland University

CWI, Amsterdam University
CNRS, Paris 7 University
University of Cambridge

Paris 7 University
Braunschweig University of Technology
CNRS, Bordeaux University
Freie Universitat Berlin
University of Liverpool

Marne la vallée University
University of Illinois

Nancy University (co-chair)
University of Montréal

IT University of Copenhagen
Tel Aviv University

CNRS, Montpellier University
Frankfurt University

TU Dortmund University (co-chair)
TU Munich

Charles University

Universita degli Studi di Milano
CWI, Amsterdam

Members of the organizing committee

Nicolas Alcaraz

Anne-Lise Charbonnier

Jean-Yves Marion
Wadie Guizani

External Reviewers

Ittai Abraham
Eyal Ackerman
Manindra Agrawal
Stefano Aguzzoli
Cyril Allauzen
Eric Allender
Noga Alon

Alon Altman
Andris Ambainis

Amihood Amir
Eric Angel
Esther Arkin
Diego Arroyuelo
Eugene Asarin
Albert Atserias
Nathalie Aubrun
Laszlo Babai
Patrick Baillot

Joergen Bang-Jensen
Vince Barany

Jérémy Barbay
Georgios Barmpalias
Clark Barrett

David Mix Barrington
Luca Becchetti
Wolfgang Bein
Djamal Belazzougui

4 JEAN-YVES MARION AND THOMAS SCHWENTICK

Anne Benoit
Piotr Berman
alberto bertoni
Philippe Besnard
Stéphane Bessy
Laurent Bienvenu
Philip Bille
Davide Bilo
Henrik Bjorklund
Guillaume Blin
Hans Bodlaender

Hans-Joachim Boeckenhauer

Guillaume Bonfante
Vincenzo Bonifaci
Yacine Boufkhad
Laurent Boyer

Zvika Brakerski

Felix Brandt

Jop Briet

Kevin Buchin

Maike Buchin

Andrei Bulatov
Jaroslaw Byrka
Marie-Pierre Béal
Sergio Cabello
Michaél Cadilhac
Arnaud Carayol
Olivier Carton
Giovanni Cavallanti
Rohit Chadha

Amit Chakrabarti
Sourav Chakraborty
Jérémie Chalopin
Jean-Marc Champarnaud
Pierre Charbit
Krishnendu Chatterjee
Arkadev Chattopadhyay
Chandra Chekuri
Ho-Lin Chen

James Cheney

Victor Chepoi
Alessandra Cherubini
Flavio Chierichetti
Giorgos Christodoulou
Marek Chrobak
Richard Cleve

Eric Colin de Verdiére

Colin Cooper
Graham Cormode
Veronique Cortier
Bruno Courcelle
Nadia Creignou
Maxime Crochemore
Jurek Czyzowicz
Flavio D’Alessandro
Jean Daligault
Victor Dalmau
Shantanu Das

Samir Datta

Fabien de Montgolfier
Michel de Rougemont
Sgren Debois

Holger Dell

Camil Demetrescu
Britta Denner-Broser
Bilel Derbel
Jonathan Derryberry
Josee Desharnais
Luc Devroye

Claudia Dieckmann
Scott Diehl

Martin Dietzfelbinger
Frank Drewes

Andy Drucker
Philippe Duchon
Adrian Dumitrescu
Jérome Durand-Lose
David Duris
Stephane Durocher
Ivo Diintsch
Christian Eisentraut
Yuval Emek
Matthias Englert
David Eppstein

Leah Epstein
Thomas Erlebach
Omid Etesami
Kousha Etessami
Guy Even

Rolf Fagerberg
Michael Fellows
Stefan Felsner

Jiri Fiala

Amos Fiat

Bernd Finkbeiner
Irene Finocchi

Felix Fischer

Jorg Flum

Fedor Fomin

Lance Fortnow
Hervé Fournier
Mahmoud Fouz
Pierre Fraigniaud
Gianni Franceschini
Stefan Funke

Nicola Galesi
Philippe Gambette
David Garcia Soriano
Leszek Gasieniec
Serge Gaspers

Serge Gaspers
Bruno Gaujal

Cyril Gavoille
Wouter Gelade
Dirk H.P. Gerrits
Panos Giannopoulos
Richard Gibbens
Hugo Gimbert
Emeric gioan
Christian Glasser
Leslie Ann Goldberg
Paul Goldberg
Rodolfo Gomez
Robert Grabowski
Fabrizio Grandoni
Frederic Green
Serge Grigorieff
Erich Gradel
Joachim Gudmundsson
Sylvain Guillemot
Pierre Guillon

Yuri Gurevich
Venkatesan Guruswami
Peter Habermehl
Gena Hahn

MohammadTaghi Hajiaghayi

Sean Hallgren
Michal Hanckowiak
Sariel Har-Peled
Moritz Hardt

Tero Harju

Matthias Hein
Raymond Hemmecke
Miki Hermann
Danny Hermelin
John Hitchcock
Martin Hoefer
Christian Hoffmann
Frank Hoffmann
Thomas Holenstein
Markus Holzer
Peter Hoyer
Mathieu Hoyrup
Jing Huang

Paul Hunter

Thore Husfeldt
Marcus Hutter
Nicole Immorlica
Shunsuke Inenaga
Riko Jacob
Andreas Jakoby
Alain Jean-Marie
Mark Jerrum
Gwenaél Joret
Stasys Jukna
Valentine Kabanets
Lukasz Kaiser

Tom Kamphans
Mamadou Kanté
Mamadou Moustapha Kanté
Jarkko Kari

Veikko Keranen
Sanjeev Khanna
Stefan Kiefer

Alex Kipnis

Adam Klivans
Johannes Koebler
Natallia Kokash
Petr Kolman
Jochen Konemann
Miroslaw Korzeniowski
Adrian Kosowski
Michal Koucky
Michal Koucky
Matjaz Kovse
Maté Kovacs

Jan Krajicek
Daniel Kral

FOREWORD

Jan Kratochvil
Dieter Kratsch
Stefan Kratsch
Robi Krauthgamer
Steve Kremer
Klaus Kriegel
Danny Krizanc
Alexander Kroeller
Andrei Krokhin
Gregory Kucherov
Denis Kuperberg
Tomi Karki

Juha Karkkéinen
Ekkehard Kohler
Salvatore La Torre
Arnaud Labourel
Gad Landau
Jérdme Lang
Sophie Laplante
Benoit Larose
Silvio Lattanzi
Lap Chi Lau
Soeren Laue
Thierry Lecroq
Troy Lee

Arnaud Lefebvre
Aurelien Lemay
Francois Lemieux
Benjamin Leveque
Asaf Levin
Mathieu Liedloff
Andrzej Lingas
Tadeusz Litak
Christof Loeding
Daniel Lokshtanov
Tzvi Lotker

zvi lotker

Laurent Lyaudet
Florent Madelaine
Frederic Magniez
Meena Mahajan
Anil Maheshwari
Johann Makowsky
Guillaume Malod
Sebastian Maneth
Yishay Mansour
Roberto Mantaci

Bodo Manthey
Martin Mares
Maurice Margenstern
FEuripides Markou
Wim Martens
Barnaby Martin
Kaczmarek Matthieu
Frédéric Mazoit
Damiano Mazza
Carlo Mereghetti
Julian Mestre

Peter Bro Miltersen
Vahab Mirrokni
Joseph Mitchell
Tobias Moemke
Stefan Monnier
Ashley Montanaro
Thierry Monteil
Pat Morin

Hannes Moser
Larry Moss

Luca Motto Ros
Marie-Laure Mugnier
Wolfgang Mulzer
Andrzej Murawski
Filip Murlak
Viswanath Nagarajan
Rouven Naujoks
Jesper Nederlof
Yakov Nekrich

Ilan Newman

Cyril Nicaud
Shuxin Nie
Evdokia Nikolova
Aviv Nisgav

Jean Néraud
Marcel Ochel
Sergei Odintsov
Nicolas Ollinger
Alessio Orlandi
Friedrich Otto
Martin Otto
Sang-il Oum

Linda Pagli
Beatrice Palano
Ondrej Pangrac
Rina Panigrahy

6 JEAN-YVES MARION AND THOMAS SCHWENTICK

Gennaro Parlato
Arno Pauly
Anthony Perez
Martin Pergel
Sylvain Perifel
Rafael Penaloza
Giovanni Pighizzini
Nir Piterman
David Podgorolec
Vladimir Podolskii
Natacha Portier
Sylvia Pott

Victor Poupet
Christophe Prieur
Ariel Procaccia
Guido Proietti
Pavel Pudlak
Arnaud Pécher
Tomasz Radzik
Anup Rao

Dror Rawitz
Saurabh Ray
Christian Reitwiefiner
Eric Remila

Mark Reynolds
Ahmed Rezine
Eric Rivals

Romeo Rizzi
Julien Robert
Peter Rossmanith
Jacques Sakarovitch
Mohammad Salavatipour
Kai Salomaa

Louis Salvail
Marko Samer
Nicola Santoro
Srinivasa Rao Satti
Ignasi Sau

Thomas Sauerwald
Saket Saurabh
Rahul Savani

Petr Savicky
Gabriel Scalosub
Guido Schaefer
Marc Scherfenberg
Lena Schlipf
Stefan Schmid

Christiane Schmidt
Jens M. Schmidt
Henning Schnoor
Warren Schudy
Nils Schweer
Pascal Schweitzer
Daria Schymura
Bernhard Seeger
Raimund Seidel
Pranab Sen
Siddhartha Sen
Olivier Serre
Rocco Servedio
Anil Seth
Alexander Sherstov
Amir Shpilka

Rene Sitters
Alexander Skopalik
Nataliya Skrypnyuk
Michiel Smid
Michiel Smid

Jack Snoeyink
Christian Sohler
Jeremy Sproston
Fabian Stehn
Clifford Stein
Sebastian Stiller
Yann Strozecki
Subhash Suri
Chaitanya Swamy
Till Tantau

Alain Tapp

Anusch Taraz

Nina Sofia Taslaman
Monique Teillaud
Pascal Tesson
Guillaume Theyssier
Dimitrios Thilikos
Wolfgang Thomas
Mikkel Thorup
Christopher Thraves
Ramki Thurimella
Alwen Tiu

Hans Raj Tiwary
Sebastien Tixeuil
Ioan Todinca

Craig Tovey

A.N. Trahtman
Luca Trevisan
Nicolas Trotignon
Falk Unger

Walter Unger
Sarvagya Upadhyay
Wim van Dam
Peter van Emde Boas
Dieter van Melkebeek
Rob van Stee

Anke van Zuylen
Yann Vaxeés
Rossano Venturini
Kolia Vereshchagin
Stéphane Vialette
Ivan Visconti
Smitha Vishveshwara
Mahesh Viswanathan
Heribert Vollmer
Uli Wagner

Igor Walukiewicz
Rolf Wanka,

Egon Wanke

Mark Daniel Ward
Osamu Watanabe
John Watrous
Roger Wattenhofer
Tzu-chieh Wei
Daniel Werner
Ryan Williams

Erik Winfree
Gerhard Woeginger
Philipp Woelfel
Dominik Wojtczak
Paul Wollan

James Worrell

Sai Wu

Andrew C.-C. Yao
Sergey Yekhanin

Ke Yi

Jean-Baptiste Yuneés
Raphael Yuster
Konrad Zdanowski
Mariano Zelke

Akka Zemmari

Uri Zwick.

TABLE OF CONTENTS

Foreword
J.-Y. Marion and T. Schventick

Conference Organisationoiiiiii i
Table of Contentsiiiiiii e e

Invited Talks
Beyond w-Regular Languagesouuoiinimiii i
M. Bojariczyk

Reflections on Multivariate Algorithmics and Problem Parameterization
R. Niedermeier

Mathematics, Cryptology, Securityo,
J. Stern

Contributed Papers
Large-girth roots of graphs i
A. Adamaszek and M. Adamaszek

The tropical double description method
X. Allamigeon, S. Gaubert and E. Goubault

The Remote Point Problem, Small Bias Spaces, and Expanding Generator Sets
V. Arvind and S. Srinivasan

Evasiveness and the Distribution of Prime Numbers................................
L. Babai, A. Banerjee, R. Kulkarni and V. Naik

Dynamic sharing of a multiple access channel
M. Bienkowski, M. Klonowski, M. Korzeniowski and D. R. Kowalsk:

Exact Covers via Determinantsuioet it

A. Bjorklund

On Iterated Dominance, Matrix Elimination, and Matched Paths
F. Brandt, F. Fischer and M. Holzer

AMS Without 4-Wise Independence on Product Domains
V. Braverman, K. Chung, Z. Liu, M. Mitzenmacher and R. Ostrovsky

Quantum algorithms for testing properties of distributions
S. Bravyi, A.W. Harrow and A. Hassidim

Optimal Query Complexity for Reconstructing Hypergraphs
N.H. Bshouty and H. Mazzawi

27th Sympo’sium on Theoretical’ Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2505

TABLE OF CONTENTS

Ultimate Traces of Cellular Automataouiiiieiie s, 155
J. Cervelle, E. Formenti and P. Guillon
Two-phase algorithms for the parametric shortest path problem 167

S. Chakraborty, E. Fischer, O. Lachish and R. Yuster

Continuous Monitoring of Distributed Data Streams over a Time-based Sliding

WNAOW .« ..o e 179
H.L. Chan, T.W. Lam, L.K. Lee and H.F. Ting
Robust Fault Tolerant uncapacitated facility location 191

S. Chechik and D. Peleg

Efficient and Error-Correcting Data Structures for Membership and Polynomial

Evaluation. 203
V. Chen, E. Grigorescu and R. de Wolf

Log-space Algorithms for Paths and Matchings in k-trees 215
B. Das, S. Datta and P. Nimbhorkar

Restricted Space Algorithms for Isomorphism on Bounded Treewidth Graphs 227
B. Das, J. Tordn and F. Wagner

The Traveling Salesman Problem, Under Squared Fuclidean Distances 239

M. de Berg, F. van Nijnatten, R. Sitters, G. J. Woeginger and A. Wolff

Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed

GraD S o 251
F. Dorn, F.V. Fomin, D. Lokshtanov, V. Raman and S. Saurabh

Planar Subgraph Isomorphism Revisited i i 263
F. Dorn

Intrinsic Universality in Self-Assembly i, 275
D. Doty, J.H. Lutz, M.J. Patitz, S.M. Summers and D. Woods

Sponsored Search, Market Equilibria, and the Hungarian Method 287
P. Ditting, M. Henzinger and I. Weber

Dispersion in unit disks e 299
A. Dumitrescu and M. Jiang

Long non-crossing configurations in the plane 311
A. Dumitrescu and C. D. Téth

The Complexity of Approximating Bounded-Degree Boolean #CSP 323
M. Dyer, L.A. Goldberg, M. Jalsenius and D.M. Richerby

The complexity of the list homomorphism problem for graphs...................... 335

L. Egri, A. Krokhin, B. Larose and P. Tesson

Improved Approximation Guarantees for Weighted Matching in the Semi-Streaming

Model . ..o 347
L. Epstein, A. Levin, J. Mestre and D. Segev
Computing Least Fixed Points of Probabilistic Systems of Polynomials............. 359

J. Esparza, A. Gaiser and S. Kiefer

TABLE OF CONTENTS 9

The k-in-a-path problem for claw-free graphs i i, 371
J. Fiala, M. Kaminski, B. Lidicky and D. Paulusma

Finding Induced Subgraphs via Minimal Triangulations 383
F.V. Fomin and Y. Villanger

Inseparability and Strong Hypotheses for Disjoint NP Pairs 395
L. Fortnow, J.H. Lutz and E. Mayordomo

Branching-time model checking of one-counter processesooon... 405
S. Géller and M. Lohrey

Evolving MultiAlgebras, unify all usual sequential computation models............. 417

S. Grigorieff and P. Valarcher

Collapsing and Separating Completeness Notions under Average-Case and

Worst-Case Hypotheseso i e 429
X. Gu, J.M. Hitchcock and A. Pavan
Revisiting the Rice Theorem of Cellular Automata 441

P. Guillon and G. Richard

On optimal heuristic randomized semidecision procedures, with application to proof
COMPLEXItY . . .ot 453
E.A. Hirsch and D. Itsykson

Weakening Assumptions for Deterministic Subexponential Time Non-Singular

Matrix Completion e 465
M. Jansen
On equations over sets of integers ...t 477

A. Jez and A. Okhotin

A %—competitive randomized algorithm for online scheduling of packets with

agreeable deadlines 489
L. Jez

Collapsible Pushdown Graphs of Level 2 are Tree-Automatic....................... 501
A. Kartzow

Approximate shortest paths avoiding a failed vertex : optimal size data structures

for unweighted graphs 513
N. Khanna and S. Baswana

Holant Problems for Regular Graphs with Complex Edge Functions 525
M. Kowalczyk and J.-Y. Cai

Is Ramsey’s theorem w-automatic? i 537
D. Kuske

An Efficient Quantum Algorithm for some Instances of the Group Isomorphism

Problem 549
F. Le Gall

Treewidth reduction for constrained separation and bip artization problems........ 561

D. Marz, B. O’Sullivan and I. Razgon

10

TABLE OF CONTENTS

Online Correlation CIUSteringoiiuiii e 273
C. Mathieu, O. Sankur and W. Schudy

The Recognition of Tolerance and Bounded Tolerance Graphs...................... 585
G.B. Mertzios, 1. Sau and S. Zaks

Decidability of the interval temporal logic ABB over the natural numbers.......... 597
A. Montanari, G. Puppis, P. Sala and G. Sciavicco

Relaxed spanners for directed disk graphs i 609
D. Peleg and L. Roditty

Unsatisfiable Linear CNF Formulas Are Large and Complex 621
D. Scheder

Construction Sequences and Certifying 3-Connectedness, 633
J.M. Schmadt

Named Models in Coalgebraic Hybrid Logico oot 645
L. Schroder and D. Pattinson

A dichotomy theorem for the general minimum cost homomorphism problem....... 657
R. Takhanov

Alternation-Trading Proofs, Linear Programming, and Lower Bounds 669

R.R. Williams

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 11-16
www.stacs-conf.org

BEYOND w-REGULAR LANGUAGES

MIKOLAJ BOJANCZYK

University of Warsaw
E-mail address: bojan@mimuw.edu.pl
URL: www.mimuw.edu.pl/~bojan

ABSTRACT. The paper presents some automata and logics on w-words, which capture all
w-regular languages, and yet still have good closure and decidability properties.

The notion of w-regular language is well established in the theory of automata. The
class of w-regular languages carries over to w-words many of the good properties of regular
languages of finite words. It can be described using automata, namely by nondeterministic
Biichi automata, or the equivalent deterministic Muller automata. It can be described using
a form of regular expressions, namely by w-regular expressions. It can be described using
logic, namely by monadic second-order logic, or the equivalent weak monadic-second order
logic.

This paper is about some recent work [1, 3, 2, 4], which argues that there are other
robust classes of languages for w-words. The following languages serve as guiding examples.

Lp ={a™ba"b---:limsupn; < oo} Lg ={a™ba"b--- : liminfn; = oo}

Neither of these languages is w-regular in the accepted sense. One explanation is that Lg
contains no ultimately periodic word, as does the complement of Lg. Another explanation
is that an automaton recognizing either of these languages would need an infinite amount
of memory, to compare the numbers ny,no, ...

Both of these explanations can be disputed.

Concerning the first explanation: why should ultimately periodic words be so impor-
tant? Clearly there are other finite ways of representing infinite words. A nonempty Biichi
automaton will necessarily accept an ultimately periodic word, and hence their importance
in the theory of w-regular languages. But is this notion canonic? Or is it just an artefact
of the syntax we use?

Concerning the second explanation: what does “infinite memory” mean? After all, one
could also argue that the w-regular language (a*b)“ needs infinite memory, to count the
b’s that need to appear infinitely often. In at least one formalization of “memory”, the
languages Lp and Lg do not need infinite memory. The formalization uses a Myhill-Nerode
style equivalence. For a language L C A%, call two finite words L-equivalent if they can be

Key words and phrases: automata, monadic second-order logic.
Author supported by ERC Starting Grant “Sosna”.

SYMPOSIUM
"V' ON THEORETICAL
m }_ ASPECTS
N7 S%FFESEPUTER © M. Bojanczyk
© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2440

12 M. BOJANCZYK

swapped a finite or infinite number of times without L noticing. Formally, words w,v € A*
are called L-equivalent if both conditions below hold.

wwug € L <= ujvug € L for u; € A*,us € A¥
UWUWUSW - - - € L <> ujvugvugv--- € L for uy,usg,... € A*.

One can show that Lp-equivalence has three equivalence classes, and Lg-equivalence has
four equivalence classes. Therefore, at least in this Myhill-Nerode sense, the languages Lpg
and Lg do not need infinite memory.

The rest of this paper presents some language classes which capture Lg and Lg, and
which have at least some of the robustness properties one would expect from regular lan-
guages. We begin with a logic.

MSO with the unbounding quantifier. Monadic second-order logic (MSO) captures
exactly the w-regular languages. To define the languages Lp and Lg, some new feature is
needed. Consider a new quantifier UX ¢(X), introduced in [1], which says that formula
p(X) is satisfied by arbitrarily large finite sets X, i.e.

UX o(X)= A\ 3X (o(X) A n<[X[<o0).
neN
As usual with quantifiers, the formula ¢(X) might have other free variables than X. We
write MSO+U for the extension of MSO where this quantifier is allowed. It is difficult
to say if U is an existential or universal quantifier, since its definition involves an infinite
conjunction of existential formulas.

Let us see some examples of formulas of MSO+U. Consider a formula block(X) which
says that X contains all positions between two consecutive b’s. To define the language Lp
in the logic MSO+U, we need to say that: i) there are infinitely many b’s and ii) the size of
blocks is not unbounded. This is done by the following formula.

Vedy(x <y Ably)) A —UX block(X).

For the language Lg, we need a more sophisticated formula. It is easier to write a formula
for the complement of Lg. The formula says that there exists a set Z, which contains
infinitely many blocks, as stated by the formula

Vy3X (block(X)ANX CZAVz (z€ X —y<uz)),
but the size of the blocks in X is bounded, as stated by the formula
—UX (block(X)NX C Z).

Note that the set Z is infinite. This will play a role later on, when we talk about weak
logics, which can only quantify over finite sets.

The class of languages of w-words that can be defined in MSO+-U is our first candidate
for a new definition of “regular languages”. It is also the largest class considered in this
paper — it contains all the other classes that will be described below. By its very definition,
the class is closed under union, complementation, projection, etc. The big problem is that
we do not know if satisfiability is decidable for formulas of MSO+U over w-words, although
we conjecture it is.

Of course, decidable emptiness/satisfiability is very important if we want to talk about
“regular languages”. We try to attack this question by introducing automata models, some
of which are described below. There will be the usual tradeoffs: nondeterministic automata

BEYOND w-REGULAR LANGUAGES 13

are closed under projections (existential set quantifiers), while deterministic automata are
closed under boolean operations.

We begin with the strongest automaton model, namely nondeterministic BS-automata,
which were introduced in [3]'.
Nondeterministic BS-automata. A nondeterministic BS-automaton is defined like an
NFA. The differences are: it does not have a set of accepting states, and it is equipped
with a finite set C' of counters, a counter update function and acceptance condition, as
described below. The counter update function maps each transition to a finite, possibly
empty, sequence of operations of the form

ci=c+1 ¢c:=0 c:=d for ¢,d € C.

Let p be a run of the automaton over an input w-word, as defined for nondeterministic
automata on infinite words. The set of runs for a given input word is independent of the
counters, counter update function and acceptance condition.

What are the counters used for? They are used to say when a run p is accepting. For
a counter ¢ € C' and a word position i € N, we consider the number val(p, ¢, i), which is
the value of counter c¢ after doing the first ¢ transitions. (All counters start with zero.)
These numbers are then examined by the acceptance condition, which talks about their
assymptotic behavior. (This explains why nondeterministic BS-automata cannot describe
patterns usually associated with counter automata, such as ab™.) Specifically, the accep-
tance condition is a positive boolean combination of conditions of the three kinds below.

lim sup val(p, ¢, i) < 0o lim inf val(p, ¢, i) = oo “state g appears infinitely often”
i (]

The first kind of condition is called a B-condition (because it requires counter ¢ to be
bounded), the second kind of condition is called an S-condition (in [3], a number sequence
converging to oo was called “strongly unbounded”), and the last kind of condition is called
a Biichi condition.

Emptiness for nondeterministic BS-automata is decidable [3]. The emptiness procedure
searches for something like the “lasso” that witnesses nonemptiness of a Biichi automaton.
The notion of lasso for nondeterministic BS-automata is more complicated, and leads to
a certain class of finitely representable infinite words, a class which extends the class of
ultimately periodic words.

Consider the languages recognized by nondeterministic BS-automata. These languages
are closed under union and intersection, thanks to the usual product construction. These
languages are closed under projection (or existential set quantification), thanks to nondeter-
minism. These languages are also closed under a suitable definition of the quantifier U for
languages, see [3]. If these languages were also closed under complement, then nondetermin-
istic BS-automata would recognize all languages definable in MSO+U (and nothing more,
since existence of an accepting run of a nondeterministic BS-automaton can be described
in the logic).

Unfortunately, complementation fails. There is, however, a partial complementation
result, which concerns two subclasses of nondeterministic BS-automata. An automaton

IFor consistency of presentation, the definition given here is slightly modified from the one in [3]: the
automata can move values between counters, and they can use Biichi acceptance conditions. These changes
do not affect the expressive power.

14 M. BOJANCZYK

that does not use S-conditions is called a B-automaton; an automaton that does not use
B-conditions is called an S-automaton.

Theorem 1 ([3]). The complement of a language recognized by a nondeterministic B-
automaton is recognized by a nondeterministic S-automaton, and vice versa.

The correspondence is effective: from a B-automaton we can compute an S-automaton
for the complement, and vice versa. The proof of Theorem 1 is difficult, because it has to
deal with nondeterministic automata. (Somewhat like complementation of nondeterministic
automata on infinite trees in the proof of Rabin’s theorem.) The technical aspects are
similar to, but more general than, Kirsten’s decidability proof [8] of the star height problem
in formal language theory. In particular, it is not difficult to prove, using Theorem 1, that
the star height problem is decidable.

Deterministic max-automata. As mentioned above, nondeterministic BS-automata are
not closed under complement. A typical approach to the complementation problem is to
consider deterministic automata; this is the approach described below, following [2].

A deterministic max-automaton is defined like a BS-automaton, with the following dif-
ferences: a) it is deterministic; b) it has an additional counter operation ¢ := max(d, e);
and c) its acceptance condition is a boolean (not necessarily positive) combination of B-
conditions. The max operation looks dangerous, since it seems to involve arithmetic. How-
ever, the counters are only tested for the limits, and this severely restricts the way max
can be used. One can show that nondeterminism renders the max operation redundant, as
stated by Theorem 2 below. (For deterministic automata, max is not redundant.)

Theorem 2 ([2]). Every language recognized by a deterministic maz-automaton is a boolean
combination of languages recognized by nondeterministic B-automata.

By Theorem 1, every boolean combination of languages recognized by nondeterministic
B-automata is equivalent to a positive boolean combination of languages recognized by
nondeterministic B-automata, and nondeterministic S-automata. Such a positive boolean
combination is, in turn, recognized by a single nondeterministic BS-automaton, since these
are closed under union and intersection. It follows that every deterministic max-automaton
is equivalent to a nondeterministic BS-automaton. Since the equivalence is effective, we get
an algorithm for deciding emptiness of deterministic max-automata. (A direct approach to
deciding emptiness of deterministic max-automata is complicated by the max operation.)

So what is the point of deterministic max-automata?

The point is that they have good closure properties. (This also explains why the max
operation is used. The version without max does not have the closure properties described
below.) Since the automata are deterministic, and the acceptance condition is closed under
boolean combinations, it follows that languages recognized by deterministic max-automata
are closed under boolean combinations. What about the existential set quantifier? If we
talk about set quantification like in MSO, where infinite sets are quantified, then the answer
is no [2]; closure under existential set quantifiers is essentially equivalent to nondeterminism.
However, it turns out that quantification over finite sets can be implemented by determin-
istic max-automata, which is stated by Theorem 3 below. The theorem refers to weak
MSO+U, which is the fragment of MSO+U where the set quantifiers 3 and V are restricted
to finite sets.

Theorem 3 ([2]). Deterministic maz-automata recognize exactly the languages that can be

defined in weak MSO+U.

BEYOND w-REGULAR LANGUAGES 15

Other deterministic automata. There is a natural dual automaton to a determinis-
tic max-automaton, namely a deterministic min-automaton, see [4]. Instead of max this
automaton uses min; instead of boolean combinations of B-conditions, it uses boolean com-
binations of S-conditions. While the duality is fairly clear on the automaton side, it is less
clear on the logic side: we have defined only one new quantifier U, and this quantifier is
already taken by max-automata, which capture exactly weak MSO+U.

The answer is to add a new quantifier R, which we call the recurrence quantifier. If
quantification over infinite sets is allowed, the quantifier R can be defined in terms of U and
vice versa; so we do not need to talk about the logic MSO+U+R. For weak MSO, the new
quantifier is independent. So what does this new quantifier say? It says that the family of
sets X satisfying ¢(X) contains infinitely many sets of the same finite size:

RX p(X) = \/ 3oX (@(X) A |X]|=n).
neN
If the quantifier U corresponds to the complement of the language Lp (it can say there
are arbitrarily large blocks); the new quantifier R corresponds to the complement of the
language Lg (it can say some block size appears infinitely often).

Theorem 4 ([4]). Deterministic min-automata recognize exactly the languages that can be
defined in weak MSO+R.

The proof shares many similarities with the proof of Theorem 3. Actually, some of
these similarities can be abstracted into a general framework on deterministic automata,
which is the main topic of [4]. One result obtained from this framework, Theorem 5 below,
gives an automaton model for weak MSO with both quantifiers U and R.

Theorem 5 ([4]). Boolean combinations of deterministic min-automata and deterministic
max-automata recognize exactly the languages that can be defined in weak MSO+U+R.

The framework also works for different quantifiers, such as a perodicity quantifier (which
binds a first-order variable x instead of a set variable X), defined as follows

Px p(x) = the positions = that satisfy ¢(x) are ultimately periodic.

Closing remarks. Above, we have described several classes of languages of w-words, de-
fined by: the logics with new quantifiers and automata with counters. Each of the classes
captures all the w-regular languages, and more. Some of the models are more powerful,
others have better closure properties; all describe languages that can reasonably be called
“regular”.

There is a lot of work to do on this topic. The case of trees is a natural candidate, some
results on trees can be found in [6, 7]. Another question is about the algebraic theory of
the new languages; similar questions but in the context of finite words were explored in [5].

References

[1] M. Bojariczyk. A Bounding Quantifier. In Computer Science Logic, pages 41-55, 2004.

[2] M. Bojariczyk. Weak MSO with the Unbounding Quantifier. In Symposium on Theoretical Aspects of
Computer Science, pages 233-245, 2009.

[3] M. Bojaiiczyk and T. Colcombet. w-Regular Expressions with Bounds. In Logic in Computer Science,
pages 285-296, 2006.

16 M. BOJANCZYK

[4] M. Bojaiczyk and S. Toruniczyk. Deterministic Automata and Extensions of Weak MSO. In Foundations
of Software Technology and Theoretical Computer Science, 2009.

[5] T. Colcombet. The Theory of Stabilisation Monoids and Regular Cost Functions. In International Col-
loqguium on Automata, Languages and Programming, 2009.

[6] T. Colcombet and C. Loding. The Nondeterministic Mostowski Hierarchy and Distance-Parity Automata.
In International Colloquium on Automata, Languages and Programming 2008: 398-409

[7] T. Colcombet and C. Loding. The Nesting-Depth of Disjunctive mu-calculus for Tree Languages and the
Limitedness Problem. In Computer Science Logic, pages 416-430, 2008

[8] D. Kirsten. Distance desert automata and the star height problem. Theoretical Informatics and Applica-
tions, 39(3):455-511, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 17-32
www.stacs-conf.org

REFLECTIONS ON MULTIVARIATE ALGORITHMICS AND
PROBLEM PARAMETERIZATION

ROLF NIEDERMEIER

Institut fiir Informatik, Friedrich-Schiller-Universitdt Jena, Ernst-Abbe-Platz 2, D-07743 Jena,
Germany
E-mail address: rolf.niedermeier@uni-jena.de

ABSTRACT. Research on parameterized algorithmics for NP-hard problems has steadily
grown over the last years. We survey and discuss how parameterized complexity analysis
naturally develops into the field of multivariate algorithmics. Correspondingly, we describe
how to perform a systematic investigation and exploitation of the “parameter space” of
computationally hard problems.
Algorithms and Complexity; Parameterized Algorithmics; Coping with Computational
Intractability; Fixed-Parameter Tractability

1. Introduction

NP-hardness is an every-day obstacle for practical computing. Since there is no hope for
polynomial-time algorithms for NP-hard problems, it is pragmatic to accept exponential-
time behavior of solving algorithms. Clearly, an exponential growth of the running time
is bad, but maybe affordable, if the combinatorial explosion is modest and/or can be con-
fined to certain problem parameters. This line of research has been pioneered by Downey
and Fellows’ monograph “Parameterized Complexity” [24] (see [32, 57] for two more recent
monographs). The number of investigations in this direction has steadily grown over the
recent years. A core question herein is what actually “a” or “the” parameter of a compu-
tational problem is. The simple answer is that there are many reasonable possibilities to
“parameterize a problem”. In this survey, we review some aspects of this “art” of problem
parameterization.! Moreover, we discuss corresponding research on multivariate algorith-
mics, the natural sequel of parameterized algorithmics when expanding to multidimensional
parameter spaces.

We start with an example. The NP-complete problem POSSIBLE WINNER FOR k-
APPROVAL is a standard problem in the context of voting systems. In the k-approval
protocol, for a given set of candidates, each voter can assign a score of 1 to k£ of these
candidates and the rest of the candidates receive score 0. In other words, each voter may
linearly order the candidates; the “first” k candidates in this order score 1 and the remaining
ones score 0. A winner of an election (where the input is a collection of votes) is a candidate
who achieves the maximum total score. By simple counting this voting protocol can be

"n previous work [56, 57], we discussed the “art” of parameterizing problems in a less systematic way.

L SYMPOSIUM
V" ON THEORETICAL
) Y =) aspecTs
4 7 / OF COMPUTER ©

SCIENCE R. Niedermeier

© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2495

18 R. NIEDERMEIER

evaluated in linear time. In real-world applications, however, a voter may only provide
a partial order of the candidates: The input of POSSIBLE WINNER FOR k-APPROVAL is
a set of partial orders on a set of candidates and a distinguished candidate d, and the
question is whether there exists an extension for each partial order into a linear one such
that d wins under the k-approval protocol. POSSIBLE WINNER FOR k-APPROVAL is NP-
complete already in case of only two input votes when k is part of the input [10]. Moreover,
for an unbounded number of votes POSSIBLE WINNER FOR 2-APPROVAL is NP-complete [7].
Hence, POSSIBLE WINNER FOR k-APPROVAL parameterized by the number v of votes as well
as parameterized by k remains intractable. In contrast, the problem turns out to be fixed-
parameter tractable when parameterized by the combined parameter (v, k) [6], that is, it can
be solved in f(v, k) - poly time for some computable function f only depending on v and k
(see Section 2 for more on underlying notions). In summary, this implies that to better
understand and cope with the computational complexity of POSSIBLE WINNER FOR k-
APPROVAL, we should investigate its parameterized (in)tractability with respect to various
parameters and combinations thereof. Parameter combinations—this is what multivariate
complexity analysis refers to—may be unavoidable to get fast algorithms for relevant special
cases. In case of POSSIBLE WINNER FOR k-APPROVAL such an important special case is
a small number of votes? together with a small value of k. Various problem parameters
often come up very naturally. For instance, besides v and k, a further parameter here is the
number ¢ of candidates. Using integer linear programming, one can show that POSSIBLE
WINNER FOR k-APPROVAL is fixed-parameter tractable with respect to the parameter ¢ [10].

Idealistically speaking, multivariate algorithmics aims at a holistic approach to deter-
mine the “computational nature” of each NP-hard problem. To this end, one wants to
find out which problem-specific parameters influence the problem’s complexity in which
quantitative way. Clearly, also combinations of several single parameters should be inves-
tigated. Some parameterizations may yield hardness even in case of constant values, some
may yield polynomial-time solvability in case of constant values, and in the best case some
may allow for fixed-parameter tractability results.® Hence, the identification of “reasonable”
problem parameters is an important issue in multivariate algorithmics. In what follows, we
describe and survey systematic ways to find interesting problem parameters to be exploited
in algorithm design. This is part of the general effort to better understand and cope with
computational intractability, culminating in the multivariate approach to computational
complexity analysis.

2. A Primer on Parameterized and Multivariate Algorithmics

Consider the following two NP-hard problems from algorithmic graph theory. Given
an undirected graph, compute a minimum-cardinality set of vertices that either cover all
graph edges (this is VERTEX COVER) or dominate all graph vertices (this is DOMINATING
SET). Herein, an edge e is covered by a vertex v if v is one of the two endpoints of e, and
a vertex v is dominated by a vertex w if u and v are connected by an edge. By definition,
every vertex dominates itself. The NP-hardness of both problems makes the search for

2There are realistic voting scenarios where the number of candidates is large and the number of voters is
small. For instance, this is the case when a small committee decides about many applicants.

3For input size n and parameter value k, a running time of O(nk) would mean polynomial-time solvable
for constant values of k whereas a running time of say O(2"n) would mean fixed-parameter tractability with
respect to the parameter k, see Section 2 for more on this.

MULTIVARIATE ALGORITHMICS AND PROBLEM PARAMETERIZATION 19

polynomial-time solving algorithms hopeless. How fast can we solve these two minimization
problems in an exact way? Trying all possibilities, for an n-vertex graph in case of both
problems we end up with an algorithm running in basically 2™ steps (times a polynomial),
being infeasible for already small values of n. However, what happens if we only search
for a size-at-most-k solution set? Trying all size-k subsets of the n-vertex set as solution
candidates gives a straightforward algorithm running in O(n**2) steps. This is superior to
the 2"-steps algorithm for sufficiently small values of k, but again turns infeasible already
for moderate k-values. Can we still do better? Yes, we can—but seemingly only for VERTEX
COVER. Whereas we do not know any notably more efficient way to solve DOMINATING
SET [24, 20], in case of VERTEX COVER a simple observation suffices to obtain a 2¥-step
(times a polynomial) algorithm: Just pick any edge and branch the search for a size-k
solution into the two possibilities of taking one of the two endpoints of this edge. One
of them has to be in an optimal solution! Recurse (branching into two subcases) to find
size-(k — 1) solutions for the remaining graphs where the already chosen vertex is deleted.
In this way, one can achieve a search tree of size 2¥, leading to the stated running time.
In summary, there is a simple 2*-algorithm for VERTEX COVER whereas there is only an
n9®)_algorithm for DOMINATING SET. Clearly, this makes a huge difference in practical
computing, although both algorithms can be put into the coarse category of “polynomial
time for constant values of k”. This categorization ignores that in the one case k influences
the degree of the polynomial and in the other it does not—the categorization is too coarse-
grained; a richer modelling is needed. This is the key contribution parameterized complexity
analysis makes.

To better understand the different behavior of VERTEX COVER and DOMINATING SET
concerning their solvability in dependence on the parameter k (solution size) historically
was one of the starting points of parameterized complexity analysis [24, 32, 57]. Roughly
speaking, it deals with a “function battle”, namely the typical question whether an nO k).
algorithm can be replaced by a significantly more efficient f(k)-algorithm where f is a
computable function exclusively depending on k; in more general terms, this is the question
for the fixed-parameter tractability (fpt) of a computationally hard problem. VERTEX
COVER is fpt, DOMINATING SET, classified as W[l]-hard (more precisely, W[2]-complete)
by parameterized complexity theory, is very unlikely to be fpt. Intuitively speaking, a
parameterized problem being classified as W[1]-hard with respect to parameter k& means
that it is as least as hard as computing a k-vertex clique in a graph. There seems to be no
hope for doing this in f(k) - n°M) time for a computable function f.

More formally, parameterized complexity is a two-dimensional framework for studying
the computational complexity of problems [24, 32, 57]. One dimension is the input size n
(as in classical complexity theory), and the other one is the parameter k (usually a positive
integer). A problem is called fized-parameter tractable (fpt) if it can be solved in f(k)-n®™)
time, where f is a computable function only depending on k. This means that when solving
a problem that is fpt, the combinatorial explosion can be confined to the parameter. There
are numerous algorithmic techniques for the design of fixed-parameter algorithms, including
data reduction and kernelization [11, 41], color-coding [3] and chromatic coding [2], itera-
tive compression [58, 40], depth-bounded search trees, dynamic programming, and several
more [44, 60]. Downey and Fellows [24] developed a parameterized theory of computational
complexity to show fixed-parameter intractability. The basic complexity class for fixed-
parameter intractability is called W[1] and there is good reason to believe that W[1]-hard
problems are not fpt [24, 32, 57]. Indeed, there is a whole complexity hierarchy FPT C

20 R. NIEDERMEIER

WI1] € W[2] C ... C XP, where XP denotes the class of parameterized problems that can
be solved in polynomial time in case of constant parameter values. See Chen and Meng [22]
for a recent survey on parameterized hardness and completeness. Indeed, the typical ex-
pectation for a parameterized problem is that it either is in FPT or is W[1]-hard but in XP
or already is NP-hard for some constant parameter value.

In retrospective, the one-dimensional NP-hardness theory [34] and its limitations to
offer a more fine-grained description of the complexity of exactly solving NP-hard problems
led to the two-dimensional framework of parameterized complexity analysis. Developing
further into multivariate algorithmics, the number of corresponding research challenges
grows, on the one hand, by identifying meaningful different parameterizations of a single
problem, and, on the other hand, by studying the combinations of single parameters and
their impact on problem complexity. Indeed, multivariation is the continuing revolution of
parameterized algorithmics, lifting the two-dimensional framework to a multidimensional
one [27].

3. Ways to Parameter Identification

From the very beginning of parameterized complexity analysis the “standard parame-
terization” of a problem referred to the cost of the solution (such as the size of a vertex set
covering all edges of a graph, see VERTEX COVER). For graph-modelled problems, “struc-
tural” parameters such as treewidth (measuring the treelikeness of graphs) also have played
a prominent role for a long time. As we try to make clear in the following, structural prob-
lem parameterization is an enormously rich field. It provides a key to better understand
the “nature” of computational intractability. The ultimate goal is to quantitatively classify
how parameters influence problem complexity. The more we know about these interactions,
the more likely it becomes to master computational intractability.

Structural parameterization, in a very broad sense, is the major issue of this section.
However, there is also more to say about parameterization by “solution quality” (solution
cost herein being one aspect), which is discussed in the first subsection. This is followed
by several subsections which can be interpreted as various aspects of structural parameter-
ization. It is important to realize that it may often happen that different parameterization
strategies eventually lead to the same parameter. Indeed, also the proposed strategies may
overlap in various ways. Still, however, each of the subsequent subsections shall provide a
fresh view on parameter identification.

3.1. Parameterizations Related to Solution Quality

The Idea. The classical and most often used problem parameter is the cost of the solution
sought after. If the solution cost is large, then it makes sense to study the dual parameter
(the cost of the elements not in the solution set) or above guarantee parameterization (the
guarantee is the minimum cost every solution must have and the parameter measures the
distance from this lower bound). Solution quality, however, also may refer to quality of
approximation as parameter, or the “radius” of the search area in local search (a standard
method to design heuristic algorithms where the parameter k£ determines the size of a k-local
neighborhood searched).

MULTIVARIATE ALGORITHMICS AND PROBLEM PARAMETERIZATION 21

Examples. To find a size-k vertex cover in an n-vertex graph is solvable in O(1.28% 4 kn)
time [21], that is, VERTEX COVER is fixed-parameter tractable. In contrast, finding a size-k
dominating set is W[1]-hard. In case of VERTEX COVER, the dual parameterization leads to
searching for a size-(n — k') vertex cover, where £’ is the number of vertices not contained in
the vertex cover. This problem is W[1]-hard with respect to the parameter k' [24]. Indeed,
this problem is equivalent to finding a size-k’ independent set of vertices in a graph. This
means that the corresponding problems VERTEX COVER and INDEPENDENT SET are dual
to each other.

Above guarantee parameterization was pioneered by Mahajan and Raman [49] studying
the MAXIMUM SATISFIABILITY problem, noting that in every boolean formula in conjunctive
normal form one can satisfy at least half of all clauses. Hence, an obvious parameterization
(leading to fixed-parameter tractability) is whether one can satisfy at least [m/2]+k clauses
of a formula in conjunctive normal form. Herein, m denotes the total number of clauses
and the parameter is k, measuring the distance to the guaranteed threshold [m/2]. There
is recent progress on new techniques and results in this direction [50, 1]. A long-standing
open problem is to determine the parameterized complexity of finding a size-([n/4] + k)
independent set in an n-vertex planar graph, parameterized by k.

Marx [53] surveyed many facets of the relationship between approximation and param-
eterized complexity. For instance, he discussed the issue of ratio-(1+¢) approximation (that
is, polynomial-time approximation schemes (PTAS’s)) parameterized by the quality of ap-
proximation measure 1/e. The central question here is whether the degree of the polynomial
of the running time depends on the parameter 1/¢ or not.

Khuller et al. [45] presented a fixed-parameter tractability result for k-local search (pa-
rameterized by k) for the MINIMUM VERTEX FEEDBACK EDGE SET problem. In contrast,
Marx [54] provided W[1]-hardness results for k-local search for the TRAVELING SALESMAN
problem. Very recently, fixed-parameter tractability results for k-local search for planar
graph problems have been reported [31].

Discussion. Parameterization by solution quality becomes a colorful research topic when
going beyond the simple parameter “solution size.” Above guarantee parameterization
and k-local search parameterization still seem to be at early development stages. The
connections of parameterization to polynomial-time approximation and beyond still lack a
deep and thorough investigation [53].

3.2. Parameterization by Distance from Triviality

The Idea. Identify polynomial-time solvable special cases of the NP-hard problem under
study. A “distance from triviality”-parameter then shall measure how far the given instance
is away from the trivial (that is, polynomial-time solvable) case.

Examples. A classical example for “distance from triviality”-parameterization are width
concepts measuring the similarity of a graph compared to a tree. The point is that many
graph problems that are NP-hard on general graphs become easily solvable when restricted
to trees. The larger the respective width parameter is, the less treelike the considered graph
is. For instance, VERTEX COVER and DOMINATING SET both become fixed-parameter
tractable with respect to the treewidth parameter; see Bodlaender and Koster [12] for a

22 R. NIEDERMEIER

survey. There are many more width parameters measuring the treelikeness of graphs, see
Hlinény et al. [42] for a survey.

Besides measuring treewidth, alternatively one may also study the feedback vertex set
number to measure the distance from a tree. Indeed, the feedback vertex set number of
a graph is at least as big as its treewidth. Kratsch and Schweitzer [47] showed that the
GRAPH [SOMORPHISM problem is fixed-parameter tractable when parameterized by the
feedback vertex set size; in contrast, this is open with respect to the parameter treewidth.
A similar situation occurs when parameterizing the BANDWIDTH problem by the vertex
cover number of the underlying graph [30].

Further examples for the “distance from triviality”-approach appear in the context of
vertex-coloring of graphs [18, 51]. Here, for instance, coloring chordal graphs is polynomial-
time solvable and the studied parameter measures how many edges to delete from a graph
to make it chordal; this turned out to be fixed-parameter tractable [51]. Dein¢ko et al. [23]
and Hoffman and Okamoto [43] described geometric “distance from triviality”-parameters
by measuring the number of points inside the convex hull of a point set. A general view on
“distance from triviality”-parameterization appears in Guo et al. [39].

Discussion. Measuring distance from triviality is a very broad and flexible way to generate
useful parameterizations of intractable problems. It helps to better analyze the transition
from polynomial- to exponential-time solvability.

3.3. Parameterization Based on Data Analysis

The Idea. With the advent of algorithm engineering, it has become clear that algorithm
design and analysis for practically relevant problems should be part of a development cy-
cle. Implementation and experiments with a base algorithm combined with standard data
analysis methods provide insights into the structure of the considered real-world data which
may be quantified by parameters. Knowing these parameters and their typical values then
can inspire new solving strategies based on multivariate complexity analysis.

Examples. A very simple data analysis in graph problems would be to check the maximum
vertex degree of the input graph. Many graph problems can be solved faster when the
maximum degree is bounded. For instance, INDEPENDENT SET is fixed-parameter tractable
on bounded-degree graphs (a straightforward depth-bounded search tree does) whereas it
is W[1]-hard on general graphs.

Song et al. [61] described an approach for the alignment of a biopolymer sequence (such
as an RNA or a protein) to a structure by representing both the sequence and the structure
as graphs and solving some subgraph problem. Observing the fact that for real-world
instances the structure graph has small treewidth, they designed practical fixed-parameter
algorithms based on the parameter treewidth. Refer to Cai et al. [19] for a survey on
parameterized complexity and biopolymer sequence comparison.

A second example deals with finding dense subgraphs (more precisely, some form of
clique relaxations) in social networks [55]. Here, it was essential for speeding up the algo-
rithm and making it practically competitive that there were only relatively few hubs (that
is, high-degree vertices) in the real-world graph. The corresponding algorithm engineering
exploited this low parameter value.

MULTIVARIATE ALGORITHMICS AND PROBLEM PARAMETERIZATION 23

Discussion. Parameterization by data analysis goes hand in hand with algorithm engi-
neering and a data-driven algorithm design process. It combines empirical findings (that is,
small parameter values measured in the input data) with rigorous theory building (provable
fixed-parameter tractability results). This line of investigation is still underdeveloped in
parameterized and multivariate algorithmics but is a litmus test for the practical relevance
and impact on applied computing.

3.4. Parameterizations Generated by Deconstructing Hardness Proofs

The Idea. Look at the (many-one) reductions used to show a problem’s NP-hardness.
Check whether certain quantities (that is, parameters) are assumed to be unbounded in
order to make the reduction work. Parameterize by these quantities. It is important to
note that this approach naturally extends to deconstructing W|1]-hardness proofs; here the
goal is to find additional parameters to achieve fixed-parameter tractability results.

Examples. Recall our introductory example with POSSIBLE WINNER FOR k-APPROVAL.
From the corresponding NP-hardness proofs it follows that this problem is NP-hard when
either the number of votes v is a constant (but & is unbounded) or k is a constant (but v is
unbounded) [7, 10], whereas it becomes fixed-parameter tractable when parameterized by
both k£ and v [6].

A second example, where the deconstruction approach is also systematically explained,
refers to the NP-hard INTERVAL CONSTRAINED COLORING problem [46]. Looking at a
known NP-hardness proof [4], one may identify several quantities being unbounded in
the NP-hardness reduction; this was used to derive several fixed-parameter tractability re-
sults [46]. In contrast, a recent result showed that the quantity “number k of colors” alone
is not useful as a parameter in the sense that the problem remains NP-hard when restricted
to instances with only three colors [15]. Indeed, INTERVAL CONSTRAINED COLORING offers
a multitude of challenges for multivariate algorithmics, also see Subsection 4.3.

Discussion. Deconstructing intractability relies on the close study of the available hardness
proofs for an intractable problem. This means to strive for a full understanding of the
current state of knowledge about a problem’s computational complexity. Having identified
quantities whose unboundedness is essential for the hardness proofs then can trigger the
search for either stronger hardness or fixed-parameter tractability results.

3.5. Parameterization by Dimension

The Idea. The dimensionality of a problem plays an important role in computational ge-
ometry and also in fields such as databases and query optimization (where the dimension
number can be the number of attributes of a stored object). Hence, the dimension number
and also the “range of values of each dimension” are important for assessing the computa-
tional complexity of multidimensional problems.

24 R. NIEDERMEIER

Examples. Cabello et al. [16] studied the problem to decide whether two n-point sets in
d-dimensional space are congruent, a fundamental problem in geometric pattern matching.
Brass and Knauer [13] conjectured that this problem is fixed-parameter tractable with
respect to the parameter d. However, deciding whether a set is congruent to a subset of
another set is shown to be WJ[l]-hard with respect to d [16]. An other example appears
in the context of geometric clustering. Cabello et al. [17] showed that the RECTILINEAR
3-CENTER problem is fixed-parameter tractable with respect to the dimension of the input
point set whereas RECTILINEAR k-CENTER for £ > 4 and EUCLIDEAN k-CENTER for k > 2
are W[1]-hard with respect to the dimension parameter. See Giannopoulos et al. [35, 36]
for more on the parameterized complexity of geometric problems.

The CLOSEST STRING problem is of different “dimension nature”. Here, one is given a
set of k strings of same length and the task is to find a string which minimizes the maximum
Hamming distance to the input strings. The two dimensions of this problem are string length
(typically large) and number k of strings (typically small). It was shown that CLOSEST
STRING is fixed-parameter tractable with respect to the “dimension parameter” k [38],
whereas fixed-parameter tractability with respect to the string length is straightforward in
the case of constant-size input alphabets; also see Subsection 4.1.

Discussion. Incorporating dimension parameters into investigations is natural and the pa-
rameter values and ranges usually can easily be derived from the applications. The dimen-
sion alone, however, usually seems to be a “hard parameter” in terms of fixed-parameter
tractability; so often the combination with further parameters might be unavoidable.

3.6. Parameterization by Averaging Out

The Idea. Assume that one is given a number of objects and a distance measure between
them. In median or consensus problems, the goal is to find an object that minimizes the
sum of distances to the given objects. Parameterize by the average distance to the goal
object or the average distance between the input objects. In graph problems, the average
vertex degree could for instance be an interesting parameter.

Examples. In the CONSENSUS PATTERNS problem, for given strings si,..., s, one wants
to find a string s of some specified length such that each s;, 1 <14 < k, contains a substring
such that the average of the distances of s to these k substrings is minimized. Marx [52]
showed that CONSENSUS PATTERNS is fixed-parameter tractable with respect to this average
distance parameter.

In the CONSENSUS CLUSTERING problem, one is given a set of n partitions C1, ..., C), of
a base set S. In other words, every partition of the base set is a clustering of S. The goal is to
find a partition C' of S that minimizes the sum) ;" | d(C, C;), where the distance function d
measures how similar two clusters are by counting the “differently placed” elements of S.
In contrast to CONSENSUS PATTERNS, here the parameter “average distance between two
input partitions” has been considered and led to fixed-parameter tractability [9]. Thus, the
higher the degree of average similarity between input objects is, the faster one finds the
desired median object.

MULTIVARIATE ALGORITHMICS AND PROBLEM PARAMETERIZATION 25

Discussion. The average parameterization for CONSENSUS PATTERNS directly relates to
the solution quality whereas the one for CONSENSUS CLUSTERING relates to the structure of
the input. In the latter case, the described example showed that one can deal with “outliers”
having high distance to the other objects. Measuring the average distance between the input
objects means to determine their degree of average similarity. This structural parameter
value may be quickly computed in advance, making it easy to forecast the performance of
the corresponding fixed-parameter algorithm.

4. Three Case Studies

In the preceding section, we focussed on various ways to single out various interesting
problem parameterizations. In what follows, we put emphasis on the multivariate aspects
of complexity analysis related to (combining) different parameterizations of one and the
same problem. To this end, we study three NP-hard problems that nicely exhibit various
relevant features of multivariate algorithmics.

4.1. Closest String

The NP-hard CLOSEST STRING problem is to find a length-L string that minimizes
the maximum Hamming distance to a given set of k length-L strings. The problem arises
in computational biology (motif search in strings) and coding theory (minimum radius
problem).

Known Results. What are natural parameterizations here? First, consider the number k
of input strings. Using integer linear programming results, fixed-parameter tractability with
respect to k can be derived [38]. This result is of theoretical interest only due to a huge
combinatorial explosion. Second, concerning the parameter string length L, for strings over
alphabet ¥ we obviously only need to check all |X|* candidates for the closest string and
choose a best one, hence fixed-parameter tractability with respect to L follows for constant-
size alphabets. More precisely, CLOSEST STRING is fixed-parameter tractable with respect
to the combined parameter (|X|, L). Finally, recall that the goal is to minimize the maximum
distance d; thus, d is a natural parameter as well, being small (say values below 10) in
biological applications. CLOSEST STRING is also shown to be fixed-parameter tractable
with respect to d by designing a search tree of size (d 4 1)¢ [38]. A further fixed-parameter
algorithm with respect to the combined parameter (|X|,d) has a combinatorial explosion of
the form (|X| — 1)? - 244 [48], which has recently been improved to (|%] — 1) - 2325 [62].
For small alphabet size these results improve on the (d + 1)%-search tree algorithm. There
are also several parameterized complexity results on the more general CLOSEST SUBSTRING
and further related problems [29, 37, 52, 48, 62].

Discussion. CLOSEST STRING carries four obvious parameters, namely the number k of
input strings, the string length L, the alphabet size ||, and the solution distance d. A
corresponding multivariate complexity analysis still faces several open questions with re-
spect to making solving algorithms more practical. For instance, it would be interesting
to see whether the (impractical) fixed-parameter tractability result for parameter k can be
improved when adding further parameters. Moreover, it would be interesting to identify

26 R. NIEDERMEIER

further structural string parameters that help to gain faster algorithms, perhaps in combi-
nation with known parameterizations. This is of particular importance for the more general
and harder CLOSEST SUBSTRING problem.

Data analysis has indicated small d- and k-values in biological applications. Interesting
polynomial-time solvable instances would help to find “distance from triviality”-parameters.
CLOSEST STRING remains NP-hard for binary alphabets [33]; a systematic intractability
deconstruction appears desirable. CLOSEST STRING has the obvious two dimensions k
and L, where k is typically much smaller than L. Parameterization by “averaging out”
is hopeless for CLOSEST STRING since one can easily many-one reduce an arbitrary input
instance to one with constant average Hamming distance between input strings: just add
a sufficiently large number of identical strings. Altogether, the multivariate complexity
nature of CLOSEST STRING is in many aspects unexplored.

4.2. Kemeny Score

The KEMENY SCORE problem is to find a consensus ranking of a given set of votes (that
is, permutations) over a given set of candidates. A consensus ranking is a permutation of the
candidates that minimizes the sum of “inversions” between this ranking and the given votes.
KEMENY SCORE plays an important role in rank aggregation and multi-agent systems; due
to its many nice properties, it is considered to be one of the most important preference-based
voting systems.

Known Results. KEMENY SCORE is NP-hard already for four votes [25, 26], excluding
hope for fixed-parameter tractability with respect to the parameter “number of votes”.
In contrast, the parameter “number of candidates” ¢ trivially leads to fixed-parameter
tractability by simply checking all possible ¢! permutations that may constitute the con-
sensus ranking. Using a more clever dynamic programming approach, the combinatorial
explosion can be lowered to 2¢ [8]. A different natural parameterization is to study what
happens if the votes have high pairwise average similarity. More specifically, this means
counting the number of inversions between each pair of votes and then taking the average
over all pairs. Indeed, the problem is also fixed-parameter tractable with respect to this
similarity value s, the best known algorithm currently incurring a combinatorial explosion
of 4.83% [59]. Further natural parameters are the sum of distances of the consensus ranking
to input votes (that is, the Kemeny score) or the range of positions a candidate takes within
a vote [8]. Other than for the pairwise distance parameter, where both the maximum and
the average version lead to fixed-parameter tractability [8, 59], for the range parameter only
the maximum version does whereas the problem becomes NP-hard already for an average
range value of 2. [8]. Simjour [59] also studied the interesting parameter “Kemeny score
divided by the number of candidates” and also showed fixed-parameter tractability in this
case. There are more general problem versions that allow ties within the votes. Some
fixed-parameter tractability results also have been achieved here [8, 9].

Discussion. KEMENY SCORE is an other example for a problem carrying numerous “ob-
vious” parameters. Most known results, however, are with respect to two-dimensional
complexity analysis (that is, parameterization by a single parameter), lacking the extension
to a multivariate view.

First data analysis studies on ranking data [14] indicate the practical relevance of some
of the above parameterizations. Average pairwise distance may be also considered as a

MULTIVARIATE ALGORITHMICS AND PROBLEM PARAMETERIZATION 27

straightforward “distance from triviality”-measure since average distance 0 means that all
input votes are equal. The same holds true for the range parameter. Again, known in-
tractability deconstruction for KEMENY SCORE just refers to looking at the NP-hardness
result of Dwork et al. [25, 26], implying hardness already for a constant number of votes. A
more fine-grained intractability deconstruction is missing. KEMENY SCORE can be seen as a
two-dimensional problem. One dimension is the number of votes and the other dimension is
number of candidates; however, only the latter leads to fixed-parameter tractability. In this
context, the novel concept of “partial kernelization” has been introduced [9]. To the best
of our knowledge, KEMENY SCORE has been the first example for a systematic approach to
average parameterization [8, 9]. As for CLOSEST STRING, a multidimensional analysis of
the computational complexity of KEMENY SCORE remains widely open.

4.3. Interval Constrained Coloring

In the NP-hard INTERVAL CONSTRAINED COLORING problem [4, 5] (arising in auto-
mated mass spectrometry in biochemistry) one is given a set of m integer intervals in the
range 1 to r and a set of m associated multisets of colors (specifying for each interval the
colors to be used for its elements), and one asks whether there is a “consistent” coloring for
all integer points from {1,...,7} that complies with the constraints specified by the color
multisets.

Known Results. INTERVAL CONSTRAINED COLORING remains NP-hard even in case of
only three colors [15]. Deconstructing the original NP-hardness proof due to Althaus et
al. [4] and taking into account the refined NP-hardness proof of Byrka et al. [15], the
following interesting parameters have been identified [46]:

e interval range,

number of intervals,

maximum interval length,

maximum cutwidth with respect to overlapping intervals,
maximum pairwise interval overlap, and

maximum number of different colors in the color multisets.

All these quantities are assumed to be unbounded in the NP-hardness reduction due to
Althaus et al. [4]; this immediately calls for a parameterized investigation. Several fixed-
parameter tractability results have been achieved for single parameters and parameter pairs,
leaving numerous open questions [46]. For instance, the parameterized complexity with re-
spect to the parameter “number of intervals” is open, whereas INTERVAL CONSTRAINED
COLORING is fixed-parameter tractable with respect to the parameter “interval length”.
Combining the parameters “number of colors” and “‘number of intervals” though, one
achieves fixed-parameter tractability. In summary, many multidimensional parameteriza-
tions remain unstudied.

Discussion. The case of INTERVAL CONSTRAINED COLORING gives a prime example for
deconstruction of intractability and the existence of numerous relevant parameterizations.
There are a few known fixed-parameter tractability results, several of them calling for
improved algorithms. Checking “all” reasonable parameter combinations and constellations
could easily make an interesting PhD thesis.

28 R. NIEDERMEIER

The biological data often contain only three colors; the corresponding NP-hardness
result [15] shows that this alone is not a fruitful parameter—combination with other pa-
rameters is needed (such as the interval range [46]). Moreover, observations on biological
data indicate a small number of lengthy intervals, motivating a further parameterization
possibility. Instances with only two colors or cutwidth two are “trivial” in the sense that
(nontrivial) polynomial-time algorithms have been developed to solve these instances [4, 46].
Unfortunately, in both cases a parameter value of three already yields NP-hardness. The
two natural dimensions of the problem are given by the interval range and the number of
intervals, both important parameters. Average parameterization has not been considered
yet. In summary, INTERVAL CONSTRAINED COLORING might serve as a “model problem”
for studying many aspects of multivariate algorithmics.

5. Conclusion with Six Theses on Multivariate Algorithmics

We described a number of possibilities to derive meaningful “single” parameterizations.
Typically, not every such parameter will allow for fixed-parameter tractability results. As-
sume that a problem is W[1]-hard with respect to a parameter k (or even NP-hard for
constant values of k). Then this calls for studying whether the problem becomes tractable
when adding a further parameter &/, that is, asking the question whether the problem is
fixed-parameter tractable with respect to the (combined) parameter (k, k). Moreover, even
if a problem is classified to be fixed-parameter tractable with respect to a parameter k, this
still can be practically useless. Hence, introducing a second parameter may open the route
to practical fixed-parameter algorithms. Altogether, in its full generality such a “problem
processing” forms the heart of multivariate algorithmics.

Fellows et al. [28] proposed to study the “complexity ecology of parameters”. For the
ease of presentation restricting the discussion to graph problems, one may build “complex-
ity matrices” where both rows and columns represent certain parameters such as treewidth,
bandwidth, vertex cover number, domination number, and so on. The corresponding val-
ues deliver structural information about the input graph. Then, a matrix entry in row x
and column y represents a question of the form “how hard is it to compute the quantity
represented by column y when parameterized by the quantity represented by x7”. For ex-
ample, it is easy to see that the domination number can be computed by a fixed-parameter
algorithm using the parameter vertex cover number. Obviously, there is no need to restrict
such considerations to two-dimensional matrices, thus leading to a full-flavored multivariate
algorithmics approach.

After all, a multivariate approach may open Pandora’s box by generating a great num-
ber of questions regarding the influence and the interrelationship between parameters in
terms of computational complexity. With the tools provided by parameterized and multi-
variate algorithmics, the arising questions yield worthwhile research challenges. Indeed, to
better understand important phenomena of computational complexity, there seems to be
no way to circumvent such a “massive analytical attack” on problem complexity. Opening
Pandora’s box, however, is not hopeless because multivariate algorithmics can already rely
on numerous tools available from parameterized complexity analysis.

There is little point in finishing this paper with a list of open questions—basically every
NP-hard problem still harbors numerous challenges in terms of multivariate algorithmics.
Indeed, multivariation is a horn of plenty concerning practically relevant and theoretically

MULTIVARIATE ALGORITHMICS AND PROBLEM PARAMETERIZATION 29

appealing opportunities for research. Instead, we conclude with six claims and conjectures
concerning the future of (multivariate) algorithmics.

Thesis 1: Problem parameterization is a pervasive and ubiquitous tool in attacking
intractable problems. A theory of computational complexity neglecting parameter-
ized and multivariate analysis is incomplete.

Thesis 2: Multivariate algorithmics helps in gaining a more fine-grained view on
polynomial-time solvable problems, also getting in close touch with adaptive al-
gorithms.?

Thesis 3: Multivariate algorithmics can naturally incorporate approximation algo-
rithms, relaxing the goal of exact to approximate solvability.

Thesis 4: Multivariate algorithmics is a “systems approach” to explore the nature
of computational complexity. In particular, it promotes the development of meta-
algorithms that first estimate various parameter values and then choose the appro-
priate algorithm to apply.

Thesis 5: Multivariate algorithmics helps to significantly increase the impact of The-
oretical Computer Science on practical computing by providing more expressive
statements about worst-case complexity.

Thesis 6: Multivariate algorithmics is an ideal theoretical match for algorithm engi-
neering, both areas mutually benefiting from and complementing each other.

Acknowledgments. I am grateful to Nadja Betzler, Michael R. Fellows, Jiong Guo, Christian
Komusiewicz, Daniel Marx, Hannes Moser, Johannes Uhlmann, and Mathias Weller for
constructive and insightful feedback on earlier versions of this paper.

References

[1] N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. Solving MAX-r-SAT above a tight lower bound.
In Proc. 21st SODA. ACM/SIAM, 2010.

[2] N. Alon, D. Lokshtanov, and S. Saurabh. Fast FAST. In Proc. 36th ICALP, volume 5555 of LNCS,
pages 49-58. Springer, 2009.

[3] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844-856, 1995.

[4] E. Althaus, S. Canzar, K. Elbassioni, A. Karrenbauer, and J. Mestre. Approximating the interval
constrained coloring problem. In Proc. 11th SWAT, volume 5124 of LNCS, pages 210-221. Springer,
2008.

[5] E. Althaus, S. Canzar, M. R. Emmett, A. Karrenbauer, A. G. Marshall, A. Meyer-Baese, and H. Zhang.
Computing H/D-exchange speeds of single residues from data of peptic fragments. In Proc. 23rd
SAC 08, pages 1273-1277. ACM, 2008.

[6] N. Betzler. On problem kernels for possible winner determination under the k-approval protocol. 2009.

[7] N. Betzler and B. Dorn. Towards a dichotomy of finding possible winners in elections based on scoring
rules. In Proc. 34th MFCS, volume 5734 of LNCS, pages 124-136. Springer, 2009.

[8] N. Betzler, M. R. Fellows, J. Guo, R. Niedermeier, and F. A. Rosamond. Fixed-parameter algorithms
for Kemeny scores. Theor. Comput. Sci., 410(45):4454-4570, 20009.

[9] N. Betzler, J. Guo, C. Komusiewicz, and R. Niedermeier. Average parameterization and partial kernel-
ization for computing medians. In Proc. 9th LATIN, LNCS. Springer, 2010.

[10] N. Betzler, S. Hemmann, and R. Niedermeier. A multivariate complexity analysis of determining possible
winners given incomplete votes. In Proc. 21st IJCAI, pages 53-58, 2009.

[11] H. L. Bodlaender. Kernelization: New upper and lower bound techniques. In Proc. 4th IWPEC, volume
5917 of LNCS, pages 17-37. Springer, 2009.

AFor instance, an adaptive sorting algorithm takes advantage of existing order in the input, with its
running time being a function of the disorder in the input.

30

[12]
[13)
[14]
[15]
[16]

(17]

R. NIEDERMEIER

H. L. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of bounded treewidth.
Comp. J., 51(3):255-269, 2008.

P. Brass and C. Knauer. Testing the congruence of d-dimensional point sets. Int. J. Comput. Geometry
Appl., 12(1-2):115-124, 2002.

R. Bredereck. Fixed-parameter algorithms for computing Kemeny scores—theory and practice. Studi-
enarbeit, Institut fiir Informatik, Friedrich-Schiller-Universitdt Jena, Germany, 2009.

J. Byrka, A. Karrenbauer, and L. Sanita. The interval constrained 3-coloring problem. In Proc. 9th
LATIN, LNCS. Springer, 2010.

S. Cabello, P. Giannopoulos, and C. Knauer. On the parameterized complexity of d-dimensional point
set pattern matching. Inf. Process. Lett., 105(2):73-77, 2008.

S. Cabello, P. Giannopoulos, C. Knauer, D. Marx, and G. Rote. Geometric clustering: fixed-parameter
tractability and lower bounds with respect to the dimension. ACM Transactions on Algorithms, 2009.
To appear. Preliminary version at SODA 2008.

L. Cai. Parameterized complexity of vertex colouring. Discrete Appl. Math., 127(1):415-429, 2003.

L. Cai, X. Huang, C. Liu, F. A. Rosamond, and Y. Song. Parameterized complexity and biopolymer
sequence comparison. Comp. J., 51(3):270-291, 2008.

J. Chen, B. Chor, M. Fellows, X. Huang, D. W. Juedes, I. A. Kanj, and G. Xia. Tight lower bounds for
certain parameterized NP-hard problems. Inform. and Comput., 201(2):216-231, 2005.

J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for Vertex Cover. In Proc. 31st
MFCS, volume 4162 of LNCS, pages 238-249. Springer, 2006.

J. Chen and J. Meng. On parameterized intractability: Hardness and completeness. Comp. J., 51(1):39—
59, 2008.

V. G. Deinéko, M. Hoffmann, Y. Okamoto, and G. J. Woeginger. The traveling salesman problem with
few inner points. Oper. Res. Lett., 34(1):106-110, 2006.

R. G. Downey and M. R. Fellows. Parameterized Complezity. Springer, 1999.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the Web. In Proc.
10th WWW, pages 613-622, 2001.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation revisited, 2001. Manuscript.

M. Fellows. Towards fully multivariate algorithmics: Some new results and directions in parameter
ecology. In Proc. IWOCA, volume 5874 of LNCS, pages 2—10. Springer, 2009.

M. Fellows, D. Lokshtanov, N. Misra, M. Mnich, F. Rosamond, and S. Saurabh. The complexity ecology
of parameters: An illustration using bounded max leaf number. Theory Comput. Syst., 45:822-848, 2009.
M. R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability of motif search
problems. Combinatorica, 26(2):141-167, 2006.

M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh. Graph layout problems
parameterized by vertex cover. In Proc. 19th ISAAC, volume 5369 of LNCS, pages 294-305. Springer,
2008.

M. R. Fellows, F. A. Rosamond, F. V. Fomin, D. Lokshtanov, S. Saurabh, and Y. Villanger. Local
search: Is brute-force avoidable? In Proc. 21st IJCAI, pages 486-491, 2009.

J. Flum and M. Grohe. Parameterized Complezity Theory. Springer, 2006.

M. Frances and A. Litman. On covering problems of codes. Theory Comput. Syst., 30(2):113-119, 1997.
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

P. Giannopoulos, C. Knauer, and G. Rote. The parameterized complexity of some geometric problems
in unbounded dimension. In Proc. 4th IWPEC, volume 5917 of LNCS, pages 198-209. Springer, 2009.
P. Giannopoulos, C. Knauer, and S. Whitesides. Parameterized complexity of geometric problems.
Comp. J., 51(3):372-384, 2008.

J. Gramm, J. Guo, and R. Niedermeier. Parameterized intractability of distinguishing substring selec-
tion. Theory Comput. Syst., 39(4):545-560, 2006.

J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for Closest String and
related problems. Algorithmica, 37(1):25-42, 2003.

J. Guo, F. Hiiffner, and R. Niedermeier. A structural view on parameterizing problems: Distance from
triviality. In Proc. 1st IWPEC, volume 3162 of LNCS, pages 162-173. Springer, 2004.

(40]

(41]

42]

MULTIVARIATE ALGORITHMICS AND PROBLEM PARAMETERIZATION 31

J. Guo, H. Moser, and R. Niedermeier. Iterative compression for exactly solving NP-hard minimization
problems. In Algorithmics of Large and Complex Networks, volume 5515 of LNCS, pages 65-80. Springer,
2009.

J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization. ACM SIGACT
News, 38(1):31-45, 2007.

P. Hlinény, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-width and their applica-
tions. Comp. J., 51(3):326-362, 2008.

M. Hoffmann and Y. Okamoto. The minimum weight triangulation problem with few inner points.
Comput. Geom., 34(3):149-158, 2006.

F. Hiiffner, R. Niedermeier, and S. Wernicke. Techniques for practical fixed-parameter algorithms.
Comp. J., 51(1):7-25, 2008.

S. Khuller, R. Bhatia, and R. Pless. On local search and placement of meters in networks. STAM J.
Comput., 32(2):470-487, 2003.

C. Komusiewicz, R. Niedermeier, and J. Uhlmann. Deconstructing intractability—a case study for
interval constrained coloring. In Proc. 20th CPM, volume 5577 of LNCS, pages 207—220. Springer,
2009.

S. Kratsch and P. Schweitzer. Graph isomorphism parameterized by feedback vertex set number is
fixed-parameter tractable. 2009.

B. Ma and X. Sun. More efficient algorithms for closest string and substring problems. In Proc. 12th
RECOMB, volume 4955 of LNCS, pages 396-409. Springer, 2008.

M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algo-
rithms, 31(2):335-354, 1999.

M. Mahajan, V. Raman, and S. Sikdar. Parameterizing above or below guaranteed values. J. Comput.
System Sci., 75(2):137-153, 2009.

D. Marx. Parameterized coloring problems on chordal graphs. Theor. Comput. Sci., 351(3):407-424,
2006.

D. Marx. Closest substring problems with small distances. STAM J. Comput., 38(4):1382-1410, 2008.
D. Marx. Parameterized complexity and approximation algorithms. Comp. J., 51(1):60-78, 2008.

] D. Marx. Searching the k-change neighborhood for TSP is W([1]-hard. Oper. Res. Lett., 36(1):31-36,

2008.

H. Moser, R. Niedermeier, and M. Sorge. Algorithms and experiments for clique relaxations—finding
maximum s-plexes. In Proc. 8th SEA, volume 5526 of LNCS, pages 233-244. Springer, 2009.

R. Niedermeier. Ubiquitous parameterization—invitation to fixed-parameter algorithms. In Proc. 29th
MFCS, volume 3153 of LNCS, pages 84-103. Springer, 2004.

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford University Press, 2006.

B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299-301, 2004.
N. Simjour. Improved parameterized algorithms for the Kemeny aggregation problem. In Proc. 4th
IWPEC, volume 5917 of LNCS, pages 312-323. Springer, 2009.

C. Sloper and J. A. Telle. An overview of techniques for designing parameterized algorithms. Comp. J.,
51(1):122-136, 2008.

Y. Song, C. Liu, X. Huang, R. L. Malmberg, Y. Xu, and L. Cai. Efficient parameterized algorithms for
biopolymer structure-sequence alignment. I[EEE/ACM Trans. Comput. Biology Bioinform., 3(4):423—
432, 2006.

L. Wang and B. Zhu. Efficient algorithms for the closest string and distinguishing string selection
problems. In Proc. 8rd FAW, volume 5598 of LNCS, pages 261-270. Springer, 2009.

32

R. NIEDERMEIER

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 33-34
www.stacs-conf.org

MATHEMATICS, CRYPTOLOGY, SECURITY

JACQUES STERN*

I Professor, Department of Computer Science, Ecole normale suprieure,
Chairman, Agence nationale de la recherche
E-mail address: Jacques.Stern@ens.fr

ABSTRACT. In this talk, I will review some of the work performed by the research com-
munity in cryptology and security since the invention of public key cryptography by Diffie
and Hellman in 1976. This community has developped many challenging lines of research.
I will only focus on some of these, and moreover I will adopt an extremely specific perspec-
tive: for each chosen example, I will try to trace the original mathematics that underly
the methods in use.

Over the years, maybe due to my original training as a mathematician, I have come
to consider that linking recent advances and challenges in cryptology and security to the
work of past mathematicians is indeed fascinating.

The range of examples will span both theory and practice: I will show that the cele-
brated RSA algorithm is intimately connected to mathematics that go back to the middle
of the XVIIIth century. I will also cover alternatives to RSA, the method of ”provable
security”, as well as some aspects of the security of electronic payments.

Key words and phrases: Mathematics, Cryptology, Security.

L SYMPOSIUM

V " \ ON THEORETICAL
(@) }_ ASPECTS

4

T OF COMPUTER
SCIENCE © J.Sterm

© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2441

34

J. STERN

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 35-46
www.stacs-conf.org

LARGE-GIRTH ROOTS OF GRAPHS

ANNA ADAMASZEK ! AND MICHAL ADAMASZEK 2

! Department of Computer Science and DIMAP,
University of Warwick, Coventry, CV4 7TAL, UK
E-mail address: annan@mimuw.edu.pl

2 Warwick Mathematics Institute and DIMAP,
University of Warwick, Coventry, CV4 7TAL, UK
E-mail address: aszek@mimuw.edu.pl

ABSTRACT. We study the problem of recognizing graph powers and computing roots of
graphs. We provide a polynomial time recognition algorithm for r-th powers of graphs of
girth at least 2r + 3, thus improving a bound conjectured by Farzad et al. (STACS 2009).
Our algorithm also finds all r-th roots of a given graph that have girth at least 2r + 3 and
no degree one vertices, which is a step towards a recent conjecture of Levenshtein that
such root should be unique. On the negative side, we prove that recognition becomes an
NP-complete problem when the bound on girth is about twice smaller. Similar results
have so far only been attempted for r = 2, 3.

1. Introduction

All graphs in this paper are simple, undirected and connected. If H is a graph, its
r-th power G = H" is the graph on the same vertex set such that two distinct vertices are
adjacent in G if their distance in H is at most r. We also call H the r-th root of G.

There are some problems naturally related to graph powers and graph roots. Suppose
P is a class of graphs (possibly consisting of all graphs), r is an integer and G is an arbitrary
graph. The questions we ask are:

e The recognition problem: Is G an r-th power of some graph from P? Formally, we
define a family of decision problems:
Problem. r-TH-POWER-OF-P-GRAPH
Instance. A graph G.
Question. Is G = H" for some graph H € P?
e The r-th root problem: Find some/all r-th roots of G which belong to P.
e The unique reconstruction problem: Is the r-th root of G in P (if any) unique?

1998 ACM Subject Classification: G.2.2 Graph algorithms, F.2.2 Analysis of algorithms and problem
complexity.

Key words and phrases: Graph roots, Graph powers, NP-completeness, Recognition algorithms.

Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP), EPSRC
award EP/D063191/1.

‘V r SO‘NPTOHS‘E%P;H ICAL
m |_ ASPECTS
- S 7 S%iaggmﬁm © A. Adamaszek and M. Adamaszek
@ Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2442

36 A. ADAMASZEK AND M. ADAMASZEK

The above problems have been investigated for various graph classes P. There exist
characterizations of squares [15] and higher powers [3] of graphs, but they are not com-
putationally efficient. Motwani and Sudan [14] proved the NP-completeness of recognizing
graph squares and Lau [8] extended this to cubes of graphs. Motwani and Sudan [14] sug-
gested that recognizing squares of bipartite graphs is also likely to be NP-complete. This
was disproved by Lau [8], who gave a polynomial time algorithm that recognizes squares
of bipartite graphs and counts the bipartite square roots of a given graph. Apparently the
first proof that r-TH-POWER-OF-GRAPH and r-TH-POWER-OF-BIPARTITE-GRAPH
are NP-complete for any r > 3 was recently announced in [10].

Considerable attention has been given to tree roots of graphs, which are quite well
understood and can be computed efficiently, see Lin and Skiena [13], Kearney and Corneil
[6] and Chang, Ko and Lu [2] who give a linear time algorithm for the r-th tree root of a
given graph. Such a root need not be unique, not even up to isomorphism, so the difficulty
lies in making consistent choices while constructing a root. Many techniques for computing
tree roots rely on some sort of correspondence between vertex neighbourhoods in 7" and
maximal cliques in T?P. We are going to use the computation of an r-th tree root of a graph
as a black-box in our algorithms.

There has also been some work on the complexity of -TH-POWER-OF-P-GRAPH for
such classes P as chordal graphs, split graphs and proper interval graphs [9] and for directed
graphs and their powers [7].

In this work we address the above problems for another large family of graphs, namely
graphs with no short cycles. Recall that the girth of a graph is the length of its shortest
cycle (or oo for a tree). For convenience we shall denote by GTR7T H >, the class of all graphs
of girth at least g, and by GTRTHZ 4 its subclass consisting of graphs with no vertices of
degree one (which we call leaves). These classes of graphs make a convenient setting for
graph roots because of the possible uniqueness results outlined below.

By [4] the recognition of squares of GTRT H>4-graphs is NP-complete, while squares
of GITRT H>¢-graphs can be recognized in polynomial time. The techniques of recognition
(in this, and some other cases) include imposing some additional, local piece of information
about the square root (like the existence of a certain edge) such that the root can then be
reconstructed uniquely by expanding this data to the neighbouring vertices and eventually
to the whole graph. Here we also exploit this idea.

For r > 3 no complexity-theoretic results have been known, but there is some very
interesting work on the uniqueness of the roots. Precisely, Levenshtein et al. [12] proved

that if G has a square root H in the class GIRT H;F?, then H is unique!. The same statement
was extended in [11] to r-th roots in QIRTH;ZTH[(TA)/MH’ using a characterization of
the neighbourhood of a vertex as the unique set satisfying a list of properties expressed in
terms of the r-th power of the graph. The main conjecture in this area remains unresolved:

Conjecture 1.1 (Levenshtein, [11]). If a graph G has an r-th root H in QIRTH;FQH?),
then H is unique in that class. B

The value of g = 2r + 3 is best possible, as witnessed by the cycle Co, 42, which cannot
be uniquely reconstructed from its r-th power. The best result towards Conjecture 1.1 is

¢ is not possible to obtain uniqueness if the vertices of degree one are allowed, hence this technical
restriction. See [12] for details.

LARGE-GIRTH ROOTS OF GRAPHS 37

that the number of roots H under consideration is at most §(G) (the minimal vertex degree
in G, [11]), but its proof yields only exponential time r-th root and recognition algorithms.

At the same time Farzad et al. made a conjecture about recognizing powers of graphs
of lower-bounded girth:

Conjecture 1.2 (Farzad et al., [4]). The problem r-TH-POWER-OF-GIRT H>3,_1-GRAPH
can be solved in polynomial time.

Our contribution. Our first result gives an efficient reconstruction algorithm in Leven-
shtein’s case:

Theorem 1.3. Given any graph G, all its r-th roots in QIR’TH;F%_H,) can be found in
polynomial time. -

Next, we use this result to deal with the general case, i.e. when the roots are allowed
to have leaves. It turns out that the same girth bound of 2r + 3 admits a positive result:

Theorem 1.4. The problem r-TH-POWER-OF-GIRTH>2,43-GRAPH can be solved in

polynomial time.

Our result proves Conjecture 1.2 (for » > 4) and is in fact stronger. It also improves
the result of [10] for r = 3, g = 10. Moreover, our algorithm for this problem is constructive
and exhaustive in the sense that it finds “all” r-th roots in GZR7T H>2,43 modulo the
non-uniqueness of r-th tree roots of graphs, as explained in Section 4.

These positive results have a hardness counterpart:

Theorem 1.5. The problem r-TH-POWER-OF-GIRTH>,-GRAPH is NP-complete for
g <r-+1 whenr isodd and g <r+ 2 when r is even.

The paper is structured as follows. First we prove some auxiliary results, useful both
in the construction of algorithms and in the hardness result. Section 3 contains the main
algorithm from Theorem 1.3, which is then used in Section 4 as a building block of the
general recognition algorithm from Theorem 1.4. NP-completeness is proved in Section 5.

2. Auxiliary results

Let us fix some terminology. By disty(u,v) we denote the distance from u to v in H.
The d-neighbourhood of a vertex u in H is the set of vertices of H which are exactly in
distance d from u. The 1-neighbourhood (i.e. the set of vertices adjacent to u) will be
denoted Np(u).

Our setup usually involves a pair of graphs G and H on a common vertex set V such
that G = H". We adopt the notation

B, :={u eV :distg(u,v) <r} = Ng(v)U{v}

for v € V (the letter B stands for “ball” of radius r in H). The lack of explicit reference
to r and H in this notation should not lead to confusion. It is important that B, depend
only on G.

Almost all previous work on algorithmic aspects of graph powers [14, 4, 8, 9, 10] makes
use of a special gadget, called tail structure, which, applied to a vertex u in G, ensures that
in any r-th root H of G this vertex has the same, pre-determined neighbourhood. Our main
observation is that in fact such a tail structure carries a lot more information about H. It
pins down not just N (u), but also each d-neighbourhood of v in H for d =1,...,r.

38 A. ADAMASZEK AND M. ADAMASZEK

Lemma 2.1. Let G = H" and suppose that {vg,v1,...,v,} CV is a set of vertices such
that Ng(vy) = {vr—1,...,v1,v0} and Ng(vit1) C Ng(v;) for alli =0,...,r — 1, where the
inclusions are strict. 2

Then the subgraph of H induced by {vo,v1,...,v,} is a path vg — vy — ... — v, and the
d-neighbourhood of vy in H is precisely

Na(vr—q) \ Ng(vr—as1) U {vq}
foralld=1,...,r.

Proof. The subgraph K of H induced by {vg,...,v,} is connected — otherwise Ng(v,)
would contain vertices from outside K. Consider any vertex u of K that has an edge to
some vertex w outside K. Clearly, distx (v, u) = r, since otherwise w would be in Ng(v;).
This means that K is a path from v, to u and w is the only vertex of that path which
has edges to vertices outside K. The condition Ng(viy1) C Ng(v;) now implies that the
vertices of this path are arranged as in the conclusion of the lemma. The second conclusion
follows easily. [

Note that the tail structure itself does not enforce any extra constraints on H other
than the d-neighbourhoods of wy.

In the algorithm for »-TH-POWER-OF-GIRT H>2,4+3-GRAPH we will need to solve
the following tree root problem with additional restrictions imposed on the d-neighbourhoods
of a certain vertex:

Problem. RESTRICTED-r-TH-TREE-ROOT

Instance. A graph G, r > 2, a vertex v € V(G) and a partition
V(@) = o} UTO U UTO UTED),

Question. Is G =7T" for some tree 71" such that the
d-neighbourhood of v in T is exactly T4 for d = 1,...,r?

Lemma 2.2. There is a constructive polynomial time algorithm for RESTRICTED-r-TH-
TREE-ROOT.

Proof sketch. The neighbourhood-enforcing gadget from Lemma 2.1 can be attached to the
given problem instance in such a way that the original graph has a restricted tree root if
and only if the modified graph has any tree root (with no restrictions). Then the algorithms
of [6, 2] apply to the modified instance. [

3. Algorithm for roots in QIRTH;QH_?,

In this section we present the algorithm from Theorem 1.3, that is the polynomial
time reconstruction of all r-th roots in QIRTH;QT 43 of a given graph G. There are two
structural properties of graphs H € QIRTHJ;QT 43 that will be used freely throughout the
proofs:

(*) Every x € V(H) is of degree at least 2 and the subgraph of H induced by B, is a

tree. This holds since any cycle in H within B, would have length at most 2r + 1.
We shall depict the ball B, in H in the tree-like fashion.

2This assumption (strictness of inclusions) can be removed at the cost of a more complicated statement,
but this generality is not needed here.

LARGE-GIRTH ROOTS OF GRAPHS 39

Figure 1: The subgraph of H induced by B, U B,,.

(**) If there is a simple path from u to v in H of length exactly » + 1 or r + 2 then
u & B,. Indeed, u € B, iff there is a path of length at most r from « to v in H, and
combined with the first path this would yield a cycle of length at most 2r + 2.

To describe the algorithm we introduce the following sets:

Sey=B:NBy,\ U B, \ {z}

UeBy\Bz
P., = B,NB,N U B,
’UESz,y
Ney=B.NByn (] By\{z}
’L)EPz,y

Defined for arbitrary x,y € V, these sets are probably quite meaningless for the reader.
The definitions are motivated by the proof of the next theorem, in which we determine
these sets in more familiar terms for the endpoints x, y of an actual edge in some 7-th root
of G. Precisely:

Theorem 3.1. Suppose G = H" for a graph H € QIRTHEQTJF:; and xy € E(H). Then
Nzy = Np(x).
Proof. Because of the girth condition the set B, U By in H consists of two disjoint trees T},

and Ty, rooted in x and y respectively and connected by the edge zy (see Fig.1). Let us
introduce some subsets of those trees. By W, and W, denote the last levels:

Wy ={ueT, disty(u,z) =r}, W,={ueT,: distg(u,y)=r},
by P, and P, the next-to-last levels:
P, ={ueT, distg(u,x) =r—1}, P,={ueT, :distg(u,y) =r—1},
and by N, and N, the children of x and y in T}, and T}:
Ny ={ueT, disty(u,z) =1}, Ny={ueT,: distg(u,y)=1}.

Clearly B, N B, = (T, \ W) U (T, \ W), W, = B, \ By and W, = B, \ B,. Note that if
r =2 we have N, = P, and N, = P,.

First observe that every u € N, and every v € B, \ B, = W, are connected by a path
of length r + 2. Tt follows by (**) that u ¢ B,, which implies

Ny C Sz y-

40 A. ADAMASZEK AND M. ADAMASZEK

It is also clear that S, , C T, (because every vertex in T}, has a descendant v € W,).

Now the sum (J,cg, Bz N By N By contains e, Bz N By N By = (B; N By) \ Py. On
the other hand, if v € S, , and u € P, then v € B,,.. Indeed, if u € B, then there would be
a path from u to v of length at most r. This path cannot be contained in T, UT,, (because
dist g (u,) = r, so one can only get as far as x going from u), hence it must exit 7} through
W, and then enter T, through W, finally reaching v € S;,. However, that yields a path
from Wy to S, of length at most r (in fact at most r — 1), contradicting the definition of
Sz,y- Eventually we proved

P, = (ByNBy)\ Py.

Now we have {y} UN, C N, , because every vertex of {y} U N, is in distance at most
r from all the vertices of (B, N By) \ Py. On the other hand, for every vertex u of B, N B,
that is not in N, U {x,y} one can find a path of length r + 1 that starts in u and ends in
a vertex v € (By N By) \ Py. Then, according to (**), u € By, so u € N, ,. Such a path
is obtained by going from u up the tree it is contained in (7}, or T}) and then down in the
other tree.

Concluding, we have identified N, , to be N, U {y}, as required. [

The previous theorem should be understood as follows. Given a graph G, we want to
find its r-th root H. If we fix at least one edge xy of H in advance, we can compute the
neighbourhood Ny (x) of z using only the data available in G. But then we can move on
in the same way, computing the neighbours of those neighbours etc.

Algorithm 1 Input: G,r. Output: All r-th roots of G in QIRTH;FQTH

pick a vertex z with smallest | By
for all y in B, do

H =reconstructFromOneEdge(G, zy)

if H e GIRTHY,, ,, and H" = G output H
end for

reconstructFromOneEdge(G, e):

H = (V(G), {e})

for all u € V set processed|u|:=false

while H has an unprocessed vertex = of degree at least 1 do
y = any neighbour of z in H
E(H)=E(H)U{zz for all z € N, ,}
processed[z]:=true

end while

return H

The r-th root algorithm is now straightforward. The procedure reconstructFromOneEdge
attempts to compute H from G assuming the existence of a given edge e in H. This is re-
peated for all possible edges from a fixed vertex x. It remains to notice that N, , can be
computed in polynomial time.

LARGE-GIRTH ROOTS OF GRAPHS 41

dI o) depth(u)

T,

Figure 2: The notation of Section 4.

4. Removing the no-leaves restriction

In this section we obtain a polynomial time algorithm for the general recognition prob-
lem r-TH-POWER-OF-GIRT H>9,43-GRAPH, proving Theorem 1.4. We start with a few
definitions (see Fig.2).

For a graph H, which is not a tree, let core(H) denote the largest induced subgraph of
H whose every vertex has degree at least two. Alternatively this can be defined as follows.
Given H, let H' be the graph obtained from H by removing all leaves (vertices of degree
one) and inductively define HV) = H’, H™ = (H"=1)’. This process eventually stabilizes
at the graph core(H).

A vertex v € V(H) is called a core vertez if it belongs to core(H) and a non-core vertex
otherwise. The non-core vertices are grouped into trees attached to the core. For every
vertex v € core(H) we denote by T, the tree attached at v (including v) and by 7 (for
d > 0) the set of vertices of T, located in distance d from v. For a non-core vertex u the
link of u (denoted link(u)) is its closest core vertex and the depth of u (denoted depth(u))
is the distance from u to link(u).

4.1. Outline of the algorithm.

The algorithm for r-TH-POWER-OF-GZRT H>2,13-GRAPH processes the input graph
G in several steps (see Algorithm 2). First, we check if G has a tree r-th root [6, 2]. If not,
then we split the vertices of GG into the core and non-core vertices of any of its r-th roots.
Lemma 4.1 shows how to find such a partition and ensures that it is uniquely determined
only by the graph G.

Let G be the subgraph of G induced by all the vertices that are classified as belonging
to the core of any possible r-th root H. We now employ the algorithm from the previous
section to find all 7-th roots H of G' which have girth at least 2r 4+ 3 and no leaves (there
are at most d(G) of them; conjecturally there is at most one).

Finally, we must attach the non-core vertices to each of the possible H. It turns out that
once the core is fixed, the link of each non-core vertex can be uniquely determined, so we can
pin down all the sets V(T,). However, we cannot simply look for any r-th tree root of the
subgraph of G induced by V (7},), because we have to ensure that the tree structure that we
are going to impose on V(T,) is compatible with the neighbourhood information contained
in the rest of G. Fortunately Lemma 4.2 guarantees that for a fixed G and core(H), all
the sets Tlgd) for d =1,...,r are also uniquely determined. Since all the distances from the
vertices of T, to the rest of the graph depend only on the vertex depths and the structure
of the core, this is exactly the additional piece of data we need. Any tree root satisfying

42 A. ADAMASZEK AND M. ADAMASZEK

the given depth constraints will be compatible with the rest of the graph. Concluding,
the problem we are left with for each T, is the RESTRICTED-r-TH-TREE-ROOT from
Section 2. If all these instances have positive solutions, then the graph H defined as H with
the trees T, attached at each core vertex v is an r-th root of G.

The next two subsections describe the two crucial steps: detecting non-core vertices
and the reconstruction of trees T,.

4.2. Finding core and non-core vertices.

The next lemma shows how to detect all vertices located “close to the bottom” of the
trees T, in H.

Lemma 4.1. Suppose H € GIRT H>2,43 and H" = G.Then the following conditions are
equivalent for a verter w € H:

(1) ug H",

(2) There is some vertex v € H, v # u such that B, C B,.

B u

Figure 3: The proof of Lemma 4.1.

Proof. If uw ¢ H™_ then by the definition u becomes a leaf after at most r — 1 steps of
the leaf-removal procedure and is removed in the subsequent step. Let v be the last vertex
adjacent to u just before u is removed (see Fig.3a). Clearly all the vertices reachable from
u in at most r steps are also reachable from v in at most r steps, so B, C B,.

If, on the other hand, v € H(") then u is not removed in the first r steps of cutting off
the leaves of H, which means there exist at least two disjoint paths of length r starting at u
(see Fig.3b). However, it implies that for every vertex v € B, there exists another v' € B,
(on one of those paths) such that distg(v,v") =+ 1, hence v' € B, \ B,. Therefore B, is
not contained in B, for any v # u. [

Recursively deleting all vertices u such that B, C B, for some v # u determines the
consecutive sets V(H")), V(H®)), V(H®)), ... for any r-th root H € GTRT H>,43 of
G using only the information available in G. Eventually we obtain V' (core(H)) which is the
vertex set of G.

4.3. Attaching the trees T,,.

For each possible core(H) we need to decide on a way of attaching the remaining (non-
core) vertices to H in a way which ensures that H” = G. It turns out that all the data
necessary to ensure the compatibility can be read off from G and core(H), so again this
data is common for all the possible r-th roots of G that have a fixed core.

LARGE-GIRTH ROOTS OF GRAPHS 43

Lemma 4.2. Suppose that H € GIRT H>or4+3 is a graph such that H is not a tree and
H" = G. Then for every non-core vertex uw of H we have:
e cither B, NV (core(H)) =0, in which case depth(u) > r, or
o the subgraph of H induced by B, NV (core(H)) is a tree whose only center is link(u)
and whose height (the distance from the center to every leaf) is r — depth(u).

Proof. The first statement is obvious. As for the second, the subgraph induced by B, N
V (core(H)) consists of all the vertices of V (core(H)) in distance at most r — depth(u) from
link(u). Since core(H) is a graph of girth at least 2r 4+ 3 with no degree one nodes, these
vertices induce a tree in H, and all the leaves of this tree are exactly in distance r —depth(u)
from link(u). Therefore link(u) is the unique center of that tree.]

Lemma 4.2 yields a method of partitioning the non-core vertices into the sets V(Ty)
and subdividing each V(7}) into a disjoint union {v} U TOU. L uTI UTE™ of vertices
in distance 1,2,...,r and more than r from v using only the data from G and core(H).
Indeed, for the vertices u with B, NV (core(H)) # 0 one finds the center and height of the
subtree of core(H) induced by B, NV (core(H)) and applies the second part of Lemma 4.2
to obtain both link(u) and depth(u), thus classifying u to the appropriate 7¥. The links
of all remaining vertices are determined using the fact that all vertices in one connected

vecore(H),d=0,....r—1 ngd) have the same link.

component of G\ |

Algorithm 2
Input: G,r.
Output: r-th roots of G in GITRT H>9,43 (one per each core)

check if G =T7" for some tree T'

G:=G
while G has vertices u, v with B, C B, do

remove from G all u such that B, C B, for some v
end while

for every graph H € QIRTH”ZLQH?) such that H" = G do
H:=H R
for every vertex v € V(H) do
find V(T,) and a partition V(T,) = {v} U TOu...urPuTd”
use restrictedI'reeRoot to reconstruct some tree T,
extend H by attaching T, at v
end for
if all T, existed output H
end for

5. Hardness results

Now we sketch the hardness of recognition for powers of graphs of lower-bounded girth
(Theorem 1.5). For the reductions we use the following NP-complete problem (see [5, Prob.
SP4]). It has already been successfully applied in this context ([4, 8, 9, 10]).

44 A. ADAMASZEK AND M. ADAMASZEK

Problem. HYPERGRAPH 2-COLORABILITY (H2C)

Instance. A finite set S and a collection 57, ..., S,, of subsets of S.

Question. Can the elements of S be colored with two colors A, B such that each
set S; has elements of both colors?

An instance of this problem (also known as SET-SPLITTING) will be denoted S =
(S;51,...,5m). We shall refer to the elements of the universum S as z1,...,z,. Any
assignment of colors A and B to the elements of S which satisfies the requirements of the
problem will be called a 2-coloring.

In this section we fix r and let k = |5], so that » = 2k or r = 2k + 1 depending on
parity.

5.1. Case of odd r =2k +1

Consider an instance S = (S;51,...,S,,) of H2C. The following two definitions describe
an auxiliary graph that will be used as a base for further constructions. The reader is referred
to Fig.4 for a self-explanatory presentation of the graphs Kg and Hgs defined below.
Definition 5.1. For an instance S = (5; 51, ..., Sn) let Vs be the following set of vertices:

e S;,x; for all subsets and elements,
e A B X,
TZ(ZJ) for every pair 4, j such that z; € S; and every [=1,...,k — 1,

° Pz.(l) for every x; and every [=1,... k — 1,

@

e the tail vertices Sjl foreach jand I =1,...,7r.

Definition 5.2. Given any instance S = (5;51,...,5,) define a graph Ks on the vertex
set Vs with the following edges:

e a path S; — TZ(;) - = Ti(,];_l) — x; whenever z; € S,

e a path z; — Pi(l) — .= Pi(k_l) for every x;,

o X — g; for all 4,

e the tail paths, that is S; — S](-l) — S](-Q) - =](.r) for every j.

This graph encodes only the structure of S. To encode the coloring we link the loose
paths from x; to either A or B.
Definition 5.3. Given an instance & and a color assignment, define the graph Hg to be
Ks with the additional edges Pi(k_l) — A whenever z; has color A and Pi(k_l)
x; has color B.

— B whenever

Note that Hs has girth 2k + 2 = r + 1. Now comes the graph to be used in our
NP-completeness reduction:

Definition 5.4. For any instance S = (5; 51, ..., Sy) of H2C put

Gs = Ks"UEs
where Es is the set of edges from A and B to each of X, x;, Sj, TZ(ZJ), Pi(l), and S](l) for all
possible 1, 7, 1.

Observe that G is defined independently of any particular color assignment. Moreover,
by analyzing Fig.4 it is not hard to check the following lemma:

Lemma 5.5. For any 2-colored instance S we have Gs = Hg". [

LARGE-GIRTH ROOTS OF GRAPHS 45

[3S

oy

Figure 4: For § = ({z1,...,xa};{x1, 22}, {x1, 23,24}, {22, 24}}) the graph Kgs consists of
all but the shaded edges. The graph Hgs (made of all the edges above) encodes
the coloring with z1,z4 of color A and x9,x3 of color B. It is a 2-coloring of &
since all S; are in distance 2k from A and B.

Proof of Theorem 1.5 for odd r. Given an instance S = (S;51,...,S,,) construct the graph
Gs. If S has a 2-coloring, then Gg is the r-th power of a graph with girth at least r + 1,
namely Gs = Hs" by Lemma 5.5.

For the inverse implication suppose that Gs = H" for some graph H. Define the
coloring as follows: x; has color A (resp. B) if there is a path of length at most k from z;
to A (resp. B) in H. Clearly each z; is assigned at most one color since otherwise A and
B would be adjacent in H".

The tail structure S, S](1), e S](-r) of each S satisfies the assumptions of Lemma 2.1,
so it enforces that in H:
e for every j the k-neighbourhood of S; is precisely {z; : x; € S;}U {SJ(-k)} (as in Kg),
e A and B are exactly in distance 2k from each S; (by the definition of Es).
Therefore for each j there has to be at least one vertex in {x; : x; € S;} that is k steps from

A and at least one that is k steps from B. This proves that the obtained coloring solves the
H2C instance. [

5.2. Case of even r = 2k

We omit this case for reasons of space. The argument is similar, but requires a slight
modification to the graphs Ks, Hs and Gg.

6. Conclusions and open problems

In this work we presented an efficient algorithmic solution to Levenshtein’s reconstruc-
tion conjecture and we applied it to a more general, unrestricted r-th root problem. From
a high-level perspective, it was possible because we could extract the “core of the problem”
which has very few solutions (as the conjecture suggests), so we could hope that these can
be found quickly. We also hope that the reverse flow of ideas is possible, so that some im-
proved algorithmic edge-by-edge reconstruction technique might help resolve Levenshtein’s
conjecture.

46 A. ADAMASZEK AND M. ADAMASZEK

Another (probably challenging) problem is to find a complete girth-parametrized com-
plexity dichotomy, that is to close the gap between r + 1 (or r + 2) and 2r + 3. We believe
that the r-th power recognition remains NP-complete even for graphs of girth 2r.

In fact it would even be very interesting to investigate possible complexity results for
finding square roots in GIRT H>5 or GIRT H;F5 (completing the complexity dichotomy

of [4]). Note that the complete graph G = K, has a square root in the class GITRTHZ,
if and only if there exists a graph on n vertices that has girth 5 and diameter 2. By
the Hoffman-Singleton theorem (see [16, 1]) such a graph may exist only for n = 5,10, 50
and 3250. The first three of these graphs are known, and the existence of the last one
(for n = 3250) is a long-standing open problem. Therefore, any efficient algorithm for
SQUARE-OF-GTRTHZ,-GRAPH might (at least in principle) solve this problem.

Acknowledgement

The authors thank the anonymous STACS referees for helpful comments.

References

[1] N.Biggs, Algebraic Graph Theory, Cambridge Univ. Press

[2] Maw-Shang Chang, Ming-Tat Ko, Hsueh-I Lu, Linear-Time Algorithms for Tree Root Problems, Proc.
10th SWAT, LNCS 4059 (2006)

[3] F.Escalante, L.Montejano, T.Rojano, Characterization of n-path graphs and of graphs having nth root,
Journal of Combinatorial Theory, Series B, 16: 282-298 (1974)

[4] Babak Farzad, Lap Chi Lau, Van Bang Le, Nguyen Ngoc Tuy, Computing Graph Roots Without Short
Clycles, Proc. 26th STACS (2009) 397-408

[5] M.R.Garey, D.S.Johnson, Computers and Intractability — A Guide to the Theory of NP-Completeness,
Freeman, Oxford, UK, 1979

[6] P.E.Kearney, D.G.Corneil Tree powers, Journal of Algorithms 29 (1998) 111-131

[7] Martin Kutz, The complezity of Boolean matriz root computation, Theor. Comp. Sci. 325 (2004) 373-390

[8] Lap Chi Lau, Bipartite Roots of Graphs, ACM Transactions on Algorithms, Vol.2, No.2, April 2006,
178-208

[9] Lap Chi Lau, Derek G. Corneil Recognizing Powers of Proper Interval, Split and Chordal Graphs, STAM
J. Discrete Math., Vol.18, No.1, 2004, 83-102

[10] Van Bang Le and Ngoc Tuy Nguyen, Hardness Results and Efficient Algorithms for Graph Powers, WG
2009

[11] V.I. Levenshtein, A conjecture on the reconstruction of graphs from metric balls of their vertices, Discrete
Mathematics 308(5-6): 993-998 (2008)

[12] V.I. Levenshtein, E.V. Konstantinova, E.Konstantinov, S.Molodtsov, Reconstruction of a graph from
2-vicinities of its vertices, Discrete Applied Mathematics 156(9): 1399-1406 (2008)

[13] Y.-L.Lin, S.S.Skiena, Algorithms for square roots of graphs, SIAM J. Discrete Math. 8 (1995), 99-118

[14] R.Motwani, M.Sudan, Computing Roots of Graphs is Hard, Discrete Applied Mathematics 54(1): 81-83
(1994)

[15] A.Mukhopadhyay, The square root of a graph, Journal of Combinatorial Theory, Series B, 2: 290-295
(1967)

[16] R.R.Singleton, There is no irreqular Moore graph, American Mathematical Monthly 75, vol 1 (1968)
42-43

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 47-58
www.stacs-conf.org

THE TROPICAL DOUBLE DESCRIPTION METHOD

XAVIER ALLAMIGEON! AND STEPHANE GAUBERT 2 AND ERIC GOUBAULT?

! Direction du Budget, 4éme sous-direction, Bureau des transports, Paris, France
2 INRIA Saclay and CMAP, Ecole Polytechnique, France

3 CEA, LIST MeASI — Gif-sur-Yvette, France
E-mail address: firstname.lastname@{polytechnique.org,inria.fr,cea.fr}

ABSTRACT. We develop a tropical analogue of the classical double description method
allowing one to compute an internal representation (in terms of vertices) of a polyhedron
defined externally (by inequalities). The heart of the tropical algorithm is a characteri-
zation of the extreme points of a polyhedron in terms of a system of constraints which
define it. We show that checking the extremality of a point reduces to checking whether
there is only one minimal strongly connected component in an hypergraph. The latter
problem can be solved in almost linear time, which allows us to eliminate quickly redun-
dant generators. We report extensive tests (including benchmarks from an application to
static analysis) showing that the method outperforms experimentally the previous ones by
orders of magnitude. The present tools also lead to worst case bounds which improve the
ones provided by previous methods.

Introduction

Tropical polyhedra are the analogues of convex polyhedra in tropical algebra. The latter
deals with structures like the max-plus semiring Ry« (also called maz-plus algebra), which
is the set RU{—o0}, equipped with the addition = @ y := max(z,y) and the multiplication
TRY: =2 +Yy.

The study of the analogues of convex sets in tropical or max-plus algebra is an active
research topic, and has been treated under various guises. It arose in the work of Zim-
merman [Zim77], following a way opened by Vorobyev [Vor67], motivated by optimization
theory. Max-plus cones were studied by Cuninghame-Green [CGT79]. Their theory was
independently developed by Litvinov, Maslov and Shpiz [LMSO01] (see also [MS92]) with

1998 ACM Subject Classification: F.2.2.Geometrical problems and computations, G.2.2 Hypergraphs;
Algorithms, Verification.

Key words and phrases: convexity in tropical algebra, algorithmics and combinatorics of tropical polyhe-
dra, computational geometry, discrete event systems, static analysis.

This work was performed when the first author was with EADS Innovation Works, SE/IA — Suresnes,
France and CEA, LIST MeASI — Gif-sur-Yvette, France.

This work was partially supported by the Arpege programme of the French National Agency of Research
(ANR), project “ASOPT”, number ANR-~08-SEGI-005 and by the Digiteo project DIM08 “PASO” number
3389.

@© Xavier Allamigeon, Stéphane Gaubert, and Eric Goubault

© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2443

48 XAVIER ALLAMIGEON, STEPHANE GAUBERT, AND ERIC GOUBAULT

motivations from variations calculus and asymptotic analysis, and by Cohen, Gaubert, and
Quadrat [CGQO04] who initiated a “geometric approach” of discrete event systems [CGQ99],
further developed in [Kat07, DLGKLO09]. Other motivations arise from abstract convexity,
see the book by Singer [Sin97], and also the work of Briec and Horvath [BH04]. The field
has attracted recently more attention after the work of Develin and Sturmfels [DS04], who
pointed out connections with tropical geometry, leading to several works by Joswig, Yu,
and the same authors [Jos05, DYO07, JSY07, Jos09].

A tropical polyhedron can be represented in two different ways, either internally, in
terms of extreme points and rays, or externally, in terms of linear inequalities (see Sect. 1
for details). As in the classical case, passing from the external description of a polyhedron
to its internal description is a fundamental computational issue. This is the object of the
present paper.

Butkovi¢ and Hegedus [BH84] gave an algorithm to compute the generators of a tropical
polyhedral cone described by linear inequalities. Gaubert gave a similar one and derived the
equivalence between the internal and external representations [Gau92, Ch. III] (see [GK09]
for a recent discussion). Both algorithms rely on a successive elimination of inequalities,
but have the inconvenience of squaring at each step the number of candidate generators,
unless an elimination technique is used, as in the Maxplus toolbox of SciLaB [CGMQ)].
Joswig developed a different approach, implemented in POLYMAKE [GJ], in which a tropical
polytope is represented as a polyhedral complex [DS04, Jos09].

The present work grew out from two applications: to discrete event systems [Kat07,
DLGKLO09], and to software verification by static analysis [AGGO08]. In these applications,
passing from the external to the internal representation is a central difficulty. A further
motivation originates from mean payoff games [AGG09b]. These motivations are reviewed
in Section 2.

Contributions. We develop a new algorithm which computes the extreme elements of trop-
ical polyhedra. It is based on a successive elimination of inequalities, and a result (Th. 4.1)
allowing one, given a polyhedron P and a tropical halfspace H, to construct a list of can-
didates for the generators of P N'H. The key ingredient is a combinatorial characterization
of the extreme generators of a polyhedron defined externally (Th. 3.5 and 3.7): we reduce
the verification of the extremality of a candidate to the existence of a strongly connected
component reachable from any other in a directed hypergraph. We include a complexity
analysis and experimental results (Sect. 4), showing that the new algorithm outperforms the
earlier ones, allowing us to solve instances which were previously by far inaccessible. Our
result also leads to worst case bounds improving the ones of previously known algorithms.

1. Definitions: tropical polyhedra and polyhedral cones

The neutral elements for the addition @& and multiplication ®, i.e., the zero and the
unit, will be denoted by 0 := —oo and 1 := 0, respectively. The tropical analogues of the
operations on vectors and matrices are defined naturally. The elements of R, the dth
fold Cartesian product of Ry,.x, will be thought of as vectors, and denoted by bold symbols,
like x = (x1,...,2q).

A tropical halfspace is a set of the vectors x = (x;) € R

Cax verifying an inequality
constraint of the form

max a; + x; < max b; +x;, a;,b; € Ryax.
1<i<d 1<i<d

THE TROPICAL DOUBLE DESCRIPTION METHOD 49

A tropical polyhedral cone is defined as the intersection of n halfspaces. It can be equivalently
written as the set of the solutions of a system of inequality constraints Ax < Bx. Here,
A = (ai;) and B = (b;;) are n x d matrices with entries in Ryax, concatenation denotes
the matrix product (with the laws of Ryax), and < denotes the standard partial ordering
of vectors. For sake of readability, tropical polyhedral cones will be simply referred to as
polyhedral cones or cones.

Tropical polyhedral cones are known to be generated by their extreme rays [GKO06,
GKO07, BSS07]. Recall that a ray is the set of scalar multiples of a non-zero vector u. It
is extreme in a cone C if u € C and if u = v & w with v,w € C implies that v = v or
u = w. A finite set G = (g');cs of vectors is said to generate a polyhedral cone C if each
g’ belongs to C, and if every vector & of C can be written as a tropical linear combination
D, Mg’ of the vectors of G (with \; € Ryay). Note that in tropical linear combinations,
the requirement that A\; be nonnegative is omitted. Indeed, 0 = —oo < A holds for all scalar
A € Ryax.

The tropical analogue of the Minkowski theorem [GKO07, BSS07] shows in particular

that every generating set of a cone that is minimal for inclusion is obtained by selecting
precisely one (non-zero) element in each extreme ray.
A tropical polyhedron of R is the affine analogue of a tropical polyhedral cone. Tt is
defined by a system of inequalities of the form Axz & ¢ < Bx & d. It can be also expressed
as the set of the tropical affine combinations of its generators. The latter are of the form
B, vt @ @jeJujrj, where the (v');cs are the extreme points, the (r7);c a set formed
by one element of each extreme ray, and @, \; = 1. It is known [CGQ04, GKO07] that
every tropical polyhedron of R? . can be represented by a tropical polyhedral cone of R%tL
thanks to an analogue of the homogenization method used in the classical case (see [Zie98,
Sect. 1.5]). Then, the extreme rays of the cone are in one-to-one correspondence with the
extreme generators of the polyhedron. That is why, in the present paper, we will only state
the main results for cones, leaving to the reader the derivation of the affine analogues, along
the lines of [GKOT].

In the sequel, we will illustrate our results on the polyhedral cone C given in Fig. 1,
defined by the system in the right side. The left side is a representation of C in barycen-
tric coordinates: each element (x1,x2,x3) is represented as a barycenter with weights
(e®1,e™2 e®3) of the three vertices of the outermost triangle. Then two elements of a same
ray are represented by the same point. The cone C is depicted in solid gray (the black bor-
der is included), and is generated by the extreme elements g° = (0,0,0), g' = (-2,1,0),
g% =(2,2,0), and g* = (0,0,0).

2. Motivations from static analysis, discrete event systems, and mean pay-
off games

Tropical polyhedra have been recently involved in static analysis by abstract interpreta-
tion [AGGO8]. It has been shown that they allow to automatically compute complex invari-
ants involving the operators min and max which hold over the variables of a program. Such
invariants are disjunctive, while most existing techniques in abstract interpretation are only
able to express conjunctions of affine constraints, see in particular [CC77, CH78, Min01].

For instance, tropical polyhedra can handle notorious problems in verification of mem-
ory manipulations. Consider the well-known memory string manipulating function memcpy
in C. A call to memcpy(dst, src,n) copies exactly the first n characters of the string buffer

50 XAVIER ALLAMIGEON, STEPHANE GAUBERT, AND ERIC GOUBAULT

n

x3 <2 + 2

z1 < max(z2, T3)

‘ 1 < x3 + 2 2
x3 < max(xi,x2 — 1) en_dst
len_src
g°
1 o
\
Figure 1: A tropical polyhedral cone in R3

max

Figure 2: memcpy invariant

src to dst. In program verification, precise invariants over the length of the strings are
needed to ensure the absence of string buffer overflows. Recall that the length of a string
is defined as the position of the first null character in the string. To precisely analyze the
function memcpy, two cases have to be distinguished:

(i) either n is strictly smaller than the source length len_src, so that only non-null char-
acters are copied into dst, hence len_dst > n,

(ii) or n > len_src and the null terminal character of src will be copied into dst, thus
len_dst = len_src.

Thanks to tropical polyhedra, the invariant min(len_src,n) = min(len_dst,n), or equiva-
lently max(—len_src,—n) = max(—len_dst, —n), can be automatically inferred. It is the
ezact encoding of the disjunction of the cases (i) and (ii). The invariant is represented by
the non-convex set of R3 depicted in Figure 2. In the application to static analysis, the
performance of the algorithm computing the extreme elements of tropical polyhedra plays
a crucial role in the scalability of the analyzer (see [AGGO8] for further details).

A second motivation arises from the “geometric approach” of max-plus linear discrete
event systems [CGQ99], in which the computation of feedbacks ensuring that the state of
the system meets a prescribed constraint (for instance that certain waiting times remain
bounded) reduces [Kat07] to computing the greatest fixed point of an order preserving map
on the set of tropical polyhedra. Similar computations arise when solving dual observability
problems [DLGKL09]. Again, the effective handling of these polyhedra turns out to be the
bottleneck.

A third motivation arises from the study of mean payoff combinatorial games. In
particular, it is shown in [AGGO09b| that checking whether a given initial state of a mean
payoff game is winning is equivalent to finding a vector in an associated tropical polyhedral
cone (with a prescribed finite coordinate). This polyhedron consists of the super-fixed points
of the dynamic programming operator (potentials), which certify that the game is winning,.

THE TROPICAL DOUBLE DESCRIPTION METHOD 51

3. Characterizing extremality from inequality constraints

3.1. Preliminaries on extremality

The following lemma, which is a variation on the proof of Th. 3.1 of [GK07] and on
Th. 14 of [BSS07], shows that extremality can be expressed as a minimality property:

Proposition 3.1. Given a polyhedral cone C C R%. . g is extreme if and only if there
exists 1 <t < d such that g is a minimal element of the set {x € C |2y =g, }, i.e. g€ C
and for each x € C, x < g and x; = g, implies x = g. In that case, g is said to be extreme
of type t.

In Fig. 3, the light gray area represents the set of the elements (x1, 2, x3) of R3 . such
that (z1,x2,x3) < g2 implies &1 < g2. It clearly contains the whole cone except g2, which
shows that g? is extreme of type 1.

A tropical segment is the set of the tropical linear combinations of two points. Using the
fact that a tropical segment joining two points of a polyhedral cone C yields a continuous
path included in C, one can check that g is extreme of type t in C if and only if there is a
neighborhood N of g such that g is minimal in {x € CN N | ¢y = g, }. Thus, extremality
is a local property.

Finally, the extremality of an element g in a cone C can be equivalently established by
considering the vector formed by its non-0 coordinates. Formally, let supp(x) := {i | ¢; # 0}
for any € R? . . Then g is extreme in C if and only if it is extreme in {x € C | supp(x) C

max-*

supp(g)}. This allows to assume that supp(g) = {1,...,d} without loss of generality.

3.2. Expressing extremality using the tangent cone

For now, the polyhedral cone C is supposed to be defined by a system Ax < Bx of n
inequalities.

Consider an element g of the cone C, which we assume, from the previous discussion,
to satisfy supp(g) = {1,...,d}. In this context, the tangent cone of C at g is defined as
the tropical polyhedral cone 7 (g,C) of R, given by the system of inequalities

max x; < max x; for all k£ such that Arg = Byg, (3.1)

tcarg max(Agg) j€arg max(Byg)

where for each row vector ¢ € R1X¢ arg max(cg) is defined as the argument of the maximum

cg = maxj<;<q(c;+g;), and where A, and By, denote the kth rows of A and B, respectively.
The tangent cone 7 (g,C) provides a local description of the cone C around g:

Proposition 3.2. There exists a neighborhood N of g such that for all x € N, x belongs
to C if and only if it is an element of g + 7T (g,C).

As an illustration, Fig. 4 depicts the set g2 + 7 (g2,C) (in semi-transparent light gray)
when C is the cone given in Fig. 1. Both clearly coincide in the neighborhood of g2.
Since extremality is a local property, it can be equivalently characterized in terms of

the tangent cone. Let 1 be the element of R whose all coordinates are equal to 1.

Proposition 3.3. The element g is extreme in C iff the vector 1 is extreme in T (g,C).

52 XAVIER ALLAMIGEON, STEPHANE GAUBERT, AND ERIC GOUBAULT

T3 T3

/ g2 /
x To 1 o
Figure 3: Extremality of g° Figure 4: The set g% + 7 (g2,C)
z;m (0,0,1)
(0,1,1)
1
. (0.1.0
T N
Figure 5: The { 0,1 }-elements of T (g?,C) Figure 6: A directed hypergraph

The problem is now reduced to the characterization of the extremality of the vector 1
in a {0,1 }-cone, i.e. a polyhedral cone defined by a system of the form Cx < Dx where
C,D € {0,1}"*9. The following proposition states that only {0, 1 }-vectors, i.e. elements
of the tropical regular cube { 0,1 }%, have to be considered:

Proposition 3.4. Let D C R% . be a {0,1 }-cone. Then 1 is extreme of type t if and only

max

if it is the unique element x of DN { 0,1} satisfying x; = 1.
The following criterion of extremality is a direct consequence of Prop. 3.3 and 3.4:

Theorem 3.5. Let C C R, be a polyhedral cone. Then g € C is extreme of type t if and
only if the vector 1 is the unique { 0,1 }-element of the tangent cone T (g,C) whose t-th

coordinate is 1.

Figure 5 shows that in our running example, the {0, 1 }-elements of 7 (g?,C) distinct
from 1 (in squares) all satisfy @; = 0. Naturally, testing, by exploration, whether the set
of 2771 { 0,1 }-elements « verifying z; = 1 belonging to 7 (g,C) consists only of 1 does not
have an acceptable complexity. Instead, the approach of the next section will rely on the
equivalent formulation of the criterion of Th. 3.5:

vie{l,...,d}, [VmeT(g,C)ﬁ{(D,]l}d, =0 = mz =0]. (3.2)

3.3. Characterizing extremality with directed hypergraphs

A directed hypergraph is a couple (N, E) such that each element of E is of the form
(T,H) with T,H C N.

THE TROPICAL DOUBLE DESCRIPTION METHOD 53

The elements of N and E are respectively called nodes and hyperedges. Given a hyper-
edge e = (T, H) € E, the sets T and H represent the tail and the head of e respectively,
and are also denoted by T'(e) and H(e). Figure 6 depicts an example of hypergraph whose
nodes are u, v, w, z,y, t, and of hyperedges e; = ({u}, {v}), e2 = ({v},{w}), es = {w}, {u}),
es = ({v,w},{z,y}), and e5s = ({w,y}, {t}).

Reachability is extended from digraphs to directed hypergraphs by the following recur-
sive definition: given u,v € N, then v is reachable from w in H, which is denoted u ~~y v,
if one of the two conditions holds: u = v, or there exists e € E such that v € H(e) and all
the elements of T'(e) are reachable from u. In our example, ¢ is reachable from u.

The size size(H) of a hypergraph H = (N, E) is defined as [N |+ . 5(|T(e)| + |H (e)]).
In the rest of the paper, directed hypergraphs will be simply referred to as hypergraphs.

We associate to the tangent cone 7 (g,C) the hypergraph H(g,C) = (N, E) defined by:

N={1,...,d} E={(argmax(Big),argmax(Arg)) | Akg = Brg, 1 <k <n}.

The extremality criterion of Eq. (3.2) suggests to evaluate, given an element of 7(g,C) N
{0,1}9 the effect of setting its [-th coordinate to the other coordinates. Suppose that it
has been discovered that x; = 0 implies ¢ = --- = x;, = 0. For any hyperedge e of
H(g,C) such that T'(e) C {l,j1,...,Jn }, T satisfies: max;cp(e) & < Maxjepe) x; = 0, s0
that @; = 0 for all ¢ € H(e). Thus, the propagation of the value 0 from the I-th coordinate
to other coordinates mimicks the inductive definition of the reachability relation from the
node [in H(g,C):

Proposition 3.6. For alll € {1,...,d}, the statement given between brackets in Eq. (3.2)
holds if and only if t is reachable from | in the hypergraph H(g,C).

Hence, the extremality criterion can be restated thanks to some considerations on the
strongly connected components of H(g,C). The strongly connected components (Sccs for
short) of a hypergraph H are the equivalence classes of the equivalence relation =4, defined
by u =y v if u ~y v and v ~»y u. They form a partition of the set of nodes of H. They
can be partially ordered by the relation <4, defined by Cy 2y Cs if C; and Cy admit a
representative u and v respectively such that v ~»y u (beware of the order of v and u in
v ~»y u). Then Prop. 3.6 and Th. 3.5 imply the following statement:

Theorem 3.7. Let C C R, be a polyhedral cone, and g € C. Then g is extreme if and
only if the set of the Sccs of the hypergraph H(g,C), partially ordered by <4 q), admits a

least element.

This theorem is reminiscent of a classical result, showing that a point of a polyhedron
defined by inequalities is extreme if and only if the family of gradients of active inequalities
at this point is of full rank. Here, the hypergraph encodes precisely the subdifferentials
(set of generalized gradients) of the active inequalities but a major difference is that the
rank condition must be replaced by the above minimality condition, which is essentially
stronger. Indeed, using this theorem, it is shown in [AGKO09] that an important class of
tropical polyhedra has fewer extreme rays than its classical analogue.

An algorithm due to Gallo et al. [GLPN93] shows that one can compute the set of nodes
that are reachable from a given node in linear time in an hypergraph. The following result
shows that one can in fact compute the minimal Sccs with almost the same complexity.
The algorithm is included in the extended version of the present paper [AGG09c]. Although
it shows some analogy with the classical Tarjan algorithm, the hypergraph case differs

54 XAVIER ALLAMIGEON, STEPHANE GAUBERT, AND ERIC GOUBAULT

Iy)
Figure 8: Intersecting 10 affine hyper-

Figure 7: Intersecting a cone with a halfspace planes in dimension 3

critically from the graph case in that one cannot compute all the ScCs using the same
technique.

Theorem 3.8. The set of minimal SCCs of a hypergraph H = (N, E) can be computed in
time O(size(H) x «(|N|)), where a denotes the inverse of the Ackermann function.

4. The tropical double description method

Our algorithm is based on a successive elimination of inequalities. Given a polyhedral
cone C defined by a system of n constraints, the algorithm computes by induction on k
(0 < k < n) a generating set G}, of the intermediate cone defined by the first k& constraints.
Then G, forms a generating set of the cone C. Passing from the set G, to the set Gy relies
on a result which, given a polyhedral cone K and a tropical halfspace H = {x | ax < bx },
allows to build a generating set G’ of K NH from a generating set G of K:

Theorem 4.1. Let K be a polyhedral cone generated by a set G C R% and H = {x |

max’

ax < bx} a tropical halfspace (a,b € RIX%). Then the polyhedral cone K N'H is generated

max

by the set {g € G|ag <bg} U {(ah)g® (bg)h|g,h € G, ag < bg, and ah > bh }.

For instance, consider the cone defined in Fig. 1 and the constraint xs < x3 + 2.5
(depicted in semi-transparent gray in Fig. 7). The three generators g', g2, and g3 satisfy
the constraint, while g° does not. Their combinations are the elements h*?, h>°, and h3°
respectively. The resulting algorithm is given in Figure 9. As in the classical case, this
inductive approach produces redundant generators, hence, the heart of the algorithm is the
extremality test in Line 10. We use here the hypergraph characterization (Theorems 3.7
and 3.8).

Complezity analysis. The complexity of the elementary step of COMPUTEEXTREME, i.e. the
computation of the elements provided by Th. 4.1 and the elimination of non-extreme ones
(Lines 7 to 13), can be precisely characterized to O(nda(d) |G|?), where G is the generating
set of the last intermediate cone. By comparison, for classical polyhedra, the same step in
the refined double description method by Fukuda and Prodon [FP96] takes a time O(n |G|?).
Note that |G| can take values much larger that d.

THE TROPICAL DOUBLE DESCRIPTION METHOD 55

1: procedure COMPUTEEXTREME(A, B,n) > A,B € R%d

2 if n =0 then > Base case

3 return the tropical canonical basis (€;)1<i<q

4 else > Inductive case T

5: split Az < Bz into Cz < Dz and ax < bz, with C, D € Rr(fa;l)Xd and a,b € R
6 G := COMPUTEEXTREME(C, D,n — 1)

7 Gs:={g'cGlag'<bg'},G>:={g’ €G|ag’ >bg’}, H:=GS

8 for all g° € G= and g € G> do

9: h:= (ag’)g' ® (bg')g’

10: if h is extreme in { ¢ | Az < Bz} then

11: append kh to H, where k is the opposite of the first non-0 coefficient of h
12: end

13: done

14: end

15: return H

16: end

Figure 9: Our main algorithm computing the extreme rays of tropical cones

The overall complexity of the algorithm COMPUTEEXTREME depends on the size of the
sets returned in the intermediate steps. In classical geometry, the upper bound theorem of
McMullen [McM70] shows that the maximal number of extreme points of a convex polytope
in R? defined by n inequality constraints is equal to

O T e P e)

The polars of the cyclic polytopes (see [Zie98]) are known to reach this bound. Allamigeon,
Gaubert, and Katz [AGK09] showed that a similar bound is valid in the tropical setting.

Theorem 4.2 ([AGK09]). The number of extreme rays of a tropical cone in (RU {—o0})?

defined as the intersection of n tropical half-spaces cannot exceed U(n +d,d —1) = O((n +
d)L@=1/2]

The bound is asymptotically tight for a fixed n, as d tends to infinity, being approached
by a tropical generalization of the (polar of) the cyclic polytope [AGK09]. The bound is
believed not to be tight for a fixed d, as n tends to infinity. Finding the optimal bound is an
open problem. By combining Theorem 4.2, Theorem 3.8, and Theorem 3.7, we readily get
the following complexity result, showing that the execution time is smaller in the tropical
case than in the classical case, even with the refinements of [FP96].

Proposition 4.3. The hypergraph implementation of the tropical double description method
returns the set of extreme rays of a polyhedral cone defined by n inequalities in dimension
d in time O(n?da(d)G?,.y), where Guax is the mazimal number of extreme rays of a cone
defined by a subsystem of inequalities taken from Ax < Bx. In particular, the time can be

bounded by O(n’da(d)(n + d)4=1).

Alternative approaches. The existing approachs discussed in the introduction have a struc-
ture which is similar to COMPUTEEXTREME. However, their implementation in the Maxplus
toolbox of SciLAB [CGMQ)] and in our previous work [AGGOS8] relies on a much less efficient
elimination of redundant generators. Its principle is the following: an element h is extreme
in the cone generated by a given set H if and only if h can not be expressed as the tropical
linear combination of the elements of H which are not proportional to it. This property can

56 XAVIER ALLAMIGEON, STEPHANE GAUBERT, AND ERIC GOUBAULT

Table 1: Benchmarks on a single core of a 3 GHz Intel Xeon with 3 Gb RAM

d | n | # final | # inter. | T (s) T7 (s) T/T’
rnd100 | 12 | 15 32 59 0.24 6.72 0.035
rnd100 | 15 | 10 555 292 2.87 321.78 8.9.-1073
rnd100 | 15 | 18 152 211 6.26 899.21 | 7.0-1073
rnd30 | 17 | 10 1484 627 15.2 4667.9 | 3.3-1072
rnd10 | 20 | 8 5153 1273 49.8 50941.9 | 9.7-107*
rmdl0 | 25 | 5 3999 808 9.9 12177.0 | 8.1-107%
rnd10 | 25 | 10 | 32699 6670 3015.7 — —
cyclic | 10 | 20 3296 887 25.8 4957.1 | 5.2-1073
cyclic 15 7 2640 740 8.1 1672.2 5.2.1073
cyclic | 17 | 8 4895 1589 44.8 25861.1 | 1.7-1072
cyclic 20 8 28028 5101 690 45 days | 1.8- 107*
cyclic 25 5 25025 1983 62.6 8 days 9.1-107°
cyclic | 30 | 5 61880 3804 261 — —
cyclic | 35 | 5 | 155040 7695 1232.6 — —
var | # lines | T (s) T (s) T/T
oddeven8 17 118 7.6 152.1 0.050
oddeven9 19 214 128.0 22101.2 | 5.8-1072
oddevenl0 21 240 1049.0 — —

be checked in O(d x |H|) time using residuation (see [BSS07] for algorithmic details). In
the context of our algorithm, the worst case complexity of the redundandy test is therefore
O(d|G)?), where G is the set of the extreme rays of the last intermediary cone. This is much
worse that our method in O(nda(d)) based on directed hypergraphs, since the cardinality
of the set G may be exponential in d (see Theorem 4.2). This is also confirmed by our
experiments (see below).

We next sketch a different method relying on arrangement of tropical hyperplanes
(arrangements of classical hyperplanes yield naive bounds). Indeed, Theorem 3.7 implies
that every extreme ray belongs to the intersection of d — 1 tropical hyperplanes, obtained
by saturating d — 1 inequalities among the n + d taken from Ax < Bx and x; > —oo, for
i € [d]. The max-plus Cramer theorem (see [AGG09a] and the references therein) implies
that for generic values of the matrices A, B, every choice of d — 1 saturated inequalities
yields at most one candidate to be an extreme ray, which can be computed in O(d?) time.
This yields a list of O((n+d)9~!) candidates, from which the extreme rays can be extracted
by using the present hypergraph characterization (Theorems 3.7 and 3.8), leading to a
O((nda(d) + d®)(n + d)¥') execution time, which is better than the one of Proposition 4.3
by a factor n/a(d) when n > d. However, the resulting algorithm is of little practical
use, since the worst case execution time is essentially always achieved, whereas the double
description method takes advantage of the fact that G ax is in general much smaller than
the upper bound of Theorem 4.2 (which is probably not optimal in the case n > d).

A third approach, along the lines of [DS04, Jos09], would consist in representing tropical
polyhedra by polyhedral complexes in the usual sense. However, an inconvenient of polyhe-
dral complexes is that their number of vertices (called “pseudo-vertices” to avoid ambigui-
ties) is exponential in the number of extreme rays [DS04]. Hence, the representations used
here are more concise. This is illustrated in Figure 8 (generated using POLYMAKE), which
shows an intersection of 10 signed tropical hyperplanes, corresponding to the “natural”
pattern studied in [AGKO09]. There are only 24 extreme rays, but 1215 pseudo-vertices.

Experiments. Allamigeon has implemented Algorithm COMPUTEEXTREME in OCaml, as
part of the “Tropical polyhedral library” (TPLib), http://penjili.org/tplib.html. Table 1
reports some experiments for different classes of tropical cones: samples formed by several
cones chosen randomly (referred to as rndz where x is the size of the sample), and signed
cyclic cones which are known to have a very large number of extreme elements [AGKO09].

THE TROPICAL DOUBLE DESCRIPTION METHOD 57

The successive columns respectively report the dimension d, the number of constraints n,
the size of the final set of extreme rays, the mean size of the intermediary sets, and the
execution time 7' (for samples of “random” cones, we give average results).

The result provided by COMPUTEEXTREME does not depend on the order of the in-
equalities in the initial system. This order may impact the size of the intermediary sets and
subsequently the execution time. In our experiments, inequalities are dynamically ordered
during the execution: at each step of the induction, the inequality ax < bx is chosen so
as to minimize the number of combinations (ag’)g’ @ (bg')g’. This strategy reports better
results than without ordering.

We compare our algorithm with a variant using the alternative extremality criterion
which is discussed in Sect. 4 and used in the other existing implementations [CGMQ),
AGGO8]. TIts execution time 7" is given in the seventh column. The ratio T'/T" shows
that our algorithm brings a huge breakthrough in terms of execution time. When the num-
ber of extreme rays is of order of 104, the second algorithm needs several days to terminate.
Therefore, the comparison could not be made in practice for some cases.

Table 1 also reports some benchmarks from applications to static analysis. The ex-
periments oddevensi correspond to the static analysis of the odd-even sorting algorithm of ¢
elements. It is a sort of worst case for our analysis. The number of variables and lines in each
program is given in the first columns. The analyzer automatically shows that the sorting
program returns an array in which the last (resp. first) element is the maximum (minimum)
of the array given as input. It clearly benefits from the improvements of COMPUTEEX-
TREME, as shown by the ratio with the execution time T’ of the previous implementation
of the static analyzer [AGGOS].

References

[AGGO08] X. Allamigeon, S. Gaubert, and E. Goubault. Inferring min and max invariants using max-plus
polyhedra. In SAS’08, volume 5079 of LNCS, pages 189—204. Springer, Valencia, Spain, 2008.

[AGG09a] M. Akian, S. Gaubert, and A. Guterman. Linear independence over tropical semirings and
beyond. In G.L. Litvinov and S.N. Sergeev, editors, Proc. of the International Conference on
Tropical and Idempotent Mathematics, volume 495 of Contemp. Math., pages 1-38. AMS, 2009.

[AGGO09b] M. Akian, S. Gaubert, and A. Guterman. Tropical polyhedra are equivalent to mean payoff
games. arXiv:0912.2462, 2009.

[AGG09c] X. Allamigeon, S. Gaubert, and E. Goubault. Computing the extreme points of tropical poly-
hedra. Eprint arXiv:math/0904.3436v2, 20009.

[AGKO09] X. Allamigeon, S. Gaubert, and R. D. Katz. The number of extreme points of tropical polyhedra.
Eprint arXiv:math/0906.3492, accepted for publication in JCTA, 2009.

[BH&4] P. Butkovi¢ and G. Hegediis. An elimination method for finding all solutions of the system of
linear equations over an extremal algebra. Ekonomicko-matematicky Obzor, 20, 1984.

[BHO4] W. Briec and C. Horvath. B-convexity. Optimization, 53:103-127, 2004.

[BSSO07] P. Butkovi¢, H. Schneider, and S. Sergeev. Generators, extremals and bases of max cones.
Linear Algebra Appl., 421(2-3):394-406, 2007.

[CCT77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
238-252, Los Angeles, California, 1977. ACM Press, New York, NY.

[CGT9] R. A. Cuninghame-Green. Minimaz algebra, volume 166 of Lecture Notes in Economics and
Mathematical Systems. Springer, 1979.

[CGMQ)] G. Cohen, S. Gaubert, M. McGettrick, and J.-P. Quadrat. Maxplus toolbox of SCILAB.
Available at http://minimal.inria.fr/gaubert/maxplustoolbox/; now integrated in SCICOSLAB.
http://www.scicoslab.org.

58

(CGQYY]
(CGQOA]

[CHTS]

[DLGKL09)]

[DS04]
[DY07]

[FP96]

[Gau92]

(GJ]
[GKO6]

[GKO7]
[GK09]
[GLPN93]
[Jos05]

[Jos09]

[ISY07)
[Kat07]
[LMS01]
[McM70]

[Min01]

[MS92]

[Sin97]
[Vor67]

[Zie98]
[Zi77]

XAVIER ALLAMIGEON, STEPHANE GAUBERT, AND ERIC GOUBAULT

G. Cohen, S. Gaubert, and J.P. Quadrat. Max-plus algebra and system theory: where we are
and where to go now. Annual Reviews in Control, 23:207-219, 1999.

G. Cohen, S. Gaubert, and J. P. Quadrat. Duality and separation theorem in idempotent
semimodules. Linear Algebra and Appl., 379:395-422, 2004.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 84-97, Tucson, Arizona, 1978. ACM Press.

M. Di Loreto, S. Gaubert, R. D. Katz, and J.-J. Loiseau. Duality between invariant spaces for
max-plus linear discrete event systems. Eprint arXiv:0901.2915., 2009.

M. Develin and B. Sturmfels. Tropical convexity. Doc. Math., 9:1-27 (electronic), 2004.

M. Develin and J. Yu. Tropical polytopes and cellular resolutions. Ezperimental Mathematics,
16(3):277-292, 2007.

K. Fukuda and A. Prodon. Double description method revisited. In Selected papers from the 8th
Franco-Japanese and 4th Franco-Chinese Conference on Combinatorics and Computer Science,
pages 91-111, London, UK, 1996. Springer.

S. Gaubert. Théorie des systémes linéaires dans les dioides. These, Ecole des Mines de Paris,
July 1992.

E. Gawrilow and M. Joswig. POLYMAKE. http://www.math.tu-berlin.de/polymake/.

S. Gaubert and R. Katz. Max-plus convex geometry. In R. A. Schmidt, editor, RelMiCS/AKA
2006, volume 4136 of Lecture Notes in Comput. Sci., pages 192-206. Springer, 2006.

S. Gaubert and R. Katz. The Minkowski theorem for max-plus convex sets. Linear Algebra and
Appl., 421:356-369, 2007.

S. Gaubert and R. Katz. Minimal half-spaces and external representation of tropical polyhedra.
Eprint arXiv:math/0908.1586, 2009.

G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications.
Discrete Appl. Math., 42(2-3):177-201, 1993.

M. Joswig. Tropical halfspaces. In Combinatorial and computational geometry, volume 52 of
Math. Sci. Res. Inst. Publ., pages 409—431. Cambridge Univ. Press, Cambridge, 2005.

M. Joswig. Tropical convex hull computations. In G.L. Litvinov and S.N. Sergeev, editors,
Proc. of the International Conference on Tropical and Idempotent Mathematics, volume 495 of
Contemp. Math. AMS, 2009.

M. Joswig, B. Sturmfels, and J. Yu. Affine buildings and tropical convexity. Albanian J. Math.,
1(4):187-211, 2007.

R. D. Katz. Max-plus (A, B)-invariant spaces and control of timed discrete event systems. [EEE
Trans. Aut. Control, 52(2):229-241, 2007.

G.L. Litvinov, V.P. Maslov, and G.B. Shpiz. Idempotent functional analysis: an algebraic
approach. Math. Notes, 69(5):696-729, 2001.

P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17:179-184,
1970.

A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE, pages 310-319.
IEEE CS Press, October 2001. http://www.di.ens.fr/~mine/publi/article-mine-astO1.
pdf.

V. Maslov and S. Samborskii, editors. Idempotent analysis, volume 13 of Adv. in Sov. Math.
AMS, RI, 1992.

I. Singer. Abstract convexr analysis. Wiley, 1997.

N.N. Vorobyev. Extremal algebra of positive matrices. Elektron. Informationsverarbeitung und
Kybernetik, 3:39-71, 1967. in Russian.

G. M. Ziegler. Lectures on Polytopes. Springer, 1998.

K. Zimmermann. A general separation theorem in extremal algebras. Ekonom.-Mat. Obzor,
13(2):179-201, 1977.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 59-70
www.stacs-conf.org

THE REMOTE POINT PROBLEM, SMALL BIAS SPACES, AND
EXPANDING GENERATOR SETS

V. ARVIND AND SRIKANTH SRINIVASAN

The Institute of Mathematical Sciences,
C.I.T. Campus, Chennai 600 113, India.

E-mail address, V. Arvind: arvind@imsc.res.in

E-mail address, Srikanth Srinivasan: srikanth@imsc.res.in

ABSTRACT. Using e-bias spaces over Fa, we show that the Remote Point Problem (RPP),
introduced by Alon et al [APY09], has an NC? algorithm (achieving the same parame-
ters as [APY09]). We study a generalization of the Remote Point Problem to groups: we
replace Fy by G" for an arbitrary fixed group G. When G is Abelian we give an NC?
algorithm for RPP, again using e-bias spaces. For nonabelian G, we give a deterministic
polynomial-time algorithm for RPP. We also show the connection to construction of ex-
panding generator sets for the group G". All our algorithms for the RPP achieve essentially
the same parameters as [APY09].

1. Introduction

Valiant, in his celebrated work [V77] on circuit lower bounds for computing linear trans-
formations A : F* — F™ for a field F, initiated the study of rigid matrices. If explicit
rigid matrices of certain parameters can be constructed it would result in superlinear lower
bounds for logarithmic depth linear circuits over F. This problem and the construction of
such rigid matrices has remained elusive for over three decades.

Alon, Panigrahy and Yekhanin [APY09] recently proposed a problem that appears to be
of intermediate difficulty. Given a subspace L of Fy by its basis and a number r € [n] as
input, the problem is to compute in deterministic polynomial time a point v € 4 such
that A(u,v) > r for all uw € L, where A(u,v) is the Hamming distance. They call this the
Remote Point Problem. The point v is said to be r-far from the subspace L.

