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The Symposium on Theoretical Aspects of Computer Science (STACS) is held alter-
nately in France and in Germany. The conference of March 4-6, 2010, held in Nancy, is
the 27th in this series. Previous meetings took place in Paris (1984), Saarbrücken (1985),
Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg
(1991), Cachan (1992), Würzburg (1993), Caen (1994), München (1995), Grenoble (1996),
Lübeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002),
Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), Bor-
deaux (2008), and Freiburg (2009). The interest in STACS has remained at a high level
over the past years. The STACS 2010 call for papers led to over 238 submissions from
40 countries. Each paper was assigned to three program committee members. The com-
mittee selected 54 papers during a two- week electronic meeting held in November. As
co-chairs of the program committee, we would like to sincerely thank its members and the
many external referees for their valuable work. In particular, there were intense and inter-
esting discussions. The overall very high quality of the submissions made the selection a
difficult task. We would like to express our thanks to the three invited speakers, Mikołaj
Bojańczyk, Rolf Niedermeier, and Jacques Stern. Special thanks go to Andrei Voronkov
for his EasyChair software (www.easychair.org). Moreover, we would like to warmly thank
Wadie Guizani for preparing the conference proceedings and continuous help throughout the
conference organization. For the third time, this year’s STACS proceedings are published
in electronic form. A printed version was also available at the conference, with ISBN. The
electronic proceedings are available through several portals, and in particular through HAL
and LIPIcs series . The proceedings of the Symposium, which are published electronically in
the LIPIcs (Leibniz International Proceedings in Informatics) series, are available through
Dagstuhl’s website. The LIPIcs series provides an ISBN for the proceedings volume and
manages the indexing issues. HAL is an electronic repository managed by several French
research agencies. Both, HAL and the LIPIcs series, guarantee perennial, free and easy
electronic access, while the authors will retain the rights over their work. The rights on the
articles in the proceedings are kept with the authors and the papers are available freely,
under a Creative Commons license (see www.stacs- conf.org/faq.html for more details).

c© Jean-Yves Marion and Thomas Schwentick
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010 
Editors: Jean-Yves Marion, Thomas Schwentick 
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2439



2 JEAN-YVES MARION AND THOMAS SCHWENTICK

STACS 2010 received funds from Nancy-University (UHP, Nancy 2 and INPL), from
Région Lorraine, from CUGN, from GIS 3SG, from GDR IM and from Mairie de Nancy.
We thank them for their support!

February 2010 Jean-Yves Marion and Thomas Schwentick



FOREWORD 3

Conference Organisation
STACS 2010 was organized by INRIA Nancy-Grand-Est at LORIA, Nancy University.

Members of the program committee

Markus Bläser Saarland University
Harry Buhrman CWI, Amsterdam University
Thomas Colcombet CNRS, Paris 7 University
Anuj Dawar University of Cambridge
Arnaud Durand Paris 7 University
Sándor Fekete Braunschweig University of Technology
Ralf Klasing CNRS, Bordeaux University
Christian Knauer Freie Universität Berlin
Piotr Krysta University of Liverpool
Sylvain Lombardy Marne la vallée University
P. Madhusudan University of Illinois
Jean-Yves Marion Nancy University (co-chair)
Pierre McKenzie University of Montréal
Rasmus Pagh IT University of Copenhagen
Boaz Patt-Shamir Tel Aviv University
Christophe Paul CNRS, Montpellier University
Georg Schnitger Frankfurt University
Thomas Schwentick TU Dortmund University (co-chair)
Helmut Seidl TU Munich
Jiří Sgall Charles University
Sebastiano Vigna Universitá degli Studi di Milano
Paul Vitanyi CWI, Amsterdam

Members of the organizing committee

Nicolas Alcaraz
Anne-Lise Charbonnier
Jean-Yves Marion
Wadie Guizani

External Reviewers

Ittai Abraham
Eyal Ackerman
Manindra Agrawal
Stefano Aguzzoli
Cyril Allauzen
Eric Allender
Noga Alon
Alon Altman
Andris Ambainis

Amihood Amir
Eric Angel
Esther Arkin
Diego Arroyuelo
Eugene Asarin
Albert Atserias
Nathalie Aubrun
Laszlo Babai
Patrick Baillot

Joergen Bang-Jensen
Vince Barany
Jérémy Barbay
Georgios Barmpalias
Clark Barrett
David Mix Barrington
Luca Becchetti
Wolfgang Bein
Djamal Belazzougui



4 JEAN-YVES MARION AND THOMAS SCHWENTICK

Anne Benoit
Piotr Berman
alberto bertoni
Philippe Besnard
Stéphane Bessy
Laurent Bienvenu
Philip Bille
Davide Bilò
Henrik Björklund
Guillaume Blin
Hans Bodlaender
Hans-Joachim Boeckenhauer
Guillaume Bonfante
Vincenzo Bonifaci
Yacine Boufkhad
Laurent Boyer
Zvika Brakerski
Felix Brandt
Jop Briet
Kevin Buchin
Maike Buchin
Andrei Bulatov
Jaroslaw Byrka
Marie-Pierre Béal
Sergio Cabello
Michaël Cadilhac
Arnaud Carayol
Olivier Carton
Giovanni Cavallanti
Rohit Chadha
Amit Chakrabarti
Sourav Chakraborty
Jérémie Chalopin
Jean-Marc Champarnaud
Pierre Charbit
Krishnendu Chatterjee
Arkadev Chattopadhyay
Chandra Chekuri
Ho-Lin Chen
James Cheney
Victor Chepoi
Alessandra Cherubini
Flavio Chierichetti
Giorgos Christodoulou
Marek Chrobak
Richard Cleve
Éric Colin de Verdière

Colin Cooper
Graham Cormode
Veronique Cortier
Bruno Courcelle
Nadia Creignou
Maxime Crochemore
Jurek Czyzowicz
Flavio D’Alessandro
Jean Daligault
Victor Dalmau
Shantanu Das
Samir Datta
Fabien de Montgolfier
Michel de Rougemont
Søren Debois
Holger Dell
Camil Demetrescu
Britta Denner-Broser
Bilel Derbel
Jonathan Derryberry
Josee Desharnais
Luc Devroye
Claudia Dieckmann
Scott Diehl
Martin Dietzfelbinger
Frank Drewes
Andy Drucker
Philippe Duchon
Adrian Dumitrescu
Jérôme Durand-Lose
David Duris
Stephane Durocher
Ivo Düntsch
Christian Eisentraut
Yuval Emek
Matthias Englert
David Eppstein
Leah Epstein
Thomas Erlebach
Omid Etesami
Kousha Etessami
Guy Even
Rolf Fagerberg
Michael Fellows
Stefan Felsner
Jiri Fiala
Amos Fiat

Bernd Finkbeiner
Irene Finocchi
Felix Fischer
Jörg Flum
Fedor Fomin
Lance Fortnow
Hervé Fournier
Mahmoud Fouz
Pierre Fraigniaud
Gianni Franceschini
Stefan Funke
Nicola Galesi
Philippe Gambette
David Garcia Soriano
Leszek Gasieniec
Serge Gaspers
Serge Gaspers
Bruno Gaujal
Cyril Gavoille
Wouter Gelade
Dirk H.P. Gerrits
Panos Giannopoulos
Richard Gibbens
Hugo Gimbert
Emeric gioan
Christian Glasser
Leslie Ann Goldberg
Paul Goldberg
Rodolfo Gomez
Robert Grabowski
Fabrizio Grandoni
Frederic Green
Serge Grigorieff
Erich Grädel
Joachim Gudmundsson
Sylvain Guillemot
Pierre Guillon
Yuri Gurevich
Venkatesan Guruswami
Peter Habermehl
Gena Hahn
MohammadTaghi Hajiaghayi
Sean Hallgren
Michal Hanckowiak
Sariel Har-Peled
Moritz Hardt
Tero Harju



FOREWORD 5

Matthias Hein
Raymond Hemmecke
Miki Hermann
Danny Hermelin
John Hitchcock
Martin Hoefer
Christian Hoffmann
Frank Hoffmann
Thomas Holenstein
Markus Holzer
Peter Hoyer
Mathieu Hoyrup
Jing Huang
Paul Hunter
Thore Husfeldt
Marcus Hutter
Nicole Immorlica
Shunsuke Inenaga
Riko Jacob
Andreas Jakoby
Alain Jean-Marie
Mark Jerrum
Gwenaël Joret
Stasys Jukna
Valentine Kabanets
Lukasz Kaiser
Tom Kamphans
Mamadou Kanté
Mamadou Moustapha Kanté
Jarkko Kari
Veikko Keranen
Sanjeev Khanna
Stefan Kiefer
Alex Kipnis
Adam Klivans
Johannes Koebler
Natallia Kokash
Petr Kolman
Jochen Konemann
Miroslaw Korzeniowski
Adrian Kosowski
Michal Koucky
Michal Koucky
Matjaz Kovse
Máté Kovács
Jan Krajicek
Daniel Kral

Jan Kratochvil
Dieter Kratsch
Stefan Kratsch
Robi Krauthgamer
Steve Kremer
Klaus Kriegel
Danny Krizanc
Alexander Kroeller
Andrei Krokhin
Gregory Kucherov
Denis Kuperberg
Tomi Kärki
Juha Kärkkäinen
Ekkehard Köhler
Salvatore La Torre
Arnaud Labourel
Gad Landau
Jérôme Lang
Sophie Laplante
Benoit Larose
Silvio Lattanzi
Lap Chi Lau
Soeren Laue
Thierry Lecroq
Troy Lee
Arnaud Lefebvre
Aurelien Lemay
François Lemieux
Benjamin Leveque
Asaf Levin
Mathieu Liedloff
Andrzej Lingas
Tadeusz Litak
Christof Loeding
Daniel Lokshtanov
Tzvi Lotker
zvi lotker
Laurent Lyaudet
Florent Madelaine
Frederic Magniez
Meena Mahajan
Anil Maheshwari
Johann Makowsky
Guillaume Malod
Sebastian Maneth
Yishay Mansour
Roberto Mantaci

Bodo Manthey
Martin Mares
Maurice Margenstern
Euripides Markou
Wim Martens
Barnaby Martin
Kaczmarek Matthieu
Frédéric Mazoit
Damiano Mazza
Carlo Mereghetti
Julian Mestre
Peter Bro Miltersen
Vahab Mirrokni
Joseph Mitchell
Tobias Moemke
Stefan Monnier
Ashley Montanaro
Thierry Monteil
Pat Morin
Hannes Moser
Larry Moss
Luca Motto Ros
Marie-Laure Mugnier
Wolfgang Mulzer
Andrzej Murawski
Filip Murlak
Viswanath Nagarajan
Rouven Naujoks
Jesper Nederlof
Yakov Nekrich
Ilan Newman
Cyril Nicaud
Shuxin Nie
Evdokia Nikolova
Aviv Nisgav
Jean Néraud
Marcel Ochel
Sergei Odintsov
Nicolas Ollinger
Alessio Orlandi
Friedrich Otto
Martin Otto
Sang-il Oum
Linda Pagli
Beatrice Palano
Ondrej Pangrac
Rina Panigrahy



6 JEAN-YVES MARION AND THOMAS SCHWENTICK

Gennaro Parlato
Arno Pauly
Anthony Perez
Martin Pergel
Sylvain Perifel
Rafael Peñaloza
Giovanni Pighizzini
Nir Piterman
David Podgorolec
Vladimir Podolskii
Natacha Portier
Sylvia Pott
Victor Poupet
Christophe Prieur
Ariel Procaccia
Guido Proietti
Pavel Pudlak
Arnaud Pêcher
Tomasz Radzik
Anup Rao
Dror Rawitz
Saurabh Ray
Christian Reitwießner
Eric Remila
Mark Reynolds
Ahmed Rezine
Eric Rivals
Romeo Rizzi
Julien Robert
Peter Rossmanith
Jacques Sakarovitch
Mohammad Salavatipour
Kai Salomaa
Louis Salvail
Marko Samer
Nicola Santoro
Srinivasa Rao Satti
Ignasi Sau
Thomas Sauerwald
Saket Saurabh
Rahul Savani
Petr Savicky
Gabriel Scalosub
Guido Schaefer
Marc Scherfenberg
Lena Schlipf
Stefan Schmid

Christiane Schmidt
Jens M. Schmidt
Henning Schnoor
Warren Schudy
Nils Schweer
Pascal Schweitzer
Daria Schymura
Bernhard Seeger
Raimund Seidel
Pranab Sen
Siddhartha Sen
Olivier Serre
Rocco Servedio
Anil Seth
Alexander Sherstov
Amir Shpilka
Rene Sitters
Alexander Skopalik
Nataliya Skrypnyuk
Michiel Smid
Michiel Smid
Jack Snoeyink
Christian Sohler
Jeremy Sproston
Fabian Stehn
Clifford Stein
Sebastian Stiller
Yann Strozecki
Subhash Suri
Chaitanya Swamy
Till Tantau
Alain Tapp
Anusch Taraz
Nina Sofia Taslaman
Monique Teillaud
Pascal Tesson
Guillaume Theyssier
Dimitrios Thilikos
Wolfgang Thomas
Mikkel Thorup
Christopher Thraves
Ramki Thurimella
Alwen Tiu
Hans Raj Tiwary
Sebastien Tixeuil
Ioan Todinca
Craig Tovey

A.N. Trahtman
Luca Trevisan
Nicolas Trotignon
Falk Unger
Walter Unger
Sarvagya Upadhyay
Wim van Dam
Peter van Emde Boas
Dieter van Melkebeek
Rob van Stee
Anke van Zuylen
Yann Vaxès
Rossano Venturini
Kolia Vereshchagin
Stéphane Vialette
Ivan Visconti
Smitha Vishveshwara
Mahesh Viswanathan
Heribert Vollmer
Uli Wagner
Igor Walukiewicz
Rolf Wanka
Egon Wanke
Mark Daniel Ward
Osamu Watanabe
John Watrous
Roger Wattenhofer
Tzu-chieh Wei
Daniel Werner
Ryan Williams
Erik Winfree
Gerhard Woeginger
Philipp Woelfel
Dominik Wojtczak
Paul Wollan
James Worrell
Sai Wu
Andrew C.-C. Yao
Sergey Yekhanin
Ke Yi
Jean-Baptiste Yunès
Raphael Yuster
Konrad Zdanowski
Mariano Zelke
Akka Zemmari
Uri Zwick.



TABLE OF CONTENTS

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

J.-Y. Marion and T. Schventick

Conference Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Invited Talks
Beyond ω-Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

M. Bojańczyk
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Abstract. The paper presents some automata and logics on ω-words, which capture all
ω-regular languages, and yet still have good closure and decidability properties.

The notion of ω-regular language is well established in the theory of automata. The

class of ω-regular languages carries over to ω-words many of the good properties of regular

languages of finite words. It can be described using automata, namely by nondeterministic

Büchi automata, or the equivalent deterministic Muller automata. It can be described using

a form of regular expressions, namely by ω-regular expressions. It can be described using

logic, namely by monadic second-order logic, or the equivalent weak monadic-second order

logic.

This paper is about some recent work [1, 3, 2, 4], which argues that there are other

robust classes of languages for ω-words. The following languages serve as guiding examples.

LB = {an1ban2b · · · : lim sup ni < ∞} LS = {an1ban2b · · · : lim inf ni = ∞}

Neither of these languages is ω-regular in the accepted sense. One explanation is that LS

contains no ultimately periodic word, as does the complement of LB. Another explanation

is that an automaton recognizing either of these languages would need an infinite amount

of memory, to compare the numbers n1, n2, . . .

Both of these explanations can be disputed.

Concerning the first explanation: why should ultimately periodic words be so impor-

tant? Clearly there are other finite ways of representing infinite words. A nonempty Büchi

automaton will necessarily accept an ultimately periodic word, and hence their importance

in the theory of ω-regular languages. But is this notion canonic? Or is it just an artefact

of the syntax we use?

Concerning the second explanation: what does “infinite memory” mean? After all, one

could also argue that the ω-regular language (a∗b)ω needs infinite memory, to count the

b’s that need to appear infinitely often. In at least one formalization of “memory”, the

languages LB and LS do not need infinite memory. The formalization uses a Myhill-Nerode

style equivalence. For a language L ⊆ Aω, call two finite words L-equivalent if they can be

Key words and phrases: automata, monadic second-order logic.
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12 M. BOJAŃCZYK

swapped a finite or infinite number of times without L noticing. Formally, words w, v ∈ A∗

are called L-equivalent if both conditions below hold.

u1wu2 ∈ L ⇐⇒ u1vu2 ∈ L for u1 ∈ A∗, u2 ∈ Aω

u1wu2wu3w · · · ∈ L ⇐⇒ u1vu2vu3v · · · ∈ L for u1, u2, . . . ∈ A∗.

One can show that LB-equivalence has three equivalence classes, and LS-equivalence has

four equivalence classes. Therefore, at least in this Myhill-Nerode sense, the languages LB

and LS do not need infinite memory.

The rest of this paper presents some language classes which capture LB and LS, and

which have at least some of the robustness properties one would expect from regular lan-

guages. We begin with a logic.

MSO with the unbounding quantifier. Monadic second-order logic (MSO) captures

exactly the ω-regular languages. To define the languages LB and LS , some new feature is

needed. Consider a new quantifier UX ϕ(X), introduced in [1], which says that formula

ϕ(X) is satisfied by arbitrarily large finite sets X, i.e.

UX ϕ(X) =
∧

n∈N

∃X
(

ϕ(X) ∧ n ≤ |X| < ∞
)

.

As usual with quantifiers, the formula ϕ(X) might have other free variables than X. We

write MSO+U for the extension of MSO where this quantifier is allowed. It is difficult

to say if U is an existential or universal quantifier, since its definition involves an infinite

conjunction of existential formulas.

Let us see some examples of formulas of MSO+U. Consider a formula block(X) which

says that X contains all positions between two consecutive b’s. To define the language LB

in the logic MSO+U, we need to say that: i) there are infinitely many b’s and ii) the size of

blocks is not unbounded. This is done by the following formula.

∀x∃y(x ≤ y ∧ b(y)) ∧ ¬UX block(X).

For the language LS , we need a more sophisticated formula. It is easier to write a formula

for the complement of LS. The formula says that there exists a set Z, which contains

infinitely many blocks, as stated by the formula

∀y∃X
(

block(X) ∧ X ⊆ Z ∧ ∀x (x ∈ X → y < x)
)

,

but the size of the blocks in X is bounded, as stated by the formula

¬UX (block(X) ∧ X ⊆ Z).

Note that the set Z is infinite. This will play a role later on, when we talk about weak

logics, which can only quantify over finite sets.

The class of languages of ω-words that can be defined in MSO+U is our first candidate

for a new definition of “regular languages”. It is also the largest class considered in this

paper – it contains all the other classes that will be described below. By its very definition,

the class is closed under union, complementation, projection, etc. The big problem is that

we do not know if satisfiability is decidable for formulas of MSO+U over ω-words, although

we conjecture it is.

Of course, decidable emptiness/satisfiability is very important if we want to talk about

“regular languages”. We try to attack this question by introducing automata models, some

of which are described below. There will be the usual tradeoffs: nondeterministic automata
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are closed under projections (existential set quantifiers), while deterministic automata are

closed under boolean operations.

We begin with the strongest automaton model, namely nondeterministic BS-automata,

which were introduced in [3]1.

Nondeterministic BS-automata. A nondeterministic BS-automaton is defined like an

NFA. The differences are: it does not have a set of accepting states, and it is equipped

with a finite set C of counters, a counter update function and acceptance condition, as

described below. The counter update function maps each transition to a finite, possibly

empty, sequence of operations of the form

c := c + 1 c := 0 c := d for c, d ∈ C.

Let ρ be a run of the automaton over an input ω-word, as defined for nondeterministic

automata on infinite words. The set of runs for a given input word is independent of the

counters, counter update function and acceptance condition.

What are the counters used for? They are used to say when a run ρ is accepting. For

a counter c ∈ C and a word position i ∈ N, we consider the number val(ρ, c, i), which is

the value of counter c after doing the first i transitions. (All counters start with zero.)

These numbers are then examined by the acceptance condition, which talks about their

assymptotic behavior. (This explains why nondeterministic BS-automata cannot describe

patterns usually associated with counter automata, such as anbn.) Specifically, the accep-

tance condition is a positive boolean combination of conditions of the three kinds below.

lim sup
i

val(ρ, c, i) < ∞ lim inf
i

val(ρ, c, i) = ∞ “state q appears infinitely often”

The first kind of condition is called a B-condition (because it requires counter c to be

bounded), the second kind of condition is called an S-condition (in [3], a number sequence

converging to ∞ was called “strongly unbounded”), and the last kind of condition is called

a Büchi condition.

Emptiness for nondeterministic BS-automata is decidable [3]. The emptiness procedure

searches for something like the “lasso” that witnesses nonemptiness of a Büchi automaton.

The notion of lasso for nondeterministic BS-automata is more complicated, and leads to

a certain class of finitely representable infinite words, a class which extends the class of

ultimately periodic words.

Consider the languages recognized by nondeterministic BS-automata. These languages

are closed under union and intersection, thanks to the usual product construction. These

languages are closed under projection (or existential set quantification), thanks to nondeter-

minism. These languages are also closed under a suitable definition of the quantifier U for

languages, see [3]. If these languages were also closed under complement, then nondetermin-

istic BS-automata would recognize all languages definable in MSO+U (and nothing more,

since existence of an accepting run of a nondeterministic BS-automaton can be described

in the logic).

Unfortunately, complementation fails. There is, however, a partial complementation

result, which concerns two subclasses of nondeterministic BS-automata. An automaton

1For consistency of presentation, the definition given here is slightly modified from the one in [3]: the
automata can move values between counters, and they can use Büchi acceptance conditions. These changes
do not affect the expressive power.
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that does not use S-conditions is called a B-automaton; an automaton that does not use

B-conditions is called an S-automaton.

Theorem 1 ([3]). The complement of a language recognized by a nondeterministic B-

automaton is recognized by a nondeterministic S-automaton, and vice versa.

The correspondence is effective: from a B-automaton we can compute an S-automaton

for the complement, and vice versa. The proof of Theorem 1 is difficult, because it has to

deal with nondeterministic automata. (Somewhat like complementation of nondeterministic

automata on infinite trees in the proof of Rabin’s theorem.) The technical aspects are

similar to, but more general than, Kirsten’s decidability proof [8] of the star height problem

in formal language theory. In particular, it is not difficult to prove, using Theorem 1, that

the star height problem is decidable.

Deterministic max-automata. As mentioned above, nondeterministic BS-automata are

not closed under complement. A typical approach to the complementation problem is to

consider deterministic automata; this is the approach described below, following [2].

A deterministic max-automaton is defined like a BS-automaton, with the following dif-

ferences: a) it is deterministic; b) it has an additional counter operation c := max(d, e);

and c) its acceptance condition is a boolean (not necessarily positive) combination of B-

conditions. The max operation looks dangerous, since it seems to involve arithmetic. How-

ever, the counters are only tested for the limits, and this severely restricts the way max

can be used. One can show that nondeterminism renders the max operation redundant, as

stated by Theorem 2 below. (For deterministic automata, max is not redundant.)

Theorem 2 ([2]). Every language recognized by a deterministic max-automaton is a boolean

combination of languages recognized by nondeterministic B-automata.

By Theorem 1, every boolean combination of languages recognized by nondeterministic

B-automata is equivalent to a positive boolean combination of languages recognized by

nondeterministic B-automata, and nondeterministic S-automata. Such a positive boolean

combination is, in turn, recognized by a single nondeterministic BS-automaton, since these

are closed under union and intersection. It follows that every deterministic max-automaton

is equivalent to a nondeterministic BS-automaton. Since the equivalence is effective, we get

an algorithm for deciding emptiness of deterministic max-automata. (A direct approach to

deciding emptiness of deterministic max-automata is complicated by the max operation.)

So what is the point of deterministic max-automata?

The point is that they have good closure properties. (This also explains why the max

operation is used. The version without max does not have the closure properties described

below.) Since the automata are deterministic, and the acceptance condition is closed under

boolean combinations, it follows that languages recognized by deterministic max-automata

are closed under boolean combinations. What about the existential set quantifier? If we

talk about set quantification like in MSO, where infinite sets are quantified, then the answer

is no [2]; closure under existential set quantifiers is essentially equivalent to nondeterminism.

However, it turns out that quantification over finite sets can be implemented by determin-

istic max-automata, which is stated by Theorem 3 below. The theorem refers to weak

MSO+U, which is the fragment of MSO+U where the set quantifiers ∃ and ∀ are restricted

to finite sets.

Theorem 3 ([2]). Deterministic max-automata recognize exactly the languages that can be

defined in weak MSO+U.
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Other deterministic automata. There is a natural dual automaton to a determinis-

tic max-automaton, namely a deterministic min-automaton, see [4]. Instead of max this

automaton uses min; instead of boolean combinations of B-conditions, it uses boolean com-

binations of S-conditions. While the duality is fairly clear on the automaton side, it is less

clear on the logic side: we have defined only one new quantifier U, and this quantifier is

already taken by max-automata, which capture exactly weak MSO+U.

The answer is to add a new quantifier R, which we call the recurrence quantifier. If

quantification over infinite sets is allowed, the quantifier R can be defined in terms of U and

vice versa; so we do not need to talk about the logic MSO+U+R. For weak MSO, the new

quantifier is independent. So what does this new quantifier say? It says that the family of

sets X satisfying ϕ(X) contains infinitely many sets of the same finite size:

RX ϕ(X) =
∨

n∈N

∃∞X
(

ϕ(X) ∧ |X| = n
)

.

If the quantifier U corresponds to the complement of the language LB (it can say there

are arbitrarily large blocks); the new quantifier R corresponds to the complement of the

language LS (it can say some block size appears infinitely often).

Theorem 4 ([4]). Deterministic min-automata recognize exactly the languages that can be

defined in weak MSO+R.

The proof shares many similarities with the proof of Theorem 3. Actually, some of

these similarities can be abstracted into a general framework on deterministic automata,

which is the main topic of [4]. One result obtained from this framework, Theorem 5 below,

gives an automaton model for weak MSO with both quantifiers U and R.

Theorem 5 ([4]). Boolean combinations of deterministic min-automata and deterministic

max-automata recognize exactly the languages that can be defined in weak MSO+U+R.

The framework also works for different quantifiers, such as a perodicity quantifier (which

binds a first-order variable x instead of a set variable X), defined as follows

Px ϕ(x) = the positions x that satisfy ϕ(x) are ultimately periodic.

Closing remarks. Above, we have described several classes of languages of ω-words, de-

fined by: the logics with new quantifiers and automata with counters. Each of the classes

captures all the ω-regular languages, and more. Some of the models are more powerful,

others have better closure properties; all describe languages that can reasonably be called

“regular”.

There is a lot of work to do on this topic. The case of trees is a natural candidate, some

results on trees can be found in [6, 7]. Another question is about the algebraic theory of

the new languages; similar questions but in the context of finite words were explored in [5].
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1. Introduction

NP-hardness is an every-day obstacle for practical computing. Since there is no hope for

polynomial-time algorithms for NP-hard problems, it is pragmatic to accept exponential-

time behavior of solving algorithms. Clearly, an exponential growth of the running time

is bad, but maybe affordable, if the combinatorial explosion is modest and/or can be con-

fined to certain problem parameters. This line of research has been pioneered by Downey

and Fellows’ monograph “Parameterized Complexity” [24] (see [32, 57] for two more recent

monographs). The number of investigations in this direction has steadily grown over the

recent years. A core question herein is what actually “a” or “the” parameter of a compu-

tational problem is. The simple answer is that there are many reasonable possibilities to

“parameterize a problem”. In this survey, we review some aspects of this “art” of problem

parameterization.1 Moreover, we discuss corresponding research on multivariate algorith-

mics, the natural sequel of parameterized algorithmics when expanding to multidimensional

parameter spaces.

We start with an example. The NP-complete problem Possible Winner for k-
Approval is a standard problem in the context of voting systems. In the k-approval

protocol, for a given set of candidates, each voter can assign a score of 1 to k of these

candidates and the rest of the candidates receive score 0. In other words, each voter may

linearly order the candidates; the “first” k candidates in this order score 1 and the remaining

ones score 0. A winner of an election (where the input is a collection of votes) is a candidate

who achieves the maximum total score. By simple counting this voting protocol can be

1In previous work [56, 57], we discussed the “art” of parameterizing problems in a less systematic way.
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evaluated in linear time. In real-world applications, however, a voter may only provide

a partial order of the candidates: The input of Possible Winner for k-Approval is

a set of partial orders on a set of candidates and a distinguished candidate d, and the

question is whether there exists an extension for each partial order into a linear one such

that d wins under the k-approval protocol. Possible Winner for k-Approval is NP-

complete already in case of only two input votes when k is part of the input [10]. Moreover,

for an unbounded number of votes Possible Winner for 2-Approval is NP-complete [7].

Hence, Possible Winner for k-Approval parameterized by the number v of votes as well

as parameterized by k remains intractable. In contrast, the problem turns out to be fixed-

parameter tractable when parameterized by the combined parameter (v, k) [6], that is, it can

be solved in f(v, k) · poly time for some computable function f only depending on v and k
(see Section 2 for more on underlying notions). In summary, this implies that to better

understand and cope with the computational complexity of Possible Winner for k-
Approval, we should investigate its parameterized (in)tractability with respect to various

parameters and combinations thereof. Parameter combinations—this is what multivariate

complexity analysis refers to—may be unavoidable to get fast algorithms for relevant special

cases. In case of Possible Winner for k-Approval such an important special case is

a small number of votes2 together with a small value of k. Various problem parameters

often come up very naturally. For instance, besides v and k, a further parameter here is the

number c of candidates. Using integer linear programming, one can show that Possible

Winner for k-Approval is fixed-parameter tractable with respect to the parameter c [10].

Idealistically speaking, multivariate algorithmics aims at a holistic approach to deter-

mine the “computational nature” of each NP-hard problem. To this end, one wants to

find out which problem-specific parameters influence the problem’s complexity in which

quantitative way. Clearly, also combinations of several single parameters should be inves-

tigated. Some parameterizations may yield hardness even in case of constant values, some

may yield polynomial-time solvability in case of constant values, and in the best case some

may allow for fixed-parameter tractability results.3 Hence, the identification of “reasonable”

problem parameters is an important issue in multivariate algorithmics. In what follows, we

describe and survey systematic ways to find interesting problem parameters to be exploited

in algorithm design. This is part of the general effort to better understand and cope with

computational intractability, culminating in the multivariate approach to computational

complexity analysis.

2. A Primer on Parameterized and Multivariate Algorithmics

Consider the following two NP-hard problems from algorithmic graph theory. Given

an undirected graph, compute a minimum-cardinality set of vertices that either cover all

graph edges (this is Vertex Cover) or dominate all graph vertices (this is Dominating

Set). Herein, an edge e is covered by a vertex v if v is one of the two endpoints of e, and

a vertex v is dominated by a vertex u if u and v are connected by an edge. By definition,

every vertex dominates itself. The NP-hardness of both problems makes the search for

2There are realistic voting scenarios where the number of candidates is large and the number of voters is
small. For instance, this is the case when a small committee decides about many applicants.

3For input size n and parameter value k, a running time of O(nk) would mean polynomial-time solvable
for constant values of k whereas a running time of say O(2k

n) would mean fixed-parameter tractability with
respect to the parameter k, see Section 2 for more on this.
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polynomial-time solving algorithms hopeless. How fast can we solve these two minimization

problems in an exact way? Trying all possibilities, for an n-vertex graph in case of both

problems we end up with an algorithm running in basically 2n steps (times a polynomial),

being infeasible for already small values of n. However, what happens if we only search

for a size-at-most-k solution set? Trying all size-k subsets of the n-vertex set as solution

candidates gives a straightforward algorithm running in O(nk+2) steps. This is superior to

the 2n-steps algorithm for sufficiently small values of k, but again turns infeasible already

for moderate k-values. Can we still do better? Yes, we can—but seemingly only for Vertex

Cover. Whereas we do not know any notably more efficient way to solve Dominating

Set [24, 20], in case of Vertex Cover a simple observation suffices to obtain a 2k-step

(times a polynomial) algorithm: Just pick any edge and branch the search for a size-k
solution into the two possibilities of taking one of the two endpoints of this edge. One

of them has to be in an optimal solution! Recurse (branching into two subcases) to find

size-(k − 1) solutions for the remaining graphs where the already chosen vertex is deleted.

In this way, one can achieve a search tree of size 2k, leading to the stated running time.

In summary, there is a simple 2k-algorithm for Vertex Cover whereas there is only an

nO(k)-algorithm for Dominating Set. Clearly, this makes a huge difference in practical

computing, although both algorithms can be put into the coarse category of “polynomial

time for constant values of k”. This categorization ignores that in the one case k influences

the degree of the polynomial and in the other it does not—the categorization is too coarse-

grained; a richer modelling is needed. This is the key contribution parameterized complexity

analysis makes.

To better understand the different behavior of Vertex Cover and Dominating Set

concerning their solvability in dependence on the parameter k (solution size) historically

was one of the starting points of parameterized complexity analysis [24, 32, 57]. Roughly

speaking, it deals with a “function battle”, namely the typical question whether an nO(k)-

algorithm can be replaced by a significantly more efficient f(k)-algorithm where f is a

computable function exclusively depending on k; in more general terms, this is the question

for the fixed-parameter tractability (fpt) of a computationally hard problem. Vertex

Cover is fpt, Dominating Set, classified as W[1]-hard (more precisely, W[2]-complete)

by parameterized complexity theory, is very unlikely to be fpt. Intuitively speaking, a

parameterized problem being classified as W[1]-hard with respect to parameter k means

that it is as least as hard as computing a k-vertex clique in a graph. There seems to be no

hope for doing this in f(k) · nO(1) time for a computable function f .

More formally, parameterized complexity is a two-dimensional framework for studying

the computational complexity of problems [24, 32, 57]. One dimension is the input size n
(as in classical complexity theory), and the other one is the parameter k (usually a positive

integer). A problem is called fixed-parameter tractable (fpt) if it can be solved in f(k) ·nO(1)

time, where f is a computable function only depending on k. This means that when solving

a problem that is fpt, the combinatorial explosion can be confined to the parameter. There

are numerous algorithmic techniques for the design of fixed-parameter algorithms, including

data reduction and kernelization [11, 41], color-coding [3] and chromatic coding [2], itera-

tive compression [58, 40], depth-bounded search trees, dynamic programming, and several

more [44, 60]. Downey and Fellows [24] developed a parameterized theory of computational

complexity to show fixed-parameter intractability. The basic complexity class for fixed-

parameter intractability is called W[1] and there is good reason to believe that W[1]-hard

problems are not fpt [24, 32, 57]. Indeed, there is a whole complexity hierarchy FPT ⊆
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W[1] ⊆ W[2] ⊆ . . . ⊆ XP, where XP denotes the class of parameterized problems that can

be solved in polynomial time in case of constant parameter values. See Chen and Meng [22]

for a recent survey on parameterized hardness and completeness. Indeed, the typical ex-

pectation for a parameterized problem is that it either is in FPT or is W[1]-hard but in XP

or already is NP-hard for some constant parameter value.

In retrospective, the one-dimensional NP-hardness theory [34] and its limitations to

offer a more fine-grained description of the complexity of exactly solving NP-hard problems

led to the two-dimensional framework of parameterized complexity analysis. Developing

further into multivariate algorithmics, the number of corresponding research challenges

grows, on the one hand, by identifying meaningful different parameterizations of a single

problem, and, on the other hand, by studying the combinations of single parameters and

their impact on problem complexity. Indeed, multivariation is the continuing revolution of

parameterized algorithmics, lifting the two-dimensional framework to a multidimensional

one [27].

3. Ways to Parameter Identification

From the very beginning of parameterized complexity analysis the “standard parame-

terization” of a problem referred to the cost of the solution (such as the size of a vertex set

covering all edges of a graph, see Vertex Cover). For graph-modelled problems, “struc-

tural” parameters such as treewidth (measuring the treelikeness of graphs) also have played

a prominent role for a long time. As we try to make clear in the following, structural prob-

lem parameterization is an enormously rich field. It provides a key to better understand

the “nature” of computational intractability. The ultimate goal is to quantitatively classify

how parameters influence problem complexity. The more we know about these interactions,

the more likely it becomes to master computational intractability.

Structural parameterization, in a very broad sense, is the major issue of this section.

However, there is also more to say about parameterization by “solution quality” (solution

cost herein being one aspect), which is discussed in the first subsection. This is followed

by several subsections which can be interpreted as various aspects of structural parameter-

ization. It is important to realize that it may often happen that different parameterization

strategies eventually lead to the same parameter. Indeed, also the proposed strategies may

overlap in various ways. Still, however, each of the subsequent subsections shall provide a

fresh view on parameter identification.

3.1. Parameterizations Related to Solution Quality

The Idea. The classical and most often used problem parameter is the cost of the solution

sought after. If the solution cost is large, then it makes sense to study the dual parameter

(the cost of the elements not in the solution set) or above guarantee parameterization (the

guarantee is the minimum cost every solution must have and the parameter measures the

distance from this lower bound). Solution quality, however, also may refer to quality of

approximation as parameter, or the “radius” of the search area in local search (a standard

method to design heuristic algorithms where the parameter k determines the size of a k-local

neighborhood searched).
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Examples. To find a size-k vertex cover in an n-vertex graph is solvable in O(1.28k + kn)

time [21], that is, Vertex Cover is fixed-parameter tractable. In contrast, finding a size-k
dominating set is W[1]-hard. In case of Vertex Cover, the dual parameterization leads to

searching for a size-(n−k′) vertex cover, where k′ is the number of vertices not contained in

the vertex cover. This problem is W[1]-hard with respect to the parameter k′ [24]. Indeed,

this problem is equivalent to finding a size-k′ independent set of vertices in a graph. This

means that the corresponding problems Vertex Cover and Independent Set are dual

to each other.

Above guarantee parameterization was pioneered by Mahajan and Raman [49] studying

the Maximum Satisfiability problem, noting that in every boolean formula in conjunctive

normal form one can satisfy at least half of all clauses. Hence, an obvious parameterization

(leading to fixed-parameter tractability) is whether one can satisfy at least ⌈m/2⌉+k clauses

of a formula in conjunctive normal form. Herein, m denotes the total number of clauses

and the parameter is k, measuring the distance to the guaranteed threshold ⌈m/2⌉. There

is recent progress on new techniques and results in this direction [50, 1]. A long-standing

open problem is to determine the parameterized complexity of finding a size-(⌈n/4⌉ + k)

independent set in an n-vertex planar graph, parameterized by k.

Marx [53] surveyed many facets of the relationship between approximation and param-

eterized complexity. For instance, he discussed the issue of ratio-(1+ǫ) approximation (that

is, polynomial-time approximation schemes (PTAS’s)) parameterized by the quality of ap-

proximation measure 1/ǫ. The central question here is whether the degree of the polynomial

of the running time depends on the parameter 1/ǫ or not.

Khuller et al. [45] presented a fixed-parameter tractability result for k-local search (pa-

rameterized by k) for the Minimum Vertex Feedback Edge Set problem. In contrast,

Marx [54] provided W[1]-hardness results for k-local search for the Traveling Salesman

problem. Very recently, fixed-parameter tractability results for k-local search for planar

graph problems have been reported [31].

Discussion. Parameterization by solution quality becomes a colorful research topic when

going beyond the simple parameter “solution size.” Above guarantee parameterization

and k-local search parameterization still seem to be at early development stages. The

connections of parameterization to polynomial-time approximation and beyond still lack a

deep and thorough investigation [53].

3.2. Parameterization by Distance from Triviality

The Idea. Identify polynomial-time solvable special cases of the NP-hard problem under

study. A “distance from triviality”-parameter then shall measure how far the given instance

is away from the trivial (that is, polynomial-time solvable) case.

Examples. A classical example for “distance from triviality”-parameterization are width

concepts measuring the similarity of a graph compared to a tree. The point is that many

graph problems that are NP-hard on general graphs become easily solvable when restricted

to trees. The larger the respective width parameter is, the less treelike the considered graph

is. For instance, Vertex Cover and Dominating Set both become fixed-parameter

tractable with respect to the treewidth parameter; see Bodlaender and Koster [12] for a
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survey. There are many more width parameters measuring the treelikeness of graphs, see

Hliněný et al. [42] for a survey.

Besides measuring treewidth, alternatively one may also study the feedback vertex set

number to measure the distance from a tree. Indeed, the feedback vertex set number of

a graph is at least as big as its treewidth. Kratsch and Schweitzer [47] showed that the

Graph Isomorphism problem is fixed-parameter tractable when parameterized by the

feedback vertex set size; in contrast, this is open with respect to the parameter treewidth.

A similar situation occurs when parameterizing the Bandwidth problem by the vertex

cover number of the underlying graph [30].

Further examples for the “distance from triviality”-approach appear in the context of

vertex-coloring of graphs [18, 51]. Here, for instance, coloring chordal graphs is polynomial-

time solvable and the studied parameter measures how many edges to delete from a graph

to make it chordal; this turned out to be fixed-parameter tractable [51]. Deiněko et al. [23]

and Hoffman and Okamoto [43] described geometric “distance from triviality”-parameters

by measuring the number of points inside the convex hull of a point set. A general view on

“distance from triviality”-parameterization appears in Guo et al. [39].

Discussion. Measuring distance from triviality is a very broad and flexible way to generate

useful parameterizations of intractable problems. It helps to better analyze the transition

from polynomial- to exponential-time solvability.

3.3. Parameterization Based on Data Analysis

The Idea. With the advent of algorithm engineering, it has become clear that algorithm

design and analysis for practically relevant problems should be part of a development cy-

cle. Implementation and experiments with a base algorithm combined with standard data

analysis methods provide insights into the structure of the considered real-world data which

may be quantified by parameters. Knowing these parameters and their typical values then

can inspire new solving strategies based on multivariate complexity analysis.

Examples. A very simple data analysis in graph problems would be to check the maximum

vertex degree of the input graph. Many graph problems can be solved faster when the

maximum degree is bounded. For instance, Independent Set is fixed-parameter tractable

on bounded-degree graphs (a straightforward depth-bounded search tree does) whereas it

is W[1]-hard on general graphs.

Song et al. [61] described an approach for the alignment of a biopolymer sequence (such

as an RNA or a protein) to a structure by representing both the sequence and the structure

as graphs and solving some subgraph problem. Observing the fact that for real-world

instances the structure graph has small treewidth, they designed practical fixed-parameter

algorithms based on the parameter treewidth. Refer to Cai et al. [19] for a survey on

parameterized complexity and biopolymer sequence comparison.

A second example deals with finding dense subgraphs (more precisely, some form of

clique relaxations) in social networks [55]. Here, it was essential for speeding up the algo-

rithm and making it practically competitive that there were only relatively few hubs (that

is, high-degree vertices) in the real-world graph. The corresponding algorithm engineering

exploited this low parameter value.
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Discussion. Parameterization by data analysis goes hand in hand with algorithm engi-

neering and a data-driven algorithm design process. It combines empirical findings (that is,

small parameter values measured in the input data) with rigorous theory building (provable

fixed-parameter tractability results). This line of investigation is still underdeveloped in

parameterized and multivariate algorithmics but is a litmus test for the practical relevance

and impact on applied computing.

3.4. Parameterizations Generated by Deconstructing Hardness Proofs

The Idea. Look at the (many-one) reductions used to show a problem’s NP-hardness.

Check whether certain quantities (that is, parameters) are assumed to be unbounded in

order to make the reduction work. Parameterize by these quantities. It is important to

note that this approach naturally extends to deconstructing W[1]-hardness proofs; here the

goal is to find additional parameters to achieve fixed-parameter tractability results.

Examples. Recall our introductory example with Possible Winner for k-Approval.

From the corresponding NP-hardness proofs it follows that this problem is NP-hard when

either the number of votes v is a constant (but k is unbounded) or k is a constant (but v is

unbounded) [7, 10], whereas it becomes fixed-parameter tractable when parameterized by

both k and v [6].

A second example, where the deconstruction approach is also systematically explained,

refers to the NP-hard Interval Constrained Coloring problem [46]. Looking at a

known NP-hardness proof [4], one may identify several quantities being unbounded in

the NP-hardness reduction; this was used to derive several fixed-parameter tractability re-

sults [46]. In contrast, a recent result showed that the quantity “number k of colors” alone

is not useful as a parameter in the sense that the problem remains NP-hard when restricted

to instances with only three colors [15]. Indeed, Interval Constrained Coloring offers

a multitude of challenges for multivariate algorithmics, also see Subsection 4.3.

Discussion. Deconstructing intractability relies on the close study of the available hardness

proofs for an intractable problem. This means to strive for a full understanding of the

current state of knowledge about a problem’s computational complexity. Having identified

quantities whose unboundedness is essential for the hardness proofs then can trigger the

search for either stronger hardness or fixed-parameter tractability results.

3.5. Parameterization by Dimension

The Idea. The dimensionality of a problem plays an important role in computational ge-

ometry and also in fields such as databases and query optimization (where the dimension

number can be the number of attributes of a stored object). Hence, the dimension number

and also the “range of values of each dimension” are important for assessing the computa-

tional complexity of multidimensional problems.
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Examples. Cabello et al. [16] studied the problem to decide whether two n-point sets in

d-dimensional space are congruent, a fundamental problem in geometric pattern matching.

Brass and Knauer [13] conjectured that this problem is fixed-parameter tractable with

respect to the parameter d. However, deciding whether a set is congruent to a subset of

another set is shown to be W[1]-hard with respect to d [16]. An other example appears

in the context of geometric clustering. Cabello et al. [17] showed that the Rectilinear

3-Center problem is fixed-parameter tractable with respect to the dimension of the input

point set whereas Rectilinear k-Center for k ≥ 4 and Euclidean k-Center for k ≥ 2

are W[1]-hard with respect to the dimension parameter. See Giannopoulos et al. [35, 36]

for more on the parameterized complexity of geometric problems.

The Closest String problem is of different “dimension nature”. Here, one is given a

set of k strings of same length and the task is to find a string which minimizes the maximum

Hamming distance to the input strings. The two dimensions of this problem are string length

(typically large) and number k of strings (typically small). It was shown that Closest

String is fixed-parameter tractable with respect to the “dimension parameter” k [38],

whereas fixed-parameter tractability with respect to the string length is straightforward in

the case of constant-size input alphabets; also see Subsection 4.1.

Discussion. Incorporating dimension parameters into investigations is natural and the pa-

rameter values and ranges usually can easily be derived from the applications. The dimen-

sion alone, however, usually seems to be a “hard parameter” in terms of fixed-parameter

tractability; so often the combination with further parameters might be unavoidable.

3.6. Parameterization by Averaging Out

The Idea. Assume that one is given a number of objects and a distance measure between

them. In median or consensus problems, the goal is to find an object that minimizes the

sum of distances to the given objects. Parameterize by the average distance to the goal

object or the average distance between the input objects. In graph problems, the average

vertex degree could for instance be an interesting parameter.

Examples. In the Consensus Patterns problem, for given strings s1, . . . , sk one wants

to find a string s of some specified length such that each si, 1 ≤ i ≤ k, contains a substring

such that the average of the distances of s to these k substrings is minimized. Marx [52]

showed that Consensus Patterns is fixed-parameter tractable with respect to this average

distance parameter.

In the Consensus Clustering problem, one is given a set of n partitions C1, . . . , Cn of

a base set S. In other words, every partition of the base set is a clustering of S. The goal is to

find a partition C of S that minimizes the sum
∑

n

i=1 d(C,Ci), where the distance function d
measures how similar two clusters are by counting the “differently placed” elements of S.

In contrast to Consensus Patterns, here the parameter “average distance between two

input partitions” has been considered and led to fixed-parameter tractability [9]. Thus, the

higher the degree of average similarity between input objects is, the faster one finds the

desired median object.
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Discussion. The average parameterization for Consensus Patterns directly relates to

the solution quality whereas the one for Consensus Clustering relates to the structure of

the input. In the latter case, the described example showed that one can deal with “outliers”

having high distance to the other objects. Measuring the average distance between the input

objects means to determine their degree of average similarity. This structural parameter

value may be quickly computed in advance, making it easy to forecast the performance of

the corresponding fixed-parameter algorithm.

4. Three Case Studies

In the preceding section, we focussed on various ways to single out various interesting

problem parameterizations. In what follows, we put emphasis on the multivariate aspects

of complexity analysis related to (combining) different parameterizations of one and the

same problem. To this end, we study three NP-hard problems that nicely exhibit various

relevant features of multivariate algorithmics.

4.1. Closest String

The NP-hard Closest String problem is to find a length-L string that minimizes

the maximum Hamming distance to a given set of k length-L strings. The problem arises

in computational biology (motif search in strings) and coding theory (minimum radius

problem).

Known Results. What are natural parameterizations here? First, consider the number k
of input strings. Using integer linear programming results, fixed-parameter tractability with

respect to k can be derived [38]. This result is of theoretical interest only due to a huge

combinatorial explosion. Second, concerning the parameter string length L, for strings over

alphabet Σ we obviously only need to check all |Σ|L candidates for the closest string and

choose a best one, hence fixed-parameter tractability with respect to L follows for constant-

size alphabets. More precisely, Closest String is fixed-parameter tractable with respect

to the combined parameter (|Σ|, L). Finally, recall that the goal is to minimize the maximum

distance d; thus, d is a natural parameter as well, being small (say values below 10) in

biological applications. Closest String is also shown to be fixed-parameter tractable

with respect to d by designing a search tree of size (d + 1)d [38]. A further fixed-parameter

algorithm with respect to the combined parameter (|Σ|, d) has a combinatorial explosion of

the form (|Σ| − 1)d · 24d [48], which has recently been improved to (|Σ| − 1)d · 23.25d [62].

For small alphabet size these results improve on the (d + 1)d-search tree algorithm. There

are also several parameterized complexity results on the more general Closest Substring

and further related problems [29, 37, 52, 48, 62].

Discussion. Closest String carries four obvious parameters, namely the number k of

input strings, the string length L, the alphabet size |Σ|, and the solution distance d. A

corresponding multivariate complexity analysis still faces several open questions with re-

spect to making solving algorithms more practical. For instance, it would be interesting

to see whether the (impractical) fixed-parameter tractability result for parameter k can be

improved when adding further parameters. Moreover, it would be interesting to identify
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further structural string parameters that help to gain faster algorithms, perhaps in combi-

nation with known parameterizations. This is of particular importance for the more general

and harder Closest Substring problem.

Data analysis has indicated small d- and k-values in biological applications. Interesting

polynomial-time solvable instances would help to find “distance from triviality”-parameters.

Closest String remains NP-hard for binary alphabets [33]; a systematic intractability

deconstruction appears desirable. Closest String has the obvious two dimensions k
and L, where k is typically much smaller than L. Parameterization by “averaging out”

is hopeless for Closest String since one can easily many-one reduce an arbitrary input

instance to one with constant average Hamming distance between input strings: just add

a sufficiently large number of identical strings. Altogether, the multivariate complexity

nature of Closest String is in many aspects unexplored.

4.2. Kemeny Score

The Kemeny Score problem is to find a consensus ranking of a given set of votes (that

is, permutations) over a given set of candidates. A consensus ranking is a permutation of the

candidates that minimizes the sum of “inversions” between this ranking and the given votes.

Kemeny Score plays an important role in rank aggregation and multi-agent systems; due

to its many nice properties, it is considered to be one of the most important preference-based

voting systems.

Known Results. Kemeny Score is NP-hard already for four votes [25, 26], excluding

hope for fixed-parameter tractability with respect to the parameter “number of votes”.

In contrast, the parameter “number of candidates” c trivially leads to fixed-parameter

tractability by simply checking all possible c! permutations that may constitute the con-

sensus ranking. Using a more clever dynamic programming approach, the combinatorial

explosion can be lowered to 2c [8]. A different natural parameterization is to study what

happens if the votes have high pairwise average similarity. More specifically, this means

counting the number of inversions between each pair of votes and then taking the average

over all pairs. Indeed, the problem is also fixed-parameter tractable with respect to this

similarity value s, the best known algorithm currently incurring a combinatorial explosion

of 4.83s [59]. Further natural parameters are the sum of distances of the consensus ranking

to input votes (that is, the Kemeny score) or the range of positions a candidate takes within

a vote [8]. Other than for the pairwise distance parameter, where both the maximum and

the average version lead to fixed-parameter tractability [8, 59], for the range parameter only

the maximum version does whereas the problem becomes NP-hard already for an average

range value of 2. [8]. Simjour [59] also studied the interesting parameter “Kemeny score

divided by the number of candidates” and also showed fixed-parameter tractability in this

case. There are more general problem versions that allow ties within the votes. Some

fixed-parameter tractability results also have been achieved here [8, 9].

Discussion. Kemeny Score is an other example for a problem carrying numerous “ob-

vious” parameters. Most known results, however, are with respect to two-dimensional

complexity analysis (that is, parameterization by a single parameter), lacking the extension

to a multivariate view.

First data analysis studies on ranking data [14] indicate the practical relevance of some

of the above parameterizations. Average pairwise distance may be also considered as a
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straightforward “distance from triviality”-measure since average distance 0 means that all

input votes are equal. The same holds true for the range parameter. Again, known in-

tractability deconstruction for Kemeny Score just refers to looking at the NP-hardness

result of Dwork et al. [25, 26], implying hardness already for a constant number of votes. A

more fine-grained intractability deconstruction is missing. Kemeny Score can be seen as a

two-dimensional problem. One dimension is the number of votes and the other dimension is

number of candidates; however, only the latter leads to fixed-parameter tractability. In this

context, the novel concept of “partial kernelization” has been introduced [9]. To the best

of our knowledge, Kemeny Score has been the first example for a systematic approach to

average parameterization [8, 9]. As for Closest String, a multidimensional analysis of

the computational complexity of Kemeny Score remains widely open.

4.3. Interval Constrained Coloring

In the NP-hard Interval Constrained Coloring problem [4, 5] (arising in auto-

mated mass spectrometry in biochemistry) one is given a set of m integer intervals in the

range 1 to r and a set of m associated multisets of colors (specifying for each interval the

colors to be used for its elements), and one asks whether there is a “consistent” coloring for

all integer points from {1, . . . , r} that complies with the constraints specified by the color

multisets.

Known Results. Interval Constrained Coloring remains NP-hard even in case of

only three colors [15]. Deconstructing the original NP-hardness proof due to Althaus et

al. [4] and taking into account the refined NP-hardness proof of Byrka et al. [15], the

following interesting parameters have been identified [46]:

• interval range,

• number of intervals,

• maximum interval length,

• maximum cutwidth with respect to overlapping intervals,

• maximum pairwise interval overlap, and

• maximum number of different colors in the color multisets.

All these quantities are assumed to be unbounded in the NP-hardness reduction due to

Althaus et al. [4]; this immediately calls for a parameterized investigation. Several fixed-

parameter tractability results have been achieved for single parameters and parameter pairs,

leaving numerous open questions [46]. For instance, the parameterized complexity with re-

spect to the parameter “number of intervals” is open, whereas Interval Constrained

Coloring is fixed-parameter tractable with respect to the parameter “interval length”.

Combining the parameters “number of colors” and “number of intervals” though, one

achieves fixed-parameter tractability. In summary, many multidimensional parameteriza-

tions remain unstudied.

Discussion. The case of Interval Constrained Coloring gives a prime example for

deconstruction of intractability and the existence of numerous relevant parameterizations.

There are a few known fixed-parameter tractability results, several of them calling for

improved algorithms. Checking “all” reasonable parameter combinations and constellations

could easily make an interesting PhD thesis.



28 R. NIEDERMEIER

The biological data often contain only three colors; the corresponding NP-hardness

result [15] shows that this alone is not a fruitful parameter—combination with other pa-

rameters is needed (such as the interval range [46]). Moreover, observations on biological

data indicate a small number of lengthy intervals, motivating a further parameterization

possibility. Instances with only two colors or cutwidth two are “trivial” in the sense that

(nontrivial) polynomial-time algorithms have been developed to solve these instances [4, 46].

Unfortunately, in both cases a parameter value of three already yields NP-hardness. The

two natural dimensions of the problem are given by the interval range and the number of

intervals, both important parameters. Average parameterization has not been considered

yet. In summary, Interval Constrained Coloring might serve as a “model problem”

for studying many aspects of multivariate algorithmics.

5. Conclusion with Six Theses on Multivariate Algorithmics

We described a number of possibilities to derive meaningful “single” parameterizations.

Typically, not every such parameter will allow for fixed-parameter tractability results. As-

sume that a problem is W[1]-hard with respect to a parameter k (or even NP-hard for

constant values of k). Then this calls for studying whether the problem becomes tractable

when adding a further parameter k′, that is, asking the question whether the problem is

fixed-parameter tractable with respect to the (combined) parameter (k, k′). Moreover, even

if a problem is classified to be fixed-parameter tractable with respect to a parameter k, this

still can be practically useless. Hence, introducing a second parameter may open the route

to practical fixed-parameter algorithms. Altogether, in its full generality such a “problem

processing” forms the heart of multivariate algorithmics.

Fellows et al. [28] proposed to study the “complexity ecology of parameters”. For the

ease of presentation restricting the discussion to graph problems, one may build “complex-

ity matrices” where both rows and columns represent certain parameters such as treewidth,

bandwidth, vertex cover number, domination number, and so on. The corresponding val-

ues deliver structural information about the input graph. Then, a matrix entry in row x
and column y represents a question of the form “how hard is it to compute the quantity

represented by column y when parameterized by the quantity represented by x?”. For ex-

ample, it is easy to see that the domination number can be computed by a fixed-parameter

algorithm using the parameter vertex cover number. Obviously, there is no need to restrict

such considerations to two-dimensional matrices, thus leading to a full-flavored multivariate

algorithmics approach.

After all, a multivariate approach may open Pandora’s box by generating a great num-

ber of questions regarding the influence and the interrelationship between parameters in

terms of computational complexity. With the tools provided by parameterized and multi-

variate algorithmics, the arising questions yield worthwhile research challenges. Indeed, to

better understand important phenomena of computational complexity, there seems to be

no way to circumvent such a “massive analytical attack” on problem complexity. Opening

Pandora’s box, however, is not hopeless because multivariate algorithmics can already rely

on numerous tools available from parameterized complexity analysis.

There is little point in finishing this paper with a list of open questions—basically every

NP-hard problem still harbors numerous challenges in terms of multivariate algorithmics.

Indeed, multivariation is a horn of plenty concerning practically relevant and theoretically
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appealing opportunities for research. Instead, we conclude with six claims and conjectures

concerning the future of (multivariate) algorithmics.

Thesis 1: Problem parameterization is a pervasive and ubiquitous tool in attacking

intractable problems. A theory of computational complexity neglecting parameter-

ized and multivariate analysis is incomplete.

Thesis 2: Multivariate algorithmics helps in gaining a more fine-grained view on

polynomial-time solvable problems, also getting in close touch with adaptive al-

gorithms.4

Thesis 3: Multivariate algorithmics can naturally incorporate approximation algo-

rithms, relaxing the goal of exact to approximate solvability.

Thesis 4: Multivariate algorithmics is a “systems approach” to explore the nature

of computational complexity. In particular, it promotes the development of meta-

algorithms that first estimate various parameter values and then choose the appro-

priate algorithm to apply.

Thesis 5: Multivariate algorithmics helps to significantly increase the impact of The-

oretical Computer Science on practical computing by providing more expressive

statements about worst-case complexity.

Thesis 6: Multivariate algorithmics is an ideal theoretical match for algorithm engi-

neering, both areas mutually benefiting from and complementing each other.
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[23] V. G. Deiněko, M. Hoffmann, Y. Okamoto, and G. J. Woeginger. The traveling salesman problem with

few inner points. Oper. Res. Lett., 34(1):106–110, 2006.
[24] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[25] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the Web. In Proc.

10th WWW, pages 613–622, 2001.
[26] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation revisited, 2001. Manuscript.
[27] M. Fellows. Towards fully multivariate algorithmics: Some new results and directions in parameter

ecology. In Proc. IWOCA, volume 5874 of LNCS, pages 2–10. Springer, 2009.
[28] M. Fellows, D. Lokshtanov, N. Misra, M. Mnich, F. Rosamond, and S. Saurabh. The complexity ecology

of parameters: An illustration using bounded max leaf number. Theory Comput. Syst., 45:822–848, 2009.
[29] M. R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability of motif search

problems. Combinatorica, 26(2):141–167, 2006.
[30] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh. Graph layout problems

parameterized by vertex cover. In Proc. 19th ISAAC, volume 5369 of LNCS, pages 294–305. Springer,
2008.

[31] M. R. Fellows, F. A. Rosamond, F. V. Fomin, D. Lokshtanov, S. Saurabh, and Y. Villanger. Local
search: Is brute-force avoidable? In Proc. 21st IJCAI, pages 486–491, 2009.

[32] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[33] M. Frances and A. Litman. On covering problems of codes. Theory Comput. Syst., 30(2):113–119, 1997.
[34] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, 1979.
[35] P. Giannopoulos, C. Knauer, and G. Rote. The parameterized complexity of some geometric problems

in unbounded dimension. In Proc. 4th IWPEC, volume 5917 of LNCS, pages 198–209. Springer, 2009.
[36] P. Giannopoulos, C. Knauer, and S. Whitesides. Parameterized complexity of geometric problems.

Comp. J., 51(3):372–384, 2008.
[37] J. Gramm, J. Guo, and R. Niedermeier. Parameterized intractability of distinguishing substring selec-

tion. Theory Comput. Syst., 39(4):545–560, 2006.
[38] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for Closest String and

related problems. Algorithmica, 37(1):25–42, 2003.
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1. Introduction

All graphs in this paper are simple, undirected and connected. If H is a graph, its

r-th power G = Hr is the graph on the same vertex set such that two distinct vertices are

adjacent in G if their distance in H is at most r. We also call H the r-th root of G.

There are some problems naturally related to graph powers and graph roots. Suppose

P is a class of graphs (possibly consisting of all graphs), r is an integer and G is an arbitrary

graph. The questions we ask are:

• The recognition problem: Is G an r-th power of some graph from P? Formally, we

define a family of decision problems:
Problem. r-TH-POWER-OF-P-GRAPH

Instance. A graph G.

Question. Is G = Hr for some graph H ∈ P?

• The r-th root problem: Find some/all r-th roots of G which belong to P.

• The unique reconstruction problem: Is the r-th root of G in P (if any) unique?
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The above problems have been investigated for various graph classes P. There exist

characterizations of squares [15] and higher powers [3] of graphs, but they are not com-

putationally efficient. Motwani and Sudan [14] proved the NP-completeness of recognizing

graph squares and Lau [8] extended this to cubes of graphs. Motwani and Sudan [14] sug-

gested that recognizing squares of bipartite graphs is also likely to be NP-complete. This

was disproved by Lau [8], who gave a polynomial time algorithm that recognizes squares

of bipartite graphs and counts the bipartite square roots of a given graph. Apparently the

first proof that r-TH-POWER-OF-GRAPH and r-TH-POWER-OF-BIPARTITE-GRAPH

are NP-complete for any r ≥ 3 was recently announced in [10].

Considerable attention has been given to tree roots of graphs, which are quite well

understood and can be computed efficiently, see Lin and Skiena [13], Kearney and Corneil

[6] and Chang, Ko and Lu [2] who give a linear time algorithm for the r-th tree root of a

given graph. Such a root need not be unique, not even up to isomorphism, so the difficulty

lies in making consistent choices while constructing a root. Many techniques for computing

tree roots rely on some sort of correspondence between vertex neighbourhoods in T and

maximal cliques in T p. We are going to use the computation of an r-th tree root of a graph

as a black-box in our algorithms.

There has also been some work on the complexity of r-TH-POWER-OF-P-GRAPH for

such classes P as chordal graphs, split graphs and proper interval graphs [9] and for directed

graphs and their powers [7].

In this work we address the above problems for another large family of graphs, namely

graphs with no short cycles. Recall that the girth of a graph is the length of its shortest

cycle (or ∞ for a tree). For convenience we shall denote by GIRT H≥g the class of all graphs

of girth at least g, and by GIRT H+
≥g its subclass consisting of graphs with no vertices of

degree one (which we call leaves). These classes of graphs make a convenient setting for

graph roots because of the possible uniqueness results outlined below.

By [4] the recognition of squares of GIRT H≥4-graphs is NP-complete, while squares

of GIRT H≥6-graphs can be recognized in polynomial time. The techniques of recognition

(in this, and some other cases) include imposing some additional, local piece of information

about the square root (like the existence of a certain edge) such that the root can then be

reconstructed uniquely by expanding this data to the neighbouring vertices and eventually

to the whole graph. Here we also exploit this idea.

For r ≥ 3 no complexity-theoretic results have been known, but there is some very

interesting work on the uniqueness of the roots. Precisely, Levenshtein et al. [12] proved

that if G has a square root H in the class GIRT H+
≥7, then H is unique1. The same statement

was extended in [11] to r-th roots in GIRT H+
≥2r+2⌈(r−1)/4⌉+1

, using a characterization of

the neighbourhood of a vertex as the unique set satisfying a list of properties expressed in

terms of the r-th power of the graph. The main conjecture in this area remains unresolved:

Conjecture 1.1 (Levenshtein, [11]). If a graph G has an r-th root H in GIRT H+
≥2r+3,

then H is unique in that class.

The value of g = 2r + 3 is best possible, as witnessed by the cycle C2r+2, which cannot

be uniquely reconstructed from its r-th power. The best result towards Conjecture 1.1 is

1It is not possible to obtain uniqueness if the vertices of degree one are allowed, hence this technical
restriction. See [12] for details.
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that the number of roots H under consideration is at most δ(G) (the minimal vertex degree

in G, [11]), but its proof yields only exponential time r-th root and recognition algorithms.

At the same time Farzad et al. made a conjecture about recognizing powers of graphs

of lower-bounded girth:

Conjecture 1.2 (Farzad et al., [4]). The problem r-TH-POWER-OF-GIRT H≥3r−1-GRAPH

can be solved in polynomial time.

Our contribution. Our first result gives an efficient reconstruction algorithm in Leven-

shtein’s case:

Theorem 1.3. Given any graph G, all its r-th roots in GIRT H+
≥2r+3 can be found in

polynomial time.

Next, we use this result to deal with the general case, i.e. when the roots are allowed

to have leaves. It turns out that the same girth bound of 2r + 3 admits a positive result:

Theorem 1.4. The problem r-TH-POWER-OF-GIRTH≥2r+3-GRAPH can be solved in
polynomial time.

Our result proves Conjecture 1.2 (for r ≥ 4) and is in fact stronger. It also improves

the result of [10] for r = 3, g = 10. Moreover, our algorithm for this problem is constructive

and exhaustive in the sense that it finds “all” r-th roots in GIRT H≥2r+3 modulo the

non-uniqueness of r-th tree roots of graphs, as explained in Section 4.

These positive results have a hardness counterpart:

Theorem 1.5. The problem r-TH-POWER-OF-GIRTH≥g-GRAPH is NP-complete for
g ≤ r + 1 when r is odd and g ≤ r + 2 when r is even.

The paper is structured as follows. First we prove some auxiliary results, useful both

in the construction of algorithms and in the hardness result. Section 3 contains the main

algorithm from Theorem 1.3, which is then used in Section 4 as a building block of the

general recognition algorithm from Theorem 1.4. NP-completeness is proved in Section 5.

2. Auxiliary results

Let us fix some terminology. By distH(u, v) we denote the distance from u to v in H.

The d-neighbourhood of a vertex u in H is the set of vertices of H which are exactly in

distance d from u. The 1-neighbourhood (i.e. the set of vertices adjacent to u) will be

denoted NH(u).

Our setup usually involves a pair of graphs G and H on a common vertex set V such

that G = Hr. We adopt the notation

Bv := {u ∈ V : distH(u, v) ≤ r} = NG(v) ∪ {v}

for v ∈ V (the letter B stands for “ball” of radius r in H). The lack of explicit reference

to r and H in this notation should not lead to confusion. It is important that Bv depend

only on G.

Almost all previous work on algorithmic aspects of graph powers [14, 4, 8, 9, 10] makes

use of a special gadget, called tail structure, which, applied to a vertex u in G, ensures that

in any r-th root H of G this vertex has the same, pre-determined neighbourhood. Our main

observation is that in fact such a tail structure carries a lot more information about H. It

pins down not just NH(u), but also each d-neighbourhood of u in H for d = 1, . . . , r.
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Lemma 2.1. Let G = Hr and suppose that {v0, v1, . . . , vr} ⊂ V is a set of vertices such
that NG(vr) = {vr−1, . . . , v1, v0} and NG(vi+1) ⊂ NG(vi) for all i = 0, . . . , r − 1, where the
inclusions are strict. 2

Then the subgraph of H induced by {v0, v1, . . . , vr} is a path v0 − v1 − . . . − vr and the
d-neighbourhood of v0 in H is precisely

NG(vr−d) \ NG(vr−d+1) ∪ {vd}

for all d = 1, . . . , r.

Proof. The subgraph K of H induced by {v0, . . . , vr} is connected — otherwise NG(vr)

would contain vertices from outside K. Consider any vertex u of K that has an edge to

some vertex w outside K. Clearly, distK(vr, u) = r, since otherwise w would be in NG(vr).

This means that K is a path from vr to u and u is the only vertex of that path which

has edges to vertices outside K. The condition NG(vi+1) ⊂ NG(vi) now implies that the

vertices of this path are arranged as in the conclusion of the lemma. The second conclusion

follows easily.

Note that the tail structure itself does not enforce any extra constraints on H other

than the d-neighbourhoods of v0.

In the algorithm for r-TH-POWER-OF-GIRT H≥2r+3-GRAPH we will need to solve

the following tree root problem with additional restrictions imposed on the d-neighbourhoods

of a certain vertex:

Problem. RESTRICTED-r-TH-TREE-ROOT

Instance. A graph G, r ≥ 2, a vertex v ∈ V (G) and a partition

V (G) = {v} ∪ T (1) ∪ . . . ∪ T (r) ∪ T (>r).

Question. Is G = T r for some tree T such that the

d-neighbourhood of v in T is exactly T (d) for d = 1, . . . , r?

Lemma 2.2. There is a constructive polynomial time algorithm for RESTRICTED-r-TH-
TREE-ROOT.

Proof sketch. The neighbourhood-enforcing gadget from Lemma 2.1 can be attached to the

given problem instance in such a way that the original graph has a restricted tree root if

and only if the modified graph has any tree root (with no restrictions). Then the algorithms

of [6, 2] apply to the modified instance.

3. Algorithm for roots in GIRT H+
≥2r+3

In this section we present the algorithm from Theorem 1.3, that is the polynomial

time reconstruction of all r-th roots in GIRT H+
≥2r+3 of a given graph G. There are two

structural properties of graphs H ∈ GIRT H+
≥2r+3 that will be used freely throughout the

proofs:

(*) Every x ∈ V (H) is of degree at least 2 and the subgraph of H induced by Bx is a

tree. This holds since any cycle in H within Bx would have length at most 2r + 1.

We shall depict the ball Bx in H in the tree-like fashion.

2This assumption (strictness of inclusions) can be removed at the cost of a more complicated statement,
but this generality is not needed here.
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r − 1
r

x y

Bx ∩ By

Nx Ny

Px Py

Wx Wy

Tx Ty

Figure 1: The subgraph of H induced by Bx ∪ By.

(**) If there is a simple path from u to v in H of length exactly r + 1 or r + 2 then

u 6∈ Bv. Indeed, u ∈ Bv iff there is a path of length at most r from u to v in H, and

combined with the first path this would yield a cycle of length at most 2r + 2.

To describe the algorithm we introduce the following sets:

Sx,y = Bx ∩ By \
⋃

v∈By\Bx

Bv \ {x}

Px,y = Bx ∩ By ∩
⋃

v∈Sx,y

Bv

Nx,y = Bx ∩ By ∩
⋂

v∈Px,y

Bv \ {x}

Defined for arbitrary x, y ∈ V , these sets are probably quite meaningless for the reader.

The definitions are motivated by the proof of the next theorem, in which we determine

these sets in more familiar terms for the endpoints x, y of an actual edge in some r-th root

of G. Precisely:

Theorem 3.1. Suppose G = Hr for a graph H ∈ GIRT H+
≥2r+3 and xy ∈ E(H). Then

Nx,y = NH(x).

Proof. Because of the girth condition the set Bx ∪By in H consists of two disjoint trees Tx

and Ty, rooted in x and y respectively and connected by the edge xy (see Fig.1). Let us

introduce some subsets of those trees. By Wx and Wy denote the last levels:

Wx = {u ∈ Tx : distH(u, x) = r}, Wy = {u ∈ Ty : distH(u, y) = r},

by Px and Py the next-to-last levels:

Px = {u ∈ Tx : distH(u, x) = r − 1}, Py = {u ∈ Ty : distH(u, y) = r − 1},

and by Nx and Ny the children of x and y in Tx and Ty:

Nx = {u ∈ Tx : distH(u, x) = 1}, Ny = {u ∈ Ty : distH(u, y) = 1}.

Clearly Bx ∩ By = (Tx \ Wx) ∪ (Ty \ Wy), Wx = Bx \ By and Wy = By \ Bx. Note that if

r = 2 we have Nx = Px and Ny = Py.

First observe that every u ∈ Nx and every v ∈ By \ Bx = Wy are connected by a path

of length r + 2. It follows by (**) that u 6∈ Bv, which implies

Nx ⊂ Sx,y.
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It is also clear that Sx,y ⊂ Tx (because every vertex in Ty has a descendant v ∈ Wy).

Now the sum
⋃

v∈Sx,y
Bx ∩By ∩Bv contains

⋃

v∈Nx
Bx ∩By ∩Bv = (Bx ∩By) \Py. On

the other hand, if v ∈ Sx,y and u ∈ Py then u 6∈ Bv. Indeed, if u ∈ Bv then there would be

a path from u to v of length at most r. This path cannot be contained in Tx ∪ Ty (because

distH(u, x) = r, so one can only get as far as x going from u), hence it must exit Ty through

Wy and then enter Tx through Wx, finally reaching v ∈ Sx,y. However, that yields a path

from Wy to Sx,y of length at most r (in fact at most r − 1), contradicting the definition of

Sx,y. Eventually we proved

Px,y = (Bx ∩ By) \ Py.

Now we have {y} ∪ Nx ⊂ Nx,y because every vertex of {y} ∪ Nx is in distance at most

r from all the vertices of (Bx ∩By) \ Py. On the other hand, for every vertex u of Bx ∩ By

that is not in Nx ∪ {x, y} one can find a path of length r + 1 that starts in u and ends in

a vertex v ∈ (Bx ∩ By) \ Py. Then, according to (**), u 6∈ Bv, so u 6∈ Nx,y. Such a path

is obtained by going from u up the tree it is contained in (Tx or Ty) and then down in the

other tree.

Concluding, we have identified Nx,y to be Nx ∪ {y}, as required.

The previous theorem should be understood as follows. Given a graph G, we want to

find its r-th root H. If we fix at least one edge xy of H in advance, we can compute the

neighbourhood NH(x) of x using only the data available in G. But then we can move on

in the same way, computing the neighbours of those neighbours etc.

Algorithm 1 Input: G,r. Output: All r-th roots of G in GIRT H+
≥2r+3

pick a vertex x with smallest |Bx|
for all y in Bx do

H =reconstructFromOneEdge(G,xy)

if H ∈ GIRT H+
≥2r+3 and Hr = G output H

end for

reconstructFromOneEdge(G, e):

H = (V (G), {e})
for all u ∈ V set processed[u]:=false

while H has an unprocessed vertex x of degree at least 1 do

y = any neighbour of x in H

E(H) = E(H) ∪ {xz for all z ∈ Nx,y}
processed[x]:=true

end while

return H

The r-th root algorithm is now straightforward. The procedure reconstructFromOneEdge
attempts to compute H from G assuming the existence of a given edge e in H. This is re-

peated for all possible edges from a fixed vertex x. It remains to notice that Nx,y can be

computed in polynomial time.
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u

v link(u)

T
(d)
v

Tv

d depth(u)

core(H)

Figure 2: The notation of Section 4.

4. Removing the no-leaves restriction

In this section we obtain a polynomial time algorithm for the general recognition prob-

lem r-TH-POWER-OF-GIRT H≥2r+3-GRAPH, proving Theorem 1.4. We start with a few

definitions (see Fig.2).

For a graph H, which is not a tree, let core(H) denote the largest induced subgraph of

H whose every vertex has degree at least two. Alternatively this can be defined as follows.

Given H, let H ′ be the graph obtained from H by removing all leaves (vertices of degree

one) and inductively define H(1) = H ′, H(n) = (H(n−1))′. This process eventually stabilizes

at the graph core(H).

A vertex v ∈ V (H) is called a core vertex if it belongs to core(H) and a non-core vertex
otherwise. The non-core vertices are grouped into trees attached to the core. For every

vertex v ∈ core(H) we denote by Tv the tree attached at v (including v) and by T
(d)
v (for

d ≥ 0) the set of vertices of Tv located in distance d from v. For a non-core vertex u the

link of u (denoted link(u)) is its closest core vertex and the depth of u (denoted depth(u))

is the distance from u to link(u).

4.1. Outline of the algorithm.

The algorithm for r-TH-POWER-OF-GIRT H≥2r+3-GRAPH processes the input graph

G in several steps (see Algorithm 2). First, we check if G has a tree r-th root [6, 2]. If not,

then we split the vertices of G into the core and non-core vertices of any of its r-th roots.

Lemma 4.1 shows how to find such a partition and ensures that it is uniquely determined

only by the graph G.

Let G̃ be the subgraph of G induced by all the vertices that are classified as belonging

to the core of any possible r-th root H. We now employ the algorithm from the previous

section to find all r-th roots H̃ of G̃ which have girth at least 2r + 3 and no leaves (there

are at most δ(G) of them; conjecturally there is at most one).

Finally, we must attach the non-core vertices to each of the possible H̃. It turns out that

once the core is fixed, the link of each non-core vertex can be uniquely determined, so we can

pin down all the sets V (Tv). However, we cannot simply look for any r-th tree root of the

subgraph of G induced by V (Tv), because we have to ensure that the tree structure that we

are going to impose on V (Tv) is compatible with the neighbourhood information contained

in the rest of G. Fortunately Lemma 4.2 guarantees that for a fixed G and core(H), all

the sets T
(d)
v for d = 1, . . . , r are also uniquely determined. Since all the distances from the

vertices of Tv to the rest of the graph depend only on the vertex depths and the structure

of the core, this is exactly the additional piece of data we need. Any tree root satisfying
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the given depth constraints will be compatible with the rest of the graph. Concluding,

the problem we are left with for each Tv is the RESTRICTED-r-TH-TREE-ROOT from

Section 2. If all these instances have positive solutions, then the graph H defined as H̃ with

the trees Tv attached at each core vertex v is an r-th root of G.

The next two subsections describe the two crucial steps: detecting non-core vertices

and the reconstruction of trees Tv.

4.2. Finding core and non-core vertices.

The next lemma shows how to detect all vertices located “close to the bottom” of the

trees Tv in H.

Lemma 4.1. Suppose H ∈ GIRT H≥2r+3 and Hr = G.Then the following conditions are
equivalent for a vertex u ∈ H:

(1) u 6∈ H(r).
(2) There is some vertex v ∈ H, v 6= u such that Bu ⊆ Bv.

< r

u v

Bu

a)

u

v

v′

dist(v, v′) = r + 1

Bu

b)

Figure 3: The proof of Lemma 4.1.

Proof. If u 6∈ H(r), then by the definition u becomes a leaf after at most r − 1 steps of

the leaf-removal procedure and is removed in the subsequent step. Let v be the last vertex

adjacent to u just before u is removed (see Fig.3a). Clearly all the vertices reachable from

u in at most r steps are also reachable from v in at most r steps, so Bu ⊆ Bv.

If, on the other hand, u ∈ H(r) then u is not removed in the first r steps of cutting off

the leaves of H, which means there exist at least two disjoint paths of length r starting at u

(see Fig.3b). However, it implies that for every vertex v ∈ Bu there exists another v′ ∈ Bu

(on one of those paths) such that distH(v, v′) = r + 1, hence v′ ∈ Bu \ Bv. Therefore Bu is

not contained in Bv for any v 6= u.

Recursively deleting all vertices u such that Bu ⊆ Bv for some v 6= u determines the

consecutive sets V (H(r)), V (H(2r)), V (H(3r)), . . . for any r-th root H ∈ GIRT H≥2r+3 of

G using only the information available in G. Eventually we obtain V (core(H)) which is the

vertex set of G̃.

4.3. Attaching the trees Tv.

For each possible core(H) we need to decide on a way of attaching the remaining (non-

core) vertices to H in a way which ensures that Hr = G. It turns out that all the data

necessary to ensure the compatibility can be read off from G and core(H), so again this

data is common for all the possible r-th roots of G that have a fixed core.
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Lemma 4.2. Suppose that H ∈ GIRT H≥2r+3 is a graph such that H is not a tree and
Hr = G. Then for every non-core vertex u of H we have:

• either Bu ∩ V (core(H)) = ∅, in which case depth(u) > r, or
• the subgraph of H induced by Bu ∩V (core(H)) is a tree whose only center is link(u)

and whose height (the distance from the center to every leaf) is r − depth(u).

Proof. The first statement is obvious. As for the second, the subgraph induced by Bu ∩
V (core(H)) consists of all the vertices of V (core(H)) in distance at most r− depth(u) from

link(u). Since core(H) is a graph of girth at least 2r + 3 with no degree one nodes, these

vertices induce a tree in H, and all the leaves of this tree are exactly in distance r−depth(u)

from link(u). Therefore link(u) is the unique center of that tree.

Lemma 4.2 yields a method of partitioning the non-core vertices into the sets V (Tv)

and subdividing each V (Tv) into a disjoint union {v} ∪ T
(1)
v ∪ . . . ∪ T

(r)
v ∪ T

(>r)
v of vertices

in distance 1, 2, . . . , r and more than r from v using only the data from G and core(H).

Indeed, for the vertices u with Bu ∩ V (core(H)) 6= ∅ one finds the center and height of the

subtree of core(H) induced by Bu ∩ V (core(H)) and applies the second part of Lemma 4.2

to obtain both link(u) and depth(u), thus classifying u to the appropriate T
(d)
v . The links

of all remaining vertices are determined using the fact that all vertices in one connected

component of G \
⋃

v∈core(H),d=0,...,r−1 T
(d)
v have the same link.

Algorithm 2

Input: G,r.

Output: r-th roots of G in GIRT H≥2r+3 (one per each core)

check if G = T r for some tree T

G̃ := G

while G̃ has vertices u, v with Bu ⊆ Bv do

remove from G̃ all u such that Bu ⊆ Bv for some v

end while

for every graph H̃ ∈ GIRT H+
≥2r+3 such that H̃r = G̃ do

H := H̃

for every vertex v ∈ V (H̃) do

find V (Tv) and a partition V (Tv) = {v} ∪ T
(1)
v ∪ . . . ∪ T

(r)
v ∪ T

(>r)
v

use restrictedTreeRoot to reconstruct some tree Tv

extend H by attaching Tv at v

end for

if all Tv existed output H

end for

5. Hardness results

Now we sketch the hardness of recognition for powers of graphs of lower-bounded girth

(Theorem 1.5). For the reductions we use the following NP-complete problem (see [5, Prob.

SP4]). It has already been successfully applied in this context ([4, 8, 9, 10]).
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Problem. HYPERGRAPH 2-COLORABILITY (H2C)

Instance. A finite set S and a collection S1, . . . , Sm of subsets of S.

Question. Can the elements of S be colored with two colors A, B such that each

set Sj has elements of both colors?

An instance of this problem (also known as SET-SPLITTING) will be denoted S =

(S;S1, . . . , Sm). We shall refer to the elements of the universum S as x1, . . . , xn. Any

assignment of colors A and B to the elements of S which satisfies the requirements of the

problem will be called a 2-coloring.
In this section we fix r and let k = ⌊ r

2⌋, so that r = 2k or r = 2k + 1 depending on

parity.

5.1. Case of odd r = 2k + 1

Consider an instance S = (S;S1, . . . , Sm) of H2C. The following two definitions describe

an auxiliary graph that will be used as a base for further constructions. The reader is referred

to Fig.4 for a self-explanatory presentation of the graphs KS and HS defined below.

Definition 5.1. For an instance S = (S;S1, . . . , Sm) let VS be the following set of vertices:

• Sj, xi for all subsets and elements,

• A,B,X,

• T
(l)
i,j for every pair i, j such that xi ∈ Sj and every l = 1, . . . , k − 1,

• P
(l)
i for every xi and every l = 1, . . . , k − 1,

• the tail vertices S
(l)
j for each j and l = 1, . . . , r.

Definition 5.2. Given any instance S = (S;S1, . . . , Sm) define a graph KS on the vertex

set VS with the following edges:

• a path Sj − T
(1)
i,j − . . . − T

(k−1)
i,j − xi whenever xi ∈ Sj,

• a path xi − P
(1)
i − . . . − P

(k−1)
i for every xi,

• X − xi for all i,

• the tail paths, that is Sj − S
(1)
j − S

(2)
j − . . . − S

(r)
j for every j.

This graph encodes only the structure of S. To encode the coloring we link the loose

paths from xi to either A or B.

Definition 5.3. Given an instance S and a color assignment, define the graph HS to be

KS with the additional edges P
(k−1)
i −A whenever xi has color A and P

(k−1)
i −B whenever

xi has color B.

Note that HS has girth 2k + 2 = r + 1. Now comes the graph to be used in our

NP-completeness reduction:

Definition 5.4. For any instance S = (S;S1, . . . , Sm) of H2C put

GS = KS
r ∪ ES

where ES is the set of edges from A and B to each of X, xi, Sj, T
(l)
i,j , P

(l)
i , and S

(1)
j for all

possible i, j, l.

Observe that GS is defined independently of any particular color assignment. Moreover,

by analyzing Fig.4 it is not hard to check the following lemma:

Lemma 5.5. For any 2-colored instance S we have GS = HS
r.
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Figure 4: For S = ({x1, . . . , x4}; {x1, x2}, {x1, x3, x4}, {x2, x4}}) the graph KS consists of

all but the shaded edges. The graph HS (made of all the edges above) encodes

the coloring with x1, x4 of color A and x2, x3 of color B. It is a 2-coloring of S
since all Sj are in distance 2k from A and B.

Proof of Theorem 1.5 for odd r. Given an instance S = (S;S1, . . . , Sm) construct the graph

GS . If S has a 2-coloring, then GS is the r-th power of a graph with girth at least r + 1,

namely GS = HS
r by Lemma 5.5.