1998 ACM Subject Classification: Algorithms and Complexity Theory.
Key words and phrases: Small Bias Spaces, Expander Graphs, Cayley Graphs, Remote Point Problem.

SYMPOSIUM

LV/' ON THEORETICAL
(@D
)

ASPECTS
al OF COMPUTER ©

SCIENCE V. Arvind and S. Srinivasan

@ Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany

Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2444

60 V. ARVIND AND S. SRINIVASAN

Alon et al [APY09] give a nice polynomial time-bounded (in n) algorithm for computing a
v € F} that is clog n-far from a given subspace L of dimension n/2 and c is a fixed constant.
For L such that dim(L) = k < n/2 they give a polynomial-time algorithm for computing a
point v € [y that is %—f&r from L.

Results of this paper. In [AS09a] we recently investigated the problem of proving circuit
lower bounds in the presence of help functions. Specifically, one of the problems we consider
is proving lower bounds for constant-depth Boolean circuits which can take a given set of
(arbitrary) help functions {hi, ho,--- , hy,} at the input level, where h; : {0,1}" — {0,1}
for each i. Proving explicit lower bounds for this model would allow us to separate EXP
from the polynomial-time many-one closure of nonuniform ACY. We show that it suffices to
find a polynomial-time solution to the Remote Point Problem for parameters k = 2(loglogn)®
and r = 2('°g+gn>d for all constants ¢ and d. Unfortunately, the parameters of the Alon et
al algorithm are inadequate for our application.

However, motivated by this connection, in the present paper we carry out a more detailed
study of the Remote Point Problem as an algorithmic question. We briefly summarize our
results.

1. The first question we address is whether we can give a deterministic parallel (i.e. NC)
algorithm for the problem — Alon et al’s algorithm is inherently sequential as it is based
on the method of conditional probabilities and pessimistic estimators.

It turns out an element of an e-bias space for suitably chosen ¢ is a solution to the Remote
Point Problem which gives us an NC algorithm quite easily.

2. Since the RPP for F§ can be solved using small bias spaces, it naturally leads us to
address the problem in a more general group-theoretic setting.

In the generalization we study we will replace o with an arbitrary fixed finite group G such
that |G| > 2. Hence we will have the n-fold product group G" instead of the vector space

Given elements = = (x1,z2,...,2,),y = (Y1,Y2,...,Yn) of G", let A(z,y) = |{i | z; # vi}|.
Le. A(z,y) is the Hamming distance between x and y. Furthermore, for S C G", let A(x, .S)
denote minyes Az, y).

We now define the Remote Point Problem (RPP) over a finite group G. The input is a
subgroup H of G", where H is given by a generating set, and a number r € [n]. The
problem is to compute in deterministic polynomial (in n) time an element 2 € G" such that
A(xz, H) > r. The results we show in this general setting are the following.

(a) The Remote Point Problem over any Abelian group G has an NC? algorithm for
r= O(%) and k <n/2, where k = log|g [H|.

(b) Over an arbitrary group G the Remote point problem has a polynomial-time algo-
rithm for r = O(%) and k < n/2, where k = log|g [H|.

THE REMOTE POINT PROBLEM, SMALL BIAS SPACES, AND EXPANDING GENERATOR SETS 61

The parallel algorithm stated in part(a) above is based on e-bias space constructions for
finite Abelian groups described in Azar et al [AMNO98]. The sequential algorithm stated in
part(b) above is a group-theoretic generalization of the Alon et al algorithm for F7 [APY09].

Due to lack of space, some proofs have been omitted. They may be found in the full version
which has been published as an ECCC report [AS09b].

2. Preliminaries

Fix a finite group G such that |G| > 2. Given any = € G", let wt(x) denote the number of
coordinates i such that x; # 1, where 1 is the identity of the group G. By B(r), we will refer
to the set of x € G™ such that wt(xz) < r. Given a subset S of G", B(S,r) will denote the
set S-B(r) ={sx|seS,x e B(r)}. Clearly, for any S C G" and any = € G", x € B(S,r)
if and only if A(z,S) < r. We say that z is r-close to S if € B(S,r) and r-far from S if
x ¢ B(S,r).

The Remote Point Problem (RPP) over G is defined to be the following algorithmic problem:

INPUT: A subgroup H of G" (given by its generators) and an r € N.
OUTPUT: An x € G" such that = ¢ B(H,r).

Clearly, there are inputs to the above problem where no solution can be found. But the
input instances of the kind that we will study will clearly have a solution (in fact, a random
point of G" will be a solution with high probability).

Given a subgroup H of G", denote by §(H) the quantity logg [H|. We will call 5(H) the
dimension of H in G™.

We say that the RPP over G has a (k(n),r(n))-algorithm if there is an efficient algorithm that
solves the Remote Point Problem when given as input a subgroup H of G" of dimension at
most k(n) and an r that is bounded by r(n). (Here, ‘efficient’ can correspond to polynomial
time or some smaller complexity class.)

A simple counting argument shows that there is a valid solution to the RPP over G on
inputs (H,r) where 6(H) +r < n(1 — ig‘/g') —¢), for any fixed € > 0 (where H(-) denotes
the binary entropy function). However, the best known deterministic solution to the RPP
— from [APY09] - is a polynomial time (%, %)—algorithm which works over Fy (i.e, the
group G involved is the additive group of the field Fy).

2.1. Some Group-Theoretic Algorithms

We introduce basic definitions and review some group-theoretic algorithms. Let Sym(€2)
denote the group of all permutations on a finite set €2 of size m. In this section we use G, H
etc. to denote permutation groups on), which are simply subgroups of Sym(£2).

62 V. ARVIND AND S. SRINIVASAN

Let G be a subgroup of Sym(Q2). For a subset A C Q denote by Gyay the point-wise
stabilizer of A. L.e Gay is the subgroup consisting of exactly those elements of G that fix
each element of A.

Theorem 2.1 (Schreier-Sims). [Lu93]

(1) If a subgroup G of Sym(Q)) is given by a generating set as input along with the subset
A there is a polynomial-time (sequential) algorithm for computing a generator set
Jor Giay.

(2) If a subgroup G of Sym(2) is given by a generating set as input, then there is a
polynomial time algorithm for computing |G|.

(3) Given as input a permutation o € Sym(2) and a generator set for a subgroup G of
Sym(Q2), we can test in deterministic polynomial time if o is an element of G.

We are also interested in a special case of this problem which we now define. A subset
' CQisan orbit of Gif I' = {o(i) | 0 € G} for some i € Q. Any subgroup G of Sym(2)
partitions € into orbits (called G-orbits).

For a constant b > 0, a subgroup G of Sym(2) is defined to be a b-bounded permutation
group if every G-orbit is of size at most b.

In [MC87], McKenzie and Cook studied the parallel complexity of Abelian permutation
group problems. Specifically, they gave an NC? algorithm for testing membership in an
Abelian permutation group given by a generator set and for computing the order of an
Abelian permutation group. When restricted to b-bounded Abelian permutation groups,
the algorithms of [MC87] for these problems are actually NC? algorithms. We formally
state their result and derive a consequence.

Theorem 2.2 ([MCS87]). There is an NC? algorithm for membership testing in a b-bounded
Abelian permutation group G given by a generator set.

We now consider problems over G", for a fixed finite group G. We know from basic group
theory that every group G is a permutation group acting on itself. I.e. every G can be seen
as a subgroup of Sym(G), where G acts on itself by left (or right) multiplication. Therefore,
G" can be easily seen as a permutation group on the set 2 = G x [n] and hence, G can be
considered a subgroup of Sym(f2). Furthermore, notice that each subset G x {i} is an orbit
of this group G". Hence, G" is a b-bounded permutation group contained in Sym({2), where
b = |G|. Finally, if G is an Abelian group, then so is this subgroup of Sym(2). We have the
following lemma as an easy consequence of Theorem 2.2.

Lemma 2.3. Let G be Abelian. There is an NC? algorithm that takes as input a generator
set for some subgroup 'H of G" and an x € G", and accepts iff v € H.

Given any y = (y1,2,...,¥:) € G' with 1 < i < n and any S C G, let S, denote the set
{reS|z;=uy; for 1 <j<i}.

Lemma 2.4. Let G be any fized finite group. There is a polynomial time algorithm that
takes as input a subgroup H of G", where H is given by generators, and a y € G' with
1 <i<n, and computes |H,|.

THE REMOTE POINT PROBLEM, SMALL BIAS SPACES, AND EXPANDING GENERATOR SETS 63

Proof. Let K = {(x1,29,...,2p) € H | 21 = 29 = -+ = x; = 1}, where 1 denotes the
identity element of G. Clearly, K is a subgroup of ‘H. The set H,, if nonempty, is simply a
coset of K and thus, we have |H,| = |K|. To check if H, is nonempty, we consider the map

7+ G — G* that projects its input onto its first 4 coordinates; note that H, is nonempty
iff the subgroup m;(H) contains y, which can be checked in polynomial time by point (3)
of Theorem 2.1 (here, we are identifying G" with a subgroup of Sym(G X [n]) as above).
If y ¢ mi(H), the algorithm outputs 0. Otherwise, we have |H,| = |K| and it suffices to
compute |K|. But K is simply the point-wise stabilizer of the set G x [i] in H, and hence
|| can be computed in polynomial time by points (1) and (2) of Theorem 2.1. L]

3. Expanding Cayley Graphs and the Remote Point Problem

Fix a group G such that |G| > 2, and consider an instance of the RPP over G. The main
idea that we develop in this section is that if we have a (symmetric) expanding generator
set S for the group G™ with appropriate expansion parameters then for a subgroup H of G”
such that §(H) < k some element of S will be r-far from H, for suitable k£ and r.

We review some definitions related to expander graphs (e.g. see the survey of Hoory, Linial,
and Wigderson [HLWO06]). An undirected multigraph G = (V, E) is an (n,d, «)-graph for
n,d € N and a > 0 if |V| = n, the degree of each vertex is d, and the second largest value
A(G) from among the absolute values of eigenvalues of A(G) — the adjacency matrix of the
graph G — is bounded by ad.

A random walk of length ¢ € Non an (n,d, a)-graph G = (V, E) is the output of the following
random process: a vertex vg € V of picked uniformly at random, and for 0 < i < ¢, if v; has
been picked, then v;41 is obtained by selecting a neighbour v; 1 uniformly at random (i.e a
random edge out of v; is picked, and v; 41 is chosen to be the other endpoint of the edge);
the output of the process is (vg,v1,...,v:). We now state an important result regarding
random walks on expanders (see [HLW06, Theorem 3.6] for details).

Lemma 3.1. Let G = (V,E) be an (n,d,a)-graph and B C 'V with |B| < n. Then, the
probability that a random walk (v, v1,...,vt) is entirely contained inside B (i.e, v; € B for
each i) is bounded by (8 +).

Let 'H be a group and S a symmetric multiset of elements from H. L.e. there is a bijection
of multisets ¢ : S — S such that ¢(s) = s~! for each s € S. We define the Cayley graph
C(H, S) to be the (multi)graph G with vertex set H and edges of the form (z,xs) for each
x € H and each s € S; since S is symmetric, we consider C(H, S) to be an undirected graph
by identifying the edges (z,xs) and (xs, (zs)p(s)), for each x and s.

We now show a lemma that will help relate generators of expanding Cayley graphs on G”
and the RPP over G. In what follows, let S be a symmetric multiset of elements from G";

let G denote the Cayley graph C(G",5); and let N, D denote |G|" and |S| (counted with
repetitions) respectively.

64 V. ARVIND AND S. SRINIVASAN

Lemma 3.2. Assume S as above is such that G is an (N, D, «)-graph, where a < n—ld, for

some fized d > 0. Then, given any subgroup H of G" such that 6(H) < 2n/3, we have

|S|r;7‘1| < nd% for large enough n (where the elements of SN'H are counted with repetitions).

Proof. Let S’ = SN'H and let n = |S'|/|S]. We want an upper bound on 7. Consider
a random walk (zg,x1,...,2:) of length ¢ on the graph G (the exact value of ¢ will be
fixed later). Let B denote the following event: there is a y € G™ such that all the vertices
o, X1, ...,2 are all contained in the coset y’H of H. Let p denote the probability that B
occurs.

We will first lower bound p. At each step of the random walk, a random s; € S is chosen
and ;41 is set to x;s;. If these s; all happen to belong to S, then the cosets x;H and ;11 H
are the same for all 7 and hence, the event B does occur. Hence, p > n’.

We now upper bound p. Fix any coset yH of the subgroup H. Since the dimension of H
in G" is bounded by 2n/3, we have [yH| = [H| < |G[*"/3 < 27/3|G"|. That is, the coset
yH is a very small subset of G". Applying Lemma 3.1, we see that the probability that
the random walk (zg,z1,...,2;) is completely contained inside this coset is bounded by
(2773 -t < 3—;, for large enough n. As the total number of cosets of H is bounded by

n+
|G|™, an application of the union bound tells us that p is upper bounded by \Q\”f—; < ‘g,ldt iy

Setting t = W we see that p is at most nd—i/Q.
Putting the upper and lower bounds together, we see that nt < # and hence, n < #.
This completes the proof. [

We follow the structure of the algorithm for the RPP over Fy in [APY09]. We first de-
scribe their (n/2, clogn)-algorithm for the RPP, followed by our own algorithm. We then
describe how they extend this algorithm to a (k, %)—algorithm for any k < n/2; the
same procedure works for our algorithm also.

The (n/2, clogn)-algorithm proceeds as follows. On an input instance consisting of a sub-
group V' (which is a subspace of F%) of dimension at most n/2 and an r < clogmn,

(1) The algorithm first computes a collection of m = n9) subspaces Vi, Va, ..., Vi,
each of dimension at most 2n/3 such that B(V,clogn) C |J:*, V.

(2) The algorithm then finds an x € F% such that = ¢ |J; Vi. (This is done using a
method similar to the method of pessimistic estimators introduced by Raghavan
[Rag88].)

Our algorithm will proceed exactly as the above algorithm in the first step. The second
step of our algorithm will be different (assuming that the group G is Abelian). We first
state Step 1 of the algorithm of [APY09] in greater generality:

Lemma 3.3. Let G be any fized finite group with |G| > 2. For any constant ¢ > 0 and large
enough n, the following holds. Given any subgroup H of G" such that 5(H) < %5, there is
a collection of m < n'% subgroups H1,Ha, ..., Hm such that B(H,clogn) C J~; Hi, and

THE REMOTE POINT PROBLEM, SMALL BIAS SPACES, AND EXPANDING GENERATOR SETS 65

d0(H;) < 2n/3 for each i. Moreover, there is a logspace algorithm that, when given as input
H as a set of generators, produces generators for the subgroups Hi, Ho, ..., Hum.

Proof. The proof follows exactly as in [APY09]. We reproduce it here for completeness and
to analyze the complexity of the procedure.

Let 1 denote the identity element of G. For each S C [n], let G"(S) denote the subgroup of
G" consisting of those x such that x; = 1 for each i ¢ S. Note that 6(G"(S)) = |S|. Also
note that for each S C [n], the group G"(S) is a normal subgroup; in particular, this implies
that the set K- G™(S) is a subgroup of G" whenever K is a subgroup of G".

Partition the set [n] into £ < 10clogn sets of size at most [q5jez71 each — we will call
these sets S1,S59,...,S5p. For each A C [{] of size [clogn], let K4 denote the subgroup
G"(U;ca Si)- Note that the number of such subgroups is at most 2t < nl0. Also, for each

A as above, §(IC4) = |U,;ca Si| < (m + 1) (clogn +1) < §, for large enough n.
Consider any = € B(clogn) (i.e, an element x of G" s.t wt(z) < clogn). We know that
x € G"(S) for some S of size at most clogn. Hence, it can be seen that x € G"(|J;c4 Si)
for some A of size [clogn]; this shows that B(clogn) C |J,Ka. Therefore, we see that
B(H,clogn) = HB(clogn) C |J, HK .

For each A C [{] of size [clogn], let H 4 denote the subgroup HK 4 (note that this is indeed
a subgroup, since K4 is a normal subgroup). Moreover, the cardinality of this subgroup is
bounded by |H| - |Ka| < |G]™2|G[™° < |G|**/3; hence, 6(HA) < 2n/3. Thus, the collection
of subgroups {H 4} 4 satisfies all the properties mentioned in the statement of the lemma.
That a set of generators for this subgroup can be computed in deterministic logspace —
for some suitable choice of S7,S5,...,5, — is a routine check from the definition of the
subgroups {K4}4. This completes the proof of the lemma. [

Using Lemma 3.3, we are able to efficiently “cover” B(H,clogn) for any small subgroup H
of G" by a union of small subgroups. Therefore, to find a point that is clog n-far from H, it
suffices to find a point € G” not contained in any of the covering subgroups. To do this,
we note that if S is a multiset containing elements from G™ such that C(G", S) is a Cayley
graph with good expansion, then S must contain such an element. This is formally stated
below.

Lemma 3.4. For any constant ¢ > 0 and large enough n € N, the following holds. Let S be
any multiset of elements of G" such that A\(C(G",S)) < n210€. Then, for m < n'% and any
collection Hy,Ha, ..., Hm of subgroups such that 6(H;) < 2n/3 for each i, there is some
s € S such that s & |J; H;.

Proof. The proof follows easily from Lemma 3.2. Given any ¢ € [m], we know, from Lemma
3.2, that |SNH;| < 151 (where the elements of the multisets are counted with repetitions).

n

Hence, |SN U, Hi| <D, 1SNH| < % < |S]. Therefore, there must be some s € S such
that s ¢ |, Hi.]

66 V. ARVIND AND S. SRINIVASAN

Therefore, to find a point x that is clog n-far from the subspace H, it suffices to construct
an S such that C(G",S) is a sufficiently good expander, find the covering subgroups H;
(i € [m[), and then to find an s € S that does not lie in any of the H;. We follow the above
approach to give an efficient parallel algorithm for the RPP in the case that G is an Abelian
group. For arbitrary groups, we show that the method of [APY09] yields a polynomial time
algorithm.

4. Remote Point Problem for Abelian Groups

Fix an Abelian group G. Recall that a character x of G is a homomorphism from G” to
7, the multiplicative subgroup of the complex numbers of absolute value 1. For ¢ > 0,
a distribution p over G™ is said to be e-biased if, given any non-trivial character y of G",

[Esnplx(@)]] < e

A multiset S consisting of elements from G" is said to be an e-biased space in G™ if the
uniform distribution over S is an e-biased distribution.

It can be checked that a multiset consisting of (%)0(1) independent, uniformly random
elements from G" form an e-biased space with high probability. Explicit e-biased spaces
were constructed for the group Fy by Naor and Naor in [NN93]; further constructions were
given by Alon et al. in [AGHP92]. Explicit constructions of e-biased spaces in Z!] were given
by Azar et al. in [AMNO9S8]. We observe that this last construction yields a construction for
all Abelian groups G", when G is of constant size. We first state the result of [AMNO8] in
a form that we will find suitable.

Theorem 4.1. For any fived d, there is an NC? algorithm that does the following. On
input n and € > 0 (both in unary), the algorithm produces a symmetric multiset S C Z of
size O((2)?) such that S is an e-biased space in Z}.

Proof. 1t is easy to see that the e-biased space construction in [AMN98] can be implemented
in deterministic logspace (and hence in NC?). If the space S obtained is not symmetric, we
can consider the multiset that is the disjoint union of S and S~!, which is also easily seen
to be e-biased. [

Remark 4.2. We note that the definition of small bias spaces in [AMNO98] differs somewhat
from our own definition above. But it is easy to see that an e-bias space in Z] in the sense
of [AMNO9S] is a (de)-bias space according to our definition above.

Remark 4.3. In a recent paper, Meka and Zuckerman [MZ09] observe, as we do below,
that the construction of [AMN9S8] gives small bias spaces for any arbitrary Abelian group G.
Nevertheless, we present our own proof of this fact, since the small bias spaces that follow
from our proof are of smaller size. Specifically, our proof shows how to explicitly construct

sample spaces of size O (?—j), whereas the relevant result in [MZ09] only produces small

bias spaces of size O ((2)?), where b is some constant that depends on G (and can be as
large as Q(log |G])).

THE REMOTE POINT PROBLEM, SMALL BIAS SPACES, AND EXPANDING GENERATOR SETS 67

Lemma 4.4. For any fized group G, there is an NC? algorithm which, on input n and e > 0
in unary, produces a symmetric multiset S C G" of size O((2)?) such that S is an e-biased
space in G".

Proof. By the Fundamental Theorem of finite Abelian groups, G = Zg, ® Zg, ® - © Zq,,,
for positive integers dy,ds,...,dy such that dy | do | -+ | dx. Let Gy denote ng. Note
that for any s,t € N, Zs = Zgs /7. Hence, we see that that G = Gy/H, where H is the
subgroup Ze, ® Ze, ® - -+ S ZLe,,, and e; = di/d; for each i € [k]. Therefore, G" = Gg /H".
Let m : G — G™ be the natural onto homomorphism with kernel H". Note that 7 is just
the projection map and can easily be computed in NC?.

mce = , DY eorem 4.1, ere 1S an algorivnim al constructs a symmetric
Since Gy = Z3*, by Th 4.1, there is an NC? algorithm that construct tri

. . 2
multiset Sy C G of size O((k?”)) such that Sy is an e-biased space in Gy. We claim that
the multiset S = 7w(Sy) is a symmetric e-biased space in G". To see this, consider any
non-trivial character x of G"; note that xo = x o7 is a non-trivial character of G}. We have

E @) =| B [X(?T(wo))]‘ .

z~S xo~So

= E _[xo(7)]

xo~So

<e

where the first equality follows from the definition of .S, and the last inequality follows from
the fact that Sp is an e-biased space in Gj. Since x was an arbitrary non-trivial character
of G", we have proved that S is indeed an e-biased space in G". It is easy to see that S is
symmetric. Finally, note that S can be computed in NC?. This completes the proof.]

Finally, we mention a well-known connection between small bias spaces in G" and Cayley
graphs over G" (e.g. see Alon and Roichman [AR94]).

Lemma 4.5. Given any symmetric multiset S C G", the Cayley graph C(G",S) is an
(IG|™, |S|, a)-graph iff S is an o-biased space.

Lemmas 4.5 and 4.4 have the following easy consequence:

Lemma 4.6. For any Abelian group G, there is an NC? algorithm which, on unary inputs
n and a > 0, produces a symmetric multiset S C G" of size O((2)?) such that C(G", S) is
a (|9]", 151, a)-graph.

Putting the above statement together with the results of Section 3, we have the following.

Theorem 4.7. For any constant ¢ > 0, the RPP over G has an NC? (n/2, clog n)-algorithm.

Proof. Let 'H denote the input subgroup. By Lemma 3.3, there is a logspace (and hence
NC?) algorithm that computes a collection of m = n€© many subgroups Hi, Ha, - .., Hm
such that B(H, clogn) C J"; H; and §(H;) < 2n/3 for each i € [m]. Now, fix any multiset
S C G" such that the Cayley graph C(G",S) is a (|G|",|S|, a)-graph, where a = T]EOC; by
Lemma 4.6, such an S can be constructed in NC?. It follows from Lemma 3.4 that there
is some s € S such that s ¢ |J*, H;. Finally, by Lemma 2.3, there is an NC? algorithm
to test if each s € S belongs to H;, for any ¢ € [m]. Hence, we can find out (in parallel)
exactly which s € S do not belong to any of the H; and output one of them. The output
element s is surely clogn-far from H. [

68 V. ARVIND AND S. SRINIVASAN

Let G be Abelian. We observe that a method of [APY09], coupled with Theorem 4.7, yields
an efficient (k, %)—algorithm for any constant ¢ > 0, and k < n/2.

Theorem 4.8. Let ¢ > 0 be any constant. If G is an Abelian group, then the RPP over G
has an NC? (k, %)—algorithm for any k <n/2.

Proof. Given as input a subgroup H such that 6(H) = k& < n/2, the algorithm partitions [n]
as [n] = U;~, Ti, where 2k < |T;| < 4k for each 4; note that m > n/4k. Let H; denote the
subgroup obtained when H is projected onto the coordinates in ;. Since §(H;) < k < |T;]/2,
we can, by Theorem 4.7, efficiently find a point z; € G/Til that is at least 4clog k-far from
‘H;. Putting these x; together in the natural way, we obtain an x € G" that is %—far

from the subgroup H.

Since G is Abelian, using the algorithm of Theorem 4.7, the x; can all be computed in
parallel in NC?. Hence, the entire procedure can be performed in NC2.]

5. RPP over General Groups

Let G denote some fixed finite group. We can generalize the polynomial-time algorithm of
[APY09], described for Fy, to compute a point x € G" that is clog n-far from a given input
subgroup H such that §(H) < n/2. We only state this result below and refer the interested
reader to the full version [AS09b] for details.

Theorem 5.1. For any constant ¢ > 0, the RPP over G has a polynomial time (n/2,clogn)-
algorithm.

Analogous to Theorem 4.8, we have the following solution to RPP for general groups.

Theorem 5.2. Let ¢ > 0 be any constant. For any G, the RPP over G has a polynomial
time (k, mllggk)—algorithm for any k < n/2.

Proof. The construction is exactly the same as in the proof of Theorem 4.8. The only
difference is that we will apply the algorithm of Theorem 5.1. In this case, the x; can all be
found in deterministic polynomial time. Hence, the entire procedure gives us a polynomial-
time algorithm. [

6. Limitations of expanding sets

In the previous sections, we have shown how generators for expanding Cayley graphs on
g™, where G is a fixed finite group, can help solve the RPP over G. In particular, we have
the following easy consequence of Lemmas 3.3 and 3.4.

Corollary 6.1. For any constant ¢ > 0, large enough n, and any symmetric multiset
S C G" such that A\(C(G™,5)) < ﬁ, the following holds. If H is any subgroup of G" such
that 6(H) < n/2, there is some s € S such that s ¢ B(H,clogn).

THE REMOTE POINT PROBLEM, SMALL BIAS SPACES, AND EXPANDING GENERATOR SETS 69

It makes sense to ask if the parameters in Corollary 6.1 are far from optimal. Is it true that
any polynomial-sized symmetric multiset S C G" with good enough expansion properties is
w(logn)-far from every subgroup of dimension at most n/2? We can show that this is not
true. Formally, we can prove:

Theorem 6.2. For any constant ¢ > 0 and large enough n, there is a symmetric multiset
S C F% such that \(C(F3,S)) < # but there is a subspace L of dimension n/2 such that
S C B(L,20clogn).

It is well known that for any family of d-regular multigraphs G' A\(G) = Q(1/V/d) (see e.g.
[HLWO06, Theorem 5.3]). As a consequence of this lower bound it follows for any fixed group
G and any multiset S C G that A(C(G,S)) = Q(1/4/]S]). Hence, the above theorem tells
us that just the expansion properties of C(F4,S) for any poly(n)-sized S are not sufficient
to guarantee w(logn)-distance from every subspace of dimension n/2. The proof of the
above statement can be found in the full version [AS09b].

7. Discussion

For the remote point problem over an Abelian group G, we have shown how expanding
generating sets for Cayley graphs of G" can be used to obtain deterministic NC? algorithms.
A natural question is whether we can obtain a similar algorithm for non-Abelian G. Note
that Lemma 3.4 holds in the non-Abelian setting too. Hence, in order to obtain an NC2-
algorithm for the RPP over arbitrary non-Abelian G along the lines of our algorithm for
Abelian groups, we need to be able to check (in NC?) for membership in G", and we
need to be able to construct small multisets S of G such that C(G",S) has sufficiently
good expansion properties. Luks’ work [Lu86] yields an NC* test for membership in G”
for arbitrary G. Building on that, there is also an NC? membership test for G* [AKVO05].
However, we are unable to compute a (good enough) expanding generator set for the group
G™ in deterministic NC or even in deterministic polynomial time.

Acknowledgements

We are grateful to Noga Alon and Sergey Yekhanin for interesting comments. In particular,
Alon pointed out to us that Lemma 3.2 has an alternative proof using the expander mixing
lemma. We thank the anonymous referees for their comments and suggestions.

References

[AGHP92] Noga Alon, Oded Goldreich, Johan Hastad, and René Peralta. Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms, 3(3):289-304, 1992.

[AKVO05] V. Arvind, Piyush P. Kurur, T. C. Vijayaraghavan. Bounded Color Multiplicity Graph Isomor-
phism is in the #L Hierarchy. In IEEE Conference on Computational Complexity 2005: 13-27.

[APY09] Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation algorithms for
the nearest codeword problem. In APPROX-RANDOM, pages 339-351, 2009.

70

[AR94]
[AS09a]

[ASO9b]

[AMNO9S]
[HLWO06]
[Lus6]

[Lu93]

[MC87]
[MZ09]
[NN93]
[Rag8s]

[Rei08]
[V77]

V. ARVIND AND S. SRINIVASAN

Noga Alon, Yuval Roichman. Random Cayley Graphs and Expanders. Random Structures and
Algorithms, 5(2): 271-285 (1994).

V. Arvind and Srikanth Srinivasan. Circuit Complexity, Help Functions and the Remote point
problem. manuscript.

V. Arvind and Srikanth Srinivasan. The Remote Point Problem, Small Bias
Spaces, and Expanding Generator Sets ECCC Report TR09-105. Can be found at
http://eccc.hpi-web.de/report/2009/105/

Yossi Azar, Rajeev Motwani, and Joseph Naor. Approximating probability distributions using
small sample spaces. Combinatorica, 18(2):151-171, 1998.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bull.
Amer. Math. Soc. (N.S), 43:439-561, 2006.

Eugene M. Luks. Parallel algorithms for permutation groups and graph isomorphism. In FOCS,
pages 292-302, 1986.

FEugene M. Luks. Permutation groups and polynomial time computation. Groups and Compu-
tation I, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol 11,
139-174, 1993.

Pierre McKenzie and Stephen Cook. The parallel complexity of Abelian permutation group
problems. SIAM Journal on Computing, 16(5):880-909, 1987.

Raghu Meka and David Zuckerman. Small-Bias Spaces for Group Products. APPROX-RANDOM
2009: 658-672.

Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applica-
tions. STAM J. Comput., 22(4):838-856, 1993.

Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approximating
packing integer programs. Journal of Computer and System Sciences, 37(2):130 — 143, 1988.
Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

Leslie G. Valiant. Graph-Theoretic Arguments in Low-Level Complexity. Proceedings Mathemat-
ical Foundations of Computer Science, LNCS vol. 53: 162-176, Springer 1977.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 71-82
www.stacs-conf.org

EVASIVENESS AND THE DISTRIBUTION OF PRIME NUMBERS

LASZLO BABAI 2 AND ANANDAM BANERJEE? AND RAGHAV KULKARNI' AND VIPUL NAIK !
! University of Chicago, Chicago, IL, USA.

3 Northeastern University, Boston, MA, USA.

ABSTRACT. A Boolean function on N variables is called evasive if its decision-tree com-
plexity is N. A sequence B,, of Boolean functions is eventually evasive if B,, is evasive for
all sufficiently large n.

We confirm the eventual evasiveness of several classes of monotone graph properties
under widely accepted number theoretic hypotheses. In particular we show that Chowla’s
conjecture on Dirichlet primes implies that (a) for any graph H, “forbidden subgraph H”
is eventually evasive and (b) all nontrivial monotone properties of graphs with < n3/2~¢
edges are eventually evasive. (n is the number of vertices.)

While Chowla’s conjecture is not known to follow from the Extended Riemann Hy-
pothesis (ERH, the Riemann Hypothesis for Dirichlet’s L functions), we show (b) with the
bound O(rn®/4~¢) under ERH.

We also prove unconditional results: (a’) for any graph H, the query complexity of
“forbidden subgraph H” is () —O(1); (b") for some constant ¢ > 0, all nontrivial monotone
properties of graphs with < cnlogn + O(1) edges are eventually evasive.

Even these weaker, unconditional results rely on deep results from number theory such
as Vinogradov’s theorem on the Goldbach conjecture.

Our technical contribution consists in connecting the topological framework of Kahn,
Saks, and Sturtevant (1984), as further developed by Chakrabarti, Khot, and Shi (2002),
with a deeper analysis of the orbital structure of permutation groups and their connection
to the distribution of prime numbers. Our unconditional results include stronger versions
and generalizations of some result of Chakrabarti et al.

1. Introduction

1.1. The framework

A graph property P, of n-vertex graphs is a collection of graphs on the vertex set
[n] = {1,...,n} that is invariant under relabeling of the vertices. A property P, is called
monotone (decreasing) if it is preserved under the deletion of edges. The trivial graph
properties are the empty set and the set of all graphs. A class of examples are the forbidden

1998 ACM Subject Classification: F.2.2, F.1.1, F.1.3.

Key words and phrases: Decision tree complexity, evasiveness, graph property, group action, Dirichlet
primes, Extended Riemann Hypothesis.

2Partially supported by NSF Grant CCF-0830370.

L SYMPOSIUM
mvr_ ON THEORETICAL
ASPECTS
4
1 S%iagEPUTER © L. Babai, A. Banerjee, R. Kulkarni, and V. Naik

@ Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2445

72 L. BABAI, A. BANERJEE, R. KULKARNI, AND V. NAIK

subgraph properties: for a fixed graph H, let QX denote the class of n-vertex graphs that
do not contain a (not necessarily induced) subgraph isomorphic to H.

We view a set of labeled graphs on n vertices as a Boolean function on the N =
(g) variables describing adjacency. A Boolean function on N variables is evasive if its
deterministic query (decision-tree) complexity is V.

The long-standing Aanderaa-Rosenberg-Karp conjecture asserts that every nontrivial
monotone graph property is evasive. The problem remains open even for important special
classes of monotone properties, such as the forbidden subgraph properties.

1.2. History

In this note, n always denotes the number of vertices of the graphs under consideration.

Aanderaa and Rosenberg (1973) [17] conjectured a lower bound of 2(n?) on the query
complexity of monotone graph properties. Rivest and Vuillemin (1976) [19] verified this
conjecture, proving an n?/16 lower bound. Kleitman and Kwiatkowski (1980) [10] improved
this to n?/9. Karp conjectured that nontrivial monotone graph properties were in fact
evasive. We refer to this statement as the Aanderaa-Rosenberg-Karp (ARK) conjecture.

In their seminal paper, Kahn, Saks, and Sturtevant [11] observe that non-evasiveness
of monotone Boolean functions has strong topological consequences (contracibility of the
associated simplicial complex). They then use results of R. Oliver about fixed points of
group actions on such complexes to verify the ARK conjecture when n is a prime-power.
As a by-product, they improve the lower bound for general n to n?/4.

Since then, the topological approach of [11] has been influential in solving various in-
teresting special cases of the ARK conjecture. Yao (1988) [25] proves that non-trivial
monotone properties of bipartite graphs with a given partition (U, V') are evasive (require
|U||V| queries). Triesch (1996) [22] shows (in the original model) that any monotone prop-
erty of bipartite graphs (all the graphs satisfying the property are bipartite) is evasive.
Chakrabarti, Khot, and Shi (2002) [3] introduce important new techniques which we use;
we improve over several of their results (see Section 1.4).

1.3. Prime numbers in arithmetic progressions

Dirichlet’s Theorem (1837) (cf. [5]) asserts that if ged(a,m) = 1 then there exist in-
finitely many primes p = a (mod m). Let p(m,a) denote the smallest such prime p. Let
p(m) = max{p(m,a) | ged(a,m) = 1}. Linnik’s celebrated theorem (1947) asserts that
p(m) = O(m*) for some absolute constant L (cf. [16, Chap. V.]). Heath-Brown [9] shows
that L < 5.5. Chowla [4] observes that under the Extended Riemann Hypothesis (ERH)
we have L < 2+ € for all ¢ > 0 and conjectures that L < 1 + € suffices:

Conjecture 1.1 (S. Chowla [4]). For every e > 0 and every m we have p(m) = O(m!*¢).

This conjecture is widely believed; in fact, number theorists suggest as plausible the
stronger form p(m) = O(m(logm)?) [8]. Turdn [23] proves the tantalizing result that for
almost all a we have p(m,a) = O(mlogm) .

Let us call a prime p an e-near Fermat prime if there exists an s > 0 such that 2% | p—1
and p2_51 < pS.

We need the following weak form of Chowla’s conjecture:

EVASIVENESS AND THE DISTRIBUTION OF PRIME NUMBERS 73

Conjecture 1.2 (Weak Chowla Conjecture). For every € > 0 there exist infinitely many
e-near Fermat primes.

In other words, the weak conjecture says that for every e, for infinitely many values of
s we have p(2%,1) < (2%)1F€,

1.4. Main results

For a graph property P we use P, to denote the set of graphs on vertex set [n] with
property P. We say that P is eventually evasive if P, is evasive for all sufficiently large n.

Our first set of results states that the “forbidden subgraph” property is “almost evasive”
under three different interpretations of this phrase.

Theorem 1.3 (Forbidden subgraphs). For all graphs H, the forbidden subgraph property
QI (a) is eventually evasive, assuming the Weak Chowla Conjecture; (b) is evasive for
almost all n (unconditionally); and (c) has query complezity (5) — O(1) for all n (uncondi-
tionally).

Part (b) says the asymptotic density of values of n for which the problem is not evasive
is zero. Part (c) improves the bound (}) — O(n) given in [3]. Parts (a) and (c) will be
proved in Section 3. We defer the proof of part (b) to the journal version.

The term “monotone property of graphs with < m edges” describes a monotone prop-
erty that fails for all graphs with more than m edges.

Theorem 1.4 (Sparse graphs). All nontrivial monotone properties of graphs with at most
f(n) edges are eventually evasive, where (a) under Chowla’s Conjecture, f(n) = n3/?=¢ for
any € > 0; (b) under ERH, f(n) = n°/*¢; and (c) unconditionally, f(n) = enlogn for
some constant ¢ > 0. (d) Unconditionally, all nontrivial monotone properties of graphs
with no cycle of length greater than (n/4)(1 — €) are eventually evasive (for all e > 0).

Part (c) of Theorem 1.4 will be proved in Section 4. Parts (a) and (b) follow in Section 5.
The proof of part (d) follows along the lines of part (c); we defer the details to the journal
version of this paper.

We note that the proofs of the unconditional results (c¢) and (d) in Theorem 1.4 rely on
Haselgrove’s version [7] of Vinogradov’s Theorem on Goldbach’s Conjecture (cf. Sec. 4.2).

Recall that a topological subgraph of a graph G is obtained by taking a subgraph and
replacing any induced path w — - -+ — v in the subgraph by an edge {u,v} (repeatedly) and
deleting parallel edges. A minor of a graph is obtained by taking a subgraph and contracting
edges (repeatedly). If a class of graphs is closed under taking minors then it is also closed
under taking topological subgraphs but not conversely; for instance, graphs with maximum
degree < 3 are closed under taking toopological subgraphs but every graph is a minor of a
regular graph of degree 3.

Corollary 1.5 (Excluded topological subgraphs). Let P be a nontrivial class of graphs
closed under taking topological subgraphs. Then P is eventually evasive.

This unconditional result extends one of the results of Chakrabarti et al. [3], namely,
that nontrival classes of graphs closed under taking minors is eventually evasive.
Corollary 1.5 follows from part (c) of Theorem 1.4 in the light of Mader’s Theorem

which states that if the average degree of a graph G is greater than 2(%1) then it contains
a topological K, [13, 14].

74 L. BABAI, A. BANERJEE, R. KULKARNI, AND V. NAIK

Theorem 1.4 suggests a new stratification of the ARK Conjecture. For a monotone
(decreasing) graph property P,, let

dim(P,) == max{|E(G)| -1 | G € P,}.
We can now restate the ARK Conjecture:

Conjecture 1.6. If P, is a non-evasive, non-empty, monotone decreasing graph property
then dim(P,) = (5) — 1.

2. Preliminaries

2.1. Group action

For the basics of group theory we refer to [18]. All groups in this paper are finite. For
groups I'1, 'y we use I'y < T'y to denote that I'; is a subgroup; and I'y <t T's to denote that
I'; is a (not necessarily proper) normal subgroup. We say that I' is a p-group if |I'| is a
power of the prime p.

For a set called the “permutation domain,” let Sym(2) denote the symmetric group on
(2, consisting of the |Q2|! permutations of (2. For Q = [n| = {1,...,n}, we set ¥,, = Sym([n]).
For a group I', a homomorphism ¢ : I' — Sym(€Q) is called a I'-action on €. The action is
faithful if ker(¢) = {1}. For z € Q and v € I' we denote by z7 the image of = under ¢(7).
For # € Q we write 1 = {27 : 7 € T'} and call it the orbit of z under the I'-action. The
orbits partition €.

Let (?) denote the set of t-subsets of Q. There is a natural induced action Sym(§2) —

Sym((?)) which also defines a natural I'-action on (?) We denote this action by T'®).
Similarly, there is a natural induced I'-action on 2 x 2. The orbits of this action are called
the orbitals of I'. We shall need the undirected version of this concept; we shall call the
orbits of the I'-action on (g) the w-orbitals (undirected orbitals) of the I'-action.

By an action of the group I' on a structure X such as a group or a graph or a simplicial
complex we mean a homomorphism I"' — Aut(X) where Aut(X) denotes the automorphism
group of X.

Let T and A be groups and let ¢p : A — Aut(I') be a A-action on I'. These data
uniquely define a group © =T' x A, the semidirect product of I' and A with respect to .
This group has order |©| = |I'||A| and has the following properites: © has two subgroups
' =T and A* =2 A such that " < 0; I*NA* = {1}; and © =T"A* = {yd |y € ¥, €
A*}. Moreover, identifying I' with I'* and A with A*, for all v € I and § € A we have
AP0) = 57144,

© can be defined as the set A x I" under the group operation

(51, 1)(02.72) = (182,71 32) (B € A,y €T).
For more on semidirect products, which we use extensively, see [18, Chap. 7].
The group AGL(1, g) of affine transformations z +— ax+b of F, (a € F;, b € F,) acts on
[Fq. For each d | ¢ — 1, AGL(1, ¢) has a unique subgroup of order ¢d; we call this subgroup
I'(¢q,d). We note that F < T'(q,d) and T'(q,d)/F; is cyclic of order d and is isomorphic to
a subgroup A of AGL(1,q); I'(¢q,d) can be described as a semidirect product (Fj) x A.

EVASIVENESS AND THE DISTRIBUTION OF PRIME NUMBERS 75

2.2. Simplicial complexes and monotone graph properties

An abstract simplicial complez IC on the set € is a subset of the power-set of €2, closed under
subsets: if B C A € K then B € K. The elements of IC are called its faces. The dimension
of A € K is dim(A) = |A| — 1; the dimension of £ is dim(K) = max{dim(A4) | A € K}. The
Euler characteristic of K is defined as

XK= DT (1,

Ak, A#D

Let [n] := {1,2,...,n} and Q = ([g‘]). Let P, be a subset of the power-set of , i.e., a
set of graphs on the vertex set [n]. We call P, a graph property if it is invariant under the
induced action zﬁf). We call this graph property monotone decreasing if it is closed under
subgraphs, i. e., it is a simplicial complex. We shall omit the adjective “decreasing.”

2.3. Oliver’s Fixed Point Theorem

Let K C 2 be an abstract simplicial complex with a I'-action. The fized point complex
Kr action is defined as follows. Let €2q,...,€; be the I'-orbits on 2. Set

Kr={S k|| J2ek}.
€S
We say that a group I satisfies Oliver’s condition if there exist (not necessarily distinct)
primes p, ¢ such that I' has a (not necessarily proper) chain of subgroups I'y <"y < T" such
that I'y is a p-group, I'; /T'e is cyclic, and I'/T"y is a g-group.

Theorem 2.1 (Oliver [15]). Assume the group I' satisfies Oliver’s condition. If T acts on
a nonempty contractible simplicial complex KC then

X(Kr) =1 (mod q). (2.1)

In particular, such an action must always have a nonempty invariant face.

2.4. The KSS approach and the general strategy

The topological approach to evasiveness, initiated by Kahn, Saks, and Sturtevant, is
based on the following key observation.

Lemma 2.2 (Kahn-Saks-Sturtevant [11]). If P, is a non-evasive graph property then P, is
contractible.

Kahn, Saks, and Sturtevant recognized that Lemma 2.2 brought Oliver’s Theorem to
bear on evasiveness. The combination of Lemma 2.2 and Theorem 2.1 suggests the following
general strategy, used by all authors in the area who have employed the topological method,
including this paper: We find primes p, ¢, a group I satisfying Oliver’s condition with these
primes, and a I™-action on P,, such that x(F,) =0 (mod ¢). By Oliver’s Theorem and the
KSS Lemma this implies that P, is evasive. The novelty is in finding the right T'.

KSS [11] made the assumption that n is a prime power and used as I' = AGL(1,n), the
group of affine transformations x — ax+ b over the field of order n. While we use subgroups
of such groups as our building blocks, the attempt to combine these leads to hard problems
on the distribution of prime numbers.

76 L. BABAI, A. BANERJEE, R. KULKARNI, AND V. NAIK

Regarding the “forbidden subgraph” property, Chakrabarti, Khot, and Shi [3] built
considerable machinery which we use. Our conclusions are considerably stronger than theirs;
the additional techniques involved include a study of the orbitals of certain metacyclic
groups, a universality property of cyclotomic graphs derivable using Weil’s character sum
estimates, plus the number theoretic reductions indicated.

For the “sparse graphs” result (Theorem 1.4) we need I' such that all u-orbitals of T’
are large and therefore (P,)r = {0}.

In both cases, we are forced to use rather large building blocks of size ¢, say, where ¢
is a prime such that ¢ — 1 has a large divisor which is a prime for Theorem 1.4 and a power
of 2 for Theorem 1.3.

3. Forbidden subgraphs

In this section we prove parts (a) and (c) of Theorem 1.3.

3.1. The CKS condition

A homomorphism of a graph H to a graph H' is a map f : V(H) — V(H') such that
(Va,y € V(H))({x,y} € E(H) = {f(z),f(y)} € E(H"). (In particular, f~1(z') is an
independent set in H for all ' € V(H’).) Let QL[H” be the set of those H' with V(H') = [r]
that do not admit an H — H’ homomorphism. Let further Ty := min{2% —1 | 22 >

h} where h denotes the number of vertices of H. The following is the main lemma of
Chakrabarti, Khot, and Shi [3].

Lemma 3.1 (Chakrabarti et al. [3]). If r =1 (mod Tg) then x(L[HH) =0 (mod 2).

3.2. Cliques in generalized Paley graphs

Let ¢ be an odd prime power and d an even divisor of ¢ — 1. Consider the graph
P(q,d) whose vertex set is F, and the adjacency between the vertices is defined as follows:
i~j < (i—7)"=1. P(q,d) is called a generalized Paley graph.

Lemma 3.2. If (g —1)/d < ¢"/®" then P(q,d) contains a clique on h vertices.

This follows from the following lemma which in turn can be proved by a routine appli-
cation of Weil’s character sum estimates (cf. [1]).

Lemma 3.3. Let ay,...,a; be distinct elements of the finite field Fy. Assume £ | g—1. Then
the number of solutions x € Fy to the system of equations (a; + z)@ D/ =1 s FEt/q m

Let I'(q, d) be the subgroup of order ¢d of AGL(1, ¢) defined in Section 2.1.
Observation 3.4. Each u-orbital of I'(q, d) is isomorphic to P(q, d).]

EVASIVENESS AND THE DISTRIBUTION OF PRIME NUMBERS 7

Corollary 3.5. If % < ¢Y@) then each u-orbital of I'(q,d) contains a clique of size h.

3.3. ce-near-Fermat primes

The numbers in the title were defined in Section 1.3. In this section we prove Theo-
rem 1.3, part (a).

Theorem 3.6. Let H be a graph on h vertices. If there are infinitely many %—near—Fermat
primes then QnH 1s eventually evasive.

Proof. Fix an odd prime p = 2 (mod Tp) such that p > |H|. If there are infinitely many
%—near—Fermat primes then infinitely many of them belong to the same residue class mod p,
say a + Zp. Let g; be the i-th %—near—Fermat prime such that ¢; > p and ¢; = a (mod p).

/

Let v’ = na™! (mod p) and k' = Y_._; ¢;. Then k' = n (mod p) and therefore n = pk + k'
for some k.

Now in order to use Lemma 3.1, we need to write n as a sum of r terms where r = 1
(mod Ty). We already have 7’ of these terms; we shall choose each of the remaining
r —r’ terms to be p or p?. If there are t terms equal to p? then this gives us a total of
r =t+(k—tp)+r' terms, so we need t(p—1) = k+7r' (mod Tx). By assumption, p—1 =1
(mod Tpr); therefore such a t exists; for large enough n, it will also satisfy the constraints
0<t<k/p,

Let now

A= ((IE‘;;)t x (F;)k*tp) x F%,

acting on [pk] with t orbits of size p? and k — pt orbits of size p as follows: on an orbit of size
p" (i = 1,2) the action is AGL(1,p"). The additive groups act independently, with a single
multiplicative action on top. IF‘; acts on F,/ through the group homomorphism IF;2 —
defined by the map z — 2P~!. Let B, denote an orbit of Ay on [kp]. Now the orbit of any
pair {u,v} € (BQJ') is a clique of size |B;| > p > h, therefore a Aj-invariant graph cannot
contain an intra-cluster edge.

Let d; be the largest power of 2 that divides ¢; — 1. Let C; be the subgroup of F. of

7,/

order d;. Let Ay := H I'(gi, d;), acting on [k'] with »’ orbits of sizes ¢1, ..., g~ in the obvious

=1
manner.

From Lemma 3.2 we know that the orbit of any {u,v} € ([qu}) must contain a clique of
size h. Hence, an invariant graph cannot contain any intra-cluster edge.

Overall, let T' := Ay x Ag, acting on [n]. Since ¢; > p, we have ged(g;, p? — 1) = 1. Thus,
I" is a “2-group extension of a cyclic extension of a p-group” and therefore satisfies Oliver’s
Condition (stated before Theorem 2.1). Hence, assuming QX is non-evasive, Lemma 2.2
and Theorem 2.1 imply

X(@)r) =1 (mod 2).
On the other hand, we claim that the fixed-point complex (Q)r is isomorphic to Q,[n[H”.
The (simple) proof goes along the lines of Lemma 4.2 of [3]. Thus, by Lemma 3.1 we have
X(QL[HH) =0 (mod 2), a contradiction.]

78 L. BABAI, A. BANERJEE, R. KULKARNI, AND V. NAIK

3.4. Unconditionally, QY is only O(1) away from being evasive
In this section, we prove part (c¢) of Theorem 1.3.

Theorem 3.7. For every graph H there exists a number Cg such that the query complezity
of QM is > (g) —Cy.

Proof. Let h be the number of vertices of H. Let p be the smallest prime such that p > h
and p = 2 (mod Tx). So p < f(H) for some function f by Dirichlet’s Theorem (we don’t
need any specific estimates here). Since p —1 =1 (mod Tx), we have ged(p — 1,Ty) = 1
and therefore ged(p — 1,pTy) = 1. Now, by the Chinese Remainder Theorem, select the
smallest positive integer &’ satisfying k' =n (mod pTy) and ¥’ =1 (mod p—1). Note that
K < p*Ty. Let k= (n—k')/(pTy); so we have n = kpTy + K.

Let N' = (g) — (l;’) Consider the following Boolean function B! on N’ variables.
Consider graphs X on the vertex set [n] with the property that they have no edges among
their last &’ vertices. These graphs can be viewed as Boolean functions of the remaining
N’ variables. Now we say that such a graph has property B! if it does not contain H as a
subgraph.

Claim. The function B is evasive.
The Claim immediately implies that the query complexity of Q{Z{ is at least N/, proving the
Theorem with Cy = (l;’) < p'T? < f(H)'T%.

To prove the Claim, consider the groups A := (IF‘};F VeTH 5 F) and I' := A x Zys. Here A
acts on [pkTy] in the obvious way: we divide [pkTy] into KTy blocks of size p; F, acts on
each block independently and IF acts on the blocks simultaneously (diagonal action) so on
each block they combine to an AGL(1, p)-action. Z;: acts as a k’-cycle on the remaining &’
vertices. So I is a cyclic extension of a p-group (because ged(p — 1, k') = 1).

If B} is not evasive then from Theorem 2.1 and Lemma 2.2, we have x ((B{)r) = 1.

On the other hand we claim that, (B)p = Q,[n[H”, where r = kT + 1. The proof of
this claim is exactly the same as the proof of Lemma 4.2 of [3]. Thus, from Lemma 3.1, we

conclude that X(Q[T[HH) is even. This contradicts the previous conclusion that X(Q[T[HH) =1.
"

Remark 3.8. Specific estimates on the smallest Dirichlet prime can be used to estimate
Cp. Linnik’s theorem implies Cy < hM | extending Theorem 3.7 to strong lower bounds
for variable H up to h = n¢ for some positive constant c.

4. Sparse graphs: unconditional results
We prove part (c¢) of Theorem 1.4.

Theorem 4.1. If the non-empty monotone graph property P, is not evasive then
dim(P,) = Q(nlogn).

EVASIVENESS AND THE DISTRIBUTION OF PRIME NUMBERS 79

4.1. The basic group construction

Assume in this section that n = p®k where p is prime. Let A, < X;. We construct the
group I'g(p®, Aj) acting on [n].

Let A = (Fja x Ag). Let To(p®, Ag) be the semidirect product (}F;a)k x A with respect
to the A-action on (F;a)k defined by

(a,0) (b1, .oy b)) = (abg-1(1y, - -+, aby—1(1))-

We describe the action of I'g(p®, Ag) on [n]. Partition [n] into k clusters of size p® each.
Identify each cluster with the field of order p®, i.e., as a set, [n] = [k] X Fpa. The action of
v = (b1,...,bg,a,0) is described by

v (@, y) = (0(2), ay + bg(s))-

An unordered pair (¢,7) € [n] is termed an intra-cluster edge if both i and j are in the
same cluster, otherwise it is termed an inter-cluster edge. Note that every u-orbital under
I" has only intra-cluster edges or only inter-cluster edges. Denote by mintra and mipter the
minimum sizes of u-orbitals of intra-cluster and inter-cluster edges respectively.

We denote by m), the minimum size of an orbit in [k] under Ay and by mj the minimum
size of a u-orbital in [k]. We then have:

pa
Mintra = < 9) X m;g) Minter = (pa)Q X m/k/
Let my‘ := min{mj,, m{} and define m* as the minimum size of a u-orbital in [n]. Then
m* = min{mintraa minter} = Q(pQka) (4-1)

4.2. Vinogradov’s Theorem

The Goldbach Conjecture asserts that every even integer can be written as the sum of
two primes. Vinogradov’s Theorem [24] says that every sufficiently large odd integer k is the
sum of three primes k = p; + p2 + p3. We use here Haselgrove’s version [7] of Vinogradov’s
theorem which states that we can require the primes to be roughly equal: p; ~ k/3. This
can be combined with the Prime Number Theorem to conclude that every sufficiently large
even integer k is a sum of four roughly equal primes.

4.3. Construction of the group

Let n = p®k where p is prime. Assume k is not bounded. Write k as a sum of ¢t < 4
roughly equal primes p;. Let Ay := [], Z,, where Z,, denotes the cyclic group of order p;
and the direct product is taken over the distinct p;.

Ay, acts on [k] as follows: partition k into parts of sizes pi,...,p; and call these parts
[pi]. The group Z,, acts as a cyclic group on the part [p;]. In case of repetitions, the same
factor Zj, acts on all the parts of size p;.

We follow the notation of Section 4.1 and consider the group T'g(p®, Ax) with our specific
Aj. We have my = Q(k) and hence we get, from equation (4.1):

Lemma 4.2. Let n = p®k where p is a prime. For the group To(p®, Ag), we have m* =
Q(p**k) = Q(p®n), where m* denotes the minimum size of a u-orbital.

80 L. BABAI, A. BANERJEE, R. KULKARNI, AND V. NAIK

4.4. Proof for the superlinear bound

Let n = p®k where p® is the largest prime power dividing n; so p®* = Q(logn); this
will be a lower bound on the size of u-orbitals. Our group I' will be of the general form
discussed in Section 4.1.

Case 1. p® = Q(n?/3).

Let I' = T'y(p®, {1}). Following the notation of Section 4.1, we get mj, = mj =1, and this
yields that m* = Q((p*)?) = Q(n*?) = Q(nlogn). Oliver’s condition is easily verified for
.

Case 2. k = Q(n!/?).

Consider the I' := I'g(p®, A) acting on [n] where Ay is as described in Section 4.3. The
minimum possible size m* of a u-orbital is Q(np®) by Lemma 4.2. Finally, since p* =
Q(logn), we obtain m* = Q(nlogn).

If all p; are co-prime to p® — 1 then F;a x Ap becomes a cyclic group and I becomes a
cyclic extension of a p-group.

Since p; = Q(k) = Q(n'/3) for all i and p® = O(n?*/?), size considerations yield that at
most one p; divides p® — 1 and p? does not. Suppose, without loss of generality, p; divides
p® — 1. Let p* — 1 = pid, then d must be co-prime to each p;. Thus, A = (Z),, x Zg) %
(Zpy % oo X L) = (Zg X Ly X ... X Lp,) X (L, X Zp,). Thus, A is a pi-group extension of
a cyclic group. Hence, T satisfies Oliver’s Condition (cf. Theorem 2.1). [

1+ 14+0(1)

Remark 4.3. For almost all n, our proof gives a better dimension lower bound of Q(n" " Ttan).

5. Sparse graphs: conditional improvements

In this section we prove parts (a) and (b) of Theorem 1.4.

5.1. General Setup

Let n = pk + r, where p and r are prime numbers. Let ¢ be a prime divisor of (r — 1).
We partition [n] into two parts of size pk and r, denoted by [pk] and [r| respectively. We
now construct a group I'(p, ¢, r) acting on [n] as a direct product of a group acting on [pk]
and a group acting on [r], as follows:

I'= F(p,q,?“) = FO(pv Ak) X F(Ta Q)
Here, I'y(p, Ag) acts on [pk] and is as defined in Section 4.3, and involves choosing a partition
of k into upto four primes that are all Q(k).

I'(r,q) is defined as the semidirect product F;" x Cy, with C, viewed as a subgroup of
the group F. It acts on [r] as follows: We identify [r] with the field of size r. Let (b, a) be
a typical element of I', where b € F, and a € C,. Then, (b,a) : — ax + b.

Thus, I' = T'(p, q,r) acts on [n]. Let m* be the minimum size of the orbit of any edge
(i,7) € ([3}) under the action of I". One can show that

m* = Q(min{p?k, pkr, qr}). (5.1)

We shall choose p,q,r carefully such that (a) the value of m* is large, and (b) Oliver’s
condition holds for I'(p, g, r).

EVASIVENESS AND THE DISTRIBUTION OF PRIME NUMBERS 81

5.2. ERH and Dirichlet primes

The Extended Riemann Hypothesis (ERH) implies the following strong version of the
Prime Number Theorem for arithmetic progressions. Let m(n, D,a) denote the numer of
primes p < n, p =a (mod D). Then for D < n we have

li(n)
w(n,D,a) = (D) + O(vzInx) (5.2)
where li(n) = [,"dt/t and the constant implied by the big-Oh notation is absolute (cf. [16,
Ch.7, eqn. (5.12)] or [2, Thm. 8.4.5]).
This result immediately implies “Bertrand’s Postulate for Dirichlet primes:”

Lemma 5.1 (Bertrand’s Postulate for Dirichlet primes). Assume ERH. Suppose the se-
quence D, satisfies D, = o(\/n/log®n). Then for all sufficiently large n and for any a,
relatively prime to Dy, there exists a prime p = a, (mod Dy,) such that § < p <n.

5.3. With ERH but without Chowla

We want to write n = pk + r, where p and r are primes, and with ¢ a prime divisor of
r — 1, as described in Section 5.1. Specifically, we try for:

p=0m/), T<r<z g=0m’

We claim that under ERH, such a partition of n is possible.

To see this, fix some p = O(n'/*) such that ged(p,n) = 1. Fix some ¢ = O(n!/4~).
Now, » = 1 (mod ¢) and » = n (mod p) solves to r = a (mod pq) for some a such that
ged(a,pg) = 1. Since pg = O(n'/27¢), we can conclude under ERH (using Lemma 5.1)
that there exists a prime r = a (mod pq) such that % <r< % This gives us the desired
partition. One can verify that our I' satisfies Oliver’s Condition. Equation (5.1) gives
m* = Q(n®*¢). This completes the proof of part (b) of Theorem 1.4. L]

5.4. Stronger bound using Chowla’s conjecture

Let a and D be relatively prime. Let p be the first prime such that p = a (mod D).
Chowla’s conjecture tells us that p = O(D*) for every e > 0. Using this, we show m* =
Q(n?’/Q—e).

We can use Chowla’s conjecture, along with the general setup of Section 5.1, to obtain
a stronger lower bound on m*. The new bounds we hope to achieve are:

p=0(/n), n'7F0 <p <700 4= 9nl/*Y)

Such a partition is always possible assuming Chowla’s conjecture. To see this, first fix
p = O(n'/2), then fix ¢ = O(n'/272%) and find the least solution for » = 1 (mod ¢) and
r = n (mod p), which is equivalent to solving for r = a (mod pq) for some a < pq. The
least solution will be greater than pg unless a happens to be a prime. In this case, we add
another constraint, say r = a+1 (mod 3) and resolve to get the least solution greater than
pq. Note that n!=25 < r < p1=05 Now, from Equation (5.1), we get the lower bound of
m* = Q(n®?=%%). This completes the proof of part (a) of Theorem 1.4. L]

82

L. BABAI, A. BANERJEE, R. KULKARNI, AND V. NAIK

Acknowledgment.

Raghav Kulkarni expresses his gratitude to Sasha Razborov for bringing the subject to

his attention and for helpful initial discussions.

References
[1] Babai, L., Gal, A., Wigderson, A.: Superpolynomial lower bounds for monotone span programs. Com-
binatorica 19 (1999), 301-320.
[2] Bach, E., Shallit, J.: Algorithmic Number Theory, Vol. 1. The MIT Press 1996.
[3] Chakrabarti, A., Khot, S., Shi, Y.: Evasiveness of Subgraph Containment and Related Properties.
SIAM J. Comput. 31(3) (2001), 866-875.
[4] Chowla, S. On the least prime in the arithmetical progression. J. Indian Math. Soc. 1(2) (1934), 1-3.
[5] Davenport, H.: Multiplicative Number Theory. (2nd Edn) Springer Verlag, New York, 1980.
[6] Granville, A., Pomerance, C.: On the least prime in certain arithmetic progressions. J. London Math.
Soc. 41(2) (1990), 193-200.
[7] Haselgrove, C. B.: Some theorems on the analytic theory of numbers. J. London Math. Soc. 36 (1951)
273-277
[8] Heath-Brown, D. R.: Almost-primes in arithmetic progressions and short intervals. Math. Proc. Cambr.
Phil. Soc. 83 (1978) 357-376.
[9] Heath-Brown, D. R.: Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic
progression. Proc. London Math. Soc. 64(3) (1992) 265-338.
[10] Kleitman, D. J., Kwiatkowski, D. J.: Further results on the Aanderaa-Rosenberg Conjecture J. Comb.
Th. B 28 (1980), 85-90.
[11] Kahn, J., Saks, M., Sturtevant, D.: A topological approach to evasiveness. Combinatorica 4 (1984),
297-306.
[12] Lutz, F. H.: Examples of Z-acyclic and contractible vertex-homogeneous simplicial complexes.. Discrete
Comput. Geom. 27 (2002), No. 1, 137-154.
[13] Mader, W.: Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann. 174
(1967), 265-268.
[14] Mader, W.: Homomorphiesétze fiir Graphen. Math. Ann. 175 (1968), 154-168.
[15] Oliver, R.: Fixed-point sets of group actions on finite acyclic complexes. Comment. Math. Helv. 50
(1975), 155-177.
[16] Prachar, K.: Primzahlverteilung. Springer, 1957.
[17] Rosenberg A. L.: On the time required to recognize properties of graphs: A problem. SIGACT News 5
(4) (1973), 15-16.
[18] Rotman, J.: An Introduction to the Theory of Groups. Springer Verlag, 1994.
[19] Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency matrices. Theoret. Comp.
Sci. 3 (1976), 371-384.
[20] Smith P. A.: Fixed point theorems for periodic transformations. Amer. J. of Math. 63 (1941), 1-8.
[21] Titchmarsh, E. C.: A divisor problem. Rend. Circ. Mat. Palermo 54 (1930), 419-429.
[22] Triesch, E.: On the recognition complexity of some graph properties. Combinatorica 16 (2) (1996)
259-268.
[23] Turan, P.: Uber die Primzahlen der arithmetischen Progression. Acta Sci. Math. (Szeged) 8 (1936/37)
226-235.
[24] Vinogradov, I. M.: The Method of Trigonometrical Sums in the Theory of Numbers (Russian). Trav.
Inst. Math. Stekloff 10, 1937.
[25] Yao, A. C.: Monotone bipartite properties are evasive. SIAM J. Comput. 17 (1988), 517-520.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 83-94
www.stacs-conf.org

DYNAMIC SHARING OF A MULTIPLE ACCESS CHANNEL

MARCIN BIENKOWSKI' AND MAREK KLONOWSKI2 AND MIROSLAW KORZENIOWSKI? AND
DARIUSZ R. KOWALSKI?

! Institute of Computer Science, University of Wroctaw, Poland
2 Institute of Mathematics and Computer Science, Wroclaw University of Technology, Poland

3 Department of Computer Science, University of Liverpool, UK

In this paper we consider the mutual exclusion problem on a multiple access channel.
Mutual exclusion is one of the fundamental problems in distributed computing. In the
classic version of this problem, n processes perform a concurrent program which occasionally
triggers some of them to use shared resources, such as memory, communication channel,
device, etc. The goal is to design a distributed algorithm to control entries and exits to/from
the shared resource in such a way that in any time there is at most one process accessing
it. We consider both the classic and a slightly weaker version of mutual exclusion, called
e-mutual-exclusion, where for each period of a process staying in the critical section the
probability that there is some other process in the critical section is at most €. We show
that there are channel settings, where the classic mutual exclusion is not feasible even for
randomized algorithms, while e-mutual-exclusion is. In more relaxed channel settings, we
prove an exponential gap between the makespan complexity of the classic mutual exclusion
problem and its weaker e-exclusion version. We also show how to guarantee fairness of
mutual exclusion algorithms, i.e., that each process that wants to enter the critical section
will eventually succeed.

1. Introduction

In this paper we consider randomized algorithms for mutual exclusion: one of the funda-
mental problems in distributed computing. We assume that there are n different processes
labeled from 0 to n — 1 communicating through a multiple access channel (MAC). The
computation and communication proceed in synchronous slots, also called rounds. In the
mutual exclusion problem, each process performs a concurrent program and occasionally
requires exclusive access to shared resources. The part of the code corresponding to this
exclusive access is called a critical section. The goal is to provide a mechanism that controls

1998 ACM Subject Classification: C.1.4 Parallel Architectures, C.2.1 Network Architecture and Design,
F.2.2 Nonnumerical Algorithms and Problems. Supported by Polish Ministry of Science and Higher Educa-
tion grants no N N206 2573 35 and N N206 1723 33, and by the Engineering and Physical Sciences Research
Council [grant number EP/G023018/1].

Key words and phrases: distributed algorithms, multiple access channel, mutual exclusion.

SYMPOSIUM

A‘V' ON THEORETICAL
)

ASPECTS
al OF COMPUTER ©

SCIENCE M. Bienkowski, M. Klonowski, M. Korzeniowski, and D. R. Kowalski

© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2446

84 M. BIENKOWSKI, M. KLONOWSKI, M. KORZENIOWSKI, AND D. R. KOWALSKI

entering and exiting the critical section and guarantees exclusive access at any time. The
main challenge is that the designed mechanism must be universal, in the sense that exclu-
sive access must be guaranteed regardless of the times of access requests made by other
processes.

Multiple Access Channel (MAC). We consider a multiple access channel as both com-
munication medium and the shared-access device. As a communication medium, MAC
allows each process either to transmit or listen to the channel at a round,! and moreover,
if more than one process transmits, then a collision (signal interference) takes place. De-
pending on the devices used in the system, there are several additional settings of MAC
that need to be considered. One of them is the ability of a process to distinguish between
background noise when no process transmits (also called silence) and collision. If such ca-
pability is present at each process, we call the model with collision detection (CD for short);
if no process has such ability, then we call the setting without collision detection (no-CD).
Another feature of the model is a constant access to the global clock (GC for short) by all
processes or no such access by any of them (no-GC). The third parameter to be considered
is a knowledge of the total number of available processes n (KN for short) or the lack of it
(no-KN).

Mutual Exclusion Problem. In this problem, each concurrent process executes a protocol
partitioned into the following four sections:

Entry: the part of the protocol executed in preparation for entering the critical section;
Critical: the part of the protocol to be protected from concurrent execution;

Ezit: the part of the protocol executed on leaving the critical section;

Remainder: the rest of the protocol.

These sections are executed cyclically in the order: remainder, entry, critical, and exit.
Intuitively, the remainder section corresponds to local computation of a process, and the
critical section corresponds to the access to the shared object (the channel in our case);
though the particular purpose and operations done within each of these sections are not
a part of the problem. Sections entry and exit are the parts that control switching between
remainder and critical sections in a process, in order to assure some desired properties of
the whole system.

In the traditional mutual exclusion problem, as defined in [1, 16] in the context of shared-
memory model, the adversary controls the sections remainder and critical. In particular,
she controls their duration in each cycle, subject only to the obvious assumptions that this
duration in each cycle is finite or the last performed section is the remainder one. The
mutual exclusion algorithm, on the other hand, provides a protocol for the entry and exit
sections of each process. In this sense, the mutual exclusion problem can be seen as a game
between the adversary controlling the lengths of remainder and critical sections of each
process (each such section for each process may have different length) and the algorithm
controlling entry and exit sections. The goal of the algorithm is to guarantee several useful
properties of the execution (to be defined later), while the goal of the adversary is to prevent
it. Note that the sections controlled by the adversary and those controlled by the algorithm
are interleaved in the execution. Additionally, in order to make the game fair, it is typically

Most of the previous work on MAC, motivated by Ethernet applications, assumed that a process can
transmit and listen simultaneously; our work instead follows the recent trends of wireless applications where
such simultaneous activities are excluded due to physical constraints.

DYNAMIC SHARING OF A MULTIPLE ACCESS CHANNEL 85

assumed that every variable used by the algorithm, i.e., in the entry and exit sections,
cannot be modified by the adversary in the critical and remainder sections, and vice versa,
i.e., no variables used by the adversary in the remainder and critical sections can be accessed
by the algorithm.

In the model of communication over MAC, a process in the entry or the exit section
can do the following in a single round: perform some action on the channel (either transmit
a message or listen), do some local computation, and change its section either from entry to
critical or from exit to remainder. We assume that changing sections occurs momentarily
between consecutive rounds, i.e., in each round a process is exactly in one section of the
protocol.

Since a multiple-access channel is both the only communication medium and the exclu-
sively shared object, additional constraints, different from the classic ones regarding e.g.,
shared memory objects, must be imposed:

e no process in the remainder section is allowed to transmit on the channel;

e a process in the critical section has to transmit a message on the channel each round
until it moves to the exit section, and each such message must be labelled critical,
we call them critical messages.

If any of these conditions was violated, the adversary would have an unlimited power of
creating collisions on the channel, and thus preventing any communication.

A classic mutual exclusion algorithm should satisfy the following three properties for
any round ¢ of its execution:

FExclusion: at most one process is in the critical section in round :.

Unobstructed exit: if a process p is in the exit section at round 4, then process p will switch
to the remainder section eventually after round i.

No deadlock: if there is a process in the entry section at round ¢, then some process will
enter the critical section eventually after round .

To strengthen the quality of service guaranteed by mutual exclusion algorithms, the follow-
ing property — stronger than no-deadlock — has been considered:

No lockout: if a process p is in the entry section at round i, then process p will enter the
critical section eventually after round 1.

Note that — to some extent — this property ensures fairness: each process demanding
an access to the critical section will eventually get it.

As we show, in some cases the exclusion condition is impossible or very costly to achieve.
Therefore, we also consider a slightly weaker condition:

g-exclusion: for every process p and for every time interval in which p is continuously in
the critical section, the probability that in any round of this time interval there is
another process being in the critical section is at most e.

Intuitively, e-exclusion guarantees mutual exclusion “locally”, i.e., for every single execution
of the critical section by a process, with probability at least 1—e. The version of the problem
satisfying e-exclusion condition is called e-mutual-exclusion.

Complexity Measure. We use the makespan measure, as defined in [8] in the context
of deterministic algorithms. Makespan of an execution of a given deterministic mutual
exclusion algorithm is defined as the maximum length of a time interval in which there is
some process in the entry section and there is no process in the critical section. Taking
maximum of such values over all possible executions defines the makespan of the algorithm.

86 M. BIENKOWSKI, M. KLONOWSKI, M. KORZENIOWSKI, AND D. R. KOWALSKI

In order to define expected makespan, suitable for randomized algorithms considered in this
work, we need more formal definitions of an adversarial strategy. Let P be a strategy of the
adversary, defined as a set of n sequences, where each sequence corresponds to a different
process and contains, subsequently interleaved, lengths of remainder and critical sections of
the corresponding process. We assume that each sequence is either infinite or of even length;
the latter condition means that after the last critical section the corresponding process runs
the remainder section forever. For a given mutual exclusion algorithm ALG and adversarial
strategy P, we define L(ALG,P) as a random variable equal to the maximum length of a
time interval in which there is some process in the entry section and there is no process
in the critical section in an execution of ALG run against fixed strategy P. The expected
makespan of algorithm ALG is defined as the maximum of expected values of L(ALG,P),
taken over all adversarial strategies P. Note that every algorithm with makespan bounded
for all executions satisfies no-deadlock property, but not necessarily no-lockout.

For the e-mutual-exclusion problem, defining makespan is a bit more subtle. We call
an execution admissible if the mutual exclusion property is always fulfilled, i.e., no two
processes are in the critical section in the same round. Then in the computation of the
(expected) makespan, we neglect non-admissible executions.

1.1. Our Results

We consider the mutual exclusion problem and its weaker e-exclusion version in the
multiple access channel. Unlike the previous paper [8], where only no-deadlock property
was guaranteed, we also focus on fairness. Also in contrast to the previous work on mutual
exclusion on MAC, we mostly study randomized solutions. In the case of the mutual
exclusion problem, we allow randomized algorithms to have variable execution time but
they have to be always correct. On the other hand, a randomized solution for the e-mutual-
exclusion problem is allowed to err with some small probability e. Thus, for the former
problem, we require Las Vegas type of solution, whereas for the latter we admit Monte Carlo
algorithms. Note that very small (e.g., comparable with probability of hardware failure)
risk of failure (i.e., situation wherein two or more processes are in the critical section at the
same round) is negligible from a practical point of view.

We show that for the most severe channel setting, i.e., no-CD, no-GC and no-KN,
mutual exclusion is not feasible even for randomized algorithms (cf. Section 2).

In a more relaxed setting, there is an exponential gap between the complexity of the mu-
tual exclusion problem and the e-mutual-exclusion problem. Concretely, we prove that the
expected makespan of (randomized) solutions for the mutual exclusion problem in the no-CD
setting is ©2(n), even if the algorithm knows n, has access to the global clock (cf. Section 2),
and even if only no-deadlock property is required. On the other hand, for the e-mutual-
exclusion problem, we construct a randomized algorithm, requiring only the knowledge of n,
which guarantees no-lockout property, and whose makespan is O(logn - log(1/¢)) (cf. Sec-
tions 3.2 and 4).

When collision detection is available and only no-deadlock property is required, we show
that the makespan of any mutual exclusion algorithm is at least ©(logn) (cf. Section 2) and
we construct an algorithm for the e-mutual-exclusion problem with expected makespan
O(loglogn + log(1/e)) (cf. Section 3.3). Further, we show how to modify this algorithm
to guarantee no-lockout property as well; its expected makespan becomes then O(logn +
log(1/¢)) (cf. Sections 3.3 and 4).

DYNAMIC SHARING OF A MULTIPLE ACCESS CHANNEL 87

Finally, if we do not require no-lockout property, we show how to solve the e-mutual-
exclusion problem in makespan O(logn - log(1/¢)), where only the global clock is available
(cf. Section 3.1).

We also present a generic method that, taking a mutual exclusion algorithm with no-
deadlock property, turns it into the one satisfying stronger no-lockout condition. This
method applied to the deterministic algorithms from [8] produces efficient deterministic
solutions satisfying the no-lockout property.

Due to space limitations, the missing details and proofs will appear in the full version
of the paper.

1.2. Previous and Related Work

The multiple access channel is a well-studied model of communication. In many prob-
lems considered in this setting, one of the most important issues is to assure that successful
transmissions occur in the computation. These problems are often called selection problems.
They differ from the mutual exclusion problem by the fact that they focus on successful
transmissions within a bounded length period, while mutual exclusion provides control
mechanism for dynamic and possibly unbounded computation. In particular, it includes
recovering from long periods of cumulative requests for the critical section as well as from
long periods containing no request. Additionally, selection problems were considered typ-
ically in the context of Ethernet or combinatorial group testing, and as such they allowed
a process to transmit and to listen simultaneously, which is not the case in our model moti-
vated by wireless applications. Selection problems can be further split into two categories.
In the static selection problems, it is assumed that a subset of processes become active at
the same time and a subset of them must eventually transmit successfully. Several scenar-
ios and model settings, including parameters considered in this work such as CD/no-CD,
GC/no-GC, KN/no-KN, randomization/determinism, were considered in this context, see
e.g., [2,4,7, 11, 12, 14, 15, 17, 18, 19]. In the wake-up problem, processes are awaken in
(possibly) different rounds and the goal is to assure that there will be a round with success-
ful transmission (“awakening” the whole channel) shortly after the first process is awaken,
see, e.g., [5, 9, 13].

More dynamic kinds of problems, such as transmission of dynamically arriving packets,
were also considered in the context of MAC. In the (dynamic) packet transmission problem,
the aim is to obtain bounded throughput and bounded latency. Two models of packet arrival
were considered: stochastic (cf., [10]) and adversarial queuing (cf., [3, 6]). There are two
substantial differences between these settings and our work. First, the adversaries imposing
dynamic packet arrival are different than the adversary simulating execution of concurrent
protocol. Second, as already mentioned in the context of selection problems, these papers
were inspired by Ethernet applications where it is typically allowed to transmit and listen
simultaneously.

In a very recent paper [8] deterministic algorithms for mutual exclusion problem in
MAC under different settings (CD, GC, KN) were studied. The authors proved that with
none of those three characteristics mutual exclusion is infeasible. Moreover, they presented
an optimal — in terms of the makespan measure — O(logn) round algorithm for the model
with CD. They also developed algorithms achieving makespan O(nlog?n) in the models
with GC or KN only, which, in view of the lower bound (n) on deterministic solutions
proved for any model with no-CD, is close to optimal. Our paper differs from [8] in three

88 M. BIENKOWSKI, M. KLONOWSKI, M. KORZENIOWSKI, AND D. R. KOWALSKI

ways. First, we consider both deterministic and randomized solutions. Second, for the
sake of efficiency we introduce the e-mutual-exclusion problem. Third, we study fairness of
protocols, which means that we consider also no-lockout property.

2. Lower Bounds for the Mutual Exclusion Problem

In our lower bounds, we use the concept of transmission schedules to capture transmis-
sion/listening activity of processes in the entry or exit section. Transmission schedule of
a process p can be regarded as a binary sequence 7, describing the subsequent communica-
tion actions of the process. The sequence can be finite or infinite. For non-negative integer
i, mp(1) = 1 means that process p transmits in round i after starting its current section,
while 7,(i) = 0 means that the process listens in round i. We assume that round 0 is the
round in which the process starts its current run of the entry or the exit section.

The following results extend the lower bounds and impossibility results for deterministic
mutual exclusion proved in [8] to randomized solutions. All the presented lower bounds work
even if we do not require no-lockout, but a weaker no-deadlock property.

Theorem 2.1. There is no randomized mutual exclusion algorithm with no-deadlock prop-
erty holding with a positive probability in the setting without collision detection, without
global clock and without knowledge of the number n of processes.

Theorem 2.2. The expected makespan of any randomized mutual exclusion algorithm is at
least logn, even in the setting with collision detection, with global clock and with knowledge
of the number n of processes.

Theorem 2.3. The expected makespan of any randomized mutual exclusion algorithm is at
least n/2 in the absence of collision detection capability, even in the setting with global clock
and with knowledge of the number n of processes.

Proof. To arrive at a contradiction, let R be a randomized mutual exclusion algorithm,
whose expected makespan is ¢, where ¢ < n/2. We show that there exists an execution
violating mutual exclusion.

Let &, for process p, be the set of all possible executions of the first entry section of
algorithm R by process p under the assumption that it starts its first entry section in the
global round 1 and there is no other process starting within the first n/2 rounds. Note that
during each execution in &, process p hears only noise (i.e., silence or collision, which are
indistinguishable due to the lack of collision detection) from the channel when listening.
Observe also that the optimum algorithm needs only one round to let process p enter the
critical section under the considered adversarial scenario. Therefore, by the probabilistic
method, there is an execution &, in set &, where process p enters the critical section within
the first n/2 — 1 rounds. Let m, be the transmission schedule of process p during &,.

Consider all sequences m, over all processes 0 < p < n. We construct execution &
contradicting mutual exclusion as follows. First, we need to select a set of processes that
start their first entry sections in round 1, while the others stay in the remainder section till

at least round n/2. Let Py = {0,...,n — 1}. For every non-negative integer j, we define
recursively
Pojyr = Poy\{p € Poj: Fiepimja-1) (mp(i) = 1 & Vyepy gzp (i) = 0)}

Pojro = P\ {p € Pojs1: Jicpnjo—1) (Impl =i & VYyepy;,, Imgl > 1)}

DYNAMIC SHARING OF A MULTIPLE ACCESS CHANNEL 89

Intuitively, set P5;11 is obtained from P%; by removing processes p that could be single
transmitters in some round in the interval [1,n/2 — 1] while transmitting according to their
schedules 7,. Set P59 is constructed by removing a process with the shortest transmission
schedule, if there is only one such process. Observe that sequence {P;};>0 is bounded and
monotonically non-increasing (in the sense of set inclusion), therefore it stabilizes on some
set P*. Observe that

(1) |P*| > 2, since for each round i € [1,n/2 — 1] there is at most one process removed
from some set P»; while constructing the consecutive set P;1; (after such removal
no remaining process has 1 in position 4 of its schedule) and at most one process
removed from some set Pyj,1 while constructing the consecutive set Pajio (after
such removal no remaining process p finishes its transmission schedule 7, in round 7);
as there are n/2 — 1 considered rounds, at most n — 2 processes can be removed
throughout the construction;

(2) there is noround ¢ € [1,n/2—1] such that there is only one process p € P* satisfying
mp(i) = 1; this follows from the fact that P* is a fixed point of the sequence {P;};>0,
i.e., it does not change while applying the odd-step rule of the construction;

(3) there are at least two processes p,q € P* with the shortest transmission schedules
Tp, Tq, 1.€., |mp| = |mq| and for every process r € P*, |m,| > |mp|; this again follows
from the fact that P* is a fixed point of the sequence {P;};>0, i.e., it does not change
while applying the even-step rule of the construction.

Having subset P* of processes, the adversary starts first entry sections for all processes in
P* in the very first round, while she delays others (they remain in the remainder section)
by round n/2. Note that before round 1 of the constructed execution £, a process p € P*
cannot distinguish £ from &, therefore it may decide to do the same as in &, i.e., to set
its first position of transmission schedule to m,(1). If this happens for all processes in P*,
by the second property of this set there is no single transmitter in round 1, and therefore
all listening processes hear the noise (recall that silence is not distinguishable from collision
in the considered setting). This construction and the output of the first round can be
inductively extended up to round |m,|, where p € P* is a process with the shortest schedule
mp among processes in P*. This is because from the point of view of a process ¢ € P* the
previously constructed prefix of £ is not distinguishable from the corresponding prefix of
execution &;; indeed, the transmission schedules are the same and the feedback from the
channel is silence whenever the process listens. Finally, by the very same reason, at the end
of round |m,| all processes ¢ € P* with |m,| = |mp| are allowed to do in € the same action as
in &;, that is, to enter the critical section. By the third property of set P*, there is at least
one such process ¢ € P* different than p. This violates the exclusion property that should
hold for the constructed execution &. [

3. Algorithms for the e-Mutual-Exclusion Problem

In this section, we present randomized algorithms solving the e-mutual-exclusion prob-
lem for various scenarios, differing in the channel capabilities (e.g., CD/no-CD, KN /no-KN,
GC/no-GC). The algorithms presented in this section, work solely in entry sections, i.e.,
their exit sections are empty; these algorithms guarantee only no-deadlock property. How-
ever, in Section 4, we show how to add exit section subroutines to most of our algorithms
to guarantee the no-lockout property while keeping bounded makespan. In our algorithms,

90 M. BIENKOWSKI, M. KLONOWSKI, M. KORZENIOWSKI, AND D. R. KOWALSKI

we extend some techniques developed in the context of other related problems, such as the
wake-up problem [13] and the leader election problem [19].

Throughout this section, we use the following notation. We say that there is a successful
transmission in a given round if in this round one process transmits and other processes do
not transmit. By saying that a process resigns, we mean that it will not try to enter the
critical section and will not attempt to transmit anything until another process starts the
exit section.

3.1. Only Global Clock Available

In the model with global clock, we modify the Increase_From_Square algorithm [13],
which solves the wake-up problem. The purpose of our modification is to assure the stopping
property. This is a nontrivial task in a scenario without collision detection and this property
was not present in the original wake-up algorithm. Intuitively, after one process successfully
transmits, it should enter the critical section. However, first of all it might not be aware that
it succeeded. Second, between a successful transmission and entering the critical section,
some other processes may start their entry sections. The details will be presented in the
full version of this paper.

Theorem 3.1. There is an e-mutual-exclusion algorithm, using a modified algorithm In-
crease_From_Square as a subroutine for the entry section, with makespan O(logn -log(1/¢))
in the model without global clock.

3.2. Only Number of Processes Known

In this scenario, we build our solution based on the Probability_Increase algorithm
of [13]. In this algorithm, each process works in ©(logn) phases, each lasting ©(log(1/¢))
rounds. In each round of phase ¢, a process transmits with probability 27°.

Lemma 3.2 ([13]). If all processes use the algorithm Probability_Increase after being awaken,
then there is a successful transmission in time k = O(logn - log(1/e)) with probability at
least 1 —¢.

We describe how to modify the Probability_Increase algorithm to meet the requirements
of e-exclusion. When a process enters the entry section, it first switches to the listening
mode and stays in this mode for kK = O(logn -log(1/¢)) rounds. If within this time it hears
another process, it resigns. Afterwards, the process starts to execute the Probability_Increase
algorithm. Whenever it is not transmitting, it listens, and when it hears a message from
another process, it resigns. After executing k& rounds of the listening mode and the following
k rounds of Probability_Increase without resigning, the process enters the critical section.
Using this algorithm, the following result can be proved.

Theorem 3.3. There is an e-mutual-exclusion algorithm, using a modified algorithm Prob-
ability_Increase as a subroutine for the entry section, with makespan O(logn -log(1/e)) in
the KN model.

Proof. Let k be as defined above in the algorithm definition. Let ¢ be a round in the
execution in which there is at least one process in the entry section, no process in the exit
or critical section, and such that there was no process in the entry section in the previous
round t — 1. Let P be the set of processes which are in their entry sections at round ¢ + k.

DYNAMIC SHARING OF A MULTIPLE ACCESS CHANNEL 91

First, we observe that processes which enter their entry section in round ¢ + k£ + 1 or later,
i.e., all processes that are not in set P, do not transmit in the time period [¢,¢ 4 2k]. By
Lemma 3.2, with probability 1 — ¢, there is a process in P which successfully transmits at
some round in [t + k,t + 2k). Let t + k < r < t + 2k be the first such round, and p € P
be the process transmitting successfully in round r. Note that all other processes being in
the entry section resign at this round, and all processes that start their entry sections after
round r do not transmit by round r + k. Therefore, p does not hear anything before it
finishes its Probability_Increase subroutine (in the next at most & — 1 rounds after r), which
implies that it enters the critical section by round r + k — 1 < t + 2k. [

3.3. Only Collision Detection Available

In this scenario, the main idea behind our algorithm is as follows. First, we show
how to solve a static case of the e-mutual-exclusion problem, i.e., the case where there
is a subset S of processes which start their entry sections at round 1 and no process is
activated later. Later, we show that we are then able to solve e-mutual-exclusion problem
in (asymptotically) the same time. In what follows, we assume that whenever a process
does not transmit, it listens.

To solve the static case, we first run a simple Check_If Single subroutine, which, with
probability at least 1 — ¢, determines whether there is one active processes or more. In
the former case, this process may simply enter the critical section. In the latter, we sim-
ulate Willard’s algorithm [19], which works in expected time loglogn + o(loglogn). The
simulation is required, as the original algorithm of [19] assumes that each process can si-
multaneously transmit and listen in each round. The idea of this simulation is that for each
message sent, all listening processes acknowledge it in the next round.

Lemma 3.4. If there are at least two active processes, it is possible to simulate one round
taken in the model in which a process may simultaneously transmit and listen, in two rounds
of our model in the setting with collision detection.

As mentioned above, another building block is a procedure Check_If Single. The algo-
rithm assumes that there is a set of processes which start this procedure simultaneously.
The procedure consists of 2-log(1/¢) rounds. In each odd round, process i tosses a symmet-
ric coin, i.e., with probability 1/2 of success, to choose whether it transmits in the current
round and listens in the next round, or vice versa. If the process never hears anything, it
enters the critical section at the end of the procedure.

Lemma 3.5. Assume k processes execute the procedure Check If Single. If k = 1, then the
only process enters the critical section. If k > 2, then with probability 1 — €, no process
enters the critical section.

Proof. The first claim holds trivially. For showing the second one, we fix an odd-even pair of
rounds. Let E denote the event that there is a process, which does not hear anything in this
pair of rounds. For this to happen all processes running Check_If Single have to transmit in
the odd round or all have to transmit in the even round. Thus, Pr[E] = 2-1/2F = 1/2F-1 <
1/2. Since the transmissions in different pairs of rounds are independent, the probability
that there exists a process which does not hear anything during the whole algorithm, and
thus enters the critical section, is at most (1/2)°8(1/2) = ¢, (]

92 M. BIENKOWSKI, M. KLONOWSKI, M. KORZENIOWSKI, AND D. R. KOWALSKI

We may now describe an algorithm solving the static e-mutual-exclusion problem. Let
S be a subset of processes which simultaneously start their entry sections. In the first
2log(1/e) rounds, the processes execute the procedure Check_If-Single. Then the processes
that did not enter the critical section, run a simulation of Willard’s algorithm, as described
in Lemma 3.4. The processes that transmit successfully, enter the critical section. Using
this algorithm, the following result can be proved.

Theorem 3.6. In the scenario with collision detection, there is an algorithm solving the
static e-mutual-exclusion problem with expected makespan O(loglogn + log(1/¢)).

Proof. Consider the algorithm described above, based on the procedure Check_If Single. If
there is only one process starting its entry section, it enters the critical section right after
the procedure Check_If_Single (which takes O(log(1/¢)) rounds). If there is more than one
process, with probability 1 — ¢ they do not enter the critical section after this procedure
and they all simultaneously start the simulation of Willard’s algorithm. By the property of
Willard’s algorithm [19] and by Lemma 3.4, in expectation there is a successful transmission
in O(loglogn) rounds.]

It remains to show that we may use an algorithm for static version of e-mutual-exclusion
to solve the general version of the e-mutual-exclusion problem. The idea is to synchronize
processes at the beginning, and then to transmit a “busy” signal in every second round.
New processes starting their entry section note this signal and will not compete for the
critical section, until an exit section releases the shared channel.

Theorem 3.7. If there exists an algorithm ALG for the static e-mutual-exclusion problem
with (expected) makespan T in the model with collision detection, then there ezists an al-
gorithm ALG' for the e-mutual-exclusion problem with (expected) makespan 2+ 2-T in the
same setting.

4. Fairness

The algorithms shown in [8] and Section 3 do not consider the no-lockout property,
i.e., it may happen that a process never gets out of its entry section, as other processes
exchange access to the critical section among themselves. We show how to modify algorithms
satisfying no-deadlock property (in particular, the algorithms from [8]), so that the no-
lockout property is fulfilled. Moreover, our transformation allows to express the (expected)
makespan of obtained fair protocols in terms of the (expected) makespan of the original
weaker protocols.

Each process maintains an additional local counter of losses. When it starts its entry
section, it sets its counter to zero and whenever it loses the competition for the critical
section, i.e., when some other process enters the critical section, it increases this counter by
one. When a process enters its exit section, it becomes a guard: it helps processes currently
being in the entry section to choose one of them with the highest loss counter. How high
the loss counter can grow is bounded by the number of processes in their entry sections at
the moment when the considered process entered its current entry section. Thus, also the
time after which the process will enter the critical section is bounded.

Lemma 4.1. If either collision detection is available or the number of nodes is known,
it is possible to transform a mutual exclusion algorithm with (expected) makespan T into

DYNAMIC SHARING OF A MULTIPLE ACCESS CHANNEL 93

an algorithm, which also guarantees the no-lockout property and has (expected) makespan
O(T +logn).

Proof. Here we only describe a transformation for the CD scenario; the analysis and the
variant for KN will appear in the full version of the paper. Let ALG be a given subroutine for
the entry section, satisfying no-deadlock property. In order to use it for an entry procedure
satisfying stronger no-lockout property, we slow down algorithm ALG three times, by pre-
ceding each original round by two additional rounds: in the first one the process transmits
signal 1, while in the second one it only listens. We call the obtained subroutine ALG'.
We also need the following selection subroutine. Assume there is a single guard and a
subset (may be empty) of other processes, called competing processes. They all start the
selection subroutine in the same round. The goal is to elect one of the competing processes
to enter the critical section. The subroutine is partitioned into blocks, each consisting of
three rounds. In the first two rounds of each block only the guard transmits, and the signals
are 1 and 0, respectively. The purpose of these rounds is to assure that processes that start
their entry sections later will not disturb the selection subroutine. The competition, which is
essentially a binary search for the highest loss counter of the competing processes, proceeds
in the following phases. In the ith block of the first phase all processes whose loss counter
is at least 2 broadcast a 0 (after the guard’s 10), all other processes listen. The phase ends
with a block ¢ when silence is heard, thus all competitors and the guard know that the
highest loss counter is between 2~ and 2°. Then a binary search is performed in additional
O(i) blocks in similar manner. Additional binary search is performed to choose one process
(the one with the minimum id) from all processes with the same maximal number of losses.
We now describe a procedure governing the exit section. Recall that a process being
in the critical section always broadcasts the critical message to let others know that the
channel is occupied. For the purpose of this reduction and its analysis, we denote the critical
message by a single bit 1 (this is only technical assumption to simplify the proof arguments).
When the process starts its exit section and becomes a guard, it transmits a 0 in the first
round and listens in the second round. If the guard hears silence then it switches to the
remainder section; otherwise it participates in the selection subroutine described above.
Fach process starting its entry section listens for three rounds. If it hears silence during
all these rounds, it starts executing ALG' until some process enters the critical section (it
is guaranteed by no-deadlock property of ALG, and can be extended to ALG as well); then
it resets its state and starts again its entry section procedure with round counter 1. It also
resets its state and starts again with round counter 1 in case it hears anything different
from 1,1,1 and 1, 1,0 during the first three rounds of listening. In the remaining third case,
i.e., when the process has heard 1,1,1 or 1,1,0, it keeps listening until the first round ¢,
counting from the first listening round in this run, such that the process has heard signals
1,1,0 in rounds t — 2,¢ — 1, ¢, respectively. It then transmits in round ¢ + 1 and starts the
selection subroutine in round ¢ + 2. [

By combining Lemma 4.1 with the results from Section 3 and with the existing no-
deadlock deterministic algorithms of [8], we obtain the following two conclusions.

Corollary 4.2. There exists a randomized algorithm with expected makespan O(logn +
log(1/¢)) solving the e-mutual-exclusion problem in the model in which collision detection is
available, and a randomized algorithm with makespan O(logn -log(1/e)) in the KN model.

94 M. BIENKOWSKI, M. KLONOWSKI, M. KORZENIOWSKI, AND D. R. KOWALSKI

Corollary 4.3. There exists a deterministic algorithm with makespan O(logn) solving the
mutual exclusion problem in the model in which collision detection is available and a deter-
ministic algorithm with makespan O(nlog®n) in the KN model.

References

[1] H. Attiya, J. Welch, “Distributed Computing,”, 2004, John Wiley and Sons, Inc.

[2] R. Bar-Yehuda, O. Goldreich, A. Itai, On the time complexity of broadcast in radio networks: an
exponential gap between determinism and randomization, Journal of Computer and System Sciences,
45 (1992) 104-126.

[3] M.A. Bender, M. Farach-Colton, S. He, B.C. Kuszmaul, C.E. Leiserson, Adversarial contention resolution
for simple channels, in Proceedings, 17th Annual ACM Symposium on Parallel Algorithms (SPAA), 2005,
pp. 325-332.

[4] J. Capetanakis, Tree algorithms for packet broadcast channels. IEEE Transactions on Information The-
ory 25 (1979) 505-515.

[5] B.S. Chlebus, L. Gasieniec, D.R. Kowalski, T. Radzik, On the wake-up problem in radio networks, in
Proceedings, 32nd International Colloquium on Automata, Languages and Programming (ICALP), 2005,
pp. 347-359.

[6] B.S. Chlebus, D.R. Kowalski, M.A. Rokicki, Adversarial queuing on the multiple-access channel, in
Proceedings, 25th ACM Symposium on Principles of Distributed Computing (PODC), 2006, pp. 92-101.

[7] A.E.F. Clementi, A. Monti, R. Silvestri, Selective families, superimposed codes, and broadcasting on un-
known radio networks, in Proceedings, 12th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA),
2001, pp. 709—T718.

[8] J. Czyzowicz, L. Gasieniec, D.R. Kowalski, A. Pelc, Consensus and mutual exclusion in a multiple
access channel, in Proceedings, 23rd International Symposium on Distributed Computing (DISC), 2009,
pp. 512-526.

[9] L. Gasieniec, A. Pelc, D. Peleg, The wakeup problem in synchronous broadcast systems, SIAM Journal
on Discrete Mathematics, 14 (2001) 207-222.

[10] L.A. Goldberg, M. Jerrum, S. Kannan, M. Paterson, A bound on the capacity of backoff and
acknowledgment-based protocols, SIAM Journal on Computing 33 (2004) 313-331.

[11] A.G. Greenberg, S. Winograd, A lower bound on the time needed in the worst case to resolve conflicts
deterministically in multiple access channels. J. ACM 32 (1985) 589-596.

[12] T. Jurdzinski, M. Kutylowski, J. Zatopianski, Efficient algorithms for leader election in radio networks,
in Proceedings, 21st ACM Symposium on Principles of Distributed Computing (PODC), 2002, pp. 51-57.

[13] T. Jurdziniski, G. Stachowiak, Probabilistic algorithms for the wakeup problem in single-hop radio
networks, in Proceedings, 15th International Symposium on Algorithms and Computation (ISAAC), 2002,
LNCS 2518, pp. 535-549.

[14] D.R. Kowalski, On selection problem in radio networks, in Proceedings, 24th ACM Symposium on
Principles of Distributed Computing (PODC), 2005, pp. 158-166.

[15] Y. Kushilevitz, Y. Mansour, An Q(Dlog(N/D)) lower bound for broadcast in radio networks, STAM
Journal on Computing 27 (1998) 702-712.

[16] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publ., Inc., 1996.

[17] K. Nakano, S. Olariu, Uniform leader election protocols for radio networks, IEEE Transactions on
Parallel Distributed Systems 13 (2002) 516-526.

[18] B.S. Tsybakov, V.A. Mikhailov, Free synchronous packet access in a broadcast channel with feed-
back, Prob. Inf. Transmission 14 (1978) 259-280. (Translated from Russian original in Prob. Peredach.
Inf., 1977.)

[19] D.E. Willard, Log-logarithmic selection resolution protocols in a multiple access channel, STAM Journal
on Computing 15 (1986) 468-477.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 95-106
www.stacs-conf.org

EXACT COVERS VIA DETERMINANTS

ANDREAS BJORKLUND

E-mail address: andreas.bjorklund@yahoo.se

ABSTRACT. Given a k-uniform hypergraph on n vertices, partitioned in k equal parts
such that every hyperedge includes one vertex from each part, the k-Dimensional Match-
ing problem asks whether there is a disjoint collection of the hyperedges which covers
all vertices. We show it can be solved by a randomized polynomial space algorithm in
0*(2"*=2/kY time. The O*() notation hides factors polynomial in n and k.

The general Exact Cover by k-Sets problem asks the same when the partition constraint
is dropped and arbitrary hyperedges of cardinality k are permitted. We show it can be
solved by a randomized polynomial space algorithm in O* (cf,) time, where cs = 1.496, c4 =
1.642, ¢s = 1.721, and provide a general bound for larger k.

Both results substantially improve on the previous best algorithms for these problems,
especially for small k. They follow from the new observation that Lovasz’ perfect matching
detection via determinants (Lovédsz, 1979) admits an embedding in the recently proposed
inclusion—exclusion counting scheme for set covers, despite its inability to count the perfect
matchings.

1. Introduction

The Exact Cover by k-Sets problem (XkC) and its constrained variant k-Dimensional
Matching (kDM) are two well-known NP-hard problems. They ask, given a k-uniform hy-
pergraph, if there is a subset of the hyperedges which cover the vertices without overlapping
each other. In the kDM problem the vertices are further partitioned in k equal parts and
the hyperedges each includes exactly one vertex from each part. While being two of the
21 items of Karp’s classic list of NP-complete problems [6] for k£ > 3, little is known on
their algorithmic side. In this paper, we present stronger worst case time bounds for these
problems by combining Lovész’ perfect matching detection algorithm via determinants [10]
with the inclusion—exclusion counting for set covers [1]. We show

Theorem 1.1. k-Dimensional Matching on n wvertices can be solved by a Monte Carlo
algorithm with exponentially low probability of failure in n, using space polynomial in n,
running in O*(2"*=2/k) time.

Theorem 1.2. Ezxact Cover by k-Sets on n wvertices can be solved by a Monte Carlo al-
gorithm with exponentially low probability of failure in n, using space polynomial in n,

1998 ACM Subject Classification: F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Hypergraphs.
Key words and phrases: Moderately Exponential Time Algorithms, Exact Set Cover, k-Dimensional
Matching.

‘V r SO‘NPTOHS‘E%P;H ICAL
m |_ ASPECTS
- S‘ O COMPUTER © A Bjorklund
@ Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2447

96 A. BIORKLUND

Algorithm \ k£ | 3 4 5 6 7 8
kDM in [1] 1.587 | 1.682 | 1.741 | 1.782 | 1.811 | 1.834
kDM here 1.260 | 1.414 | 1.516 | 1.587 | 1.641 | 1.682

XkCin [1 1.842 | 1.888 | 1.913 | 1.929 | 1.940 | 1.948
XkC in [8 1.769 | 1.827 | 1.862 | 1.885 | 1.901 | 1.914
XkC here 1.496 | 1.642 | 1.721 | 1.771 | 1.806 | 1.832

Table 1: Comparison of the base ¢ in the O*(¢™) runtime of previous and the new algorithms.

running in O*(c}t) time, with c3 = 1.496, cs = 1.642,c5 = 1.721,¢6 = 1.771,¢7 = 1.806, and
in general ¢ < 2 (8.415k0'9_k(k —1)%6(k — 1.5)k_1'5)_1/k

These bounds are large improvements over the previously known ones. In particular,
for three dimensional matching our algorithm runs in time asymptotically proportional to
the square root of the previous best algorithm’s runtime.

We hope the present paper conveys the message that inclusion—exclusion is amendable
not only to counting problems, but can at times be used more directly to settle the decision
version of a problem.

1.1. Previous Work

Perhaps the most famous algorithmic contribution on the subject of exact covers is
Knuth’s Dancing Links paper [7], which actually just addresses a general implementation
issue which saves a small constant factor in the natural backtracking algorithm for the
problem. About the backtracking approach on exact cover he writes “Indeed, I can’t think of
any other reasonable way to do the job in general”. While we certainly may agree depending
on how much you put in the words “reasonable” and “general”, we must point out that the
best provable worst case bounds for the problems are obtained by analyzing very different
algorithms. Bjorklund et al. [2] uses inclusion—exclusion and fast zeta transforms on the full
subset lattice to show that exact set covers of any n vertex hypergraph can be counted in
O*(2™) time even when the number of hyperedges to choose from are exponential. Restricted
to k-uniform hypergraphs, Koivisto [8] proposes a simple clever dynamic programming over

subsets which show that Exact Cover by k-Sets can be solved in O* (2(2+=2)/v (2]“_1)2_21]“(2))
time. The algorithm is actually capable of counting the solutions and also works for not
necessarily disjoint covers. It does, however, use exponential space. The best previous
algorithm for the problem using only polynomial space is given in [1] and has a runtime
bound in O* ((14k/(k—1))"*=D/k)_ For k-Dimensional Matching, the best known algorithm
as far as we know is an O*(2"*=D/k) time algorithm resulting from a generalization of
Ryser’s inclusion—exclusion counting formula for the permanent [12], presented in [1]. A
comparison of the bounds guaranteed by these algorithms and the ones given in this paper
is shown in Table 1 for small k.

For k = 2 the problems X2C and 2DM are better known as the problems of finding a
perfect matching in a general and bipartite graph, respectively. For these problems several
polynomial time algorithms are known. We definitely admit that it seems like an obvious
idea to try to reduce the k > 2 cases to the k = 2 case searching for faster algorithms
for larger k. Still, we believe that it is far from clear how to achieve this efficiently. In
this paper we make such an attempt by reducing the k > 2 cases to variants of one of the

EXACT COVERS VIA DETERMINANTS 97

first polynomial time algorithms for detecting the existence of perfect matchings: Lovész’
algorithm from [10] which evaluates the determinant of the graph’s Tutte matrix [13] at a
random point.

2. Our Approach

2.1. Preliminaries

We use the terminology of (multi)hypergraphs. A hypergraph H = (V, E) is a set V of
n vertices and a multiset E of (hyper)edges which are subsets of V. Note in particular that
with this definition edges may include only one (or even no) vertex and may appear more
than once. In a k-uniform hypergraph each edge e € E has size |e| = k. Given a vertex
subset U C V, the projected hypergraph of H = (V, E) on U, denoted H[U| = (U, E[U]) is a
hypergraph on U where there is one edge ey in E[U] for every e € E, defined by ey = enU,
i.e. the projection of e on U.

We study two related problems.

Definition 2.1 (k-Dimensional Matching, kDM).
Input: A k-uniform hypergraph H = (ViU VLU Vi, E), with E C V) x Vo x -+ V.
Question: Is there S C E s.t. Ugegs = ViUVRU---V, and Vsy # s9 € S :51MNsy = 0.

Definition 2.2 (Exact Cover by k-Sets, XkC).
Input: A k-uniform hypergraph H = (V| E).
Question: Is there S C E s.t. Ugegs =V and Vsy # so € S : 51N sy = 0.

For a matrix A we will by A; ; denote the entry at row 4 and column j.

2.2. Determinants

The determinant of an n X n-matrix A over an arbitrary ring R can be defined by the
Leibniz formula

n
det(A) = > sgn(o) [[Ai00 (2.1)
o:[n]—[n] =1

where the summation is over all permutations of n elements, and sgn is a function called
the sign of the permutation which assigns either one or minus one to a permutation. In this
paper we will restrict ourselves to computing determinants over fields of characteristic two,
GF(2™) for some positive integer m. In such fields every element serves as its own additive
inverse, and in particular so does the element one, and the sgn function identically maps
one to every permutation. Thus it vanishes from Eq. 2.1 in this case, and the determinant
coincides with another matrix quantity, called the permanent:

n
per(A) = Z HAz’,a(i) (2.2)

o:[n]—[n] =1
Permanents of 0—1-matrices over the natural numbers are known to count the perfect match-
ings of the bipartite graph described by the matrix. The reader may subsequently be
tempted to think that this identity of determinants and permanents over fields of char-
acteristic two is the property that makes our algorithms work. There is however nothing

98 A. BIORKLUND

magical about these fields in this context. Our reason for working in GF(2™) is simply that
with this choice of fields we don’t even have to define the sign function, making several of
the proof arguments later on much easier to digest. In principle though, any large enough
field will work, with slightly more complicated proofs.

The interesting property of the determinant that we will exploit here is that although
it is defined above in Eq. 2.1 as a sum of an exponential number of terms, it admits
computation in time polynomial in n. This can be achieved for instance via the so called
LU-factorization of the matrix which almost any textbook on linear algebra will tell you.
In fact, computing the determinant is no harder than square matrix multiplication, see [3],
and hence it can be done in O(n*) field operations where w = 2.376 is the Coppersmith—
Winograd exponent [4].

2.3. Inclusion—Exclusion for Set Covers

Let us review the inclusion—exclusion counting scheme for exact set covers presented by
Bjorklund and Husfeldt in [1]: Given a k-uniform hypergraph H = (V, E) and any subset
U C V, we can count the number of Exact Covers by k-Sets, denoted #XkC(H), by the
inclusion—exclusion formula

#XEC(H) = > (-n)¥w(H U, X) (2.3)
XCV-U

where W(H, U, X) counts the number of ways to exactly cover U with |V|/k edges in H[U]
whose corresponding edges in H are disjoint from X. Put differently, W (H, U, X) counts
the number of ways to pick |V|/k edges from H, all having an empty intersection with
X, which cover U without any overlap. In particular, when U =) it is straightforward to
compute W (H, (), X) by just counting the number of edges in H disjoint from X, calling this
quantity d(X), and then computing the binomial (d(:f)). In [1], some examples where this
algorithm could be accelerated by choosing a larger U were identified where the speedup
was obtained by utilizing U’s such that the projected hypergraph on U had low path—width.
This enabled efficient counting by dynamic programming over a path decomposition.

2.4. Moving to GF(2™)

In this paper, we find a new way to allow a large U to expedite the computation of the
formula Eq. 2.3 above. We observe that whenever the projected hypergraph contains edges
of size at most two, we can use determinants to compute the formula faster. We note that
if the problem of counting perfect matching had an efficient algorithm A, we would almost
immediately get an O*(2"*=2)/k) time algorithm for the kDM problem. We would simply
let U be any two of the parts in the input partition, and use A to compute W (H, U, X).
Unfortunately, counting perfect matchings even in bipartite graphs is #P-complete [14].

The key insight of the present paper circumvents the apparent obstacle formed by the
intractability of counting matchings: we only need to be able to efficiently compute some
fixed weighted sum of the matchings (with no weights set to zero). This is exactly where the
determinants come to our rescue. The price we pay is that we have to give up counting the
solutions over the natural numbers. Here we demonstrate the result through counting over
fields of characteristic two which only allow us to detect if there is a cover at all and gives us
little knowledge of their number. Furthermore, to avoid having an even number of solutions
cancel we will employ a fingerprint technique, very much in the same spirit as Williams [15]

EXACT COVERS VIA DETERMINANTS 99

recently extended the k-path detection algorithm based on an algebraic sieving method of
Koutis [9]. The fingerprint idea is to think of the computation as evaluating a polynomial
of a degree much smaller than the number of elements of its base field and then computing
it at a randomly chosen point. The fact that a polynomial cannot have more roots than
its degree assure us that with great probability we discover with this single point probing
whether the polynomial is the zero-polynomial or not. We will in fact use the multivariate
polynomial analogue, see e.g. [11].

Lemma 2.3 (Schwartz-Zippel). Let P(x1,xo,...,x,) be a non-zero n-variate polynomial of
degree d over a field F'. Pick ri,ro,...,Tn € F uniformly at random, then

d
[P

For now, it is sufficient to think of the inclusion—exclusion formula of Eq. 2.3 as evalu-
ating a multivariate polynomial over the base field GF(2") for some m. In what follows we

will associate with all edges e in the input hypergraph a variable v.. Our modified version
of Eq. 2.3 reads as follows.

P?"(P(Tl,?”g,. T) _0)

Lemma 2.4. Given an XkC-instance H = (V, E) and the family of all its solutions S, we
have that, for every subset U C 'V,

> WayH U X)= >] l® (2.4)
XCV-U E'€S ecE!

where the computation is over a multivariate polynomial ring over GF(2™), f is a function
mapping the edges to the positive integers, and

Wop (H,UX)=>"] v (2.5)
E" eecE"

where the summation is over all E" C E, satisfying four constraints

Avoidance, Ve € E" :enNX =10

Cardinality, |E"| = |V|/k

Coverage, U C Ugcpre

Disjointness, Ve; #es € B :egNeas NU =)

Proof. First, note that every E' € S fulfills all four conditions Avoidance, Cardinality,
Coverage, and Disjointness for X = (), but violates Avoidance for every other X, irrespective
of the choice of U. Thus, the contribution [], g ve of every solution E’ is counted precisely
once.

Second, a non-solution E” obeying the three conditions Cardinality, Coverage, and
Disjointness, fulfills the Avoidance condition for an even number of choices of X irrespective
of U, namely for all subsets of the elements of V' that the union of the sets in E” fails to
cover. Hence, all of these contributions] czn vg (©) cancel each other since we are working
in a field of characteristic two. [

Combining the two Lemmas above 2.3 and 2.4 into an algorithm choosing a random
point 71,72, ...,7 g € GF(2™) and evaluating the left-hand sum of Eq. 2.4 in the straight-
forward fashion, we get:

Corollary 2.5. Given an XkC-instance H = (V, E) and a subset U C V| there is a Monte
Carlo algorithm which returns “No” whenever there is no cover and returns “Yes” with

100 A. BIORKLUND

probability at least 1 — max.cp f(e)|V|/(k2™) when there exists at least one, running in
time O*(2VI=IUlr(Wy 4, U)), where 7(Wo p,U) is the time required to evaluate any of the
polynomials W t(H,U, X) for X CV —U, in a random point over the base field GF(2™).

Note that by letting m be in the order of n, when f is bounded by a constant, we
get exponentially low probability of failure in n. Armed with Corollary 2.5, we can start
looking for projections U over which the computation of W ;(H,U, X) is easy. The next
two sections will describe two examples of how we can use determinants to accelerate the
computation.

3. k-Dimensional Matching

We begin by the easier application, kDM. For this problem we can trivially find a large
vertex subset on which the projected instance is a multigraph, and in fact also bipartite: we
just use any two of the parts in the vertex partition given as input. Edmonds [5] observed
that one could relate a bipartite graphs’ perfect matchings to the determinant of a symbolic
matrix. A perfect matching is a collection of disjoint edges so that every vertex is covered by
precisely one edge. To a given a bipartite graph G = (U, V, E),n = |U| = |V, he associated
an n X n-matrix A with rows representing vertices in U, and columns the vertices of V,
and equated A;; with a variable v;; if (4,j) € E and zero otherwise. He showed that the
determinant of A is non-zero iff G has a perfect matching. We will use essentially the same
result, with the small exception that we need to deal with multiple edges between a vertex
pair, making sure all contributes. Formally

Definition 3.1. Given a hypergraph H = (V,E) and a subset U C V such that the
projected hypergraph H[U]| is a bipartite multigraph on two equally sized vertex parts
Uy UUs; = U, its Edmonds matrix, denoted E(H, Uy, Us), is defined by

E(H, UI,UQ)Z‘J’ = Z Ve

e=(4,j)€E[U]
i€Uy,jeU2

where again, v, is a variable associated with the edge e.

We formulate our Lemma in terms of a special case of XkC instead of kDM directly to
capture a more general case.

Lemma 3.2. For a XkC-instance H = (V, E) and two equally sized disjoint vertex subsets
Ui,Uy CV such that the projected hypergraph H[Uy U Us) is a bipartite multigraph,

det(B(H, U1, Ua)) = >] ve (3.1)
MeMeeM
where the computation is over a multivariate polynomial ring over GF(2™) for some m and
the summation is over all perfect matchings M in H[Uy U Us).

Proof. By definition of the determinant 2.1, the summation is over all products of n of the
matrix elements in which every row and column are used exactly once. Transferred to the
associated bipartite graph, this corresponds to a perfect matching in the graph since rows
and columns represent the two vertex sets respectively. Moreover, the converse is also true,
i.e. for every perfect matching there is a permutation describing it. Hence the mapping is

EXACT COVERS VIA DETERMINANTS 101

one-to-one. The inner product counts all choices of edges producing a matching described
by a permutation o since:

[[Eoo =11 > v= > 1lv (3.2)
=1

i=1 e=(i,0(i)) MeM(o) eeM

where M(o) is the set of all perfect matchings ey, e, ..., e, such that e; = (i,0(7)). L]

3.1. The Algorithm

Now we are ready to prove Theorem 1.1. Given an input instance H = (V4, Vs, ..., Vi, E)
to the kDM problem where V7, V5, ..., Vi, describe the vertex partition of the n vertices, we
simply let U = V7 U V5 in the algorithm described by Corollary 2.5, with f mapping one
to every edge. To compute W5 ¢(H,U, X) we construct the Edmonds matrix of the hyper-
graph H restricted to its edges disjoint to X, projected on U, with the variables replaced
by the random sample point (rq,72,...,7|g|) chosen. Next we compute its determinant.
The correctness follows from Lemma 3.2, after noting that every perfect matching in a
projected hypergraph contains n/k disjoint edges. The runtime bound is easily seen to be
O0*(2"k=2)/k) since |U| = |Vi| + |Va| = 2n/k.

4. Exact Cover by k-Sets

Next we proceed to the XkC problem. In comparison to the kDM we are faced with a
number of additional obstacles on our way to a similar result.

e First, a projection will typically capture edges differently, some will have large pro-
jections and some no at all.

e Second, in particular the projected edges will probably not form a multigraph.

e Third, even if they did it may not be a bipartite one.

For the first obstacle, we will prove that it is sufficient to find a projection on which
at least one cover’s edges all leave projected edges of size two or less. This is basically
an extension of the idea for the XkC algorithm in proposition 10 in [1]. There, a vertex
subset U is picked uniformly at random of a carefully chosen size, and in the projected
hypergraph only the edges which leave a projection of size one or less are kept. Then the
inclusion—exclusion formula Eq. 2.3 is used after noting that W(H,U, X) is now easy to
compute. The process is repeated a number of times dictated by the size of U. The best
size to use is a trade-off of the resulting summation runtime and the probability that a cover
is projected gracefully in the sense that all its edges are kept after the projection.

For the second obstacle, in addition to handling multiple edges we also need to count
perfect matchings in which loops, i.e. edges connecting a vertex to itself, count as covering
the vertex of its endpoints. Since this means that not all perfect matchings will involve
the same number of edges, we have to take special care to make the determinants useful.
We use polynomial interpolation to solve for the contributions of matchings of the same
size separately to be able to fulfill the Cardinality constraint for W5 ; in Corollary 2.5. To
this end we introduce an auxiliary variable s parametrizing the matrices and use several
determinant calculations.

For the third obstacle, we will use a variation of a result generalizing Edmonds’ due to
Tutte [13]. He showed that even for general not necessarily bipartite graphs one can make

102 A. BIORKLUND

a connection between its perfect matchings and the determinant of a symbolic matrix,
although twice as large matrices in both directions are required. To a given a graph G =
(V,E),n = |V| he associates an n x n-matrix A with rows and columns representing the
vertices, and assigns A;; = v;; for i < j and A;; = —v;; for i > j with v; ; a variable
for each edge (i,7) € E. The remaining entries are set to zero. The determinant of A is
non-zero iff G has a perfect matching.

We define matrices similar to Tutte’s:

Definition 4.1. Given a hypergraph H = (V, E) and a subset U C V such that in the
projected hypergraph H[U] all edges have size at most two, its Tutte matrix of index s,
denoted TC)(H,U), is defined by

(s) _f Yve :e€E[Ule={(i,j),i#]

T H, U)ig { s v tec E[U)e=(ij)i—=j

Lemma 4.2. For a XkC-instance H = (V, E) and a vertex subset U C 'V such that in the
projected hypergraph H[U], every edge has size at most two,

det(TO(H,U)) = Y MO JT o2® (4.1)
MeM eeM

where the computation is over a multivariate polynomial ring over GF(2™) for some m, the
summation is over all perfect matchings M in H[U|, A(M) is the number of loops in the
matching M, and p(e) =1 if e is a loop and p(e) = 2 otherwise.
(s)
1,0 (%)
for a permutation o. Call a permutation o good if Vi : o(o (7)) = 4 holds, and bad otherwise.
We will argue that only good permutations contribute to the sum. To see why, consider a
bad o. Then there exists a smallest ¢ such that o(o(i)) = j # i. Look at the cyclic sequence
{¢;} where ¢cg =i and cx1 = o(cy) for k > 0. Let L > 2 be the smallest positive integer
such that ¢, = ¢ (Note that there must be one and that all ¢; in between must by distinct
since every element in 1 through n is mapped to exactly once). Next define a cycle reversal
operation D mapping bad permutations on bad permutations by letting D (o) be identical to
o except in the points ¢; through ¢y, where instead D(o)(¢;) = ¢;—1. Now first observe that
the reversal operation is dual in the sense that D(D(0)) = o and that D(o) # o since L > 2,
and hence every bad permutation can be uniquely paired with another bad permutation.
Second note that the contribution of a bad permutation is identical to the contribution of
its dual, since the Tutte matrices are symmetrical. Thus, since we are counting in a field of
characteristic two, they cancel each other.

Next we continue to observe that the good permutations describe precisely the structure
of all possible perfect matchings in a multigraph: 4’s such that o(i) # i describe ordinary
two-vertex edges in the matching, and 4’s such that o(i) =i describe loops.

The inner product of Eq. 2.1 reads

Proof. By definition of the determinant 2.1, the summation is over all products []; T

n
M= (M X e) [T X w)= ¥ #e a2
i=1 i,i=0(i) e=(i,i) 1,070 (1) e=(1,0(1)) MeM(o) eeM
where M(o) is the set of all directed perfect matchings eq, ea, ..., €, described by the good
permutation o for which e; = (i, 0(7)).
Now consider a directed perfect matching ey, e, ..., e, such that for some j, e; # e, (;),
and refer to it as being bad. We will see that all of these cancel in very much the same way

EXACT COVERS VIA DETERMINANTS 103

as the bad permutations did. Namely, again find the smallest j for which this is the case,
and define a reversal operation R, mapping bad directed perfect matchings onto themselves
by exchanging e; and e, ;). Since this operation pairs up the bad directed perfect matchings
(Rs({e;}) # {ei} and R,(R,({e;})) = {ei}) and we work in a field of characteristic two,
their contributions cancel. Thus we are left with only good permutations and good directed
perfect matchings. The latter can be thought of as undirected perfect matchings in which
every non-loop edge is included twice in the product.]

To find the contributions of matchings of the same size separately, think of the match-
ings partitioned in groups My, My, ..., M,, according to the number of loops of the match-
ing. We can rewrite the determinant in Lemma 4.2 as

det(T® (H,U)) Zs M,; (4.3)

where M; =3 e, [eens w21 are the quantities we seek. The right hand side of Eq. 4.3
is a degree n polynomial in s and thus we can solve for My, My, ..., M,, by computing
det(T®)(H,U)) in n different choices of s, and use Lagrange’s interpolation formula to
recover the sought values. In fact, either there are no matchings with an odd number
of loops or no matchings with an even number of loops depending on the parity of |U]|.
Consequently, the evaluation of n/2 points suffices, but we disregard from this optimization
possibility for simplicity. Once we have the M;’s we are close to be able to compute W ¢
efficiently according to the following Lemma:

Lemma 4.3. Given a XkC instance H = (V,E) and a U C V such that for all edges
ecElenU| <2, fle)=2iflenU|=2 and 1 otherwise, and any X CV —U,
U

VI U+
Wop(H,U, X) = ZZH U]+

2

1) M; (4.4)

where M; = ZMeMi [Lecus ve(©) are the contribution of all matchings M; containing
exactly i loops in the projected hypergraph of H on U restricted to the edges disjoint to X,

and
= > I v (4.5)

E'CZ e'€E’
|E|=1

with Z defining the set of edges e disjoint to X also having an empty intersection with U.

Proof. The M;’s count the contribution of all ways to cover U with the edges which leaves
a non-empty projection on U and the Z(i)’s count the contribution of all ways to choose
edges leaving an empty projection. Note that a matching from M; involves exactly L'U‘%j
edges if it exists. The right hand side of Eq. 4.4 convolutes over all ways their total number

of edges could equal |V|/k in order to meet the Cardinality constraint in Corollary 2.5. m

The only piece missing is a simple way to evaluate Z(i), and we note that it can be
done by dynamic programming through a simple recursion. Number the edges in Z defined
in Lemma 4.3 arbitrarily as e, ea, ..., €p, set Z; = {e1, €2, ..., €;}, and define

> I ve (4.6)

E'CZ; e/€E
|E|=i

104 A. BIORKLUND

These can be solved for by
1 i=75=0
2(1,7) = 0 :t=0o0rj=0 (4.7)
2(i—1,j — Dve; + 2(i,5 — 1) : otherwise

and we finally compute Z(i) through Z(i) = z(i,p).

4.1. The Algorithm

We are ready to prove Theorem 1.2. First we describe the algorithm. Given an input
instance H = (V, E) to the XkC problem, we compute two parameters ¢ and I depending
on k. These are given by the calculations in the next section 4.2. We repeat the following
procedure until we detect a cover, in which case we report so, or have tried unsuccessfully
I times, in which case we report that no cover was found:

Algorithm 4.4.

(1) Choose a tn-sized subset U C V uniformly at random.

(2) Construct Hy = (V, Ey) where Eyy = {ele € E,lenU| < 2}.

(3) Run the summation algorithm in Corollary 2.5 on Hy, using U, and let f(e) = 2 if
leNU| = 2 and 1 otherwise. Use the method of the previous section 4 to compute
WQJ“(HU, U7 X), i.e.

(a) Construct the Tutte matrices T of Hy[U] restricted to its edges which are
disjoint to X for s = ¢*,0 < i < |U| where g is a generator of the multiplicative
group in GF(2™).

Compute the determinants of T().

Use Lagrange interpolation to solve for the M;’s via Eq. 4.3.

Calculate the Z(i)’s by Eq. 4.7.

Evaluate Eq. 4.4.

(b
(c
(d
(e

Given that the random U is such that all edges in some exact cover S are kept in
Hy, the previous Section 4 verifies its correctness: Lemmas 4.2 and 4.3 together with the
observation that g* for 1 < i < |U| are all distinct points, assures us that step (3) of the
algorithm works. We are left with deciding ¢t and I to make it very likely that some exact
solution is kept at least once and tune them to get the best possible runtime.

— — — —

4.2. Runtime Analysis

Our runtime analysis hinges on the probability that any fixed solution S to the XkC
instance H = (V, E) when projected on a subset U C V chosen uniformly at random from
the tn-sized subsets of V' for some fraction ¢ of the vertices, gets all its edges to leave a
small projection on U, namely Ve € S : |[enNU| < 2. We denote this event by e(¢). If
we repeat the process I times, the probability that none of the I independent random
selections for U is successful in the sense that they retain S after the projection, is at
most (1 — Pr(e(t)))! < e~ PrE®! Consequently, we need I = log(e !)Pr(e(t))~! to get
probability at least 1 — e for one or more of the I selections to be successful. Thus we may
use € = ¢~ " for some constant ¢ > 1 to get an exponentially low probability in n of failure
without increasing the number of repetitions I by more than a polynomial factor.

EXACT COVERS VIA DETERMINANTS 105

T12 T2 t Il n Ck

0.961 | 0.679 | 0.547 | 1.092 | 1.496
0.936 | 0.613 | 0.387 | 1.073 | 1.642
0.921 | 0.583 | 0.301 | 1.060 | 1.721
0.912 | 0.565 | 0.246 | 1.050 | 1.771
0.905 | 0.554 | 0.208 | 1.043 | 1.806
0.900 | 0.546 | 0.181 | 1.038 | 1.832

QO || UY | W

Table 2: Numerically found parameters 715 and 75 which approximately minimizes cy.

To bound the probability of the event, we count the number of good tn-sized subsets
of the vertices. This is a binomial sum (actually a trinomial one) over the number of edges
in the solution S which gets a projection of size two:

t1+2§t;m <nt/1k> (n/l{;; tl) (S)) (lf)tl (4.8)

To lower bound this sum of all non-negative terms, we will use just one of them. Let
N = n/k and parametrize tn = 719N + 79N where 795 is the fraction of sets in the solution
S which gets at least one of its elements chosen, and 7 is the fraction of sets that gets two.
Then, we bound our probability as the quotient of the single term lower bound on the
number of good sets and the number of all sets (tZ) to
N \(m12N kTN — 1)72N
Pr(E(t)) 2 (TIQN)(TQN) ()
9mN (kN)
(T12+72)N

(4.9)

The runtime of Corollary 2.5 is O*(2"~'") given our polynomial time algorithm for com-
puting W ;. Omitting polynomial factors, Algorithm 4.4 for X.C has to run for Pr(e(t))~!
different choices of U in the worst case. Let T} ; denote the final runtime, and expand the
binomials of Eq. 4.9 to get:

gn—tn RN =T2N (1) NYI(N — 719 N)(112 N — 1o N)!(EN)!
Tt < <
’ PI‘(E(t)) N!].ngN(k; — 1)T2N(k‘N — 119N — TQN)!(TlgN + TQN)!

(4.10)

If we replace the factorials with Stirling’s approximation n! € 6(y/n(n/e)") and divide
(N/e)**1 out of both numerator and denominator, we are left with a slightly less intimi-
dating expression

(k—712) -T2 _ Ti2—T2 (] _ 1—-712 N
2 752 (T12 — T2) (1 —712) 411
)7'12+T2 ()

T., <
kit >~ (kq—lg—k(k. _ 1)7’2 (k — Ty — 7—2)16—7'12—7'2 (7-12 + 7

Rewriting this as Tj; < ¢} we see that ¢, can be obtained as the k:th root of the
expression within the brackets in Eq. 4.11. Solving numerically for the choices of 715 and 7o
that minimizes ¢; we find that the minimum moves slightly with increasing k, see Table 2.
The minimum, however, lies in a quite flat neighborhood within a large vicinity of the actual
minimum, and comparable bounds not too far from the best possible with our technique are
obtained with fixed parameters for all k£ by, say, 712 = 0.9 and 7 = 0.6. With this choice of
parameters in Eq. 4.11 we obtain the general bound in Theorem 1.2.

106 A. BJORKLUND
Acknowledgements
This research was supported in part by the Swedish Research Council project ”Exact
Algorithms”.
References
[1] A. Bjorklund and T. Husfeldt. Exact Algorithms for Exact Satisfiability and Number of Perfect Match-
ings. Algorithmica 52(2): 226-249, 2008.
[2] A. Bjorklund, T. Husfeldt, and M. Koivisto. Set Partitioning via inclusion—exclusion. SIAM Journal on
Computing Vol.39, No.2: 546-563, 2009.
[3] J. R. Bunch and J. E. Hopcroft. Triangular factorization and inversion by fast matrix multiplication,
Mathematics of Computation, 28: 231236, 1974.
[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Sym-
bolic Computation, 9:251-280, 1990.
[5] J. Edmonds. Systems of distinct representatives and linear algebra. Journal of Research of the Natural
Bureau of Standards, 71B, 4:241-245, 1967.
[6] R. Karp. Reducibility Among Combinatorial Problems. Complexity of Computer Computations. New
York: Plenum. pp. 85-103, 1972.
[7] D. E. Knuth. Dancing Links, arXiv: ¢s/0011047, 2000.
[8] M. Koivisto. Partitioning into Sets of Bounded Cardinality. Proceedings of the 7th IWPEC, 2009.
[9] L. Koutis. Faster Algebraic Algorithms for Path and Packing Problems. 35th ICALP, pp. 575-586, 2008.
[10] L. Lovész. On determinants, matchings and random algorithms. Fundamentals of Computing Theory.
Akademia-Verlag, Berlin, 1979.
[11] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press, 1995.
[12] H. J. Ryser. Combinatorial Mathematics. Carus Math. Monographs, no. 14. Math. Assoc. of America,
Washington, DC, 1963.
[13] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society, 22:107—
111, 1947.
[14] L. G. Valiant. The Complexity of Computing the Permanent. Theor. Comput. Sci. 8: 189-201, 1979.
[15] R. Williams. Finding Paths of Length k in O*(2*) Time. Information Processing Letters 109(6):315-318,

2009.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 107-118
www.stacs-conf.org

ON ITERATED DOMINANCE, MATRIX ELIMINATION, AND
MATCHED PATHS
FELIX BRANDT ! AND FELIX FISCHER! AND MARKUS HOLZER ?

! Institut fiir Informatik, Ludwig-Maximilians-Universitdt Miinchen, 80538 Miinchen, Germany
E-mail address: {brandtf,fischerf}@tcs.ifi.lmu.de

2 Institut fiir Informatik, Universitit GieBen, 35392 GieBen, Germany
E-mail address: holzer@informatik.uni-giessen.de

ABSTRACT. We study computational problems arising from the iterated removal of weakly
dominated actions in anonymous games. Our main result shows that it is NP-complete
to decide whether an anonymous game with three actions can be solved via iterated weak
dominance. The two-action case can be reformulated as a natural elimination problem on
a matrix, the complexity of which turns out to be surprisingly difficult to characterize and
ultimately remains open. We however establish connections to a matching problem along
paths in a directed graph, which is computationally hard in general but can also be used
to identify tractable cases of matrix elimination. We finally identify different classes of
anonymous games where iterated dominance is in P and NP-complete, respectively.

1. Introduction

An anonymous game is characterized by the fact that players do not distinguish between
other players in the game, i.e., their payoff only depends on the number of other players
playing the different actions, but not on their identities. Anonymous games constitute a
very natural class of multi-player games which is also highly relevant in practice (cf. [7]).
Symmetric games additionally have identical payoff functions for all players. A strategy of
a player is a probability distribution over his actions, and we say that an action is weakly
dominated if there exists a strategy of the same player guaranteeing him at least the same
payoff for any combination of strategies of the other players, and strictly more payoff for
some such combination." Dominated actions may be discarded for the simple reason that
the player will never face a situation where he would benefit from using these actions.
The solution concept of iterated dominance works by removing a dominated action and
applying the same reasoning to the reduced game (e.g., [15]). A game is then called solvable
by iterated dominance if there is a sequence of eliminations that leaves only one action for

1998 ACM Subject Classification: F.2.2, J.4.

Key words and phrases: Algorithmic Game Theory, Computational Complexity, Iterated Dominance,
Matching.

!Some authors (e.g., [10, 13]) use the terms weak dominance or dominance to refer to a weaker notion
that does mot require the dominating strategy to sometimes yield a strictly higher payoff. This notion is
called very weak dominance by other authors (e.g., [2, 4]).

SYMPOSIUM

LV/' ON THEORETICAL
N

ASPECTS
1 S%iagEPUTER © F Brandt, F. Fischer, and M. Holzer
@ Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2448

108 F. BRANDT, F. FISCHER, AND M. HOLZER

each player. Interestingly, anonymous games often arise in the context of voting, where
dominance solvability was originally introduced [14].

Unlike iterated strict dominance, which requires the dominating action in each step to
be strictly better for every combination of strategies of the other players, proper epistemic
foundations for iterated weak dominance are fairly hard to come by (e.g., [3, 19]). Never-
theless, iterated weak dominance is an established and well-studied solution concept that
occurs in virtually every textbook on game theory. Its computational properties, however,
are not well understood, particularly in restricted classes like anonymous games. Potential
computational hardness of iterated weak dominance stems from the fact that the result of
the elimination process generally depends on the order in which actions are eliminated.

Related Work. Deciding whether a game in normal form can be solved by iterated weak
dominance is NP-complete already for games with two players and two different payoffs and
when restricted to dominance by pure strategies [10, 6]. In two-player constant-sum games,
both solvability and eliminability of a given action become tractable, while reachability of
a subgame remains NP-complete [4]. The corresponding problems for strict dominance can
generally be solved in polynomial time [6].

All of the above results concern games with few players and an unbounded number
of actions. Unlike general normal-form games, anonymous and symmetric games allow for
a succinct representation even when the number of players is unbounded. Computational
aspects of these games, particularly with respect to Nash equilibrium, have recently come
under increased scrutiny due to their importance in modeling large anonymous environments
like the Internet. A Nash equilibrium of a symmetric game can be found in polynomial time
if the number of actions is not too large compared to the number of players [16]. In the
larger class of anonymous games, Nash equilibria admit a polynomial-time approximation
scheme when there is only a constant number of actions [7]. The pure equilibrium problem
is tractable in anonymous games with a constant number of actions, and NP-complete if
the number of actions grows in the number of players [5].

Results and Paper Structure. We begin by introducing the relevant game-theoretic
concepts. In Section 3 we show that iterated dominance solvability is NP-hard for symmetric
games with an unbounded number of actions, and tractable for symmetric games with a
constant number of actions. The rest of the paper is then concerned with the only remaining
class, anonymous games with a constant number of actions. In Section 4, we show how
the two-action case can be reformulated as a natural elimination problem on a matrix.
The complexity of this problem remains open, but in Section 5 we draw connections to
a matching problem on paths of a directed graph. The latter problem, which may be of
independent interest, is intractable in general but allows us to obtain efficient algorithms
for restricted versions of matrix elimination. In Section 6 we finally use the matching
formulation to show NP-hardness of iterated dominance in anonymous games with three
actions. Proofs are omitted due to space constraints, and will be given in the full version
of the paper.

2. Preliminaries

An accepted way to model situations of strategic interaction is by means of a normal-
form game (e.g., [15]).

ON ITERATED DOMINANCE, MATRIX ELIMINATION, AND MATCHED PATHS 109

Definition 2.1 (normal-form game). A game in normal-form is a tuple I' =
(N, (Ay)ien, (pi)ien), where N is a finite set of players and for each player i € N, A;
is a finite set of actions available to player i and p; : (J[;c Ai) — R is a function mapping
each action profile, i.e., each combination of actions, to a real-valued payoff for player i.

We write S; = A(A;) for the set of (mixed) strategies of player i € N, i.e., the set of
probability distributions over his actions, and call a strategy pure if it selects some action
with probability one. A vector s € [[,c Si will be called a strategy profile. Payoff functions
naturally extend to strategy profiles, and we write p;(s) for the expected payoff of player ¢
in strategy profile s. We further write n = |N| for the number of players in a game, s; for
the ith element of strategy profile s, and s_; for the vector of all elements of s but s;.

We will henceforth concentrate on games where A; = A for all i € N and some set A.
Such a game is anonymous if the payoff of player ¢ is invariant under any automorphism 7’ :
AN — AN of the set of actions profiles induced by a permutation 7 : N — N of the set of
players that satisfies 7(i) = ¢ (e.g., [5]). An intuitive way to describe anonymous games is
in terms of equivalence classes of the automorphism group of 7/, using a notion introduced
by Parikh [18] in the context of context-free languages. Given a set A of actions, the
commutative image of an action profile ay € A" is given by #(ax) = (#(a, an))aca Where
#(a,an) = {i € N : a; = a}|. In other words, #(a,an) denotes the number of players
playing action a in action profile ay, and #(ay) is the vector of these numbers for all
the different actions. This definition naturally extends to action profiles for subsets of the
players. We consider four types of anonymity (cf. [5]).

Definition 2.2 (anonymity). Let I" = (N, (A;)ien, (pi)ien) be a normal-form game, A a
set of actions such that A; = A for all s € N. I is called

e anonymous if p;(an) = pi(aly) for all i € N and all ay,d)y € AN with a; = a; and
#(a;) = #(a,ﬂ'%

o symmetric if p;(an) = pj(ay) for all i,j € N and all ay,ayy € AN with a; = a’; and
Ha i) = #(d),

o self-anonymous if pi(an) = p;(aly) for all i € N and all ay,d)y € AN with #(ay) =
#(dy), and

o self-symmetric if p;(an) = p;(aly) for alli, j € N and all ay, a’y € AN with #(ay) =
#(ay)-

When talking about anonymous games, we write p;(a;,x_;) for the payoff of player i
under any action profile ay with #(a—;) = x_;. For self-anonymous games, p;(x) is used to
denote the payoff of player ¢ under any profile ay with #(ay) = x. Unless noted otherwise,
we assume that anonymous games are given explicitly, i.e., as a list of payoffs for the different
commutative images.

A well-known method for simplifying strategic games is the removal of actions that
are weakly dominated by some strategy of the same player, in the sense that playing
the latter is never worse than playing the former and sometimes strictly better. The re-
moval of one or more dominated actions may render additional actions dominated, which
may then iteratively be removed. To make these notions precise, we need some notation.
Given a game I' = (N, (4;)ien, (pi)ien), call an elimination sequence of I' a finite se-
quence (D1, D, ..., Dy) of subsets of the disjoint union of the sets A;, i.e., Dj C UjenyAf
for all j with 1 < j < k, where A7 = A; x {i}. For a set D C U;enA}, denote

110 F. BRANDT, F. FISCHER, AND M. HOLZER

by I'(D) the induced subgame of I' where the actions in D have been removed, i.e.,
I'(D) = (N, (4))ien, (Pil[1,.y A)ien) where A; = {a: (a,i) € A7\ D}

Definition 2.3 (iterated dominance). Let I" = (N, (A;)ien, (pi)ien) be a game. An action
d; € A; is said to be (weakly) dominated by strategy s; € S; if for all b € HjeN Aj,
pi(b—isdi) < > 4ca,; Si(ai)pi(b—i;a;) and for at least one b € [[;cnAj, pi(b—i di) <
>aeq,; Si(ai)pi(b—i,a;). An elimination sequence (D1, Ds,...,Dy,) of I' is called valid
if either it is the empty sequence, or if (Di,Ds,...,Dy—1) is valid in I' and every
dym € Dy, is dominated in I'(Uj<j<m—1D;). An action a € UjenA; is called eliminable
if there exists a valid elimination sequence (Dy, Do, ..., D,,) such that a is weakly dom-
inated in I'(Ui<j<mDj). Game I is called solvable if it is possible to obtain a game
where only one action remains for each player, i.e., if there exists a valid elimination se-
quence (Dl,D27 ‘e ,Dm) such that F(Ulgjngj) = (N, (Ag)iENa (pg)iEN) with ‘A” =1 for
all v e N.

We call iterated dominance solvability (IDS) and eliminability (IDE) the computational
problems that ask for solvability of a game and eliminability of a particular action. In
contrast to iterated strict dominance, which requires the inequality to be strict for every
action profile of the other players, the result of iterated weak dominance depends on the
order in which actions are removed, since the elimination of an action may render actions
of another player undominated (e.g., [2]).

Restricted types of iterated dominance can be obtained by requiring that the dominat-
ing strategy s; is pure, or that the elements of an elimination sequence are singletons and
actions thus have to be eliminated one at a time (e.g., [2]). As far as dominance by pure
and mixed strategies is concerned, we will frequently exploit that the two versions coincide
in games with two actions, and also in games with only two different payoffs [6]. All results
hold for dominance by pure strategies and for dominance by mixed strategies. Valid elim-
ination sequences consisting of singletons possess a somewhat less complicated structure.
We therefore in some cases restrict our attention to this specialization, and refer to the
corresponding computational problems as stepwise IDS and IDE. The results ultimately
obtained for the two variants will be very similar. A different notion of solvability merely
requires the remaining action profiles to yield a unique payoff to each of the players (e.g.,
[14]). We note, but do not show here, that all hardness and tractability results extend to
this notion as well.

3. Complexity of Iterated Dominance

Intuitively, a large number of actions neutralizes the computational advantage obtained
from anonymity, by allowing for a distinction of the players by means of the actions they
play. The search for pure Nash equilibria, for example, is tractable for anonymous games
with a constant number of actions, but becomes NP-hard as soon as the number of actions
grows in the number of players [5]. In the latter case, the size of the explicit representation
grows exponentially in the number of players, and one would expect natural instances of such
games to be described succinctly (cf. [16]). While as a matter of fact the results of Brandt
et al. [5] are established via a specific encoding of the payoff functions, namely Boolean
circuits, they nevertheless provide interesting insights into the influence of restricted classes
of payoff functions on the complexity of solving a game. We give a similar result for iterated
dominance in self-symmetric games, hardness for the other classes follows by inclusion.

ON ITERATED DOMINANCE, MATRIX ELIMINATION, AND MATCHED PATHS 111

Theorem 3.1. IDS and IDE are NP-hard for all four classes of anonymous games, even if
the number of actions grows only logarithmically in the number of players, if only dominance
by pure strategies is considered, and if there are only two different payoffs.

In the case of symmetric games, iterated dominance becomes tractable when the number
of actions is bounded by a constant.

Theorem 3.2. For symmetric and self-symmetric games with a constant number of actions,
IDS and IDE can be decided in polynomial time.

In light of these two results, only one interesting class remains, namely anonymous
games with a constant number of actions. To gain a better understanding of the problem,
we restrict ourselves even further to games with two actions. It turns out that in this case
iterated dominance can be reformulated in a natural way as an elimination problem on
matrices. The latter is the topic of the following section.

4. A Matrix Elimination Problem

Let I' = ([n], ({0,1})ien, (pi)ien) be a self-anonymous game with two actions for each
player, and observe that the payoffs of I" can be represented by a matrix Xr = (2 ;) (n+1)xn
the ¢th row of which contains the payoff profile when exactly ¢ — 1 players play action 1,
ie., zj; = p;j(i —1). It will be instructive to view iterated dominance elimination in I" in
terms of the corresponding operations on the matrix X . For now, we restrict our attention
to the case where actions are eliminated one by one, and more generally consider matrices
with an arbitrary number of rows and columns. It suffices to look at matrices whose entries
are natural numbers.