For the inverse implication suppose that GS = Hr for some graph H. Define the

coloring as follows: xi has color A (resp. B) if there is a path of length at most k from xi

to A (resp. B) in H. Clearly each xi is assigned at most one color since otherwise A and

B would be adjacent in Hr.

The tail structure Sj, S
(1)
j , . . . , S

(r)
j of each Sj satisfies the assumptions of Lemma 2.1,

so it enforces that in H:

• for every j the k-neighbourhood of Sj is precisely {xi : xi ∈ Sj}∪{S
(k)
j } (as in KS),

• A and B are exactly in distance 2k from each Sj (by the definition of ES).

Therefore for each j there has to be at least one vertex in {xi : xi ∈ Sj} that is k steps from

A and at least one that is k steps from B. This proves that the obtained coloring solves the

H2C instance.

5.2. Case of even r = 2k

We omit this case for reasons of space. The argument is similar, but requires a slight

modification to the graphs KS , HS and GS .

6. Conclusions and open problems

In this work we presented an efficient algorithmic solution to Levenshtein’s reconstruc-

tion conjecture and we applied it to a more general, unrestricted r-th root problem. From

a high-level perspective, it was possible because we could extract the “core of the problem”

which has very few solutions (as the conjecture suggests), so we could hope that these can

be found quickly. We also hope that the reverse flow of ideas is possible, so that some im-

proved algorithmic edge-by-edge reconstruction technique might help resolve Levenshtein’s

conjecture.
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Another (probably challenging) problem is to find a complete girth-parametrized com-

plexity dichotomy, that is to close the gap between r + 1 (or r + 2) and 2r + 3. We believe

that the r-th power recognition remains NP-complete even for graphs of girth 2r.

In fact it would even be very interesting to investigate possible complexity results for

finding square roots in GIRT H≥5 or GIRT H+
≥5 (completing the complexity dichotomy

of [4]). Note that the complete graph G = Kn has a square root in the class GIRT H+
≥5

if and only if there exists a graph on n vertices that has girth 5 and diameter 2. By

the Hoffman-Singleton theorem (see [16, 1]) such a graph may exist only for n = 5, 10, 50

and 3250. The first three of these graphs are known, and the existence of the last one

(for n = 3250) is a long-standing open problem. Therefore, any efficient algorithm for

SQUARE-OF-GIRT H+
≥5-GRAPH might (at least in principle) solve this problem.
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Abstract. We develop a tropical analogue of the classical double description method
allowing one to compute an internal representation (in terms of vertices) of a polyhedron
defined externally (by inequalities). The heart of the tropical algorithm is a characteri-
zation of the extreme points of a polyhedron in terms of a system of constraints which
define it. We show that checking the extremality of a point reduces to checking whether
there is only one minimal strongly connected component in an hypergraph. The latter
problem can be solved in almost linear time, which allows us to eliminate quickly redun-
dant generators. We report extensive tests (including benchmarks from an application to
static analysis) showing that the method outperforms experimentally the previous ones by
orders of magnitude. The present tools also lead to worst case bounds which improve the
ones provided by previous methods.

Introduction

Tropical polyhedra are the analogues of convex polyhedra in tropical algebra. The latter

deals with structures like the max-plus semiring Rmax (also called max-plus algebra), which

is the set R∪ {−∞}, equipped with the addition x⊕ y := max(x, y) and the multiplication

x ⊗ y := x + y.

The study of the analogues of convex sets in tropical or max-plus algebra is an active

research topic, and has been treated under various guises. It arose in the work of Zim-

merman [Zim77], following a way opened by Vorobyev [Vor67], motivated by optimization

theory. Max-plus cones were studied by Cuninghame-Green [CG79]. Their theory was

independently developed by Litvinov, Maslov and Shpiz [LMS01] (see also [MS92]) with
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motivations from variations calculus and asymptotic analysis, and by Cohen, Gaubert, and

Quadrat [CGQ04] who initiated a “geometric approach” of discrete event systems [CGQ99],

further developed in [Kat07, DLGKL09]. Other motivations arise from abstract convexity,

see the book by Singer [Sin97], and also the work of Briec and Horvath [BH04]. The field

has attracted recently more attention after the work of Develin and Sturmfels [DS04], who

pointed out connections with tropical geometry, leading to several works by Joswig, Yu,

and the same authors [Jos05, DY07, JSY07, Jos09].

A tropical polyhedron can be represented in two different ways, either internally, in

terms of extreme points and rays, or externally, in terms of linear inequalities (see Sect. 1

for details). As in the classical case, passing from the external description of a polyhedron

to its internal description is a fundamental computational issue. This is the object of the

present paper.

Butkovič and Hegedus [BH84] gave an algorithm to compute the generators of a tropical

polyhedral cone described by linear inequalities. Gaubert gave a similar one and derived the

equivalence between the internal and external representations [Gau92, Ch. III] (see [GK09]

for a recent discussion). Both algorithms rely on a successive elimination of inequalities,

but have the inconvenience of squaring at each step the number of candidate generators,

unless an elimination technique is used, as in the Maxplus toolbox of Scilab [CGMQ].

Joswig developed a different approach, implemented in Polymake [GJ], in which a tropical

polytope is represented as a polyhedral complex [DS04, Jos09].

The present work grew out from two applications: to discrete event systems [Kat07,

DLGKL09], and to software verification by static analysis [AGG08]. In these applications,

passing from the external to the internal representation is a central difficulty. A further

motivation originates from mean payoff games [AGG09b]. These motivations are reviewed

in Section 2.

Contributions. We develop a new algorithm which computes the extreme elements of trop-

ical polyhedra. It is based on a successive elimination of inequalities, and a result (Th. 4.1)

allowing one, given a polyhedron P and a tropical halfspace H, to construct a list of can-

didates for the generators of P ∩H. The key ingredient is a combinatorial characterization

of the extreme generators of a polyhedron defined externally (Th. 3.5 and 3.7): we reduce

the verification of the extremality of a candidate to the existence of a strongly connected

component reachable from any other in a directed hypergraph. We include a complexity

analysis and experimental results (Sect. 4), showing that the new algorithm outperforms the

earlier ones, allowing us to solve instances which were previously by far inaccessible. Our

result also leads to worst case bounds improving the ones of previously known algorithms.

1. Definitions: tropical polyhedra and polyhedral cones

The neutral elements for the addition ⊕ and multiplication ⊗, i.e., the zero and the

unit, will be denoted by 0 := −∞ and 1 := 0, respectively. The tropical analogues of the

operations on vectors and matrices are defined naturally. The elements of R
d
max, the dth

fold Cartesian product of Rmax, will be thought of as vectors, and denoted by bold symbols,

like x = (x1, . . . ,xd).

A tropical halfspace is a set of the vectors x = (xi) ∈ R
d
max verifying an inequality

constraint of the form

max
1≤i≤d

ai + xi ≤ max
1≤i≤d

bi + xi, ai, bi ∈ Rmax.
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A tropical polyhedral cone is defined as the intersection of n halfspaces. It can be equivalently

written as the set of the solutions of a system of inequality constraints Ax ≤ Bx. Here,

A = (aij) and B = (bij) are n × d matrices with entries in Rmax, concatenation denotes

the matrix product (with the laws of Rmax), and ≤ denotes the standard partial ordering

of vectors. For sake of readability, tropical polyhedral cones will be simply referred to as

polyhedral cones or cones.
Tropical polyhedral cones are known to be generated by their extreme rays [GK06,

GK07, BSS07]. Recall that a ray is the set of scalar multiples of a non-zero vector u. It

is extreme in a cone C if u ∈ C and if u = v ⊕ w with v,w ∈ C implies that u = v or

u = w. A finite set G = (gi)i∈I of vectors is said to generate a polyhedral cone C if each

gi belongs to C, and if every vector x of C can be written as a tropical linear combination
⊕

i λig
i of the vectors of G (with λi ∈ Rmax). Note that in tropical linear combinations,

the requirement that λi be nonnegative is omitted. Indeed, 0 = −∞ ≤ λ holds for all scalar

λ ∈ Rmax.

The tropical analogue of the Minkowski theorem [GK07, BSS07] shows in particular

that every generating set of a cone that is minimal for inclusion is obtained by selecting

precisely one (non-zero) element in each extreme ray.

A tropical polyhedron of R
d
max is the affine analogue of a tropical polyhedral cone. It is

defined by a system of inequalities of the form Ax ⊕ c ≤ Bx ⊕ d. It can be also expressed

as the set of the tropical affine combinations of its generators. The latter are of the form
⊕

i∈I λiv
i ⊕

⊕

j∈J µjr
j , where the (vi)i∈I are the extreme points, the (rj)j∈J a set formed

by one element of each extreme ray, and
⊕

i λi = 1. It is known [CGQ04, GK07] that

every tropical polyhedron of R
d
max can be represented by a tropical polyhedral cone of R

d+1
max

thanks to an analogue of the homogenization method used in the classical case (see [Zie98,

Sect. 1.5]). Then, the extreme rays of the cone are in one-to-one correspondence with the

extreme generators of the polyhedron. That is why, in the present paper, we will only state

the main results for cones, leaving to the reader the derivation of the affine analogues, along

the lines of [GK07].

In the sequel, we will illustrate our results on the polyhedral cone C given in Fig. 1,

defined by the system in the right side. The left side is a representation of C in barycen-

tric coordinates: each element (x1,x2,x3) is represented as a barycenter with weights

(ex1 , ex2 , ex3) of the three vertices of the outermost triangle. Then two elements of a same

ray are represented by the same point. The cone C is depicted in solid gray (the black bor-

der is included), and is generated by the extreme elements g0 = (0, 0,0), g1 = (−2, 1, 0),

g2 = (2, 2, 0), and g3 = (0,0, 0).

2. Motivations from static analysis, discrete event systems, and mean pay-

off games

Tropical polyhedra have been recently involved in static analysis by abstract interpreta-

tion [AGG08]. It has been shown that they allow to automatically compute complex invari-

ants involving the operators min and max which hold over the variables of a program. Such

invariants are disjunctive, while most existing techniques in abstract interpretation are only

able to express conjunctions of affine constraints, see in particular [CC77, CH78, Min01].

For instance, tropical polyhedra can handle notorious problems in verification of mem-

ory manipulations. Consider the well-known memory string manipulating function memcpy

in C. A call to memcpy(dst, src, n) copies exactly the first n characters of the string buffer
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Figure 1: A tropical polyhedral cone in R
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Figure 2: memcpy invariant

src to dst. In program verification, precise invariants over the length of the strings are

needed to ensure the absence of string buffer overflows. Recall that the length of a string

is defined as the position of the first null character in the string. To precisely analyze the

function memcpy, two cases have to be distinguished:

(i) either n is strictly smaller than the source length len src, so that only non-null char-

acters are copied into dst, hence len dst ≥ n,

(ii) or n ≥ len src and the null terminal character of src will be copied into dst, thus

len dst = len src.

Thanks to tropical polyhedra, the invariant min(len src, n) = min(len dst, n), or equiva-

lently max(−len src,−n) = max(−len dst,−n), can be automatically inferred. It is the

exact encoding of the disjunction of the cases (i) and (ii). The invariant is represented by

the non-convex set of R
3 depicted in Figure 2. In the application to static analysis, the

performance of the algorithm computing the extreme elements of tropical polyhedra plays

a crucial role in the scalability of the analyzer (see [AGG08] for further details).

A second motivation arises from the “geometric approach” of max-plus linear discrete

event systems [CGQ99], in which the computation of feedbacks ensuring that the state of

the system meets a prescribed constraint (for instance that certain waiting times remain

bounded) reduces [Kat07] to computing the greatest fixed point of an order preserving map

on the set of tropical polyhedra. Similar computations arise when solving dual observability

problems [DLGKL09]. Again, the effective handling of these polyhedra turns out to be the

bottleneck.

A third motivation arises from the study of mean payoff combinatorial games. In

particular, it is shown in [AGG09b] that checking whether a given initial state of a mean

payoff game is winning is equivalent to finding a vector in an associated tropical polyhedral

cone (with a prescribed finite coordinate). This polyhedron consists of the super-fixed points

of the dynamic programming operator (potentials), which certify that the game is winning.
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3. Characterizing extremality from inequality constraints

3.1. Preliminaries on extremality

The following lemma, which is a variation on the proof of Th. 3.1 of [GK07] and on

Th. 14 of [BSS07], shows that extremality can be expressed as a minimality property:

Proposition 3.1. Given a polyhedral cone C ⊂ R
d
max, g is extreme if and only if there

exists 1 ≤ t ≤ d such that g is a minimal element of the set {x ∈ C | xt = gt }, i.e. g ∈ C
and for each x ∈ C, x ≤ g and xt = gt implies x = g. In that case, g is said to be extreme

of type t.

In Fig. 3, the light gray area represents the set of the elements (x1,x2,x3) of R
3
max such

that (x1,x2,x3) ≤ g2 implies x1 < g2
1. It clearly contains the whole cone except g2, which

shows that g2 is extreme of type 1.

A tropical segment is the set of the tropical linear combinations of two points. Using the

fact that a tropical segment joining two points of a polyhedral cone C yields a continuous

path included in C, one can check that g is extreme of type t in C if and only if there is a

neighborhood N of g such that g is minimal in {x ∈ C ∩ N | xt = gt }. Thus, extremality

is a local property.

Finally, the extremality of an element g in a cone C can be equivalently established by

considering the vector formed by its non-0 coordinates. Formally, let supp(x) := {i | xi 6= 0}
for any x ∈ R

d
max. Then g is extreme in C if and only if it is extreme in {x ∈ C | supp(x) ⊂

supp(g)}. This allows to assume that supp(g) = {1, . . . , d} without loss of generality.

3.2. Expressing extremality using the tangent cone

For now, the polyhedral cone C is supposed to be defined by a system Ax ≤ Bx of n

inequalities.

Consider an element g of the cone C, which we assume, from the previous discussion,

to satisfy supp(g) = { 1, . . . , d }. In this context, the tangent cone of C at g is defined as

the tropical polyhedral cone T (g, C) of R
d
max given by the system of inequalities

max
i∈arg max(Akg)

xi ≤ max
j∈argmax(Bkg)

xj for all k such that Akg = Bkg, (3.1)

where for each row vector c ∈ R
1×d
max, arg max(cg) is defined as the argument of the maximum

cg = max1≤i≤d(ci+gi), and where Ak and Bk denote the kth rows of A and B, respectively.

The tangent cone T (g, C) provides a local description of the cone C around g:

Proposition 3.2. There exists a neighborhood N of g such that for all x ∈ N , x belongs
to C if and only if it is an element of g + T (g, C).

As an illustration, Fig. 4 depicts the set g2 + T (g2, C) (in semi-transparent light gray)

when C is the cone given in Fig. 1. Both clearly coincide in the neighborhood of g2.

Since extremality is a local property, it can be equivalently characterized in terms of

the tangent cone. Let 111 be the element of R
d
max whose all coordinates are equal to 1.

Proposition 3.3. The element g is extreme in C iff the vector 111 is extreme in T (g, C).
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Figure 6: A directed hypergraph

The problem is now reduced to the characterization of the extremality of the vector 111
in a {0,1 }-cone, i.e. a polyhedral cone defined by a system of the form Cx ≤ Dx where

C,D ∈ {0,1 }n×d. The following proposition states that only {0,1 }-vectors, i.e. elements

of the tropical regular cube {0,1 }d, have to be considered:

Proposition 3.4. Let D ⊂ R
d
max be a {0,1 }-cone. Then 111 is extreme of type t if and only

if it is the unique element x of D ∩ {0,1 }d satisfying xt = 1.
The following criterion of extremality is a direct consequence of Prop. 3.3 and 3.4:

Theorem 3.5. Let C ⊂ R
d
max be a polyhedral cone. Then g ∈ C is extreme of type t if and

only if the vector 111 is the unique {0,1 }-element of the tangent cone T (g, C) whose t-th
coordinate is 1.

Figure 5 shows that in our running example, the {0,1 }-elements of T (g2, C) distinct

from 111 (in squares) all satisfy x1 = 0. Naturally, testing, by exploration, whether the set

of 2d−1 {0,1 }-elements x verifying xt = 1 belonging to T (g, C) consists only of 111 does not

have an acceptable complexity. Instead, the approach of the next section will rely on the

equivalent formulation of the criterion of Th. 3.5:

∀l ∈ { 1, . . . , d },
[

∀x ∈ T (g, C) ∩ {0,1 }d, xl = 0 =⇒ xt = 0]

. (3.2)

3.3. Characterizing extremality with directed hypergraphs

A directed hypergraph is a couple (N,E) such that each element of E is of the form

(T,H) with T,H ⊂ N .
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The elements of N and E are respectively called nodes and hyperedges. Given a hyper-

edge e = (T,H) ∈ E, the sets T and H represent the tail and the head of e respectively,

and are also denoted by T (e) and H(e). Figure 6 depicts an example of hypergraph whose

nodes are u, v,w, x, y, t, and of hyperedges e1 = ({u}, {v}), e2 = ({v}, {w}), e3 = ({w}, {u}),
e4 = ({v,w}, {x, y}), and e5 = ({w, y}, {t}).

Reachability is extended from digraphs to directed hypergraphs by the following recur-

sive definition: given u, v ∈ N , then v is reachable from u in H, which is denoted u H v,

if one of the two conditions holds: u = v, or there exists e ∈ E such that v ∈ H(e) and all

the elements of T (e) are reachable from u. In our example, t is reachable from u.

The size size(H) of a hypergraph H = (N,E) is defined as |N |+
∑

e∈E(|T (e)|+ |H(e)|).
In the rest of the paper, directed hypergraphs will be simply referred to as hypergraphs.

We associate to the tangent cone T (g, C) the hypergraph H(g, C) = (N,E) defined by:

N = { 1, . . . , d } E = { (arg max(Bkg), arg max(Akg)) | Akg = Bkg, 1 ≤ k ≤ n } .

The extremality criterion of Eq. (3.2) suggests to evaluate, given an element of T (g, C) ∩
{0,1 }d, the effect of setting its l-th coordinate to the other coordinates. Suppose that it

has been discovered that xl = 0 implies xj1 = · · · = xjn = 0. For any hyperedge e of

H(g, C) such that T (e) ⊂ { l, j1, . . . , jn }, x satisfies: maxi∈H(e) xi ≤ maxj∈T (e) xj = 0, so

that xi = 0 for all i ∈ H(e). Thus, the propagation of the value 0 from the l-th coordinate

to other coordinates mimicks the inductive definition of the reachability relation from the

node l in H(g, C):

Proposition 3.6. For all l ∈ { 1, . . . , d }, the statement given between brackets in Eq. (3.2)

holds if and only if t is reachable from l in the hypergraph H(g, C).

Hence, the extremality criterion can be restated thanks to some considerations on the

strongly connected components of H(g, C). The strongly connected components (Sccs for

short) of a hypergraph H are the equivalence classes of the equivalence relation ≡H, defined

by u ≡H v if u  H v and v  H u. They form a partition of the set of nodes of H. They

can be partially ordered by the relation �H, defined by C1 �H C2 if C1 and C2 admit a

representative u and v respectively such that v  H u (beware of the order of v and u in
v  H u). Then Prop. 3.6 and Th. 3.5 imply the following statement:

Theorem 3.7. Let C ⊂ R
d
max be a polyhedral cone, and g ∈ C. Then g is extreme if and

only if the set of the Sccs of the hypergraph H(g, C), partially ordered by �H(g,C), admits a
least element.

This theorem is reminiscent of a classical result, showing that a point of a polyhedron

defined by inequalities is extreme if and only if the family of gradients of active inequalities

at this point is of full rank. Here, the hypergraph encodes precisely the subdifferentials

(set of generalized gradients) of the active inequalities but a major difference is that the

rank condition must be replaced by the above minimality condition, which is essentially

stronger. Indeed, using this theorem, it is shown in [AGK09] that an important class of

tropical polyhedra has fewer extreme rays than its classical analogue.

An algorithm due to Gallo et al. [GLPN93] shows that one can compute the set of nodes

that are reachable from a given node in linear time in an hypergraph. The following result

shows that one can in fact compute the minimal Sccs with almost the same complexity.

The algorithm is included in the extended version of the present paper [AGG09c]. Although

it shows some analogy with the classical Tarjan algorithm, the hypergraph case differs
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Figure 7: Intersecting a cone with a halfspace

Figure 8: Intersecting 10 affine hyper-

planes in dimension 3

critically from the graph case in that one cannot compute all the Sccs using the same

technique.

Theorem 3.8. The set of minimal Sccs of a hypergraph H = (N,E) can be computed in
time O(size(H) × α(|N |)), where α denotes the inverse of the Ackermann function.

4. The tropical double description method

Our algorithm is based on a successive elimination of inequalities. Given a polyhedral

cone C defined by a system of n constraints, the algorithm computes by induction on k

(0 ≤ k ≤ n) a generating set Gk of the intermediate cone defined by the first k constraints.

Then Gn forms a generating set of the cone C. Passing from the set Gk to the set Gk+1 relies

on a result which, given a polyhedral cone K and a tropical halfspace H = {x | ax ≤ bx },
allows to build a generating set G′ of K ∩H from a generating set G of K:

Theorem 4.1. Let K be a polyhedral cone generated by a set G ⊂ R
d
max, and H = {x |

ax ≤ bx } a tropical halfspace (a, b ∈ R
1×d
max). Then the polyhedral cone K ∩H is generated

by the set {g ∈ G | ag ≤ bg } ∪ { (ah)g ⊕ (bg)h | g,h ∈ G, ag ≤ bg, and ah > bh }.

For instance, consider the cone defined in Fig. 1 and the constraint x2 ≤ x3 + 2.5

(depicted in semi-transparent gray in Fig. 7). The three generators g1, g2, and g3 satisfy

the constraint, while g0 does not. Their combinations are the elements h1,0, h2,0, and h3,0

respectively. The resulting algorithm is given in Figure 9. As in the classical case, this

inductive approach produces redundant generators, hence, the heart of the algorithm is the

extremality test in Line 10. We use here the hypergraph characterization (Theorems 3.7

and 3.8).

Complexity analysis. The complexity of the elementary step of ComputeExtreme, i.e. the

computation of the elements provided by Th. 4.1 and the elimination of non-extreme ones

(Lines 7 to 13), can be precisely characterized to O(ndα(d) |G|2), where G is the generating

set of the last intermediate cone. By comparison, for classical polyhedra, the same step in

the refined double description method by Fukuda and Prodon [FP96] takes a time O(n |G|3).
Note that |G| can take values much larger that d.
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1: procedure ComputeExtreme(A, B, n) ⊲ A, B ∈ R
n×d
max

2: if n = 0 then ⊲ Base case

3: return the tropical canonical basis (ǫi)1≤i≤d

4: else ⊲ Inductive case

5: split Ax ≤ Bx into Cx ≤ Dx and ax ≤ bx, with C, D ∈ R
(n−1)×d
max and a, b ∈ R

1×d
max

6: G := ComputeExtreme(C, D, n − 1)
7: G≤ := {gi ∈ G | agi ≤ bgi }, G> := {gj ∈ G | agj > bgj }, H := G≤

8: for all gi ∈ G≤ and gj ∈ G> do

9: h := (agj)gi ⊕ (bgi)gj

10: if h is extreme in {x | Ax ≤ Bx} then

11: append κh to H, where κ is the opposite of the first non-0 coefficient of h

12: end

13: done

14: end

15: return H
16: end

Figure 9: Our main algorithm computing the extreme rays of tropical cones

The overall complexity of the algorithm ComputeExtreme depends on the size of the

sets returned in the intermediate steps. In classical geometry, the upper bound theorem of

McMullen [McM70] shows that the maximal number of extreme points of a convex polytope

in R
d defined by n inequality constraints is equal to

U(n, d) :=

(

n − ⌊(d + 1)/2⌋

n − d

)

+

(

n − ⌊(d + 2)/2⌋

n − d

)

.

The polars of the cyclic polytopes (see [Zie98]) are known to reach this bound. Allamigeon,

Gaubert, and Katz [AGK09] showed that a similar bound is valid in the tropical setting.

Theorem 4.2 ([AGK09]). The number of extreme rays of a tropical cone in (R ∪ {−∞})d

defined as the intersection of n tropical half-spaces cannot exceed U(n + d, d − 1) = O((n +

d)⌊(d−1)/2⌋.

The bound is asymptotically tight for a fixed n, as d tends to infinity, being approached

by a tropical generalization of the (polar of) the cyclic polytope [AGK09]. The bound is

believed not to be tight for a fixed d, as n tends to infinity. Finding the optimal bound is an

open problem. By combining Theorem 4.2, Theorem 3.8, and Theorem 3.7, we readily get

the following complexity result, showing that the execution time is smaller in the tropical

case than in the classical case, even with the refinements of [FP96].

Proposition 4.3. The hypergraph implementation of the tropical double description method
returns the set of extreme rays of a polyhedral cone defined by n inequalities in dimension
d in time O(n2dα(d)G2

max), where Gmax is the maximal number of extreme rays of a cone
defined by a subsystem of inequalities taken from Ax ≤ Bx. In particular, the time can be
bounded by O(n2dα(d)(n + d)d−1).

Alternative approaches. The existing approachs discussed in the introduction have a struc-

ture which is similar to ComputeExtreme. However, their implementation in the Maxplus

toolbox of Scilab [CGMQ] and in our previous work [AGG08] relies on a much less efficient

elimination of redundant generators. Its principle is the following: an element h is extreme

in the cone generated by a given set H if and only if h can not be expressed as the tropical

linear combination of the elements of H which are not proportional to it. This property can
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Table 1: Benchmarks on a single core of a 3 GHz Intel Xeon with 3 Gb RAM
d n # final # inter. T (s) T ′ (s) T/T ′

rnd100 12 15 32 59 0.24 6.72 0.035

rnd100 15 10 555 292 2.87 321.78 8.9 · 10−3

rnd100 15 18 152 211 6.26 899.21 7.0 · 10−3

rnd30 17 10 1484 627 15.2 4667.9 3.3 · 10−3

rnd10 20 8 5153 1273 49.8 50941.9 9.7 · 10−4

rnd10 25 5 3999 808 9.9 12177.0 8.1 · 10−4

rnd10 25 10 32699 6670 3015.7 — —

cyclic 10 20 3296 887 25.8 4957.1 5.2 · 10−3

cyclic 15 7 2640 740 8.1 1672.2 5.2 · 10−3

cyclic 17 8 4895 1589 44.8 25861.1 1.7 · 10−3

cyclic 20 8 28028 5101 690 45 days 1.8 · 10−4

cyclic 25 5 25025 1983 62.6 8 days 9.1 · 10−5

cyclic 30 5 61880 3804 261 — —
cyclic 35 5 155040 7695 1232.6 — —

# var # lines T (s) T ′ (s) T/T ′

oddeven8 17 118 7.6 152.1 0.050

oddeven9 19 214 128.0 22101.2 5.8 · 10−3

oddeven10 21 240 1049.0 — —

be checked in O(d × |H|) time using residuation (see [BSS07] for algorithmic details). In

the context of our algorithm, the worst case complexity of the redundandy test is therefore

O(d |G|2), where G is the set of the extreme rays of the last intermediary cone. This is much

worse that our method in O(ndα(d)) based on directed hypergraphs, since the cardinality

of the set G may be exponential in d (see Theorem 4.2). This is also confirmed by our

experiments (see below).

We next sketch a different method relying on arrangement of tropical hyperplanes

(arrangements of classical hyperplanes yield naive bounds). Indeed, Theorem 3.7 implies

that every extreme ray belongs to the intersection of d − 1 tropical hyperplanes, obtained

by saturating d − 1 inequalities among the n + d taken from Ax ≤ Bx and xi ≥ −∞, for

i ∈ [d]. The max-plus Cramer theorem (see [AGG09a] and the references therein) implies

that for generic values of the matrices A,B, every choice of d − 1 saturated inequalities

yields at most one candidate to be an extreme ray, which can be computed in O(d3) time.

This yields a list of O((n+d)d−1) candidates, from which the extreme rays can be extracted

by using the present hypergraph characterization (Theorems 3.7 and 3.8), leading to a

O((ndα(d) + d3)(n + d)d−1) execution time, which is better than the one of Proposition 4.3

by a factor n/α(d) when n ≫ d. However, the resulting algorithm is of little practical

use, since the worst case execution time is essentially always achieved, whereas the double

description method takes advantage of the fact that Gmax is in general much smaller than

the upper bound of Theorem 4.2 (which is probably not optimal in the case n ≫ d).

A third approach, along the lines of [DS04, Jos09], would consist in representing tropical

polyhedra by polyhedral complexes in the usual sense. However, an inconvenient of polyhe-

dral complexes is that their number of vertices (called “pseudo-vertices” to avoid ambigui-

ties) is exponential in the number of extreme rays [DS04]. Hence, the representations used

here are more concise. This is illustrated in Figure 8 (generated using Polymake), which

shows an intersection of 10 signed tropical hyperplanes, corresponding to the “natural”

pattern studied in [AGK09]. There are only 24 extreme rays, but 1215 pseudo-vertices.

Experiments. Allamigeon has implemented Algorithm ComputeExtreme in OCaml, as

part of the “Tropical polyhedral library” (TPLib), http://penjili.org/tplib.html. Table 1

reports some experiments for different classes of tropical cones: samples formed by several

cones chosen randomly (referred to as rndx where x is the size of the sample), and signed

cyclic cones which are known to have a very large number of extreme elements [AGK09].
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The successive columns respectively report the dimension d, the number of constraints n,

the size of the final set of extreme rays, the mean size of the intermediary sets, and the

execution time T (for samples of “random” cones, we give average results).

The result provided by ComputeExtreme does not depend on the order of the in-

equalities in the initial system. This order may impact the size of the intermediary sets and

subsequently the execution time. In our experiments, inequalities are dynamically ordered

during the execution: at each step of the induction, the inequality ax ≤ bx is chosen so

as to minimize the number of combinations (agj)gi ⊕ (bgi)gj . This strategy reports better

results than without ordering.

We compare our algorithm with a variant using the alternative extremality criterion

which is discussed in Sect. 4 and used in the other existing implementations [CGMQ,

AGG08]. Its execution time T ′ is given in the seventh column. The ratio T/T ′ shows

that our algorithm brings a huge breakthrough in terms of execution time. When the num-

ber of extreme rays is of order of 104, the second algorithm needs several days to terminate.

Therefore, the comparison could not be made in practice for some cases.

Table 1 also reports some benchmarks from applications to static analysis. The ex-

periments oddeveni correspond to the static analysis of the odd-even sorting algorithm of i

elements. It is a sort of worst case for our analysis. The number of variables and lines in each

program is given in the first columns. The analyzer automatically shows that the sorting

program returns an array in which the last (resp. first) element is the maximum (minimum)

of the array given as input. It clearly benefits from the improvements of ComputeEx-

treme, as shown by the ratio with the execution time T ′ of the previous implementation

of the static analyzer [AGG08].

References
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Abstract. Using ε-bias spaces over F2, we show that the Remote Point Problem (RPP),
introduced by Alon et al [APY09], has an NC2 algorithm (achieving the same parame-
ters as [APY09]). We study a generalization of the Remote Point Problem to groups: we
replace F

n

2 by G
n for an arbitrary fixed group G. When G is Abelian we give an NC2

algorithm for RPP, again using ε-bias spaces. For nonabelian G, we give a deterministic
polynomial-time algorithm for RPP. We also show the connection to construction of ex-
panding generator sets for the group G

n. All our algorithms for the RPP achieve essentially
the same parameters as [APY09].

1. Introduction

Valiant, in his celebrated work [V77] on circuit lower bounds for computing linear trans-

formations A : F
n −→ F

m for a field F, initiated the study of rigid matrices. If explicit

rigid matrices of certain parameters can be constructed it would result in superlinear lower

bounds for logarithmic depth linear circuits over F. This problem and the construction of

such rigid matrices has remained elusive for over three decades.

Alon, Panigrahy and Yekhanin [APY09] recently proposed a problem that appears to be

of intermediate difficulty. Given a subspace L of F
n
2 by its basis and a number r ∈ [n] as

input, the problem is to compute in deterministic polynomial time a point v ∈ F
n
2 such

that ∆(u, v) ≥ r for all u ∈ L, where ∆(u, v) is the Hamming distance. They call this the

Remote Point Problem. The point v is said to be r-far from the subspace L.
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Alon et al [APY09] give a nice polynomial time-bounded (in n) algorithm for computing a

v ∈ F
n
2 that is c log n-far from a given subspace L of dimension n/2 and c is a fixed constant.

For L such that dim(L) = k < n/2 they give a polynomial-time algorithm for computing a

point v ∈ F
n
2 that is cn log k

k -far from L.

Results of this paper. In [AS09a] we recently investigated the problem of proving circuit

lower bounds in the presence of help functions. Specifically, one of the problems we consider

is proving lower bounds for constant-depth Boolean circuits which can take a given set of

(arbitrary) help functions {h1, h2, · · · , hm} at the input level, where hi : {0, 1}n −→ {0, 1}
for each i. Proving explicit lower bounds for this model would allow us to separate EXP

from the polynomial-time many-one closure of nonuniform AC0. We show that it suffices to

find a polynomial-time solution to the Remote Point Problem for parameters k = 2(log log n)c

and r = n

2(log log n)d
for all constants c and d. Unfortunately, the parameters of the Alon et

al algorithm are inadequate for our application.

However, motivated by this connection, in the present paper we carry out a more detailed

study of the Remote Point Problem as an algorithmic question. We briefly summarize our

results.

1. The first question we address is whether we can give a deterministic parallel (i.e. NC)

algorithm for the problem — Alon et al’s algorithm is inherently sequential as it is based

on the method of conditional probabilities and pessimistic estimators.

It turns out an element of an ε-bias space for suitably chosen ε is a solution to the Remote

Point Problem which gives us an NC algorithm quite easily.

2. Since the RPP for F
n
2 can be solved using small bias spaces, it naturally leads us to

address the problem in a more general group-theoretic setting.

In the generalization we study we will replace F2 with an arbitrary fixed finite group G such

that |G| ≥ 2. Hence we will have the n-fold product group Gn instead of the vector space

F
n
2 .

Given elements x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) of Gn, let ∆(x, y) = |{i | xi 6= yi}|.
I.e. ∆(x, y) is the Hamming distance between x and y. Furthermore, for S ⊆ Gn, let ∆(x, S)

denote miny∈S ∆(x, y).

We now define the Remote Point Problem (RPP) over a finite group G. The input is a

subgroup H of Gn, where H is given by a generating set, and a number r ∈ [n]. The

problem is to compute in deterministic polynomial (in n) time an element x ∈ Gn such that

∆(x,H) > r. The results we show in this general setting are the following.

(a) The Remote Point Problem over any Abelian group G has an NC2 algorithm for

r = O(n log k
k ) and k ≤ n/2, where k = log|G| |H|.

(b) Over an arbitrary group G the Remote point problem has a polynomial-time algo-

rithm for r = O(n log k
k ) and k ≤ n/2, where k = log|G| |H|.
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The parallel algorithm stated in part(a) above is based on ε-bias space constructions for

finite Abelian groups described in Azar et al [AMN98]. The sequential algorithm stated in

part(b) above is a group-theoretic generalization of the Alon et al algorithm for F
n
2 [APY09].

Due to lack of space, some proofs have been omitted. They may be found in the full version

which has been published as an ECCC report [AS09b].

2. Preliminaries

Fix a finite group G such that |G| ≥ 2. Given any x ∈ Gn, let wt(x) denote the number of

coordinates i such that xi 6= 1, where 1 is the identity of the group G. By B(r), we will refer

to the set of x ∈ Gn such that wt(x) ≤ r. Given a subset S of Gn, B(S, r) will denote the

set S · B(r) = {sx | s ∈ S, x ∈ B(r)}. Clearly, for any S ⊆ Gn and any x ∈ Gn, x ∈ B(S, r)
if and only if ∆(x, S) ≤ r. We say that x is r-close to S if x ∈ B(S, r) and r-far from S if

x /∈ B(S, r).

The Remote Point Problem (RPP) over G is defined to be the following algorithmic problem:

INPUT: A subgroup H of Gn (given by its generators) and an r ∈ N.

OUTPUT: An x ∈ Gn such that x /∈ B(H, r).

Clearly, there are inputs to the above problem where no solution can be found. But the

input instances of the kind that we will study will clearly have a solution (in fact, a random

point of Gn will be a solution with high probability).

Given a subgroup H of Gn, denote by δ(H) the quantity log|G| |H|. We will call δ(H) the

dimension of H in Gn.

We say that the RPP over G has a (k(n), r(n))-algorithm if there is an efficient algorithm that

solves the Remote Point Problem when given as input a subgroup H of Gn of dimension at

most k(n) and an r that is bounded by r(n). (Here, ‘efficient’ can correspond to polynomial

time or some smaller complexity class.)

A simple counting argument shows that there is a valid solution to the RPP over G on

inputs (H, r) where δ(H) + r ≤ n(1 − H(r/n)
log |G| − ε), for any fixed ε > 0 (where H(·) denotes

the binary entropy function). However, the best known deterministic solution to the RPP

– from [APY09] – is a polynomial time (k, cn log k
k )-algorithm which works over F

n
2 (i.e, the

group G involved is the additive group of the field F2).

2.1. Some Group-Theoretic Algorithms

We introduce basic definitions and review some group-theoretic algorithms. Let Sym(Ω)

denote the group of all permutations on a finite set Ω of size m. In this section we use G,H
etc. to denote permutation groups on Ω, which are simply subgroups of Sym(Ω).
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Let G be a subgroup of Sym(Ω). For a subset ∆ ⊆ Ω denote by G{∆} the point-wise
stabilizer of ∆. I.e G{∆} is the subgroup consisting of exactly those elements of G that fix

each element of ∆.

Theorem 2.1 (Schreier-Sims). [Lu93]

(1) If a subgroup G of Sym(Ω) is given by a generating set as input along with the subset
∆ there is a polynomial-time (sequential) algorithm for computing a generator set
for G{∆}.

(2) If a subgroup G of Sym(Ω) is given by a generating set as input, then there is a
polynomial time algorithm for computing |G|.

(3) Given as input a permutation σ ∈ Sym(Ω) and a generator set for a subgroup G of
Sym(Ω), we can test in deterministic polynomial time if σ is an element of G.

We are also interested in a special case of this problem which we now define. A subset

Γ ⊆ Ω is an orbit of G if Γ = {σ(i) | σ ∈ G} for some i ∈ Ω. Any subgroup G of Sym(Ω)

partitions Ω into orbits (called G-orbits).

For a constant b > 0, a subgroup G of Sym(Ω) is defined to be a b-bounded permutation
group if every G-orbit is of size at most b.

In [MC87], McKenzie and Cook studied the parallel complexity of Abelian permutation

group problems. Specifically, they gave an NC3 algorithm for testing membership in an

Abelian permutation group given by a generator set and for computing the order of an

Abelian permutation group. When restricted to b-bounded Abelian permutation groups,

the algorithms of [MC87] for these problems are actually NC2 algorithms. We formally

state their result and derive a consequence.

Theorem 2.2 ([MC87]). There is an NC2 algorithm for membership testing in a b-bounded
Abelian permutation group G given by a generator set.

We now consider problems over Gn, for a fixed finite group G. We know from basic group

theory that every group G is a permutation group acting on itself. I.e. every G can be seen

as a subgroup of Sym(G), where G acts on itself by left (or right) multiplication. Therefore,

Gn can be easily seen as a permutation group on the set Ω = G × [n] and hence, Gn can be

considered a subgroup of Sym(Ω). Furthermore, notice that each subset G × {i} is an orbit

of this group Gn. Hence, Gn is a b-bounded permutation group contained in Sym(Ω), where

b = |G|. Finally, if G is an Abelian group, then so is this subgroup of Sym(Ω). We have the

following lemma as an easy consequence of Theorem 2.2.

Lemma 2.3. Let G be Abelian. There is an NC2 algorithm that takes as input a generator
set for some subgroup H of Gn and an x ∈ Gn, and accepts iff x ∈ H.

Given any y = (y1, y2, . . . , yi) ∈ Gi with 1 ≤ i ≤ n and any S ⊆ Gn, let Sy denote the set

{x ∈ S | xj = yj for 1 ≤ j ≤ i}.

Lemma 2.4. Let G be any fixed finite group. There is a polynomial time algorithm that
takes as input a subgroup H of Gn, where H is given by generators, and a y ∈ Gi with
1 ≤ i ≤ n, and computes |Hy|.
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Proof. Let K = {(x1, x2, . . . , xn) ∈ H | x1 = x2 = · · · = xi = 1}, where 1 denotes the

identity element of G. Clearly, K is a subgroup of H. The set Hy, if nonempty, is simply a

coset of K and thus, we have |Hy| = |K|. To check if Hy is nonempty, we consider the map

πi : Gn → Gi that projects its input onto its first i coordinates; note that Hy is nonempty

iff the subgroup πi(H) contains y, which can be checked in polynomial time by point (3)

of Theorem 2.1 (here, we are identifying Gn with a subgroup of Sym(G × [n]) as above).

If y /∈ πi(H), the algorithm outputs 0. Otherwise, we have |Hy| = |K| and it suffices to

compute |K|. But K is simply the point-wise stabilizer of the set G × [i] in H, and hence

|K| can be computed in polynomial time by points (1) and (2) of Theorem 2.1.

3. Expanding Cayley Graphs and the Remote Point Problem

Fix a group G such that |G| ≥ 2, and consider an instance of the RPP over G. The main

idea that we develop in this section is that if we have a (symmetric) expanding generator

set S for the group Gn with appropriate expansion parameters then for a subgroup H of Gn

such that δ(H) ≤ k some element of S will be r-far from H, for suitable k and r.

We review some definitions related to expander graphs (e.g. see the survey of Hoory, Linial,

and Wigderson [HLW06]). An undirected multigraph G = (V,E) is an (n, d, α)-graph for

n, d ∈ N and α > 0 if |V | = n, the degree of each vertex is d, and the second largest value

λ(G) from among the absolute values of eigenvalues of A(G) – the adjacency matrix of the

graph G – is bounded by αd.

A random walk of length t ∈ N on an (n, d, α)-graph G = (V,E) is the output of the following

random process: a vertex v0 ∈ V of picked uniformly at random, and for 0 ≤ i < t, if vi has

been picked, then vi+1 is obtained by selecting a neighbour vi+1 uniformly at random (i.e a

random edge out of vi is picked, and vi+1 is chosen to be the other endpoint of the edge);

the output of the process is (v0, v1, . . . , vt). We now state an important result regarding

random walks on expanders (see [HLW06, Theorem 3.6] for details).

Lemma 3.1. Let G = (V,E) be an (n, d, α)-graph and B ⊆ V with |B| ≤ βn. Then, the
probability that a random walk (v0, v1, . . . , vt) is entirely contained inside B (i.e, vi ∈ B for
each i) is bounded by (β + α)t.

Let H be a group and S a symmetric multiset of elements from H. I.e. there is a bijection

of multisets ϕ : S → S such that ϕ(s) = s−1 for each s ∈ S. We define the Cayley graph

C(H, S) to be the (multi)graph G with vertex set H and edges of the form (x, xs) for each

x ∈ H and each s ∈ S; since S is symmetric, we consider C(H, S) to be an undirected graph

by identifying the edges (x, xs) and (xs, (xs)ϕ(s)), for each x and s.