Let X be an m x n matrix with entries from the natural numbers. Call a column ¢ of X
increasing for an interval I over the rows of X if the entries in ¢ are monotonically increasing
in I, with a strict increase somewhere in this interval. Analogously, call ¢ decreasing for I
if its entries are monotonically decreasing in I, with a strict decrease somewhere in this
interval. Say that ¢ is active for I if it is either increasing or decreasing for this interval.
Now consider a process that starts with X and successively eliminates pairs of a row and a
column. Rows will only be eliminated from the top or bottom, such that the remaining rows
always form an interval over the rows of X. A column will only be eliminated if it is active
for the remaining rows. Elimination of an increasing column is accompanied by elimination
of the top row. Analogously, a decreasing column and the bottom row are eliminated at
the same time. The process ends when no active columns remain.

Let us define the problem more formally. For a set A, v € A™, and a € A, denote
by #(a,v) = |{{ < n : v, = a}| the commutative image of a and v, and write v_j =
(c1,¢2,...,cx) for the prefix of v of length k& < n. Further denote [n] = {1,2,...,n} and
[nlo ={0,1,...,n}.

Definition 4.1 (matrix elimination). Let X € N™*" be a matrix. Call a column k € [n]
of X increasing in an interval [4, j] C [m] if the sequence x;x, ;41 k, - - - , Tjk is monotonically
increasing and w;; < i, decreasing in [i,j] C [m] if T, Tip1k, ..., 2, is monotonically
decreasing and x;;, > xj, and active if it is either increasing or decreasing. Then, an
elimination sequence of length k for X is a pair (c,r) such that ¢ € [m]*, » € {0,1}*, and
for all ¢,7 with 1 <14 < j < k, ¢; # ¢j and either 7; = 0 and column ¢; is increasing in

112 F. BRANDT, F. FISCHER, AND M. HOLZER

a b ¢ d

W DN N O
Q| | —| Q.

(en] Neol Nel ol e
W W NN O
O O | | &

W OO
DD N DO |
W W[W NN O
OO O | =] Q.

Figure 1: A matrix and a sequence of eliminations

[#(0,7 ;—1)+1,m —#(1,r _;_1)], or 7, = 1 and column ¢; is decreasing in [#(0,7 ;_1) +
1, m — #(1, 7“.",‘_1)].

Consider for example the sequence of matrices shown in Figure 1, obtained by starting
with the 5 x 4 matrix on the left and successively eliminating columns b, a, ¢, and d. In this
particular example, the process ends when all rows and columns of the matrix have been
eliminated. If instead we eliminated columns ¢ and a, no further eliminations would be
possible. In fact, it would be obvious after the first elimination step that we cannot obtain
a sequence of length 4: one of the columns not eliminated so far, column b, contains the
same value in every row; this column cannot become active anymore, and, as a consequence,
will never be eliminated.

What matters are not the actual matrix entries, but rather the difference between
successive entries in a column. A more intuitive way to look at the problem may thus be in
terms of a matrix with the number of rows reduced by one, and arrows pointing downward
or upward if the value increases or decreases between two adjacent entries. A column can
be deleted if it contains at least one arrow, and if all arrows in this column point in the
same direction. The corresponding row to be deleted is the one at the base of the arrows.

We will be interested in two computational problems. Matrix elimination (ME) asks
whether there exists an elimination sequence that deletes the whole matrix, i.e., one of
length min(m — 1,n). Eliminability of a column (CE) is given k € [n] and asks whether
there exists an elimination sequence (c,) such that for some i, ¢; = k. Without restrictions
on m and n, ME and CE turn out to be equivalent. Indeed, both of them are equivalent
to the problem of deciding whether there exists an elimination sequence eliminating certain
numbers of rows from the top and bottom of the matrix. Several other questions, like the
one of an elimination sequence of a certain length, are equivalent as well.

Lemma 4.2. CE and ME are equivalent under disjunctive truth-table reductions.

When restricted to the case m > n, CE is at least as hard as ME in the sense that the
latter can be reduced to the former while there is no obvious reduction in the other direction.
The problem ME itself might be harder when the number of columns significantly exceeds
the number of rows, because then the set of columns effectively needs to be partitioned into
two sets of sizes m and n —m of columns that have to be deleted and columns that can be
discarded right away.

It is not hard to see that elimination of a matrix X is closely related to iterated dom-
inance in the self-anonymous game described at the beginning of this section, where each
player has two actions 0 and 1, and the payoff of player j when exactly ¢ — 1 players play
action 1 is given by matrix entry z;;. Given actions for the other players, player j can
choose between two adjacent entries of column 7, so one of his two actions is dominated
by the other one if the column is increasing or decreasing. Eliminating one of two actions

ON ITERATED DOMINANCE, MATRIX ELIMINATION, AND MATCHED PATHS 113

effectively removes a player from the game, and elimination of the top or bottom row of
the matrix mirrors the fact that the number of players who can still choose between both
of their actions is reduced by one. Let us formally establish this relationship.

Lemma 4.3. Stepwise IDS and IDE in anonymous games with two actions are equivalent
under disjunctive truth-table reductions to ME and CE, respectively, restricted to instances
with m = n + 1.

We could have well allowed the simultaneous elimination of columns, and it is fairly
obvious that the resulting computational problems would be equivalent to IDS and IDE.
So why do we require columns to be eliminated one at a time? For one, solving ME and
CE as defined above turns out to be intricate enough to begin with, and we will ultimately
not be able to characterize their complexity. On the other hand, the additional structure
afforded by stepwise elimination will help us to gain additional insights, which we will then
use to prove the main result of this paper: NP-hardness of IDS and IDE in games with three
actions, both for stepwise and simultaneous eliminations. Finally, much of the complexity
of matrix elimination already appears to be present in the stepwise version, and any result
for that version can probably be extended to simultaneous eliminations as well.

Solving ME in general turns out to be surprisingly complicated. A natural restriction
can be obtained by requiring that all columns are increasing or decreasing in [1,m]. It is not
too hard to show that this makes the problem tractable irrespective of the dimensions of
the matrix, and we do so in the next section as a corollary of a slightly more general result.
Unfortunately, tractability of this restricted case does not tell us a lot about the complexity
of ME in general. The latter obviously becomes almost trivial if the order of elimination for
the columns is known, i.e., if we are given ¢ € [n]¥ and ask whether there exists r € {0, 1}*
such that (¢, r) is an elimination sequence. This observation directly implies membership in
NP. More interestingly, deciding whether there exists ¢ € [n]* for a given r € {0,1}* such
that (¢,r) is an elimination sequence is also tractable. The reason is the specific “life cycle”
of a column. Consider a matrix X, two intervals I,.J C [m] over the rows of X such that
J C I, and a column ¢ € [n] that is active in both I and J. Then, ¢ must also be active for
any interval K such that J C K C I, and ¢ must either be increasing for all three intervals,
or decreasing for all three intervals. Thus, r determines for every i € [k] a set of possible
values for ¢;, and leaves us with a matching problem in a bipartite graph with edges in
[n] x [k]. The latter can be solved in polynomial time. Closer inspection reveals that it can
in fact be decomposed into two independent matching problems on convex bipartite graphs,
for which the best known upper bound is NC? [11].

But what if nothing about ¢ and r is known? Despite the fact that we can only eliminate
the top or bottom row of the matrix in each step, this still amounts to an exponential number
of possible sequences. The best upper bound for matching in convex bipartite graphs means
that there currently is not much hope for constructing an algorithm that determines r
nondeterministically and computes a matching on the fly. We can nevertheless use the
above reasoning to recast the problem in the more general framework of matching on paths.
For this, we will respectively identify intervals and pairs of intervals over the rows of X
with vertices and edges of a directed graph G, and will then label each edge (I,J) by the
identifiers of the columns of X that take I to J. An elimination sequence of length k for X
then corresponds to a path of length & in G which starts at the vertex corresponding to the
interval [1,m], such that there exists a matching of size k between the edges on this path
and the columns of X. In particular, by fixing a particular path, we obtain the bipartite

114 F. BRANDT, F. FISCHER, AND M. HOLZER

matching problem described above. A more detailed discussion of this problem is the topic
of the following section. We first study the problem itself, and return to matrix elimination
toward the end of the section.

5. Matched Paths

The matching problem described in the previous section generalizes the well-studied
class of matching problems between two disjoint sets, or bipartite matching problems, by
requiring that the elements of one of the two sets form a certain sub-structure of a combina-
torial structure. Most interesting from a computational perspective are variants where the
underlying combinatorial structure can be identified in polynomial time, as it is the case
for paths or for spanning trees.

Definition 5.1 (matching, matched path). Let X be a set, X an alphabet, and o : X — 2*
a labeling function assigning sets of labels to elements of X. Then, a matching of o is a
total function f : X — X such that for all z,y € X, f(x) € o(z) and f(y) # f(z) if y # .

Let G = (V, E) be a directed graph, X an alphabet, and o : E — 2* a labeling function
for edges of G. Then, a matched path of length k in G is a sequence e, ea, ..., ex such that
for all ¢+ with 1 <4 < k, there exist u,v,w € V such that e; = (u,v) and e;41 = (v, w), and
the restriction of o to {e; : 1 <i <k} has a matching.

We call matched path (MP) the computational problem that asks, for an explicitly given
directed graph G with corresponding labeling function ¢ and an integer k, whether there
exists a matched path of length k£ in GG. Variants of this problem can be obtained by asking
for a matching that contains a certain set of labels, or a matched path between a particular
pair of vertices. These variants have an interesting interpretation in terms of sequencing
with resources and multi-dimensional constraints on the utilization of these resources: every
resource can be used in certain states corresponding to vertices of a directed graph, and
their use causes transitions between states. The goal then is to find a sequence that uses a
specific set or a certain number of resources, or one that reaches a certain state.

In the context of this paper, we are particularly interested in instances of MP corre-
sponding to instances of ME. We will see later that the graphs of such instances are layered
grid graphs (e.g., [1]), and that the labeling function satisfies a certain convexity property.
But let us look at the general problem for a bit longer. Greenlaw et al. [12] consider the
related labeled graph accessibility problem, which, given a directed graph G with a single
label attached to each edge, asks whether there exists a path such that the concatenation
of the labels along the path is a member of a context free language L given as part of the
input. This problem is P-complete in general and LOGCFL-complete if G is acyclic. A
matching, however, corresponds to a partial permutation of the members of the alphabet,
and the number of nonterminal symbols of any context-free grammar in Chomsky normal
form for the permutation language over X grows super-polynomially in the size of X [8].
It thus should not come as a surprise that the problem becomes harder when we ask for
a matching. Indeed, MP bears some resemblance to the NP-complete problem forbidden
pairs of finding a path in a directed or undirected graph if certain pairs of nodes or edges
may not be used together [9]. Instead of reducing forbidden pairs to MP, however, we show
NP-hardness of a restricted version of MP using a more complicated construction, on which
we will be able to build in Section 6. To formally state the result we need some terminology.

ON ITERATED DOMINANCE, MATRIX ELIMINATION, AND MATCHED PATHS 115

Let G = (V, E) be a directed graph with vertex set V = [m]y x [n]g. Call (u,v) € E a
south edge if for some i and j, u = (i,7) and v = (i + 1,7), and an east edge if for some 14
and j, v = (i,j) and v = (4,5 + 1). Then, G is called an m x n layered grid graph if it
contains only south and east edges. In labeled graphs, nonexistent edges and edges that are
mapped to the empty set by the labeling function are equivalent. We therefore concentrate
on complete layered grid graphs, i.e., those containing all south and all east edges.

Theorem 5.2. MP is NP-complete. Hardness holds even if G is a complete layered grid
graph, |o(e)| <1 for everye € E, and |[{e€ E: A€ o(e)}| <2 for every A € X.

The proof of this theorem starts by looking at a complete m x n grid graph G for
appropriate values of m and n, and at a labeling function o : [m]o U [n]o — X. The
latter can be interpreted as a labeling function for edges of G where a label either appears
on all the edges in a given row or column or on none of them. Labels in X' correspond
to variable occurrences in an instance of the NP-complete problem balanced one-in-three
3SAT [17], and o is defined in such a way that a path through the graph corresponds to
an assignment of truth values to variable occurrences. The overall structure of the graph
consist of two parts. In the first part, consistency of the overall assignment is ensured by
placing labels corresponding to different occurrences of the same variable on the same path.
In the second part, the same labels are used again to verify that all clauses are satisfied
by the assignment. To obtain Theorem 5.2 and get a better understanding of the minimal
requirements for hardness, the graph is then modified further. An important property of
the labeling function in this context seems to be that the same label can appear at least
twice in different parts of the graph.

The labeling function ¢ can also more generally be interpreted as belonging to a more
general graph where transitions can take place from any vertex to any other vertex to the
south and east of it, as long as the distance in columns between the two vertices is at most
the number of unused labels that appear on the row associated with the former vertex, and
the same condition holds for the distance in rows and the number of labels on the column.
Intuitively, this type of transition occurs when several dominated actions of a game are
eliminated simultaneously. It will play an important role in the proof of Theorem 6.1.

Let us now return to matrix elimination. In light of Theorem 5.2, an efficient algorithm
for ME would have to exploit additional structure of MP instances induced by instances
of ME. This structure is indeed quite restricted in that edges carrying a particular label A
satisfy a “directed” convexity condition: if A\ appears on two edges e = (u,v) and ¢ =
(u',v"), then X\ must appear on all south edges or on all east edges that lie on a path from u
to v/, but not both. In particular, if there is such a path, it cannot be that one of e and €’ is
a south edge and the other is an east edge. This fact is illustrated in Figure 2, which shows
the labeled graph for the ME instance of Figure 1, as well as a matched path corresponding
to an elimination sequence of maximum length.

Definition 5.3 (directed convexity). Let G = (V, E) be a complete layered grid graph. A
labeling function o : E — 2% for G is called directed convez if for every label A € X and for
every set of three edges e; = (u1,v1), e = (u2,v2), e3 = (us, v3), such that uy is reachable
from wj, ug is reachable from ug, and A € o(e1) No(es), it holds that e; and eg have the
same direction and A € o(ez) if and only if ey has the same direction as well.

It is not too hard to see that instances corresponding to ME have a directed convex
labeling function.

116 F. BRANDT, F. FISCHER, AND M. HOLZER

(0,0)@ {b’d}= {a’b’dﬁ.@ ta) 0(0,4)
e} I{c} b |
{b, d} {b,d} y {b,d}
@o———— o—>0
{acct [t Jf¢ B3
0 1]

Figure 2: Labeled graph for the matrix elimination instance of Figure 1. A matched path
and its matching are shown in bold.

Lemma 5.4. ME is polynomial time many-one reducible to MP restricted to layered grid
graphs and directed convex labeling functions.

Directed convexity of the labeling function means that we cannot show NP-hardness of
ME by a construction similar to the one used in the proof of Theorem 5.2. On the other
hand, it is not quite clear how the additional structure provided by directed convexity can
be exploited to obtain a polynomial-time algorithm for ME. The case m < n will probably
add additional complications. We therefore leave the complexity of ME as an open problem,
albeit quite an elegant one.

Here we consider a more special case of MP, which provides additional insights. In
the corresponding instances of ME, all columns are active at the beginning of the matrix
elimination process, or all columns are active in the interval of length one at the end of the
elimination process.

Definition 5.5 (backward and forward closure). Let G = (V, E) be a complete layered
grid graph. Let s be the unique vertex of G with in-degree zero, t the unique vertex with
outdegree zero. Then, a labeling function o : E — 2% for G is called backward closed if
{A€a(s,v):(s,v) € E} = X. Similarly, o is called forward closed if {\ € o(s,v) : (v,t) €
E}=X%.

It may not have gone unnoticed that these properties are closely related to closure prop-
erties found respectively in matroids and antimatroids. Together with directed convexity,
each of the closure properties further implies that each label appears only on east edges or
only on south edges. This allows us to consider two distinct matching problems, one for
east and one for south edges, and obtain a tractability result.

Theorem 5.6. Let G = (V, E) be a complete layered grid graph, o a labeling function for G
that is directed convexr and either backward or forward closed. Then, MP for G and o can
be solved in nondeterministic logarithmic space.

A generalization of both backward and forward closure can be obtained by considering
labeling functions that are connected in the sense that the edges carrying a particular

ON ITERATED DOMINANCE, MATRIX ELIMINATION, AND MATCHED PATHS 117

1
1 1 1 1
0 0 0 0 0 0
1 0 O 1 0 0 1 0 0 3
0 1 0 1 0 1 0 1 0 1 0/3)
2 3 2 3 2

Figure 3: Payoffs of a particular player in a self-anonymous game with n = 3 and k£ =
3. Initially all actions are pairwise undominated. If one of the other players
eliminates action 1, action 3 weakly dominates action 1. Action 1 then becomes
undominated if some player deletes action 3, and dominated by action 2 if one
more player deletes action 3, and some player deletes action 2.

label, together with all edges in the respective other direction, form a weakly connected
graph. This property introduces a dependence between the matching problems for the two
directions, and a very interesting question is whether Theorem 5.6 can be generalized to
this setting.

6. Self-Anonymous Games with a Constant Number of Actions

It is natural to ask whether iterated dominance for games with more than two actions
can still be interpreted in terms of eliminations in a matrix or matrix-like structure. Consider
a self-anonymous game with k actions. As before, the payoff of a particular player ¢ only
depends on the number of players, including the player itself, that play each of the different
actions. They can thus be written down as entries in a discrete simplex of dimension k£ — 1.
The elimination of the ¢th action by some player can then be interpreted as a cut along
the fth O-face of the simplex of every player.

The left hand side of Figure 3 shows the payoffs of a particular player in a self-
anonymous game with n = 3 and k£ = 3. Compared to matrix elimination as introduced
in Definition 4.1 and illustrated in Figure 1, we notice an interesting shift, which curiously
has nothing to do with the added possibility of dominance by mixed strategies. Rather,
a particular action a € A may now be eliminated by either one of several other actions
in A\ {a}, and the situations where a can be eliminated no longer form a convex set.

This already indicates that it might be possible to construct a layered grid graph with
corresponding labeling function for which the existence of a matched path is NP-hard to
decide, and which is induced by a self-anonymous game with three actions for each player.
To obtain our main result we however have to overcome one additional obstacle: when
dropping the assumption that actions are eliminated one at a time, the equivalence between
elimination sequences and labeled paths in a layered grid graph breaks down. We therefore
start from the construction used in the proof of Theorem 5.2, and use additional vertices
and labels to make it work for the more general type of transitions corresponding to the
simultaneous elimination of actions.

Theorem 6.1. IDS and IDE are NP-complete. Hardness holds even for self-anonymous
games with three actions and two different payoffs, and also applies to stepwise IDS and
IDE.

118

F. BRANDT, F. FISCHER, AND M. HOLZER

Acknowledgements

This material is based upon work supported by the Deutsche Forschungsgemeinschaft

under grants BR 2312/3-1 and BR 2312/3-2. We thank Hermann Gruber, Paul Harrenstein,
Tim Roughgarden, Inbal Talgam, and Michael Tautschnig for valuable discussions, and
apologize to Edith Hemaspaandra for spoiling the sunset at White Sands.

References

(1]

(5]
(6]

E. Allender, D. A. Mix Barrington, T. Chakraborty, S. Datta, and S. Roy. Grid graph reachability
problems. In Proceedings of the 21st Annual IEEE Conference on Computational Complezity (CCC),
pages 299-313, 2006.

K. R. Apt. Uniform proofs of order independence for various strategy elimination procedures. Contri-
butions to Theoretical Economics, 4(1), 2004.

A. Brandenburger, A. Friedenberg, and H. J. Keisler. Admissibility in games. Econometrica, 76(2):
307-352, 2008.

F. Brandt, M. Brill, F. Fischer, and P. Harrenstein. On the complexity of iterated weak dominance
in constant-sum games. In M. Mavronicolas and V. G. Papadopoulou, editors, Proceedings of the
2nd International Symposium on Algorithmic Game Theory (SAGT), volume 5814 of Lecture Notes in
Computer Science (LNCS), pages 287-298. Springer-Verlag, 2009.

F. Brandt, F. Fischer, and M. Holzer. Symmetries and the complexity of pure Nash equilibrium. Journal
of Computer and System Sciences, 75(3):163-177, 2009.

V. Conitzer and T. Sandholm. Complexity of (iterated) dominance. In Proceedings of the 6th ACM
Conference on Electronic Commerce (ACM-EC), pages 88-97. ACM Press, 2005.

C. Daskalakis and C. H. Papadimitriou. Discretized multinomial distributions and Nash equilibria in
anonymous games. In Proceedings of the 49th Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society Press, 2008.

K. Ellul, B. Krawetz, J. Shallit, and M.-W. Wang. Regular expressions: New results and open problems.
Journal of Automata, Languages and Combinatorics, 9(2-3):233-256, 2004.

H. N. Gabow, S. N. Maheshwari, and L. Osterweil. On two problems in the generation of program test
paths. IEEE Transactions on Software Engineering, 2(3):227-231, 1976.

I. Gilboa, E. Kalai, and E. Zemel. The complexity of eliminating dominated strategies. Mathematics
of Operations Research, 18(3):553-565, 1993.

F. Glover. Maximum matching in convex bipartite graphs. Naval Research Logistics Quarterly, 14:
313-316, 1967.

R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation. Oxford University Press,
1995.

D. E. Knuth, C. H. Papadimitriou, and J. N. Tsitsiklis. A note on strategy elimination in bimatrix
games. Operations Research Letters, 7:103—107, 1988.

H. Moulin. Dominance solvable voting schemes. Econometrica, 47:1337-1351, 1979.

R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1991.

C. H. Papadimitriou and T. Roughgarden. Computing equilibria in multi-player games. In Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 82-91. SIAM, 2005.
I. Parberry. On the computational complexity of optimal sorting network verification. In Proceedings of
the Conference on Parallel Architectures and Languages Europe (PARLE), volume 505 of Lecture Notes
in Computer Science (LNCS), pages 252-269. Springer-Verlag, 1991.

R. Parikh. On context-free languages. Journal of the ACM, 13(4):570-581, 1966.

L. Samuelson. Dominated strategies and common knowledge. Games and Economic Behavior, 4:284—
313, 1992.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 119-130
www.stacs-conf.org

AMS WITHOUT 4-WISE INDEPENDENCE ON PRODUCT DOMAINS

VLADIMIR BRAVERMAN * AND KAI-MIN CHUNG 2 AND ZHENMING LIU ®* AND MICHAEL
MITZENMACHER * AND RAFAIL OSTROVSKY?®

! University of California Los Angeles. Supported in part by NSF grants 0716835, 0716389, 0830803, 0916574
and Lockheed Martin Corporation.
E-mail addressvova@cs.ucla.edu
URL: http://www.cs.ucla.edu/ ~vova

2 Harvard School of Engineering and Applied Sciences. Supported by US-Israel BSF grant 2006060 and NSF
grant CNS-0831289.
E-mail addresskmchung@fas.harvard.edu
URL: http://people.seas.harvard.edu/ ~kmchung/

3 Harvard School of Engineering and Applied Sciences. Supported in part by NSF grant CNS-0721491. The
work was finished during an internship in Microsoft Research Asia.
E-mail addresszliu@fas.harvard.edu
URL: http://people.seas.harvard.edu/ ~zliu/

4 Harvard School of Engineering and Applied Sciences. Supported in part by NSF grant CNS-0721491 and
research grants from Yahoo!, Google, and Cisco.
E-mail addressmichaelm@eecs.harvard.edu
URL: http://www.eecs.harvard.edu/ ~michaelm/

5 University of California Los Angeles. Supported in part by IBM Faculty Award, Lockheed-Martin Corporation
Research Award, Xerox Innovation Group Award, the Okawa Foundation Award, Intel, Teradata, NSF grants
0716835, 0716389, 0830803, 0916574 and U.C. MICRO grant.

E-mail addressrafail@cs.ucla.edu
URL: http://www.cs.ucla.edu/ ~ rafail

ABSTRACT. In their seminal work, Alon, Matias, and Szegedy introduced several sketching tech-
niques, including showing thatwise independence is sufficient to obtain good approximations of
the second frequency moment. In this work, we show that their sketching technique can be extended
to product domaingn]® by using the product of-wise independent functions dn]. Our work
extends that of Indyk and McGregor, who showed the result fer2. Their primary motivation was

the problem of identifying correlations in data streams. In their model, a stream of paiyse [n]?

arrive, giving a joint distributior{ X, V'), and they find approximation algorithms for how close the
joint distribution is to the product of the marginal distributions under various metrics, which naturally
corresponds to how closE andY are to being independent. By using our technique, we obtain a
new result for the problem of approximating thedistance between the joint distribution and the
product of the marginal distributions fdrary vectors, instead of just pairs, in a single pass. Our
analysis gives a randomized algorithm that id at ¢) approximation (with probability — ¢) that
requires space logarithmic tnandm and proportional tG*.

1998 ACM Subiject Classificatiorf.2.1, G.3 .
Key words and phrasesData Streams, Randomized Algorithms, Streaming Algorithms, Independence, Sketches.
THIS PAPER IS A MERGE FROM THE WORK OF [7, 9, 10]

SYMPOSIUM

L‘d' ON THEORETICAL
g

ASPECTS
T OF COMPUTER ©

SCIENCE V. Braverman, K. Chung, Z. Liu, M. Mitzenmacher, and R. Ostrovsky

©@ Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2449

120 V. BRAVERMAN, K. CHUNG, Z. LIU, M. MITZENMACHER, AND R. O ROVSKY

1. Introduction

In their seminal work, Alon, Matias and Szegedy [4] preseémgebrated sketching techniques
and showed that-wise independence is sufficient to obtain good approxionatiof the second
frequency moment. Indyk and McGregor [12] make use of théarigue in their work introduce
the problem of measuring independence in the streaming Inddeere they give efficient algo-
rithms for approximating pairwise independence for gh@and/, norms. In their model, a stream
of pairs(i, j) € [n]? arrive, giving a joint distributior{ X, Y'), and the notion of approximating pair-
wise independence corresponds to approximating the distagtween the joint distribution and the
product of the marginal distributions for the pairs. IndyidaMcGregor state, as an explicit open
guestion in their paper, the problem of whether one can agtildwise independence drtuples
for anyk > 2. In particular, Indyk and McGregor show that, for thenorm, they can make use
of the product ofi-wise independent functions ¢n| in the sketching method of Alon, Matias, and
Szegedy. We extend their approach to show that on the prodacain[»]*, the sketching method
of Alon, Matias, and Szegedy works when using the producdt obpies of4-wise independent
functions on[n]. The cost is that the memory requirements of our approacw gsponentially
with k, proportionally to3".

Measuring independence akevise independence is a fundamental problem with many ap-
plications (see e.g., Lehmann [13]). Recently, this pnobleas also addressed in other models by,
among others, Alon, Andoni, Kaufman, Matulef, Rubinfeldiafie [1]; Batu, Fortnow, Fischer,
Kumar, Rubinfeld and White [5]; Goldreich and Ron [11]; Bakumar and Rubinfeld [6]; Alon,
Goldreich and Mansour [3]; and Rubinfeld and Servedio [Ts&ditional non-parametric methods
of testing independence over empirical data usually regsfrace complexity that is polynomial
to either the support size or input size. The scale of conteanp data sets often prohibits such
space complexity. It is therefore natural to ask whether Wiebe able to design algorithms to test
for independence in streaming model. Interestingly, thexgic problem appears not to have been
introduced until the work of Indyk and McGregor. While arglyaresults for the/; norm would be
stronger than for thé, norm in this setting, the problem fés norms is interesting in its own right.
The problem for th¢; norm has been recently resolved by Braverman and Ostrongi8}.i They
gave an(1 + e, §)-approximation algorithm that makes a single pass over & stabam and uses
polylogarithmic memory.

1.1. Our Results

In this paper we generalize the “sketching of sketches”lredundyk and McGregor. Our
specific theoretical contributions can be summarized /st

Main Theorem.

Let 7 € R("") be a vector with entries,, € R for p € [n]*. Lethy,... hy : [n] — {—1,1} be
independent copies of 4-wise independent hash functibas;ig, 7;(1),...,h;(n) € {—1,1} are
4-wise independent hash functions for each [k], andh(-), ..., hi(-) are mutually independent.

Define H (p) = [1;_, h(p;), and the sketch” = 3 .« tip H (p).
We prove that the sketch can be used to give an efficient approximation|fa}{2; our result
is stated formally in Theorem 4.2. Note thdtis not4-wise independent.

As a corollary, the main application of our main theorem igxtend the result of Indyk and
McGregor [12] to detect the dependencykafandom variables in streaming model.

AMS WITHOUT 4-WISE INDEPENDENCE ON PRODUCT DOMAINS 121

Corollary 1.1. For everye > 0 andd > 0, there exists a randomized algorithm that computes,
given a sequence, ..., an, of k-tuples, in one pass and usir@(3"¢ 2 log 3 (logm + logn))
memory bits, a number so that the probabilityy” deviates from thé, distance between product
and joint distribution by more than a factor ¢f + ¢) is at most.

1.2. Techniques and a Historical Remark

This paper is merge from [7, 9, 10], where the same result Wwasred with different proofs.
The proof of [10] generalizes the geometric approach of kralyd McGregor [12] with hew geo-
metric observations. The proofs of [7, 9] are more combii@tin nature. These papers offer new
insights, but due to the space limitation, we focus on thefpfimm [9] in this paper. Original
papers are available on line and are recommended to thesitgdrreader.

2. The Model
We provide the general underlying model. Here we mostlhfolthe notation of [7, 12].
Let S be a stream of sizew with elementsuy, . . ., a,,, wherea; = (a}, ..., aF) € [n]*. (When

we have a sequence of elements that are themselves vectodenete the sequence number by
a subscript and the vector entry by a superscript when betmeeded.) The streafdefines an
empirical distribution overn)* as follows: the frequency(w) of an element € [n]* is defined as
the number of times it appears) and the empirical distribution is

Prlw] = % for anyw € [n]*.

Sincew = (w1, ...,wy) is a vector of sizé;, we may also view the streaming data as defining
a joint distribution over the random variablés, ..., X, corresponding to the values in each di-
mension. (In the case &f= 2, we write the random variables a&andY rather thanX; and X5.)
There is a natural way of defining marginal distribution foe random variable;: for w; € [n],
let f;(w;) be the number of times; appears in théth coordinate of an element 6f, or

fz(wz) = Haj €S a§- = w,}‘ .
The empirical marginal distributioRr;[-] for theith coordinate is defined as

Priw;] = f"gj") for anyw; € [n].

Next let be the vector irR["" with 7, = Prlw] — [],<;<, Pr|wi] for all w € [n]*. Our goal

is to approximate the value o
2\ 2
= > [Prlwl—] Prilw]| | - (2.1)
weln]k 1<i<k

This represent thé, norm between the tensor of the marginal distributions aagidimt distribution,
which we would expect to be close to zero in the case wher&theere truly independent.

Finally, our algorithms will assume the availability of 4s@ independent hash functions. For

more on 4-wise independence, including efficient implerigos, see [2, 16]. For the purposes of
this paper, the following simple definition will suffice.

122 V. BRAVERMAN, K. CHUNG, Z. LIU, M. MITZENMACHER, AND R. O ROVSKY

Definition 2.1. (4-wise independenceé) family of hash functionsH with domain|n| and range
{—1,1} is 4-wise independerif for any distinct values, iz, i3,i4 € [n] and anyby, be, b3, by €
{-1, 1}, the following equality holds,

L [h(i1) = b1, h(iz) = b2, h(i3) = b3, h(i4) = bs] = 1/16.

Remark 2.2. In [12], the family of 4-wise independent hash functidtiss called 4-wise indepen-
dent random vectors. For consistencies within our papenvilalways view the objectH as a
hash function family.

3. The Algorithm and its Analysis for & = 2

We begin by reviewing the approximation algorithm and aisded proof for the/; norm given
in [12]. Reviewing this result will allow us to provide thecessary notation and frame the setting
for our extension to generdl. Moreover, in our proof, we find that a constant in Lemma 3.1
from [12] that we subsequently generalize appears incor(Because of this, our proof is slightly
different and more detailed than the original.) Althougk #rror is minor in the context of their
paper (it only affects the constant factor in the order matdt it becomes more important when
considering the proper generalization to largeand hence it is useful to correct here.

In the casé: = 2, we assume that the sequertag, a?), (a3, a3), ..., (al,,a2,) arrives an item
by an item. Eacl{a;,a?) (for 1 < i < m) is an element irin]2. The random variableX andY
over [n] can be expressed as follows:

Prfi,j] = Pr[X =iY =j] = |{{: (a7, af) = (i,)}/m
Prifi] = Pr[X =i = [t (ag,a7) = (i,)}|/m
Pro[j] = Pr[Y =] = [{e: (ag, af) = (5)}H/m.

We simplify the notation and uge = Pr[X =i, ¢; = Pr[Y =j],r;; = Pr[X =4,Y = j]. and
si; = Pr[X =i Pr[Y = j].

Indyk and McGregor’s algorithm proceeds in a similar faghio the streaming algorithm pre-
sented in [4]. Specifically let; = 72¢~2 andsy = 2log(1/d). The algorithm computes, random
variablesY, Y, ..., Y, and outputs their median. The output is the algorithm’snestie on the
norm ofv defined in Equation 2.1. Ead}) is the average of; random variables’;: 1 < j < sy,
whereY;; are independent, identically distributed random varigibgach of the variable® = D;;
can be computed from the algorithmic routine shown in Figure

2-D APPROXIMATION ((a},a}),..., (a},,a%))

1 Independently generate 4-wise independent random &@nsgii, ~o from [n] to {—1,1}.
2 forc—1tom

3 do Let thecth item (al, a?) = (4, 7)

4 tl<—t1+h1(’i)h2(j),t2<—t2+h1(i),t3<—t3+h2(j).

5 ReturnY = (tl/m — t2t3/m2)2.

Figure 1: The procedure for generating random variabfer & = 2.

By the end of the process 2-DPRROXIMATION, We havety /m = 3, i, ha(0)h2 (f)ri . t2/m =
Yicm M (D)pi, andtz/m = 3,11 ha(i)g;. Also, when a vector is iR, its indices can be
represented byii, i) € []?. In what follows, we will use a bold letter to represent theer of a

AMS WITHOUT 4-WISE INDEPENDENCE ON PRODUCT DOMAINS 123

high dimensional vector, e.g; = v;, ;,. The following Lemma shows that the expectatioryois
|lv||? and the variance df is at mos8(E[Y])? becausé[Y?] < 9E[Y]2.

Lemma 3.1. ([12]) Let hy, he be two independent instances of 4-wise independent hastidius

from [n] to {—1,1}. Letv € R" and H(i)(= H ((i1,i2)) = h1(4;) - ha(iz). Let us defing” =
2

(Ziew H(i)vi) . ThenE[Y] = Yicp2 @ and E[Y2] < 9(E[Y])?, which impliesVar[y] <

SE2[Y].

Proof. We haveE[Y] = E[(3; H)%:)?] = > WE[H?(1)] + X GoE[H (1) H(j)]. For all
i € [n]%, we knowh?(i) = 1. On the other handH (i)H(j) € {— 1 ,1}. The probability that
H@H() = 1is PrHWOH() = 1] = Prlhy(i)hi (1) ha(ia)ha(jz) = 1] = 1/16 + (3)1/16 +

1/16 = 1/2. The last equality holds is because(ii)h1(j1)ha(i2)h2(j2) = 1 is equivalent to
saying either all these variables are 1, or exactly two afe¢heriables are -1, or all these variables
are -1. Thereforeli[h(i)h(j)] = 0. ConsequentlyE[Y]—Ele[n (%)2.

Now we bound the variance. Recall thatr[Y] = E[Y?] — E[Y]?, we bound
EY? =) EHGOHGH®MGGRG < Y [EHGHG)H&)HWD)]|555G]-
i,j,k,1€[n]? i,j.k,1€[n]?

Also |E[H(i)H (j)H (k)H (1)]| € {0,1}. The quantityE[H (i)H (j)H (k)H (1)] # 0 if and only
if the following relation holds,

Vs € [2] : ((Zs =]s) A (ks = ls)) \ ((Zs = ks) A (]s = ls)) \4 ((Zs = ls) A (ks =]s)) . (31)
Denote the set of 4-tupled, j, k, 1) that satisfy the above relation Iy. We may also view each
4-tuple as an ordered set that consists of 4 poings]ih Consider the unique smallest axes-parallel
rectangle inn)? that contains a given 4-tuple i (i.e. contains the four ordered points). Note this
could either be a (degenerate) line segment or a (non-degeheectangle, as we discuss below.
Let M : D — {A,B,C, D} be the function that maps an element D to the smallest rectan-
gle ABCD defined bys. Since a rectangle can be uniquely determined by its didgowa may
write M : D — (x1, x2,¥1,%2), Wherex; < x2 € [n], 1 < @2 € [n] and the corresponding
rectangle is understood to be the one with diagdgt, »1), (x2, ¢2)}- Also, the inverse function
M~ (x1, x2, @1, p2) represents the pre-images(afi, x2, 1, v2) in D. (x1, X2, ©1, ¥2) is degen-
erate if eithery; = x2 Or o1 = 9, in Which case the rectangle (and its diagonals) correspmnd
the segment itself, oy; = x2 andyp; = 4, and the rectangle is just a single point.

Example 3.2. Leti = (1,2), j = (3,2), k = (1,5), andl = (3,5). The tuple is inD and
its corresponding bounding rectangle is a non-degeneeatangle. The functiod/ (i, j, k,1) =
(1,3,2,5).

Example 3.3. Leti = j = (1,4) andk = 1 = (3,7). The tuple is also irD and minimal bound-
ing rectangle formed by these points is an intefidl, 4), (3,7)}. The functionM (i, j, k,1) =
(1,3,4,7).

To start we consider the non-degenerate cases. Fik@anyz, ¢1, v2) With xy1 < x2 and¢; <
¢9. There are in tota@)2 = 36 tuples(i, j, k,1) in Dwith M (i, j, k,1) = (x1, X2, ©1, p2). Twenty-
four of these tuples correspond to the setting where nongjdt, 1 are equal, as there are twenty-
four permutations of the assignment of the labiefsk,1 to the four points. (This corresponds
to the first example). In this case the four points form a regita and we haveu;vjuiv| <
2 (Tyr 01 Uxo00)> + (Tyr,00Uxa,00)2). INtuitively, in these cases, we assign the “weight” of the

2
tuple to the diagonals.

124 V. BRAVERMAN, K. CHUNG, Z. LIU, M. MITZENMACHER, AND R. O ROVSKY

The remaining twelve tuples i/ ~!(x1, x2, ¢1, v2) correspond to intervals. (This corre-
sponds to the second example.) In this case twigjok, 1 correspond to one endpoint of the inter-
val, and the other two labels correspond to the other entlpbience we have either; vy vi| =
(Tyy 01 Uxa,p0) 2 OF |Ti050k 0| = (Tyyy .00 Uxa,01) @Nd there are six tuples for each case.

Therefore for any; < x2 € [n] andy; < ¢y € [n] we have:

Z |vivjuul| < 18((”)(1,901”)(2,502)2 + (UX1,90271)X2,501)2)'

(ke
M~ (x1,x2,91,92)

The analysis is similar for the degenerate cases, whereotieant 18 in the bound above is
now quite loose. When exactly one gf = 2 or ¢o; = 9 holds, the size oM ~1(x1, x2, ¢1, ©2)
is (5) = 6, and the resulting intervals correspond to vertical ordntal lines. When botly; = y»
andy; = o, then| M ~1(x1, x2, v1,¢2)| = 1. In sum, we have Following the same analysis as for
the non-degenerate cases, we find

E |03 0Tk 01| = E E oo
i,j,k,1eD X1<Xx2 (i.j.k1)€
1502 M~ (x1,x2,91.92)

< Z 18((6X1,<p16xz,s&2)2 + (6X1790277X2,<p1)2) + Z 6((77)(1,30177)(27902)2 + (Uxhcpzaxz,cpl)Q)

X1<Xx2 X1=X2
p1<p2 p1<p2
— — 2 — — 2 rd e 2
+ Z 6((Tx1,01 Uxzrpa)” + (Ux,00Uxa,01) ") + Z (Ux1,01 Uxa,02)
xX1<Xx2 X1=X2
Pp1=p2 P1=P2
<9) (#i)? = 9E[Y].
ie[n]2
j€n)?

Finally, we have}_; ; \ 1ep2 [E[H)HG)H (K)HD)]| - [6:050k0| < D255k 1ep | G050k 0] <
9E?[Y] andVar[Y] < 8E[Y]%

We emphasize the geometric interpretation of the abovef potollows. The goal is to bound
the variance by a constant times[Y] = D iiein? (%1v3)?, where the index set is the set of all possi-
ble lines in plangn)? (each line appears twice). We first show that[Y] < >ijklep [Uitivki],
where the 4-tuple index set corresponds to a set of rec&irgéenatural way. The main idea of [12]
is to use inequalities of the form®; ook vi| < 5((Uy, 01 0xa.0)> T (Uxi 00 Uxarer)?) tO assign the
“weight” of each4-tuple to the diagonals of the corresponding rectangle.alioe analysis shows
that18 copies of all lines are sufficient to accommodate all 4-tsipWhile similar inequalities could
also assign the weight offatuple to the vertical or horizontal edges of the corresfrondectangle,
using vertical or horizontal edges is problematic. Theaads that there ar€(n*) 4-tuples but
only O(n?) vertical or horizontal edges, so some lines would recgi(e) weight, requiring(n)
copies. This problem is already noted in [7].

Our bound here i&[Y?] < 9E?[Y], while in [12] the bound obtained B[Y?] < 3E*[Y].
There appears to have been an error in the derivation in Eifzhie intuition comes from the fol-

lowing example. We note thaD| is at Ieast(;*)2 : (g‘)2 = 9n* — 9n2. (This counts the number
of non-degeneraté-tuples.) Now if we set; = 1 forall 1 < i < n?, we haveE[Y?] > |D| =
Int —9n? ~ 9E2(D), which suggest¥ar[D] > 3E?|D]. Again, we emphasize this discrepancy is

of little importance to [12]; the point there is that the eente is bounded by a constant factor times

AMS WITHOUT 4-WISE INDEPENDENCE ON PRODUCT DOMAINS 125

the square of the expectation. It is here, where we are detiegato £ > 3, that the exact constant
factor is of some importance.

Given the bounds on the expectation and variance forlhg standard techniques yield a
bound on the performance of our algorithm.

Theorem 3.4. For everye > 0 andd > 0, there exists a randomized algorithm that computes, given
asequencéu},a?),. .., (a},, aZ), in one pass and using (e 2 log 3 (log m+log n)) memory bits,

my 'm

a numbeMed so that the probabilityMed deviates from|v||> by more thare is at most.

Proof. Recall the algorithm described in the beginning of SectioeBs; = 72¢ 2 andsy =
2log 6. We first computes, random variable®, Ys, . . ., Y, and outputs their mediavied, where
eachy; is the average of; random variable3’;: 1 < j < s; andYj; are independent, identically
distributed random variables computed by Figure 1. By ChRéy's inequality, we know that for
any fixedi,
. . Var(V;) (1/sp)Var[Y] (9¢2/72)|9])> 1

Pr(fy =19l 2 dfl) < = aEE - - awE s
Finally, by standard Chernoff bound arguments (see for @@@hapter 4 of [14]), the probability
that more tham, /2 of the variables’; deviate by more tha#|7|| from ||7]| is at mos®. In case this
does not happen, the medisfed supplies a good estimate to the required quartityas neededs

4. The General Casé > 3

Now let us move to the general case whiere 3. Recall that is a vector iR™" that maintains
certain statistics of a data stream, and we are interestesdtimating itsls norm ||7||. There is a
natural generalization for Indyk and McGregor's method #o& 2 to construct an estimator for
|T]]: let hy, ..., hg : [n] — {—1,1} be independent copies of 4-wise independent hash functions
(namely,h;(1),...,hi(n) € {—1,1} ared-wise independent hash functions for each [k], and
hi(),..., hi(-) are mutually independent.). Lét(p) = Hf;l h;(p;). The estimatod” is defined

2
asY = (Zpew ﬁpH(p))

Our goal is to show thaE[Y] = ||#|?> and Var[Y] is reasonably small so that a streaming
algorithm maintaining multiple independent instancesstingatorY” will be able to output an ap-
proximately correct estimation ¢jf/|| with high probability. Notice that whefi|| represents thé,
distance between the joint distribution and the tensordi@fmarginal distributions, the estimator
can be computed efficiently in a streaming model similarlyasoin Figure 1. We stress that our
result is applicable to a broader class/gfnorm estimation problems, as long as the vectto
be estimated has a corresponding efficiently computabimaistr Y in an appropriate streaming
model. Formally, we shall prove the following main lemmahe hext subsection.

Lemma 4.1. Let 7 be a vector inR™, andhy, ..., hy, : [n] — {—1,1} be independent copies of

2
4-wise independent hash functions. Deflfigp) = [F_, h;(p;), andY = (Zpe[n]k ﬁpH(p)) :
We havel[Y] = ||7]| and Var[Y] < 3F¥E[Y]2.

We remark that the bound on the variance in the above lemnighis tOne can verify that
when the vectot is a uniform vector (i.e., all entries af are the same), the variance Bfis
Q(3*E[Y]?). With the above lemma, the following main theorem mentiomethe introduction
immediately follows by a standard argument presented iptbef of Theorem 3.4 in the previous
section.

126 V. BRAVERMAN, K. CHUNG, Z. LIU, M. MITZENMACHER, AND R. O ROVSKY

Theorem 4.2. Let & be a vector inRl"" that maintains an arbitrary statistics in a data stream
of sizem, in which every item is fronm]*. Lete, 6 € (0,1) be real numbers. If there exists an
algorithm that maintains an instance &fusingO(u(n, m, k, €,6)) memory bits, then there exists
an algorithmA such that:
(1) With probability> 1 — § the algorithmA outputs a value betwed(l — ¢)||7]|?, (1 +¢)||7]?]
and
(2) the space complexity dfis O(3* % log $u(n,m, k, €, 5)).

As discussed above, an immediate corollary is the existefce one-pass space efficient
streaming algorithm to detect the dependenck cdndom variables ifi,-norm:

Corollary 4.3. For everye > 0 andd > 0, there exists a randomized algorithm that computes,
given a sequence, ..., an, of k-tuples, in one pass and usir@(3"¢ 2 log ;(logm + logn))
memory bits, a numbeY” so that the probabilityy” deviates from the square of tle distance
between product and joint distribution by more than a fadbf1 + ¢) is at mosb.

4.1. Analysis of the Sketcht”

This section is devoted to prove Lemma 4.1, where the mailhecigg is to bound the variance
of Y. The geometric approach of Indyk and McGregor [12] preskemeSection 3 for the case of
k = 2 can be extended to analyze the general case. However, wekrémaathe generalization
requires new ideas. In particular, instead of performiragcdl analysis” that maps each rectangle
to its diagonals, a more complex “global analysis” is neeidedigher dimensions to achieve the
desired bounds. The alternative proof we present hereegilsimilar ideas, but relies on a more
combinatorial rather than geometric approach.

For the expectation df’, we have

EY] = E Z Up - Uq - H(p) - H(q)
p,q€[n]k
= > %-EHEI+ Y G -U-E[H(p)H()
peE[n]* p#acn]®
= Y =P,
pE[n]*
where the last equality follows b§f (p)? = 1, andE [H (p)H (q)] = 0 for p # q.
Now, let us start to prov®ar[Y] < 3*E[Y]2. By definition, Var[Y] = E[(Y — E[Y])?], so we
need to understand the following random variable:

Err=Y -E[Y]= Y H(p)H(q)tply- (4.1)
p#q€([n]”

The random variabl&rr is a sum of terms indexed by paifg, q) € [n]* x [n]* with p # q. At
a very high level, our analysis consists of two steps. In ttet §itep, we group the terms itrr
properly and simplify the summation in each group. In theoedcstep, we expand the square of
the sum inVar[Y] = E[Err?] according to the groups and apply Cauchy-Schwartz indguhliee
times to bound the variance.

We shall now gradually introduce the necessary notatiorgfouping the terms irE'rr and

simplifying the summation. We remind the reader that vectarer the reals (e.gi, € R”k) are

AMS WITHOUT 4-WISE INDEPENDENCE ON PRODUCT DOMAINS 127

denoted byy, w, 7", and vectors over| are denoted by, q, a, b, ¢, d and referred amdex vectors
We useS C [k] to denote a subset ¢k|, and letS = [£]\S. We useHam(p, q) to denote the
Hamming distancef index vectorg, q € [n], i.e., the number of coordinates whesendq are
different.

Definition 4.4. (Projection and inverse projectior)et ¢ € [n]* be an index vector anfl C [k] a
subset. We define tharojection ofc to S, denoted bybs(c) € [n]!¥], to be the vectoe restricted
to the coordinates if. Also, leta € [n]°l andb € [n]*~!%| be index vectors. We define tieerse
projection ofa andb with respect toS, denoted byb ' (a, b) € [n]*, as the index vectat € [n]*

such thatbg(c) = aand®g(c) = b.

We next defingoair groupsand use the definition to group the termsinr.

Definition 4.5. (Pair Group)Let S C [k] be a subset of sizg5| = t. Letc,d € [n]' be a pair of
index vectors withHam(c,d) = ¢ (i.e., all coordinates of andd are distinct.). Thepair group
os(c,d) is the set of pairdp,q) € [n]* x [n]* such that (i) on coordinat§, ®s(p) = c and
®g(q) = d, and (i) on coordinaté, p andq are the same, i.e®g(p) = ®5(q). Namely,

os(e,d) = {(p.a) € [n]" x [n]*: (c = @5(p)) A (d = @s(a)) A (05(p) = Ps(@) } -
(4.2)

To give some intuition for the above definitions, we note flsateverya < [n]l°!, there is a
unique pair(p, q) € og(c,d) with a = ®5(p) = ®5(q), and sojos(c,d)| = n!°l. On the other
hand, for every paifp,q) € [n]¥ x [n]¥ with p # q, there is a unique non-emtgy C [k] such
thatp andq are distinct on exactly coordinates $h Therefore(p, q) belongs to exactly one pair
groupos(c,d). It follows that we can partition the summationfirr according to the pair groups:

Err=)_ > > H(p)H(qQ)Tpy. (4.3)
SC[k] c,de[n]!Sl, (p.a)e
S#0 Ham(c,d)=|S| os(c,d)

We next observe that for any pdis, q) € os(c,d), sincep andq agree on coordinates i,
the value of the produdt (p) H(q) depends only oi¥, c andd. More precisely,

H(p)H(a) = [] hi(pi)hi(a:) = (H hi(l?i)hi((h')> : (H hi(Pi)Z) = [[hiwi)hi(a:),
]

i€k €S ieS €S
which depends only o, ¢ andd since®s(p) = c and®s(q) = d. This motivates the definition
of projected hashing

Definition 4.6. (Projected hashing)et S = {s1, s2,...,s:} be a subset of], wheres; < s2 <
- < sj. Lete € [n]'. We define theprojected hashingis(c) = [Lict hsi(ci)-

We can now translate the random variaBler as follows:

Err=Y > Hs(c)Hg(d) Y Uiy | - (4.4)
SC[k] c,de[n]!s!, (p.a)€
S#D Ham(c,d)=|S| os(c,d)

Fix a pair grouprs(c, d), we next consider the suE(p,q)EUS(c,d) UpUq. Recall that for every
a € [n]ll, there is a unique paiip, q) € os(c,d) with a = ®s(p) = ®5(q). The sum can be

128 V. BRAVERMAN, K. CHUNG, Z. LIU, M. MITZENMACHER, AND R. O ROVSKY

viewed as the inner product of two vectors of dimensitfl with entries indexed by € [n]‘g . To
formalize this observation, we introduce the definitiorhgper-projectionas follows.

Definition 4.7. (Hyper-projection)Let ¥ € R, S C [k], andc € [n]!Sl. Thehyper-projection
Ys.(7) of & (with respect te andc) is a vectonii = Yg.(7) in R ™' such thatig = Up=1(ca)
foralld € [n]*~15l,

Using the above definition, we continue to rewrite fiier as

Err=Y" > Hg(e)Hs(d) - (Ys,e(D), Ys,a(D)). (4.5)
SCIk] c,de[n]‘s‘,
S#0 Ham(c,d)=|S|
Finally, we consider the produéfs(c)Hs(d) again and introduce the following definition to
further simplify theErr.

Definition 4.8. (Similarity and dominance)et ¢ be a positive integer.
e Two pairs of index vectoréc,d) € [n]t x [n]* and(a, b) € [n] x [n] aresimilar if for all
i € [t], the two setdc;,d; } and{a;, b;} are equal. We denote this @s b) ~ (c,d).
e Letc andd € [n]' be two index vectors. We sayis dominated by if ¢; < d; for all
i € [t]. We denote this as < d. Note thatc < d = Ham(c,d) = t.

Now, note that if(a,b) ~ (c,d), thenHg(a)Hs(b) = Hgs(c)Hg(d) since the value of the
productHg(c)Hg(d) depends on the valuds;, d;} only as a set. It is also not hard to see that
is an equivalence relation, and for every equivalent digsd)], there is a uniquéc,d) € [(a, b)]
with ¢ < d. Therefore, we can further rewrite tlie-r as

Err=7% HS(C)HS(d)'(> <Ts,a<6>,Ts,b<ﬁ>>). (4.6)

SC[k] c=<dg[n]!S! (a,b)~(c,d)
S#0D

We are ready to bound the terB{Err?] by expanding the square of the sum according to
Equation (4.6). We first show in Lemma 4.9 below that all tresstterms in the following expansion
vanish.

Var[Y] =) > E[Hs(c)Hs(d)Hs () Hg (d')]-
S,8'Clk] c<de[n]!S!
S,S’;ﬁ@ c/<d’€[n}‘5‘,

(> <Ts,a<ﬁ>,rs,b<v*>>)< > <ngaf<v>,rs¢b/<ﬁ>>>]. (4.7)
((a’,b’

a,b)~(c,d))~(c’,d’)

Lemma 4.9. Let.S and S’ be subsets dk], andc < d € []l° andc’ < d’ € [n]!¥' index vectors.
We haveF[Hgs(c)Hg(d)Hg (¢')Hg/(d')] € {0,1}. Furthermore, we have
E[Hs(c)Hs(d)He (/) He (d')] = 1iff (S = ') A (¢ = ¢) A (d = d).

Proof. Recall thathq, ..., hy are independent copies ¢fwise independent uniform random vari-
ables over{—1,1}. Namely, for everyi € [k], hi(1),...,h;(n) are 4-wise independent, and
hi(+),...,hi(-) are mutually independent. Observe that for everg [k|, there are at most
terms out ofh;(1),...,h;(n) appearing in the produdis(c)Hg(d)Hg/(c')Hg/(d’). It follows
that all distinct terms appearing fig(c)Hs(d)Hg/ (c')Hg/(d’) are mutually independent uniform

AMS WITHOUT 4-WISE INDEPENDENCE ON PRODUCT DOMAINS 129

random variable ovef—1,1}. Therefore, the expectation is either O, if there is sadn{g) that
appears an odd number of times, or 1, if/glj) appear an even number of times. By inspection,
the latter case happens if and only.§ = S’) A (c =) A (d = d'). m

By the above lemma, Equation (4.7) is simplified to

2
VarY]= > > (> <Ts,a<ﬁ>,rs,b<v*>>). (4.8)
(

S:SC[k c=de[n]!S! a,b)~(c,d)

We next apply the Cauchy-Schwartz inequality three timdsotind the above formula. Con-
sider a subse$ C [k] and a paic < d € [n]/®]. Note that there are precise’| pairs(a, b) such
that(a,b) ~ (c,d). Thus, by the Cauchy-Schwartz inequality:

2

> (Ysal®), Tsp(D)) < 280 3" ((Toa, Top))?

(a,b)E[TLNS‘ (a,b)e[n]\s\

(ab)~(c,d) (a,b)~(c,d)
< 2B N (Yga(@), Tsal®) - (Tsp, Tsp(@)).

(a,b)e[n]!*]

(a,b)~(c,d)

Notice that in the second inequality, we applied Cauchyw&etr in a component-wise manner.
Next, for a subsef C [k], we can apply the Cauchy-Schwartz inequality a third timnen(f the
third line to the fourth line) as follows:

2

Z Z (Ys.a(V), Ysp(?))
c<de(n]!S| (a,b)e[n]!¥
(a,b)~(c,d)
< 28y > (Tsal@), Toal@) - (Top(®), Ysp(@))
c<den]!Sl (a,b)e[n]s
(a,b)~(c,d)
= 28 N (T5e(@), Ys,e(D)) - (Ys,a(7), Ts.a(®))
c,deln]!s!
Ham(c,d)=|S|
< 2N (Te(B), Tse(D)) - (Ts,a(D), Ts.a(@))
c,de[n]!S!
2
= 23T (Tse(8), Tsel@) | -
ce[n]ls|

Finally, we note that by definition, we hal€ ;51 (Y s,c(V), Ts,c(?)) = ||#7]|?, which equals
to E[Y]. It follows that the variance in Equation (4.8) can be bowhbig
k

Varly] < > 28LEYP =EN]?) <’“> 2l = (3¢ — B[V,

SCIkL,S#0 i=1

130 V. BRAVERMAN, K. CHUNG, Z. LIU, M. MITZENMACHER, AND R. O ROVSKY

which finishes the proof of Lemma 4.1.

5. Conclusion

There remain several open questions left in this space. Lbawnds, particularly bounds that
depend non-trivially on the dimensidn would be useful. There may still be room for better algo-
rithms for testingk-wise independence in this manner using ¢h@orm. A natural generalization
would be to find a particularly efficient algorithm for tegtik-out-of-s-wise independence (other
than handling each set éfvariable separately). More generally, a question gived 2}, [to identify
random variables whose correlation exceeds some thresofatding to some measure, remains
widely open.

References

[1] Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin MatuleRonitt Rubinfeld, and Ning Xie. Testing k-wise and
almost k-wise independence. 8TOC '07: Proceedings of the Thirty-ninth Annual ACM Syrmpnn Theory of
Computing pages 496-505, New York, NY, USA, 2007. ACM.

[2] Noga Alon, Laszlb6 Babai, and Alon Itai. A fast and siraphndomized parallel algorithm for the maximal indepen-
dent set probleml. Algorithms 7(4):567-583, 1986.

[3] Noga Alon, Oded Goldreich, and Yishay Mansour. Almostise independence versus k-wise independeimie.
Process. Lett.88(3):107-110, 2003.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. The spacepterity of approximating the frequency momenis.
Comput. Syst. S¢ib8(1):137-147, 1999.

[5] T. Batu, L. Fortnow, E. Fischer, R. Kumar, R. RubinfelddaP. White. Testing random variables for independence
and identity. INFOCS '01: Proceedings of the 42nd IEEE symposium on Foumastbf Computer Sciencpage
442, Washington, DC, USA, 2001. IEEE Computer Society.

[6] Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinalgorithms for testing monotone and unimodal distri-
butions. INSTOC '04: Proceedings of the Thirty-sixth Annual ACM Syryposon Theory of Computingrages
381-390, New York, NY, USA, 2004. ACM.

[7] Vladimir Braverman and Rafail Ostrovsky. Measuring $ki#&e independence of streaming dat2oRR
abs/0806.4790v1, 2008.

[8] Vladimir Braverman and Rafail Ostrovsky. Measuringeépendence of datase@oRR abs/0903.0034, 2009.

[9] Vladimir Braverman and Rafail Ostrovsky. AMS withodt-wise independence on product domai@RR
abs/0806.4790v3, 2009.

[10] Kai-Min Chung, Zhenming Liu, and Michael Mitzenmach@&estingk-wise independence over streaming data.
Unpublished manuscript, available bttp://www.eecs.harvard.edu/ ~michaelm/postscripts/
sketchexttemp.pdf , 2009.

[11] Oded Goldreich and Dana Ron. On testing expansion iméed-degree graphs. Technical report, Electronic Col-
loquium on Computational Complexity, 2000.

[12] Piotr Indyk and Andrew McGregor. Declaring indepencieria the sketching of sketches.$®DA '08: Proceed-
ings of the nineteenth annual ACM-SIAM symposium on Disalgorithms pages 737-745, Philadelphia, PA,
USA, 2008. Society for Industrial and Applied Mathematics.

[13] E. L. Lehmann and SpringeFesting Statistical Hypotheses (Springer Texts in StegisSpringer, January 1997.

[14] Michael Mitzenmacher and Eli UpfaProbability and Computing: Randomized Algorithms and Riuibistic Anal-
ysis Cambridge University Press, New York, NY, USA, 2005.

[15] Ronitt Rubinfeld and Rocco A. Servedio. Testing momethigh-dimensional distributions. 8rOC '05: Proceed-
ings of the thirty-seventh annual ACM symposium on Theocpaiputing pages 147-156, New York, NY, USA,
2005. ACM.

[16] Mikkel Thorup and Yin Zhang. Tabulation based 4-unsadrhashing with applications to second moment estima-
tion. In SODA '04: Proceedings of the Fifteenth Annual ACM-SIAM Sysiym on Discrete Algorithmgages
615-624, Philadelphia, PA, USA, 2004. Society for Indastind Applied Mathematics.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 131-142
www.stacs-conf.org

QUANTUM ALGORITHMS FOR TESTING PROPERTIES OF
DISTRIBUTIONS

SERGEY BRAVYI! AND ARAM W. HARROW >3 AND AVINATAN HASSIDIM 3

! IBM Watson Research Center, Yorktown Heights, NY 10598 (USA).
2 Department of Mathematics, University of Bristol, Bristol, BS§ 1TW, U.K.

3 Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)

ABSTRACT. Suppose one has access to oracles generating samples from two unknown prob-
ability distributions p and ¢ on some N-element set. How many samples does one need to
test whether the two distributions are close or far from each other in the Li-norm? This
and related questions have been extensively studied during the last years in the field of
property testing. In the present paper we study quantum algorithms for testing properties
of distributions. It is shown that the Li-distance ||p—q||1 can be estimated with a constant
precision using only O(N Y 2) queries in the quantum settings, whereas classical computers
need Q(N'~°W) queries. We also describe quantum algorithms for testing Uniformity and
Orthogonality with query complexity O(N/3). The classical query complexity of these
problems is known to be Q(N/2). A quantum algorithm for testing Uniformity has been
recently independently discovered by Chakraborty et al [14].

1. Introduction

1.1. Problem statement and main results

Suppose one has access to a black box generating independent samples from an unknown
probability distribution p on some N-element set. If the number of available samples grows
linearly with N, one can use the standard Monte Carlo method to simultaneously estimate
the probability p; of every element ¢ = 1,..., N and thus obtain a good approximation to
the entire distribution p. On the other hand, many important questions that one usually
encounters in statistical analysis can be answered using only a sublinear number of samples.
For example, deciding whether p is close in the Li-norm to another distribution g requires
approximately N/2 samples if ¢ is known [8] and approximately N/3 samples if ¢ is also
specified by a black-box [9]. Another example is estimating the Shannon entropy H(p) =
— > ;pilogy pi. It was shown in [7, 21] that distinguishing whether H(p) < a or H(p) > b
requires approximately N b samples. Other examples include deciding whether p is close to
a monotone or a unimodal distribution [10], and deciding whether a pair of distributions

1998 ACM Subject Classification: G.3 Probabilistic algorithms.
Key words and phrases: quantum computing, property testing, sampling.

ASPECTS
) SQTFESEPUTER © S. Bravyi, AW. Harrow, and A. Hassidim
© Creative Commons Attribution-NoDerivs License

N SYMPOSIUM
mvr_ ON THEORETICAL
4

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2450

132 S. BRAVYI, AAW. HARROW, AND A. HASSIDIM

have disjoint supports [15]. These and other questions fall into the field of distribution
testing [6, 21] that studies how many samples one needs to decide whether an unknown
distribution has a certain property or is far from having this property. The purpose of the
present paper is to explore whether quantum computers are capable of solving distribution
testing problems more efficiently.

The black-box sampling model adopted in [8, 9, 7, 10, 6, 21] assumes that a tester is
presented with a list of samples drawn from an unknown distribution. What does it mean
to sample from an unknown distribution in the quantum settings? Let us start by casting
the black-box sampling model into a form that admits a quantum generalization. Suppose
p is an unknown distribution on an N-element set [N] = {1,..., N} and let S be some
specified integer. We shall assume that p is represented by an oracle O, : [S] — [N] such
that the probability p; of any element ¢ € [N] is proportional to the number of elements
in the pre-image of 4, that is, the number of inputs s € [S] such that O,(s) = i. In other
words, one can sample from p by querying the oracle O, on a random input s € [S] drawn
from the uniform distribution'. Note that a tester interacting with an oracle can potentially
be more powerful due to the possibility of making adaptive queries which could allow him
to learn the internal structure of the oracle as opposed to the black-box model. However,
the unstructured nature of the problem we consider means that this advantage is restricted
to avoiding repeated queries of the same position. This in turn becomes significant only
when Q(S) queries are made, which is not relevant in our setting where we have assumed
that S > N. We omit the precise formulation of this claim, which is stated as Lemma 6.1
of [13].

The oracle model admits a standard quantum generalization. Specifically, we shall
transform the oracle O, into a reversible form by keeping a copy of the input and writing
the output of O, into an ancillary register. A quantum oracle generating p is a unitary
operator whose action on basis vectors coincides with the reversible version of O, as we
will explain further in Section 2.

The present paper focuses on testing three particular properties of distributions, namely,
Statistical Difference, Orthogonality, and Uniformity. The corresponding property testing
problems are promise problems so that a tester is required to give a correct answer (with a
bounded error probability) only for those instances that satisfy the promise.

Problem 1.1 (Testing Uniformity).

Instance: Integers N, .S, precision € > 0. Access to an oracle generating a distribution p on
[N].

Promise: Either p is the uniform distribution or the Li-distance between p and the uniform
distribution is at least e.

Decide which one is the case.

Problem 1.2 (Testing Orthogonality).

Instance: Integers N, .S, precision € > 0. Access to oracles generating distributions p, g on
[NV].

Promise: Either p and ¢ are orthogonal (i.e. have disjoint support) or the Li-distance

between p and ¢ is at most 2 — €.
Decide which one is the case.

1Al‘chough in this model probabilities p; can only take values that are multiples of 1/5, choosing suffi-
ciently large S allows one to represent any distribution p with an arbitrarily small error.

QUANTUM ALGORITHMS FOR DISTRIBUTIONS 133

Problem 1.3 (Testing Statistical Difference).

Instance: Integers N, S, thresholds 0 < a < b < 2. Access to oracles generating distribu-
tions p and g on [N].

Promise: Either ||p —q|l1 <aor ||p—gq|1 > 0.

Decide which one is the case.

We assume that the precision ¢ is bounded from below by a fixed constant independent
of N, for instance, ¢ > 1/10. The same applies to the decision gap b—a for testing Statistical
Difference. Given a function f(N) we shall say that a property is testable in f(N) queries
if there exists a testing algorithm making at most f(/N) queries that gives a correct answer
with a sufficiently high probability (say 2/3) for any distributions p, g satisfying the promise
and for any oracles? specifying p and ¢. If a promise is violated, a tester can give an arbitrary
answer.

Our main results are the following theorems.

Theorem 1.4. Statistical Difference is testable on a quantum computer in O(Nl/Q) queries.
Theorem 1.5. Uniformity is testable on a quantum computer in O(N1/3) queries.
Theorem 1.6. Orthogonality is testable on a quantum computer in O(N1/3) queries.

It is known that classically testing Orthogonality and Uniformity requires Q(N'/2)
queries, see Sections 6.1 and 6.2, while Statistical Difference is not testable in O(N®) queries
for any a < 1, see [21]. Therefore quantum computers provide a polynomial speedup for
testing Uniformity, Orthogonality, and Statistical Difference in terms of query complexity.

Testing Orthogonality is closely related to the Collision Problem studied in [12]. In
Section 6.1 we describe a randomized reduction from the Collision Problem to testing Or-
thogonality. Using the quantum lower bound for the Collision Problem due to Aaronson
and Shi [2] we obtain the following result.

Theorem 1.7. Testing Orthogonality on a quantum computer requires (N 1/ 3) queries.

Quite recently Chakraborty, Fischer, Matsliah, and de Wolf [14] independently discov-
ered a quantum Uniformity testing algorithm with query complexity O(N'/3) and proved
a lower bound Q(N'/3) for testing Uniformity. These authors also presented a quantum al-
gorithm for testing whether an unknown distribution p coincides with a known distribution
q with query complexity O(N'/3).

1.2. Discussion and open problems

One motivation for studying distribution testing problems is that testing Orthogonality
and Statistical Difference are complete problems for the complexity class SZK (Statistical
Zero Knowledge). More precisely, the following problem known as Statistical Difference was
shown to be SZK-complete by Vadhan [18]:

Input: description of classical circuits Cy,, Cy that implement oracle functions O,, Oy :
[S] — [N] and a pair of real numbers 0 < a < b < 2 such that 2a < b.
Problem: Decide whether ||p — qll1 > b (yes-instance) or ||p — q||1 < a (no-instance)

The class SZK includes many interesting algebraic and graph theoretic problems such as
Discrete Logarithm, Graph Isomorphism, Graph Nonlsomorphism, Quadratic Residuosity,

2Note that according to this definition a tester needs at most f(IN) queries even in the limit S — oco.

134 S. BRAVYI, AAW. HARROW, AND A. HASSIDIM

and The Shortest Vector in Lattice, see [3] and references therein. Thus it is natural to ask
whether quantum computers provide a universal speedup for problems in SZK similar to the
square-root speedup for problems in NP provided by the Grover search algorithm. Assuming
that the circuits C), Cy have size poly(log (IV)), one can easily translate the testing algorithm
described in Section 3 to a quantum circuit of size O(v/N) solving Statistical Difference
problem for any constants a, b as above. On the other hand, any classical algorithm treating
the circuits C),, Cy as black boxes would need roughly N 1=0(1) queries, see [21], thus requiring
a circuit of size Q(N1—0M),

Note that the Statistical Difference problem with b = 2 is equivalent to testing Or-
thogonality. It can be solved classically in time O(N 1/ 2) using the classical collision finding
algorithm. Unfortunately, the circuit complexity of the quantum Orthogonality testing al-
gorithm described in Section 5 may be different from its query complexity since it uses a
quantum membership oracle for a randomly generated set. It is an open problem whether
Statistical Difference problem with b = 2 can be solved by a quantum circuit of size O(N1/3),
although with a suitably powerful model of quantum RAM, such membership queries can
be done in time polylog(N). A related question is that of space-time tradeoffs: our algo-
rithms generally require storing N9 classical bits and then querying them with quantum
algorithms that use poly(log(V) qubits. We suspect that this amount of storage cannot be
reduced without increasing the run-time, but do not have a proof of this conjecture. Similar
issues of quantum data structures for set membership and conjectured space-time tradeoffs
have arisen for the element distinctness problem|5, 16].

It is worth mentioning that all distribution properties studied in this paper are sym-
metric, that is, these properties are invariant under relabeling of elements in the underlying
set {1,...,N}. Testing symmetric properties of distributions is equivalent to testing prop-
erties of functions from [S] to [N] that are invariant under any permutations of inputs and
outputs of the function. It was recently shown by Aaronson and Ambainis that quantum
computers can provide at most polynomial speedup for testing properties of such symmetric
functions [1].

More interesting than the mere fact of polynomial speedups provided by Theorems 1.4,
1.5, 1.6 is the way in which our algorithms achieve it. Classically, the results of Ref. [21]
provide a simple characterization of an asymptotically optimal testing algorithm for any
symmetric property of a distribution (satisfying certain natural continuity conditions). By
contrast, our algorithms use a variety of different strategies both to query the oracles and
to analyze the results of those queries. These strategies appear not to be special cases
of the quantum walk framework which has been responsible for most of the polynomial
quantum speedups found to date [20, 19]. A major challenge for future research is to give
a quantum version of Ref. [21]’s Canonical Tester algorithm; in other words, we would
like to characterize optimal quantum algorithms for testing any symmetric property of a
distribution (or a pair of distributions).

Finally, let us remark that the algorithm for estimating statistical difference described in
Section 3 can be easily generalized to construct a quantum algorithm for estimating the von
Neumann entropy of a black-box distribution with query complexity O(N'/2). Using similar
ideas one can construct an O(N 1/ 2)-time algorithm for estimating the fidelity between two
black-box distributions (i.e. Zf\i 1 VDidi)-

The rest of the paper is organized as follows. Section 2 introduces necessary notations
and basic facts about the quantum counting algorithm by Brassard, Hoyer, Mosca, and

QUANTUM ALGORITHMS FOR DISTRIBUTIONS 135

Tapp [11]. The distribution testing algorithms described in the rest of the paper are actually
classical probabilistic algorithms using the quantum counting as a subroutine. Theorem 1.4
is proved in Section 3. Theorem 1.5 is proved in Section 4. Theorem 1.6 is proved in
Section 5. We discuss lower bounds for the above distribution testing problems in Section 6.

2. Preliminaries

Let Dy be the set of probability distributions p = (p1,...,pn) such that a probability
p; of any element ¢ € [N] is a rational number. Let us say that an oracle O : [S] — [N]
generates a distribution p € Dy iff for all ¢ € [N] the probability p; equals the fraction of
inputs s € [S] such that O(s) = 1,

pi=g#s€ (5] 0() =i},

Note that the identity of elements in the domain of an oracle O is irrelevant, so if O
generates p and o is any permutation on [S] then O oo also generates p. By definition, any
map O : [S] — [N] generates some distribution p € Dy.

For any oracle O : [S] — [N] we shall define a quantum oracle O by transforming O into
a reversible form and allowing it to accept coherent superpositions of queries. Specifically,
a quantum oracle Ois a unitary operator acting on a Hilbert space C° @ CN*1 equipped
with a standard basis {|s) ® |i)}, s € [S], i € {0} U [N] such that

Ols) ®[0) = |s) @ |O(s)) for all s € [S]. (2.1)

In other words, querying O on a basis vector |s) ®]0) one gets the output of the classical
oracle O(s) in the second register while the first register keeps a copy of s to maintain
unitarity. The action of O on a subspace in which the second register is orthogonal to the
state |0) can be arbitrary. We shall assume that a quantum tester can execute operators
O, Of and the controlled versions of them. Execution of any one of these operators counts
as one query.

Another apparently natural quantum model of a probability distribution is the ability
to prepare the state Efi 11/Pil1); i.e. the ability to “g-sample” from the distribution p, c.f.
Ref. [3]. However, this ability turns out to be far stronger than the oracle model we will use,
since it would allow us to solve Problems 1, 2 and 3 with O(1) ¢g-samples of the distributions p
and ¢. This follows from the well-known result that the observable swap = 2%:1 i, 7) (4, 1]

has expectation value |(p|g)|> when measured on the state (S2V VDilt) ® (Z;VZI VGli))-
Moreover, the ability to efficiently classically sample from a distribution p implies the ability
to efficiently construct a quantum oracle O corresponding to p, but does not generally
imply the ability to g-sample from p. Accordingly, in the rest of the paper we will consider
probability distributions to be encoded in quantum oracles.

We shall see that all testing problems posed in Section 1 can be reduced (via classical
randomized reductions) to the following problem.

Problem 2.1 (Probability Estimation).

Instance: Integers S, N, description of a subset A C [N], precision 4, error probability w,
and access to an oracle generating some distribution p € Dy. Let pa = >, 4 pi
be the total probability of A.

136 S. BRAVYI, AAW. HARROW, AND A. HASSIDIM

Task: Generate an estimate p4 satisfying
Pr{lpa —pal <6] > 1 -w. (2.2)

Our main technical tool will be the quantum counting algorithm by Brassard et al. [11].
Specifically, we shall use the following version of Theorem 12 from [11], whose precise form
is proved in [13].

Theorem 2.2. There exists a quantum algorithm EstProb(p, A, M) taking as input a
distribution p € Dy specified by an oracle, a subset A C [N], and an integer M. The
algorithm makes exactly M queries to the oracle generating p and outputs an estimate pa
such that

Pr{[pa —pal < 0] > 1 —w (2.3)
for all 6 >0 and 0 < w < 1/2 satisfying

M>NVPA g > (2.4)
wd wVo

Here ¢ = O(1) is some constant. If pg = 0 then pa = 0 with certainty.

(In Eq. 2.4, is is possible to replace 1/w with log(1/w), but we will not need this
improvement.)

3. Quantum algorithm for estimating statistical difference

In this section we sketch the proof of Theorem 1.4. Let p,q € Dy be unknown distribu-
tions specified by oracles. Define an auxiliary distribution r € Dy such that r; = (p; +¢;)/2
for all i € [N]. If we can sample i from both p and ¢ then by choosing randomly between
these two options we can also sample ¢ from r. Let x € [0,1] be a random variable which

takes value
|Di — i

T = —
Pi + qi
with probability r;. It is evident that

E@)= Y rai=g 3 Ioi—al =g lp—dlh (3.1)
i€[N] i€[N]

Thus in order to estimate the distance ||p — ¢||; it suffices to estimate the expectation
value E(x) which can be done using the standard Monte Carlo method. Since we have to
estimate E(x) only with a constant precision, it suffices to generate O(1) samples of x;.
Given a sample of i (which is easy to generate classically) we can estimate x; by calling the
probability estimation algorithm to get estimates of p; and ¢;. Based on this intuition, we
propose the following algorithm for estimating the distance ||p — q||.

QUANTUM ALGORITHMS FOR DISTRIBUTIONS 137

EstDist(p, g, ¢, 1)

Set n = 27/7¢?, M = /N /€074

Let i1,...,i, € [N] be a list of n independent samples drawn from 7.

Fora=1,...,n

{
Let p;, be an estimate of p;, obtained using EstProb(p, {i,}, M).
Let ¢;, be an estimate of g;, obtained using EstProb(q, {i,}, M).
Let z;, = |pi, — Gi,|/(Di, + G,) be our estimate of z;,.

Output & = (1/n) Y 0 &,

Here ¢ = O(1) is a constant whose precise value will not be important for us.

Lemma 3.1. The algorithm EstDist(p, q,€,7) outputs an estimate T satisfying
Prijz —E(z)| <e>1—m, (3.2)
where E(z) = (1/2)|[p — 4|1

The proof can be found in Ref. [13] and is omitted from this extended abstract. The
rough idea is that we define an element i to be bad iff max(p;,¢;) < 7/3nN. Then the total
probability that any element is bad is < 7/3. Conditioned on all the elements being good,
we can use Theorem 2.2 to show that we can estimate each p; and ¢; up to multiplicative
error 1 — o(1), and thereby can also get good estimates of z;.

Theorem 1.4 follows directly from Lemma 3.1 since EstDist(p, ¢, ¢, 7) makes O(v/N)
queries to the quantum oracles generating p and q.

4. Quantum algorithm for testing Uniformity

In this section we sketch the proof of Theorem 1.5. Let p € Dy be an unknown
distribution specified by an oracle. We are promised that either p is the uniform distribution,
or p is e-nonuniform, that is, the Li-distance between p and the uniform distribution is at
least €. The algorithm described below is based on the following simple observation. Choose
some integer M < N and let S = (i1,...,ip) be a list of M independent samples drawn
from the distribution p. Define a random variable pg = Zflw: 1 Di,- 1t coincides with the total
probability of all elements in S unless S contains a collision (that is, i, = i for some a # b).
The characteristic property of the uniform distribution is that pg = M/N with certainty.
On the other hand, we shall see that for any e-nonuniform distribution pg takes values
greater than (1 + §)M /N for some constant § > 0 depending on € with a non-negligible
probability. This observation suggests the following algorithm for testing uniformity (the
constants K and M below will be chosen later).

UTest(p, K, M,e¢)

o Let S = (i1,...,ip) be a list of M independent samples drawn from p.
Reject unless all elements in S are distinct.
Let pg = Zflw:l pi, be the total probability of elements in S.

Let ps be an estimate of pg obtained using EstProb(p, S, K).
If ps > (1 + €2/8)M/N then reject. Otherwise accept.

138 S. BRAVYI, AAW. HARROW, AND A. HASSIDIM

This procedure will need to be repeated several times to achieve the desired bound on the
error probability, as we will discuss below.
The main technical result needed is the following lemma.

Lemma 4.1. Let p € Dy be an e-nonuniform distribution. Let S = (i1,...,ip) be a list of
M independent samples drawn from p, where
1
32N\ 3
M= (=) . (4.1)
Let pg = 224:1 pi, and o = 28¢74. Then
M 1
Pr |:p5 > (14 €2/2)— } 5 &P (—a). (4.2)

Theorem 1.4 follows straightforwardly from the above lemma and Theorem 2.2.

Proof of Theorem 1.4. Let M be chosen as in Eq. (4.1) and
€01]\]'1/3
K = Cw,

where ¢ = O(1) is a constant to be chosen later. Consider the following algorithm:

Perform L = 4exp («) independent tests UTest(p, K, M, ¢). If at least
one of the tests outputs ‘reject’ then reject. Otherwise accept.

In the full version of this paper [13], we prove that this algorithm rejects any e-
nonuniform distribution with probability at least 2/3 and accepts the uniform distribution
with probability at least 2/3.

[

In the rest of this section we sketch the proof of Lemma 4.1 again deferring full proofs
o [13]. We shall adopt notations introduced in the statement of Lemma 4.1, that is, the
number of samples M is defined by

M? =32¢74N,
a= 2% 8 = (i1,...,ip) is a list of M independent samples drawn from p, and pg =
>aly Pia-
Definition 4.2. An element i € [N] is called big iff p; > 1/(2M?).
Define the set Big C [N] of all big elements and their total probability:

Big={i € [N] : p; > 1/(2M*)}, wpig= Y p;. (4.3)
1€Big

Also, observe that
E(ps) = M(plp) and (4.4a)

Var (ps) (sz (plp) > (4.4Db)

The proof of Lemma 4.1 is divided into three cases. We shall start by proving the
Lemma in the special case when p € Dy is e-nonuniform and has no big elements. Using

QUANTUM ALGORITHMS FOR DISTRIBUTIONS 139

(4.4), we find that the e-nonuniformity of p implies that E(ps) > (1 + ¢2) while the lack
of big elements implies that Var(pg) < (p|p)/2M. Then we use Chebyshev’s inequality to
argue that pg is likely to be larger than %(1 + €2/2). The second case is when the total
weight of big elements is < a/M, for o = €~4/256. In this case, our sampling is unlikely to
encounter any big elements and we can reduce the proof to the case when there are no big
elements. Finally, if the total weight of big elements is > a/M, then there is a substantial

probability that we sample > «/2 of them, which will result in pg being larger than 2M//N.

5. Quantum algorithm for testing orthogonality

Consider distributions p,q € Dy and let S = (i1,...,i5) be a list of M independent
samples drawn from p. Let A C [N] be the set of all elements that appear in S at least
once. Define the collision probability

qgA = Z ;-

€A
Note that g4 is a deterministic function of A, so the probability distribution of ¢4 is deter-
mined by the probability distribution of A (which depends on p and M). For a fixed A the
variable ¢4 is the probability that a sample drawn from ¢ belongs to A.
Clearly if p and ¢ are orthogonal then g4 = 0 with probability 1. On the other hand,
if p and ¢ have a constant overlap, we will show that g4 takes values of order M/N with
constant probability. Specifically, we shall prove the following lemma.

Lemma 5.1. Consider a pair of distributions p,q € Dy such that ||[p —q|l1 <2 —e€. Let ga

be a collision probability constructed using M samples. Suppose M > 29¢=2. Then

63M:| 1
>

SN| 23 (5.1)

Pr [CIA >

This Lemma suggests the following algorithm for testing orthogonality.

OTest(p,q, M, K)

e Let S ={iy,...,ip} be alist of M independent samples drawn from p.
Let A C [N] be the set of elements that appear in S at least once.

e Let ga = >, 4 ¢ be the total probability of elements in A with respect
to gq.

Let ¢4 be estimate of g4 obtained using EstProb(q, A, K).

If ga > ﬁT]\]/\II then reject. Otherwise accept.

We note that if g4 = 0 then §4 = 0 with certainty (see Theorem 2.2) and so OTest accepts
any pair of orthogonal distributions with certainty. Again the full proof of Theorem 1.6 is

left to [13]. The idea it to choose M = K = O (Nl/s) and apply OTest(p, q, M, K) to

€
distributions p,q € Dy. According to Lemma 5.1, if |[p—q|/1 < 2—e€ then g4 > M /(2! N)
with probability > 1/2. When this holds, the algorithm rejects whenever [Ga — qa| < %
since this implies G4 > qa/2 > €M /(2'2N). By Theorem 2.2, our choice of K is sufficient
to achieve this with Q(1) probability.

It remains only to prove Lemma 5.1.

140 S. BRAVYI, AAW. HARROW, AND A. HASSIDIM

Proof. Begin by defining two sets of indices:

B={i:qi < ipl} and C={i:p < 3—€2N71} (5.2)
Let B¢, C° denote the complements of B and C' respectively. We will prove that
Pr [\A nBeNCe| > 1—€6M] >1/2, (5.3)

which will imply the Lemma since
2

€ €
@M= D, =g Y iz gmylANBINCe

i€ANBeNCe 1€ANBeNCe
This is achieved by using a Chernoff-Hoeffding bound to show that |A N B| and |ANC are
each unlikely to be much larger than their expectations. The details are in [13]. [

6. Lower bounds

6.1. Reduction from the Collision Problem to testing Orthogonality

One can get lower bounds on the query complexity of testing Orthogonality using the
lower bounds for the Collision problem [2]. Indeed, let H : [N] — [N] be an oracle
function such that either H is one-to-one (yes-instance) or H is two-to-one (no-instance).
The Collision Problem is to decide which one is the case. It was shown by Refs. [2, 4, 17]
that the quantum query complexity of the Collision problem is Q(N'/3). Below we show
that the Collision problem can be reduced to testing Orthogonality. As a result, testing
Orthogonality will be shown to require Q(N'/2) queries classically and Q(N1/3) queries
quantumly:.

Indeed, choose a random permutation o : [N] — [N] and define functions O, Oy :
[N/2] — [3N/2] by restricting the composition H oo to the subsets of odd and even integers
respectively:

Op(s) = H(o(25 = 1)), Oq(s) = H(o(2s))
where s € [N/2].

For any yes-instance (i.e. H is one-to-one), the distributions p, g € D3y generated by
O, and O, are uniform distributions on some pair of disjoint subsets of [3N/2]; that is, p
and g are orthogonal.

We need to show that for any no-instance (H is two-to-one) the distance ||p — ¢||1 takes

values smaller than 2 — € with a sufficiently high probability for some constant e. This is
established by the following Lemma, whose proof can be found in [13].

Lemma 6.1. Let H : [N] — [3N/2] be any two-to-one function. Let o : [N] — [N] be a

random permutation drawn from the uniform distribution. Then

7 1
P - < —| > —.
cfip-at < 7] = 5

QUANTUM ALGORITHMS FOR DISTRIBUTIONS 141

6.2. Classical lower bound for testing Uniformity

In this section we prove that classically testing Uniformity requires Q(N'/2). A proof
uses the machinery developed by Valiant in [21]. Valiant’s techniques apply to testing
symmetric properties of distributions, that is, properties that are invariant under relabeling
of elements in the domain of a distribution. Clearly, Uniformity is a symmetric property.

We shall need two technical tools from [21], namely, the Positive-Negative Distance
lemma and Wishful Thinking theorem (see Theorem 4 and Lemma 3 in [21]). Let us
start from introducing some notations. Let p € Dy be an unknown distribution and S =
(i1,...,ip) be a list of M independent samples drawn from p. We shall say that S has a
collision of order r iff some element i € [N] appears in S exactly r times. Let ¢, be the
total number of collisions of order r, where r > 1. A sequence of integers {c;, },>1 is called
a fingerprint of S. Define a probability distribution Déw on a set of fingerprints as follows:
(1) draw k from the Poisson distribution Poi(k) = e~ M¥/k!. (2) Generate a list S of k
independent samples drawn from p. (3) Output a fingerprint of S.

An important observation made in [21] is that a fingerprint contains all relevant in-
formation about a sample list as far as testing symmetric properties is concerned. Thus
without loss of generality, a testing algorithm has to make its decision by looking only on a
fingerprint of a sample list. Applying Positive-Negative Distance lemma from [21] to testing
Uniformity we get the following result.

Lemma 6.2 ([21]). Let u be the uniform distribution on [N] and p € Dy be any distribution

such that ||p — ully > 1. If for some integer M
1
1D~ DY < (6.1)

then Uniformity is not testable in M samples.

The second technical tool is a usable upper bound on the distance between the distri-
butions of fingerprints. For any integer k define an k-th moment of p as my(p) = Ef\i L PE.
Clearly mg(u) = N'=F which is the smallest possible value of a k-th moment for distribu-
tions on [IV]. Applying Wishful Thinking theorem from [21] to testing Uniformity we get
the following result (again proved in [13]).

Lemma 6.3 ([21]). Let p € Dy be any distribution such that ||p|lcc < 6/M for some ¢ > 0.
Then

_Nl—k
1Dy = Dyl §40<5+10§:M’C my(p)

= k2114 MFmg(p)

Corollary 6.4. Uniformity is not testable classically in 3271 N2 queries.

(6.2)

Acknowledgments

We are grateful to Ronald de Wolf for numerous comments that helped to improve the
paper. We would like to thank Sourav Chakraborty for informing us about the results
n [14]. S.B. thanks CWI for hospitality while this work was being done and was funded by
the DARPA QUEST program under contract no. HR0011-09-C-0047. A.W.H. is grateful
to IBM and MIT for their hospitality while this work was being done, and is funded by the
U.K. EPRSC grant “QIP IRC” and the QAP project (contract IST-2005-15848). A.H. was
supported by an xQIT Keck fellowship.

142

S. BRAVYI, AAW. HARROW, AND A. HASSIDIM

References

(1]
2]

3]

S. Aaronson and A. Ambainis. The need of structure in quantum speedups, 2009. arXiv:0911.0996.

S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness problems.
J. ACM, 51(4):595-605, 2004. arXiv:quant-ph/0112086.

D. Aharonov and A. Ta-Shma. Adiabatic quantum state generation and statistical zero knowledge. In
Proceedings of the 85th Annual ACM Symposium on Theory of computing (STOC), pages 20-29. ACM
Press New York, NY, USA, 2003. arXiv:quant-ph/0301023.

A. Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and element
distinctness with small range. Theory of Computing, 1:37-46, 2005. arXiv:quant-ph/0305179.

A. Ambainis. Quantum walk algorithm for element distinctness. SIAM J. Comput., 37(1):210-239, 2007.
arXiv:quant-ph/0311001.

T. Batu. Testing properties of distributions. PhD thesis, Cornell University, 2001.

T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld. The complexity of approximating the entropy.
SIAM J. Comput., 35(1):132-150, 2005.

T. Batu, L. Fortnow, E. Fischer, R. Kumar, R. Rubinfeld, and P. White. Testing random variables for
independence and identity. In FOCS ’01: Proceedings of the 42nd IEEE symposium on Foundations of
Computer Science, page 442, Washington, DC, USA, 2001. IEEE Computer Society.

T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that distributions are close. In
FOCS ’00: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, page 259,
Washington, DC, USA, 2000. IEEE Computer Society.

T. Batu, R. Kumar, and R. Rubinfeld. Sublinear algorithms for testing monotone and unimodal distri-
butions. In STOC ’04: Proceedings of the thirty-sizth annual ACM symposium on Theory of computing,
pages 381-390, New York, NY, USA, 2004. ACM.

G. Brassard, P. Hgyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation. In
S. J. Lomonaco, editor, Quantum Computation & Information, volume 305 of Contemporary Mathe-
matics Series Millenium Volume, pages 53-74. AMS, 2002. arXiv:quant-ph/0005055.

G. Brassard, P. Hgyer, and A. Tapp. Quantum algorithm for the collision problem. ACM SIGACT
News, 28:14-19, 1997. arXiv:quant-ph/9705002.

S. Bravyi, A. Harrow, and A. Hassidim. Quantum algorithms for testing properties of distributions,
2009. arXiv:0907.3920.

S. Chakraborty, E. Fischer, A. Matsliah, , and R. de Wolf. Quantum Queries for Testing Distributions,
2009. unpublished.

O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs. In STOC ’98:
Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 289-298, New York,
NY, USA, 1998. ACM.

L. Grover and T. Rudolph. How significant are the known collision and element distinctness quantum
algorithms? Quant. Inf. & Comp., 4:201-206, 2004. arXiv:quant-ph/0309123.

S. Kutin. A quantum lower bound for the collision problem. Theory of Computing, 1:29-36, 2005.
arXiv:quant-ph/0304162.

A. Sahai and S. Vadhan. A complete promise problem for statistical zero-knowledge. In FOCS ’97:
Proceedings of the 38th Annual Symposium on Foundations of Computer Science, page 448, Washington,
DC, USA, 1997. IEEE Computer Society.

M. Santha. Quantum walk based search algorithms. In TAMC, volume 4978 of Lecture Notes in Com-
puter Science, pages 31-46. Springer, 2008. arXiv:0808.0059.

M. Szegedy. Quantum Speed-Up of Markov-Chain-Based Algorithms. In FOCS ’04: Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science, pages 32-41, Washington, DC,
USA, 2004. IEEE Computer Society.

P. Valiant. Testing symmetric properties of distributions. In STOC ’08: Proceedings of the 40th annual
ACM symposium on Theory of computing, pages 383-392, New York, NY, USA, 2008. ACM.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 143-154
www.stacs-conf.org

OPTIMAL QUERY COMPLEXITY FOR RECONSTRUCTING
HYPERGRAPHS

NADER H. BSHOUTY ! AND HANNA MAZZAWI 2

! Technion, Israel
E-mail address: bshouty@cs.technion.ac.il

2 Technion, Israel
FE-mail address: hanna@cs.technion.ac.il

ABSTRACT. In this paper we consider the problem of reconstructing a hidden weighted
hypergraph of constant rank using additive queries. We prove the following: Let G be
a weighted hidden hypergraph of constant rank with n vertices and m hyperedges. For
any m there exists a non-adaptive algorithm that finds the edges of the graph and their

weights using
0 (mlog n)
logm

additive queries. This solves the open problem in [S. Choi, J. H. Kim. Optimal Query
Complexity Bounds for Finding Graphs. STOC, 749-758, 2008].

When the weights of the hypergraph are integers that are less than O(poly(n®/m))
where d is the rank of the hypergraph (and therefore for unweighted hypergraphs) there
exists a non-adaptive algorithm that finds the edges of the graph and their weights using

d
mlog %
o) <7g m) .
logm
additive queries.

Using the information theoretic bound the above query complexities are tight.

1. Introduction

In this paper we consider the following problem of reconstructing weighted hypergraphs
of constant rank' (the maximal size of a hyperedge) using additive queries: Let G = (V, E, w)
be a weighted hidden hypergraph where E C 2", |e| is constant for all e € E, w : E — R,
and n is the number of vertices in V. Denote by m the size of . Suppose that the set
of vertices V' is known and the set of edges F is unknown. Given a set of vertices S C V,
an additive query, Qg(.S), returns the sum of weights in the sub-hypergraph induced by S.
That is,

e€cEN2S
Our goal is to exactly reconstruct the set of edges using additive queries.

ISometimes called dimension.

ASPECTS

S1 S%iaggmﬁm © N.H. Bshouty and H. Mazzawi
@ Creative Commons Attribution-NoDerivs License

K SYMPOSIUM
mvr_ ON THEORETICAL
)

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2496

144 N. H. BSHOUTY AND H. MAZZAWI

Tight Upper | Adaptive | Non-adaptive
Bound Poly. time | Poly. time

Loops rank=1

Unweighted Loops [13, 17, 14, 6] 8] OPEN
Bounded Weighted Loops [11] OPEN OPEN
Unbounded Weighted Loops [10] OPENT OPENS
Graph rank= 2

Unweighted Graph [11] [22] OPEN
Bounded Weighted Graph (11, 9] OPEN OPEN
Unbounded Weighted Graph [10] OPENT OPEN
Hypergraph rank> 2

Unweighted HyperGraph Ours OPEN OPEN
Unbounded Weighted Hypergraph Ours OPENT OPEN

Figure 1: Results for weighted and un-weighted hypergraphs with optimal query complexity.
A non-optimal adaptive query complexity algorithm for Hypergraph can be found
in [12]. ¥ A non-optimal non-adaptive query complexity algorithms can be found
in [20] and the references within it.

One can distinguish between two types of algorithms to solve the problem. Adaptive
algorithms are algorithms that take into account outcomes of previous queries while non-
adaptive algorithms make all queries in advance, before any answer is known. In this paper,
we consider non-adaptive algorithms for the problem. Our concern is the query complexity,
that is, the number of queries needed to be asked in order to reconstruct the hypergraph.

The hypergraph reconstructing problem has known a significant progress in the past
decade. For unweighted hypergraph of rank d the information theoretic lower bound gives

for the query complexity for any adaptive algorithm for this problem.

Many independent results [13, 17, 14, 6]2 have proved a tight upper bound for hy-
pergraph of rank 1, i.e., loops. A tight upper bound was proved for some subclasses of
unweighted hypergraphs of rank two, i,e., graphs (Hamiltonian graphs, matching, stars and
cliques etc.) [19, 18, 17, 7], unweighted graphs with Q(dn) edges where the degree of each
vertex is bounded by d [17], graphs with Q(n?) edges [17] and then the former was extended
to d-degenerate unweighted graphs with 2(dn) edges [19], i.e., graphs that their edges can
be changed to directed edges where the out-degree of each vertex is bounded by d. A re-
cent paper by Choi and Kim, [11], gave a tight upper bound for all unweighted graphs. In
this paper we give a tight upper bound for all unweighted hypergraphs of constant rank.
Our bound is tight even for weighted hypergraphs with integer weights |w| = poly(n?/m)
where d is the rank of the hypergraph.

For weighted hypergraph of constant rank with unbounded weights the information

theoretic lower bound gives
~ <m log n)
logm

2In [13] Djackov mentions this bound without a proof.

OPTIMAL QUERY COMPLEXITY FOR RECONSTRUCTING HYPERGRAPHS 145

In [11], Choi and Kim prove a tight upper bound for loops (hypergraph of rank 1). For
weighted graphs (hypergraph of rank 2) Choi and Kim, [11], proved the following: If
m > (logn)® for sufficiently large «, then, there exists a non-adaptive algorithm for re-
constructing a weighted graph where the weights are real numbers bounded between n™¢
and n’ for any positive constants a and b using

O (m log n>
logm
queries.

In [9], Bshouty and Mazzawi close the gap in m and proved that for any weighted graph
where the weights are bounded between n~? and n® for any positive constants a and b and
any m there exists a non-adaptive algorithm that reconstructs the hidden graph using

0 (m log n>
logm
queries. Then in [10] they extended the result to any weighted graph with any unbounded
weights.
In this paper extend all the above results to any hypergraph of constant rank, i.e., the
edges of the graph has constant size. This solves the open problems in [11, 9, 10].

The paper is organized as follows: In Section 2, we present notation, basic tools and
some background. In Section 3, we prove the main result.

2. Preliminaries

In this section we present some background, basic tools and notation.

For an integer r let [r] be the set {1,2,...,r}. For S C [r] we define 2° € {0,1}" where
x? = 1 if and only if i € S. The inverse operation is S* = {i | z; = 1}. We say that
z1,...,2q € {0,1}" are pairwise disjoint if for every i # j, we have x; * x; = 0 where * is
component-wise product of two vectors. For a prime p and integers a and b we write a =, b
for a = b mod p. We will also allow p = co. In this case a and b can be any real numbers

and a =, b will mean ¢ = b as real numbers.

2.1. d-Dimensional Matrices

A d-dimensional matriz A of size ny x --- xng over a field F is a map A : Hle [n;] — F.
We denote by F1**"d the set of all d-dimensional matrices A of size ni x -+ x ng. We
write Aih---ﬂd for A(’il, . ,id).

The zero map is denoted by 0"1**"d. The matrix B = (A;, iy....iy)irel1 io€lo,....iqc1,
where I; C [n;], is the |[I1]| x -+ x |I4| matrix where Bj, __j;, = A, ¢, and ¢; is the j;jth
smallest number in ;. When I; = [n;] we just write j and when I; = {{} we just write
j = {. For example, (Ail,igvm,id)il,iQZe,i3€12,,,,,ideld = (Az‘l,ig,...,z‘d)ile[m},ize{z},igelz,...,ideld-

When nqy = no = -+ = ng = n then we denote F"1* " *"a by F*a® and (m1* >4
by 0*a™,

We say that the entry A;, 4, . i, is of dimension r if [{iy,...,i4}| = r. For d-dimensional
matrix A we denote by wt(A) the number of points in Hle [n;] that are mapped to non-zero
elements in F. We denote by wt,(A) the number of points in H?Zl[ni] of dimension r that
are mapped to non-zero elements in F. Therefore, wt(A) = wt1(A) +wta(A) +- - - +wty(A).

146 N. H. BSHOUTY AND H. MAZZAWI

We denote by Ag,, the set of d-dimensional matrices A € F*4" where wty(A) < m and
A7, the set of d-dimensional matrices A € F*4" where 1 < wtg(A) < m.
For d-dimensional matrix A of size ni X -+ X ng and z; € F™ we define

ni nd
A(zy,...,2q) = E E Ao, igTliy T Tdiy -

=1 ig=1

The vector v = A(-, xa,...,2q) is nj-dimensional vector that its ith entry is

n2 nd
E : o E : Abjin,..ig2in ** Ldig-

ia=1 ig=1

For a set of d-dimensional matrices B, a set S C ({0,1}")? is called a zero test set for B if
for every A € B, A # 0, there is z € S such that A(x) # 0.

A d-dimensional matrix is called symmetric if for every i = (iy,...,iq) € [n]? and any
permutation ¢ on [d], we have A; = Ag;, where ¢i = (ig(1),---,%g(q)). Notice that for a
symmetric d-dimensional matrix A € F*4" z; € {0,1}" and any permutation ¢ on [d], we
have A(l‘l, e ,xd) = A($¢(1), e ,x¢(d)).

We will be interested mainly in the fields F = R the field of real numbers and F = Z,,
the field of integers modulo p and in matrices of constant d = O(1) dimension. Also p > d!.
Although it seems that we are restricting the parameters, the final result has no restriction
on the parameters except for d = O(1). We will also abuse the notations Z, and =, and
allow p = oo (so in this paper oo is also prime number). In that case Zs = R and = is
equality in the filed of real numbers.

2.2. Hypergraph

A hypergraph G is a pair G = (V, E) where V = [n] is a set of elements, called nodes
or vertices, and E is a set of non-empty subsets of 2 called hyperedges or edges. The rank
r(G) of a hypergraph G is the maximum cardinality of any of the edges in the hypergraph.
A hypergraph is called d-uniform if all of its edges are of size d.

A weighted hypergraph G = (V, E,w) over Z, is a hypergraph (V,E) with a weight
function w : E — Z,. For two weighted hypergraph G = (V, E1,w1) and Gy = (V, Eg, ws)
we define the weighted hypergraph G; — G2 = (V, E,w) where E = {e € E1 U Es | wi(e) #
wa(e)}, and for every e € E, w(e) = wi(e) — wa(e). Obviously, G; = G3 if and only if
G1 — G9 is an independent set, i.e., E = ().

We denote by Gy the set of all weighted hypergraphs over Z, of rank at most d, Gg,
the set of all weighted hypergraphs over Z, of rank at most d and at most m edges and
ggﬁm the set of all weighted hypergraphs over Z, of rank d and at most m edges.

Let w* : 2V — Z,, be w extended to all possible edges where for e € E, w*(e) = w(e)
and for e ¢ E, w*(e) = 0.

An adjacency d-dimensional matrix of a weighted hypergraph G is a d-dimensional ma-
trix AY where d > r(G) such that for every set e = {i,i2,...,i,} of size at most d we have

Ac?(jl,...,jd) =, w*(e)/N(d,) for all ji,...,jq such that {ji,jo2,...,ja} = {i1,..., 9} where

14

N(d,) => (-1) <f> (0 —)4,

=0

OPTIMAL QUERY COMPLEXITY FOR RECONSTRUCTING HYPERGRAPHS 147

That is, N(d,¢) is the number of possible sequences (ji,...,Jq) such that {ji,...,jq} =
{i1,...,i¢}. Note that N(d,¢) < d! < p and therefore N(d,) #, 0 and Ag is well defined.

It is easy to see that the adjacency matrix of a weighted hypergraph is a symmetric
matrix and r(G) = r if and only if the adjacency matrix of G has an non-zero entry of
dimension r and all entries of dimension greater than r are zero.

2.3. Additive Model

In the Additive Model the goal is to exactly learn a hidden hypergraph with minimal
number of additive queries. Given a set of vertices S C V', an additive query, Qa(S), returns
the sum of weights in the subgraph induces by S. That is, Qc(S) =p > .cpnes w(e). Our
goal is to exactly reconstruct the set of edges and find their weights using additive queries.
See the many applications of this problem in [7, 11, 12].

We say that the set S = {S1,52,---,Sk} C 2V is a detecting set for G, if for
any hypergraph G € G4, there is S; such that Qg(S;) # 0. We say that the set S =
{81,859, -+, 8} C 2V is a search set for Ga,m if for any two distinct hypergraphs G1,Gs €
Ga,m there is S; such that Qg, (S;) # Qa,(S;). That is, given (Q(S;)); one can uniquely
determines G. We now prove the following,

Lemma 2.1. If § = {S1,S592,---,Sk} C 2V is a detecting set for Ga,om then it is a search
set for Gam.

Proof. Let G1,G2 € Ggm be two distinct weighted hypergraphs. Let G = G — Ga. Since
G € Ggom there must be S; € S such that Q¢(S;) # 0. Since Qa(S;) = Qa, (Si) — Qa,(Si)
we have Qg (S;) # Qa, (S:). n

2.4. Algebraic View of the Model

It is easy to show that for any hypergraph G of rank r the adjacency d-dimensional
matrix of G, Ag, for d > r, is symmetric, contains a nonzero entry of dimension r and

Qc(S) =, AG (2,25, .., 25) 2 BS (%).

For a symmetric d-dimensional matrix A let B(z) =, A(z,z,.9.,z) where z € {0,1}".
When z1,...,z4 € {0,1}" are pairwise disjoint the following lemma shows that A(xy,...,z4)
can be found by 2¢ values of B.

Lemma 2.2. Ifx,...,zq € {0,1}" are pairwise disjoint then
1 _
A, ma) =p = > (-n* 1B <Zm) .
Ie2ld] iel

Proof. Since
A(xy + 2, @9, ., 2q) =p AlT1, 20, ..., 24) + A2, 22, ..., 24)

and
A1, 22, .., 24) =p A(%(l),%@), e >5C¢>(d))

148 N. H. BSHOUTY AND H. MAZZAWI

for any permutation ¢ on [d], the result is analogous to the fact that

d
Yiye - 7 Z 1)W1 <Zyz> ; (2.1)

Ie2ld] iel
for formal variables 1, ..., y4. Now notice that
‘ d
(Zw) = X adtlaroren(, Yt
iel q1+-+qq=d
where x[L] = 1 if the statement L is true and 0 otherwise. Therefore, the coefficient of

yit -+ yd® in the right hand side of (2.1) is

> (DX ilg: # 0} € 1] <q1 qu. ..qd>

Ie2ld]

o (cn qzd- --qd> > (U {ila: # 0}y € 7).

Ie2ld]
Now if ¢ = |{i|g; # 0}| < d then

d d—~
> D ilas # 0y € 1) = Y (-1 (d: f) = 2 (-1 (d i 5) -

Te2ld] i—t prd
> D) ilg # 0}y C 1) =, 1
Ie2ld]
This implies the result. .

Let G be a hypergraph of rank d and G, i < d, be the sub-hypergraph of G that
contains all the edges in G of size ¢ then

Lemma 2.3. Ifzy,...,z4 € {0,1}" are pairwise disjoint then, we have that Ag(azl, ceyTg) =
Ag(d) (x1,...,2q). In particular, if r(G) < d then Ag(azl, cooyxg) =0.

Proof. Since x1,...,x4 € {0,1}" are pairwise disjoint we have

AG (z1, ... = w{in iz, oviad)
d(x:[? 7:Cd) Z Z d ‘{11’12"' ’Ld}‘)xl 1 xdd

11=1 zdl

w({ir, iz, .. ., iq})
= Z I‘lil xd’bd
N(d,d
[{i1,--yia}|=d ())
(d)
= Agd($l77xd)

Now when 7(G) < d then G¥ is an independent set (has no edges) and Ag’(d) = 0. Then
AG (z) = Ag(d) (x) =0. L]

OPTIMAL QUERY COMPLEXITY FOR RECONSTRUCTING HYPERGRAPHS 149

We now prove

Lemma 2.4. Let &, = {z%d), ... ,z,ij)} C ({0,1}™)? where for everyi the vectors zl-(j?, .. ,ZZ-(CQ

are pairwise disjoint. If ®g4 is a zero test set for A:l,(d!)m then
d, A
Sd: Sy‘] yJ:ZZ(J)’JC[d]
JjEJ
is a detecting set for Gj ..

Proof. Let ®4 be a zero test set for A% (dym . Let G € G ,,- Then AG # (0 and AG €A (d)ym
Therefore, for every G € G, there is zz() such that AG() # 0. By Lemma 2.2,

Ad d y Z 1)%- |J\B§ Zzl(c]l)

Je2ldl jeJ

and therefore for some Jy C [d],

Bf Zzi(’dj) #0,

j€Jo

which implies that Qg (S¥%0) # 0 for yz, = Y. #17. =

We now show
Lemma 2.5. A detecting set for Gq, over Zy is a detecting set for Gq , over R.

Proof. Consider a detecting set S = {S7,S2,---,Sx} C 2" for Gam over Zy. Consider a

k x g matrix M where
d
n
=3 (7))

i=0
that its columns are labelled with sets in 2[" of size at most d and for every S C [n] of
size at most d we have M[i, S| = 1if S C S; and 0 otherwise. Consider for every graph
G € Gqm a g-vector vg that its entries are labelled with subsets of [n] of size at most d and
ve]S] = w*(S). The labels in v are in the same order as the labels of the columns of M.
Then it is easy to see that

Muvg = (Qa(S1), -, Qa(Sk))T.

Since Muvg #, 0 for every v € Z} of weight at least one and at most m, every m columns
in M are linearly independent over Z,. Since the entries of M are zeros and ones every m
columns in M are linearly independent over R. Therefore,

Muvg = (Qa(S1), - .-, Qa(Sk)" #0,

for every vg € RY of weight at least 1 and at most m. [

150 N. H. BSHOUTY AND H. MAZZAWI

2.5. Distributions

In this subsection we give a distribution that will be used in this paper.
The uniform disjoint distribution Qq,,(z) over ({0,1}")9 is defined as

—L— xy,..., x4 is pairwise disjoint.

Qd,n(Q:) = { (d+ 1y

0 otherwise.

In order to choose a random vector x according to the uniform disjoint distribution, one
can randomly independently uniformly choose n elements wy,ws, ..., w, where w; € [d+ 1]
and define the following vector = = (21,22, ...,zq) € ({0,1}™)%:
o 1 j=w; and w; € [d]
78771 0 otherwise.

We call any index k € [n] such that x;;, = 0 for all j € [d] a free index. Let 'y, C ({0,1})4
be the set of all pairwise disjoint d-tuple.

2.6. Preliminary Results
In this section we prove,

Lemma 2.6. Let A € F*a"\{0*4"} be an adjacency d-dimensional matriz of a hypergraph G
of rank d. Let x = (21,22, ...,7q) € ({0,1}")? be a randomly chosen d-tuple, that is chosen
according to the distribution Qgq,,. Then

1
Pr [A(z)=0]<1—- ——.
& A =051 - o
Proof. Let e = {i1,...,i4} be an edge of size |e| = d and let 2, = (z;4,,...,7;,,). Consider

(..., 2)) that is equal to A(z) with some fixed x;; = &;; € {0,1} for i € e. Since A(x)
contains the monomial M = x1;, 22, - - €4, and no other monomial in A(z) contains it,
¢ contains monomial M and therefore ¢(z},...,2}) # 0. If we substitute zj,;;, = 0in ¢
for all j; # j2 we still get a nonzero function ¢'(x1;,,224,, - ,%q4,) that contains M.
Therefore, there is & = (€14, 215, ,aiy) € {0, 1} such that ¢/(€) # 0. The probability
that (21,2245, ,%4,,) = & and Tjyi;, = 0 for all ji # jo is (1/d + 1)4. This implies the
result. [

We will also use the following two lemmas from [9, 10].

Lemma 2.7. Let a € Zy; be a non-zero vector, where p > wt(a) is a prime number. Then
for a uniformly randomly chosen vector x € {0,1}" we have
1
Pria’z =, 0] < ——,
ir[a x=,0] < wi(a)?

where 0 = =0.278943- - - .

1
2+log 3

Let ¢ be a function on non-negative integers defined as follows: ¢(0) = 1 and ¢(i) = ¢
for ¢ > 0.

Lemma 2.8. Let my,mo,...,my be integers in [m]U{0} such that mi+mo+---+my =€ > t.
Then HEZO v(my) > ml=t)/m=1)]

OPTIMAL QUERY COMPLEXITY FOR RECONSTRUCTING HYPERGRAPHS 151

3. Reconstructing Hypergraphs

In this section we prove,

Theorem 3.1. There is a search set for Gg,, over R of size k = O (mlog”> :

logm

d
mlog 7~
logm

Theorem 3.2. There is a search set for G' 4., over R of size k = O >, where G' 4 m,

denotes the set of all weighted hypergraphs over R of rank at most d, at most m edges and
weights that are integers bounded by w = poly(n/m).

Proof. We give the proof of Theorem 3.1. The proof of Theorem 3.2 is similar. More details
in the full paper.

Let m < p < 2m be a prime number. Suppose there is a zero test set from I'y,, for

am Over Zy of size T(n,m,d). By Lemma 2.4, there is a detecting set for Gim over Zy

of size 29T (n, (d!)m, d). Therefore, by Lemma 2.3, there is a detecting set for Ga.m over Zy
of size T'(n,m,d) = ZZ:I 2T (n, (¢!))m, £). By Lemma 2.5, there is a detecting set for Gg
over R of size T'(n,m,d). Finally, by Lemma 2.1, there is a search set for G, ,, over R of
size T'(n,2m, d). Now for constant d, if

_ mlogn
T(n,m,d) =0 (Togm) , (3.1)

then T"(n,2m,d) = O(T(n,m,d)). Therefore it is enough to prove the following.

Lemma 3.3. Let p be a prime number such that m < p < 2m. There exists a set S =
{w1,m9,..., 2%} C ({0,1}") where x; = (z;1,...,%i4) € Dan fori € [k] and

E— O <mlogn> ’
logm
such that: for every d-dimensional matriz A € Zy " \ {0*4"} with 1 < wty(A) < m there
exists an i such that A(z;) #p 0.

Proof. Since wty(A) > 1 the matrix A has at least one nonzero entry of dimension d. We
will assume that all the entries of dimension less than d are zero, that is, wt(A) = wty(A).
This is because, by Lemma 2.3, the entries of dimension less than d have no effect when the
vectors x; € I'g .
We divide the set of such matrices A = {A[A € Z "\ {0%¢"} and wt(A) < m} into

d + 1 (non-disjoint) sets:

e Ap: The set of all non-zero matrices A € Z, 4" such that wt(A) < m/logm.

e Aj for j = 1,...,d: The set of all non-zero matrices A € Z; 4" such that m >

wt(A) > m/logm and there are at least

m O\ 1/d
logm

non-zero elements in Ij = {ij‘a(il,ig, [P 77:]'71,7:3'4"»1, e ,’id) : Ail,ig,...,id 75 O}
Note that I = {(i1,%2,...,%4)| A is,...i, 7 0} € I1 X I3 x --- x I; and therefore either
I = wt(A) < m/logm or there is j such that |I;| > (m/logm)Y9. Therefore, A =
AgUALU---U Ay.

152 N. H. BSHOUTY AND H. MAZZAWI

Using the probabilistic method, we give d + 1 sets of pairwise disjoint tuples of vectors
50,51, ...,Sq such that for every j € {0} U[d] and A € A; there exists a d-tuple = in S}
such that A(x) # 0 and

1
|So| + ‘Sl‘ + -+ ‘Sd| =0 <m Ogn) .
logm

Case 1: A € Ap: For a random d-tuple z, chosen according to the distribution €4, we
have that

1
If we randomly choose
cmlogn
ki = ———
logm

d-tuples, x1, ..., xy,, according to the distribution g4, then the probability that A(x;) =0
for all i € [k1] is

k1
PrVi € [ki] : A(z;) =, 0] < (1 - ﬁ) .

Therefore, by union bound, the probability that there exists a matrix A € Ay such that
A(x;) =0 for all i € [kq] is
cmlogn

. n _m_ 1 Tog m
PI'[EIA S AO,VZ S [kl] : A(.’El) =p O] < % plOgm 1-— m

m cem

d-—-" —
< n logm plogm p logm < 1’

for some constant ¢. This implies the result.

Case2: A c Aj where j =1,...,d: We will assume w.Lo.g that j = 1. We first prove the
following lemma

Lemma 3.4. Let U C Z;d‘m be the set of all d — 1-dimensional matrices with weight
smaller than m® Y For A € U let T(A) C [n] be following set

T(A) ={jFAi is,..1q, # 0 and j & {i1,i2,...,94-1}}.
Define Q@ = {(A,j)| A €U and j € Y(A)}. Then, there is a constant ¢y such that for every

C > ¢y and
mlogn

ky=0C

logm
there exists a multi-set of d — 1-tuples of (0,1)-vectors Z = {z1,22,..., 2k, } C ({0,1}7)d"1
such that for every (A,j) € Q the size of the set
Z(A,j) = {i|A(z;) # 0 and j is a free index}

; ko
is at least 52

OPTIMAL QUERY COMPLEXITY FOR RECONSTRUCTING HYPERGRAPHS 153

Proof. Let z; = (211,22, %.4-1) € ({0,1}*)¢"! be random d — 1-tuple of (0, 1)-vector
chosen according to the distribution 41 ,. For (4,j) € Q, and by Lemma 2.6, we have

1 1 1
zz-eflljdlil,n[A(Zi) # 0 and j is a free] = Pr[j is free] Pr[A(z;) # 0|7 is free] > 7 g T g
Therefore, the expected size of Z(4 ;) is greater than 5—3. By Chernoff bound, if we

randomly choose all z;, i € [kg] according to the distribution €41 ,, then, we have
ko —ka
Pr [|Z(A,j)‘ < ﬁ] < esad,

Thus, the probability that there exists (4, j) € @ such that |Z(4 ;)| < LIEER

2d4
d—1 d/(d+1)
: k2 Q _ U x]| _ npirarn)p™
Pl" 3(147]) € Q: ‘Z(A,j)| S Tdd S —ko S —ko S = Cmlogn
€8d—d €W 68dd logm
d—1 d/(d+1) d/(d+1)
< n(mg/(d+1))nm ’I?,O(m)
— C(loge)m — Cc!'m < 1’
n 8dd log m N logm
for large enough C'. This implies the result. n

Now, Let U and @ be the sets we defined in Lemma 3.4. Let A € A;. Since wt(A) < m
there are at most m!/(@*+1) ¢ — 1-dimensional matrices (Aiy o, iy)iv=jis,...iq With weight
greater than m® (@1 Therefore, there is at least

(m)Ud 1/(d+1)
q= -m

logm

indices j such that (A;, iy .i,)i1=jis...iq € U. Let U’ contain any ¢ indices such that
(Ail,iz,...,id)h=j,i2,...,id € U. Let Ay be the matrix

(Ail,i2,---,id)i16U/7i27---7id'

Let z1,22,..., 2k, € ({0,1}")?"1 be the set we proved its existence in Lemma 3.4. We now
choose x; € {0,1}", i € [ks] in the following way: Take z;. For every free index j, choose x;;
to be “1” with probability 1/2 and “0” with probability 1/2 (independently for every j).
All other entries in x; are zero, that is, all entries that correspond to non-free index j in z;
are zero. Let u € {0,1}" be a vector where u; = 1 if j € U’ and zero otherwise. Also, for
a d — 1-tuple z; let v; € {0,1}" be the vector where v;; = 1 if j is a free index in z; and
v;; = 0 otherwise. By Lemma 2.7 we have that
1 1
Brltes =) = 0 < | ez = Wi ac

7 7

(3.2)

Note that, A is a hypergraph, thus, for every j such that (A;, i, i,)ii=jis,...iq € U, We
have that ((Ail7i27---’id)i1:j:i27---,id’j) € Q. Therefore,

k
zi:wt(vi s« (ux A(,z))) > ngj.

Using Lemma 2.8 we have

ako
2qd "2

HL(wt(vi x (ux A(+,2;)))) > qL o1) = etk

i

154 N. H. BSHOUTY AND H. MAZZAWI

Therefore, using (3.2), Pr,[A(z;,2;) =p 0] < —15=. Thus, the probability that there exists

= mclﬁkQ
a matrix A € Ay such that for all ¢ € [k2] we have A(x;, z;) =0 is
) A Gem e
1;1"[(3, 2i) =p 0] < me1Bke — 1Bk < me1Bka <1
for large enough constant. This implies Lemma 3.3.]
This completes the proof of Theorem 3.1.]

References

[1] M. Aigner. Combinatorial Search. John Wiley and Sons, 1988.

[2] N. Alon and V. Asodi. Learning a Hidden Subgraph. SIAM J. Discrete Math, 18, 4, 697-712, 2005.

[3] N. Alon, R. Beigel, S. Kasif, S. Rudich and B. Sudakov. Learning a Hidden Matching. SIAM J. Comput.
33, 2, 487-501, 2004.

[4] D. Angluin. and J. Chen. Learning a Hidden Graph Using O(logn) Queries per Edge. COLT, 210-
223, 2004.

[5] D. Angluin and J. Chen. Learning a Hidden Hypergraph. Journal of Machine Learning Research, 7,
2215-2236, 2006.

[6] E. Biglieri and L. Gyorfi. Multiple Access Channels Theory and Practice Volume 10 NATO Security
through Science Series - D: Information and Communication Security, April 2007.

[7] M. Bouvel, V. Grebinski, G. Kucherov: Combinatorial Search on Graphs Motivated by Bioinformatics
Applications: A Brief Survey. WG, 16-27, 2005.

[8] N. H. Bshouty. Optimal Algorithms for the Coin Weighing Problem with a Spring Scale. COLT, 2009.

[9] N. H. Bshouty and H. Mazzawi. Reconstructing Weighted Graphs with Minimal Query Complexity.
ALT, 2009.

[10] N. H. Bshouty and H. Mazzawi. On Parity Check (0, 1)-Matrix over Z,. TR09-067, ECCC, 2009.

[11] S. Choi, J. H. Kim. Optimal Query Complexity Bounds for Finding Graphs. STOC, 749-758, 2008.

[12] S. Choi, K. Jung, J. H. Kim. Almost Tight Upper Bound for Finding Fourier Coefficients of Bounded
Pseudo- Boolean Functions. COLT 2008, 123-134, 2008.

[13] A. G. Djackov. On a search model of false coins. In Topics in Information Theory (Colloquia Mathe-
matica Societatis Janos Bolyai 16). Budapest, Hungary: Hungarian Acad. Sci., pp. 163-170, 1975.

[14] A. G. D’yachkov, V. V. Rykov. On a Coding Model for a Multiple-Access Adder Channel, Probl.
Peredachi Inf., 17:2 | pp. 2638, 1981.

[15] D. Du and F. K. Hwang. Combinatorial group testing and its application, Volume 3 of Series on applied
mathematics. World Science, 1993.

[16] P. Erdés. On a lemma of Littlewood and Offord. Bulletin of the American Mathematical Society, 51,
898-902, 1945.

[17] V. Grebinski and G. Kucherov. Optimal Reconstruction of Graphs Under the Additive Model. Algo-
rithmica , 28(1), 104-124, 2000.

[18] V. Grebiniski and G. Kucherov. Reconstructing a hamiltonian cycle by querying the graph: Application
to DNA physical mapping. Discrete Applied Mathematics, 88, 147-165, 1998.

[19] V. Grebinski. On the Power of Additive Combinatorial Search Model. COCOON, 194-203 , 1998.

[20] P. Indyk, M. Ruzic. Near-Optimal Sparse Recovery in the L1 Norm. FOCS, 199-207, 2008.

[21] J. E. Littlewood and A. C. Offord. On the number of real roots of a random algebraic equation. III.
Mat. Sbornik, 12, 277-285, 1943.

[22] H. Mazzawi. Optimally Reconstructing Weighted Graphs Using Queries. SODA, 2010.

[23] L. Reyzin and N. Srivastava. Learning and Verifying Graphs using Queries with a Focus on Edge
Counting. ALT, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 155-166
www.stacs-conf.org

ULTIMATE TRACES OF CELLULAR AUTOMATA

JULIEN CERVELLE' AND ENRICO FORMENTI? AND PIERRE GUILLON?®

! Université Paris-Est, LACL, EA 4219, 61 Av du Général de Gaulle, 94010 Créteil Cedex, France

E-mail address: julien.cervelle@univ-paris-est.fr

2 Laboratoire 13S, Université de Nice-Sophia Antipolis, 2000, Rte des Lucioles - Les Algorithmes -
bat. Euclide B - BP 121, 06903 Sophia Antipolis Cedex, France

E-mail address: enrico.formenti@unice.fr

3 DIM - CMM, UMI CNRS 2807, Universidad de Chile, Av. Blanco Encalada 2120, 8370459
Santiago, Chile
E-mail address: pguillon@dim.uchile.cl

ABSTRACT. A cellular automaton (CA) is a parallel synchronous computing model, which
consists in a juxtaposition of finite automata (cells) whose state evolves according to that
of their neighbors. Its trace is the set of infinite words representing the sequence of states
taken by some particular cell. In this paper we study the ultimate trace of CA and partial
CA (a CA restricted to a particular subshift). The ultimate trace is the trace observed
after a long time run of the CA. We give sufficient conditions for a set of infinite words to
be the trace of some CA and prove the undecidability of all properties over traces that are
stable by ultimate coincidence.

Introduction

Cellular automata are a formal computing model known to display many different dy-
namical behaviors, from the most simple like nilpotency or equicontinuity to the more com-
plex ones like transitivity, mixing or expansivity. These different behaviors together with
their ability to capture many features of natural phenomena increase their popularity in the
computer sciencists, mathematicians and physicians communities.

A cellular automaton consists in finite state automata (cells) distributed on a regular
lattice (or more generally, on any graph). Each cell updates its state depending on the states
of a fixed finite number of neighboring cells. This dependency is given by a local rule which
is common to all cells.

In this paper, we resume our study of traces of cellular automata, that is to say the
sequence of states taken by one particular cell. The main motivation for this work is to
study the way scientists deduce general laws from experiments. They proceed by making

1998 ACM Subject Classification: F.1.1 Models of Computation; F.4.3 Formal Languages.

Key words and phrases: discrete dynamical systems, cellular automata, symbolic dynamics, sofic systems,
formal languages, decidability.

Thanks to the Projet Blanc ANR EMC and the Comité FCOS-Sud.

ASPECTS
T OF COMPUTER ©
SCIENCE

SYMPOSIUM
(.SV}_"_ ON THEORETICAL
- J. Cervelle, E. Formenti, and P. Guillon

© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum flr Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2451

156 J. CERVELLE, E. FORMENTI, AND P. GUILLON

experimental observations using a finite number of observation variables (i.e. a trace in
the context of CA). From these observations, they conjecture the mathematical law that
rules the whole phenomenon. If this law is verified by (almost all) observations, then the
scientist concludes that this is the way the phenomenon behaves, until contradicted by new
experiments.

However, one also needs formal results ensuring the correctness of the procedure. Indeed,
can any observed trace be generated by a CA? How “large” should a trace be to ensure correct
reconstruction of the CA local rule?

The notion of trace for a CA has been studied in [CFG07, CG07|. In this paper, we
proceed with two generalizations: partial traces and ultimate traces. A partial trace is the
trace of a CA restricted to a particular subshift. This kind of trace is motivated by the fact
that there are some experiments where not all initial configurations are admissible: some
local constraints have to be respected (e.g. a sand grain cannot be above an empty cell or
two positively charged particles cannot be too close to one another etc.). The ultimate trace
is the trace for the long term behavior i.e. when the transient part of the phenomenon is
neglected, which is often the case in experimental sciences.

The notion of trace is strictly connected with the concept of symbolic factor. Recall
that given a CA (A%, F), the system (BY, G) is a (symbolic) factor of (A%, F), if there exists
a continuous surjection ¢ : A% — BN such that ¢ o F = G o ¢. Studying the dynamics of
factors is often simpler than studying the original system. Indeed, traces are special cases of
factor systems. They were introduced as a form of “back-ingeneering” tool to lift properties
of factors to CA. Along this research direction, in Section 5, we prove a Rice’s theorem for
traces. This is an improvement of a similar result in [CG07], in the sense that it is more
“natural” and covers more properties than the previous one.

The paper is organized into three parts. Section 1 recalls main definitions concerning
cellular automata and symbolic dynamics. Sections 2 to 4 concern new results about traces.
Section 5 presents a Rice-like theorem for traces.

1. Definitions

Let id denote the identity map. If F' is a function on a set X, denote Fly its restriction
to some subset Y C X. If F' and G are functions on sets X and Y, then F' x G will denote
the function on the cartesian product X x Y which maps any (x,y) to (f(x), g(y)).

Configurations. A configuration is a bi-infinite sequence of letters, that is an element of
A% The set A” of configurations is the phase space. For integers i, j, denote [i, j] the set
{i,...,7}, [i,4[the set [i,j — 1], etc...For # € A% and I = {ig,...,ix} C N, ig < -+ < i,
note r; = x;,...x; . Moreover, for a word u, we note v C =z if u is a factor of x, that is
if there exists ¢ and j such that u = z}; ;. Ifu € AT, |u| denotes its length, and x = u*>
[resp. @ = *°u®] is the infinite word [resp. configuration| such that x(; ;) = u for any
iin N [resp. Z|. A word or a configuration is uniform if it is made of a single repeated
letter. If L C A¥ and k € N\ {0}, we shall also note L the set of configurations x such
that g (k1) 18 in L for all ¢ € Z. Note that we shall assimilate the sets A% x B” and

(A x B)Z, for alphabets A, B.

ULTIMATE TRACES OF CELLULAR AUTOMATA 157

Topology. We endow the phase space with the Cantor topology. A base for open sets is given
by cylinders: for j,k € N and a finite set W of words of length j, we will note [IW]; the
cylinder {w € A%|wy, x4y €W }. (WIS is the complement of [W].

Cellular automata. A (one-dimensional) cellular automaton is a parallel synchronous com-
putation model (A, m,d, f) consisting of cells distributed over a regular lattice indexed by
Z. Each cell i € Z has a state x; in the finite alphabet A, which evolves depending on the
state of their neighbors (;_, ;44 according to the local rule f : A% — A. The integers
m € Z and d > 0 are the anchor and the diameter of the CA, respectively. If the anchor
is 0, the automaton is said to be one-sided. In this case, a cell is only updated according
to its state and the ones of its right neighbors. The global function of the CA (or simply
the CA) is F : AZ — A such that F(z); = F(@pi—m immq) for every x € A% and i € Z.
The space-time diagram of initial configuration z € A% is the sequence of the configurations
(FJ(x));jen. When the neighborhood of the CA is symmetrical, instead of speaking of anchor
and diameter, we shall simply give a radius. A CA of radius r € N\ {0}, has r for anchor
and 2r + 1 for diameter.

Shifts and subshifts. The twosided shift [resp. onesided shift], denoted o, is a particular CA
global function defined by o(x); = z;;1 for every x € AZ and i € Z [resp. z € AN and
i € N| . According to the Hedlund theorem [Hed69], the global functions of CA are exactly
the continuous self-maps of A? commuting with the twosided shift.

A twosided subshift ¥ is a closed subset of AZ with o(X) = . A onesided subshift ¥ is
a closed subset of AN with o(¥X) C ¥. We simply speak about the shift or subshifts when
the context allows to understand if it is twosided or onesided.

The language of ¥ is £(X) = {w € A*| 3z € ¥,w C 2z } and characterizes ¥, since ¥ =
{z€ AN|Vw C z,w € L(X) }. For k € N, denote L(X) = L(X) N A*.

A subshift ¥ is sofic if L(X) is a regular language, or equivalently if 3 is the set of labels
of infinite paths in some edge-labeled graph. In this case, such a graph is called a graph of
3.

A subshift is characterized by its language F C A* of forbidden words, i.e. such that
Y= {z € AN| Yu € F,ufz } A subshift is of finite type (SF'T for short) if its language
of forbidden words is finite. It is a k-SFT (for k£ € N) if it has a set of forbidden words of
length k. For £ C A%, define O, () = ;e 0 (D).

Partial cellular automata. A partial CA is the restriction of some CA to some twosided
subshift.

Subshift projections. If B C AF is an alphabet and 0 < ¢ < k, then the ¢ projection
of an infinite word z € BY is noted my(z) € AN and defined by 7,(z); = a, when z; =
(ao,-..,ax—1). If ¥ is a subshift on B, we also note m(X) = Uy, mg(¥), which is a
subshift on A.

2. Tracebility

Definition 2.1 (Traceability). A subshift ¥ ¢ A" is traceable if there exists a CA F on
alphabet A whose trace Tp = { (F/(2)0)jen| x € A” } is 3. In this case, we say that F' traces
Y. If F' can be computed effectively from data D, we say that X is traceable effectively from
D. In this notion, D can be any mathematical objet, possibly infinite, provided it has a

158 J. CERVELLE, E. FORMENTI, AND P. GUILLON

finite representation (SFT, sofic subshifts, regular languages, CA). In this case, it means one
of these representations.

Deterministic subshifts. Given some £ : A — A, we call deterministic subshift the subshift
O¢ = {(&(a))jen € AZ| a € A}. The following proposition comes from an easy remark
on the evolution of uniform configurations — see Example 4.2 for a subshift which is not
traceable.

Proposition 2.2 (|[CFG07]). Any traceable subshift > C AN contains a deterministic sub-
shift O¢ for some £ : A — A.

Nilpotent subshifts. A subshift ¥ C AN is 0-nilpotent (or simply nilpotent) if 0 € A and
there is some j € N such that 07 (X)) is the singleton {0°°}. It is weakly nilpotent if there
is some state 0 € A such that for every infinite word z € X, there is some j € N such that
07(z) = 0. Note that a sofic subshift is weakly nilpotent if and only if it admits a unique
periodic infinite word, which is uniform.

The following gives another necessary condition for being the trace of a CA.

Theorem 2.3 ([GRO8|). A traceable subshift cannot be weakly nilpotent without being nilpo-
tent.

Polytraceability. When performing some “back-engineering” from a trace over an alphabet A,
i.e. when trying to deduce from the trace which CA could have produced it, it is sometimes
easier to design a CA over an alphabeth B C AF (for some integer k). Being stacked one
atop the other, letters of B can be seen as columns of letters of A. In the constructions,
the first column is used to produce all the elements of ¥ and the other columns are used
to store elements that help to simulate all possible paths along some graph of . This idea
leads to the following notion.

Definition 2.4 (Polytraceabilty). A subshift ¥ C AN is polytraceable if there exists a

CA F of anchor 0 and diameter 2 on alphabet B C A* for some k whose polytrace $F:
Uo<icr mi(7r) is X. In this case, we say that I polytraces X. If, furthermore, B = Ak we
say that the subshift is totally polytraceable. If F' and B can be computed effectively from
data D, we say that X is (totally) polytraceable effectively from D.

Note that a polytrace cannot be weakly nilpotent without being nilpotent, otherwise it
would alors be the case of the corresponding trace. On the other hand, it need not contain
a deterministic subshift.

Theorem 2.5 (|[CFGO7|). Any subshift ¥ which is either of finite type or sofic uncountable
1s polytraceable effectively from 3.

CDD subshifts. A sufficient condition for traceability can be given with the help of the
following definition. A subshift ¥ C AN has cycle distinct from deterministic property
(CDD) if it contains some deterministic subshift Of and some periodic infinite word w®
such that w contains one letter not in {(A). We say that X is a CDD subshift.

Lemma 2.6 ([CFGO7]). Let £ : A — A and X C AN a polytraceable subshift containing a
periodic word w™®, with w € AT\ {(A)*. Then XU O is traceable effectively from &, w and
a CA polytracing 3.

ULTIMATE TRACES OF CELLULAR AUTOMATA 159

This lemma, together with Theorem 2.5, gives the following result.

Theorem 2.7 (|[CFGO7]). Any CDD subshift which is either of finite type or sofic uncount-
able is traceable effectively from the subshift.

3. Partial traceability

We already discussed about partial traceability in the introduction. Here is the formal
definition.

Definition 3.1 (Partial traceability). A subshift ¥ is partially traceable if there exists a
partial CA F on an SFT T" whose trace 7p = {(Fj(m)o)jeN‘ z €T} is X. In this case, we
say that F' partially traces (or simply traces) ¥. If F' and some graph of I' can be computed
effectively from data D, we say that X is partially traceable effectively from D.

Assume that ¥ is polytraced by some CA G : BZ — B% with B ¢ A" and h € N\ {0} —
for instance obtained from Theorem 2.5. We simulate it by a partial CA F' on some SFT A
in order to get a partial trace instead of a polytrace. This is a kind of ungrouping operation
that splits macrocells (on B) into independent cells (on A).

Ungrouping. The ungrouping operation represents a standard encoding of configurations of

B%, with B C A" and h € N\ {0}, into configurations of A% and it is defined as follows
@, - BZ — A%
he - y such that Vi € Z, yjp; niv1)] = @i -

We need to be able to perform this encoding locally, we add some constraints to the alphabet
B. Indeed, define the twosided subshift A = O (8),(B%)) = Uy<;<p, o' (Br(B%)). We want
this union to be disjoint, in order to know, for any configuration of A, up to which shift it
can be considered a sequence of macrocells. For this purpose, we add a freezing condition
to B as follows.

Freezingness. A set W C A" is p-freezing, with p,h € N, if Vi € [1,p], AW N WA £ 0, i.e.
words from W cannot overlap on h — p letters or more.
When p is sufficiently large, we obtain the following property.

Proposition 3.2. Let W C A" be L%J -freezing, with h € N. Then W? is (h — 1)-freezing;
A=Up<icn o (Br(W?)) is a disjoint union and an SFT.

If G is a CA of radius 1 on alphabet B C A", we can define its h-ungrouped partial CA

X, G on the subshift A = O, (B,(B%)), of radius 2 — 1 and local rule:
Lap—1(4) — A ' 4
w e AP0y 0yt AF
w = g(uilauoaul)i if u_l,uo,ul eB
ie[0,h] .

Proposition 3.3. Let B C A" be L%J -freezing, and G a CA on alphabet B, of radius 1 and
local rule g : A3 — A. Then the ungrouped CA X,G is well defined and its trace is 79G,

160 J. CERVELLE, E. FORMENTI, AND P. GUILLON

Proof. The local rule f as defined above is not ambiguous since the shift ¢ is unique by
Proposition 3.2. By construction, f(A" 'u~'uOu! A1) = g(u='u '), hence by a recur-
rence on j € N, we see that if i € [0,h] and = € o*(By(B?)), then Yk € Z,X,G7 (x)g =
GI ((T[kh—i,(k+1)h—i)icz)i- As aresult, T, ¢ = Upcijcp Ti(76) u

Borders. The freezing condition is very restrictive, but any alphabet can be modified in
such way to satisfy this property, thanks to a suitable juxtaposition to some freezing set of
words. Formally, a border for B C A*, with k € N\ {0}, is a couple (Y, dy), where T C A’
is L%J—freezing, and dy is a function from Y into itself. From the latter, seen as the local
rule, we define the CA Ay : Y2 — Y7 of radius 0 whose polytrace is Uo<ict Ti(Osy).

Borders will be used to separate words representing letters of B in an non-ambiguous
way.

Proposition 3.4. Let G be a CA on alphabet B C A¥ and (Y C Al 6v) a border for B.

Then, the ungrouped CA F = Wy (Ay X G) on the SFT A = Oy (*(YB)™) is well defined

and its trace is T¢ U ;Ar-

Proof. If T c Al is L%J—freezing, then we can see that so is T B. Hence, Proposition 3.3

can be applied to Ay x G, seen as a CA on alphabet TB. [
In the following, we describe a first example of borders.

Corollary 3.5. Let ¥ be a polytraceable subshift which contains two distinct uniform infinite

words 0%° et 1°°. Then, ¥ is partially traceable effectively from a polytracing CA and these
two words.

Proof. Define T](CO 1y = {10*}. Note that Tf’o 1) 18 k-freezing so (T](CO 1),id) is a border.

Applying Proposition 3.4, as 7O'ATk = {0°°,1*°}, we get that 3 is partially traceable. m

(0,1)

Dynamical borders. In the case where the polytraceable subshift does not contain two uni-
form infinite words, we must find another condition to get a freezing alphabet. Assume
it contains some periodic non-uniform infinite word u*. We note & = wj,_1...up the

reverse of u and ~'(u) the i'" rotation ufs |u|[Wo,i] Of u, for 0 < i < |u|. Then the fol-
lowing represents a border: let Y% = {uf%‘u‘myi(u)ulu“ 0<i<|u } C AR+6lul and
Ok ak+3lulygalel — vf+3‘u|7(v)mv‘lu|.

Proposition 3.6 ([CFG10]). Y* is (k + 3 |u|)-freezing.

Corollary 3.7. Let ¥ be a polytraceable subshift which contains a periodic infinite word

*u> of smallest period |u| > 1. Then, ¥ is partially traceable effectively from a polytracing
CA and u.
Proof. 1t is sufficient to apply Proposition 3.4 to the border (Tﬁ,&rﬁ). We can see that

;Ark = O, (u™), which allows to obtain a CA F : A — A such that 7p =7¢.]

ULTIMATE TRACES OF CELLULAR AUTOMATA 161

Actually, the only sofic subshifts which are not concerned by the two previous construc-
tions are the nilpotent ones.

Lemma 3.8 (|[CFG10]|). Any nilpotent subshift is partially traceable effectively from the
subshift.

The following gives an example of subshift which is nilpotent, hence partially traceable,
but not traceable.

Example 3.9 (JCFG10]). No CA traces the subshift O,((A 4+ 1 4 01 4 001 4 21)0°°).
Putting things together, we get the following important results.

Proposition 3.10. Any polytraceable sofic subshift is partially traceable effectively from a
polytracing CA.

Proof. 1t is known that any sofic subshift 3 admits some periodic infinite word ©>°, and that
it is unique only if X is weakly nilpotent. In this case, as the projection of some trace, it is
nilpotent by Theorem 2.3, and Lemma 3.8 allows to conclude. If there are several distinct
periodic infinite words among which one is non-uniform, then we can apply Corollary 3.7;
otherwise there are several uniform periodic words and we can apply Corollary 3.5. |

The previous proposition, together with Theorem 2.5, gives the following — note that
the SFT are partially traceable directly from the definition.

Corollary 3.11. Any uncountable sofic subshift is partially traceable effectively from it.

4. Ultimate traceability

In this section we consider traces of CA up to ultimate coincidence, i.e. assimilating any
two subshifts that are different in only a finite number of cells.

One of the difficulties in making traces (Theorem 2.7), avoided in partial traces, was
to deal with “invalid” configurations, not in O, (M (B%)). At location of “errors” (i.e. sites
where a pattern of the configuration is not a pattern of Hj(B%)), instead of applying the
simulating rule, we apply a default rule. However, once one of these rules is chosen, the cell
must keep using it forever in order to stay in the “right” subshift.

The possibility of initially altering some cells of the subshift simplifies the problem.
Indeed, it allows us to build borders in one round and remove all the “errors” in the initial
configuration. We say that two subshifts I' and X wltimately coincide if there exists some
generation J € N such that o/(T') = ¢/ (%).

Definition 4.1 (Ultimately traceable). A subshift ¥ is ultimately traceable if there is a CA
G such that 7¢ ultimately coincides with 3. If F and J can be computed effectively from
data D, we say that X is ultimately traceable effectively from D.

Note that any ultimately traceable subhift is a subsystem of some traceable subshift,
and by Proposition 2.2 contains some deterministic subshift, but which may not involve all
the letters of the alphabet.

Example 4.2. Consider the subshift ¥ = O,((001)*°). It is an SFT. It is thus polytraceable,
but not ultimately traceable since it does not admit any deterministic subshift.

The proof of the following proposition can be found in the online version.

162 J. CERVELLE, E. FORMENTI, AND P. GUILLON

Proposition 4.3 ([CFG10]). Let ¥ C AN be a totally polytraceable subshift which contains
some non-nilpotent deterministic subshift O¢, & : A — A. Then X is traceable effectively
from a polytracing CA and &.

With respect to Lemma 2.6 two additional hypotheses — first, that the subshift is totally
polytraceable and, second, that the deterministic subshift is not nilpotent — help get rid of
the complex CDD condition, and therefore to get a more precise result about ultimate traces.

Lemma 4.4. If Y is a polytraceable subshift, then there exists a subshift ¥ such that o(X) =

o(2), totally polytraceable effectively from a polytracing CA.

Proof. Let G be a CA polytracing . Let 1) : A¥ — B be a projection such that Yp = id;

it can be seen as the local rule of some CA W of radius 0. Define G = GV. By construction,
we can see that G|gz = G and that G((AM)%) = G(B?) c B%, i.e. since the second time
step the two traces coincide. [

Proposition 4.5. Let ¥ C AN be a polytraceable sofic subshift that contains some deter-
manistic subshift O¢, with & : A" — A" and A" C A. Then X ultimately coincides with some

subshift ¥ which is traceable effectively from a polytracing CA, ¥ and &.

Proof. Let G be a CA on B C AF polytracing ¥, k € N\ {0}. Should we replace ¥ by the
corresponding ¥ of Lemma 4.4, we can assume that B = A*.
o If ¥ is weakly nilpotent, then, by Theorem 2.3, it is nilpotent, i.e. there is some
J € N such that ¢/ (X) = {°0>}, property which can be effectively tested from 3;
any nilpotent CA has a trace which ultimately coincides.
o If O is not nilpotent, then Proposition 4.3 can be applied to build a CA whose trace
will be the polytrace of G.
e Suppose O is nilpotent, i.e. there is some J € N and some state 0 € A such that
¢7(A") = {0}; we define:
¢ A — A
a — 0.
Since the trace 75 is not weakly nilpotent, it contains some periodic infinite word
w™, withw € AT\0T = AT\ ¢'(A)". Hence, we can apply Lemma 2.6 to build a CA
G : AZ — A” such that e =7c UO¢r. As aresult, o(75) = a(ﬁg)u{ooooo} = 0(796;).
[

Corollary 4.6. Any SF'T containing some deterministic subshift and any uncountable sofic
subshift containing some deterministic subshift is ultimately traceable effectively from it.