We now show a lemma that will help relate generators of expanding Cayley graphs on Gn

and the RPP over G. In what follows, let S be a symmetric multiset of elements from Gn;

let G denote the Cayley graph C(Gn, S); and let N,D denote |G|n and |S| (counted with

repetitions) respectively.
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Lemma 3.2. Assume S as above is such that G is an (N,D,α)-graph, where α ≤ 1
nd , for

some fixed d > 0. Then, given any subgroup H of Gn such that δ(H) ≤ 2n/3, we have
|S∩H|
|S| ≤ 1

nd/2 for large enough n (where the elements of S ∩H are counted with repetitions).

Proof. Let S′ = S ∩ H and let η = |S′|/|S|. We want an upper bound on η. Consider

a random walk (x0, x1, . . . , xt) of length t on the graph G (the exact value of t will be

fixed later). Let B denote the following event: there is a y ∈ Gn such that all the vertices

x0, x1, . . . , xt are all contained in the coset yH of H. Let p denote the probability that B
occurs.

We will first lower bound p. At each step of the random walk, a random si ∈ S is chosen

and xi+1 is set to xisi. If these si all happen to belong to S′, then the cosets xiH and xi+1H
are the same for all i and hence, the event B does occur. Hence, p ≥ ηt.

We now upper bound p. Fix any coset yH of the subgroup H. Since the dimension of H
in Gn is bounded by 2n/3, we have |yH| = |H| ≤ |G|2n/3 ≤ 2−n/3|Gn|. That is, the coset

yH is a very small subset of Gn. Applying Lemma 3.1, we see that the probability that

the random walk (x0, x1, . . . , xt) is completely contained inside this coset is bounded by

(2−n/3 + n−d)t ≤ 2t

ndt , for large enough n. As the total number of cosets of H is bounded by

|G|n, an application of the union bound tells us that p is upper bounded by |G|n 2t

ndt ≤ |G|n+t

ndt .

Setting t = 2n
d log|G| n−2 we see that p is at most 1

ndt/2 .

Putting the upper and lower bounds together, we see that ηt ≤ 1
ndt/2 and hence, η ≤ 1

nd/2 .

This completes the proof.

We follow the structure of the algorithm for the RPP over F2 in [APY09]. We first de-

scribe their (n/2, c log n)-algorithm for the RPP, followed by our own algorithm. We then

describe how they extend this algorithm to a (k, cn log k
k )-algorithm for any k ≤ n/2; the

same procedure works for our algorithm also.

The (n/2, c log n)-algorithm proceeds as follows. On an input instance consisting of a sub-

group V (which is a subspace of F
n
2 ) of dimension at most n/2 and an r ≤ c log n,

(1) The algorithm first computes a collection of m = nO(c) subspaces V1, V2, . . . , Vm,

each of dimension at most 2n/3 such that B(V, c log n) ⊆
⋃m

i=1 Vi.

(2) The algorithm then finds an x ∈ F
n
2 such that x /∈

⋃

i Vi. (This is done using a

method similar to the method of pessimistic estimators introduced by Raghavan

[Rag88].)

Our algorithm will proceed exactly as the above algorithm in the first step. The second

step of our algorithm will be different (assuming that the group G is Abelian). We first

state Step 1 of the algorithm of [APY09] in greater generality:

Lemma 3.3. Let G be any fixed finite group with |G| ≥ 2. For any constant c > 0 and large
enough n, the following holds. Given any subgroup H of Gn such that δ(H) ≤ n

2 , there is

a collection of m ≤ n10c subgroups H1,H2, . . . ,Hm such that B(H, c log n) ⊆
⋃m

i=1 Hi, and
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δ(Hi) ≤ 2n/3 for each i. Moreover, there is a logspace algorithm that, when given as input
H as a set of generators, produces generators for the subgroups H1,H2, . . . ,Hm.

Proof. The proof follows exactly as in [APY09]. We reproduce it here for completeness and

to analyze the complexity of the procedure.

Let 1 denote the identity element of G. For each S ⊆ [n], let Gn(S) denote the subgroup of

Gn consisting of those x such that xi = 1 for each i /∈ S. Note that δ(Gn(S)) = |S|. Also

note that for each S ⊆ [n], the group Gn(S) is a normal subgroup; in particular, this implies

that the set K · Gn(S) is a subgroup of Gn whenever K is a subgroup of Gn.

Partition the set [n] into ℓ ≤ 10c log n sets of size at most ⌈ n
10c log n⌉ each – we will call

these sets S1, S2, . . . , Sℓ. For each A ⊆ [ℓ] of size ⌈c log n⌉, let KA denote the subgroup

Gn(
⋃

i∈A Si). Note that the number of such subgroups is at most 2ℓ ≤ n10c. Also, for each

A as above, δ(KA) = |
⋃

i∈A Si| ≤
(

n
10c log n + 1

)

(c log n + 1) < n
9 , for large enough n.

Consider any x ∈ B(c log n) (i.e, an element x of Gn s.t wt(x) ≤ c log n). We know that

x ∈ Gn(S) for some S of size at most c log n. Hence, it can be seen that x ∈ Gn(
⋃

i∈A Si)

for some A of size ⌈c log n⌉; this shows that B(c log n) ⊆
⋃

A KA. Therefore, we see that

B(H, c log n) = HB(c log n) ⊆
⋃

A HKA.

For each A ⊆ [ℓ] of size ⌈c log n⌉, let HA denote the subgroup HKA (note that this is indeed

a subgroup, since KA is a normal subgroup). Moreover, the cardinality of this subgroup is

bounded by |H| · |KA| ≤ |G|n/2|G|n/9 < |G|2n/3; hence, δ(HA) ≤ 2n/3. Thus, the collection

of subgroups {HA}A satisfies all the properties mentioned in the statement of the lemma.

That a set of generators for this subgroup can be computed in deterministic logspace –

for some suitable choice of S1, S2, . . . , Sℓ – is a routine check from the definition of the

subgroups {KA}A. This completes the proof of the lemma.

Using Lemma 3.3, we are able to efficiently “cover” B(H, c log n) for any small subgroup H
of Gn by a union of small subgroups. Therefore, to find a point that is c log n-far from H, it

suffices to find a point x ∈ Gn not contained in any of the covering subgroups. To do this,

we note that if S is a multiset containing elements from Gn such that C(Gn, S) is a Cayley

graph with good expansion, then S must contain such an element. This is formally stated

below.

Lemma 3.4. For any constant c > 0 and large enough n ∈ N, the following holds. Let S be
any multiset of elements of Gn such that λ(C(Gn, S)) < 1

n20c . Then, for m ≤ n10c and any
collection H1,H2, . . . ,Hm of subgroups such that δ(Hi) ≤ 2n/3 for each i, there is some
s ∈ S such that s /∈

⋃

i Hi.

Proof. The proof follows easily from Lemma 3.2. Given any i ∈ [m], we know, from Lemma

3.2, that |S ∩Hi| < |S|
n10c (where the elements of the multisets are counted with repetitions).

Hence, |S ∩
⋃

i Hi| ≤
∑

i |S ∩ Hi| < m|S|
n10c ≤ |S|. Therefore, there must be some s ∈ S such

that s /∈
⋃

i Hi.
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Therefore, to find a point x that is c log n-far from the subspace H, it suffices to construct

an S such that C(Gn, S) is a sufficiently good expander, find the covering subgroups Hi

(i ∈ [m[), and then to find an s ∈ S that does not lie in any of the Hi. We follow the above

approach to give an efficient parallel algorithm for the RPP in the case that G is an Abelian

group. For arbitrary groups, we show that the method of [APY09] yields a polynomial time

algorithm.

4. Remote Point Problem for Abelian Groups

Fix an Abelian group G. Recall that a character χ of Gn is a homomorphism from Gn to

C
∗
1, the multiplicative subgroup of the complex numbers of absolute value 1. For ε > 0,

a distribution µ over Gn is said to be ε-biased if, given any non-trivial character χ of Gn,

|Ex∼µ[χ(x)]| ≤ ε.

A multiset S consisting of elements from Gn is said to be an ε-biased space in Gn if the

uniform distribution over S is an ε-biased distribution.

It can be checked that a multiset consisting of (n
ε )O(1) independent, uniformly random

elements from Gn form an ε-biased space with high probability. Explicit ε-biased spaces

were constructed for the group F
n
2 by Naor and Naor in [NN93]; further constructions were

given by Alon et al. in [AGHP92]. Explicit constructions of ε-biased spaces in Z
n
d were given

by Azar et al. in [AMN98]. We observe that this last construction yields a construction for

all Abelian groups Gn, when G is of constant size. We first state the result of [AMN98] in

a form that we will find suitable.

Theorem 4.1. For any fixed d, there is an NC2 algorithm that does the following. On
input n and ε > 0 (both in unary), the algorithm produces a symmetric multiset S ⊆ Z

n
d of

size O((n
ε )2) such that S is an ε-biased space in Z

n
d .

Proof. It is easy to see that the ε-biased space construction in [AMN98] can be implemented

in deterministic logspace (and hence in NC2). If the space S obtained is not symmetric, we

can consider the multiset that is the disjoint union of S and S−1, which is also easily seen

to be ε-biased.

Remark 4.2. We note that the definition of small bias spaces in [AMN98] differs somewhat

from our own definition above. But it is easy to see that an ε-bias space in Z
n
d in the sense

of [AMN98] is a (dε)-bias space according to our definition above.

Remark 4.3. In a recent paper, Meka and Zuckerman [MZ09] observe, as we do below,

that the construction of [AMN98] gives small bias spaces for any arbitrary Abelian group G.

Nevertheless, we present our own proof of this fact, since the small bias spaces that follow

from our proof are of smaller size. Specifically, our proof shows how to explicitly construct

sample spaces of size O
(

n2

ε2

)

, whereas the relevant result in [MZ09] only produces small

bias spaces of size O
(

(n
ε )b

)

, where b is some constant that depends on G (and can be as

large as Ω(log |G|)).
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Lemma 4.4. For any fixed group G, there is an NC2 algorithm which, on input n and ε > 0

in unary, produces a symmetric multiset S ⊆ Gn of size O((n
ε )2) such that S is an ε-biased

space in Gn.

Proof. By the Fundamental Theorem of finite Abelian groups, G ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdk
,

for positive integers d1, d2, . . . , dk such that d1 | d2 | · · · | dk. Let G0 denote Z
k
dk

. Note

that for any s, t ∈ N, Zs
∼= Zst/Zt. Hence, we see that that G ∼= G0/H, where H is the

subgroup Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zek
, and ei = dk/di for each i ∈ [k]. Therefore, Gn ∼= Gn

0 /Hn.

Let π : Gn
0 → Gn be the natural onto homomorphism with kernel Hn. Note that π is just

the projection map and can easily be computed in NC2.

Since Gn
0
∼= Z

nk
dk

, by Theorem 4.1, there is an NC2 algorithm that constructs a symmetric

multiset S0 ⊆ Gn
0 of size O(

(

kn
ε

)2
) such that S0 is an ε-biased space in Gn

0 . We claim that

the multiset S = π(S0) is a symmetric ε-biased space in Gn. To see this, consider any

non-trivial character χ of Gn; note that χ0 = χ◦π is a non-trivial character of Gn
0 . We have

∣

∣

∣

∣

E
x∼S

[χ(x)]

∣

∣

∣

∣

=

∣

∣

∣

∣

E
x0∼S0

[χ(π(x0))]

∣

∣

∣

∣

=

∣

∣

∣

∣

E
x0∼S0

[χ0(x)]

∣

∣

∣

∣

≤ ε

where the first equality follows from the definition of S, and the last inequality follows from

the fact that S0 is an ε-biased space in Gn
0 . Since χ was an arbitrary non-trivial character

of Gn, we have proved that S is indeed an ε-biased space in Gn. It is easy to see that S is

symmetric. Finally, note that S can be computed in NC2. This completes the proof.

Finally, we mention a well-known connection between small bias spaces in Gn and Cayley

graphs over Gn (e.g. see Alon and Roichman [AR94]).

Lemma 4.5. Given any symmetric multiset S ⊆ Gn, the Cayley graph C(Gn, S) is an
(|G|n, |S|, α)-graph iff S is an α-biased space.

Lemmas 4.5 and 4.4 have the following easy consequence:

Lemma 4.6. For any Abelian group G, there is an NC2 algorithm which, on unary inputs
n and α > 0, produces a symmetric multiset S ⊆ Gn of size O((n

α )2) such that C(Gn, S) is
a (|G|n, |S|, α)-graph.

Putting the above statement together with the results of Section 3, we have the following.

Theorem 4.7. For any constant c > 0, the RPP over G has an NC2 (n/2, c log n)-algorithm.

Proof. Let H denote the input subgroup. By Lemma 3.3, there is a logspace (and hence

NC2) algorithm that computes a collection of m = nO(c) many subgroups H1,H2, . . . ,Hm

such that B(H, c log n) ⊆
⋃m

i=1 Hi and δ(Hi) ≤ 2n/3 for each i ∈ [m]. Now, fix any multiset

S ⊆ Gn such that the Cayley graph C(Gn, S) is a (|G|n, |S|, α)-graph, where α = 1
2n20c ; by

Lemma 4.6, such an S can be constructed in NC2. It follows from Lemma 3.4 that there

is some s ∈ S such that s /∈
⋃m

i=1 Hi. Finally, by Lemma 2.3, there is an NC2 algorithm

to test if each s ∈ S belongs to Hi, for any i ∈ [m]. Hence, we can find out (in parallel)

exactly which s ∈ S do not belong to any of the Hi and output one of them. The output

element s is surely c log n-far from H.
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Let G be Abelian. We observe that a method of [APY09], coupled with Theorem 4.7, yields

an efficient (k, cn log k
k )-algorithm for any constant c > 0, and k ≤ n/2.

Theorem 4.8. Let c > 0 be any constant. If G is an Abelian group, then the RPP over G
has an NC2 (k, cn log k

k )-algorithm for any k ≤ n/2.

Proof. Given as input a subgroup H such that δ(H) = k ≤ n/2, the algorithm partitions [n]

as [n] =
⋃m

i=1 Ti, where 2k ≤ |Ti| < 4k for each i; note that m ≥ n/4k. Let Hi denote the

subgroup obtained when H is projected onto the coordinates in Ti. Since δ(Hi) ≤ k ≤ |Ti|/2,

we can, by Theorem 4.7, efficiently find a point xi ∈ G|Ti| that is at least 4c log k-far from

Hi. Putting these xi together in the natural way, we obtain an x ∈ Gn that is cn log k
k -far

from the subgroup H.

Since G is Abelian, using the algorithm of Theorem 4.7, the xi can all be computed in

parallel in NC2. Hence, the entire procedure can be performed in NC2.

5. RPP over General Groups

Let G denote some fixed finite group. We can generalize the polynomial-time algorithm of

[APY09], described for F2, to compute a point x ∈ Gn that is c log n-far from a given input

subgroup H such that δ(H) ≤ n/2. We only state this result below and refer the interested

reader to the full version [AS09b] for details.

Theorem 5.1. For any constant c > 0, the RPP over G has a polynomial time (n/2, c log n)-
algorithm.

Analogous to Theorem 4.8, we have the following solution to RPP for general groups.

Theorem 5.2. Let c > 0 be any constant. For any G, the RPP over G has a polynomial
time (k, cn log k

k )-algorithm for any k ≤ n/2.

Proof. The construction is exactly the same as in the proof of Theorem 4.8. The only

difference is that we will apply the algorithm of Theorem 5.1. In this case, the xi can all be

found in deterministic polynomial time. Hence, the entire procedure gives us a polynomial-

time algorithm.

6. Limitations of expanding sets

In the previous sections, we have shown how generators for expanding Cayley graphs on

Gn, where G is a fixed finite group, can help solve the RPP over G. In particular, we have

the following easy consequence of Lemmas 3.3 and 3.4.

Corollary 6.1. For any constant c > 0, large enough n, and any symmetric multiset
S ⊆ Gn such that λ(C(Gn, S)) < 1

n20c , the following holds. If H is any subgroup of Gn such
that δ(H) ≤ n/2, there is some s ∈ S such that s /∈ B(H, c log n).
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It makes sense to ask if the parameters in Corollary 6.1 are far from optimal. Is it true that

any polynomial-sized symmetric multiset S ⊆ Gn with good enough expansion properties is

ω(log n)-far from every subgroup of dimension at most n/2? We can show that this is not

true. Formally, we can prove:

Theorem 6.2. For any constant c > 0 and large enough n, there is a symmetric multiset
S ⊆ F

n
2 such that λ(C(Fn

2 , S)) ≤ 1
nc but there is a subspace L of dimension n/2 such that

S ⊆ B(L, 20c log n).

It is well known that for any family of d-regular multigraphs G λ(G) = Ω(1/
√

d) (see e.g.

[HLW06, Theorem 5.3]). As a consequence of this lower bound it follows for any fixed group

G and any multiset S ⊆ Gn that λ(C(G, S)) = Ω(1/
√

|S|). Hence, the above theorem tells

us that just the expansion properties of C(Fn
2 , S) for any poly(n)-sized S are not sufficient

to guarantee ω(log n)-distance from every subspace of dimension n/2. The proof of the

above statement can be found in the full version [AS09b].

7. Discussion

For the remote point problem over an Abelian group G, we have shown how expanding

generating sets for Cayley graphs of Gn can be used to obtain deterministic NC2 algorithms.

A natural question is whether we can obtain a similar algorithm for non-Abelian G. Note

that Lemma 3.4 holds in the non-Abelian setting too. Hence, in order to obtain an NC2-

algorithm for the RPP over arbitrary non-Abelian G along the lines of our algorithm for

Abelian groups, we need to be able to check (in NC2) for membership in Gn, and we

need to be able to construct small multisets S of Gn such that C(Gn, S) has sufficiently

good expansion properties. Luks’ work [Lu86] yields an NC4 test for membership in Gn

for arbitrary G. Building on that, there is also an NC2 membership test for Gn [AKV05].

However, we are unable to compute a (good enough) expanding generator set for the group

Gn in deterministic NC or even in deterministic polynomial time.
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Abstract. A Boolean function on N variables is called evasive if its decision-tree com-
plexity is N . A sequence Bn of Boolean functions is eventually evasive if Bn is evasive for
all sufficiently large n.

We confirm the eventual evasiveness of several classes of monotone graph properties
under widely accepted number theoretic hypotheses. In particular we show that Chowla’s
conjecture on Dirichlet primes implies that (a) for any graph H , “forbidden subgraph H”

is eventually evasive and (b) all nontrivial monotone properties of graphs with ≤ n
3/2−ǫ

edges are eventually evasive. (n is the number of vertices.)
While Chowla’s conjecture is not known to follow from the Extended Riemann Hy-

pothesis (ERH, the Riemann Hypothesis for Dirichlet’s L functions), we show (b) with the

bound O(n5/4−ǫ) under ERH.
We also prove unconditional results: (a′) for any graph H , the query complexity of

“forbidden subgraph H” is
`

n
2

´

−O(1); (b′) for some constant c > 0, all nontrivial monotone
properties of graphs with ≤ cn log n + O(1) edges are eventually evasive.

Even these weaker, unconditional results rely on deep results from number theory such
as Vinogradov’s theorem on the Goldbach conjecture.

Our technical contribution consists in connecting the topological framework of Kahn,
Saks, and Sturtevant (1984), as further developed by Chakrabarti, Khot, and Shi (2002),
with a deeper analysis of the orbital structure of permutation groups and their connection
to the distribution of prime numbers. Our unconditional results include stronger versions
and generalizations of some result of Chakrabarti et al.

1. Introduction

1.1. The framework

A graph property Pn of n-vertex graphs is a collection of graphs on the vertex set

[n] = {1, . . . , n} that is invariant under relabeling of the vertices. A property Pn is called

monotone (decreasing) if it is preserved under the deletion of edges. The trivial graph

properties are the empty set and the set of all graphs. A class of examples are the forbidden
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subgraph properties: for a fixed graph H, let QHn denote the class of n-vertex graphs that

do not contain a (not necessarily induced) subgraph isomorphic to H.

We view a set of labeled graphs on n vertices as a Boolean function on the N =
(n
2

)

variables describing adjacency. A Boolean function on N variables is evasive if its

deterministic query (decision-tree) complexity is N .

The long-standing Aanderaa-Rosenberg-Karp conjecture asserts that every nontrivial
monotone graph property is evasive. The problem remains open even for important special

classes of monotone properties, such as the forbidden subgraph properties.

1.2. History

In this note, n always denotes the number of vertices of the graphs under consideration.

Aanderaa and Rosenberg (1973) [17] conjectured a lower bound of Ω(n2) on the query

complexity of monotone graph properties. Rivest and Vuillemin (1976) [19] verified this

conjecture, proving an n2/16 lower bound. Kleitman and Kwiatkowski (1980) [10] improved

this to n2/9. Karp conjectured that nontrivial monotone graph properties were in fact

evasive. We refer to this statement as the Aanderaa-Rosenberg-Karp (ARK) conjecture.

In their seminal paper, Kahn, Saks, and Sturtevant [11] observe that non-evasiveness

of monotone Boolean functions has strong topological consequences (contracibility of the

associated simplicial complex). They then use results of R. Oliver about fixed points of

group actions on such complexes to verify the ARK conjecture when n is a prime-power.

As a by-product, they improve the lower bound for general n to n2/4.
Since then, the topological approach of [11] has been influential in solving various in-

teresting special cases of the ARK conjecture. Yao (1988) [25] proves that non-trivial

monotone properties of bipartite graphs with a given partition (U, V ) are evasive (require

|U ||V | queries). Triesch (1996) [22] shows (in the original model) that any monotone prop-

erty of bipartite graphs (all the graphs satisfying the property are bipartite) is evasive.

Chakrabarti, Khot, and Shi (2002) [3] introduce important new techniques which we use;

we improve over several of their results (see Section 1.4).

1.3. Prime numbers in arithmetic progressions

Dirichlet’s Theorem (1837) (cf. [5]) asserts that if gcd(a,m) = 1 then there exist in-

finitely many primes p ≡ a (mod m). Let p(m,a) denote the smallest such prime p. Let

p(m) = max{p(m,a) | gcd(a,m) = 1}. Linnik’s celebrated theorem (1947) asserts that

p(m) = O(mL) for some absolute constant L (cf. [16, Chap. V.]). Heath-Brown [9] shows

that L ≤ 5.5. Chowla [4] observes that under the Extended Riemann Hypothesis (ERH)

we have L ≤ 2 + ǫ for all ǫ > 0 and conjectures that L ≤ 1 + ǫ suffices:

Conjecture 1.1 (S. Chowla [4]). For every ǫ > 0 and every m we have p(m) = O(m1+ǫ).

This conjecture is widely believed; in fact, number theorists suggest as plausible the

stronger form p(m) = O(m(logm)2) [8]. Turán [23] proves the tantalizing result that for

almost all a we have p(m,a) = O(m logm) .

Let us call a prime p an ǫ-near Fermat prime if there exists an s ≥ 0 such that 2s | p−1

and p−1
2s ≤ pǫ.

We need the following weak form of Chowla’s conjecture:
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Conjecture 1.2 (Weak Chowla Conjecture). For every ǫ > 0 there exist infinitely many

ǫ-near Fermat primes.

In other words, the weak conjecture says that for every ǫ, for infinitely many values of

s we have p(2s, 1) < (2s)1+ǫ.

1.4. Main results

For a graph property P we use Pn to denote the set of graphs on vertex set [n] with

property P . We say that P is eventually evasive if Pn is evasive for all sufficiently large n.

Our first set of results states that the “forbidden subgraph” property is “almost evasive”

under three different interpretations of this phrase.

Theorem 1.3 (Forbidden subgraphs). For all graphs H, the forbidden subgraph property
QHn (a) is eventually evasive, assuming the Weak Chowla Conjecture; (b) is evasive for
almost all n (unconditionally); and (c) has query complexity

(n
2

)

−O(1) for all n (uncondi-
tionally).

Part (b) says the asymptotic density of values of n for which the problem is not evasive

is zero. Part (c) improves the bound
(n
2

)

− O(n) given in [3]. Parts (a) and (c) will be

proved in Section 3. We defer the proof of part (b) to the journal version.

The term “monotone property of graphs with ≤ m edges” describes a monotone prop-

erty that fails for all graphs with more than m edges.

Theorem 1.4 (Sparse graphs). All nontrivial monotone properties of graphs with at most

f(n) edges are eventually evasive, where (a) under Chowla’s Conjecture, f(n) = n3/2−ǫ for

any ǫ > 0; (b) under ERH, f(n) = n5/4−ǫ; and (c) unconditionally, f(n) = cn log n for
some constant c > 0. (d) Unconditionally, all nontrivial monotone properties of graphs
with no cycle of length greater than (n/4)(1 − ǫ) are eventually evasive (for all ǫ > 0).

Part (c) of Theorem 1.4 will be proved in Section 4. Parts (a) and (b) follow in Section 5.

The proof of part (d) follows along the lines of part (c); we defer the details to the journal

version of this paper.

We note that the proofs of the unconditional results (c) and (d) in Theorem 1.4 rely on

Haselgrove’s version [7] of Vinogradov’s Theorem on Goldbach’s Conjecture (cf. Sec. 4.2).

Recall that a topological subgraph of a graph G is obtained by taking a subgraph and

replacing any induced path u− · · · − v in the subgraph by an edge {u, v} (repeatedly) and

deleting parallel edges. A minor of a graph is obtained by taking a subgraph and contracting

edges (repeatedly). If a class of graphs is closed under taking minors then it is also closed

under taking topological subgraphs but not conversely; for instance, graphs with maximum

degree ≤ 3 are closed under taking toopological subgraphs but every graph is a minor of a

regular graph of degree 3.

Corollary 1.5 (Excluded topological subgraphs). Let P be a nontrivial class of graphs
closed under taking topological subgraphs. Then P is eventually evasive.

This unconditional result extends one of the results of Chakrabarti et al. [3], namely,

that nontrival classes of graphs closed under taking minors is eventually evasive.

Corollary 1.5 follows from part (c) of Theorem 1.4 in the light of Mader’s Theorem

which states that if the average degree of a graph G is greater than 2(
k+1
2 ) then it contains

a topological Kk [13, 14].
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Theorem 1.4 suggests a new stratification of the ARK Conjecture. For a monotone

(decreasing) graph property Pn, let

dim(Pn) := max{|E(G)| − 1 | G ∈ Pn}.

We can now restate the ARK Conjecture:

Conjecture 1.6. If Pn is a non-evasive, non-empty, monotone decreasing graph property

then dim(Pn) =
(n
2

)

− 1.

2. Preliminaries

2.1. Group action

For the basics of group theory we refer to [18]. All groups in this paper are finite. For

groups Γ1,Γ2 we use Γ1 ≤ Γ2 to denote that Γ1 is a subgroup; and Γ1 ⊳ Γ2 to denote that

Γ1 is a (not necessarily proper) normal subgroup. We say that Γ is a p-group if |Γ| is a

power of the prime p.
For a set Ω called the “permutation domain,” let Sym(Ω) denote the symmetric group on

Ω, consisting of the |Ω|! permutations of Ω. For Ω = [n] = {1, . . . , n}, we set Σn = Sym([n]).

For a group Γ, a homomorphism ϕ : Γ → Sym(Ω) is called a Γ-action on Ω. The action is

faithful if ker(ϕ) = {1}. For x ∈ Ω and γ ∈ Γ we denote by xγ the image of x under ϕ(γ).
For x ∈ Ω we write xΓ = {xγ : γ ∈ Γ} and call it the orbit of x under the Γ-action. The

orbits partition Ω.

Let
(

Ω
t

)

denote the set of t-subsets of Ω. There is a natural induced action Sym(Ω) →

Sym(
(Ω
t

)

) which also defines a natural Γ-action on
(Ω
t

)

. We denote this action by Γ(t).

Similarly, there is a natural induced Γ-action on Ω×Ω. The orbits of this action are called

the orbitals of Γ. We shall need the undirected version of this concept; we shall call the

orbits of the Γ-action on
(Ω

2

)

the u-orbitals (undirected orbitals) of the Γ-action.

By an action of the group Γ on a structure X such as a group or a graph or a simplicial

complex we mean a homomorphism Γ → Aut(X) where Aut(X) denotes the automorphism

group of X.

Let Γ and ∆ be groups and let ψ : ∆ → Aut(Γ) be a ∆-action on Γ. These data

uniquely define a group Θ = Γ ⋊ ∆, the semidirect product of Γ and ∆ with respect to ψ.

This group has order |Θ| = |Γ||∆| and has the following properites: Θ has two subgroups

Γ∗ ∼= Γ and ∆∗ ∼= ∆ such that Γ∗
⊳ Θ; Γ∗ ∩ ∆∗ = {1}; and Θ = Γ∗∆∗ = {γδ | γ ∈ Γ∗, δ ∈

∆∗}. Moreover, identifying Γ with Γ∗ and ∆ with ∆∗, for all γ ∈ Γ and δ ∈ ∆ we have

γψ(δ) = δ−1γδ.
Θ can be defined as the set ∆ × Γ under the group operation

(δ1, γ1)(δ2, γ2) = (δ1δ2, γ
ψ(δ2)
1 γ2) (δi ∈ ∆, γi ∈ Γ).

For more on semidirect products, which we use extensively, see [18, Chap. 7].

The group AGL(1, q) of affine transformations x 7→ ax+b of Fq (a ∈ F
×
q , b ∈ Fq) acts on

Fq. For each d | q − 1, AGL(1, q) has a unique subgroup of order qd; we call this subgroup

Γ(q, d). We note that F
+
q ⊳ Γ(q, d) and Γ(q, d)/F+

q is cyclic of order d and is isomorphic to

a subgroup ∆ of AGL(1, q); Γ(q, d) can be described as a semidirect product (F+
q ) ⋊ ∆.
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2.2. Simplicial complexes and monotone graph properties

An abstract simplicial complex K on the set Ω is a subset of the power-set of Ω, closed under

subsets: if B ⊂ A ∈ K then B ∈ K. The elements of K are called its faces. The dimension
of A ∈ K is dim(A) = |A| − 1; the dimension of K is dim(K) = max{dim(A) | A ∈ K}. The

Euler characteristic of K is defined as

χ(K) :=
∑

A∈K,A 6=∅

(−1)dim(A).

Let [n] := {1, 2, . . . , n} and Ω =
(

[n]
2

)

. Let Pn be a subset of the power-set of Ω, i. e., a

set of graphs on the vertex set [n]. We call Pn a graph property if it is invariant under the

induced action Σ
(2)
n . We call this graph property monotone decreasing if it is closed under

subgraphs, i. e., it is a simplicial complex. We shall omit the adjective “decreasing.”

2.3. Oliver’s Fixed Point Theorem

Let K ⊆ 2Ω be an abstract simplicial complex with a Γ-action. The fixed point complex
KΓ action is defined as follows. Let Ω1, . . . ,Ωk be the Γ-orbits on Ω. Set

KΓ := {S ⊆ [k] |
⋃

i∈S

Ωi ∈ K}.

We say that a group Γ satisfies Oliver’s condition if there exist (not necessarily distinct)

primes p, q such that Γ has a (not necessarily proper) chain of subgroups Γ2 ⊳ Γ1 ⊳ Γ such

that Γ2 is a p-group, Γ1/Γ2 is cyclic, and Γ/Γ1 is a q-group.

Theorem 2.1 (Oliver [15]). Assume the group Γ satisfies Oliver’s condition. If Γ acts on
a nonempty contractible simplicial complex K then

χ(KΓ) ≡ 1 (mod q). (2.1)

In particular, such an action must always have a nonempty invariant face.

2.4. The KSS approach and the general strategy

The topological approach to evasiveness, initiated by Kahn, Saks, and Sturtevant, is

based on the following key observation.

Lemma 2.2 (Kahn-Saks-Sturtevant [11]). If Pn is a non-evasive graph property then Pn is
contractible.

Kahn, Saks, and Sturtevant recognized that Lemma 2.2 brought Oliver’s Theorem to

bear on evasiveness. The combination of Lemma 2.2 and Theorem 2.1 suggests the following

general strategy, used by all authors in the area who have employed the topological method,

including this paper: We find primes p, q, a group Γ satisfying Oliver’s condition with these

primes, and a Γ-action on Pn, such that χ(Pn) ≡ 0 (mod q). By Oliver’s Theorem and the

KSS Lemma this implies that Pn is evasive. The novelty is in finding the right Γ.

KSS [11] made the assumption that n is a prime power and used as Γ = AGL(1, n), the

group of affine transformations x 7→ ax+b over the field of order n. While we use subgroups

of such groups as our building blocks, the attempt to combine these leads to hard problems

on the distribution of prime numbers.
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Regarding the “forbidden subgraph” property, Chakrabarti, Khot, and Shi [3] built

considerable machinery which we use. Our conclusions are considerably stronger than theirs;

the additional techniques involved include a study of the orbitals of certain metacyclic

groups, a universality property of cyclotomic graphs derivable using Weil’s character sum

estimates, plus the number theoretic reductions indicated.

For the “sparse graphs” result (Theorem 1.4) we need Γ such that all u-orbitals of Γ

are large and therefore (Pn)Γ = {∅}.
In both cases, we are forced to use rather large building blocks of size q, say, where q

is a prime such that q− 1 has a large divisor which is a prime for Theorem 1.4 and a power

of 2 for Theorem 1.3.

3. Forbidden subgraphs

In this section we prove parts (a) and (c) of Theorem 1.3.

3.1. The CKS condition

A homomorphism of a graph H to a graph H ′ is a map f : V (H) → V (H ′) such that

(∀x, y ∈ V (H))({x, y} ∈ E(H) ⇒ {f(x), f(y)} ∈ E(H ′)). (In particular, f−1(x′) is an

independent set in H for all x′ ∈ V (H ′).) Let Q
[[H]]
r be the set of those H ′ with V (H ′) = [r]

that do not admit an H → H ′ homomorphism. Let further TH := min{22t
− 1 | 22t

≥
h} where h denotes the number of vertices of H. The following is the main lemma of

Chakrabarti, Khot, and Shi [3].

Lemma 3.1 (Chakrabarti et al. [3]). If r ≡ 1 (mod TH) then χ(Q
[[H]]
r ) ≡ 0 (mod 2).

3.2. Cliques in generalized Paley graphs

Let q be an odd prime power and d an even divisor of q − 1. Consider the graph

P (q, d) whose vertex set is Fq and the adjacency between the vertices is defined as follows:

i ∼ j ⇐⇒ (i− j)d = 1. P (q, d) is called a generalized Paley graph.

Lemma 3.2. If (q − 1)/d ≤ q1/(2h) then P (q, d) contains a clique on h vertices.

This follows from the following lemma which in turn can be proved by a routine appli-

cation of Weil’s character sum estimates (cf. [1]).

Lemma 3.3. Let a1, . . . , at be distinct elements of the finite field Fq. Assume ℓ | q−1. Then

the number of solutions x ∈ Fq to the system of equations (ai + x)(q−1)/ℓ = 1 is q
ℓt ± t

√
q.

Let Γ(q, d) be the subgroup of order qd of AGL(1, q) defined in Section 2.1.

Observation 3.4. Each u-orbital of Γ(q, d) is isomorphic to P (q, d).
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Corollary 3.5. If q−1
d ≤ q1/(2h) then each u-orbital of Γ(q, d) contains a clique of size h.

3.3. ǫ-near-Fermat primes

The numbers in the title were defined in Section 1.3. In this section we prove Theo-

rem 1.3, part (a).

Theorem 3.6. Let H be a graph on h vertices. If there are infinitely many 1
2h -near-Fermat

primes then QHn is eventually evasive.

Proof. Fix an odd prime p ≡ 2 (mod TH) such that p ≥ |H|. If there are infinitely many
1
2h -near-Fermat primes then infinitely many of them belong to the same residue class mod p,

say a+ Zp. Let qi be the i-th 1
2h -near-Fermat prime such that qi ≥ p and qi ≡ a (mod p).

Let r′ = na−1 (mod p) and k′ =
∑r′

i=1 qi. Then k′ ≡ n (mod p) and therefore n = pk + k′

for some k.
Now in order to use Lemma 3.1, we need to write n as a sum of r terms where r ≡ 1

(mod TH). We already have r′ of these terms; we shall choose each of the remaining

r − r′ terms to be p or p2. If there are t terms equal to p2 then this gives us a total of

r = t+(k− tp)+r′ terms, so we need t(p−1) ≡ k+r′ (mod TH). By assumption, p−1 ≡ 1

(mod TH); therefore such a t exists; for large enough n, it will also satisfy the constraints

0 ≤ t ≤ k/p,
Let now

Λ1 :=
(

(F+
p2

)t × (F+
p )k−tp

)

⋊ F
×
p2

acting on [pk] with t orbits of size p2 and k−pt orbits of size p as follows: on an orbit of size

pi (i = 1, 2) the action is AGL(1, pi). The additive groups act independently, with a single

multiplicative action on top. F
×
p2

acts on F
+
p through the group homomorphism F

×
p2

→ F
×
p

defined by the map x 7→ xp−1. Let Bj denote an orbit of Λ1 on [kp]. Now the orbit of any

pair {u, v} ∈
(Bj

2

)

is a clique of size |Bj| ≥ p ≥ h, therefore a Λ1-invariant graph cannot

contain an intra-cluster edge.

Let di be the largest power of 2 that divides qi − 1. Let Ci be the subgroup of F
×
qi of

order di. Let Λ2 :=

r′
∏

i=1

Γ(qi, di), acting on [k′] with r′ orbits of sizes q1, . . . , qr′ in the obvious

manner.

From Lemma 3.2 we know that the orbit of any {u, v} ∈
([qi]

2

)

must contain a clique of

size h. Hence, an invariant graph cannot contain any intra-cluster edge.

Overall, let Γ := Λ1 ×Λ2, acting on [n]. Since qi ≥ p, we have gcd(qi, p
2 − 1) = 1. Thus,

Γ is a “2-group extension of a cyclic extension of a p-group” and therefore satisfies Oliver’s

Condition (stated before Theorem 2.1). Hence, assuming QHn is non-evasive, Lemma 2.2

and Theorem 2.1 imply

χ((QHn )Γ) ≡ 1 (mod 2).

On the other hand, we claim that the fixed-point complex (QHn )Γ is isomorphic to Q
[[H]]
r .

The (simple) proof goes along the lines of Lemma 4.2 of [3]. Thus, by Lemma 3.1 we have

χ(Q
[[H]]
r ) ≡ 0 (mod 2), a contradiction.
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3.4. Unconditionally, QHn is only O(1) away from being evasive

In this section, we prove part (c) of Theorem 1.3.

Theorem 3.7. For every graph H there exists a number CH such that the query complexity
of QHn is ≥

(n
2

)

− CH .

Proof. Let h be the number of vertices of H. Let p be the smallest prime such that p ≥ h
and p ≡ 2 (mod TH). So p < f(H) for some function f by Dirichlet’s Theorem (we don’t

need any specific estimates here). Since p − 1 ≡ 1 (mod TH), we have gcd(p − 1, TH) = 1

and therefore gcd(p − 1, pTH) = 1. Now, by the Chinese Remainder Theorem, select the

smallest positive integer k′ satisfying k′ ≡ n (mod pTH) and k′ ≡ 1 (mod p−1). Note that

k′ < p2TH . Let k = (n− k′)/(pTH); so we have n = kpTH + k′.

Let N ′ =
(n
2

)

−
(k′

2

)

. Consider the following Boolean function BH
n on N ′ variables.

Consider graphs X on the vertex set [n] with the property that they have no edges among

their last k′ vertices. These graphs can be viewed as Boolean functions of the remaining

N ′ variables. Now we say that such a graph has property BH
n if it does not contain H as a

subgraph.

Claim. The function BH
n is evasive.

The Claim immediately implies that the query complexity of QHn is at least N ′, proving the

Theorem with CH =
(k′

2

)

< p4T 2
H < f(H)4T 2

H .

To prove the Claim, consider the groups Λ := (F+
p )kTH ⋊ F

×
p and Γ := Λ× Zk′. Here Λ

acts on [pkTH ] in the obvious way: we divide [pkTH ] into kTH blocks of size p; F
+
p acts on

each block independently and F
×
p acts on the blocks simultaneously (diagonal action) so on

each block they combine to an AGL(1, p)-action. Zk′ acts as a k′-cycle on the remaining k′

vertices. So Γ is a cyclic extension of a p-group (because gcd(p − 1, k′) = 1).

If BH
n is not evasive then from Theorem 2.1 and Lemma 2.2, we have χ

(

(BH
n )Γ

)

= 1.

On the other hand we claim that, (BH
n )Γ ∼= Q

[[H]]
r , where r = kTH + 1. The proof of

this claim is exactly the same as the proof of Lemma 4.2 of [3]. Thus, from Lemma 3.1, we

conclude that χ(Q
[[H]]
r ) is even. This contradicts the previous conclusion that χ(Q

[[H]]
r ) = 1.

Remark 3.8. Specific estimates on the smallest Dirichlet prime can be used to estimate

CH . Linnik’s theorem implies CH < hO(1), extending Theorem 3.7 to strong lower bounds

for variable H up to h = nc for some positive constant c.

4. Sparse graphs: unconditional results

We prove part (c) of Theorem 1.4.

Theorem 4.1. If the non-empty monotone graph property Pn is not evasive then

dim(Pn) = Ω(n log n).
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4.1. The basic group construction

Assume in this section that n = pαk where p is prime. Let ∆k ≤ Σk. We construct the

group Γ0(p
α,∆k) acting on [n].

Let ∆ = (F×
pα ×∆k). Let Γ0(p

α,∆k) be the semidirect product (F+
pα)k ⋊∆ with respect

to the ∆-action on (F+
pα)k defined by

(a, σ) : (b1, . . . , bk) 7→ (abσ−1(1), . . . , abσ−1(k)).

We describe the action of Γ0(p
α,∆k) on [n]. Partition [n] into k clusters of size pα each.

Identify each cluster with the field of order pα, i.e., as a set, [n] = [k] × Fpα. The action of

γ = (b1, . . . , bk, a, σ) is described by

γ : (x, y) 7→ (σ(x), ay + bσ(x)).

An unordered pair (i, j) ∈ [n] is termed an intra-cluster edge if both i and j are in the

same cluster, otherwise it is termed an inter-cluster edge. Note that every u-orbital under

Γ has only intra-cluster edges or only inter-cluster edges. Denote by mintra and minter the

minimum sizes of u-orbitals of intra-cluster and inter-cluster edges respectively.

We denote by m′
k the minimum size of an orbit in [k] under ∆k and by m′′

k the minimum

size of a u-orbital in [k]. We then have:

mintra ≥

(

pα

2

)

×m′
k, minter ≥ (pα)2 ×m′′

k

Let mk‘ := min{m′
k,m

′′
k} and define m∗ as the minimum size of a u-orbital in [n]. Then

m∗ = min{mintra,minter} = Ω(p2αmk) (4.1)

4.2. Vinogradov’s Theorem

The Goldbach Conjecture asserts that every even integer can be written as the sum of

two primes. Vinogradov’s Theorem [24] says that every sufficiently large odd integer k is the

sum of three primes k = p1 + p2 + p3. We use here Haselgrove’s version [7] of Vinogradov’s

theorem which states that we can require the primes to be roughly equal: pi ∼ k/3. This

can be combined with the Prime Number Theorem to conclude that every sufficiently large

even integer k is a sum of four roughly equal primes.