Here is an example of subshift which is not traceable, but ultimately traceable.

Example 4.7 ([CFGO07]|). The subshift ¥ = {0°,(01)°°,(10)>°} is an SFT and contains
some deterministic subshift, but is not traceable.

The previous corollary is not an equivalence: there are countable sofic ultimately trace-
able subshifts which are not SFT.

Example 4.8 (|[CFGO07]). The subshift (0*1 + 1*)0° is sofic, numerable, of infinite type,
but traceable.

ULTIMATE TRACES OF CELLULAR AUTOMATA 163

The study of the ultimate trace of some CA F is related to that of the limit trace,
that is the set (o o’ (7r) of traces of configurations which can appear arbitrarily late. In
particular, we can see that a surjective subshift which ultimately coincides with the trace of
some CA is its limit trace. If it is sofic, the converse is true.

The bitrace of some CA F' is the set of its “biorbits™

Th = {(xg)jeZ‘Vj € Z,2) € A% and F(27) = 271! }

We can see that it is the twosided subshift with the same language than the limit trace. As
a consequence, we get the following.

Corollary 4.9. Any onesided surjective subshift containing some deterministic subshift
which is either of finite type or uncountable sofic is the limit trace of some stable CA.
Any twosided subshift containing some deterministic subshift which is either of finite type or
uncountable sofic is the bitrace of some stable CA.

5. Undecidability

Let F a CA of diameter d, anchor m, local rule f on alphabet A. A state 0 € A is
0-spreading if d > 1 and for all u € A? such that 0 C u, we have f(u) = 0. The CA F is
spreading if it is s-spreading for some s € A.

The CA F is 0-nilpotent (or simply nilpotent) if there exists a J > 0 such that F'/(A%) =
(0. The proof technique developed in [Kar92| allows to prove the following.

Theorem 5.1. The problem whether a spreading CA F' is nilpotent is undecidable.

In the sequel, we use the spreading state to control the evolution of another CA, gener-
alizing the construction used in [CGOT7].

Consider two CA Fy and F» of local rules f; and fy on (disjoint) alphabets A; and A,.
Without loss of generality, assume that they have the same diameter d and anchor m. Let
A= A;UAy and p: A — A; a projection such that ¢4, =id. Let N and N3 be two CA
with the same diameter d and anchor m, local rules n, no, and alphabets B and By C B,
with 0 € By being spreading for Ny. We build the CA H of same diameter d and anchor m,
alphabet A x B and local rule:

(AxB)Y — AxB
B iy | ((@hma®) e A andbe (B, (0D
v mmsrsdmm (f1op(a),n(b)) otherwise .

Starting from a configuration in (A x Bo)%, the CA simulates independently F5 and Ny
(first part of the rule) until one 0 appears; at that moment they both change their rules; this
change can happen only once for each cell, since from then the letters of the left component
remain in Aj; hence the two components simulate F; and N respectively (second part).

The following notions and lemma will help us understand the dynamics of this CA. A
set U C A*, with k € N\ {0} is spreading if F([U]1) C [U]o N[U]y or F([U]o) C [U]o N [U]s.
If Fis a CA on alphabet A and A’ C A, then we say that F is (globally) A’-mortal if
Vo e AZ,3i € 7,35 € N, Fi(z); € A'.

Lemma 5.2. If F' is a CA on alphabet A and A" C A is spreading, then F is A'-mortal if
and only if 3J € N.Vx € AZ,Yi € Z,¥j > J, Fi(x); € A'.

164 J. CERVELLE, E. FORMENTI, AND P. GUILLON

Proof. Suppose F is A’-mortal. By compacity, there is some J € N and some radius I € N
such that Vo € A% 3i € [-I,1],F/(z); € A". If A’ is left-spreading, we obtain thanks to
a trivial recurrence, Vo € A% F/+2I(z)_; € A’. Thanks to uniformity and shift-invariance,
we obtain the stated result. The right-spreading case is symetric. |

Lemma 5.3.

e If Ny is nilpotent, then there is some J € N such that mo(H” ((A x B)%)) C A% and
then, on H?((A x B)%), H behaves like Fy x N.
e Otherwise, there is a subshift A C B2Z such that mg o H|A§X/1 = Fyomy.

Proof. e Suppose N is nilpotent. From the definition of H, no orbit implies always
the first part of the rule: H is A; x B-mortal. Moreover we can see that Ay x B
is spreading for H. Thanks to Lemma 5.2, H remains ultimately on the alphabet
A1 X B.

e Otherwise, there exists, thanks to Lemma 5.2, some configuration = € B2Z such that
Vi € Z,Vj € N,Nj(z); # 0; the subshift A = O,(On(x)) is such that AZ x A is
H-invariant and its first column is F5. n

Since they are reduced to the nilpotency of the spreading CA Na, the two cases presented
are recursively inseparable, provided that they are disjoint.

Properties of ultimate polytraces. As for the conditions of traceability, polytraces represent
here a useful intermediary tool.

Let G a CA on alphabet {0,1} and N a CA on alphabet {0, 1} of radius 0 and locale rule
€:{0,1} — {0,1} such that O¢ C 7. We build the alphabets A; = {(a,a,b)|a,b € {0,1} }
and Ay = {0,1} \ A1, as well as the CA F1 = (N x N X G)|4,, Fo = (0 x 0 x G)|4,. We
can apply Lemma 5.3 to the CA H built as above from Fj, Fb, N, and any 0-spreading CA
Ny on alphabet {0, 1}.

The product is here composed of four layers. The fourth one controls the whole behavior
thanks to its spreading state 0. The third one simulates G' independently. When the two
first ones are distinct, they simulate full shifts (whose trace is {0,1}Y) that hide the trace
of G. As soon as some 0 appears in the last layer, they stop, unify and then apply &, which
is contained in 7¢.

In the end of the section, we consider that H is built from G, N and Ns, the CA F}
and Fy being defined as above.

Lemma 5.4.
e [f Ny is nilpotent, then 7?H ultimately coincides with T¢.
o Otherwise, 7= {0,1}Y.

Proof.

e Thanks to Lemma 5.3, if Ny is nilpotent, then the first three components of H and
(N x N x ()4, ultimately coincide, the trace of the last component being ultimately
included in 7. Considering that the polytrace of (N x N x ()4, is 7¢ U Ty and
that, by hypothesis, 7y C 7g the polytrace of H ultimately coincides with 7.

e Otherwise, there exists a subshift A such that the partial CA H |AZx A admits as first

three projections (o x o X G)‘A% . The first projection of the trace is {0, 1}, since for

any infinite word a, there is another word b distinct in every cell (Vi € N, a; # b;);
hence the trace 7y contains and therefore is {0, 1}. (]

ULTIMATE TRACES OF CELLULAR AUTOMATA 165

Properties of traces. As in the previous section, we are now going to simulate CA on alpha-
bets with several components to transform the result on polytraces into a result on traces.

Lemma 5.5. Let G a non-nilpotent onesided CA whose trace is not {0,1}N. The set of CA
on alphabet {0,1} whose trace is {0,1} is recursively inseparable from the set of CA on
alphabet {0,1} whose trace ultimately coincides with 1.

Proof. Let Ny a onesided 0-spreading CA.

e Suppose that the trace 7 contains some non-nilpotent deterministic subshift O,
with £ : {0,1} — {0,1}. € can be seen as the local rule of the CA N. Build CA H as
before. From Proposition 4.3, H can be transformed into some CA F on alphabet
{0,1} such that 75 =Th.

e If the trace 7 does not contain any non-nilpotent deterministic subshift, then, as
it is still non-nilpotent, it contains some periodic infinite word w*>, w € {0,1}*,
w ¢ 0*. We can define the null CA N = 0 on {0, 1} of local rule ¢ : a + 0 and
define H as before. Remark that w® and 0°° are in the trace of H, hence we can

apply Lemma 2.6 to build a CA F on alphabet {0,1} such that 7p =Ty.

In both cases, Lemma 5.4 gives that if Ny is O-nilpotent, then 7p ultimately coincides with
76, otherwise 7 = {0,1}. As F is computable from G, were the two cases separable,
Theorem 5.1 would be contradicted. [

From the remark that some CA traces are not equal to the full shift, we can see that
this behavior is undecidable. But the previous lemma also infers other nontrivial properties
of traces.

A property P over subshifts is stable by ultimate coincidence if for any subshifts 3 and
I" which ultimately coincide, we have ¥ € P <1 € P.

Theorem 5.6. Let P be a property over subshifts which:

(1) is satisfied by the trace subshift of some CA over alphabet {0,1}, but not all;
(2) is stable by ultimate coincidence.

Then, the problem

Instance: a CA G on alphabet {0,1}.
Question: does 7 satisfy property P ¢

1s undecidable.

Proof. Let P be such a property and assume that {0, 1} does not satisfy P, should we take
the complement. If P is only satisfied by nilpotent subshifts, then thanks to stability by
ultimate coincidence, it is equivalent either to O-nilpotency, to 1-nilpotency or to nilpotency;,
which are all undecidable by Theorem 5.1. Otherwise, P is satisfied by the trace 7g of some
non-nilpotent CA G. Would an algorithm decide P, it would allow to separate the trace
¢ to {0,1} among traces over alphabet {0,1} up to ultimate coincidence, contradicting
Lemma 5.5.]

This result includes in particular the so-called “nilpotent-stable” properties defined in
[CGOT7], such as fullness, finiteness, ultimate periodicity, soficness, finite type, inclusion of
a particular word as a factor. It also includes nilpotency, as well as all properties of the
trace of the limit system ([, F7(A%), F) of CA F, as stated in [Gui08]. Moreover, it can
be easily adapted to larger traces, i.e. taking the states of a central group of cells of each

166 J. CERVELLE, E. FORMENTI, AND P. GUILLON

configuration. We can also see that this theorem implies the undecidability of all properties
of any line projection of two-dimensional SF'T (tilings respecting local constraints).

6. Conclusions

In our study of CA traces, we have reached two kinds of important results. On the one
hand, we provided sufficient conditions for a subshift to be a polytrace, a trace, a partial
trace, an ultimate trace. On the other hand, we proved the undecidability of nearly all
properties over ultimate traces. Going beyond undecidability, when it is clear that the trace
has been generated by CA, it would be interesting to study which ones, and with which
minimal radius.

Remark that the contructions used in the paper build CA with a very large radius.
It would be interesting to study the traces produced by cellular automata of a given fixed
radius. This is not a so great limitation in complexity, since elementary CA (binary al-
phabet, radius 1) already present rich different behaviors. In particular, a deeper study of
the so-called “canonical factors”, i.e. traces which width is the radius of the CA, could be
fundamental to fully understand this notion.

Another interesting research direction consists in trying to adapt or find some refinement
of Kurka’s language classification ([Kiar97]) to the case of traces or ultimate traces. This
would provide an interesting link between the complexity of the dynamics of CA and the
(language) complexity of its traces.

References

[CFGO7] Julien Cervelle, Enrico Formenti, and Pierre Guillon. Sofic trace of a cellular automaton. In S. Barry
Cooper, Benedikt Lowe, and Andrea Sorbi, editors, Computation and Logic in the Real World,
3" Conference on Computability in Europe (CiE07), volume 4497 of Lecture Notes in Computer
Science, pages 152-161, Siena, Italy, June 2007. Springer-Verlag.

[CFG10] Julien Cervelle, Enrico Formenti, and Pierre Guillon. Ultimate trace of cellular automata. Technical
report, http://arxiv.org/abs/1001.0251, January 2010.

[CGO7] Julien Cervelle and Pierre Guillon. Towards a Rice theorem on traces of cellular automata. In
Ludek Kuéera and Antonin Kudera, editors, 32"¢ International Symposium on the Mathematical
Foundations of Computer Science, volume 4708 of LNCS, pages 310-319, éesky Krumlov, Czech
Republic, august 2007. Springer-Verlag.

[GRO8] Pierre Guillon and Gaétan Richard. Nilpotency and limit sets of cellular automata. In Edward
Ochmanski and Jerzy Tyszkiewicz, editors, 33" International Symposium on the Mathematical
Foundations of Computer Science (MFCS’08), volume 5162 of LNCS, pages 375-386, Torun,
Poland, august 2008. Springer-Verlag.

[Gui08] Pierre Guillon. Automates cellulaires : dynamiques, simulations, traces. PhD thesis, Université
Paris-Est, November 2008.

[Hed69] Gustav Arnold Hedlund. Endomorphism and automorphism of the shift dynamical system. Math.
Sys. Theory, 3:320-375, 1969.

[Kar92] Jarkko Kari. The nilpotency problem of one-dimensional cellular automata. SIAM J. on Computing,
21(3):571-586, 1992.

[Kir97] Petr Kirka. Languages, equicontinuity and attractors in cellular automata. Erg. Th. & Dyn. Sys.,
17:417-433, 1997.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 167-178
www.stacs-conf.org

TWO-PHASE ALGORITHMS FOR THE PARAMETRIC SHORTEST PATH PROBL EM

SOURAV CHAKRABORTY'! AND ELDAR FISCHER? AND ODED LACHISH?* AND RAPHAEL YUSTER*

1 CWI, Amsterdam, Netherlands
E-mail addresssour av. chakr aborty@wi . nl

2 Department of Computer Science, Technion, Haifa 32000, Israel
E-mail addressel dar @s. t echni on. ac. il

3 Centre for Discrete Mathematics and its Applications, University of Warwick , Coventry, UK
E-mail addressoded@lcs. war wi ck. ac. uk

4 Department of Mathematics, University of Haifa, Haifa 31905, Israel
E-mail addressr aphy @rat h. hai fa. ac. i |

ABSTRACT. A parametric weighted grapls a graph whose edges are labeled with continuous real
functions of a single common variable. For any instantiation of the variable, one obtains a standard
edge-weighted graph. Parametric weighted graph problems are generalizations of weighted graph
problems, and arise in various natural scenarios. Parametric weighted graph algorithms consist of
two phases. Apreprocessing phasehose input is a parametric weighted graph, and whose output

is a data structure, the advice, that is later used byrtantiation phasewhere a specific value for

the variable is given. The instantiation phase outputs the solution to the (standard) weighted graph
problem that arises from the instantiation. The goal is to have the running time of the instantiation
phase supersede the running time of any algorithm that solves the weighted graph problem from
scratch, by taking advantage of the advice.

In this paper we construct several parametric algorithms for the shortest path problem. For the case
of linear function weights we present an algorithm for the single source shortest path problem. Its
preprocessing phase runs(ﬁW‘*) time, while its instantiation phase runs in oy E + V' log V')
time. The fastest standard algorithm for single source shortest path rr¥if) time. For the case
of weight functions defined by degréeolynomials, we present an algorithm with quasi-polynomial
preprocessing tim@ (1 (1 +les f(d)los V') and instantiation time only (V). In fact, for any pair
of verticesu, v, the instantiation phase computes the distance faidimv in only O(log? V) time.

Finally, for linear function weights, we present a randomized algorithm whose preprocessing time is
O(V3*®) and so that for any pair of vertices v and any instantiation variable, the instantiation phase
computes, ir0(1) time, a length of a path from to v that is at most (additively) larger than the

length of a shortest path. In particular, an all-pairs shortest path solution, up to an additive constant
error, can be computed i@ (V?) time.

1998 ACM Subject Classificatiorf:2.3.

Key words and phrasesParametric Algorithms, Shortest path problem.

Part of the research done when the first author was a postdoc in Technion.

For the second author research was supported by an ERC-2007-StG grant number 202405 and by an ISF grant 1011/06.

Third author was supported in part by EPSRC award EP/G064679/1 and by the Centre for Discrete Mathematics and
its Applications (DIMAP), EPSRC award EP/D063191/1.

SYMPOSIUM
LV" ON THEORETICAL

) Y =) aspecs
4) .

S" S%F[ESTPUT[R @© S. Chakraborty, E. Fischer, O. Lachish, and R. Yuster

© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany

Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2452

168 S. CHAKRABORTY, E. FISCHER, O. LACHISH, AND R. YUSTER

1. Introduction

In networking or telecommunications the search for the minh-delay path (that is the short-
est path between two points) is always on. The cost on eaah dug is the time taken for a signal
to travel between two adjacent nodes of the network, is dtémnction of real time. Hence the
shortest path between any two nodes changes with time. @$eame can run a shortest path al-
gorithm every time a signal has to be sent, but usually sotioe kmowledge of the network graph
is given in advance, such as the structure of the networkhgaad the cost functions on each edge
(with time as a variable).

How can one benefit from this extra information? One plaesibhy is to preprocess the
initial information and store the preprocessed informati@very time the rest of the input is given,
using the preprocessed information, one can solve the @gatiion problem faster than solving the
problem from scratch. Even if the preprocessing step isresipe one would benefit by saving
precious time whenever the optimal solution has to be coetpuhlso, if the same preprocessed
information is used multiple times then the total amountesiources used will be less in the long
run.

Similar phenomena can be observed in various other conubiabbptimization problems that
arise in practice; that is, a part of the input does not chamgfe time and is known in advance.
However, many times it is hard to make use of this extra infdrom.

In this paper we consider only those problems where the winplat is a weighted graph.
We assume that the graph structure and some knowledge of Heweights on the edges are
generated are known in advance. We call thisftivetion-weighted grapk- it is a graph whose
edges are labeled with continuous real functions. Wherhallftinctions are univariate (and all
have the same variable), the graph is callgdiametric weighted graphn other words, the graph
isG = (V,E,W) whereW : E — F andF is the space of all real continuous functions with
the variablex. If G is a parametric weighted graph, ande R is any real number, the&'(r)
is the standard weighted graph where the weight of an edgedefined to bgW (e))(r). We
say thatG(r) is aninstantiationof G, since the variable: in each function is instantiated by the
valuer. Parametric weighted graphs are therefore, a genericirsstaf infinitely many instances
of weighted graphs.

The idea is to use the generic instad¢® precompute some general generic informafigd),
such that for any given instantiati@®(r), we will be able to use the precomputed informatigt)
in order to speed up the time to solve the given probler&'on, faster than just solving the problem
on G(r) from scratch. Let us make this notion more precise.

A parametric weighted graph algorithrfor, for brevity, aparametric algorithm consists of
two phases. Apreprocessing phaserhose input is a parametric weighted gra@h and whose
output is a data structure (the advice) that is later usedhdinstantiation phasewhere a specific
value r for the variable is given. The instantiation phase outphes golution to the (standard)
weighted graph problem on the weighted graph). Naturally, the goal is to have the running
time of the instantiation phase significantly smaller thhe tunning time of any algorithm that
solves the weighted graph problem from scratch, by takinguataige of the advice constructed in
the preprocessing phase. Parametric algorithms are therevaluated by a pair of running times,
the preprocessing timand theinstantiation time

In this paper we show that parametric algorithms are beaéfior one of the most natural
combinatorial optimization problems: trahortest pathproblem in directed graphs. Recall that
given a directed real-weighted graghand two vertices, v of G, the distance from to v, denoted
by é(u, v), is the length of a shortest path franto v. Thesingle pairshortest path problem seeks to

TWO-PHASE ALGORITHMS FOR THE PARAMETRIC SHORTEST PATH PROBM 169

computei(u, v) and construct a shortest path franto v. Likewise, thesingle sourceshortest path
problem seeks to compute the distances and shortest pathsfgiven vertex to all other vertices,
and theall pairs version seeks to compute distances and shortest pathsdvealV@rdered pairs of
vertices. In some of our algorithms we forgo the calculatibthe path itself to achieve a shorter
instantiation time. In all those cases the algorithms caedsily modified to also output a shortest
path, in which case their instantiation time is the sum oftlime it takes to calculate the distance
and a time linear in the size of the path to be output.

Our first algorithm is a parametric algorithm for single smushortest path, in the case where
the weights ardinear functions. That is, each edgss labeled with a functiom.z + b. wherea,
andb,. are reals. Such linear parametrization has practical itapoe. Indeed, in many problems
the cost of an edge is composed from some constant term pkrsnavthich is a factor of some
commodity, whose cost varies (e.g. bank commissions, &a&sf vehicle maintenance costs, and so
on). Our parametric algorithm has preprocessing tiiie*) and instantiation timée(m +n logn)
(throughout this papet andm denote the number of vertices and edges of a graph, resglgltiv
We note that the fastest algorithm for the single sourcetssippath in real weighted directed graphs
requiresO(nm) time; the Bellman-Ford algorithm [2]. The idea of our preg@ssing stage is to
precompute some other linear functions, onvkeices so that for every instantiation, one can
quickly determine whethef (r) has a negative cycle and otherwise use these functions ¢&lyui
produce a reweighing of the graph so as to obtain only nortivegaeights similar to the weights
obtained by Johnson’s algorithm [12]. In other words,aveid the need to run the Bellman-Ford
algorithm in the instantiation phase. T@én4) time in the preprocessing phase comes from the use
of Megiddo’s[13] technique that we need in order to comphéelinear vertex functions.

Theorem 1.1. There exists a parametric algorithm for single source séstrpath in graphs weighted
by linear functions, whose preprocessing timeJig:*) and whose instantiation time @ (m +
nlogn).

Our next algorithm applies to a more general setting wheeewhights are polynomials of
degree at most. Furthermore, in this case our goal is to have the instamtigihase answering
distance queries between any two verticesublineartime. Notice first that if we allow exponential
preprocessing time, this goal can be easily achieved. $higtihard to see since the overall possible
number of shortest paths (whervaries over the reals) i©(n!), or from Fredman’s decision tree
for shortest paths whose height(%n2°) [8]. But can we settle fosub-exponentigbreprocessing
time and still be able to have sublinear instantiation tir@ef? next result achieves this goal.

Theorem 1.2. There exists a parametric algorithm for the single pair gket path problem in
graphs weighted by degrekpolynomials, whose preprocessing tim@ig:(©(1)+1og f(d)) logn) and
instantiation timeO (log?n), where f(d) is the time required to compute the intersection points

of two degreeal polynomials. The size of the advice that the preprocesdiggrithm produces is
O(n(0(1)+logd) logn).

The above result falls in the subject of sensitivity anawshere one is interested in studying
the effect on the optimal solution as the value of the parameitanges. We give a linear-time
(linear in the output size) algorithm that computes the kireppoints.

The practical and theoretical importance of shortest pathlpms lead several researchers to
consider fast algorithms that settle for an approximatatekbpath. For the general case (of real
weighted digraphs) most of the algorithms guarantee:-atretchfactor. Namely, they compute a
path whose length is at most (u, v). We mention here thél + ¢)-stretch algorithm of Zwick for

170 S. CHAKRABORTY, E. FISCHER, O. LACHISH, AND R. YUSTER

the all-pairs shortest path problem, that runé)(m“) time when the weights are non-negative reals
[18]. Herew < 2.376 is the matrix multiplication exponent [5].

Here we consider probabilistic additive-approximatiogoaithms, orsurplusalgorithms, that
work for linear weights which may have positive and negat®eies (as long as there is no negative
weight cycle). We say that a shortest path algorithm has-surplus if it computes paths whose
lengths are at most(u, v) 4+ €. We are unaware of any truly subcubic algorithm that guaesiin
e-surplus approximation, and which outperforms the fagieseral all-pairs shortest path algorithm
[4].

In the linear-parametric setting, it is easy to obtasurplus parametric algorithms whose pre-
processing time i€ (n?) time, and whose instantiation time, for any ordered painefrigd vertices
u, v is constant. It is assumed instantiations are taken fromedatarval I whose length is inde-
pendent ofn. Indeed, we can partitiod into O(n) subintervalsly, I, . .. of sizeO(1/n) each,
and solve, in cubic time (say, using [7]), the exact allpa@olution for any instantiation that is
an endpoint of two consecutive intervals. Then, givenary!l; = (a;,b;), we simply look at the
solution forb; and notice that we are (additively) off from the right answely by O(1). Standard
scaling arguments can make the surplus smaller ¢h8ut do we really need to sper@(n?) time
for preprocessing? In other words, can we invest (signifigatess thanO(n?*) time and still be
able to answer instantiated distance querie®{n) time? The following result gives a positive
answer to this question.

Theorem 1.3. Lete > 0, let [, 3] be any fixed interval and let be a fixed constant. Suppo&e

is a linear-parametric graph that has no negative weightiegan the intervala, 5], and for which
every edge weight, + zb. satisfiega.| < ~. There is a parametric randomized algorithm for the
e-surplus shortest path problem, whose preprocessing &rog:i?°) and whose instantiation time
is O(1) for a single pair, and henc®(n?) for all pairs.

We note that this algorithm works in the restricted addimmparison model. We also note
that given an ordered pair,v andr € [«, (], the algorithm outputs, i®(1) time, a weight of an
actual path fromu to v in G(r), and points to a linked list representing that path. Nalyridlone
wants to output the vertices of this path then the time far idiinear in the length of the path.

The rest of this paper is organized as follows. The next saioseshortly surveys related
research on parametric shortest path problems. In thedbrions following it we prove Theorems
1.1, 1.2 and 1.3. Section 5 contains some concluding renaaitk®pen problems.

1.1. Related research

Several researchers have considered parametric verdi@mosnbinatorial optimization prob-
lems. In particular function-weighted graphs (under ddfé names) have been extensively studied
in the subject of sensitivity analysis (see [11]) where thidy the effect on the optimal solution
as the parameter value changes.

Murty [14] showed that for parametric linear programminglgems the optimal solution
can change exponentially many times (exponential in thebmunof variables). Subsequently,
Carstensen [3] has shown that there are constructions fiehwite number of shortest path changes
while z varies over the reals is*(°2™) In fact, in her example each linear function is of the form
ae + xbe and botha, andb, are positive, and varies in[0, oc]. Carstensen also proved that this is
tight. In other words, for any linear-parametric graph thenber of changes in the shortest paths
is n@Uegn) A simpler proof was obtained by Nikolova et al. [16], thasaksupply am©(os")
time algorithm to compute the path breakpoints. Their meithowever, does not apply to the case

TWO-PHASE ALGORITHMS FOR THE PARAMETRIC SHORTEST PATH PROBM 171

where the functions are not linear, such as in the case oéddgrolynomials. Gusfield [10] also
gave a proof for the upper bound of the number of breakpointise linear function version of the
parametric shortest path problem, in addition to studyingmber of other parametric problems.

Karp and Orlin [15], and, later, Young, Tarjan, and Orlin JEbnsidered a special case of
the linear-parametric shortest path problem. In their ceaeh edge weight is either some fixed
constanb, or is of the formb, — x. Itis not too difficult to prove that for any given vertexwhenz
varies from—oo to the largest: for which G(x() has no negative weight cycle (possibly = o),
then there are at mogk(n?) distinct shortest path trees fromto all other vertices. Namely, for
eachr € [—oo, x| one of the trees in this family is a solution for single-s@ushortest path in
G(r). The results in [15, 17] cleverly and compactly computeladise trees, and the latter does it
in O(nm + n?logn) time.

2. Proof of Theorem 1.1
The proof of Theorem 1.1 follows from the following two lemsa

Lemma 2.1. Given alinear-weighted grapfy = (V, £, W), there existy, f € RU{—oo}U{+0o0}
s~uch thatG(r) has no negative cycles if and onlyif< » < /3. Moreovera and 3 can be found in
O(n*) time.
Lemma2.2. LetG = (V, E, W) be a linear-weighted graph. Also lat 5 € RU{—oo} U {400}
be such that at least one of them is finite and forcall> » > [the graphG(r) has no negative
cycle. Then for every vertexc V there exists a linear functioglLo"ﬁ] such that if the new weight
functionT”’ is given by

W' ((u,0)) = W ((u,0)) + gl — gl
then the new linear-weighted grajghi = (V, E, W') has the property that for any real < r» < 3
all the edges irG’(r) are non-negative. Moreover the functiqﬁg’m for all v € V can be found in
O(mn) time.

So given a linear-weighted grajgh we first use Lemma 2.1 to computeand. If at least one
[cv, 5]

of a and g is finite then using Lemma 2.2 we compute théinear functionsg, ', one for each
v e V. If a =—ooandf = 400, then using Lemma 2.2 we compute thelinear functionSgLa’O]

andgLO’m. These linear functions will be the advice that the prepsitgy algorithm produces. The

above lemmas guarantee us that the advice can be computee 'ﬂi(tn‘l), that is the preprocessing
time isO(n4).

Now when computing the single source shortest path problem ¥ertexv for the graphG(r)
our algorithm proceeds as follows:

(1) If r < aworr > (B output “—oco” as there exists a negative cycle (such instances are consid
ered invalid).

(2) If a« < r < B and at least one aof or j is finite then compute,, () for all w € V. Use
these to re-weight the edges in the graph as in Johnson’stalgd12]. If o« = —oc and
B = +oothenifr <0 computegLa’O] (r)forallu e Vandifr >0 computegLO’m (r) for
all u € V. Notice that after the reweighing we have an instancg’¢f).

(3) Use Dijkstra’s algorithm [6] to solve the single sourt®iest path problem i’ (r). Di-
jkstra’s algorithm applies sing@’(r) has no negative weight edges. The shortest paths tree
returned by Dijkstra’s algorithms applied 8 (r) is also the shortest paths treeditr). As

172 S. CHAKRABORTY, E. FISCHER, O. LACHISH, AND R. YUSTER

in Johnson'’s algorithm, we use the result®, v) of G'(r) to deducel(v,) in G(r) since,
by Lemma 2.2i(v,u) = d'(v,u) — gy(r) + gu (7).
The running time of the instantiation phase is dominatechbytinning time of Dijkstra’s algorithm
which isO(m + nlogn) [9].

2.1. Proof of Lemma 2.1

Since the weight on the edges of the gra&plare linear functions, we have that the weight of
any directed cycle in the graph is also a linear function.@gtCs, . . . , Cr be the set of all directed
cycles in the graph. The linear weight function of a cyClewill be denoted by wtC;). If wt(C;)
is not the constant function, then let be the real number for which the linear equatior{@?
evaluates to).

Let o and be defined as follows:

a =max {v; | wt(C;) has a positive sloge
8 = min {~; | wt(C;) has a negative slope

Note that if w{C;) has a positive slope thep = min, {wWt(C;)(x) > 0}. Thus for allx > ~;
the value of wtC;) evaluated at is non-negative. So by definition for all > « the value of the
wt(C;) is non-negative if the slope of W) is positive, and for any: < « there exists a cycl€’;
such that w¢C;) has positive slope and \;)(x) is negative. Similarly, for alk < g the value of
the wi(C;) is non-negative if the slope of ;) is negative and for any > [there exists a cycle
C; such that wtC;) has negative slope and ;) () is negative.

This proves the existence of and 5. There are, however, two bad cases that we wish to
exclude. Notice that itv > [this means that for any evaluation atthe resulting graph has a
negative weight cycle. The same holds if there is some cyrevhich wiC;) is constant and
negative. Let us now show how and S can be efficiently computed whenever these bad cases
do not hold. Indeedy is the solution to the following Linear Program (LP), whicasha feasible
solution if and only if the bad cases do not hold.

Minimize z under the constraints

Vi, Wt(C;) () > 0.

Thisis an LP on one variable, but the number of constraim$beaxponential. Using Megiddo’s[13]
technique for finding the minimum ratio cycles we can solve lihear-program irO(n* log n)
steps.

2.2. Proof of Lemma 2.2

Let o and 3 be the two numbers such that for all< r» < /3 the graphG(r) has no negative
cycles and at least one afand is finite.

First let us consider the case when batland g are finite. Recall that, given any number
Johnson'’s algorithm associates a weight functibn V' — R such that, for any edge:, v) € F,

Wiuw)(r) +h"(u) — h"(v) > 0.

TWO-PHASE ALGORITHMS FOR THE PARAMETRIC SHORTEST PATH PROBM 173

(Johnson’s algorithm computes this weight function by ragrthe Bellman-Ford algorithm over
G(r)). Define the weight functiop.®” as
i) = (U o e - (Y
This is actually the equation of the line joinirig, A (v)) and (8, A (v)) in R2.
Now we need to prove that for evety< r < (3 and for every(u,v) € V,
Wi (r) + 9577 (r) = gi(r) > 0.
Sincea < r < 3, one can write- = (1 —)« + 6 wherel > § > 0. Then for allv € V,
glBl(ry = (1 = 6)n® (v) + 6P (v) .
SinceW(,,,(r) is a linear function we can write

W(u,v) (T) = (1 - 5)W(u,v) (Oé) + 6W(u,v) (ﬁ) :
So after re-weighting the weight of the edge v) is
(1 =)Wy () + 6Wiy0) (B) + (1 — 6)A* (u) + 6B (u) — (1 — §)h* (v) — 6h° (v) .
Now this is non-negative as by the definition’af andh® we know that botiV ..y (B) + hP (u) —
hP(v) and Wiuw) (@) + h%(u) — h*(v) are non-negative.

We now consider the case when onecobr § is not finite. We will prove it for the case
where3 = 4oo. The casen = —oo follows similarly. Consider the simple weighted graph
G = (V, E,W4) where the weight functio®V, is defined as: if the weight of the edgas
W(e) = acx + b. thenWo(e) = a..

We run the Johnson’s algorithm on the gragh . Let h>°(v) denote the weight that Johnson’s
algorithm associates with the vertexThen define the weight functiqyia’oo] as

g (z) = h*(v) + (2 —)h™(v) .
We need to prove that for every < r and for every(u, v) € V,
Wi (r) 45> (1) =gl (r) = Wi, (r) 42 () 4 (r—a)h™ () =h* (v) = (r—a)h™® (v) > 0.

Letr = a + ¢ whered > 0. By the linearity ofillV’ we can writeW,, ,y(r) = W, (@) + da(y),
whereW,,) (1) =)" + bu,v)- SO the above inequality can be restated as
Wi (@) + bag,) + h*(u) + 0~ (u) — h*(v) — 6h>(v) > 0.

This now follows from the fact that both,, .y () + h%(u) — h*(v) anday) + h*°(u) — h*>(v)
are non-negative.
Since the running time of the reweighing part of Johnsorgor@thm takesO(mn) time, the

overall running time of computing the functioggy’ﬁ] is O(mn), as claimed.

174 S. CHAKRABORTY, E. FISCHER, O. LACHISH, AND R. YUSTER

3. Proof of Theorem 1.2

In this section we construct a parametric algorithm thatates the distanc&u, v) between
a given pair of vertices. If one is interested in the actudh paalizing this distance, then it can be
found with some extra book-keeping that we omit in the proof.

The processing algorithm will output the following advider any pair(u,v) € V x V the
advice consists of a set of+ 2 increasing real numbersco = by < by < -+ < by < by = 0
and an ordered set of degrégolynomialspg, p1, . . ., pt, such that for alb; < r < b;; the weight
of a shortest path it¥(r) from u to v is p;(r). Note that each, corresponds to the weight of a path
from u to v. Thus if we are interested in computing the exact path theneree to keep track of the
path corresponding to eagh

Givenr, the instantiation algorithm has to find theuch that); < » < b;;; and then output
pi(r). So the output algorithm runs in tin@(log t). To prove our result we need to show that for
any(u,v) € V x V we can find the advice in tim@(f(d)n)'°e™. In particular this will prove that
t = O(dn)"&™ and hence the result will follow.

Definition 3.1. A minBaseis a sequence of increasing real numbers = by < by < --- < by <
b.+1 = oo and an ordered set of degrégolynomialspg, p1, . . . , pt, such that for alb; < r < b;;

and allj # i, p;(r) < p;(r).

We call the sequence of real numbersltheaks We call each intervdb;, b; 1] thei-th interval
of the minBase and the polynomig] the i-th polynomial. Thesizeof the minBase ig.

The final advice that the preprocessing algorithm produsasiinBase for every paji, v) €
V x V where thei-th polynomial has the property thaf(r) is the distance from to v in G(r) for
eachb; <r <b;i1.

Definition 3.2. A minBase’(u,v) is a minBase corresponding to the ordered pair, where the
i-th polynomialp; has the property that for € [b;, b;11], p;(r) is the length of a shortest path from
wtov in G(r), that is taken among all paths that use at méstdges.

A minBase'(u,w,v) is a minBase corresponding to the ordered triplew, v) where thei-th
polynomial p; has the property that for eaehe [b;,b;+1], pi(r) is the sum of the lengths of a
shortest path fromx to w in G(r), among all paths that use at m@$tedges, and a shortest path
fromw tov in G(r), among all paths that use at mastedges.

Note that in both of the above definitions some of the polyradsntan betoco or —oo.

Definition 3.3. If B, and B, are two minBases (not necessarily of the same size), witmpatials
p} andp?, we say that another minBase with breaksind polynomialgj, is min(B; + B,) if the
following holds.

(1) For allk there exist, j such thap}, = p; + p?, and

(2) Forb, <r < bj,,, and for alli, j we havepj,(r) < p}(r) + p3(r).
Definition 3.4. If By, Bo, ..., Bs ares minBases (not necessarily of the same size), with polynomi-
alsp} ,p?,...,pi , another minBase with break§ and polynomialg), is min{Bi, By, ..., B}
if the following holds.

(1) For allk there exisy such thap) = p?q, and

(2) Forb), <r <, andforalll <g < sand alli;, we havep) (r) < p{ (r).

Note that using the above definition we can write the follaywiwo equations:

minBase™ (u,v) = mi‘r} {minBaseg(u,w,v)} . (3.1)
we

TWO-PHASE ALGORITHMS FOR THE PARAMETRIC SHORTEST PATH PROBM 175

minBase®(u, w,v) = min (minBaseg(u, w) + minBase®(w, v)) . (3.2)

The following claim will prove the result. The proof of theagh is omitted due to lack of
space.

Claim 3.5. If B; and B, are two minBases of sizeés andt, respectively, then
(@) min(B; + Bs) can be computed from¥; and B, in time O(t1 + t2).
(b) min{Bj, B2} can be computed fron8; and B; in time O(f(d)(¢t1 + t2)), wheref(d) is
the time required to compute the intersection points of tegrded polynomials. The size
of min{Bl, BQ} is O(d(tl + tg)).

In order to computenin{ By, ..., By} one recursively compute¥ = min{By, ..., B,»} and
Y = min{B,/211,- .., Bs} and then takemin{ X, Y'}.

If there are no negative cycles, then the advice that thantistion algorithm needs from
the preprocessing algorithm consistsrmefnBase'°8"1 (u, v). To deal with negative cycles, both
minBasel'°8"l (u, v) and minBase'°8"1*1 (4, v) are produced, and the instantiation algorithm
compares them. if they are not equal, then the correct oigptio.

Also note thatminBase(u, v) is the trivial minBase where the breaks arec and+oo and
the polynomial is weightV ((u, v)) associated to the edge, v) if (u,v) € F and+oc otherwise.

If the size ofminBase’(u, v) is sy, then by (3.1), (3.2), and by Claim 3.5 the time to compute
minBase ™ (u,v) is O(f(d))°¢"s, and the size ofninBase'™! (u,v) is O(d)'°8"s,. Thus one
can compute the advice farandv in time

(O(f(d))logn)logn — O(n(o(l)-i-logf(d))logn) ’
and the length of the advice string@gn(©()+logd)logn)

4. Proof of Theorem 1.3

Given the linear-weighted gragh = (V, E, W), our preprocessing phase begins by verifying
that for allr € [«, 3], G(r) has no negative weight cycles. From the proof of Lemma 2.2 wosvk
that this holds if and only if botliz(«) andG(3) have no negative weight cycles. This, in turn, can
be verified inO(mn) time using the Bellman-Ford algorithm. We may now assumedha) has
no negative cycles for anye [a, 5]. Moreover, since our preprocessing algorithm will solvargé

set of shortest path problems, each of them on a specifictietian of G, we will first compute the

reweighing function@La’ﬁ] of Lemma 2.2 which will enable us to apply, in some cases,rialgos

that assume nonnegative edge weights. Recall that by Len#ntn2 function@?’m forallv e V
are computed il© (mn) time.

The advice constructed by the preprocessing phase is cechpbdsvo distinct parts, which we
respectively call therude-shortadvice and theefined-longadvice. We now describe each of them.
For each edge € F, the weight is a linear functiom. = a. + xzb.. SetK = 8(5 —

a) max, |ae|. Let Ng = [Ky/nlnn/e| and letN; = [Kn/e|. We defineNy + 1 and N, + 1 points
in o, 8] and solve certain variants of shortest path problems itiatad in these points.

Consider first the case of splittifg, 5] into Ny intervals. Letoy = (5 — «) /Ny and consider
the pointsa + ipg for i = 0,..., No. The crude-short part of the preprocessing algorithm solve
Ny + 1 limited all-pairs shortest path problems@{(« +ipg) fori =0, ..., Ny. Sett = 4\/nlnn,
and letd; (u, v) denote the length of a shortest path fraerto v in G(« + ipg) that is chosen among
all paths containing at mostvertices (possiblyl;(u,v) = oo if no such path exists). Notice that

176 S. CHAKRABORTY, E. FISCHER, O. LACHISH, AND R. YUSTER

d;(u,v) is not necessarily the distance framo v in G(a + ipg), since the latter may require more
thant vertices. It is straightforward to compute shortest patmitéd to at most: vertices (for
anyl < k < n) in a real-weighted directed graph withvertices in timeO(n? log k) time, by

the repeated squaring technique. In fact, they can be caupntO(n?) time (saving thdog k&
factor) using the method from [1], pp. 204—206. This aldonitalso constructs the predecessor data
structure that represents the actual paths. It followsftivatach ordered pair of vertices v and
foreachi = 0, ..., Ny, we can computé;(u, v) and a patty; (u, v) yielding d; (u, v) in G(a+ipg)

in O(n3|Np|) time which isO(n?51Inn) . We also maintain, at no additional cost, linear functions
fi(u,v) which sum the linear functions of the edgegfu, v). Note also that ifi;(u, v) = oo then
pi(u,v) and f;(u,v) are undefined.

Consider next the case of splittifig, 5] into NV} intervals. Letp; = (8 — «)/N; and consider
the pointsa + ip; fori = 0,..., N;. However, unlike the crude-short part, the refined-long par
of the preprocessing algorithm cannot afford to solve aipaills shortest path algorithm for each
G(a+1ip1), as the overall running time will be too large. Instead, wedamly select a sef C V
of (at most)/n vertices. H is constructed by performing/n independent trials, where in each
trial, one vertex of is chosen tad uniformly at random (notice that since the same vertex can be
selected tad more than oncéH| < /n). For eachh € H and for each = 0, ..., N;, we solve
the single source shortest path problenGitn 4 ip;) from h, and also (by reversing the edges)
solve the single-destination shortest pattvard . Notice that by using the reweighing functions

gz[,a’ﬁ] we can solve all of these single source problems using Dglsshlgorithm. So, for alh € H
andi = 0, ..., Ny the overall running time is

O(IN1||H|(m 4+ nlogn)) = O(n'*m 4+ n*>logn) = O(n>?).

We therefore obtain, for ea¢he H and for eachi = 0,..., N1, a shortest path trég (h), together
with distancesi} (h,v) from h to each other vertex € V, which is the distance from to v in
G(a + ip1). We also maintain the functionf"(h,v) that sum the linear equations on the path
in 77 (h) from h to v. Likewise, we obtain a “reversed” shortest path tt§€h), together with
distances!; (v, h) from eachv € V to h, which is the distance fromto . in G(a+ip;). Similarly,
we maintain the functiong;*(v, h) that sum the linear equations on the patt$jiiz) from v to h.

Finally, for each ordered pair of verticesv and for each = 0, ..., N; we compute a vertex
huv: € H which attainsming,e g df (u, h) + df (h,u) . Notice that the time to construct tltg, , ;
for all ordered pairs:, v and for alli = 0, ..., Ny is O(n3®). This concludes the description of the
preprocessing algorithm. Its overall runtime is th2g23-> In n).

We now describe the instantiation phase. Given € V andr € [«, 3] we proceed as follows.
Let be the index for which the number of the fourH ip is closest ta. As we have the advice
filu,v), we letwy = f;(u,v)(r) (recall thatf;(u, v) is a function). Likewise, lej be the index for
which the number of the formx 4 jp, is closest to-. As we have the advicé = h,, j, we let
wy = f7(u, h)(r)+ £} (h,u)(r). Finally, our answer is = min{wy, w1 }. Clearly, the instantiation
time isO(1). Notice that if we also wish to output a path of weighin G(r) we can easily do so
by using eithep;(u, v), in the case where = wy or usingS; (h) and7’; (h) (we take the path from
u to hin S7(h) and concatenate it with the path frdnto v in T7(h)) in the case where = w.

It remains to show that, with very high probability, the riésuthat we obtain from the instanti-
ation phase is at mostarger than the distance fromto v in G(r). For this purpose, we first need
to prove that the random sét possesses some “hitting set” properties, with very higtaiodity.

For every pair of vertices andv and parameter, letp,, ,, , be a shortest path () among
all simple paths fromu to v containing at least = 4,/nInn vertices (ifG is strongly connected

TWO-PHASE ALGORITHMS FOR THE PARAMETRIC SHORTEST PATH PROBM 177

then such a path always exist, and otherwise we can justpufor all u, v pairs for which no such
path exists). The following simple lemma is used in an argutrsgmilar to one used in [18].

Lemma 4.1. For fixedu, v andr, with probability at leastl — o(1/n?) the pathp,, ,, contains a
vertex fromH .

Proof. Indeed, the path from, , , by its definition has at leadt,/n Inn vertices. The probability
that all of the,/n independent selections 1@ failed to choose a vertex from this path is therefore

at most e
4y/nl " 1
(1—m> < e dln o — = o(1/n?) .
n

n
|

Let us return to the proof of Theorem 1.3. Suppose that thardie fromu to v in G(r) is 4.
We will prove that with probabilityl — o(1), H is such that for every, v andr we havez < § + ¢
(clearly z > § as it is the precise length of some pathGiir) from « to v). Assume first that
there is a pathy of lengthd in G(r) that uses less thah/n In n edges. Consider the length @fn
G(a+1ipg). When going fronr to o + ipy, each edge with weighta.z + b. changed its length by
at most|a.|po. By the definition ofK’, this is at mospy K /(8(5 — «)). Thus,p changed its weight
by at most

(4y/n1nn) 'poﬁ = (4%11171)% < %

It follows that the length op in G(a +ipg) is less tham + €/2. But p;(u, v) is a shortest path from
utowvin G(a+ipg) of all the paths that contain at mdstertices. In particulaw; (u,v) < d+¢€/2.
Consider the length of;(u,v) in G(r). The same argument shows that the length;6f, v) in
G(r) changed by at most/2. Butwy = f;(u,v)(r) is that weight, and hencey, < § + €. In
particular,z < § + .

Assume next that every path of lengtin G(r) uses at least,/n Inn edges. Lep be one such
path. When going from to ' = « + jp1, each edge with weighta.z + b. changed its length by
at most|a.|p1. By the definition ofK, this is at mosp; K /(8(5 — «)). Thus,p changed its weight

by at most
K K €

Ty B A
In particular, the length op,, , ,» is not more than the length ofin G(r'), which, in turn, is at
most§ + €/8. By Lemma 4.1, with probability — o(1/n3), some vertex of, appears o, , .
Moreover, by the union bound, with probability- o(1) all paths of the type,, ,,,» (remember that
r’ can hold one ofD(n) possible values) are thus covered by theBetLet ' be a vertex off
appearing irp, , ,». We therefore have; (u, h') + d;(h',v) < 6 + ¢/8. Sinceh = hy,, ; is taken
as the vertex which minimizes these sums, we have, in p&tjef (u, h) + dj(h,v) < § +€/8.
Consider the patl in G(a + jpi1) realizingd; (u, h) + d;(h,v). The same argument shows that
the length ofy in G(r) changed by at mos/8. Butw; = f7(u, h)(r) + f; (h,v)(r) is that weight,
and hencev; < ¢ + €¢/4. In particular,z < § + €/4.

5. Concluding remarks

We have constructed several parametric shortest pathithlgsr whose common feature is that
they preprocess the generic instance and produce an abeicertables particular instantiations to
be solved faster than running the standard weighted distalgorithm from scratch. It would be

178 S. CHAKRABORTY, E. FISCHER, O. LACHISH, AND R. YUSTER

of interest to improve upon any of these algorithms, eithethiir preprocessing time or in their
instantiation time, or both.

Perhaps the most challenging open problem is to improve riggrq@cessing time of Theorem
1.2 to a polynomial one, or, alternatively, prove an hardmesult for this task. Perhaps less ambi-
tious is the preprocessing time in Theorem 1.1.

Finally, parametric algorithms are of practical importarfior other combinatorial optimization
problems as well. It would be interesting to find applicasiovhere, indeed, a parametric algorithm
can be truly beneficial, as it is in the case of shortest paihlpms.

Acknowledgment

We thank Oren Weimann and Shay Mozes for useful comments.

References

[1] A. V. Aho, J. E. Hopcroft, and J. UllmariThe Design and Analysis of Computer Algorithmsldison-Wesley
Longman Publishing Co., Boston, MA, 1974.
[2] R. Bellman,On a routing problemQuarterly of Applied Mathematics 16 (1958), 87-90.
[3] P.Carstenseri;he complexity of some problems in parametric linear andipatorial programmingPh.D. Thesis,
Mathematics Dept., U. of Michigan, Ann Arbor, Mich., 1983.
[4] T. M. Chan, More Algorithms for All-Pairs Shortest Paths in Weighteda@hs Proceedings of th89t" ACM
Symposium on Theory of Computing (STOC), ACM Press (20090-598.
[5] D. Coppersmith and S. Winograatrix multiplication via arithmetic progressiongournal of Symbolic Compu-
tation 9 (1990), 251-280.
[6] E. W. Dijkstra,A note on two problems in connection with grapNsimerische Mathematik 1 (1959), 269-271.
[7] R. W. Floyd,Algorithm 97: shortest pat@ommunications of the ACM 5 (1962), 345.
[8] M. L. FredmanNew bounds on the complexity of the shortest path prof#AM Journal on Computing 5 (1976),
49-60.
[9] M. L. Fredman and R. E. Tarjarkibonacci heaps and their uses in improved network optitiimaalgorithms
Journal of the ACM 34 (1987), 596—615.
[10] D. GusfieldParametric combinatorial computing and a problem of pragranodule distributionJournal of the
ACM 30(3) (1983), 551-563.
[11] C.P.M.van Hoesel, A. W. J. Kolen, A. H. G. Rinooy and AMR.WagelmansSensitivity analysis in combinatorial
optimization: a bibliographyReport 8944/A, Econometric Institute, Erasmus UnivgRivtterdam, (1989).
[12] D. B. JohnsonEfficient algorithms for shortest paths in sparse grgpfmirnal of the ACM 24 (1977), 1-13.
[13] N. Megiddo,Combinatorial Optimization with Rational Objective Fuincts Mathematics of Operation Research
Vol.4 No.4 (1979), 414-424.
[14] K. Murty. Computational complexity of parametric linear programmiath. Programming-19, (1980) 213-219.
[15] R. M. Karp and J. B. OrlinParametric shortest path algorithms for with an applicatito cycle staffingDiscrete
Applied Mathematics 3 (1981), 37—45.
[16] E. Nikolova, J. A. Kelner, M. Brand and M. Mitzenmach8tpchastic Shortest Paths Via Quasi-convex Maximiza-
tion, Proceedings of the4*" Annual European Symposium on Algorithms (ESA), LNCS (20862-563.
[17] N. E. Young, R. E. Tarjan and J. B. Orlifraster parametric shortest path and minimum-balance athors
Networks 21 (1991), 205-221.
[18] U. Zwick, All-pairs shortest paths using bridging sets and rectaaguhatrix multiplication Journal of the ACM
49 (2002), 289-317.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit ht t p: / / cr eati veconmons. or g/ | i censes/ by- nd/ 3.0/ .

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 179-190
www.stacs-conf.org

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS
OVER A TIME-BASED SLIDING WINDOW
HO-LEUNG CHAN'! AND TAK-WAH LAM! AND LAP-KEI LEE? AND HING-FUNG TING !

! Department of Computer Science, University of Hong Kong, Hong Kong
E-mail address: {hlchan, twlam,hfting}@cs.hku.hk

2 Max-Planck-Institut fiir Informatik, 66123 Saarbriicken, Germany
E-mail address: 1klee@mpi-inf.mpg.de

ABSTRACT. The past decade has witnessed many interesting algorithms for maintaining
statistics over a data stream. This paper initiates a theoretical study of algorithms for
monitoring distributed data streams over a time-based sliding window (which contains a
variable number of items and possibly out-of-order items). The concern is how to mini-
mize the communication between individual streams and the root, while allowing the root,
at any time, to be able to report the global statistics of all streams within a given error
bound. This paper presents communication-efficient algorithms for three classical statis-
tics, namely, basic counting, frequent items and quantiles. The worst-case communication
cost over a window is O(% log 5Y) bits for basic counting and O(% log &) words for the
remainings, where k is the number of distributed data streams, N is the total number of
items in the streams that arrive or expire in the window, and ¢ < 1 is the desired error
bound. Matching and nearly matching lower bounds are also obtained.

1. Introduction

The problems studied in this paper are best illustrated by the following puzzle. John
and Mary work in different laboratories and communicate by telephone only. In a forever-
running experiment, John records which devices have an exceptional signal in every 10
seconds. To adjust her devices, Mary at any time needs to keep track of the number of
exceptional signals generated by each device of John in the last one hour. John can call
Mary every 10 seconds to report the exceptional signals, yet this requires too many calls in
an hour and the total message size per hour is linear to the total number N of exceptional
signals in an hour. Mary’s devices actually allow some small error. Can the number of
calls and message size be reduced to o(IV), or even poly-log NV if a small error (say, 0.1%) is

1998 ACM Subject Classification: F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical
algorithms and problems.

Key words and phrases: Algorithms, distributed data streams, communication efficiency, frequent items.

T.W. Lam is partially supported by the GRF Grant HKU-713909E; H.F. Ting is partially supported by
the GRF Grant HKU-716307E.

ASPECTS
S1 S%FEE&MPUTER © H.L.Chan, TW. Lam, L.K. Lee, and H.F. Ting
@ Creative Commons Attribution-NoDerivs License

K SYMPOSIUM
mvr_ ON THEORETICAL
-

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2453

180 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

allowed? It is important to note that the input is given online and Mary needs to know the
answers continuously; this makes our problem different from those in other similar classical
models, such as the Simultaneous Communication Complexity model [4], in which all inputs
are given in advance and the parties need to compute an answer only once.

Motivation. The above problem appears in data stream applications, e.g., network
monitoring or stock analysis. In the last decade, algorithms for continuous monitoring of a
single massive data stream gained a lot of attention (see [1,26] for a survey), and the main
challenge has been how to represent the massive data using limited space, while allowing
certain statistics (e.g., item counts, quantiles) to be computed with sufficient accuracy.

The space-accuracy tradeoff for representing a single stream has gradually been un-
derstood over the years (e.g., [2,15,18,19]). Recently, motivated by large scale networks,
the database community is enthusiastic about communication-efficient algorithms for con-
tinuous monitoring of multiple, distributed data streams. In such applications, we have
k > 1 remote sites each monitoring a data stream, and there is a root (or coordinator)
responsible for computing some global statistics. A remote site needs to maintain cer-
tain statistics itself, and has to communicate with the root often enough so that the root
can compute, at any time, the statistics of the union of all data streams within a certain
error. The objective is to minimize the communication. The communication aspects of
data streams introduce several challenging theoretical questions such as what is the opti-
mal communication-accuracy tradeoff for maintaining a particular statistic, and whether
two-way communication is inherently more efficient than one-way communication.

Data stream models and e-approximate queries. The data stream at each remote
site is a sequence of items from a totally ordered set U. Each item is associated with an
integral time-stamp recording its arrival time. Each remote site has limited space and hence
it can only maintain the required statistics approximately. The statistics can be based on
the whole data stream [2,15,18,19] or only the recent items [3,14,22]. Recent items can
be modeled by two types of sliding windows [5,13]. Let W be the window size, which is
a positive integer. The count-based sliding window includes the last W items in the data
stream, while the time-based sliding window includes items whose time-stamps are within
the last W time units. The latter assumes that zero or more items can arrive at a time.
Items in a sliding window will expire and are more difficult to handle than in the whole
data stream. For example, counting the frequency of a certain item in the whole stream
can be done easily by maintaining a single counter, yet the same problem requires space
Sl log?(eW)) bits for a count-based sliding window even if we allow a relative error of at
most € [13,16]. In fact, the whole data stream model can be viewed as a special case of
the sliding window model with window size being infinite. Also, a count-based window is a
special case of a time-based window in which exactly one item arrives at a time. This paper
focuses on time-based window, and the algorithms are applicable to the other two models.

We study algorithms that enable the root to answer three types of classical e-approximate
queries, defined as follows. Let 0 < e < 1. For any stream o, let ¢;, and ¢, be the count
of item j and all items whose timestamps are in the current window, respectively. Denote
¢j = Y ,Cjo and ¢ =) ¢, as the total count of item j and all items in all the data
streams, respectively.

e Basic Counting. Return an estimate ¢ on the total count ¢ such that |¢ — ¢| < ec.
(Note that this query can be generalized to count data items of a fixed subset X C U;
the literature often refers to the special case with U = {0,1} and X = {1}.)

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS OVER SLIDING WINDOW 181

e Frequent Items. Given any 0 < ¢ < 1, return a set F' C U which includes all items
J with ¢; > ¢c and possibly some items j' with ¢; > ¢c — ec.

e Quantiles. Given any 0 < ¢ < 1, return an item whose rank is in [(bc —ec, pc+ sc]
among the c items in the current sliding window.

As in most previous works, we need to answer the following type of e-approximate queries
in order to answer queries on frequent items.

o Approzimate Counting. Given any item j, return an estimate ¢; such that |¢; —¢;| <
ec. (Note that this query gives estimate for any item, not just the frequent items.
Also, the error bound is in term of ¢, which may be much larger than c;.)

We need an algorithm to determine when and how the remote sites communicate with
the root so that the root can answer the queries at any time. The objective is to minimize
the worst-case communication cost within a window of W time units.

Previous works. Recently, the database literature has a flurry of results on continuous
monitoring of distributed data streams, e.g. [6,8,9,12,17,20,24,25,27,28]. The algorithms
studied can be classified into two types: one-way algorithms only allow messages sent from
each remote site to the root, and two-way algorithms allow bi-directional communication
between the root and each site. One-way algorithms are often very simple as a remote
site has little information and all it can do is to update the root when its local statistics
deviate significantly from those previously sent. On the other hand, most two-way algo-
rithms are complicated and often involve non-trivial heuristics. It is commonly believed
in the database community that two-way algorithms are more efficient; however, for most
existing two-way algorithms, their worst-case communication costs are still waiting for rig-
orous mathematical analysis, and existing works often rely on experimental results when
evaluating the communication cost.

The literature contains several results on the mathematical analysis of the worst-case
performance of one-way algorithms. They are all for the whole data stream setting. Ker-
alapura et al. [21] studied the thresholded-count problem, which leads to an algorithm for
basic counting with communication cost O(g log %) words, where k£ and N are the number
of streams and the number of items in these streams, respectively. Cormode et al. [9] gave
an algorithm for quantiles with communication cost O(aﬁ2 log %) words per stream. They
also showed how to handle frequent items via a reduction to quantiles, so the communication
cost remains the same. More recently, Yi and Zhang [29] have reduced the communication
cost for frequent items to O(§ log %) words, and quantile to O(g log®(1)log %) words, using
some two-way algorithms; these are the only analyses for two-way algorithms so far.

There have been attempts to devise heuristics to extend some whole-data-stream al-
gorithms to sliding windows, yet not much has been known about their worst-case perfor-
mance. For example, Cormode et al. [9] have extended their algorithms for quantiles and
frequent items to sliding windows. They believed that the communication cost would only
have a mild increase, but no supporting analysis has been given. The analysis of sliding-
window algorithms is more difficult because the expiry of items destroys some monotonic
property that is important to the analysis for whole data stream. In fact, finding sliding-
window algorithms with efficient worst-case communication has been posed as an open
problem in the latest work of Yi and Zhang [29].

Our results. This paper gives the first mathematical analysis of the communication
cost in the sliding window model. We derive lower bounds on the worst-case communication
cost of any two-way algorithm (and hence any one-way algorithm) for answering the four

182 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

Basic Counting Approximate Counting/ Quantiles
(bits) Frequent items (words) (words)
Whole data O(§ log %) words [21] O(% log %) 29] O(% 10g2(%) log 77) [29]
stream O(£log =) bits Q(Elog <) [29,30]
O(%log & O(L£ log &
Sliding window O(£log £Y) (Flog %) (Glog %)
Q(f log %)
o O((ws) 2 log 5F) O((w) % log) O((ws) & log)
Sliding window
& out-of-order Q(max{ WVKT, g log %) Q(max{ WVKT, g log %)

Table 1: Bounds on the communication costs. Note that the bounds are stated in bits for
basic counting, and in words for the other problems.

types of e-approximate queries. These lower bounds hold even when each remote site has
unlimited space to maintain the local statistics exactly. More interestingly, we analyze some
common-sense algorithms that use one-way communication only and prove that their com-
munication costs match or nearly match the corresponding lower bounds. In our algorithms,
each remote site only needs to maintain some ©(e)-approximate statistics for its local data,
which actually adds more complication to the problem. These results demonstrate optimal
or near optimal communication-accuracy tradeoffs for supporting these queries over the
sliding window. Our work reveals that two-way algorithms could not be much better than
one-way algorithms in the worst case.

Below we state the lower and upper bounds precisely. Recall that there are k remote
sites and the sliding window contains W time units. We prove that within any window,
the root and the remote sites need to communicate, in the worst case, Q(f log %) bits
for basic counting and Q(g log %) words for the other three queries, where N is the total
number of items arriving or expiring within that window.! For upper bounds, our analysis
shows that basic counting requires O(g log %) bits within any window, and approximate
counting O(% log %) words. The estimates given by approximate counting are sufficient
to find frequent items, hence the latter problem has the same communication cost. For
quantiles, it takes O(Eﬁ2 log %) words. See the second row (sliding window) of Table 1 for a
summary.

As mentioned before, sliding-window algorithms can be applied to handle the special
case of whole data streams in which the window size W is infinite and NV is the total number
of arrived items. The first row of Table 1 shows the results on whole data streams. Our
work has improved the communication cost for basic counting from O(f log %) words [21] to
O(g log %) bits. For approximate counting and frequent items, our work implies a one-way
algorithm with communication cost of O(g log %) words; this matches the performance of
the two-way algorithm by Yi and Zhang [29]. In their algorithm, the root regularly updates
every remote site about the global count of all items. In contrast, we use the idea that

INote that the number of items arriving or expiring within window [t — W 4 1,¢] is no greater than the
number of items arriving within [t — 2W + 1,¢].

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS OVER SLIDING WINDOW 183

items with small count could be “turned off” for further updating. As a remark, our upper
bound on quantiles is O(% log &) words which is weaker than that of [29].

Our algorithms can be readily applied to out-of-order streams [7,10]. In an out-of-
order stream, each item is associated with an integral time-stamp recording its creation
time, which may be different from its arrival time. We say that the stream has tardiness
7 if any item with time-stamp ¢ must arrive within 7 time units from ¢, i.e., at any time
in [t,t + 7]. Without loss of generality, we assume that 7 € {0,1,2,...,W — 1} (if an item
time-stamped at ¢ arrives after t + W — 1, it has already expired and can be ignored). Note
that for any data stream with tardiness greater than zero, the items may not be arriving in
non-decreasing order of their time-stamps. Our previous discussion of data streams assumes
tardiness equal to 0, and such data streams are called in-order data streams. The previous
lower bounds for in-order streams are all valid in the out-of-order setting. In addition, we
obtain lower bounds related to 7, namely, Q(%) bits for basic counting and Q(WVKT)
words for the other three problems. Regarding upper bounds, our algorithms when applied
to out-of-order streams with tardiness 7 will just increase the communication cost by a

factor of % The results are summarized in the last row of Table 1.

The idea for basic counting is relatively simple. As the root does not require an exact
total count, each data stream can communicate to the root only when its local count in-
creases or decreases by a certain ratio € > 0; we call such a communication step an up or
down event, respectively. To answer the total count of all streams, the root simply sums up
all the individual counts it has received. It is easy to prove that this answer is within some
desired error bound. If each count is over the whole stream (i.e., window size = co and N
is the total number of arrived items), the count is increasing and there is no down event. A
stream would have at most O(log;,. N) up events and the communication cost is at most
that many words. However, the analysis becomes non-trivial in a sliding time window. Now
items can expire and down events can occur. An up event may be followed by some down
events and the count is no longer increasing. The tricky part is to find a new measure of
progress. We identify a “characteristic set” of each up event such that each up event must
increase the size of this set by a factor of at least 1 + ¢, hence bounding the number of up
events to be O(logy,. V). Down events are bounded using another characteristic set. Due
to space limitation, the details can only be given in the full paper.

Approximate counting of all possible items is much more complicated, which will be
covered in details in the rest of this paper. Assuming in-order streams, we derive and
analyze two algorithms for approximate counting in Section 2. In Section 3, we discuss
frequent items, quantiles, and finally out-of-order streams. The lower bound results are
relatively simple and omitted due to space limitation.

2. Approximate Counting of all items

This section presents algorithms for the streams to communicate to the root so that
the root at any time can approximate the count of each item. As a warm-up, we first
consider the simple algorithm in which a stream will inform the root whenever its count
of an item increases or decreases by a certain fraction of its total item count. We show
in Section 2.1 that within any window of W time units, each data stream o; (1 < i < k)
needs to send at most O((A + 1)logn;) words to the root, where A is the number of
distinct items and n; is the number of items of ¢; that arrive or expire within the window.
Then, the total communication cost within this window is 31 ;- (A + 1) log n;, which, by

184 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

Jensen’s inequality, is no greater than (A + %)klog(zlgigk n;)/k = (A + L)klog & where
N =3 i< ni- We then modify the algorithm so that a stream can “turn off” items whose
counts are too small, and we give a more complicated analysis to deal with the case when
many such items increase their counts rapidly (Section 2.2). The communication cost is
reduced to O(g log %) words, independent of A.

2.1. A simple algorithm

Consider any stream o. At any time ¢, let c¢(t) and c¢;(t) be the number of all items
and item j arriving at o in [t — W + 1,¢], respectively. Let A < 1/11 be a positive constant
(which will be set to €/11). We maintain two A-approximate data structures [13,23] at o
locally, which can report estimates é(¢) and é;(¢) for c(t) and c;(t), respectively, such that 2

(1= M/6)c(t) < é(t) < (1+M/6)c(t); and ¢j(t) — Ae(t) < &(t) < ¢;(t) + Ae(t).

Simple algorithm. At any time ¢, for any item j, let p < t be the last time
¢;(p) is sent to the root. The stream sends the estimate (j,¢;(t)) to the root if the
following event occurs.

o Up: ¢&(t) > ¢i(p) + 9Ne(t).

o Down: ¢j(t) < ¢j(p) — INE(2).

Root’s perspective. At any time ¢, let 7 ,(t) be the last estimate received from a stream o
for item j (at or before). The root can estimate the total count of item j over all streams by
summing all ; ,(t) received. More precisely, for any 0 < e < 1, we set A = £/11 and let each
stream use the simple algorithm. Then for each stream o, the approximate data structures
for ¢;(t) and ¢(t) together with the simple algorithm guarantee that c;(t) — 11Ac(t) <
7j.0(t) < cj(t) + 11Ae(t). Summing r; 5 (t) over all streams would give the root an estimate
of the total count of item j within an error of € of the total count of all items.

Communication Complexity. At any time ¢, we denote the reference window as [t,, t],
where t, =t — W + 1. Let n be the number of items of o that arrive or expire in [t,,].
Assume that there are at most A distinct items. We first show that a stream o encounters
O((5 + A)logn) up events and sends O((; + A) logn) words within [t,, t]. The analysis of
down events is similar and will be detailed later. For any time t; < to, it is useful to define
Olty 4] (1€SD. 04 1)) @s the multi-set of all items (resp. item j only) arriving at o within
[t1,t2], and |0, 4,)| as the size of this multi-set.

Consider an up event U; of some item j that occurs at time v € [t,,t]. Define the
previous event of U; to be the latest event (up or down) of item j that occurs at time p < v.
We call p the previous-event time of U;. The number of up events with previous-event
time before ¢, is at most A. To upper bound the number of up events with previous-event
time p > t, is, however, non-trivial; below we call such an up event a follow-up (event).
Intuitively, a follow-up can be triggered by frequent arrivals of an item, or mainly the
relative decrease of the total count. This motivates us to classify follow-ups into two types
and analyze them differently. A follow-up Uj is said to be absolute if c(p) < Sc(v), and
relative otherwise. Define Recent-items(U;) to be the multi-set of item j’s that arrive after
the previous event of Uj, i.e., Recent-items(Uj) = 0 (p41,4]-

2The constant 6 in the inequality is arbitrary. It can be replaced with any number provided that other con-
stants in the algorithm and analysis (e.g., the constant 9 in definition of up events) are adjusted accordingly.

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS OVER SLIDING WINDOW 185

Absolute follow-ups. To obtain a tight bound of absolute follow-ups, we need a
characteristic-set argument that can consider the growth of different items together. Let
t1,ta,...,t; be the times in [t,,¢] when some absolute follow-ups (of one or more items)
occur. Let x; be the number of items having an absolute follow-up at ¢;. Note that for all
i, z; < min{1/(7\),A},®> and Zle x; is the number of absolute follow-ups in [t,,t]. We
define the characteristic set S; at each ¢; as follows:

S; = the union of Recent-items(U;) over all absolute follow-ups U; occurring at ti,t, ..., ;.

Recall that n is the number of items of o that arrive or expire in [t — W + 1, ¢].

Lemma 2.1. (i) For any 2 < i < k, |S;| > (1 4 6x;))|S;—1]. (ii) There are Zle x; =
O(5logn) absolute follow-ups within [t,,t].

Proof. For (i), consider an absolute follow-up U; of an item j, occurring at time ¢; with
previous-event time p;. Note that the increase in the count of item j from p; to t; must be
due to the recent items. We have

| Recent-items(Uj)| > ¢;(ti) — c;j(pi)
> ¢i(ti) — ¢i(pi) — Ae(ti) — Ae(ps) (by o’s local data structures)
> 9NE(ti) — Ae(ti) — Ae(pi) (definition of an up event)
>

(9N (1 — 6) — A= 3X)c(t;) = 6Ac(t;) (U; is absolute)
There are z; absolute follow-ups at t;, so [S;| > |S;—1| + x; (6Ac(t;)). Since S; C oy, 4,1,
C(ti) > ‘Sz| > ‘Si—1|' Therefore, we have |SZ‘ > |SZ‘_1‘ + 6%‘2)\|SZ‘ > (1 —1—6552-)\)\52-_1\.

For (i), we note that n > [Sg| > [I*,(1 + 62;A)|S|, and |S;| > 1. Thus, H?:Q(l +

62;\) < n, or equivalently, Inn > S ,In(1 4 62;)). The latter is at least S5, 1%;\)\

)\ZLQ x;. The last inequality follows from that xz; < 1/(7\) for all i. Thus, Zle x;
21+ fInn = O(3 logn).

l\/\ I\/

Relative follow-ups. A relative follow-up occurs only when a lot of items expire,
and relative follow-ups of the same item cannot occur too frequently. Below we define
O(logn) time intervals and argue that no item can have two relative follow-ups within an
interval. For an item with time-stamp 1, we define the first expiry time to be t1 + W. At
any time w in [t,,t], define H, to be the set of all items whose first expiry time is within
[u+ 1,t], i.e., Hy = 0py_wo1,¢,—1]- |Hul is non-increasing as u increases. Consider the
times t, = ug < u; < ug < --- < uy <t such that for ¢ > 1, u; is the first time such that
|Hu,| < 2|Hu,_,|. For convenience, let us1 =t + 1. Note that |Hy,| < n and ¢ = O(logn).

Lemma 2.2. (i) Every item j has at most one relative follow-up U; within each interval
[ui, uiy1 — 1]. (ii) There are at most O(Alogn) relative follow-ups within [t,,t].

Proof. For (i), assume U; occurs at time v in [u;, u;+1 — 1], and its previous event occurs at
time p. By definition, c(p) > c(). Thus,

‘Hp| - |Hv| = |U[p—W+1,v—W]| > C(p) - C(’U) > %C(U) > %‘O—[U—W-l—l,to—l]‘ = %‘HU‘)

and |H,| < 2|H,|. Since v < u;q and |H,| > 2|H,,|, we have [Hp| > |H,,| and p < u;.
For (ii), there are A distinct items, so there are at most A relative follow-ups within each
interval [u;, u;+1 — 1], and at most O(Alogn) relative follow-ups within [t,, ¢]. n

3If an up event of an item j occurs at time #;, then ¢;(t:) > &;(t:) — Ac(t:) > INE(t:) — Ae(ts) > TAc(ts).
Thus the number of up events at time ¢; is at most c(¢;)/(7Ac(ts)) = 1/(7A).

186 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

Down events. The analysis is symmetric to that of up events. The only non-trivial
thing is the definition of the characteristic set for bounding the absolute follow-downs D,
which is defined in an opposite sense: Assume D; occurs at time v and its previous event
occurs at p > t,. D; is said to be absolute if ¢(p) < Sc(v). Let Ezpire(D;) be the multi-set
of item j’s whose first expiry time is within [p + 1,v]. Le., Ezpire(D;) = 0} p—w+1,0-w]-

It is perhaps a bit tricky that instead of defining the characteristic set of absolute
follow-downs at the time they occur, we consider the times of the corresponding previous
events of these follow-downs. Let p1,pa,...,pr be the times in [t,,t] such that there is at
least one event E; (up or down) at p; which is the previous event of an absolute follow-down
Dj occurring after p;. Let y; be the number of such previous events at p;, and let AD(p;)
be the set of corresponding absolute follow-downs. Note that y; (unlike z;) only admits a
trivial upper bound of A. We define the characteristic set T; for each p; as follows:

T; = the union of Expire(D;) over all D; € AD(p;), AD(piy1), ..., AD(pg).

Similar to Lemma 2.1, we can show that |T;| > (1 4 5y;A\)|Ti+1|. Owing to a weaker bound
of individual y;, the number of absolute follow-downs, which equals Zle i, is shown to be
O((3 + A)logn).

Combining the analyses on up and down events, and let A = £/11, we have the following.

Theorem 2.3. The simple algorithm sends at most O((% + A)logn) words to the root
during window [t — W + 1,t].

2.2. The full algorithm

In this section, we extend the previous algorithm and give a new characteristic-set
analysis that is based on future events (instead of the past events) to show that each
stream’s communication cost per window can be reduced to O(%log n) words. Then, by
Jensen’s inequality again, we conclude that the total communication cost per window is
O(g log %) Intuitively, when the estimate ¢;(¢) of an item j is too small, say, less than
3Aé(t), the algorithm treats this estimate as 0 and set the off; flag of j to be true. This

restricts the number of items with a positive estimate to O(%) Initially, the off; flag is true
for all items j. Given 0 < A < ¢/11, the stream communicates with the root as follows.

Algorithm AC. At any time ¢, for any item j, let p < t be the time the last
estimate of j, i.e., ¢;(p), is sent to the root. The stream sends the estimate of j to
the root if the following event occurs.
o Up: If ¢;(t) > ¢i(p) +9NE(t), send (j, ¢;(t)) and set off; = false .
o Off: If off; = false and ¢&;(t) < 3A\(t), reset ¢;(t) to 0, send (j, ¢;(t))
and set off; = true.
e Down: If off; = false and ¢;(t) < ¢;(p) — 9AE(t), send (7, ¢;(t)).

It is straightforward to check that the root can answer the approximate counting query
for any item. We analyze the communication complexity of different events as follows.

Fact 1. At any time v, the number of items j with off; = false is at most %.4

4For any item j, if off; = false, then ¢;(v) > 3Aé(v) and ¢;(v) > &j(v)—Ac(v) > (BA(1=A)=A)c(v) > Ac(v).
Thus the number of items j with off; = false is at most c(v)/Ac(v) = .

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS OVER SLIDING WINDOW 187

Off events. Recall that we are considering the window [t,,t], and n is the number of
items arriving or expiring within [¢,,t]. By Fact 1, just before t,, there are at most % items
with off; = false. Within [t,,?], only an up event can set the off flag to false. Thus the
number of off events within [t,, ¢] is bounded by % plus the number of up events.

Up and Down events. The assumption of A gives a trivial bound on those events
involving items with very small counts and in particular, those up events immediately
following the off events. Such up events are called poor-up events or simply poor-ups. Using
the off flag, we can easily adapt the analysis of the simple algorithm to bound all the
down and up events of the full algorithm, but except the poor-ups. The following simple
observations, derived from Fact 1, allow us to replace A with 1/\ in the previous analysis
to obtain a tighter upper bound of O(% logn). Let v be any time in [t,, t].

e There are at most 1/ items whose first event after v is a down event.
e There are at most 1/ non-poor-up events after v whose previous event is before v.

It remains to analyze the poor-ups. Consider a poor-up U; at time v in [t,,t]. By
definition, off; = false at time v. The trick of analyzing Uj’s is to consider when the
corresponding items will be “off” again instead of what items constitute the up events.
Then a characteristic set argument can be formulated easily. Specifically, we first observe
that, by Fact 1, there are at most % poor-ups whose off flags remain false up to time t.
Then it remains to consider those U; whose off flags will be set to true at some time d < ¢.
Below we refer to d as the first off time of Uj.

Poor-up with early off. Consider a poor-up U; that occurs at time v in [¢,,?] and has
its first off time at d in [v+ 1,t]. Let F-Ezpire(U;) be all the item j whose first expiry time
is within [v + 1,d]. Le., F-Expire(U;) = 0} [p4+1-w,d—w]- As an early off can be due to the
expiry of many copies of item j or the arrival of a lot of items, it is natural to divide the

poor-ups into two types: with an absolute off if ¢(d) < Sc(v), and relative off otherwise. For
the case with absolute off, we consider the distinct times ¢1,to,...,%; in [¢,,t] when such

poor-ups occur. Let z; be the number of such poor-ups at time ¢;. Note that x; < 1/(7A).
For each time t;, we define the characteristic set

F; = the union of F-Expire(U;) over all U; occurring at t;,tit1,. .., tg.
Lemma 2.4. (i) For any 1 <i<k—1, |F;| > (14+x;\)|Fiy1|. (ii) Within [t,,t], there are
Ele x; = O(% logn) poor-ups each with an absolute off.

Proof. For (i), consider an item j and a poor-up U; with an absolute off that occurs at time
t; and has its first off at time d;. The decrease in ¢; must be due to expiry of item j.

|F-Expire(U;)| = ¢;(ti) — ¢j(di) = ¢(ti) — &;(ds) — Ac(ti) — Ac(ds)
> 9NE(t;) — 3AE(d;) — Ae(ti) — Ae(d;) (definition of up and off)
> (A1 = 2) = Ne(ti) — BA1 4+ 2) + Ne(di) > TAc(t;) — 5Ac(d;)
> (T=5(8))Ac(ts) = Ac(ty) (definition of absolute off)

Thus, [F;| > [Fip1| + @ (Ac(t;)). Since Fy C oy, _wi1,e-w), |Fil < c(ti). Therefore, [F;| >
|Fis1| + 2 A Fi| > (1 + x;\)|Fi41]. By (i), we can prove (ii) similarly to Lemma 2.1 (ii). m
Analyzing poor-ups with a relative off is again based on an isolating argument. We

divide [t,,t] into O(logn) intervals according to how fast the total item count starting
from t, grow; specifically, we want two consecutive time boundaries w;_1 and u; to satisfy

188 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

0]l > g|0[to,ui,1} |. Then we show that for any poor-up within [u;_1,u; — 1], its relative
off, if exists, occurs at or after w;. Thus there are at most % such poor-ups within each
interval and a total of O(% logn) within [t,,t].

Lemma 2.5. (i) Consider a poor-up U; with a relative off. Suppose it occurs at time v in
[to,t], and its first off time is at d in [v + 1,t]. Then |oy, 4| > g|0[to,v]‘- (if) Within [t,, 1],
there are at most O(% logn) poor-ups each with a relative off.

Proof. For (i), by the definition of a relative off, ¢(d) > Sc(v). Thus, 10,0 = O] =
|0pt1,a| > e(d) = c(v) > §e(d) > §loy, gl This implies [0y, g > §lop, |-

For (ii), consider the times t, = ug < u; < ug < --- < uy < t such that for i > 1,
u; is the first time such that |oy,)| > g|0[to,ui,1}|' For convenience, let upy; = t + 1.
Note that |0, 4| < n and £ = O(logn). Furthermore, for any time v € [u;—1,u; — 1],
07,0 < g|0[to,ui,1} |. Therefore, by (i), for any poor-up of an item j within [u;_1,u; — 1], its
relative off, if exists, occurs at or after u;, which implies at time u; —1, ¢;(u; —1) > Ae(u; —1).
Then within each interval [u;_1,u; — 1], the number of such j as well as the number of poor-
ups with a relative off are at most 3. Within [t,,t], there are £ = O(log n) intervals and

hence O(} log n) poor-ups each with a relative off.]

Theorem 2.6. For approrimate counting, each individual stream can use the algorithm AC
with A = /11 and it sends at most O(Xlogn) words to the root within a window.

Memory usage of each remote site. Recall that we use two A-approximate data
structures [13,23] for the total item count and individual item counts, which respectively
require O(% log?(An)) bits and O(%) words. Note that O(% log?(An)) bits is equivalent to
O(5 log(An)) words. Furthermore, at any time, we only need to keep track of the last
estimate sent to the root of all item j with off; = false, which by Fact 1, requires O(%)
words. By setting A = ¢/11 (see Theorem 2.6), the total memory usage of a remote site is
O(3log(An)) = O(log(en)) words.

3. Extensions

We extend the previous techniques to solve the problems of frequent items and quantiles
and handle out-of-order streams. Below BC refers to our algorithm for basic counting.

Frequent items. Using the algorithms BC and AC, the root can answer the e-
approximate frequent items as follows. Each stream ¢ communicates with the root using
BC with error parameter /24 and AC with error parameter 11¢/24. At any time ¢, let
r4(t) and 7, ,(t) be the latest estimates of the numbers of all items and item j, respectively,
received by the root from o. To answer a query of frequent items with threshold ¢ € (0, 1]
at time ¢, the root can return all items j with > 7;,(t) > (¢ — 5) >, 7(t) as the set of
frequent items.

To see the correctness, let ¢,(t) and ¢;,(t) be the number of all items and item j in o
at time ¢, respectively. Algorithm BC guarantees |r4(t) — ¢, (t)| < 57¢4(t), and algorithm
AC guarantees |1, (t) — ¢j,(t)] < HEcy(t). Therefore, if an item j is returned by the

root, then > _c¢;jq(t) > Earj,g(;) — LY () = (9= 5) X, re(t) = B Y, co(t) >
(-1 —5)>,cct) —HY colt) > (0 — § — o5 — LE) 3", o (t) where the second

inequality comes from the definition of the algorithm. The last term above is at least

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS OVER SLIDING WINDOW 189

(¢ —€)> ., co(t), so jis a frequent item. If an item j is not returned by the root, then
Yoo Tio(t) < (¢ —35)> ,70(t) and we can show similarly that) c;o(t) < @D, co ().
Quantiles. We give an algorithm for e-approximate quantiles queries. Let A\ = £/20.
For each stream, we keep track of the A-approximate ¢-quantiles for ¢ = 5A, 10\, 15, ..., 1.
We update the root for all these ¢-quantiles when one of the following two events occurs:
(i) for any k, the value of the (5k\)-quantile is larger than the value of the (5(k + 1)\)-
quantile last reported to the root, or (ii) for any k, the value of the (5k\)-quantile is
smaller than the value of the (5(k — 1)\)-quantile last reported to the root. The stream also
communicates with the root using BC with error parameter A. In the root’s perspective,
at any query time t, let ¢ € (0,1] be the query given and let r,(t) be the last estimate
sent by o for the number of all items. The root sorts the quantiles last reported by all
streams and for each stream o, gives a weight of 5Ar,(t) to each quantile of o. Then the
root returns the smallest item j in the sorted sequence such that the sum of weights for all
items no greater than j is at least [¢) _7,(t)]. Careful counting can show that j is an
g-approximate ¢-quantile. To bound the communication cost, let n be the number of items
of o arriving or expiring during the window [t — W 4 1,¢]. We observe that when an event
occurs, many items have either arrived or expired after the previous event. Using similar
analysis as before, we can show that within a window, there are at most O(% logn) such
events and thus each stream sends O(E%log n) words. By Jensen’s inequality again, our

algorithm’s total communication cost per window is O(Eﬁ2 log %) where N is the number of
items of the k streams that arrive or expire within the window. Note that the lower bound
of O(% log(en)) words for approximate frequent items carries to approximate quantiles, as
we can answer approximate frequent items using approximate quantiles as follows. The
root poses e-approximate ¢-quantile queries for ¢ = ¢,2¢,...,1. Given the threshold ¢’
for frequent items, the root returns all items that repeatedly occur as %l — 2 (or more)
consecutive quantiles, and these items are (4¢)-approximate frequent items.

Out-of-order streams. All our algorithms can be extended to out-of-order stream
with a communication cost increased by a factor of %, as follows. Fach stream uses
the data structures for out-of-order streams (e.g., [7,10]) to maintain the local estimates.
Then each stream uses our communication algorithms for in-order streams. It is obvious the
root can answer the corresponding queries. For the communication cost, consider any time
interval P = [t — (W —7)+1,t] of size W — 7. Items arriving in P must have time-stamps in
[t — W 4 1,t]. Using the same arguments as before, we can show the same communication
cost of each algorithm, but only for a window of size W — 7 instead of W. Equivalently, in

any window of size W, the communication cost is increased by a factor of O(WVKT).

References

[1] C. Aggarwal. Data streams: models and algorithms. Springer, 2006.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. Journal of Computer and System Sciences, 58(1):137-147, 1999.

[3] A. Arasu and G. Manku. Approximate counts and quantiles over sliding windows. In Proc.
PODS, pages 286-296, 2004.

[4] L. Babai, A. Gal, P. Kimmel, and S. Lokam. Communication compleixty of simultaneous mes-
sages. SIAM Journal on Computing, 33(1):137-166, 2004.

[5] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data.
In Proc. SODA, pages 633—634, 2002.

190 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

[6] B. Babcock and C. Olston. Distributed top-k monitoring. In Proc. SIGMOD, pages 28-39, 2003.

[7] C. Busch and S. Tirthapua. A deterministic algorithm for summarizing asynchronous streams
over a sliding window. In STACS, 2007.

[8] G. Cormode and M. Garofalakis. Sketching streams through the net: distributed approximate
query tracking. In Proc. VLDB, pages 13-24, 2005.

[9] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a net-
worked world: distributed tracking of approximate quantiles. In Proc. SIGMOD, 25-36, 2005.

[10] G. Cormode, F. Korn, and S. Tirthapura. Time-decaying aggregates in out-of-order streams. In
Proc. PODS, pages 89-98, 2008.

[11] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional monitoring.
In Proc. SODA, pages 10761085, 2008.

[12] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed set-expression cardinality
estimation. In Proc. VLDB, pages 312-323, 2004.

[13] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding
windows. STAM Journal on Computing, 31(6):1794-1813, 2002.

[14] M. Datar and S. Muthukrishnan. Estimating rarity and similarity over data stream windows.
In Proc. ESA, pages 323-334, 2002.

[15] E. Demaine, A. Lopez-Ortiz, and J. Munro. Frequency estimation of internet packet streams
with limited space. In Proc. ESA, pages 348-360, 2002.

[16] P. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows. In Proc.
SPAA, pages 63-72, 2002.

[17] M. Greenwald and S. Khanna. Power-conserving computation of order-statistics over sensor
networks. In Proc. PODS, pages 275-285, 2004.

[18] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In Proc. STOC, pages 471—
475, 2001.

[19] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream compu-
tation. In Proc. FOCS, pages 148-155, 2000.

[20] N. Jain, P. Yalagandula, M. Dahlin, and Y. Zhang. Insight: A distributed monitoring system
for tracking continuous queries. In Proc. SOSP, pages 1-7, 2005.

[21] R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed moni-
toring of thresholded counts. In Proc. SIGMOD, pages 289-300, 2006.

[22] L. K. Lee and H. F. Ting. Maintaining significant stream statistics over sliding windows. In
Proc. SODA, pages 724-732, 2006.

[23] L. K. Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding frequent
items over sliding windows. In Proc. PODS, pages 290-297, 2006.

[24] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items
in distributed data streams. In Proc. ICDE, pages 767-778, 2005.

[25] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-k queries over sliding
windows. In Proc. SIGMOD, pages 635-646, 2006.

[26] S. Muthukrishnan. Data streams: algorithms and applications. Now Publisher Inc., 2005.

[27] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data
streams. In Proc. SIGMOD, pages 563-574, 2003.

[28] 1. Sharfman, A. Schuster, and D. Keren. A geometric approach to monitoring threshold functions
over distributed data streams. ACM TODS, 32(4), 2007.

[29] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quantiles. In Proc.
PODS, pages 167-174, 2009.

[30] K. Yiand Q. Zhang. Private communication.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 191-202
www.stacs-conf.org

ROBUST FAULT TOLERANT UNCAPACITATED FACILITY LOCATION

SHIRI CHECHIK ! AND DAVID PELEG !

! Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science
Rehovot 76100, Israel
E-mail address: {shiri.chechik,david.peleg}@weizmann.ac.il

ABSTRACT. In the uncapacitated facility location problem, given a graph, a set of demands
and opening costs, it is required to find a set of facilities R, so as to minimize the sum
of the cost of opening the facilities in R and the cost of assigning all node demands to
open facilities. This paper concerns the robust fault-tolerant version of the uncapacitated
facility location problem (RFTFL). In this problem, one or more facilities might fail, and
each demand should be supplied by the closest open facility that did not fail. It is required
to find a set of facilities R, so as to minimize the sum of the cost of opening the facilities
in R and the cost of assigning all node demands to open facilities that did not fail, after
the failure of up to « facilities. We present a polynomial time algorithm that yields a 6.5-
approximation for this problem with at most one failure and a 1.5 + 7.5a-approximation
for the problem with at most a > 1 failures. We also show that the RFTF L problem is
NP-hard even on trees, and even in the case of a single failure.

Introduction

The robust fault-tolerant facility location problem

For a given optimization problem, the robust fault-tolerant version of the problem calls
for finding a solution that is still valid even when some components of the system fail.
We consider the robust fault-tolerant version of the wuncapacitated facility location (UFL)
problem. In this problem, given a graph G, a demand w(v) for every node v and a cost f(v)
for opening a facility at v, it is required to find a set of facilities R, so as to minimize the
sum of the costs of opening the facilities in R and of shipping the demands of each node
from the nearest open facility (at a cost proportional to the distance). In the robust fault-
tolerant version of this problem (RFTFL), one or more facilities might fail. Subsequently,
each demand should be supplied by the closest open facility that did not fail. It is required
to select a set of facilities R, so as to minimize the sum of the costs of opening the facilities
in R and the costs of assigning all node demands to open facilities that did not fail, after
the failure of up to « facilities. We present a polynomial time algorithm that yields a 6.5-
approximation for this problem with at most one failure and a 1.5 + 7.5a-approximation

Key words and phrases: facility location, approximation algorithms, fault-tolerance.

sy

"V r ‘OF/:/PTO%?‘EUOP;ET\CAL

m }_ ASPECTS
BN NI © S. Chechik and D. Peleg
© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2454

192 S. CHECHIK AND D. PELEG

for the problem with at most a > 1 failures. We also show that the RFTFL problem is
NP-hard even on trees, and even in the case of a single failure.

Related Work

Many papers deal with approximating the UF'L problem, cf. [3, 4, 7, 9, 12, 13]. The
best approximation ratio known for this problem is 3/2, shown by Byrka in [2].

A fault-tolerant version of the facility location problem was first introduced by Jain
and Vazirani [10], who gave it an approximation algorithm with ratio dependent on the
problem parameters. The approximation ratio was later improved by Guha et al. to 2.41
[8] and then by Swamy and Shmoys to 2.076 [14]. However, the variant of the problem
studied in these papers is different from the one studied here. In that version, every node j
is assigned in advance to a number of open facilities, and pays in advance for all of them.
More explicitly, every node j is assigned to r; open facilities, and its shipping cost is some
weighted linear combination of the costs of shipping its demand from all the facilities to
which it is assigned. It is required to find a set of facilities R that minimizes the sum of the
costs of opening the facilities in R and the sum of costs of shipping the demand of each node
J from its r; facilities in R. This approach is used to capture the expected cost of supplying
all clients demand when some of the facilities fail. In contrast, in our definition a node j
does not pay in advance for shipping its demand from a number of open facilities. Rather,
it pays only for the cost of shipping its demand from the surviving facility that actually
supplied its demand. Hence our definition for the fault-tolerant facility location problem
requires searching for a set of facilities R that minimizes the sum of the costs of opening
the facilities in R and the costs of assigning the demands of each node to one open facility
that did not fail, for any failure of up to « facilities. Our approach is used to capture the
worst case cost of supplying all clients demand when some of the facilities fail. We argue
that our definition may be more natural in some cases, where after the failure of some
facilities, each demand should still be supplied by a single supplier, preferably the closest
surviving open facility, and each client should pay only for the cost of shipping its demand
from that surviving facility, and not for all the other (possibly failed) facilities to which it
was assigned originally. On the technical level, the approach taken in [8, 10, 14] is based on
applying randomized rounding techniques and primal-dual methods to the corresponding
integer linear program. This approach does not readily apply to our version of the problem,
and we use a direct combinatorial algorithmic approach instead.

Two other closely related types of problems are the 2-stage stochastic and robust opti-
mization problems (cf. [5, 6]). Both of these models involve two decision stages. In the first
stage, some facilities may be purchased. This stage is followed by some scenario depending
on the specifics of the problem at hand (in a facility location problem for example, the
scenario may specify the clients and their corresponding demands). Subsequently, a second
stage is entered, in which it is allowed to purchase additional facilities (whose cost might
be much higher than in the first stage). In stochastic optimization there is a distribution
over all possible scenarios and the goal is to minimize the expected total cost. In robust
optimization the goal is to minimize the cost of the first stage plus the cost of the worst case
scenario in the second stage. In contrast with these two models, in our variant the facilities
must be selected and opened in advance, and these advance decisions must be adequate
under all possible future scenarios.

ROBUST FAULT TOLERANT UNCAPACITATED FACILITY LOCATION 193

Billionnet and Costa [1] showed a polynomial time algorithm for solving the ordinary
(non-fault-tolerant) UFL problem on trees. In contrast, we show that the fault-tolerant
variant RFTFL is NP-hard on trees.

1. Preliminaries

Let us start with common notation to be used later on. Consider an optimization
problem IT over a universe V', which given an instance I, requires finding a solution consisting
of a set of elements R C V. Denote by Cri(I, R) the cost of the solution R on the instance
I of TI. Let Rj;(I) denote the optimal solution to the problem II on instance I, and let
Ch(I) = Cn(I, Rf;(I)) be the cost of the optimal solution. We denote our algorithm for
each problem II studied later by Ag(I). The solution returned by the algorithm is referred
to as R?[lg(l) and its cost is C’ﬁlg(I) = Cnu(l, Ralg(I)).

Let us now define the uncapacitated facility location (UFL) problem. Let I = (G, 1, f,w)
be an instance of the problem, where G = (V, F) is a graph with vertex set V = {1,...,n}
and edge set E. Each node v € V hosts a client in need of service, and may host a facility,
providing service to clients in nearby nodes. Each edge e € E has a positive length [(e).
The distance d(u,v) between two points v and v on G is defined to be the length of the
shortest path between them, where the length of a path is the sum of the lengths of its
edges. For each node v, let f(v) denote the opening cost associated with placing a facility
at v, and let w(v) denote the demand of the node v. The shipping cost of assigning the
demand w(u) of a client u to an open facility v is the product SC, , = w(u)d(u,v). The
shipping cost SC, r from a set of open facilities R to a node u is the minimum cost of
assigning u to a server in R, namely, SC, g = min{SC,,, | v € R}. Defining the distance
d(v, R) between a set of points R and a point v on G to be the minimum distance between
v and any node in R, i.e., d(v, R) = min,cg d(v,), we also have SC, rp = w(v)d(v, R).

It is required to find a subset R C V that minimizes the sum of costs of opening the
facilities in R and the shipping costs from R to all other nodes. This problem can be
formulated as searching for a subset R C {1,...,n} that minimizes the cost function

Curr(I,R) = Craca(I,R) + Cspip(I, R), (1.1)

where
n

Cracat(I,R) = > f(r) and Cepip(I, R) Z SCur = Y w(u)-d(u,R).

reR u=1
Given a set R of open facilities and a facility r € R, let ¢(I,r, R) denote the set of clients
that are served by r under R, i.e., o(I,r, R) = {u | d(v,r) < d(v,7") for every r' € R}, or
in other words, the nodes u that satisfy d(u, R) = d(u,r), where ties are broken arbitrarily,
i.e., if there is more than one open facility r such that d(u, R) = d(u,r), then just choose
one open facility = that satisfies d(u, R) = d(u,r) and add u to ¢(I,r, R). (When the set R
is clear from the context we omit it and write simply ¢(I,r), or even ¢(r) when the instance
I is clear as well.)

The robust fault-tolerant facility location (RFTFL) problem is defined as follows. Each
client is supplied by the nearest open facility, and in case this facility fails - it is supplied
by the next nearest open facility. We would like to find a solution that is tolerant against a
failure of one node. This problem can be formulated as searching for a subset R C {1,...,n}
that minimizes the cost function

194 S. CHECHIK AND D. PELEG

CRFTFL(Iv R) = Cfacil(la R) + Cship(Iv R) + Cbackup(la R)v (12)
where C'taeii(I, R) and Cypip(1, R) are defined as above and

Chackup(l, R) = max > w)-(dv, R\{r}) —d(v,r)) p (1.3)
vep(I,r,R)

Note that
Crrrrr(I,R) = Cpeeit(I,R) + max {Csnip(I, R\ {r})}

n
= Craca(l,R) + Iglea% {z_; SCv,R\{T}}

n
= Cyeca(I,R) + %al%{ {; w(v) - d(v, R\{r})} . (1.4)
Again, when the instance I is clear from the context we omit it and write simply Crprpr(R),
Cfacil(R)a Cship(R)7 Cbackup(R)a etc.

We also consider the robust a-fault-tolerant facility location (a-RFTFL) problem, for
integer o > 1, where the solution should be resilient against a failure of up to o nodes. We
define the a_ RFTFL as follows. Each client is supplied by the nearest open facility which

did not fail. We are looking for a subset R C {1,...,n} that minimizes the cost function

Ca_RFTFL(Iv R) = Cfacil(Iv R) + max {Zw(v) d(U,R\R,)} : (15)

<
|’ <e v=1

2. A constant approximation algorithm for RFTFL

2.1. The concentrated backup problem and its approximation

Towards developing a constant ratio approximation algorithm for RFTFL, we first
consider a different problem, named concentrated backup (conc_bu), defined as follows. An
instance of the problem consists of a pair (I, Ry) where I = (G, !, f,w) is defined as before
and Ry = {r1,...,7;} is a set of nodes. In this version, the nodes of R; act as both clients
and servers (with open facilities), and all other nodes v ¢ R; have zero demands. Informally,
it is assumed that we have already paid for opening the facilities in Ry, and each r € Ry
serves itself, at zero shipping cost. The problem requires to assign each client r € R; to a
backup server v # r, which may be either some server in Ry or a new node from V\R;. For
a set of nodes Ro, define the backup cost

Coull, R, Rp) = max {SC kiR } = max {w(r)d(r, Ry U Ro\{r})}.

We are looking for a set Ro minimizing
Cconc_bu(Iy Rh RQ) = Cfacil(RQ) + Cbu(Rh R2)~ (2~1)

We denote this minimum cost by C*

" mebuLs R1). We show a 2-approximation algorithm for
the concentrated backup problem.

ROBUST FAULT TOLERANT UNCAPACITATED FACILITY LOCATION 195

The problems studied in this section and in section 3.1 are closely related to those
considered in [11], and to solve them we use methods similar to the ones presented in [11].
Let us consider a simpler variant of the backup problem, named the bounded backup (bb)
problem, which is defined on (I, Ry, M) and requires looking for a solution Rs minimizing

Cu,(I,R1, M, Ry) = Cfqcit(R2)

subject to the constraint Cy,(R1, R2) < M, for integer M. We now present a relaxation
algorithm that finds a set Ry satisfying Cpaei(R2) < Cpy(R1, M) but obeying only the
relaxed constraint Cy, (R, R2) < 2M instead Cpy(R1, R2) < M.

Algorithm Abb(I, R4, M)
(1) Ry — 0
(2) For i =1 to k do:
o Si — {v|wr)d(v,r) < 2M}\{r;} /* “relaxed” backup servers for r;
*/
o If S; N (Ry URY) = 0 then add to Ry the node v in S; with the
minimum facility cost f(v).
(3) Return R%g.

Let us now prove the properties of algorithm Ay,. For every r; € Ry let the set of
feasible backup servers be T; = {v | w(r;)d(v,r;) < M }\{r;}. Let the set of relaxed backup

servers selected by the algorithm (namely, the final set R{,Y it returns) be R (Ry, M) =
{q?lg s q?lg }. Let £; be the phase in which the algorithm adds the new facility q;-llg to R%g ,
for1 <j < J.

Lemma 2.1. T;,, N Ty, =0 for 1 <4, < J.

Proof: Assume otherwise, and let v € Ty, N1y, for some 1 < 4,5 < J,i # j. Assume
without loss of generality that w(ry,) < w(ry;). Since w(ry,)d(v,ry;) < M, necessarily
w(ry,)d(v,rg;) < M as well, and by the definition of T,, also w(ry,)d(v,7¢,) < M, hence

W("”Zi)d(remrej) < w(mi)(d(’u,wi)—i—d(’u,?“gj)) < 2M,

implying that o, € Sp, N Ry, so the algorithm should not have opened a new facility in
phase ¢;, contradiction. [

Lemma 2.2. Cfacil(R%g(Rl,M)) < G (R, M).

Proof: Notice that there must be at least one node from every T; in the optimal solution
Ry, (R1, M). By Lemma 2.1 the sets Ty, , ..., Ty, are disjoint, so there are at least J distinct
nodes ¢; € Ry, (R1, M), one from each Ty, for 1 < j < J. In each phase i, the algorithm

selects the cheapest node in S; O T;. Therefore, f (q?lg) < f(g;) for every 1 < j < J. Hence

J J
Cracit(Ryy’ (R1, M)) = Zlf(q}“g) < X £(a) < Gjy(Ra, M)
J= J=

Lemma 2.3. Cy, (R, R4 (R, M)) < 2M.

196 S. CHECHIK AND D. PELEG

Proof: For each server r; in Ry, the algorithm ensures that there is at least one open facility
from the set S;, so w(r;)d(ri, Ry U RGI(Ry, M)\ {r;}) <2M. 1

Now we present an approximation algorithm A4, for the concentrated backup prob-
lem using the relaxation algorithm Ay, for the bounded backup problem. First note that
there can be at most nk possible values for the shipping costs SCy ., = w(u)d(u,v).

Algorithm Aconcbu(I, R1)
(1) For every M € {SCy, | u,v € V'} do:
o let RYI(Ry, M) — Ap(I, Ry, M).
(2) Return the set Rgég(Rl, M) with the minimum cost
Cconc_bu(Rla RZ[ig (Rl, M))

Lemma 2.4. C% (I, Ry) <2C% _, (I, Ry).

Proof: Recall that, letting R5 = R ;. (R1),
. (I, Rl) = Cconc_bu(la Rh R;) = Cfacil(RS) + Cbu(Iy Rh R;)

conc_bu

Let u € Ry be the node that attains the maximum shipping cost SC, r,uR,\{u}, 1-€., satisfies
w(u)d(u, Ry U R5\{u}) = Cp, (I, R1, R%), and let v € R; U R5\{u} be its backup, i.e., the
closest node to u. Then C7 ., (I, R1) = Ceoncu(l, R1, R5) = Cpacit(R3)+SCy,p. Since the
algorithm examines all possible values of M, it tests also My = SC,,. For this value, the

returned set RZég (R1, M) has opening cost at most Cpf (R1, My) = Cfacir(R3) and backup
cost at most

Crpu(I, Rl,RZég(Rl,Mo)) < 2Mjy by Lemmas 2.2 and 2.3. Since the algorithm takes the

minimum cost Cconc_bu(Rl,RZég (Ry, M)) over all possible values of M, the resulting cost

satisfies C9 (I, Ry) < Caeit(R3) +28C,,., < 20

conc_bu conc_bu
ratio of 2.

(I, R1), namely, an approximation

2.2. 6.5-approximation algorithm for RFTFL

We now present a polynomial time algorithm Agrprpr that yields 6.5-approximation
for the robust fault-tolerant uncapacitated facility location problem RFTFL. Consider an
instance I = (G, 1, f,w) of the problem. The algorithm consists of three stages.

Stage 1: Apply the 1.5-approximation algorithm of [2] to the original UFL problem in
order to find an initial subset Ry of servers. Notice that the cost of this solution satisfies

Each node is now assigned to a server in R;. Next, we need to assign to each node a backup
server which will serve it in case its original server fails.

Stage 2: Transform the given instance I = (V,l,w, f) of the problem into an instance
I' =(V,l,u', f) as follows. First, change the facility cost f by setting f'(r) =0 for r € Ry.
Next, for each server r € Ry, relocate all the demands of the nodes that are served by r,
and place them at the server r itself, that is, set

> w), forre Ry,
w/(T) = vep(I,r,Ry) (2.3)
0, forr¢R;.

ROBUST FAULT TOLERANT UNCAPACITATED FACILITY LOCATION 197

Stage 3: Invoke the 2-approximation algorithm A,y for the concentrated backup prob-
lem on the new instance I’ and the set R;. The approximation algorithm returns a new set
Ry. We then return the set Ry U Ry as the final set of open facilities.

Lemma 2.5. For every instance I and set Ry C V, C* (I'R1) < Chprp(I) +

conc_bu
Curr(I, Ry).

Proof: Consider some vertex r € Ry and let p(I,r, R1) = {v],...,v } be the nodes it
serves. Consider the optimal solution R}ppp(f) to the RETFL problem. Let di be the
distance from r to vj for 1 <i < k;, and also let z] be the distance from v to its optimal
backup server, which is also its distance to R} = R1 U Ry pppp (D\{7}, i.e., 2] = d(v], R}).
By the triangle inequality, d(r, Ry) < d} + z], for every 1 <i < k,, so

kr ki
W(r)-d(r,Ry) = Y wf)-d(r,Ry) <Y wp)(d +2)

=1 =1
kr kr

= > w)d(v, Ry) + Y w(v])a]
=1 =1

< w(v) - d(v, R1) + > w(v) - d(v, R})
v=1 v=1

Therefore,
Cou(I', Ry, Rpprpr(I) = max {'(r)-d(r,Ry)}

< CS ') IaR -d ,R: .
< Conip(1)+gr€1%<{;w(v) (v)}

Using (1.4) and (2.1) we now bound the cost of the optimal solution for problem conc_bu
by

* (I/,Rl)

conc_bu

< Ceoncu(l',R1, Rpprrr (1))
Cracit(I', Riprrr(I)) + Cou(I', Ry, Rpprpr (1))

n
< Clacit(I', Rpprpr(I)) 4+ max {ZW(U)CZ(%R:)} + Conip(I, Ry)

reR
! v=1

< Crrrri(I) + Cship(I,R1) < Crprpr(I, R1) + Cyrr(1, R1). |

Lemma 2.6. For every instance I and sets R1, Ry C V,
Crrrrr(I,R1 U Ry) < Cyrr(I, R1) + Ceonebu(I’, R1, R).

Proof: The cost of opening the facilities in R; U Rj is clearly at most the cost of opening the
facilities in Ry plus the cost of opening the facilities in Ry. For every facility » € Ry U Ro,
in order to bound Cgpp(I, R1 U Ry \ {r}), note that one can first move each client v to its
closest open facility in Ry, and then move all the clients assigned to r (if » € Ry) to the
backup facility of r in Rs. The inequality follows. More formally we have the following.
Recall that by (1.4),

Crrrrr(I, R1 U R2) = Ceeit(I, R1 U Ry) + Jnax { Cship(I, R1 U R\ {r})}.
T 1 2

198 S. CHECHIK AND D. PELEG

Consider first the case that max, {Conip(I, R1U Ry \ {r})} is attained for some 7’ € Ry.
reR1UR>

In this case, we get by (1.1) that
Crrrrr(I,R1URy) = Crecit(I,R1URy) + Cspip(I, R1 U Ry \ {r'})

< Claeit(I, R1 U R2) + Cspip(I, Ry)

= Curr(I,R1)+ Cacit(I,R2) < Cupr(I, R1) + Ceoncou(I', R1, R2).
So now assume that e {Csnip(I, R1 U Ry \ {r})} is attained for some ’ € Ry. There-
fore,

Crrrrr(I,RiURy) = Craeit(I,R1URy) + Cspip(I, R1 U Ry \ {r'})

n
= Cfacil(Ia Rl) + Cfacil(Ia RQ) + Z SCv,RluRg

v=1
+ Z w() - (d(v, Ry U Ro\{r'}) — d(v,r"))
vE(p(I,T/,RlLJRQ)
Curr(I, Ry) + Cracit(1, R2)

IN

+ max Z w(v) - (d(r, R1 U Ro\{r}))

reR;
vep(Il,r,R1)
Curr(I,Ry) + Craca(L, R2) + max {w'(r) - (d(r, Ry UR2\{r}))}
r 1

- CUFL(L Rl) +Cconc_bu(I/7RlaR2)' I
Lemma 2.7. Algorithm Arprrr yields a 6.5-approzimation for the REFTFL problem.

Proof: Consider the set of opened facilities R URy. By Lemma 2.4, Ry is a 2-approximation
of the concentrated backup problem on the instance I’, so
Cconc_bu(lly Ry, RZ) <2 :onc_bu(I/7 Rl).
By Lemma 2.5, C! ., (I''R) < Cprpr(I) + Curr(I, R1), hence
Ceonchu(l'; R1, R2) < 20 prpr(I) + 2Curr (L, Ry).
Using Lemma 2.6 we get
Crrrri(I,R1UR2) < 3CyrL(l, R1)+ 2CrprpL(1),

and by (2.2), CRFTFL(L Ry U Rg) < 6‘5CI>EIFTFL(I)' |

3. An approximation algorithm for a_ RFTFL

3.1. The concentrated a_backup problem

As in the case of a single failure, we first consider a different problem, named concen-
trated a_backup (conc_a_bu), defined as follows. An instance of the problem consists of a
pair (I, Ry) where I = (G,l, f,w) is defined as before and R; is a set of nodes. The nodes
of Ry act as both clients and servers (with open facilities), and all other nodes v ¢ R; have
zero demands. We are looking for a set Ry minimizing

Cconc_a_bu (I, Rla RQ) = Cfacil(RQ) + Ca_bu(Ia Rla R2)> (31)

ROBUST FAULT TOLERANT UNCAPACITATED FACILITY LOCATION 199

where C,, _p,, is the mazimum a_backup cost for a set of nodes Ry, defined as

Cobu(l, R1, Re) = nax Z w(r) - d(r, Ry U R\ F)
re(FNRy)

We will shortly present a 3a-approximation algorithm for the concentrated a-backup
problem.

Towards this, let us first consider a simpler variant of the backup problem, named the
a-bounded backup (c_bb) problem, which is defined on (I, Ry, M) and requires looking for
a solution R minimizing

Cavp(R1,M,Ry) = Cyacir(R2)
subject to the constraint Ciight o pu(R1, R2) < M for some integer M, where
Clight-abu(R1, R2) = cephex {w(r)d(r, Ry U R\ F)}.

We now present a relaxation algorithm that finds a set Ry satisfying Clreeii(R2) <
Cx (R, M) but allowing the relaxed constraint Ciight apu(R1,R2) < 3M instead of
Clightabu(R1, R2) < M.

Algorithm Aq pp(I, R1, M)

(1) Ry, — 0
(2) Let rq,...,7; be the servers in Ry sorted by nonincreasing order of demands.
(3) Z « 0 /* The set of servers r; where the algorithm opens facilities in phase
(4) For i =1 to k do:
(5) o S, —{v|w(r)d(v,r) <2M\{r;}.
o T — {v|w(ry)d(v,r;) < M}\{r;}
o If ;N Z = () then:
— Add to R™,, the a — |T; N (R; UR™Y,)| nodes in T;\(R; UR™,)
with the lowest facility costs.
— Z+—ZU {TZ}
(6) Return Rgl_%b.

Let us now prove the properties of Alg. Aypp. Let {£; | 1 < j < J} be the phases in

which the algorithm adds new facilities to Ril_gbb. By a proof similar to that of Lemma 2.1,
we have the following.

Lemma 3.1. Ty, N Ty, =0 for 1 <j <i<J.

Lemma 3.2. Cfacu(RZl_%b(Rh M)) <C%) (Ry, M).

Proof: There must be at least a nodes in every Tp, in the optimal solution R}, ,,(R1, M).
By Lemma 3.1 the sets Ty, for 1 < j < J are disjoint, so the only nodes that the algorithm
adds to Rgf_‘%b from the set Ty, are added at phase £;. The algorithm selects the cheapest
nodes in Ty, in order to complete to o nodes. Therefore, C’facil(RZl_%b(Rl,M)N Ty,) <

200 S. CHECHIK AND D. PELEG

Clacit (R} (R1, M) NTy;) for every 1 < j < .J. Hence

J J
Cracit(REG, (R, M) =) Cracit(RY,(R1, M) NTy,) <> Cracit(Rly yy(Ri, M) NTy,)
j=1 j=1

C;_bb(Rlv M) |
Lemma 3.3. Cy pu(R1, R™S, (R, M)) < 3M.

IN

Proof: For each server v; € Ry, the algorithm ensures that either there are at least o open
facilities from the set T; or v; is at distance at most 2M from another v; € Ry that has «
open facilities from the set 7). In the first case the distance is at most M and in the second
- at most 3M. |

Now we present an approximation algorithm A.one q_p for the concentrated a_backup
problem, using the relaxation algorithm A, y, for the a_bounded backup problem.

Algorithm Aconc-a_bu(Ia Rl)
(1) For every subset T' C {SC, , | v,u € V} such that |T| < a do:
o M(T) > crm
o let RYS,(Ry, M(T)) « Aas(I, R, M(T)).
(2) Return the set Rgf_%b(Rl, M(T)) with the minimum cost
Cconc_a_bu(Rh Rgl_%b(Rh M(T)))

Lemma 3.4. C°9 (I,Ry) < 3aC*

conc_a_bu conc_a_bu

(I, Ry).

Proof: Denote the optimal solution for conc_a_bu on (I, R1) by R; = R* (R1). Then

conc_a_bu

:onc_a_bu(ja Rl) = Cconc_a_bu(la Rla R;) = Cfacil (RS) + Ca_bu(Ia Rla R;)

Let {ui,...,u;} C Ry and {v1,..,v;} € Ry U R} for some j < « be the sets of
nodes that attain the maximum shipping cost, i.e., satisfy Cqpu(I, R1,R5) = My for

j j
My = > SCy, v, = >, w(ui)d(u;,v;). Then C¥ (I, R1) = Cfacit(R3) + My. Notice

. conc_a_bu
i=1

=1
that there must be at least o nodes in the set R U R; at distance at most My from
every server 7 in Ry. Clearly Cpocir(R: ,,(R1, Mp)) < Clpgeit(R5). Since the algorithm
examines all possible values of M(T), it tests also M. For this value, the returned set

Rgl_%b(Rl,Mo) has opening cost at most C7 ,;(R1, My) < Ceeit(R5) and backup cost at
most Cy_py (I, Ry, Rgf_%b(Rl, My)) < 3Mj by Lemmas 3.2 and 3.3. Since the algorithm takes

the minimum cost Cione_apu(R1, Rgl_%b(l ,R1,M(T))) over all possible subsets 1", the result-
ing cost is at most

Cgé;qzc_a_bu(lv Rl) < CCOTLC_O(_bu(Iu Ry, RZ{%b(Rl, MO))
< Cpaca(R) + max ¢ 3 w(r)d(r, R U Ry, (Ry, Mo)\F)
Fl<e re(FNR1)
< Ctacit(R3) +3aMy < 3aC; (I,R). 1

conc_a_bu

ROBUST FAULT TOLERANT UNCAPACITATED FACILITY LOCATION 201

3.2. (1.5 + 7.5a)-approximation algorithm to the a«_ RFTFL

We now present a polynomial time algorithm named A, rprrr, yielding a (1.5 +
7.5a)-approximation for the robust fault-tolerant uncapacitated facility location prob-
lem o RFTFL against a failure of a nodes, for constant @ > 1. Consider an instance
I = (G,l, f,w) of the problem. The algorithm is similar to Algorithm RFTFL, except for
the third stage. Instead of invoking the 2-approximation algorithm Ay, for the concen-
trated backup problem on the new instance I’ and the set Ry, invoke the 3a-approximation
algorithm A.ope_a_pu for the concentrated a_backup problem on the new instance I’ and the
set Ry1. Algorithm Acopea pu returns a new set Rglg . Algorithm A, _grprrrr now returns the

set Ry U Rglg . Proof of the following lemma is deferred to the full paper.

Lemma 3.5. Algorithm A._rrrrr yields a (1.5 + 7.5a)-approzimation for the a_RFTFL
problem.

4. Robust Fault-tolerant uncapacitated facility location on trees

In this section we show that the RFTFL problem is NP-hard even on trees. The claim
holds even in the case where only the edge lengths or only the node demands are variable
and the other parameters are uniform. An instance of the RETFL problem is (T, f,w, P),
where T is a tree, [, f and w are defined as before and P is an integer. It is required to
decide if the cost of the optimal solution to the RFTFL problem on the instance (T, f,w)
is P or less.

The proofs, via reductions from subset sum and from a variant of the partition problem,
are deferred to the full paper. The following results are established.

Theorem 4.1. RFTFL on trees is NP-complete even with

(1) unit edge lengths and opening costs (but variable node demands),
(2) unit node demands and opening costs (but variable edge lengths).

References

[1] A. Billionnet and M. Costa, Solving the uncapacited plant location problem on trees, Discrete Applied
Mathematics 49, (1994), 51-59.

[2] J. Byrka, An optimal bifactor approximation algorithm for the metric uncapacitated facility location
problem. In Proc. 10th Workshop on Approximation Algorithms for Combinatorial Optimization Prob-
lems (APPROX), 2007, 29-43.

[3] M. Charikar and S. Guha, Improved combinatorial algorithms for facility location problems, SIAM J.
Comput. 34, (2005), 803-824.

[4] F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for the uncapacitated facility
location problem, SIAM J. Comput. 33, (2003) 1-25.

[5] K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh, How to Pay, Come What May: Approximation
Algorithms for Demand-Robust Covering Problems, In Proc. 46th IEEE Symp. on Foundations of
Computer Science (FOCS), 2005, 367-378.

[6] U. Feige, K. Jain, M. Mahdian, and V.S. Mirrokni, Robust combinatorial optimization with exponential
scenarios, In Proc. 12th Int. Conf. on Integer Programming and Combinatorial Optimization (IPCO),
Ithaca, NY, 2007, 439-453.

[7] S. Guha and S. Khuller, Greedy strikes back: Improved facility location algorithms, J. of Algorithms
31, (1999), 228-248.

202

(8]
(9]
(10]
(11]
(12]

(13]

S. CHECHIK AND D. PELEG

Sudipto Guha, Adam Meyerson, and Kamesh Munagala, A constant factor approximation algorithm
for the fault-tolerant facility location problem, J. Algorithms 48 ,(2003) , 429-440.

K. Jain, M. Mahdian, and A. Saberi, A new greedy approach for facility location problems, In Proc.
34th ACM Symposium on Theory of Computing (STOC), 2002, 731-740.

K. Jain, V. Vazirani, An approximation algorithm for the fault tolerant metric facility location problem,
In Proc. APPROX,LNCS Vol. 1913, 2000, 177-183.

S. Khuller, R. Pless, and Y. Sussmann, Fault tolerant k-center problems. Theoret. Comput. Sci. 242 12
(2000), 237-245

M. Mahdian, Y. Ye, and J. Zhang, Approximation algorithms for metric facility location problems,
SIAM J. on Computing 36, (2006), 411-432.

D.B. Shmoys, Approximation algorithms for facility location problems, In Proc. 8rd Workshop on
Approzimation Algorithms for Combinatorial Optimization Problems (APPROX), LNCS, Vol. 1913,
(2000), 265-274.

C. Swamy, D. Shmoys, Fault-tolerant facility location, In Proc. 14th ACM-SIAM SODA, 2003, 735-736.
L.A. Wolsey, An analysis of the greedy algorithm for the submodular set covering problem, Combina-
torica 2, (1982), 385-393.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 203-214
www.stacs-conf.org

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES FOR MEMBERSH IP
AND POLYNOMIAL EVALUATION

VICTOR CHEN' AND ELENA GRIGORESCU AND RONALD DE WOLF?

! Tsinghua University ITCS and MIT CSAIL
E-mail addressvi ct or. vc@mai | . com

2 MIT CSAIL
E-mail addressel ena_g@ri t . edu

3 CWI. Science Park 123. 1098XG Amsterdam. The Netherlands
E-mail addressr dewol f @wi . nl

ABSTRACT. We construct efficient data structures that are resilient against a constant fraction of
adversarial noise. Our model requires that the decoder ansae@stgueries correctly with high
probability and for the remaining queries, the decoder with high probability either answers correctly
or declares “don’t know.” Furthermore, if there is no noise on the data structure, it aredirgreries
correctly with high probability. Our model is the common generalization of an error-correcting data
structure model proposed recently by de Wolf, and the notion of “relaxed locally decodable codes
developed in the PCP literature.
We measure the efficiency of a data structure in terms deitgth (the number of bits in its
representation), and query-answering time, measured by the numbifpobbesto the (possibly
corrupted) representation. We obtain results for the following two data structure problems:
e (Membership) Store a subsgbf size at most from a universe of size such that membership
queries can be answered efficiently, i.e., decide if a given element from the universe is in
We construct an error-correcting data structure for this problem with length nearly linear in
slog n that answers membership queries witfil) bit-probes. This nearly matches the asymp-
totically optimal parameters for the noiseless case: letthlog n) and one bit-probe, due to
Buhrman, Miltersen, Radhakrishnan, and Venkatesh.

e (Univariate polynomial evaluation) Store a univariate polynomiaf degreedeg(g) < s over
the integers modula such that evaluation queries can be answered efficiently, i.e., we can
evaluate the output of on a given integer modulo.
We construct an error-correcting data structure for this problem with length nearly linear in
slogn that answers evaluation queries withlylog s - log' 7" n, bit-probes. This nearly
matches the parameters of the best-known noiseless construction, due to Kedlaya and Umans.

1998 ACM Subject ClassificatiorEl, E4.

Key words and phrasesData Structures, Error-Correcting Codes, Membership, Polynomial Evaluation.

This work was done when the author was a student at MIT. Supported by NSF award CCF-0829672 and National Nat-
ural Science Foundation of China Grant 60553001, the National Basic Research Program of China Grant 2007CB807900,
2007CB807901.

This work started when this author was visiting CWI in Summer 2008. Supported by NSF award CCF-0829672.

Supported by a Vidi grant from the Netherlands Organization for Scientific Research (NWO).

@© V.Chen, E. Grigorescu, and R. de Wolf
© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Y ves Marion, Thomas Schwentick
Leibniz International Proceedingsin Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/L1PIcs.STACS.2010.2455

204 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

1. Introduction

The area of data structures is one of the oldest and most fundamental parts of computer science,
in theory as well as in practice. The underlying question is a time-space tradeoff: we are given a
piece of data, and we would like to store it in a short, space-efficient data structure that allows
us to quickly answer specific queries about the stored data. On one extreme, we can store the
data as just a list of the correct answers to all possible queries. This is extremely time-efficient
(one can immediately look up the correct answer without doing any computation) but usually takes
significantly more space than the information-theoretic minimum. At the other extreme, we can
store a maximally compressed version of the data. This method is extremely space-efficient but not
very time-efficient since one usually has to undo the whole compression first. A good data structure
sits somewhere in the middle: it does not use much more space than the information-theoretic
minimum, but it also stores the data in a structured way that enables efficient query-answering.

Itis reasonable to assume that most practical implementations of data storage are susceptible to
noise over time some of the information in the data structure may be corrupted or erased by various
accidental or malicious causes. This buildup of errors may cause the data structure to deteriorate
so that most queries are not answered correctly anymore. Accordingly, it is a natural task to design
data structures that are not only efficient in space and time but also resilient against a certain amount
of adversarialnoise, where the noise can be placed in positions that make decoding as difficult as
possible.

Ways to protect information and computation against noise have been well studied in the theory
of error-correcting codes and of fault-tolerant computation. In the data structure literature, construc-
tions under often incomparable models have been designed to cope with noise. We mention a few
of these models here. First, Aumann and Bender [1] studied pointer-based data structures such as
linked lists, stacks, and binary search trees. In this model, errors (adversarial but detectable) occur
whenever all the pointers from a node are lost. They studied the dependence between the number of
errors and the number of nodes that become irretrievable, and designed a number of efficient data
structures where this dependence is reasonable.

Another model for studying data structures with noise is the faulty-memory RAM model, in-
troduced by Finocchi and Italiano [10]. In a faulty-memory RAM, there @té) memory cells
that cannot be corrupted by noise. Elsewhere, errors (adversarial and undetectable) may occur at
any time, even during the decoding procedure. Many data structure problems have been examined
in this model, such as sorting [8], searching [9], priority queues [13] and dictionaries [4]. How-
ever, the number of errors that can be tolerated is typically less than a linear portion of the size
of the input. Furthermore, correctness can only be guaranteed for keys that are not affected by
noise. For instance, for the problem of comparison-sorting. &eys, the authors of [8] designed
a resilient sorting algorithm that toleratg8: log n keys being corrupted and ensures that the set of
uncorrupted keys remains sorted.

Recently, de Wolf [19] considered another model of resilient data structures. The representa-
tion of the data structure is viewed as a bit-string, from which a decoding procedure can read any
particular set of bits to answer a data query. The representation must be able to tolerate a constant
fraction § of adversarial noise in the bit-strihgbut not inside the decoding procedure). His model
generalizes the usual noise-free data structures (wherd) as well as the so-called “locally de-
codable codes” (LDCs) [14]. Informally, an LDC is an encoding that is tolerant of noise and allows

Iwe only consider bit-flip-errors here, not erasures. Since erasures are easier to deal with than bit-flips, it suffices to
design a data structure dealing with bit-flip-errors.

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES 205

fast decoding so that each message symbol can be retrieved correctly with high probability. Using
LDCs as building blocks, de Wolf constructed data structures for several problems.

Unfortunately, de Wolf’'s model has the drawback that the optimal time-space tradeoffs are
much worse than in the noise-free model. The reason is that all known constructions of LDCs that
make O(1) bit-probes [21, 7] have very poor encoding length (super-polynomial in the message
length). In fact, this encoding length provably must be super-linear in the message length [14, 16,
20]. As his model is a generalization of LDCs, data structures cannot have a succinct representation
that has length proportional to the information-theoretic bound.

We thus ask: what is a clean model of data structures that allows efficient represerdgations
has error-correcting capabilities? Compared with the pointer-based model and the faulty-memory
RAM, de Wolf's model imposes a rather stringent requirement on decodiugry query must
be answered correctly with high probability from the possibly corrupted encoding. While this re-
quirement is crucial in the definition of LDCs due to their connection to complexity theory and
cryptography, for data structures it seems somewhat restrictive.

In this paper we consider a broader, more relaxed notion of error-correction for data structures.
In our model, for most queries, the decoder has to return the correct answer with high probability.
However, for the few remaining queries, the decoder may claim ignorance, i.e., declare the data
item unrecoverable from the (corrupted) data structure. Stile¥eryquery, the answer is incorrect
only with small probability. In fact, just as de Wolf’s model is a generalization of LDCs, our model
in this paper is a generalization of the “relaxed” locally decodable codes (RLDCSs) introduced by
Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [3]. They relax the usual definition of an
LDC by requiring the decoder to return the correct answemostrather than all queries. For the
remaining queries it is allowed to claim ignorance, i.e., to output a special symbuiterpreted
as “don’t know” or “unrecoverable.” As shown in [3], relaxing the LDC-definition like this allows
for constructions of RLDCs witld(1) bit-probes oinearly linearlength.

Using RLDCs as building blocks, we construct error-correcting data structures that are very
efficient in terms of time as well as space. Before we describe our results, let us define our model
formally. First, adata structure problens specified by a seb of data itemsa set() of queries a
setA of answersand a functiory : D x Q — A which specifies the correct answgr, ¢) of query
g to data itemz. A data structure forf is specified by four parameters:the number bit-probes,

o the fraction of noisesz an upper bound on the error probability for each query, &roh upper
bound on the fraction of queries @ that are not answered correctly with high probability (the *
stands for “lost”).

Definition 1.1. Let f : D x Q — A be a data structure problem. ltet- 0 be an integery € [0, 1],
e €0,1/2], andX € [0, 1]. We say thatf has a(t, ¢, ¢, A)-data structureof length NV if there exist
an encode€ : D — {0, I}N and a (randomized) decod@r with the following properties: for
everyz € D and everyw € {0,1}" at Hamming distancé (w, £(z)) < 6N,

(1) D makes at most bit-probes taw,

(2) Pr[D*(q) € {f(2,9), L}] > 1 —cforeveryq € Q,

(3) theseti = {q : Pr[D"(q) = f(z,q)] > 1 —¢} has size at leagl — \)|Q| (' G" stands for

“good”),
(4) if w = &(x), thenG = Q.

HereD" (q) denotes the random variable which is the decoder’s output on impatglq. The
notation indicates that it accesses the two inputs in different ways: while it has full access to the
queryq, it only has bit-probe access (or “oracle access”) to the string

206 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

We say that &, 6, £, \)-data structure isrror-correcting or anerror-correcting data structure
if 6 > 0. Setting\ = 0 recovers the original notion of error-correction in de Wolf’'s model [19].
A (t,0,e,\)-relaxed locally decodable code (RLDGJefined in [3], is an error-correcting data
structure for the membership functigh: {0,1}" x[n] — {0,1}, wheref(x,i) = z;. A (t,0,¢)-
locally decodable code (LDCllefined by Katz and Trevisan [14], is an RLDC with= 0.

Remark 1.2. For the data structure problems considered in this paper, our decoding procedures
make onlynon-adaptiveprobes, i.e., the positions of the probes are determined all at once and
sent simultaneously to the oracle. For other data structure problems it may be natural for decod-
ing procedures to be adaptive. Thus, we do not reqir® be non-adaptive in Condition 1 of
Definition 1.1.

1.1. Our results

We obtain efficient error-correcting data structures for the following two data structure prob-
lems.

MEMBERSHIP: Consider a universg] = {1,...,n} and some nonnegative integex n. Given

a setS C [n] with at mosts elements, one would like to stof®in a compact representation that
can answer “membership queries” efficiently, i.e., given an index [n]|, determine whether or
noti € S. FormallyD = {S : S C [n],|S] < s}, @ = [n], andA = {0,1}. The function
MEM,, 4(S,%) is 1 if i € S and0 otherwise.

Since there are at leagf) subsets of the universe of size at meseach subset requiring a
different instantiation of the data structure, the information-theoretic lower bound on the space of
any data structure is at ledsiy (Z) ~ slogn bits? An easy way to achieve this is to stafein
sorted order. If each number is stored in its ogn-bit “cell,” this data structure takes cells,
which is slogn bits. To answer a membership query, one can do a binary search on the list to
determine whethei € S using aboutog s “cell-probes,” orlog s - logn bit-probes. The length
of this data structure is essentially optimal, but its number of probes is not. Fredman, Komlos,
and Szemerédi [11] developed a famous hashing-based data structure that ha® (engtélls
(which isO(slog n) bits) and only needs eonstantnumber of cell-probes (which i©(log n) bit-
probes). Buhrman, Miltersen, Radhakrishnan, and Venkatesh [5] improved upon this by designing
a data structure of lengt (s log n) bits that answers queries witimly one bit-probeand a small
error probability. This is simultaneously optimal in terms of time (clearly one bit-probe cannot be
improved upon) and space (up to a constant factor).

None of the aforementioned data structures can tolerate a constant fraction of noise. To protect
against noise for this problem, de Wolf [19] constructed an error-correcting data structure with
A = 0 using a locally decodable code (LDC). That construction answers membership queries in
t bit-probes and has length roughiy(s, t) log n, where L(s,t) is the shortest length of an LDC
encodings bits with bit-probe complexityt. Currently, all known LDCs withk = O(1) have
L(s,t) super-polynomial irs [2, 21, 7]. In fact,L(s,t) must be super-linear for all constantsee
e.g. [14, 16, 20].

Under our present model of error-correction, we can construct much more efficient data struc-
tures with error-correcting capability. First, it is not hard to show that by composing the BMRYV data
structure [5] with the error-correcting data structure foEw), ,, (equivalently, an RLDC) [3], one

20ur logs are always to bage

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES 207

can already obtain an error-correcting data structure of le@gth log n)'*"), wherer is an arbi-
trarily small constant. However, following an approach taken in [19], we obtain a data structure of
lengthO(s'*" log n), which is much shorter than the aforementioned constructisr=ifo(log n).

Theorem 1.3. For everye,n € (0, 1), there exist an integer > 0 and realr > 0, such that for all
s andn, and everyy < 7, MEM,, ; has a(t, §, ¢, ==)-data structure of lengtld (s log n).

' 2n
We will prove Theorem 1.3 in Section 2. Note that the size of the good'sefat least — 3.
Hence corrupting a-fraction of the bits of the data structure may cause a decoding failure for at
most half of the queries € S but not all. One may replace this fact@reasily by another constant

(though the parametetsandr will then change).

POLYNOMIAL EVALUATION : Let Z, denote the set of integers moduloands < n be some
nonnegative integer. Given a univariate polynomjaE Z,[X] of degree at mos¢, we would
like to storeg in a compact representation so that for each evaluation queryZ,, g(a) can be
computed efficiently. Formallyp = {g : g € Z,[X],deg(g) < s}, Q = Z,,, andA = Z,,, and the
function is FOLYEVAL ,, 5(g,a) = g(a).

Since there ar@**! polynomials of degree at most with each polynomial requiring a dif-
ferent instantiation of the data structure, the information-theoretic lower bound on the space of any
data structure for this problem is at least(n°*!) ~ slogn bits. Since each answer is an element
of Z,, and must be represented pyg n| + 1 bits, [logn| + 1 is the information-theoretic lower
bound on the bit-probe complexity.

Consider the following two naive solutions. On one hand, one can simply record the evaluations
of ¢g in a table withn entries, each withlogn| + 1 bits. The length of this data structure is
O(nlogn) and each query requires reading oflyg n | + 1 bits. On the other hang,can be stored
as a table of its + 1 coefficients. This gives a data structure of length and bit-probe complexity
(s+1)([logn]| + 1).

A natural question is whether one can construct a data structure that is optimal both in terms of
space and time, i.e., has lendlis log n) and answers queries with(log n) bit-probes. No such
constructions are known to exist. However, some lower bounds are known in the weaker cell-probe
model, where each cell is a sequencelof n| + 1 bits. For instance, as noted in [18], any data
structure forPOLYNOMIAL EVALUATION that store)(s?) cells (O(s? log n) bits) requires reading
atleast(s) cells. Moreover, by [17], ifog n > slog s and the data structure is constrained to store
s9() cells, then its query complexity i3(s) cells. This implies that the second trivial construction
described above is essentially optimal in the cell-probe model.

Recently, Kedlaya and Umans [15] obtained a data structure of |eﬁ@ﬂiog1+o(l) n (where
n is an arbitrarily small constant) that answers evaluation queries@thlylog s - log' (1) n)
bit-probes. These parameters exhibit the best tradeoff betwaedn so far. Whens = n" for
some0 < n < 1, the data structure of Kedlaya and Umans [15] is much superior to the trivial
solution: its length is nearly optimal, and the query complexity drops fsohp n to only polylog n
bit-probes.

Here we construct an error-correcting data structure for the polynomial evaluation problem that
works even in the presence of adversarial noise, with length nearly linedogm and bit-probe
complexityO(polylog s - log'*°(!)). Formally:

Theorem 1.4.For everys, A, € (0,1), there exists € (0, 1) such that for all positive integers <
n, forall § < 7, the data structure problefoLY EVAL ,, ; has a(O(polylog s-log!™°™M) n), §, ¢, \)-
data structure of lengti®((s log n)+7).

208 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

Remark 1.5. We note that Theorem 1.4 easily holds when= (logn)°™). As we discussed
previously, one can just store a table of the 1 coefficients ofg. To make this error-correcting,
encode the entire table by a standard error-correcting code. This has length and bit-probe complexity
O(slogn) = O(log"+°M) p).

1.2. Ourtechniques

At a high level, for both data structure problems we build our constructions by composing
a relaxed locally decodable code with an appropriate noiseless data structure. If the underlying
probe-accessing scheme in a noiseless data structure is “pseudorandom,” then the noiseless data
structure can be made error-correcting by appropriate compositions with other data structures. By
pseudorandom, we mean that if a query is chosen uniformly at randon{jrahen the positions of
the probes selected also “behave” as if they are chosen uniformly at random. Such property allows
us to analyze the error-tolerance of our constructions.

More specifically, for themEMBERSHIP problem we build upon the noiseless data structure
of Buhrman et al. [5]. While de Wolf [19] combined this with LDCs to get a rather long data
structure withA = 0, we will combine it here with RLDCs to get nearly optimal length with
small (but non-zero\. In order to bound\ in our new construction, we make use of the fact
that the [5]-construction is a bipartiesxpander graphas explained below after Theorem 2.2. This
property wasn't needed in [19]. The left side of the expander represents the set of queries, and a
neighborhood of a query (a left node) represents the set of possible bit-probes that can be chosen to
answer this query. The expansion property of the graph essentially implies that for a random query,
the distribution of a bit-probe chosen to answer this query is close to unifdfinis property allows
us to construct an efficient, error-correcting data structure for this problem.

For the polynomial evaluation problem, we rely upon the noiseless data structure of Kedlaya
and Umans [15], which has a decoding procedure that uses the reconstruction algorithm from the
Chinese Remainder Theorem. The property that we need is the simple fact éhest dhosen
uniformly at random fron%,,, then for anym < n, a modulom is uniformly distributed inZ,,.

This implies that for a random evaluation pointthe distribution of certain tuples of cell-probes
used to answer this evaluation point is close to uniform. This observation allows us to construct
an efficient, error-correcting data structure for polynomial evaluation. Our construction follows the
non-error-correcting one of [15] fairly closely; the main new ingredient is to add redundancy to their
Chinese Remainder-based reconstruction by using more primes, which gives us the error-correcting
features we need.

Time-complexity of decoding and encodingSo far we have used the number of bit-probes as a
proxy for the actual time the decoder needs for query-answering. This is fairly standard, and usually
justified by the fact that the actual time complexity of decoding is not much worse than its number
of bit-probes. This is also the case for our constructions. MEMBERSHIP, it can be shown that
the decoder use®(1) probes andolylog(n) time (as do the RLDCs of [3]). FarOLYNOMIAL
EVALUATION, the decoder usgsolylog(s) log'™°()) (n) probes angbolylog(sn) time.

The efficiency ofencoding i.e., the “pre-processing” of the data into the form of a data struc-
ture, for both our error-correcting data structuresMBERSHIP and POLYNOMIAL EVALUATION

SWe remark that this is different from the notion of smooth decoding in the LDC literature, which requires that for
everyfixedquery, each bit-probe by itself is chosen with probability close to uniform (though not independent of the other
bit-probes).

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES 209

depends on the efficiency of encoding of the RLDC constructions in [3]. This is not addressed
explicitly there, and needs further study.

2. The MEMBERSHIP problem

In this section we construct a data structure for the membership problemn,M First we
describe some of the building blocks that we need to prove Theorem 1.3. Our first basic building
block is the relaxed locally decodable code of Ben-Sasson et al. [3] with nearly linear length. Using
our terminology, we can restate their result as follows:

Theorem 2.1(BGHSV [3]). For everye € (0,1/2) andn > 0, there exist an integet > 0 and
realsc > 0 andr > 0, such that for every. and everyd < 7, the membership probleMEwm,, ,,
has a(t, 6, €, cd)-data structure foMEM,, ,, of lengthO (n'*7).

Note that by picking the error-rat& a sufficiently small constant, one can set= ¢j (the
fraction of unrecoverable queries) to be very close.to

The other building block that we need is the following one-probe data structure of Buhrman et
al. [5].

Theorem 2.2(BMRV [5]). For everye € (0,1/2) and for every positive integers < n, there is

an(1,0,¢,0)-data structure foMEM,, ; of lengthm = %s log n bits.

Properties of the BMRYV encodindhe encoding can be represented as a bipartite ggaph
(L, R, E) with |L| = n left vertices andR| = m right vertices, and regular left degrde= 25"
This G is anexpander graphfor each setS C L with |S| < 2s, its neighborhood’(S) satisfies
IT(S)| > (1—5)|S|d. For each assignment of bits to the left vertices with at nsoshes, the
encoding specifies an assignment of bits to the right vertices. In other wordsy eacfD, 1}"
of weight|z| < s corresponds to an assignment to the left vertices, andtié encoding ofz
corresponds to an assignment to the right vertices.

For eachi € [n| we writeI'; := I'({i}) to denote the set af neighbors ofi. A crucial
property of the encoding functio,,..., is that for everyxr of weight|z| < s, for eachi € [n], if
Y = Epmro(z) € {0,1}™ thenPrjcr,[z; = y;] > 1 — €. Hence the decoder for this data structure
can just probe a random indgxe I'; and return the resulting bit;. Note that this construction is
not error-correcting at all, sind€;| errors in the data structure suffice to erase all information about
thei-th bit of the encoded. m

As we mentioned in the Section 1.1, by combining the BMRV eigpvith the data structure
for MEM,, ,, from Theorem 2.1, one easily obtains @(1), ,, O(9))-data structure for Mm,,
of length O((slogn)**"). However, we can give an even more efficient, error-correcting data
structure of lengthO(s!'*"logn). Our improvement follows an approach taken in de Wolf [19],
which we now describe. For a vecter € {0,1}" with |x| < s, consider a BMRV structure
encoding20n bits intom bits. The following “balls and bins estimate” is known:

Proposition 2.3(From Section 2.3 of [19])For every positive integers < n, the BMRV bipartite
graphG = ([20n], [m], E) for MEMag, , with error parameter;s and m = 10*slog(20n) has the
following property: there exists a partition ¢f:] into b = 101og(20n) disjoint setsBy, ..., By of
10%s vertices each, such that for ea¢le [n], there are at least sets By, satisfying|T'; N By| = 1.

Proposition 2.3 suggests the following encoding and decoding procedures. To enceee
rearrange then bits of &,,,,.,(z) into ©(log n) disjoint blocks ofO(s) bits each, according to the

210 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

partition guaranteed by Proposition 2.3. Then for each block, encode these bits with the error-
correcting data structure (RLDC) from Theorem 2.1. Given a received wotd decode € [n],

pick a block By, at random. With probability at Iea%i; I’ N By = {j} for somej. Run the RLDC
decoder to decode theth bit of the k-th block of w. Since most blocks don’'t have much higher
error-rate than the average (which is at mjstvith high probability we recovefy,,,,,,(z);, which
equalsz; with high probability. Finally, we can argue that most queries do not receive a blank
symbol 1. as an answer, using the expansion property of the BMRV encoding structure. Due to
space limitation, we give only a proof sketch of Theorem 1.3 here.

Proof of Theorem 1.3We only construct an error-correcting data structure with error probability
0.49. By a standard amplification technique we can reduce the error probability to any other positive
constant (i.e., repeat the decodeflog(1/<)) times).

By Theorem 2.2, there exists an encodgy,., for an (1,0, 1—10, 0)-data structure for the mem-
bership problem MMy, ; of lengthm = 10*s1og(20n). Lets’ = 10%s. By Theorem 2.1, for
everyn > 0, for somet = O(1), and sufficiently smal§, MEMy o has a(t, 10°6, ﬁ, 0(0))-data
structure of lengths” = O(s"'™). Let Eygnsy aNdDyyns,, be its encoder and decoder, respectively.

Encoding.Let By, ..., B, be a partition offm| as guaranteed by Proposition 2.3. For a string
w € {0,1}"™, we abuse notation and write = wp, - - - wp, to denote the string obtained from
by applying the permutation om:] according to the partitiol3;, . .., By. In other wordswp, is
the concatenation af; wherei € B;. We now describe the encoding process.
Encoder€: on inputz € {0,1}", |z| < s,
(1) Lety = Epmro (20™™) and writey = yp, ... yp,.
(2) Output the concatenatid(z) = Eyghsy (UB,) - - - Evghsv (UB,)-
The length of€(z) is N = b- O(s"**) = O(s' ™ logn).

Decoding.Given a stringw € {0,1}", we writew = w® ... w®, where fork € [b], w*) denotes
the s”-bit string Wt (k—1)+1 - - - We' -
DecoderD: on inputi and with oracle access to a stringe {0,1}",
(1) Pick arandonk € [b].
(2) If |T; N Bg| # 1, then output a random bit.
Else, letl’; N B, = {j}. Run and output the answer given by the decddgy,s,(j), with
oracle access to th&-bit stringw*) .
Analysis. We defer the analysis to the full version [6]. [

3. The POLYNOMIAL EVALUATION problem

In this section we prove Theorem 1.4. Given a polynomiaf degrees overZ,, our goal is
to write down a data structure of length roughly lineasiog n so that for eacla € Z,,, g(a) can
be computed with roughlpolylog s - log n bit-probes. Our data structure is built on the work of
Kedlaya and Umans [15]. Since we cannot quite use their construction as a black-box, we first give
a high-level overview of our proof, motivating each of the proof ingredients that we need.

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES 211

Encoding based on reduced polynomialsThe most naive construction, by recordign@) for each
a € Z,, has lengthm logn and answers an evaluation query widlg n bit-probes. As explained
in [15], one can reduce the length by using the Chinese Remainder Theorem (CERT)islfa
collection of distinct primes, then a nonnegative integer< Hpeplp is uniquely specified by
(and can be reconstructed efficiently from) the vale§, for eachp € Py, where[m/], denotesn
mod p.

Consider the valug/(a) over Z, which can be bounded above by*2, for a € Z,. Let
P, consist of the firsiog(n®*?) primes. For eachp € P;, compute the reduced polynomial
gp = g mod p and write downg,(b) for eachb € Z,. Consider the data structure that sim-
ply concatenates the evaluation table of every reduced polynomial. This data structure has length
| Py |(maxpep, p)t M), which is s2+°(1) log2t°(M) 1, by the Prime Number Theorem. Note that
g9(a) < [l,ep, p- So to computeg(a)l,, it suffices to apply CRT to reconstrugta) overZ from
the valuegg(a)], = g,([a],) for eachp € P;. The number of bit-probes is, | log(max,cp, p),
which is st o) Joglto()

Error-correction with reduced polynomials: The above CRT-based construction has terrible pa-
rameters, but it serves as an important building block from which we can obtain a data structure
with better parameters. For now, we explain how the above CRT-based encoding can be made
error-correcting. One can protect the bits of the evaluation tables of each reduced polynomial by an
RLDC as provided by Theorem 2.1. However, the evaluation tables can have non-binary alphabets,
and a bit-flip in just one “entry” of an evaluation table can destroy the decoding process. To remedy
this, one can first encode each entry by a standard error-correcting code and then encode the con-
catenation of all the tables by an RLDC. This is encapsulated in Lemma 3.1, which can be viewed
as a version of Theorem 2.1 over non-binary alphabet. We defer this proof to the full version of this

paper [6].

Lemma3.l.Letf : D x Q — {0,1}5 be a data structure problem. For everyn, A € (0,1),
there exists- € (0, 1) such that for every < 7, f has an(O(¥), d, e, \)-data structure of length

o(EeN™m).

To apply Lemma 3.1, leD be the set of degreepolynomials overZ,,, Q@ be the set of all
evaluation points of all the reduced polynomialsgafeachq € @ specified by a paifa, p) of an
evaluation point: and a prime modulug), and the data structure problefroutputs evaluations of
some reduced polynomial gf

By itself, Lemma 3.1 cannot guarantee resilience against noise. In order to apply the CRT to
reconstructg(a), all the values{[g(a)], : p € P;} must be correct, which is not guaranteed by
Lemma 3.1. To fix this, we add redundancy, taking a larger set of primes than necessary so that the
reconstruction via CRT can be made error-correcting. Specifically, we apply a Chinese Remainder
Code, or CRT code for short, to the encoding process.

K

Definition 3.2 (CRT code) Letp; < ps < ... < py be distinct primesK < N, andT = [] p;.
=1

The Chinese Remainder Code (CRT cod#éth basisp,,...,py and rate% over message space

Z7 encodesn € Zg as([mlp,, [m]py, .-, [Mlpy)-

Remark 3.3. By CRT, for distinctm, ms € Z7, their encodings agree on at mdst— 1 coor-
dinates. Hence the Chinese Remainder Code with pasis ... < py and rate% has distance
N—-K+1.

212 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

Itis known that good families of CRT code exist and that unique decoding algorithms for CRT
codes can correct up to almost half of the distance of the code (see e.g., [12]). The following
statement can be easily derived from known facts, and we defer its proof to the full version [6].

Theorem 3.4. For every positive integer’, there exists a sét consisting of distinct primes, with (1)
|P| = O(logT), and (2)Vp € P, logT < p < 500log T, such that a CRT code with basisand
message spacgr has ratel, relative distance,, and can correct up to &% — O(m))-fraction
of errors.

We apply Theorem 3.4 to a message space ofisizé to obtain a set of prime®; with the
properties described above. Note that these primes are all within a constant factor of one another,
and in particular, the evaluation table of each reduced polynomial has the same length, up to a con-
stant factor. This fact and Lemma 3.1 will ensure that our CRT-based encoding is error-correcting.

Reducing the bit-probe complexity:We now explain how to reduce the bit-probe complexity of
the CRT-based encoding, using an idea from [15]. Wite d™, whered = log€ s, m = 1282

C'loglogs’
andC' > 1 is a sufficiently large constant. Consider the following multilinear extensionypap:
Zn| X] — Zpn[Xo, ..., Xm—1] that sends a univariate polynomial of degree at rméstanm-variate

m—1 -

polynomial of degree less thahin each variable. For everyc [s], write i = ijo i;d’ in base

d. Defineqy,,,, which sendsX* to X{° - - - X;»~* and extends multilinearly t@,,[X].

To simplify our notation, we writg to denote the multivariate polynomiai; ,,,(g). For every
a € Zy, definea € Z™ to be ([a],, [a%,, [a¥]n,...,[a®" '],). Note that for everys € Z,,
g(a) = g(a) (modn). Now the trick is to observe that the total degree of the multilinear polynomial
g is less than the degree of the univariate polynomiaind hence its maximal value over the integers
is much reduced. In particular, for evary= 7", the valuey ,,,(¢)(a) over the integers is bounded
above bydmndm+t1,

We now work with the reduced polynomials §ffor our encoding. LefP; be the collection
of primes guaranteed by Theorem 3.4 whgn= d™n%"t1. Forp € Py, let gp denoteg mod p

anda, denote the point[al,, [a%),,...,[a?" '],). Consider the data structure that concatenates
the evaluation table of, for eachp € P;. For eacha € Z,, to computeg(a), it suffices to
computeg(a) over Z, which by Theorem 3.4 can be reconstructed (even with noise) from the set
{Gp(ap) :p € P1}.

Since the maximum value @f is at most7; = d™n®*! (whereas the maximum value of
g is at mostd™n?"+1), the number of primes we now use is significantly less. This effectively
reduces the bit-probe complexity. In particular, each evaluation query can be answerégs yvith
max,e p, logp = (dmlogn)'T°M) bit-probes, which by our choice dfandm is equal tapolylog s-
log' (M) n. However, thelength of this encoding is still far from the information-theoretically
optimal s log n bits. We shall explain how to reduce the length, but since encoding with multilinear
reduced polynomials introduces potential complications in error-correction, we first explain how to
circumvent these complications.

Error-correction with reduced multivariate polynomials: There are two complications that arise

from encoding with reduced multivariate polynomials. The first is that not all the points in the
evaluation tables are used in the reconstructive CRT algorithm. Lemma 3.1 only guarantees that
most of the entries of the table are decoded correctly with high probability, but not all of them (even
if the fraction of errors in the table is low, afraction of queries may be answered by. So if the

entries that are used in the reconstruction via CRT are not decoded by Lemma 3.1, then the whole
decoding procedure fails.

EFFICIENT AND ERROR-CORRECTING DATA STRUCTURES 213

More specifically, to reconstrugt{a) overZ,, it suffices to query the poirt, in the evaluation
table ofg, for eachp € Py. Typically the set{a,, : a € Z, } will be much smaller thaZ;’, so not
all the points inZ;" are used. To circumvent this issue, we only store the query points that are used
in the CRT reconstruction. L€s? = {a, : a € Z,}. For eactp € P;, the encoding only stores the
evaluation ofg, at the pointsB” instead of the entire domaify’. The disadvantage of computing
the evaluation at the points iB? is that the encoding stage takes time proportional.téVe thus
give up on encoding efficiency (which was one of the main goals of Kedlaya and Umans) in order
to guarantee error-correction.

The second complication is that the sizes of the evaluation tables may no longer be within a
constant factor of each other. (This is true even if the evaluation points come fronZglL pff one
of the tables has length significantly longer than the others, then a constant fraction of noise may
completely corrupt the entries of all the other small tables, rendering decoding via CRT impossible.
This potential problem is easy to fix; we apply a repetition code to each evaluation table so that all
the tables have equal length.

Reducing the length:Now we explain how to reduce the length of the data structure to nearly
slogn, along the lines of Kedlaya and Umans [15]. To reduce the length, we need to reduce
the magnitude of the primes used by the CRT reconstruction. We can effectively achieve that by
applying the CRT twice. Instead of storing the evaluation tablg, ofve apply CRT again and store
evaluation tables of the reduced polynomialg;pfnstead. Whenever an entry gf is needed, we
can apply the CRT reconstruction to the reduced polynomiads.of

Note that forp; € P;, the maximum value of,, (over the integers rather than maglis at
mostT, = d”pi™ 1. Now apply Theorem 3.4 witfi, the size of the message space to obtain a
collection of primesP,. Recall that eacly; € P; is at mostO(dmlogn). So eactp, € P, is at
mostO((dm)*+°(M) log log n), which also bounds the cardinality &5 from above.

For each query, the number of bit-probes made is at fiR$tP,| max,, < p, log p2, Which is

at most(dm)?+°M) log! (1) . Recall that by our choice af andm, dm = %. Thus, the
)

bit-probe complexity igolylog s - log““’(n. Now, by Lemma 3.1, the length of the encoding is
nearly linear in P, || Po| max,, e p, pl* log p2, which is at mospolylog s-log'+°() n-max,, c p, pi*.

So it suffices to bounthax,,cp, py' from above. To this end, recall that by the remark following
Theorem 1.4, we may assume without loss of generality ¢hatQ(log® n) for some0 < ¢ < 1.
This implies thatog log logn < loglog s — log ¢. Then for eachy, € P,

py < (O ((dm)”o(l)loglogn))m

(dm)(1+0(1))m . geto(l)

IN

It is easy to see thaidm)(+°(1)™ can be bounded above B! toM)(+c—oM) Thus, pi =

slté+ol) Putting everything together, the length of the encoding is nearly lineatoigin. As
mentioned, we defer the formal proof to the full version of this paper [6].

Acknowledgments

We thank Madhu Sudan for helpful comments and suggestions on the presentation of this paper.

214 V. CHEN, E. GRIGORESCU, AND R. DE WOLF

References

[1] Y. Aumann and M. Bender. Fault-tolerant data structureBroceedings of 37th IEEE FOCRages 580-589, 1996.
[2] A. Beimel, Y. Ishai, E. Kushilevitz, and J. Raymond. Breaking tﬂh@zl/(?k‘l)) barrier for information-theoretic
Private Information Retrieval. IRroceedings of 43rd IEEE FOCBages 261270, 2002.
[3] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of proximity, shorter PCPs and
applications to codingSIAM Journal on Computindg6(4):889-974, 2006. Earlier version in STOC'04.
[4] G. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. Italiano, A. Jgrgenson, G. Moruz, and T. Mglhave. Optimal
resilient dynamic dictionaries. IRroceedings of 15th European Symposium on Algorithms (EB&gs 347-358,
2007.
[5] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors opitAd?Journal on Com-
puting 31(6):1723-1744, 2002. Earlier version in STOC'00.
[6] V. Chen, E. Grigorescu, and R. de Wolf. Efficient and Error-Correcting Data Structures for Membership and Poly-
nomial Evaluation, 2009. Preprint at http://arxiv.org/abs/0909.3696.
[7] K. Efremenko. 3-query locally decodable codes of subexponential lengtotreedings of 41st ACM STOZ009.
[8] I. Finocchi, F. Grandoni, and G. Italiano. Optimal resilient sorting and searching in the presence of memory faults.
In Proceedings of 33rd ICALRolume 4051 of_ecture Notes in Computer Sciengages 286—298, 2006.
[9] I. Finocchi, F. Grandoni, and G. ltaliano. Resilient search treeBrbeeedings of 18th ACM-SIAM SODPpages
547-553, 2007.
[10] I. Finocchi and G. Italiano. Sorting and searching in the presence of memory faults (without redundaReg). In
ceedings of 36th ACM STQ@ages 101-110, 2004.
[11] M. Fredman, M. Komlos, and E. Szemerédi. Storing a sparse tabledfithworst case access tim#urnal of the
ACM, 31(3):538-544, 1984.
[12] O. Goldreich, D. Ron, and M. Sudan. Chinese remaindering with etEfesE Transactions on Information Theory
46(4):1330-1338, 2000.
[13] A. G. Jargenson, G. Moruz, and T. Mglhave. Resilient priority queueBrdoeedings of 10th International Work-
shop on Algorithms and Data Structures (WAP®Jume 4619 of_ecture Notes in Computer Scien@®07.
[14] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting coBescdrdings
of 32nd ACM STO(ages 80-86, 2000.
[15] K. S. Kedlaya and C. Umans. Fast modular composition in any characterisBodeedings of 49th IEEE FOCS
pages 146-155, 2008.
[16] I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes via a quantum argument.
Journal of Computer and System Scien@&3):395-420, 2004. Earlier version in STOC’03. quant-ph/0208062.
[17] P.B. Miltersen. On the cell probe complexity of polynomial evaluatidreor. Comput. Sgi143(1):167-174, 1995.
[18] P.B. Miltersen. Cell probe complexity - a survey. Invited papekdtances in Data Structuregorkshop. Available
at Miltersen’s homepage, 1999.
[19] R. de Wolf. Error-correcting data structures.Rroceedings of 26th Annual Symposium on Theoretical Aspects of
Computer Science (STACS'2008ages 313-324, 2009. ¢s.DS/0802.1471.
[20] D. Woodruff. New lower bounds for general locally decodable codes. Technical report, ECCC Report TR07-006,
2006.
[21] S. Yekhanin. Towards 3-query locally decodable codes of subexponential [dagthal of the ACM55(1), 2008.
Earlier version in STOC'07.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit ht t p: / / creat i veconmons. or g/ | i censes/ by- nd/ 3. 0/ .

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 215-226
www.stacs-conf.org

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN
k-TREES

BIRESWAR DAS! AND SAMIR DATTA 2 AND PRAJAKTA NIMBHORKAR !

! The Institute of Mathematical Sciences
Chennai, India
E-mail address: {bireswar,prajakta}@imsc.res.in

2 Chennai Mathematical Institute, Chennai, India
E-mail address: sdatta@cmi.ac.in

ABSTRACT. Reachability and shortest path problems are NL-complete for general graphs.
They are known to be in L for graphs of tree-width 2 [14]. However, for graphs of tree-
width larger than 2, no bound better than NL is known. In this paper, we improve these
bounds for k-trees, where k is a constant. In particular, the main results of our paper are
log-space algorithms for reachability in directed k-trees, and for computation of shortest
and longest paths in directed acyclic k-trees.

Besides the path problems mentioned above, we consider the problem of deciding
whether a k-tree has a perfect macthing (decision version), and if so, finding a perfect
matching (search version), and prove that these problems are L-complete. These problems
are known to be in P and in RNC for general graphs, and in SPL for planar bipartite
graphs [8].

Our results settle the complexity of these problems for the class of k-trees. The results
are also applicable for bounded tree-width graphs, when a tree-decomposition is given as
input. The technique central to our algorithms is a careful implementation of divide-and-
conquer approach in log-space, along with some ideas from [14] and [19].

1. Introduction

Reingold’s striking result [21], showed that undirected reachability is in L, thus col-
lapsing the class SL to L. On the other hand, directed reachability, which happens to be
NL-complete is another similar sounding problem for which there is only partial progress to
report. A result of Allender and Reinhardt, [22] hints at a partial collapse of NL by showing
that directed reachability is in the formally smaller class UL, although, non-uniformly.

In the absence of better constructive upper bounds it is natural to consider natural
restrictions on graphs which allow us to improve the upper bounds on reachability and
related problems. Typical examples of this approach are [1],[23], where the complexity of
various versions of planar and somewhat non-planar (in the sense of excluding only a K5 or
only a K33 minor) are considered. In the same spirit, but using different techniques, [14]

1998 ACM Subject Classification: Computational Complexity.
Key words and phrases: k-trees, reachability, matching, log-space.

SYMPOSIUM

Vr ON THEORETICAL
N

.
ASPECTS
- S’ OF COMPUTER © B.Das, S. Datta, and P. Nimbhorkar
© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2456

216 B. DAS, S. DATTA, AND P. NIMBHORKAR

considers reachability and related questions in series-parallel graphs and places all of these
in L. They leave open the question of complexity of such problems in bounded tree-width
graphs. Series-parallel graphs have tree-width two and happen to be planar. But higher
tree widths graphs are highly non-planar. In fact, any k-tree for k > 4 contains both Kj
and K3,3.

We resolve the open questions posed in [14] and show a matching L lower bound to
complete the characterization of reachability problems in k-trees. Thus one of the main
results of our paper is the following:

Theorem 1.1. The following problems are L-complete:
1. Computing reachability between two vertices in directed k-trees,
2. Computing shortest and longest paths in directed acyclic k-trees.

In this paper, we also consider the perfect matching problem. The parallel complexity of
perfect matching problems is a long standing open problem where the best known algorithms
use randomness as a resource [20],[15]. Even in the planar case, the search problem for
perfect matchings is known to be in NC for bipartite graphs only [8].

We prove a complete characterization for the decision and search versions of the perfect
matching problem for k-trees. This improves significantly upon previous best known upper
bound of LOgCFL for bounded tree-width graphs. Thus another main result of our paper
is:

Theorem 1.2. Deciding whether a k-tree has a perfect matching, and if so, finding a perfect
matching is L-complete.

Our primary technique is a careful use of divide-and-conquer to enable the algorithm to
run in L. However, for the distance computation we need to import a constructive version
of tree separation from [19] where it is stated in the context of Visibly Pushdown Automata
(VPAs). We believe that porting this technique for use in general log-space computation is
an important contribution of this paper.

At this point, we must mention an important caveat. All our log-space results hold
directly only for k-trees and not for partial k-trees which are also equivalent to tree-width
k graphs. The reason being that a tree decomposition for partial k-trees is apparently more
difficult to construct (best known upper bound is LogCFL[24]) as opposed to k-trees (for
which it can be done in L [17]). Having mentioned that it is important to observe that if
we are given the tree decomposition of a partial k-tree, we can do the rest of computation
in L.

The rest of the paper is organized as follows: Section 2 gives the necessary background.
Section 3 contains log-space algorithms for reachability in directed k-paths and k-trees.
Section 4 contains log-space algorithms for shortest and longest path in directed acyclic
k-paths and k-trees. Section 5 contains log-space algorithms for perfect matching problems
in a k-tree.

2. Preliminaries

We define k-trees and a subclass of k-trees known as k-paths here, and also describe
a suitable representation for the graphs in these two classes. This representation is used
in our algorithms in the rest of the paper. All the definitions given here are applicable
to both directed as well as undirected graphs. For directed graphs, the directions of the

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 217

edges can be ignored while defining k-trees and k-paths and while computing their suitable
representations.
The class of graphs known as k-trees is defined as (cf. [12]):

Definition 2.1. The class of k-trees is inductively defined as follows.

e A clique with k vertices (k-clique for short) is a k-tree.

e Given a k-tree G’ with n vertices, a k-tree G with n -+ 1 vertices can be constructed
by picking a k-clique X (called the support)in G’ and then joining a new vertex v to
each vertex u in X. Thus, V(G) = V(G') U {v}, E(G) = E(G") U {{u,v} |u e X}.

A partial k-tree is a subgraph of a k-tree. The class of partial k-trees coincides with
the class of graphs that have tree-width at most k. k-trees are recognizable in log-space
[2] but partial k-trees are not known to be recognizable in log-space. In literature, several
different representations of k-trees have been considered [10, 2, 17]. We use the following
representation given by Kobler and Kuhnert [17]:

Definition 2.2. Let G = (V, E) be a k-tree. The tree representation 7'(G) of G is defined
by
V(T(G)) ={M CV | M is a k-clique or a (k + 1)-clique},
E(T(G)) = {{My, My} C V' | My & M}

In [17], it is proved that 7T'(G) is a tree and can be computed in log-space. In the rest
of the paper, we use G in place of T'(G). Thus, by a k-tree G, we always mean that G is
in fact represented as T'(G). The term vertices in G refers to the vertices in the original
graph, whereas a node in G and a clique in G refer to the nodes of T'(G). Partial k-trees
also have a tree-decomposition similar to that of k-trees, which is also not known to be
log-space computable.

k-paths is a sub-class of k-trees (e.g. see [11]). The recursive definition of k-paths is
similar to that of k-trees. However, a new vertex can be added only to a particular clique
called the current clique. After addition of a vertex, the current clique may remain the same,
or may change by dropping a vertex and adding the new vertex in the current clique. We
consider the following representation of k-paths, which is based on the recursive definition
of k-paths, and is known to be computable in log-space [2]:

Given a k-path G = (V,E), for i = 1,--- ,m, let X; be the current cliques at the ith
stage of the recursive construction of the k-path. Let V3 = U; X; and Vo = V' \ V4. We call
the vertices in Vs as spikes. The following facts are easy to see:

1. No two spikes have an edge between them.

2. Each spike is connected to all the vertices of exactly one of the X;’s.

3. X; and X, share exactly & — 1 vertices

The representation of G consists of a graph G' = (V' E’) where V' = {Xy,..., X, } U
Vo and B = {(X;,Xi41) | 1 < i < m}U{(X,v)[Xisacliquein € V' v €
V5 has a neighbour in X'}.

3. Reachability

We give log-space algorithms to compute reachability in k-paths and in k-trees. Al-
though the graphs considered in this section are directed, when we refer to any of the
definitions or decompositions in Section 2, we consider the underlying undirected graph.

218 B. DAS, S. DATTA, AND P. NIMBHORKAR

3.1. Reachability in k-paths

Without loss of generality, we can assume that s and ¢ are vertices in some k-cliques
X; and X, and not spikes. If s () is a spike, then it has at most k out-neighbors (resp. in-
neighbors) and we can take one of the out-neighbors (resp. in-neighbors) as the new source
s’ and new sink ' and check reachability. As there are only k? such pairs, we can cycle
through all of them in log-space. The algorithm is based on the observation that a simple
s to t path p can pass through any clique at most k times. We use a divide- and-conquer
approach similar to that used in Savitch’s algorithm (which shows that directed reachability
can be computed in DSPACFE(log?n)). The main steps involved in the algorithm are as
follows:

1. Preprocessing step: Make the cliques disjoint by labeling different copies of each ver-
tex with different labels and introducing appropriate edges. Compute reachabilities within
each clique including its spikes, and remove the spikes. Number the cliques X1, ..., X, left
to right.

2. Now assume that s and ¢ are in cliques X; and X respectively. Note that ¢ = j is
also possible, but without loss of generality, we can assume ¢ < j. This is because, if i = j,
we can make another copy X/ of X;, join the copies of the same vertex by bidirectional
edges to preserve reachabilities, and choose the copy of s from X; and that of ¢ from X.

3. Divide the k-path into three parts P, P> and P3 where P; consists of cliques
Xi,...,X;, P> consists of Xj,...,X;, and P consists of Xj;,..., X,,. Note that X; (Xj;)
appears in both P and P» (P, and Pj3 respectively). Now compute reachabilities of all
pairs of vertices in X; (X;) when the graph is restricted to Py (respectively P;). Then the
reachability of ¢ from s within P, is computed, using the previously computed reachabilities
within P, and Ps.

Fach of these steps can be done by a log-space transducer. The details are given below.

Preprocessing: Although adjacent k-cliques in a k-path decomposition share k — 1
vertices, we perform a preprocessing step, where we give distinct labels to each copy of a
vertex. As all the copies of a vertex form a (connected) sub-path in the k-path decomposi-
tion, we join two copies of a vertex appearing in two adjacent cliques by bidirectional edges.
It can be seen that this preserves reachabilities. Any copy of s and ¢ can be taken as the new
s and t. Another preprocessing step involves removing the spikes maintaining reachabilities
between all pairs of vertices, and computing reachabilities within each k-clique. Both of
these preprocessing steps can be done by a log-space transducer. The proof appears in the
full version of the paper.

The Algorithm: We describe an algorithm to compute pairwise reachabilities in X;
and X; in P; and P3 respectively, and also s-t reachability in P using these previously
computed pairwise reachabilities. Algorithm 1 describes this reachability routine. The
routine gets as input two vertices v and v, and two indices 7 and j. It determines whether
v is reachable from u in the sub-path P = (Xj,..., X;). This input is given in such a way
that u and v always lie in X; or X;. Consider the case when both u and v are in X; (or
both in X;). Let [be the center of P. Then a path from u to v either lies entirely in the
sub-path P’ = (X;,...,X;) or it crosses X; at most k times. Thus if X; = {v1,...,vx}
then for {v;, - ,v;.} € X; we need to check reachabilities between u and say v;; in P’,
then between v;; and v, in P” = (Xj,...,X;) and so on, and finally between v;. and v in
P'. Tt suffices to check all the r-tuples in X;, where 0 < r < k. The case when u € X;
and v € X; (and vice versa) is analogous. In Algorithm 1, we present only one case where

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 219

u,v € X;. Other three cases are analogous. Thus at each recursive call, the length of the
sub-path under consideration is halved, and O(log m) iterations suffice. The algorithm can

Algorithm 1 Procedure IsReach(u, v, i, j)

1: Input: Pre-processed k-path decomposition of graph G, clique indices i, j, vertex labels
u,v € X;. {Other three cases are analogous.}

2: Decide: Whether v is reachable from u in sub-path P = (X;,..., Xj).
3: if j —i =1 then

4: Compute the reachability directly, as the sub-path has only 2k vertices.
5: Return the result.
6: end if

71l = JTH

8: if u,v € X; then

9: if IsReach(u, v, i, [) then

10: Return 1;

11: else

12: for g =1 to k do

13: Vo < U, Vg1 <V

14: for all g-tuples (v1,...,vq) of vertices in X; do

15: if /\q:io IsReach(vg,vy41,2,0) A /\‘{;;11 IsReach(vy,v41,0,7) then
T even z odd

16: Return 1;

17: end if

18: end for

19: end for

20: end if

21: end if

be implemented in log-space. The correctness and complexity analysis of the algorithm
appears in the full version.

3.2. Reachability in k-trees

Given a directed k-tree GG in its tree decomposition and two vertices s and t in G, we
describe a log-space algorithm that checks whether ¢ is reachable from s. This algorithm
uses Algorithm 1 as a subroutine and involves the following steps: The complexity analysis
is given in Lemma 3.1.

1. Preprocessing: Like k-paths, assign distinct labels to the copies of each vertex
u in different cliques. Introduce a bidirectional edge between the copies of u in all the
adjacent pairs of cliques. As reachabilities are maintained during this process, any copy of
s and t can be taken as the new s and ¢. Let X; and X be the cliques containing s and ¢
respectively.

2. The Procedure: After this preprocessing, we have a tree T" with its nodes as
disjoint k-cliques of vertices of G, and s and t are contained in cliques X; and X;. Compute
the unique undirected path p between X; and X; in T' in log-space. Each node on p has
two of its neighbors on p, except X; and X, which have one neighbor each. An s to ¢ path
has to cross each clique in p, and additionally, it can pass through the subtrees attached to

220 B. DAS, S. DATTA, AND P. NIMBHORKAR

each node X; on p. Hence for each node X; on p, we pre-compute the pairwise reachabilities
among the k vertices contained in X; when the k-tree is restricted to the subtree rooted
at X;. We define the subtree rooted at X; as the subtree consisting of X; and those nodes
which can be reached from X; without going through any node on p. Note that once this
is done for each node X; on p, we are left with p. As p is a k-path, we can use Algorithm 1
in Section 3.1 to compute reachabilities within p.

3. Computing reachabilities within the subtree rooted at X;: We do this induc-
tively. If the subtree rooted at X; contains only one node X;, we have only k vertices, and
their pairwise reachabilities within X; can be computed in O(k log k) space. We recursively
find the reachabilities within the subtrees rooted at each of the children of X;. Let the size
of the subtree rooted at X; be N. At most one of the children of X; can have a subtree of
size larger than % Let X, be such a child. Recursively compute the pairwise reachabilities
for each pair of vertices in X, within the subtree rooted at X,. The reachabilities are repre-
sented as a k X k boolean matrix referred to as the reachability matriz M for the vertices in
X4, when the graph is confined to the subtree rooted at X,. M is then used to compute the
pairwise reachabilities of vertices in X;, when the graph is confined to X; and the subtree
rooted at X,. This gives a new matrix M’ of size k2. It is stored on stack while computing
the reachability matrix M"” for another child X, of X;. The matrix M’ is updated using
M?", so that it represents reachabilities between each pair of vertices in X; when the graph
is confined to X; and the subtrees rooted at X, and Xj. This process is continued till all the
children of X; are processed. The matrix M’ at this stage reflects the pairwise reachabilities
between vertices of X;, when the graph is confined to the subtree rooted at X;. Note that
the storage required while making a recursive call is only the current reachability matrix
M'. Recall that M’ contains the pairwise reachabilitities among the vertices in X; in the
subgraph corresponding to X; and the subtrees rooted at those children of X; which are
processed so far. We give the complexity analysis in the full version.

Lemma 3.1. The procedure described above can be implemented in log-space.

Hardness for L: L-hardness of reachability in k-trees follows from L-hardness of the problem
of path ordering (proved to be SL-hard in [9], and is L-hard due to SL=L result of [21]).
We give the details in the full version.

4. Shortest and Longest Paths

We show that the shortest and longest paths in weighted directed acyclic k-trees can be
computed in log-space, when the weights are positive and are given in unary. Throughout
this section, the terms k-path and k-tree always refer to directed acyclic k-paths and k-
trees respectively, with integer weights on edges and we here onwards omit the specification
weighted directed acyclic. We use the following (weighted) form of the result from [18]: The
proof is exactly similar to that in [18] and we omit it here.

Theorem 4.1 (See[18], Theorem 9). Let C be any subclass of weighted directed acyclic
graphs closed under vertex deletions. There is a function f, computable in log-space with
oracle access to Reach(C), that reduces Distance(C) to Long-Path(C) and Long-Path(C) to
Distance(C), where Reach(C), Distance(C), and Long-Path(C) are the problems of deciding
reachability, computing distance and longest path respectively for graphs in C.

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 221

We use this theorem to reduce the shortest path problem in k-trees to the longest
path problem, and then compute the longest (that is, maximum weight) s to ¢ path. The
reduction involves changing the weights of the edges such that the shortest path becomes
the longest path and vice versa. This gives a directed acyclic k-tree with positive integer
weights on edges given in unary. The class of k-trees is not closed under vertex deletions.
However, once a tree decomposition of a k-tree is computed, deleting vertices from the
cliques leaves some cliques of size smaller than %k, which does not affect the working of the
algorithm.

We show that the maximum weight of an s to ¢ path can be computed in log-space
using a technique which uses ideas from [14]. The algorithm to compute maximum weight
s to t path in k-trees uses the algorithm for computing maximum weight path in k-paths
as subroutine. Therefore we first describe the algorithm for k-paths in Section 4.1

4.1. Maximum Weight Path in Directed Acyclic k-paths

Let G be a directed acyclic k-path and s and ¢ be two designated vertices in G. The
computation of maximum weight of an s to ¢ path is done in five stages, described below in
detail. The main idea is to obtain a log-depth circuit by a suitable modification of Algorithm
1, and to transform this circuit to an arithmetic formula over integers, whose value is used
to compute the maximum weight of an s to ¢ path in G.

Computing the maximum weight s to ¢ path in G involves the following steps:

(1) Construct a log-depth formula from Algorithm 1: Modify Algorithm 1 so
that it outputs a circuit C that has nodes corresponding to the recursive calls made
in Line 15 and the tuples considered in the for loop in Line 14. A node ¢ in
C that corresponds to a recursive call IsReach(u, v, 4, j) has children q1,--- ,qn,
which correspond to the tuples considered in that recursive call (for-loop on Line
12 of Algorithm 1). We refer to ¢ as a call-node and qi,...,qN as tuple-nodes. A
tuple-node ¢’ corresponding to a tuple (vy,...,vy) has call-nodes q,..., ¢y as its
children, which correspond to the recursive calls made while considering the tuple
(v1,...,vn) (Line 15 of Algorithm 1). The leaves of C are those recursive calls which
satisfy the if condition on Line 3 of Algorithm 1, thus they are always call-nodes.
As the depth of the recursion in Algorithm 1 is O(logn), the circuit C also has
O(logn) depth. Hence it can be converted to a formula F by only a polynomial
factor blow-up in its size. The maximum number of children of a node is O(k*) and
hence the size of F is bounded by O(k*1°8™) which is polynomial in n for constant
k.

(2) Prune the boolean formula: The internal call-nodes of F are replaced by V
gates and tuple-nodes are replaced by A gates. The leaves of F are replaced by 0
or 1 depending on whether the corresponding recursive call returned 0 or 1 in the if
block on Line 3 of Algorithm 1. It can be seen that a sub-formula of F rooted at a
call-node evaluates to 1 if and only if the corresponding recursive call returns 1 in
Algorithm 1. Similarly, the sub-formula rooted at a tuple-node evaluates to 1 if and
only if the conjunction corresponding to it (on Line 15 of Algorithm 1) evaluates
to 1. Now, we evaluate the sub-formula rooted at each node of F. Note that a
node that evaluates to 0 does not contribute to any path from s to ¢, and hence its
subtree can be safely removed.

222 B. DAS, S. DATTA, AND P. NIMBHORKAR

(3) Transformation into a {4+, max}-tree: The new, pruned formula obtained in
Step 2 is then relabeled: Each A label is replaced with a + label and each V label
with a maz label. Each leaf corresponds to calls of the form IsReach(u,v,i,i+ 1).
It is labeled with the length of the maximum weight v to v path confined within
cliques i and i 4+ 1, which can be computed in O(1) space. This weight is strictly
positive, since the O-weight leaves are removed in Step 2. Further, all the weights
are in unary. Thus we now have a {4, mazx}-tree T' with positive, unary weights on
its leaves. It is easy to see that the value of the {4, max}-tree T' is the maximum
weight of any s to ¢ path in G.

(4) Transformation into a {+, x}-tree: The evaluation problem on the {4, max}-
tree T obtained in Step 3 is then reduced to the evaluation problem on a {+, x }-
tree T” whose leaves are labeled with positive integer weights coded in binary. This
reduction works in log-space and is similar to that of [14]. The reduction involves
replacing a +-node of T with a x-node, and a max-node with a + node. The weight
w of a leaf is replaced with ™", where r is the smallest power of 2 such that r > n,
and m is the sum of the weights of all the leaves of T" plus one. The correctness of
the reduction follows from a similar result in [14], and we omit the proof here.

(5) Evaluation of the {+, x} tree: This can be done in log-space due to [5, 3, 7, 13].

The value of T is v = L%J

4.2. Maximum Weight Path in Directed Acyclic k-trees

Given a directed acyclic k-tree (in its tree-decomposition) G, two vertices s and ¢ in G,
and weights on the edges of GG, encoded in unary, we show how to compute the maximum
weight of an s to ¢ path in G. Unlike the case of k-paths, the reachability algorithm for
k-trees given in Section 3.2 can not be used to get a log-depth circuit since the recursion
depth of the algorithm is same as the depth of the k-tree. Therefore we need to find another
way of recursively dividing the k-tree into smaller and smaller subtrees, as we did for k-
paths in Sections 3.1 and 4.1. This is based on the technique used in the following result of
[19]:

Lemma 4.2. (Lemma 6 of [19], also see [4]) Let M be a visibly pushdown automaton ac-
cepting well-matched strings over an alphabet A. Given an input string x, checking whether
x € L(M) can be done in log-space.

Using Lemma 4.2, we can compute a set of recursive separators for a tree defined below:

Definition 4.3. Given a rooted tree T, separators of T are two nodes a and b of T such
that

1. The subtrees rooted at a and b respectively are disjoint,

2. T is split into subtrees T7, Ty, T3 where T} consists of a, some (or possibly all) of
the children of a, and subtrees rooted at them, T5 is defined similarly for b, and T3 consists
of the rest of the tree along with a copy of a and b each.

3. Each of 11, T5, T3 consists of at most a % fraction of the leaves of T'.

This process is done recursively for 17, T5, T3, until the number of leaves in the subtrees
is two. Such a subtree is in fact a path. A set of recursive separators of T consists of the
separators of T' and of all the subtrees obtained in the recursive process.

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 223

The following lemma gives the procedure to compute a set of recursive separators of a
tree T

Lemma 4.4. Given a tree T, the set of recursive separators of T can be computed in
log-space.

Proof. The algorithm of [19] deals with well-matched strings. An example of a well-matched
string is a balanced parentheses expression, which is a string over {(,)}. In [19], a log-space
algorithm is given for membership testing in those languages which are subsets of well-
matched strings and are accepted by visibly pushdown automata. We restrict ourselves
to balanced parentheses expressions. To check whether a string on parentheses is in the
language, the algorithm of [19] recursively partitions the string into three disjoint substrings,
such that each of the parts forms a balanced parentheses expression, and length of each
part is at most %th of the length of the original string. To use this algorithm, we order the
children of each node of T in a specific way, label the leaves with parentheses ‘(" and ‘)’
such that the leaves of the subtree rooted at any internal node form a string on balanced
parentheses. We add dummy leaves if needed. The steps are as follows:

1. By adding dummy leaves, ensure that each internal node has an even number of
children which are leaves, and there are at least two such children.

2. Arrange the children of each node from left to right such that the non-leaves are
consecutive, and they have an equal number of leaves to the left and to the right.

3. For each internal node, label the left half of its leaf-children with ‘(” and the right
ones by ‘)’. This ensures that the leaves of the subtree rooted at each internal node form
a balanced parentheses expression. Conversely, leaves which form a balanced parentheses
expression are consecutive leaves in the subtree rooted at an internal node.

The leaves of T' now form a balanced parentheses expression, and we run the algorithm
of [19] on this string. The recursive splitting of the string into smaller substrings corre-
sponds to the recursive splitting of 7" at some internal nodes, which satisfies Definition 4.3.
This is ensured by the way the leaves are labeled. Each balanced parentheses expression
corresponds to either a subtree rooted at an internal node or the subtrees rooted at some
of the children of an internal node.

The subtrees obtained by splitting a tree have at most %th of the number of leaves in
the tree. Thus at each stage of recursion, the number of leaves in the subtrees is reduced by
a constant fraction. Moreover, the algorithm of [19] can output all the substrings formed
at each stage of recursion in log-space. As a substring completely specifies a subtree of T,
our procedure outputs the set of recursive separators for 7" in log-space. [

Once an algorithm to compute the set of recursive separators for k-trees is known,
a reachability routine similar to Algorithm 1 can be designed in a straight forward way.
We give the details in the full version. From the reachability routine, the computation of
maximum weight path follows from the steps 1 to 5 described in Section 4.1.

4.3. Distance Computation in Undirected k-trees

We give a simple log-space algorithm for computing the shortest path between two
given vertices in an undirected k-tree. We use the decomposition of [16], where a k-tree is
decomposed into layers. We use the following properties of the decomposition:

1. Layer 0 is a k-clique. Each vertex in layer ¢ > 0 has exactly k neighbors in layers
j < i. Further, these neighbors of ¢ which are in layers lower than that of ¢ form a k-clique.

224 B. DAS, S. DATTA, AND P. NIMBHORKAR

2. No two vertices in the same layer share an edge.

This decomposition is log-space computable [17]. Moreover, given two vertices s and ¢,
it is always possible to find a decomposition in which ¢ lies in layer 0. This can also be done
in log-space. If both s and t are in layer 0, then there is an edge between s and ¢, which is
the shortest path from s to . Therefore assume that s lies in a layer » > 0. The following
claim leads to a simple algorithm. The proof appears in the full version.

Claim 4.5. 1. The shortest s to t path never passes through two vertices v and v such that
layer(u) < layer(v). 2. There is a shortest path from s to ¢ passing through the neighbor
of s in the lowest layer.

This claim suggests a simple algorithm which can be implemented in log-space: Start
from s and choose the next vertex from the lowest possible layer, at each step till we reach
layer 0.

5. Perfect Matching in k-trees

Hardness for L: To show that the decision version of perfect matching is hard for L, we
show that the problem of path ordering, can be reduced to the perfect matching problem
for k-trees. We give the proof in the full version:

Lemma 5.1. Determining whether a k-tree has a perfect matching is L-hard.

L upper bounds: We describe a log-space algorithm to decide whether a k-tree has a
perfect matching and, if so, output a perfect matching. The algorithm is inspired by an
O(n?) algorithm [6] for computing the matching polynomial in series-parallel graphs. The
idea is to exploit the fact that k-trees have a tree decomposition of bounded width, so that
any perfect matching of the entire k-tree induces a partial matching on any subtree which
leaves at most constantly many vertices unmatched. Thus we generalize the problem to
that of determining, for each set, S, of constantly many vertices in the root of the subtree,
whether there is a matching of the subtree that leaves exactly the vertices in S unmatched.
Now we “recursively” solve the generalized problem and for this purpose we need to maintain
a bit-vector indexed by the sets S which is still of bounded length. The algorithm composes
the bit-vectors of the children of a node to yield the bit-vector for the node. The bit-vector,
which we refer to as matching vector, is defined as follows:

Definition 5.2. Let G be a k-tree with tree-decomposition 7. T has alternate levels of
k-cliques and k+ 1-cliques. Root T arbitrarily at a k-clique. Let s be a node in T" that shares
vertices {uq,...,ux} with its parent. Further, let H be the subgraph of G corresponding to

. N S.
the subtree of T rooted at s. The matching vector for s is a vector vy = (vgl), e ,vé,?k))
of dimension 2%, where Si,. .., Sy are all the distinct subsets of {u1,...,u;}, and vgi) =1

if H has a matching in which all the vertices of H matched, except those in .5;, vgi) =0if
there is no such matching.

It can be seen that G has a perfect matching if and only if vg)) = 1.We show how to

compute U in L, and also show how to construct a perfect matching in G, if one exists. We
prove Part 1 of the following theorem. For a proof of part 2, we refer to the full version.

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 225

Theorem 5.3. 1. The problem of deciding whether a k-tree has a perfect matching is in L.
2. Finding a perfect matchings in a k-tree is in FL.

Proof. (of 1) We compute the matching vector for the root by recursively computing the
matching vectors of each of its children. For a leaf node in the tree-decomposition, the
matching vector can be computed in a brute-force way. At an internal node s, the matching
vector is computed from the matching vectors of its children, which we describe here:

Case 1: s is a k-node Let s has vertices Vs = {u1,...,ux}. Recall that a k-node
shares all its vertices with all its neighbors. Let the children of s in T be s1,...,s,. Let
the subgraph corresponding to the subtree rooted at s be H and those at its children be
Hy,...,H,. In order to determine Ul(rf)v we need to know if there is a matching in H that
leaves exactly the vertices in S unmatched. This holds if and only if the vertices in S are
not matched in any of the H;’s, and each vertex in V \ S is matched in exactly one of the
Hj’s. In other words, we need to determine if there is a partition 77,7, ..., T, of Vi \ S,
such that H; has a matching in which precisely V, \ T} is unmatched. That is, UL;\TJ')1
for all 1 < j <r. More formally,

U}(rf) _ \/ /\ U%S\Tj) _ \/ /\ vg;s\(Uj\Uj—l)) (5.1)
Ty,.., T, CV\S: jelr] 0=UoC...CU,=Vi\S je[r]
Vi#£j' €lr]T;NT;=0:

Ujelr Ti=Vs\5
where, the second equality follows by defining Uy = () and U; = Uj¢ (3T} for i € [r]. The size
of the above DNF formula depends on r which is not a constant hence the straightforward
implementation of the above computation would not be in L. However, consider a conjunct
in the big disjunction in the second line above. The jth factor of this conjunct depends
only on U; and U;_1, each of which can be represented by a constant number (= 2¥) of bits.
Thus, we can iteratively extend U;_; in all possible ways to U; and use the bit indexed by
Vs \ (Uj \ Uj—1) in the vector for the child. How to obtain the vector of the child within a
log-space bound is detailed in the full version.

Case 2: s is a k+ 1 node The procedure is slightly more complex in this case. Let s
have vertices {uy,...,ug+1}. Let the subgraph corresponding to the subtree rooted at s be
H. Let s1,...,s, be the children of s, with corresponding subgraphs Hi, ..., H,. Note that
s may share a different subset of k vertices with each of its children and with its parent. Let
the vertices s shares with its parent be {uq,...,ur}. Then its matching vector is indexed
by the subsets of {uj,...,ux}, and moreover, up;q should always be matched in H. To
compute Tp, we first extend the matching vectors of each of its children and make a 2F+1
dimensional vector @y. The matching vector vy, of a child s; of s is extended to the new

vector Wy, as follows: Let s; contain {ug,...,u;}. We consider an entry vgj) of Up;. The
vector Wy, has two entries corresponding to it.
(SW{ur4+1}) _ (S) (S) _ (SU{up})
W, = YHy> Yh; = \/ Y, ’
pE[k]upg S,

(uk+1,0p)EE
These new vectors of each of the children can be composed similar to that in the previous
case to get Wx. To get Tp, we remove the 2 entries from @y which are indexed on subsets
containing ug11. This vector is passed on to the parent of s. The complexity analysis, and
a proof of (2) appears in the full version.]

226 B. DAS, S. DATTA, AND P. NIMBHORKAR
References

[1] Eric Allender, David Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha Roy. Planar
and grid graph reachability problems. Theory of Computing Systems, 45, 2009.

[2] V. Arvind, B. Das, and J. Kobler. The Space Complexity of k-Tree Isomorphism. In In Proceedings of
ISAAC, 2007.

[3] Michael Ben-or and Richard Cleve. Computing algebraic formulas using a constant number of registers.
SIAM J. Comput., 21(1):54-58, 1992.

[4] Burchard von Braunmiihl and Rutger Verbeek. Input driven languages are recognized in log n space.
In Selected papers of the international conference on ”foundations of computation theory” on Topics in
the theory of computation, pages 1-19, 1985.

[5] S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula evalua-
tion. SIAM J. Comput., 21(4):755-780, 1992.

[6] N. Chandrasekharan and S. Hannenhalli. Efficient algorithms for computing matching and chromatic
polynomials on series-parallel graphs. Computing and Information Proceedings, (ICCI 92), 1992.

[7] A. Chiu, G. Davida, and B. Litow. Division in logspace-uniform NC®. Theoretical Informatics and
Applications, 35, 2001.

[8] Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect matching in
bipartite planar graphs. In STACS 2008, volume 1 of Leibniz International Proceedings in Informatics,
2008.

[9] Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space. J. Comput. Syst.
Sci., 54(3):400-411, 1997.

[10] J. G. Del Greco, C. N. Sekharan, and R. Sridhar. Fast parallel reordering and isomorphism testing of
k-trees. Algorithmica, 32(1):61-72, 2002.

[11] A. Gupta, N. Nishimura, A. Proskurowski, and P. Ragde. Embeddings of k -connected graphs of path-
width k. Discrete Applied Mathematics, 145(2):242-265, 2005.

[12] F. Harary and E. M. Palmer. On acyclic simplicial complexes. Mathematica, 15, 1968.

[13] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth threshold circuits
for division and iterated multiplication. JCSS, 65(4), 2002.

[14] Andreas Jakoby and Till Tantau. Logspace algorithms for computing shortest and longest paths in
series-parallel graphs. In Proceedings of 27th FSTTCS, LNCS 4855, 2007.

[15] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random NC.
Combinatorica, 6(1):35-48, 1986.

[16] M. M. Klawe, D. G. Corneil, and A. Proskurowski. Isomorphism testing in hookup classes. STAM Journal
on Algebraic and Discrete Methods, 3(2):260-274, 1982.

[17] Johannes Kobler and Sebastian Kuhnert. The isomorphism problem for k-trees is complete for logspace.
ECCC, (TR09-053), 20009.

[18] Nutan Limaye, Meena Mahajan, and Prajakta Nimbhorkar. Longest paths in planar dags in unambigu-
ous log-space. In Computing: Australasian Theory Symposium (CATS), 2009.

[19] Nutan Limaye, Meena Mahajan, and B. V. Raghavendra Rao. Arithmetizing classes around NC*! and
L. In STACS, 2007.

[20] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105-113, 1987.

[21] Omer Reingold. Undirected st-connectivity in logspace. In Proc. 37th STOC, 2005.

[22] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. In IEEE Symposium on
Foundations of Computer Science, pages 244-253, 1997.

[23] Thomas Thierauf and Fabian Wagner. Reachability in K 3-free graphs and Ks-free graphs is in un-
ambiguous log-space. In FCT, 2009.

[24] Egon Wanke. Bounded tree-width and LOGCFL. J. Algorithms, 16(3):470-491, 1994.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 227-238
www.stacs-conf.org

RESTRICTED SPACE ALGORITHMS FOR ISOMORPHISM ON
BOUNDED TREEWIDTH GRAPHS

BIRESWAR DAS'! AND JACOBO TORAN? AND FABIAN WAGNER,?

! Institute of Mathematical Sciences, Chennai, India
E-mail address: bireswar@imsc.res.in

2 Institut fiir Theoretische Informatik, Universitiat Ulm, 89069 Ulm, Germany
E-mail address: jacobo.toran@uni-ulm.de

3 Institut fiir Theoretische Informatik, Universitiat Ulm, 89069 Ulm, Germany
E-mail address: fabian.wagner@uni-ulm.de

ABSTRACT. The Graph Isomorphism problem restricted to graphs of bounded treewidth
or bounded tree distance width are known to be solvable in polynomial time [2],[19]. We
give restricted space algorithms for these problems proving the following results:

e Isomorphism for bounded tree distance width graphs is in L. and thus complete for
the class. We also show that for this kind of graphs a canon can be computed within
logspace.

e For bounded treewidth graphs, when both input graphs are given together with a
tree decomposition, the problem of whether there is an isomorphism which respects
the decompositions (i.e. considering only isomorphisms mapping bags in one decom-
position blockwise onto bags in the other decomposition) is in L.

e For bounded treewidth graphs, when one of the input graphs is given with a tree
decomposition the isomorphism problem is in LogCFL.

e As a corollary the isomorphism problem for bounded treewidth graphs is in LogCFL.
This improves the known TC' upper bound for the problem given by Grohe and
Verbitsky [8].

1. Introduction

The Graph Isomorphism problem consists in deciding whether two given graphs are
isomorphic, or in other words, whether there exists a bijection between the vertices of both
graphs preserving the edge relation. Graph Isomorphism is a well studied problem in NP
because of its many applications and also because it is one of the few natural problems in this
class not known to be solvable in polynomial time nor known to be NP-complete. Although
for the case of general graphs no efficient algorithm for the problem is known, the situation
is much better when certain parameters in the input graphs are bounded by a constant. For

1998 ACM Subject Classification: Complexity Theory, Graph Algorithms.
Key words and phrases: Complexity, Algorithms, Graph Isomorphism Problem, Treewidth, LogCFL.
Supported by DFG grants TO 200/2-2.

N SYMPOSIUM
V" ON THEORETICAL
) Y) aspecs
4 Q7 / OF COMPUTER ©

SCIENCE B. Das, J. Toran, and F. Wagner

© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2457

228 B. DAS, J. TORAN, AND F. WAGNER

example the isomorphism problem for graphs of bounded degree [13], bounded genus [15],
bounded color classes [14], or bounded treewidth [2] is known to be in P. Recently some of
these upper bounds have been improved with the development of space efficient techniques,
most notably Reingold’s deterministic logspace algorithm for connectivity in undirected
graphs [16]. In some cases logspace algorithms have been obtained. For example graph
isomorphism for trees [12], planar graphs [5] or k-trees [10]. In other cases the problem has
been classified in some other small complexity classes below P. The isomorphism problem
for graphs of bounded treewidth is known to be in TC! [8] and the problem restricted to
graphs of bounded color classes is known to be in the #L hierarchy [1].

In this paper we address the question of whether the isomorphism problem restricted
to graphs of bounded treewidth and bounded tree distance width can be solved in logspace.
Intuitively speaking, the treewidth of a graph measures how much it differs from a tree.
This concept has been used very successfully in algorithmics and fixed-parameter tractability
(see e.g. [3, 4]). For many complex problems, efficient algorithms have been found for the
cases when the input structures have bounded treewidth. As mentioned above Bodlaender
showed in [2] that Graph Isomorphism can be solved in polynomial time when restricted
to graphs of bounded treewidth. More recently Grohe and Verbitsky [8] improved this
upper bound to TC!. In this paper we improve this result showing that the isomorphism
problem for bounded treewidth graphs lies in LogCFL, the class of problems logarithmic
space reducible to a context free language. LogCFL can be alternatively characterized as
the class of problems computable by a uniform family of polynomial size and logarithmic
depth circuits with bounded AND and unbounded OR gates, and is therefore a subclass of
TC!. LogCFL is also the best known upper bound for computing a tree decomposition of
bounded treewidth graphs [18, 7], which is one bottleneck in our isomorphism algorithm.
We prove that if tree decompositions of both graphs are given as part of the input, the
question of whether there is an isomorphism respecting the vertex partition defined by the
decompositions can be solved in logarithmic space. Our proof techniques are based on
methods from recent isomorphism results [5, 6] and are very different from those in [§].

The notion of tree distance width, a stronger version of the treewidth concept, was
introduced in [19]. There it is shown that for graphs with bounded tree distance width the
isomorphism problem is fixed parameter tractable, something that is not known to hold for
the more general class of bounded treewidth graphs. We prove that for graphs of bounded
tree distance width it is possible to obtain a tree distance decomposition within logspace.
Using this result we show that graph isomorphism for bounded tree distance width graphs
can also be solved in logarithmic space. Since it is known that the question is also hard
for the class L under AC? reductions [9], this exactly characterizes the complexity of the
problem. We show that in fact a canon for graphs of bounded tree distance width, i.e.
a fixed representative of the isomorphism equivalence class, can be computed in logspace.
Due to space reasons, some proofs are omitted and will be provided in the full version of
the paper.

2. Preliminaries

We introduce the complexity classes used in this paper. L is the class of decision prob-
lems computable by deterministic logarithmic space Turing machines. LogCFL consists of
all decision problems that can be Turing reduced in logarithmic space to a context free lan-
guage. There are several alternative more intuitive characterizations of LogCFL. Problems

RESTRICTED SPACE ALGORITHMS FOR ISOMORPHISM ON BOUNDED TREEWIDTH GRAPHS 229

in this class can be computed by uniform families of polynomial size and logarithmic depth
circuits over bounded fan-in AND gates and unbounded fan-in OR gates. We will also
use the characterization of LogCFL as the class of decisional problems computable by non-
deterministic auxiliary pushdown machines (NAuxPDA). These are Turing machines with
a logarithmic space work tape, an additional pushdown and a polynomial time bound [17].
The class TC! contains the problems computable by uniform families of polynomial size
and logarithmic depth threshold circuits. The known relationships among these classes are:
L C LogCFL C TCL

In this paper we consider undirected simple graphs with no self loops. For a graph
G = (V,E) and two vertices u,v € V, dg(u,v) denotes the distance between u and v in
G (number of edges in the shortest path between u and v in G). For a set S C V, and
a vertex u € V, dg(S,u) denotes min,cgdg(v,u). T'(S) denotes the set of neighbors of
S in G. In a connected graph G, a separating set is a set of vertices such that deleting
the vertices in S (and the edges connected to them) produces more than one connected
component. For G = (V,E) and two disjoint subsets U, W of V we use the following
notion for an induced bipartite subgraph Bg[U, W] of G on vertex set U U W with edge set
{{u,w} € E|ue Uwe W}. Let G[U] be the induced subgraph of G on vertex set V' \ U.

A tree decomposition of a graph G = (V, F) is a pair ({X; | i € I},T = (I, F)), where
{X; | i € I} is a collection of subsets of V' called bags, and T is a tree with node set I and
edge set F, satisfying the following properties:

) Uer Xi =V

i1) for each {u,v} € E, there is an i € I with u,v € X; and

iii) for each v € V, the set of nodes {i | v € X;} forms a subtree of T

The width of a tree decomposition of G, is defined as max{|X;| | ¢ € I} — 1. The
treewidth of G is the minimum width over all tree decompositions of G.

A tree distance decomposition of a graph G = (V,E) is a triple ({X; | i € I},T =
(I,F),r), where {X; | i € I} is a collection of subsets of V' called bags, X, = S a set of
vertices and T is a tree with node set I, edge set F' and root r, satisfying:

i) Uiy Xi =V and for all i # j, X; N X; =0

i1) for each v € V, if v € X; then dg(X,,v) = dr(r,i) and

iii) for each {u,v} € E(G), there arei,j € [withu € X;,v € Xjandi=jor {i,j} € F
(for every edge in G its two endpoints belong to the same or to adjacent bags in T).

Let D= ({X; |ieI},T = (I,F),r) be a tree distance decomposition of G. X, is the
root bag of D. The width of D is the maximum number of elements of a bag X;. The tree
distance width of G is the minimum width over all tree distance decompositions of G.

The tree distance decomposition D is called minimal if for each ¢ € I, the set of vertices
in the bags with labels in the subtree rooted at ¢ in T" induce a connected subgraph in G.
In [19] it is shown that for every root set S C V there is a unique minimal tree distance
decomposition of G’ with root set S. The width of such a decomposition is minimal among
the tree distance decompositions of G with root set S.

An isomorphism from G onto H respects their tree (distance) decompositions D, D" if
vertices in a bag of D in G are mapped blockwise onto vertices in a bag of D' in H. Not
every isomorphism has this property.

Sym(V') is the symmetric group on a set V.

230 B. DAS, J. TORAN, AND F. WAGNER

3. Graphs of bounded tree distance width

3.1. Tree distance decomposition in L

We describe an algorithm that on input a graph G and a subset S C V produces the
minimal tree distance decomposition D = ({X; | i € I},T = (I, F),r) of G with root set
X, = S. The algorithm works within space ¢ - klogn for some constant ¢, where k is the
width of the minimal tree distance decomposition of G with root set S. The output of
the algorithm is a sequence of strings of the form (bag label, bag depth, v;,,vi,, ..., v;,),
indicating the number of the bag, the distance of its elements to S and the list of the
elements in the bag.

The algorithm basically performs a depth first traversal of the tree T in the decompo-
sition while constructing it. Starting at S the algorithm uses three functions for traversing
T'. These functions perform queries to a logspace subroutine computing reachability [16].

Parent(X;): On input the elements of a bag X; the function returns the elements
of the parent bag in 7. These are the vertices v € V with the following two properties:
v e I'(X;) \ X; and v is reachable from S in G\ X;. For a vertex v these two properties can
be tested in space O(logn) by an algorithm with input G,S and X;. In order to find all
the vertices in the parent set, the algorithm searches through all the vertices in V.

First Child(X;): This function returns the elements of the first child of 7 in 7. This is
the child with the vertex v; € V' with the smallest index j. v; satisfies that v; € I'(X;) \ X;
and that v; is not reachable from S in G\ X;. It can be found cycling in order through
the vertices of G until the first one satisfying the properties is found. The other elements
w € X; must satisfy the same two properties as v; and additionally, they must be in the
same connected component in G \ X; where v; is contained. In case X; does not have any
children, the function outputs some special symbol.

Next Sibling(X;): This function first computes X, :=Parent(X;) and then searches
for the child of p in T next to X;. Let v; be the vertex with the smallest label in X;. This
is done similarly as the computation of First Child. The next sibling is the bag containing
the unique vertex v; with the following properties: v; is the vertex with the smallest label
in this bag, label(v;) > label(v;) and there is no other bag which has a vertex with a label
> v; and < vj. The vertex v; is not reachable from S in G\ X,,. The other elements in
the bag are the vertices satisfying these properties and which are in the same connected
component of G\ X, where v; is contained.

With these three functions the algorithm performs a depth-first traversal of T'. It only
needs to remember the initial bag Xy = .S which is part of the input, and the elements of the
current bag. On a bag X; it searches for its first child. If it does not exist then it searches
for the next sibling. When there are no further siblings the next move goes up in the tree
T. The algorithm finishes when it returns to S. It also keeps two counters in order to be
able to output the number and depth of the bags. The three mentioned functions only need
to keep at most two bags (X; and its father) in memory, and work in logarithmic space.
On input a graph G with n vertices, and a root set .S, the space used by the algorithm is
therfore bounded by c - klogn, for a constant ¢, and k£ being the minimum width of a tree
distance decomposition of G with root set S. When considering how the three functions are

RESTRICTED SPACE ALGORITHMS FOR ISOMORPHISM ON BOUNDED TREEWIDTH GRAPHS 231

defined it is clear that the algorithm constructs a tree distance decomposition with root set
S. Also they make sure that for each ¢ the subgraph induced by the vertices of the bags in
the subtree rooted at ¢ is connected thus producing a minimal decomposition. As observed
in [19], this is the unique minimal tree distance decomposition of G with root set S.

3.2. Isomorphism Algorithm for Bounded Tree Distance Width Graphs

For our isomorphism algorithm we use a tree called the augmented tree which is based
on the underlying tree of a minimal tree distance decomposition. This augmented tree,
apart from the bags, contains information about the separating sets which separate bags.

Definition 3.1. Let G be a bounded tree distance width graph with a minimal tree dis-
tance decomposition D = ({X; | i € I},T = (I,F),r). The augmented tree T py =
(Iia,p), Fa,py,) corresponding to G and D is a tree defined as follows:

e The set of nodes of 7(g p) is I(g p) which contains two kinds of nodes, namely
Iig,py = 1 U J. Those in I form the set of bag nodes in D, and those in J the
separating set nodes. For each bag node a € I and each child b of a in T" we consider
the set X, NT'(Xy), i.e. the minimum separating set in X, which separates X; from
the root bag X, in G. Let Mgq, ... 7Ms;1(a) be the set of all minimum separating sets
in X, free of duplicates. There are nodes for these sets s{, ... ,s?(a), the separating
set nodes. We define J = J, /{57, ... ,s?(a)}. The node r € I is the root in 7 py.

e In F(g p) there are edges between bag nodes a € I and the separating set nodes
s§, ..., s?(a) € J (edges between bag nodes and their children in the augmented tree).
There are also edges between nodes b € I and s if M, 5 is the minimum separating
set in X, which separates X} from X, (edges between bag nodes and their parents).

To simplify notation, we later say for example that sy, ..., s; are the children of a bag
node a if the context is clear. The odd levels of the augmented tree T” correspond to bag
nodes and the even levels correspond to separating set nodes.

Observe that for each node in the augmented tree, we associate a bag to a bag node and
a minimum separating set to a separating set node. Hence, every vertex v in the original
graph occurs in at least one associated component and it might occur in more than one,
e.g. if v is contained in a bag and in a minimum separating set.

Let T(g,py be an augmented tree of some minimal tree distance decomposition D of a
graph G. Let a be a node of T(p). The subtree of T(g py rooted at a is denoted by Tj,.
Note that T{g py = T where X, is the bag corresponding to the root of the tree distance
decomposition D. We define graph(7,) as the subgraph of G induced by all the vertices
associated to at least one of the nodes of T,. The size of T}, denoted |T,| is the number of
vertices which occur in at least one component which is associated to a node in T,. Note,
|T%| is polynomially related to |graph(T,)|, i.e. the number of vertices in the corresponding
subgraph of G.

When given a tree distance decomposition the augmented tree can be computed in
logspace. Using the result in Section 3.1 we immediately get:

Lemma 3.2. Let G be a graph of bounded tree distance width. The augmented tree for G
can be computed in logspace.

232 B. DAS, J. TORAN, AND F. WAGNER

Figure 1: The augmented trees S, and T, rooted at bag nodes r and r’. Node r has
separating set nodes s1, ..., s; as children. The children of s; are again bag nodes
1,155 A1 fy - Sam. is the subtree rooted at a; ;. Bag nodes and separating set
nodes alternate in the tree.

Isomorphism Order of Augmented Trees. We describe an isomorphism order proce-
dure for comparing two augmented trees S py and (g, pry corresponding to the graphs G
and H and their tree distance decompositions D and D', respectively. This isomorphism
order algorithm is an extension of the one for trees given by Lindell [12] and it is different
from that for planar graphs given by Datta et.al. [5]. The trees S py and Tiy pry are
rooted at bag nodes r and r’. The rooted trees are denoted then S, and T, as shown in
Figure 1.

We will show that two graphs of bounded tree distance width are isomorphic if and
only if for some root nodes r and 7’ the augmented trees corresponding to the minimal tree
distance decompositions have the same isomorphism order.

The isomorphism order depends on the order of the vertices in the bags r and r’.
Let X, and X/, be the corresponding bags in D and D’. We define the sets of mappings
O = Sym(X;) x Sym(X,,). Let (c,0') be such a mapping, then the tuples (G[X,], o)
and (G[X/,],0") describe a fixed ordering on the vertices of the induced subgraphs. If r is
not the top-level root of the augmented tree then ©, ..y may become restricted to a subset,
when going into recursion. The isomorphism order is defined to be S, <t 7T, if there exist
mappings (o,0’) € O,y such that one of the following holds:

1) (G[X,],0) < (H[X],],0") via lexicographical comparison of both ordered subgraphs

2) (GIX,].0) = (H[X',], ") but S| < [T,/

3) (G[X,],0) = (H[X],],0") and |S,| = |T;»| but #r < #r’ where #r and #r' is the
number of children of r and r’

4) (G[X,],0) = (H[X],],0') and |S,| = |T,v| and #r = #r' = [but (S,,...,Ss,) <t
(Ty,, ..., Ty,) where we assume that s, <p --- <1 S, and T}, <g --- <¢ T}, are
ordered subtrees of S, and T,/, respectively. To compute the order between the
subtrees S, <t T, we consider

i: the lexicographical order of the minimal separating sets (s; and t;) in X, and

X/, according to ¢ and o', as the primary criterion (observe that the separating

sets are subsets of X, (resp. X,) and are therefore ordered by ¢ and ¢’) and

ii: pairwise the children a; of s; and a}, of t; (for all ¢ and j' via
cross-comparisons) such that the induced bipartite graphs Bg[s;, a;] and

RESTRICTED SPACE ALGORITHMS FOR ISOMORPHISM ON BOUNDED TREEWIDTH GRAPHS 233

can be matched according to o and o’ (i.e. oo’~! is an isomor-

Bult;, aj]
phism) and
i3 recursively the subtrees rooted at the children of s; and ¢;. Note, that these
children are again bag nodes. For the cross camparison of bag nodes a; ; and

a’; i we restrict the set O, ., a) to a subset of Sym(X,,) X Sym(X’]’).
Namely, O, , o) contains the pair (¢,¢") € Sym(Xq /) X Sym(X’) if
J»J 47

¢¢'~! extends the partial isomorphism o¢’~! from child a; . onto a y blockw1se
and which induces an isomorphism from Bg|s;, a; /] onto Bylt;, j i -

We say that two augmented trees S, and T, are equal according to the isomorphism
order, denoted S, =t T, if neither S, <t T,» nor T,, <t S, holds.

Isomorphism of two subtrees rooted at bag nodes r and r’. We have constant size
components associated to the bag nodes. A logspace machine can easily run through all the
mappings of X, and X/, and record the mappings which gives the minimum isomorphism
order. This can be done with cross- comparison of trees (S, o) and (T,,,¢") with all possible
mappings o,0’. Later we will see, that in recursion not all possible mappings for ¢ and o’
are considered. Observe that |Sym(X,)| € O(1).

The comparison of (S,,0) and (T,/,0’) itself can be done simply by renaming the
vertices of X, and X/ according to the mappings o and ¢’ and then comparing the ordered
sequence of edges lexicographically. When equality is found then we recursively compute
the isomorphism order of the subtrees rooted at the children of r and 7’.

Isomorphism of two subtrees rooted at separating set nodes s; and ¢;. Datta
et.al. [5] decompose biconnected planar graphs into triconnected components and obtain a
tree on these components and separating pairs, i.e. separating sets of size two. We have
separating sets of arbitrary constant size.

Since s; and t; correspond to subgraphs of X, and X/,, we have an order for them
given by the fixed mappings o and ¢o’. Therefore, we can order the children sy, ..., s and
t1,. .., according to their occurrence in X, and X/, (e.g. assume s; = (1,2, 3,7) according
to the mapping o and also s; = (1,2,4,7), then we get (s;,0) <r (sj,0)). Hence, when
comparing s; with ¢; we have to check whether both come on the same position in that order
of s1,...,s; and t1,...,t;. If so, then we go to the next level in the tree, to the children of
s; and t;.

Now we have a cross comparison among the children of s; and the children of ¢;. In
Steps 4i, 44i and 4iii we partition the children a;1,...,a;;, of s; and a;-J, .. va;',l]- of tj,
respectively, into isomorphism classes, step by step.

The membership of a child to a class according to Step 4¢ and 4¢¢ can be recomputed.
It suffices to keep counters on the work-tape to notice the current class and traversing the
siblings from left to right. After these two steps, a; » and a j are in the same class if and
only if vertices of s; and ¢; appear lexicographically at the same positions in ¢ and ¢’ and
the bipartite graphs B [sz,aw] and B [t],aj i ;] are isomorphic where s; is mapped onto t;
blockwise corresponding to co’~! in an isomorphism. In Step 477 we go into recursion and
compare members of one class which are rooted at subtrees of the same size. When going
into recursion at a;; and aj ;, we consider only those mappings from (¢, ¢’) € @(ai,iua;j/)

which induce an isomorphism ¢¢'~! from Bls;, a;] onto Blt;, al]

234 B. DAS, J. TORAN, AND F. WAGNER

Correctness of the isomorphism order. Both, the bag nodes and the separating set
nodes correspond to subgraphs which are basically separating sets. A bag separates all its
subtrees from the root and the separating set nodes refine the bag to separating sets of
minimum size. Hence, a partial isomorphism is constructed and extended from each node
to its child nodes, traversing the augmented tree (the whole graph, accordingly) in depth
first manner. In the recursion, the isomorphism between the roots of the current subtrees,
say S, and T,., is partially fixed by the partial isomorphism between their parents. With an
exhaustive search we check every possible remaining isomorphism from X, onto X/, and go
into recursion again partially fixing the isomorphism for the subtrees rooted at children of
r and 7’. By an inductive argument, the partial isomorphism described for the augmented
tree can be followed simultaneously in the original graph and we get:

Theorem 3.3. The graphs G and H of bounded tree distance width are isomorphic if and
only if there is a choice of a root bag r and v’ producing augmented trees S, and T, such
that Sy, =t T,. The isomorphism order between two augmented trees of G and H can be
computed in logspace.

The proof is based on a careful space analysis at each computational step building on
concepts of the isomorphism order algorithm of Lindell [12]. The isomorphism order is the
basis for a canonization procedure. This is shown in a full version of this paper.

Theorem 3.4. A graph of bounded tree distance width can be canonized in logspace.

4. Graphs of bounded treewidth

In this section we consider several isomorphism problems for graphs of bounded
treewidth. We are interested in isomorphisms respecting the decompositions (i.e. vertices
are mapped blockwise from a bag to another bag). We show first that if the tree decomposi-
tion of both input graphs is part of the input then the isomorphism problem can be decided
in L. We also show that if a tree decomposition of only one of the two given graphs is part
of the input, then the isomorphism problem is in LogCFL. It follows that the isomorphism
problem for graphs of bounded treewidth is also in LogCFL.

Assume the decompositions of both input graphs are given. Let (G, D), (H, D’) be two
bounded treewidth graphs together with tree decompositions D and D', respectively. We
look for an isomorphism between G and H satisfying the condition that the images of the
vertices in one bag in D belong to the same bag in D’.

We prove that this problem is in L. For this we show that given tree decompositions
together with designated bags as roots for G and H the question of whether there is an
isomorphism between the graphs mapping root to root and respecting the decompositions
(i.e. mapping bags in G blockwise onto bags in H) can be reduced to the isomorphism
problem for graphs of bounded tree distance decomposition. We argued in the previous
section that this problem belongs to L.

Theorem 4.1. The isomorphism problem for bounded treewidth graphs with given tree
decompositions reduces to isomorphism for bounded tree distance width graphs under AC°
many-one reductions.

Since bounded tree distance width GI is in L, this almost proves the desired result. To
obtain it, we have to find roots for the tree decompositions. We fix an arbitrary bag in the
one graph and try all bags from the decomposition of the other graph as roots. We get:

RESTRICTED SPACE ALGORITHMS FOR ISOMORPHISM ON BOUNDED TREEWIDTH GRAPHS 235

Corollary 4.2. For every k > 1 there is a logarithmic space algorithm that, on input a pair
of graphs together with a tree decompositions of width k for each of them, decides whether
there 1s an isomorphism between the graphs, respecting the decompositions.

4.1. A LogCFL algorithm for isomorphism

We consider now the more difficult situation in which only one of the input graphs is
given together with a tree decomposition.

Theorem 4.3. Isomorphism testing for two graphs of bounded treewidth, when a tree de-
composition for one of them is given, can be done in LogCFL.

Proof. We describe an algorithm which runs on a non-deterministic auxiliary pushdown
automaton (NAuxPDA). Besides a read-only input tape and a finite control, this machine
has access to a stack of polynomial size and a O(logn) space bounded work-tape. On the
input tape we have two graphs G, H of treewidth k£ and a tree decomposition D = ({X; |
i eI}, T =(I,F),r) for G. For j € I we define G; to be the subgraph of G induced on
the vertex set {v | v € X;,i € I and ¢ = j or i a descendant of j in T'}. That is, G;
contains the vertices which are separated by the bag X; from X, and those in X;. We
define D; = ({X;,|,i € I;},T; = (I, F}), j) as the tree decomposition of G; corresponding
to Tj, the subtree of T rooted at j. We also consider a way to order the children of a node
in the tree decomposition:

Definition 4.4. Let 1,...,[be the children of r in the tree T'. We define the lexicographical
subtree order, as the order among the subtrees (Gy,D1),...,(G;, D;) which is given by:
(Gi, D;) < (G, Dj) iff there is a vertex w € V(G;) \ X, which has a smaller label than every
vertex in V/(G;) \ X,.

The algorithm non-deterministically guesses two main structures. First, we guess a tree
decomposition of width k£ for H. This is done in a similar way as in the LogCFL algorithm
from Wanke [18] for testing that a graph has bounded treewidth. Second, we guess an
isomorphism ¢ from G to H by extending partial mappings from bag to bag.

Very simplified, Wanke’s algorithm on input a graph H starts guessing a root bag and
it guesses then non-deterministically further bags in the decomposition using the pushdown
to test that these bags fulfill the properties of a tree decomposition and that every edge in
G is included in some bag. Our algorithm simulates Wanke’s algorithm as a subroutine. In
the description of the new algorithm we concentrate on the isomorphism testing part and
hide the details of how to choose the bags. For simplicity the sentence “guess a bag X; in H
according to Wanke’s algorithm” means that we simulate the guessing steps from Wanke,
checking at the same time that the constructed structure is in fact a tree decomposition.
Note, if the bags were not chosen appropriately, then the algorithm would halt and reject.

We start guessing a root bag X/, of size < k + 1 for a decomposition of H. With
X/, as root bag we guess the tree decomposition D" of H which corresponds to D and
its root r. We also construct a mapping ¢ describing a partial isomorphism from the
vertices of G onto the vertices of H. At the beginning, ¢ is the empty mapping and
we guess an extension of ¢ from X, onto X/,. The algorithm starts with a = r (and
a’ = r'). Then we describe isomorphism classes for 1,...,[, the children of a. First, the
children of a can be distinguished because X7,...,X; may intersect with X, differently.
Second, we further partition the children within one class according to the number of

236 B. DAS, J. TORAN, AND F. WAGNER

isomorphic siblings in that class. This can be done in logspace with cross comparisons of
pairs among (G, D1),...,(Gy, D;), see Corollary 4.2. It suffices to order the isomorphism
classes according to the lexicographical subtree order of the members in the classes. We
compare then the children of a with guessed children of a’ keeping the following information:
For each isomorphism class we check whether there is the same number of isomorphic
subtrees of ¢’ in H and whether those intersect with X/,, accordingly. For this we use the
lexicographical subtree order to go through the isomorphic siblings from left to right, just
keeping a pointer to the current child on the work tape. For two such children, say s; of a
and t; of @/, we check then recursively whether (G1, D7) is isomorphic to the corresponding
subgraph of ¢; in H, by an extension of ¢.

When we go into recursion, we push on the stack O(logn) bits for a description of X,
and X/, as well as a description of the partial mapping ¢ from X, onto X/,.

In general, we do not keep all the information of ¢ on the stack. We only have the
partial isomorphism ¢ : {v [v € X, U---UX,} = {v|ve X, U---UX,}, wherer,...,a
(r',...,d, respectively) is a simple path in T from the root to the node at the current level
of recursion. After we ran through all children of some node we go one level up in recursion
and recompute all the other information which is given implicitly by the subtrees from
which we returned. Suppose now, we returned to the bag X,, we have to do the following;:

e Pop from the stack the partial isomorphism ¢ of the bags X, onto X/,

e Compute the lexicographical next isomorphic sibling. For this we consider the par-
tition into isomorphism classes according to ¢ and the lexicographical subtree order
of Definition 4.4. Recall, isomorphism testing of two subtrees of X, can be done in
logspace.

e If there is no such sibling then we compute the lexicographical first child of X,
inside the same isomorphism class. From this child of X, we compute the sibling
which is not in the same isomorphism class and which comes next to the right in
the lexicographical subtree order.

e If there is neither a further sibling in the same isomorphism class nor a non-
isomorphic sibling of higher lexicographical order then we ran through all children
of X, and we are ready to further return one level up in recursion.

Also for X!, we guess all children in an isomorphism class from left to right in lexico-
graphical subtree order. If there is no further level to go up in recursion then the stack is
empty and we halt in an accepting state. Algorithm 1 summarizes the above considerations.

In Line 1, we guess an extension of ¢ to include a mapping from X, onto X/,. We know
the partial isomorphism of their parent bags since this information can be found on the top
of the stack. In Line 3, we have e.g. the partition Ey = {T1,...,T},}, B2 = {T},4+1,..., 1}, }
and so on. It can be obtained in logspace by testing isomorphism of the tree structures
(G1,D1),...,(G1,Dy). Two subtrees rooted at X; and X are in the same isomorphism
class iff there is an automorphism in G which maps X; onto X; and fixes their parent X,
setwise. In Lines 6 to 9, we guess X/, in H which corresponds to X;, we test recursively
whether the corresponding subgraphs G; and H; are isomorphic with an extension of ¢.
In Line 7, we check whether X, fulfills the properties of a correct tree-decomposition as in
Wanke’s algorithm (i.e. X/, must be a separating set which separates its split components
from the vertices in X/, \ X/,).

To see that the algorithm correctly computes an isomorphism, we make the following
observation. A bag X, is a separating set which defines the connected subgraphs G1, ..., G.

RESTRICTED SPACE ALGORITHMS FOR ISOMORPHISM ON BOUNDED TREEWIDTH GRAPHS 237

Algorithm 1 Treewidth Isomorphism with one tree decomposition

Input: Graphs G, H, tree decomposition D for G, bags X, in G and X/, in H.

Top of Stack: Partial isomorphism ¢ mapping the vertices in the parent bag of X, onto
the vertices in the parent bag of X/,.

Output: Accept, if G is isomorphic to H by an extension of ¢.

—_

: Guess an extension of ¢ to a partial isomorphism from X, onto X/,

2: if ¢ cannot be extended to a partial isomorphism which maps X, onto X!, then reject

3: Let 1,...,[be the children of a in T". Partition the subtrees of T" rooted at 1,...,[into
p isomorphism classes Ef, ..., E,

4: for each class F; from j =1 to p

5. for each subtree T; € Ej; (in lexicographical subtree order)

6: guess a bag X/, in H (in increasing lexicographical subtree order). Let Hy be the

subgraph of H induced by the vertices in X/, and by those which are separated

from X/, in H \ X/,

T: if X/, is not a correct child bag of X/, (see Wanke’s algorithm) then reject.

8: Invoke this algorithm with input (G;, Hy, D;, X;, X)) recursively and push X,, X/,
and the partial isomorphism ¢ on the stack

9: After recursion pop these informations from the stack

10: if the stack is not empty then go one level up in recursion
11: accept and halt

These subgraphs do not contain the root X, and V(G;) NV (G;) C X, since we have a tree
decomposition D (V(G;) are the vertices of G;). We guess and keep from the partial
isomorphism ¢ exactly those parts which correspond to the path from the roots X, and
X/, to the current bags X, and X/,. Once we verified a partial isomorphism from one child
component (e.g. G;) of X, onto a child component (e.g. Hy) of X!, for the other child
components it suffices to know the partial mapping of ¢ from X, onto X/,.

Observe that for each v in G in a computation path from the algorithm there can only
be a value for ¢(v). Clearly, if G and H are isomorphic then the algorithm can guess
the decomposition of H which fits to D, and the extensions of ¢ correctly. In this case
the NAuxPDA has some accepting computation. On the other hand, if the input graphs
are non-isomorphic then in every non-deterministic computation either the guessed tree
decomposition of H does not fulfill the conditions of a tree decomposition (and would be
detected) or the partial isomorphism ¢ cannot be extended at some point. [

Wanke’s algorithm decides in LogCFL whether the treewidth of a graph is at most &
by guessing all possible tree decompositions. Using a result from [7] it follows that there is
also a (functional) LogCFL algorithm that on input a bounded treewidth graph computes
a particular tree decomposition for it. Since LogCFL is closed under composition, from this
result and Theorem 4.3 we get:

Corollary 4.5. The isomorphism problem for bounded treewidth graphs is in LogCFL.

Conclusions and open problems. We have shown that the isomorphism problem for
graphs of bounded treewidth is in the class LogCFL and that isomorphism testing and
canonization of bounded tree distance width graphs is complete for L. By using standard

238 B. DAS, J. TORAN, AND F. WAGNER

techniques in the area it can be shown that the same upper bounds apply for other problems
related to isomorphism on these graph classes. For example the automorphism problem or
the functional versions of automorphism and isomorphism can be done within the same
complexity classes. The main question remaining is whether the LogCFL upper bound
for isomorphism of bounded treewidth graphs can be improved. On the one hand, no
LogCFL-hardness result for the isomorphism problem is known, so maybe the result can be
improved. We believe that proving a logspace upper bound for the isomorphism problem of
bounded treewidth graphs would require to compute tree decompositions within logarithmic
space, which is a long standing open question. Another interesting open question is whether
bounded treewidth graphs can be canonized in LogCFL.

References

[1] V. ArvIND, P. KURUR AND T.C. VIJAYARAGHAVAN, Bounded color multiplicity graph iso-
morphism is in the #L hierarchy, in Proc.20th IEEE CCC (2005) 13-27.

[2] H.L. BODLAENDER, Polynomial algorithms for graph isomorphism and chromatic index on
partial k-trees, J. Algorithms 11 (1990), 631-643.

[3] H.L. BODLAENDER, A partial k-arboreum of graphs with bounded treewidth, Theoretical Com-
puter Science 209 (1998), 1-45.

[4] H.L. BODLAENDER AND A. KOSTER, Combinatorial optimization of graphs of bounded
treewidth, The Computer Journal (2007), 631-643.

[5] S. DATTA, N. LIMAYE, P. NIMBHORKAR, T. THIERAUF AND F. WAGNER, Planar graph
isomorphism is in Logspace, In Proc. 24th IEEE CCC (2009), 203-214.

[6] S. DATTA, P. NIMBHORKAR, T. THIERAUF AND F. WAGNER, Isomorphism of K3 s-free and
Ks-free graphs is in Logspace, To appear in Proc. 29th FSTTCS (2009).

[7] G. GOTTLOB, N. LEONE AND F. SCARCELLO, Computing LOGCFL certificates, In Theoretical
Computer Science 270 (2002), 761-777.

[8] M. GROHE AND O. VERBITSKY, Testing graph isomorphism in parallel by playing a game, In
Proc. 33rd ICALP (2006), 3-14.

[9] B. JENNER, J. KOBLER, P. McCKENZIE AND J. TORAN, Completeness results for Graph
Isomorphism, Journal of Computer and System Sciences 66 (2003) 549-566.

[10] J. KOBLER AND S. KUHNERT, The isomorphism problem of k-trees is complete for Logspace,
In Proc. 34th MFCS (2009), 537-448.

[11] J. KOBLER, U. SCHONING AND J. TORAN, The Graph Isomorphism problem, Birkhduser
(1993).

[12] S. LINDELL, A Logspace algorithm for tree canonization, In Proc. 24th ACM STOC (1992),
400-404.

[13] E. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, Journal
of Computer and System Sciences 25 (1982), 42—65.

[14] E. Luks, Parallel algorithms for permutation groups and graph isomorphism. In Proc. 27th
IEEE FOCS (1986), 292—-302.

[15] G. MILLER, Isomorphism testing for graphs of bounded genus, In Proc.12th ACM STOC,
(1980), 225-235.

[16] O. REINGOLD, Undirected connectivity in logspace In Journ. of ACM, 55 (4) (2008).

[17] 1. SUDBORROUGH, Time and tape bounded auxiliary pushdown automata. Mathematical Foun-
dations of Computer Science (1977), 493-503.

[18] E. WANKE, Bounded tree-width and LOGCFL Journal of Algorithms 16 (1994), 470-491.

[19] K. YAMAZAKI, H.L. BODLAENDER, B. DE FLUITER AND D.M. THILIKOS, Isomorphism for
Graphs of Bounded Distance Width, Algorithmica 24 (1999), 105-127.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 239-250
www.stacs-conf.org

THE TRAVELING SALESMAN PROBLEM
UNDER SQUARED EUCLIDEAN DISTANCES

MARK DE BERG! AND FRED VAN NIJNATTEN! AND RENE SITTERS 2 AND
GERHARD J. WOEGINGER® AND ALEXANDER WOLFF 3

! Department of Mathematics and Computer Science, TU Eindhoven, the Netherlands.
E-mail address: mdberg@win.tue.nl
E-mail address: f.s.b.v.nijnatten@tue.nl
E-mail address: gwoegi@uwin.tue.nl

2 Faculty of Economics and Business Administration, VU Amsterdam, the Netherlands.
E-mail address: rsitters@feweb.vu.nl

3 Lehrstuhl fiir Informatik I, Universitit Wiirzburg, Germany.
URL: http://wwwl.informatik.uni-wuerzburg.de/en/staff/wolff_alexander

ABSTRACT. Let P be a set of points in R?, and let & > 1 be a real number. We define the
distance between two points p,q € P as |pq|®, where |pq| denotes the standard Euclidean
distance between p and q. We denote the traveling salesman problem under this distance
function by TsP(d,). We design a 5-approximation algorithm for Tsp(2,2) and generalize
this result to obtain an approximation factor of 3%~ ! 4+ \/6‘1/3 for d =2 and all o > 2.

We also study the variant Rev-TsP of the problem where the traveling salesman is
allowed to revisit points. We present a polynomial-time approximation scheme for Rev-
TsP(2,a) with o > 2, and we show that Rev-Tsp(d,«) is APX-hard if d > 3 and « > 1.
The Apx-hardness proof carries over to TsP(d,) for the same parameter ranges.

1. Introduction

Motivated by a power-assignment problem in wireless networks (see below for a short
discussion of this application) Funke et al. [12] studied the following special case T'sp(d, o)
of the Traveling Salesman Problem (TsP) which is specified by an integer d > 2 and a real
number a > 0. The cities are n points in d-dimensional space R?, and the distance between
two points p and ¢ is |pqg|®, where |pg| denotes the standard Euclidean distance between p
and gq.

e The objective in problem TspP(d, a) is to find a shortest tour (under distances |- |%)
that visits every city ezactly once.

1998 ACM Subject Classification: 1.1.2 Algorithms, F.2.2 Nonnumerical Algorithms and Problems.
Key words and phrases: Geometric traveling salesman problem, power-assignment in wireless networks,
distance-power gradient, NP-hard, APX-hard.

SYMPOSIUM
"V' ON THEORETICAL
m }_ ASPECTS
N7 S%FFESEPUTER © M. de Berg, F. van Nijnatten, R. Sitters, G. J. Woeginger, and A. Wolff
© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2458

240 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

e In the closely related problem Rev-TsP(d, «v), the objective is to find a shortest tour
that visits every city at least once; thus the salesman is allowed to revisit cities.

Note that Tsp(2,1) is the classical two-dimensional Euclidean Tsp and that Tsp(d, o) is
the so-called bottleneck Tsp in R?, where the goal is to find a tour whose longest edge has
minimum length. We are, however, mainly interested in the case where « is some small
constant, and we will not touch the case a = .

Similarities and differences to the classical Fuclidean TSP. The classical Euclidean TSP is
NP-hard even in two dimensions, but it is relatively easy to approximate. In particular, it
admits a polynomial-time approximation scheme: Given a parameter € > 0 and a set of n
points in d-dimensional Euclidean space, one can find in 2(¢/ 9@ (d/e)°@Dnlogn time a
tour whose length is at most 1 + € times the optimal length [23].

A crucial property of the Euclidean TSp is that the underlying Euclidean distances
satisfy the triangle inequality. The triangle inequality implies that no reasonable salesman
would ever revisit the same city: Instead of returning to a city, it is always cheaper to skip
the city and to travel directly to the successor city. All positive approximation results for
the Euclidean TsP rely heavily on the triangle inequality. In strong contrast to this, for
exponents a > 1 the distance function |- |* does not satisfy the triangle inequality. Thus
the combinatorial structure of the problem changes significantly—for example, revisits may
suddenly become helpful—and the existing approximation algorithms for Fuclidean Tsp
cannot be applied.

Another nice property of the classical Euclidean problem Tsp(2,1) is that, sloppily
speaking, instances with many cities have long optimal tours. Consider for instance a set P
of n points in the unit square. Then there exists a tour whose Euclidean length is bounded
by O(y/n) [15]. This bound is essentially tight since there are point sets for which every
tour has Euclidean length (y/n). Interestingly, these results do not carry over to TspP(2,2)
with squared Euclidean distances. Problem #124 in the book by Bollobés [8] shows that
there always exists a tour for P such that the sum of the squared Euclidean distances is
bounded by 4, and that this bound of 4 is best possible. Since, as a rule of thumb, large
objective values are easier to approximate than small objective values, this already indicates
a substantial difference in the approximability behaviors of Tsp(2,1) and TspP(2,2).

Previous work and our results. Funke et al. [12] note that the distance function |- |* satisfies
the so-called T-relazed triangle inequality with parameter 7 = 2971 (see Section 2 for a
definition). The classical TSP under the 7-relaxed triangle inequality has been extensively
studied [2, 3, 6, 7], and all the corresponding machinery from the literature can be applied
directly to Tsp(d,a). For instance, Andreae [6] derives a (72 + 7)-approximation for the
classical Tsp under the T-relaxed triangle inequality (A, -Tsp, for short). This result trans-
lates into a (4%~! 4+ 2%~ 1)-approximation for TspP(-,a). For 7 > 3, it is better to apply
Bender and Chekuri’s 47-approximation [2] for A,-TsP, which yields a 2 *!-approximation
for TsP(-,). Funke et al. derive a (2-3%~!)-approximation algorithm for TSP(-,), which
for the range 2 < a < logz 3 ~ 2.71 is better than applying the known results [6, 2].
The best result for @ < 2 is obtained by Bockenhauer et al. [7] whose Christofides-based
(372 /2)-approximation for A,-TsP yields a (3 - 22%~3)-approximation for TSP(-,).

We will demonstrate in Section 2 that essentially every variant of the original T3-
algorithm by Andreae and Bandelt [3] already gives a (2-3%~!)-approximation for TspP(d,).
The bottom-line of all this, and the actual starting point of our paper, is that the machinery

THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 241

around the 7-relaxed triangle inequality only yields a bound of roughly 2 - 3%~!. This
raises the following questions: How much can geometry help us in getting even better
approximation ratios? Can we beat the 6-approximation for TsP(2,2) of Funke et al.? We
answer these questions affirmatively: We develop a new variant of the T3-algorithm which
we call the geometric T3-algorithm. An intricate analysis in Section 3 shows that this yields
a H-approximation for TsP(2,2). We then extend our analysis to TSP(2,) with o > 2,
and thus obtain a (3%~ 4+ /6 O[/ 3)-approximation; see Section 4. This new bound is always
better than the bound 2 - 3%~! of Funke et al. and of our analysis of the T3-algorithm.

Finally, in Section 5, we turn our attention to the following two questions: (a) How
does the approximability of Tsp behave when we make « larger than one? (b) Does al-
lowing revisits change the complexity or the approximability of the problem? As we know,
classical Euclidean TsP (that is, Tsp(d, 1)) is Np-hard [19] and has a polynomial-time ap-
proximation scheme (PTAS) in any fixed number d of dimensions [4]. On the other hand,
Rev-TsP(d,) has—to the best of our knowledge—mnot been studied before. Concerning
question (b), complexity behaves as expected: Rev-TspP(d,) is NP-hard for any d > 2 and
any a > 0, and our (straightforward) hardness argument also works for TSp(d, «). In terms
of approximability, we show that whereas the two-dimensional problem Rev-Tsp(2, a) still
has a PTAS for all values a > 2, the problem becomes APX-hard for all & > 1 in three
dimensions. We were surprised that the APX-hardness proof, too, carried over to TSpP(3, «)
for all & > 1. This inapproximability result stands in strong contrast to the behavior of the
classical Euclidean TSP (the case a = 1).

The connection to wireless networks. Consider a wireless network whose nodes are equipped
with omni-directional antennas. The nodes are modeled as points in the plane, and every
node can communicate with all other nodes that are within its transmission radius. The
power (that is, the energy) needed to achieve a transmission radius of r is roughly propor-
tional to r* for some real parameter « called the distance-power gradient. Depending on
environmental conditions, « typically is in the range 2 to 6 [13, Chapter 1]. The goal is to
assign powers to the nodes such that the resulting network has certain desirable properties,
while the overall power consumption is minimized. A widely studied variant has the objec-
tive to make the resulting network strongly connected [1, 11, 16]. Other variants (finding
broadcast trees; having small hop diameter; etc) have been studied as well. Funke et al. [12]
suggest that it is useful to have a tour through the network, which can be used to pass a
virtual token around. The resulting power-assignment problem is TSP(2, «).

Another setting related to TSP(2, «) is the following. Instead of omni-directional anten-
nas, some wireless networks use directional antennas. This achieves the same transmission
radius under a smaller energy consumption [17, 22]. To model directional antennas, Cara-
giannis et al. [9] assume that a node can communicate with other nodes in a circular sector
of a given angle (where the sector’s radius is still determined by the power of the node’s
signal). For directional antennas one not only has to assign a power level to each node, but
also has to decide on the direction in which each node transmits. If the opening angle tends
to zero and the points are in general position, a strongly connected network becomes a tour.
Hence, our results on TSP(2, «) may shed some light on the difficulty of power assignment
for directional antennas with small opening angles.

242 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

2. Approximating Tsp(-,)

In this section we lay the basis for our main contribution, a 5-approximation for
TsP(2,2) in Section 3. We review known algorithms for a related version of Tsp, which
can be applied to our setting. As it turns out, these algorithms already yield the same
worst-case bounds as the algorithm that Funke et al. [12] gave recently.

We recall some definitions. Let S be a set, let dist(-,-) : S x S — R3¢ be a distance
function on S, and let 7 > 1. We say that dist(-,-) fulfills the 7-relazed triangle inequality
if any three elements p,q,r € S satisfy dist(p,r) < 7 - (dist(p, q) + dist(q,r)). Recall that
we denote by A,-TsP the TSP problem on complete graphs whose weight function (when
viewed as a distance function on the vertices) fulfills the 7-relaxed triangle inequality. The
following lemma, which has been observed by Funke et al. [12], allows us to apply algorithms
for A-TsP to our problem. The proof relies on Holder’s inequality.

Lemma 2.1 ([12]). Let a > 0 be a fized constant. The distance function | -|* : R x R? —
R>o, (p,q) — |pq|® fulfills the T-relazed triangle inequality for T = 2071

Andreae and Bandelt [3] gave an approximation algorithm for A,-Tsp. Their T3-
algorithm is an adaptation of the well-known double-spanning-tree heuristic for Tsp. This
heuristic finds a minimum spanning tree (MST) in the given graph G, doubles all edges,
finds an Euler tour in the resulting multigraph, and finally constructs a Hamiltonian cycle
from the Euler tour by skipping all nodes that have already been visited. The weight of
the MST is a lower bound for the length of a Tsp-tour since removing any edge from a
tour yields a spanning tree whose weight is at least the weight of the MST. Note that
this statement holds for arbitrary weight functions. If the triangle inequality holds, the
heuristic yields a 2-approximation since then skipping over visited nodes never increases
the length of the tour, which initially equals twice the weight of the MST. For the weight
function |- |%, however, the heuristic can perform arbitrarily badly—consider a sequence of
n equally-spaced points on a line.

The T3-algorithm of Andreae and Bandelt also creates a Hamiltonian tour by short-
cutting the MST, but their algorithm never skips more than two consecutive nodes. It is
never necessary to skip more than two consecutive nodes because the cube T3 of a tree T is
always Hamiltonian by a result of Sekanina [24]. Recall that the cube of a graph G contains
an edge uv if there is a path from u to v in G that uses at most three edges. The proof of
Sekanina is constructive; Andreae and Bandelt use it to construct a tour in MST?.

The recursive procedure of Sekanina [24] to obtain a Hamiltonian cycle in 7% intuitively
works as illustrated in Fig. 1; for the pseudo-code, see Algorithm 1. The algorithm is
applied to a tree T and an edge e = ujus of T. Removing the edge e splits the tree into
two components 77 and 7. In each component T; (i = 1,2), the algorithm selects an
arbitrary edge e; = u;w; incident to u; and recursively computes a Hamiltonian cycle of T;
that includes the edge e;. The algorithm returns a Hamiltonian cycle of T' that includes e.
The cycle consists of the cycles in 77 and Ty without the edges e; and es, respectively. The
two resulting paths are stitched together with the help of e and the new edge wyws.

Note that different choices of the edge e; in line 5 give rise to different versions of the
algorithm. The standard T3-algorithm takes an arbitrary such edge, while Andreae’s refined
version [2] makes a specific choice, which gives a better result. (In the next section we will
choose e; based on the local geometry of the MST, which will lead to an improved result
for our problem.) Andreae’s tour in MST? has weight at most (72 + 7) times the weight of
the MST, which is worst-case optimal [3]. Combining his result with Lemma 2.1 yields that

THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 243

Algorithm 1: CYCLEINCUBE(T, e = ujus)

WL ws for i — 1 to 2 do
. .
T 1 . €2 T T; «— component of T' — e that contains u;
*ur us if |T;| = 1 then P; «— 0; w; «— u;

Figure 1: Recursively find-
ing a Hamiltonian
cycle in the cube
of the tree T.

pick an edge e; = u;w; incident to u; in T;
if |T;] = 2 then II; «— ¢;

1
2
3
4 else
5
6
7 else II; «— CYCLEINCUBE(T}, ¢;) — ¢;

8 return I} + e+ Ils + wywy

the refined T3-algorithm is a (4971 4 22~ 1)-approximation for TSP(-,a). We now improve
on this with the help of a simple argument. We will frequently use the following definition.
Let T be a tree and let vg,...,v; be a simple path in 7. Then we call vgv, a k-shortcut
of T'. We say that a shortcut vw uses an edge e if e lies on the path connecting v and w
in T. It is not hard to see that the weight of a k-shortcut can be bounded as follows.

Lemma 2.2. Let o > 1 and let e be a k-shortcut using edges e1,...,ex. Then |e|* <
RO el

Given a tree T, the tour constructed by the T3-algorithm consists of edges of T' and 2-
and 3-shortcuts that use edges of T'. Note that in this tour each edge of T is used exactly
twice. Thus, for o > 2, the original T3-algorithm does actually better than the bound we
obtained above for the refined T?3-algorithm.

Corollary 2.3. Every version of the T3-algorithm is a (2-3~1)-approzimation for Tsp(-,a).

Note that our improved analysis of the T3-algorithm yields the same result as the
algorithm of Funke et al. [12].

Bender and Chekuri [6] designed a 47-approximation for A.-TSp using a different lower
bound: the optimal TSP tour is a biconnected subgraph of the original graph. The weight
of the optimal TSP tour is at least that of the minimum-weight biconnected subgraph.
The latter is Np-hard to compute [10], but can be approximated within a factor of 2 [21].
Moreover, the square of a biconnected subgraph is always Hamiltonian. Thus using only
edges of the biconnected subgraph and two-shortcuts yields a 47-approximation for A, -
Tsp. Combining the result of Bender and Chekuri with Lemma 2.1 immediately yields the
following result, which is better than Corollary 2.3 for a > logz, 3 ~ 2.71.

Corollary 2.4. The algorithm of Bender and Chekuri is a 2*+ -approzimation for TSP(-, a).

3. A 5-Approximation for TSP(2,2)

In the previous section we have used graph-theoretic arguments to determine the per-
formance of the T3-algorithm. By Corollary 2.3, the T3-algorithm yields a 6-approximation
for « = 2, independently of the dimension of the underlying Euclidean space. We now
define what we call the geometric T3-algorithm and show that it yields a 5-approximation
for TSP(2,2). The geometric T3-algorithm simply chooses in line 5 of Algorithm 1 the edge
e; that makes the smallest angle with the edge e.

244 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

e—— Az —>
(a) a and c lie on the same side of the (b) @ and c lie on different sides of the line
line through b through b

Figure 2: Two cases for computing the length of the 3-shortcut s(a, b, c).

The idea behind taking advantage of geometry is as follows. In Corollary 2.3 we have
exploited the fact that each edge is used in two (< 3)-shortcuts. The weight of a 3-shortcut
is maximum if the corresponding points lie on a line. For the case of the Fuclidean MST it
is well-known that edges make an angle of at least /3 if they share an endpoint. The same
proof also works for the MST w.r.t. | -|%. This guarantees that in line 5 of Algorithm 1, we
can pick an edge e; that makes a relatively small angle with e—if the degree of u; is larger
than 2. Otherwise, it is easy to see that e; is used by a (< 2)- and a (< 3)-shortcut, which
is favorable to being used by two 3-shortcuts, see Lemma 2.2.

Although the intuition behind our geometric T3-algorithm is clear, its analysis turns
out to be non-trivial. We start with the following lemma that can be proved with some
elementary trigonometry. Given two line segments s and ¢ incident to the same point, we
denote the smaller angle between s and ¢t by Zst and define g = m — Zst.

Lemma 3.1. Given a tree T, the 3-shortcut s(a, b, c) that uses the edges a, b, ¢ of T in this
order has weight

|s(a,b,0)* = af* + [b]* + |cf” + 2[al[b] cos ua + 2|bl|c] cos Ype + 2|alle] cos(Ypa + 8 -),

where § = +1 if a and c lie on the same side of the line through b, and 6 = —1 if a and c lie
on opposite sides. Moreover, |s(a,b,c)* < 2|al? +|b|* + 2|c|? + 2|a||b| cos Ypq + 2|b||¢] cOS Y.

Lemma 3.1 (illustrated in Fig. 2) expresses the weight of a 3-shortcut in terms of the
lengths of the edges and the angles between them. Now we show that if an edge a is used in
two 3-shortcuts, two of these angles are related. Note that the T3-algorithm generates the
two 3-shortcuts that use a in two consecutive recursive calls, see Fig. 3. The T3-algorithm
is first applied to edge b and then recursively to edge a. In the recursive call, the shortcut
s(e,a,d) is generated where d is an edge incident to both a and b. Then the algorithm
returns from the recursion and generates the 3-shortcut s(a, b, ¢). Thus a is the middle edge
in one 3-shortcut and the first or last edge in the other 3-shortcut. We rely on the following.

Lemma 3.2. If the geometric T3-algorithm generates the two 3-shortcuts s(a,b,c) and
s(e,a,d) in two recursive calls and d is incident to both a and b, then 1y, = (T — Vaq)/2.

Now we are ready to prove the main result of this section.
Theorem 3.3. The geometric T3-algorithm yields a 5-approzimation for TSP(2,2).

Proof. We express the length of each shortcut s of the T3-tour in terms of the lengths of the
MST edges that s uses. Changing the perspective, for each MST edge a, we use contrib(a)
to denote the sum of all terms that contain the factor |a|. The edge a is used in at most

THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 245

two shortcuts. Bounding their lengths yields an upper bound on contrib(a). The sum of all
contributions relates the length of the T3-tour to that of the MST (w.r.t. |- |%), which in
turn is a lower bound for the length of an optimal TSP tour.

Due to Lemma 2.2, contrib(a) < 5|a|? if a is used in a (<2)-shortcut on one side and a
(<3)-shortcut on the other side. So we focus on the case that a is used in two 3-shortcuts,
see Fig. 3. We rewrite the composite terms in the bound for s(a, b, ¢) in Lemma 3.1 using
Young’s inequality with e, which, given z,y € R and € > 0, states that 2y < x2/(2¢)+y%¢/2.

Let v be the vertex that is incident to edges a and b. If there are multiple 3-shortcuts
that use edges that are incident to v then the T3-algorithm generates these in consecutive
recursive calls. We renumber the edges incident to v such that the algorithm is first applied
to vvy, then recursively to vws etc. Then there is some ¢ > 1 such that b = vv; and
a = vv;4+1 because the algorithm is first applied to b and then recursively to a. We define
Vi = Vv o041 (= Yba). We rewrite the term 2|a||b| cos ¢y, in the bound for |s(a,b, c)|? in
Lemma 3.1 as follows.

2|al[b] cos pa = 2[vvil|vvita| cos iy < f([vvita |, [vvil, i), (3.1)
where
lovi | + |vvig1]? cos® ¢ if i < § and

F(Jvvigal,s [vvs|, ;) = (i=lor (i>1and ¢yt >5)),

(\vvi\Q + \vvi+1|2) costp; if; <G andi>1and ¥ < 3.

The second case of inequality (3.1) follows from Young’s inequality with € = 1/ cos); and
the third case from Young’s inequality with ¢ = 1. Replacing 2|b||c| cos ¢y in the bound for
|s(a,b,c)|? in Lemma 3.1 is analogous. Together, the two replacements yield the bound

|s(a,b,¢)|” < 2laf® + [b]* + 2le|* + f(|al, [bl, v6a) + f(lc], [B], pe)- (3.2)

We use (3.2) to bound the weights of all 3-shortcuts. The weight of the final tour is the
sum of the weights of all shortcuts. In this sum we can take the two occurrences of an
edge a = vv;41 together and analyze the contribution of a to the tour. Note that the result
of (3.2) is still at most 3(|a|? +[b|> + |c|?). So if an edge a is used in a (<3)-shortcut on one
side and a (< 2)-shortcut on the other side, then we still have that contrib(a) < 5|al?. Tt
remains to consider the case that a is used in two 3-shortcuts. Let s(a, b, ¢) and s(e, a,d) be
these 3-shortcuts. The algorithm is first applied to edge b and generates shortcut s(a, b, ¢),
where a is the first or the third edge of the shortcut. Then the algorithm is recursively
applied to edge a and generates shortcut s(e, a, d), where a is the middle edge. Fig. 3 shows
how the vertices are numbered in this case.

Figure 3: Two 3-shortcuts that use edge a. Figure 4: Illustration of case I1I.

246 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

Let o, be a function that takes a sum of terms and returns the sum of all terms that
contain |a|. We derive the following expression for contrib(a).

contrib(a) = o4(weight(s(a, b, c))) + o, (weight(s(e, a, d)))
< oa (2lal? + b + 2lel” + f(lal, 1B],vba) + f(Jel, B],%be))
+0a (2lel* + laf* + 2/d]* + f(lel, |al, Yae) + f(|d], |al, ¢aa))
< 4al? + ga(f (Jovisa s [ovil, 10) + oa(f([vvisal, [vvis], Yisn)) (3.3)

By definition of f we have to consider three cases in (3.3) for contrib(a).

Case I: ¢, > /2 or ¥11 > 7/2.
We assume w.l.o.g. that 1, > 7/2. Then we know that f(|vvit1]|, |vvil, 1)) = 0 and in
the worst case o4 (f(|vvisal, [vvis1],%ivr1)) < |a|?>. Thus we have that contrib(a) < 5|a|?.

Case II: ¢; < w/2 and ;11 <7/2 and (i =1 or (: > 1 and 9;—; > 7/2)).
By definition of f we have:
oa(f([vvita], [vvil, ¥:)) = oa (Jovil® + Jovig1[Pcos® i) = al* cos®
Ua(f(|vvi+2\7 |Wi+1\7¢i+1)) = O0Ogq ((\WHHQ + |Uvi+2\2) COs 1/1i+1) = \a|2 coS Piy1

Lemma 3.2 states that ¢; > (7 — ¥;41)/2. We also know that ¢; < 7 by definition. Thus
we have

contrib(a) < (4 + cos? + cos ¢i+1>\a|2 < 5lal?.

Case III: ¢; < /2 and ¢;41 < 7/2 and i > 1 and ¥;_1 < 7/2.
It can be shown that this leads to a contradiction, see Fig. 4 (on page 245).

T — i1
2

In cases I and II, the contribution of any edge |a| to the tour is at most 5|a|?. The
theorem follows by summing up the contributions of all edges. [

When using the MST as a lower bound in the analysis, there is not much room for
improvement. There are instances of TsP(2,2) where the T3-algorithm yields a tour whose
weight is 411‘1 times that of the MST; see also [18, Theorem 4.19].

4. Approximating TSp(2,«) with a > 2

In this section we generalize the main result of the previous section to a > 2. Our new
bound is always better than the bound 2 - 3%~! of Funke et al. [12], see also Corollary 2.3.
For o < 3.41 our bound is better than the bound 2%*! that follows from the algorithm of
Bender and Chekuri [6], see Corollary 2.4.

Theorem 4.1. The geometric T3-algorithm yields a (3%~% + \/éa/S)—appmximation for
TsP(2,«) if a > 2.

Proof. If an edge a is used in a (<2)-shortcut on one side and a (<3)-shortcut on the other
side then the total contribution of a to the tour is at most (22! +3%71)|a|* by Lemma 2.2.
So we will focus our analysis again on the case that a is used in two 3-shortcuts. For o = 2
we can express the weight of a 3-shortcut by Lemma 3.1 and rewrite the composite terms

THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 247

as in inequality (3.1). For o > 2 we apply Holder’s inequality.
Is(a,b,¢)* = (|s(a,b,)]*)*"*
< (2laf? + (b + 2/l + F(lal, bl a) + F(le]. [b], 1))
= (Balal? + Bylbf? + Belcl?) ™ (A1)

<32 (BNl + B2 b + e (42)

We introduced the constants of type 3 to shorten the expression. Note that the last in-
equality holds only if a > 2.

In order to bound the contribution of an edge a that is used in two 3-shortcuts we
follow the proof of Theorem 3.3. Since the assumptions of case III in that proof led to a
contradiction, it suffices to consider cases I and II.

Case I: ¢; > /2 or ;11 > /2.
contrib(a) < 3%/271 ((2 + cos ;)% + (2 + cos 1/1i+1)a/2) la|®
< 30/2-1 (2a/2 n 3a/2) la|® = (3“*1 n \/6‘”/3) |
Case II: ¢; < /2 and ¢;41 < w/2 and (i =1 or (i > 1 and ¢;—1 > 7/2)).
contrib(a) < 3%/27! ((2 +coshign)? + (2 + sin® v1/2) 2) la]®

9o (Viz1)

Now we use the fact that the function h : [0,27] — R,z + (2 + cosz)* + (2 + sin® z/2)*
attains its maximum value at x = 0. Thus g, also attains its maximum in the range [0, 7/2)
in x = 0. This yields

contrib(a) < 3%%71. g, (0) - |a|* < (3°71 +V67/3)|al*.

In both cases we showed that contrib(a) < (3*~! + v/6°/3)|a|*. The theorem follows for
a > 2 by summing up the contributions of all edges. The case o = 2 corresponds to
Theorem 3.3.]

5. The Approximability of TSP and Rev-TSP

In this section we discuss complexity and approximability of T'SP and its variant Rev-
Tsp, where the salesman is allowed to revisit the cities. Recall that for any fixed dimension
d > 2, Tsp(d, 1) is Np-hard [19] and admits a PTAS [4].

Theorem 5.1. Tsp(d,) and Rev-TSp(d, «) are NP-hard for any d > 2 and a > 0.

Proof. Ttai et al. [14] showed that, given n points in the unit grid, it is Np-hard to decide
whether there is a TSP tour of Euclidean length n. Thus for both of our problems it is
NP-hard to distinguish between OPT =n and OPT > n — 1 + \/ia.]

248 M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

Theorem 5.2. Tsp(d,«) and Rev-TSp(d,) are APX-hard for any d > 3 and any o > 1.

Proof. We only discuss the case d = 3 and o = 2—all other cases can be settled by slightly
modified arguments—TSP. and we only consider Rev-TSP; a similar reduction can be used
for Tsp. We reduce from {1,2}-Tsp, the TSP on the complete graph where the weight
of every edge is either 1 or 2; this problem is Apx-hard [20]. An instance of {1,2}-Tsp
consists of the complete graph K,, = (V,,, E,,) with vertex set V,, = {v1,...,v,}, edge
set E, = {e1,...,en} where m = n(n — 1)/2, and edge lengths that are specified by a
weight function w : E,, — {1,2}. Given K,, and w, we construct a corresponding instance
Py C R3 of Rev-TsP(3,2).

We start our construction by introducing several auxiliary line segments. For each
vertex v; € V,, we define its spine to be the vertical line segment going from point (ni, ni,n)
to point (ni, ni,nm). For each edge e, = v;v; € E,, with ¢ < j, we define two corresponding
line segments that are parallel to the xy-plane and that are called bones. The first bone
connects point (ni,ni,nk) on the spine of v; to the point (nj,ni,nk). The other bone
connects point (nj,nj,nk) on the spine of v; to the point (nj, ni — oy, nk), where 65 = 1 if
w(er) = 1 and 6 = /2 if w(er) = 2. Note that these two bones do not quite touch; they
are separated by a gap of length d.

In order to get the instance P, ., of Rev-TSP(3,2), we subdivide every single (spine
or bone) line segment introduced above by a dense, evenly distributed set of points—we
call these points cities from now on—so that every unit-length piece receives n° cities.
The distance between adjacent cities is 1/n°, and so the cost for going from one city to
an adjacent city is 1/n'%. All these cities together form instance P, ,,, and this completes
our construction. Since we have introduced line segments with a total length of at most
n-n(m—1) +m-2n(n — 1) < 2n*, the overall number of cities is at most 2n°.

For 1 <7 < n we call the cities on the spine of v; and on all bones incident to this spine
the city cluster of v;. Traversing all cities within such a city cluster is very cheap; even if
we visit every city twice, this costs at most 2-2n?/n'? = 4/n for all cities in all city clusters
together. In a traveling salesman tour, the only expensive steps occur when the salesman
jumps from one city cluster to another city cluster. By the above definition of §x, when
jumping from bone to bone across the gap corresponding to edge ej the incurred cost is
exactly w(eg). Note that jumping from city cluster to city cluster in any other way would
be much more expensive and would thus not reduce the total cost of the tour.

Finally, let us show that our reduction is approximation preserving. Fix an ¢ with
0 < & < 1. Consider an instance K, and w of {1,2}-TspP, and assume without loss of
generality that n > 4/e. Consider an optimal tour 7y for this instance. If 7y uses ¢ > 0
edges of length 2 and n — ¢ edges of length 1, then it has cost n + £. Given a PTAS for
Rev-Tsp, we show how to compute in polynomial time a tour of cost at most (14¢)(n+£)
for K,, and w.

First note that the tour my can be transformed into a tour m through P, ,, that makes ¢
jumps of cost 2 and n — ¢ jumps of cost 1. That tour m; costs at most n + ¢ + 4/n. Using
our hypothetical PTAS for Rev-TsP, we can compute for any ¢ > 0 in polynomial time
a tour my through P, ,, of cost at most (1 + &’)copt, Where copt is the cost of an optimal
Rev-Tsp tour. The existence of 7 yields copy < n+£¢+4/n. The tour 7, can be transformed
into a tour w3 through K,: Just map the jumps of m to the corresponding edges of K,,.
Since this mapping cannot increase the cost, tour 73 costs at most (1 +&’')(n + £ + 4/n).

THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 249

Choosing ¢’ = ¢/2 and using 4/n < € < 1, we can bound the cost of 73 from above by

€ € € €
(1+5)m+0+(1+5)e = (1+2)m+0+52+9) = QL+ +)

as desired. Like mo, the tour w3 may visit vertices more than once. This can be fixed by

greedily introducing shortcuts. The shortcuts do not increase the cost of the tour since the

weight function w (trivially) fulfills the triangle inequality. [

Theorem 5.3. There exists a PTAS for Rev-Tsp(2,«) for any o > 2.

Proof. Given a set P of points in the plane, consider the Gabriel graph G p that has a vertex
for each point in P. There is an edge between points p and ¢, if the open disk with diameter
pq is empty, in other words, if for all points r € P\ {p,q}, the angle Zprq is at most 7/2.
The weight of the edge is |pg|®. Note that |[pr|® + |rq|* < |pg|® if Zprq is at least m/2.
Therefore, there is an optimal TSP tour with revisits through P that only uses the edges
of Gp: Indeed, if a tour uses an edge pq for which there is a point r with Zprq > /2,
then replacing pg by pr and rq would shorten the tour. Such a replacement is feasible since
revisiting city r is allowed. The Gabriel graph is planar. Hence we end up with an instance
of the T'sP on weighted planar graphs, for which a PTAS is known [5]. [

Recall that a quasi-PTAS is an approximation scheme with running time nPeylogn,
where n is the size of the input. The following result follows immediately from the facts
that (a) the metric |-|* has bounded doubling dimension and (b) TSP on metrics of bounded
doubling dimension admits a quasi-PTAS [25].

Theorem 5.4. There exists a quasi-PTAS for Rev-Tsp(d,«) for any a € (0,1] and d > 1.

6. Conclusions

In order to construct considerably better approximation algorithms for Tsp(d, «), we
expect that substantially different methods of analysis have to be found. A result of Van
Nijnatten [18, Theorem 4.19] indicates that there is not much room left for improvement
as long as we compare to the MST.

The approximability of Rev-TspP(2,«) for 1 < o < 2 is an interesting open question.
We believe that a (quasi)-PTAS may be obtained using the framework of the PTAS for
weighted planar graph Tsp by Arora et al. [5]. A simple reduction shows that deriving a
PTAS for our problem is at least as hard as deriving a PTAS for weighted planar graph
Tsp. Assume we have a PTAS for Rev-TSP(2,) for some o > 1. Given a weighted planar
graph and a planar embedding, we replace each edge by a dense set of points such that
traversing a subedge basically costs zero. By making one subedge of each edge e longer, we
can make the cost of that subedge (and thus of e) in Rev-TspP proportional to the weight
of e. Then, the costs of the optimal solutions of the two problems will be the same up to an
arbitrarily small constant factor of 1 + &. Such a reduction is polynomially bounded if all
weights are polynomially bounded, which can be achieved by a standard rounding scheme.

A PTAS for Rev-TspP(2, «) for any « > 1 would be an interesting generalization of the
existing PTAS’s for weighted planar graphs. Ideally, one would have a PTAS with running
time independent of « since it would contain both Euclidean TSP and weighted planar
graph TSP as special cases.

250

M. DE BERG, F. VAN NIJNATTEN, R. SITTERS, G. J. WOEGINGER, AND A. WOLFF

References

(1]

E. Althaus, G. Calinescu, I. Mandoiu, S. Prasad, N. Tchervenski, and A. Zelikovsky. Power efficient
range assignment for symmetric connectivity in static ad hoc wireless networks. Wireless Networks,
12(3):287-299, 2006.

T. Andreae. On the traveling salesman problem restricted to inputs satisfying a relaxed triangle in-
equality. Networks, 38(2):59-67, 2001.

T. Andreae and H.-J. Bandelt. Performance guarantees for approximation algorithms depending on
parametrized triangle inequalities. STAM J. Discrete Math., 8(1):1-16, 1995.

S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric
problems. J. ACM, 45(5):753-782, 1998.

S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial-time approximation scheme
for weighted planar graph TSP. In Proc. 9th Annu. ACM-SIAM Symp. Discr. Algo., p. 33—41, 1998.
M. A. Bender and C. Chekuri. Performance guarantees for the TSP with a parameterized triangle
inequality. Inform. Process. Lett., 73(1-2):17-21, 2000.

H.-J. Bockenhauer, J. Hromkovi¢, R. Klasing, S. Seibert, and W. Unger. Towards the notion of stability
of approximation for hard optimization tasks and the traveling salesman problem. Theor. Comput. Sci.,
285(1):3-24, 2002.

B. Bollobéds. The Art of Mathematics — Coffee Time in Memphis. Cambridge Univ. Press, 2006.

I. Caragiannis, C. Kaklamanis, E. Kranakis, D. Krizanc, and A. Wiese. Communication in wireless
networks with directional antennas. In F. M. auf der Heide and N. Shavit, editors, Proc. 20th Annu.
ACM Symp. Parallel Algorithms Architect., p. 344-351, 2008.

K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM J. Comput., 5(4):653-665, 1976.

B. Fuchs. On the hardness of range assignment problems. Networks, 52(4):183-195, 2008.

S. Funke, S. Laue, R. Naujoks, and Z. Lotker. Power assignment problems in wireless communication:
Covering points by disks, reaching few receivers quickly, and energy-efficient travelling salesman tours.
In Proc. 4th Int. IEEE Conf. Distributed Comput. Sensor Systems, LNCS 5067, p. 282-295, 2008.

L. Godara. Handbook of Antennas in Wireless Communications. CRC Press, 2001.

A. Ttai, C. Papadimitriou, and J. Szwarcfiter. Hamilton paths in grid graphs. SIAM J. Comput., 4:676—
686, 1982.

R. Karp and J. Steele. Probabilistic analysis of heuristics. In E. Lawler, J. Lenstra, A. R. Kan, and
D. Shmoys, editors, The Traveling Salesman Problem, chapter 6, p. 181-205. John Wiley, 1985.

L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power consumption in packet radio networks.
Theoret. Comput. Sci., 243(1-2):289-305, 2000.

A. Nasipuri, K. Li, and U. R. Sappidi. Power consumption and throughput in mobile ad hoc networks
using directional antennas. In Proc. 11th IEEE Conf. Comput. Commun. & Networks, p. 620-626, 2002.
F. van Nijnatten. Range assignment with directional antennas. Master’s thesis, TU Eindhoven, 2008.
http://alexandria.tue.nl/extral/afstversl/wsk-i/nijnatten2008.pdf.

C. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theoret. Comput. Sci.,
4(3):237-244, 1977.

C. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two.
Math. Oper. Res., 18(1):1-11, 1993.

M. Penn and H. Shasha-Krupnik. Improved approximation algorithms for weighted 2- and 3-vertex
connectivity augmentation problems,. J. Algorithms, 22(1):187-196, 1997.

R. Ramanathan. On the performance of ad hoc networks with beamforming antennas. In Proc. 2nd
ACM Int. Symp. Mobile Ad Hoc Networking & Comput., p. 95-105, 2001.

S. B. Rao and W. D. Smith. Approximating geometrical graphs via “spanners” and “banyans”. In Proc.
30th Annu. ACM Symp. Theory Comput., pages 540-550, 1998.

M. Sekanina. On an ordering of the set of vertices of a connected graph. Publications of the Faculty of
Science, University of Brno, 412:137-142, 1960.

K. Talwar. Bypassing the embedding: Algorithms for low dimensional metrics. In Proc. 36th Annu.
ACM Symp. Theory Comput., pages 281-290, 2004.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 251-262
www.stacs-conf.org

BEYOND BIDIMENSIONALITY: PARAMETERIZED
SUBEXPONENTIAL ALGORITHMS ON DIRECTED GRAPHS

FREDERIC DORN'! AND FEDOR V. FOMIN'! AND DANIEL LOKSHTANOV'! AND VENKATESH
RAMAN?Z AND SAKET SAURABH 2

! Department of Informatics, University of Bergen, Bergen, Norway.

E-mail address: {dorn|fedor.fomin|daniello}@ii.uib.no

2 The Institute of Mathematical Sciences, Chennai, India.
E-mail address: {vraman|saket}@imsc.res.in

ABSTRACT. In this paper we make the first step beyond bidimensionality by obtaining
subexponential time algorithms for problems on directed graphs. We develop two different
methods to achieve subexponential time parameterized algorithms for problems on sparse
directed graphs. We exemplify our approaches with two well studied problems. For the
first problem, k-LEAF OUT-BRANCHING, which is to find an oriented spanning tree with
at least k leaves, we obtain an algorithm solving the problem in time 20(Wklogk)p |, O(1)
on directed graphs whose underlying undirected graph excludes some fixed graph H as a
minor. For the special case when the input directed graph is planar, the running time can
be improved to 20(‘/%)71—1—710(1). The second example is a generalization of the DIRECTED
HAMILTONIAN PATH problem, namely k-INTERNAL OUT-BRANCHING, which is to find an
oriented spanning tree with at least k internal vertices. We obtain an algorithm solving
the problem in time 90Wklogk) | O 4n directed graphs whose underlying undirected
graph excludes some fixed apex graph H as a minor. Finally, we observe that for any
e > 0, the k-DIRECTED PATH problem is solvable in time O((1+4&)*nf(®)), where f is some
function of e.

Our methods are based on non-trivial combinations of obstruction theorems for undi-
rected graphs, kernelization, problem specific combinatorial structures and a layering tech-
nique similar to the one employed by Baker to obtain PTAS for planar graphs.

1. Introduction

Parameterized complexity theory is a framework for a refined analysis of hard (NP-
hard) problems. Here, every input instance I of a problem II is accompanied with an
integer parameter k and II is said to be fixed parameter tractable (FPT) if there is an
algorithm running in time f(k) - n®®, where n = |I| and f is a computable function.
A central problem in parameterized algorithms is to obtain algorithms with running time

1998 ACM Subject Classification: F.2.2; G.2.2.
Key words and phrases: Parameterized Subexponential Algorithms, Directed Graphs, Out-Branching,
Internal Out-Branching.

ASPECTS

K S%FFES?PUTER © F Dorn, F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh
© Creative Commons Attribution-NoDerivs License

N SYMPOSIUM
mvr_ ON THEORETICAL
4

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2459

252 F. DORN, F. V. FOMIN, D. LOKSHTANOV, V. RAMAN, AND S. SAURABH

fk)- n®W such that f is as slow growing function as possible. This has led to the devel-
opment of various graph algorithms with running time 2°®)p9(1)_— notable ones include
k-FEEDBACK VERTEX SET [7], k-LEAF SPANNING TREE [26], k-ODD CYCLE TRANSVER-
SAL [29], k-PATH [4], and k-VERTEX COVER [8] in undirected graphs. A natural question
was whether we can get subexponential time algorithms for these problems, that is, can we
have algorithms with running time 2°®)n®M) | Tt is now possible to show that these prob-
lems do not admit algorithms with running time 2°®)n®1) unless the Exponential Time
Hypothesis (ETH) [21, 25] fails. Finding algorithms with subexponential running time on
general undirected graphs is a trait uncommon to parameterized algorithms.

However, the situation changes completely when we consider problems on topological
graph classes like planar graphs or graphs of bounded genus. In 2000, Alber et al. [1]
obtained the first parameterized subexponential algorithm on undirected planar graphs by
showing that k-DOMINATING SET is solvable in time 20(VE)O(1) | This result triggered an
extensive study of parameterized problems on planar and more general classes of sparse
graphs like graphs of bounded genus, apex minor-free graphs and H-minor free graphs. All
this work led to subexponential time algorithms for several fundamental problems like k-
FEEDBACK VERTEX SET, k-EDGE DOMINATING SET, k-LEAF SPANNING TREE, k-PATH, k-
r-DOMINATING SET, k- VERTEX COVER to name a few on planar graphs [1, 12, 23], and more
generally, on H-minor-free graphs [13, 14, 15]. These algorithms are obtained by showing
a combinatorial relation between the parameter and the structure of the input graph and
proofs require strong graph theoretic arguments. This graph-theoretic and combinatorial
component in the design of subexponential time parameterized algorithms makes it of an
independent interest.

Demaine et al. [13] abstracted out the “common theme” among the parameterized
subexponential time algorithms on sparse graphs and created the meta-algorithmic theory
of Bidimensionality. The bidimensionality theory unifies and improves almost all known
previous subexponential algorithms on spare graphs. The theory is based on algorithmic
and combinatorial extensions to various parts of Graph Minors Theory of Robertson and
Seymour [30] and provides a simple criteria for checking whether a parameterized problem
is solvable in subexponential time on sparse graphs. The theory applies to graph prob-
lems that are bidimensional in the sense that the value of the solution for the problem
in question on k x k grid or “grid like graph” is at least Q(k?) and the value of solution
decreases while contracting or sometime deleting the edges. Problems that are bidimen-
sional include k-FEEDBACK VERTEX SET, k-EDGE DOMINATING SET, k-LEAF SPANNING
TREE, k-PATH, k-r-DOMINATING SET, k-VERTEX COVER and many others. In most cases
we obtain subexponential time algorithms for a problem using bidimensionality theory in
following steps. Given an instance (G, k) to a bidimensional problem II, in polynomial
time we either decide that it is an yes instance to II or the treewidth of G is O(Vk). In
the second case, using known constant factor approximation algorithm for the treewidth,
we find a tree decomposition of width O(vk) for G and then solve the problem by doing
dynamic programming over the obtained tree decomposition. This approach combined with
Catalan structure based dynamic programming over graphs of bounded treewidth has led
to 200VEROWM) time algorithm for k-FEEDBACK VERTEX SET, k-EDGE DOMINATING SET,
k-LEAF SPANNING TREE, k-PATH, k-r-DOMINATING SET, k-VERTEX COVER and many
others on planar graphs [12, 13, 19] and in some cases like k&~-DOMINATING SET and k-PATH
on H-minor free graphs [13, 17]. We refer to surveys by Demaine and Hajiaghayi [14] and

PARAMETERIZED SUBEXPONENTIAL ALGORITHMS ON DIRECTED GRAPHS 253

Dorn et al. [18] for further details on bidimensionality and subexponential parameterized
algorithms.

While bidimensionality theory is a powerful algorithmic framework on undirected graphs,
it remains unclear how to apply it to problems on directed graphs (or digraphs). The main
reason is that Graph Minor Theory for digraphs is still in a nascent stage and there are no
suitable obstruction theorems so far. For an example, even the first step of the framework
does not work easily on digraphs, as there is no unique notion of directed k x k grid. Given a
k x k undirected grid we can make 20(k*) distinct directed grids by choosing orientations for
the edges. Hence, unless we can guarantee a lower bound of (k?) on the size of solution of
a problem for any directed k x k grid, the bidimensionality theory does not look applicable
for problems on digraphs. Even the analogue of treewidth for digraphs is not unique and
several alternative definitions have been proposed. Only recently the first non-trivial subex-
ponential parameterized algorithms on digraphs was obtained. Alon et al. [3] introduced
the method of chromatic coding, a variant of color coding [4], and combined it with divide

and conquer to obtain 90(Vklogk),,O(1) for ;- FEEDBACK ARC SET in tournaments.

Our contribution. In this paper we make the first step beyond bidimensionality by
obtaining subexponential time algorithms for problems on sparse digraphs. We develop
two different methods to achieve subexponential time parameterized algorithms for digraph
problems when the input graph can be embedded on some surface or the underlying undi-
rected graph excludes some fixed graph H as a minor.
Quasi-bidimensionality. Our first technique can be thought of as “bidimensionality in
disguise”. We observe that given a digraph D, whose underlying undirected graph UG(D)
excludes some fixed graph H as a minor, if we can remove o(k?) vertices from the given
digraph to obtain a digraph whose underlying undirected graph has a constant treewidth,
then the treewidth of UG(D) is o(k). So given an instance (D, k) to a problem II, in
polynomial time we either decide that it is an yes instance to II or the treewidth of UG(D)
is o(k). In the second case, as in the framework based on bidimensionality, we solve the
problem by doing dynamic programming over the tree decomposition of UG(D). The
dynamic programming part of the framework is problem-specific and runs in time 20(k) 4
nP1) . We exemplify this technique on a well studied problem of k-LEAF OUT-BRANCHING.
We say that a subdigraph T on vertex set V(T') of a digraph D on vertex set V(D)
is an out-tree if T is an oriented tree with only one vertex r of in-degree zero (called the
root). The vertices of T of out-degree zero are called leaves and every other vertex is called
an internal vertex. If T is a spanning out-tree, that is, V(T') = V (D), then T is called an
out-branching of D. Now we are in position to define the problem formally.

k-LEAF OUT-BRANCHING (k-LOB): Given a digraph D with the vertex set
V(D) and the arc set A(D) and a positive integer k, check whether there
exists an out-branching with at least k leaves.

The study of k-LEAF OUT-BRANCHING has been at forefront of research in param-
eterized algorithms in the last few years. Alon et al. [2] showed that the problem is
fixed parameter tractable by giving an algorithm that decides in time O(f(k)n) whether a
strongly connected digraph has an out-branching with at least k leaves. Bonsma and Dorn
[6] extended this result to all digraphs, and improved the running time of the algorithm.
Recently, Kneis et al. [26] provided a parameterized algorithm solving the problem in time
4knO0) | This result was further improved to 3.72¥n°() by Daligaut et al. [10]. Fernau et

254 F. DORN, F. V. FOMIN, D. LOKSHTANOV, V. RAMAN, AND S. SAURABH

al. [20] showed that for the rooted version of the problem, where apart from the input in-
stance we are also given a root r and one asks for a k-leaf out-branching rooted at r, admits
a O(k?) kernel. Furthermore they also show that k-LOB does not admit polynomial kernel
unless polynomial hierarchy collapses to third level. Finally, Daligault and Thomassé [11]
obtained a O(k?) kernel for the rooted version of the k-L OB problem and gave a constant
factor approximation algorithm for k-LOB.

Using our new technique in combination with kernelization result of [20], we get an

algorithm for £-LOB that runs in time 20(Vklogk)y, 4 O() fop digraphs whose underlying

undirected graph is H-minor-free. For planar digraphs our algorithm runs in 20(VE)py 4 nO(1)
time.

Kernelization and Divide & Conquer. Our second technique is a combination of divide
and conquer, kernelization and dynamic programming over graphs of bounded treewidth.
Here, using a combination of kernelization and a Baker style layering technique for obtain-
ing polynomial time approximation schemes [5], we reduce the instance of a given problem
to 29" many new instances of the same problem. These new instances have the fol-
lowing properties: (a) the treewidth of the underlying undirected graph of these instances
is bounded by o(k); and (b) the original input is an yes instance if and only if at least one
of the newly generated instance is. We exhibit this technique on the k-INTERNAL OUT-
BRANCHING problem, a parameterized version of a generalization of DIRECTED HAMILTON-
IAN PATH.

k-INTERNAL OUT-BRANCHING (k-IOB): Given a digraph D with the vertex
set V(D) and the arc set A(D) and a positive integer k, check whether there
exists an out-branching with at least k internal vertices.

Prieto and Sloper [28] studied the undirected version of this problem and gave an algorithm
with running time 241°2%kp00) and obtained a kernel of size O(k?). Recently, Fomin et
al. [22] obtained a vertex kernel of size 3k and gave an algorithm for the undirected version
of k-IOB running in time 829, Gutin et al. [24] obtained an algorithm of running time
20(klogk)nO(1) for k-IOB and gave a kernel of size of O(k?) using the well known method
of crown-decomposition. Cohen et al. [9] improved the algorithm for k-IOB and gave an
algorithm with running time 49.45n°(1). Here, we obtain a subexponential time algorithm
for k-IOB with running time 20(Vklogk) 01 on directed planar graphs and digraphs
whose underlying undirected graphs are apex minor-free.

Finally, we also observe that for any € > 0, there is an algorithm finding in time
O((1 +)#nf(®) a directed path of length at least k (the k-DIRECTED PATH problem) in
a digraph which underlying undirected graph excludes a fixed apex graph as a minor. The
existence of subexponential parameterized algorithm for this problem remains open.

2. Preliminaries

Let D be a digraph. By V(D) and A(D) we represent the vertex set and arc set of
D, respectively. Given a subset V' C V(D) of a digraph D, let D[V’] denote the digraph
induced by V’. The underlying graph UG(D) of D is obtained from D by omitting all
orientations of arcs and by deleting one edge from each resulting pair of parallel edges. A
vertex u of D is an in-neighbor (out-neighbor) of a vertex v if wv € A(D) (vu € A(D),
respectively). The in-degree d~(v) (out-degree d*(v)) of a vertex v is the number of its
in-neighbors (out-neighbors). We say that a subdigraph T" of a digraph D is an out-tree if

PARAMETERIZED SUBEXPONENTIAL ALGORITHMS ON DIRECTED GRAPHS 255

T is an oriented tree with only one vertex r of in-degree zero (called the root). The vertices
of T' of out-degree zero are called leaves and every other vertex is called an internal vertex.
If T is a spanning out-tree, that is, V(T') = V(D), then T is called an out-branching of D.
An out-branching (respectively. out-tree) rooted at r is called r-out-branching (respectively.
r-out-tree). We define the operation of a contraction of a directed arc as follows. An arc
uv is contracted as follows: add a new vertex u/, and for each arc wv or wu add the arc
wu’ and for an arc vw or uw add the arc v/w, remove all arcs incident to u and v and the
vertices u and v. We call a loopless digraph D rooted, if there exists a pre-specified vertex r
of in-degree 0 as a root r and d*(r) > 2. The rooted digraph D is called connected if every
vertex in V(D) is reachable from r by a directed path.

Let G be an undirected graph with the vertex set V(G) and the edge set F(G). For
a subset V' C V(G), by G[V'] we mean the subgraph of G induced by V'. By N(u)
we denote (open) neighborhood of u that is the set of all vertices adjacent to u and by
Nlu] = N(u) U{u}. Similarly, for a subset D C V, we define N[D] = U,epN[v]. The
diameter of a graph G, denoted by diam(G), is defined to be the maximum length of a
shortest path between any pair of vertices of V(G).

Given an edge e = uv of a graph G, the graph G/e is obtained by contracting the edge
uv; that is, we get G/e by identifying the vertices v and v and removing all the loops and
duplicate edges. A minor of a graph G is a graph H that can be obtained from a subgraph
of G by contracting edges. A graph class C is minor closed if any minor of any graph in C
is also an element of C. A minor closed graph class C is H-minor-free or simply H -free if
H ¢ C. A graph H is called an apex graph if the removal of one vertex makes it a planar
graph.

A tree decomposition of a (undirected) graph G is a pair (X,T") where T is a tree whose
vertices we will call nodes and X = ({X; | i € V(T)}) is a collection of subsets of V(G)
such that (a) U;ey () Xi = V(G), (b) for each edge vw € E(G), there is an i € V(T') such
that v,w € X;, and (c) for each v € V(G) the set of nodes {i | v € X;} forms a subtree
of T'. The width of a tree decomposition ({X; | i € V(T)},T) equals max;cy (1 {|Xs| — 1}
The treewidth of a graph G is the minimum width over all tree decompositions of G. We
use notation tw(G) to denote the treewidth of a graph G.

A parameterized problem is said to admit a polynomial kernel if there is a polynomial
time algorithm (where the degree of the polynomial is independent of k), called a kernel-
1zation algorithm, that reduces the input instance down to an instance with size bounded
by a polynomial p(k) in k, while preserving the answer. This reduced instance is called a
p(k) kernel for the problem. See [27] for an introduction to kernelization.

3. Method I — Quasi Bidimensionality

In this section we present our first approach. In general, a subexponential time al-
gorithm using bidimensionality is obtained by showing that the solution for a problem in
question is at least Q(k?) on k x k (contraction) grid minor. Using this we reduce the
problem to a question on graph with treewidth o(k). We start with a lemma which enables
us to use the framework of bidimensionality for digraph problems, though not as directly
as for undirected graph problems.

256 F. DORN, F. V. FOMIN, D. LOKSHTANOV, V. RAMAN, AND S. SAURABH

Lemma 3.1. Let D be a digraph such that UG(D) excludes a fized graph H as a mi-
nor. For any constant ¢ > 1, if there exists a subset S C V(D) with |S| = s such that
tw(UG(D[V(D)\ S))) < ¢, then tw(UG(D)) = O(y/s).

Proof. By [14], for any H-minor-free graph G with treewidth more than r, there is a constant
d > 1 only dependent on H such that G has a 5 x § grid minor. Suppose tw(UG(D)) >
d(c+1)y/s then UG(D) contains a (¢+ 1)y/s X (¢+ 1)y/s grid as a minor. Notice that this
grid minor can not be destroyed by any vertex set S of size at most s. That is, if we delete
any vertex set S with |S| = s from this grid, it will still contain a (¢4 1) x (¢ + 1) subgrid.
Thus, UG(D[V (D) \ S]) contains a (c+ 1) x (¢+ 1) grid minor and hence by [21, Exercise
11.6] we have that tw(UG(D[V (D)\S])) > c. This shows that we need to delete more than
s vertices from UG(D) to obtain a graph with treewidth at most ¢, a contradiction. n

Using Lemma 3.1, we show that k-LEAF-OUT-BRANCHING problem has a subexponen-
tial time algorithm on digraphs D such that UG (D) exclude a fixed graph H as a minor.
For our purpose a rooted version of k-LOB will also be useful which we define now. In
the ROOTED k-LEAF-OUT-BRANCHING (R-k-LOB) problem apart from D and k the root
r of the tree searched for is also a part of the input and the objective is to check whether
there exists an r-out-branching with at least k leaves. We now state our main combinatorial
lemma and postpone its proof for a while.

Lemma 3.2. Let D be a digraph such that UG(D) excludes a fized graph H as a minor,
k be a positive integer and r € V(D) be the root. Then in polynomial time either we can
construct an r-out-branching with at least k leaves in D or find a digraph D' such that
following holds.

e UG(D') excludes the fized graph H as a minor;

e D has an r-out-branching with at least k leaves if and only if D' has an r-out-

branching with at least k leaves;
e there exists a subset S C V(D') such that |S| = O(k) and tw(U(D'[V(D")\S]) <c,

¢ a constant.
Combining Lemmata 3.1 and 3.2 we obtain the following result.

Lemma 3.3. Let D be a digraph such that UG(D) excludes a fized graph H as a minor,
k be a positive integer and r € V(D) be a root. Then in polynomial time either we can
construct an r-out-branching with at least k leaves in D or find a digraph D' such that D
has an r-out-branching with at least k leaves if and only if D' has an r-out-branching with

at least k leaves. Furthermore tw(UG(D')) = O(Vk).

When a tree decomposition of UG(D) is given, dynamic programming methods can be
used to decide whether D has an out-branching with at least k leaves, see [24]. The time
complexity of such a procedure is 2018 @)y where n = |V (D)| and w is the width of the
tree decomposition. Now we are ready to prove the main theorem of this section assuming
the combinatorial Lemma 3.2.

Theorem 3.4. The k-LOB problem can be solved in time 20(Vklogk)y, 4 nO() o digraphs
with n vertices such that the underlying undirected graph excludes a fixed graph H as a
minor.

Proof. Let D be a digraph where UG(D) excludes a fixed graph H as a minor. We guess a
vertex r € V(D) as a root. This only adds a factor of n to our algorithm. By Lemma 3.3,

PARAMETERIZED SUBEXPONENTIAL ALGORITHMS ON DIRECTED GRAPHS 257

we can either compute, in polynomial time, an r-out-branching with at least k leaves in D
or find a digraph D’ with UG(D') excluding a fixed graph H as a minor and tw(UG(D')) =
O(\/E) In the later case, using the constant factor approximation algorithm of Demaine et
al. [16] for computing the treewidth of a H-minor free graph, we find a tree decomposition
of width O(vk) for UG(D') in time n®1). With the previous observation that we can find
an r-out-branching with at least k leaves, if exists one, in time 90(Vklogk)p, using dynamic
programming over graphs of bounded treewidth, we have that we can solve R-k-LOB in
time 20(Vklogk),O(1), Hence, we need 90(Vklogk) ,O(1) 14 solve the k-LOB problem.

To obtain the claimed running time bound we use the known kernelization algorithm
after we have guessed the root r. Fernau et al. [20] gave an O(k?) kernel for R-k-LOB which
preserves the graph class. That is, given an instance (D, k) of R-k-LOB, in polynomial time
they output an equivalent instance (D", k) of R-k-LOB such that (a) if UG(D) is H-minor
free then so is UG(D"); and (b) |[V(D")| = O(k?). We will use this kernel for our algorithm
rather than the O(k?) kernel for R-k-LOB obtained by Daligault and Thomassé [11], as
they do not preserve the graph class. So after we have guessed the root r, we obtain an
equivalent instance (D", k) for R-k-LOB using the kernelization procedure described in [20].
Then using the algorithm described in the previous paragraph we can solve R-k-LOB in

time 20(Vklogk) | nO(1), Hence, we need 20(Vklog k) 4 O(1) 6 solve k-LOB. [

Given a tree decomposition of width w of UG(D) for a planar digraph D, we can
solve k-LOB using dynamic programming methods in time 2°)n. This brings us to the
following theorem.

Theorem 3.5. [x]' The k-LOB problem can be solved in time 20k 4+ 00 op digraphs
with n vertices when the underlying undirected graph is planar.

3.1. Proof of Lemma 3.2

To prove the combinatorial lemma we need a few recent results from the literature on
out-branching problems. We start with some definitions given in [11]. A cut of D is a
subset S such that there exists a vertex z € V(D) \ S such that z is not reachable from
rin D[V(D)\ S]. We say that D is 2-connected if there exists no cut of size one in D or
equivalently there are at least two vertex disjoint paths from r to every vertex in D.

Lemma 3.6 ([11]). Let D be a rooted 2-connected digraph with r being its root. Let o be
the number of vertices in D with in-degree at least 3. Then D has an out-branching rooted
at v with at least a/6 leaves and such an out-branching can be found in polynomial time.