4.3. Construction of the group

Let n = pαk where p is prime. Assume k is not bounded. Write k as a sum of t ≤ 4

roughly equal primes pi. Let ∆k :=
∏

i Zpi where Zpi denotes the cyclic group of order pi
and the direct product is taken over the distinct pi.

∆k acts on [k] as follows: partition k into parts of sizes p1, . . . , pt and call these parts

[pi]. The group Zpi acts as a cyclic group on the part [pi]. In case of repetitions, the same

factor Zpi acts on all the parts of size pi.
We follow the notation of Section 4.1 and consider the group Γ0(p

α,∆k) with our specific

∆k. We have mk = Ω(k) and hence we get, from equation (4.1):

Lemma 4.2. Let n = pαk where p is a prime. For the group Γ0(p
α,∆k), we have m∗ =

Ω(p2αk) = Ω(pαn), where m∗ denotes the minimum size of a u-orbital.
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4.4. Proof for the superlinear bound

Let n = pαk where pα is the largest prime power dividing n; so pα = Ω(log n); this

will be a lower bound on the size of u-orbitals. Our group Γ will be of the general form

discussed in Section 4.1.

Case 1. pα = Ω(n2/3).
Let Γ = Γ0(p

α, {1}). Following the notation of Section 4.1, we get m′
k = m′′

k = 1, and this

yields that m∗ = Ω((pα)2) = Ω(n4/3) = Ω(n log n). Oliver’s condition is easily verified for

Γ.

Case 2. k = Ω(n1/3).
Consider the Γ := Γ0(p

α,∆k) acting on [n] where ∆k is as described in Section 4.3. The

minimum possible size m∗ of a u-orbital is Ω(npα) by Lemma 4.2. Finally, since pα =

Ω(log n), we obtain m∗ = Ω(n log n).
If all pi are co-prime to pα − 1 then F

×
pα ×∆k becomes a cyclic group and Γ becomes a

cyclic extension of a p-group.

Since pi = Ω(k) = Ω(n1/3) for all i and pα = O(n2/3), size considerations yield that at

most one pi divides pα − 1 and p2
i does not. Suppose, without loss of generality, p1 divides

pα − 1. Let pα − 1 = p1d, then d must be co-prime to each pi. Thus, ∆ = (Zp1 × Zd) ×
(Zp1 × . . .×Zpt) = (Zd×Zp2 × . . .×Zpr)× (Zp1 ×Zp1). Thus, ∆ is a p1-group extension of

a cyclic group. Hence, Γ satisfies Oliver’s Condition (cf. Theorem 2.1).

Remark 4.3. For almost all n, our proof gives a better dimension lower bound of Ω(n1+ 1+o(1)
ln ln n ).

5. Sparse graphs: conditional improvements

In this section we prove parts (a) and (b) of Theorem 1.4.

5.1. General Setup

Let n = pk + r, where p and r are prime numbers. Let q be a prime divisor of (r − 1).
We partition [n] into two parts of size pk and r, denoted by [pk] and [r] respectively. We

now construct a group Γ(p, q, r) acting on [n] as a direct product of a group acting on [pk]
and a group acting on [r], as follows:

Γ = Γ(p, q, r) := Γ0(p,∆k) × Γ(r, q)

Here, Γ0(p,∆k) acts on [pk] and is as defined in Section 4.3, and involves choosing a partition

of k into upto four primes that are all Ω(k).
Γ(r, q) is defined as the semidirect product F

+
r ⋊ Cq, with Cq viewed as a subgroup of

the group F
×
r . It acts on [r] as follows: We identify [r] with the field of size r. Let (b, a) be

a typical element of Γr where b ∈ Fr and a ∈ Cq. Then, (b, a) : x 7→ ax+ b.
Thus, Γ = Γ(p, q, r) acts on [n]. Let m∗ be the minimum size of the orbit of any edge

(i, j) ∈
([n]

2

)

under the action of Γ. One can show that

m∗ = Ω(min{p2k, pkr, qr}). (5.1)

We shall choose p, q, r carefully such that (a) the value of m∗ is large, and (b) Oliver’s

condition holds for Γ(p, q, r).
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5.2. ERH and Dirichlet primes

The Extended Riemann Hypothesis (ERH) implies the following strong version of the

Prime Number Theorem for arithmetic progressions. Let π(n,D, a) denote the numer of

primes p ≤ n, p ≡ a (mod D). Then for D < n we have

π(n,D, a) =
li(n)

ϕ(D)
+O(

√
x lnx) (5.2)

where li(n) =
∫ n
2 dt/t and the constant implied by the big-Oh notation is absolute (cf. [16,

Ch. 7, eqn. (5.12)] or [2, Thm. 8.4.5]).

This result immediately implies “Bertrand’s Postulate for Dirichlet primes:”

Lemma 5.1 (Bertrand’s Postulate for Dirichlet primes). Assume ERH. Suppose the se-
quence Dn satisfies Dn = o(

√
n/ log2 n). Then for all sufficiently large n and for any an

relatively prime to Dn there exists a prime p ≡ an (mod Dn) such that n
2 ≤ p ≤ n.

5.3. With ERH but without Chowla

We want to write n = pk + r, where p and r are primes, and with q a prime divisor of

r − 1, as described in Section 5.1. Specifically, we try for:

p = Θ(n1/4),
n

4
≤ r ≤

n

2
, q = Θ(n1/4−ǫ)

We claim that under ERH, such a partition of n is possible.

To see this, fix some p = Θ(n1/4) such that gcd(p, n) = 1. Fix some q = Θ(n1/4−ǫ).
Now, r ≡ 1 (mod q) and r ≡ n (mod p) solves to r ≡ a (mod pq) for some a such that

gcd(a, pq) = 1. Since pq = Θ(n1/2−ǫ), we can conclude under ERH (using Lemma 5.1)

that there exists a prime r ≡ a (mod pq) such that n
4 ≤ r ≤ n

2 . This gives us the desired

partition. One can verify that our Γ satisfies Oliver’s Condition. Equation (5.1) gives

m∗ = Ω(n5/4−ǫ). This completes the proof of part (b) of Theorem 1.4.

5.4. Stronger bound using Chowla’s conjecture

Let a and D be relatively prime. Let p be the first prime such that p ≡ a (mod D).
Chowla’s conjecture tells us that p = O(D1+ǫ) for every ǫ > 0. Using this, we show m∗ =

Ω(n3/2−ǫ).
We can use Chowla’s conjecture, along with the general setup of Section 5.1, to obtain

a stronger lower bound on m∗. The new bounds we hope to achieve are:

p = Θ(
√
n), n1−2.5δ ≤ r ≤ n1−0.5δ, q = Θ(n1/2−δ)

Such a partition is always possible assuming Chowla’s conjecture. To see this, first fix

p = Θ(n1/2), then fix q = Θ(n1/2−2δ) and find the least solution for r ≡ 1 (mod q) and

r ≡ n (mod p), which is equivalent to solving for r ≡ a (mod pq) for some a < pq. The

least solution will be greater than pq unless a happens to be a prime. In this case, we add

another constraint, say r ≡ a+1 (mod 3) and resolve to get the least solution greater than

pq. Note that n1−2.5δ ≤ r ≤ n1−0.5δ. Now, from Equation (5.1), we get the lower bound of

m∗ = Ω(n3/2−4δ). This completes the proof of part (a) of Theorem 1.4.



82 L. BABAI, A. BANERJEE, R. KULKARNI, AND V. NAIK

Acknowledgment.

Raghav Kulkarni expresses his gratitude to Sasha Razborov for bringing the subject to

his attention and for helpful initial discussions.

References

[1] Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone span programs. Com-
binatorica 19 (1999), 301–320.

[2] Bach, E., Shallit, J.: Algorithmic Number Theory, Vol. 1. The MIT Press 1996.
[3] Chakrabarti, A., Khot, S., Shi, Y.: Evasiveness of Subgraph Containment and Related Properties.

SIAM J. Comput. 31(3) (2001), 866-875.
[4] Chowla, S. On the least prime in the arithmetical progression. J. Indian Math. Soc. 1(2) (1934), 1–3.
[5] Davenport, H.: Multiplicative Number Theory. (2nd Edn) Springer Verlag, New York, 1980.
[6] Granville, A., Pomerance, C.: On the least prime in certain arithmetic progressions. J. London Math.

Soc. 41(2) (1990), 193–200.
[7] Haselgrove, C. B.: Some theorems on the analytic theory of numbers. J. London Math. Soc. 36 (1951)

273–277
[8] Heath-Brown, D. R.: Almost-primes in arithmetic progressions and short intervals. Math. Proc. Cambr.

Phil. Soc. 83 (1978) 357–376.
[9] Heath-Brown, D. R.: Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic

progression. Proc. London Math. Soc. 64(3) (1992) 265–338.
[10] Kleitman, D. J., Kwiatkowski, D. J.: Further results on the Aanderaa-Rosenberg Conjecture J. Comb.

Th. B 28 (1980), 85–90.
[11] Kahn, J., Saks, M., Sturtevant, D.: A topological approach to evasiveness. Combinatorica 4 (1984),

297–306.
[12] Lutz, F. H.: Examples of Z-acyclic and contractible vertex-homogeneous simplicial complexes.. Discrete

Comput. Geom. 27 (2002), No. 1, 137–154.
[13] Mader, W.: Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann. 174

(1967), 265–268.
[14] Mader, W.: Homomorphiesätze für Graphen. Math. Ann. 175 (1968), 154–168.
[15] Oliver, R.: Fixed-point sets of group actions on finite acyclic complexes. Comment. Math. Helv. 50

(1975), 155–177.
[16] Prachar, K.: Primzahlverteilung. Springer, 1957.
[17] Rosenberg A. L.: On the time required to recognize properties of graphs: A problem. SIGACT News 5

(4) (1973), 15–16.
[18] Rotman, J.: An Introduction to the Theory of Groups. Springer Verlag, 1994.
[19] Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency matrices. Theoret. Comp.

Sci. 3 (1976), 371–384.
[20] Smith P. A.: Fixed point theorems for periodic transformations. Amer. J. of Math. 63 (1941), 1–8.
[21] Titchmarsh, E. C.: A divisor problem. Rend. Circ. Mat. Palermo 54 (1930), 419–429.
[22] Triesch, E.: On the recognition complexity of some graph properties. Combinatorica 16 (2) (1996)

259–268.
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In this paper we consider the mutual exclusion problem on a multiple access channel.

Mutual exclusion is one of the fundamental problems in distributed computing. In the

classic version of this problem, n processes perform a concurrent program which occasionally

triggers some of them to use shared resources, such as memory, communication channel,

device, etc. The goal is to design a distributed algorithm to control entries and exits to/from

the shared resource in such a way that in any time there is at most one process accessing

it. We consider both the classic and a slightly weaker version of mutual exclusion, called

ε-mutual-exclusion, where for each period of a process staying in the critical section the

probability that there is some other process in the critical section is at most ε. We show

that there are channel settings, where the classic mutual exclusion is not feasible even for

randomized algorithms, while ε-mutual-exclusion is. In more relaxed channel settings, we

prove an exponential gap between the makespan complexity of the classic mutual exclusion

problem and its weaker ε-exclusion version. We also show how to guarantee fairness of

mutual exclusion algorithms, i.e., that each process that wants to enter the critical section

will eventually succeed.

1. Introduction

In this paper we consider randomized algorithms for mutual exclusion: one of the funda-

mental problems in distributed computing. We assume that there are n different processes

labeled from 0 to n − 1 communicating through a multiple access channel (MAC). The

computation and communication proceed in synchronous slots, also called rounds. In the

mutual exclusion problem, each process performs a concurrent program and occasionally

requires exclusive access to shared resources. The part of the code corresponding to this

exclusive access is called a critical section. The goal is to provide a mechanism that controls
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entering and exiting the critical section and guarantees exclusive access at any time. The

main challenge is that the designed mechanism must be universal, in the sense that exclu-

sive access must be guaranteed regardless of the times of access requests made by other

processes.

Multiple Access Channel (MAC). We consider a multiple access channel as both com-

munication medium and the shared-access device. As a communication medium, MAC

allows each process either to transmit or listen to the channel at a round,1 and moreover,

if more than one process transmits, then a collision (signal interference) takes place. De-

pending on the devices used in the system, there are several additional settings of MAC

that need to be considered. One of them is the ability of a process to distinguish between

background noise when no process transmits (also called silence) and collision. If such ca-

pability is present at each process, we call the model with collision detection (CD for short);

if no process has such ability, then we call the setting without collision detection (no-CD).

Another feature of the model is a constant access to the global clock (GC for short) by all

processes or no such access by any of them (no-GC). The third parameter to be considered

is a knowledge of the total number of available processes n (KN for short) or the lack of it

(no-KN).

Mutual Exclusion Problem. In this problem, each concurrent process executes a protocol

partitioned into the following four sections:

Entry: the part of the protocol executed in preparation for entering the critical section;

Critical: the part of the protocol to be protected from concurrent execution;

Exit: the part of the protocol executed on leaving the critical section;

Remainder: the rest of the protocol.

These sections are executed cyclically in the order: remainder, entry, critical, and exit.
Intuitively, the remainder section corresponds to local computation of a process, and the

critical section corresponds to the access to the shared object (the channel in our case);

though the particular purpose and operations done within each of these sections are not

a part of the problem. Sections entry and exit are the parts that control switching between

remainder and critical sections in a process, in order to assure some desired properties of

the whole system.

In the traditional mutual exclusion problem, as defined in [1, 16] in the context of shared-

memory model, the adversary controls the sections remainder and critical. In particular,

she controls their duration in each cycle, subject only to the obvious assumptions that this

duration in each cycle is finite or the last performed section is the remainder one. The

mutual exclusion algorithm, on the other hand, provides a protocol for the entry and exit

sections of each process. In this sense, the mutual exclusion problem can be seen as a game

between the adversary controlling the lengths of remainder and critical sections of each

process (each such section for each process may have different length) and the algorithm

controlling entry and exit sections. The goal of the algorithm is to guarantee several useful

properties of the execution (to be defined later), while the goal of the adversary is to prevent

it. Note that the sections controlled by the adversary and those controlled by the algorithm

are interleaved in the execution. Additionally, in order to make the game fair, it is typically

1Most of the previous work on MAC, motivated by Ethernet applications, assumed that a process can
transmit and listen simultaneously; our work instead follows the recent trends of wireless applications where
such simultaneous activities are excluded due to physical constraints.
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assumed that every variable used by the algorithm, i.e., in the entry and exit sections,

cannot be modified by the adversary in the critical and remainder sections, and vice versa,

i.e., no variables used by the adversary in the remainder and critical sections can be accessed

by the algorithm.

In the model of communication over MAC, a process in the entry or the exit section

can do the following in a single round: perform some action on the channel (either transmit

a message or listen), do some local computation, and change its section either from entry to

critical or from exit to remainder. We assume that changing sections occurs momentarily

between consecutive rounds, i.e., in each round a process is exactly in one section of the

protocol.

Since a multiple-access channel is both the only communication medium and the exclu-

sively shared object, additional constraints, different from the classic ones regarding e.g.,

shared memory objects, must be imposed:

• no process in the remainder section is allowed to transmit on the channel;

• a process in the critical section has to transmit a message on the channel each round

until it moves to the exit section, and each such message must be labelled critical;
we call them critical messages.

If any of these conditions was violated, the adversary would have an unlimited power of

creating collisions on the channel, and thus preventing any communication.

A classic mutual exclusion algorithm should satisfy the following three properties for

any round i of its execution:

Exclusion: at most one process is in the critical section in round i.

Unobstructed exit: if a process p is in the exit section at round i, then process p will switch

to the remainder section eventually after round i.

No deadlock: if there is a process in the entry section at round i, then some process will

enter the critical section eventually after round i.

To strengthen the quality of service guaranteed by mutual exclusion algorithms, the follow-

ing property — stronger than no-deadlock — has been considered:

No lockout: if a process p is in the entry section at round i, then process p will enter the

critical section eventually after round i.

Note that — to some extent — this property ensures fairness: each process demanding

an access to the critical section will eventually get it.

As we show, in some cases the exclusion condition is impossible or very costly to achieve.

Therefore, we also consider a slightly weaker condition:

ε-exclusion: for every process p and for every time interval in which p is continuously in

the critical section, the probability that in any round of this time interval there is

another process being in the critical section is at most ε.

Intuitively, ε-exclusion guarantees mutual exclusion “locally”, i.e., for every single execution

of the critical section by a process, with probability at least 1−ε. The version of the problem

satisfying ε-exclusion condition is called ε-mutual-exclusion.

Complexity Measure. We use the makespan measure, as defined in [8] in the context

of deterministic algorithms. Makespan of an execution of a given deterministic mutual

exclusion algorithm is defined as the maximum length of a time interval in which there is

some process in the entry section and there is no process in the critical section. Taking

maximum of such values over all possible executions defines the makespan of the algorithm.
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In order to define expected makespan, suitable for randomized algorithms considered in this

work, we need more formal definitions of an adversarial strategy. Let P be a strategy of the

adversary, defined as a set of n sequences, where each sequence corresponds to a different

process and contains, subsequently interleaved, lengths of remainder and critical sections of

the corresponding process. We assume that each sequence is either infinite or of even length;

the latter condition means that after the last critical section the corresponding process runs

the remainder section forever. For a given mutual exclusion algorithm Alg and adversarial

strategy P, we define L(Alg,P) as a random variable equal to the maximum length of a

time interval in which there is some process in the entry section and there is no process

in the critical section in an execution of Alg run against fixed strategy P. The expected

makespan of algorithm Alg is defined as the maximum of expected values of L(Alg,P),

taken over all adversarial strategies P. Note that every algorithm with makespan bounded

for all executions satisfies no-deadlock property, but not necessarily no-lockout.

For the ε-mutual-exclusion problem, defining makespan is a bit more subtle. We call

an execution admissible if the mutual exclusion property is always fulfilled, i.e., no two

processes are in the critical section in the same round. Then in the computation of the

(expected) makespan, we neglect non-admissible executions.

1.1. Our Results

We consider the mutual exclusion problem and its weaker ε-exclusion version in the

multiple access channel. Unlike the previous paper [8], where only no-deadlock property

was guaranteed, we also focus on fairness. Also in contrast to the previous work on mutual

exclusion on MAC, we mostly study randomized solutions. In the case of the mutual

exclusion problem, we allow randomized algorithms to have variable execution time but

they have to be always correct. On the other hand, a randomized solution for the ε-mutual-

exclusion problem is allowed to err with some small probability ε. Thus, for the former

problem, we require Las Vegas type of solution, whereas for the latter we admit Monte Carlo

algorithms. Note that very small (e.g., comparable with probability of hardware failure)

risk of failure (i.e., situation wherein two or more processes are in the critical section at the

same round) is negligible from a practical point of view.

We show that for the most severe channel setting, i.e., no-CD, no-GC and no-KN,

mutual exclusion is not feasible even for randomized algorithms (cf. Section 2).

In a more relaxed setting, there is an exponential gap between the complexity of the mu-

tual exclusion problem and the ε-mutual-exclusion problem. Concretely, we prove that the

expected makespan of (randomized) solutions for the mutual exclusion problem in the no-CD

setting is Ω(n), even if the algorithm knows n, has access to the global clock (cf. Section 2),

and even if only no-deadlock property is required. On the other hand, for the ε-mutual-

exclusion problem, we construct a randomized algorithm, requiring only the knowledge of n,

which guarantees no-lockout property, and whose makespan is O(log n · log(1/ε)) (cf. Sec-

tions 3.2 and 4).

When collision detection is available and only no-deadlock property is required, we show

that the makespan of any mutual exclusion algorithm is at least Ω(log n) (cf. Section 2) and

we construct an algorithm for the ε-mutual-exclusion problem with expected makespan

O(log log n + log(1/ε)) (cf. Section 3.3). Further, we show how to modify this algorithm

to guarantee no-lockout property as well; its expected makespan becomes then O(log n +

log(1/ε)) (cf. Sections 3.3 and 4).
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Finally, if we do not require no-lockout property, we show how to solve the ε-mutual-

exclusion problem in makespan O(log n · log(1/ε)), where only the global clock is available

(cf. Section 3.1).

We also present a generic method that, taking a mutual exclusion algorithm with no-

deadlock property, turns it into the one satisfying stronger no-lockout condition. This

method applied to the deterministic algorithms from [8] produces efficient deterministic

solutions satisfying the no-lockout property.

Due to space limitations, the missing details and proofs will appear in the full version

of the paper.

1.2. Previous and Related Work

The multiple access channel is a well-studied model of communication. In many prob-

lems considered in this setting, one of the most important issues is to assure that successful

transmissions occur in the computation. These problems are often called selection problems.
They differ from the mutual exclusion problem by the fact that they focus on successful

transmissions within a bounded length period, while mutual exclusion provides control

mechanism for dynamic and possibly unbounded computation. In particular, it includes

recovering from long periods of cumulative requests for the critical section as well as from

long periods containing no request. Additionally, selection problems were considered typ-

ically in the context of Ethernet or combinatorial group testing, and as such they allowed

a process to transmit and to listen simultaneously, which is not the case in our model moti-

vated by wireless applications. Selection problems can be further split into two categories.

In the static selection problems, it is assumed that a subset of processes become active at

the same time and a subset of them must eventually transmit successfully. Several scenar-

ios and model settings, including parameters considered in this work such as CD/no-CD,

GC/no-GC, KN/no-KN, randomization/determinism, were considered in this context, see

e.g., [2, 4, 7, 11, 12, 14, 15, 17, 18, 19]. In the wake-up problem, processes are awaken in

(possibly) different rounds and the goal is to assure that there will be a round with success-

ful transmission (“awakening” the whole channel) shortly after the first process is awaken,

see, e.g., [5, 9, 13].

More dynamic kinds of problems, such as transmission of dynamically arriving packets,

were also considered in the context of MAC. In the (dynamic) packet transmission problem,

the aim is to obtain bounded throughput and bounded latency. Two models of packet arrival

were considered: stochastic (cf., [10]) and adversarial queuing (cf., [3, 6]). There are two

substantial differences between these settings and our work. First, the adversaries imposing

dynamic packet arrival are different than the adversary simulating execution of concurrent

protocol. Second, as already mentioned in the context of selection problems, these papers

were inspired by Ethernet applications where it is typically allowed to transmit and listen

simultaneously.

In a very recent paper [8] deterministic algorithms for mutual exclusion problem in

MAC under different settings (CD, GC, KN) were studied. The authors proved that with

none of those three characteristics mutual exclusion is infeasible. Moreover, they presented

an optimal — in terms of the makespan measure — O(log n) round algorithm for the model

with CD. They also developed algorithms achieving makespan O(n log2 n) in the models

with GC or KN only, which, in view of the lower bound Ω(n) on deterministic solutions

proved for any model with no-CD, is close to optimal. Our paper differs from [8] in three
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ways. First, we consider both deterministic and randomized solutions. Second, for the

sake of efficiency we introduce the ε-mutual-exclusion problem. Third, we study fairness of

protocols, which means that we consider also no-lockout property.

2. Lower Bounds for the Mutual Exclusion Problem

In our lower bounds, we use the concept of transmission schedules to capture transmis-

sion/listening activity of processes in the entry or exit section. Transmission schedule of

a process p can be regarded as a binary sequence πp describing the subsequent communica-

tion actions of the process. The sequence can be finite or infinite. For non-negative integer

i, πp(i) = 1 means that process p transmits in round i after starting its current section,

while πp(i) = 0 means that the process listens in round i. We assume that round 0 is the

round in which the process starts its current run of the entry or the exit section.

The following results extend the lower bounds and impossibility results for deterministic

mutual exclusion proved in [8] to randomized solutions. All the presented lower bounds work

even if we do not require no-lockout, but a weaker no-deadlock property.

Theorem 2.1. There is no randomized mutual exclusion algorithm with no-deadlock prop-
erty holding with a positive probability in the setting without collision detection, without
global clock and without knowledge of the number n of processes.

Theorem 2.2. The expected makespan of any randomized mutual exclusion algorithm is at
least log n, even in the setting with collision detection, with global clock and with knowledge
of the number n of processes.

Theorem 2.3. The expected makespan of any randomized mutual exclusion algorithm is at
least n/2 in the absence of collision detection capability, even in the setting with global clock
and with knowledge of the number n of processes.

Proof. To arrive at a contradiction, let R be a randomized mutual exclusion algorithm,

whose expected makespan is c, where c < n/2. We show that there exists an execution

violating mutual exclusion.

Let E∗
p , for process p, be the set of all possible executions of the first entry section of

algorithm R by process p under the assumption that it starts its first entry section in the

global round 1 and there is no other process starting within the first n/2 rounds. Note that

during each execution in E∗
p process p hears only noise (i.e., silence or collision, which are

indistinguishable due to the lack of collision detection) from the channel when listening.

Observe also that the optimum algorithm needs only one round to let process p enter the

critical section under the considered adversarial scenario. Therefore, by the probabilistic

method, there is an execution Ep in set E∗
p where process p enters the critical section within

the first n/2 − 1 rounds. Let πp be the transmission schedule of process p during Ep.

Consider all sequences πp over all processes 0 ≤ p < n. We construct execution E
contradicting mutual exclusion as follows. First, we need to select a set of processes that

start their first entry sections in round 1, while the others stay in the remainder section till

at least round n/2. Let P0 = {0, . . . , n − 1}. For every non-negative integer j, we define

recursively

P2j+1 = P2j \
{

p ∈ P2j : ∃i∈[1,n/2−1]

(

πp(i) = 1 & ∀q∈P2j ,q 6=p πq(i) = 0
)}

,

P2j+2 = P2j+1 \
{

p ∈ P2j+1 : ∃i∈[1,n/2−1]

(

|πp| = i & ∀q∈P2j+1
|πq| > i

)}

.
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Intuitively, set P2j+1 is obtained from P2j by removing processes p that could be single

transmitters in some round in the interval [1, n/2− 1] while transmitting according to their

schedules πp. Set P2j+2 is constructed by removing a process with the shortest transmission

schedule, if there is only one such process. Observe that sequence {Pj}j≥0 is bounded and

monotonically non-increasing (in the sense of set inclusion), therefore it stabilizes on some

set P ∗. Observe that

(1) |P ∗| ≥ 2, since for each round i ∈ [1, n/2 − 1] there is at most one process removed

from some set P2j while constructing the consecutive set P2j+1 (after such removal

no remaining process has 1 in position i of its schedule) and at most one process

removed from some set P2j′+1 while constructing the consecutive set P2j′+2 (after

such removal no remaining process p finishes its transmission schedule πp in round i);

as there are n/2 − 1 considered rounds, at most n − 2 processes can be removed

throughout the construction;

(2) there is no round i ∈ [1, n/2−1] such that there is only one process p ∈ P ∗ satisfying

πp(i) = 1; this follows from the fact that P ∗ is a fixed point of the sequence {Pj}j≥0,

i.e., it does not change while applying the odd-step rule of the construction;

(3) there are at least two processes p, q ∈ P ∗ with the shortest transmission schedules

πp, πq, i.e., |πp| = |πq| and for every process r ∈ P ∗, |πr| ≥ |πp|; this again follows

from the fact that P ∗ is a fixed point of the sequence {Pj}j≥0, i.e., it does not change

while applying the even-step rule of the construction.

Having subset P ∗ of processes, the adversary starts first entry sections for all processes in

P ∗ in the very first round, while she delays others (they remain in the remainder section)

by round n/2. Note that before round 1 of the constructed execution E , a process p ∈ P ∗

cannot distinguish E from Ep, therefore it may decide to do the same as in Ep, i.e., to set

its first position of transmission schedule to πp(1). If this happens for all processes in P ∗,

by the second property of this set there is no single transmitter in round 1, and therefore

all listening processes hear the noise (recall that silence is not distinguishable from collision

in the considered setting). This construction and the output of the first round can be

inductively extended up to round |πp|, where p ∈ P ∗ is a process with the shortest schedule

πp among processes in P ∗. This is because from the point of view of a process q ∈ P ∗ the

previously constructed prefix of E is not distinguishable from the corresponding prefix of

execution Eq; indeed, the transmission schedules are the same and the feedback from the

channel is silence whenever the process listens. Finally, by the very same reason, at the end

of round |πp| all processes q ∈ P ∗ with |πq| = |πp| are allowed to do in E the same action as

in Eq, that is, to enter the critical section. By the third property of set P ∗, there is at least

one such process q ∈ P ∗ different than p. This violates the exclusion property that should

hold for the constructed execution E .

3. Algorithms for the ε-Mutual-Exclusion Problem

In this section, we present randomized algorithms solving the ε-mutual-exclusion prob-

lem for various scenarios, differing in the channel capabilities (e.g., CD/no-CD, KN/no-KN,

GC/no-GC). The algorithms presented in this section, work solely in entry sections, i.e.,

their exit sections are empty; these algorithms guarantee only no-deadlock property. How-

ever, in Section 4, we show how to add exit section subroutines to most of our algorithms

to guarantee the no-lockout property while keeping bounded makespan. In our algorithms,
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we extend some techniques developed in the context of other related problems, such as the

wake-up problem [13] and the leader election problem [19].

Throughout this section, we use the following notation. We say that there is a successful
transmission in a given round if in this round one process transmits and other processes do

not transmit. By saying that a process resigns, we mean that it will not try to enter the

critical section and will not attempt to transmit anything until another process starts the

exit section.

3.1. Only Global Clock Available

In the model with global clock, we modify the Increase From Square algorithm [13],

which solves the wake-up problem. The purpose of our modification is to assure the stopping

property. This is a nontrivial task in a scenario without collision detection and this property

was not present in the original wake-up algorithm. Intuitively, after one process successfully

transmits, it should enter the critical section. However, first of all it might not be aware that

it succeeded. Second, between a successful transmission and entering the critical section,

some other processes may start their entry sections. The details will be presented in the

full version of this paper.

Theorem 3.1. There is an ε-mutual-exclusion algorithm, using a modified algorithm In-

crease From Square as a subroutine for the entry section, with makespan O(log n · log(1/ε))

in the model without global clock.

3.2. Only Number of Processes Known

In this scenario, we build our solution based on the Probability Increase algorithm

of [13]. In this algorithm, each process works in Θ(log n) phases, each lasting Θ(log(1/ε))

rounds. In each round of phase i, a process transmits with probability 2−i.

Lemma 3.2 ([13]). If all processes use the algorithm Probability Increase after being awaken,
then there is a successful transmission in time k = O(log n · log(1/ε)) with probability at
least 1 − ε.

We describe how to modify the Probability Increase algorithm to meet the requirements

of ε-exclusion. When a process enters the entry section, it first switches to the listening

mode and stays in this mode for k = O(log n · log(1/ε)) rounds. If within this time it hears

another process, it resigns. Afterwards, the process starts to execute the Probability Increase
algorithm. Whenever it is not transmitting, it listens, and when it hears a message from

another process, it resigns. After executing k rounds of the listening mode and the following

k rounds of Probability Increase without resigning, the process enters the critical section.

Using this algorithm, the following result can be proved.

Theorem 3.3. There is an ε-mutual-exclusion algorithm, using a modified algorithm Prob-

ability Increase as a subroutine for the entry section, with makespan O(log n · log(1/ε)) in
the KN model.

Proof. Let k be as defined above in the algorithm definition. Let t be a round in the

execution in which there is at least one process in the entry section, no process in the exit

or critical section, and such that there was no process in the entry section in the previous

round t − 1. Let P be the set of processes which are in their entry sections at round t + k.
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First, we observe that processes which enter their entry section in round t + k + 1 or later,

i.e., all processes that are not in set P , do not transmit in the time period [t, t + 2k]. By

Lemma 3.2, with probability 1 − ε, there is a process in P which successfully transmits at

some round in [t + k, t + 2k). Let t + k ≤ r < t + 2k be the first such round, and p ∈ P

be the process transmitting successfully in round r. Note that all other processes being in

the entry section resign at this round, and all processes that start their entry sections after

round r do not transmit by round r + k. Therefore, p does not hear anything before it

finishes its Probability Increase subroutine (in the next at most k− 1 rounds after r), which

implies that it enters the critical section by round r + k − 1 < t + 2k.

3.3. Only Collision Detection Available

In this scenario, the main idea behind our algorithm is as follows. First, we show

how to solve a static case of the ε-mutual-exclusion problem, i.e., the case where there

is a subset S of processes which start their entry sections at round 1 and no process is

activated later. Later, we show that we are then able to solve ε-mutual-exclusion problem

in (asymptotically) the same time. In what follows, we assume that whenever a process

does not transmit, it listens.

To solve the static case, we first run a simple Check If Single subroutine, which, with

probability at least 1 − ε, determines whether there is one active processes or more. In

the former case, this process may simply enter the critical section. In the latter, we sim-

ulate Willard’s algorithm [19], which works in expected time log log n + o(log log n). The

simulation is required, as the original algorithm of [19] assumes that each process can si-

multaneously transmit and listen in each round. The idea of this simulation is that for each

message sent, all listening processes acknowledge it in the next round.

Lemma 3.4. If there are at least two active processes, it is possible to simulate one round
taken in the model in which a process may simultaneously transmit and listen, in two rounds
of our model in the setting with collision detection.

As mentioned above, another building block is a procedure Check If Single. The algo-

rithm assumes that there is a set of processes which start this procedure simultaneously.

The procedure consists of 2 · log(1/ε) rounds. In each odd round, process i tosses a symmet-

ric coin, i.e., with probability 1/2 of success, to choose whether it transmits in the current

round and listens in the next round, or vice versa. If the process never hears anything, it

enters the critical section at the end of the procedure.

Lemma 3.5. Assume k processes execute the procedure Check If Single. If k = 1, then the
only process enters the critical section. If k ≥ 2, then with probability 1 − ε, no process
enters the critical section.

Proof. The first claim holds trivially. For showing the second one, we fix an odd-even pair of

rounds. Let E denote the event that there is a process, which does not hear anything in this

pair of rounds. For this to happen all processes running Check If Single have to transmit in

the odd round or all have to transmit in the even round. Thus, Pr[E] = 2 ·1/2k = 1/2k−1 ≤
1/2. Since the transmissions in different pairs of rounds are independent, the probability

that there exists a process which does not hear anything during the whole algorithm, and

thus enters the critical section, is at most (1/2)log(1/ε) = ε.
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We may now describe an algorithm solving the static ε-mutual-exclusion problem. Let

S be a subset of processes which simultaneously start their entry sections. In the first

2 log(1/ε) rounds, the processes execute the procedure Check If Single. Then the processes

that did not enter the critical section, run a simulation of Willard’s algorithm, as described

in Lemma 3.4. The processes that transmit successfully, enter the critical section. Using

this algorithm, the following result can be proved.

Theorem 3.6. In the scenario with collision detection, there is an algorithm solving the
static ε-mutual-exclusion problem with expected makespan O(log log n + log(1/ε)).

Proof. Consider the algorithm described above, based on the procedure Check If Single. If

there is only one process starting its entry section, it enters the critical section right after

the procedure Check If Single (which takes O(log(1/ε)) rounds). If there is more than one

process, with probability 1 − ε they do not enter the critical section after this procedure

and they all simultaneously start the simulation of Willard’s algorithm. By the property of

Willard’s algorithm [19] and by Lemma 3.4, in expectation there is a successful transmission

in O(log log n) rounds.

It remains to show that we may use an algorithm for static version of ε-mutual-exclusion

to solve the general version of the ε-mutual-exclusion problem. The idea is to synchronize

processes at the beginning, and then to transmit a “busy” signal in every second round.

New processes starting their entry section note this signal and will not compete for the

critical section, until an exit section releases the shared channel.

Theorem 3.7. If there exists an algorithm Alg for the static ε-mutual-exclusion problem
with (expected) makespan T in the model with collision detection, then there exists an al-
gorithm Alg

′ for the ε-mutual-exclusion problem with (expected) makespan 2 + 2 · T in the
same setting.

4. Fairness

The algorithms shown in [8] and Section 3 do not consider the no-lockout property,

i.e., it may happen that a process never gets out of its entry section, as other processes

exchange access to the critical section among themselves. We show how to modify algorithms

satisfying no-deadlock property (in particular, the algorithms from [8]), so that the no-

lockout property is fulfilled. Moreover, our transformation allows to express the (expected)

makespan of obtained fair protocols in terms of the (expected) makespan of the original

weaker protocols.

Each process maintains an additional local counter of losses. When it starts its entry

section, it sets its counter to zero and whenever it loses the competition for the critical

section, i.e., when some other process enters the critical section, it increases this counter by

one. When a process enters its exit section, it becomes a guard: it helps processes currently

being in the entry section to choose one of them with the highest loss counter. How high

the loss counter can grow is bounded by the number of processes in their entry sections at

the moment when the considered process entered its current entry section. Thus, also the

time after which the process will enter the critical section is bounded.

Lemma 4.1. If either collision detection is available or the number of nodes is known,
it is possible to transform a mutual exclusion algorithm with (expected) makespan T into
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an algorithm, which also guarantees the no-lockout property and has (expected) makespan
O(T + log n).

Proof. Here we only describe a transformation for the CD scenario; the analysis and the

variant for KN will appear in the full version of the paper. Let Alg be a given subroutine for

the entry section, satisfying no-deadlock property. In order to use it for an entry procedure

satisfying stronger no-lockout property, we slow down algorithm Alg three times, by pre-

ceding each original round by two additional rounds: in the first one the process transmits

signal 1, while in the second one it only listens. We call the obtained subroutine Alg
′.

We also need the following selection subroutine. Assume there is a single guard and a

subset (may be empty) of other processes, called competing processes. They all start the

selection subroutine in the same round. The goal is to elect one of the competing processes

to enter the critical section. The subroutine is partitioned into blocks, each consisting of

three rounds. In the first two rounds of each block only the guard transmits, and the signals

are 1 and 0, respectively. The purpose of these rounds is to assure that processes that start

their entry sections later will not disturb the selection subroutine. The competition, which is

essentially a binary search for the highest loss counter of the competing processes, proceeds

in the following phases. In the ith block of the first phase all processes whose loss counter

is at least 2i broadcast a 0 (after the guard’s 10), all other processes listen. The phase ends

with a block i when silence is heard, thus all competitors and the guard know that the

highest loss counter is between 2i−1 and 2i. Then a binary search is performed in additional

O(i) blocks in similar manner. Additional binary search is performed to choose one process

(the one with the minimum id) from all processes with the same maximal number of losses.

We now describe a procedure governing the exit section. Recall that a process being

in the critical section always broadcasts the critical message to let others know that the

channel is occupied. For the purpose of this reduction and its analysis, we denote the critical

message by a single bit 1 (this is only technical assumption to simplify the proof arguments).

When the process starts its exit section and becomes a guard, it transmits a 0 in the first

round and listens in the second round. If the guard hears silence then it switches to the

remainder section; otherwise it participates in the selection subroutine described above.

Each process starting its entry section listens for three rounds. If it hears silence during

all these rounds, it starts executing Alg
′ until some process enters the critical section (it

is guaranteed by no-deadlock property of Alg, and can be extended to Alg
′ as well); then

it resets its state and starts again its entry section procedure with round counter 1. It also

resets its state and starts again with round counter 1 in case it hears anything different

from 1, 1, 1 and 1, 1, 0 during the first three rounds of listening. In the remaining third case,

i.e., when the process has heard 1, 1, 1 or 1, 1, 0, it keeps listening until the first round t,

counting from the first listening round in this run, such that the process has heard signals

1, 1, 0 in rounds t − 2, t − 1, t, respectively. It then transmits in round t + 1 and starts the

selection subroutine in round t + 2.

By combining Lemma 4.1 with the results from Section 3 and with the existing no-

deadlock deterministic algorithms of [8], we obtain the following two conclusions.

Corollary 4.2. There exists a randomized algorithm with expected makespan O(log n +

log(1/ε)) solving the ε-mutual-exclusion problem in the model in which collision detection is
available, and a randomized algorithm with makespan O(log n · log(1/ε)) in the KN model.
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Corollary 4.3. There exists a deterministic algorithm with makespan O(log n) solving the
mutual exclusion problem in the model in which collision detection is available and a deter-
ministic algorithm with makespan O(n log2 n) in the KN model.
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Abstract. Given a k-uniform hypergraph on n vertices, partitioned in k equal parts
such that every hyperedge includes one vertex from each part, the k-Dimensional Match-
ing problem asks whether there is a disjoint collection of the hyperedges which covers
all vertices. We show it can be solved by a randomized polynomial space algorithm in
O

∗(2n(k−2)/k) time. The O
∗() notation hides factors polynomial in n and k.

The general Exact Cover by k-Sets problem asks the same when the partition constraint
is dropped and arbitrary hyperedges of cardinality k are permitted. We show it can be
solved by a randomized polynomial space algorithm in O

∗(cn
k ) time, where c3 = 1.496, c4 =

1.642, c5 = 1.721, and provide a general bound for larger k.
Both results substantially improve on the previous best algorithms for these problems,

especially for small k. They follow from the new observation that Lovász’ perfect matching
detection via determinants (Lovász, 1979) admits an embedding in the recently proposed
inclusion–exclusion counting scheme for set covers, despite its inability to count the perfect
matchings.

1. Introduction

The Exact Cover by k-Sets problem (XkC) and its constrained variant k-Dimensional

Matching (kDM) are two well-known NP-hard problems. They ask, given a k-uniform hy-

pergraph, if there is a subset of the hyperedges which cover the vertices without overlapping

each other. In the kDM problem the vertices are further partitioned in k equal parts and

the hyperedges each includes exactly one vertex from each part. While being two of the

21 items of Karp’s classic list of NP-complete problems [6] for k ≥ 3, little is known on

their algorithmic side. In this paper, we present stronger worst case time bounds for these

problems by combining Lovász’ perfect matching detection algorithm via determinants [10]

with the inclusion–exclusion counting for set covers [1]. We show

Theorem 1.1. k-Dimensional Matching on n vertices can be solved by a Monte Carlo

algorithm with exponentially low probability of failure in n, using space polynomial in n,

running in O∗(2n(k−2)/k) time.

Theorem 1.2. Exact Cover by k-Sets on n vertices can be solved by a Monte Carlo al-

gorithm with exponentially low probability of failure in n, using space polynomial in n,
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Algorithm \ k 3 4 5 6 7 8

kDM in [1] 1.587 1.682 1.741 1.782 1.811 1.834

kDM here 1.260 1.414 1.516 1.587 1.641 1.682

XkC in [1] 1.842 1.888 1.913 1.929 1.940 1.948

XkC in [8] 1.769 1.827 1.862 1.885 1.901 1.914

XkC here 1.496 1.642 1.721 1.771 1.806 1.832

Table 1: Comparison of the base c in the O∗(cn) runtime of previous and the new algorithms.

running in O∗(cn
k ) time, with c3 = 1.496, c4 = 1.642, c5 = 1.721, c6 = 1.771, c7 = 1.806, and

in general ck < 2
(

8.415k0.9−k(k − 1)0.6(k − 1.5)k−1.5
)−1/k

These bounds are large improvements over the previously known ones. In particular,

for three dimensional matching our algorithm runs in time asymptotically proportional to

the square root of the previous best algorithm’s runtime.

We hope the present paper conveys the message that inclusion–exclusion is amendable

not only to counting problems, but can at times be used more directly to settle the decision

version of a problem.