A vertex v € V(D) is called a nice verter if v has an in-neighbor which is not its
out-neighbor. The following lemma is proved in [11].

Lemma 3.7 ([11]). Let D be a rooted 2-connected digraph rooted at a vertex r. Let 3 be
the number of nice vertices in D. Then D has an out-branching rooted at r with at least
B/24 leaves and such an out-branching can be found in polynomial time.

Proof of Lemma 3.2. To prove the combinatorial lemma, we consider two cases based on
whether or not D is 2-connected.
Case 1) D is a rooted 2-connected digraph.

IThe proofs marked with [x] will appear in the final version of the paper.

258 F. DORN, F. V. FOMIN, D. LOKSHTANOV, V. RAMAN, AND S. SAURABH

We prove this case in the following claim.

Claim 1. [x| Let D be a rooted 2-connected digraph with oot r and a positive integer k.
Then in polynomial time, we can find an out-branching rooted at v with at least k leaves or
find a set S of at most 30k wvertices whose removal results in a digraph whose underlying
undirected graph has treewidth one.

Case 2) D is not 2-connected.

Since D is not 2-connected, it has cut vertices, those vertices that separate r from some
other vertices. We deal with the cut vertices in three cases. Let x be a cut vertex of D.
The three cases we consider are following.

Case 2a) There exists an arc xy that disconnects at least two vertices from r.

In this case, we contract the arc xy. After repeatedly applying Case 2a), we obtain a
digraph D’ such that any arc out of a cut vertex z of D’ disconnects at most 1 vertex. The
resulting digraph D’ is the one mentioned in the Lemma. Since we have only contracted
some arcs iteratively to obtain D', it is clear that UG(D’) also excludes H as a minor. The
proof that such contraction does not decrease the number of leaves follows from a reduction
rule given in [20]. We provide a proof for completion.

Claim 2. [x] Let D be a rooted connected digraph with root r, let xy be an arc that dis-
connects at least two vertices from r and D’ be the digraph obtained after contracting the
arc xy. Then D has an r-out-branching with at least k leaves if and only if D' has an
r-out-branching with ot least k leaves.

Now we handle the remaining cut-vertices of D’ as follows. Let S be the set of cut
vertices in D’. For every vertex x € S, we associate a cut-neighborhood C(x), which is
the set of out-neighbors of x such that there is no path from r to any vertex in C'(z) in
D'[V(D")\{z}]. By C[z] we denote C(z) U{z}. The following observation is used to handle
other cases.

Claim 3. Let S be the set of cut vertices in D'. Then for every pair of vertices v,y € S
and x # y, we have that Cz] N Cly] = 0.

Proof. To the contrary let us assume that C[z] N C[y] # 0. We note that C[z] N C[y] can
only have a vertex v € {x,y}. To prove this, assume to the contrary that we have a vertex
v e Clz]NCly] and v ¢ {x,y}. But then it contradicts the fact that v € Clz], as x doesn’t
separate v from r due to the path between r and v through y. Thus, either x € C(y) or
y € C(x). Without loss of generality let y € C'(x). This implies that we have an arc xy and
there exists a vertex z € C(y) such that z ¢ C'(x). But then the arc xy disconnects at least
two vertices y and z from r and hence Case 2a would have applied. This proves the claim.m

Now we distinguish cases based on cut vertices having cut-neighborhood of size at least
2 or 1. Let S>2 and S—; be the subset of cut-vertices of D’ having at least two cut-neighbors
and exactly one neighbor respectively.
Case 2b) S>o # 0.

We first bound [S>2|. Let A, = {zy | = € S>2,y € C(z)} be the set of out-arcs
emanating from the cut vertices in S>9 to its cut neighbors. We now prove the following
structural claim which is useful for bounding the size of S>o.

Claim 4. [x] If D’ has an r-out-branching T' with at least k leaves then D' has an r-out-
branching T with at least k leaves and containing all the arcs of A., that is, A. C A(T).
Furthermore such an out-branching can be found in polynomial time.

PARAMETERIZED SUBEXPONENTIAL ALGORITHMS ON DIRECTED GRAPHS 259

We know that in any out-tree, the number of internal vertices of out-degree at least 2
is bounded by the number of leaves. Hence if |S>2| > k then we obtain an r-out-branching
T of D’ with at least k leaves using Claim 4 and we are done. So from now onwards we
assume that [Sso| =0 <k — 1.

We now do a transformation to the given digraph D’. For every vertex z € S>2, we
introduce an imaginary vertex ' and add an arc ux? if there is an arc uz € A(D') and add
an arc z'v if there is an arc xv € A(D'). Basically we duplicate the vertices in S>o. Let the
transformed graph be called D®P. We have the following two properties about D% First,
no vertex in Sso U {z|z € S>a} is a cut vertex in D¥P. We sum up the second property in
the following claim.

Claim 5. [x] The digraph D' has an r-out-branching T with at least k leaves if and only if
D™ has an r-out-branching T' with at least k + £ leaves.

Now we move on to the last case.
Case 2c¢) S—1 # 0.

Consider the arc set A, = {zy | z € S—=1,y € C(z)}. Observe that A, C A(D’) C
A(D%P) and A, forms a matching in D™ because of Claim 3. Let D3P be the digraph
obtained from D¥? by contracting the arcs of Ap. That is, for every arc uv € Ay, the
contracted graph is obtained by identifying the vertices u and v as uv and removing all the
loops and duplicate arcs.

Claim 6. Let DI be the digraph obtained by contracting the arcs of Ay, in D™ Then
the following holds.
(1) The digraph D s 2-connected;
(2) If DI has an r-out-branching T with at least k + { leaves then D™ has an r-out-
branching with at least k + ¢ leaves.

Proof. The digraph D3P i5 2_connected by the construction as we have iteratively removed
all cut-vertices. If D:f"p has an r-out-branching 7" with at least k + ¢ leaves then we can
obtain a r-out-branching with at least k + £ leaves for D%P by expanding each of the
contracted vertices to arcs in A,,.]

We are now ready to combine the above claims to complete the proof of the lemma. We
first apply Claim 1 on D*P with k + ¢. Either we get an r-out-branching 7" with at least
k + ¢ leaves or a set S’ of size at most 30(k + ¢) such that tw(UG(DIP[V(DI*P)\ 8))) is
one. In the first case, by Claims 5 and 6 we get an r-out-branching 7" with at least k leaves
in D'. In the second case we know that there is a vertex set S’ of size at most 30(k +¢) such
that tw(UG(DIP[V(D&?)\ §7))) is one. Let §* = {u | wv € §',vu € §',u € '} be the set
of vertices obtained from S’ by expanding the contracted vertices in S’. Clearly the size of
|S*] < 2|8 < 60(k+¢) <120k = O(k). We now show that the treewidth of the underlying
undirected graph of D¥P[V (D%P)\ S$*] is at most 3. This follows from the observation that
tw(UG(D2*P [V (D&P) \ §7)) is one. Hence given a tree-decomposition of width one for
UG(DIP[V(D2*P) \ §]) we can obtain a tree-decomposition for UG(D™P[V (D%P) \ %))
by expanding the contracted vertices. This can only double the bag size and hence the
treewidth of UG (D¥P[V (D™P)\ S*]) is at most 3, as the bag size can at most be 4. Now
we take S = S*NV(D’) and since V (D') C V(D%P), we have that tw(UG(D[V (D)\S])) < 3.
This concludes the proof of the lemma. [

260 F. DORN, F. V. FOMIN, D. LOKSHTANOV, V. RAMAN, AND S. SAURABH

4. Method 1II - Kernelization and Divide & Conquer

In this section we exhibit our second method of designing subexponential time algo-
rithms for digraph problems through the k-INTERNAL OUT-BRANCHING problem. In this
method we utilize the known polynomial kernel for the problem and obtain a collection
of 2°(F) instances such that the input instance is an “yes” instance if and only if one of
the instances in our collection is. The property of the instances in the collection which we
make use of is that the treewidth of the underlying undirected graph of these instances is
o(k). The last property brings dynamic programming on graphs of bounded treewidth into
picture as the final step of the algorithm.

Here, we will solve a rooted version of the k-IOB problem, called ROOTED k-INTERNAL
OUT-BRANCHING (R-k-IOB), where apart from D and k we are also given a root r € V (D),
and the objective is to find an r-out-branching, if exists one, with at least k internal vertices.
The k-IOB problem can be reduced to R-k-IOB by guessing the root r at the additional
cost of |V(D)| in the running time of the R-k-IOB problem. Henceforth, we will only
consider R-k-IOB. We call an r-out-tree T' with k internal vertices minimal if deleting any
leaf results in an r-out-tree with at most £ — 1 internal vertices. A well known result relating
minimal r-out-tree T' with k& internal vertices with a solution to R-k-IOB is as follows.

Lemma 4.1 ([9]). Let D be a rooted connected digraph with root r. Then D has an r-out-
branching T' with at least k internal vertices if and only if D has a minimal r-out-tree T
with k internal vertices with |V (T')| < 2k — 1. Furthermore, given a minimal r-out-tree T,
we can find an r-out-branching T' with at least k internal vertices in polynomial time.

We also need another known result about kernelization for £-IOB.

Lemma 4.2 ([24]). k-INTERNAL OUT-BRANCHING admits a polynomial kernel of size 8k*+
6k.

In fact, the kernelization algorithm presented in [24] works for all digraphs and has a
unique reduction rule which only deletes vertices. This implies that if we start with a graph
G € 4 where ¢ excludes a fixed graph H as a minor, then the graph G’ obtained after
applying kernelization algorithm still belongs to ¢.

Our algorithm tries to find a minimal r-out-tree 7" with k internal vertices with |V (T")| <
2k — 1 recursively. As the first step of the algorithm we obtain a set of 2°F) digraphs such
that the underlying undirected graphs have treewidth O(\/E), and the original problem is
a “yes” instance if and only at least one of the 2°%) instances is a “yes” instance. More
formally, we prove the following lemma.

¢

Lemma 4.3. [x| Let H be a fized apex graph and 4 be a minor closed graph class exclud-
ing H as a minor. Let (D,k) be an instance to k-INTERNAL OUT-BRANCHING such that
UG(D) € 4. Then there exists a collection

- vk
of instances such that tw(UG(D;)) = O(Vk) for all i and (D, k) has an out-branching with

at least k internal vertices if and only if there exists an i, r and k' < k such that (D;, k', r)
has an r-out-branching with at least k' internal vertices.

2
€= {(Di,k/,r) | D; is a subgraph of D,k < k,r € V(D),1<i < <8k + 6k>}

PARAMETERIZED SUBEXPONENTIAL ALGORITHMS ON DIRECTED GRAPHS 261

Given a tree decomposition of width w for UG(D), one can solve R-k-IOB in time
20(wlogw)y yging a dynamic programming over graphs of bounded treewidth as described
in [24]. This brings us to the main theorem of this section.

Theorem 4.4. [x] The k-10B problem can be solved in time 90(WVklogk) 4 ,O(1) op digraphs
with n vertices such that the underlying undirected graph excludes a fized apex graph H as
a MAnor.

5. Conclusion and Discussions

We have given the first subexponential parameterized algorithms on planar digraphs
and on the class of digraphs whose underlying undirected graph excludes a fixed graph H
or an apex graph as a minor. We have outlined two general techniques, and have illustrated
them on two well studied problems concerning oriented spanning trees (out branching)—
one that maximizes the number of leaves and the other that maximizes the number of
internal vertices. One of our techniques uses the grid theorem on H-minor graphs, albeit
in a different way than how it is used on undirected graphs. The other uses Baker type
layering technique combined with kernelization and solves the problem on a subexponential
number of problems whose instances have sublinear treewidth.

We believe that our techniques will be widely applicable and it would be interesting
to find other problems where such subexponential algorithms are possible. Two famous
open problems in this context are whether the k-DIRECTED PATH problem (does a digraph
contains a directed path of length at least k) and the k-DIRECTED FEEDBACK VERTEX
SET problem (does a digraph can be turned into acyclic digraph by removing at most k
vertices) have subexponential algorithms (at least) on planar digraphs. However, for the
k-DIRECTED PATH problem, we can reach “almost” subexponential running time. More
precisely, we have the following theorem.

Theorem 5.1. [x] For any ¢ > 0, there is 6 such that the k-DIRECTED PATH problem
is solvable in time O((1 + €)F - n%) on digraphs with n vertices such that the underlying
undirected graph excludes a fized apex graph H as a minor.

Let use remark that similar O((14-&)¥n/(®)) results can also be obtained for many other
problems including PLANAR STEINER TREE.

References

[1] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter algorithms for
dominating set and related problems on planar graphs. Algorithmica, 33(4):461-493, 2002.

[2] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Spanning directed trees with many
leaves. SIAM Journal on Discrete Mathematics, 23(1):466-476, 2009.

[3] N. Alon, D. Lokshtanov, and S. Saurabh. Fast FAST. In ICALP 09, volume 5555 of LNCS, pages 49-58.
Springer, 2009.

[4] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844-856, 1995.

[5] B. S. Baker. Approximation algorithms for np-complete problems on planar graphs. J. ACM, 41(1):153—
180, 1994.

[6] P. Bonsma and F. Dorn. Tight bounds and a fast FPT algorithm for directed max-leaf spanning tree.
to appear in Transaction on Algorithms.

[7] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved algorithms for feedback vertex set
problems. J. Comput. Syst. Sci., 74(7):1188-1198, 2008.

262

(8]
(9]

F. DORN, F. V. FOMIN, D. LOKSHTANOV, V. RAMAN, AND S. SAURABH

J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for vertex cover. In MFCS 06,
volume 4162 of LNCS, pages 238-249. Springer, 2006.

N. Cohen, F. V. Fomin, G. Gutin, E. J. Kim, S. Saurabh, and A. Yeo. Algorithm for finding k-vertex
out-trees and its application to k-internal out-branching problem. In COCOON, volume 5609 of LNCS,
pages 37-46, 2009.

J. Daligault, G. Gutin, E. J. Kim, and A. Yeo. FPT algorithms and kernels for the directed k-leaf
problem. CoRR, abs/0810.4946, 2008.

J. Daligault and S. Thomassé. On finding directed trees with many leaves. In IWPEC 09, LNCS, page
to appear, Berlin, 2009. Springer-Verlag.

E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Fixed-parameter algorithms for (k,
r)-center in planar graphs and map graphs. ACM Trans. Algorithms, 1(1):33-47, 2005.

E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential parameterized
algorithms on graphs of bounded genus and H-minor-free graphs. J. ACM, 52(6):866-893, 2005.

E. D. Demaine and M. Hajiaghayi. Linearity of grid minors in treewidth with applications through
bidimensionality. Combinatorica, 28(1):19-36, 2008.

E. D. Demaine and M. T. Hajiaghayi. The bidimensionality theory and its algorithmic applications.
Computer Journal, 51(3):292-302, 2008.

E. D. Demaine, M. T. Hajiaghayi, and K. Kawarabayashi. Algorithmic graph minor theory: Decompo-
sition, approximation, and coloring. In FOCS 05, pages 637-646, 2005.

F. Dorn, F. V. Fomin, and D. M. Thilikos. Catalan structures and dynamic programming in H-minor-
free graphs. In SODA 08, pages 631-640. STAM, 2008.

F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms. Computer Science
Review, 2(1):29-39, 2008.

F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algorithms on planar graphs:
Exploiting sphere cut decompositions. to appear in Algorithmica.

H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Villanger. Kernel(s) for problems
with no kernel: On out-trees with many leaves. In STACS, pages 421-432, 2009.

J. Flum and M. Grohe. Parameterized Complezity Theory. Springer-Verlag, Berlin, 2006.

F. V. Fomin, S. Gaspers, S. Saurabh, and S. Thomassé. A linear vertex kernel for maximum internal
spanning tree. In ISAAC 09, page to appear. Springer, 2009.

F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs: Branch-width and exponential
speed-up. SIAM J. Comput., 36:281-309, 2006.

G. Gutin, E. J. Kim, and I. Razgon. Minimum leaf out-branching problems. CoRR, abs/0801.1979,
2008.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity. J.
Comput. System Sci., 63(4):512-530, 2001.

J. Kneis, A. Langer, and P. Rossmanith. A new algorithm for finding trees with many leaves. In ISAAC
08, volume 5369 of LNCS, pages 270-281. Springer-Verlag, 2008.

R. Niedermeier. Invitation to fixed-parameter algorithms. Oxford University Press, Oxford, 2006.

E. Prieto and C. Sloper. Reducing to independent set structure — the case of k-internal spanning tree.
Nord. J. Comput., 12(3):308-318, 2005.

B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299-301,
2004.

N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar graph. J. Comb. Th. Ser. B,
62:323-348, 1994.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 263-274
www.stacs-conf.org

PLANAR SUBGRAPH ISOMORPHISM REVISITED

FREDERIC DORN'!

! Department of Informatics, University of Bergen, Norway
E-mail address: frederic.dorn@ii.uib.no

ABSTRACT. The problem of SUBGRAPH ISOMORPHISM is defined as follows: Given a pat-
tern H and a host graph G on n vertices, does G contain a subgraph that is isomorphic
to H? Eppstein [SODA 95, JGAA 99] gives the first linear time algorithm for subgraph
isomorphism for a fixed-size pattern, say of order k, and arbitrary planar host graph, im-
proving upon the O(n‘/z)—time algorithm when using the “Color-coding” technique of Alon
et al [JJACM 95]. Eppstein’s algorithm runs in time ko(k)n, that is, the dependency on
k is superexponential. We improve the running time to ZO(k)n, that is, single exponential
in k while keeping the term in n linear. Next to deciding subgraph isomorphism, we can
construct a solution and count all solutions in the same asymptotic running time. We may
enumerate w subgraphs with an additive term O(wk) in the running time of our algorithm.
We introduce the technique of “embedded dynamic programming” on a suitably structured
graph decomposition, which exploits the number and topology of the underlying drawings
of the subgraph pattern (rather than of the host graph).

Introduction

In the literature, we often find results on polynomial time or even linear time algorithms for
NP-hard problems. Take for example the NP-complete problem of computing an optimal
tree-decomposition of a graph. Bodlaender [3] gives a linear time algorithm—restricted
to graphs of constant treewidth. The Graph Minor Theory by Robertson and Seymour
implies amongst others that there is an O(n?) algorithm for the disjoint path problem,
that is for finding disjoint paths between a constant number of terminals. Taking a closer
look at such results, one notices that a function exponential in size of some constant c is
hidden in the O-notation of the running time—here, c is the treewidth and the number of
terminals, respectively. In another line of research, parameterized complexity, the primary
goal is to rather find algorithms that minimize the exponential term of the running time—
the exponential function of the problem parameter k. The first step here is to prove that
such an algorithm with a separate exponential function exists, that is, that the studied
problem is fized parameter tractable (FPT) [13, 16, 21]. Such problem has an algorithm
with time complexity bounded by a function of the form f(k) - n®"), where the parameter

1998 ACM Subject Classification: F.2.2;G.2.1;G.2.2.

Key words and phrases: Graph algorithms; Subgraph Isomorphism; NP-hard problems; Dynamic pro-
gramming; Topological graph theory.

Supported by the Research Council of Norway.

SYMPOSIUM

LV/' ON THEORETICAL
N

ASPECTS
al OF COMPUTER ©

SCIENCE Frederic Dorn

@ Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2460

264 FREDERIC DORN

function f is a computable function only depending on k. The second step in the design of
FPT-algorithms is to decrease the growth rate of the parameter function.

We can identify two different trends in which exact algorithms are improved. Either one
decreases the degree of the polynomial term in the asymptotic running time, or one focusses
on obtaining parameter functions with better exponential growth. In the present work, we
achieve both goals for the computational problem PLANAR SUBGRAPH ISOMORPHISM.

SUBGRAPH [SOMORPHISM generalizes many important graph problems, such as HAMIL-
TONICITY, LONGEST PATH, and CLIQUE. It is known to be N P-complete, even when re-
stricted to planar graphs [18]. Until now, the best known algorithm to solve SUBGRAPH
IsoMORPHISM, that is to find a subgraph of a given host graph isomorphic to a pattern
H on k vertices, is the naive exhaustive search algorithm with running time O(n*) and no
FPT-algorithm can be expected here [13]. For a pattern H of treewidth at most ¢, Alon
et al. [1] give an algorithm of running time 2°*)n®® For PLANAR SUBGRAPH ISOMOR-
PHISM, given planar pattern and input graph, some considerable improvements have been
made mostly during the 90’s ([23], [1]). The current benchmark has been set by Eppstein [14]
to k°®)n, by employing graph decomposition methods, similar to the Baker-approach [2]
for approximating NP-complete problems on planar graphs. Eppstein’s algorithm is actu-
ally the first FPT-algorithm for PLANAR SUBGRAPH ISOMORPHISM with k as parameter.
Eppstein poses three open problems: a) whether one can extend the technique in [1] to im-
prove the dependence on the size of the pattern from k°®*) to 20(%) for the decision problem
of subgraph isomorphism; and whether one can achieve similar improvements, b) for the
counting version, and c) for the listing version of the subgraph isomorphism problem.

Our results. In this work, we do not only achieve this single exponential behavior in k for
all three problems—without applying the randomized coloring technique—we also keep the
term in n linear. That is, we give an algorithm for PLANAR SUBGRAPH ISOMORPHISM for a
pattern H of order k with running time 29®) . Next to deciding subgraph isomorphism, we
can construct a solution and count all solutions in the same asymptotic running time. We
may list w subgraphs with an additive term O(wk) in the running time of our algorithm. Our
algorithm also improves the time complexity of [17] for large patterns of size k € o(y/nlogn).

The novelty of our result comes from embedded dynamic programming, a technique
we find interesting on its own. Here, one decomposes the graph by separating it into
induced subgraphs. In the dynamic programming step, one computes partial solutions for
the separated subgraphs, that are updated to an overall solution for the whole graph. In
ordinary dynamic programming, one would argue how the subgraph pattern hits separators
of the host graph. Instead, in embedded dynamic programming for subgraph isomorphism,
we proceed exactly the opposite way: we look at how separators can be routed through
the subgraph pattern. As a consequence, we bound the number of partial solutions by a
function of both the separator size of the host graph and the pattern size—as it turns out,
for the planar subgraph isomorphism problem, that function is single exponential in the
number of vertices of the pattern. To obtain a good bound on the parameter function, we
apply several fundamental enumerative combinatorics results in the technical sections of
this work. Next to the number of face-vertex sequences in embedded graphs, these counting
results give an upper bound on the number of planar drawings of the pattern.

Our algorithm is divided into two parts with the second part being the aforementioned
embedded dynamic programming. For keeping the time complexity of our algorithm linear

PLANAR SUBGRAPH ISOMORPHISM REVISITED 265

in the size of the host graph, we give a fast method for computing sphere-cut decomposi-
tions—natural extensions of tree-decompositions to plane graphs—with separators of size
linearly bounded by the size of the subgraph pattern.

Theorem 0.1. Let G be a planar graph on n vertices and H a pattern of order k. We can
decide if there is a subgraph of G that is isomorphic to H in time 2°®)n. We find subgraphs
and count subgraphs of G isomorphic to H in time 2°Fn and enumerate w subgraphs in
time 2°%)n 4 O(wk).

Let us mention that for k-LONGEST PATH on planar graphs, the authors of [12] give

the first algorithm with subexponential running time behaviour, namely 20(Vh)py 4 O(n?),
employing the techniques Bidimensionality and topological dynamic programming. Bidi-
mensionality Theory employs results of Graph Minor Theory for planar graphs [24] and
other structural graph classes to algorithmic graph theory (entry [6], for a survey [7]). Un-
fortunately, Bidimensionality does only work for finding specific patterns in a graph, such
as k-paths, but not for subgraph isomorphism problems in general. For a survey on other
planar subgraph isomorphism problems with restricted patterns, please consider [14].

Organization. Following the definitions in Section 1, we state in Section 2 how to obtain
a sphere-cut decomposition of small width. In Section 3 we restrict PLANAR SUBGRAPH
ISOMORPHISM to PLANE SUBDRAWING EQUIVALENCE. We give some technical lemmas in
Section 3.1 to bound the number of ways a separator of the sphere-cut decomposition can be
routed through a plane pattern. We describe embedded dynamic programming in Section 3.2
and subsume the entire algorithm for PLANE SUBDRAWING EQUIVALENCE in Section 3.3.
In Section 4 we extend our algorithm for solving PLANAR SUBGRAPH [SOMORPHISM.

1. Preliminaries

Subgraph isomorphism. Let G, H be two graphs. We call G and H isomorphic if there
exists a bijection v : V(G) — V(H) with {v,w} € E(G) & {v(v),v(w)} € E(H). We call
H subgraph isomorphic to G if there is a subgraph H' of G isomorphic to H.

Branch decompositions. A branch decomposition (T,) of a graph G consists of an un-
rooted ternary tree T' (internal vertex-degree 3) and a bijection p : L — E(G) from the
set L of leaves of T to the edge set of G. We define for every edge e of T the middle
set mid(e) C V(G) as follows: Let T} and 15 be the two connected components of 7"\ {e}.
Then let G; be the graph induced by the edge set {u(f) : f € LNV (T;)} for i € {1,2}. The
middle set is the intersection of the vertex sets of G; and G, i.e., mid(e) := V(G1)NV(G2).
The width bw of (T,) is the maximum order of the middle sets over all edges of T, i.e.,
bw((T, u)) := max{| mid(e)|: e € T'}. An optimal branch decomposition of G is defined by
a tuple (T, u) which provides the minimum width, the branchwidth bw(G).

Plane graphs and equivalent drawings. Let ¥ be the unit sphere. A planar drawing
or simply drawing of a graph G with vertex set V(G) and edge set E(G) maps vertices to
points in the sphere, and edges to simple curves between their end vertices, such that edges
do not cross, except in common end vertices. A plane graph is a graph G together with a
planar drawing. A planar graph is a graph that admits a planar drawing. For details, see
e.g. [9]. The set of faces F(G) of a plane graph G is defined as the union of the connected
regions of ¥\ G. A subgraph of a plane graph G, induced by the vertices and edges incident

266 FREDERIC DORN

to a face f € F(G), is called a bound of f. If G is 2-connected, each bound of a face is
a cycle. We call this cycle face-cycle (for further reading, see e.g. [9]). For a subgraph
H of a plane graph G, we refer to the drawing of G reduced to the vertices and edges of
H as a subdrawing of G. Consider any two drawings G; and G of a planar graph G. A
homeomorphism of G1 onto G5 is a homeomorphism of ¥ onto itself which maps vertices,
edges, and faces of G'; onto vertices, edges, and faces of Gs, respectively. We call two planar
drawings equivalent, if there is a homeomorphism from one onto the other.

Theorem 1.1. e.g. [9] Every 3-connected planar graph has a unique drawing in a sphere
> up to homeomorphism.

Proposition 1.2. e.g. [22] Every planar n-vertez graph has 20(") non-equivalent drawings.

Remark 1.3. Let G and H be two plane graphs. If their drawings are equivalent, then
G is isomorphic to H. On the contrary, if G is isomorphic to H and neither graphs are
3-connected, then their drawings are not necessarily equivalent.

Triangulations. We call a plane graph G a planar triangulation or simply a triangulation
if every face in F(G) is bounded by a triangle (a cycle of length three). If H is a subdrawing
of a triangulation G, we call G a triangulation of H.

Nooses and combinatorial nooses. A noose of a Y-plane graph G is a simple closed
curve in X that meets G only in vertices. From the Jordan Curve Theorem, it then follows
that nooses separate ¥ into two regions. Let V(N) = N NV (G) be the vertices and F(N)
be the faces intersected by a noose N. The length of N is the number |V (N)] of vertices in
V(N). The clockwise order in which N meets the vertices of V(IV) is a cyclic permutation
7 on the set V(N).

Remark 1.4. Let a plane graph H be a subdrawing of a plane graph G. Every noose N
in G is also a noose in H and NNV (H) C NNV(G).

A combinatorial noose No = [vo, fo,v1, f1,--., fe—1,ve] in a plane graph G is an alternating
sequence of vertices and faces of G, such that
e f; is a face incident to both v;, v;4; for all ¢ < £,

e vy = vy and the vertices vy, ..., v, are mutually distinct and

o if f; = fj forany i # j and 7,5 = 0,...,¢ — 1, then the vertices v;, v;41,v;, and vj41 do
not appear in the order (v;, vj,vi41,v;41) on the bound of face f; = f;.

The length of a combinatorial noose [vg, fo,v1, f1,--., fi—1,ve] is L.

Remark 1.5. The order in which a noose N intersects the faces F'(N) and the vertices
V(N) of a plane graph G gives a unique alternating face-vertex sequence of F'(N) UV (N)
which is a combinatorial noose N¢g. Conversely, for every combinatorial noose N¢ there
exists a noose N with face-vertex sequence N¢.

We may view combinatorial nooses as equivalence classes of nooses, that can be represented
by the same face-vertex sequence.

Sphere cut decompositions. For a >.-plane graph G, we define a sphere cut decomposition
or sc-decomposition (T, pu,) as a branch decomposition which for every edge e of T' has
a noose N, that cuts X into two regions A; and As such that G; C A; U N, where G;
is the graph induced by the edge set {u(f) : f € LNV(T;)} for i € {1,2} and TYUT, =
T\ {e}. Thus N, meets G only in V(N.) = mid(e) and its length is | mid(e)|. The vertices
of mid(e) = V(G1) NV (G2) are enumerated according to a cyclic permutation 7 on mid(e).

PLANAR SUBGRAPH ISOMORPHISM REVISITED 267

The following two propositions will be crucial in that they give us upper bounds on the
number of partial solutions we will compute in our dynamic programming approach. With
both propositions, we will bound the number of combinatorial nooses in a plane graph by
the number of cycles in the triangulation of some auxiliary graph.

21.53n

Proposition 1.6. ([4]) No planar n-vertex graph has more than simple cycles.

Proposition 1.7. ([27]) The number of non-isomorphic mazimal planar graphs on n ver-
tices is approximately 23247

Proposition 1.7 also gives a bound on the number of non-isomorphic triangulations. Any
drawing of a maximal planar graph G must be a triangulation, otherwise G would not be
maximal. With Theorem 1.1, every maximal planar graph has a unique drawing which is a
triangulation. On the other hand, every triangulated graph is maximal planar.

2. Computing sphere-cut decompositions in linear time

In this section we sketch an algorithm for computing sc-decompositions of bounded width.
Let H be a connected subgraph of G with |V(H)| = k, and let v € V(H). Then H
is a subgraph of the induced subgraph G* of G, where G* = G[S]| with S = {w € S |
dist(v,w) < k} (dist(v,w) denotes the length of a shortest path between v and w in G).
This observation helps us to shrink the search space of our algorithm by cutting out chunks
of G of bounded width and solve subgraph isomorphism separately on each chunk. With
the algorithm of Tamaki [26], one can compute a branch decomposition of G¥ of width
< 2k + 1, following similar ideas as in the approach of Baker [2] for tree decompositions.
With some simple modifications, we achieve the same result for sc-decompositions. In an
extended version of this paper [10], we prove the following lemma and give an algorithm
that computes a sc-decomposition of bounded width in linear time.

Lemma 2.1. (]2],[26],[10]) Let G be a plane graph with a rooted spanning tree whose root-
leaf-paths have length < k. We can find an sc-decomposition of width 2k +1 in time O(kn).

3. Plane Subdrawing Equivalence

In this section, we study the variant of the subgraph isomorphism problem on patterns and
host graphs drawn in the unit sphere. In PLANE SUBDRAWING EQUIVALENCE, the question
is to find a subdrawing of a plane host graph G that is equivalent to the drawing of a plane
pattern H. By Remark 1.3, the problem is equivalent to PLANAR SUBGRAPH [SOMORPHISM
for 3-connected planar graphs. In Section 4 we carry over our results to all planar graphs.
We first introduce some topological tools that we need for embedded dynamic programming.
At every step of the dynamic programming, we compute every way how a combinatorial
noose N corresponding to a middle set of the sc-decomposition (7', u,) of G can intersect
a subdrawing equivalent to the drawing of pattern H. Each intersection gives rise to a
combinatorial noose of H. See Figure 1 for an illustration.

The running time of the algorithm crucially depends on the number of combinatorial
nooses in H. The aim of this section is to prove the following:

268 FREDERIC DORN

Figure 1: On the left, we draw graph G with an emphasized subdrawing H intersected by a com-
binatorial noose N indicated by dashed lines. On the right, we have the same graph G
with a different copy of H intersected by N.

Theorem 3.1. Let G be a plane graph on n vertices and H be a plane graph on k < n
vertices. We can decide if there is a subdrawing of G that is equivalent to the drawing of H
in time 2°0)n. We can find and count subdrawings equivalent to the drawing of H in time
20(F)n, and enumerate w subdrawings in time 2°%)n 4+ O(wk).

3.1. Combinatorial nooses in plane graphs

For a refined algorithm analysis we now take a close look at combinatorial nooses of plane
graphs. In particular we are interested in counting the number of combinatorial nooses. In
this subsection, we will prove the following proposition:

Proposition 3.2. Every plane k-vertex graph has 2°*) combinatorial nooses.

Before proving this proposition, we state that every combinatorial noose of a plane graph
on k vertices corresponds to a cycle in some other plane graph on at most O(k) vertices. The
proofs of the following lemmas can be found in [10]. First we relate combinatorial nooses
in a planar triangulation H to the cycles of H. Then we state that for any plane graph H
there is an auxiliary graph H*, such that the combinatorial nooses of H can be injectively
mapped to the cycles of the triangulations of H*. From Proposition 1.6 we know an upper
bound on the number of cycles in planar graphs, which we employ to prove Proposition 3.2.

Lemma 3.3. Let H be a planar triangulation and N¢ = [vo, fo,v1, f1,-- -, fe—1,v¢] a com-
binatorial noose of H. Then for every pair of consecutive vertices vy, vi+1 in Nc, there is a
unique edge {v;,vit1} in E(H). That is, the sequence [vy,v1,...,ve] is a simple cycle in H
if [V(Ne)| > 2, and if |V(N¢)| = 2, it corresponds to a single edge in H.

For an edge e = {v,w} of a graph H we subdivide e by adding a vertex u to V(H) and
replacing e by two new edges e; = {v,u} and es = {u,w}. In a drawing of H, we place
point v in the middle of the drawing of e partitioning e into e; and es.

Lemma 3.4. Let H be plane graph and N¢ = [vg, fo,v1, f1,-- -, fe—1,ve] a combinatorial
noose of H with |V (N¢)| > 2. Let H* be obtained by subdividing every edge in E(H). There
exists a planar triangulation H' of H* such that [vg, vy, ..., ve] is a cycle in H'.

PLANAR SUBGRAPH ISOMORPHISM REVISITED 269

Proof of Proposition 3.2. If H is triangulated, we have with Lemma 3.3 that every
combinatorial noose corresponds to a unique cycle in H. By Proposition 1.6, the number of
cycles in H is bounded by 2153% . Since for every edge of a cycle in H, we have two choices
for a combinatorial noose to visit an incident face, we get the overall upper bound of 22-53*
on the number of combinatorial nooses. If H is plane, we have to count the triangulations
of H* (Lemma 3.4). By Proposition 1.7 and the comments below it, there are at most 2324
non-isomorphic triangulations on n vertices. Let us denote this set of triangulated graphs
by ®. We note that H* is a subgraph of some graph of ®, say of all graphs in &5 C &
with |®z| > 1. Since every triangulated graph is 3-connected, we have with Theorem 1.1
that every graph H' in ®y has a unique drawing in ¥ up to homeomorphism. The plane
graph H* is then a subdrawing of a drawing equivalent to an arbitrary planar drawing of
H' in . The number of triangulations times the number of combinatorial nooses in each
triangulation is an upper bound on the number of combinatorial nooses in H*. [

For embedded dynamic programming on a sc-decomposition (7', u,7), we can argue
with Remark 1.4 that if H is a subdrawing of G, then noose N formed by the middle set
mid(e) is a noose of H, too. Recalling Remark 1.5, the alternating sequence of vertices and
faces of H visited by N forms a combinatorial noose N¢ in H. This observation allows us
to discuss the results from a combinatorial point of view without the underlying topological
arguments. Instead of nooses we will refer to combinatorial nooses in the remaining section.

3.2. Embedded dynamic programming

In embedded dynamic programming, the basic difference to usual dynamic programming is
that we do not check for every partial solution for a given problem if or how it lies in the
graph processed so far. Instead, we check how the graph that we have processed so far is
intersecting the entire solution, that is how the graph is embedded into our solution. For
subdrawing equivalence, we are interested in how G is drawn in the plane pattern H up to
homeomorphism. Each edge of an sc-decomposition tree T" corresponds to a noose N of G.
We will associate to N the list of all possible subgraphs of H that appear in the part of G
bounded by N. Therefore, we will describe all possible ways H is intersected by N. The
number of solutions we get is bounded by the number of combinatorial nooses in H we can
map N onto. We describe the algorithm in what follows.

Dynamic programming. We root sc-decomposition (7', i, 7) at some node r € V(T'). For
each edge e € T', let L. be the set of leaves of the subtree rooted at e. The subgraph G, of
G is induced by the edge set {u(v) | v € Lc.}. The vertices of mid(e) form a combinatorial
noose N that separates G, from the residual graph.

Assuming H is a subgraph of G, the basic idea of embedded dynamic programming is
that we are interested in how the vertices of the combinatorial noose N are intersecting faces
and vertices of H. Since every noose in G is a noose in H, we can map N to a combinatorial
noose N of H, bounding (clockwise) a unique subgraph H,,;, of H.

In each step of the algorithm, all solutions for a sub-problem in G, are computed,
namely all possibilities of how N is mapped onto a combinatorial noose N¥ in H that
separates Hg,p from the rest of H, where Hg,, C H is isomorphic to subgraphs of G.. For
every middle set, we store this information in an array. It is updated in a bottom-up process
starting at the leaves of (T, u,). During this updating process it is guaranteed that the
‘local’ solutions for each subgraph associated with a middle set of the sc-decomposition are
combined into a ‘global’ solution for the overall graph G.

270 FREDERIC DORN

Valid mappings. Let G be a plane graph with a rooted sc-decomposition (7, u,) and
let H be a plane pattern. For every middle set mid(e) of (T, u, 7) let N be the associated
combinatorial noose in G with face-vertex sequence of F(N)UV(N). Let £ denote the set
of all combinatorial nooses of H whose length is at most the length of N. We now want
to map N order preserving to each N € €. We map vertices of N to both vertices and
faces of H. Therefore, we consider partitions of V(N) = V;(N)UV,a(N) where vertices in
Vi(N) are mapped to vertices of V(H) and vertices in Vo(N) to faces of F(H). We define
a mapping v : V(N)U F(N) — V(H) U F(H) relating N to the combinatorial nooses in
£. For every N¥ € £ on faces and vertices of set F(Nf)UV(N#) and for every partition
Vi(N)UVa(N) of V(N) mapping v is valid if
a) =y restricted to Vi (N) is a bijection to V/(N);
b) for every v € Va(N) and f € F(N) we have y(v) and y(f) in F(NH);
c) for every v; € V(N) and subsequence [f;_1,v;, fi| of N, face y(v;) is equal to both
v(fi—1) and v(f;), and vertex y(v;) is incident to both v(f;—1) and v(f;) ;
d) for every pair w;,w; € V(NH): if {w;,w;} € E(H) then {y~1(w;),y Y (w;)} € E(G).
Items a) and b) say where to map the faces and vertices of N to. Item ¢) (with a)) makes
sure that if two vertices vy, v; in sequence N = [...,vp,...,vj,...] are mapped to two
vertices w;, w;1 that appear in sequence N9 as [...,w;, f;,wii1,...] then every face and
vertex inbetween vy, v; in sequence N (here underlined) is mapped to face f;. Item d) rules
out the invalid solutions, that is, we do not map a pair of vertices in G that have no edge
in common to the endpoints of an edge in H. We do so because if H is a subgraph of G
then an edge in H is an edge in G, too. For an illustration, see Figure 2.

Figure 2: On the left, we have a plane graph G with a subgraph H emphasized. A combinatorial
noose N separating subgraph G, is indicated by dashed lines. The vertices of N are
full and empty circles and the faces triangles. In the middle, we have H and indicate to
which faces (big triangles) of H vertices and faces of N are mapped by 7. This gives us
combinatorial noose N* on the right, separating subgraph Hp.

We assign an array A, to each mid(e) consisting of all tuples (N7, ~,) each representing
a valid mapping 7, from combinatorial noose N corresponding to mid(e) to a combinatorial
noose N € €. The vertices and faces of N are oriented clockwise around the drawing of
G.. Without loss of generality, we assume for every (N¥,~,) € A, the orientation of N
to be clockwise around the subdrawing H,,; of H equivalent to a subdrawing of Ge.

Step 0: Initializing the leaf edges. For each parent edge e, of a leaf £ of T" we initialize
the valid mappings from the combinatorial noose bounding the edge u(¢) of G to every
combinatorial noose in H of length at most two.

PLANAR SUBGRAPH ISOMORPHISM REVISITED 271

Step 1: Update process. We update the arrays of the middle sets in post-order manner

from the leaves of T' to root r. In each dynamic programming step, we compare the arrays

of two middle sets mid(e), mid(f) in order to create a new array assigned to the middle

set mid(g), where e, f and g have a vertex of 7' in common. From [12] we know about a

special property of sc-decompositions: namely that the combinatorial noose IV, is formed

by the symmetric difference of the combinatorial nooses N., Ny and that Gy = G. UGy. In

other words, we are ensured that if two solutions on G, and Gy bounded by N, and Ny fit

together, then they form a new solution on Gy bounded by N,. We now determine when

two solutions represented as tuples in the arrays A, and Ay fit together. We update two

tuples (N ~.) € A, and (Nf,w) € Ay to a new tuple in A, if

o for every x € (V(Ne) UF(Ne))N(V(Ng)UF(Ny)), we have ve(x) = v¢(x);

e for the subgraph H, of H separated by N/ and the subgraph H ¢ of H separated by Ny i
we have that E(H.) N E(Hy) =0 and V(He.) NV (Hy) C {vy(v) |ve V(NN V(Nf)}

If N, and Ny fit together, we get a valid mapping v, : Ny — Ng as follows:

o forevery x € (V(Ne)UF(Ne))N (V(Ng)UF(Ng))N(V(Ng)UF(Ng),) we have ve(z) =
vf (@) = vg(2);

o for every y € (V(Ne) U F(Ne))\ (V(Ny) U F(Ny)) we have ve(y) = 74(y);

(V(Np) UF(Ng))\ (V(Ne) U F(Ne)) we have y5(z) = 74(2).

We have that v, is a valid mapping from N, to the combinatorial noose N, H that bounds

subgraph H, = H. U Hy. Thus, we add tuple (Ng ,Yg) to array A,.

Step 2: End of DP. If, at some step, we have a solution where the entire subgraph H is
formed, we exit the algorithm confirming. That is, if H = H. U H; and H; is bounded by
N; (for both i € {e, f}) then the combinatorial noose NN, is bounding the subdrawing of G
equivalent to the drawing of H. We output this subdrawing by reconstructing the solution
top-down in (7', u, w). If at root r no subdrawing equivalent to the drawing of H has been
found, we output 'FALSE’.

Correctness of DP. Let plane graph H be a subdrawing of G. We have already seen how
to map every combinatorial noose of G that identifies a separation of GG via a valid mapping
~ to a combinatorial noose of H determining a separation of H. Step 0 ensures that every
edge of H is bounded by a combinatorial noose N¥ of length two, which is determined
by tuple (N ~) in an array assigned to a leaf edge of T. We need to show that Step 1
computes a valid solution for Ny from N, and Ny for incident edges e, f,g. We note that
the property that the symmetric difference of the combinatorial nooses N, and N; forms a
new combinatorial noose N, is passed on to the combinatorial nooses N, N f and N, ;I of

H, too. If the two solutions fit together, then H, of H separated by NI and subgraph H;
of H separated by N; H only intersect in the image of V(N,) NV (N;). We may observe that

Ne and NH¥ ¥ mtersect in a continuous alternating subsequence with order reversed to each

e for every z €

other, i.e., NeH |Nsme: NJ{{ \Neme, where N means the reversed sequence N, Since

every oriented N identifies uniquely a separation of E(H), we can easily determine if two
tuples (N 7.) € A, and (NJ{{, v¢) € Ay fit together and form a new subgraph of H. If H
is a subdrawing of GG, then at some step we will enter Step 2 and produce the entire H.

Running time analysis. We first give an upper bound on the size of each array. The
number of combinatorial nooses in £ we are considering is bounded by the total number of

combinatorial nooses in H, which is 200V by Proposition 3.2. The number of partitions

272 FREDERIC DORN

of vertices of any combinatorial noose N is bounded by 2/V(MI. Since the order of both N
and N is given we only have 2|V (H)| possibilities to map vertices of N to NI, once the
vertices of IV are partitioned. Thus, in an array A, we may have up to 20(V(H)]) . 2lV(N)I.
|V (H)| tuples (N2, ~.). We first create all tuples in the arrays assigned to the leaves. Since
middle sets of leaves only consist of an edge in G, we get arrays of size O(|V (H)|?) which we
compute in the same asymptotic running time. When updating middle sets mid(e), mid(f),
we compare every tuple of one array A, to every tuple in array Ay to check if two tuples fit
together. We can compute the unique subgraph H. (resp. Hy) described by a tuple in A,
(resp. Af), compare two tuples in A., Ay and create a new tuple in Ay in time linear in the
order of V(N) and V' (H). Since the size of A, is bounded by 20UV UDD.20(VINI) ' the update
process for two middle sets takes the same asymptotic time. Assuming sc-decomposition
(T, u,m) of G has width w and |V (H)| < w, we get the following result.

Lemma 3.5. For a plane graph G with a given sc-decomposition (T, u,m) of G of width w
and a plane pattern H on k < w wvertices we can search for a subdrawing of G equivalent to
H in time 20W) . .

3.3. The algorithm

We present the overall algorithm for solving PLANE SUBDRAWING EQUIVALENCE with run-
ning time stated in Theorem 3.1.

Algorithm 3.1: Plane Subdrawing Equivalence: PLSE.
Input : Plane graph G; Plane pattern H of order k.

1 Choose an arbitrary vertex v in G.

2 Partition V(G) into So U S1 U...U Sy with S; = {w € V(G) : dist(v,w) =i}

3 for every G; = G[S; U...US; x| with0<i</{—Fkdo

4 Compute sc-decomposition (T, u, m) of G;.

5 Do embedded dynamic programming on (T, u, 7) to find a subdrawing of G;
equivalent to the drawing of H and intersecting S;.

Partitioning the vertex set in Line 2 of Algorithm 3.1 PLSE, is a similar approach to
the well-known Baker-approach [2]. Every vertex set S; contains the vertices of distance i
to the chosen vertex v. Sy = {v} and ¢ is the maximum distance in G from v. The graph
G; in Line 3 is induced by the sets S;, ..., S;1x. Asin [14], we may argue that every vertex
in G appears in at most k subgraphs G;. This keeps our running time linear in n. We can
apply Lemma 2.1 to each G; in Line 4 to a compute sc-decomposition (7', u,7) of width
< 2k+1, by adding a root vertex r for the BF'S tree and make r adjacent to every vertex in
S;. The dynamic programming approach can easily be turned into an algorithm counting
subdrawing equivalences (similar to [14]), by using a counter in the dynamic programming.
Using an inductive argument, for every subgraphs GG; in Line 5 we only compute subgraphs
intersecting with vertices in .S; and thus omit double-counting. We can adopt our technique
to list the subdrawings of G equivalent to the drawing of H.

PLANAR SUBGRAPH ISOMORPHISM REVISITED 273

4. Planar subgraph isomorphism

Now we consider the case when both pattern H and host graph G are planar but not plane.
From Remark 1.3 we know that two isomorphic planar graphs must not need to come with
equivalent drawings. However, we observe that if H is isomorphic to a subgraph of G, then
for every planar drawing of G there exists a drawing of H that is equivalent to a subdrawing
of G. Hence, we may simply draw G planarly, and run the algorithm of the previous section
for all non-equivalent drawings of H.

Algorithm 4.1: Planar subgraph isomorphism.

Input : Planar graph G, Planar pattern H of size k.
Compute a planar drawing of G.

if H 3-connected then Return PLSE(G, H).

for every non-equivalent drawing I of H do

| Return PLSE(G, I).

The whole algorithm. We compute in Algorithm 4.1 every non-equivalent drawing of
H as follows. First, we compute the set H of non-isomorphic maximal planar graphs in
time proportional to its size using the algorithm in [20]. For every graph H' € H and
every subdrawing I of H' we check whether I is isomorphic to H by using the linear
time algorithm for planar graph isomorphism in [19]1 . By Proposition 1.2, we then call
Algorithm 3.1 29%) times, for each plane graph I isomorphic to H. This ensures us that
Algorithm 3.1 has running time as stated in Theorem 0.1 2.

Conclusion

We have shown how to use topological graph theory to improve the results on the already
mentioned variations of PLANAR SUBGRAPH ISOMORPHISM, solving the open problems
posed in [14] and [12]. With the results of [15], [14] extends the feasible graph class from
planar graphs to apex-minor-free graphs. This cannot be done with the tools presented
here. However, the authors of [11] devise a truly subexponential algorithm for k-LONGEST
PATH in H-minor-free graphs and thus apex-minor-free graphs, employing the structural
theorem of Robertson and Seymour [25] and the results of [8, 5]. Can the structure of
H-minor-free graphs, be exploited for our purposes?

It seems unlikely that our work can be extended to obtain a subexponential algorithm.
The first reason, mentioned in the introduction, is that Bidimensionality applies to sub-
graphs with minor properties rather than to general subgraphs. Secondly, our enumerative
bounds are either tight or of lower bound 29(*). We want to pose the open problem: Is
PLANE SUBDRAWING EQUIVALENCE solvable in time 2°K)n0(1)?

Acknowledgments. The author thanks Paul Bonsma, Holger Dell and Fedor Fomin for
discussions and comments of great value to the presentation of these results.

lwe get a list of drawings of H, from which we can delete equivalent drawings by a modification of the
algorithm in [19]—namely isomorphism test for face-vertex graphs.
2It can be show that Algorithm 3.1 runs in time O(2'2°7*n) and Algorithm 4.1 in O(2'%51%p)

274 FREDERIC DORN

References

[1] N. ALON, R. YUSTER, AND U. ZWICK, Color-coding, J. Assoc. Comput. Mach., 42 (1995), pp. 844-856.

[2] B. S. BAKER, Approzimation algorithms for NP-complete problems on planar graphs, J. Assoc. Comput.
Mach., 41 (1994), pp. 153-180.

[3] H. L. BODLAENDER, A linear-time algorithm for finding tree-decompositions of small treewidth, STAM
J. Comput., 25 (1996), pp. 1305-1317.

[4] K. BucHIN, C. KNAUER, K. KRIEGEL, A. SCHULZ, AND R. SEIDEL, On the number of cycles in
planar graphs, in Proc. of the 13th Annual International Conference on Computing and Combinatorics
(COCOON’07), vol. 4598 of LNCS, Springer, 2007, pp. 97-107.

[5] A. DAWAR, M. GROHE, AND S. KREUTZER, Locally excluding a minor, in Proc. of the 22nd IEEE
Symposium on Logic in Computer Science (LICS 2007), IEEE Computer Society, 2007, pp. 270-279.

[6] E. D. DEMAINE, F. V. FoMIN, M. T. HAJIAGHAYI, AND D. M. THILIKOS, Subexponential parameterized
algorithms on graphs of bounded genus and H-minor-free graphs, J. ACM, 52 (2005), pp. 866-893.

[7] E. D. DEMAINE AND M. T. HAJIAGHAYI, The bidimensionality theory and its algorithmic applications,
Computer J., 51 (2008), pp. 292-302.

[8] E. D. DEMAINE, M. T. HAJIAGHAYI, AND K. KAWARABAYASHI, Algorithmic graph minor theory: De-
composition, approzimation, and coloring, in Proc. of the 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2005), IEEE Computer Society, 2005, pp. 637—646.

[9] R. DIESTEL, Graph theory, vol. 173 of Grad. Texts in Math., Springer, New York, third ed., 2000.

[10] F. DorN, Planar Subgraph Isomorphism Revisited, http://arxiv.org/abs/0909.4692, 2009.

[11] F. DorN, F. V. FoMIN, AND D. M. THILIKOS, Catalan structures and dynamic programming on H-
minor-free graphs, in Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2008), ACM, New York, 2008, pp. 631-640.

[12] F. DorN, E. PENNINKX, H. L. BODLAENDER, AND F. V. FOMIN, Efficient exact algorithms on planar
graphs: Exploiting sphere cut decompositions, Algorithmica, (2009, to appear).

[13] R. G. DowNEY AND M. R. FELLOWS, Parameterized complexity, Springer, New York, 1999.

[14] D. EPPSTEIN, Subgraph isomorphism in planar graphs and related problems, J. Graph Alg. and Appl.,
3 (1999), pp. 1-27.

[15] D. EPPSTEIN, Diameter and treewidth in minor-closed graph families, Algorithmica, (2009).

[16] J. FLuM AND M. GROHE, Parameterized Complexity Theory, Texts in Theoretical Computer Science.
EATCS Series, Springer, Berlin, 2006.

[17] F. V. FoMmIN AND D. M. THILIKOS, New upper bounds on the decomposability of planar graphs, J.
Graph Theory, 51 (2006), pp. 53-81.

[18] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company, New York, 1979.

[19] J. E. HOPCROFT AND J. K. WONG, Linear time algorithm for isomorphism of planar graphs (prelim-
inary report), in Proc. of the Sixth Annual ACM Symposium on Theory of Computing (STOC’74),
ACM, 1974, pp. 172-184.

[20] Z. L1 AND S.-I. NAKANO, Efficient generation of plane triangulations without repetitions, in Proc. of
the 28th International Colloquium on Automata, Languages and Programming (ICALP’01), vol. 2076
of LNCS, Springer, 2001, pp. 433-443.

[21] R. NIEDERMEIER, [nvitation to fized-parameter algorithms, vol. 31 of Oxford Lecture Series in Mathe-
matics and its Applications, Oxford University Press, Oxford, 2006.

[22] D. OstHUS, H. J. PROMEL, AND A. TARAZ, On random planar graphs, the number of planar graphs
and their triangulations, J. Combin. Theory Ser. B, 83(1) (2003), pp. 119-134.

[23] J. PLEHN AND B. VoIaT, Finding minimally weighted subgraphs, in Proc. of the 16th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG’90), vol. 484 of LNCS, Springer,
1990, pp. 18-29.

[24] N. ROBERTSON, P. SEYMOUR, AND R. THOMAS, Quickly excluding a planar graph, J. Combin. Theory
Ser. B, 62 (1994), pp. 323-348.

[25] N. ROBERTSON AND P. D. SEYMOUR, Graph minors. XVI. Ezcluding a non-planar graph, J. Combin.
Theory Ser. B, 89 (2003), pp. 43-76.

[26] H. TAMAKI, A linear time heuristic for the branch-decomposition of planar graphs, in Proc. of the 11th
Annual European Symposium on Algorithms (ESA’03), vol. 2832 of LNCS, Springer, 2003, pp. 765-775.

[27] W. T. TUTTE, A census of planar triangulations, Canad. J. Math., 14 (1962), pp. 21-38.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 275-286
www.stacs-conf.org

INTRINSIC UNIVERSALITY IN SELF-ASSEMBLY

DAVID DOTY ! AND JACK H. LUTZ? AND MATTHEW J. PATITZ? AND SCOTT M. SUMMERS 2
AND DAMIEN WOODS?

! Department of Computer Science, University of Western Ontario
London, Ontario, Canada, N6A5B7.
E-mail address, David Doty: ddoty@csd.uwo.ca

2 Department of Computer Science, Iowa State University
Ames, TA 50011 USA.
E-mail address, Jack H. Lutz: lutz@cs.iastate.edu
E-mail address, Matthew J. Patitz: patitz@cs.iastate.edu
E-mail address, Scott M. Summers: summers@cs.iastate.edu

3 California Institute of Technology, Pasadena, CA 91125, USA.
E-mail address: woods@caltech.edu

ABSTRACT. We show that the Tile Assembly Model exhibits a strong notion of universality
where the goal is to give a single tile assembly system that simulates the behavior of any
other tile assembly system. We give a tile assembly system that is capable of simulating
a very wide class of tile systems, including itself. Specifically, we give a tile set that
simulates the assembly of any tile assembly system in a class of systems that we call locally
consistent: each tile binds with exactly the strength needed to stay attached, and that
there are no glue mismatches between tiles in any produced assembly.

Our construction is reminiscent of the studies of intrinsic universality of cellular au-
tomata by Ollinger and others, in the sense that our simulation of a tile system 7' by
a tile system U represents each tile in an assembly produced by T by a ¢ X ¢ block of
tiles in U, where c is a constant depending on 7" but not on the size of the assembly T'
produces (which may in fact be infinite). Also, our construction improves on earlier sim-
ulations of tile assembly systems by other tile assembly systems (in particular, those of
Soloveichik and Winfree, and of Demaine et al.) in that we simulate the actual process of
self-assembly, not just the end result, as in Soloveichik and Winfree’s construction, and we
do not discriminate against infinite structures. Both previous results simulate only tem-
perature 1 systems, whereas our construction simulates tile assembly systems operating at
temperature 2.

1998 ACM Subject Classification: Theory.

Key words and phrases: Biomolecular computation, intrinsic universality, self-assembly.

This research was supported in part by National Science Foundation Grants 0652569, 0728806 and
0832824, by the Spanish Ministry of Education and Science (MEC) and the European Regional Devel-
opment Fund (ERDF) under project TIN2005-08832-C03-02, by Junta de Andalucia grant TIC-581, and by
Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant R2824A01 and
the Canada Research Chair Award in Biocomputing.

ASPECTS
T) st a P UTER © D.Doty, J.H. Lutz, M.J. Patitz, .M. Summers, and D. Woods
© Creative Commons Attribution-NoDerivs License

N SYMPOSIUM
mvr_ ON THEORETICAL
4

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2461

276 D. DOTY, J.H. LUTZ, M.J. PATITZ, S.M. SUMMERS, AND D. WOODS

1. Introduction

The development of DNA tile self-assembly has moved nanotechnology closer to the
goal of engineering useful systems that assemble themselves from molecular components.
Since Seeman’s pioneering work in the 1980s [21], many laboratory experiments have shown
that DNA tiles can be designed to spontaneously assemble with one another into desired
structures [20]. As physical and mathematical error-suppression techniques improve [3, 8,
13,22,24], this molecular programming of matter will become practical at ever larger scales.

The Tile Assembly Model, developed by Winfree [19, 26], is a discrete mathematical
model of DNA tile self-assembly that enables us to explore the potentialities and limitations
of this kind of molecular programming. It is essentially an “effectivization” of classical Wang
tiling [25] in which the fundamental components are un-rotatable, but translatable square
“tile types” whose sides are labeled with glue “colors” and “strengths.” Two tiles that are
placed next to each other interact if the glue colors on their abutting sides match, and they
bind if the strength on their abutting sides matches with total strength at least a certain
ambient “temperature.” Extensive refinements of the abstract Tile Assembly Model were
given by Rothemund and Winfree in [18,19]. (Consult the technical appendix for full details
of the abstract Tile Assembly Model.) The model deliberately oversimplifies the physical
realities of self-assembly, but Winfree proved that it is Turing universal [26], implying that
self-assembly can be algorithmically directed.

In this paper we investigate whether the Tile Assembly Model is capable of a much
stronger notion of universality where the goal is to give a single tile assembly system that
simulates the behavior of any other tile assembly system. We give a tile assembly system
that is capable of simulating a very wide class of tile systems, including itself. Our notion
of simulation is inspired by, but somewhat stronger than, intrinsic universality in cellular
automata [2,7,14-16]. In our construction a simulated tile assembly system is encoded in
a seed assembly of the simulating system. This encoding is done in a very simple (logspace
computable) way. The seed assembly then grows to form an assembly that is a re-scaled
(larger) version of the simulated assembly, where each tile in the latter is represented by a
supertile (square of tiles) in the simulator. Not only this, but each of the possible (nondeter-
ministically chosen) assembly sequences of the simulated tile system is modeled by a possible
assembly sequence in the simulating system (also nondeterministically chosen). The latter
property of our system is important and highlights one way in which this work distinguishes
itself from other notions of intrinsic universality found in the cellular automata literature:
not only do we want to simulate the final assembly but we also want the simulator to have
the ability to dynamically simulate each of the valid growth processes that could lead to
that final assembly.

A second distinguishing property of our universal tile set is that it simulates nonde-
terministic choice in a “fair” way. An inherent feature of the Tile Assembly Model is the
fact there are often multiple (say k) tiles that can go into any one position in an assembly
sequence, and one of these k is nondeterministically chosen. One way to simulate this fea-
ture is to nondeterministically choose which of k supertiles should grow in the analogous
(simulated) position. However, due to the size blowup in supertiles caused by encoding an
arbitrary-sized simulated tile set into a fixed-sized universal tile set, it seems that we need
to simulate one nondeterministic choice by using a sequence of nondeterministic choices
within the supertile. Interpreting the nondeterministic choice to be made according to uni-
form random selection, if the selection by the simulating tile set is implemented in a naive

INTRINSIC UNIVERSALITY IN SELF-ASSEMBLY 277

way, this can lead to unfair selection: when selecting 1 supertile out of k, some supertiles
are selected with extremely low probability. To get around this problem, our system uses
a random number selector that chooses a random tile with probability ©(1/k) and so we
claim that we are simulating nondeterminism in a “fair” way.

Thirdly, the Tile Assembly Model has certain geometric constraints that are not seen
in cellular automata, and this adds some difficulty to our construction. Existing techniques
for constructing intrinsically universal cellular automata are not directly applicable to tile
assembly. For example, when a tile is placed at a position, that position can not be reused
for further “computation” and this presents substantial difficulties when trying to fit the
various components of our construction into a supertile. Each supertile encodes the entire
simulated tile set and has the functionality to propagate this information to other (yet to
be formed) supertiles. Not only this, each supertile must decide which tile placement to
simulate, whilst making (fair) nondeterministic choices if necessary. Finally, each supertile
should correctly propagate (output) sides that are consistent with the chosen supertile.
We give a number of figures to illustrate how these goals were met within the geometric
constraints of the model.

Our main result presented in this paper is, in some sense, a continuation of some previ-
ous results in self-assembly. For instance, Soloveichik and Winfree [23] exhibit a beautiful
connection between the Kolmogorov complexity of a finite shape X and the minimum num-
ber of tiles types needed to assemble X. It turns out that their construction can be made
to be “universal” in the following sense: there exists a tile set T, such that for every “tem-
perature 1”7 tile assembly system that produces a finite shape whose underlying binding
graph is a spanning tree, T simulates the given temperature 1 tile system with a corre-
sponding blow-up in the scale. Note that this method restricts the simulated tile system to
be temperature 1, i.e., a non-cooperative tile assembly system, which are conjectured [6] to
produce “simple” shapes and patterns in the sense of Presburger arithmetic [17].

A similar result, recently discovered by Demaine, Demaine, Fekete, Ishaque, Rafalin,
Schweller, and Souvaine [4], established the existence of a general-purpose “staged-assembly”
system that is capable of simulating any temperature 1 tile assembly system that produces a
“fully connected” finite shape. Note that, in this construction, the scaling factor is propor-
tional to O(log |T|), where T is the simulated tile set. This construction has the desirable
property that the set of tile types belonging to the simulator is general purpose (i.e., the
size of the simulator tile set is independent of the to-be-simulated tile set) and all of the
information needed to carry out the simulation is, in some sense, encoded in a sequence
of laboratory steps. An open question in [4] is whether or not their construction can be
augmented to handle temperature 2 tile assembly systems.

Our construction is general enough to be able to simulate powerful and interesting
tile sets, yet sufficiently simple so that it actually belongs to the class of tile assembly
systems that it can simulate, a class we term locally consistent. Systems in this class
have the properties that each tile binds with exactly strength 2, and there are no glue
mismatches in any producible assembly. This captures a wide class of tile assembly systems,
including counters, square-builders and other shape-building tile assembly systems, and the
tile assembly systems described in [1,12,19,23]. Modulo re-scaling, our universal tile set
can be said to display the characteristics of the entire collection of tile sets in its class. Our
construction is a direct simulation in that the technique does not involve the simulation
of intermediate models (such as circuits or Turing machines), which have been used in
intrinsically universal cellular automata constructions [16].

278 D. DOTY, J.H. LUTZ, M.J. PATITZ, S.M. SUMMERS, AND D. WOODS

One of the nice properties of intrinsic universality [16] is that it provides a clear def-
inition that facilitates proofs that a given tile set is not universal. We leave as an open
problem the intrinsic universality status of the Tile Assembly Model in its full generality.

Lafitte and Weiss [9-11] have also studied universality in the related model of Wang
tiling [25]. Some of their definitions, particularly in [10], are similar to our definitions of
simulation and universality, and also to those of Ollinger [16]. However, Wang tiling is not
a model of self-assembly, as it is concerned with the ability of finite tile sets to tile the whole
plane (with no mismatches), without regard to the process by which these tiles are placed.
What is important is simply the existence of some valid tiling. In the TAM, which takes the
order in which tiles are placed, one by one, into account, it must be shown that not only is
there a sequence by which tiles could be individually and stably added to form the output
assembly, but that every possible such sequence leads to the desired output. Furthermore,
in the TAM a tile addition can be valid even if it causes mismatches as long as it is stable.

Most attempts to adapt the constructions of Wang tiling studies (such as those in [9-11])
to self-assembly result in a tile assembly system in which many junk assemblies are formed
due to incorrect nondeterministic choices being made that arrest any further growth and/or
result in assemblies which are inconsistent with the desired output assembly. We therefore
require novel techniques to ensure that no nondeterminism is introduced, other than that
already present in the tile system being simulated, and that the only produced assemblies
are those that represent the intended result or valid partial progress toward it.

2. Intrinsic Universality in Self-Assembly

In this section, we define our notion of intrinsic universality of tile assembly systems.
It is inspired by, but distinct from, similar notions for cellular automata [16]. Where
appropriate, we identify where some part of our definition differs from the “corresponding”
parts in [16], typically due to a fundamental difference between the abstract Tile Assembly
Model and cellular automata models.

Intuitively, a tile set U is universal for a class € of tile assembly systems if U can
“simulate” any tile assembly system in €, where we use an appropriate seed assembly to
give a tile assembly system U/. U is intrinsically universal if the simulation of 7 by U can be
done according to a simple “block substitution scheme” where equal-size square blocks of
tiles in assemblies produced by U represent tiles in assemblies produced by 7. Furthermore,
since we wish to simulate the entire process of self-assembly, and not only the final result, it
is critical that the simulation be such that the “local transition rules” involving intermediate
producible (and nonterminal) assemblies of 7 be faithfully represented in the simulation.

In the subsequent definitions, given two partial functions f, g, we write f(x) = g(zx) if f
and g are both defined and equal on z, or if f and g are both undefined on z. Let ¢, € N, let
[c:] denote the set {c,c+1,...,¢ —1}, and let [¢] denote the set [0: ¢] = {0,1,...,c—1},
so that [c]? forms a ¢ x ¢ square with the origin as the lower-left corner.

The natural analog of a configuration of a cellular automaton is an assembly of a tile
assembly system. However, unlike cellular automata in which every cell has a well-defined
state, in tile assembly, there is a fundamental difference between a point being empty space
and being occupied by a tile. Therefore we keep the convention of representing an assembly
as a partial function « : Z2 --» T (for some tile set 7'), rather than treating empty space
as just another type of tile.

INTRINSIC UNIVERSALITY IN SELF-ASSEMBLY 279

Let T = (T,07,7) and § = (5,05, 7) be tile assembly systems. For simplicity, assume
that o7 (0, 0) is defined, and o7 is undefined on Z?—{(0,0)} (i.e., 7 is singly-seeded with the
seed tile placed at the origin). We will use this assumption of a single seed throughout the
paper, but it is not strictly necessary and is only used for simplicity of discussion. Define a
representation function to be a partial function of the form r : ([¢]? --+ S) --» T. That is, r
takes a pattern p : [c]? --» S of tile types from S painted onto a ¢ x ¢ square (with locations
at which p is undefined representing empty space), and (if r is defined for input p) gives a
single tile type from T'. Intuitively, r tells us how to interpret ¢ x ¢ blocks within assemblies
of S as single tiles of T'. We write REPR for the set of all representation functions.

We say S (intrinsically) simulates T with resolution loss c if there exists a representation
function 7 : ([¢]? --» S) --» T such that the following conditions hold.

(1) dom o5 C [c]? and 7(0s) = 07(0,0), i.e., the seed assembly of S represents the seed

of 7.
(2) For every producible assembly ay € A[7T] of 7, there is a producible assembly
as € A[S] of § such that, for every =,y € Z,

r((as I ([ex:clz + 1)) x [ey : c(y + 1)) + (—cx, —cy)) = ar(z,y).
That is, the ¢ x ¢ block at (relative) position (x,y) (relative to the other ¢ x ¢ blocks;
the absolute position is (cx, cy)) of assembly as represents the tile type at (absolute)
position (x,y) of assembly a7. In this case, write r*(as) = a7; i.e., r induces a
function r* : A[S] — A[T].

(3) For all ar, o/ € A[T], it holds that ar —7 o/ if and only if there exist as,als €
A[S] such that r*(as) = ar, r*(a) = o4 (in the sense of condition (2)), and
as —s os. That is, every valid assembly sequence of 7 can be “mimicked” by S,
but no other assembly sequences can be so mimicked, so that the meaning of the
relation — is preserved by 7*.

Let € be a class of singly-seeded tile assembly systems, and let U be a tile set (with tile
assembly systems having tile set U not necessarily elements of €). Note that every element
of €, REPR, and FIN(U) is a finite object, hence can be represented in a suitable format for
computation in some formal system such as Turing machines. We say U is (intrinsically)
universal for € if there are computable functions R : € — REPR and A : € — FIN(U)
such that, for each 7 = (T, 07, 7) € €, there is a constant ¢ € N such that, letting r = R(7),
o= A(T), and Uy = (U,0,7), Ur simulates 7 with resolution loss ¢ and representation
function r. That is, R(7) outputs a representation function that interprets assemblies of
U as assemblies of 7, and A(7) outputs the seed assembly used to program tiles from U
to represent the seed tile of 7.

3. An Intrinsically Universal Tile Set

In this section, we exhibit an intrinsically universal tile set for any “nice” tile assembly
system. Before proceeding, we must first define the notion of a “nice” tile assembly system.
Let T = (T,0,2) be a tile assembly system, and & be an assembly sequence in 7 whose
result is denoted as . We say that 7 is locally consistent if the following conditions hold.

(1) For all m € dom o — dom 7, N () StTa(m) (U) = 2, where INY (171) is the set of
sides on which the tile that @ places at location m initially binds. That is, every
tile initially binds to the assembly with exactly bond strength equal to 2 (either a
single strength 2 bond or two strength 1 bonds).

280 D. DOTY, J.H. LUTZ, M.J. PATITZ, S.M. SUMMERS, AND D. WOODS

(2) For all producible assemblies o € A[T], 4 € U, and m € dom «, if a(m + @) is
defined, then the following condition holds:

Stro(m) (@) > 0 = label,) (1) = labely (5 4q) (=) and stro) (@) = stromqa)(—).

While condition (1) of the above definition is reminiscent of the first condition of local
determinism [23], the second condition says that there are no (positive strength) label mis-
matches between abutting tiles. However, we must emphasize that a locally consistent tile
assembly system need not be directed, and moreover, even a locally deterministic tile assem-
bly system need not be locally consistent because of the lack of any kind of “determinism
restriction” in the latter definition. Our main result is the following.

Theorem 3.1 (Main theorem). Let € be the set of all locally consistent tile assembly sys-
tems. There exists a finite tile set U that is intrinsically universal for €.

In the remainder of this section, we prove Theorem 3.1, that is, we show that for every
locally consistent tile assembly system 7 = (T, 0,2), there exists a seed assembly o7, such
that the tile assembly system U7y = (U, o7,2) simulates 7 with a resolution loss ¢ € N
that depends only on the glue complexity of 7. Instead of giving an explicit (and tedious)
definition of the tile types in U, we implicitly define U by describing how U7 simulates 7.

3.1. High-Level Overview

Intuitively, U simulates 7 by growing “supertiles” that correspond to tile types in T'. In
other words, every supertile is a ¢ x ¢ block of tiles that is mapped to a tile type t € T'. To do
this, each supertile that assembles in U7 contains the full specification of T" as a lookup table
(a long row of tiles that encodes all of the information in the set of tile types T'), analogous
to the genome of an organism being fully replicated in each cell of that organism, no matter
how specialized the function of the cell. This lookup table is carefully propagated through
each supertile in U7 via a series of “rotation” and “copy” operations — both of which are
well-known self-assembly primitives.

In the table, we represent each (glue,direction) pair as a binary string, and represent
the tile set as a table mapping 1-2 input glue(s) to 0-3 output glue(s). Since each tile type
of 7 may not have well-defined input sides, when two supertiles representing tiles of 7 must
potentially cooperate to place a new supertile within a block adjacent to both of them, it
is imperative that each grows into the block in such a way as to remain unobtrusive to the
other supertile. This is done with a “probe” that grows toward the center of the block, as
shown in Figure 1. At the moment the probes meet in the middle, they “find out” in what
direction the other input supertile lies, and at that point decide in which direction to grow
the rest of the forming supertile. so as to avoid the tiles that were already placed as part of
the probes. We do not know how to deal with three probes at once, which is the reason both
parts of the definition of locally consistent, which imply that only two input probes will
ever be present at one time. The next step is to bring the values of two input glues together
before doing a lookup on the table, because they are both needed to simulate cooperation.
The table must be read and copied at the same time, otherwise the planarity of the tiles
would hide the table as it is read and it could not be propagated to the output supertiles.
Many choices made in the construction, such as the relative positioning of glues/table, or
the counter-clockwise order of assembly, are choices that simply were convenient and seemed
to work, but are not necessarily required.

INTRINSIC UNIVERSALITY IN SELF-ASSEMBLY 281

3.2. Construction of the Lookup Table

In order to simulate the behavior of 7 with U7, we must first encode the definition of
T using tiles from U. We will do this by constructing a “glue lookup table,” denoted as
T, and is essentially the self-assembly version of a kind of hash table. Informally, T7 is a
(very) long string (of tiles from U) consisting of two copies of the definition of the tile set
T separated by a small group of spacer symbols. The left copy of the lookup table is the
reverse of the right copy. The lookup table maps all possible sets of input sides for each
tile type t € T to the corresponding sets of output sides.

3.2.1. Addresses. The lookup table T consists of a contiguous sequence of “addresses,”
which are formed from the definition of 7T'. Namely, for each tile type ¢t € T', we create a
unique binary key for each combination of sides of ¢ whose glue strengths sum to exactly
2. Each of these combinations represents a set of sides which could potentially serve as the
input sides for a tile of type ¢ in a producible assembly in 7.

We say that a pad is an ordered triple (g,d,s) where g is a glue label in T, d €
{N,S,E,W} is an edge direction, and s € {0, 1,2} is an allowable glue strength. Note that
a set of four pads — one for each direction d — fully specifies a tile type. We use Pad(t, d) to
denote the pad on side d of the tile type t € T’

Let Bin(p) be the binary encoding of a pad p = (g, d, s), consisting of the concatenation
of the following component binary strings:

(1) g (glue specification): Let G be the set of glue types from all edges with positive glue
strengths in TU{gnun } (a.k.a., the null glue). Fix some ordering gnu1 < go < g1 < - -+
of the set G. The binary representation of g; is the binary value of ¢ padded with
0’s to the left (as necessary) to ensure that the string is exactly [log(|G|+ 1)] bits.

(2) d (direction): If d= N (E, S, or W), append 00 (01, 10, or 11, respectively).

(3) s (strength): If s =1 (2) append 0 (1).

Note that [log(|G|+1)] +2+ 1 is the length of the binary string encoding an arbitrary
pad p, and is a constant that depends only on T'.

An address is a binary string that represents a set of pads which, themselves, can
potentially serve as the input sides of some tile type t € T'. It can be composed of one of
the two following binary strings:

(1) A prefix of zeros, 0/°8(GITDI+3 followed by Bin(p) for p = (g,d,2), or

(2) the concatenation of Bin(p;) and Bin(py) for p1 = (g1,d1,1) and pa = (g2,d2,1).
The ordering of Bin(p;) and Bin(py) in an address must be consistent with the
following orderings: EN,SE, WS, NW, NS, EW .

Note that it is possible for more than one tile type ¢t € T' to share a set of input pads

and therefore an address.

3.2.2. Encoding of T. We will now construct the string w7, which will represent the defini-
tion of T'. Intuitively, wz will be composed of a series of “entries.” Each entry is associated
to exactly one address of a tile type t € T and specifies the pads for the output sides of ¢.
In this way, once the input sides for a supertile have formed, the corresponding pads can
be used to form an address specifying (a set of) appropriate output pads. Note that since
more than one tile type may share an address in a nondeterministic tile assembly system,
more than one tile type may share a single entry.

282 D. DOTY, J.H. LUTZ, M.J. PATITZ, S.M. SUMMERS, AND D. WOODS

We define an entry to be a string beginning with ‘#’ followed by zero or more “sub-
entries”, each corresponding to a different tile type, separated by semicolons. Let A be the
set of all binary strings representing every address created for each t € T. The string wr
will consist of 1 + max A entries for addresses 0 to max A. The i'" entry, denoted as e;,
corresponds to the i*" address, which may or may not be in A (if it is not, then e; is empty).

We say that a sub-entry consists of a string specifying the pads for the output sides
of a tile type t € T. Let e; be the entry containing a given sub-entry (note that i is the
address of ¢;), and T; C T be the set of tile types addressable by ¢ (i.e., the set of tile types
for which ¢ is a valid address). The entry e; will be comprised of exactly |T;| sub-entries.
For 0 < k < j, the k'™ sub-entry in e;, where ¢, € T} is the k' element of T} (relative to
some fixed ordering), is the string OUT(V), OUT(E), OUT(S), OUT(W) (the commas in
the previous string are literal) with OUT(d) = Bin(Pad(ty,d))® if the glue for Pad(t,d)
is not gnun and d is not a component of the address i, otherwise OUT(d) = A. Intuitively,
a sub-entry is a comma-separated list of the (reversed) binary representations of the pads
for an addressed tile type, but including only pads whose glues are not gn,n and whose
directions are not a part of the address (and therefore input sides). We will now use the
string w7 to construct the lookup table T7.

3.2.3. Full specification of Tr. We now give the full specification for the lookup table T.
First, define the following strings: wg = ‘>’, wy = ‘< %% >’, wy = ‘<’. Now let T
be as follows: Tz = sb(wy o wr o wy o (wr)f o ws), where, for strings z and y, 2 oy
is the concatenation of x and y, and sb : ¥* — »* is defined to “splice blanks” into its
input: between every pair of adjacent symbols in the string x, a single ‘s’ (blank) symbol
is inserted to create sb(z). This splicing of blanks is required to be able to read from the
table without “locking it from view”, when reading the table for operations that require
growing a column of tiles in towards the table (as opposed to away from it), a blank column
is used, and for growing a column away from the table, a symbol column is used so that
the symbol can be propagated to the top of the column for later copying.

3.2.4. The Lookup Procedure. In our construction, when a supertile ¢* that is simulating a
tile type t € T' forms, we must overcome the following problem: once we combine the input
pads (given as the output pads of the supertiles to which t* attaches), how do we use T
to lookup the output pads for t*7 In what follows, we briefly describe how we achieve this.
In other words, we show how an address, a string of random bits, and a copy of T are
used to compute the pad values for the non-input sides of a supertile. A detailed figure and
example of this procedure can be found in the technical appendix.

For ease of discussion and without loss of generality, we assume that the row of tiles
encoding T'7 (assembled West to East) and the column of tiles encoding an address and a
random string of bits (assembled North to South at the West end of T'7) are fully assembled,
forming an ‘L’ shape with no tiles in the area between them. For other orientations of the
table and address the logical behavior is identical, simply rotated.

Intuitively, the assembly of the lookup procedure assembles column wise in a zig-zag
fashion from left to the right. In the “first phase,” a counter initialized to 0 is incremented
in each column where the value of the tile in the representation of T is a ‘;’, thus counting
up at each entry contained in T7. Once that number matches the value of the given
address (which, along with the random bits is copied through this procedure), the entry e

INTRINSIC UNIVERSALITY IN SELF-ASSEMBLY 283

corresponding to that address has been reached and a new counter begins which counts the
number of sub-entries n in that entry. Note that for directed tile systems, n < 1. Once the
end of that entry is encountered, yet another counter, initialized to 0, begins and increments
on each remaining entry until the end of the first copy of ws is reached (the number n is
propagated to the right). This counts the number of entries, denoted as m, between e and
the end of the lookup table. The “second phase” is used to perform, in some sense, an
operation equivalent to calculating p = b mod n, where b is the binary value of the string
of random bits required for the lookup procedure (this is how we simulate nondeterministic
assemblies). This selects the index of the sub-entry in e which will be used, completing the
random selection of one of the possibly many tile types contained in entry e.

In the current version of our construction, we merely use a random number selection
procedure reminiscent of the more involved (but more uniform) random selection procedures
discussed in [5]. Although it is possible to incorporate these more advanced techniques
into our construction (and thus achieve a higher degree of uniformity in the simulation of
randomized tile systems), we choose not to do so for the sake of simplicity.

Next, a reverse counter, a.k.a., a subtractor, counts down at each entry from m to 0,
and by the way we constructed T, this final counter obtains the value 0 at the entry e (in
the reverse of wr). Now, another subtractor counts from p to 0 to locate the correct sub-
entry that was selected randomly. Finally, each pad in the sub-entry is rotated “up and to
the right,” and the group of pads is propagated through the remainder of the lookup table,
thus ending with the values of the non-input pads represented in the rightmost column.

3.3. Supertile design

A supertile s is a subassembly in Uz consisting of a ¢ x ¢ block of tiles from T', where ¢
depends on the glue complexity of 7. Each s can be mapped to a unique tile typet € T'. In
our construction there are two logical supertile designs. The first, denoted type-0, simulates
tile additions in 7 in which there are 2 input sides, each with glue strength = 1. The
second, denoted type-1, simulates the addition of tiles via a single strength 2 bond.

While there are several differences in the designs of type-0 and type-1 supertiles, one
commonality is how their edges are defined. Namely each input or output edge of any
supertile is defined by the same sequence of variable values. Since the edges for each direction
are rotations of each other, we will discuss only the layout of the south side of a supertile.
From left to right, the tiles along the south edge of a supertile will represent a string formed
by the concatenation (in order) of the strings: T+, Bin(Pad(t, S)), 0, Bin(Pad(t, S)), and
T7. Note that ¢ is a constant that depends on the glue complexity of T'.

3.3.1. Type-0 Supertiles (i.e., simulating tiles that attach via two single-strength bonds).
When a tile binds to an assembly in 7 with two input sides whose glues are each single
strength, there are (3) = 6 possible combinations of directions for those input sides: north
and east (NE), north and south (NS), north and west (NW), east and south (ES), east
and west (EW), and south and west (SW). These combinations can be divided into two
categories, those in which the sides are opposite each other (NS and EW), and those in
which the sides are adjacent to each other (NE, NW, ES, and SW).

Opposite Input Sides: Supertiles which represent tile additions with two opposite
input sides, NS and EW, are logically identical to rotations of each other, so here we will
only describe the details of a supertile with NS input sides. Figure 1 shows a detailed image

284 D. DOTY, J.H. LUTZ, M.J. PATITZ, S.M. SUMMERS, AND D. WOODS

Mirror of tiles

on the east side

Look up 7
output glues

Figure 1: NS supertile

depicting the formation of an NS supertile, with arrows giving the direction of growth
for each portion and numbers specifying the order of growth. For ease of discussion and
without loss of generality, we assume that the rows of tiles which form the input sides of
a supertile have fully formed before any other part of the supertile assembles. The first
portions to assemble are the center blocks to the interior of each input side, labeled 1.
This subassembly forms a square in which a series of nondeterministic selections of tile
types is used to generate a random sequence of bits. These bits are propagated to the left
and right sides of the block, to ensure that each side uses the same random bits for the
randomized selection after the sides have been “sealed off” from each other by “probes”
described next. Once that block has completed, a log-width binary subtractor, which is
half the width of the block, assembles. The subtractors from the north and south count
down from a specified value (that depends on 7 and is encoded into the seed supertile) to
0, and shrink in width until they terminate at positions adjacent to the center square of the
block. These subtractors are “probes” that grow to the center where the direction of the
input sides (the type) is detected. It is at this point that the central (black in the figure)
tile can attach. It is this tile which determines the type of the supertile (NS in this case)
because it is unique to the combination of directions from which the inputs came. At this

INTRINSIC UNIVERSALITY IN SELF-ASSEMBLY 285

EID

(e) () (e) (h)

L L L

Figure 2: Intuitive depiction of (a portion of) the self-assembly of a type-0 supertile. Note that
the lookup procedure is performed in (d) and (e).

point, symmetry is broken and two paths of tiles assemble from the center back towards the
north side. They in turn initiate the growth of subassemblies which propagate the value of
the north input pad down towards the South of the supertile. Once that growth nears the
southern side, the two input pads are rotated and brought together, with this combination
of input pads forming an address in the lookup table. In the manner described previously,
this address along with the random bits generated within block 1 (which are also passed
through block 5) is used to form the subassembly of block 6 whose southern row contains a
representation of T7 and results in the correct output pads being represented in the final
column of that block. Note that Figure 1 only shows the details of the east side of the block
since the West side is an identical but rotated version. Finally, subassemblies 7 through
13 form which rotate and pass the necessary information to the locations where it must be
correctly deposited to form the output sides of the supertile. Every side of a supertile that
is not an input side receives an output pad, even if it is for the null glue (in which case it
does not initiate the growth of the input side of a possible adjacent supertile).

References

1. Leonard Adleman, Qi Cheng, Ashish Goel, and Ming-Deh Huang, Running time and program size for
self-assembled squares, STOC ’01: Proceedings of the thirty-third annual ACM Symposium on Theory
of Computing (New York, NY, USA), ACM, 2001, pp. 740-748.

2. J. Albert and K. Culik II, A simple universal cellular automaton and its one-way and totalistic version,
Complex Systems 1 (1987), no. 1, 1-16.

3. Ho-Lin Chen and Ashish Goel, Error free self-assembly with error prone tiles, Proceedings of the 10th
International Meeting on DNA Based Computers, 2004.

4. Erik D. Demaine, Martin L. Demaine, Sdndor P. Fekete, Mashhood Ishaque, Eynat Rafalin, Robert T.
Schweller, and Diane L. Souvaine, Staged self-assembly: nanomanufacture of arbitrary shapes with O(1)
glues, Natural Computing 7 (2008), no. 3, 347-370.

286

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

D. DOTY, J.H. LUTZ, M.J. PATITZ, S.M. SUMMERS, AND D. WOODS

. David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, and Damien Woods, Random num-

ber selection in self-assembly, Proceedings of The Eighth International Conference on Unconventional
Computation (Porta Delgada (Azores), Portugal, September 7-11, 2009), 2009.

. David Doty, Matthew J. Patitz, and Scott M. Summers, Limitations of self-assembly at temperature 1,

Proceedings of The Fifteenth International Meeting on DNA Computing and Molecular Programming
(Fayetteville, Arkansas, USA, June 8-11, 2009), 2009, to appear.

. B. Durand and Zs. Réka, The game of life: universality revisited, Tech. Report 98-01, Laboratoire de

I'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, January 1998.

. Kenichi Fujibayashi, David Yu Zhang, Erik Winfree, and Satoshi Murata, Error suppression mechanisms

for dna tile self-assembly and their simulation, Natural Computing: an international journal 8 (2009),
no. 3, 589-612.

. Grégory Lafitte and Michael Weiss, Universal tilings, STACS (Wolfgang Thomas and Pascal Weil, eds.),

Lecture Notes in Computer Science, vol. 4393, Springer, 2007, pp. 367—-380.

, Simulations between tilings, Tech. report, University of Athens, 2008.

, An almost totally universal tile set, TAMC (Jianer Chen and S. Barry Cooper, eds.), Lecture
Notes in Computer Science, vol. 5532, Springer, 2009, pp. 271-280.

James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, and Scott M. Summers, Computability and complexity
in self-assembly, Proceedings of The Fourth Conference on Computability in Europe (Athens, Greece,
June 15-20, 2008), 2008.

Urmi Majumder, Thomas H LaBean, and John H Reif, Activatable tiles for compact error-resilient
directional assembly, 13th International Meeting on DNA Computing (DNA 13), Memphis, Tennessee,
June 4-8, 2007., 2007.

Maurice Margenstern, Cellular automata in hyperbolic spaces, vol. 1: Theory, Old City Publishing,
Philadelphia, 2007.

Nicolas Ollinger, The intrinsic universality problem of one-dimensional cellular automata, 20th Annual
Symposium on Theoretical Aspects of Computer Science (STACS) (H. Alt and M. Habib, eds.), LNCS,
vol. 2607, Springer, 2003, pp. 632—-641.

, Intrinsically universal cellular automata, Proceedings International Workshop on The Com-
plexity of Simple Programs, Cork, Ireland, 6-7th December 2008 (T. Neary, D. Woods, A.K. Seda, and
N. Murphy, eds.), EPTCS, vol. 1, 2009, arXiv:0906.3213v1 [cs.CC], pp. 199-204.

Mojzesz Presburger, Uber die vollstindigkeit eines gewissen systems der arithmetik ganzer zahlen,
welchem die Addition als einzige Operation hervortritt. Compte Rendus du I. Congrks des Mathe-
maticiens des pays Slavs, Warsaw, 1930, pp. 92-101.

Paul W. K. Rothemund, Theory and experiments in algorithmic self-assembly, Ph.D. thesis, University
of Southern California, December 2001.

Paul W. K. Rothemund and Erik Winfree, The program-size complezity of self-assembled squares (ex-
tended abstract), STOC ’00: Proceedings of the thirty-second annual ACM Symposium on Theory of
Computing (New York, NY, USA), ACM, 2000, pp. 459-468.

Paul W.K. Rothemund, Nick Papadakis, and Erik Winfree, Algorithmic self-assembly of DNA Sierpinski
triangles, PLoS Biology 2 (2004), no. 12, 2041-2053.

Nadrian C. Seeman, Nucleic-acid junctions and lattices, Journal of Theoretical Biology 99 (1982), 237—
247.

David Soloveichik and Erik Winfree, Complexity of compact proofreading for self-assembled patterns,
The eleventh International Meeting on DNA Computing, 2005.

, Complezity of self-assembled shapes, SIAM Journal on Computing 36 (2007), no. 6, 1544-1569.
Thomas LaBean Urmi Majumder, Sudheer Sahu and John H. Reif, Design and simulation of self-
repairing DNA latticesy, DNA Computing: DNA12, Lecture Notes in Computer Science, vol. 4287,
Springer-Verlag, 2006.

Hao Wang, Proving theorems by pattern recognition — II, The Bell System Technical Journal XL (1961),
no. 1, 1-41.

Erik Winfree, Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology, June
1998.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 287-298
www.stacs-conf.org

SPONSORED SEARCH, MARKET EQUILIBRIA, AND THE
HUNGARIAN METHOD

PAUL DUTTING ! AND MONIKA HENZINGER 2 AND INGMAR WEBER **

! Ecole Polytechnique Fédérale de Lausanne, Switzerland
E-mail address: {paul.duetting,monika.henzinger, ingmar.weber}@epfl.ch

2 University of Vienna, Austria
E-mail address: monika.henzinger@univie.ac.at

3 Yahoo! Research Barcelona, Spain
E-mail address: ingmar@yahoo-inc.com

ABSTRACT. Two-sided matching markets play a prominent role in economic theory. A
prime example of such a market is the sponsored search market where n advertisers com-
pete for the assignment of one of k& sponsored search results, also known as “slots”, for
certain keywords they are interested in. Here, as in other markets of that kind, market
equilibria correspond to stable matchings. In this paper, we show how to modify Kuhn’s
Hungarian Method (Kuhn, 1955) so that it finds an optimal stable matching between ad-
vertisers and advertising slots in settings with generalized linear utilities, per-bidder-item
reserve prices, and per-bidder-item maximum prices. The only algorithm for this problem
presented so far (Aggarwal et al., 2009) requires the market to be in “general position”.
We do not make this assumption.

1. Introduction

Two-sided matching markets play a prominent role in economic theory. A prime ex-
ample of such a market is the sponsored search market [14] where n advertisers (or bidders)
compete for the assignment of one of k£ sponsored search results, also known as “slots”, for
certain keywords (or items) they are interested in. Here, as in other markets of that kind,
market equilibria correspond to stable matchings. A stable matching that is preferred by
all bidders over all other stable matchings is bidder optimal. Mechanisms that compute
bidder optimal matchings typically provide the bidders with the incentive to reveal their
true preferences, i.e., they are truthful.

In the most basic model of a two-sided matching market, known as the stable marriage
problem [9], each bidder has a strict preference ordering over the items and each item has
a strict preference ordering over the bidders. In a more general model, see e.g. [16], each
bidder has a linear utility function for each item that depends on the price of the item and

1998 ACM Subject Classification: F.2.2 (Nonnumerical Algorithms and Problems).
Key words and phrases: stable matching, envy-free allocation, general auction mechanism, general position.
This work was conducted as part of a EURYI scheme award (see http://www.esf.org/euryi/).

ASPECTS
T OF COMPUTER
SCIENCE ©

SYMPOSIUM
ﬁvr_ ON THEORETICAL
- P. Ditting, M. Henzinger, and |. Weber
© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2463

288 P. DUTTING, M. HENZINGER, AND I. WEBER

every item can have a reserve price, i.e., a price under which the item cannot be sold to any
bidder. In the even stronger model that we study here every bidder-item pair can have a
reserve price, i.e., a price under which the item cannot be sold to this specific bidder, and a
maximum price, i.e., a price above which this bidder does not want to buy this specific item.
We call this model the sponsored search market. An interesting property of this model is
that it generalizes standard auction formats such as VCG [17, 4, 10] and GSP [7].

While the problem of finding a bidder optimal matching in the first two models has
been largely solved in the 60s, 70s, and 80s [9, 16, 5, 15], the problem of finding a bidder
optimal matching in the sponsored search market has been addressed only recently [2].

The main finding of [2] is that if the market is in “general position”, then (a) there is
a unique bidder optimal matching and (b) it can be found in O(nk?) steps by a truthful
mechanism. For a market to be in “general position”, however, any two reserve prices
and /or maximum prices must be distinct. In practice, this will rarely be the case and
so we typically have to deal with markets that are not in general position. The authors
of [2] propose to bring such markets into “general position” using random perturbations
and/or symbolic tie-breaking. The problem with this approach, however, is that there is no
guarantee that a bidder optimal solution of the perturbed market leads to a bidder optimal
solution of the original market. In fact, such a solution may not even exist (see Section 3).
Additionally, a pertubation-based mechanism may not be truthful.

We improve upon the results of [2] as follows: First, in Section 3, we show how to
modify the definition of stability so that a bidder optimal matching is guaranteed to exist for
arbitrary markets. Then, in Section 5, 6, and 7, we show how to modify Kuhn’s Hungarian
Method [13, 8] so that it finds a bidder optimal matching in time O(nk?log(k)). Afterwards,
in Section 8, we show that with our notion of stability bidder optimality no longer implies
truthfulness, unless further restrictions are imposed on the model. Finally, in Section 9, we
show how to reduce more general linear utility functions to our setting.!

Independently of us Ashlagi et al. [3] also improved upon the results of [2] by (a)
showing the existence of a unique feasible, envy free, and Pareto efficient solution for position
auctions with budgets and by (b) providing a truthful mechanism that finds it. The notion
of envy-freeness is equivalent to our notion of stability. Their model, however, is a special
case of our model as it requires a common preference ordering over the items, it does not
incorporate reserve prices, it does not allow the maximum prices to depend on the bidder
and the item, and it requires the maximum prices to be distinct.

Recently, Kempe et al. [12] presented an efficient algorithm that finds the minimum
envy-free prices (if they exist) for a given matching.

To summarize our main contributions are: (1) We show how to modify the Hungarian
Method so that it finds a bidder optimal solution for arbitrary markets, including markets
that are not in “general position”. (2) We show how different definitions of stability affect
the existence of a bidder optimal solution. (3) We show how to reduce more general linear
utility functions to the setting that we study in this paper with no loss in performance.

2. Problem Statement

We are given a set I of n bidders and a set J of k items. We use letter ¢ to denote a
bidder and letter j to denote an item. For each bidder ¢ and item j we are given a valuation

IThese utilities can be used to model that the click probability in the pay-per-click model has a bidder-
dependent component ¢; and an item-dependent component ¢;. See [1, 7] for details.

SPONSORED SEARCH, MARKET EQUILIBRIA, AND THE HUNGARIAN METHOD 289

v 4, a reserve price r;;, and a maximum price m; ;. We assume that the set of items .J
contains a dummy item jo for which all bidders have a valuation of zero, a reserve price of
zero, and a maximum price of co.?

We want to compute a matching u C I x J and per-item prices p = (p1,...,px). We
require that every bidder i appears in exactly one bidder-item pair (i, j) € p and that every
non-dummy item j # jo appears in at most one such pair. We allow the dummy item jg to
appear more than once. We call bidders (items) that are not matched to any non-dummy
item (bidder) unmatched. We regard the dummy item as unmatched.

We define the utility u; of bidder i to be u; = 0 if bidder 4 is unmatched and u; = u; j(p;)
if bidder 4 is matched to item j at price p;. We set u; j(p;) = vi; — p; if pj < m;; and
ui j(pj) = —oo if p; > m; ;. We say that a matching p with prices p is feasible if (1) u; > 0
for all 4, (2) pj, = 0 and p; > 0 for all j # jo, and (3) 75 ; < p; < m;; for all (¢,7) € p. We
say that a feasible matching p with prices p is stable if u; > u; ;j(p;) for all (i,5) € I x J.2
Finally, we say that a stable matching p with prices p is bidder optimal if u; > u} for all
and stable matchings p’ with prices p'.

We say that an algorithm is truthful if for every bidder ¢ with utility functions w; 1(-),. ..,
u; k(+) and any two inputs (u; ;(-), i, m; ;) and (uf;(-), 75, m; J) with w; ;() = u;,;(-) for i
and all j and wj ;(-) = ug ;(-) for k # i and all j and matchings y’ with p’ and u” with p” we
have that u;j () > wi j»(pjs) where (4, j) € p and (i,7") € p". This definition formalizes
the notion that “lying does not pay off” as follows: Even if bidder ¢ claims that his utility
is u! i ; instead of u;; he will not achieve a higher utility with the prices and the matching
computed by the algorithm. Thus, the algorithm “encourages truthfulness”.

3. Motivation

The definition of stability in [2], which we call relazed stability to indicate that every
stable solution is also relaxed stable (but not vice versa), requires that for every pair (i, j) €
I'xJ either (a) u; > v; j—max(pj,7; ;) or (b) p; > m; ;. The disadvantage of relaxed stability
is that there can be situations where no bidder optimal solution exists if the market is not
n “general position” (see [2] for a formal definition). Here are two canonical examples:

e Fxample 1. There are three bidders and two items. The valuations and reserve prices
are as follows: V1,1 = 1, V21 = 4, V22 = 4, V32 = 1, 1= O, 2,1 =722 = 2, and 32 = 0.
While p = {(1,1),(2,2)} with p = (0,2) is “best” for bidder 1, u = {(2,1),(3,2)} with
p=(2,0) is “best” for bidder 3.

o Fxample 2. There are two bidders and one item. The valuations and maximum prices
are as follows: vy 1 = 10, vo1 = 10, and my 1 = mo1 = 5. While pp = {(1,1)} withp; =5
is “best” for bidder 1, = {(2,1)} with p; =5 is “best” for bidder 2.

In the market of the first example no bidder optimal solution exists as long as there
exists a bidder that has the same utility functions and reserve prices for two items and two
other bidders that are only interested in one of the items. In the market of the second
example no bidder optimal solution exists as long as both bidders have the same maximum
price and a non-zero utility at the maximum price. Since these cases are quite general, we
conjecture that they occur rather frequently in practice.

2Reserve utilities, or outside options o;, can be incorporated by setting v;, j, = o0; for all bidders 3.
3Since we have u; > 0 and us,j(pj) = —oo if p; > my ;, this definition is equivalent to requiring u; >
v;,; — pj for all items j with p; < my ;.

290 P. DUTTING, M. HENZINGER, AND I. WEBER

1 @0 0 @-L0 5 0

4,2 0 4,2 2 10,5 10,5 — matched
2 2 5 5

4,2 2 4,2 0 0.5 0.5 —— unmatched
0079 1 &7 0 0 ’

Figure 1: The left two graphs illustrate Example 1. The right two graphs illustrate Example
2. Bidders are on the left side, items on the right side of the bipartite graph. The
numbers next to the bidder indicate her utility, the numbers next to the item
indicate its price. The labels along the edge show valuations and reserve prices
for the left two graphs and valuations and maximum prices for the right two
graphs. With relaxed stability a bidder optimal matching does not exist.

With our notion of stability a bidder optimal solution is guaranteed to exist (e.g. p =
{(2,1)} with p; = po = 2 in Example 1 and p = () with p; = 5 in Example 2) for all kinds
of markets, including markets that are not in general position.

4. Preliminaries

We define the first choice graph G, = (I U J, F},) at prices p as follows: There is one
node per bidder i, one node per item j, and an edge from ¢ to j if and only if item j gives
bidder ¢ the highest utility possible, i.e., u; ;(p;) > u; j(pjr) for all j'. For i € I we define
F,(i) ={j : 3 (i,j) € Fp} and similarly F,,(j) = {i: 3 (4,5) € F,}. Analogously, for T C I
we define F,(T') = UjerFp(i) and for S C J we define Fj,(S) = UjesF,(j). Note that (1)
pj < m;; for all (i,7) € F), and (2) if the matching p with prices p is stable then p C F),.

We define the feasible first choice graph G’p = (ITUJ, Fp) at prices p as follows: There
is one node per bidder ¢, one node per item j, and an edge from ¢ to j if and only if
item j gives bidder i the highest utility possible, i.e., u;j(p;) > u; j(pjr) for all j/, and
p; > ri;. Note that F, C F,,. For i € I we define Fy,(i) = {j : 3 (4,j) € F,} and similarly
Fy(j) = {i - 3 (i,5) € E,}. Analogously, for T C I we define F,(T) = U;erF,(i) and for
S C J we define E,(S) = UjesFy(i). Note that (1) r;; < p; < my; for all (4,5) € F, and
(2) the matching p with prices p is stable if and only if u C Fp. Also note that the edges in
F,(i) \ E,(i) are all the edges (i, j) with maximum u; ;(p;) but p; < r; ;.

We define an alternating path is a sequence of edges in ﬁ’p that alternates between
matched and unmatched edges. We require that all but the last item on the path are non-
dummy items. The last item can (but does not have to) be the dummy item. A tree in the
feasible first choice graph ép is an alternating tree rooted at bidder ¢ if all paths from its
root to a leaf are alternating paths that either end with the dummy item, an unmatched
item, or a bidder whose feasible first choice items are all contained in the tree. We say that
an alternating tree with root i is mazimal if it is the largest such tree. See Figure 2 for an
example.

5. Algorithm

Our algorithm starts with an empty matching and prices all zero. It then matches one
bidder after the other by augmenting the current matching along an alternating path. If
there is no such path, it repeatedly raises the price of all items in the maximal alternating

SPONSORED SEARCH, MARKET EQUILIBRIA, AND THE HUNGARIAN METHOD 291

7;1 il —

; RN — inpuNk,

() . .

. J1 J2 .

& I I in F,

7:4 22 Z3 - _ 111 Fp \ Fp
NN . |

) J3 Ja J5 Jo Jo dummy item
6

Figure 2: The graph on the left is the (feasible) first choice graph. The bidders i1 to ig are
on the left. The items j; to js are on the right. The dummy item is jo. Edges in
wn Fp are thick. Edges in Fp are thin. Edges in F}, \ Fp are dashed. The graph
on the right is a maximal alternating tree rooted at ;.

tree under consideration by the minimum amount (a) to make some item j ¢ F),(7) desirable
for some bidder i in the tree, or (b) to make some item j € F,(i) \ E,(i) feasible for some
bidder i in the tree, or (¢) to make some item j € Fp(i) no longer desirable for some bidder i
in the tree. Thus it ensures that eventually an alternating path will exist and the matching
can be augmented. Note that a matched bidder ¢ can become unmatched if the price of the
item j she is matched to reaches m; ;. Case (a) corresponds to dyyt, Case (b) corresponds
to dres, and Case (c¢) corresponds to dmax in the pseudocode below.

Modified Hungarian Method

1 set pj := 0 for all j € J, u; := maxj v; j for all ¢ € I, and p := 0,
2 while 3 unmatched bidder ¢ do

3 find a maximal alternating tree rooted at bidder ¢ in Gp

4 let T and S be the set of bidders and items in this tree

5 while all items j € S are matched and jy € S do

6 compute § := min(dgyt, dres, dmax) where

7 Sout, = Minier jgr, i) (Wi +pj = vij) *

8 Ores = Miler jepo i\ iy) (g = P3)

9 dmax = Miler jeF,) (Mij — Pj)

10 update prices, utilities, and matching by setting

11 pj :=p;j +0 for all j € F,(T) \\ leads to a new graph G,
12 w; :=maxj (v; j» — p;) for all i € 1

13 woi=pn Fp \\ removes unfeasible edges from

14 find a maximal alternating tree rooted at bidder 7 in Gp

15 let T and S be the set of bidders and items in this tree

16 end while

17 augment p along alternating path rooted at i in ép

18 end while
19 output p, u, and p

4We need to define miner jep(...) = 00 as we might have F,(I) = J or Fj(i) \ Fp(i) = 0.

292 P. DUTTING, M. HENZINGER, AND I. WEBER

6. Feasibility and Stability

Theorem 6.1. The Modified HM finds a feasible and stable matching. It can be implemented
to run in O(nk3log(k)).

Proof. The matching p constructed by the Modified HM is a subset of the feasible first
choice graph G, at all times. Hence it suffices to show that after O(nk®log(k)) steps all
bidders are matched.

The algorithm consists of two nested loops. We analyze the running time in two steps:
(1) The time spent in the outer loop without the inner loop (ll. 2-4 and 17-18) and (2)
the time spent in the inner loop (1l. 5-16). Note that after each execution of the outer
while loop the number of matched bidder increases by one. A matched bidder ¢ can only
become unmatched if the price of the item j she is matched to reaches m; ;. This can happen
only once for each pair (i,7), which implies that each bidder can become at most k times
unmatched. Thus, the outer loop is executed at most nk times. Since |S| < k, it follows
that |T'| < k. Thus it is straightforward to implement the outer while loop in time O(k?).

We call an execution of the inner while loop special if (a) right before the start of
the execution the outer while loop was executed, (b) in the previous iteration of the inner
while loop the maximum price of a pair (i,j) was reached, or (c) the reserve price of a
pair (i,j) was reached. As each of these cases can happen at most nk times, there are
at most 3nk special executions of the inner while loop. Non-special executions increase
the number of items in the maximal alternating tree by at least one. Thus there are at
most k non-special executions between any two consecutive special executions. We present
next a data structure that (1) can be built in time O(k?) and (2) allows to implement all
non-special executions of the inner while loop between two consecutive special iterations in
time O(k?log k). Thus the total time of the algorithm is O(nk?log k).

Data structure:

(1) Keep a list of all bidders in 7" and a bit vector of length n where bit 7 is set to 1 if bidder
17 belongs currently to 7" and to 0 otherwise. Keep a list of all items in .S and bit vector
of length k, where bit j is set of 1 if item j belongs currently to S and to 0 otherwise.
Finally also keep a list and a bit vector of length k representing all items in F,(T).

(2) Keep a heap Hg,t and a value 0y, such that Hqt stores x; + p; — v; ; for all pairs
(t,7) with 4 € T and j & F,(i) and 6oyt + 2; equals u; for every i € T. Keep a heap
Hres and a value dres, such that Hreg stores 7 ; — y; for all pairs (4, j) with ¢ € 7" and
j € Fy(i) \ F,(i) and dres + yj equals p; for every j € F, (i) \ F,(i). Keep a heap Hmax
and a value dmax, such that Hmax stores m; ;j — y; for all pairs (4,7) with i € T' and
J € F,(i) and dmax + y; equals p; for every j € F,(i).

(3) We also store at each bidder i its current u;, at each item j its current p;. Thus given a
pair (i,7) we can decide in constant time whether u; = v; ; — pj, i.e., whether j € Fj,(4).
Finally we keep a list of edges in p.

At the beginning of each special execution of the inner while loop a list of bidders and
items currently in 7" and S are passed in either from the preceding execution of the outer
while loop (where T and S are constructed in time O(k?)) or from the previous execution
of the inner while loop. Recall that |S| < k and thus |T'| < k. Thus we can build the above
data structures from scratch in time O(k?) as follows. To initialize the bit vector for T we
use the following approach: At the beginning of the algorithm the vector is once initialized

SPONSORED SEARCH, MARKET EQUILIBRIA, AND THE HUNGARIAN METHOD 293

to 0, taking time O(n). Then at the beginning of all but the first special execution of the
inner while loop the bit vector is “cleaned” by setting the bit of all elements of T' in the
previous iteration to 0 using the list of elements of T of the previous iteration. Then the
list of elements currently in 7" is used to set the appropriate bits to 1. This takes time
O(k) per special execution. The bit vector of items in S has only k entries and thus is
simply initialized to 0 at the beginning of each special execution. Then the list of elements
currently in S is used to set the appropriate bits to 1. Given the list of bidders in T" we
decide in constant time for each pair (i,j) with ¢ € T into which heap(s) its appropriate
values should be inserted. If j € Fj,(i) we also add j to F,(T) if it is not already in this set
update the bit vector and the list. When we have processed all pairs (i,j) with ¢ € T' we
build the three heaps in time linear in their size such that all ¢ values are 0. Since |S| =k
we know that |T'| = k. Thus, the initialization takes time O(k?).

To implement each iteration of the inner while loop we first perform a find-min operation
on all three heaps to determine 4. Then we remove all heap values that equal §. Afterwards
we update the price of all items in F},(T") using the list of F,(T"). We also update the utility
of all items in T as follows. If § # dmax updating the utilities is just a simple subtraction
per bidder. If 6 = dmax, i.e., pj becomes m; ; for some pair (4, j), then updating u; requires
computing v; ; — p; for all j and potentially removing the edge (4, j) from p, which in turn
might cut a branch of the alternating tree. Thus, in this case we completely rebuild the
alternating tree, including S, T', and F,(T") from scratch. Note however that this can only
happen in a special execution of the inner while loop. If § # dmax the elements removed
from the heaps tell us which new edges are added to F,(T') and which new items to add
to F,(T). The new items in F,(T') gives a set of items from which we start to augment
the alternating tree in breadth first manner. For each new item j, we add to F,(T) the
bidder it is matched to as new bidder to S and to FP(T). For each new bidder ¢ added to
F,(T) we spend time O(k) to determine its adjacent edges in Fp(i) and insert the suitable
values for the pairs (i, j) into the three heaps. This process repeats until no new items and
no new bidders are added to Fj,(i). During this traversal we also update the bit vectors
and lists representing 7', S, and Fj,(T). Let Thew be the set of bidders added to T" during
an execution of the inner while loop and let r be the number of elements removed from
the heaps during the execution. Then the above data structures implement the inner while
loop in time O(r * logk + |Thew| * k.) Now note that during a sequence of non-special
executions of the inner while loop between two consecutive special executions bidders are
never removed from T and each (i,7) pair with ¢ € T is added (and thus also removed)
at most once from each heap. Thus the total number of heap removals during all such
non-special executions is 3k? and the total number of elements added to T is k, giving a
total running time of O(k? log k) for all such non-special executions. Since there are at most
3nk special executions, the total time for all inner while loops is O(nk?log k). [

7. Bidder Optimality
Theorem 7.1. The Modified HM finds a bidder optimal matching in O(nk3log(k)) steps.

We say that a (possibly empty) set S C J is strictly overdemanded for prices p wrt
T CIif(i) F(T) € Sand (i) VRC Sand R#0: |F,(R)NT| > |R|. Using Hall’s
Theorem [11] one can show that a feasible and stable matching exists for given prices p if
and only if there is no strictly overdemanded set of items S in Fp.

294 P. DUTTING, M. HENZINGER, AND I. WEBER

The proof strategy is as follows: In Lemma 7.2 we show that a feasible and stable
matching p with prices p is bidder optimal if we have that p; < p;» for all items j and all
feasible and stable matchings u/ with prices p’. Afterwards, in Lemma 7.3, we establish a
lower bound on the price increase of strictly overdemanded items. Finally, in Lemma 7.4 we
argue that whenever the Modified HM updates the prices it updates the prices according
to Lemma 7.3. This completes the proof.

Lemma 7.2. If the matching p with prices p is stable and p; < p;- for all j and all stable
matchings ' with prices p’, then the matching p with prices p is bidder optimal.

Proof. For a contradiction suppose that there exists a feasible and stable matching p/ with
prices p’ such that u, > u; for some bidder i. Let j be the item that bidder ¢ is matched
to in p and let j' be the item that bidder i is matched to in x'. Since py < pl, and

Pl < myj we have that u;j(pj) = v;j — py. Since the matching p with prices p is
stable we have that w; = u;;(p;) = vij —p; > wij/(py) = vij — pjyr. It follows that
w, = v; —p;-, > u; = v j —p;j > v;j — pjo and, thus, p;, < p;r. This gives a contradiction. m

Lemma 7.3. Given p = (p1,...,px) let u; = max;u; ;(p;) for all i. Suppose that S C J is
strictly overdemanded for prices p with respect to T C I and let § = min(6 ¢, dres, Imaz)s
where 6 oy = Minjer jgr, (i) (Ui +Pj — Vij), Ores = Wil e g)\ Fy (1) (rij —pj), and dmax =
min;er jer, i) (Mij — pj). Then, for any stable matching y' with prices p" with p); > p; for
all j, we have that p; > p; + 0 for all j € F(T).

Proof. We prove the claim in two steps. In the first step, we show that p;» > pj + 6 for all
j € F,(T). In the second step, we show that P > pj+ 6 forall j € Fp(T)\ Ey(T).

Step 1. Consider ‘d}e set of items A = {j € F,(T) | Vk € E,(T) : P —pj < pp—pi} and
the set of bidders B = F,(A)NT. Assume by C?ntradiction that ¢’ = min, Fo(T) (P —pj) <.
We show that this implies that |B| > |A| > |F,y(B)|, which gives a contradiction.

The set of items S is strictly overdemanded for prices p wrt to 7" and A. Thus, since
AC Sand A #0, |B| =|F,(A) NT| > |A|. Next we show that A O F,/(B) and, thus,
|A| > |F,y(B)|. It suffices to show that F},(i)\ A = 0 for all bidders ¢ € B. For a contradiction
suppose that there exists a bidder i € B and an item k € Fj, (i) \ A. Recall that we must
have (1) wi (D)) = 0, (2) wik(p)) > wip(py) for all &', and (3) pr > 75 5. Recall also that
(1)~(3) imply that r;; < p) < m;) and so u; ,(p)) = Uik — Dl

We know that there exists j € A such that j € F,(i). Since j € A we have that p;- <
pj+6 < mjj and so u; ;(p}) = vij —p;. Thus, since k € Fp/(i), ik — P}, > vij —p;. Finally,
since j € Fp(i) and py, < pj, < my i, we have that u; ;(p;) = vij — pj > Ui k(Pk) = Vi — Dk-

Case 1: k € J\ F,(B). Since 0 < dgyut < u; + pi — v and u; = v; j — p; we have that
d < w;j — pj + Pk — Vi k. Rearranging this gives v; ;, — pr, + 6 < v;; — pj. Since p) > pj, and
pj > p; — ¢ this implies that v;j, — pj, < v;; — pj. Contradiction!

Case 2: k € F(B) \FP(B). If pj, — pr < pjj —p;j = &' then p) < pp + & < pg + 0. Since
6 < dres < 7 — Pk this implies that pj < r; . Contradiction! Otherwise, pj, —px > pj —p;.
Since v; ; — pj > Uik — Pk this implies that v; j — p; > v; — pj,. Contradiction!

Case 3: k € Fp(B)\ A. Since j € A and k ¢ A we have that pj —px > 0’ = p; — p;.
Since v;j — p;j > i — p this implies that v; j — p’ > v; , — pj,. Contradiction!

SPONSORED SEARCH, MARKET EQUILIBRIA, AND THE HUNGARIAN METHOD 295

Step 2. Con~sider an arbitrary item j € F,(T') \ Fp(T) such that p;» —p; < p;-, — pj for
all j/ € F,(T)\ F,(T) and a bidder ¢ € T such that j € F,(i). Assume by contradiction that
&' = p; — pj < d. We show that this implies that F, (i) = 0, which gives a contradiction.

First observe that ¢’ < 6§ < dres < r;; — p; and, thus, p;- < pj + 6 < r; 4, which shows
that j & Fp/ (7). Next consider an arbitrary item k # j. For a contradiction suppose that
k € Fy(i). It follows that r; < pp < m;, and u;k(p),) = vik — P, > wij(P})-

Since p; = pj + ' < pj + 3 < m;; we have that u; ;(p}) = vij — pj and so v; x — pj,
Vij — p;-. Finally, since j € F,(i) and py < p;, < m;y, we have that u; ;(p;) = vij — pj
;i k(Pk) = Vik — Dk

Case 1: k € J\ Fy(T). Since § < dgut < ui + pr — vip and u; = v; j — p; we have that
0 < v j — pj + Pk — Vi ;. Rearranging this gives v; 1, — pr, + 6 < v;; — pj. Since p). > py, and
pj > p; — ¢ this implies that v, — pj, < v;; — pj. Contradiction!

Case 2: k € Fy(T)\ F,(T). If pl, — py < P —pj = ¢ then py < pg + 0" < pg + d. Since
6 < dres < 7 — P this implies that pj < r; . Contradiction! Otherwise, pj, —py. > pj; —p;.
Since v;; — pj > v — p this implies that v; j — p}; > v;x — pj,. Contradiction!

Case 3: k € F,(T). From Step 1 we know that Py — Pk > 6 > & = pj — pj. Since
Vij — Pj > Vi — Pk this implies that v; ; — p}; > v — pj,. Contradiction! n

>
>

Lemma 7.4. Let p be the prices computed by the Modified HM. Then for any stable matching
" with prices p' we have that pj < p’; for all j.

Proof. We prove the claim by induction over the price updates. Let p' denote the prices
after the t-th price update.

For t = 0 the claim follows from the fact that p' = 0 and p;- > 0 for all items j and all
feasible matchings ' with prices p'.

For t > 0 assume that the claim is true for t — 1. Let S be the set of items and let T be
the set of bidders considered by the matching mechanism for the ¢-th price update. We claim
that S is strictly overdemanded for prices p'~! wrt to T. This is true because: (1) S and T
are defined as the set of items resp. bidders in a maximal alternating tree and, thus, there
are no edges in Fpt—l from bidders in T to items in J \ S which shows that Fpt—l(T) CS.
(2) For all subsets R C S and R # () the number of “neighbors” in the alternating tree
under consideration is strictly larger than |R| which shows that ‘Fpt—l(R) NT| > |R|. By
the induction hypothesis p;- > pzfl for all items j € J and, thus, Lemma 7.3 shows that
p;» > pzfl + 0 for all items j € F-1(t). The Modified HM sets pg- = p;*l + ¢ for all items
J € Fp—1(T) and pz» = p;_l for all items j ¢ F,i1(T') and so p}; > pz» for all items j € J. m

8. Truthfulness

The following example shows that with our notion of stability bidder optimality no
longer implies truthfulness, even if (i) there are no reserve prices, i.e., r; ; = 0 for all ¢ and
J, (ii) maximum prices depend only on the item, i.e., for all i there exists a constant m;
such that m; ; = m; for all j, and (iii) no two bidders have the same maximum price, i.e.,
m; 7% my, for any two bidders ¢ # k. More specifically, it shows that a bidder can improve her
utility by lying about the valuation of a single item. Since the bidder optimal utilities are
uniquely defined, this shows that no mechanism that computes a bidder optimal matching
u with prices p can be truthful. Note that if (i) to (iii) hold and there exists constants

296 P. DUTTING, M. HENZINGER, AND I. WEBER

ap > -+ > o and vyq,...,v such that v; ; = v; - o for all i and j, then Ashlagi et al. [3]
show the existence of a truthful mechanism.

= matched

—— unmatched

Figure 3: Bidders are on the left and items are on the right. The numbers next to the
bidders indicate their utilities. The numbers next to the items indicate their
prices. The labels along the edges show valuations and maximum prices. The
graph on the left depicts the bidder optimal matching for the “true” valuations.
The graph on the right depicts the bidder optimal matching for the “falsified”
valuations. Specifically, in the matching on the right bidder 2 misreports her
valuation for item 1. This gives her a strictly higher utility, and shows that lying
“pays off”.

9. Generalized Linear Utilities

The following theorem generalizes our results to utilities of the form w; j(p;) = v;j —
¢ - ¢j - pj for p; < my; and wu; ;j(pj) = —oo otherwise. This reduction does not work if
wi j(pj) = vij — ¢ j - pj for pj < my; and w; j(p;) = —oo otherwise. We prove the existence
of a bidder optimal solution for more general utilities in [6].

Theorem 9.1. The matching [i with prices p is bidder optimal for 0 = (0;;), 7 = (7i;),
m = (M, ;) and utilities u; j(pj) = vij — ¢ - ¢j - p; if pj < my; and u; j(p;) = —oo otherwise
if and only if the matching p with prices p, where p = i and p = (c; - p;), is bidder optimal
forv=(0;;/c;), = (¢j - Tij), m = (¢ - m;;) and utilities u; j(p;) = vi; — pj if pj < My j
and u; j(pj) = —oo otherwise.

Proof. Since p; < 1 ; if and only if p < m;; we have that 4;;(p;) = ¢ - ui;(p;). Since
[= p this implies that 4; = ¢; - u; for all <.

Feasibility. Since ¢; > 0 for all i we have that @; > 0 for all ¢ if and only if u; = u;/¢; > 0
for all i. Since ¢; > 0 for all ¢ we have that p; > 0 for all j if and only if p; = ¢; - p; > 0 for
all j. Since p = fi and 7 ; = ¢j - 7 j, p; = ¢ - Pj, and m; ; = ¢; - ™, j for all ¢ and j we have
that f@j < ﬁj < TAnZ‘J' for all (Z,j) € [if and only if ri; < pj<mg; for all (Z,j) € u.

Stability. 1f i with p is stable then p with p is stable because uw; = ¢; - 4; > ¢; -
Ui j(Pj) = u;j(pj) for all ¢ and j. If g with p is stable then i with p is stable because
’Ili = ui/ci > uiJ(pj)/CZ‘ = ﬁi,j(ﬁj) for all 7 and j

Bidder Optimality. For a contraction suppose that j with p is bidder optimal but u
with p is not. Then there must be a feasible and stable matching p/ with p’ such that
w, > u; for at least one bidder i. By transforming p/ with p’ into /i’ with p’ we get a feasible
and stable matching for which @ = ¢; - u} > ¢; - u; = 4;. Contradiction!

SPONSORED SEARCH, MARKET EQUILIBRIA, AND THE HUNGARIAN METHOD 297

For a contraction suppose that p with p is bidder optimal but f with p is not. Then

there must be a feasible and stable matching 4’ with p’ such that @, > 4, for at least one
bidder i. By transforming /i’ with p’ into 4’ with p’ we get a feasible and stable matching

for which] = @} /¢; > 4;/c; = u;. Contradiction! n
References
[1] G. Aggarwal, A. Goel, and R. Motwani. Truthful auctions for pricing search keywords. Proceedings of
the Conference on Electronic Commerce, pages 1-7, 2006.
[2] G. Aggarwal, S. Muthukrishnan, D. P4l, and M. P4al. General auction mechanism for search advertising.
Proceedings of the World Wide Web Conference, pages 241-250, 2009.
[3] I. Ashlagi, M. Braverman, A. Hassidim, R. Lavi, and M. Tennenholtz. Position auctions with budgets:
Existence and uniqueness. Working Paper, 2009.
[4] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17-33, 1971.
[5] G. Demange, D. Gale, and M. Sotomayor. Multi-item auctions. Political Economy, 94(4):863-72, 1986.
[6] P. Diitting, M. Henzinger, and I. Weber. Bidder optimal assignments for general utilities. Proceedings
of the Workshop on Internet and Network Economics, pages 575582, 2009.
[7] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the generalized second price
auction: Selling billions of dollars worth of keywords. American Economic Review, 97(1):242-259, 2007.
[8] A. Frank. On Kuhn’s Hungarian Method. Naval Research Logistics, 51:2-5, 2004.
[9] D. Gale and L. S. Shapley. College admissions and the stability of marriage. American Mathematical
Monthly, 69:9-15, 1962.
[10] T. Groves. Incentives in teams. Econometrica, 41:617-631, 1973.
[11] P. Hall. On representatives of subsets. London Mathematical Society, 10:26-30, 1935.
[12] D. Kempe, A. Mu’alem, and M. Salek. Envy-free allocations for budgeted bidders. Proceedings of the
Workshop on Internet and Network Economics, pages 537-544, 2009.
[13] H. W. Kuhn. The Hungarian Method for the assignment problem. Naval Research Logistics, 2:83-97,
1955.
[14] S. Lahaie, D. M. Pennock, A. Saberi, and R. V. Vohra. Algorithmic Game Theory, chapter 28, pages
699-716. Cambridge University Press, 2007.
[15] A. E. Roth and M. Sotomayor. Two-sided matching: A study in game-theoretic modeling and analyis.
Cambridge University Press, 1990.
[16] L. S. Shapley and M. Shubik. The assignment game: The core I. Game Theory, 29:111-130, 1972.
[17] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Finance, 16:8-27, 1961.

298 P. DUTTING, M. HENZINGER, AND I. WEBER

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 299-310
www.stacs-conf.org

DISPERSION IN UNIT DISKS

ADRIAN DUMITRESCU! AND MINGHUI JIANG ?

! Department of Computer Science, University of Wisconsin-Milwaukee, WI 53201-0784, USA
E-mail address: ad@cs.uwm.edu

2 Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA
E-mail address: mjiang@cc.usu.edu

ABSTRACT. We present two new approximation algorithms with (improved) constant ra-
tios for selecting n points in n unit disks such that the minimum pairwise distance among
the points is maximized.

(I) A very simple O(nlogn)-time algorithm with ratio 0.5110 for disjoint unit disks. In
combination with an algorithm of Cabello [3], it yields a O(n?)-time algorithm with ratio
of 0.4487 for dispersion in n not necessarily disjoint unit disks.

(II) A more sophisticated LP-based algorithm with ratio 0.6495 for disjoint unit disks
that uses a linear number of variables and constraints, and runs in polynomial time. The
algorithm introduces a novel technique which combines linear programming and projections
for approximating distances.

The previous best approximation ratio for disjoint unit disks was % Our results give a
partial answer to an open question raised by Cabello [3], who asked whether % could be
improved.

1. Introduction

Let R be a family of n subsets of a metric space. The problem of dispersion in R is
that of selecting n points, one in each subset, such that the minimum inter-point distance is
maximized. This dispersion problem was introduced by Fiala et al. [6] as “systems of distant
representatives”, generalizing the classic problem “systems of distinct representatives”. An
especially interesting version of the dispersion problem, which has natural applications to
wireless networking and map labeling, is in a geometric setting where R is a set of unit
disks in the plane.

Fiala et al. [6] showed that dispersion in (not necessarily disjoint) unit disks is NP-hard.
It is not difficult to modify their construction, which gives a reduction from Planar-3SAT,
to show that dispersion in disjoint unit disks is also NP-hard. Moreover, by a slackness
argument [7, 8], the same construction also implies that the problem is APX-hard; i.e, unless

1998 ACM Subject Classification: F.2.2 Geometrical problems and computations.

Key words and phrases: Dispersion problem, linear programming, approximation algorithm.

Adrian Dumitrescu was supported in part by NSF CAREER grant CCF-0444188; part of the research by
this author was done at Ecole Polytechnique Fédérale de Lausanne. Minghui Jiang was supported in part
by NSF grant DBI-0743670.

ASPECTS

S1 S%iagEPUTER © Adrian Dumitrescu and Minghui Jiang
@ Creative Commons Attribution-NoDerivs License

K SYMPOSIUM
mvr_ ON THEORETICAL
-

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2464

300 ADRIAN DUMITRESCU AND MINGHUI JIANG

P = NP, the problem does not admit any polynomial-time approximation scheme. On the
positive side, Cabello [3] presented a quadratic-time approximation algorithm with ratio
0.4465...(1/2.2393...) for dispersion in not necessarily disjoint unit disks. For dispersion
in disjoint unit disks, Cabello [3] noticed that a naive algorithm called CENTERS, which
simply selects the centers of the given disks as the points, gives a %—approximation.

We first introduce some preliminaries. For two points, p = (2, yp) and ¢ = (24, yq), let
Ipq| denote the Euclidean distance between them: [pg| = \/(zp — z¢)2 + (yp — yq)?- A unit
disk is a disk of radius one. Let the distance between two disks be the distance between
their centers; e.g., the distance between two tangent disks is 2. Let D be a set of n disjoint
unit disks in the plane. Let § be the minimum pairwise distance of the disks in D; clearly
0 > 2. The algorithm CENTERS, by the obvious inequalities APX > § and OPT < § + 2,
achieves an approximation ratio

APX 0 1

s T >

OPT — 042~ 2
Observe that the approximation ratio of CENTERS gets better as & increases; in fact, it
can get arbitrarily close to 1, if § is large enough. Cabello asked whether this trivial %—
approximation can be improved for disjoint unit disks [3, p. 72].

We start with a very simple and efficient algorithm that achieves a ratio better than %

for dispersion in disjoint unit disks, and a ratio slightly better than 0.4465 for dispersion in
not necessarily disjoint unit disks:

Theorem 1.1. There is an O(nlogn)-time approximation algorithm with ratio 0.5110 for
dispersion in n disjoint unit disks. In combination with an algorithm of Cabello, it yields a
O(n?)-time algorithm with ratio of 0.4487 for dispersion in n not necessarily disjoint unit

disks.

Using linear programming, we then obtain the following substantially better approxi-
mation for dispersion in disjoint unit disks:

Theorem 1.2. There is an LP-based approximation algorithm, with O(n) variables and
constraints, and running in polynomial time, that achieves approrimation ratio 0.6495, for
dispersion in n disjoint unit disks.

It is likely that our method for proving Theorem 1.2, which uses projections for ap-
proximating distances, and linear programming for optimization, is also applicable to other
optimization problems involving distances.

Related work. The problem studied in this paper, dispersion in unit disks, is related to
a few other problems in computational geometry. We mention three results that are more
closely related to ours:

(1) For labeling n points with n disjoint congruent disks, each point on the boundary

of a distinct disk, such that radius of the disks is maximized, Jiang et al. [8] pre-

sented a T}Sﬁ—approximation algorithm, and proved that the problem is NP-hard

to approximate with ratio more than ﬁ.
(2) For packing of n axis-parallel congruent squares (congruent disks in the Lo, metric)
in the same rectilinear polygon such that the side length of the squares is maximized,

Baur and Fekete [1] presented a %-approximation algorithm, and proved that the

problem is NP-hard to approximate with ratio more than %.

DISPERSION IN UNIT DISKS 301

(3) A %—approximation algorithm for a related problem of packing n unit disks in a
rectangle without overlapping an existent set of m unit disks in the same rectangle,
has been obtained by Benkert et al. [2].

(4) Given n points in the plane, Demaine et al. [4] considered the problem of moving
them to an independent set in the unit disk graph metric: that is, each point has to
move to a position such that all pairwise distances are at least 1, and such that the
maximum distance a point moved is minimized. They presented an approximation
algorithm, which achieves a good ratio if the points are initially “far from” an
independent set. However the approximation ratio becomes unbounded for instances
that are “very close to” an independent set. Observe that in this problem, the
optimum may be arbitrarily small, i.e., arbitrarily close to 0.

2. A simple approximation algorithm for unit disks

In this section we present a very simple approximation algorithm A1 for dispersion in
(not necessarily disjoint) unit disks, and prove Theorem 1.1. The idea of the algorithm is as
follows. Recall that ¢ is the minimum pairwise distance among the unit disks. Let o = o(d)
be a positive parameter to be specified; in particular, at the threshold distance é = 2 for
disjoint unit disks, we have o(2) = 2.0883. .., which is only slightly larger than §. Consider
the distance graph of the unit disks for the parameter o, which has a vertex for each disk,
and an edge between two vertices if and only if the corresponding disks have distance at
most o. If there is a vertex of degree at least two in the distance graph, that is, if there is
a disk close to two other disks, then a packing argument shows that the minimum pairwise
distance of any three points in the three disks must be small. Thus simply placing the
points at the disk centers already achieves a good approximation ratio. Otherwise, every
vertex in the distance graph has degree at most one, and the edges form a matching. In this
case, the disks that are close to each other are grouped into pairs. The distance between
the two points in each pair can be slightly increased by moving them away from the disk
centers, at the cost of possibly decreasing the distances between points in different pairs.

Let D be a set of n (not necessarily disjoint) unit disks in the plane. The algorithm A1
consists of three steps:

1. Compute the minimum pairwise distance § of the disks in D, and for each disk, find
the two disks closest to it.

2. If the distance from some disk to its second closest disk is at most o = o(§), return
the n disk centers as the set of points. Otherwise, proceed to the next step.

3. Place a point at the center of each disk. Then, for each disk, if the distance from the
disk to its closest disk is at most o, move the point away from the closest disk for
a distance of (o — 6)/4, so that the two points in each close pair of disks are moved
in opposite directions; we will show that § < o < § + 4, thus the distance (¢ —¢§)/4
is between 0 and 1, and each point remains in its own disk. Finally, return the set
of points.

Algorithm analysis. The bottleneck for the running time of the algorithm A1 is simply
the computation of the two closest disks from each disk in step 1, which takes O(nlogn)
time [5, p. 306]. The other two steps of the algorithm can clearly be done in O(n) time.

302 ADRIAN DUMITRESCU AND MINGHUI JIANG

For the proof of the approximation ratio, define the following function f(s) for s > 0:

F(s) = /(1 +8)2+1/2+ \/3(L+ 52 — 3/4. (2.1)

The function f(-) is increasing and f(0) = v/3. The justification for step 2 of the algorithm
A1 is the following packing lemma (its proof is omitted). Here the disk with center O is
close to two other disks with centers P and @), respectively; see Figure 1.

A

Figure 1: (a) A linkage of the five segments AP, BQ, CO,OP,OQ for three points A, B, C' in three
unit disks with centers P, @, O, respectively. (b) The extreme configuration: A, P,O
are collinear, B,Q, 0 are collinear, |AP| = |BQ| = |CO| = 1, |OP| = |0Q| = s,
|AC| = |BC| = |AB| = t.

Lemma 2.1. Let A, B,C be three points in three unit disks with centers P,Q, O, respec-
tively. Let s = max{|OP|,|0OQ|} and t = min{|AC|,|BC|,|AB|}. Thent < f(s).
Consider the following equation in o:
0 o+
= . 2.2
fl@) 20+2 22

The next lemma (its proof is omitted) confirms that o exists and lies in the desired range:

Lemma 2.2. There is a unique solution o to (2.2). Moreover, § < o < § + 4.

We now analyze the approximation ratio of the algorithm A1l. Let APX be the mini-
mum pairwise distance of the points returned by the algorithm. Let OPT be the minimum
pairwise distance of the optimal set of points. Let

) o+
0—0(5)—f(0)—2(5+2). (2.3)
We next prove that APX > ¢- OPT by considering two cases:
e If the algorithm returns the n disk centers as the set of points in step 2, then there
is a disk such that the distances from the disk to its two closest disks are at most
0. By Lemma 2.1, we have OPT < f(o). Since APX = §, it follows that

APX S 0
OPT = f(o)

(2.4)

DISPERSION IN UNIT DISKS 303

e If the algorithm proceeds to step 3, then the distance from each disk to its second
closest disk is more than o. If two disks have distance at most o, then they must be
the closest disks of each other, and the movements of points in step 3 ensure that
their two points have distance at least 0 + 2(c — §)/4 = (0 + 0)/2. On the other
hand, if two disks have distance more than o, then after the movements their two
points have distance at least 0 — 2(o — §)/4 = (0 + 9)/2. Thus APX > (o + 9)/2.
Since OPT < § + 2, it follows that

APX s ot o
OPT = 2(6 +2)°
By (2.3), (2.4), and (2.5), the algorithm A1 achieves an approximation ratio of ¢(9)

for 6 > 0. It can be verified that ¢(d) is an increasing function of § for § > 0. Thus, for
dispersion in disjoint unit disks, the approximation ratio is

c(0) > ¢(2) =0.5110..., ford > 2.
For dispersion in not necessarily disjoint unit disks, Cabello [3] presented a hybrid
algorithm that applies two different algorithms PLACEMENT and CENTERS then returns
the better solution. We now briefly review Cabello’s analysis for the hybrid algorithm. Let

x = OPT/2 (the scaling here is necessary because Cabello defined a unit disk as a disk of
unit diameter instead of unit radius). The algorithm PLACEMENT, which runs in O(n?)

time, achieves a ratio of
VB3 +VBz+V3+ 2z —a?

a1 (@) 4z ’

and a ratio of at least % for 0 <z < 1. The algorithm CENTERS achieves a ratio of

(2.5)

for1 <z <2,

-1
CQ(m):xx , forax>1,

which is at least 1 for 2 > 2. Refer to Figure 2. Since ¢1(z) is decreasing in z and cy(x)
is increasing in z, the minimum approximation ratio of the hybrid algorithm occurs at the
intersection of the two curves cj(z) and co(x) for 1 < x < 2: precisely, ¢i(z) = co(z) =
0.4465. .. (1/2.2393...) for = = 1.8068... ..

06
05 7
04t |
03 B
02 B

o1 i

0 1 1 1 1
1 12 14 16 18 2

Figure 2: Approximation ratios ci(x), ca(z), and cs(z) for 1 < xz < 2. The solid decreasing curve
is ¢1(x). The dashed increasing curve is ca(x). The solid increasing curve is c3(z).

Now define
c3(x) = c(2x —2), foraz>1.

304 ADRIAN DUMITRESCU AND MINGHUI JIANG

From the obvious inequality OPT < ¢ + 2, we have § > OPT — 2 = 2x — 2. Recall that the
function ¢(d) is increasing in 0. Thus our algorithm A1 achieves an approximation ratio of
at least ¢(9) > ¢(2z — 2) = c3(x) for x > 1. It can be verified that co(x) = c3(x) = 0 for
x=1and 0 < cy(z) < e3(z) < 1 for z > 1. Refer back to Figure 2. Replace the algorithm
CENTERS by our algorithm A1 in the hybrid algorithm. Then the two curves ¢ (x) and c3(x)
intersects at x = 1.7750... and, correspondingly, the minimum approximation ratio of the
new hybrid algorithm is 0.4487...(1/2.2284...). This completes the proof of Theorem 1.1.

3. An LP-based approximation algorithm for disjoint unit disks

In this section we present and analyze approximation algorithm A2. We first introduce
some definitions and notations. Let 1,...,8, be n pairwise disjoint unit disks, and let o;
be the center of €2;. Denote by 0 the minimum pairwise distance among the disks; clearly,
d > 2. The algorithm computes § in O(nlogn) time in a preliminary step.

Let r = r(§), where 0 < r < 1, be a parameter that will be chosen later, in order to
maximize the approximation ratio. For ¢ = 1,...,n, let w; C €); be a concentric disk of
radius 7. Let ay; € [—7/2,7/2) be the direction (or angle) of the line determined by o; and
o0j. For o € [—m/2,7/2), let £, be any line of direction a. For two vectors @ = (u1,u2), and
U = (v1,v2), their dot product is (@ - T) = ujv; + ugvy. The scalar projection of T onto @ is
given by the formula

u-v
Projv = < — > (3.1)
@l
For two points, p and ¢, let proj,(p,q) denote the length of the projection of the segment
pq onto a line ¢, of direction «, i.e., onto the vector (cos a,sin).

Our approximation algorithm can be viewed as a two step process: STEP 1. We first
restrict the feasible region of each point p;, from the given unit disk €2; to a smaller concentric
disk w; of radius r, 0 < r < 1. Further, we approximate each smaller disk w; by an inscribed
regular polygon with sufficiently many sides (say, 64). For convenience however, we still
use “disks” when referring to the convex polygons approximating (inscribed in) the smaller
disks. Note that this first step is only conceptual. STEP 2. We find a good approximation
for the dispersion problem constrained to the smaller size disks.

The idea is as follows: Observe that after STEP 1, the centers of the original disks
Q); are still in the feasible regions for each of the n points. So the % approximation that
we could easily achieve earlier, is still attainable. Secondly, observe that if r is sufficiently
small, then the distance between two points (in two smaller disks) can be well approximated
by the projection of the segment connecting the two points onto the line connecting the
centers of the two disks. The length of each such projection can be expressed as a linear
combination of the coordinates of the two points, and we can use linear programming in
order to maximize the smallest projection length of an inter-point distance. So all the
constraints in the dispersion problem will be expressed as linear inequalities, at the cost of
finding only an approximate solution. The resulting approximation ratio of the algorithm
is the product of the ratios achievable in STEP 1 and STEP 2. In the end, we select r so as
to maximize the overall ratio. We now present the technical details.

We start with a technical lemma that guarantees that a large fraction of the distance
between two points in two smaller disks is preserved by projection onto the line through
the two disk centers (STEP 2).

DISPERSION IN UNIT DISKS 305

Lemma 3.1. Let w;,w; be two congruent disjoint disks of radius r, where 0 < r <1, at
distance d > 6 > 2. Let {;; be the line determined by o; and oj, and £ be a line that intersects

both w; and wj. Let o be the (nonnegative) angle between £;; and £. Then cos o > 7“12;47"2 >
V62 —4r2
-

Proof. We can assume w.l.o.g. that /;; is horizontal; see Figure 3. By symmetry, we can

Figure 3: Lemma 3.1.

assume that ¢ has positive slope. We claim that if o € [0,7/2] is maximized, then ¢ must
be tangent to w; and w;. Assume for instance that £ is not tangent to wj, as illustrated in
the figure. Select a point p on £ left of the intersections points of £ with dw;, and dw;, and
rotate £ counterclockwise around p until ¢ becomes tangent to w;. The angle « increases
in this operation, a contradiction of the assumed maximality. We conclude that ¢ must be
tangent to w; and w; in the first place, as desired. The angle formula cosa = 7”12;”2 is
now easily verified to hold in the tangent case. [

The next two lemmas guarantee that a large fraction of OPT survives after restricting
the feasible regions to smaller disks (STEP 1).

Lemma 3.2. Consider two disjoint unit disks Q; and §); at distance |o;o5| = d. Let p; € Q;
and p; € ; be two points. Let q; € w; be the point on o;p; at distance r|ojp;| from o;.
Similarly define q; € wj as the point on ojp; at distance r|ojp;| from o;. Then
|9ig5| o d+2r
pipjl — d+2

. (3.2)

This inequality is tight.

Proof. We can assume w.l.o.g. that o; = (0,0) and o; = (d,0), where d > 2. To represent
points, we use complex numbers in the proof. The point p; is represented by z;, where
z1 € C, with |z1] < 1; hence g; is represented by rz;. The point p; is represented by d + 2,
where z; € C, with |z3| < 1; hence g; is represented by d + rzp. With this notation, the
claimed inequality is

|d + 729 — 21| S d+2r

|d+2’2—21‘ —d+2

Write z = z9 — 21, and note that |z| < |z1]| + |22] < 2. Inequality (3.3) can be written
now as

(3.3)

|d + rz| S d+2r
d+2| — d+2°

(3.4)

306 ADRIAN DUMITRESCU AND MINGHUI JIANG

Let z = a(cos o + isin a), be the complex number representation of z, where 0 < a < 2,
and a € [0, 27]. We have

|d + 2> = (acosa + d)? + a® sin
|d 4+ rz|* = (arcos a + d)? + a*r? o = a*r? + d* 4 2adr cos a.
Inequality (3.4) is thus equivalent to the following inequality:
(d 4 2)*(a*r? + d* + 2adr cos o) > (d 4 2r)*(a® + d* + 2ad cos o). (3.5)

After performing the multiplications, canceling the same terms, and simplifying by
(1 —r), this amounts to verifying that

2 =a®+ d® + 2ad cos a.

sin®

4d3 4 4d*(1 4 7) + 8adr cos a > a®d*(1 4 1) + 2ad> cos a + 4a’dr. (3.6)
Observe that
Ad*(1+7) > a®d*(1 + 7).
It remains to show that (after simplifying by 2d):
2d* + 4ar cos a > ad? cos a + 2a’r. (3.7)
This last inequality is equivalent to
2(d? — a*r) > a(d® — 47) cos a. (3.8)
Inequality (3.8) is clearly satisfied when cos a < 0, so assume now that cos a > 0. Obviously
2 > acosa, and from a? < 4, we also get
d?> — a®r > d? — 4r.
Putting these two inequalities together (taking the product) gives inequality (3.8), hence
inequality (3.2) is proved.
To see that (3.2) is tight, take p; = (—1,0), and p; = (d + 1,0), i.e., all six points
Di» Pj, 0i, 04, qi, qj are on the same line. The proof of Lemma 3.2 is now complete.]

Lemma 3.3. Let p1,...,p, be n points, where p; € Q;, such that for any i # j, |pip;| > d,
for some d > 0. Then there exist n points, qi,...,qn, such that q; € w;, and for any i # j,

g5 > ‘?j_—QJ -d.