1.1. Previous Work

Perhaps the most famous algorithmic contribution on the subject of exact covers is

Knuth’s Dancing Links paper [7], which actually just addresses a general implementation

issue which saves a small constant factor in the natural backtracking algorithm for the

problem. About the backtracking approach on exact cover he writes “Indeed, I can’t think of

any other reasonable way to do the job in general”. While we certainly may agree depending

on how much you put in the words “reasonable” and “general”, we must point out that the

best provable worst case bounds for the problems are obtained by analyzing very different

algorithms. Björklund et al. [2] uses inclusion–exclusion and fast zeta transforms on the full

subset lattice to show that exact set covers of any n vertex hypergraph can be counted in

O∗(2n) time even when the number of hyperedges to choose from are exponential. Restricted

to k-uniform hypergraphs, Koivisto [8] proposes a simple clever dynamic programming over

subsets which show that Exact Cover by k-Sets can be solved in O∗(2n(2k−2)/
√

(2k−1)2−2ln(2))

time. The algorithm is actually capable of counting the solutions and also works for not

necessarily disjoint covers. It does, however, use exponential space. The best previous

algorithm for the problem using only polynomial space is given in [1] and has a runtime

bound in O∗((1+k/(k−1))n(k−1)/k). For k-Dimensional Matching, the best known algorithm

as far as we know is an O∗(2n(k−1)/k) time algorithm resulting from a generalization of

Ryser’s inclusion–exclusion counting formula for the permanent [12], presented in [1]. A

comparison of the bounds guaranteed by these algorithms and the ones given in this paper

is shown in Table 1 for small k.

For k = 2 the problems X2C and 2DM are better known as the problems of finding a

perfect matching in a general and bipartite graph, respectively. For these problems several

polynomial time algorithms are known. We definitely admit that it seems like an obvious

idea to try to reduce the k > 2 cases to the k = 2 case searching for faster algorithms

for larger k. Still, we believe that it is far from clear how to achieve this efficiently. In

this paper we make such an attempt by reducing the k > 2 cases to variants of one of the
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first polynomial time algorithms for detecting the existence of perfect matchings: Lovász’

algorithm from [10] which evaluates the determinant of the graph’s Tutte matrix [13] at a

random point.

2. Our Approach

2.1. Preliminaries

We use the terminology of (multi)hypergraphs. A hypergraph H = (V,E) is a set V of

n vertices and a multiset E of (hyper)edges which are subsets of V . Note in particular that

with this definition edges may include only one (or even no) vertex and may appear more

than once. In a k-uniform hypergraph each edge e ∈ E has size |e| = k. Given a vertex

subset U ⊆ V , the projected hypergraph of H = (V,E) on U , denoted H[U ] = (U,E[U ]) is a

hypergraph on U where there is one edge eU in E[U ] for every e ∈ E, defined by eU = e∩U ,

i.e. the projection of e on U .

We study two related problems.

Definition 2.1 (k-Dimensional Matching, kDM).

Input: A k-uniform hypergraph H = (V1 ∪ V2 ∪ · · ·Vk, E), with E ⊆ V1 × V2 × · · ·Vk.

Question: Is there S ⊆ E s.t. ∪s∈Ss = V1∪V2∪ · · ·Vk and ∀s1 6= s2 ∈ S : s1∩ s2 = ∅.

Definition 2.2 (Exact Cover by k-Sets, XkC).

Input: A k-uniform hypergraph H = (V,E).

Question: Is there S ⊆ E s.t. ∪s∈Ss = V and ∀s1 6= s2 ∈ S : s1 ∩ s2 = ∅.

For a matrix A we will by Ai,j denote the entry at row i and column j.

2.2. Determinants

The determinant of an n × n-matrix A over an arbitrary ring R can be defined by the

Leibniz formula

det(A) =
∑

σ:[n]→[n]

sgn(σ)

n
∏

i=1

Ai,σ(i) (2.1)

where the summation is over all permutations of n elements, and sgn is a function called

the sign of the permutation which assigns either one or minus one to a permutation. In this

paper we will restrict ourselves to computing determinants over fields of characteristic two,

GF(2m) for some positive integer m. In such fields every element serves as its own additive

inverse, and in particular so does the element one, and the sgn function identically maps

one to every permutation. Thus it vanishes from Eq. 2.1 in this case, and the determinant

coincides with another matrix quantity, called the permanent :

per(A) =
∑

σ:[n]→[n]

n
∏

i=1

Ai,σ(i) (2.2)

Permanents of 0–1-matrices over the natural numbers are known to count the perfect match-

ings of the bipartite graph described by the matrix. The reader may subsequently be

tempted to think that this identity of determinants and permanents over fields of char-

acteristic two is the property that makes our algorithms work. There is however nothing
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magical about these fields in this context. Our reason for working in GF(2m) is simply that

with this choice of fields we don’t even have to define the sign function, making several of

the proof arguments later on much easier to digest. In principle though, any large enough

field will work, with slightly more complicated proofs.

The interesting property of the determinant that we will exploit here is that although

it is defined above in Eq. 2.1 as a sum of an exponential number of terms, it admits

computation in time polynomial in n. This can be achieved for instance via the so called

LU-factorization of the matrix which almost any textbook on linear algebra will tell you.

In fact, computing the determinant is no harder than square matrix multiplication, see [3],

and hence it can be done in O(nω) field operations where ω = 2.376 is the Coppersmith–

Winograd exponent [4].

2.3. Inclusion–Exclusion for Set Covers

Let us review the inclusion–exclusion counting scheme for exact set covers presented by

Björklund and Husfeldt in [1]: Given a k-uniform hypergraph H = (V,E) and any subset

U ⊆ V , we can count the number of Exact Covers by k-Sets, denoted #XkC(H), by the

inclusion–exclusion formula

#XkC(H) =
∑

X⊆V −U

(−1)|X|W (H,U,X) (2.3)

where W (H,U,X) counts the number of ways to exactly cover U with |V |/k edges in H[U ]

whose corresponding edges in H are disjoint from X. Put differently, W (H,U,X) counts

the number of ways to pick |V |/k edges from H, all having an empty intersection with

X, which cover U without any overlap. In particular, when U = ∅ it is straightforward to

compute W (H, ∅,X) by just counting the number of edges in H disjoint from X, calling this

quantity d(X), and then computing the binomial
(d(X)

m

)

. In [1], some examples where this

algorithm could be accelerated by choosing a larger U were identified where the speedup

was obtained by utilizing U ’s such that the projected hypergraph on U had low path–width.

This enabled efficient counting by dynamic programming over a path decomposition.

2.4. Moving to GF(2m)

In this paper, we find a new way to allow a large U to expedite the computation of the

formula Eq. 2.3 above. We observe that whenever the projected hypergraph contains edges

of size at most two, we can use determinants to compute the formula faster. We note that

if the problem of counting perfect matching had an efficient algorithm A, we would almost

immediately get an O∗(2n(k−2)/k) time algorithm for the kDM problem. We would simply

let U be any two of the parts in the input partition, and use A to compute W (H,U,X).

Unfortunately, counting perfect matchings even in bipartite graphs is #P-complete [14].

The key insight of the present paper circumvents the apparent obstacle formed by the

intractability of counting matchings: we only need to be able to efficiently compute some

fixed weighted sum of the matchings (with no weights set to zero). This is exactly where the

determinants come to our rescue. The price we pay is that we have to give up counting the

solutions over the natural numbers. Here we demonstrate the result through counting over

fields of characteristic two which only allow us to detect if there is a cover at all and gives us

little knowledge of their number. Furthermore, to avoid having an even number of solutions

cancel we will employ a fingerprint technique, very much in the same spirit as Williams [15]
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recently extended the k-path detection algorithm based on an algebraic sieving method of

Koutis [9]. The fingerprint idea is to think of the computation as evaluating a polynomial

of a degree much smaller than the number of elements of its base field and then computing

it at a randomly chosen point. The fact that a polynomial cannot have more roots than

its degree assure us that with great probability we discover with this single point probing

whether the polynomial is the zero-polynomial or not. We will in fact use the multivariate

polynomial analogue, see e.g. [11].

Lemma 2.3 (Schwartz-Zippel). Let P (x1, x2, ..., xn) be a non-zero n-variate polynomial of

degree d over a field F . Pick r1, r2, ..., rn ∈ F uniformly at random, then

Pr(P (r1, r2, ..., rn) = 0) ≤
d

|F |

For now, it is sufficient to think of the inclusion–exclusion formula of Eq. 2.3 as evalu-

ating a multivariate polynomial over the base field GF(2m) for some m. In what follows we

will associate with all edges e in the input hypergraph a variable ve. Our modified version

of Eq. 2.3 reads as follows.

Lemma 2.4. Given an XkC-instance H = (V,E) and the family of all its solutions S, we

have that, for every subset U ⊆ V ,
∑

X⊆V −U

W2,f (H,U,X) =
∑

E′∈S

∏

e∈E′

vf(e)
e (2.4)

where the computation is over a multivariate polynomial ring over GF(2m), f is a function

mapping the edges to the positive integers, and

W2,f (H,U,X) =
∑

E′′

∏

e∈E′′

vf(e)
e (2.5)

where the summation is over all E′′ ⊆ E, satisfying four constraints

• Avoidance, ∀e ∈ E′′ : e ∩ X = ∅
• Cardinality, |E′′| = |V |/k
• Coverage, U ⊆ ∪e∈E′′e
• Disjointness, ∀e1 6= e2 ∈ E′′ : e1 ∩ e2 ∩ U = ∅

Proof. First, note that every E′ ∈ S fulfills all four conditions Avoidance, Cardinality,

Coverage, and Disjointness for X = ∅, but violates Avoidance for every other X, irrespective

of the choice of U . Thus, the contribution
∏

e∈E′ ve of every solution E′ is counted precisely

once.

Second, a non-solution E′′ obeying the three conditions Cardinality, Coverage, and

Disjointness, fulfills the Avoidance condition for an even number of choices of X irrespective

of U , namely for all subsets of the elements of V that the union of the sets in E′′ fails to

cover. Hence, all of these contributions
∏

e∈E′′ v
f(e)
e cancel each other since we are working

in a field of characteristic two.

Combining the two Lemmas above 2.3 and 2.4 into an algorithm choosing a random

point r1, r2, ..., r|E| ∈ GF(2m) and evaluating the left-hand sum of Eq. 2.4 in the straight-

forward fashion, we get:

Corollary 2.5. Given an XkC-instance H = (V,E) and a subset U ⊆ V , there is a Monte

Carlo algorithm which returns “No” whenever there is no cover and returns “Yes” with
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probability at least 1 − maxe∈E f(e)|V |/(k2m) when there exists at least one, running in

time O∗(2|V |−|U |τ(W2,f , U)), where τ(W2,f , U) is the time required to evaluate any of the

polynomials W2,f (H,U,X) for X ⊆ V − U , in a random point over the base field GF(2m).

Note that by letting m be in the order of n, when f is bounded by a constant, we

get exponentially low probability of failure in n. Armed with Corollary 2.5, we can start

looking for projections U over which the computation of W2,f (H,U,X) is easy. The next

two sections will describe two examples of how we can use determinants to accelerate the

computation.

3. k-Dimensional Matching

We begin by the easier application, kDM. For this problem we can trivially find a large

vertex subset on which the projected instance is a multigraph, and in fact also bipartite: we

just use any two of the parts in the vertex partition given as input. Edmonds [5] observed

that one could relate a bipartite graphs’ perfect matchings to the determinant of a symbolic

matrix. A perfect matching is a collection of disjoint edges so that every vertex is covered by

precisely one edge. To a given a bipartite graph G = (U, V,E), n = |U | = |V |, he associated

an n × n-matrix A with rows representing vertices in U , and columns the vertices of V ,

and equated Ai,j with a variable vij if (i, j) ∈ E and zero otherwise. He showed that the

determinant of A is non-zero iff G has a perfect matching. We will use essentially the same

result, with the small exception that we need to deal with multiple edges between a vertex

pair, making sure all contributes. Formally

Definition 3.1. Given a hypergraph H = (V,E) and a subset U ⊆ V such that the

projected hypergraph H[U ] is a bipartite multigraph on two equally sized vertex parts

U1 ∪ U2 = U , its Edmonds matrix, denoted E(H,U1, U2), is defined by

E(H,U1, U2)i,j =
∑

e=(i,j)∈E[U ]
i∈U1,j∈U2

ve

where again, ve is a variable associated with the edge e.

We formulate our Lemma in terms of a special case of XkC instead of kDM directly to

capture a more general case.

Lemma 3.2. For a XkC-instance H = (V,E) and two equally sized disjoint vertex subsets

U1, U2 ⊆ V such that the projected hypergraph H[U1 ∪ U2] is a bipartite multigraph,

det(E(H,U1, U2)) =
∑

M∈M

∏

e∈M

ve (3.1)

where the computation is over a multivariate polynomial ring over GF(2m) for some m and

the summation is over all perfect matchings M in H[U1 ∪ U2].

Proof. By definition of the determinant 2.1, the summation is over all products of n of the

matrix elements in which every row and column are used exactly once. Transferred to the

associated bipartite graph, this corresponds to a perfect matching in the graph since rows

and columns represent the two vertex sets respectively. Moreover, the converse is also true,

i.e. for every perfect matching there is a permutation describing it. Hence the mapping is
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one-to-one. The inner product counts all choices of edges producing a matching described

by a permutation σ since:
n
∏

i=1

Ei,σ(i) =

n
∏

i=1

∑

e=(i,σ(i))

ve =
∑

M∈M(σ)

∏

e∈M

ve (3.2)

where M(σ) is the set of all perfect matchings e1, e2, ..., en such that ei = (i, σ(i)).

3.1. The Algorithm

Now we are ready to prove Theorem 1.1. Given an input instance H = (V1, V2, ..., Vk, E)

to the kDM problem where V1, V2, ..., Vk describe the vertex partition of the n vertices, we

simply let U = V1 ∪ V2 in the algorithm described by Corollary 2.5, with f mapping one

to every edge. To compute W2,f (H,U,X) we construct the Edmonds matrix of the hyper-

graph H restricted to its edges disjoint to X, projected on U , with the variables replaced

by the random sample point (r1, r2, ..., r|E|) chosen. Next we compute its determinant.

The correctness follows from Lemma 3.2, after noting that every perfect matching in a

projected hypergraph contains n/k disjoint edges. The runtime bound is easily seen to be

O∗(2n(k−2)/k) since |U | = |V1| + |V2| = 2n/k.

4. Exact Cover by k-Sets

Next we proceed to the XkC problem. In comparison to the kDM we are faced with a

number of additional obstacles on our way to a similar result.

• First, a projection will typically capture edges differently, some will have large pro-

jections and some no at all.

• Second, in particular the projected edges will probably not form a multigraph.

• Third, even if they did it may not be a bipartite one.

For the first obstacle, we will prove that it is sufficient to find a projection on which

at least one cover’s edges all leave projected edges of size two or less. This is basically

an extension of the idea for the XkC algorithm in proposition 10 in [1]. There, a vertex

subset U is picked uniformly at random of a carefully chosen size, and in the projected

hypergraph only the edges which leave a projection of size one or less are kept. Then the

inclusion–exclusion formula Eq. 2.3 is used after noting that W (H,U,X) is now easy to

compute. The process is repeated a number of times dictated by the size of U . The best

size to use is a trade-off of the resulting summation runtime and the probability that a cover

is projected gracefully in the sense that all its edges are kept after the projection.

For the second obstacle, in addition to handling multiple edges we also need to count

perfect matchings in which loops, i.e. edges connecting a vertex to itself, count as covering

the vertex of its endpoints. Since this means that not all perfect matchings will involve

the same number of edges, we have to take special care to make the determinants useful.

We use polynomial interpolation to solve for the contributions of matchings of the same

size separately to be able to fulfill the Cardinality constraint for W2,f in Corollary 2.5. To

this end we introduce an auxiliary variable s parametrizing the matrices and use several

determinant calculations.

For the third obstacle, we will use a variation of a result generalizing Edmonds’ due to

Tutte [13]. He showed that even for general not necessarily bipartite graphs one can make
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a connection between its perfect matchings and the determinant of a symbolic matrix,

although twice as large matrices in both directions are required. To a given a graph G =

(V,E), n = |V | he associates an n × n-matrix A with rows and columns representing the

vertices, and assigns Ai,j = vi,j for i < j and Ai,j = −vi,j for i > j with vi,j a variable

for each edge (i, j) ∈ E. The remaining entries are set to zero. The determinant of A is

non-zero iff G has a perfect matching.

We define matrices similar to Tutte’s:

Definition 4.1. Given a hypergraph H = (V,E) and a subset U ⊆ V such that in the

projected hypergraph H[U ] all edges have size at most two, its Tutte matrix of index s,

denoted T(s)(H,U), is defined by

T(s)(H,U)i,j =

{
∑

ve : e ∈ E[U ], e = (i, j), i 6= j
s
∑

ve : e ∈ E[U ], e = (i, j), i = j

Lemma 4.2. For a XkC-instance H = (V,E) and a vertex subset U ⊆ V such that in the

projected hypergraph H[U ], every edge has size at most two,

det(T(s)(H,U)) =
∑

M∈M

sΛ(M)
∏

e∈M

vp(e)
e (4.1)

where the computation is over a multivariate polynomial ring over GF(2m) for some m, the

summation is over all perfect matchings M in H[U ], Λ(M) is the number of loops in the

matching M , and p(e) = 1 if e is a loop and p(e) = 2 otherwise.

Proof. By definition of the determinant 2.1, the summation is over all products
∏n

i=1 T
(s)
i,σ(i)

for a permutation σ. Call a permutation σ good if ∀i : σ(σ(i)) = i holds, and bad otherwise.

We will argue that only good permutations contribute to the sum. To see why, consider a

bad σ. Then there exists a smallest i such that σ(σ(i)) = j 6= i. Look at the cyclic sequence

{ci} where c0 = i and ck+1 = σ(ck) for k > 0. Let L > 2 be the smallest positive integer

such that cL = i (Note that there must be one and that all ci in between must by distinct

since every element in 1 through n is mapped to exactly once). Next define a cycle reversal

operation D mapping bad permutations on bad permutations by letting D(σ) be identical to

σ except in the points c1 through cL, where instead D(σ)(ci) = ci−1. Now first observe that

the reversal operation is dual in the sense that D(D(σ)) = σ and that D(σ) 6= σ since L > 2,

and hence every bad permutation can be uniquely paired with another bad permutation.

Second note that the contribution of a bad permutation is identical to the contribution of

its dual, since the Tutte matrices are symmetrical. Thus, since we are counting in a field of

characteristic two, they cancel each other.

Next we continue to observe that the good permutations describe precisely the structure

of all possible perfect matchings in a multigraph: i’s such that σ(i) 6= i describe ordinary

two-vertex edges in the matching, and i’s such that σ(i) = i describe loops.

The inner product of Eq. 2.1 reads

n
∏

i=1

T
(s)
i,σ(i) =





∏

i,i=σ(i)

s
∑

e=(i,i)

ve









∏

i,i6=σ(i)

∑

e=(i,σ(i))

ve



 =
∑

M∈M(σ)

sΛ(M)
∏

e∈M

ve (4.2)

where M(σ) is the set of all directed perfect matchings e1, e2, ..., en described by the good

permutation σ for which ei = (i, σ(i)).
Now consider a directed perfect matching e1, e2, ..., en such that for some j, ej 6= eσ(j),

and refer to it as being bad. We will see that all of these cancel in very much the same way
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as the bad permutations did. Namely, again find the smallest j for which this is the case,

and define a reversal operation Rσ mapping bad directed perfect matchings onto themselves

by exchanging ej and eσ(j). Since this operation pairs up the bad directed perfect matchings

(Rσ({ei}) 6= {ei} and Rσ(Rσ({ei})) = {ei}) and we work in a field of characteristic two,

their contributions cancel. Thus we are left with only good permutations and good directed

perfect matchings. The latter can be thought of as undirected perfect matchings in which

every non-loop edge is included twice in the product.

To find the contributions of matchings of the same size separately, think of the match-

ings partitioned in groups M0,M1, ...,Mn according to the number of loops of the match-

ing. We can rewrite the determinant in Lemma 4.2 as

det(T(s)(H,U)) =

n
∑

i=0

siMi (4.3)

where Mi =
∑

M∈Mi

∏

e∈M v
p(e)
e are the quantities we seek. The right hand side of Eq. 4.3

is a degree n polynomial in s and thus we can solve for M0,M1, ...,Mn by computing

det(T(s)(H,U)) in n different choices of s, and use Lagrange’s interpolation formula to

recover the sought values. In fact, either there are no matchings with an odd number

of loops or no matchings with an even number of loops depending on the parity of |U |.
Consequently, the evaluation of n/2 points suffices, but we disregard from this optimization

possibility for simplicity. Once we have the Mi’s we are close to be able to compute W2,f

efficiently according to the following Lemma:

Lemma 4.3. Given a XkC instance H = (V,E) and a U ⊆ V such that for all edges

e ∈ E,|e ∩ U | ≤ 2, f(e) = 2 if |e ∩ U | = 2 and 1 otherwise, and any X ⊆ V − U ,

W2,f (H,U,X) =

|U |
∑

i=0

Z(
|V |

k
− ⌊

|U | + i

2
⌋)Mi (4.4)

where Mi =
∑

M∈Mi

∏

e∈M v
p(e)
e are the contribution of all matchings Mi containing

exactly i loops in the projected hypergraph of H on U restricted to the edges disjoint to X,

and

Z(i) =
∑

E′⊆Z
|E′|=i

∏

e′∈E′

ve′ (4.5)

with Z defining the set of edges e disjoint to X also having an empty intersection with U .

Proof. The Mi’s count the contribution of all ways to cover U with the edges which leaves

a non-empty projection on U and the Z(i)’s count the contribution of all ways to choose

edges leaving an empty projection. Note that a matching from Mi involves exactly ⌊ |U |+i
2 ⌋

edges if it exists. The right hand side of Eq. 4.4 convolutes over all ways their total number

of edges could equal |V |/k in order to meet the Cardinality constraint in Corollary 2.5.

The only piece missing is a simple way to evaluate Z(i), and we note that it can be

done by dynamic programming through a simple recursion. Number the edges in Z defined

in Lemma 4.3 arbitrarily as e1, e2, ..., ep, set Zi = {e1, e2, ..., ei}, and define

z(i, j) =
∑

E′⊆Zj

|E′|=i

∏

e′∈E′

ve′ (4.6)



104 A. BJÖRKLUND

These can be solved for by

z(i, j) =







1 : i = j = 0

0 : i = 0 or j = 0

z(i − 1, j − 1)vej
+ z(i, j − 1) : otherwise

(4.7)

and we finally compute Z(i) through Z(i) = z(i, p).

4.1. The Algorithm

We are ready to prove Theorem 1.2. First we describe the algorithm. Given an input

instance H = (V,E) to the XkC problem, we compute two parameters t and I depending

on k. These are given by the calculations in the next section 4.2. We repeat the following

procedure until we detect a cover, in which case we report so, or have tried unsuccessfully

I times, in which case we report that no cover was found:

Algorithm 4.4.

(1) Choose a tn-sized subset U ⊆ V uniformly at random.

(2) Construct HU = (V,EU ) where EU = {e|e ∈ E, |e ∩ U | ≤ 2}.
(3) Run the summation algorithm in Corollary 2.5 on HU , using U , and let f(e) = 2 if

|e ∩ U | = 2 and 1 otherwise. Use the method of the previous section 4 to compute

W2,f (HU , U,X), i.e.

(a) Construct the Tutte matrices T(s) of HU [U ] restricted to its edges which are

disjoint to X for s = gi, 0 ≤ i ≤ |U | where g is a generator of the multiplicative

group in GF(2m).

(b) Compute the determinants of T(s).

(c) Use Lagrange interpolation to solve for the Mi’s via Eq. 4.3.

(d) Calculate the Z(i)’s by Eq. 4.7.

(e) Evaluate Eq. 4.4.

Given that the random U is such that all edges in some exact cover S are kept in

HU , the previous Section 4 verifies its correctness: Lemmas 4.2 and 4.3 together with the

observation that gi for 1 ≤ i ≤ |U | are all distinct points, assures us that step (3) of the

algorithm works. We are left with deciding t and I to make it very likely that some exact

solution is kept at least once and tune them to get the best possible runtime.

4.2. Runtime Analysis

Our runtime analysis hinges on the probability that any fixed solution S to the XkC

instance H = (V,E) when projected on a subset U ⊆ V chosen uniformly at random from

the tn-sized subsets of V for some fraction t of the vertices, gets all its edges to leave a

small projection on U , namely ∀e ∈ S : |e ∩ U | ≤ 2. We denote this event by ε(t). If

we repeat the process I times, the probability that none of the I independent random

selections for U is successful in the sense that they retain S after the projection, is at

most (1 − Pr(ε(t)))I < e−Pr(ε(t))I . Consequently, we need I = log(ǫ−1)Pr(ε(t))−1 to get

probability at least 1− ǫ for one or more of the I selections to be successful. Thus we may

use ǫ = c−n for some constant c > 1 to get an exponentially low probability in n of failure

without increasing the number of repetitions I by more than a polynomial factor.
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k τ12 τ2 t I1/n ck

3 0.961 0.679 0.547 1.092 1.496

4 0.936 0.613 0.387 1.073 1.642

5 0.921 0.583 0.301 1.060 1.721

6 0.912 0.565 0.246 1.050 1.771

7 0.905 0.554 0.208 1.043 1.806

8 0.900 0.546 0.181 1.038 1.832

Table 2: Numerically found parameters τ12 and τ2 which approximately minimizes ck.

To bound the probability of the event, we count the number of good tn-sized subsets

of the vertices. This is a binomial sum (actually a trinomial one) over the number of edges

in the solution S which gets a projection of size two:

∑

t1+2t2=tn

(

n/k

t1

)(

n/k − t1
t2

)(

k

2

)t2(k

1

)t1

(4.8)

To lower bound this sum of all non-negative terms, we will use just one of them. Let

N = n/k and parametrize tn = τ12N + τ2N where τ12 is the fraction of sets in the solution

S which gets at least one of its elements chosen, and τ2 is the fraction of sets that gets two.

Then, we bound our probability as the quotient of the single term lower bound on the

number of good sets and the number of all sets
(n
tn

)

to

Pr(ε(t)) ≥

( N
τ12N

)(τ12N
τ2N

)

kτ12N (k − 1)τ2N

2τ2N
( kN
(τ12+τ2)N

) (4.9)

The runtime of Corollary 2.5 is O∗(2n−tn) given our polynomial time algorithm for com-

puting W2,f . Omitting polynomial factors, Algorithm 4.4 for XkC has to run for Pr(ε(t))−1

different choices of U in the worst case. Let Tk,t denote the final runtime, and expand the

binomials of Eq. 4.9 to get:

Tk,t ≤
2n−tn

Pr(ε(t))
≤

2kN−τ12N (τ2N)!(N − τ12N)!(τ12N − τ2N)!(kN)!

N !kτ12N (k − 1)τ2N (kN − τ12N − τ2N)!(τ12N + τ2N)!
(4.10)

If we replace the factorials with Stirling’s approximation n! ∈ θ(
√

n(n/e)n) and divide

(N/e)k+1 out of both numerator and denominator, we are left with a slightly less intimi-

dating expression

Tk,t ≤

(

2(k−τ12)τ τ2
2 (τ12 − τ2)

τ12−τ2(1 − τ12)
1−τ12

kτ12−k(k − 1)τ2(k − τ12 − τ2)k−τ12−τ2(τ12 + τ2)τ12+τ2

)N

(4.11)

Rewriting this as Tk,t ≤ cn
k we see that ck can be obtained as the k:th root of the

expression within the brackets in Eq. 4.11. Solving numerically for the choices of τ12 and τ2

that minimizes ck we find that the minimum moves slightly with increasing k, see Table 2.

The minimum, however, lies in a quite flat neighborhood within a large vicinity of the actual

minimum, and comparable bounds not too far from the best possible with our technique are

obtained with fixed parameters for all k by, say, τ12 = 0.9 and τ2 = 0.6. With this choice of

parameters in Eq. 4.11 we obtain the general bound in Theorem 1.2.
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Abstract. We study computational problems arising from the iterated removal of weakly
dominated actions in anonymous games. Our main result shows that it is NP-complete
to decide whether an anonymous game with three actions can be solved via iterated weak
dominance. The two-action case can be reformulated as a natural elimination problem on
a matrix, the complexity of which turns out to be surprisingly difficult to characterize and
ultimately remains open. We however establish connections to a matching problem along
paths in a directed graph, which is computationally hard in general but can also be used
to identify tractable cases of matrix elimination. We finally identify different classes of
anonymous games where iterated dominance is in P and NP-complete, respectively.

1. Introduction

An anonymous game is characterized by the fact that players do not distinguish between

other players in the game, i.e., their payoff only depends on the number of other players

playing the different actions, but not on their identities. Anonymous games constitute a

very natural class of multi-player games which is also highly relevant in practice (cf. [7]).

Symmetric games additionally have identical payoff functions for all players. A strategy of

a player is a probability distribution over his actions, and we say that an action is weakly

dominated if there exists a strategy of the same player guaranteeing him at least the same

payoff for any combination of strategies of the other players, and strictly more payoff for

some such combination.1 Dominated actions may be discarded for the simple reason that

the player will never face a situation where he would benefit from using these actions.

The solution concept of iterated dominance works by removing a dominated action and

applying the same reasoning to the reduced game (e.g., [15]). A game is then called solvable

by iterated dominance if there is a sequence of eliminations that leaves only one action for

1998 ACM Subject Classification: F.2.2, J.4.
Key words and phrases: Algorithmic Game Theory, Computational Complexity, Iterated Dominance,

Matching.
1Some authors (e.g., [10, 13]) use the terms weak dominance or dominance to refer to a weaker notion

that does not require the dominating strategy to sometimes yield a strictly higher payoff. This notion is
called very weak dominance by other authors (e.g., [2, 4]).
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each player. Interestingly, anonymous games often arise in the context of voting, where

dominance solvability was originally introduced [14].

Unlike iterated strict dominance, which requires the dominating action in each step to

be strictly better for every combination of strategies of the other players, proper epistemic

foundations for iterated weak dominance are fairly hard to come by (e.g., [3, 19]). Never-

theless, iterated weak dominance is an established and well-studied solution concept that

occurs in virtually every textbook on game theory. Its computational properties, however,

are not well understood, particularly in restricted classes like anonymous games. Potential

computational hardness of iterated weak dominance stems from the fact that the result of

the elimination process generally depends on the order in which actions are eliminated.

Related Work. Deciding whether a game in normal form can be solved by iterated weak

dominance is NP-complete already for games with two players and two different payoffs and

when restricted to dominance by pure strategies [10, 6]. In two-player constant-sum games,

both solvability and eliminability of a given action become tractable, while reachability of

a subgame remains NP-complete [4]. The corresponding problems for strict dominance can

generally be solved in polynomial time [6].

All of the above results concern games with few players and an unbounded number

of actions. Unlike general normal-form games, anonymous and symmetric games allow for

a succinct representation even when the number of players is unbounded. Computational

aspects of these games, particularly with respect to Nash equilibrium, have recently come

under increased scrutiny due to their importance in modeling large anonymous environments

like the Internet. A Nash equilibrium of a symmetric game can be found in polynomial time

if the number of actions is not too large compared to the number of players [16]. In the

larger class of anonymous games, Nash equilibria admit a polynomial-time approximation

scheme when there is only a constant number of actions [7]. The pure equilibrium problem

is tractable in anonymous games with a constant number of actions, and NP-complete if

the number of actions grows in the number of players [5].

Results and Paper Structure. We begin by introducing the relevant game-theoretic

concepts. In Section 3 we show that iterated dominance solvability is NP-hard for symmetric

games with an unbounded number of actions, and tractable for symmetric games with a

constant number of actions. The rest of the paper is then concerned with the only remaining

class, anonymous games with a constant number of actions. In Section 4, we show how

the two-action case can be reformulated as a natural elimination problem on a matrix.

The complexity of this problem remains open, but in Section 5 we draw connections to

a matching problem on paths of a directed graph. The latter problem, which may be of

independent interest, is intractable in general but allows us to obtain efficient algorithms

for restricted versions of matrix elimination. In Section 6 we finally use the matching

formulation to show NP-hardness of iterated dominance in anonymous games with three

actions. Proofs are omitted due to space constraints, and will be given in the full version

of the paper.

2. Preliminaries

An accepted way to model situations of strategic interaction is by means of a normal-

form game (e.g., [15]).
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Definition 2.1 (normal-form game). A game in normal-form is a tuple Γ =

(N, (Ai)i∈N , (pi)i∈N ), where N is a finite set of players and for each player i ∈ N , Ai

is a finite set of actions available to player i and pi : (
∏

i∈N Ai) → R is a function mapping

each action profile, i.e., each combination of actions, to a real-valued payoff for player i.

We write Si = ∆(Ai) for the set of (mixed) strategies of player i ∈ N , i.e., the set of

probability distributions over his actions, and call a strategy pure if it selects some action

with probability one. A vector s ∈
∏

i∈N Si will be called a strategy profile. Payoff functions

naturally extend to strategy profiles, and we write pi(s) for the expected payoff of player i
in strategy profile s. We further write n = |N | for the number of players in a game, si for

the ith element of strategy profile s, and s−i for the vector of all elements of s but si.

We will henceforth concentrate on games where Ai = A for all i ∈ N and some set A.

Such a game is anonymous if the payoff of player i is invariant under any automorphism π′ :

AN → AN of the set of actions profiles induced by a permutation π : N → N of the set of

players that satisfies π(i) = i (e.g., [5]). An intuitive way to describe anonymous games is

in terms of equivalence classes of the automorphism group of π′, using a notion introduced

by Parikh [18] in the context of context-free languages. Given a set A of actions, the

commutative image of an action profile aN ∈ AN is given by #(aN ) = (#(a, aN ))a∈A where

#(a, aN ) = |{ i ∈ N : ai = a }|. In other words, #(a, aN ) denotes the number of players

playing action a in action profile aN , and #(aN ) is the vector of these numbers for all

the different actions. This definition naturally extends to action profiles for subsets of the

players. We consider four types of anonymity (cf. [5]).

Definition 2.2 (anonymity). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a normal-form game, A a

set of actions such that Ai = A for all i ∈ N . Γ is called

• anonymous if pi(aN ) = pi(a
′
N ) for all i ∈ N and all aN , a′N ∈ AN with ai = a′i and

#(a−i) = #(a′−i),

• symmetric if pi(aN ) = pj(a
′
N ) for all i, j ∈ N and all aN , a′N ∈ AN with ai = a′j and

#(a−i) = #(a′−j),

• self-anonymous if pi(aN ) = pi(a
′
N ) for all i ∈ N and all aN , a′N ∈ AN with #(aN ) =

#(a′N ), and

• self-symmetric if pi(aN ) = pj(a
′
N ) for all i, j ∈ N and all aN , a′N ∈ AN with #(aN ) =

#(a′N ).

When talking about anonymous games, we write pi(ai, x−i) for the payoff of player i
under any action profile aN with #(a−i) = x−i. For self-anonymous games, pi(x) is used to

denote the payoff of player i under any profile aN with #(aN ) = x. Unless noted otherwise,

we assume that anonymous games are given explicitly, i.e., as a list of payoffs for the different

commutative images.

A well-known method for simplifying strategic games is the removal of actions that

are weakly dominated by some strategy of the same player, in the sense that playing

the latter is never worse than playing the former and sometimes strictly better. The re-

moval of one or more dominated actions may render additional actions dominated, which

may then iteratively be removed. To make these notions precise, we need some notation.

Given a game Γ = (N, (Ai)i∈N , (pi)i∈N ), call an elimination sequence of Γ a finite se-

quence (D1,D2, . . . ,Dk) of subsets of the disjoint union of the sets Ai, i.e., Dj ⊆ ∪i∈NA∗
i

for all j with 1 ≤ j ≤ k, where A∗
i = Ai × {i}. For a set D ⊆ ∪i∈NA∗

i , denote
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by Γ (D) the induced subgame of Γ where the actions in D have been removed, i.e.,

Γ (D) = (N, (A′
i)i∈N , (pi|Q

i∈N
A′

i
)i∈N ) where A′

i = { a : (a, i) ∈ A∗
i \ D }.

Definition 2.3 (iterated dominance). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a game. An action

di ∈ Ai is said to be (weakly) dominated by strategy si ∈ Si if for all b ∈
∏

j∈N Aj ,

pi(b−i, di) ≤
∑

ai∈Ai
si(ai)pi(b−i, ai) and for at least one b ∈

∏

j∈N Aj , pi(b−i, di) <
∑

ai∈Ai
si(ai)pi(b−i, ai). An elimination sequence (D1,D2, . . . ,Dm) of Γ is called valid

if either it is the empty sequence, or if (D1,D2, . . . ,Dm−1) is valid in Γ and every

dm ∈ Dm is dominated in Γ (∪1≤j≤m−1Dj). An action a ∈ ∪i∈NAi is called eliminable

if there exists a valid elimination sequence (D1,D2, . . . ,Dm) such that a is weakly dom-

inated in Γ (∪1≤j≤mDj). Game Γ is called solvable if it is possible to obtain a game

where only one action remains for each player, i.e., if there exists a valid elimination se-

quence (D1,D2, . . . ,Dm) such that Γ (∪1≤j≤mDj) = (N, (A′
i)i∈N , (p′i)i∈N ) with |A′

i| = 1 for

all i ∈ N .

We call iterated dominance solvability (IDS) and eliminability (IDE) the computational

problems that ask for solvability of a game and eliminability of a particular action. In

contrast to iterated strict dominance, which requires the inequality to be strict for every

action profile of the other players, the result of iterated weak dominance depends on the

order in which actions are removed, since the elimination of an action may render actions

of another player undominated (e.g., [2]).

Restricted types of iterated dominance can be obtained by requiring that the dominat-

ing strategy si is pure, or that the elements of an elimination sequence are singletons and

actions thus have to be eliminated one at a time (e.g., [2]). As far as dominance by pure

and mixed strategies is concerned, we will frequently exploit that the two versions coincide

in games with two actions, and also in games with only two different payoffs [6]. All results

hold for dominance by pure strategies and for dominance by mixed strategies. Valid elim-

ination sequences consisting of singletons possess a somewhat less complicated structure.

We therefore in some cases restrict our attention to this specialization, and refer to the

corresponding computational problems as stepwise IDS and IDE. The results ultimately

obtained for the two variants will be very similar. A different notion of solvability merely

requires the remaining action profiles to yield a unique payoff to each of the players (e.g.,

[14]). We note, but do not show here, that all hardness and tractability results extend to

this notion as well.

3. Complexity of Iterated Dominance

Intuitively, a large number of actions neutralizes the computational advantage obtained

from anonymity, by allowing for a distinction of the players by means of the actions they

play. The search for pure Nash equilibria, for example, is tractable for anonymous games

with a constant number of actions, but becomes NP-hard as soon as the number of actions

grows in the number of players [5]. In the latter case, the size of the explicit representation

grows exponentially in the number of players, and one would expect natural instances of such

games to be described succinctly (cf. [16]). While as a matter of fact the results of Brandt

et al. [5] are established via a specific encoding of the payoff functions, namely Boolean

circuits, they nevertheless provide interesting insights into the influence of restricted classes

of payoff functions on the complexity of solving a game. We give a similar result for iterated

dominance in self-symmetric games, hardness for the other classes follows by inclusion.



ON ITERATED DOMINANCE, MATRIX ELIMINATION, AND MATCHED PATHS 111

Theorem 3.1. IDS and IDE are NP-hard for all four classes of anonymous games, even if

the number of actions grows only logarithmically in the number of players, if only dominance

by pure strategies is considered, and if there are only two different payoffs.

In the case of symmetric games, iterated dominance becomes tractable when the number

of actions is bounded by a constant.

Theorem 3.2. For symmetric and self-symmetric games with a constant number of actions,

IDS and IDE can be decided in polynomial time.

In light of these two results, only one interesting class remains, namely anonymous

games with a constant number of actions. To gain a better understanding of the problem,

we restrict ourselves even further to games with two actions. It turns out that in this case

iterated dominance can be reformulated in a natural way as an elimination problem on

matrices. The latter is the topic of the following section.

4. A Matrix Elimination Problem

Let Γ = ([n], ({0, 1})i∈N , (pi)i∈N ) be a self-anonymous game with two actions for each

player, and observe that the payoffs of Γ can be represented by a matrix XΓ = (xi,j)(n+1)×n

the ith row of which contains the payoff profile when exactly i − 1 players play action 1,

i.e., xij = pj(i − 1). It will be instructive to view iterated dominance elimination in Γ in

terms of the corresponding operations on the matrix XΓ . For now, we restrict our attention

to the case where actions are eliminated one by one, and more generally consider matrices

with an arbitrary number of rows and columns. It suffices to look at matrices whose entries

are natural numbers.

Let X be an m×n matrix with entries from the natural numbers. Call a column c of X
increasing for an interval I over the rows of X if the entries in c are monotonically increasing

in I, with a strict increase somewhere in this interval. Analogously, call c decreasing for I
if its entries are monotonically decreasing in I, with a strict decrease somewhere in this

interval. Say that c is active for I if it is either increasing or decreasing for this interval.

Now consider a process that starts with X and successively eliminates pairs of a row and a

column. Rows will only be eliminated from the top or bottom, such that the remaining rows

always form an interval over the rows of X. A column will only be eliminated if it is active

for the remaining rows. Elimination of an increasing column is accompanied by elimination

of the top row. Analogously, a decreasing column and the bottom row are eliminated at

the same time. The process ends when no active columns remain.

Let us define the problem more formally. For a set A, v ∈ An, and a ∈ A, denote

by #(a, v) = |{ ℓ ≤ n : vℓ = a }| the commutative image of a and v, and write v...k =

(c1, c2, . . . , ck) for the prefix of v of length k ≤ n. Further denote [n] = {1, 2, . . . , n} and

[n]0 = {0, 1, . . . , n}.

Definition 4.1 (matrix elimination). Let X ∈ N
m×n be a matrix. Call a column k ∈ [n]

of X increasing in an interval [i, j] ⊆ [m] if the sequence xik, xi+1,k, . . . , xjk is monotonically

increasing and xik < xjk, decreasing in [i, j] ⊆ [m] if xik, xi+1,k, . . . , xjk is monotonically

decreasing and xik > xjk, and active if it is either increasing or decreasing. Then, an

elimination sequence of length k for X is a pair (c, r) such that c ∈ [m]k, r ∈ {0, 1}k , and

for all i, j with 1 ≤ i < j ≤ k, ci 6= cj and either ri = 0 and column ci is increasing in
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a b c d
1 3 2 1

0 2 2 1

0 2 3 0

0 2 3 0

3 2 3 0

a b c d
1 2 1

0 2 1

0 3 0

0 3 0

a b c d
2 1

2 1

3 0

a b c d

1

0

Figure 1: A matrix and a sequence of eliminations

[#(0, r...i−1) + 1,m − #(1, r...i−1)], or ri = 1 and column ci is decreasing in [#(0, r...i−1) +

1,m − #(1, r...i−1)].

Consider for example the sequence of matrices shown in Figure 1, obtained by starting

with the 5×4 matrix on the left and successively eliminating columns b, a, c, and d. In this

particular example, the process ends when all rows and columns of the matrix have been

eliminated. If instead we eliminated columns c and a, no further eliminations would be

possible. In fact, it would be obvious after the first elimination step that we cannot obtain

a sequence of length 4: one of the columns not eliminated so far, column b, contains the

same value in every row; this column cannot become active anymore, and, as a consequence,

will never be eliminated.

What matters are not the actual matrix entries, but rather the difference between

successive entries in a column. A more intuitive way to look at the problem may thus be in

terms of a matrix with the number of rows reduced by one, and arrows pointing downward

or upward if the value increases or decreases between two adjacent entries. A column can

be deleted if it contains at least one arrow, and if all arrows in this column point in the

same direction. The corresponding row to be deleted is the one at the base of the arrows.

We will be interested in two computational problems. Matrix elimination (ME) asks

whether there exists an elimination sequence that deletes the whole matrix, i.e., one of

length min(m − 1, n). Eliminability of a column (CE) is given k ∈ [n] and asks whether

there exists an elimination sequence (c, r) such that for some i, ci = k. Without restrictions

on m and n, ME and CE turn out to be equivalent. Indeed, both of them are equivalent

to the problem of deciding whether there exists an elimination sequence eliminating certain

numbers of rows from the top and bottom of the matrix. Several other questions, like the

one of an elimination sequence of a certain length, are equivalent as well.

Lemma 4.2. CE and ME are equivalent under disjunctive truth-table reductions.

When restricted to the case m > n, CE is at least as hard as ME in the sense that the

latter can be reduced to the former while there is no obvious reduction in the other direction.

The problem ME itself might be harder when the number of columns significantly exceeds

the number of rows, because then the set of columns effectively needs to be partitioned into

two sets of sizes m and n−m of columns that have to be deleted and columns that can be

discarded right away.

It is not hard to see that elimination of a matrix X is closely related to iterated dom-

inance in the self-anonymous game described at the beginning of this section, where each

player has two actions 0 and 1, and the payoff of player j when exactly i − 1 players play

action 1 is given by matrix entry xij . Given actions for the other players, player j can

choose between two adjacent entries of column j, so one of his two actions is dominated

by the other one if the column is increasing or decreasing. Eliminating one of two actions
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effectively removes a player from the game, and elimination of the top or bottom row of

the matrix mirrors the fact that the number of players who can still choose between both

of their actions is reduced by one. Let us formally establish this relationship.

Lemma 4.3. Stepwise IDS and IDE in anonymous games with two actions are equivalent

under disjunctive truth-table reductions to ME and CE, respectively, restricted to instances

with m = n + 1.

We could have well allowed the simultaneous elimination of columns, and it is fairly

obvious that the resulting computational problems would be equivalent to IDS and IDE.

So why do we require columns to be eliminated one at a time? For one, solving ME and

CE as defined above turns out to be intricate enough to begin with, and we will ultimately

not be able to characterize their complexity. On the other hand, the additional structure

afforded by stepwise elimination will help us to gain additional insights, which we will then

use to prove the main result of this paper: NP-hardness of IDS and IDE in games with three

actions, both for stepwise and simultaneous eliminations. Finally, much of the complexity

of matrix elimination already appears to be present in the stepwise version, and any result

for that version can probably be extended to simultaneous eliminations as well.

Solving ME in general turns out to be surprisingly complicated. A natural restriction

can be obtained by requiring that all columns are increasing or decreasing in [1,m]. It is not

too hard to show that this makes the problem tractable irrespective of the dimensions of

the matrix, and we do so in the next section as a corollary of a slightly more general result.

Unfortunately, tractability of this restricted case does not tell us a lot about the complexity

of ME in general. The latter obviously becomes almost trivial if the order of elimination for

the columns is known, i.e., if we are given c ∈ [n]k and ask whether there exists r ∈ {0, 1}k

such that (c, r) is an elimination sequence. This observation directly implies membership in

NP. More interestingly, deciding whether there exists c ∈ [n]k for a given r ∈ {0, 1}k such

that (c, r) is an elimination sequence is also tractable. The reason is the specific “life cycle”

of a column. Consider a matrix X, two intervals I, J ⊆ [m] over the rows of X such that

J ⊆ I, and a column c ∈ [n] that is active in both I and J . Then, c must also be active for

any interval K such that J ⊆ K ⊆ I, and c must either be increasing for all three intervals,

or decreasing for all three intervals. Thus, r determines for every i ∈ [k] a set of possible

values for ci, and leaves us with a matching problem in a bipartite graph with edges in

[n]× [k]. The latter can be solved in polynomial time. Closer inspection reveals that it can

in fact be decomposed into two independent matching problems on convex bipartite graphs,

for which the best known upper bound is NC2 [11].

But what if nothing about c and r is known? Despite the fact that we can only eliminate

the top or bottom row of the matrix in each step, this still amounts to an exponential number

of possible sequences. The best upper bound for matching in convex bipartite graphs means

that there currently is not much hope for constructing an algorithm that determines r
nondeterministically and computes a matching on the fly. We can nevertheless use the

above reasoning to recast the problem in the more general framework of matching on paths.

For this, we will respectively identify intervals and pairs of intervals over the rows of X
with vertices and edges of a directed graph G, and will then label each edge (I, J) by the

identifiers of the columns of X that take I to J . An elimination sequence of length k for X
then corresponds to a path of length k in G which starts at the vertex corresponding to the

interval [1,m], such that there exists a matching of size k between the edges on this path

and the columns of X. In particular, by fixing a particular path, we obtain the bipartite
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matching problem described above. A more detailed discussion of this problem is the topic

of the following section. We first study the problem itself, and return to matrix elimination

toward the end of the section.

5. Matched Paths

The matching problem described in the previous section generalizes the well-studied

class of matching problems between two disjoint sets, or bipartite matching problems, by

requiring that the elements of one of the two sets form a certain sub-structure of a combina-

torial structure. Most interesting from a computational perspective are variants where the

underlying combinatorial structure can be identified in polynomial time, as it is the case

for paths or for spanning trees.

Definition 5.1 (matching, matched path). Let X be a set, Σ an alphabet, and σ : X → 2Σ

a labeling function assigning sets of labels to elements of X. Then, a matching of σ is a

total function f : X → Σ such that for all x, y ∈ X, f(x) ∈ σ(x) and f(y) 6= f(x) if y 6= x.

Let G = (V,E) be a directed graph, Σ an alphabet, and σ : E → 2Σ a labeling function

for edges of G. Then, a matched path of length k in G is a sequence e1, e2, . . . , ek such that

for all i with 1 ≤ i < k, there exist u, v,w ∈ V such that ei = (u, v) and ei+1 = (v,w), and

the restriction of σ to { ei : 1 ≤ i ≤ k } has a matching.

We call matched path (MP) the computational problem that asks, for an explicitly given

directed graph G with corresponding labeling function σ and an integer k, whether there

exists a matched path of length k in G. Variants of this problem can be obtained by asking

for a matching that contains a certain set of labels, or a matched path between a particular

pair of vertices. These variants have an interesting interpretation in terms of sequencing

with resources and multi-dimensional constraints on the utilization of these resources: every

resource can be used in certain states corresponding to vertices of a directed graph, and

their use causes transitions between states. The goal then is to find a sequence that uses a

specific set or a certain number of resources, or one that reaches a certain state.

In the context of this paper, we are particularly interested in instances of MP corre-

sponding to instances of ME. We will see later that the graphs of such instances are layered

grid graphs (e.g., [1]), and that the labeling function satisfies a certain convexity property.

But let us look at the general problem for a bit longer. Greenlaw et al. [12] consider the

related labeled graph accessibility problem, which, given a directed graph G with a single

label attached to each edge, asks whether there exists a path such that the concatenation

of the labels along the path is a member of a context free language L given as part of the

input. This problem is P-complete in general and LOGCFL-complete if G is acyclic. A

matching, however, corresponds to a partial permutation of the members of the alphabet,

and the number of nonterminal symbols of any context-free grammar in Chomsky normal

form for the permutation language over Σ grows super-polynomially in the size of Σ [8].

It thus should not come as a surprise that the problem becomes harder when we ask for

a matching. Indeed, MP bears some resemblance to the NP-complete problem forbidden

pairs of finding a path in a directed or undirected graph if certain pairs of nodes or edges

may not be used together [9]. Instead of reducing forbidden pairs to MP, however, we show

NP-hardness of a restricted version of MP using a more complicated construction, on which

we will be able to build in Section 6. To formally state the result we need some terminology.
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Let G = (V,E) be a directed graph with vertex set V = [m]0 × [n]0. Call (u, v) ∈ E a

south edge if for some i and j, u = (i, j) and v = (i + 1, j), and an east edge if for some i
and j, u = (i, j) and v = (i, j + 1). Then, G is called an m × n layered grid graph if it

contains only south and east edges. In labeled graphs, nonexistent edges and edges that are

mapped to the empty set by the labeling function are equivalent. We therefore concentrate

on complete layered grid graphs, i.e., those containing all south and all east edges.

Theorem 5.2. MP is NP-complete. Hardness holds even if G is a complete layered grid

graph, |σ(e)| ≤ 1 for every e ∈ E, and |{ e ∈ E : λ ∈ σ(e) }| ≤ 2 for every λ ∈ Σ.

The proof of this theorem starts by looking at a complete m × n grid graph G for

appropriate values of m and n, and at a labeling function σ : [m]0 ∪ [n]0 → Σ. The

latter can be interpreted as a labeling function for edges of G where a label either appears

on all the edges in a given row or column or on none of them. Labels in Σ correspond

to variable occurrences in an instance of the NP-complete problem balanced one-in-three

3SAT [17], and σ is defined in such a way that a path through the graph corresponds to

an assignment of truth values to variable occurrences. The overall structure of the graph

consist of two parts. In the first part, consistency of the overall assignment is ensured by

placing labels corresponding to different occurrences of the same variable on the same path.

In the second part, the same labels are used again to verify that all clauses are satisfied

by the assignment. To obtain Theorem 5.2 and get a better understanding of the minimal

requirements for hardness, the graph is then modified further. An important property of

the labeling function in this context seems to be that the same label can appear at least

twice in different parts of the graph.

The labeling function σ can also more generally be interpreted as belonging to a more

general graph where transitions can take place from any vertex to any other vertex to the

south and east of it, as long as the distance in columns between the two vertices is at most

the number of unused labels that appear on the row associated with the former vertex, and

the same condition holds for the distance in rows and the number of labels on the column.

Intuitively, this type of transition occurs when several dominated actions of a game are

eliminated simultaneously. It will play an important role in the proof of Theorem 6.1.

Let us now return to matrix elimination. In light of Theorem 5.2, an efficient algorithm

for ME would have to exploit additional structure of MP instances induced by instances

of ME. This structure is indeed quite restricted in that edges carrying a particular label λ
satisfy a “directed” convexity condition: if λ appears on two edges e = (u, v) and e′ =

(u′, v′), then λ must appear on all south edges or on all east edges that lie on a path from u
to v′, but not both. In particular, if there is such a path, it cannot be that one of e and e′ is

a south edge and the other is an east edge. This fact is illustrated in Figure 2, which shows

the labeled graph for the ME instance of Figure 1, as well as a matched path corresponding

to an elimination sequence of maximum length.

Definition 5.3 (directed convexity). Let G = (V,E) be a complete layered grid graph. A

labeling function σ : E → 2Σ for G is called directed convex if for every label λ ∈ Σ and for

every set of three edges e1 = (u1, v1), e2 = (u2, v2), e3 = (u3, v3), such that u2 is reachable

from u1, u3 is reachable from u2, and λ ∈ σ(e1) ∩ σ(e3), it holds that e1 and e3 have the

same direction and λ ∈ σ(e2) if and only if e2 has the same direction as well.

It is not too hard to see that instances corresponding to ME have a directed convex

labeling function.
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(0, 0) (0, 4)

(1, 3)

(2, 2)

(3, 1)

(4, 0)

{b, d} {a, b, d} {a, b, d} {a}

{c} {c} {c} ∅

{b, d} {b, d} {b,d}

{a, c} {c} {c}

∅ ∅

{a} ∅

∅

{a}

Figure 2: Labeled graph for the matrix elimination instance of Figure 1. A matched path

and its matching are shown in bold.

Lemma 5.4. ME is polynomial time many-one reducible to MP restricted to layered grid

graphs and directed convex labeling functions.

Directed convexity of the labeling function means that we cannot show NP-hardness of

ME by a construction similar to the one used in the proof of Theorem 5.2. On the other

hand, it is not quite clear how the additional structure provided by directed convexity can

be exploited to obtain a polynomial-time algorithm for ME. The case m ≤ n will probably

add additional complications. We therefore leave the complexity of ME as an open problem,

albeit quite an elegant one.

Here we consider a more special case of MP, which provides additional insights. In

the corresponding instances of ME, all columns are active at the beginning of the matrix

elimination process, or all columns are active in the interval of length one at the end of the

elimination process.

Definition 5.5 (backward and forward closure). Let G = (V,E) be a complete layered

grid graph. Let s be the unique vertex of G with in-degree zero, t the unique vertex with

outdegree zero. Then, a labeling function σ : E → 2Σ for G is called backward closed if

{λ ∈ σ(s, v) : (s, v) ∈ E} = Σ. Similarly, σ is called forward closed if {λ ∈ σ(s, v) : (v, t) ∈
E} = Σ.

It may not have gone unnoticed that these properties are closely related to closure prop-

erties found respectively in matroids and antimatroids. Together with directed convexity,

each of the closure properties further implies that each label appears only on east edges or

only on south edges. This allows us to consider two distinct matching problems, one for

east and one for south edges, and obtain a tractability result.

Theorem 5.6. Let G = (V,E) be a complete layered grid graph, σ a labeling function for G
that is directed convex and either backward or forward closed. Then, MP for G and σ can

be solved in nondeterministic logarithmic space.

A generalization of both backward and forward closure can be obtained by considering

labeling functions that are connected in the sense that the edges carrying a particular
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Figure 3: Payoffs of a particular player in a self-anonymous game with n = 3 and k =

3. Initially all actions are pairwise undominated. If one of the other players

eliminates action 1, action 3 weakly dominates action 1. Action 1 then becomes

undominated if some player deletes action 3, and dominated by action 2 if one

more player deletes action 3, and some player deletes action 2.

label, together with all edges in the respective other direction, form a weakly connected

graph. This property introduces a dependence between the matching problems for the two

directions, and a very interesting question is whether Theorem 5.6 can be generalized to

this setting.

6. Self-Anonymous Games with a Constant Number of Actions

It is natural to ask whether iterated dominance for games with more than two actions

can still be interpreted in terms of eliminations in a matrix or matrix-like structure. Consider

a self-anonymous game with k actions. As before, the payoff of a particular player i only

depends on the number of players, including the player itself, that play each of the different

actions. They can thus be written down as entries in a discrete simplex of dimension k− 1.

The elimination of the ℓth action by some player can then be interpreted as a cut along

the ℓth 0-face of the simplex of every player.

The left hand side of Figure 3 shows the payoffs of a particular player in a self-

anonymous game with n = 3 and k = 3. Compared to matrix elimination as introduced

in Definition 4.1 and illustrated in Figure 1, we notice an interesting shift, which curiously

has nothing to do with the added possibility of dominance by mixed strategies. Rather,

a particular action a ∈ A may now be eliminated by either one of several other actions

in A \ {a}, and the situations where a can be eliminated no longer form a convex set.

This already indicates that it might be possible to construct a layered grid graph with

corresponding labeling function for which the existence of a matched path is NP-hard to

decide, and which is induced by a self-anonymous game with three actions for each player.

To obtain our main result we however have to overcome one additional obstacle: when

dropping the assumption that actions are eliminated one at a time, the equivalence between

elimination sequences and labeled paths in a layered grid graph breaks down. We therefore

start from the construction used in the proof of Theorem 5.2, and use additional vertices

and labels to make it work for the more general type of transitions corresponding to the

simultaneous elimination of actions.

Theorem 6.1. IDS and IDE are NP-complete. Hardness holds even for self-anonymous

games with three actions and two different payoffs, and also applies to stepwise IDS and

IDE.
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1. Introduction

In their seminal work, Alon, Matias and Szegedy [4] presented celebrated sketching techniques
and showed that4-wise independence is sufficient to obtain good approximations of the second
frequency moment. Indyk and McGregor [12] make use of this technique in their work introduce
the problem of measuring independence in the streaming model. There they give efficient algo-
rithms for approximating pairwise independence for theℓ1 andℓ2 norms. In their model, a stream
of pairs(i, j) ∈ [n]2 arrive, giving a joint distribution(X,Y ), and the notion of approximating pair-
wise independence corresponds to approximating the distance between the joint distribution and the
product of the marginal distributions for the pairs. Indyk and McGregor state, as an explicit open
question in their paper, the problem of whether one can estimatek-wise independence onk-tuples
for anyk > 2. In particular, Indyk and McGregor show that, for theℓ2 norm, they can make use
of the product of4-wise independent functions on[n] in the sketching method of Alon, Matias, and
Szegedy. We extend their approach to show that on the productdomain[n]k, the sketching method
of Alon, Matias, and Szegedy works when using the product ofk copies of4-wise independent
functions on[n]. The cost is that the memory requirements of our approach grow exponentially
with k, proportionally to3k.

Measuring independence andk-wise independence is a fundamental problem with many ap-
plications (see e.g., Lehmann [13]). Recently, this problem was also addressed in other models by,
among others, Alon, Andoni, Kaufman, Matulef, Rubinfeld and Xie [1]; Batu, Fortnow, Fischer,
Kumar, Rubinfeld and White [5]; Goldreich and Ron [11]; Batu, Kumar and Rubinfeld [6]; Alon,
Goldreich and Mansour [3]; and Rubinfeld and Servedio [15].Traditional non-parametric methods
of testing independence over empirical data usually require space complexity that is polynomial
to either the support size or input size. The scale of contemporary data sets often prohibits such
space complexity. It is therefore natural to ask whether we will be able to design algorithms to test
for independence in streaming model. Interestingly, this specific problem appears not to have been
introduced until the work of Indyk and McGregor. While arguably results for theℓ1 norm would be
stronger than for theℓ2 norm in this setting, the problem forℓ2 norms is interesting in its own right.
The problem for theℓ1 norm has been recently resolved by Braverman and Ostrovsky in [8]. They
gave an(1 ± ǫ, δ)-approximation algorithm that makes a single pass over a data stream and uses
polylogarithmic memory.

1.1. Our Results

In this paper we generalize the “sketching of sketches” result of Indyk and McGregor. Our
specific theoretical contributions can be summarized as follows:

Main Theorem.
Let ~v ∈ R(nk) be a vector with entries~vp ∈ R for p ∈ [n]k. Let h1, . . . , hk : [n] → {−1, 1} be
independent copies of 4-wise independent hash functions; that is,hi(1), . . . , hi(n) ∈ {−1, 1} are
4-wise independent hash functions for eachi ∈ [k], andh1(·), . . . , hk(·) are mutually independent.
DefineH(p) =

∏k
i=1 hj(pj), and the sketchY =

∑

p∈[n]k ~vpH(p).

We prove that the sketchY can be used to give an efficient approximation for‖~v‖2; our result
is stated formally in Theorem 4.2. Note thatH is not4-wise independent.

As a corollary, the main application of our main theorem is toextend the result of Indyk and
McGregor [12] to detect the dependency ofk random variables in streaming model.
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Corollary 1.1. For everyǫ > 0 and δ > 0, there exists a randomized algorithm that computes,
given a sequencea1, . . . , am of k-tuples, in one pass and usingO(3kǫ−2 log 1

δ (log m + log n))
memory bits, a numberY so that the probabilityY deviates from theℓ2 distance between product
and joint distribution by more than a factor of(1 + ǫ) is at mostδ.

1.2. Techniques and a Historical Remark

This paper is merge from [7, 9, 10], where the same result was obtained with different proofs.
The proof of [10] generalizes the geometric approach of Indyk and McGregor [12] with new geo-
metric observations. The proofs of [7, 9] are more combinatorial in nature. These papers offer new
insights, but due to the space limitation, we focus on the proof from [9] in this paper. Original
papers are available on line and are recommended to the interested reader.

2. The Model

We provide the general underlying model. Here we mostly follow the notation of [7, 12].
Let S be a stream of sizem with elementsa1, . . . , am, whereai ≡ (a1

i , . . . , a
k
i ) ∈ [n]k. (When

we have a sequence of elements that are themselves vectors, we denote the sequence number by
a subscript and the vector entry by a superscript when both are needed.) The streamS defines an
empiricaldistribution over[n]k as follows: the frequencyf(ω) of an elementω ∈ [n]k is defined as
the number of times it appears inS, and the empirical distribution is

Pr[ω] =
f(ω)

m
for anyω ∈ [n]k.

Sinceω = (ω1, . . . , ωk) is a vector of sizek, we may also view the streaming data as defining
a joint distribution over the random variablesX1, . . . ,Xk corresponding to the values in each di-
mension. (In the case ofk = 2, we write the random variables asX andY rather thanX1 andX2.)
There is a natural way of defining marginal distribution for the random variableXi: for ωi ∈ [n],
let fi(ωi) be the number of timesωi appears in theith coordinate of an element ofS, or

fi(ωi) =
∣

∣{aj ∈ S : ai
j = ωi}

∣

∣ .

The empirical marginal distributionPri[·] for theith coordinate is defined as

Pri[ωi] =
fi(ωi)

m
for anyωi ∈ [n].

Next let~v be the vector inR[n]k with ~vω = Pr[ω]−
∏

1≤i≤k Pri[ωi] for all ω ∈ [n]k. Our goal
is to approximate the value

‖~v‖ ≡





∑

ω∈[n]k

∣

∣

∣

∣

∣

∣

Pr[ω]−
∏

1≤i≤k

Pri[ωi]

∣

∣

∣

∣

∣

∣

2



1

2

. (2.1)

This represent theℓ2 norm between the tensor of the marginal distributions and the joint distribution,
which we would expect to be close to zero in the case where theXi were truly independent.

Finally, our algorithms will assume the availability of 4-wise independent hash functions. For
more on 4-wise independence, including efficient implementations, see [2, 16]. For the purposes of
this paper, the following simple definition will suffice.
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Definition 2.1. (4-wise independence)A family of hash functionsH with domain[n] and range
{−1, 1} is 4-wise independentif for any distinct valuesi1, i2, i3, i4 ∈ [n] and anyb1, b2, b3, b4 ∈
{−1, 1}, the following equality holds,

Pr
h←H

[h(i1) = b1, h(i2) = b2, h(i3) = b3, h(i4) = b4] = 1/16.

Remark 2.2. In [12], the family of 4-wise independent hash functionsH is called 4-wise indepen-
dent random vectors. For consistencies within our paper, wewill always view the objectH as a
hash function family.

3. The Algorithm and its Analysis for k = 2

We begin by reviewing the approximation algorithm and associated proof for theℓ2 norm given
in [12]. Reviewing this result will allow us to provide the necessary notation and frame the setting
for our extension to generalk. Moreover, in our proof, we find that a constant in Lemma 3.1
from [12] that we subsequently generalize appears incorrect. (Because of this, our proof is slightly
different and more detailed than the original.) Although the error is minor in the context of their
paper (it only affects the constant factor in the order notation), it becomes more important when
considering the proper generalization to largerk, and hence it is useful to correct here.

In the casek = 2, we assume that the sequence(a1
1, a

2
1), (a

1
2, a

2
2), . . . , (a

1
m, a2

m) arrives an item
by an item. Each(a1

i , a
2
i ) (for 1 ≤ i ≤ m) is an element in[n]2. The random variablesX andY

over [n] can be expressed as follows:






Pr[i, j] = Pr[X = i, Y = j] = |{ℓ : (a1
ℓ , a

2
ℓ ) = (i, j)}|/m

Pr1[i] = Pr[X = i] = |{ℓ : (a1
ℓ , a

2
ℓ ) = (i, ·)}|/m

Pr2[j] = Pr[Y = j] = |{ℓ : (a1
ℓ , a

2
ℓ ) = (·, j)}|/m.

We simplify the notation and usepi ≡ Pr[X = i], qj ≡ Pr[Y = j], ri,j = Pr[X = i, Y = j]. and
si,j = Pr[X = i] Pr[Y = j].

Indyk and McGregor’s algorithm proceeds in a similar fashion to the streaming algorithm pre-
sented in [4]. Specifically lets1 = 72ǫ−2 ands2 = 2 log(1/δ). The algorithm computess2 random
variablesY1, Y2, . . . , Ys2

and outputs their median. The output is the algorithm’s estimate on the
norm ofv defined in Equation 2.1. EachYi is the average ofs1 random variablesYij: 1 ≤ j ≤ s1,
whereYij are independent, identically distributed random variables. Each of the variablesD = Dij

can be computed from the algorithmic routine shown in Figure1.

2-D APPROXIMATION
(

(a1
1, a

2
1), . . . , (a

1
m, a2

m)
)

1 Independently generate 4-wise independent random functionsh1, h2 from [n] to {−1, 1}.
2 for c← 1 to m
3 do Let thecth item(a1

c , a
2
c) = (i, j)

4 t1 ← t1 + h1(i)h2(j), t2 ← t2 + h1(i), t3 ← t3 + h2(j).
5 ReturnY = (t1/m− t2t3/m

2)2.

Figure 1: The procedure for generating random variableY for k = 2.

By the end of the process 2-D APPROXIMATION, we havet1/m =
∑

i,j∈[n] h1(i)h2(j)ri,j , t2/m =
∑

i∈[n] h1(i)pi, andt3/m =
∑

i∈[n] h2(i)qi. Also, when a vector is inR(n2), its indices can be

represented by(i1, i2) ∈ [n]2. In what follows, we will use a bold letter to represent the index of a
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high dimensional vector, e.g.,vi ≡ vi1,i2 . The following Lemma shows that the expectation ofY is
‖v‖2 and the variance ofY is at most8(E[Y ])2 becauseE[Y 2] ≤ 9E[Y ]2.

Lemma 3.1. ([12]) Let h1, h2 be two independent instances of 4-wise independent hash functions
from [n] to {−1, 1}. Let v ∈ Rn2

andH(i)(≡ H
(

(i1, i2)
)

= h1(ii) · h2(i2). Let us defineY =
(

∑

i∈[n]2 H(i)vi

)2
. ThenE[Y ] =

∑

i∈[n]2 ~v2
i and E[Y 2] ≤ 9(E[Y ])2, which impliesVar[Y ] ≤

8E2[Y ].

Proof. We haveE[Y ] = E[(
∑

i H(i)~vi)
2] =

∑

i ~v
2
i E[H2(i)] +

∑

i 6=j ~vi~vjE[H(i)H(j)]. For all
i ∈ [n]2, we knowh2(i) = 1. On the other hand,H(i)H(j) ∈ {−1, 1}. The probability that
H(i)H(j) = 1 is Pr[H(i)H(j) = 1] = Pr[h1(i1)h1(j1)h2(i2)h2(j2) = 1] = 1/16 +

(

4
2

)

1/16 +
1/16 = 1/2. The last equality holds is becauseh1(i1)h1(j1)h2(i2)h2(j2) = 1 is equivalent to
saying either all these variables are 1, or exactly two of these variables are -1, or all these variables
are -1. Therefore,E[h(i)h(j)] = 0. Consequently,E[Y ] =

∑

i∈[n]2(~vi)
2.

Now we bound the variance. Recall thatVar[Y ] = E[Y 2]− E[Y ]2, we bound

E[Y 2] =
∑

i,j,k,l∈[n]2

E[H(i)H(j)H(k)h(l)]~vi~vj~vk~vl ≤
∑

i,j,k,l∈[n]2

|E[H(i)H(j)H(k)H(l)]|·|~vi~vj~vk~vl|.

Also |E[H(i)H(j)H(k)H(l)]| ∈ {0, 1}. The quantityE[H(i)H(j)H(k)H(l)] 6= 0 if and only
if the following relation holds,

∀s ∈ [2] : ((is = js) ∧ (ks = ls)) ∨ ((is = ks) ∧ (js = ls)) ∨ ((is = ls) ∧ (ks = js)) . (3.1)

Denote the set of 4-tuples(i, j,k, l) that satisfy the above relation byD. We may also view each
4-tuple as an ordered set that consists of 4 points in[n]2. Consider the unique smallest axes-parallel
rectangle in[n]2 that contains a given 4-tuple inD (i.e. contains the four ordered points). Note this
could either be a (degenerate) line segment or a (non-degenerate) rectangle, as we discuss below.
Let M : D → {A,B,C,D} be the function that maps an elementσ ∈ D to the smallest rectan-
gle ABCD defined byσ. Since a rectangle can be uniquely determined by its diagonals, we may
write M : D → (χ1, χ2, ϕ1, ϕ2), whereχ1 ≤ χ2 ∈ [n], ϕ1 ≤ ϕ2 ∈ [n] and the corresponding
rectangle is understood to be the one with diagonal{(χ1, ϕ1), (χ2, ϕ2)}. Also, the inverse function
M−1(χ1, χ2, ϕ1, ϕ2) represents the pre-images of(χ1, χ2, ϕ1, ϕ2) in D. (χ1, χ2, ϕ1, ϕ2) is degen-
erate if eitherχ1 = χ2 or ϕ1 = ϕ2, in which case the rectangle (and its diagonals) correspondto
the segment itself, orχ1 = χ2 andϕ1 = ϕ2, and the rectangle is just a single point.

Example 3.2. Let i = (1, 2), j = (3, 2), k = (1, 5), and l = (3, 5). The tuple is inD and
its corresponding bounding rectangle is a non-degenerate rectangle. The functionM(i, j,k, l) =
(1, 3, 2, 5).

Example 3.3. Let i = j = (1, 4) andk = l = (3, 7). The tuple is also inD and minimal bound-
ing rectangle formed by these points is an interval{(1, 4), (3, 7)}. The functionM(i, j,k, l) =
(1, 3, 4, 7).

To start we consider the non-degenerate cases. Fix any(χ1, χ2, ϕ1, ϕ2) with χ1 < χ2 andφ1 <

φ2. There are in total
(4
2

)2
= 36 tuples(i, j,k, l) inD with M(i, j,k, l) = (χ1, χ2, ϕ1, ϕ2). Twenty-

four of these tuples correspond to the setting where none ofi, j,k, l are equal, as there are twenty-
four permutations of the assignment of the labelsi, j,k, l to the four points. (This corresponds
to the first example). In this case the four points form a rectangle, and we have|~vi~vj~vk~vl| ≤
1
2((~vχ1,ϕ1

~vχ2,ϕ2
)2 + (~vχ1,ϕ2

~vχ2,ϕ1
)2). Intuitively, in these cases, we assign the “weight” of the

tuple to the diagonals.
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The remaining twelve tuples inM−1(χ1, χ2, ϕ1, ϕ2) correspond to intervals. (This corre-
sponds to the second example.) In this case two ofi, j,k, l correspond to one endpoint of the inter-
val, and the other two labels correspond to the other endpoint. Hence we have either|~vi~vj~vk~vl| =
(~vχ1,ϕ1

~vχ2,ϕ2
)2 or |~vi~vj~vk~vl| = (~vχ1,ϕ2

~vχ2,ϕ1
)2, and there are six tuples for each case.

Therefore for anyχ1 < χ2 ∈ [n] andϕ1 < ϕ2 ∈ [n] we have:
∑

(i,j,k,l)∈

M
−1

(χ1,χ2,ϕ1,ϕ2)

|vivjvkvl| ≤ 18((vχ1 ,ϕ1
vχ2,ϕ2

)2 + (vχ1,ϕ2
, vχ2,ϕ1

)2).

The analysis is similar for the degenerate cases, where the constant 18 in the bound above is
now quite loose. When exactly one ofχ1 = χ2 or ϕ1 = ϕ2 holds, the size ofM−1(χ1, χ2, ϕ1, ϕ2)

is
(4
2

)

= 6, and the resulting intervals correspond to vertical or horizontal lines. When bothχ1 = χ2

andϕ1 = ϕ2, then|M−1(χ1, χ2, ϕ1, ϕ2)| = 1. In sum, we have Following the same analysis as for
the non-degenerate cases, we find

∑

i,j,k,l∈D

|~vi~vj~vk~vl| =
∑

χ1≤χ2

ϕ1≤ϕ2

∑

(i,j,k,l)∈

M
−1

(χ1,χ2,ϕ1,ϕ2)

|~vi~vj~vk~vl|

≤
∑

χ1<χ2

ϕ1<ϕ2

18((~vχ1,ϕ1
~vχ2,ϕ2

)2 + (~vχ1,ϕ2
~vχ2,ϕ1

)2) +
∑

χ1=χ2

ϕ1<ϕ2

6((~vχ1,ϕ1
~vχ2,ϕ2

)2 + (~vχ1,ϕ2
~vχ2,ϕ1

)2)

+
∑

χ1<χ2

ϕ1=ϕ2

6((~vχ1,ϕ1
~vχ2,ϕ2

)2 + (~vχ1,ϕ2
~vχ2,ϕ1

)2) +
∑

χ1=χ2

ϕ1=ϕ2

(~vχ1,ϕ1
~vχ2,ϕ2

)2

≤ 9
∑

i∈[n]
2

j∈[n]
2

(~vi~vj)
2 = 9E2[Y ].

Finally, we have
∑

i,j,k,l∈[n]2 |E[H(i)H(j)H(k)H(l)]| · |~vi~vj~vk~vl| ≤
∑

i,j,k,l∈D |~vi~vj~vk~vl| ≤

9E2[Y ] andVar[Y ] ≤ 8E[Y ]2.

We emphasize the geometric interpretation of the above proof as follows. The goal is to bound
the variance by a constant timesE2[Y ] =

∑

i,j∈[n]
2(~vivj)

2, where the index set is the set of all possi-
ble lines in plane[n]2 (each line appears twice). We first show thatVar[Y ] ≤

∑

i,j,k,l∈D |~vi~vj~vk~vl|,
where the 4-tuple index set corresponds to a set of rectangles in a natural way. The main idea of [12]
is to use inequalities of the form|~vi~vj~vk~vl| ≤

1
2((~vχ1,ϕ1

~vχ2,ϕ2
)2 + (~vχ1,ϕ2

~vχ2,ϕ1
)2) to assign the

“weight” of each4-tuple to the diagonals of the corresponding rectangle. Theabove analysis shows
that18 copies of all lines are sufficient to accommodate all 4-tuples. While similar inequalities could
also assign the weight of a4-tuple to the vertical or horizontal edges of the corresponding rectangle,
using vertical or horizontal edges is problematic. The reason is that there areΩ(n4) 4-tuples but
only O(n3) vertical or horizontal edges, so some lines would receiveΩ(n) weight, requiringΩ(n)
copies. This problem is already noted in [7].

Our bound here isE[Y 2] ≤ 9E2[Y ], while in [12] the bound obtained isE[Y 2] ≤ 3E2[Y ].
There appears to have been an error in the derivation in [12];some intuition comes from the fol-

lowing example. We note that|D| is at least
(4
2

)2
·
(n
2

)2
= 9n4 − 9n2. (This counts the number

of non-degenerate4-tuples.) Now if we setvi = 1 for all 1 ≤ i ≤ n2, we haveE[Y 2] ≥ |D| =
9n4− 9n2 ∼ 9E2(D), which suggestsVar[D] > 3E2[D]. Again, we emphasize this discrepancy is
of little importance to [12]; the point there is that the variance is bounded by a constant factor times
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the square of the expectation. It is here, where we are generalizing to k ≥ 3, that the exact constant
factor is of some importance.

Given the bounds on the expectation and variance for theDi,j , standard techniques yield a
bound on the performance of our algorithm.

Theorem 3.4.For everyǫ > 0 andδ > 0, there exists a randomized algorithm that computes, given
a sequence(a1

1, a
2
1), . . . , (a

1
m, a2

m), in one pass and usingO(ǫ−2 log 1
δ (log m+log n)) memory bits,

a numberMed so that the probabilityMed deviates from‖v‖2 by more thanǫ is at mostδ.

Proof. Recall the algorithm described in the beginning of Section 3: let s1 = 72ǫ−2 and s2 =
2 log δ. We first computess2 random variablesY1, Y2, . . . , Ys2

and outputs their medianMed, where
eachYi is the average ofs1 random variablesYij : 1 ≤ j ≤ s1 andYij are independent, identically
distributed random variables computed by Figure 1. By Chebyshev’s inequality, we know that for
any fixedi,

Pr
(
∣

∣Yi − ‖~v‖
∣

∣

)

≥ ǫ‖~v‖] ≤
Var(Yi)

ǫ2‖~v‖2
=

(1/s1)Var[Y ]

ǫ2‖~v‖2
=

(9ǫ2/72)‖~v‖2

ǫ2‖~v‖2
=

1

8
.

Finally, by standard Chernoff bound arguments (see for example Chapter 4 of [14]), the probability
that more thans2/2 of the variablesYi deviate by more thanǫ‖~v‖ from ‖~v‖ is at mostδ. In case this
does not happen, the medianMed supplies a good estimate to the required quantity‖~v‖ as needed.

4. The General Casek ≥ 3

Now let us move to the general case wherek ≥ 3. Recall that~v is a vector inRnk

that maintains
certain statistics of a data stream, and we are interested inestimating itsℓ2 norm ‖~v‖. There is a
natural generalization for Indyk and McGregor’s method fork = 2 to construct an estimator for
‖~v‖: let h1, . . . , hk : [n] → {−1, 1} be independent copies of 4-wise independent hash functions
(namely,hi(1), . . . , hi(n) ∈ {−1, 1} are4-wise independent hash functions for eachi ∈ [k], and
h1(·), . . . , hk(·) are mutually independent.). LetH(p) =

∏k
i=1 hj(pj). The estimatorY is defined

asY ≡
(

∑

p∈[n]k ~vpH(p)
)2

.

Our goal is to show thatE[Y ] = ‖~v‖2 andVar[Y ] is reasonably small so that a streaming
algorithm maintaining multiple independent instances of estimatorY will be able to output an ap-
proximately correct estimation of‖~v‖ with high probability. Notice that when‖~v‖ represents theℓ2

distance between the joint distribution and the tensors of the marginal distributions, the estimator
can be computed efficiently in a streaming model similarly toas in Figure 1. We stress that our
result is applicable to a broader class ofℓ2-norm estimation problems, as long as the vector~v to
be estimated has a corresponding efficiently computable estimator Y in an appropriate streaming
model. Formally, we shall prove the following main lemma in the next subsection.

Lemma 4.1. Let~v be a vector inRnk

, andh1, . . . , hk : [n] → {−1, 1} be independent copies of

4-wise independent hash functions. DefineH(p) =
∏k

i=1 hj(pj), andY ≡
(

∑

p∈[n]k ~vpH(p)
)2

.

We haveE[Y ] = ||~v|| andVar[Y ] ≤ 3kE[Y ]2.

We remark that the bound on the variance in the above lemma is tight. One can verify that
when the vector~v is a uniform vector (i.e., all entries of~v are the same), the variance ofY is
Ω(3kE[Y ]2). With the above lemma, the following main theorem mentionedin the introduction
immediately follows by a standard argument presented in theproof of Theorem 3.4 in the previous
section.
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Theorem 4.2. Let ~v be a vector inR[n]k that maintains an arbitrary statistics in a data stream
of sizem, in which every item is from[n]k. Let ǫ, δ ∈ (0, 1) be real numbers. If there exists an
algorithm that maintains an instance ofY usingO(µ(n,m, k, ǫ, δ)) memory bits, then there exists
an algorithmΛ such that:

(1) With probability≥ 1−δ the algorithmΛ outputs a value between[(1− ǫ)‖~v‖2, (1+ ǫ)‖~v|2]
and

(2) the space complexity ofΛ is O(3k 1
ǫ2

log 1
δµ(n,m, k, ǫ, δ)).

As discussed above, an immediate corollary is the existenceof a one-pass space efficient
streaming algorithm to detect the dependency ofk random variables inℓ2-norm:

Corollary 4.3. For everyǫ > 0 and δ > 0, there exists a randomized algorithm that computes,
given a sequencea1, . . . , am of k-tuples, in one pass and usingO(3kǫ−2 log 1

δ (log m + log n))
memory bits, a numberY so that the probabilityY deviates from the square of theℓ2 distance
between product and joint distribution by more than a factorof (1 + ǫ) is at mostδ.

4.1. Analysis of the SketchY

This section is devoted to prove Lemma 4.1, where the main challenge is to bound the variance
of Y . The geometric approach of Indyk and McGregor [12] presented in Section 3 for the case of
k = 2 can be extended to analyze the general case. However, we remark that the generalization
requires new ideas. In particular, instead of performing “local analysis” that maps each rectangle
to its diagonals, a more complex “global analysis” is neededin higher dimensions to achieve the
desired bounds. The alternative proof we present here utilizes similar ideas, but relies on a more
combinatorial rather than geometric approach.

For the expectation ofY , we have

E[Y ] = E





∑

p,q∈[n]k

~vp · ~vq ·H(p) ·H(q)





=
∑

p∈[n]k

~v2
p · E

[

H(p)2
]

+
∑

p6=q∈[n]k

~vp · ~vq · E [H(p)H(q)]

=
∑

p∈[n]k

~v2
p = ||~v||2,

where the last equality follows byH(p)2 = 1, andE [H(p)H(q)] = 0 for p 6= q.
Now, let us start to proveVar[Y ] ≤ 3kE[Y ]2. By definition,Var[Y ] = E[(Y − E[Y ])2], so we

need to understand the following random variable:

Err ≡ Y − E[Y ] =
∑

p6=q∈[n]k

H(p)H(q)~vp~vq. (4.1)

The random variableErr is a sum of terms indexed by pairs(p,q) ∈ [n]k × [n]k with p 6= q. At
a very high level, our analysis consists of two steps. In the first step, we group the terms inErr
properly and simplify the summation in each group. In the second step, we expand the square of
the sum inVar[Y ] = E[Err2] according to the groups and apply Cauchy-Schwartz inequality three
times to bound the variance.

We shall now gradually introduce the necessary notation forgrouping the terms inErr and
simplifying the summation. We remind the reader that vectors over the reals (e.g.,~v ∈ Rnk

) are
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denoted by~v, ~w,~r, and vectors over[n] are denoted byp,q,a,b, c,d and referred asindex vectors.
We useS ⊆ [k] to denote a subset of[k], and letS̄ = [k]\S. We useHam(p,q) to denote the
Hamming distanceof index vectorsp,q ∈ [n]k, i.e., the number of coordinates wherep andq are
different.

Definition 4.4. (Projection and inverse projection)Let c ∈ [n]k be an index vector andS ⊆ [k] a
subset. We define theprojection ofc to S, denoted byΦS(c) ∈ [n]|S|, to be the vectorc restricted
to the coordinates inS. Also, leta ∈ [n]|S| andb ∈ [n]k−|S| be index vectors. We define theinverse
projection ofa andb with respect toS, denoted byΦ−1

S (a,b) ∈ [n]k, as the index vectorc ∈ [n]k

such thatΦS(c) = a andΦS̄(c) = b.

We next definepair groupsand use the definition to group the terms inErr.

Definition 4.5. (Pair Group)Let S ⊆ [k] be a subset of size|S| = t. Let c,d ∈ [n]t be a pair of
index vectors withHam(c,d) = t (i.e., all coordinates ofc andd are distinct.). Thepair group
σS(c,d) is the set of pairs(p,q) ∈ [n]k × [n]k such that (i) on coordinateS, ΦS(p) = c and
ΦS(q) = d, and (ii) on coordinatēS, p andq are the same, i.e.,ΦS̄(p) = ΦS̄(q). Namely,

σS(c,d) =
{

(p,q) ∈ [n]k × [n]k :
(

c = ΦS(p)
)

∧
(

d = ΦS(q)
)

∧
(

ΦS̄(p) = ΦS̄(q)
)}

.