Proof. Let g; be defined as in Lemma 3.2. It suffices to show that
|9ig5| o 0 +2r
|pipj| =542

By Lemma 3.2,

|l2iq;] S l0i0;]| +2r'
lpipj| — [oioj] + 2

Since |o;0;| > 0, we obviously have

lojo;| + 2r - o+ 2r
loioj| +2 — 642

By combining the two inequalities the lemma follows. [

DISPERSION IN UNIT DISKS 307

For 9 > 2, and 0 <r <1, let

5+ 2r V02— Ar?

642 s

Observe that ¢1(0,7) < 1, and c2(d,7) < 1. We will show that STEP 1 and STEP 2 can

be implemented as to achieve approximation ratios ¢1(d,r) and c3(d, r), respectively. The
resulting overall approximation ratio is then

c(6,7) = c1(0,7) - c2(6,7),

and it remains to choose r = r(§) over the whole range § > 2, so as to maximize c(d, 7).

Selecting 7(9). For a fixed § > 2, let

O+ 2r 82 —4r2
FOr) = e(8,7) = er(6,7) - ea(8,1) = 54; et
Note that r <1 < %, hence f(r) is well defined.
Consider first the case 2 < § < 4. Assume further that » < 1, so that v/6%2 — 4r2 and
f(r) are strictly positive. The derivative of f(r) is

2(6 +2r)(6 —4r)
"(r) = . 3.9
£ 5(0 + 2)V % — 4r? (3.9)
The function f(r) is maximized by setting f’(r) to zero, which yields r = %, (note that
r < 1), and correspondingly,

s OV o (50) o (s 0) 239 L 3 3V &
AN%7) = N\%q1) 2\%1) "2 542 Va~ "1 512

Observe that ¢(d, %) > ¢(2,1) =0.6495. .., in our interval 2 < § < 4.

Consider now the case § > 4, and assume further that » < 1. Since § > 4 > 2, the
expression of the derivative f’(r) in equation (3.9) is still valid. We have f’(r) > 0, hence
f(r) is an increasing function, so

c(0,r) = f(r) < f(1) =

Thus for § > 4, we set » = 1. To summarize, we set

) .
r=ro)= {1 if 0> 4. (3.10)

Note that r(J) is a continuous function over the entire range § > 2. The resulting
overall approximation ratio of the algorithm, denoted by ¢ = ¢(9), is at least

3v3 . 5 <5<
6(5)2{ Lo 2504, (3.11)

Yot if 5> 4.
Define also for future reference the approximation ratios achieved in STEP 1 and STEP
2 of the algorithm, based on our previous choice of r, depending on 4.

O if2<45 <4,

3.
c1=c1(6) = {i 0+2 £ (3.12)

308 ADRIAN DUMITRESCU AND MINGHUI JIANG

V3 if2<6<4
co = co(d) =4 2 - =7 3.13
2 2() {\/52—4 i 5> 4 ()

In particular, for 6 = 2, we have

1 3 V3
3 ATp @
hence the overall ratio for STEP 1 and STEP 2 is cjcy = %.

To implement STEP 2, we are lead to the following linear program, with the constraints
expressed symbolically at this point. LP1 maximizes the minimum projection on the set of
lines connecting the centers of the disks; that is, for each pair of disks, the length of the
projection of the segment connecting the corresponding two points on the line connecting
the two disk centers.

r =

maximize 2z (LP1)

biect t pi € wj, 1<1<n

Stbject 2o { proj,, (Pispj) > 2, 1<i<j<m

Approximating the small disks by regular polygons. Let A > 0 be small. Recall that
r = r(d) is a fixed precomputed value. Select k large enough so that the apothem of the
regular k-gon inscribed in a circle of radius r is at least (1 — A). Recall that the apothem
length a is given by the formula: a = rcos 7, so we need to choose k so that

cos% >1-\ (3.14)

The symbolic constraint p; € w; is replaced by the k linear constraints defining the sides of
the regular polygon (the polygon is the intersection of k half-planes). Let £ > 0 be small.
By setting A = A(¢) sufficiently small, we can ensure that the approximation ratio remains

at least (1 — €)3T‘{§, say at least 0.649. Let now

O+2r(1 — M\
03“””):#'

Replacing the small disks of radius r by regular polygons with £ sides incurs only a
slight loss in the approximation ratio for k£ sufficiently large, since the disks of radii a are
contained in the regular polygons with & sides, and a is close to r. Analogous to inequality
(3.2) in Lemma 3.2, the setting in (3.15) is justified, and the overall approximation ratio
of the algorithm is at least c3(d,r) - ¢(d,7). Recall the setting of (J) given by (3.10). For

2 <6 < 4, we have
§4+29(1—A
C3<5’§>:L5) 1_5.
4 0+ 23 3

(3.15)

For § > 4, we have

c3(6,1) = ——— "2 =1-"_>1-

§+2(1—N) 2\ A
J+2 +2 3

DISPERSION IN UNIT DISKS 309

Consequently, to ensure that the approximation ratio of the algorithm is at least (1 —
g) - ¢(0) over the entire range 6 > 2, let A = 3¢, and choose k such that (recall (3.14)):

T
—>1-3e.
coski €

For instance, setting ¢ = ﬁ, and k = 50 satisfies the above inequality and ensures

that the approximation ratio remains at least (1 — 5)%g > 0.649.

Writing the linear constraints. Implement each symbolic constraint Projy,; (pi,pj) > 2
as follows: Let o; = (&,n;) be coordinates of o;, for i = 1,...,n (part of the input). For
simplicity, assume that the disk centers are non-decreasing order of their x-coordinates:
& <& < ... <&, Consider a pair 4, j, where i < j. Recall that o;; € (—7/2,7/2) is the
angle of the line determined by o; and o;. We have

& —&7 sin gy — W
|0i0j] |0i0;]

(3.16)

COS (yj; =

Let @;; = (cos j,sin o), so that |a;;| = 1. Let 5;; = (x; — 24, y; — ¥;). According to (3.1),
(@ 55)
[z

Consequently, for each pair ¢, j, where ¢ < j, generate the constraint:

Proje,; (i, pj) = = (@ - 5ij) = (xj — @) cos o + (y; — yi) sin ;.

(xj — xl) COS (v =+ (yj — yz) SiIlOéij > z;

where cos a;; and sin a;; are as in (3.16).

Establishing the approximation ratio.

Lemma 3.4. Let pi,...,p, be n points, where p; € w;, such that for any i # j, |pipj| > d,
for some d > 0. Then for any i # j, proj,,, (pi,pj) > c2-d.

Proof. Observe that the line determined by the points p; and p; intersects both disks w;
and w;. The claimed inequality is now immediate from Lemma 3.1.]

Lemma 3.5. Letpy,...,p, ben points, where p; € w;, such that for anyi # j, proj,,, (pi, pj)
d, for some d > 0. Then, for any i # j, |pipj| > d.

Proof. Obviously, |p;p;| > PIOjq,; (pi,pj) > d, as required. [

Lemma 3.6. The ratio of the approximation algorithm A2 is at least (1 — E)gT\/g} for any

given € > 0. (% = 0.6495...) Moreover, if 6 > 2 is the minimum distance among the

unit disk centers, the approximation ratio is at least (1 —¢€) - ¢(d) > (1 — 6)%, where ¢(9)

is given by (3.11).

Proof. Let p1,...,p, be n points, where p; € ;, such that for any i # j, [pip;| > d, for
some d > 0. In other words, assume that OPT > d. By Lemma 3.3, there exist n points,
q1;---,qn, such that ¢; € w;, and for any i # j, |gig;| > ¢1 - d. (This inequality is trivial for
d > 4, since we set r = 1, and ¢; = 1 in that case; refer to (3.12).) By Lemma 3.4, for any
17, PIOjq,; (gi,qj) > ca-c1-d = ¢(6)-d. Recall that the linear program (LP1) finds a point
set {p; = (x;,yi),t = 1,...,n}, for which the minimum projection is maximized. However,
the feasible regions for each point are the slightly smaller inscribed regular polygons rather
than the small disks. By Lemma 3.5, and the preceding discussion, the computed point set

v

310 ADRIAN DUMITRESCU AND MINGHUI JIANG

satisfies that, for any ¢ # j, |pipj| > (1 —¢€) - ¢(6) - d. Hence the approximation algorithm
has ratio at least (1 —¢)-¢(d) > (1 — €)3T‘{§, as claimed. (]

Reducing the number of constraints to O(n). Recall that OPT < §+2. So there is no
need to write any constraints for pairs of disks at distance d + 4 or more, since the distance
between the corresponding points is at least § + 2. An easy packing argument shows that
the number of pairs of disks at distance at most § + 4 is only O(n).

Solving the LP. The constraints of the LP involve irrational numbers, and hence it cannot
be claimed that the original LP is solvable in polynomial time. However, it is enough to solve
the LP up to some precision. For this, it is enough to approximate the numbers involved in
the constraints up to some precision, which is polynomial in the error of the output. There
are bounds on how many bits of precision are needed in the constraints to obtain a bound
on the precision of the solution, and they are polynomially related [9]. Consequently, since
we are dealing with e-approximation anyway, we can encode each coefficient into a rational
number with (1/ E)O(l) bits. Then, by our choice of ¢, each coefficient has a constant number
of bits. Thus the LP algorithm runs in polynomial time; e.g., O(n*) or O(n?%) using interior
point methods.

References

[1] C. Baur and S.P. Fekete: Approximation of geometric dispersion problems, Algorithmica, 30 (2001),
451-470.

[2] M. Benkert, J. Gudmundsson, C. Knauer, R. van Oostrum, and A. Wolff: A polynomial-time approxi-
mation algorithm for a geometric dispersion problem, International Journal of Computational Geometry
and Applications, 19(3) (2009), 267-288.

[3] S. Cabello: Approximation algorithms for spreading points, Journal of Algorithms, 62 (2007), 49-73.

[4] E.D. Demaine, M. Hajiaghayi, H. Mahini, A.S. Sayedi-Roshkhar, S. Oveisgharan, and M. Zadimoghad-
dam: Minimizing movement, in Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2007, pp. 258-267.

[5] H. Edelsbrunner: Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.

[6] J. Fiala, J. Kratochvil, and A. Proskurowski: Systems of distant representatives, Discrete Applied
Mathematics, 145 (2005), 306-316.

[7] M. Formann and F. Wagner: A packing problem with applications to lettering of maps, in Proceedings
of the Tth Annual Symposium on Computational Geometry, 1991, pp. 281-288.

[8] M. Jiang, S. Bereg, Z. Qin, and B. Zhu: New bounds on map labeling with circular labels, in Proceedings
of the 15th Annual International Symposium on Algorithms and Computation, 2004, pp. 606—617.

[9] A. Schrijver: Theory of Linear and Integer Programming, John Wiley & Sons, New York, 1986.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 311-322
www.stacs-conf.org

LONG NON-CROSSING CONFIGURATIONS IN THE PLANE

ADRIAN DUMITRESCU ! AND CSABA D. TOTH ?

! Department of Computer Science, University of Wisconsin-Milwaukee, WI 53201-0784, USA
E-mail address: ad@cs.uwm.edu

2 Department of Mathematics and Statistics, University of Calgary, AB, Canada
E-mail address: cdtoth@ucalgary.ca

ABSTRACT. We revisit several maximization problems for geometric networks design under
the non-crossing constraint, first studied by Alon, Rajagopalan and Suri (ACM Symposium
on Computational Geometry, 1993). Given a set of n points in the plane in general position
(no three points collinear), compute a longest non-crossing configuration composed of
straight line segments that is: (a) a matching (b) a Hamiltonian path (c) a spanning tree.
Here we obtain new results for (b) and (c), as well as for the Hamiltonian cycle problem:

(i) For the longest non-crossing Hamiltonian path problem, we give an approximation
algorithm with ratio WLH ~ 0.4829. The previous best ratio, due to Alon et al., was
1/7 = 0.3183. Moreover, the ratio of our algorithm is close to 2/7 on a relatively broad
class of instances: for point sets whose perimeter (or diameter) is much shorter than the
maximum length matching. The algorithm runs in O(n7/3 logn) time.

(ii) For the longest non-crossing spanning tree problem, we give an approximation
algorithm with ratio 0.502 which runs in O(nlogn) time. The previous ratio, 1/2, due to
Alon et al., was achieved by a quadratic time algorithm. Along the way, we first re-derive
the result of Alon et al. with a faster O(nlogn)-time algorithm and a very simple analysis.

(iii) For the longest non-crossing Hamiltonian cycle problem, we give an approximation
algorithm whose ratio is close to 2/7 on a relatively broad class of instances: for point sets
with the product (diameter x convex hull size) much smaller than the maximum length
matching. The algorithm runs in O(n7/3 logn) time. No previous approximation results
were known for this problem.

1. Introduction

Self-crossing in planar configurations is typically an undesirable attribute. Many struc-
tures studied in computational geometry, in particular those involving a minimization con-
dition, have the non-crossing attribute for free, for instance minimum spanning trees, min-
imum length matchings, Voronoi diagrams, etc. The non-crossing property usually follows

1998 ACM Subject Classification: F.2.2 Geometrical problems and computations.

Key words and phrases: Longest non-crossing Hamiltonian path, longest non-crossing Hamiltonian cycle,
longest non-crossing spanning tree, approximation algorithm.

Adrian Dumitrescu was supported in part by NSF CAREER grant CCF-0444188. Part of the research
by this author was done at Ecole Polytechnique Fédérale de Lausanne. Csaba D. Téth was supported in
part by NSERC grant RGPIN 35586. Part of the research by this author was done at Tufts University.

ASPECTS
T OF COMPUTER
SCIENCE ©

SYMPOSIUM
ﬁvr_ ON THEORETICAL
- Adrian Dumitrescu and Csaba D. T6th

© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2465

312 ADRIAN DUMITRESCU AND CSABA D. TOTH

from the triangle inequality. Alon et al. [3] have considered the problems of computing (i)
the longest non-crossing matching, (ii) the longest non-crossing Hamiltonian path and (iii)
the longest non-crossing spanning tree, given n points in the plane. Although they were
unable to prove it, they suspected that all these problems are N P-hard. The survey articles
by Eppstein [8, pp. 439] and Mitchell [14, pp. 680] list these as open problems in the area
of geometric network optimization. The problem of approximating the longest non-crossing
Hamiltonian cycle is also of interest and wide open [4, pp. 338].

Without the non-crossing condition explicitly enforced, the problem of minimizing or
maximizing the length of a spanning tree, Hamiltonian cycle or path, perfect matching, tri-
angulation, etc. has a rich history. However if such structures are required to be non-crossing
much less is known, in particular for the maximization variants. While for minimization
problems, the non-crossing property comes usually for free via the triangle inequality, in
contrast, for maximization problems, the non-crossing property conflicts directly with the
length maximizing objective. This is another reason why these problems are interesting to
study.

Related work. The existence of non-crossing Hamiltonian paths and cycles in geometric
graphs has been studied in [2, 5]. Various Ramsey-type results for non-crossing spanning
trees, paths and cycles have been obtained in [11] and [12]. The Euclidean MAX TSP, the
problem of computing a longest straight-line tour of a set of points, has been proven N P-
hard in dimensions three or higher [9], while its complexity in the Euclidean plane remains
open [14]. In contrast, the shortest non-crossing matching and the shortest non-crossing
spanning tree are both computable in polynomial time [8, 14], as they coincide with the
shortest matching and the shortest spanning tree respectively.

Definitions and notations. A set S of points in the plane is said to be in general
position if no three points are collinear. General position will be assumed throughout this
paper. Given a set of n points in the plane, the results of Alon al. are as follows: (i) A
non-crossing matching whose total length is at least 2/7 of the longest (possibly crossing)
matching can be computed in O(n"/3logn) time. (ii) A non-crossing Hamiltonian path
whose total length is at least 1/7 of the longest (possibly crossing) Hamiltonian path can
be computed in O(n7/3logn) time. (iii) A non-crossing spanning tree whose total length is
at least n/(2n —2) > 1/2 of the longest (possibly crossing) spanning tree can be computed
in O(n?) time. The running times have been adjusted to reflect the current best upper
bound of O(n*3) on the number of halving lines as established by Dey [6].

A geometric graph G is a pair (V, E') where V is a finite set of points in general position
in the plane, and FE is a set set of segments (edges) connecting points in V. The length of
G, denoted L(G), is the sum of the Euclidean lengths of all edges in G. The graph G is said
to be non-crossing if its edges have pairwise disjoint interiors (collinear triples of points are
forbidden in order to avoid overlapping collinear edges).

For a point set S, let conv(S) be the convex hull of S, and let P = P(S) denote the
perimeter of conv(S). Denote by D = D(S) the diameter of S and write n = |S|. Let
Mopt be a longest (possibly crossing) matching of S, and let M§p be a longest non-
crossing matching of S; observe that for odd n, Mopr is a nearly perfect matching, with
(n —1)/2 edges. Let Hopr be a longest (possibly crossing) Hamiltonian path of S, and let
H¢pr be a longest non-crossing Hamiltonian path of S. Let Topr be a longest (possibly
crossing) spanning tree of S, and let T5p be a longest non-crossing spanning tree of S.
Finally, let QopT be a longest (possibly crossing) Hamiltonian cycle of S, and let Qpy

LONG NON-CROSSING CONFIGURATIONS IN THE PLANE 313

be a longest non-crossing Hamiltonian cycle of S. The following inequalities are obvious:
L(Mopt) < L(Hopt) < L(ToPT)-

Given a set S of n points in the plane, a line ¢ going through two points of .S is called a
halving line if there are | (n — 2)/2] points on one side and [(n — 2)/2] points on the other
side [13]. A bisecting line £ of S is any line that partitions the point set evenly, i. e., neither
of the two open halfplanes defined by ¢ contains more than n/2 points of S [7]. Observe that
any halving line of S is also a bisecting line of S. Any bisecting line of S yields (perhaps
non-uniquely) a bipartition S = RU B, with RN B =0, ||R| — |B|| < 1, with R contained
in one of the closed halfplanes determined by ¢, and B contained in the other. We call
S = RUB a linearly separable bipartition, or balanced partition of S. Observe that for any
non-zero direction vector ¥, there is a bisecting line orthogonal to ¥, see [7, Lemma 4.4].
Two bisecting lines are called equivalent if they can yield the same balanced partition of
S. It is well known that the number of non-equivalent bisecting lines of a set is of the
same order as the number of halving lines of the set, and any balanced bipartition can be
obtained from a halving line [7, pp. 67].

Our results are summarized in the following three theorems®.

Theorem 1.1. (i) For the longest non-crossing Hamiltonian path problem, there is an
approximation algorithm with ratio WL_H ~ 0.4829 that runs in O(n7/3 logn) time.

(ii) Given a set of n points in the plane, one can compute a non-crossing Hamiltonian path
H in O(n"/?logn) time such that L(H) > 2L(Hopr) — %. In particular, if the point set
satisfies the condition % < SL(Hopr) for some small § > 0, then L(H) > (2 —§)L(Hopr).
(i) Alternatively, one can compute a non-crossing Hamiltonian path H in O(nlogn/\/¢)
time, such that L(H) > (1—¢)2L(Hopr) — £.

Theorem 1.2. For the longest non-crossing spanning tree problem for a given set of n
points in the plane, there is an approzimation algorithm with ratio 0.502 and O(nlogn)
running time. More precisely, the algorithm computes a non-crossing spanning tree T' such

that L(T) > 0.502 - L(Topr).

Theorem 1.3. Given a set S of n points in the plane, with |conv(S)| = h:

(i) One can compute a non-crossing Hamiltonian cycle Q in O(n"/3logn) time such that
L(Q) > 2L(Qopr) — (2h — 1)%. In particular, if the point set satisfies the condition
(2h — 1)% < SL(Qopr) for some small § >0, then L(Q) > (2 — &) L(Qopr)-

(ii) Alternatively, one can compute a non-crossing Hamiltonian cycle Q in O(n3logn) time
such that L(Q) > 2L(Qorr) — (h +2)L.

(iii) Alternatively, one can compute a non-crossing Hamiltonian cycle Q in O(nlogn/\/€)
time, such that L(Q) > (1 — €)2L(Qopr) — (2h — nL.

2. The Hamiltonian path

In this section we prove Theorem 1.1. Let S = {pi,...,pn}. We follow an approach
similar to that of Alon et al. using projections and an averaging argument, in conjunction
with a result on bipartite embeddings of spanning paths in the plane. Abellanas et al. [1,
Theorem 3.1] showed that every linearly separable bipartition S = RUB with ||R|—|B|| < 1,
admits an alternating non-crossing spanning path such that the edges cross any separating

Dye to space limitations, some proofs are omitted.

314 ADRIAN DUMITRESCU AND CSABA D. TOTH

line ¢ at points ordered monotonically along ¢. Such a Hamiltonian path can be computed
in O(nlogn) time. Their algorithm computes the same Hamiltonian path for any two
equivalent halving lines, that is, the alternating path depends on the bipartition only rather
than the separating line.

We now recall the algorithm of Abellanas et al. [1]; see Fig. 4 for an example. Let
S = RU B with ||R| — |B|| < 1 be the red-blue bipartition given by a vertical line ¢: R on
the left, B on the right. Their algorithm constructs an alternating path A in the following
way: Let rb be the top red-blue edge of the convex hull conv(S), called the top bridge. If
|R| > |B], set A := {r}, if |R| < |B|, set A := {b}, else set A to {r} or {b} arbitrarily.
At every step, recompute the top bridge rb of S\ A, and add r to A if the last point in A
was blue, or add b to A if the last point in A was red. As pointed out by the authors, the
resulting path A is non-crossing because A is disjoint from the convex hull of S\ A at each
step.

We improve the lower bound of Alon et al. by computing the longest Hamiltonian path
corresponding to a bipartition and a Hamiltonian path of length at least the perimeter of
the convex hull, and returning the longest of the two.

Lemma 2.1. For a point set S, |S| = n > 31, a non-crossing Hamiltonian path of length
at least P(S) can be computed in O(nlogn) time. The bound on the length is best possible.

Consider a geometric graph G = (V, E), and a point g ¢ V', so that V' U{q} is in general
position. We say that q sees a verter v € V if the segment gv does not intersect any edge
of GG. Similarly, we say that q sees an edge e € F, if the triangle formed by v and e does
not intersect any other edge of G. We make use of the fact that if n is even then the two
endpoints of an alternating path are on opposite sides of the separating line £. If n is odd,
we first construct an alternating path for a specific subset of n—1 points, and then augment
it to a Hamiltonian path on all n points using the following lemma.

Lemma 2.2. Let S = RU B with ||R| — |B|| < 1, be a linearly separable bipartition given
by line L. Let q € S, and A’ be a non-crossing alternating path on S\ {q} such that its
(consecutive) edges cross £ at points ordered monotonically along €. Then q sees one edge of
A" and consequently, A’ can be extended to a Hamiltonian path A on S, with L(A") < L(A).
The path A can be computed in O(n) time, given A’.

Fix a Cartesian coordinate system I'. Let & be the number of halving lines of S, denote
the angles they make with the z-axis of I' by 0 < oy < ... ax < w. By relabeling the points
assume that the optimal path is Hopt = p1,p2,...,p,. For two points p;,p; € S, let (3;;
be the angle in [0, 7) formed by the line through p;p; and the z-axis. If n is odd, then a
bisecting line of direction a (for any «) must be incident to at least one point of S, and
denote an arbitrary such point by gq.

Algorithm A1:

STEP 1. Compute a non-crossing Hamiltonian path H; of length at least P(S), by Lemma 2.1.
STEP 2. If n is even, then for all non-equivalent bisections of S (i.e., for all balanced bi-

partitions of S), compute a non-crossing alternating path using the algorithm of Abellanas

et al. [1], and let the longest such path be Hy. If n is odd, then for all non-equivalent bi-

sections of S, compute a non-crossing alternating path of the even point set S\ {¢,} using

the algorithm of [1] and let the longest such path be H). Augment H) with vertex g, by

Lemma 2.2 to a Hamiltonian path Ho.

STEP 3. Output the longest of the two paths H; and Hs.

LONG NON-CROSSING CONFIGURATIONS IN THE PLANE 315

By Lemma 2.1, the running time of STEP 1 is O(nlogn). Since the number of halving
lines of an n-element point set is O(n*/?) and all can be generated within this time [6], the
running time of STEP 2 is O(n"/? logn), consequently the total running time of A1 is also
O(n"3logn).

We proceed with the analysis of the approximation ratio. For simplicity, we assume
that n is even. The case of n odd is slightly different. For each a € [0,7), let T’y be a
(rotated) coordinate system, obtained from I' via a counterclockwise rotation by «, and
with the y-axis dividing evenly the point set S. Let x; be the x-coordinate of point p; with
respect to I'y,. For a given «, let H, be a non-crossing alternating path with respect to a
balanced bipartition induced by the y-axis of I',, as computed by the algorithm. There are
O(1) balanced bipartitions given by any halving line of S. Recall that H, does not depend
continuously on «; it depends only on the discrete bipartition. However, the coordinates of
the points depend continuously on «. Assume that Hy = py(1),P5(2); - - - » Po(n), Where o is
a permutation of [n]; here o depends on the bipartition (hence also on «). Let W, denote
the width of S in direction «, that is, the width of the smallest parallel strip of direction «
that contains S. By projecting on the z-axis of I, we get

n
L(Ha) > |x0(1)‘ + 2|x0(2)‘ T+ 2‘xa(n—1)| + |xcr(n)| = 22 ‘mz‘ - ‘xa(l)‘ - |xa(n)‘

=1
n—1 n—1
= > (2l + lzjl) + [21] + [zl = [2o@)] = [Tam| = > (5] + z41]) = Wa
j=1 j=1
n—1
> Z [pjpjt+1l| cos(Bjj+1 — a)| — Wy (2.1)
j=1

In the 2nd line of the above chain of inequalities, we use the fact that p,1) and py,)
lie on opposite sides of £, since n is even, hence |T,1)| + [Tom)] < [Po())Pom)] < Wa,
In the 3rd line, we make use of the following inequality: for any two points p;,p; € S,
Ipipjl| cos(Bij —)| < |x;| + |x;], with equality if and only if the two points lie on opposite
sides of the y-axis of I',. Recall: for even n, Hs is the longest of the O(k) Hamiltonian
non-crossing paths H,, over all O(k) balanced bipartitions of S. (A given angle «; yields
O(1) balanced partitions, and corresponding alternating paths denoted here H,,.) We thus
have for each a € [0, 7):
n—1
L(Hz) > Z Ipjpj+1ll cos(Bjj+1 — a)| — Wa.
j=1
Note that - .
/ | cos(Bjj+1 — a)| da = / | cos o da = 2,
0 0

and according to Cauchy’s surface area formula, we have foﬂ W, da = P(S). By integrating
both sides of the previous inequality over the a-interval [0, 7], we obtain
n—1
wL(Hy) > 2 " |pjpj+1| — P(S) = 2L(Hopr) — P(S),
j=1

L(H>) > %L(HOPT) - @ (2:2)

316 ADRIAN DUMITRESCU AND CSABA D. TOTH

We now improve the old approximation ratio of % ~ 0.3183 to %_H ~ 0.4829, by balancing
the lengths of the two paths computed in STEP 1 and STEP 2. Set ¢ = ”TH
Case 1: L(Hopr) < ¢P(S). By considering the path computed in STEP 1, we get a

ratio of at least

L(H,y) S P(S) S P(S) _ 2
L(Hopr) — L(Hopr) — ¢P(S) =w+1
Case 2: L(Hopr) > ¢P(S). By considering the path computed in STEP 2 (inequality
(2.2)), we get a ratio of at least
L(Hy) _ 2L(Hopr) = 1P(S) 2 1 _2 <1_ 1) _ 2
L(HOPT) - L(HOPT) 1T ocm ™ T+ 1 T+1

Observe that if the point set satisfies the condition @ < §L(Hopt), then by (2.2),
we have) 0
L(H) = —L(Hopt) — dL(Hopt) = <; - 5> L(Hopr).
This concludes the proofs of parts (i) and (ii) of Theorem 1.1.

(iii) With the same approach as in [3], a Hamiltonian path of length at least (1 —

e)2L(Hopt) — @ can be found by considering only b/\/c angles 6; = mg/g7 for i =
0,1,...,[b/\/e], where b is a suitable absolute constant. The resulting running time is

O(nlogn/+/e). This concludes the proof of Theorem 1.1.

3. The spanning tree

In this section we prove Theorem 1.2. Let S = {p1,...,pn}, where p; = (x;,y;). Given
a point p € S, the star centered at p, denoted S, is the spanning tree on S whose edges join
p to all the other points. Since S is in general position, .S), is non-crossing for any p € S.
An extended star centered at p is a spanning tree of S consisting of paths of length 1 or 2
(edges) connecting p to all the other points. See Fig. 1. While the star centered at a point
is unique, there may be many extended stars centered at the same point, and some of them
may be self-crossing. In particular S}, is also an extended star.

Figure 1: A star (left) and a non-crossing extended star (right) on a same point set, both centered
at the same point p.

The algorithm of Alon et al. computes the n stars centered at each of the points, and
then outputs the longest one. The algorithm takes quadratic time, and the analysis shows a
ratio of (which tends to 1/2 in the limit). Their algorithm works in any metric space.

n
2n—2

LONG NON-CROSSING CONFIGURATIONS IN THE PLANE 317

As pointed out by Alon et al., the ratio 1/2 is best possible (in the limit) for this specific
algorithm. We first re-establish the 1/2 approximation ratio using a faster algorithm, and
also with a simpler analysis. Our algorithm works also in any metric space; however in this
general setting, the running time remains quadratic.

Algorithm A2: Compute a diameter of the point set, and output the longest of the two
stars centered at one of its endpoints.

Obviously the algorithm runs in O(nlogn) time, with bottleneck being the diameter
computation [15]. Let ab be a diameter pair, and assume w.l.o.g. that |ab] = 1. The ratio
1/2 (or even ') follows from the next lemma in conjunction with the obvious upper
bound L(Topt) < n (or L(Topt) <n —1).

Lemma 3.1. Let S, and Sy be the stars centered at the points a and b, respectively. Then
L(Sa) + L(Sb) >n.

Proof. Assume that a = p1, b = pa. For each i = 3,...,n, the triangle inequality for the
triple a, b, p; gives
lapi| + |bpi| > |ab] = 1.
By summing up we have
n
L(S2) + L(Sy) = S (lapi] + 1bpil) + 2Jabl > (n—2) +2 = n.
i=3
We now continue with the new algorithm that achieves a (provable) % +
mation ratio within the same running time O(nlogn).

L
500

approxi-
Algorithm A3: Compute a diameter ab of the point set, and output the longest of the 5
non-crossing structures S, Sy, Sp, Fq, Fp, described below.

Assume w.l.o.g. that the ab is a horizontal unit segment, where a = (0,0) and b = (1, 0).
Let h = (zp,yn) be a point in S with a largest value of |y|. By symmetry, we can assume
that y, > 0. S,, Sp, and S}, are the 3 stars centered at a, b, and h respectively. E,, resp.
Ey, are two non-crossing extended stars centered at a, resp, b; details to follow. Each of
the five structures can be computed in O(nlogn) time, so the total execution time is also
O(nlogn).

Set 6 = 0.05, w = 0.6, t = 0.6 and z = 0.48, and refer to Fig. 2. Let ¢, {5, {3, and {4,
be four parallel vertical lines: ¢1 : x =0, 5 : x = 0.2, f3: x = 0.8, {4 : x = 1. Obviously,
all points in S lie in the strip bounded by ¢; and ¢4. Let V,,, be the vertical parallel strip
symmetric about the midpoint of ab and of width w. We refer to V,,, as the middle strip; V;,,
is bounded by the vertical lines /5 and /3. Let V, and V}, be the two vertical strips of width
0.2 bounded by ¢; and /3, and by ¢3 and ¢4 respectively. Let ¢ = (x.,y.) be the intersection
point between ¢35 and the circular arc v, of unit radius centered at a and sub-tending an
angle of 60°. We have z. = 0.8 and

Ye=1+1-082=06=t

We now describe the two extended star structures E, and Ej. See also Fig. 3 for an
example. To construct E,, first compute the order of visibility of the points in V} from point
a by sorting. Then connect a with each point in the right strip V4. Note that b € V},, thus
Vi # 0. Call S, the resulting star. The edges of this star together with the vertical line ¢3
divide V, UV}, into convex regions (wedges with a common apex a) ordered top-down. The
subset of points in each wedge can be computed using binary search in overall O(nlogn)

318 ADRIAN DUMITRESCU AND CSABA D. TOTH

0 Uy 45 I

Figure 2: A diameter pair a,b at unit distance, and the three vertical strips Vg, V;,,, and V;. The
two circular arcs v, and 7, of unit radius centered at a and b intersect at the point
(1/2,4/3/2). All points of S above ab lie in the region bounded by ab, v, and 7.

time (over all wedges). S/ is extended (augmented) as follows. In each wedge, say pag, all
points are connected either to a or to p, depending on the best (longest) overall connection
cost. We denote the resulting extended star structure by FE,. The construction of Ej is
analogous. It is clear by construction that both F, and E} are non-crossing.

Lemma 3.2. For each p € S, let dpas(p) denote the maximum distance from p to other

points in S. Then
TOPT [Z dmaz bi]

Proof. Consider Topt rooted at a and drawn as an abstract tree with the root at the top in
the usual manner. Let 7(v) denote the parent of a (non-root) vertex v. Uniquely assign each
edge 7(v)v of Topr to vertex v. Obviously, L(7(v)v) < dmax(v) holds for each edge in the
tree. By adding up the above inequalities, and taking into account that dyax(a) = |ab] =1,
the lemma follows. u

Lemma 3.3. Assume that Y i |y;| > on for some positive constant 6 < 1. Then

L(S) + L(Sy) > 2m/i 4.

Lemma 3.4. Let n, and ny denote the number of points in the left and right vertical strips
Vo and Vi. Then L(E,) > 2 (n+ny), and similarly L(Ep) > 2% (n +n,). Consequently
L(E,) + L(Ey) > 22 (2n + na +ny). E, and Ey can be constructed in O(nlogn) time.

Proof. The distance between ¢ and {3 is HT“’ By an argument similar to that in the proof

1+w m. Therefore

of Lemma 3.1, the connection cost for a wedge with m points is at least

the total length of E, is

I+w I+w 1+w
5t (n —mnp) = 1 (n+ np).

The estimation of L(Ej) is analogous. The running time has been established previously. m

L(E,) >

LONG NON-CROSSING CONFIGURATIONS IN THE PLANE 319

Lemma 3.5. Assume that Y ;- |y;| < on and y, > t. Then L(Sp) > (t — d)n.
Proof.

n n n
L(Sh) =Y (yn—vi) =nyn— > _ 4 = nyn— Y _ |yil > nyn —on > (t = o)n. -
=1 =1 =1

Lemma 3.6. Assume that |yp| <t =0.6. Let p € S be a point in the middle strip V,,, with
y-coordinate satisfying |y| < 0.15. Then dyqeq(p) < 0.9605.

Proof. 1t is straightforward to check that the maximum distance is attained for a point p
on {5 with y-coordinate —0.15. The furthest point from p in the allowed region is c. Hence

dmax(p) < pe| = Vw? + (0.15 +)2 = 1/0.62 + 0.752 < 0.9605. m

We now distingulsh the following four cases to complete our estimation of the approxi-
mation ratio.

Case 1: Y., lyi| > 6n. The algorithm outputs® S, or Sj,. By Lemma 3.3, the approx-

imation ratio is at least
L L /1
M Z - +52 Z 0.502.
2L(Topr) 4

Case 2: 37" | |yil < on and y, > t. The algorithm outputs Sj. By Lemma 3.5, the
approximation ratio is at least ¢ — § = 0.55.

Case 3: >0" | |yil < on and y, < t and ng + ny > (1 — z)n. The algorithm outputs
E, or E,. We only need the last inequality in estimating the length. By Lemma 3.4, the
approximation ratio is at least

L(Eq) + L(Ey) _ 14w 2n+ng+ny (1+w)(3—2) 1.6-2.52
2L(Topr) ~ 4 2n - 8 8
Case 4: Y i1 |yi| < dn and yp, <t and n, +np < (1 — z)n. The algorithm outputs S,

or Sp. There are at least zn = 0.48n points in the middle strip V,,. Observe that at most
n/3 points in V,,, have |y;| > 0.15; otherwise we would have

D vl =) lwil > 0.15- % = 0.05n = on,

= 0.504.

a contradiction. It follows that at least 12n/25 —n/3 = 11n/75 points in the middle strip
have |y;| < 0.15. By Lemma 3.2 and Lemma 3.6,

64n 11n
L(Topr) < -2 4 0.9605 - — < 0.9943n.
(Topr) < =+ 75 = "

The approximation ratio is at least
L (Sa) +L (Sb)
2L(TopT) — 2-0.9943n
This completes the list of cases and thereby the proof of Theorem 1.2.

> 0.502.

Remark. The example in Fig. 3 with n points (n even) equally spaced along a circle shows
that the constant 0.502 measuring the approximation ratio achieved by our algorithm A3

2Here and in other instances it is meant that the algorithm outputs a structure at least as long as these.

320 ADRIAN DUMITRESCU AND CSABA D. TOTH

cannot be improved to anything larger than 2/7. Indeed the lengths of the five structures
computed by the algorithm are L(S,) = L(Sy) = L(Sy) = L(E,) = L(Ep) = (1 — o(l))%n,
while L(Topr) > L(Hopt) = (1 — o(1))n.

Figure 3: The non-crossing structure F, for an example with n = 16 points on the circle. The
middle strip V;,, is bounded by the two dashed vertical lines.

4. The Hamiltonian cycle

In this section we present the proof of Theorem 1.3, which is similar (including notation)
to that of Theorem 1.1. The rotated coordinate system I',, and the z-coordinates x; with
respect to this system are denoted in the same way. By relabeling the points assume that
the optimal cycle is Qopr = p1,p2,.-.,pn (With the convention that p,y1 = p1). We
approximate Qopr by constructing a non-crossing alternating path A on a subset of S, and
then completing it to a non-crossing cycle using convex hull vertices. We need to observe
that the alternating path A on the subset I of interior (non-hull) vertices of S produced
by the algorithm of Abellanas et al. [1] is not good enough for this strategy: even though
one endpoint of A (the first computed by the algorithm) is always on the convex hull of I,
the other endpoint might be blocked by edges of A, so that A might not be extendible to a
non-crossing Hamiltonian cycle (an example is shown in Fig. 4). Here, we give a stronger
result that fits our purpose (for an even number of points).

Lemma 4.1. Let S = RU B with with |R| = |B|, be a linearly separable bipartition given
by line €. Then S admits an alternating non-crossing spanning path A such that (1) the
edges of A cross £ at points ordered monotonically along ¢; and (2) the two endpoints of
A are incident to the two distinct edges of the convex hull that connect R and B (the two
red-blue bridges). Such a Hamiltonian path can be computed in O(nlogn) time. We refer
to the underlying procedure as the two-endpoint path construction algorithm.

Proof. We modify the algorithm of Abellanas et al. for path construction, so that the path
is grown from the two endpoints and the two sub-paths merge ”in the middle”. Recall that
S = RU B, and |R| = |B]|, thus |S| is even. Let r1b; and r2by be the top and bottom
red-blue edges of the convex hull conv(S), respectively, called top and bottom bridges; it
is possible that ;1 = r9 or by = by but not both. One endpoint of A is an endpoint of
the top bridge, and the other endpoint of A is an endpoint of the bottom bridge, and they

LONG NON-CROSSING CONFIGURATIONS IN THE PLANE 321

Figure 4: A non-crossing alternating path obtained by the algorithm of Abellanas et al. For the
purpose of cycle construction, the path is non-extendible from its 2nd endpoint, vertex 7.

are chosen of opposite colors. Let A = {ry,ba} or A = {b1, 72} arbitrarily, containing two
endpoints of the path. At every step, recompute the top and bottom bridges of S\ A,
and append either the red or the blue vertex of each bridge to A such that the appended
edges cross the separating line £. In the last step, the convex hull of S\ A is a red-blue
segment that merges the two sub-paths. The two new edges added simultaneously at each
step cannot cross each other; and they cannot cross previous edges, since they are separated
from them by the convex hull of S\ A. Finally, they cannot extend the two sub-paths by
the same point either, because |S| is even.]

The next lemma follows from [10, Lemma 2.1]; we will only need its corollary, Lemma 4.3.

Lemma 4.2. ([10]). Let P = p1,pa,...,pn be a simple polygon (with the convention that
Pn+1 = p1) and q be a point in the exterior of the convex hull of P, where P U {q} is in
general position. Then q sees one edge p;pi+1 of P. Such an edge can be found in O(n)
time.

Lemma 4.3. Let P = p1,pa,...,pn be a simple polygon (with the convention that p,1 =
p1) and q be a point in the exterior of the conver hull of P, where P U {q} is in general
position. Then the polygonal cycle P can be extended to include q so that P U {q} is still a
simple polygon. More precisely, there exists i € [n], so that Q = p1,...,Di,q,Dit1,---sDPn 1S
a simple polygon. Moreover, L(Q) > L(P). The extension can be computed in O(n) time.

Proof. By Lemma 4.2, q sees one edge p;p;+1 of P. Replacing this edge of P by the two
edges p;q and gp; 41 results in a simple polygon Q = p1,...,pi,q,Di+1,-- -, Pn. By the triangle
inequality, L(Q) > L(P). The extension can be computed in O(n) time, as determined by
the time needed to find a visible edge. [

Note that the condition in the lemma that ¢ lies in the exterior of the convex hull of
P, is indeed necessary. Otherwise one cannot guarantee that ¢ sees an edge of P.

(i) Let S = S'US”, where S’ is the set of convex hull vertices and S” is the set of interior
points. Let S = {pj,,pjs,--.,pj,}- Put h =|S'|, m =|5"|, thus n = h + m. Assume first
for simplicity that m is even. An easy modification of the algorithm, explained below, is
used for m odd.

322 ADRIAN DUMITRESCU AND CSABA D. TOTH

Algorithm A4:

STEP 1. For all non-equivalent bisections of S” (i.e., for all balanced bipartitions of S”):
1. Compute a non-crossing alternating path A by using the two-endpoint path construction
algorithm (Lemma 4.1). 2. Extend A to a cycle by connecting its endpoints to (one or two)
convex hull vertices. 3. Further extend this cycle to include the remaining hull vertices, by
repeated invocation of Lemma 4.3.

STEP 2. Output the longest such cycle (containing all points of S).

Observe that after STEP 1.1, the two endpoints of the path are vertices of conv(S”),
hence they can be connected to hull vertices to make a cycle. If m is odd, then there is a
point ¢ € S” on the line ¢. Use the two-endpoint path construction algorithm for S” \ {q},
and the same bisecting line ¢. If ¢ is in the interior of conv(S” \ {¢}), then extend the path
with point ¢, using Lemma 2.2. Otherwise, ¢ sees the top or bottom bridge of conv(S”\{q}),
so the path can be extended by connecting ¢ to the endpoint visible to g. The two endpoints
of the extended path are on conv(S”), hence they can be connected to hull vertices to make
a cycle, as in the case of even m.

References

[1] M. Abellanas, J. Garcia, G. Herndndez, M. Noy, and P. Ramos: Bipartite embeddings of trees in the
plane, Discrete Applied Mathematics, 93 (1999), 141-148.

[2] O. Aichholzer, S. Cabello, R. Fabila-Monroy, D. Flores-Pefialoza, T. Hackl, C. Huemer, F. Hurtado, and
D. R. Wood: Edge-removal and non-crossing configurations in geometric graphs, Proc. 24th Furopean
Workshop on Computational Geometry, Nancy 2008, pp. 119-122.

[3] N. Alon, S. Rajagopalan and S. Suri: Long non-crossing configurations in the plane, Fundamenta
Informaticae 22 (1995), 385-394. Also in Proc. 9th ACM Sympos. on Comput. Geom., 1993, 257-263.

[4] M. Bern and D. Eppstein: Approximation algorithms for geometric problems, in Approzimation Algo-
rithms for N P-hard Problems (D. S. Hochbaum, editor), PWS, Boston, 1997, pp. 296-345.

[5] J. Cerny, Z. Dvofék, V. Jelinek, and J. Kéra: Noncrossing Hamiltonian paths in geometric graphs,
Discrete Applied Mathematics, 155 (2007), 1096-1105.

[6] T. K. Dey: Improved bounds on planar k-sets and related problems, Discrete & Computational Geom-
etry, 19 (1998), 373-382.

[7] H. Edelsbrunner: Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.

[8] D. Eppstein: Spanning trees and spanners, in Handbook of Computational Geometry (J.-R. Sack and
J. Urrutia, editors), Elsevier Science, Amsterdam, 2000, pp. 425-461.

[9] S. P. Fekete: Simplicity and hardness of the maximum traveling salesman problem under geometric
distances, Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms, 1999, pp. 337—-345.

[10] F. Hurtado, M. Kano, D. Rappaport, and Cs. D. Téth: Encompassing colored planar straight line
graphs, Computational Geometry: Theory and Applications, 39 (1) (2008), 14-23.

[11] G. Kérolyi, J. Pach and G. Téth: Ramsey-type results for geometric graphs. I, Discrete and Computa-
tional Geometry 18 (1997), 247-255.

[12] G. Kérolyi, J. Pach, G. Téth and P. Valtr: Ramsey-type results for geometric graphs. II, Discrete and
Computational Geometry, 20 (1998), 375-388.

[13] L. Lovédsz: On the number of halving lines, Ann. Univ. Sci. Budapest, Edtvos, Sec. Math., 14 (1971),
107-108.

[14] J. S. B. Mitchell: Geometric shortest paths and network optimization, in Handbook of Computational
Geometry (J.-R. Sack and J. Urrutia, editors), Elsevier Science, Amsterdam, 2000, pp. 633-701.

[15] F. Preparata and M. Shamos: Computational Geometry: An Introduction, Springer, New York, 1985.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 323-334
www.stacs-conf.org

THE COMPLEXITY OF APPROXIMATING
BOUNDED-DEGREE BOOLEAN #CSP

MARTIN DYER'! AND LESLIE ANN GOLDBERG 2 AND MARKUS JALSENIUS 23 AND
DAVID RICHERBY !

1 School of Computing, University of Leeds, Leeds, LS2 9JT, U.K.
E-mail address: {M.E.Dyer,D.M.Richerby}@leeds.ac.uk

2 Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, U.K.
E-mail address: L.A.Goldberg@liverpool.ac.uk

3 Current address: Department of Computer Science, University of Bristol, Merchant Venturers
Building, Woodland Road, Bristol, BS8 1UB, U.K.
E-mail address: M.Jalsenius@bristol.ac.uk

ABSTRACT. The degree of a CSP instance is the maximum number of times that a variable
may appear in the scope of constraints. We consider the approximate counting problem
for Boolean CSPs with bounded-degree instances, for constraint languages containing the
two unary constant relations {0} and {1}. When the maximum degree is at least 25 we
obtain a complete classification of the complexity of this problem. It is exactly solvable
in polynomial-time if every relation in the constraint language is affine. It is equivalent
to the problem of approximately counting independent sets in bipartite graphs if every
relation can be expressed as conjunctions of {0}, {1} and binary implication. Otherwise,
there is no FPRAS unless NP = RP. For lower degree bounds, additional cases arise in
which the complexity is related to the complexity of approximately counting independent
sets in hypergraphs.

1. Introduction

In the constraint satisfaction problem (CSP), we seek to assign values from some domain
to a set of variables, while satisfying given constraints on the combinations of values that
certain subsets of the variables may take. Constraint satisfaction problems are ubiquitous in
computer science, with close connections to graph theory, database query evaluation, type
inference, satisfiability, scheduling and artificial intelligence [20, 22,25]. CSP can also be
reformulated in terms of homomorphisms between relational structures [14] and conjunctive
query containment in database theory [20]. Weighted versions of CSP appear in statistical
physics, where they correspond to partition functions of spin systems [31].

1998 ACM Subject Classification: F.2.2, G.2.1.

Key words and phrases: Boolean constraint satisfaction problem, generalized satisfiability, counting, ap-
proximation algorithms.

Funded in part by the EPSRC grant “The Complexity of Counting in Constraint Satisfaction Problems”.

SYMPOSIUM
ﬁvr_ ON THEORETICAL
ASPECTS
D S%FE%EMPUTER @© M. Dyer, L. A. Goldberg, M. Jalsenius, and D. M. Richerby

© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany

Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2466

324 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

We give formal definitions in Section 2 but, for now, consider an undirected graph G
and the CSP where the domain is {red, green,blue}, the variables are the vertices of G
and the constraints specify that, for every edge zy € G, x and y must be assigned different
values. Thus, in a satisfying assignment, no two adjacent vertices are given the same colour:
the CSP is satisfiable if, and only if, the graph is 3-colourable. As a second example, given
a formula in 3-CNF, we can write a system of constraints over the variables, with domain
{true, false}, that requires the assignment to each clause to satisfy at least one literal.
Clearly, the resulting CSP is directly equivalent to the original satisfiability problem.

1.1. Decision CSP

In the uniform constraint satisfaction problem, we are given the set of constraints ex-
plicitly, as lists of allowable combinations for given subsets of the variables; these lists can
be considered as relations over the domain. Since it includes problems such as 3-SAT and
3-COLOURABILITY, uniform CSP is NP-complete. However, uniform CSP also includes
problems in P, such as 2-SAT and 2-COLOURABILITY, raising the natural question of what
restrictions lead to tractable problems. There are two natural ways to restrict CSP: we can
restrict the form of the instances and we can restrict the form of the constraints.

The most common restriction to CSP is to allow only certain fixed relations in the
constraints. The list of allowed relations is known as the constraint language and we write
CSP(T") for the so-called non-uniform CSP in which each constraint states that the values
assigned to some tuple of variables must be a tuple in a specified relation in I'.

The classic example of this is Schaefer’s dichotomy for Boolean constraint languages I"
(i.e., those with domain {0, 1}; often called “generalized satisfiability”) [26]. He showed that
CSP(T") is in P if T is included in one of six classes and is NP-complete, otherwise. More
recently, Bulatov has produced a corresponding dichotomy for the three-element domain [2].
These two results restrict the size of the domain but allow relations of arbitrary arity in
the constraint language. The converse restriction — relations of restricted arity, especially
binary relations, over arbitrary finite domains — has also been studied in depth [16,17].

For all T" studied so far, CSP(I") has been either in P or NP-complete and Feder and
Vardi have conjectured that this holds for every constraint language [14]. Ladner has shown
that it is not the case that every problem in NP is either in P or NP-complete since, if
P # NP, there is an infinite, strict hierarchy between the two [23]. However, there are
problems in NP, such as graph Hamiltonicity and even connectedness, that cannot be
expressed as CSP(I") for any finite I'! and Ladner’s diagonalization does not seem to be
expressible in CSP [14], so a dichotomy for CSP appears possible.

Restricting the tree-width of instances has also been a fruitful direction of research
[15,21]. In contrast, little is known about restrictions on the degree of instances, i.e., the
maximum number of times that any variable may appear. Dalmau and Ford have shown
that, for any fixed Boolean constraint language I' containing the constant unary relations
R,er0 = {0} and Rone = {1}, the complexity of CSP(I") for instances of degree at most
three is exactly the same as the complexity of CSP(I') with no degree restriction [6]. The
case where variables may appear at most twice has not yet been completely classified; it is
known that degree-2 CSP(I") is as hard as general CSP(I") whenever I' contains R,er, and
Rone and some relation that is not a A-matroid [13]; the known polynomial-time cases come
from restrictions on the kinds of A-matroids that appear in I' [6].

IThis follows from results on the expressive power of existential monadic second-order logic [12].

APPROXIMATING BOUNDED-DEGREE BOOLEAN #CSP 325

1.2. Counting CSP

A generalization of classical CSP is to ask how many satisfying solutions there are.
This is referred to as counting CSP, #CSP. Clearly, the decision problem is reducible to
counting: if we can efficiently count the solutions, we can efficiently determine whether there
is at least one. The converse does not hold: for example, we can determine in polynomial
time whether a graph admits a perfect matching but it is #P-complete to count the perfect
matchings, even in a bipartite graph [29].

#P is the class of functions f for which there is a nondeterministic, polynomial-time
Turing machine that has exactly f(z) accepting paths for input = [28]. It is easily seen
that the counting version of any NP decision problem is in #P and #P can be considered
the counting “analogue” of NP. Note, though that problems that are #P-complete under
appropriate reductions are, under standard complexity-theoretic assumptions, considerably
harder than NP-complete problems: P#F includes the whole of the polynomial hierarchy
[27], whereas PNP is generally thought not to.

Although no dichotomy is known for CSP, Bulatov has recently shown that, for all
I, #CSP(I") is either computable in polynomial time or #P-complete [3]. However, Bu-
latov’s dichotomy sheds little light on which constraint languages yield polynomial-time
counting CSPs and which do not. The criterion of the dichotomy is based on “defects” in
a certain infinite algebra built up from the polymorphisms of I" and it is open whether the
characterization is even decidable. It also seems not to apply to bounded-degree #CSP.

So, although there is a full dichotomy for #CSP(I"), results for restricted forms of
constraint language are still of interest. Creignou and Hermann have shown that only one of
Schaefer’s polynomial-time cases for Boolean languages survives the transition to counting;:
#CSP(I') € FP (i.e., has a polynomial time algorithm) if I' is affine (i.e., each relation is
the solution set of a system of linear equations over GF2) and is #P-complete, otherwise [5].
This result has been extended to rational and even complex-weighted instances [4,10] and, in
the latter case, the dichotomy is shown to hold for the restriction of the problem in which
instances have degree 3. This implies that the degree-3 problem #CSP3(I") (#CSP(I")
restricted to instances of degree 3) is in FP if I is affine and is #P-complete, otherwise.

1.3. Approximate counting

Since #CSP(T") is very often #P-complete, approximation algorithms play an impor-
tant role. The key concept is that of a fully polynomial randomized approximation scheme
(FPRAS). This is a randomized algorithm for computing some function f(z), taking as its
input « and a constant € > 0, and computing a value Y such that e ™ < Y/f(x) < e with
probability at least 2, in time polynomial in both |z| and e~!. (See Section 2.4.)

Dyer, Goldberg and Jerrum have classified the complexity of approximately computing
#CSP(I') for Boolean constraint languages [9]. When all relations in I" are affine, #CSP(T")
can be computed exactly in polynomial time by the result of Creignou and Hermann dis-
cussed above [5]. Otherwise, if every relation in I' can be defined by a conjunction of pins
(i.e., assertions v = 0 or v = 1) and Boolean implications, then #CSP(I') is as hard to
approximate as the problem #BIS of counting independent sets in a bipartite graph; other-
wise, #CSP(I") is as hard to approximate as the problem #SAT of counting the satisfying
truth assignments of a Boolean formula. Dyer, Goldberg, Greenhill and Jerrum have shown
that the latter problem is complete for #P under appropriate approximation-preserving
reductions (see Section 2.4) and has no FPRAS unless NP = RP [8], which is thought to

326 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

be unlikely. The complexity of #BIS is currently open: there is no known FPRAS but it is
not known to be #P-complete, either. #BIS is known to be complete for a logically-defined
subclass of #P with respect to approximation-preserving reductions [8].

1.4. Our result

We consider the complexity of approximately solving Boolean #CSP problems when
instances have bounded degree. Following Dalmau and Ford [6] and Feder [13] we consider
the case in which R, = {0} and Rope = {1} are available. We proceed by showing that
any Boolean relation that is not definable as a conjunction of ORs or NANDs can be used
in low-degree instances to assert equalities between variables. Thus, we can side-step degree
restrictions by replacing high-degree variables with distinct variables asserted to be equal.

Our main result, Corollary 6.6, is a trichotomy for the case in which instances have
maximum degree d for some d > 25. If every relation in I' is affine, then #CSP4(I' U
{Rero, Rone }) is solvable in polynomial time. Otherwise, if every relation in I' can be defined
as a conjunction of R,ero, Rone and binary implications, then #CSPy(I' U { R er0, Rone }) 1S
equivalent in approximation complexity to #BIS. Otherwise, it has no FPRAS unless
NP = RP. Theorem 6.5 gives a partial classification of the complexity when d < 25. In
the new cases that arise here, the complexity is given in terms of the complexity of counting
independent sets in hypergraphs with bounded degree and bounded hyper-edge size. The
complexity of this problem is not fully understood and we explain what is known about it
in Section 6.

2. Preliminaries

2.1. Basic notation

We write @ for the tuple (ay,...,a,), which we often shorten to @ = ay...a,. We
write a” for the r-tuple a...a and @b for the tuple formed from the elements of @ followed
by those of b. The bit-wise complement of a relation R C {0,1}" is the relation R =
{{ax®1,...,a,®1) | @€ R}, where @ denotes addition modulo 2.

We say that a relation R is ppp-definable? in a relation R’ and write R <,pp R’ if R
can be obtained from R’ by some sequence of the following operations:

e permutation of columns (for notational convenience only);
e pinning (taking sub-relations of the form R; .. = {@ € R | a; = ¢} for some ¢ and
some ¢ € {0,1}); and
e projection (“deleting the ith column” to give the relation {a;...a;—1a;11...a, |
ap...ar € R}).
It is easy to see that <,pp is reflexive and transitive and that, if R <,p, R, then R can
be obtained from R’ by first permuting the columns, then making some pins and then
projecting.
We write R— = {00,11}, R = {01,10}, Ror = {01,10,11}, Rxanxp = {00, 01,10},
R_. = {00,01,11} and R = {00,10,11}. For k > 2, we write R_j = {0% 1¥}, Rop =
{0,135\ {0*} and Rxanpx = {0, 1}%\ {1¥} (i.e., k-ary equality, OR and NAND).

2This should not be confused with the concept of primitive positive definability (pp-definability) which
appears in algebraic treatments of CSP and #CSP, for example in the work of Bulatov [3].

APPROXIMATING BOUNDED-DEGREE BOOLEAN #CSP 327

2.2. Boolean constraint satisfaction problems

A constraint language is a set I' = {R1,..., Ry, } of named Boolean relations. Given a
set V' of variables, the set of constraints over I' is the set Cons(V,I") which contains R(7)
for every relation R € I" with arity 7 and every 7 € V". Note that v = v/ and v # v are
not constraints unless the appropriate relations are included in I The scope of a constraint
R(v) is the tuple U, which need not consist of distinct variables.

An instance of the constraint satisfaction problem (CSP) over I' is a set V' of variables
and a set C' C Cons(V,T") of constraints. An assignment to a set V of variables is a function
o:V — {0,1}. An assignment to V satisfies an instance (V,C) if (o(v1),...,0(v,)) € R
for every constraint R(vq,...,v,). We write Z(I) for the number of satisfying assignments
to a CSP instance I. We study the counting CSP problem #CSP(T"), parameterized by T
in which we must compute Z(I) for an instance I = (V,C') of CSP over T.

The degree of an instance is the greatest number of times any variable appears among
its constraints. Note that the variable v appears twice in the constraint R(v, v). Our specific
interest in this paper is in classifying the complexity of bounded-degree counting CSPs. For
a constraint language I" and a positive integer d, define #CSP4(I") to be the restriction of
#CSP(I') to instances of degree at most d. Instances of degree 1 are trivial.

Theorem 2.1. For any I, #CSP(T") € FP.]

When considering #CSP for d > 2, we follow established practice by allowing pinning
in the constraint language [6,13]. We write R,e0 = {0} and Rone = {1} for the two
singleton unary relations. We refer to constraints in R,eo and Rgne as pins. To make
notation easier, we will sometimes write constraints using constants instead of explicit pins.
That is, we will allow the constants 0 and 1 to appear in the place of variables in the scopes
of constraints. Such constraints can obviously be rewritten as a set of “proper” constraints,
without increasing degree. We let I}, denote the constraint language {Ryero, Rone }-

2.3. Hypergraphs

A hypergraph H = (V,E) is a set V = V(H) of vertices and a set £ = E(H) C P(V)
of non-empty hyper-edges. The degree of a vertex v € V(H) is the number d(v) = |{e €
E(H) | v € e}| and the degree of a hypergraph is the maximum degree of its vertices. If
w = max{|e| | e € E(H)}, we say that H has width w. An independent set in a hypergraph
H is a set S C V(H) such that e ¢ S for every e € E(H). Note that an independent set
may contain more than one vertex from any hyper-edge of size at least three.

We write #w-HIS for the problem of counting the independent sets in a width-w hy-
pergraph H, and #w-HIS, for the restriction of #w-HIS to inputs of degree at most d.

2.4. Approximation complexity

A randomized approximation scheme (RAS) for a function f: ¥* — N is a probabilistic
Turing machine that takes as input a pair (z,€) € ¥* x (0,1), and produces, on an output
tape, an integer random variable Y with Pr(e ¢ < Y/f(z) <€) > 3.3 A fully polynomial
randomized approzimation scheme (FPRAS) is a RAS that runs in time poly(|z|,e™1).

3The choice of the value % is inconsequential: the same class of problems has an FPRAS if we choose any
probability p with % <p<1I[18].

328 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

To compare the complexity of approximate counting problems, we use the AP-reductions
of [8]. Suppose f and g are two functions from some input domain ¥* to the natural numbers
and we wish to compare the complexity of approximately computing f to that of approxi-
mately computing g. An approximation-preserving reduction from f to g is a probabilistic
oracle Turing machine M that takes as input a pair (z,e) € X* x (0,1), and satisfies the
following three conditions: (i) every oracle call made by M is of the form (w,d) where
w € ¥* is an instance of g, and 0 < § < 1 is an error bound satisfying 6! < poly(|z|, e~ 1);
(ii) M is a randomized approximation scheme for f whenever the oracle is a randomized
approximation scheme for g; and (iii) the run-time of M is polynomial in |z| and e !.

If there is an approximation-preserving reduction from f to g, we write f <ap ¢ and
say that f is AP-reducible to g. If g has an FPRAS, then so does f. If f <ap ¢ and
g <ap f, then we say that f and g are AP-interreducible and write f =ap g.

3. Classes of relations

A relation R C {0,1}" is affine if it is the set of solutions to some system of linear
equations over GFy. That is, there is a set ¥ of equations in variables z1,...,x,, each of
the form z;, & --- @ x;, = ¢, where & denotes addition modulo 2 and ¢ € {0,1}, such that
a € R if, and only if, the assignment 1 — aq,...,x, — a, satisfies every equation in X.
Note that the empty and complete relations are affine.

We define IM-conj to be the class of relations defined by a conjunction of pins and
(binary) implications. This class is called IM3 in [9)].

Lemma 3.1. If R € IM-conj is not affine, then R_, <ppp R.]

Let OR-conj be the set of Boolean relations that are defined by a conjunction of pins
and ORs of any arity and NAND-conj the set of Boolean relations definable by conjunctions
of pins and NANDs (i.e., negated conjunctions) of any arity. We say that one of the defining
formulae of these relations is normalized if no pinned variable appears in any OR or NAND,
the arguments of each individual OR and NAND are distinct, every OR or NAND has at
least two arguments and no OR or NAND’s arguments are a subset of any other’s.

Lemma 3.2. FEvery OR-conj (respectively, NAND-conj) relation is defined by a unique
normalized formula. m

Given the uniqueness of defining normalized formulae, we define the width of an OR-conj
or NAND-conj relation R to be wd(R), the greatest number of arguments to any of the
ORs or NANDs in the normalized formula that defines it. Note that, from the definition of
normalized formulae, there are no relations of width 1.

Lemma 3.3. If R € OR-conj has width w, then Rorp,...,Rorw <ppp K. Similarly, if
R € NAND-conj has width w, then RNAND,2; - - - s RNAND,w <ppp R- m
Given tuples @, b € {0,1}", we write @ < b if a; < b; for all i € [1,7]. If @ < b and @ # b,
we write @ < b. We say that a relation R C {0,1}" is monotone if, whenever @ € R and
@ < b, then b € R. We say that R is antitone if, whenever @ € R and b <@, then b € R.
Clearly, R is monotone if, and only if, R is antitone. Call a relation pseudo-monotone
(respectively, pseudo-antitone) if its restriction to non-constant columns is monotone (re-
spectively, antitone). The following is a consequence of results in [19, Chapter 7.1.1].
Proposition 3.4. A relation R C {0,1}" is in OR-conj (respectively, NAND-conj) if, and
only if, it is pseudo-monotone (respectively, pseudo-antitone). [

APPROXIMATING BOUNDED-DEGREE BOOLEAN #CSP 329

4. Simulating equality

An important ingredient in bounded-degree dichotomy theorems [4] is expressing equal-
ity using constraints from a language that does not necessarily include the equality relation.
A constraint language I is said to simulate the k-ary equality relation R_ j if, for some
¢ > k, there is a (I'U I},)-CSP instance I with variables x1, ..., z, that has exactly m > 1

satisfying assignments o with o(z1) = --- = o(zr) = 0, exactly m with o(z1) = --- =
o(x) = 1 and no other satisfying assignments. If, further, the degree of I is d and the
degree of each variable 1, ...,z is at most d — 1, we say that I' d-simulates R— . We say
that I' d-simulates equality if it d-simulates R_ j for all k > 2.

The point is that, if I" d-simulates equality, we can express the constraint y; = --- =y,
in ' U I}, and then use each y; in one further constraint, while still having an instance of
degree d. The variables xy41, ...,z in the definition function as auxiliary variables and are
not used in any other constraint. Simulating equality makes degree bounds moot.
Proposition 4.1. IfT' d-simulates equality, then #CSP(I") <ap #CSPg(I' U Iin).]

We now investigate which relations simulate equality.
Lemma 4.2. R € {0,1}" 8-simulates equality if R— <ppp R, Rz <ppp R or R, <ppp R.

Proof. For each k > 2, we show how to 3-simulate R_ ;. We may assume without loss of
generality that the ppp-definition of R—, R or R_, from R involves applying the identity
permutation to the columns, pinning columns 3 to 3 + p — 1 inclusive to zero, pinning
columns 3 4+ p to 3+ p+ g — 1 inclusive to one (that is, pinning p > 0 columns to zero and
g = 0 to one) and then projecting away all but the first two columns.

Suppose first that R— <ppp R or R, <ppp . R must contain « > 1 tuples that begin
000P1%, B > 0 that begin 010P17 and v > 1 that begin 110P1%, with 8 = 0 unless we are
ppp-defining R_,. We consider, first, the case where a = v, and show that we can 3-simulate
R_ 1, expressing the constraint R— j(z1,...,x)) with the constraints

R(z1220P19%), R(wox30P1%x), ..., R(xp_120P1%%), R(xix10P19%%),

where * denotes a fresh (r—2—p—q)-tuple of variables in each constraint. These constraints
are equivalent to 1 = --- = xp = 21 or to x1 — ... — xp — x1 so constrain the variables
z1,...,Z, to have the same value, as required. Every variable appears at most twice and
there are o solutions to these constraints that put 1 = --- = 2, = 0, ¥ = oF solutions
with 1 = --- = 7}, = 1 and no other solutions. Hence, R 3-simulates R_ j, as required.

We now show, by induction on r, that we can 3-simulate R_j even in the case that
« # «. For the base case, r = 2, we have a = 7 = 1 and we are done. For the inductive
step, let > 2 and assume, w.l.o.g. that a > v (o < v is symmetric). In particular, we have
a > 2, so there are distinct tuples 00071%a, and 000719b and 110P1%¢ in R. Choose j such
that a; # b;. Pinning the (2+p+¢+j)th column of R to ¢; and projecting out the resulting
constant column gives a relation R’ of arity » — 1 containing at least one tuple beginning
000”17 and at least one beginning 110P1%: by the inductive hypothesis, R’ 3-simulates R— j.

Finally, we consider the case that R+ <,pp . R contains a > 1 tuples beginning 010714
and [> 1 beginning 100719. We express the constraint R y(x1,...,2;) by introducing
fresh variables y1, ...,y and using the constraints

R(z1y10P1%%), R(xoyo0P1%%), ..., R(xzp_1yr—10P1%%), R(zpyi0P19%),
R(y1220P19%), R(yax30P19%), ..., R(yr—12x0P1%%), R(yrz10P1%x).

330 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

There are (% solutions when 1 = --- = 2 = 0 (and y; = --- = y, = 1) and gFo*
solutions when the xs are 1 and the ys are 0. There are no other solutions and no variable
is used more than twice.]

For ¢ € {0,1}, an r-ary relation is c-valid if it contains the tuple ¢”.

Lemma 4.3. Let r > 2 and let R C {0,1}" be 0- and 1-valid but not complete. Then R
3-simulates equality. [

In the following lemma, we do not require R and R’ to be distinct. The technique is to
assert 1 = --- = x} by simulating the formula OR(x1,y1) A NAND(y1,22) A OR(z2,92) A
NAND(yQ, ZC3) VANCERIAN OR(l‘k, yk) VAN NAND(yk, ZCl).

Lemma 4.4. If Ror <ppp R and Rnanp <ppp R, then {R,R'} 3-simulates equality.]

5. Classifying relations

We are now ready to prove that every Boolean relation R is in OR~conj, in NAND-conj
or 3-simulates equality. If Ry and R; are r-ary, let Ry+ Ry = {0a |a € Ro}U{la|a € Ry}.

Lemma 5.1. Let Ry, Ry € OR-conj and let R = Ry + R1. Then R € OR-conj, R €
NAND-conj or R 3-simulates equality.

Proof. Let Ry and Ry have arity r. We may assume that R has no constant columns. If it
does, let R’ be the relation that results from projecting them away. R’ = R{, + R}, where
both R}, and R} are OR-conj relations. By the remainder of the proof, R" € OR-conj,
R’ € NAND-conj or R’ 3-simulates equality. Re-instating the constant columns does not
alter this. For R without constant columns, there are two cases.

Case 1. Ry C Ry. Suppose R; is defined by the normalized OR-conj formula ¢; in variables
Zo,...,Tr41. Then R is defined by the formula

gbo\/(l‘l:1/\(b1)5(¢0\/x1:1)/\(¢0\/¢1)E(¢0\/1‘1:1)/\¢1, (51)

where the second equivalence is because ¢y implies ¢;, because Ry C R;. R; has no

constant column, since such a column would have to be constant with the same value in
Ry, contradicting our assumption that R has no constant columns. There are two cases.

Case 1.1. Ry has no constant columns. x; = 1 is equivalent to OR(z1) and ¢ contains
no pins, so we can rewrite ¢g V 1 = 1 in CNF. Therefore, (5.1) is OR-con].

Case 1.2. Ry has a constant column. Suppose first that the kth column of Ry is constant-
zero. Rj has no constant columns, so the projection of R onto its first and (k+1)st columns
gives the relation R._, and R 3-simulates equality by Lemma 4.2. Otherwise, all constant
columns of Ry contain ones. Then ¢q is in CNF, since every pin z; = 1 in ¢y can be written
OR(z;). Thus, we can write ¢9 V 21 = 1 in CNF, so (5.1) defines an OR-conj relation.
Case 2. Ry ¢ R;. We will show that R 3-simulates equality or is in NAND-conj. We
consider two cases (recall that no relation has width 1).

Case 2.1. At least one of Ry and Ry has positive width. There are two sub-cases.

Case 2.1.1. Ry has a constant column. Suppose the kth column of Ry is constant. If the
kth column of Ry is also constant, then the projection of R to its first and (k4 1)st columns
is either equality or disequality (since the corresponding column of R is not constant) so R 3-
simulates equality by Lemma 4.2. Otherwise, if the projection of R to the first and (k+1)st

APPROXIMATING BOUNDED-DEGREE BOOLEAN #CSP 331

columns is R_,, then R 3-simulates equality by Lemma 4.2. Otherwise, that projection
must be Ryanp. By Lemma 3.3 and the assumption of Case 2.1, Rog is ppp-definable in
at least one of Ry and R; so R 3-simulates equality by Lemma 4.4.

Case 2.1.2. R; has no constant columns. By Proposition 3.4, R; is monotone. Let
@ € Ry \ Ri: by applying the same permutation to the columns of Ry and R;, we may
assume that @ = 017 ~¢. We must have £ > 1 as every non-empty r-ary monotone relation
contains the tuple 1”. Let b € R; be a tuple such that a; = b; for a maximal initial segment
of [1,7]. By monotonicity of Ry, we may assume that b = 0¥17%. Further, we must have
k < ¢, since, otherwise, we would have b < @, contradicting our choice of @ ¢ R;.

Now, consider the relation R’ = {agay ...as_j | ag0¥ay...a;_x1"~* € R}, which is the
result of pinning columns 2 to (k + 1) of R to zero and columns (r — ¢+ 1) to (r + 1) to
one and discarding the resulting constant columns. R’ contains 0‘~%+1 and 1¢-%*1 but is
not complete, since 10°=% ¢ R’ By Lemma 4.3, R’ and, hence, R 3-simulates equality.

Case 2.2. Both Ry and Ry have width zero, i.e., are complete relations, possibly padded
with constant columns. For i € [1,7], let R, be the relation obtained from R by projecting
onto its first and (z+ 1)st columns. Since R has no constant columns, R} is either complete,
R—_, Rz, Ror, Rnanp, R—. or R_. If there is a k such that R} is R—, Rz, R_, or R, then
R_, R, or R_, is ppp-definable in R and hence R 3-simulates equality by Lemma 4.2. If
there are k1 and ko such that R;cl = Ror and R;Q = RnAND, then R 3-simulates equality
by Lemma 4.4. It remains to consider the following two cases.

Case 2.2.1. Each R] is either Ror or complete. Ry must be complete, which contradicts
the assumption that Ry € R;.

Case 2.2.1. Fach Rg is either RNanp or complete. Rp must be complete. Let I = {i |
R; = Rnanp}. Then R = A,.; NAND(z1, xi41), so R € NAND-conj. n

Using the duality between OR-conj and NAND-conj relations, we can prove the corre-
sponding result for Ry, Ry € NAND-conj. The proof of the classification is completed by a
simple induction on the arity of R. Decomposing R as Ry + R and assuming inductively
that Ry and R; are of one of the stated types, we use the previous results in this section
and Lemma 4.4 to show that R is.

Theorem 5.2. Fvery Boolean relation is OR-conj or NAND-conj or 3-simulates equality.m

6. Complexity

The complexity of approximating #CSP(T") where the degree of instances is unbounded
is given by Dyer, Goldberg and Jerrum [9, Theorem 3].

Theorem 6.1. Let I' be a Boolean constraint language.
o If every R € T is affine, then #CSP(I") € FP.
e Otherwise, if I' C IM-conj, then #CSP(I") =ap #BIS.
o Otherwise, #CSP(I") =ap #SAT.

Working towards our classification of the approximation complexity of #CSP(I"), we
first deal with subcases. The IM-conj case and OR-conj/NAND-conj cases are based on
links between those classes of relations and the problems of counting independent sets in
bipartite and general graphs, respectively [8,9], the latter extended to hypergraphs.

332 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

Proposition 6.2. IfI" C IM-conj contains at least one non-affine relation, then #CSP4(T'U

Ipin) =ap #BIS for all d > 3. m
Proposition 6.3. Let R be an OR-conj or NAND-conj relation of width w. Then, for
d > 2, #w-HIS; <ap #CSPd({R} U Fpin)-]

Proposition 6.4. Let R be an OR-conj or NAND-conj relation of width w. Then, for
d > 2, #CSP4({R} U Tpin) <ap #w-HISyq, where k is the greatest number of times that
any variable appears in the normalized formula defining R. [

We now give the complexity of approximating #CSP4(I' U Ty,) for d > 3.

Theorem 6.5. Let I' be a Boolean constraint language and let d > 3.

o If every R € T is affine, then #CSPq4(I' UILin) € FP.

o Otherwise, if I' C IM-conj, then #CSPq(I' UTin) =ap #BIS.

e Otherwise, if ' C OR-conj or I' C NAND-conj, then let w be the greatest width
of any relation in I' and let k be the greatest number of times that any variable
appears in the normalized formulae defining the relations of I'. Then #w-HIS; <ap
#CSPd(F U Fpin) <ap #w-HIS;,.

o Otherwise, #CSP4(I' UThin) =ap #SAT.

Proof. The affine case is immediate from Theorem 6.1. (I'UI};, is affine if, and only if, T is.)
Otherwise, if I' C IM-conj and some R € I is not affine, then #CSPy(I' U I},in) =ap #BIS
by Proposition 6.2. Otherwise, if I' C OR-conj or I' € NAND-conj, then #w-HIS; <ap
#CSP4(I' UTin) <ap #w-HISy, by Propositions 6.3 and 6.4.

Finally, suppose that I' is not affine, I' ¢ IM-conj, I' ¢ OR-conj and I' ¢ NAND-conj.
Since (I'UIin) is neither affine or a subset of IM-conj, we have #CSP(I'UIin) =ap #SAT
by Theorem 6.1 so, if we can show that I' d-simulates equality, then #CSP4(I' U Tin) =ap
#CSP(I' U Iin) by Proposition 4.1 and we are done. If I' contains a R relation that is
neither OR~conj nor NAND-conj, then R 3-simulates equality by Theorem 5.2. Otherwise,
I" must contain distinct relations R; € OR-~conj and Ry € NAND-conj that are non-affine
so have width at least two. So I' 3-simulates equality by Lemma 4.4.]

Unless NP = RP, there is no FPRAS for counting independent sets in graphs of
maximum degree at least 25 [7], and, therefore, no FPRAS for #w-HIS; with » > 2 and
d > 25. Further, since #SAT is complete for #P under AP-reductions [8], #SAT cannot
have an FPRAS unless NP = RP. From Theorem 6.5 above we have the following corollary.

Corollary 6.6. Let I' be a Boolean constraint language and let d > 25.
o If every R €T is affine, then #CSPg(I' ULi,) € FP.
o Otherwise, if I' C IM-conj, then #CSP4(I' UTLin) =ap #BIS.
o Otherwise there is no FPRAS for #CSP4(I' U i), unless NP = RP. [

I' Ui, is affine (respectively, in OR-conj or in NAND-conj) if, and only if I is, so the
case for large-degree instances (d > 25) corresponds exactly in complexity to the unbounded
case [9]. The case for lower degree bounds is more complex. To put Theorem 6.5 in context,
we summarize the known approximability of #w-HIS,;, parameterized by d and w.

The case d = 1 is clearly in FP (Theorem 2.1) and so is the case d = w = 2, which
corresponds to counting independent sets in graphs of maximum degree two. For d = 2 and
width w > 3, Dyer and Greenhill have shown that there is an FPRAS for #w-HIS; [11].
For d = 3, they have shown that there is an FPRAS if the the width w is at most 3.

APPROXIMATING BOUNDED-DEGREE BOOLEAN #CSP 333

Degree d | Width w | Approximability of #w-HIS,
1 =2 FP
2 2 FP
2 >3 | FPRAS [11]
3 2,3 | FPRAS [11]
3,4,5 2 PTAS [30]
6,...,24 > 2 The MCMC method is likely to fail [7]
> 25 > 2 No FPRAS unless NP = RP [7]

Table 1: Approximability of #w-HIS, (still open for all other values of d and w).

For larger width, the approximability of #w-HIS;3 is still not known. With the width
restricted to w = 2 (normal graphs), Weitz has shown that, for degree d € {3,4,5}, there
is a deterministic approximation scheme that runs in polynomial time (a PTAS) [30]. This
extends a result of Luby and Vigoda, who gave an FPRAS for d < 4 [24]. For d > 5,
approximating #w-HIS; becomes considerably harder. More precisely, Dyer, Frieze and
Jerrum have shown that for d = 6 the Monte Carlo Markov chain technique is likely to
fail, in the sense that “cautious” Markov chains are provably slowly mixing [7]. They
also showed that, for d = 25, there can be no polynomial-time algorithm for approximate
counting, unless NP = RP. These results imply that for d € {6,...,24} and w > 2 the
Monte Carlo Markov chain technique is likely to fail and for d > 25 and w > 2, there can
be no FPRAS unless NP = RP. Table 1 summarizes the results.

Returning to bounded-degree #CSP, the case d = 2 seems to be rather different to
degree bounds three and higher. This is also the case for decision CSP — recall that
degree-d CSP(I' UT}in) has the same complexity as unbounded-degree CSP(I' UT},y,) for all
d > 3 [6], while degree-2 CSP(I'UI},iy) is often easier than the unbounded-degree case [6,13]
but the complexity of degree-2 CSP(I' U I}y) is still open for some I

Our key techniques for determining the complexity of #CSP4(I' U I}in) for d > 3 were
the 3-simulation of equality and Theorem 5.2, which says that every Boolean relation is in
OR-conj, in NAND-conj or 3-simulates equality. However, it seems that not all relations that
3-simulate equality also 2-simulate equality so the corresponding classification of relations
does not appear to hold. It seems that different techniques will be required for the degree-2
case. For example, it is possible that there is no FPRAS for #CSP3(I' UT}i,) except when
I' is affine. However, Bubley and Dyer have shown that there is an FPRAS for degree-2
#SAT, even though the exact counting problem is #P-complete [1]. This shows that there
is a class C of constraint languages for which #CSPy(I" U I}in) has an FPRAS for every
I' € C but for which no exact polynomial-time algorithm is known.

We leave the complexity of degree-2 #CSP and of #BIS and the the various parame-
terized versions of the counting hypergraph independent sets problem as open questions.

References

[1] R. Bubley and M. Dyer. Graph orientations with no sink and an approximation for a hard case of
#SAT. In 8th ACM-SIAM Symp. on Discrete Algorithms (SODA 1997), pages 248-257, 1997.

[2] A. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element domain.
J. ACM, 53(1):66-120, 2006.

334

3]

(31]

M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

A. A. Bulatov. The complexity of the counting constraint satisfaction problem. In 35th Intl Collog. on
Automata, Languages and Programming (ICALP 2008) Part I, volume 5125 of LNCS, pages 646-661.
Springer, 2008.

J.-Y. Cai, P. Lu, and M. Xia. The complexity of complex weighted Boolean #CSP. Upcoming journal
submission, 2009.

N. Creignou and M. Hermann. Complexity of generalized satisfiablility counting problems. Inform. and
Comput., 125(1):1-12, 1996.

V. Dalmau and D. K. Ford. Generalized satisfiability with limited occurrences per variable: A study
through Delta-matroid parity. In Math. Founds of Comput. Sci. (MFCS 2003), volume 2747 of LNCS,
pages 358-367. Springer, 2003.

M. Dyer, A. Frieze, and M. Jerrum. On counting independent sets in sparse graphs. SIAM J. Computing,
31(5):1527-1541, 2002.

M. Dyer, L. A. Goldberg, C. S. Greenhill, and M. Jerrum. The relative complexity of approximate
counting problems. Algorithmica, 38(3):471-500, 2003.

M. Dyer, L. A. Goldberg, and M. Jerrum. An approximation trichotomy for Boolean #CSP. To appear
in J. Comput. Sys. Sci. http://arxiv.org/abs/0710.4272, 2007.

M. Dyer, L. A. Goldberg, and M. Jerrum. The complexity of weighted Boolean CSP. SIAM J. Comput.,
38(5):1970-1986, 2009.

M. Dyer and C. S. Greenhill. On Markov chains for independent sets. J. Algorithms, 35(1):17-49, 2000.
R. Fagin, L. J. Stockmeyer, and M. Y. Vardi. On monadic NP vs monadic co-NP. Inform. and Comput.,
120(1):78-92, 1995.

T. Feder. Fanout limitations on constraint systems. Theor. Comput. Sci., 255(1-2):281-293, 2001.

T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and constraint
satisfaction: A study through Datalog and group theory. SIAM J. Comput., 28(1):57-104, 1998.

E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In 8th Conf. of Amer-
ican Assoc. for Art. Intelligence, pages 4-9. AAAI Press/MIT Press, 1990.

P. Hell and J. Nesetfil. On the complexity of h-coloring. J. Combin. Theory B, 48(1):92-110, 1990.

P. Hell and J. Nesettil. Graphs and Homomorphisms. Oxford University Press, 2004.

M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial structures from a
uniform distribution. Theor. Comput. Sci., 43:169-188, 1986.

D. E. Knuth. The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms. In preparation.
Ph. G. Kolaitis and M. Y. Vardi. Conjunctive query containment and constraint satisfaction. J. Comput.
Sys. Sci., 61(2):302-332, 2000.

Ph. G. Kolaitis and M. Y. Vardi. A game-theoretic approach to constraint satisfaction. In 17th Conf.
of American Assoc. for Artif. Intelligence, pages 175-181. AAAT Press/MIT Press, 2000.

V. Kumar. Algorithms for constraint satisfaction problems: A survey. Al Magazine, 13(1):33-42, 1992.
R. E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155-171, 1975.

] M. Luby and E. Vigoda. Fast convergence of the Glauber dynamics for sampling independent sets.

Random Structures and Algorithms, 15(3-4):229-241, 1999.

U. Montanari. Networks of constraints: Fundamental properties and applications to picture processing.
Inform. Sci., 7:95-135, 1974.

T. J. Schaefer. The complexity of satisfiability problems. In 10th ACM Symp. on Theory of Computing,
pages 216-226, 1978.

S. Toda. On the computational power of PP and @P. In 80th Ann. Symp. on Founds of Comput. Sci.
(FOCS 1989), pages 514-519. IEEE Computer Society, 1989.

L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189-201, 1979.

L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput., 8(3):410-421,
1979.

D. Weitz. Counting independent sets up to the tree threshold. In 38th ACM Symp. on Theory of
Computing, pages 140-149, 2006.

D. Welsh. Complexity: Knots, Colourings and Counting. Cambridge University Press, 1993.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 335-346
www.stacs-conf.org

THE COMPLEXITY OF THE LIST HOMOMORPHISM PROBLEM FOR
GRAPHS

LASZLO EGRI! AND ANDREI KROKHIN? AND BENOIT LAROSE® AND PASCAL TESSON 4

1 School of Computer Science, McGill University, Montréal, Canada
E-mail address: laszlo.egri@mail.mcgill.ca

2 School of Engineering and Computing Sciences, Durham University, Durham, UK
E-mail address: andrei.krokhin@durham.ac.uk

3 Department of Mathematics and Statistics, Concordia University, Montréal, Canada
E-mail address: larose@mathstat.concordia.ca

4 Department of Computer Science, Laval University, Quebec City, Canada
E-mail address: pascal.tesson@ift.ulaval.ca

ABSTRACT. We completely classify the computational complexity of the list H-colouring
problem for graphs (with possible loops) in combinatorial and algebraic terms: for every
graph H the problem is either NP-complete, NL-complete, L.-complete or is first-order de-
finable; descriptive complexity equivalents are given as well via Datalog and its fragments.
Our algebraic characterisations match important conjectures in the study of constraint
satisfaction problems.

1. Introduction

Homomorphisms of graphs, i.e. edge-preserving mappings, generalise graph colourings,
and can model a wide variety of combinatorial problems dealing with mappings and assign-
ments [17]. Because of the richness of the homomorphism framework, many computational
aspects of graph homomorphisms have recently become the focus of much attention. In
the list H-colouring problem (for a fixed graph H), one is given a graph G and a list L,
of vertices of H for each vertex v in G, and the goal is to determine whether there is a
homomorphism A from G to H such that h(v) € L, for all v. The complexity of such
problems has been studied by combinatorial methods, e.g., in [13, 14]. In this paper, we
study the complexity of the list homomorphism problem for graphs in the wider context of
classifying the complexity of constraint satisfaction problems (CSP), see [3, 15, 18]. It is
well known that the CSP can be viewed as the problem of deciding whether there exists a
homomorphism from a relational structure to another, thus naturally extending the graph
homomorphism problem.

Key words and phrases: graph homomorphism, constraint satisfaction problem, complexity, universal
algebra, Datalog.

K SYMPOSIUM
V' ON THEORETICAL
) Y) aspecs

47 / OF COMPUTER ©

SCIENCE L. Egri, A. Krokhin, B. Larose, and P. Tesson

@ Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010

Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2467

336 L. EGRI, A. KROKHIN, B. LAROSE, AND P. TESSON

One line of CSP research studies the non-uniform CSP, in which the target (or template)
structure T is fixed and the question is whether there exists a homomorphism from an
input structure to T. Over the last years, much work has been done on classifying the
complexity of this problem, denoted Hom(T) or CSP(T), with respect to the fixed target
structure, see surveys [6, 7, 8, 18]. Classification here is understood with respect to both
computational complexity (i.e. membership in a given complexity class such as P, NL, or
L, modulo standard assumptions) and descriptive complexity (i.e. definability of the class
of all positive, or all negative, instances in a given logic).

The best-known classification results in this direction concern the distinction between
polynomial-time solvable and NP-complete CSPs. For example, a classical result of Hell and
Nesetfil (see [17, 18]) shows that, for a graph H, Hom(H) (aka H-colouring) is tractable if H
is bipartite or admits a loop, and is NP-complete otherwise, while Schaefer’s dichotomy [24]
proves that any Boolean CSP is either in P or NP-complete. Recent work [1] established a
more precise classification in the Boolean case: if T is a structure on {0,1} then CSP(T)
is either NP-complete, P-complete, NL-complete, @L-complete, L-complete or in AC?.

Much of the work concerning the descriptive complexity of CSPs is centred around
the database-inspired logic programming language Datalog and its fragments (see [6, 9, 12,
15, 20]). Feder and Vardi initially showed [15] that a number of important tractable cases
of CSP(T) correspond to structures for which = CSP(T) (the complement of CSP(T)) is
definable in Datalog. Similar ties were uncovered more recently between the two fragments
of Datalog known as linear and symmetric Datalog and structures T for which CSP(T)
belongs to NL and L, respectively [9, 12].

Algebra, logic and combinatorics provide three angles of attack which have fueled
progress in this classification effort [6, 7, 8, 17, 18, 20]. The algebraic approach (see [7, 8])
links the complexity of CSP(T) to the set of functions that preserve the relations in T.
In this framework, one associates to each T an algebra At and exploits the fact that the
properties of Ap completely determine the complexity of CSP(T). This angle of attack was
crucial in establishing key results in the field (see, for example, [2, 5, 7]).

Tame Congruence Theory, a deep universal-algebraic framework first developed by
Hobby and McKenzie in the mid 80’s [19], classifies the local behaviour of finite alge-
bras into five types (unary, affine, Boolean, lattice and semilattice.) It was recently shown
(see [6, 7, 22]) that there is a strong connection between the computational and descriptive
complexity of CSP(T) and the set of types that appear in A and its subalgebras. There are
strong conditions involving types which are sufficient for NL-hardness, P-hardness and NP-
hardness of CSP(T) as well as for inexpressibility of = CSP(T) in Datalog, linear Datalog
and symmetric Datalog. These sufficient conditions are also suspected (and in some cases
proved) to be necessary, under natural complexity-theoretic assumptions. For example, (a)
the presence of unary type is known to imply NP-completeness, while its absence is conjec-
tured to imply tractability (see [7]); (b) the absence of unary and affine types was recently
proved to be equivalent to definability in Datalog [2]; (c) the absence of unary, affine, and
semilattice types is proved necessary, and suspected to be sufficient, for membership in NL
and definability in linear Datalog [22]; (d) the absence of all types but Boolean is proved
necessary, and suspected to be sufficient, for membership in L. and definability in symmet-
ric Datalog [22]. The strength of evidence varies from case to case and, in particular, the
conjectured algebraic conditions concerning CSPs in NL and L (and, as mentioned above,
linear and symmetric Datalog) still rest on relatively limited evidence [6, 9, 11, 10, 22].

THE COMPLEXITY OF THE LIST HOMOMORPHISM PROBLEM FOR GRAPHS 337

The aim of the present paper is to show that these algebraic conditions are indeed
sufficient and necessary in the special case of list H-colouring for undirected graphs (with
possible loops), and to characterise, in this special case, the dividing lines in graph-theoretic
terms (both via forbidden subgraphs and through an inductive definition). One can view the
list H-colouring problem as a CSP where the template is the structure H” consisting of the
binary (edge) relation of H and all unary relations on H (i.e. every subset of H). Tractable
list homomorphism problems for general structures were characterised in [5] in algebraic
terms. The tractable cases for graphs were described in [14] in both combinatorial and
(more specific) algebraic terms; the latter implies, when combined with a recent result [10],
that in these cases = CSP(H?) definable in linear Datalog and therefore CSP(H?) is in fact
in NL. We complete the picture by refining this classification and showing that CSP(H)
is either NP-complete, or NL-complete, or L-complete or in AC? (and in fact first-order
definable). We also remark that the problem of recognising into which case the problem
CSP(HY) falls can be solved in polynomial time.

As we mentioned above, the distinction between NP-complete cases and those in NL
follows from earlier work [14], and the situation is similar with distinction between L-hard
cases and those leading to membership in ACY [21, 22]. Therefore, the main body of
technical work in the paper concerns the distinction between NL-hardness and membership
in L. We give two equivalent characterisations of the class of graphs H such that CSP(H")
is in L. One characterisation is via forbidden subgraphs (for example, the reflexive graphs
in this class are exactly the (Py, Cy)-free graphs, while the irreflexive ones are exactly the
bipartite (Ps,Cg)-free graphs), while the other is via an inductive definition. The first
characterisation is used to show that graphs outside of this class give rise to NL-hard
problems; we do this by providing constructions witnessing the presence of a non-Boolean
type in the algebras associated with the graphs. The second characterisation is used to
prove positive results. We first provide operations in the associated algebra which satisfy
certain identities; this allows us to show that the necessary condition on types is also
sufficient in our case. We also use the inductive definition to demonstrate that the class
of negative instances of the corresponding CSP is definable in symmetric Datalog, which
implies membership of the CSP in L.

2. Preliminaries

2.1. Graphs and relational structures

In the following we denote the underlying universe of a structure S, T, ... by its
roman equivalent S, T', etc. A signature is a (finite) set of relation symbols with associated
arities. Let T be a structure of signature 7; for each relation symbol R € 7 we denote the
corresponding relation of T by R(T). Let S be a structure of the same signature. A homo-
morphism from S to T is a map f from S to T such that f(R(S)) C R(T) for each R € 7.
In this case we write f : S — T. A structure T is called a core if every homomorphism
from T to itself is a permutation on 7. We denote by CSP(T) the class of all 7-structures
S that admit a homomorphism to T, and by = CSP(T) the complement of this class.

The direct n-th power of a 7-structure T, denoted T", is defined to have universe T"
and, for any (say m-ary) R € 7, (ai,...,a,) € R(T") if and only if (a;[i],...,ay[i]) € R(T)
for each 1 < i <n. For a subset I C T, the substructure induced by I on T is the structure
I with universe I and such that R(I) = R(T) N I"™ for every m-ary R € 7.

338 L. EGRI, A. KROKHIN, B. LAROSE, AND P. TESSON

For the purposes of this paper, a graph is a relational structure H = (H;6) where 6
is a symmetric binary relation on H. The graph H is reflexive (irreflexive) if (z,x) € 6
((z,z) & 0) for all x € H. Given a graph H, let Si,..., Sk denote all subsets of H; let
H’ be the relational structure obtained from H by adding all the S; as unary relations;
more precisely, let 7 be the signature that consists of one binary relational symbol 6 and
unary symbols R;, i = 1,...,k. The 7-structure H” has universe H, §(H%) is the edge
relation of H, and R;(H*) = S, for all i = 1,...,k. It is easy to see that H” is a core.
We call CSP(H') the list homomorphism problem for H. Note that if G is an instance of
this problem then 6(G) can be considered as a digraph, but the directions of the arcs are
unimportant because H is undirected. Also, if an element v € G is in R;(G) then this is
equivalent to v having 5; as its list, so G can be thought of as a digraph with H-lists.

In [14], a dichotomy result was proved, identifying bi-arc graphs as those whose list
homomorphism problem is tractable, and others as giving rise to NP-complete problems.
Let C be a circle with two specified points p and ¢. A bi-arc is a pair of arcs (N, S) such
that N contains p but not ¢ and S contains ¢ but not p. A graph H is a bi-arc graph if
there is a family of bi-arcs {(N,,Sz) : © € H} such that, for every z,y € H, the following
hold: (i) if and y are adjacent, then neither N, intersects S, nor N, intersects S, and
(ii) if = is not adjacent to y then both N, intersects S, and N, intersects S,.

2.2. Algebra

An n-ary operation on a set A is a map f : A" — A, a projection is an operation of
the form el (x1,...,7,) = z; for some 1 < i < n. Given an h-ary relation § and an n-ary
operation f on the same set A, we say that f preserves 6 or that 0 is invariant under f if
the following holds: given any matrix M of size h X n whose columns are in 6, applying f
to the rows of M will produce an h-tuple in 6.

A polymorphism of a structure T is an operation f that preserves each relation in T;
in this case we also say that T admits f. In other words, an n-ary polymorphism of T is
simply a homomorphism from T" to T. With any structure T, one associates an algebra A
whose universe is 7' and whose operations are all polymorphisms of T. Given a graph H, we
let H denote the algebra associated with H”. An operation on a set is called conservative
if it preserves all subsets of the set (as unary relations). So, the operations of H are the
conservative polymorphisms of H. Polymorphisms can provide a convenient language when
defining classes of graphs. For example, it was shown in [4] that a graph is a bi-arc graph
if and only if it admits a conservative majority operation where a majority operation is a
ternary operation m satisfying the identities m(x, z,y) = m(x,y,z) = m(y,x,z) = .

In order to state some of our results, we will need the notions of a variety and a term
operation. Let I be a signature, i.e. a set of operation symbols f each of a fixed arity (we
use the term “signature” for both structures and algebras, this will cause no confusion). An
algebra of signature I is a pair A = (A; F)) where A is a non-empty set (the universe of A)
and F = {f*: f € I} is the set of basic operations (for each f € I, f* is an operation on
A of the corresponding arity). The term operations of A are the operations built from the
operations in F' and projections by using composition. An algebra all of whose (basic or
term) operations are conservative is called a conservative algebra. A class of similar algebras
(i.e. algebras with the same signature) which is closed under formation of homomorphic
images, subalgebras and direct products is called a wvariety. The variety generated by an

THE COMPLEXITY OF THE LIST HOMOMORPHISM PROBLEM FOR GRAPHS 339

algebra A is denoted by V(A), and is the smallest variety containing A, i.e. the class of all
homomorphic images of subalgebras of powers of A.

Tame Congruence Theory, as developed in [19], is a powerful tool for the analysis of
finite algebras. Every finite algebra has a typeset, which describes (in a certain specified
sense) the local behaviour of the algebra. It contains one or more of the following 5 types:
(1) the unary type, (2) the affine type, (3) the Boolean type, (4) the lattice type and (5)
the semilattice type. The numbering of the types is fixed, and they are often referred to
by their numbers. Simple algebras, i.e. algebras without non-trivial proper homomorphic
images, admit a unique type; the prototypical examples are: any 2-element algebra whose
basic operations are all unary has type 1. A finite vector space has type 2. The 2-element
Boolean algebra has type 3. The 2-element lattice is the 2-element algebra with two binary
operations ({0,1};V, A): it has type 4. The 2-element semilattices are the 2-element algebras
with a single binary operation ({0,1};A) and ({0,1};V): they have type 5. The typeset
of a variety V, denoted typ(V), is simply the union of typesets of the algebras in it. We
will be mostly interested in type-omitting conditions for varieties of the form V(Ar), and
Corollary 3.2 of [25] says that in this case it is enough to consider the typesets of At and
its subalgebras.

On the intuitive level, if T is a core structure then the typeset typ(V(Ar)) contains
crucial information about the kind of relations that T can or cannot simulate, thus implying
lower /upper bounds on the complexity of CSP(T). For our purposes here, it will not be
necessary to delve further into the technical aspects of types and typesets. We only note
that there is a very tight connection between the kind of equations that are satisfied by
the algebras in a variety and the types that are admitted or omitted by a variety, i.e. those
types that do or do not appear in the typesets of algebras in the variety [19].

In this paper, we use ternary operations fi,..., f, satisfying the following identities:
z = filz,y,9) (2.1)
fi($7x7y) = fi+1(f137?/7?/) for 3‘112217”_1 (22)
fn(xaxay) = v (23)

The following lemma contains some type-omitting results that we use in this paper.

Lemma 2.1. [19] A finite algebra A has term operations fi,..., fn, for some n > 1,
satisfying identities (2.1)—(2.8) if and only if the variety V(A) omits types 1, 4 and 5.
If a finite algebra A has a majority term operation then V(A) omits types 1, 2 and 5.

We remark in passing that operations satisfying identities (2.1)—(2.3) are also known
to characterise a certain algebraic (congruence) condition called (n + 1)-permutability [19].

2.3. Datalog

Datalog is a query and rule language for deductive databases (see [20]). A Datalog
program D over a (relational) signature 7 is a finite set of rules of the form h < by A...Aby,
where h and each b; are atomic formulas R;(vy, ..., v;). We say that h is the head of the rule
and that by A...Aby, is its body. Relational predicates R; which appear in the head of some
rule of D are called intensional database predicates (IDBs) and are not part of the signature
7. All other relational predicates are called extensional database predicates (EDBs) and are
in 7. So, a Datalog program is a recursive specification of IDBs (from EDBs).

340 L. EGRI, A. KROKHIN, B. LAROSE, AND P. TESSON

A rule of D is linear if its body contains at most one IDB and is non-recursive if its
body contains only EDBs. A linear but recursive rule is of the form I1(Z) «— Is(g) A
E1(Z1) A ... A Eg(zx) where Iy, Iy are IDBs and the E; are EDBs (note that the variables
occurring in Z, 9, z; are not necessarily distinct). Each such rule has a symmetric I5(y) «—
Li(z) AN E1(Z1) A ... AN Ex(Z;). A Datalog program is non-recursive if all its rules are non-
recursive, linear if all its rules are linear and symmetric if it is linear and if the symmetric
of each recursive rule of D is also a rule of D.

A Datalog program D takes a 7-structure A as input and returns a structure D(A)
over the signature 7/ = 7 U {I : I is an IDB in D}. The relations corresponding to 7 are
the same as in A, while the new relations are recursively computed by D , with semantics
naturally obtained via least fixed-point of monotone operators. We also want to view a
Datalog program as being able to accept or reject an input 7-structure and this is achieved
by choosing one of the IDBs of D as the goal predicate: the T-structure A is accepted by
D if the goal predicate is non-empty in D(A). Thus every Datalog program with a goal
predicate defines a class of structures - those that are accepted by the program.

When using Datalog to study CSP(T), one usually speaks of the definability of - CSP(T)
in Datalog (i.e. by a Datalog program) or its fragments (because any class definable in Dat-
alog must be closed under extension). Examples of CSPs definable in Datalog and its
fragments can be found, e.g., in [6, 12]. As we mentioned before, any problem CSP(T) is
tractable if its complement is definable in Datalog, and all such structures were recently iden-
tified in [2]. Definability of = CSP(T) in linear (symmetric) Datalog implies that CSP(T)
belongs to NL and L, respectively [9, 12]. As we discussed in Section 1, there is a connection
between definability of CSPs in Datalog (and its fragments) and the presence/absence of
types in the corresponding algebra (or variety).

Note that it follows from Lemma 2.1 and from the results in [22, 26] that if, for a core
structure T, = CSP(T) is definable in symmetric Datalog then T must admit, for some n,
operations satisfying identities (2.1)—(2.3). Moreover, with the result of [2], a conjecture
from [22] can be restated as follows: for a core structure T, if -~ CSP(T) is definable in
Datalog and, for some n, T admits operations satisfying (2.1)-(2.3), then = CSP(T) is
definable in symmetric Datalog. This conjecture is proved in [11] for n = 1.

3. A class of graphs

In this section, we give combinatorial characterisations of a class of graphs whose list
homomorphism problem will turn out to belong to L.

Let Hy; and Hy be bipartite irreflexive graphs, with colour classes By, T1 and By and 15
respectively, with 77 and Bz non-empty. We define the special sum H; © Hy (which depends
on the choice of the B; and T;) as follows: it is the graph obtained from the disjoint union
of Hy; and Hs by adding all possible edges between the vertices in 77 and Bs. Notice that
we can often decompose a bipartite graph in several ways, and even choose B or 15 to be
empty. We say that an irreflexive graph H is a special sum or expressed as a special sum
if there exist two bipartite graphs and a choice of colour classes on each such that H is
isomorphic to the special sum of these two graphs.

Definition 3.1. Let K denote the smallest class of irreflexive graphs containing the one-
element graph and closed under (i) special sum and (ii) disjoint union. We call the graphs
in IC basic irreflexive.

THE COMPLEXITY OF THE LIST HOMOMORPHISM PROBLEM FOR GRAPHS 341

e
d d
c c c S a’ a
b b b v
a a a / c c
Bl B2 B3 B4 B5

Figure 1: The forbidden mixed graphs.

The following result gives a characterisation of basic irreflexive graphs in terms of
forbidden subgraphs:

Lemma 3.2. Let H be an irreflexive graph. Then the following conditions are equivalent:
(1) H is basic irreflexive;
(2) H is bipartite, contains no induced 6-cycle, nor any induced path of length 5.

We shall now describe our main family of graphs, first by forbidden induced subgraphs,
and then in an inductive manner.

Definition 3.3. Define the class £ of graphs as follows: a graph H belongs to £ if it
contains none of the following as an induced subgraph:

(1) the reflexive path of length 3 and the reflexive 4-cycle;

(2) the irreflexive cycles of length 3, 5 and 6, and the irreflexive path of length 5;

(3) B1, B2, B3, B4, B5 and B6 (see Figure 1.)

We will now characterise the class £ in an inductive manner.

Definition 3.4. A connected graph H is basic if either (i) H is a single loop, or (ii) H is a
basic irreflexive graph, or (iii) H is obtained from a basic irreflexive graph H; with colour
classes B and T by adding every edge (including loops) of the form {¢,¢'} where ¢,¢ € T.

Definition 3.5. Given two vertex-disjoint graphs H; and Hs, the adjunction of Hy to Hy
is the graph H; © Hs obtained by taking the disjoint union of the two graphs, and adding
every edge of the form {z,y} where x is a loop in H; and y is a vertex of Hy.

Lemma 3.6. Let Ly denote the class of reflexive graphs in L. Then Lp is the smallest
class D of reflexive graphs such that:

(1) D contains the one-element graph;
(2) D is closed under disjoint union;
(3) if Hy is a single loop and Hy € D then Hy @ Hy € D.

Lemma 3.6 states that the reflexive graphs avoiding the path of length 3 and the 4-
cycle are precisely those constructed from the one-element loop using disjoint union and
adjunction of a universal vertex. These graphs can also be described by the following
property: every connected induced subgraph of size at most 4 has a universal vertex. These
graphs have been studied previously as those with NLCT width 1, which were proved to
be exactly the trivially perfect graphs [16]. Our result provides an alternative proof of the
equivalence of these conditions.

Theorem 3.7. The class L is the smallest class C of graphs such that:

342 L. EGRI, A. KROKHIN, B. LAROSE, AND P. TESSON

(1) C contains the basic graphs;
(2) C is closed under disjoint union;
(3) if Hy is a basic graph and Hy € C then H;y @ Hy € C.

Proof. We start by showing that every basic graph is in £, i.e. that a basic graph does not
contain any of the forbidden graphs. If H is a single loop or a basic irreflexive graph, then
this is immediate. Otherwise H is obtained from a basic irreflexive graph H; with colour
classes B and T by adding every edge of the form (t1,t3) where t; € T. In particular, the
loops form a clique and no edge connects two non-loops; it is clear in that case that H
contains none of B1, B2, B3, B4. On the other hand if H contains B5 or B6, then H;
contains the path of length 5 or the 6-cycle, contradicting the fact that H; is basic.

Next we show that £ is closed under disjoint union and adjunction of basic graphs.
It is obvious that the disjoint union of graphs that avoid the forbidden graphs will also
avoid these. So suppose that an adjunction Hy @ Hso, where H; is a basic graph, contains
an induced forbidden graph B whose vertices are neither all in H; nor Hs; without loss
of generality H; contains at least one loop, its loops form a clique and none of its edges
connects two non-loops. It is then easy to verify that B contains both loops and non-loops.
Because the other cases are similar, we prove only that B is not B3: since vertex d is not
adjacent to a it must be in Hs, and similarly for c¢. Since b is not adjacent to d it must also
be in Hpy; since non-loops of H; are not adjacent to elements of Hs it follows that a is in
H, also, a contradiction.

Now we must show that every graph in £ can be obtained from the basic graphs by
disjoint union and adjunction of basic graphs. Suppose this is not the case. If H is a
counterexample of minimum size, then obviously it is connected, and it contains at least
one loop for otherwise it is a basic irreflexive graph. By Lemma 3.6, H also contains at
least one non-loop.

For a € H let N(a) denote its set of neighbours. Let R(H) denote the subgraph of H
induced by its set R(H) of loops, and let J(H) denote the subgraph induced by J(H), the
set of non-loops of H. Since H is connected and neither B1 nor B2 is an induced subgraph
of H, the graph R(H) is also connected, and furthermore every vertex in J(H) is adjacent
to some vertex in R(H). By Lemma 3.6, we know that R(H) contains at least one universal
vertex: let U denote the (non-empty) set of universal vertices of R(H). Let J denote the
set of all a € J(H) such that N(a) N R(H) C U. Let us show that J # (). For every u € U,
there is w € J(H) not adjacent to u because otherwise H is obtained by adjoining u to the
rest of H, a contradiction with the choice of H. If this w has a neighbour r € R(H)\U then
there is some s € R(H)\ U not adjacent to r, and the graph induced by {w, u, s,r} contains
B2 or B3, a contradiction. Hence, w € J. Let S denote the subgraph of H induced by
U U J. The graph S is connected. We claim that the following properties also hold:

(1) if @ and b are adjacent non-loops, then N(a) NU = N(b) N U,

(2) if a is in a connected component of the subgraph of S induced by J with more than

one vertex, then for any other b € J, one of N(a) NU, N(b) N U contains the other.

The first statement holds because B1 is forbidden, and the second follows from the first
because B4 is also forbidden. Let Ji,...,J; denote the different connected components of
J in S. By (1) we may let N(J;) denote the set of common neighbours of members of J; in
U. By (2), we can re-order the J;’s so that for some 1 < m < k we have N(J;) C N(J;) for
all i < m and all j > m, and, in addition, we have m =1 or |J;| =1 for all 1 <i < m. Let
B denote the subgraph of S induced by B = J; (J; UN(J;)), and let C be the subgraph

THE COMPLEXITY OF THE LIST HOMOMORPHISM PROBLEM FOR GRAPHS 343

of H induced by H \ B. We claim that H = B © C. For this, it suffices to show that every
element in |J;*, N(J;) is adjacent to every non-loop ¢ € C. By construction this holds if
¢ € JNC. Now suppose this does not hold: then some = € J(H) \ J is not adjacent to
some y € N(J;) for some i < m. Since x ¢ J we may find some z € R(H) \ U adjacent to
x; it is of course also adjacent to y. Since z € U there exists some 2’ € R(H)\ U that is not
adjacent to z, but it is of course adjacent to y. If z is adjacent to 2/, then {x, z, 2’} induces
a subgraph isomorphic to B2, a contradiction. Otherwise, {x, z,y, 2’} induces a subgraph
isomorphic to B3, also a contradiction.

If every J; with ¢ < m contains a single element, notice that B is a basic graph: indeed,
removing all edges between its loops yields a bipartite irreflexive graph which contains
neither the path of length 5 nor the 6-cycle, since B contains neither B5 nor B6. Since
this contradicts our hypothesis on H, we conclude that m = 1. But this means that N(Jy)
is a set of universal vertices in H. Let u be such a vertex and let D denote its complement
in H: clearly H is obtained as the adjunction of the single loop u to D, contradicting our
hypothesis. This concludes the proof. [

4. Classification results

Recall the standard numbering of types: (1) unary, (2) affine , (3) Boolean, (4) lattice
and (5) semilattice. We will need the following auxiliary result (which is well known). Note
that the assumptions of this lemma effectively say that CSP(T) can simulate the graph
k-colouring problem (with k& = |U|) or the directed st-connectivity problem.

Lemma 4.1. Let S, T be structures, let si,s2 € S, and let R = {(f(s1), f(s2)) | f:S — T}.
(1) If R = {(x,y) € U? | x # y} for some subset U C T with |U| > 3 then V(Ar)
admits type 1.
(2) If R = {(t,t), (t,t)),(t',t)} for some distinct t,t' € T then V(Ar) admits at least
one of the types 1, 4, 5.

Proof [sketch]: The assumption of this lemma implies that AT has a subalgebra (induced by
U and {t,t'}, respectively) such that all operations of the subalgebra preserve the relation
R. It is well-known (see, e.g., [17]) that all operations preserving the disequality relation
on U are essentially unary, while it is easy to check that the order relation on a 2-element
set cannot admit operations satisfying identities (2.1)—(2.3), so one can use Lemma 2.1. W

The following lemma connects the characterisation of bi-arc graphs given in [4] with a
type-omitting condition.
Lemma 4.2. Let H be a graph. Then the following conditions are equivalent:

(1) the variety V(H) omits type 1;

(2) the graph H admits a conservative majority operation;

(3) the graph H is a bi-arc graph.

The results summarised in the following theorem are known (or easily follow from known
results, with a little help from Lemma 4.2).
Theorem 4.3. Let H be a graph.

o If typ(V(H)) admits type 1, then —CSP(HY) is not expressible in Datalog and
CSP(H') is NP-complete (under first-order reductions);

344 L. EGRI, A. KROKHIN, B. LAROSE, AND P. TESSON

o if typ(V(H)) omits type 1 but admits type 4 then — CSP(HY) is not expressible in
symmetric Datalog but is expressible in linear Datalog, and CSP(HY) is NL-complete
(under first-order reductions.)

Proof. The first statement is shown in [22]. If the variety omits type 1, then HY admits
a majority operation by Lemma 4.2 and then = CSP(HY) is expressible in linear Datalog
by [10]; in particular the problem is in NL. If, furthermore, the variety admits type 4, then
- CSP(H") is not expressible in symmetric Datalog and is NL-hard by results in [22]. =

By Lemma 2.1, the presence of a majority operation in H implies that typ(V(H)) can
contain only types 3 and 4. Type 4 is dealt with in Theorem 4.3, so it remains to investigate
graphs H with typ(V(H)) = {3}.

The next theorem is the main result of this paper.

Theorem 4.4. Let H be a graph. Then the following conditions are equivalent:

(1) H admits conservative operations satisfying (2.1)-(2.3) for n = 3;

(2) H admits conservative operations satisfying (2.1)-(2.3) for some n > 1;
(3) typ(V(H)) = {3};

(4) He L;

(5) CSP(HL) is definable in symmetric Datalog.

If the above holds then CSP(HY) is in the complexity class L.

Proof [sketch]: (1) = (2) is trivial. If (2) holds then by Lemma 2.1 V(H) omits types 1, 4,
and 5. By Lemma 4.2, H admits a majority operation, so Lemma 2.1 implies that V(H) also
omits type 2; hence (3) holds. Implication (3)=-(4) is the content of Lemma 4.5 below, and
(5) implies (3) by a result of [22]. By using Theorem 3.7, one can show that (4) implies both
(1) and (5). Finally, definability in symmetric Datalog implies membership in L by [12]. B

Lemma 4.5. If H & L then typ(V(H)) # {3}.

Proof. By Theorem 9.15 of [19], typ(V(H)) = {3} if and only if H admits a sequence
of conservative operations satisfying certain identities (in the spirit of (2.1)—(2.3)). By
conservativity, such operations can be restricted to any subset of H while satisfying the
same identities, so the property typ(V(H)) = {3} is inherited by induced subgraphs. It
follows that it is enough to prove this lemma for the forbidden graphs from Definition 3.3.
For the irreflexive odd cycles, the lemma follows immediately from the main results
of [3, 23]. The proof of Theorem 3.1 of [13] shows that the conditions of Lemma 4.1(1) are
satisfied by (some S, s1,s2 and) T = FX where F is the irreflexive 6-cycle. One can check
that the reflexive 4-cycle is not a bi-arc graph, so we can apply Lemma 4.2 in this case.
For the remaining forbidden graphs F from Definition 3.3, we use Lemma 4.1(2) with
T = FL. In each case, the binary relation of the structure S will be a short undirected
path, and s, so will be the endpoints of the path. We will represent such a structure S by a
sequence of subsets of F' (indicating lists assigned to vertices of the path). It can be easily
checked that, in each case, the relation R defined as in Lemma 4.1 is of the required form.
If F is the reflexive path of length 3, say a —b—c—d, then S = ac— bc — ad — ac. If F
is the irreflexive path of length 5, say a —b—c—d—e— f then S = ae — bd — ce — bf — ae.
For graphs B1 — B6, we use notation from Fig. 1. For B1, S = bc — bc — ab — ab — be. For
B2, S =bc—ac—ab—bc. For B3, S = bc — ad — bd — bc. For B4, S = ae — bd — cd — ae.
Finally, for both B5 and B6, S = ac — b'c’ — ab — a'd — ac.]

THE COMPLEXITY OF THE LIST HOMOMORPHISM PROBLEM FOR GRAPHS 345

For completeness’ sake, we describe graphs whose list homomorphism problem is de-
finable in first-order logic (equivalently, is in AC?, see [6].) By results in [22], any problem
CSP(T) is either first-order definable or L-hard under FO reductions. Hence, it follows
from Theorem 4.4 that, for a graph H € £, the list homomorphism problem for H is either
first-order definable or L-complete.

We need the following characterisation of structures whose CSP is first-order definable
[21]. Let T be a relational structure and let a,b € T. We say that b dominates a in T if for
any relation R of T, and any tuple ¢ € R, replacement of any occurrence of a by b in ¢ will
yield a tuple of R. Recall the definition of a direct power of a structure from Subsection 2.1.
If T is a relational structure, we say that the structure T? dismantles to the diagonal if
there exists a sequence of elements {aq,...,a,} = T2\ {(a,a) : a € T} such that, for all
0 < i <n, a; is dominated in T;, where Ty = T? and T; is the substructure of T? induced
by T?\ {ag,...,a;_1} for i > 0.

Lemma 4.6 ([21]). Let T be a core relational structure. Then CSP(T) is first-order defin-
able if and only if T? dismantles to the diagonal.

Theorem 4.7. Let H be a graph. Then CSP(HY) is first-order definable if and only if
H has the following form: H is the disjoint union of two sets L and N such that (i) L
is the set of loops of H and induces a complete graph, (ii) N is the set of non-loops of H
and induces a graph with no edges, and (iii) N = {x1,...,xn} can be ordered so that the
neighbourhood of x; is contained in the neighbourhood of x;y1 for all1 <i<m — 1.

Proof. We first prove that conditions (i) and (ii) are necessary. Notice that if CSP(H’) is
first-order definable then so is CSP(K') for any induced substructure K of H. Let x and
y be distinct vertices of H and let K be the substructure of H* induced by {z,y}. If =
and y are non-adjacent loops, then (K) = {(z, z), (y,y)} the equality relation on {x,y}; if
x and y are adjacent non-loops, then 0(K) = {(z,y), (y,x)}, the adjacency relation of the
complete graph on 2 vertices. It is well known (and can be easily derived from Lemma 4.6)
that neither of these classes CSP(K') is first-order definable. It follows that the loops of
H induce a complete graph and the non-loops induce a graph with no edges.

Now we prove (iii) is necessary. Suppose for a contradiction that there exist distinct
elements x and y of N and elements n and m of L such that m is adjacent to x but not
to y, and n is adjacent to y but not to . Then CSP(G) is first-order definable, where G
is the substructure of H” induced by {x,y,m,n}. By Lemma 4.6, G? dismantles to the
diagonal. Then (z,y) must be dominated by one of (z,z), (y,z) or (y,y), since domination
respects the unary relation {z,y}? (on G?). But (m,n) is a neighbour of (z,%) and none of
the other three, a contradiction.

For the converse: we show that we can dismantle (H')? to the diagonal. Let x € H:
then (x1,x) and (x,z1) are dominated by (x,z). Suppose that we have dismantled every
element containing a coordinate equal to z; with ¢ < j — 1: if x is any element of H such
that the elements (x,z) and (z,z;) remain, then either z is a loop or = z, with k£ > j;
in any case the elements (z;,x)) and (zj,x;) are dominated by (z,z). In this way we can
remove all pairs (z,y) with one of z or y a non-loop. For the remaining pairs, notice that
if u and v are any loops then (u,v) is dominated (in what remains of (HX)?) by (u,u). m

Finally, given a graph H, it can be decided in polynomial time which of the different
cases delineated in Theorems 4.3, 4.4, 4.7 the list homomorphism problem for H satisfies.
Indeed, it is known that bi-arc graphs can be recognised in polynomial time (see [14]).
Assume that H is a bi-arc graph: the forbidden substructure definition of the class £ gives

346

L. EGRI, A. KROKHIN, B. LAROSE, AND P. TESSON

an AC? algorithm to recognise them; and those graphs whose list homomorphism problem
is first-order definable can be recognised in polynomial time by results of [21].

References
[1] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The complexity of satisfiability
problems: Refining Schaefer’s theorem. Journal of Computer and System Sciences, 75(4):245-254, 20009.
[2] L. Barto and M. Kozik. Constraint satisfaction probllems of bounded width. In FOCS’09, 2009.
[3] L. Barto, M. Kozik, and T. Niven. The CSP dichotomy holds for digraphs with no sources and no sinks
(A positive answer to a conjecture of Bang-Jensen and Hell). SIAM J. Comput., 38(5):1782-1802, 2009.
[4] R. Brewster, T. Feder, P. Hell, J. Huang, and G. MacGillavray. Near-unanimity functions and varieties
of reflexive graphs. SIAM J. Discrete Math., 22:938-960, 2008.
[5] A. Bulatov. Tractable conservative constraint satisfaction problems. In LICS’03, pages 321-330, 2003.
[6] A. Bulatov, A. Krokhin, and B. Larose. Dualities for constraint satisfaction problems. In Complezity of
Constraints, volume 5250 of LNCS, pages 93-124. 2008.
[7] A. Bulatov and M. Valeriote. Recent results on the algebraic approach to the CSP. In Complexity of
Constraints, volume 5250 of LNCS, pages 68-92. 2008.
[8] D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi, P. van Beek, and
T. Walsh, editors, Handbook of Constraint Programming, chapter 8. Elsevier, 2006.
[9] V. Dalmau. Linear Datalog and bounded path duality for relational structures. Logical Methods in
Computer Science, 1(1), 2005. (electronic).
[10] V. Dalmau and A. Krokhin. Majority constraints have bounded pathwidth duality. European Journal
of Combinatorics, 29(4):821-837, 2008.
[11] V. Dalmau and B. Larose. Maltsev + Datalog = Symmetric Datalog. In LICS’08, pages 297-306, 2008.
[12] L. Egri, B. Larose, and P. Tesson. Symmetric Datalog and constraint satisfaction problems in Logspace.
In LICS’07, pages 193-202, 2007.
[13] T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs. Combinatorica, 19:487—
505, 1999.
[14] T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the complexity of list homomorphisms. Journal of
Graph Theory, 42:61-80, 2003.
[15] T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP and constraint
satisfaction: A study through Datalog and group theory. STAM J. Comput., 28:57-104, 1998.
[16] F. Gurski. Characterizations of co-graphs defined by restricted NLC-width or clique-width operations.
Discrete Mathematics, 306(2):271-277, 2006.
[17] P. Hell and J. Nesetfil. Graphs and Homomorphisms. Oxford University Press, 2004.
[18] P. Hell and J. Nesetfil. Colouring, constraint satisfaction, and complexity. Computer Science Review,
2(3):143-163, 2008.
[19] D. Hobby and R.N. McKenzie. The Structure of Finite Algebras. AMS, Providence, R.I., 1988.
[20] Ph.G. Kolaitis and M.Y. Vardi. A logical approach to constraint satisfaction. In Complezity of Con-
straints, volume 5250 of LNCS, pages 125-155. 2008.
[21] B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint satisfaction problems.
Logical Methods in Computer Science, 3(4), 2007. (electronic).
[22] B. Larose and P. Tesson. Universal algebra and hardness results for constraint satisfaction problems.
Theoretical Computer Science, 410(18):1629-1647, 2009.
[23] M. Maréti and R. McKenzie. Existence theorems for weakly symmetric operations. Algebra Univ., 59(3-
4):463-489, 2008.
[24] T.J. Schaefer. The complexity of satisfiability problems. In STOC"78, pages 216-226, 1978.
[25] M. Valeriote. A subalgebra intersection property for congruence-distributive varieties. Canadian Journal
of Mathematics, 61(2):451-464, 2009.
[26] Lészl6 Zadori and Benoit Larose. Bounded width problems and algebras. Algebra Univ., 56(3-4):439—

466, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 347-358
www.stacs-conf.org

IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING
IN THE SEMI-STREAMING MODEL

LEAH EPSTEIN! AND ASAF LEVIN 2 AND JULIAN MESTRE3 AND DANNY SEGEV*

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel.
2 Chaya fellow. Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa, Israel.
3 Max-Planck-Institut fir Informatik, 66123 Saarbriicken, Germany.

4 Department of Statistics, University of Haifa, 31905 Haifa, Israel.

AsstracT. We study the maximum weight matching problem in the semi-streaming model, and im-
prove on the currently best one-pass algorithm due to Zelke (Proc. STACS '08, pages 669—-680) by
devising a deterministic approach whose performance guarante®lis 4. In addition, we study
preemptiveonline algorithms, a sub-class of one-pass algorithms where we are only allowed to main-
tain a feasible matching in memory at any point in time. All known results prior to Zelke’s belong to
this sub-class. We provide a lower bound @8 on the competitive ratio of any such deterministic
algorithm, and hence show that future improvements will have to store in memory a set of edges
which is not necessarily a feasible matching. We conclude by presenting an empirical study, con-
ducted in order to compare the practical performance of our approach to that of previously suggested
algorithms.

1. Introduction

The computational task of detecting maximum weight matchings is one of the most fundamen-
tal problems in discrete optimization, attracting plenty of attention from the operations research,
computer science, and mathematics communities. (For a wealth of references on matching prob-
lems see [16].) In such settings, we are given an undirected @ggaph(V, E) whose edges are
associated with non-negative weights specifievbyE — R, . A set of edged C E is amatching
if no two of the edges share a common vertex, that is, the degree of any veexihig at most 1.

The weightw(M) of a matchingM is defined as the combined weight of its edges, }Macyv W(e).
The objective is to compute a matching of maximum weight. We study this problem in two related
computational models: theemi-streamingnodel and thgpreemptive onlinenodel.

The semi-streaming model. Even though these settings appear to be rather simple as first glance, it
is worth noting that matching problems have an abundance of flavors, usually depending on how the
input is specified. In this paper, we investigate weighted matchings iseimestreamingnodel,

first suggested by Muthukrishnan [14]. Specificallygraph streamis a sequence,,e,, ... of

The third author was supported by an Alexander von Humboldowship.

© L. Epstein, A. Levin, J. Mestre, and D. Segev
© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Y ves Marion, Thomas Schwentick
Leibniz International Proceedingsin Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2476

348 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

distinct edges, where,, e,,. .. is an arbitrary permutation d&&. When an algorithm is processing
the stream, edges are revealed sequentially, one at a time. Lrettifg| andm = |E|, efficiency in
this model is measured by the sp&@, m) a graph algorithm uses, the tinig¢n, m) it requires to
process each edge, and the number of pa@ges) it makes over the input stream. Throughout the
paper, however, we focus on one-pass algorithms, th&sm) = 1. The main restriction is that
the spacé&(n, m) is limited toO(n - polylog(n)) bits of memory. We refer the reader to a number of
recent papers [14, 4, 5, 2, 12] and to the references therein for a detailed literature review.

Online version. Online matching has previously been modeled as follows [9]. Edges are presented
one by one to the algorithm, along with their weight. Once an edge is presented, we must make an
irrevocable decision, whether to accept it or not. An edge may be accepted only if its addition to
the set of previously accepted edges forms a feasible matching. In other words, an algorithm must
keep a matching at all times, and its final output consists of all edges which were ever accepted.
In this model, it is easy to verify that the competitive ratio of any (deterministic or randomized)
algorithm exceeds any function of the number of vertices, meaning that no competitive algorithm
exists. However, if all weights are equal, a greedy approach which accepts an edge whenever
possible, has a competitive ratio of 2, which is best possible for deterministic algorithms [9].

Similarly to other online settings (such as call control problems [6]), a preemptive model can
be defined, allowing us to remove a previously accepted edge from the current matching at any
point in time; this event is calledreemption Nevertheless, an edge which was either rejected or
preempted cannot be inserted to the matching later on. We point out that other types of online
matching problems were studied as well [9, 7, 10, 1].

Comparison between the models. Both one-pass semi-streaming algorithms and online algo-
rithms perform a single scan of the input. However, unlike semi-streaming algorithms, online algo-
rithms are allowed to concurrently utilize memory for twdfeient purposes. The first purpose is
obviously to maintain the current solution, which must always be a feasible matching, implying that
the memory size of this nature is bounded by the maximal size of a matching. The second purpose is
to keep track of arbitrary information regarding the past, without any concrete bound on the size of
memory used. Therefore, in theory, online algorithms are allowed to use much larger memory than
is allowed in the semi-streaming model. Moreover, although this possibility is rarely used, online
algorithms may perform exponential time computations whenever a new piece of input is revealed.
On the other hand, a semi-streaming algorithm may re-insert an edge to the current solution, even
if it has been temporarily removed, as long as this edge was kept in memory. This extra power is
not allowed for online (preemptive) algorithms, making them inferior in this sense in comparison to
their semi-streaming counterparts.

Previous work. Feigenbaum et al. [4] were the first to study matching problems under similar
assumptions. Their main results in this context were a semi-streaming algorithm that computes a
(3/2 + &)-approximation inO(log(1/e)/e) passes for maximum cardinality matching in bipartite
graphs, as well as a one-pass 6-approximation for maximum weighted matching in arbitrary graphs.
Later on, McGregor [12] improved on these findings, to obtain performance guarantees of (1

and (2+ ¢) for the maximum cardinality and maximum weight versions, respectively, being able
to handle arbitrary graphs with only a constant number of passes (dependirig)omnladdition,
McGregor [12] tweaked the one-pass algorithm of Feigenbaum et al. into achieving a ra88&f 5
Finally, Zelke [17] has recently attained an improved approximation factab865which stands as

the currently best one-pass algorithm. Note that the 6-approximation algorithm in [4] an828e 5
approximation algorithm in [12] are preemptive online algorithms. On the other hand, the algorithm

IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING INTHE SEMI-STREAMING MODEL 349

of Zelke [17] uses the notion of shadow-edges, which may be re-inserted into the matching, and
hence it is not an online algorithm.

Main result I. The first contribution of this paper is to improve on the above-mentioned results,
by devising a deterministic one-pass algorithm in the semi-streaming model, whose performance
guarantee is 81+ ¢. In a nutshell, our approach is based on partitioning the edge sedfldgn)

weight classes, and computing a separate maximal matching for each such class in online fashion,
usingO(n - polylog(n)) memory bits overall. The crux lies in proving that the union of these match-
ings contains a single matching whose weight compares favorably to the optimal one. The specifics
of this algorithm are presented in Section 2.

Main result Il. Our second contribution is motivated by the relation between semi-streaming al-
gorithms andpreemptiveonline algorithms, which must maintain a feasible matching at any point

in time. To our knowledge, there are currently no lower bounds on the competitive ratio that can
be achieved by incorporating preemption. Thus, we also provide a lower boun#6af dn the
performance guarantee of any such deterministic algorithm. As a result, we show that improved one
pass algorithms for this problem must store more than just a matching in memory. Further details
are provided in Section 3.

Main result 1ll. We conclude with the first ever experimental study in the context of semi-
streaming algorithms for matching problems, conducted in order to compare the practical perfor-
mance of our approach to that of previously suggested algorithms. In Section 4, we demonstrate
that by carefully calibrating some cuffgarameters, combined with the idea of running multiple
algorithms in parallel, one can achieve practical performance guarantees that far exceed theoretical
ones, at least when real-life instances are considered.

2. The Semi-Streaming Algorithm

This section is devoted to obtaining main result I, that is, an improved one-pass algorithm for
the weighted matching problem in the semi-streaming model. We begin by presenting a simple
deterministic algorithm with a performance guarantee of 8. We then show how to randomize its
parameters, still within the semi-streaming framework, and obtain an expected approximation ratio
of 4.9108. Finally, we de-randomize the algorithm by showing how to emulate the required ran-
domness using multiple copies (constant number) of the deterministic algorithm, while paying an
additional additive factor of at most for any fixede > 0.

2.1. A simple deterministic approach

Preliminaries. We maintain the maximum weight of any edgg,.x seen so far in the input
stream. Clearly, the maximum weight matching of the edges seen so far has weight in the interval
[wmax, EWmax]- We denote a maximum weight matching and its costrayit should be clear which

one is meant from the context. Note that if we disregard all edges with weight atg%@%t the
weight of the maximum weight matching in the resulting instance decreases by an additive term of
at mostsWmax < € OPT.

Our algorithm has a parametgr> 1, and a value > 0. We define weight classes of edges
in the following way. For every € Z, we let the clas®V; be the collection of edges whose weight
is in the interval[qbyi, ¢yi+1). We note that by our initial assumption, the weight of each edge is in

ngr‘gmax,wmax], and we say that a weight cla®4 is under consideratiorif its weight

the interval[

350 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

interval [¢yi, ¢7i+1) intersects[zg";’]max,wmax]. The number of classes which are under consideration
atany point in time i (log, 2).

The algorithm. Our algorithm simply maintains the list of classes under consideration and main-
tains a maximal (unweighted) matching for each such class. In other words, when the walyg of
changes, we delete from the memory some of these matchings, corresponding to classes that are
no longer under consideration. Note that to maintain a maximal matching in a given subgraph, we
only need to check if the two endpoints of the new edge are not covered by existing edges of the
matching.

To conclude, for every new edgs= E we proceed as follows. We first checkni{e) is greater
than the current value afinax If SO, we updatevmax and the list of weight classes under consid-
eration accordingly. Then, we find the weight classmi#), and try to extend its corresponding
matching; i.e.e will be added to this matching if it remains a matching after doing so.

Note that at each point the content of the memory is comprised of a fixed number of parameter
values and a collection @(Iogy 2) matchings, consisting dD(n log, 2) edges overall. Therefore,
our algorithm indeed falls in the semi-streaming model.

At the conclusion of the input sequence, we need to return a single matching rather than a
collection of matchings. To this end, we could compute a maximum weighted matching of the edges
in the current memory. However, for the specific purposes of our analysis, we use the following
faster algorithm. We sort the edges in memory in decreasing order of weight classes, such that
the edges iV appear before those W_1, for everyi. Using this sorted list of edges, we apply
a greedy algorithm for selecting a maximal matching, in which the current edge is added to this
matching if it remains a matching after doing so. Then, the post-processing time needed is linear in
the size of the memory used, that@(nlogy g) This concludes the presentation of the algorithm
and its implementation as a semi-streaming algorithm.

Analysis. For purposes of analysis, we round down the weight of each edge so that the weight of
all edges il equalspy'. This way, we obtaimoundededge weights. For our optimal solutionr
let us denote byrr’ its rounded weight. The next claim follows from the definitiorvgt

Lemma 2.1. opt < yoprr’.

As an intermediate step, we analyze an improved algorithm that keeps all weight classes. That
is, for eachi, we useM; to denote the maximal matching of cla#é at the end of the input, and
denote byM the solution obtained by this algorithm, if we would have applied it. Similarly, we
denote byorr; the set of edges iopr which belong toM. For everyi, we define the set of vertices
P;, associated wit;, to be the set of endpoints of edgesMinthat are not associated with higher
weight classes:

Pi={uv|(Vv)eMi}\(Pi1UP2U--).
For a vertexp € P;, we define its associated weight to #¢. For vertices which do not belong
to anyP;, we let their associated weight be zero. We next bound the total associated weight of all
vertices.

Lemma 2.2. The total associated weight of all vertices is at myéﬁt w(M).

Proof. Consider a vertexi € P; and let (1, v) be the edge iM; adjacent tau. If (u,v) € M then
we charge the weight associated witko the edge, v). Thus, an edge € M; is charged at most
twice from vertices associated with its own weight class. Otherwise, VW) @ M then there must
be some other edgec M N My, for somej > i, that prevented us from adding, {/) to M, in which
case we charge the weight associated with e. Notice thatu ¢ e, or otherwiseu would not be

IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING INTHE SEMI-STREAMING MODEL 351

associated withWV;. Thus, the edge € Mj must be of the forne = (v, x) and can only be charged
twice from vertices in weight clagsonce througlv and once through.

To bound the ratio betweesn(M) and the total associated weight of the vertices, flices to
bound the ratio between the weight of an edgeM and the total associated weight of the vertices
which are charged te. Assume thae € Mj, then there are at most two vertices which are charged
to eand class for all i < j, and no vertex is associatedeé@nd class for i > j. Hence, the total
associated weight of these vertices is at most

. 1 . 1 L2y
2 ' < 2¢v! - — =20y - I. =
;qﬁy by ;y, by -1/ oy y-1
and the claim follows sincev(e) > ¢y/. n

It remains to bounapt’ with respect to the total associated weight.
Lemma 2.3. The total weight associated with all vertices is at mast.

Proof. It suffices to show that for every edge= (X, y) € opr; the maximum of the associated
weights ofx andy is at least the rounded weight ef Suppose that this claim does not hold, then
x andy are not covered b, as otherwise their associated weight would be at kegstHence,
when the algorithm consideragl we would have addedto M;, contradicting our assumption that
x andy are not covered biu;. [

Now instead of considering all weight categories, we cogsttiie matchingM only using
edges with weight at Iea§f~";’]ﬂx. Using the above sequence of lemmas, and recalling that we lose
anotherﬁ factor in the approximation ratio due to disregarding these cheap edges, we obtain the
following inequality:

1 2y?
1-% y-1
For anye > 0, settinge™= m we get an approximation ratio éé + &. This ratio is
optimized fory = 2, where it equals (8 ¢). Hence, we have established the following theorem.

opT < yorT’ < -w(M). (2.1)

Theorem 2.4. For any fixede > 0, there is a deterministic one-pass semi-streaming algorithm
whose approximation ratio i8 + «.

2.2. Improved approximation ratio through randomization

In what follows, we analyze a randomized variant of the deterministic algorithm which was
presented in the previous subsection. In general, this variant sets the valtelsp = y° wheres
is a random variable. This method is commonly referred t@adomized geometric groupiri§].
Formally, leté be a continuous random variable which is uniformly distributed on the interval
[0, 1). We define the weight cla¥¥;(6) to be the edges whose weight is in the inte{véﬂ‘s, y‘+1+5),
and run the algorithm as in the previous subsection. Note that this algorithm uses only the patrtition
of the edges into classes and not the precise values of their weights. In addition, we deid®® by
the resulting matching obtained by the algorithm, andr®/(s) the total associated weight of the
vertices, where for a vertex e P; we define its associated weight to$#; i.e., the minimal value
in the interval definingV;(6). We also denote byet’(6) the value ofort’ for this particulars.
For any fixed value 08, inequality (2.1) immediately implieser’(6) < (% +) - W(M(9)).
Note thatort’(6) andw(M(6)) are random variables, such that for each realizatiof thie above

352 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

inequality holds. Hence, this inequality holds also for their expected values. That is, we have
established the following lemma wherg[H represents expectation with respect to the random
variableé.

Lemma 2.5. Esorr’(6)] < (2% + &) - Es[w(M(9))].
We next upper boundpr in terms of E[opt’(5)].
Lemma 2.6.);/lTnf/ - Es[op1’(6)] > opr.

Proof. We will show the corresponding inequality for each edége opr. We denote byw;(€) the
rounded weight oé for a specific value of. Then, it sdfices to show tha{y'f—l7 - Es[w;(€)] = w(e).
Let p be an integer, and let @ a < 1 be the value that satisfiege) = y***. Then, for§ < «,
wi(e) = yP* and fors > «, wi(€e) = yP~1+9thus the expected rounded weigheaiver the choices
of 6 is
% 1 1 1 1 1 1
Es[w;(e)] = f yPHds + f YPds = = - (PO - 1) +yP - v) = w(e) - (1 - —) —,
0 o Iny y)Iny
and the claim follows. [
Combining the above two lemmas we obtain that the expecteghivef the resulting solution
is at Ieas(o1 8)-OPT. This approximation ratio is optimized for~ 3.513, where it is roughly

2y2Iny
(4.9108+ £). Hence, we have established the following theorem.

Theorem 2.7. For any fixede > 0, there is a randomized one-pass semi-streaming algorithm whose
expected approximation ratio is rough#y9108+ ¢.

2.3. Derandomization

Prior to presenting our de-randomization, we slightly modify the randomized algorithm of the
previous subsection. In this variation, instead of pickéhgniformly at random from the interval
[0,1) we pickd” uniformly at random from the discrete s{@: % % cees %} whereq is a param-
eter whose value will be determined later. We apply the same method as in the previous section,
replacings by ¢’. Then, using Lemma 2.5, we obtai forr’(¢6")] < (% + s) - Es[W(M(6"))]. To
extend Lemma 2.6 to this new setting, we note tatan be obtained by first pickingand then
rounding it down to the largest number {iﬁ, é % . %} which is at mos®. In this way, we
couple the distributions af andé’. Now consider the rounded weight of an edge ort in the two
distinct values ob andé’. The ratio between the two rounded weights is at myé$t Therefore,
we establish thai“y'f—ly -yY9 . Es[opr’(6")] > opr, and the resulting approximation ratio of the new
2y2+1/q Iny

(r-1) ,
the resulting approximation ratio is bounded '1”)27 + 2e.

De-randomizing the new variation in the semi-streaming model is straightforward. We simply
run in parallel allg possible outcomes of the algorithm, one for each possible valée ahd pick
the best solution among tleesolutions obtained. Sinagis a constant (for fixed values e, the
resulting algorithm is still a semi-streaming algorithm whose performance guarant8&0842¢.

By scalinge prior to applying the algorithm, we establish the following result.

variation is + &. By settingq to be large enough (picking = [Iog;l(s/S)] is suficient),

IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING INTHE SEMI-STREAMING MODEL 353

Theorem 2.8. For any fixedes > 0, there is a deterministic one-pass semi-strean{thg108+ &)-
approximation algorithm for the weighted matching problem. This algorithm processes each input
edge in constant time and requiredrptime at the end of the input to compute the final output.

3. Online Preemptive Matching
In this section, we establish the following theorem.

Theorem 3.1. The competitive ratio of any deterministic preemptive online algorithm is at least
R — ¢ for anye > 0, whereR ~ 4.967is the unique real solution of the equatiof x 4(x* + x + 1).

Recall that the algorithm of Feigenbaum et al. [4] and that of McGregor [12] can be viewed as
online preemptive algorithms; their competitive ratios are 6 aBa& respectively.

Definitions and properties. LetC = R — ¢ for some arbitrary but fixed > 0. Our goal is to show

that the competitive ratio of any deterministic algorithm is at I€asto this end, we construct an
input graph iteratively. In the construction of the input, edge weights come from two sequences.
The main sequenogy, Wy, . . ., and the additional sequenceN§,w’ ,..., are defined as follows:

L[=1 [=1
g (CPrywia-cXEw) ix1 A (C+rDwi-wig) i>1 3-1)

The sequences are defined according to (3.1) as lomg.a$ W,_». AS SO0ON a1 < Wp_2
for somen, both sequences stop witly, andwy, respectively. In the full version [3] of this paper
we show that the sequences are well defined in the sense that they indeed have finite length. Let
Si = |j:1 Wi andSg = 0.

From the definition (3.1) and simple algebra, one can derive the following properties of these
sequences. We omit their justification due to lack of space.

Property 1. Foralli =1,...,n—2we havew; <w/, butw,_1 > W,_q-
Property 2. Foralli =1,...,n-2we haveCw; = Sj_1 + Wi + W, ;.

Property 3. Foralli =1,...,n-2we haveCw, = Sj_2 + Wi + Wi;1 + W/ ;.

Input construction, step 1. To better understand our construction, we advise the reader to consult
Figure 1. The input is created msteps. In the initial step, two edgess (x;1) and 3, X1), each of
weightw;, are introduced. Assume that after both edges have arrived, the online algorithm keeps
the edgeds, x1).

Every future step can be of two distinct types, which will be described later on. We maintain
the following invariants throughout the construction.

Invariant 1. Immediately after théth step, the sel; = {(x1, b1), ..., (X, b))} forms a matching.

Invariant 2. Immediately after théth step, the algorithm keeps a single edgevhich can be one
of two edges:

i) If g = (X, g) then its weight isv, anda; is unmatched irvi;.

i) If & = (vi,q) then its weight isv, y; = x;j for somej < i, andc; is unmatched iM;.

354 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

i1 i=2 i=3| &
a X2 &
X1 =Y X1 X2 a X1 V& X3 ag C3
bl b]_ b2 bl b2 b3
a a
i=4 X2 i=5 X2
Y3 & Cs Y3 a Cs Cy
X1 Ya X3 az Xa as Cq X1 Ya X3 az Xa as X5 as
by b, bs by b, b, bs bs bs

Figure 1: An example of five steps of the lower bound constuctiThe curved edges denote the
edge kept by the online algorithm at each time. In the first two steps, the edga$ (
are chosen by the algorithm. In the third steg, &3) is not chosen by the algorithm, so
(vs, C3) arrives next. In the fourth stepx4, a4) is not chosen by the algorithm, sm{c4)
arrives next. In the fifth stepx§, as) is chosen by the algorithm, so no further edges
arrive in this step.

The invariants clearly holds after the first step: The algorithm keepsy) anda; is free in
M1 = {(x1, b1)}. We next define the subsequent steps and show that the invariants holds throughout.

Input construction, stepi + 1 < n. We now show how to construct the edges of stepl, for
the caseé + 1 < n. We introduce two new edges of weight, ;. Let x,1 beg if g = (X, &), and
Xi+1 bec if = (y,¢). The new edges arei(1,bi+1), and .1, a.1), wherea;,; andb;,; are
new vertices. According to Invariant 2, the vertex; is unmatched irM;. It follows thatM;, 1 is a
matching and thus Invariant 1 holds in this step. Both edges have a common endpoint with the edge
that the algorithm has, and the algorithm can either preempt which case we assume (without
loss of generality) that it now hasi(1,a,.1), or else it keeps the previous edge. If the algorithm
holds ontog then lety;,1 be % if = (X, &), andy.1 bey; if § = (yi,¢). In this case a third
edge, Vii1,Ci+1), with weight ofw/,, is introduced. The verteg;,; is new. There are four cases
to consider depending on which edge the algorithm had at the end ahtbtep and whether it is
preempted right away or not.

In the first case, the algorithm has= (x, &) at the end of theth step and replaces it with
(Xi+1, 8+1) = (&, @+1). Sincea,1 is a new vertex (and fferent tharx;, 1) it follows thata;, 1 is free
in Mi;1. Thus, case i) of Invariant 2 holds.

In the second case, the algorithm leas (y;, ¢;) at the end of théh step and it replaces it with
(Xi+1, &+1) = (G, a41). It follows thata;,; is free inM;, 1. Thus, case ii) of Invariant 2 holds.

For the remaining two cases note thatMf < 0 orw; < 0 and the algorithm has a single
edge of weightw or w;, respectively, then the optimal solution is strictly positive and the value
of the algorithm is non-positive, hence the resulting approximation ratio in this case is unbounded.

IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING INTHE SEMI-STREAMING MODEL 355

Consequently, we can assume without loss of generality that if the algorithm has a single edge at
the end of stepthen its weight is strictly positive.

Now consider the case where the algorithm fgas (g, X)) at the end of théth step but does
not replace it with %,1, &+1) = (&, a1). If this happens, we show that the algorithm must replace
the edge with¥j,1,Ci11) = (X,C1). Assume that this is not the case. Then the profit of the
algorithm isw;. Consider the solutioM;,1 — (X, b)) + (Yi+1,Ci+1). The cost of this matching is
Sit1—W +W,,,, which equal€w;, by Property 2. In other words, the solution kept by the algorithm
is C-competitive. Since our goal is to prove precisely this, we can assume this event never happens.
Thus, the algorithm must switch to the edgg {; ¢i.1), which leads us to case ii) of Invariant 2.

Finally, consider the case where the algorithm Bas (y;, ¢;) at the end of theth step but
does not replace it withx(,1, a41) = (G, a41). If this happens, we show that the algorithm must
replace the edge witlyit.1, Ci+1) = (Vi, Gi+1). Assume that this is not the case. Then the profit of the
algorithm isw;. Consider the solutioj,1 — (Xj, bj) + (Yi+1, Ci+1), Wherej < i is the index from
case ii) in Invariant 2 that correspondsgo The cost of this matching is at leaSt.q — w1 + W, ;,
which equalCw!, by Property 3. As in the previous case, we can assume this never happens. Thus,
the algorithm must switch to the edge.(, a,1), which leads us to case ii) of Invariant 2.

This finishes the description of the input graph construction, as well as the justification that

Invariants 1 and 2 hold at each step along the way.

Bounding the competitive ratio. We next define a recursive formula 8. By definition (3.1) of
the sequence/;, we have

So=0
Sl =1 5 , (32)
Sk = G2, - S,) fork> 1

Lemma 3.2. There exists a value of n such that.w> wy_1; for this value,f’vgj > C holds.

Proof. The first claim is proved by solving the recurrence (3.2), using standard tools [3]. To prove
the second part, note that, » > wy,_; is equivalent td&5,_1 — Sp_2 < Sp_2 — Sp_3. Hence using the
recursive formula we conclude that
0+1 ¢ C?+2C+2
i I

Sn-1—25h2 + Sh-2 <0,

c2-Cc-1
that is,
Sn1-(C?°+C+1-2C-1)+Sh2-(C?°+2C+2-2C*-2C-2)<0,
which is equivalent to@? — C)Sn-1 — C?Sn_2 < 0, SOC(Sn-1 — Sn-2) < Sn_1, and we conclude that
CWph_1 < Sp_1, as claimed. m

Everything is in place to prove the main claim of this section.

Proof of Theorem 3.1From Invariant 2, we conclude that at the end of iteratierl, the algorithm
only has the edge, 1, which can have weightv. , or wn_3. From Property 1, it follows that
maxWn-1,W,,_;} = Wp_1. On the other hand, from Invariant 1, we know that there is a matching
with costS,,_1. Therefore, the competitive ratio of any algorithm is at I%ﬁt. From Lemma 3.2

we then conclude that the competitive ratio is at l€ast [

356 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

4. Experimental Evaluation

In this section, we present the results of an empirical study, conducted in order to compare the
practical performance of our approach to that of previously suggested algorithms. More specifically,
the complete set of algorithms that have been implemented and extensively tested can be briefly
listed as follows:

e LAYERED: The algorithm described in Section 2, which keQ(stog E) matchings.
e onLINE: The algorithm of McGregor [12], based on keeping a single matching at all times.
e suapow: The algorithm of Zelke [17], with two shadow edges for each matching edge.

ForLaverep andsaapow, we made use of an addition optimization phase, in which a maximum
weight matching is computed among the edges that were kept in memory. The main reason for this
extra dfort is that we were interested in determining the best possible practical performance that
can be extracted out of these algorithms, rather than in worse case performance and nothing more.
We point out that this phase is performed only once, and that one can always employ a linear-time
approximation [11] should running time be a concern.

Special features. Each of above-mentioned algorithms is parameterized. Typically, this parameter

is chosen to minimize the worst-case approximation ratio obtained in theory. However, this choice
need not be the one leading to the best performance in practice. Therefore, we considered three
versions of each algorithm, with ftierent parameters: one was chosen empirically to obtain best
possible guarantees; another is the value emanating from the theoretical analysis; and the last one
is just averaging these two. We also examined the consequences of combfféngntialgorithms.

Under this scheme, all algorithms are executed in parallel and, at the end, a maximum weight
matching is computed with respect to the collection of edges kept by any of these algorithms.

Actual tests performed. We evaluated.averep, oNLINE, andsHapow with test graphs of roughly
1000 vertices. Following the approach of previous experimental papers in this context [13, 11], we
investigated three fierent classes of graphs:

e Geometric: Points were drawn uniformly at random from the unit square; the weight of an
edge is the Euclidean distance between its endpoints.

e Real world: Points are taken from geometric instances in the TSPLIB [15]; once again,
edge weights are determined by Euclidean distances.

e Random: The weight of each edge is an integer picked uniformly and independently at
random from 1...,|V|.

From each of these classes, we generated 10 base instances. In addition, as the performance
of all algorithms under consideration depends heavily on the particular order by which edges are
revealed, each algorithm was tested on every base instance for 200 independent runs, with a random
edge permutation each time. To speed up the experiments all graphs were sparsified by keeping, for
each vertex, the connections to one third of its closest nodes. The results are presented in Figure 2.

Conclusions. One can notice right away that the algorithms in question perform significantly better
when their respective parameters are set considerably lower than the best theoretical value (1.2 for
LAYERED, and 1.1 foronLine andsuapow). With this optimization in place, it appears that.ine and

sHapow have comparable performance, but outperfessErep.

Regarding the combination of several algorithms, we compared for each algorithm the com-
bined output of its three versions (depending on parameter setting) and the outcome of combining
the best version of each of the three algorithms. We consistently observed that it is preferable to
combine the output of completelyftirent algorithms rather than the same algorithm witfedent
parameters.

IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING INTHE SEMI-STREAMING MODEL 357

1.0 1.0
. " e . +
0.9 1 + 0.9] T $ _ B
T T T T 5 B 7 ==
I ! I ! i 2
08 E E ¥ E‘ E ¥ E E 08 E M 4{
LI N o T L
| = -
0.7 ‘g ' + * 0.7 +
0.6 N 0.6
05 L12 L225 L35 011 014 017 S11 S14 S17 05 L12 011 S11 L12 L2.25 L35
L2.25 014 S14 011 014 017
L35 017 S17 S11 S14 S1.7
(a) Geometric. Individual algorithms. (b) Geometric. Combined algorithms.
1.0 1.0
L, L&
0.9 . 0.9 +
71,81, = 7
R LA =
P T = N = | o 4 t B
Nl ; — ‘

A B T T ‘ ¥
07t = !] 07t =+ M
0.6 ! ' 0.6
05 Lil LZ‘,ZS Lé,S 0‘1‘1 0i.4 0i.7 S‘l‘l Si.4 Si.7 05 Li,2 011 S11 Li,Z LZ‘,25 L‘3,5

L2.25 014 S14 011 014 017
L35 017 S17 S11 S14 S17

(c) Random. Individual algorithms. (d) Random. Combined algorithms.
1.0 T T 1.0 —

- _ T - - ‘ -

. E - E — ; E E E ! :
of 1 B | E A 09 g .
NQEBBB JH PIETE
0.7 % i j i ? ! 0.7 T 4

tog . :
0.6 % 0.6
05 L12 L225 L35 011 014 017 S11 S14 S17 05 L12 011 S11 L12 L2.25 L35
L2.25 014 S14 011 014 017
L35 017 S17 S11 S14 S1.7

(e) Real. Individual algorithms.

(f) Real. Combined algorithms.

Figure 2: The results of individual algorithms appear on the left column, while the performance
of combining them is shown on the right. The algorithms are specified as x-axis labels
using first letters (L foraverep, O for onLing, and S forsuapow), followed by the precise
parameter value for that version. Box plots describing the outcome of our experiments
are given above. Each box contains outcomes with performance between the .25 and .75
guartile, where the horizontal line inside designated the median.

358 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

Finally, we point out that, as it is often the case for approximation algorithms, the observed
performance of all algorithms is significantly better than the theoretical worst case guarantee. It
is worth noting, however, that their performance is still worse than traditional heuristics (such as
the greedy algorithm) that are not constrained by the extent of memory usage. For example, in
geometric graphs, these heuristics can recover on average 99% of the optimal value [11], whereas
none of the individual algorithms can recover more than 90%.

References

[1] N. Bansal, N. Buchbinder, A. Gupta, and J. Naor.@fiog? k)-competitive algorithm for metric bipartite matching.
In Proceedings of the 15th Annual European Symposium on Algoritreges 522-533, 2007.
[2] M. Elkin and J. Zhang. Hicient algorithms for constructing (& ¢, 8)-spanners in the distributed and streaming
models.Distributed Computing18(5):375-385, 2006.
[3] L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees for weighted matching in the
semi-streaming model, 2009. hiffarxiv.orgabg0907.0305.
[4] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming model.
Theoretical Computer Sciencg48(2-3):207-216, 2005.
[5] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances in the data-streaf®lAiddel.
Journal on Computing38(5):1709-1727, 2008.
[6] J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yun@idient on-line call control algorithmslournal of
Algorithms 23(1):180-194, 1997.
[7] B. Kalyanasundaram and K. Pruhs. Online weighted matcliogrnal of Algorithms14(3):478-488, 1993.
[8] M.-Y.Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized algorithm for
the cow-path problenminformation and Computatiqri31(1):63—79, 1996.
[9] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite matching?loceedings
of the 22nd Annual ACM Symposium on Theory of Computiages 352—358, 1990.
[10] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite matching and stable mar-
riages.Theoretical Computer Sciencg27(2):255-267, 1994.
[11] J. Maue and P. Sanders. Engineering algorithms for approximate weighted matchirgcérdings of the 6th
International Workshop on Experimental Algorithmages 242-255, 2007.
[12] A. McGregor. Finding graph matchings in data stream$?roceedings of the 8th International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Problempages 170-181, 2005.
[13] M. Muller-Hannemann and A. Schwartz. Implementing weighted b-matching algorithms: Towards a flexible soft-
ware designACM Journal on Experimental Algorithmic4:7, 1999.
[14] S. MuthukrishnanData Streams: Algorithms and ApplicatiorfSoundations and Trends in Theoretical Computer
Science. Now Publishers Inc, 2005.
[15] G. Reinelt. TSPLIB. httg/comopt.ifi.uni-heidelberg.deoftwar¢TSPLIBOY.
[16] A. Schrijver.Combinatorial Optimization: Polyhedra andfieiency Springer, 2003.
[17] M. Zelke. Weighted matching in the semi-streaming modelPtaceedings of the 25th Annual Symposium on
Theoretical Aspects of Computer Scieruages 669—680, 2008.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy
of this license, visithttp://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 359-370
www.stacs-conf.org

COMPUTING LEAST FIXED POINTS OF
PROBABILISTIC SYSTEMS OF POLYNOMIALS

JAVIER ESPARZA AND ANDREAS GAISER AND STEFAN KIEFER

Fakultat fur Informatik, Technische Universitat Minchen, Germany
E-mail address{ espar za, gai ser, ki ef er} @wodel .in.tum de

ABSTRACT. We study systems of equations of the fotkh = fi(Xi,...,Xn),...,Xn =
fn(X1,..., X,) where eacly; is a polynomial with nonnegative coefficients that add up.t@he

least nonnegative solution, sayof such equation systems is central to problems from various areas,
like physics, biology, computational linguistics and probabilistic program verification. We give a
simple and strongly polynomial algorithm to decide whethet (1,...,1) holds. Furthermore, we
present an algorithm that computes reliable sequences of lower and upper boyndsooverging
linearly to . Our algorithm has these features despite using inexact arithmetic for efficiency. We
report on experiments that show the performance of our algorithms.

1. Introduction

We study how to efficiently compute the least nonnegative solution of an equation system of
the form
X1 =f(X1,..,Xn) o0 Xp= Xy, X)),
where, for everyi € {1,...,n}, f; is a polynomial overXy,..., X, with positive rational coef-
ficients thatadd up to 1* The solutions are the fixed points of the functipn R” — R” with
f=(f1, -, fn)- We call f aprobabilistic system of polynomiafshort: PSB. E.g., the PSP

1 1 1 1 1
X1, X9) = = X1 X —, =X X -X —
F(X1,X2) (2 1 2+2,4 2 2+4 1+2>

induces the equation system
X1 =1X1X+3 Xo=1XoXo+1X1+43.

Obviously, T = (1,...,1) is a fixed point of every PSP. By Kleene’s theorem, every PSP has a
least nonnegative fixed point (called just least fixed point in what follows), given by the limit of the
sequenc®, f(0), f(f(0)),...

P3s are important in different areas of the theory of stochastic processes and computational
models. A fundamental result of the theory of branching processes, with numerous applications in
physics, chemistry and biology (see e.g. [9, 2]), states that extinction probabilities of species are

1998 ACM Subject Classificatiorz.21 Numerical Algorithms and Problems, G.3 Probability and Statistics.
Key words and phrasescomputing fixed points, numerical approximation, stochastic models, branching processes.

ILater, we allow that the coefficients add upetiomostl.

© J.Esparza, A. Gaiser, and S. Kiefer
© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Y ves Marion, Thomas Schwentick
Leibniz International Proceedingsin Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/L|Plcs.STACS.2010.2468

360 J. ESPARZA, A. GAISER, AND S. KIEFER

equal to the least fixed point of a PSP. The same result has been recently shown for the probability
of termination of certain probabilistic recursive programs [7, 6]. The consistency of stochastic
context-free grammars, a problem of interest in statistical natural language processing, also reduces
to checking whether the least fixed point of a PSP equédee e.g. [11]).

Given a PSP with least fixed poiny. s, we study how to efficiently solve the following two
problems: (1) decide whether = 1, and (2) given a rational number> 0, computelb, ub € Q"
such thatlb < py < ub andub —1b < € (whereu < v for vectorsu,v means< in all
components). While the motivation for Problem (2) is clear (compute the probability of extinction
with a given accuracy), the motivation for Problem (1) requires perhaps some explanation. In the
case study of Section 4.3 we consider a family of PSPs, taken from [9], modelling the neutron
branching process in a ball of radioactive material of radiu@he family is parameterized by).

The least fixed point is the probability that a neutron produced through spontaneous diss#on

not generate an infinite “progeny” through successive collisions with atoms of the ball; loosely
speaking, this is the probability that the neutdies nogenerate a chain reaction and the blaks
notexplode. Since the number of atoms in the ball is very large, spontaneous fission produces many
neutrons per second, and so even if the probability that a given neutron produces a chain reaction is
very small, the ball will explode with large probability in a very short time. It is therefore important

to determine the largest radius at which the probability of no chain reaction is still(usually

called thecritical radius). An algorithm for Problem (1) allows to compute the critical radius using
binary search. A similar situation appears in the analysis of parameterized probabilistic programs.
In[7, 6] it is shown that the question whether a probabilistic program almost surely terminates can
be reduced to Problem (1). Using binary search one can find the “critical” value of the parameter
for which the program may not terminate any more.

Etessami and Yannakakis show in [7] that Problem (1) can be solved in polynomial time by
a reduction to (exact) Linear Programming (LP), which is not known to be strongly polynomial.
Our first result reduces Problem (1) to solving a system of linear equations, resulting in a strongly
polynomial algorithm for Problem (1). The Maple library offers exact arithmetic solvers for LP and
systems of linear equations, which we use to test the performance of our new algorithm. In the
neutron branching process discussed above we obtain speed-ups of about one order of magnitude
with respect to LP.

The second result of the paper is, to the best of our knowledge, the first practical algorithm for
Problem (2). Lower bounds fqr; can be computed using Newton's method for approximating a
root of the functionf(X) — X. This has recently been investigated in detail [7, 10, 5]. However,
Newton’s method faces considerable numerical problems. Experiments show that naive use of exact
arithmetic is inefficient, while floating-point computation leads to false results even for very small
systems. For instance, the PReMo tool [12], which implements Newton’s method with floating-
point arithmetic for efficiency, reporgs; > 1 for a PSP with only 7 variables and small coefficients,
althoughy s < 1is the case (see Section 3.1).

Our algorithm produces a sequence of guaranteed lower and upper bounds, both of which con-
verge linearly tou . Linear convergence means that, loosely speaking, the number of accurate bits
of the bound is a linear function of the position of the bound in the sequence. The algorithm is
based on the following idea. Newton’s method is an iterative procedure that, given a current lower
boundlb on ¢, applies a certain operatdf to it, yielding a new, more precise lower bouh@1b).

Instead of computingV'(Ib) using exact arithmetic, our algorithm compute® consecutive New-

ton steps, i.e V(N (Ib)), usinginexactarithmetic. Then it checks if the result satisfies a carefully
chosen condition. If so, the result is taken as the next lower bound. If not, then the precision is
increased, and the computation redone. The condition is eventually satisfied, assuming the results

COMPUTING LEAST FIXED POINTS OF PROBABILISTIC SYSTEMS OF PONOMIALS 361

of computing with increased precision converge to the exact result. Usually, the repeated inexact
computation is much faster than the exact one. At the same time, a careful (and rather delicate)
analysis shows that the sequence of lower bounds converges linearly to

Computingupperbounds is harder, and seemingly has not been considered in the literature be-
fore. Similarly to the case of lower bounds, we appliice toub, i.e., we compute (f (ub)) with
increasing precision until a condition holds. The sequence so obtained may not even conygrge to
So we need to introduce a further operation, after which we can then prove linear convergence.

We test our algorithm on the neutron branching process. The time needed to obtain lower and
upper bounds on the probability of no explosion with= 0.0001 lies below the time needed to
check, using exact LP, whether this probabilityl ier smaller than one. That is, in this case study
our algorithm is faster, and provides more information.

The rest of the paper is structured as follows. We give preliminary definitions and facts in
Section 2. Sections 3 and 4 present our algorithms for solving Problems (1) and (2), and report on
their performance on some case studies. Section 5 contains our conclusions. The full version of the
paper, including all proofs, can be found in [4].

2. Preliminaries

Vectors and matricedNVe use bold letters for designating (column) vectors, e.g.R". We write

5 with s € R for the vector(s,...,s)" € R™ (where " indicates transpose), if the dimensian

is clear from the context. Theth component ofr € R™ will be denoted by;. We writex =y
(resp.x < yresp.x <y)if x; =y; (resp.x; < y; resp.x; < y;)holds foralli € {1,...,n}.

By x < y we meanx < y andx # y. By R"*" we denote the set of real matrices withrows
andn columns. We writeld for the identity matrix. For a square matri we denote by (A)

the spectral radiusof A4, i.e., the maximum of the absolute values of the eigenvalues. A matrix is
nonnegativef all its entries are nonnegative. A nonnegative mattix R"*"™ is irreducible if for
everyk,l € {1,...,n} there exists an € N so that(A%);; # 0.

Probabilistic Systems of Polynomials/e investigate equation systems of the form

X1= X1, X)) 0 X = (X, XD,
where thef; are polynomials in the variableX, ..., X,, with positive real coefficients, and for
every polynomialf; the sum of its coefficients &t mostl. The vectorf := (f1,..., f,) ' is called

a probabilistic system of polynomial®SP for short) and is identified with its induced function
f:R* — R™ If Xy,...,X, are the formal variables of, we defineX := (Xy,...,X,)"
and Va(f) := {Xy,...,X,,}. We assume thaf is represented as a list of polynomials, and each
polynomial is a list of its monomials. I§ C {X1,..., X, }, thenfs denotes the result of removing
the polynomialf; (X1, ..., X,,) from f for everyx; ¢ S; further, givenx € R" and B € R"*",
we denote bk g and Bggs the vector and the matrix obtained fratrand B by removing the entries
with indicesi such thatX; ¢ S. The coefficients are represented as fractions of positive integers.
The sizeof f is the size of that representation. Téegreeof f is the maximum of the degrees of
f1,---, fn- PSPs of degree (resp.1 resp.>1) are calledconstant(resp.linear resp.superlineay.
PSPsf where the degree of eaghis at least are calledpurely superlinear We write f’ for the
Jacobianof f, i.e., the matrix of first partial derivatives ¢t

Given a PSP¥, a variableX; depends directlyn a variableX; if X; “occurs” in f;, more

formally if - is not the constartt. A variable X; dependson X; if X; depends directly otk

362 J. ESPARZA, A. GAISER, AND S. KIEFER

or there is a variableX;, such thatX; depends directly o, and X}, depends on¥;. We often
consider thestrongly connected componerfts SCCs for short) of the dependence relation. The
SCCs of a PSP can be computed in linear time using e.g. Tarjan’s algorithm. Ay SCELPSPf
is constantresp.linear resp.superlinearresp.purely superlineaif the PSP/ has the respective
property, wheref is obtained by restricting to the S-components and replacing all variables not
in S by the constant. A PSP is arscPSHf it is not constant and consists of only one SCC. Notice
that a PSP is an scPSP if and only jf’(1) is irreducible.

A fixed point of a PSPf is a vectorx > 0 with f(x) = x. By Kleene's theorem, there exists
a least fixed poinf:; of f, i.e., uy < x holds for every fixed poink. Moreover, the sequence
0, f(0), f(f(0)),... converges tq.;. Vectorsx with x < f(x) (resp.x > f(x)) are calledpre-
fixed (resp.post-fixedl points. Notice that the vectdris always a post-fixed point of a PSPdue
to our assumption on the coefficients of a PSP. By Knaster-Tarski’'s thegrem,the least post-
fixed point, so we always hawe< p; < 1. Itis easy to detect and remove all componentsth
(i¢); = 0 by a simple round-robin method (see e.g. [5]), which needs linear time in the sjze of
We therefore assume in the following that > 0.

3. An algorithm for consistency of PSPs

Recall that for applications like the neutron branching process it is crucial to know exactly
whetherp s = 1 holds. We say a PSP is consistentif ;. = 1; otherwise it isinconsistent
Similarly, we call a component consistent if(;.); = 1. We present a new algorithm for the
consistency problem, i.e., the problem to check a PSP for consistency.

It was proved in [7] that consistency is checkable in polynomial time by reduction to Linear
Programming (LP). We first observe that consistency of general PSPs can be reduced to consistency
of scPSPs by computing the DAG of SCCs, and checking consistency SCC-wise [7]: Take any
bottom SCCS, and check the consistency ¢§. (Notice thatfs is either constant or an scPSP;
if constant, fs is consistent ifffg = 1, if an scPSP, we can check its consistency by assumption.)

If fg is inconsistent, then so i, and we are done. Ifg is consistent, then we remove evefy

from f such thate; € S, replace all variables of in the remaining polynomials by the constant

and iterate (choose a new bottom SCC, etc.). Note that this algorithm processes each polynomial at
most once, as every variable belongs to exactly one SCC.

It remains to reduce the consistency problem for scPSPs to LP. The first step is:

Proposition 3.1. [9, 7] An scPSPf is consistent iffp(f'(T)) < 1 (i.e., iff the spectral radius of
the Jacobi matrixf’ evaluated at the vectdris at mostl).

The second step consists of observing that the mdittik) of an scPSPf is irreducible and non-
negative. It is shown in [7] thai(A) < 1 holds for an irreducible and nonnegative mat#ixff the
system of inequalities
Ax>x+1,x>0 (3.1)

is infeasible. However, no strongly polynomial algorithm for LP is known, and we are not aware
that (3.1) falls within any subclass solvable in strongly polynomial time [8].

We provide a very simple, strongly polynomial time algorithm to check whethgi(1)) < 1
holds. We need some results from Perron-Frobenius theory (see e.g. [3]).

Lemma 3.2. Let A € R™*™ be nonnegative and irreducible.

(1) p(A) is asimpleeigenvalue ofA.
(2) There exists an eigenvector~ 0 with p(A) as eigenvalue.

COMPUTING LEAST FIXED POINTS OF PROBABILISTIC SYSTEMS OF PONOMIALS 363

(3) Every eigenvectov = 0 hasp(A) as eigenvalue.
(4) Forall a, 8 € R\ {0} andv > 0: if av < Av < fv, thena < p(A) < S.

The following lemma is the key to the algorithm:

Lemma 3.3. Let A € R™*"™ be nonnegative and irreducible.
(@) Assume there ig € R™\ {0} such that(/{d — A)v = 0. Thenp(A4) < 1iff v 0or v < 0.
(b) Assumev = 0 is the only solution of/ld — A)v = 0. Then there exists a unique € R"
such that(Id — A)x = 1,andp(A) < 1iff x > 1 and Ax < x.

Proof.

(@) From(ld — A)v = 0 it follows Av = v. We see thav is an eigenvector ofi with
eigenvaluel. Sop(A4) > 1.

(«): As bothv and —v are eigenvectors ofl with eigenvaluel, we can assume w.l.0.g.
thatv = 0. By Lemma 3.2(3)p(A) is the eigenvalue of, and sop(A) = 1.

(=): Sincep(A) < 1 andp(A) > 1, it follows thatp(A) = 1. By Lemma 3.2(1) and
(2), the eigenspace of the eigenvaluis one-dimensional and contains a vectos 0. So
v = «a - x for somea € R, a # 0. If & > 0, we havev > 0, otherwisev < 0.

(b) With the assumption and basic facts from linear algebra it follows(that- A) has full
rank and thereforél/d — A)x = 1 has a unique solutior. We still have to prove the second
part of the conjunction:

(«=): Follows directly from Lemma 3.2(4).

(=): Letp(A) < 1. Assume for a contradiction thaf A) = 1. Then, by Lemma 3.2(1),
the matrix A would have an eigenvectar # 0 with eigenvaluel, so (Id — A)v = 0,
contradicting the assumption. So we have, in fagtd) < 1. By standard matrix facts
(see e.g. [3]), this implies thatld — A)~! = A* = Y ¢, A exists, and so we have
x = (Id — A)7'1 = A*1 > 1. FurthermoreAx = > 52, AT < 322 AT = x. =

In order to check whether(A) < 1, we first solve the systerffd — A)v = 0 using Gaussian
elimination. If we find a vectov # 0 such that(/d— A)v = 0, we apply Lemma 3.3(a). ¥ = 0is
the only solution of 7d — A)v = 0, we solve(Id — A)v = 1 using Gaussian elimination again, and
apply Lemma 3.3(b). Since Gaussian elimination of a ratierdimensional linear equation system
can be carried out in strongly polynomial time usiign?) arithmetic operations (see e.g. [8]), we
obtain:

Proposition 3.4. Given a nonnegative irreducible matrix € R"*", one can decide in strongly
polynomial time, using)(n?) arithmetic operations, whether(4) < 1.

Combining Propositions 3.1 and 3.4 directly yields an algorithm for checking the consistency
of scPSPs. Extending it to multiple SCCs as above, we get:

Theorem 3.5. Let f(X3,...,X,,) be a PSP. There is a strongly polynomial time algorithm that
usesO(n?) arithmetic operations and determines the consistencf. of

3.1. Case study: A family of “almost consistent” PSPs

In this section, we illustrate some issues faced by algorithms that solve the consistency problem.
Consider the following family:(™) of scPSPsyp > 2:

W) = (0.5X7 +0.1X2+ 0.4, 0.01X2 +0.5X5 + 049, ... ,0.01X2_, +0.5X, +0.49) " .

364 J. ESPARZA, A. GAISER, AND S. KIEFER

n=25|n=100|n=200|n =400 |n =600 |n= 1000
Exact LP < 1lsec 2 sec 8sec| 67sec| 208 sec > 2h
Our algorithm| < 1sec| < 1 sec 1sec 4sec| 10sec 29 sec

Table 1: Consistency checks fbf")-systems: Runtimes of different approaches.

It is not hard to show that(™) (p) < p holds forp = (1 — 0.02",...,1 —0.022"~1)T, so we have
i < 1 by Proposition 4.4, i.e., the(™ are inconsistent.

The tool PReMo [12] relies on Java’s floating-point arithmetic to compute approximations of
the least fixed point of a PSP. We invoked PReMo for computing approximapis.gffor different
values ofn betweens and100. Due to its fixed precision, PReMo’s approximations fQg., are
> 1in all components if» > 7. This might lead to the wrong conclusion that") is consistent.

Recall that the consistency problem can be solved by checking the feasibility of the system (3.1)
with A = f/(1). We checked it with Ipsolve, a well-known LP tool using hardware floating-point
arithmetic. The tool wrongly states that (3.1) has no solutiomifé?-systems wittn > 10. This is
due to the fact that the solutions cannot be represented adequately using machine number precision.
Finally, we also checked feasibility with Maple’s Simplex package, which uses exact arithmetic, and
compared its performance with the implementation, also in Maple, of our consistency algorithm. Ta-
ble 1 shows the results. Our algorithm clearly outperforms the LP approach. For more experiments
see Section 4.3.

4. Approximating s with inexact arithmetic

Itis shown in [7] thatu; may not be representable by roots, so one can only approxjmate
this section we present an algorithm that computes two sequeibé&s); and (ub(?);, such that
1b® <y < ub® andlim; ., ub® — 1b® = 0. In words: b andub(® are lower and upper
bounds ony, respectively, and the sequences convergetoMoreover, they converge linearly,
meaning that theumber of accurate bitsf Ib(®) andub(® are linear functions of. (The number of
accurate bits of a vectot is defined as the greatest numiesuch that(u; — x);|/|(us);| < 27%
holds for all j € {1,...,n}.) These properties are guaranteed even though our algorithm uses
inexact arithmetic: Our algorithm detects numerical problems due to rounding errors, recovers from
them, and increases the precision of the arithmetic as needed. Increasing the precision dynamically
is, e.g., supported by the GMP library [1].

Let us make precise what we mean by increasing the precision. Consider an elementary op-
erationg, like multiplication, subtraction, etc., that operates on two input numbeasdy. We
cancomputeg(z,y) with increasing precisiorif there is a procedure that on inputy outputs a
sequenceV (z,y), ¢ (z,7), ... that converges tg(z,y). Note that there are no requirements
on the convergence speed of this procedure — in particular, we do not require that there is an
with ¢ (z,y) = g(z,y). This procedure, which we assume exists, allows to implerfieating
assignmentsf the form

z «~g(z,y) such that¢(z)

with the following semanticsz is assigned the valug”) (z, y), where: > 1 is the smallest index
such thatp(¢((z,y)) holds. We say that the assignmentasid if ¢(g(z,)) holds andp involves

2The mentioned problems of PReMo andsiplve are not due to the fact that the coefficientsh6P cannot be
properly represented using basis 2: The problems persist if one replaces the coefficigftts iyf similar numbers
exactly representable by machine numbers.

COMPUTING LEAST FIXED POINTS OF PROBABILISTIC SYSTEMS OF PONOMIALS 365

only continuous functions and strict inequalities. Our assumption on the arithmetic guarantees that
(the computation underlying) a valid floating assignment terminates. As “syntactic sugar”, more
complex operations (e.g., linear equation solving) are also allowed in floating assignments, because
they can be decomposed into elementary operations.

We feel that any implementation of arbitrary precision arithmetic should satisfy our require-
ment that the computed values converge to the exact result. For instance, the documentation of
the GMP library [1] states: “Each function is defined to calculate with ‘infinite precision’ followed
by a truncation to the destination precision, but of course the work done is only what's needed to
determine a result under that definition.”

To approximate the least fixed point of a PSP, we first transform it into a certain normal form. A
purely superlinear PSP is calledperfectly superlineaif every variable depends directly on itself
and every superlinear SCC is purely superlinear. The following proposition states that arfy PSP
can be made perfectly superlinear.

Proposition 4.1. Let f be a PSP of size. We can compute in tim@(n - s) a perfectly superlinear
PSPf with Var(f) = Var(f) U{X} of sizeO(n - s) such thatus = (1 f)var(f)-

4.1. The algorithm

The algorithm receives as input a perfectly superlinear P@Rd an error bound > 0, and
returns vectordb, ub such thatlb < py < ub andub — 1b < € A first initialization step
requires to compute a vectarwith 0 < x < f(x), i.e., a “strict” pre-fixed point. This is done in
Section 4.1.1. The algorithm itself is described in Section 4.1.2.

4.1.1. Computing a strict pre-fixed pointAlgorithm 1 computes a strict pre-fixed point:

Algorithm 1: Procedureonput eStri ct Prefi x

Input: perfectly superlinear PSP

Output: x with0 < x < f(x) < 1

x « 0;

while 0 4 x do
Z —{i|1<i<n,fi(x)=0}
P—{i|l1<i<mn,fi(x)>0}
yz < 0;
yp «~ fp(x)such thatd < yp < fp(y) < 1;
X <Yy,

Proposition 4.2. Algorithm 1 is correct and terminates after at masiterations.

The reader may wonder why Algorithm 1 uses a floating assigngpent- fp(x), given that
it must also perform exact comparisons to obtain the Zegmd P and to decide exactly whether
yp < fp(y) holds in thesuch that clause of the floating assignment. The reason is that, while we
perform such operations exactly, we do not want to usedbgtof exact computations as input for
other computations, as this easily leads to an explosion in the required precision. For instance, the
size of the exact result ofp(y) may be larger than the size pf while an approximation of smaller
size may already satisfy ttsuch that clause. In order to emphasize this, meverstore the result
of an exact numerical computation in a variable.

366 J. ESPARZA, A. GAISER, AND S. KIEFER

4.1.2. Computing lower and upper bound#lgorithm 1 uses Kleene iteratian f(0), f(f(0)),. ..
to compute a strict pre-fixed point. One could, in principle, use the same scheme to compute lower
bounds ofi¢, as this sequence converges:fofrom below by Kleene’s theorem. However, conver-
gence of Kleene iteration is generally slow. It is shown in [7] that forltaémensional PSF with
f(X) =0.5X%+0.5we haveu; = 1, and thei-th Kleene approximant(¥ satisfiess® < 1 — 1
Hence, Kleene iteration may converge only logarithmically, i.e., the number of accurate blts is a
logarithmic function of the number of iterations.

In [7] it was suggested to use Newton’s method for faster convergence. In order to see how
Newton’s method can be used, observe that instead of compufirane can equivalently compute
the least nonnegative zero ¢fX) — X. Given an approximank of 7, Newton’s method first
computeg;™® (X), the first-order linearization of at the pointx:

g¥X) = fx) + ()X - x)
The next Newton approximatis obtained by solvingd = ¢ (X), i.e.,

y=x+(Id— f'(x))"(f(x) = x) .
We write N¢(x) := x + (Id — f'(x))"(f(x) — x), and usually drop the subscript 8f;. If
v0 < 7 is any pre-fixed point off, for instancer(®) = 0, we can define &lewton sequence
(v™); by settingw (1) = A/(v(®) for i > 0. It has been shown in [7 10, 5] that Newton sequences
converge at least linearly jo;. Moreover, we havé < v < fu®) < py foralls.

These facts were shown only for Newton sequences that are computed exactly, i.e., without
rounding errors. Unfortunately, Newton approximants are hard to compute exactly: Since each
iteration requires to solve a linear equation system whose coefficients depend on the results of the
previous iteration, the size of the Newton approximants easily explodes. Therefore, we wish to
use inexact arithmetic, but without losing the good properties of Newton’s method (reliable lower
bounds, linear convergence).

Algorithm 2 accomplishes these goals, and additionally computes post-fixed phirgs f,
which are upper bounds op;. Let us describe the algorithm in some detail. The lower
bounds are stored in the variadle. The first value oflb is not simply0, but is computed by
comput eStri ct Prefi x(f), in order to guarantee the validity of the following floating assign-
ments. We use Newton's method for improving the lower bounds because it converges fast (at least
linearly) when performed exactly. In each iteration of the algorittwg Newton steps are per-
formed using inexact arithmetic. The intention is that two inexact Newton steps should improve the
lower bound at least as much as one exact Newton step. While this may sound like a vague hope
for small rounding errors, it can be rigorously proved thanks tcsthah that clause of the floating
assignment in line 4. The proof involves two steps. The first step is to prové\th&i(lb)) is a
(strict) post-fixed point of the functiop(X) = f(Ib) + f/(Ib)(X — Ib), i.e., N'(N(Ib)) satisfies
the first inequality in thesuch that clause. For the second step, recall thallb) is the least fixed
point of g. By Knaster-Tarski's theoremy (Ib) is actually the least post-fixed point 9f So, our
value x, the inexact version oV’ (N (Ib)), satisfiesx > N (Ib), and hence two inexact Newton
steps are in fact at least as “fast” as one exact Newton step. Thuk, toaverge linearly tq.;.

The upper boundab are post-fixed points, i.ef,(ub) < ub is an invariant of the algorithm.

The algorithm computes the setsand P so that inexact arithmetic is only applied to the compo-
nentsi with f;(ub) < 1. In the P-components, the functiofiis applied toub in order to improve
the upper bound. In factf is applied twice in line 9, analogously to applying twice in line 4.
Here, thesuch thatclause makes sure that the progress towards at least as fast as the progress
of one exact application of would be. One can show that this leads to linear convergenge.to

COMPUTING LEAST FIXED POINTS OF PROBABILISTIC SYSTEMS OF PONOMIALS

367

Algorithm 2 : Procedurecal cBounds

Input: perfectly superlinear PSP, error bound: > 0
Output: vectorslb, ub such thalb < ;1 <ubandub —1b <€

1 1b < comput eStrictPrefix(f);

2 ub

<—T;

3 while ub — 1b £ €do
x «~ N (N (Ib)) such that f(1b) + f'(Ib)(x —1b) < x < f(x) < 1;

4

© 0 N o o

10
11
12

13

14

Ib — x;

Z —{i|1<i<n,f;i(ub) =1}
P—{i|1<i<n,fi(ub) <1}

yz < 1;

yp « fp(f(ub)) such that fp(y) < yp < fp(ub);
forall superlinear SCCS of f with yg =1 do

t «— 1 —1bg;
if f{g(1)t = tthen

yg e~ 1 — min{l7

ub «— y;

minies(fés (T)t

2 - max;es(fs(2

__)t)l} -tsuchthat fs(y) <ys < 1;

The rest of the algorithm (lines 10-13) deals with the probtkeat, given a post-fixedb, the
sequencaib, f(ub), f(f(ub)),... does not necessarily converge;tp. For instance, iff (X) =

0.75X% + 0.25, thenpuy = 1/3, but1 = f(1) = f(f(1)) = ---

. Therefore, the if-statement

of Algorithm 2 allows to improve the upper bound fromto a post-fixed point less thah by
exploiting the lower boundb. This is illustrated in Figure 1 for @-dimensional scPSP. The

14)._/_'
0L
’/
0,8 -7
. R
o -
TRt
X, 064 .= -
| |
0.4
| |
0.2 0.2
O. T |. T T T T T T T T 1 0 T |. T T T T T T T T T 1
0 02 04 06 08 1 12 0 02 04 06 08 1 12
Xl Xl
_ 2 — 2
..... X = 08X X, +02=-= X, =04 X2 + 01X, +05| [+ X, =08X X, +02 == x,=04X> + 0.1X, + 05
(@ (b)

Figure 1. Computation of a post-fixed point less than

368 J. ESPARZA, A. GAISER, AND S. KIEFER

dotted lines indicate the curve of the poiffs;, X7) satisfyingX; = 0.8X; X5 + 0.2 and X, =
0.4X7 + 0.1X5 + 0.5. Notice thatu; < T = f(I). In Figure 1 (a) the shaded area consists of
those pointdb where f/(1)(1 — 1b) > 1 — 1b holds, i.e., the condition of line 12. One can show
that .y must lie in the shaded area, so by continuity, any sequence converging ito particular

the sequence of lower boundls, finally reaches the shaded area. In Figure 1 (a) this is indicated
by the points with the square shape. Figure 1 (b) shows how to exploit such dlipdéntompute

a post-fixed poinib < 1 (post-fixed points are shaded in Figure 1 (b)): The post-fixed pdint
(diamond shape) is obtained by startingl@d moving a little bit along the straight line between

1 andlb, cf. line 13. The sequenagb, f(ub), f(f(ub)), ... now converges linearly tp;.

Theorem 4.3. Algorithm 2 terminates and computes vectbissub such thatlb < iy < ub and
ub — Ib < €. Moreover, the sequences of lower and upper bounds computed by the algorithm both
converge linearly tQu .

Notice that Theorem 4.3 is about the convergence speed of the approximants, not about the time
needed to compute them. To analyse the computation time, one would need stronger requirements
on how floating assignments are performed.

The lower and upper bounds computed by Algorithm 2 have a special feature: they satisfy
Ib < f(Ib) andub > f(ub). The following proposition guarantees that such points are in fact
lower and upper bounds.

Proposition 4.4. Let f be a perfectly superlinear PSP. Let< x < 1. If x < f(x), thenx < py.
If x > f(x), thenx > py.

So a user of Algorithm 2 can immediately verify that the computed bounds are correct. To summa-
rize, Algorithm 2 computes provably and even verifiably correct lower and upper bounds, although
exact computation is restricted to detecting numerical problems. See Section 4.3 for experiments.

4.2. Proving consistency using the inexact algorithm

In Section 3 we presented a simple and efficient algorithm to check the consistency of a PSP.
Algorithm 2 is aimed at approximating, but note that it can also prove the inconsistency of a
PSP: when the algorithm setéh; < 1, we know (uf); < 1. This raises the question whether
Algorithm 2 can also be used for proving consistency. The answer is yes, and the procedure is
based on the following proposition.

Proposition 4.5. Let f be an scPSP. Lat~ 0 be a vector withf’(1)t < t. Thenf is consistent.

Proposition 4.5 can be used to identify consistent components.
Use Algorithm 2 with some (smalbto computeub andlb. Take any bottom SCG.
e If f/(1)(1 —1bg) < 1 — lbg, mark all variables inS as consistent and remove tlse
components frony. In the remaining components, replace all variableS mith 1.
e Otherwise, remové and all other variables that depend &ifrom f.
Repeat with the new bottom SCC until all SCCs are processed.
There is no guarantee that this method detectsvaiih (1), = 1.

COMPUTING LEAST FIXED POINTS OF PROBABILISTIC SYSTEMS OF PONOMIALS 369

D 2 3 6 10
n 20 50 100] 20 50 100 20 50 100, 20 50 100
inconsistent (yes/no) n n niy y |y y y |y y y |y

Cons. check (Alg. Sec. <1 <1 21 <1 <1 21 <1 <1 21 <1 <1 2
Cons.check (exactLP) | <1 20 258/ <1 22 124\ <1 16 168| <1 37 222
Approx.Qp (e=10"%) | <1 <1 4| 2 8 32 1 5 21| 1 4 17
Approx.Qp (e=10"% |<1 <1 4| 2 8 34 2 7 28 1 6 23

Table 2: Runtime in seconds of various algorithms on different valués afidn.

4.3. Case study: A neutron branching process

One of the main applications of the theory of branching processes is the modelling of cascade
creation of particles in physics. We study a problem described by Harris in [9]. Consider a ball of
fissionable radioactive material of radills Spontaneous fission of an atom can liberate a neutron,
whose collision with another atom can produce further neutrons etd i§ very small, most
neutrons leave the ball without colliding. I? is very large, then nearly all neutrons eventually
collide, and the probability that the neutron’s progeny never dies is large. A well-known result shows
that, loosely speaking, the population of a process that does not go extinct grows exponentially over
time with large probability. Therefore, the neutron’s progeny never dying out actually means that
after a (very) short time all the material is fissioned, which amounts to a nuclear explosion. The
task is to compute the largest value dffor which the probability of extinction of a neutron born
at the centre of the ball is still (if the probability is1 at the centre, then it is everywhere). This
is often called the critical radius. Notice that, since the number of atoms that undergo spontaneous
fission is large (some hundreds per second for the critical radius of plutonium), if the probability of
extinction lies only slightly below 1, there is already a large probability of a chain reaction. Assume
that a neutron born at distan€grom the centre leaves the ball without colliding with probability
1(€), and collides with an atom at distangdrom the centre with probability densiti(£,n). Let
further f(z) = 3,5, pix’, Wherep; is the probability that a collision generateseutrons. For a
neutron’s progeny to go extinct, the neutron must either leave the ball without colliding, or collide
at some distance from the centre, but in such a way that the progeny of all generated neutrons goes
extinct. So the extinction probabilit , (£) of a neutron born at distangefrom the centre is given
by [9], p. 86:

D
Qp(€) = 1(6) + /0 R(&m F(Qp(n)) dn

Harris takesf () = 0.025 + 0.830x + 0.07z% + 0.0523 + 0.025z%, and gives expressions for both
[(¢) and R(&,n). By discretizing the interval0, D] into n segments and replacing the integral by
a finite sum we obtain a PSP of dimensiont 1 over the variable§Qp(;D/n) | 0 < j < n}.
Notice thatQ p(0) is the probability that a neutron born in the centre does not cause an explosion.

ResultsFor our experiments we used three different discretizations 20, 50, 100. We applied

our consistency algorithm from Section 3 and Maple’s Simplex to check inconsistency, i.e., to check
whether an explosion occurs. The results are given in the first 3 rows of Table 2: Again our algorithm
dominates the LP approach, although the polynomials are much denser thanf tegstems.

We also implemented Algorithm 2 using Maple for computing lower and upper bounds
on @ p(0) with two different values of the error bound The runtime is given in the last two
rows. By setting theDigits variable in Maple we controlled the precision of Maple’s software
floating-point numbers for the floating assignments. In all cases starting with the standard value

370 J. ESPARZA, A. GAISER, AND S. KIEFER

of 10, Algorithm 2 increase®igits at most twice bys, resulting in a maximabDigits value of20.
We mention that Algorithm 2 computed an upper bound, and thus proved inconsistency, after
the first few iterations in all investigated cases, almost as fast as the algorithm from Section 3.

Computing approximations for the critical radiuafter computing@ p (0) for various values oD

one can suspect that the critical radius, i.e., the smallest valde fof which Qp(0) = 1, lies
somewhere between 2.7 and 3. We combined binary search with the consistency algorithm from
Section 3 to determine the critical radius up to an errd.0f. During the binary search, the algo-

rithm from Section 3 has to analyze PSPs that come closer and closer to the verge of (in)consistency.
For the last (and most expensive) binary search step that decreases the intetMaldor algorithm

took <1, 1, 3, 8 seconds forn = 20, 50, 100, 150, respectively. Fon = 150, we found the critical

radius to be in the interva2.981, 2.991|. Harris [9] estimateg.9.

5. Conclusions

We have presented a new, simple, and efficient algorithm for checking the consistency of PSPs,
which outperforms the previously existing LP-based method. We have also described the first al-
gorithm that computes reliable lower and upper boundg anThe sequence of bounds converges
linearly to ;.. To achieve these properties without sacrificing efficiency, we use a novel combina-
tion of exact and inexact (floating-point) arithmetic. Experiments on PSPs from concrete branching
processes confirm the practicality of our approach. The results raise the question whether our com-
bination of exact and inexact arithmetic could be transferred to other computational problems.

AcknowledgmentsWe thank several anonymous referees for pointing out inaccuracies and helping
us clarify certain aspects of the paper. The second author was supported by the DFG Graduiertenkol-
leg 1480 (PUMA). We also thank Andreas Reuss for proofreading the manuscript.

References

[1] GMP library. http://gmplib.org.
[2] K. B. Athreya and P. E. NeyBranching Processe$pringer, 1972,
[3] A. Berman and R. J. Plemmoridonnegative Matrices in the Mathematical Scien&&M, 1994.
[4] J. Esparza, A. Gaiser, and S. Kiefer. Computing least fixed points of probabilistic systems of polynomials. Technical
report, Technische Universitat Miinchen, Institut fur Informatik, 2009.
[5] J. Esparza, S. Kiefer, and M. Luttenberger. Convergence thresholds of Newton’s method for monotone polynomial
equations. IrProceedings of STACBages 289-300, 2008.
[6] J. Esparza, A. Kucera, and R. Mayr. Model checking probabilistic pushdown autombt&3r2004 pages 12-21.
IEEE Computer Society, 2004.
[7] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and monotone systems of nonlin-
ear equationslournal of the ACM56(1):1-66, 2009.
[8] M. Grotschel, L. Lovasz, and A. Schrijvegeometric Algorithms and Combinatorial Optimizati@pringer, 1993.
[9] T. E. Harris.The theory of branching process&pringer, Berlin, 1963.
[10] S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s method for monotone systems of
polynomial equations. IRroceedings of STO@®ages 217-226. ACM, 2007.
[11] C. D. Manning and H. SchuetzEoundations of Statistical Natural Language ProcessMgr Press, June 1999.
[12] D. Wojtczak and K. Etessami. PReMo: an analyzer for probabilistic recursive moddl8QAS volume 4424 of
Lecture Notes in Computer Scienpages 66—71. Springer, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit ht t p: / / cr eat i veconmons. or g/ | i censes/ by- nd/ 3. 0/ .

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 371-382
www.stacs-conf.org

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS

JIRI FIALA ' AND MARCIN KAMINSKI? AND BERNARD LIDICKY ! AND DANIEL PAULUSMA ?

! Charles University, Faculty of Mathematics and Physics,
DIMATTA and Institute for Theoretical Computer Science (ITT)
Malostranské ndm. 2/25, 118 00, Prague, Czech Republic
E-mail address: fiala@kam.mff.cuni.cz
E-mail address: bernard@kam.mff.cuni.cz

2 Computer Science Department, Université Libre de Bruxelles,
Boulevard du Triomphe CP212, B-1050 Brussels, Belgium

E-mail address: marcin.kaminski@ulb.ac.be

3 Department of Computer Science, University of Durham,
Science Laboratories, South Road,
Durham DH1 3LE, England
E-mail address: daniel.paulusma@durham.ac.uk

ABSTRACT. Testing whether there is an induced path in a graph spanning k given vertices
is already NP-complete in general graphs when k£ = 3. We show how to solve this problem
in polynomial time on claw-free graphs, when k is not part of the input but an arbitrarily
fixed integer.

1. Introduction

Many interesting graph classes are closed under vertex deletion. Every such class can
be characterized by a set of forbidden induced subgraphs. One of the best-known examples
is the class of perfect graphs. A little over 40 years after Berge’s conjecture, Chudnovsky et
al. [18] proved that a graph is perfect if and only if it contains neither an odd hole (induced
cycle of odd length) nor an odd antihole (complement of an odd hole). This motivates the
research of detecting induced subgraphs such as paths and cycles, which is the topic of this
paper. To be more precise, we specify some vertices of a graph called the terminals and
study the computational complexity of deciding if a graph has an induced subgraph of a
certain type containing all the terminals. In particular, we focus on the following problem.

1998 ACM Subject Classification: G.2.2 Graph algorithms, F.2.2 Computations on discrete structures.
Key words and phrases: induced path, claw-free graph, polynomial-time algorithm.
Research supported by the Ministry of Education of the Czech Republic as projects 1M0021620808
and GACR 201/09/0197, by the Royal Society Joint Project Grant JP090172 and by EPSRC as
EP/D053633/1.

SYMPOSIUM

LV/' ON THEORETICAL
N

ASPECTS
al OF COMPUTER ©

SCIENCE J. Fiala, M. Kaminski, B. Lidicky, and D. Paulusma

© Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2469

372 J. FIALA, M. KAMINSKI, B. LIDICKY, AND D. PAULUSMA

k-IN-A-PATH
Instance: a graph G with k terminals.
Question: does there exist an induced path of G containing the k£ terminals?

Note that in the problem above, k is a fixed integer. Clearly, the problem is polynomially
solvable for k = 2. Haas and Hoffmann [11] consider the case k = 3. After pointing out
that this case is NP-complete as a consequence of a result by Fellows [9], they prove W([1]-
completeness (where they take as parameter the length of an induced path that is a solution
for 3-IN-A-PATH). Derhy and Picouleau [6] proved that the case k = 3 is NP-complete even
for graphs with maximum degree at most three.

A natural question is what will happen if we relax the condition of “being contained
in an induced path” to “being contained in an induced tree”. This leads to the following
problem.

k-IN-A-TREE
Instance: a graph G with k terminals.
Question: does there exist an induced tree of G containing the k terminals?

As we will see, also this problem has received a lot of attention in the last two years. It
is NP-complete if k is part of the input [6]. However, Chudnovsky and Seymour [4] have
recently given a deep and complicated polynomial-time algorithm for the case k = 3.

Theorem 1.1 ([4]). The 3-IN-A-TREE problem is solvable in polynomial time.

The computational complexity of k-IN-A-TREE for k = 4 is still open. So far, only
partial results are known, such as a polynomial-time algorithm for k& = 4 when the input
is triangle-free by Derhy, Picouleau and Trotignon [7]. This result and Theorem 1.1 were
extended by Trotignon and Wei [20] who showed that k-IN-A-TREE is polynomially solvable
for graphs of girth at least k. The authors of [7] also show that it is NP-complete to decide
if a graph G contains an induced tree T covering four specified vertices such that T has at
most one vertex of degree at least three.

In general, k-IN-A-PATH and k-IN-A-TREE are only equivalent for £ < 2. However, in
this paper, we study claw-free graphs (graphs with no induced 4-vertex star). Claw-free
graphs are a rich and well-studied class containing, e.g., the class of (quasi)-line graphs
and the class of complements of triangle-free graphs; see [8] for a survey. Notice that any
induced tree in a claw-free graph is in fact an induced path.

Observation 1.2. The k-IN-A-PATH and k-IN-A-TREE problem are equivalent for the class
of claw-free graphs.

Motivation. The polynomial-time algorithm for 3-IN-A-TREE [4] has already proven to be
a powerful tool for several problems. For instance, it is used as a subroutine in polynomial
time algorithms for detecting induced thetas and pyramids [4] and several other induced
subgraphs [16]. The authors of [12] use it to solve the PARITY PATH problem in polynomial
time for claw-free graphs. (This problem is to test if a graph contains both an odd and even
length induced paths between two specified vertices. It is NP-complete in general as shown
by Bienstock [1].)

Lévéque et al. [16] use the algorithm of [4] to solve the 2-INDUCED CYCLE problem
in polynomial time for graphs not containing an induced path or subdivided claw on some
fixed number of vertices. The k-INDUCED CYCLE problem is to test if a graph contains an
induced cycle spanning k terminals. In general it is NP-complete already for k£ = 2 [1]. For
fixed k, an instance of this problem can be reduced to a polynomial number of instances

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS 373

of the k-INDUCED DISJOINT PATHS problem, which we define below. Paths Pi,..., P in
a graph G are said to be mutually induced if for any 1 < 7 < j < k, P; and P; have
neither common vertices (i.e. V(P;) NV (P;) = 0) nor adjacent vertices (i.e. uv ¢ E for any
u € V(P),veV(F)).

k-INDUCED DISJOINT PATHS

Instance: a graph G with k pairs of terminals (s;,t;) fori=1,... k.

Question: does G contain k mutually induced paths P; such that P; connects s; and ¢; for
i=1,...,k7

This problem is NP-complete for £ = 2 [1]. Kawarabayashi and Kobayashi [14] showed
that, for any fixed k, the k-INDUCED DISJOINT PATHS problem is solvable in linear time on
planar graphs and that consequently k-INDUCED DI1sJjOINT CYCLE is solvable in polynomial
time on this graph class for any fixed k. In [15], Kawarabayashi and Kobayashi improve the
latter result by presenting a linear time algorithm for this problem, and even extend the
results for both these problems to graphs of bounded genus. As we shall see, we can also
solve k-INDUCED DiSJOINT PATHS and k-INDUCED CYCLE in polynomial time in claw-free
graphs. The version of the problem in which any two paths are vertex-disjoint but may have
adjacent vertices is called the k-D1SJOINT PATHS problem. For this problem Robertson and
Seymour [17] proved the following result.

Theorem 1.3 ([17]). For fized k, the k-DISJOINT PATHS problem is solvable in polynomial
time.

Our Results and Paper Organization. In Section 2 we define some basic terminology.
Section 3 contains our main result: k-IN-A-PATH is solvable in polynomial time in claw-free
graphs for any fixed integer k. This, in fact, follows from a stronger theorem proved in
Section 4; the problem is solvable in polynomial time even if the terminals are to appear
on the path in a fixed order. A consequence of our result is that the k-INDUCED DISJOINT
PaTHS and k-INDUCED CYCLE problems are polynomially solvable in claw-free graphs for
any fixed integer k. In Section 4 we present our polynomial-time algorithm that solves
the ordered version of k-IN-A-PATH. The algorithm first performs “cleaning of the graph”.
This is an operation introduced in [12]. After cleaning the graph is free of odd antiholes
of length at least seven. Next we treat odd holes of length five that are contained in the
neighborhood of a vertex. The resulting graph is quasi-line. Finally, we solve the problem
using a recent characterization of quasi-line graphs by Chudnovsky and Seymour [3] and
related algorithmic results of King and Reed [13]. In Section 5 we mention relevant open
problems.

2. Preliminaries

All graphs in this paper are undirected, finite, and neither have loops nor multiple edges.
Let G be a graph. We refer to the vertex set and edge set of G by V = V(G) and E = E(G),
respectively. The neighborhood of a vertex u in G is denoted by Ng(u) = {v eV | uww € E}.
The subgraph of G induced by U C V is denoted G[U]. Analogously, the neighborhood of
aset U CVis N(U) := U,y N(uw) \U. We say that two vertex-disjoint subsets of V' are
adjacent if some of their vertices are adjacent. The distance d(u,v) between two vertices u
and v in G is the number of edges on a shortest path between them. The edge contraction

374 J. FIALA, M. KAMINSKI, B. LIDICKY, AND D. PAULUSMA

of an edge e = uv removes its two end vertices u, v and replaces it by a new vertex adjacent
to all vertices in N(u) U N(v) (without introducing loops or multiple edges).

We denote the path and cycle on n vertices by P, and C),, respectively. Let P =
v1V2 ...V, be a path with a fixed orientation. The successor v;11 of v; is denoted by ’UZT" and
its predecessor v;—1 by v; . The segment v;v;11...v; is denoted by vi]-jvj. The converse
segment v;v;_1...v; is denoted by vf]gvi.

A hole is an induced cycle of length at least 4 and an antihole is the complement of a
hole. We say that a hole is odd if it has an odd number of edges. An antihole is called odd
if it is the complement is an odd hole.

A claw is the graph ({z,a,b, c}, {za,xzb, zc}), where vertex x is called the center of the
claw. A graph is claw-free if it does not contain a claw as an induced subgraph. A clique is
a subgraph isomorphic to a complete graph. A diamond is a graph obtain from a clique on
four vertices after removing one edge. A vertex w in a graph G is simplicial if G[N(u)] is a
clique.

Let s and ¢ be two specified vertices in a graph G = (V, E). A vertex v € V is called
irrelevant for vertices s and t if v does not lie on any induced path from s to t. A graph G
is clean if none of its vertices is irrelevant. We say that we clean G for s and ¢ by repeatedly
deleting irrelevant vertices for s and ¢ as long as possible. In general, determining if a vertex
is irrelevant is NP-complete [1]. However, for claw-free graphs, the authors of [12] could
show the following (where they used Observation 1.2 and Theorem 2.7 for obtaining the
polynomial time bound).

Lemma 2.1 ([12]). Let s,t be two vertices of a claw-free graph G. Then G can be cleaned
for s and t in polynomial time. Moreover, the resulting graph does not contain an odd
antihole of length at least seven.

The line graph of a graph G with edges ey, ..., e, is the graph L = L(G) with vertices
U1, ..., up such that there is an edge between any two vertices u; and u; if and only if e; and
e; share an end vertex in H. We note that mutually induced paths in a line graph L(G) are
in one-to-one correspondence with vertex-disjoint paths in G. Combining this observation
with Theorem 1.3 leads to the following result.

Corollary 2.2. For fized k, the k-INDUCED DISJOINT PATHS problem can be solved in
polynomial time in line graphs.

A graph G = (V, E) is called a quasi-line graph if for every vertex u € V there exist
two vertex-disjoint cliques A and B in G such that N(u) = V(A) U V(B) (where V(A)
and V(B) might be adjacent). Clearly, every line graph is quasi-line and every quasi-line
graph is claw-free. The following observation is useful and easy to see by looking at the
complements of neighborhood in a graph.

Observation 2.3. A claw-free graph G is a quasi-line graph if and only if G does not
contain a vertex with an odd antihole in its neighborhood.

A clique in a graph G is called nontrivial if it contains at least two vertices. A nontrivial
clique A is called homogeneous if every vertex in V(G)\V (A) is either adjacent to all vertices
of A or to none of them. Notice that it is possible to check in polynomial time if an edge of
the graph is a homogeneous clique. This justifies the following observation.

Observation 2.4. The problem of detecting a homogeneous clique in a graph is solvable
in polynomial time.

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS 375

Figure 1: Composition of three linear interval strips (only part of the graph is displayed).

Two disjoint cliques A and B form a homogeneous pair in G if the following two
conditions hold. First, at least one of A, B contains more than one vertex. Second, every
vertex v € V(G) \ (V(A)UV(B)) is either adjacent to all vertices of A or to none vertex of
A as well as either adjacent to all of B or to none of B. The following result by King and
Reed [13, Section 3] will be useful.

Lemma 2.5 ([13]). The problem of detecting a homogeneous pair of cliques in a graph is
solvable in polynomial time.

Let V be a finite set of points of a real line, and Z be a collection of intervals. Two
points are adjacent if and only if they belong to a common interval I € Z. The resulting
graph is a linear interval graph. Analogously, if we consider a set of points of a circle and
set of intervals (angles) on the circle we get a circular interval graph. Graphs in both classes
are claw-free, in fact linear interval graphs coincide with proper interval graphs (intersection
graph of a set of intervals on a line, where no interval contains another from the set) and
circular interval graphs coincide with proper circular arc graphs (defined analogously). We
need the following result of Deng, Hell, and Huang [5].

Theorem 2.6 ([5]). Circular interval graphs and linear interval graphs can be recognized in
linear time. Furthermore, a corresponding representation of such graphs can be constructed
in linear time as well.

A linear interval strip (S, a,b) is a linear interval graph S where a and b are the leftmost
and the rightmost points (vertices) of its representation. Observe that in such a graph the

vertices ¢ and b are simplicial. Let Sy be a graph with vertices ai1,b1,...,a,,b, that is
isomorphic to an arbitrary disjoint union of complete graphs. Let (S, a},b}),..., (S, al,, b))

be a collection of linear interval strips. The composition S, is defined inductively where S;
is formed from the disjoint union of S;_; and S/, where:

e all neighbors of a; are connected to all neighbors of a};

e all neighbors of b; are connected to all neighbors of b};

e vertices a;, a},b;, b} are removed.
See Figure 1 for an example. We are now ready to state the structure of quasi-line graphs
as characterized by Chudnovsky and Seymour [3].

Theorem 2.7 ([3]). A quasi-line graph G with no homogeneous pair of cliques is either a
circular interval graph or a composition of linear interval strips.

Finally, we need another algorithmic result of King and Reed [13]. They observe that
the composition of the final strip in a composition of linear interval graphs is a so-called

376 J. FIALA, M. KAMINSKI, B. LIDICKY, AND D. PAULUSMA

nontrivial interval 2-join and that every nontrivial interval 2-join contains a so-called canon-
ical interval 2-join. In Lemma 13 of this paper they show how to find in polynomial time a
canonical interval 2-join in a quasi-line graph with no homogeneous pair of cliques and no
simplicial vertex or else to conclude that none exists. Recursively applying this result leads
to the following lemma.

Lemma 2.8 ([13]). Let G be a quasi-line graph with no homogeneous pairs of cliques and
no simplicial vertex that is a composition of linear interval strips. Then the collection of
linear interval strips that define G can be found in polynomial time.

3. Our Main Result

Here is our main result.

Theorem 3.1. For any fized k, the k-IN-A-PATH problem is solvable in polynomial time in
claw-free graphs.

In order to prove Theorem 3.1 we define the following problem.

ORDERED-k-IN-A-PATH

Instance: a graph G with k terminals ordered as tq, ..., tx.

Question: does there exist an induced path of G starting in ¢; then passing through
to,...,tx_1 and ending in t3?

We can resolve the original k-IN-A-PATH problem by k! rounds of the more specific version
defined above, where in each round we order the terminals by a different permutation.
Hence, since we assume that k is fixed, it suffices to prove Theorem 3.2 in order to obtain
Theorem 3.1.

Theorem 3.2. For any fixed k, the ORDERED-k-IN-A-PATHS problem is solvable in poly-
nomial time in claw-free graphs.

We prove Theorem 3.2 in Section 4 and finish this section with the following consequence
of it.

Corollary 3.3. For any fixed k, the k-DISJOINT INDUCED PATHS and k-INDUCED CYCLE
problem are solvable in polynomial time in claw-free graphs.

Proof. Let G be a claw-free graph that together with terminals ¢1,...,%; is an instance of
k-INDUCED CYCLE. We fix an order of the terminals, say, the order is t1,...,t;. We fix
neighbors a; and b;_1 of each terminal t;. This way we obtain an instance of k-INDUCED
D1sJOINT PATHS with pairs of terminals (a;,b;) where by = by. Clearly, the total number
of instances we have created is polynomial. Hence, we can solve k-INDUCED CYCLE in
polynomial time if we can solve k-INDUCED DISJOINT PATHS in polynomial time.

Let G be a claw-free graph that together with k pairs of terminals (a;,b;) for i =
1,...,k is an instance of the k-INDUCED DiSJOINT PATHS problem. First we add an edge
between each pair of non-adjacent neighbors of every terminal in 7" = {aq, ..., ax, b1,...,b;}.
We denote the resulting graphs obtained after performing this operation on a terminal by
G1,...,Go, and define Gy := G. We claim that G’ = G4, is claw-free and prove this by
induction.

The claim is true for Gg. Suppose the claim is true for G; for some 0 < j < 2k — 1.
Consider G;41 and suppose, for contradiction, that G4 contains an induced subgraph

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS 377

isomorphic to a claw. Let K := {z,a,b,c} be a set of vertices of G inducing a claw with
center z. Let s € T be the vertex of G; that becomes simplicial in Gj41. Then x # s. Since
Gj is claw-free, we may without loss of generality assume that at least two vertices of K must
bein Ng,,,(s)U{s}. Since Ng,,,(s)U{s} is a clique of Gj11 and {a, b, c} is an independent
set of Gij 41, we may without loss of generality assume that K N (Ng,,,(s) U {s}) = {z,a}
and {b,c} C V(Gj+1) \ (Ng,,,(s) U{s}). Then {z,b,c, s} induces a claw in G; with center
x, a contradiction. Hence, G’ is indeed claw-free.

We note that G with terminals (a1,b1), ..., (ax, by) forms a YES-instance of k-INDUCED
DisJOINT PATHS if and only if G’ with the same terminal pairs is a YEs-instance of this
problem. In the next step we identify terminal b; with a;41, ie., for ¢ = 1,...k — 1 we
remove b;, a;41 and replace them by a new vertex t;;1 adjacent to all neighbors of a;41 and
to all neighbors of b;. We call the resulting graph G” and observe that G is claw-free. We

define t; := ay and tg41 := by and claim that G’ with terminal pairs (a1,b1),..., (ak, bg)
forms a YES-instance of the k-INDUCED PATHS problem if and only if G” with terminals
t1,...,tky1 forms a YES-instance of the ORDERED-(k + 1)-IN-A-PATH problem.

In order to see this, suppose G’ contains k mutually induced paths P; such that P;
connects a; to b; for 1 < ¢ < k. Then

P TS +5
P = tlplbl t2a2 P2b2 PN tkak Pktk

is an induced path passing through the terminals ¢; in prescribed order. Now suppose
G" contains an induced path P passing through terminals in order tq,...,tx4 1. For i =

1,...,k+ 1 we define paths P, = ait;rf’)ti;lbi, which are mutually induced. We now apply
Theorem 3.2. This completes the proof. [

4. The Proof of Theorem 3.2

We present a polynomial-time algorithm that solves the ORDERED-k-IN-A-PATH prob-
lem on a claw-free graph G with terminals in order ty,...,t; for any fixed integer k. We
call an induced path P from t; to t; that contains the other terminals in order to,...,tp_1
a solution of this problem. Furthermore, an operation in this algorithm on input graph G
with terminals 1, ..., ¢, preserves the solution if the following holds: the resulting graph G’
with resulting terminals ¢/, ...}, for some k' < k is a YEs-instance of the ORDERED-A'-IN-
A-PATH problem if and only if G is a YES-instance of the ORDERED-k-IN-A-PATH problem.
We call G simple if the following three conditions hold:

(i) t1,tx are of degree one in G and all other terminals ¢; (1 < i < k) are of degree two
in G, and the two neighbors of such ¢; are not adjacent;
(ii) the distance between any pair t;,t; is at least four;
(iii) G is connected.

THE ALGORITHM AND PROOF OF THEOREM 3.2
Let G be an input graph with terminals ¢4, ..., .

If k£ = 2, we compute a shortest path from ¢; to t5. If £k = 3, we use Theorem 1.1 together
with Observation 1.2. Suppose k > 4.

Step 1. Reduce to a set of simple graphs.
We apply Lemma 4.1 and obtain in polynomial time a set G that consists of a polynomial

378 J. FIALA, M. KAMINSKI, B. LIDICKY, AND D. PAULUSMA

number of simple graphs of size at most |V (G)| such that there is a solution for G if and
only if there is a solution for one of the graphs in G. We consider each graph in G. For
convenience we denote such a graph by G as well.

Step 2. Reduce to a quasi-line graph.

We first clean G for t; and t;. If during cleaning we remove a terminal, then we output NoO.
Otherwise, clearly, we preserve the solution. By Lemma 2.1, this can be done in polynomial
time and ensures that there are no odd antiholes of length at least seven left. Also, G stays
simple. Then we apply Lemma 4.2, which removes vertices v whose neighborhood contain
an odd hole of length five, as long as we can. Clearly, we can do this in polynomial time.
Note that G stays connected since we do not remove cut-vertices due to the claw-freeness.
By condition (i), we do not remove a terminal either. Afterwards, we clean G again for ¢,
and t;. If we remove a terminal, we output NO. Otherwise, as a result of our operations,
G becomes a simple quasi-line graph due to Observation 2.3.

Step 3. Reduce to a simple quasi-line graph with no homogeneous clique

We first exhaustively search for homogeneous cliques by running the polynomial algorithm
mentioned in Observation 2.4 and apply Lemma 4.3 each time we find such a clique. Clearly,
we can perform the latter in polynomial time as well. After every reduction of such a clique
to a single vertex, G stays simple and quasi-line, and at some moment does not contain any
homogeneous clique anymore, while we preserve the solution.

Step 4. Reduce to a circular interval graph or to a composition of interval
strips.

Let 1,1}, be the (unique) neighbor of ¢; and), respectively. As long as G contains homo-
geneous pairs of cliques (A, B) so that A neither B is equal to {t1,#]} or {ts,t,}, we do as
follows. We first detect such a pair in polynomial time using Lemma 2.5 and reduce them
to a pair of single vertices by applying Lemma 4.4. Also performing Lemma 4.4 clearly
takes only polynomial time. After every reduction, G stays simple and quasi-line, and we
preserve the solution. At some moment, the only homogeneous pairs of cliques that are
possibly left in G are of the form ({t1,#}, B) and ({t,t,}, B). As G does not contain a
homogeneous clique (see Step 3), the cliques in such pairs must have adjacent vertex sets.
Hence, there can be at most two of such pairs. We perform Lemma 4.4 and afterwards
make the graph simple again. Although this might result in a number of new instances,
their total number is still polynomial because we perform this operation at most twice.
Hence, we may without loss of generality assume that G stays simple. By Theorem 2.7, G
is either a circular interval graph or a composition of linear interval strips; we deal with
theses two cases separately after recognizing in polynomial time in which case we are by
using Theorem 2.6.

Step 5a. Solve the problem for a circular interval graph.

Let G be a circular interval graph. Observe that the order of vertices in an induced path
must respect the natural order of points on a circle. Hence, deleting all points that lie on
the circle between t; and t; preserves the solution. So, we may even assume that G is a
linear interval graph. We solve the problem in these graphs in Theorem 4.5.

Step 5b. Solve the problem for a composition of linear interval strips.

Let G be a composition of linear interval strips. Because G is assumed to be clean for
t1,...,t,, G contains no simplicial vertex. Then we can find these strips in polynomial
time using Lemma 2.8 and use this information in Lemma 4.6. There we create a line

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS 379

graph G’ with |V(G")| < |V(G)|, while preserving the solution. Moreover, this can be done
in polynomial time by the same theorem. Then we use Corollary 2.2 to prove that the
problem is polynomially solvable in line graphs in Theorem 4.7.

Now it remains to state and prove Lemmas 4.1-4.6 and Theorems 4.5— 4.7.

Lemma 4.1. Let G be a graph with terminals ordered t1,...,t;. Then there exists a set G
of n%%) simple graphs, each of size at most |V (G)|, such that G has a solution if and only if
there exists a graph in G that has a solution. Moreover, G can be constructed in polynomial
time.

Proof. We branch as follows. First we guess the first six vertices after ¢; in a possible
solution. Then we guess the last six vertices before t,,. Finally, for 2 < i < n — 1, we
guess the last six vertices preceding t; and the first six vertices following ¢;. We check if
the subgraph induced by the terminals and all guessed vertices has maximum degree 2. If
not we discard this guess. Otherwise, for every terminal and for every guessed vertex that
is not an end vertex of a guessed subpath, we remove all its neighbors that are not guessed
vertices. This way we obtain a number of graphs which we further process one by one.

Let G’ be such a created subgraph. If G’ does not contain all terminals, we discard G’.
If G’ is disconnected then we discard G’ if two terminals are in different components, or else
we continue with the component of G’ that contains all the terminals. Suppose there is a
guessed subpath in G’ containing more than one terminal. If the order is not t;,t;41,...,¢;
for some i < j, we discard G'. Otherwise, if necessary, we place ¢; and ¢; on this subpath
such that they are at distance at least four of each other and also are of distance at least
four of each end vertex of the subpath. Because the guessed subpaths are sufficiently long,

such a placement is possible. We then remove ¢;11,...,%;_1 from the list of terminals. After
processing all created graphs as above, we obtain the desired set G. Since k is fixed, G can
be constructed in polynomial time. [

Lemma 4.2. Let G be a simple claw-free graph. Removing a verter u € V(G), the neigh-
borhood of which contains an induced odd hole of length five, preserves the solution.

Proof. Because G is simple, u is not a terminal. We first show the following claim.

Claim 1. Let G[{v,w,z,y}] be a diamond in which vw is a non-edge. If there is a solution
P that contains v, z,w, then there is another solution that contains v,y,w (and that does
not contain x).

In order to see this take the original solution P and notice that by claw-freeness any neighbor
of y on P must be in the (closed) neighborhood of v or w. This way the solution can be
rerouted via y, without using z. This proves Claim 1.

Now suppose that u is a vertex which has an odd hole C' of length five in its neighborhood.
Obviously, G is a YES-instance if G —u is a YEs-instance. To prove the reverse implication,
suppose G is a YES-instance. Let P be a solution. If v does not belong to P then we
are done. Hence, we suppose that u belongs to P and consider three cases depending on
[V(C)NnV(P).

Case 1. |[V(C)NV(P)| > 2. Then |V(C)NV(P)| = 2, as any vertex on P will have at most
two neighbors. We are done by Claim 1.

380 J. FIALA, M. KAMINSKI, B. LIDICKY, AND D. PAULUSMA

Case 2. |V(C)NV(P)| =1. Let w € V(C) belong to P and let the other neighbor of u
that belongs to P be x. We note that x must be adjacent to at least one of the neighbors
of w in C'. Then we can apply Claim 1 again.

Case 3. [V(C)NV(P)| = 0. Let the two neighbors of u on P be z and y. To avoid a claw
at u, every vertex of C' must be adjacent to z or y. If there is a vertex in C' adjacent to
both, we apply Claim 1. Suppose there is no such vertex and that the vertices of the C
are partitioned in two sets X (vertices of C' only adjacent to x) and Y (vertices of C' only
adjacent to y). We assume without loss of generality that | X| = 3, and hence contains a pair
of independent vertices which together with u and y form a claw. This is a contradiction. m

Lemma 4.3. Let G be a simple quasi-line graph with a homogeneous clique A. Then
contracting A to a single vertex preserves the solution and the resulting graph is a simple
quasi-line graph containing the same terminals as G.

Proof. Each vertex in A lies on a triangle, unless G is isomorphic to P», which is not possible.
Hence, by condition (i), A does not contain a terminal. We remove all vertices of A except
one. The resulting graph will be a simple quasi-line graph containing the same terminals,
and we will preserve the solution. [

Lemma 4.4. Let G be a simple quasi-line graph with terminals ordered t1,...,t; that has
no homogeneous clique. Contracting the cligues A and B in a homogeneous pair to single
vertices preserves the solution. The resulting graph is quasi-line; it is simple unless A or B
consists of two vertices u,u’ with u € {t1,t;} and d(v',t;) < 3 for some t; # u.

Proof. Because G does not contain a homogeneous clique, V(A) and V (B) must be adjacent.
Then, due to condition (ii), there can be at most one terminal in V(A) U V(B). In all the
cases discussed below we will actually not contract edges but only remove vertices from A
and B. Hence, the resulting graph will always be a quasi-line graph.

Suppose A contains t1 or tj, say t1. Suppose |V (A)| =1, so A only contains ¢;. Then
the neighbor of ¢; is in B and |V (B)| > 2. We delete all vertices from B except this neighbor,
because they will not be used in any solution. Clearly, the resulting graph is simple and
the solution is preserved. Suppose |V (A)| > 2. Because t; is of degree one, A consists of
two vertices, namely ¢; and its neighbor t}. Note that] does not have a neighbor outside
A and B, as t; is of degree one. As V(A) and V(B) are adjacent, ¢] has a neighbor u in
B. We delete t; and replace it by ¢} in the set of terminals. We delete all vertices of B
except u, because of the following reasons. If these vertices are not adjacent to t|, they will
never appear in any solution. If they are adjacent to ¢}, they will not appear in any solution
together with u, and as such they can be replaced by u. Note that ¢} has degree one in the
new graph and that this graph is only simple if d(t},t;) > 4 for all 2 < j < k. Clearly, the
solution is preserved.

Suppose A contains a terminal ¢; for some 2 < i < k — 1. Suppose A only contains ;.
Because V(A) and V(B) are adjacent, ¢; is adjacent to a vertex w in B. By condition (i),
u is the only vertex in B adjacent to t;. We delete all vertices of B except u. Clearly, the
resulting graph is simple and the solution is preserved. Suppose |V (A)| > 2. By condition
(ii), A contains only one other vertex t; and ¢;,¢; do not have a common neighbor. Then
A must be separated of the rest of the graph by B. Furthermore, the other neighbor of ¢;
must be in B. We delete t; and all vertices of B except the neighbor of ¢;. Clearly, the
resulting graph is simple and the solution is preserved.

Suppose A does not contain a terminal. By symmetry, we may assume that B does not
contain a terminal either. Let o'V’ € E(G) with ' € V(A) and V/ € V(B). Let G’ be the

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS 381

graph obtained from G by removing all vertices of A except o’ and B except a’,b’. Note
that we have kept all terminals and that the resulting graph is simple. Any solution P’ for
G’ is a solution for G.

Now assume we have a solution P for G. We claim that |[PNA| <1 and [PNB| <1.
Suppose otherwise, say |P N A| > 2. Then |P N A| =2, as P is a path. Since ¢; and ¢, are
not in A, we find that P contains a subpath xuvy with u,v € A. Since x is adjacent to
u € A, but also non-adjacent to v € A, we find that x € B. Analogously we get that y € B.
However, then xy € E(G). This is a contradiction.

Suppose [P N A| = 0 and |P N B| = 0. Then P is a solution for G’ as well. Suppose
|[PNA| =0and |[PNB|=1. Then we may without loss of generality assume that v’ € V(P)
and find that P is a solution for G’ as well. The case [PNA| =1 and |PN B| = 0 follows by
symmetry. Suppose |[PNA| = |PNB| =1, say P intersects A in a and B in b. If ab € E(G)
then we replace ab by a't’ and obtain a solution for G’. Suppose ab ¢ E(G). Because a
is not a terminal, a has neighbors z and y on P. If 2,y ¢ N(b) then {d/,z,y,b'} induces
a claw in G with center a/. This is not possible. Hence, we may assume without loss of
generality that y is adjacent to b. Since A or B contains at least two vertices, y has degree
at least three. Then y is not a terminal. Thus we can skip y and exchange ayb in P with
a'b’ to get the desired induced path P’. n

Theorem 4.5. The ORDERED-k-IN-A-PATH problem can be solved in polynomial time in
linear interval graphs.

Proof. Let G be a linear interval graph. We may assume without loss of generality that
the terminals form an independent set. We use its linear representation that we obtain
in polynomial time by Lemma 2.8. In what follows the notions of predecessors (left) and
successors (right) are considered for the linear ordering of the points on the line. Without
loss of generality we may assume that ¢; is the first point and that ¢; is the last and that no
two points coincide. By our assumption, ¢; and ¢;41 are nonadjacent. From the set of points
belonging to the closed interval [t;,t;11] we remove all neighbors of ¢; except the rightmost
one and all neighbors of ¢;11 except the leftmost. Then the shortest path between t; and
t;+1 is induced. In addition, these partial paths combined together provide a solution unless
for some terminal t; its leftmost predecessor is adjacent to its rightmost successor. Hence,
no induced path may have ¢; among its inner vertices.]

Lemma 4.6 (proof postponed to journal version). Let G be a composition of linear interval
strips. It is possible to create in polynomial time a line graph G' with |V(G')| < |V(G)],
while preserving the solution.

Theorem 4.7. For fired k, ORDERED-k-IN-A-PATH is polynomially solvable in line graphs.

Proof. A version of ORDERED-k-IN-A-PATH in which the path is not necessarily induced
can be easily translated into an instance of the k-Di1SJOINT PATHS problem and solved in
polynomial time due to Theorem 1.3. Noting that mutually induced paths in a line graph
L(G) are in one-to-one correspondence with vertex-disjoint paths in G enables us to solve
the ORDERED-.-IN-A-PATH problem in polynomial time for line graphs.]

5. Conclusions and Further Research

We showed that, for any fixed k, the problems k-IN-A-PATH, k-DISJOINT INDUCED
PatHS and k-INDUCED CYCLE are polynomially solvable on claw-free graphs. If k is part of

382 J. FIALA, M. KAMINSKI, B. LIDICKY, AND D. PAULUSMA

the input these problems are known to be NP-complete. In the journal version we show this
is true, even when the input is restricted to be claw-free. Perhaps the two most fascinating
related open problems are to determine the complexity of deciding if a graph contains an
odd hole (whereas the problem of finding an even hole is polynomially solvable [2]) and
to determine the computational complexity of deciding if a graph contains two mutually
induced holes (whereas it is known that the case of two mutually induced odd holes is
NP-complete [10]). For claw-free graphs these two problems are solved. Shrem et al. [19]
even obtained a polynomial-time algorithm for detecting a shortest odd hole in a claw-free
graph. In the journal version we will address the second problem for claw-free graphs.

References

[1] D. Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete Mathematics
90 (1991) 85-92, See also Corrigendum, Discrete Mathematics 102 (1992) 109.
[2] M. Chudnovsky, K. Kawarabayashi and P.D. Seymour. Detecting even holes. Journal of Graph Theory
48 (2005) 85-111.
[3] M. Chudnovsky and P.D. Seymour. The structure of claw-free graphs. In Surveys in combinatorics 2005,
Cambridge (2005) 153-171.
[4] M. Chudnovsky and P.D. Seymour. The three-in-a-tree problem. Combinatorica, to appear.
[5] X. Deng, P. Hell, and J. Huang. Linear time representation algorithm for proper circular-arc graphs
and proper interval graphs. SIAM Journal on Computing 25 (1996) 390—403.
[6] N. Derhy and C. Picouleau. Finding induced trees. Discrete Applied Mathematics 157 (2009) 3552-3557.
[7] N. Dehry, C. Picouleau, and N. Trotignon. The four-in-a-tree problem in triangle-free graphs. Graphs
and Combinatorics 25 (2009) 489-502.
[8] R. Faudree, E. Flandrin, and Z. Ryjacek. Claw-free graphs—a survey. Discrete Mathematics 164 (1997)
87-147.
[9] M.R. Fellows. The RobertsonSeymour theorems: A survey of applications. In: Proceedings of AMS-
IMS-SIAM Joint Summer Research Conf. Contemporary Mathematics, Providence, RI (1989) 1-18.
[10] P. Golovach, M. Kamiriski, D. Paulusma, and D. M. Thilikos. Induced packing of odd cycles in a planar
graph. In: Proceedings of ISAAC 2009, LNCS 5878 (2009) 514-523.
[11] R. Haas and M. Hoffmann. Chordless paths through three vertices. Theoretical Computer Science 351
(2006) 360-371.
[12] P.van’t Hof, M. Kaminski and D. Paulusma. Finding induced paths of given parity in claw-free graphs.
In: Proceedings of WG 2009, LNCS, to appear.
[13] A. King and B. Reed. Bounding x in terms of w and ¢ for quasi-line graphs. Journal of Graph Theory
59 (2008) 215-228.
[14] Y. Kobayashi and K. Kawarabayashi. The induced disjoint paths problem. In: Proceedings of IPCO
2008, LNCS 5035 (2008) 47-61.
[15] Y. Kobayashi and K. Kawarabayashi. Algorithms for finding an induced cycle in planar graphs and
bounded genus graphs. In: Proceedings of SODA 2009 (2009) 1146-1155.
[16] B. Lévéque, D.Y. Lin, F. Maffray, and N. Trotignon. Detecting induced subgraphs. Discrete Applied
Mathematics 157 (2009) 3540-3551.
[17] N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal of Combi-
natorial Theory, Series B 63 (1995) 65-110.
[18] M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas. The strong perfect graph theorem.
Annals of Mathematics 164 (2006) 51-229.
[19] S. Shrem, M. Stern and M.C. Golumbic. Smallest odd holes in claw-free graphs. In Proceedings of WG
2009, LNCS 5911 (2009) 329-340.
[20] N. Trotignon and L. Wei. The k-in-a-tree problem for graphs of girth at least k, manuscript.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 383-394
www.stacs-conf.org

FINDING INDUCED SUBGRAPHS VIA MINIMAL TRIANGULATIONS

FEDOR V. FOMIN! AND YNGVE VILLANGER '

! Department of Informatics,
University of Bergen, Norway
E-mail address: {fedor.fomin|yngve.villanger}@ii.uib.no

ABSTRACT. Potential maximal cliques and minimal separators are combinatorial objects
which were introduced and studied in the realm of minimal triangulation problems in-
cluding Minimum Fill-in and Treewidth. We discover unexpected applications of these
notions to the field of moderate exponential algorithms. In particular, we show that given
an n-vertex graph G together with its set of potential maximal cliques, and an integer t,
it is possible in time the number of potential maximal cliques times O(n°®) to find a
maximum induced subgraph of treewidth t in G and for a given graph F of treewidth t, to
decide if G contains an induced subgraph isomorphic to F. Combined with an improved
algorithm enumerating all potential maximal cliques in time O(1.734601™), this yields that
both the problems are solvable in time 1.734601™ * n®®,

1. Introduction

One of the most fundamental problems in Graph Algorithms is, for a given graph
G = (V,E), to find a maximum or minimum subset S of V' that satisfies some property II.
For example, when S is required to be a maximum set of pairwise adjacent vertices this
is the MaXxiMuM CLIQUE problem. When S is required to be a maximum set of pairwise
non-adjacent vertices this is the MAXIMUM INDEPENDENT SET problem. Its complement,
the MINIMUM VERTEX COVER problem, is to find a minimum set S such that the graph
G\ S is an independent set. Another examples are MAXIMUM INDUCED FOREST, where
one is seeking for a set of vertices inducing a forest of maximum size, or its complement
MINIMAL FEEDBACK VERTEX SET which is to remove the minimum number of vertices to
destroy all cycles.

All these examples are special cases of the problem, where one seeks a maximum subset
of vertices that induces a subgraph of G from some given graph class C. If G is an n-vertex
graph, and recognition of graphs from C can be done in polynomial time, then the trivial
brute force algorithm solves the problem in time 2"n®®). One of the crucial questions in

1998 ACM Subject Classification: Algorithm Analysis, Combinatorics, Data Structures, Graph Algo-
rithms, Graph Theory.

Key words and phrases: Bounded treewidth, minimal triangulation, moderately exponential time
algorithms.

Partially supported by the Norwegian Research Council.

SYMPOSIUM

A‘V' ON THEORETICAL
)

ASPECTS
al OF COMPUTER ©

SCIENCE F. V. Fomin and Y. Villanger

@ Creative Commons Attribution-NoDerivs License
27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2470

384 F. V. FOMIN AND Y. VILLANGER

the area of moderate exponential algorithms is if the brute force algorithm can be avoided
to solve any hard (NP-hard, #P, PSPACE-hard, etc.) problem. So far we are still very
far from answering this question. For some problems we know how to avoid the brute force
search, and for some problems, like SAT, it is a big open problem in the area. Similar
situation is with the problem of finding a maximum induced subgraph from a given class
C. For some simple graph classes C the trivial 2"-barrier has been broken. The most
well studied case is when C is the class of graphs without edges, or the class of graphs of
treewidth 0. In this case, we are looking for an independent set of maximum size. This is
the classical NP-hard problem and it is well studied in the realm of moderate exponential
algorithms. The classical result of Moon and Moser [19] (see also Miller and Muller [18])
from the 1960s can be easily turned into algorithms finding a maximum independent set in
time 3"/3pC(M) . Tarjan and Trojanowski [25] gave a O(2"/3) time algorithm. There were
several non-trivial steps in improving the running time of the algorithm including the work
of Jian [17], Robson [23], and Grandoni et al. [11]. A significant amount of research was also
devoted to algorithms for the MAXIMUM INDEPENDENT SET problem on sparse graphs, some
examples are [7, 14, 21]. Tt is easy to show that a simple branching algorithm can compute
a maximum induced path or cycle in time 3"/3n°(1). However, breaking the 2"-barrier even
for the case when the class C is a forest, i.e. the class of graphs of treewidth 1, was an
open problem in the area until very recently. The first exact algorithm breaking the trivial
2"-barrier is due to Razgon [20]. The running time O(1.8899") of the algorithm from [20]
was improved in [9, 10] to O(1.7548™). All these algorithms for MAXIMUM INDEPENDENT
SET and MAXIMUM INDUCED FOREST are so-called branching algorithms (a variation of
Davis-Putnam-style exponential-time backtracking [8]). There is also a relevant work of
Gupta et al. [15] who used branching to show that for every fixed r, there are at most ¢
r-regular subgraphs for some ¢ < 2. For example, for MAXIMUM INDUCED MATCHING and
MAXIMUM 2-REGULAR INDUCED SUBGRAPH, their results yield algorithms solving these
problems in time O(1.695733") and O(1.7069™), respectively. However, the results of Gupta
et al. strongly depend on the regularity of the maximum subgraphs. To our knowledge,
prior to our work no algorithms better than the trivial brute-force O(2") were known for
more complicated classes C.

In this work we make a step aside the “branching” path and use a completely dif-
ferent approach for problems on finding induced subgraphs. Our approach is based on a
tools from the area of minimal triangulations, namely, potential maximal cliques. Minimal
triangulations are the result of adding an inclusion minimal set of edges to produce a trian-
gulation (or chordal graph). The study of minimal triangulations dates back to the 1970s
and originated from research on sparse matrices and vertex elimination in graphs. Minimal
separators are one of the main tools in the study of minimal triangulations. We refer to
the survey of Heggernes [16] for more information on triangulations. Potential maximal
cliques were defined by Bouchitté and Todinca [5, 6] and were used in different algorithms
for computing the treewidth of a graph [12, 13]. A subset of vertices C' of a graph G is
a potential maximal clique if there is a minimal triangulation T'G of G such that C' is a
maximal clique in T'G. At first glance it is not clear, what is the relation between potential
maximal cliques and induced subgraphs. Our first main result establishes such a relation.

e Let IIs be the set of potential maximal cliques in G. A maximum induced subgraph
of treewidth ¢ in an n-vertex graph G can be found in time O(|Ilg|-n®®) (Section 3).

FINDING INDUCED SUBGRAPHS VIA MINIMAL TRIANGULATIONS 385

As we already mentioned, the well studied MAXIMUM INDEPENDENT SET (and its dual
MiINIMUM VERTEX COVER) and MAXIMUM INDUCED FOREST (and MINIMUM FEEDBACK
VERTEX SET) are the special cases for t = 0 and ¢ = 1, respectively. Our second main
result shows that

e All potential maximal cliques can be enumerated in time O(1.734601™) (Section 5).

Combining both results, we obtain that a maximum induced subgraph of treewidth ¢
in an n-vertex graph G can be found in time O(1.734601" - n9®). While for t = 0 (the case
of MAXIMUM INDEPENDENT SET) the existing branching algorithms are much faster than
0(1.734601™), already for ¢t = 1 (the case of MAXIMUM INDUCED FOREST) our algorithm is
already faster than the best known branching algorithm [10]. For fixed ¢ > 2, no algorithm
better than the trivial O(2"n®™1) brute force algorithm was known.

With small modifications, our algorithm can be used for other problems involving in-
duced subgraphs. As an example, we show how to solve the induced subgraph isomorphism
problem, which is to decide if G contains an induced subgraph isomorphic to a given graph
F (Section 4). We show that when the treewidth of F' is at most ¢, then this problem is
solvable in time 1.734601" - n©®). In particular, when the treewidth of F is o(n/logn), for
example when F' is a planar graph, or a graph excluding some fixed graph as a minor, the
running time of our algorithm is 1.73460171°(") . Let us note that no algorithm faster than
the trivial brute-force algorithm was known even when F' is a tree.

Finally, our new algorithm enumerating potential maximal cliques is not only (slightly)
faster than the algorithm from [13] and thus by [12], directly implies faster exact algorithm
computing the treewidth of a graph. It is also significantly simpler than the previous
algorithms and is easy to implement. Due to space limitations, some proofs are omitted. A
full version will appear at some later point.

2. Preliminaries

We denote by G = (V, E) a finite, undirected, and simple graph with |V| = n vertices
and |F| = m edges. For any nonempty subset W C V', the subgraph of G induced by W is
denoted by G[W]. For S C V we often use G \ S to denote G[V \ S]. The neighborhood of
avertex v is N(v) ={u eV : {u,v} € E}, Njv] = N(v) U {v}, and for a vertex set S C V
we set N(S) = U,eg N(v) \ S, N[S] = N(S)U S. A clique C of a graph G is a subset of
V such that all the vertices of C' are pairwise adjacent. By w(G) we denote the maximum
clique-size of a graph G.

A graph H is chordal (or triangulated) if every cycle of length at least four has a chord,
i.e., an edge between two nonconsecutive vertices of the cycle. A triangulation of a graph
G = (V,E) is a chordal graph H = (V,E’) such that E C E’. Graph H is a minimal
triangulation of G if for every edge set E” with E C E” C FE’, the graph F = (V, E") is not
chordal.

The notion of treewidth is due to Robertson and Seymour [22]. A tree decomposition
of a graph G = (V, E), denoted by T'D(G), is a pair (X,T) in which T'= (Vp, E7) is a tree
and X = {X; | i € Vr} is a family of subsets of V, called bags, such that

() Uiy Xi =V

(ii) for each edge e = {u,v} € E there exists an ¢ € Vp such that both u and v belong

to Xi;
(iii) for all v € V, the set of nodes {i € Vr | v € X;} induces a connected subtree of T

386 F. V. FOMIN AND Y. VILLANGER

The maximum of | X;|—1, ¢ € Vr, is called the width of the tree decomposition. The treewidth
of a graph G, denoted by tw(G), is the minimum width taken over all tree decompositions
of G.

Theorem 2.1 (folklore). For any graph G, tw(G) < k if and only if there is a triangulation
H of G such that w(H) < k + 1.

Let u and v be two non adjacent vertices of a graph G = (V, E). A set of vertices S C V
is a u, v-separator if u and v are in different connected components of the graph G[V \ S].
A connected component C' of G[V '\ S] is a full component associated to S if N(C) = S.
Separator S is a minimal u,v-separator of G if no proper subset of S is a u, v-separator.
Notice that a minimal separator can be strictly included in another one. We denote by Ag
the set of all minimal separators of G.

A set of vertices (2 C V of a graph G is called a potential maximal clique if there is a
minimal triangulation H of G such that €2 is a maximal clique of H. We denote by Ilg the
set of all potential maximal cliques of G.

For a minimal separator S and a full connected component C' of G\ S, we say that
(S,C) is a block associated to S. We sometimes use the notation (S, C) to denote the set of
vertices S UC of the block. It is easy to see that if X C V corresponds to the set of vertices
of a block, then this block (.S, C) is unique: indeed, S = N(V \ X) and C = X \ S.

We also need the following result of Bouchitté and Todinca on the structure of potential
maximal cliques.

Theorem 2.2 (Bouchitté and Todinca [5]). Let K C V be a set of vertices of the graph
G=(V,E). Let C(K) = {C4,...,Cp} be the set of connected components of G\ K and let
S(K) ={51,52,...,5p}, where S; = N(C;), i € {1,2,...,p}, is the set of those vertices of
K which are adjacent to at least one vertex of the component C;. Then K is a potential
maximal clique of G if and only if

1. G\ K has no full component associated to K, and
2. the graph on the vertex set K obtained from G[K]| by completing each S; € S(K)
into a clique is a complete graph.

Moreover, if K is a potential mazimal clique, then S(K) is the set of minimal separators
of G contained in K.

3. Induced subgraph of bounded treewidth

In this section we prove the first result relating the problems of finding an induced
subgraph and enumerating potential maximal cliques. The following lemma is crucial for
our algorithm.

Lemma 3.1. Let F = (Vp, Er) be an induced subgraph of a graph G = (Vg, Eg). Then for
every minimal triangulation TF of F', there is a minimal triangulation TG of G such that
for every cliqgue K of TG, the intersection K N Vp is either empty, or is a clique of TF'.

Now we are ready to proceed with the main result of this section.

Theorem 3.2. Let G be a graph on n vertices and m edges given together with the set llg
of its potential mazximal cliques and the set Ag of its minimal separators. For any integers
0 < t,f <n, there is an algorithm that checks in time O(n'**m(|lg|+|Ag|)) if G contains
an L-vertex induced subgraph of treewidth at most t.

FINDING INDUCED SUBGRAPHS VIA MINIMAL TRIANGULATIONS 387

Proof. Let I be an induced subgraph of treewidth at most t. By Lemma 2.1, there is a
minimal triangulation TF of F, such that the size of a maximal clique of T'F' is at most
t+ 1. By Lemma 3.1, there is a minimal triangulation T'G of G, such that every clique
of T'G contains at most ¢ 4+ 1 vertices of F. If we knew such a minimal triangulation T'G,
dynamic programming over the clique-tree of T'G will provide the answer to our question
in time O(n'™3m). However, we are not given such a triangulation a priori. Thus, the
computations require multiplicative factor n|Ilg|.

We start by enumerating all full blocks and sorting them by their sizes. This can be
done by enumerating all minimal separators, and checking for each minimal separator S
and each of the connected component of G\ S if this is a full component or not. By making
use of Theorem 5.6, this step can be performed in time O(|Ag|-n?). Sorting blocks can be
done in O(n|Ag|) time using a bucket sort.

For a minimal separator S, a full block (S,C), and a potential maximal clique €2, we
call the triple (S,C,Q) good if S C Q C C'US. For each full block we also enumerate all
good triples that can be obtained from this block as follows. By Theorem 2.2, if a minimal
separators S is a subset of a potential maximal clique €, then S = N(C) for some connected
component C' of G[V \ €], and thus, the number of minimal separators contained in €2 is
at most n. By Theorem 2.2, G\ © has no full component associated to 2, and thus for
every minimal separator S C , we have that Q \ S # (). Therefore, there exists a vertex
u € Q\ S and thus is a subset of the full block (S5, C) such that u € C. But this yields
that every potential maximal clique is contained in at most n good triples, and the total
number of good triples is at most n|llg|. Computing for every potential maximal clique all
good triples containing it, in time O(m|llg|) one can create a data structure that for each
full block assigns the set of potential maximal cliques that make a good triple with that
block.

After preprocessing blocks and creating good triples, we proceed with dynamic pro-
gramming. The dynamic programming consists of two step. In the first, most technical
step, we compute the sizes of maximal subgraphs in full blocks (S, C) subject to the con-
dition that the minimal separator S contains at most ¢ + 1 vertices of the subgraph. To
compute these values we use deep combinatorial results of Bouchitté and Todinca on the
structure of potential maximal cliques. In the second step, we go through all minimal
separators, and for each separator we glue solutions found at the first step.

Step 1: Processing full blocks. We need to define several functions. For a full block
(S,C), and for every subset W C S, [W| < t+1, and integer 0 < ¢ < n, a(¢,W,S,C) =1if
there exits an induced subgraph F' = (V, Er) of G[CUW] such that |Vp| = ¢, VENS =W,
and F' has a minimal triangulation T'F such that w(TF) < ¢+ 1 and W is a clique of T'F.
Otherwise, a(¢, W, S,C) = 0.

For every inclusion minimal block (S, C), we have that S U C is a potential maximal
clique. Thus for every inclusion minimal block (S,C), and for every set W C S U C,
W] <t+1, we put

1, ite=|w,
oL, W, 5,C) = { 0, otherwise.

To compute the values of a for larger blocks, we perform dynamic programming over
sets of good triples formed by smaller blocks. For every good triple (S, C,), and for every
subset W C Q, |[W| < ¢t + 1, and integer 0 < ¢ < n, we want to compute an auxiliary
function such that 5(¢, W, S, C,Q) = 1 if there exits an induced subgraphs F' = (Vp, EF) of

388 F. V. FOMIN AND Y. VILLANGER

G[C U W] such that |Vp| = ¢, Ve N Q = W, and F has a minimal triangulation T'F such
that w(TF) <t+ 1, and W is a clique of TF. Otherwise, 3(¢,W,S,C,Q) = 0.
Let us remark that

a(l,W,S,C) =1« 3 good triple (S,C,Q) and W C W' C Qs.t. B4, W', S,C,Q) = 1.

Indeed, if B(¢, W', S,C,Q) = 1, then there is a minimal triangulation T'F of an induced
subgraph F' = (Vg, EF) of G|C UW] such that |Vp| =¢, w(TF) <t+1, and W is a clique
of TF, simply because this is true for W and W C W'. Then TF[Vp \ (W' \ W)] is the
triangulation of F[Vg \ (W’\ W)] that certifies a(¢, W, S, C) = 1. For the opposite direction
the arguments are similar.

We start computing 3 from inclusion minimal blocks. For every inclusion minimal block

(S,C), and for every set W C SUC, |[W| <t+1,

1, ifl=|W]|,
0, otherwise.

BW,S,C.Q) = {

To compute (¢, W, S, C, Q) we define an auxiliary function v as follows. Let {C1,...,
Cp} be the vertex sets of the connected components of G[(S U C) \ 2]. By Theorem 2.2,
the sets S; = N(C;), 1 < i < p, are minimal separators of GG, and moreover, S; C for
1 <4 < p. The values of function (¢, j, W, S,C,Q) are in {0,1}. For every good triple
(S,C,Q), and for every subset W C Q, |[W| <t+1,and 0 < ¢ < n, v(¢,j,W,5,C,Q) =1
if and only if there exits an induced subgraph F = (Vp, Ep) of G[W U |J!_; C;] such that
[Vr| = ¢, Ve N Q = W, and F has a minimal triangulation T'F such that w(TF) < t+1
and W is a clique in TF. Note that GIW U |J/_; Ci] = G[W U C], and by definitions of
and v, we have that

B,W,S5,C,Q) =~(t,p,W,S,C,Q).

Now for every £ > 0,

’y(f,l,VV,S, C, Q) = oz(ﬁ— |W\Sl‘,Wﬂ51,Sl,Cl).
For j > 1,

1, ify(i,j — LW,S,C,Q) =1Aa(l —i+|W NS,
v, 3, W, S8,C, Q) = W n§s;,8;,C;) =1, for some 4,1 <i </,
0, otherwise.

This is because for every f-vertex subgraph F' = (Vp,Ep) of G[Cy U ---C; U W] with
VFNQ = W, there is ¢ < £ such that i vertices of F' are in C; U ---Cj_1 U W and
¢ — i+ |W N S;| vertices are in C; N S;.

To compute (¢, j, W, S, C,), we find the blocks (S;,C;), 1 < j < p, in G, which can
be done in time O(m) and read already computed values (¢ — i+ |W N S;|,WNS;,S;,C;)
and v(i,7 — 1,W,S,C,Q). Similarly, the values of a(¢,W,S,C) and G(¢,W,S,C,Q) are
computable in time O(m) from the values of the smaller blocks and the values of 4. The
total running time required to compute the values of all a(¢, W, S,C) is O(m) times the
number of different 6-tuple (¢,i, W, S, C,Q) plus the time O(n3(]Ag| + |Ilg|)) required for
preprocessing step. The number of good triples (S, C, Q) is at most n|Ilg|, and the number
of subsets W of size at most t + 1 is O(n!™!). Thus the total running time required to
compute all values a(¢, W, S, C) is

O(mn"*(Ile| + |Aql)).

FINDING INDUCED SUBGRAPHS VIA MINIMAL TRIANGULATIONS 389

Now everything is prepared to solve the problem on graph G and to conclude the
proof. By Lemma 3.1, if I’ is an induced subgraph of G of treewidth at most ¢, there
exists a minimal separator S of G, such that [Vp N S| < ¢+ 1. We go through all minimal
separators, and for each minimal separator S, we try to glue solutions obtained during the
first step.

Step 2: Gluing pieces together. Let S be a minimal separator and let {C4,...,C,} be
the vertex sets of the connected components of G[V \ S]. We put S; = N(C;). For every
subset W C S of size at most t+ 1, and integer 0 < £ < n, we define §(¢, j, W, S) = 1 if there
is an induced (-vertex subgraph F = (Vp, Ep) of G[W U J]_, C;] which poses a minimal
triangulation T'F with w(T'F) <t + 1, and such that W = Vp NS is a clique in T'F. If no
such graph F' exists, we put §(¢, 7, W, S) = 0. By Lemma 3.1, G has an induced ¢-vertex
subgraph of treewidth at most ¢ if and only if §(¢, p, W, S) = 1 for some minimal separator
S. Thus computing the value § for all minimal separators is sufficient for deciding if G has
an induced subgraph on ¢ vertices of treewidth at most ¢.
For every £ > 0 and j = 1, we have that

5(5,1,1/‘/,5) = a(ﬁ— |W\Sl|,Wﬂ51,Sl,Cl).
For j > 1,

1, if(s(i,j—l,‘/V,S) = 1/\Oé(€—i+‘WﬂSjLWﬁSj,Sj,Cj) =1,
60(¢,j,W,S) = for some 1 <1¢ <4,
0, otherwise.

Like in the case with -, the correctness of the formula above follows from the fact, that for
every (-vertex subgraph F' = (Vp, Er) of G[C1 U ---C; U W] with Vp NS = W, there is
i < ¢ such that 7 vertices of F' are in C1 U---C;_1 UW and ¢ —i + [W N.S}| vertices are in
C 3N Sj.

Concerning the time required to perform this step. Like in above, in time O(m) we
can find the connected components {C1,...,Cp} of G[V \ S], and the corresponding full
blocks (S;,C;). Thus the running of this step is proportional to m times the number of
4-tuples (¢, 5, W, S), and we conclude that this step of the algorithm can be performed in
time O(mn!™3 - |Agl). "

4. Induced subgraph isomorphism

The technique described in the previous section with slight modifications can be ap-
plied for many different problems. In this section we give an important example of such
modification.

Theorem 4.1. Let G be an n-vertex graph given together with the set llg of its potential
maximal cliques and the set Aq of its minimal separators. Let F be a graph of treewidth t.
There is an algorithm checking if G contains an induced subgraph isomorphic to F' in time

O (|Ag| + [Hgl)).

Proof. The proof of the theorem follows the lines of Theorem 3.2 with modifications that are
similar to the well known Bodlaender’s algorithm for solving the graph isomorphism problem
on graphs of bounded treewidth [4]. We outline only the most important differences of such
a modification.

390 F. V. FOMIN AND Y. VILLANGER

The treewidth of F' is at most ¢, and we use the algorithm of Arnborg et.al. [2] to
construct a minimal triangulation T'F' of F' such that w(TF) < t + 1. The running time
of this algorithm is in O(nf*?). The number of maximal cliques and minimal separators in
an n-vertex chordal graph is O(n) [24]. Thus the number of full blocks and good triples in
TF is O(n). We list and keep all these blocks and triples. This can be done in polynomial
time.
As in the proof of Theorem 3.2, we perform two steps of dynamic programming. First
we run computations over full blocks of GG, and then use computed values to glue solutions
in minimal separators.
For every full block (S,C) of G, every full block (Sg,CF) of TF, every subset W C
S, where |W| = |Sp| < t + 1, and every bijection p: Sp — W, we define the value
a(Sp,Cr, W, n,S,C) to be equal to 1 if there is an injection A\: SpUCEF — W UC such that
F[SFrUCF] is isomorphic to G[A(Sr U CF)], and for every v € Sp, A(v) = u(v). Otherwise,
we put a(Sp,Cp, W, 1, S,C) = 0. In other words, « is equal to 1, when G[W U C] contains
a subgraph isomorphic to F[Sr U CF], and moreover, the restriction of the corresponding
isomorphic mapping on Sr is exactly pu.
As in Theorem 3.2, to compute a(Sp,Cr, W, u,S,C) we run through good triples
(S,C,Q), where Q is a potential maximal clique, S € Q@ C S U C. For every good
triple (S,C,Q) of G and every good triple (Sp,Cr,QF) of F, for every subset W C Q,
such that |W| = |Qp| < t + 1, and every bijection p: Qp — W, we define the function
B(Sp,Cr, Qp, W, 1, S,C,Q) € {0,1}. We put B(Sp,Cr,Qp, W, 1, S,C,Q) = 1 if and only
if there is an injection \: Sp U Crp — W U C such that F[Srp U Cp] is isomorphic to
G[A(Sr U CFp)], and for every v € Qp, A(v) = p(v). Following the lines of Theorem 3.2, it
is possible to show that a(Sr,Cp, W, u, S,C) = 1 if and only if there exist
e Good triple (S,C,Q) of G and good triple (Sg,Cp,Qr) of F;
o Set W/, W C W' CQ;
e Bijection u': Qp — W/, ”TW(') = u(")

such that (S, Cr, Qp, W' 1/, S,C,Q) = 1.

The main difference with the proof of Theorem 3.2 is in the way we compute 3. We com-
pute the values of 3(Sp, Cp, Qp, W, i, S, C, Q) from the values of smaller blocks contained in
G[S\ ©]. This is done by reducing to the problem of finding a maximum matching in some
auxiliary bipartite graph. This step is quite similar to the algorithm of Bodlaender [4] for
isomorphism of bounded treewidth graphs. Let Fy, F», ..., F}, be the connected components
of the graph F[Cr\Qp]. Then the sets Q; = Np(F;) C Qp are minimal separators and pairs
(F;,Qi), 1 <i < p, are blocks in F'. Similarly, for the connected components G1, G, ..., G,
of G[C'\], we put S; = Ng(G;), and define blocks (G;,S;), 1 < i < g. We construct an
auxiliary bipartite graph B with bipartition X = {z1,22,...,2,} and Y = {y1,y2,...,y4}-
There is an edge {x;,y;} in B if and only if there is an isomorphic mapping of block (Fj, Q;)
to block (G}, Q;) which agrees with . But then to decide if blocks (Fj, @;) can be mapped
to blocked (G}, S;) is equivalent to deciding if B has a matching of size p. More formally,
{z;,y;} is an edge in B if and only if there is an injection A: F; UQ; — G; U S; such that
F[F; U Q] is isomorphic to G[A(F; U Q;)], and for every v € Q;, A(v) = p(v). But such
an injection A exists if and only if a(F;, Q;, W', 1/, G;,S;) = 1, where W’ = u(Q;) and
#' () = mg,(). Therefore, to compute the value of 3, it is sufficient to run through the
already computed values of a of smaller blocks, construct an auxiliary graph and find if
this graph contains a matching of specific size.

FINDING INDUCED SUBGRAPHS VIA MINIMAL TRIANGULATIONS 391

Finally, as in Theorem 3.2, after all values a are computed, we run through all minimal
separators of G and for each minimal separator .S, we try to glue solutions obtained for all
blocks attached to this separator. Here again, we need only the values of o computed for
all such blocks and reduce the problem to bipartite matchings. The running time of the
algorithm is up to multiplicative polynomial factor equal to the number of states of the
dynamic programming. To compute the values of o and 3, we run through all potential
maximal cliques, blocks, and good triples of TF and G, which is n®W|II5|. For every pair
of blocks or triples, we run through all subsets W of size at most ¢ + 1, which is O(n**t1),
and through all mappings between sets of cardinality at most ¢ + 1, which is O((t + 1)/*1).
Finally, we run through all minimal separators. Thus the total running time of the algorithm
is O(n°®(|Ag| + [Hgl)). The proof of the correctness of the algorithm follows the lines of
Theorem 3.2, and we omit it here. [

Let us also remark that with a standard bookkeeping, the algorithm of Theorem 4.1
can also output a subgraph of G isomorphic to F'.

5. Enumerating potential maximal cliques

In this section we show that all potential maximal cliques of graph G = (V, E) can be
enumerated by making use of connected vertex sets with special restrictions. This approach
represents a significant simplification over previous algorithms for listing potential maximal
cliques [12, 13]. More precisely, we show that for every potential maximal clique 2 there
exists a vertex set Z C V and a vertex z € Z such that

o 12— 1< (2/3)(n - [0,
e (G[Z] is connected,
e O =N(Z\{z}) or Q= N(Z)U{z}.

As far as we obtain such a classification, the enumeration algorithm is extremely simple:
For each vertex z € V enumerate every connected vertex set Z containing z where |Z| —1 <
2lV\ N[Z — {z}]]. (In other words we test for each connected vertex set Z containing z,

where at least |Z‘T_1 vertices are not contained in N[Z \ {z}].) For each of these subsets, we
run the algorithm of Bouchitté and Todinca from [5] to check if N(Z\{z}) or N(Z)U{z} is a
potential maximal clique. The algorithm of Bouchitté and Todinca checks in O(nm) time if
a vertex set {2 is a potential maximal clique. This is a significant simplification comparing to
previous enumeration algorithms [12, 13] avoiding complications with different treatments
of nice and (not) nice potential maximal cliques.

We proceed with a sequence of technical lemmas. For a potential maximal clique €2 and
a vertex x €) we define by D, the vertex sets of all connected components C of G[V '\ Q]
with x € N(C).

Lemma 5.1. Let Q be a potential maximal clique of G = (V, E), and let {x,y} be an edge
of G[Q] such that Q is not a potential mazimal clique in G \ {z,y}. Then there is Z CV
and z € Z, such that

e O =N(Z)U{z},

e (G[Z] is connected, and

o [Z] -1 <(1/2)(n —[Q)).

392 F. V. FOMIN AND Y. VILLANGER

Corollary 5.2. Let §2 be a potential mazimal clique of G = (V, E), such that Q) is a potential
mazximal clique in G\{x,y} for every edge {z,y} of G[Q?]. Then N(D,) =) for every vertex
x €.

Let C be the set of connected components of G[V'\ 2] with the following two properties:
For each connected component C € C there exists a pair of vertices x,y € € such that C
is the unique component from C with x,y € N(C), and for each pair of vertices x,y € Q
there exists a connected component C' € C such that z,y € N(C). Let W be the vertex
set of C, we refer to the graph G’ = G[QQ U W] as to a reduced graph for Q. In other words
C is an inclusion minimal witness for €2 being a potential maximal clique of G, by only
using connected components of G[V \ ©]. The set C can be constructed by the following
procedure which is repeated recursively if possible: If there exists a connected component
C of G[V '\ Q] such that for each pair z,y € N(C) there is a connected component C’ # C
in G[V \ Q] such that 2,y € N(C”), then remove C from the graph.

Lemma 5.3. Let) be a potential mazimal clique of G = (V, E) such that Q is also a
potential mazimal clique in G\{z,y} for every edge {z,y} of G|, and where G' = G[QUW]
contains at least 4 connected components. Then there is Z CV and z € Z such that

o = N(Z\{z}),

e G[Z] is connected, and

o |Z] =1 <(3/5)(n— Q).

The following characterization is used in the new algorithm enumerating potential max-
imal cliques.

Lemma 5.4. For every potential mazimal clique Q2 of G = (V, E), there exists a vertex set
Z CV and z € Z such that

o 2| -1<(2/3)(n—19),

e G[Z] is connected, and

e O =N(Z\{z}) or Q= N(Z)U{z}.

Let us remark that Lemma 5.4 yields a simple algorithm enumerating potential maximal
cliques. We just connected vertex sets Z of bounded size and check if either N(Z \ {z}) or
N(Z) U {z} is a potential maximal clique. The enumeration of such connected vertex sets
can be done in time O(n? - 1.7549™) [13] and checking if a set is a potential maximal clique
in O(nm) time [5].

In what follows we improve (slightly) the running time of the algorithm. The improve-
ment is based on the previous lemmata. The proof gain by exploiting the fact that the most
time consuming case is when there are exactly three connected components in the reduced
graph.

Theorem 5.5. All potential maximal cliques of an n-vertexr graph can be enumerated in
time O(1.734601™).

We need the following results.

Theorem 5.6 (Berry, Bordat, and Cogis [3]). There is an algorithm listing all minimal
separators of an input graph G in O(n3|Ag|) time.

Theorem 5.7 (Fomin and Villanger [13]). Every n-vertex graph has O(1.6181™) minimal
separators.

FINDING INDUCED SUBGRAPHS VIA MINIMAL TRIANGULATIONS 393

Putting together Theorems 3.2, 5.5, 5.6, and 5.7, we arrive at the following corollary.

Corollary 5.8. For every t > 0, a maximum induced subgraph of treewidth at mostt in an
n-vertex graph G can be found in time O(1.734601" - n©®),

Similarly, by Theorem 4.1, we have the following corollary.

Corollary 5.9. For every t > 0 and graph F of treewidth t, checking if an n-vertex graph
G contains an induced subgraph isomorphic to F (and finding one if such exist) can be done

in time O(1.734601™ - n©®),

Let us remark that the treewidth of an m-vertex planar, and more generally, graph
excluding some fixed graph as a minor, is O(y/n) [1]. Therefore, if F' is a graph excluding
some fixed graph as a minor, deciding if G has induced subgraph isomorphic to F' can be
done in time 1.7346017+(").

6. Conclusion and open questions

In this paper we have shown how the theory of minimal triangulations can be used to
obtain moderate exponential algorithms for a number of problems about induced subgraphs.
With some modifications our technique can be used for different problems of the same
flavor, like finding a maximum connected induced subgraph of small treewidth. It would be
interesting to see if Theorem 3.2 can be extended for finding maximum induced subgraphs
with other specific properties like being planar or excluding some h-vertex graph H as a
minor.

Another very interesting question is, how many potential maximal cliques can be in
an n-vertex graph? Theorem 5.5 says that roughly at most 1.734601™. How tight is this
bound? There are graphs with roughly 3"/3 ~ 1.442" potential maximal cliques [12]. Let us
remind that by the classical result of Moon and Moser [19] (see also Miller and Muller [18])
that the number of maximal cliques in a graph on n vertices is at most 3*/3. Can it be that
the right upper bound on the number of potential maximal cliques is also roughly 37/37
By Theorem 3.2, this would yield a dramatic improvement for many moderate exponential
algorithms.

References

[1] N. ALoN, P. SEYMOUR, AND R. THOMAS, A separator theorem for nonplanar graphs, J. Amer. Math.
Soc., 3 (1990), pp. 801-808.

[2] S. ARNBORG, D. G. CORNEIL, AND A. PROSKUROWSKI, Complezity of finding embeddings in a k-tree,
STAM J. Algebraic Discrete Methods, 8 (1987), pp. 277-284.

[3] A. BERRY, J. P. BOrRDAT, AND O. CocIs, Generating all the minimal separators of a graph, Int. J.
Found. Comput. Sci., 11 (2000), pp. 397-403.

[4] H. L. BODLAENDER, Polynomial algorithms for graph isomorphism and chromatic index on partial
k-trees, J. Algorithms, 11 (1990), pp. 631-643.

[6] V. BoucHITTE AND I. TODINCA, Treewidth and minimum fill-in: Grouping the minimal separators,
SIAM J. Comput., 31 (2001), pp. 212-232.

[6] , Listing all potential mazimal cliques of a graph, Theor. Comput. Sci., 276 (2002), pp. 17-32.

[7] J. CHEN, I. A. KANJ, AND G. XIA, Labeled search trees and amortized analysis: improved upper bounds
for NP-hard problems, Algorithmica, 43 (2005), pp. 245-273.

[8] M. Davis AND H. PUTNAM, A computing procedure for quantification theory, J. Assoc. Comput. Mach.,
7 (1960), pp. 201-215.

394

(9]

(10]

(11]

(12]

(13]

F. V. FOMIN AND Y. VILLANGER

F. V. FomIN, S. GASPERS, AND A. V. PYATKIN, Finding a minimum feedback vertex set in time
0O(1.7548™), in Proceedings of the 2nd International Workshop on Parameterized and Exact Computa-
tion (IWPEC 2006), vol. 4169 of Lecture Notes in Comput. Sci., Springer, Berlin, 2006, pp. 184-191.
F. V. FomIN, S. GASPERS, A. V. PYATKIN, AND I. RAZGON, On the minimum feedback vertex set
problem: Ezxact and enumeration algorithms, Algorithmica, 52 (2008), pp. 293-307.

F. V. FoMmIN, F. GRANDONI, AND D. KRATSCH, Measure and conquer: A simple O(2°-2%8™) independent
set algorithm, in 17th Annual ACM-STAM Symposium on Discrete Algorithms (SODA 2006), New York,
2006, ACM and STAM, pp. 18-25.

F. V. Fomin, D. KraTscH, I. TODINCA, AND Y. VILLANGER, FEzact algorithms for treewidth and
mangmum fill-in, SIAM J. Comput., 38 (2008), pp. 1058-1079.

F. V. FOMIN AND Y. VILLANGER, Treewidth computation and extremal combinatorics, in Proceedings of
the 34th International Colloquium on Automata, Languages and Programming (ICALP 2008), LNCS,
Springer, 2008, pp. 210-221.

M. FURER, A faster algorithm for finding mazimum independent sets in sparse graphs, in Proceedings of
the 7th Latin American Theoretical Informatics Symposium (LATIN 2006), vol. 3887 of Lecture Notes
in Comput. Sci., Springer-Verlag, Berlin, 2006, pp. 491-501.

S. GupTA, V. RAMAN, AND S. SAURABH, Fast exponential algorithms for maximum r-reqular induced
subgraph problems, in Proceedings of the 26th International Conference Foundations of Software Tech-
nology and Theoretical Computer Science, (FSTTCS 2006), LNCS, Springer-Verlag, 2006, pp. 139-151.
P. HEGGERNES, Minimal triangulations of graphs: A survey, Discrete Mathematics, 306 (2006), pp. 297—
317.

T. JIAN, An O(2°3%4"™) algorithm for solving mazimum independent set problem, IEEE Trans. Comput-
ers, 35 (1986), pp. 847-851.

R. E. MILLER AND D. E. MULLER, A problem of mazimum consistent subsets, IBM Research Rep.
RC-240, J.T. Watson Research Center, Yorktown Heights, New York, USA, 1960.

J. W. MooON AND L. MOSER, On cliques in graphs, Israel Journal of Mathematics, 3 (1965), pp. 23-28.
1. RAZGON, Ezact computation of mazimum induced forest, in Proceedings of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT 2006), vol. 4059 of Lecture Notes in Comput. Sci., Berlin, 2006,
Springer, pp. 160-171.

——, A faster solving of the mazimum independent set problem for graphs with mazimal degree 3,
in Proceedings of the Second ACiD Workshop (ACiD 2006), vol. 7 of Texts in Algorithmics, King’s
College, London, 2006, pp. 131-142.

N. ROBERTSON AND P. D. SEYMOUR, Graph minors. II. Algorithmic aspects of tree-width, Journal of
Algorithms, 7 (1986), pp. 309-322.

J. M. ROBSON, Algorithms for mazimum independent sets, Journal of Algorithms, 7 (1986), pp. 425-440.
D. J. Rosg, R. E. TARJAN, AND G. S. LUEKER, Algorithmic aspects of vertex elimination on graphs,
STAM J. Comput., 5 (1976), pp. 266-283.

R. E. TARJAN AND A. E. TROJANOWSKI, Finding a mazimum independent set, SIAM Journal on
Computing, 6 (1977), pp. 537-546.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 395-404
www.stacs-conf.org

INSEPARABILITY AND STRONG HYPOTHESES FOR DISJOINT NP
PAIRS

LANCE FORTNOW ! AND JACK H. LUTZ? AND ELVIRA MAYORDOMO?

! Northwestern University, EECS Department, Evanston, Illinois, USA.
E-mail address: fortnow@eecs.northwestern.edu

2 Department of Computer Science, Iowa State University, Ames, IA 50011 USA.
FE-mail address: 1lutz@cs.iastate.edu

2 Departamento de Informética e Ingenierfa de Sistemas, Instituto de Investigacién en Ingenieria de
Aragén, Marfa de Luna 1, Universidad de Zaragoza, 50018 Zaragoza, SPAIN.
E-mail address: elvira\at\unizar.es

ABSTRACT. This paper investigates the existence of inseparable disjoint pairs of NP lan-
guages and related strong hypotheses in computational complexity. Our main theorem
says that, if NP does not have measure 0 in EXP, then there exist disjoint pairs of NP
languages that are P-inseparable, in fact TIME(2(n k))-inseparable. We also relate these
conditions to strong hypotheses concerning randomness and genericity of disjoint pairs.

1. Introduction

The main objective of complexity theory is to assess the intrinsic difficulties of naturally
arising computational problems. It is often the case that a problem of interest can be
formulated as a decision problem, or else associated with a decision problem of the same
complexity, so much of complexity theory is focused on decision problems. Nevertheless,
other types of problems also require investigation.

This paper concerns promise problems, a natural generalization of decision problems
introduced by Even, Selman, and Yacobi [7]. A decision problem can be formulated as a
set A C {0,1}*, where a solution of this problem is an algorithm, circuit, or other device
that decides A, i.e., tells whether or not an arbitrary input = € {0,1}* is an element
of A. In contrast, a promise problem is formulated as an ordered pair (A, B) of disjoint
sets A, B C {0,1}*, where a solution is an algorithm or other device that decides any set
S C {0,1}* such that A € S and BNS =). Such a set S is called a separator of the
disjoint pair (A, B). Intuitively, if we are promised that every input will be an element of

1998 ACM Subject Classification: F.1.3.

Key words and phrases: Computational Complexity, Disjoint NP-pairs, Resource-Bounded Measure,
Genericity.

Thanks: Fortnow’s research supported in part by NSF grants CCF-0829754 and DMS-0652521. Lutz’s
research supported in part by National Science Foundation Grants 0344187, 0652569, and 0728806. Mayor-
domo’s research supported in part by Spanish Government MICINN Project TIN2008-06582-C03-02.

SYMPOSIUM
"V' ON THEORETICAL
m }_ ASPECTS
N7 S%FFESEPUTER © L. Fortnow, J. H. Lutz, and E. Mayordomo
© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2471

396 L. FORTNOW, J. H. LUTZ, AND E. MAYORDOMO

AU B, then a separator of (A4, B) enables us to distinguish inputs in A from inputs in B.
Since each decision problem A is clearly equivalent to the promise problem (A, A¢), where
A¢ ={0,1}* — A is the complement of A, promise problems are, indeed, a generalization of
decision problems.

A disjoint NP pair is a promise problem (A, B) in which A, B € NP. Disjoint NP pairs
were first investigated by Selman and others in connection with public key cryptosystems
[7, 15, 26, 17]. They were later investigated by Razborov [25] as a setting in which to prove
the independence of complexity-theoretic conjectures from theories of bounded arithmetic.
In this same paper, Razborov established a fundamental connection between disjoint NP
pairs and propositional proof systems. Propositional proof systems had been used by Cook
and Reckhow [6] to characterize the NP versus co-NP problem. Razborov [25] showed that
each propositional proof system has associated with it a canonical disjoint NP pair and that
important questions about propositional proof systems are thereby closely related to natural
questions about disjoint NP pairs. This connection with propositional proof systems has
motivated more recent work on disjoint NP pairs by Glafler, Selman, Sengupta, and Zhang
[10, 9, 12, 13]. It is now known that the degree structure of propositional proof systems
under the natural notion of proof simulation is identical to the degree structure of disjoint
NP pairs under reducibility of separators [12]. Much of this recent work is surveyed in [11].
Goldreich [14] gives a recent survey of promise problems in general.

Our specific interest in this paper is the existence of disjoint NP pairs that are P-
inseparable, or even TIME(2”k)—inseparable. As the terminology suggests, if C is a class
of decision problems, then a disjoint pair is C-inseparable if it has no separator in C. The
existence of P-inseparable disjoint NP pairs is a strong hypothesis in the sense that (1) it
clearly implies P # NP, and (2) the converse implication is not known (and fails relative to
some oracles [17]). It is clear that P # NP N coNP implies the existence of P-inseparable
disjoint NP pairs, and Grollmann and Selman [15] proved that P # UP also implies the
existence of P-inseparable disjoint NP pairs.

The hypothesis that NP is a non-measure 0 subset of EXP, written u(NP | EXP) # 0,
is a strong hypothesis in the above sense. This hypothesis has been shown to have many
consequences not known to follow from more traditional hypotheses such as P # NP or
the separation of the polynomial-time hierarchy into infinitely many levels. Each of these
known consequences has resolved some pre-existing complexity-theoretic question in the
way that agreed with the conjecture of most experts. This explanatory power of the u(NP |
EXP) # 0 hypothesis is discussed in the early survey papers [23, 2, 24] and is further
substantiated by more recent papers listed at [16] (and too numerous to discuss here). In
several instances, the discovery that (NP | EXP) # 0 implies some plausible conclusion has
led to subsequent work deriving the same conclusion from some weaker hypothesis, thereby
further illuminating the relationships among strong hypotheses.

Our main theorem states that, if NP does not have measure zero in EXP, then, for
every positive integer k, there exist disjoint NP pairs that are TIME(2”k)—inseparable. Such
pairs are a fortiori P-inseparable, but the conclusion of our main theorem actually gives
exponential lower bounds on the inseparability of some disjoint NP pairs. These are the
lower bounds that most experts conjecture to be true, even though an unconditional proof
of such bounds may be long in coming.

The proof of our main theorem combines known closure properties of NP with the
randomness that the u(NP | EXP) # 0 hypothesis implies must be present in NP to give an

explicit construction of a disjoint NP pair that is TIME(Z”k)-inseparable. (Technically, this

INSEPARABILITY AND STRONG HYPOTHESES FOR DISJOINT NP PAIRS 397

is an overstatement. The last step of the “construction” is the removal of a finite set whose
existence we prove, but which we do not construct.) The details are perhaps involved, but
we preface the proof with an intuitive motivation for the approach.

We also investigate the relationships between the two strong hypotheses in our main
theorem (i.e., its hypothesis and its conclusion) and strong hypotheses involving the exis-
tence of disjoint NP pairs with randomness and genericity properties. Roughly speaking
(i.e., omitting quantitative parameters), we show that the existence of disjoint NP pairs
that are random implies both the u(NP | EXP) # 0 hypothesis and the existence of disjoint
NP pairs that are generic in the sense of Ambos-Spies, Fleischhack, and Huwig [1]. We also
show that the existence of such generic pairs implies the existence of disjoint NP pairs that
are TIME(Q”k)—inseparable. Taken together, these results give the four implications at the
top of Figure 1. (The four implications at the bottom are well known.) We prove that three
of these implications cannot be reversed by relativizable techniques, and we conjecture that
this also holds for the remaining implication.

2. Preliminaries

We write N for the set of nonnegative integers and Z* for the set of (strictly) positive
integers. The Boolean value of an assertion ¢ is [¢] = if ¢ then 1 else 0. All logarithms
here are base-2.

We write A for the empty string, |w| for the length of a string w, and sq, s1, s2, ... for
the standard enumeration of {0,1}*. The index of a string x is the value ind(z) € N such
that sinq(z) = ©. We write next(x) for the string following x in the standard enumeration,
i.e., next(s,) = sp41. More generally, for & € N, we write next” for the k-fold composition
of next with itself, so that next*(s,) = s,

A Boolean function is a function f : {0,1}"" — {0,1} for some m € N. The support of

such a function f is supp(f) = {:L‘ € {0,1}™ ‘ flx) = 1}.

We write wli] for the i*" symbol in a string w and wi..j] for the string consisting of the
ith through ;' symbols. The leftmost symbol of w is w[0], so that w = w[0..|w| — 1]. For
(infinite) sequences S € ¥°°, the notations S[i] and S[i..j] are defined similarly. A string
w € X* is a prefix of a string or sequence x € X* U X*°, and we write w C x, if there is
a string or sequence y € ¥* U X*° such that wy = z. A language, or decision problem, is
a set A C {0,1}*. We identify each language A with the sequence A € {0,1}* defined by
Aln] = [s, € A] for all n € N. If A is a language, then expressions like lim,,_, 4 f(w) refer
to prefixes w C A, e.g., limy, 4 f(w) = lim,, .~ f(A[0..n — 1]).

A martingale is a function d : {0,1}* — [0, c0) satisfying

d(w) = d(w0) —;—d(wl)
for all w € {0, 1}*. Intuitively, d is a strategy for betting on the successive bits of a sequence
S € {0,1}°°: The quantity d(w) is the amount of money that the gambler using this strategy
has after |w| bets if w C §. Condition (2.1) says that the payoffs are fair.

A martingale d succeeds on a language A C {0,1}*, and we write A € S*°[d], if
limsup,,_, 4 d(w) = co. If t : N — N, then a martingale d is (exactly) t(n)-computable if
its values are rational and there is an algorithm that computes each d(w) in t(Jw|) time. A

(2.1)

398 L. FORTNOW, J. H. LUTZ, AND E. MAYORDOMO

martingale is p-computable if it is n*-computable for some k € N, and it is p,-computable

if it is 208 ”)k—computable for some k € N.

Definition 2.1. [22] Let X be a set of languages, and let R be a language.
(1) X has p-measure 0, and we write p,(X) = 0, if there is a p-computable martingale
d such that X C S°°[d]. The condition up,, (X) =0 is defined analogously.
(2) X has measure 0 in EXP, and we write u(X | EXP) = 0, if pp,, (X NEXP) = 0.
(3) Ris p-random if pu,({R}) # 0, i.e., if there is no p-computable martingale that suc-
ceeds on R. Similarly, R is t(n)-random if no t(n)- computable martingale succeeds
on R.

It is well known that these definitions impose a nontrivial measure structure on EXP
[22]. For example, u(EXP | EXP) # 0.
We use the following fact in our arguments.

Lemma 2.2. [3, 18] The following five conditions are equivalent.
(1) pn(NP | EXP) # 0.
(2) 11p(NP) £ 0.
(3) itp, (NP) # 0.
(4) There ezists a p-random language R € NP.
(5) For every k > 2, there exists an 2oe " _random language R € NP.

Finally, we note that pu(P | EXP) = 0 [22], so u(NP | EXP) # 0 implies P # NP.

3. Inseparable Disjoint NP Pairs and the Measure of NP

This section presents our main theorem, which says that, if NP does not have measure
0 in EXP, then there are disjoint NP pairs that are P-inseparable. In fact, for each k € N,
there is a disjoint NP pair that is TIME(2”k)-inseparable.

It is convenient for our arguments to use a slight variant of the separability notion.

Definition 3.1. Let (A, B) be a pair of (not necessarily disjoint) languages, and let C be
a class of languages.
(1) A language S C {0,1}* almost separates (A, B) if there is a finite set D C {0,1}*
such that S separates (A — D, B — D).
(2) We say that (A, B) is C-almost separable if there is a language S € C that almost
separates (A, B).

Observation 3.2. If a pair (A, B) is not C-almost separable, then (A — D,B — D) is
C-inseparable for every finite set D.

Before proving our main theorem, we sketch the intuitive idea of the proof. We want
to construct a disjoint NP pair (A, B) that is P-inseparable. Our hypothesis, that NP does
not have measure 0 in EXP, implies that NP contains a language R that is p-random. Since
we are being intuitive, we ignore the subtleties of p-randomness and regard R as a sequence
of independent, fair coin tosses (with the n*® toss heads iff s,, € R) that just happens to be
in NP. If we use these coins to randomly put strings in A or B but not both, we can count
on the randomness to thwart any would-be separator in P.

INSEPARABILITY AND STRONG HYPOTHESES FOR DISJOINT NP PAIRS 399

The challenge here is that, if we are to deduce A, B € NP from R € NP, we must make
the conditions “s,, € A” and “s, € B” depend on the coin tosses in a monotone way; i.e.,
adding a string to R must not move a string out of A or out of B.

This monotonicity restriction might at first seem to prevent us from ensuring that A
and B are disjoint. However, this is not the case. Suppose that we decide membership of
the n'h string s, in A and B in the following manner. We toss 2logn independent coins.
If the first logn tosses all come up heads, we put s, in A. If the second logn tosses all
come up heads, we put s, in B. If our coin tosses are taken from R, which is in NP, then A
and B will be in NP. Each string s,, will be in A with probability %, in B with probability
1 and in AN B with probability # Since Yo7 | L diverges and Y00, # converges, the
first and second Borel-Cantelli lemmas tell us that A and B are infinite and AN B is finite.
Since AN B is finite, we can subtract it from A and B, leaving two disjoint NP languages
that are, by the randomness of the construction, P-inseparable.

What prevents this intuitive argument from being a proof sketch is the fact that the
language R is not truly random, but only p-random. The proof that A N B is finite thus
becomes problematic. There is a resource-bounded extension of the first Borel-Cantelli
lemma [22] that works for p-random sequences, but this extension requires the relevant sum
of probabilities to be p-convergent, i.e., to converge much more quickly than » >, n%

Fortunately, in this particular instance, we can achieve our objective without p-conver-
gence or the (classical or resource-bounded) Borel-Cantelli lemmas. We do this by modifying
the above construction. Instead of putting the n*® string into each language with probability
%, we put each string z into each of A and B with probability 2~ so that z is in AN B
with probability 272*|. By the Cauchy condensation test, the relevant series have the
same convergence behavior as those in our intuitive argument, but we can now replace slow
approximations of tails of >~ | # with fast and exact computations of geometric series.

We now turn to the details.

Construction 3.3. (1) Define the functions u,v : {0,1}* — {0, 1}* by the recursion
u(A) = A,
v(z) = next®l(u(x)),
u(next(x) = next®l(v(z)).
(2) For each = € {0,1}*, define the intervals
I, = [u(x),v(x)), Jy = [v(z),u(next(z))).
(3) For each R C {0,1}*, define the languages
A*(R):{m‘Il,QR}, B*(R):{x‘ngR},
A(R) = AT(R) — BT(R), B(R) = B*(R) — AT (R).
Note that each |I,| = |J,| = |z|. Also, Iy, = Jy =0 (so A € AT(R) N BT (R)), and
Iy<Jo<@i<Ji <Ipg<Jdgo<lIpr <...,

with these intervals covering all of {0, 1}*.
A routine witness argument gives the following.

Observation 3.4. (1) If R € NP, then AT(R), BT(R) € NP.
(2) If R € NP and |AT(R) N BT (R)| < oo, then (A(R), B(R)) is a disjoint NP pair.

We now prove two lemmas about Construction 3.3.

400 L. FORTNOW, J. H. LUTZ, AND E. MAYORDOMO

Lemma 3.5. Let k € N. If R C{0,1}* is 200sm)"* 2 indom, then (AT (R), BT (R)) is not
TIME(Q”k)-almost separable.

Lemma 3.6. If R C {0,1}* is p-random, then |AT(R) N BT(R)| < oco.
We now have what we need to prove our main result.

Theorem 3.7. (main theorem) If NP does not have measure 0 in EXP, then, for every

k € Z*, there is a disjoint NP pair that is TIME(Q”k)—inseparable, hence certainly P-
inseparable.

Proof. Assume that u(NP | EXP) # 0, and let k¥ € N. Then, by Lemma 2.2, there is
a 2008 random language R € NP. By Lemma 3.5, the pair (AT(R), B*(R)) is not
TIME(2”k)—almost separable. Since R is certainly p-random, Lemma 3.6 tells us that
|AT(R) N BT(R)| < oo. It follows by Observation 3.4 that (A(R),B(R)) is a disjoint
NP pair, and it follows by Observation 3.2 that (A(R), B(R)) is TIME(2"")-inseparable. m

4. Genericity and Measure of Disjoint NP Pairs

In this section we introduce the natural notions of resource-bounded measure and gener-
icity for disjoint pairs and relate them to the existence of P-inseparable pairs in NP. We
compare the different strength hypothesis on the measure and genericity of NP and disjNP
establishing all the relations in Figure 1.

Notation. Each disjoint pair (A, B) will be coded as an infinite sequence T' € {—1,0, 1}*°
defined by
1 if s, € A
Tnj=<1 -1 its,eB
0 ifs, ¢ AUB
We identify each disjoint pair with the corresponding sequence.

Resource-bounded genericity for disjoint pairs is the natural extension of the concept

introduced for languages by Ambos-Spies, Fleischhack and Huwig [1].

Definition 4.1. A condition C is a set C C {—1,0,1}*. A t(n)-condition is a condition
C € DTIME(t(n)). A condition C is dense along a pair (A, B) if there are infinitely many
n € N such that (A, B)[0..n — 1]i € C for some i € {—1,0,1}. A pair (A, B) meets a
condition C'if (A, B)[0..n — 1] € C for some n. A pair (A, B) is t(n)-generic if (A, B) meets
every t(n)-condition that is dense along (A, B).

We first prove that generic pairs are inseparable.
Theorem 4.2. Every t(log n)-generic disjoint pair is TIME(t(n))-inseparable.

We can now relate genericity in disjNP and inseparable pairs as follows.

Corollary 4.3. If disjNP contains a Q(IOg”)k—genem'c pair for every k € N, then disjNP
contains a TIME(?”k)—insepamble pair for every k € N.

Resource-bounded measure on classes of disjoint pairs is the natural extension of the
concept introduced for languages by Lutz [22], and is defined by using martingales on a
three-symbol alphabet as follows.

INSEPARABILITY AND STRONG HYPOTHESES FOR DISJOINT NP PAIRS 401

Definition 4.4. (1) A pair martingale is a function d : {—1,0,1}* — [0, 00) such that
for every w € {-1,0,1}*

d(w) = id(wo) 4 gd(m) + gd(w(—l)).

(2) A pair martingale d succeeds on a pair (A, B) if limsup,,_,(4 p) d(w) = oo,
(3) A pair martingale d succeeds on a class of pairs X C {—1,0,1}* if it succeeds on
each (4, B) € X.

Our intuitive rationale for the coeflicients in part 1 of this definition is the following.
We toss one fair coin to decide whether s),,; € A and another to decide whether s, € B.
If both coins come up heads, we toss a third coin to break the tie. The reader may feel
that some other coefficients, such as %, %,% are more natural here. Fortunately, a routine
extension of the main theorem of [5] shows that the value of p(disjNP | disjEXP) will be
the same for any choice of three positive coefficients summing to 1.

When restricting martingales to those computable within a certain resource bound, we
obtain a resource-bounded measure that is useful within a complexity class. Here we are

interested in the class of disjoint EXP pairs, disjEXP.

Definition 4.5. (1) Let p, be the class of functions that can be computed in time

2(10gn)0(1)'

(2) A class of pairs X C {—1,0,1}* has p,-measure 0 if there is a martingale d € p,
that succeeds on X.

(3) X C€{-1,0,1}* has p,-measure 1 if X¢ has p,-measure 0.

(4) A class of pairs X C {—1,0, 1}*® has measure 0 in disjEXP, denoted u(X | disjEXP)
0, if X NdisjEXP has p,-measure 0.

(5) X € {-1,0,1}* has measure 1 in disjEXP if X¢ has measure 0 in disjEXP.

It is easy to verify that p,-measure is nontrivial on disjEXP (as proven for languages
in [22]).

In the following we consider the hypothesis that disjNP does not have measure 0 in
disjEXP (written u(disjNP | disjEXP) # 0). We start by proving that this hypothesis is at
least as strong as the well studied u(NP | EXP) # 0 hypothesis.

Theorem 4.6. If ;(disjNP | disJEXP) # 0 then u(NP | EXP) # 0.
We finish by relating measure and genericity for disjoint pairs.

Theorem 4.7. If u(disjNP | disjEXP) # 0, then disiNP contains a g(logn)* -generic pair
for every k € N.

5. Oracle Results

All the techniques in this and related papers relativize, that is they hold when all
machines involved have access to the same oracle A. In this section we give relativized
worlds where the converses of most of the results in this paper, as expressed in Figure 1, do
not hold. Since the i