(4.2)

To give some intuition for the above definitions, we note thatfor everya ∈ [n]|S̄|, there is a
unique pair(p,q) ∈ σS(c,d) with a = ΦS̄(p) = ΦS̄(q), and so|σS(c,d)| = n|S̄|. On the other
hand, for every pair(p,q) ∈ [n]k × [n]k with p 6= q, there is a unique non-emtpyS ⊆ [k] such
thatp andq are distinct on exactly coordinates inS. Therefore,(p,q) belongs to exactly one pair
groupσS(c,d). It follows that we can partition the summation inErr according to the pair groups:

Err =
∑

S⊆[k]
S 6=∅

∑

c,d∈[n]|S|,
Ham(c,d)=|S|

∑

(p,q)∈
σS(c,d)

H(p)H(q)~vp~vq. (4.3)

We next observe that for any pair(p,q) ∈ σS(c,d), sincep andq agree on coordinates in̄S,
the value of the productH(p)H(q) depends only onS, c andd. More precisely,

H(p)H(q) =
∏

i∈[k]

hi(pi)hi(qi) =

(

∏

i∈S

hi(pi)hi(qi)

)

·





∏

i∈S̄

hi(pi)
2



 =
∏

i∈S

hi(pi)hi(qi),

which depends only onS, c andd sinceΦS(p) = c andΦS(q) = d. This motivates the definition
of projected hashing.

Definition 4.6. (Projected hashing)Let S = {s1, s2, . . . , st} be a subset of[k], wheres1 < s2 <
· · · < sj. Let c ∈ [n]t. We define theprojected hashingHS(c) =

∏

i≤t hsi
(ci).

We can now translate the random variableErr as follows:

Err =
∑

S⊆[k]
S 6=∅

∑

c,d∈[n]|S|,
Ham(c,d)=|S|









HS(c)HS(d)
∑

(p,q)∈
σS(c,d)

~vp~vq









. (4.4)

Fix a pair groupσS(c,d), we next consider the sum
∑

(p,q)∈σS(c,d) ~vp~vq. Recall that for every

a ∈ [n]|S̄|, there is a unique pair(p,q) ∈ σS(c,d) with a = ΦS̄(p) = ΦS̄(q). The sum can be
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viewed as the inner product of two vectors of dimensionn|S̄| with entries indexed bya ∈ [n]|S̄|. To
formalize this observation, we introduce the definition ofhyper-projectionas follows.

Definition 4.7. (Hyper-projection)Let ~v ∈ Rnk

, S ⊆ [k], andc ∈ [n]|S|. Thehyper-projection
ΥS,c(~v) of ~v (with respect toS andc) is a vector~w = ΥS,c(~v) in R[n]k−|S|

such that~wd = ~vΦ−1

S
(c,d)

for all d ∈ [n]k−|S|.

Using the above definition, we continue to rewrite theErr as

Err =
∑

S⊆[k]
S 6=∅

∑

c,d∈[n]|S|,
Ham(c,d)=|S|

HS(c)HS(d) · 〈ΥS,c(~v),ΥS,d(~v)〉. (4.5)

Finally, we consider the productHS(c)HS(d) again and introduce the following definition to
further simplify theErr.

Definition 4.8. (Similarity and dominance)Let t be a positive integer.

• Two pairs of index vectors(c,d) ∈ [n]t × [n]t and(a,b) ∈ [n]t × [n]t aresimilar if for all
i ∈ [t], the two sets{ci, di} and{ai, bi} are equal. We denote this as(a,b) ∼ (c,d).
• Let c andd ∈ [n]t be two index vectors. We sayc is dominated byd if ci < di for all

i ∈ [t]. We denote this asc ≺ d. Note thatc ≺ d⇒ Ham(c,d) = t.

Now, note that if(a,b) ∼ (c,d), thenHS(a)HS(b) = HS(c)HS(d) since the value of the
productHS(c)HS(d) depends on the values{ci, di} only as a set. It is also not hard to see that∼
is an equivalence relation, and for every equivalent class[(a,b)], there is a unique(c,d) ∈ [(a,b)]
with c ≺ d. Therefore, we can further rewrite theErr as

Err =
∑

S⊆[k]
S 6=∅

∑

c≺d∈[n]|S|

HS(c)HS(d) ·





∑

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉



 . (4.6)

We are ready to bound the termE[Err2] by expanding the square of the sum according to
Equation (4.6). We first show in Lemma 4.9 below that all the cross terms in the following expansion
vanish.

Var[Y ] =
∑

S,S′⊆[k]
S,S′ 6=∅

∑

c≺d∈[n]|S|

c′≺d′∈[n]|S|′

E[HS(c)HS(d)HS′(c′)HS′(d′)]·









∑

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉









∑

(a′,b′)∼(c′,d′)

〈ΥS′,a′(~v),ΥS′,b′(~v)〉







 . (4.7)

Lemma 4.9. LetS andS′ be subsets of[k], andc ≺ d ∈ [n]|S| andc′ ≺ d′ ∈ [n]|S
′| index vectors.

We haveE[HS(c)HS(d)HS′(c′)HS′(d′)] ∈ {0, 1}. Furthermore, we have
E[HS(c)HS(d)HS′(c′)HS′(d′)] = 1 iff (S = S′) ∧ (c = c′) ∧ (d = d′).

Proof. Recall thath1, . . . , hk are independent copies of4-wise independent uniform random vari-
ables over{−1, 1}. Namely, for everyi ∈ [k], hi(1), . . . , hi(n) are 4-wise independent, and
h1(·), . . . , hk(·) are mutually independent. Observe that for everyi ∈ [k], there are at most4
terms out ofhi(1), . . . , hi(n) appearing in the productHS(c)HS(d)HS′(c′)HS′(d′). It follows
that all distinct terms appearing inHS(c)HS(d)HS′(c′)HS′(d′) are mutually independent uniform
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random variable over{−1, 1}. Therefore, the expectation is either 0, if there is somehi(j) that
appears an odd number of times, or 1, if allhi(j) appear an even number of times. By inspection,
the latter case happens if and only if(S = S′) ∧ (c = c′) ∧ (d = d′).

By the above lemma, Equation (4.7) is simplified to

Var[Y ] =
∑

S⊆[k]
S 6=∅

∑

c≺d∈[n]|S|





∑

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉





2

. (4.8)

We next apply the Cauchy-Schwartz inequality three times tobound the above formula. Con-
sider a subsetS ⊆ [k] and a pairc ≺ d ∈ [n]|S|. Note that there are precisely2|S| pairs(a,b) such
that(a,b) ∼ (c,d). Thus, by the Cauchy-Schwartz inequality:










∑

(a,b)∈[n]|S|

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉











2

≤ 2|S|
∑

(a,b)∈[n]|S|

(a,b)∼(c,d)

(〈ΥS,a,ΥS,b〉)
2

≤ 2|S|
∑

(a,b)∈[n]|S|

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,a(~v)〉 · 〈ΥS,b,ΥS,b(~v)〉.

Notice that in the second inequality, we applied Cauchy-Schwartz in a component-wise manner.
Next, for a subsetS ⊆ [k], we can apply the Cauchy-Schwartz inequality a third time (from the
third line to the fourth line) as follows:

∑

c≺d∈[n]|S|











∑

(a,b)∈[n]|S|

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉











2

≤ 2|S|
∑

c≺d∈[n]|S|

∑

(a,b)∈[n]|S|

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,a(~v)〉 · 〈ΥS,b(~v),ΥS,b(~v)〉

= 2|S|
∑

c,d∈[n]|S|

Ham(c,d)=|S|

〈ΥS,c(~v),ΥS,c(~v)〉 · 〈ΥS,d(~v),ΥS,d(~v)〉

≤ 2|S|
∑

c,d∈[n]|S|

〈ΥS,c(~v),ΥS,c(~v)〉 · 〈ΥS,d(~v),ΥS,d(~v)〉

= 2|S|





∑

c∈[n]|S|

〈ΥS,c(~v),ΥS,c(~v)〉





2

.

Finally, we note that by definition, we have
∑

c∈[n]|S|〈ΥS,c(~v),ΥS,c(~v)〉 = ||~v||2, which equals
to E[Y ]. It follows that the variance in Equation (4.8) can be bounded by

Var[Y ] ≤
∑

S⊆[k],S 6=∅

2|S| · E[Y ]2 = E[Y ]2
k
∑

i=1

(

k

i

)

2i = (3k − 1)E[Y ]2,
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which finishes the proof of Lemma 4.1.

5. Conclusion

There remain several open questions left in this space. Lower bounds, particularly bounds that
depend non-trivially on the dimensionk, would be useful. There may still be room for better algo-
rithms for testingk-wise independence in this manner using theℓ2 norm. A natural generalization
would be to find a particularly efficient algorithm for testing k-out-of-s-wise independence (other
than handling each set ofk variable separately). More generally, a question given in [12], to identify
random variables whose correlation exceeds some thresholdaccording to some measure, remains
widely open.
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Abstract. Suppose one has access to oracles generating samples from two unknown prob-
ability distributions p and q on some N-element set. How many samples does one need to
test whether the two distributions are close or far from each other in the L1-norm? This
and related questions have been extensively studied during the last years in the field of
property testing. In the present paper we study quantum algorithms for testing properties
of distributions. It is shown that the L1-distance ‖p−q‖1 can be estimated with a constant

precision using only O(N1/2) queries in the quantum settings, whereas classical computers

need Ω(N1−o(1)) queries. We also describe quantum algorithms for testing Uniformity and

Orthogonality with query complexity O(N1/3). The classical query complexity of these

problems is known to be Ω(N1/2). A quantum algorithm for testing Uniformity has been
recently independently discovered by Chakraborty et al [14].

1. Introduction

1.1. Problem statement and main results

Suppose one has access to a black box generating independent samples from an unknown

probability distribution p on some N -element set. If the number of available samples grows

linearly with N , one can use the standard Monte Carlo method to simultaneously estimate

the probability pi of every element i = 1, . . . ,N and thus obtain a good approximation to

the entire distribution p. On the other hand, many important questions that one usually

encounters in statistical analysis can be answered using only a sublinear number of samples.

For example, deciding whether p is close in the L1-norm to another distribution q requires

approximately N1/2 samples if q is known [8] and approximately N2/3 samples if q is also

specified by a black-box [9]. Another example is estimating the Shannon entropy H(p) =

−
∑

i pi log2 pi. It was shown in [7, 21] that distinguishing whether H(p) ≤ a or H(p) ≥ b

requires approximately N
a

b samples. Other examples include deciding whether p is close to

a monotone or a unimodal distribution [10], and deciding whether a pair of distributions
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have disjoint supports [15]. These and other questions fall into the field of distribution
testing [6, 21] that studies how many samples one needs to decide whether an unknown

distribution has a certain property or is far from having this property. The purpose of the

present paper is to explore whether quantum computers are capable of solving distribution

testing problems more efficiently.

The black-box sampling model adopted in [8, 9, 7, 10, 6, 21] assumes that a tester is

presented with a list of samples drawn from an unknown distribution. What does it mean

to sample from an unknown distribution in the quantum settings? Let us start by casting

the black-box sampling model into a form that admits a quantum generalization. Suppose

p is an unknown distribution on an N -element set [N ] ≡ {1, . . . , N} and let S be some

specified integer. We shall assume that p is represented by an oracle Op : [S] → [N ] such

that the probability pi of any element i ∈ [N ] is proportional to the number of elements

in the pre-image of i, that is, the number of inputs s ∈ [S] such that Op(s) = i. In other

words, one can sample from p by querying the oracle Op on a random input s ∈ [S] drawn

from the uniform distribution1. Note that a tester interacting with an oracle can potentially

be more powerful due to the possibility of making adaptive queries which could allow him

to learn the internal structure of the oracle as opposed to the black-box model. However,

the unstructured nature of the problem we consider means that this advantage is restricted

to avoiding repeated queries of the same position. This in turn becomes significant only

when Ω(S) queries are made, which is not relevant in our setting where we have assumed

that S ≫ N . We omit the precise formulation of this claim, which is stated as Lemma 6.1

of [13].

The oracle model admits a standard quantum generalization. Specifically, we shall

transform the oracle Op into a reversible form by keeping a copy of the input and writing

the output of Op into an ancillary register. A quantum oracle generating p is a unitary

operator whose action on basis vectors coincides with the reversible version of Op, as we

will explain further in Section 2.

The present paper focuses on testing three particular properties of distributions, namely,

Statistical Difference, Orthogonality, and Uniformity. The corresponding property testing

problems are promise problems so that a tester is required to give a correct answer (with a

bounded error probability) only for those instances that satisfy the promise.

Problem 1.1 (Testing Uniformity).

Instance: Integers N,S, precision ǫ > 0. Access to an oracle generating a distribution p on

[N ].
Promise: Either p is the uniform distribution or the L1-distance between p and the uniform

distribution is at least ǫ.

Decide which one is the case.

Problem 1.2 (Testing Orthogonality).

Instance: Integers N,S, precision ǫ > 0. Access to oracles generating distributions p, q on

[N ].
Promise: Either p and q are orthogonal (i.e. have disjoint support) or the L1-distance

between p and q is at most 2 − ǫ.
Decide which one is the case.

1Although in this model probabilities pi can only take values that are multiples of 1/S, choosing suffi-
ciently large S allows one to represent any distribution p with an arbitrarily small error.
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Problem 1.3 (Testing Statistical Difference).

Instance: Integers N,S, thresholds 0 ≤ a < b ≤ 2. Access to oracles generating distribu-

tions p and q on [N ].
Promise: Either ‖p − q‖1 ≤ a or ‖p − q‖1 ≥ b.
Decide which one is the case.

We assume that the precision ǫ is bounded from below by a fixed constant independent

of N , for instance, ǫ ≥ 1/10. The same applies to the decision gap b−a for testing Statistical

Difference. Given a function f(N) we shall say that a property is testable in f(N) queries

if there exists a testing algorithm making at most f(N) queries that gives a correct answer

with a sufficiently high probability (say 2/3) for any distributions p, q satisfying the promise

and for any oracles2 specifying p and q. If a promise is violated, a tester can give an arbitrary

answer.

Our main results are the following theorems.

Theorem 1.4. Statistical Difference is testable on a quantum computer in O(N1/2) queries.

Theorem 1.5. Uniformity is testable on a quantum computer in O(N1/3) queries.

Theorem 1.6. Orthogonality is testable on a quantum computer in O(N1/3) queries.

It is known that classically testing Orthogonality and Uniformity requires Ω(N1/2)

queries, see Sections 6.1 and 6.2, while Statistical Difference is not testable in O(Nα) queries

for any α < 1, see [21]. Therefore quantum computers provide a polynomial speedup for

testing Uniformity, Orthogonality, and Statistical Difference in terms of query complexity.

Testing Orthogonality is closely related to the Collision Problem studied in [12]. In

Section 6.1 we describe a randomized reduction from the Collision Problem to testing Or-

thogonality. Using the quantum lower bound for the Collision Problem due to Aaronson

and Shi [2] we obtain the following result.

Theorem 1.7. Testing Orthogonality on a quantum computer requires Ω(N1/3) queries.

Quite recently Chakraborty, Fischer, Matsliah, and de Wolf [14] independently discov-

ered a quantum Uniformity testing algorithm with query complexity O(N1/3) and proved

a lower bound Ω(N1/3) for testing Uniformity. These authors also presented a quantum al-

gorithm for testing whether an unknown distribution p coincides with a known distribution

q with query complexity Õ(N1/3).

1.2. Discussion and open problems

One motivation for studying distribution testing problems is that testing Orthogonality

and Statistical Difference are complete problems for the complexity class SZK (Statistical

Zero Knowledge). More precisely, the following problem known as Statistical Difference was

shown to be SZK-complete by Vadhan [18]:

Input: description of classical circuits Cp, Cq that implement oracle functions Op, Oq :

[S] → [N ] and a pair of real numbers 0 ≤ a < b ≤ 2 such that 2a ≤ b2.
Problem: Decide whether ‖p − q‖1 ≥ b (yes-instance) or ‖p − q‖1 ≤ a (no-instance) .

The class SZK includes many interesting algebraic and graph theoretic problems such as

Discrete Logarithm, Graph Isomorphism, Graph NonIsomorphism, Quadratic Residuosity,

2Note that according to this definition a tester needs at most f(N) queries even in the limit S → ∞.
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and The Shortest Vector in Lattice, see [3] and references therein. Thus it is natural to ask

whether quantum computers provide a universal speedup for problems in SZK similar to the

square-root speedup for problems in NP provided by the Grover search algorithm. Assuming

that the circuits Cp, Cq have size poly(log (N)), one can easily translate the testing algorithm

described in Section 3 to a quantum circuit of size Õ(
√

N) solving Statistical Difference

problem for any constants a, b as above. On the other hand, any classical algorithm treating

the circuits Cp, Cq as black boxes would need roughly N1−o(1) queries, see [21], thus requiring

a circuit of size Ω(N1−o(1)).

Note that the Statistical Difference problem with b = 2 is equivalent to testing Or-

thogonality. It can be solved classically in time Õ(N1/2) using the classical collision finding

algorithm. Unfortunately, the circuit complexity of the quantum Orthogonality testing al-

gorithm described in Section 5 may be different from its query complexity since it uses a

quantum membership oracle for a randomly generated set. It is an open problem whether

Statistical Difference problem with b = 2 can be solved by a quantum circuit of size Õ(N1/3),

although with a suitably powerful model of quantum RAM, such membership queries can

be done in time poly log(N). A related question is that of space-time tradeoffs: our algo-

rithms generally require storing NO(1) classical bits and then querying them with quantum

algorithms that use poly(log(N) qubits. We suspect that this amount of storage cannot be

reduced without increasing the run-time, but do not have a proof of this conjecture. Similar

issues of quantum data structures for set membership and conjectured space-time tradeoffs

have arisen for the element distinctness problem[5, 16].

It is worth mentioning that all distribution properties studied in this paper are sym-
metric, that is, these properties are invariant under relabeling of elements in the underlying

set {1, . . . , N}. Testing symmetric properties of distributions is equivalent to testing prop-

erties of functions from [S] to [N ] that are invariant under any permutations of inputs and

outputs of the function. It was recently shown by Aaronson and Ambainis that quantum

computers can provide at most polynomial speedup for testing properties of such symmetric

functions [1].

More interesting than the mere fact of polynomial speedups provided by Theorems 1.4,

1.5, 1.6 is the way in which our algorithms achieve it. Classically, the results of Ref. [21]

provide a simple characterization of an asymptotically optimal testing algorithm for any

symmetric property of a distribution (satisfying certain natural continuity conditions). By

contrast, our algorithms use a variety of different strategies both to query the oracles and

to analyze the results of those queries. These strategies appear not to be special cases

of the quantum walk framework which has been responsible for most of the polynomial

quantum speedups found to date [20, 19]. A major challenge for future research is to give

a quantum version of Ref. [21]’s Canonical Tester algorithm; in other words, we would

like to characterize optimal quantum algorithms for testing any symmetric property of a

distribution (or a pair of distributions).

Finally, let us remark that the algorithm for estimating statistical difference described in

Section 3 can be easily generalized to construct a quantum algorithm for estimating the von

Neumann entropy of a black-box distribution with query complexity Õ(N1/2). Using similar

ideas one can construct an Õ(N1/2)-time algorithm for estimating the fidelity between two

black-box distributions (i.e.
∑N

i=1
√

piqi).

The rest of the paper is organized as follows. Section 2 introduces necessary notations

and basic facts about the quantum counting algorithm by Brassard, Hoyer, Mosca, and
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Tapp [11]. The distribution testing algorithms described in the rest of the paper are actually

classical probabilistic algorithms using the quantum counting as a subroutine. Theorem 1.4

is proved in Section 3. Theorem 1.5 is proved in Section 4. Theorem 1.6 is proved in

Section 5. We discuss lower bounds for the above distribution testing problems in Section 6.

2. Preliminaries

Let DN be the set of probability distributions p = (p1, . . . , pN ) such that a probability

pi of any element i ∈ [N ] is a rational number. Let us say that an oracle O : [S] → [N ]

generates a distribution p ∈ DN iff for all i ∈ [N ] the probability pi equals the fraction of

inputs s ∈ [S] such that O(s) = i,

pi =
1

S
#{s ∈ [S] : O(s) = i}.

Note that the identity of elements in the domain of an oracle O is irrelevant, so if O
generates p and σ is any permutation on [S] then O ◦σ also generates p. By definition, any

map O : [S] → [N ] generates some distribution p ∈ DN .

For any oracle O : [S] → [N ] we shall define a quantum oracle Ô by transforming O into

a reversible form and allowing it to accept coherent superpositions of queries. Specifically,

a quantum oracle Ô is a unitary operator acting on a Hilbert space C
S ⊗ C

N+1 equipped

with a standard basis {|s〉 ⊗ |i〉}, s ∈ [S], i ∈ {0} ∪ [N ] such that

Ô |s〉 ⊗ |0〉 = |s〉 ⊗ |O(s)〉 for all s ∈ [S]. (2.1)

In other words, querying Ô on a basis vector |s〉 ⊗ |0〉 one gets the output of the classical

oracle O(s) in the second register while the first register keeps a copy of s to maintain

unitarity. The action of Ô on a subspace in which the second register is orthogonal to the

state |0〉 can be arbitrary. We shall assume that a quantum tester can execute operators

Ô, Ô† and the controlled versions of them. Execution of any one of these operators counts

as one query.

Another apparently natural quantum model of a probability distribution is the ability

to prepare the state
∑N

i=1

√
pi|i〉; i.e. the ability to “q-sample” from the distribution p, c.f.

Ref. [3]. However, this ability turns out to be far stronger than the oracle model we will use,

since it would allow us to solve Problems 1, 2 and 3 with O(1) q-samples of the distributions p

and q. This follows from the well-known result that the observable swap =
∑N

i,j=1 |i, j〉〈j, i|

has expectation value |〈p|q〉|2 when measured on the state (
∑N

i=1
√

pi|i〉) ⊗ (
∑N

j=1
√

qj|j〉).
Moreover, the ability to efficiently classically sample from a distribution p implies the ability

to efficiently construct a quantum oracle Ô corresponding to p, but does not generally

imply the ability to q-sample from p. Accordingly, in the rest of the paper we will consider

probability distributions to be encoded in quantum oracles.

We shall see that all testing problems posed in Section 1 can be reduced (via classical

randomized reductions) to the following problem.

Problem 2.1 (Probability Estimation).

Instance: Integers S,N , description of a subset A ⊂ [N ], precision δ, error probability ω,

and access to an oracle generating some distribution p ∈ DN . Let pA =
∑

i∈A pi

be the total probability of A.
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Task: Generate an estimate p̃A satisfying

Pr [|p̃A − pA| ≤ δ] ≥ 1 − ω. (2.2)

Our main technical tool will be the quantum counting algorithm by Brassard et al. [11].

Specifically, we shall use the following version of Theorem 12 from [11], whose precise form

is proved in [13].

Theorem 2.2. There exists a quantum algorithm EstProb(p,A,M) taking as input a
distribution p ∈ DN specified by an oracle, a subset A ⊂ [N ], and an integer M . The
algorithm makes exactly M queries to the oracle generating p and outputs an estimate p̃A

such that
Pr [|p̃A − pA| ≤ δ] ≥ 1 − ω (2.3)

for all δ > 0 and 0 ≤ ω ≤ 1/2 satisfying

M ≥
c
√

pA

ωδ
and M ≥

c

ω
√

δ
. (2.4)

Here c = O(1) is some constant. If pA = 0 then p̃A = 0 with certainty.

(In Eq. 2.4, is is possible to replace 1/ω with log(1/ω), but we will not need this

improvement.)

3. Quantum algorithm for estimating statistical difference

In this section we sketch the proof of Theorem 1.4. Let p, q ∈ DN be unknown distribu-

tions specified by oracles. Define an auxiliary distribution r ∈ DN such that ri = (pi +qi)/2
for all i ∈ [N ]. If we can sample i from both p and q then by choosing randomly between

these two options we can also sample i from r. Let x ∈ [0, 1] be a random variable which

takes value

xi =
|pi − qi|

pi + qi

with probability ri. It is evident that

E(x) =
∑

i∈[N ]

rixi =
1

2

∑

i∈[N ]

|pi − qi| =
1

2
‖p − q‖1. (3.1)

Thus in order to estimate the distance ‖p − q‖1 it suffices to estimate the expectation

value E(x) which can be done using the standard Monte Carlo method. Since we have to

estimate E(x) only with a constant precision, it suffices to generate O(1) samples of xi.

Given a sample of i (which is easy to generate classically) we can estimate xi by calling the

probability estimation algorithm to get estimates of pi and qi. Based on this intuition, we

propose the following algorithm for estimating the distance ‖p − q‖1.
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EstDist(p, q, ǫ, τ)

Set n = 27/τǫ2, M = c
√

N/ǫ6τ4.

Let i1, . . . , in ∈ [N ] be a list of n independent samples drawn from r.
For a = 1, . . . , n
{

Let p̃ia be an estimate of pia obtained using EstProb(p, {ia},M).

Let q̃ia be an estimate of qia obtained using EstProb(q, {ia},M).

Let x̃ia = |p̃ia − q̃ia|/(p̃ia + q̃ia) be our estimate of xia .
}
Output x̃ = (1/n)

∑n
a=1 x̃ia .

Here c = O(1) is a constant whose precise value will not be important for us.

Lemma 3.1. The algorithm EstDist(p, q, ǫ, τ) outputs an estimate x̃ satisfying

Pr [|x̃ − E(x)| < ǫ] ≥ 1 − τ, (3.2)

where E(x) = (1/2)‖p − q‖1.

The proof can be found in Ref. [13] and is omitted from this extended abstract. The

rough idea is that we define an element i to be bad iff max(pi, qi) ≤ τ/3nN . Then the total

probability that any element is bad is ≤ τ/3. Conditioned on all the elements being good,

we can use Theorem 2.2 to show that we can estimate each pi and qi up to multiplicative

error 1 − o(1), and thereby can also get good estimates of xi.

Theorem 1.4 follows directly from Lemma 3.1 since EstDist(p, q, ǫ, τ) makes O(
√

N)

queries to the quantum oracles generating p and q.

4. Quantum algorithm for testing Uniformity

In this section we sketch the proof of Theorem 1.5. Let p ∈ DN be an unknown

distribution specified by an oracle. We are promised that either p is the uniform distribution,

or p is ǫ-nonuniform, that is, the L1-distance between p and the uniform distribution is at

least ǫ. The algorithm described below is based on the following simple observation. Choose

some integer M ≪ N and let S = (i1, . . . , iM ) be a list of M independent samples drawn

from the distribution p. Define a random variable pS =
∑M

a=1 pia. It coincides with the total

probability of all elements in S unless S contains a collision (that is, ia = ib for some a 6= b).
The characteristic property of the uniform distribution is that pS = M/N with certainty.

On the other hand, we shall see that for any ǫ-nonuniform distribution pS takes values

greater than (1 + δ)M/N for some constant δ > 0 depending on ǫ with a non-negligible

probability. This observation suggests the following algorithm for testing uniformity (the

constants K and M below will be chosen later).

UTest(p,K,M, ǫ)

• Let S = (i1, . . . , iM ) be a list of M independent samples drawn from p.

• Reject unless all elements in S are distinct.

• Let pS =
∑M

a=1 pia be the total probability of elements in S.

• Let p̃S be an estimate of pS obtained using EstProb(p, S,K).

• If p̃S > (1 + ǫ2/8)M/N then reject. Otherwise accept.
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This procedure will need to be repeated several times to achieve the desired bound on the

error probability, as we will discuss below.

The main technical result needed is the following lemma.

Lemma 4.1. Let p ∈ DN be an ǫ-nonuniform distribution. Let S = (i1, . . . , iM ) be a list of
M independent samples drawn from p, where

M =

(

32N

ǫ4

)
1

3

. (4.1)

Let pS =
∑M

a=1 pia and α = 28ǫ−4. Then

Pr

[

pS ≥ (1 + ǫ2/2)
M

N

]

≥
1

2
exp (−α). (4.2)

Theorem 1.4 follows straightforwardly from the above lemma and Theorem 2.2.

Proof of Theorem 1.4. Let M be chosen as in Eq. (4.1) and

K = c
eαN1/3

ǫ4/3
,

where c = O(1) is a constant to be chosen later. Consider the following algorithm:

Perform L = 4exp (α) independent tests UTest(p,K,M, ǫ). If at least

one of the tests outputs ‘reject’ then reject. Otherwise accept.

In the full version of this paper [13], we prove that this algorithm rejects any ǫ-
nonuniform distribution with probability at least 2/3 and accepts the uniform distribution

with probability at least 2/3.

In the rest of this section we sketch the proof of Lemma 4.1 again deferring full proofs

to [13]. We shall adopt notations introduced in the statement of Lemma 4.1, that is, the

number of samples M is defined by

M3 = 32ǫ−4N,

α ≡ 28ǫ−4, S = (i1, . . . , iM ) is a list of M independent samples drawn from p, and pS =
∑M

a=1 pia .

Definition 4.2. An element i ∈ [N ] is called big iff pi > 1/(2M2).

Define the set Big ⊂ [N ] of all big elements and their total probability:

Big = {i ∈ [N ] : pi > 1/(2M2)}, wbig =
∑

i∈Big

pi. (4.3)

Also, observe that

E(pS) = M〈p|p〉 and (4.4a)

Var (pS) = M

(

N
∑

i=1

p3
i − 〈p|p〉2

)

. (4.4b)

The proof of Lemma 4.1 is divided into three cases. We shall start by proving the

Lemma in the special case when p ∈ DN is ǫ-nonuniform and has no big elements. Using
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(4.4), we find that the ǫ-nonuniformity of p implies that E(pS) ≥ M
N (1 + ǫ2) while the lack

of big elements implies that Var(pS) ≤ 〈p|p〉/2M . Then we use Chebyshev’s inequality to

argue that pS is likely to be larger than M
N (1 + ǫ2/2). The second case is when the total

weight of big elements is ≤ α/M , for α ≡ ǫ−4/256. In this case, our sampling is unlikely to

encounter any big elements and we can reduce the proof to the case when there are no big

elements. Finally, if the total weight of big elements is > α/M , then there is a substantial

probability that we sample > α/2 of them, which will result in pS being larger than 2M/N .

5. Quantum algorithm for testing orthogonality

Consider distributions p, q ∈ DN and let S = (i1, . . . , iM ) be a list of M independent

samples drawn from p. Let A ⊆ [N ] be the set of all elements that appear in S at least

once. Define the collision probability

qA =
∑

i∈A

qi.

Note that qA is a deterministic function of A, so the probability distribution of qA is deter-

mined by the probability distribution of A (which depends on p and M). For a fixed A the

variable qA is the probability that a sample drawn from q belongs to A.

Clearly if p and q are orthogonal then qA = 0 with probability 1. On the other hand,

if p and q have a constant overlap, we will show that qA takes values of order M/N with

constant probability. Specifically, we shall prove the following lemma.

Lemma 5.1. Consider a pair of distributions p, q ∈ DN such that ‖p− q‖1 ≤ 2− ǫ. Let qA

be a collision probability constructed using M samples. Suppose M ≥ 29ǫ−2. Then

Pr

[

qA ≥
ǫ3M

211N

]

≥
1

2
. (5.1)

This Lemma suggests the following algorithm for testing orthogonality.

OTest(p, q,M,K)

• Let S = {i1, . . . , iM} be a list of M independent samples drawn from p.

• Let A ⊆ [N ] be the set of elements that appear in S at least once.

• Let qA =
∑

i∈A qi be the total probability of elements in A with respect

to q.
• Let q̃A be estimate of qA obtained using EstProb(q,A,K).

• If q̃A ≥ ǫ3M
212N then reject. Otherwise accept.

We note that if qA = 0 then q̃A = 0 with certainty (see Theorem 2.2) and so OTest accepts

any pair of orthogonal distributions with certainty. Again the full proof of Theorem 1.6 is

left to [13]. The idea it to choose M = K = O
(

N1/3

ǫ

)

and apply OTest(p, q,M,K) to

distributions p, q ∈ DN . According to Lemma 5.1, if ‖p−q‖1 ≤ 2−ǫ then qA ≥ ǫ3M/(211N)

with probability ≥ 1/2. When this holds, the algorithm rejects whenever |q̃A − qA| ≤
qA

2

since this implies q̃A ≥ qA/2 ≥ ǫ3M/(212N). By Theorem 2.2, our choice of K is sufficient

to achieve this with Ω(1) probability.

It remains only to prove Lemma 5.1.
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Proof. Begin by defining two sets of indices:

B ≡ {i : qi <
ǫ

4
pi} and C ≡ {i : pi ≤

ǫ

32
N−1} (5.2)

Let Bc, Cc denote the complements of B and C respectively. We will prove that

Pr
[

|A ∩ Bc ∩ Cc| ≥
ǫ

16
M
]

≥ 1/2, (5.3)

which will imply the Lemma since

qA ≥
∑

i∈A∩Bc∩Cc

qi ≥
ǫ

4

∑

i∈A∩Bc∩Cc

pi ≥
ǫ2

27N
|A ∩ Bc ∩ Cc|.

This is achieved by using a Chernoff-Hoeffding bound to show that |A ∩B| and |A ∩C are

each unlikely to be much larger than their expectations. The details are in [13].

6. Lower bounds

6.1. Reduction from the Collision Problem to testing Orthogonality

One can get lower bounds on the query complexity of testing Orthogonality using the

lower bounds for the Collision problem [2]. Indeed, let H : [N ] → [N ] be an oracle

function such that either H is one-to-one (yes-instance) or H is two-to-one (no-instance).

The Collision Problem is to decide which one is the case. It was shown by Refs. [2, 4, 17]

that the quantum query complexity of the Collision problem is Ω(N1/3). Below we show

that the Collision problem can be reduced to testing Orthogonality. As a result, testing

Orthogonality will be shown to require Ω(N1/2) queries classically and Ω(N1/3) queries

quantumly.

Indeed, choose a random permutation σ : [N ] → [N ] and define functions Op, Oq :

[N/2] → [3N/2] by restricting the composition H ◦σ to the subsets of odd and even integers

respectively:

Op(s) = H(σ(2s − 1)), Oq(s) = H(σ(2s))

where s ∈ [N/2].
For any yes-instance (i.e. H is one-to-one), the distributions p, q ∈ D3N/2 generated by

Op and Oq are uniform distributions on some pair of disjoint subsets of [3N/2]; that is, p
and q are orthogonal.

We need to show that for any no-instance (H is two-to-one) the distance ‖p− q‖1 takes

values smaller than 2 − ǫ with a sufficiently high probability for some constant ǫ. This is

established by the following Lemma, whose proof can be found in [13].

Lemma 6.1. Let H : [N ] → [3N/2] be any two-to-one function. Let σ : [N ] → [N ] be a
random permutation drawn from the uniform distribution. Then

Pr

[

‖p − q‖1 ≤
7

4

]

≥
1

2
.
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6.2. Classical lower bound for testing Uniformity

In this section we prove that classically testing Uniformity requires Ω(N1/2). A proof

uses the machinery developed by Valiant in [21]. Valiant’s techniques apply to testing

symmetric properties of distributions, that is, properties that are invariant under relabeling

of elements in the domain of a distribution. Clearly, Uniformity is a symmetric property.

We shall need two technical tools from [21], namely, the Positive-Negative Distance

lemma and Wishful Thinking theorem (see Theorem 4 and Lemma 3 in [21]). Let us

start from introducing some notations. Let p ∈ DN be an unknown distribution and S =

(i1, . . . , iM ) be a list of M independent samples drawn from p. We shall say that S has a

collision of order r iff some element i ∈ [N ] appears in S exactly r times. Let cr be the

total number of collisions of order r, where r ≥ 1. A sequence of integers {cr}r≥1 is called

a fingerprint of S. Define a probability distribution DM
p on a set of fingerprints as follows:

(1) draw k from the Poisson distribution Poi(k) = e−MMk/k!. (2) Generate a list S of k
independent samples drawn from p. (3) Output a fingerprint of S.

An important observation made in [21] is that a fingerprint contains all relevant in-

formation about a sample list as far as testing symmetric properties is concerned. Thus

without loss of generality, a testing algorithm has to make its decision by looking only on a

fingerprint of a sample list. Applying Positive-Negative Distance lemma from [21] to testing

Uniformity we get the following result.

Lemma 6.2 ([21]). Let u be the uniform distribution on [N ] and p ∈ DN be any distribution
such that ‖p − u‖1 ≥ 1. If for some integer M

‖DM
p − DM

u ‖1 <
1

12
(6.1)

then Uniformity is not testable in M samples.

The second technical tool is a usable upper bound on the distance between the distri-

butions of fingerprints. For any integer k define an k-th moment of p as mk(p) =
∑N

i=1 pk
i .

Clearly mk(u) = N1−k which is the smallest possible value of a k-th moment for distribu-

tions on [N ]. Applying Wishful Thinking theorem from [21] to testing Uniformity we get

the following result (again proved in [13]).

Lemma 6.3 ([21]). Let p ∈ DN be any distribution such that ‖p‖∞ ≤ δ/M for some δ > 0.
Then

‖DM
p − DM

u ‖1 ≤ 40δ + 10
∑

k≥2

Mk mk(p) − N1−k

⌊k/2⌋!
√

1 + Mk mk(p)
. (6.2)

Corollary 6.4. Uniformity is not testable classically in 32−1 N1/2 queries.
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Abstract. In this paper we consider the problem of reconstructing a hidden weighted
hypergraph of constant rank using additive queries. We prove the following: Let G be
a weighted hidden hypergraph of constant rank with n vertices and m hyperedges. For
any m there exists a non-adaptive algorithm that finds the edges of the graph and their
weights using

O

„

m log n

log m

«

additive queries. This solves the open problem in [S. Choi, J. H. Kim. Optimal Query
Complexity Bounds for Finding Graphs. STOC, 749–758, 2008].

When the weights of the hypergraph are integers that are less than O(poly(nd/m))
where d is the rank of the hypergraph (and therefore for unweighted hypergraphs) there
exists a non-adaptive algorithm that finds the edges of the graph and their weights using

O

 

m log nd

m

log m

!

.

additive queries.
Using the information theoretic bound the above query complexities are tight.

1. Introduction

In this paper we consider the following problem of reconstructing weighted hypergraphs

of constant rank1 (the maximal size of a hyperedge) using additive queries: Let G = (V,E,w)

be a weighted hidden hypergraph where E ⊂ 2V , |e| is constant for all e ∈ E, w : E → R,

and n is the number of vertices in V . Denote by m the size of E. Suppose that the set

of vertices V is known and the set of edges E is unknown. Given a set of vertices S ⊆ V ,

an additive query, QG(S), returns the sum of weights in the sub-hypergraph induced by S.

That is,

QG(S) =
∑

e∈E∩2S

w(e).

Our goal is to exactly reconstruct the set of edges using additive queries.

1Sometimes called dimension.
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Tight Upper Adaptive Non-adaptive

Bound Poly. time Poly. time

Loops rank= 1

Unweighted Loops [13, 17, 14, 6] [8] OPEN

Bounded Weighted Loops [11] OPEN OPEN

Unbounded Weighted Loops [10] OPEN† OPEN§

Graph rank= 2

Unweighted Graph [11] [22] OPEN

Bounded Weighted Graph [11, 9] OPEN OPEN

Unbounded Weighted Graph [10] OPEN† OPEN

Hypergraph rank> 2

Unweighted HyperGraph Ours OPEN OPEN

Unbounded Weighted Hypergraph Ours OPEN† OPEN

Figure 1: Results for weighted and un-weighted hypergraphs with optimal query complexity.
†A non-optimal adaptive query complexity algorithm for Hypergraph can be found

in [12]. § A non-optimal non-adaptive query complexity algorithms can be found

in [20] and the references within it.

One can distinguish between two types of algorithms to solve the problem. Adaptive

algorithms are algorithms that take into account outcomes of previous queries while non-

adaptive algorithms make all queries in advance, before any answer is known. In this paper,

we consider non-adaptive algorithms for the problem. Our concern is the query complexity,

that is, the number of queries needed to be asked in order to reconstruct the hypergraph.

The hypergraph reconstructing problem has known a significant progress in the past

decade. For unweighted hypergraph of rank d the information theoretic lower bound gives

Ω

(

m log nd

m

log m

)

for the query complexity for any adaptive algorithm for this problem.

Many independent results [13, 17, 14, 6]2 have proved a tight upper bound for hy-

pergraph of rank 1, i.e., loops. A tight upper bound was proved for some subclasses of

unweighted hypergraphs of rank two, i,e., graphs (Hamiltonian graphs, matching, stars and

cliques etc.) [19, 18, 17, 7], unweighted graphs with Ω(dn) edges where the degree of each

vertex is bounded by d [17], graphs with Ω(n2) edges [17] and then the former was extended

to d-degenerate unweighted graphs with Ω(dn) edges [19], i.e., graphs that their edges can

be changed to directed edges where the out-degree of each vertex is bounded by d. A re-

cent paper by Choi and Kim, [11], gave a tight upper bound for all unweighted graphs. In

this paper we give a tight upper bound for all unweighted hypergraphs of constant rank.

Our bound is tight even for weighted hypergraphs with integer weights |w| = poly(nd/m)

where d is the rank of the hypergraph.

For weighted hypergraph of constant rank with unbounded weights the information

theoretic lower bound gives

Ω

(

m log n

log m

)

2In [13] Djackov mentions this bound without a proof.
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In [11], Choi and Kim prove a tight upper bound for loops (hypergraph of rank 1). For

weighted graphs (hypergraph of rank 2) Choi and Kim, [11], proved the following: If

m > (log n)α for sufficiently large α, then, there exists a non-adaptive algorithm for re-

constructing a weighted graph where the weights are real numbers bounded between n−a

and nb for any positive constants a and b using

O

(

m log n

log m

)

queries.

In [9], Bshouty and Mazzawi close the gap in m and proved that for any weighted graph

where the weights are bounded between n−a and nb for any positive constants a and b and

any m there exists a non-adaptive algorithm that reconstructs the hidden graph using

O

(

m log n

log m

)

queries. Then in [10] they extended the result to any weighted graph with any unbounded

weights.

In this paper extend all the above results to any hypergraph of constant rank, i.e., the

edges of the graph has constant size. This solves the open problems in [11, 9, 10].

The paper is organized as follows: In Section 2, we present notation, basic tools and

some background. In Section 3, we prove the main result.

2. Preliminaries

In this section we present some background, basic tools and notation.

For an integer r let [r] be the set {1, 2, . . . , r}. For S ⊂ [r] we define xS ∈ {0, 1}r where

xS
i = 1 if and only if i ∈ S. The inverse operation is Sx = {i | xi = 1}. We say that

x1, . . . , xd ∈ {0, 1}n are pairwise disjoint if for every i 6= j, we have xi ∗ xj = 0 where ∗ is

component-wise product of two vectors. For a prime p and integers a and b we write a =p b
for a = b mod p. We will also allow p = ∞. In this case a and b can be any real numbers

and a =∞ b will mean a = b as real numbers.

2.1. d-Dimensional Matrices

A d-dimensional matrix A of size n1×· · ·×nd over a field F is a map A :
∏d

i=1[ni] → F.

We denote by F
n1×···×nd the set of all d-dimensional matrices A of size n1 × · · · × nd. We

write Ai1,...,id for A(i1, . . . , id).
The zero map is denoted by 0n1×···×nd . The matrix B = (Ai1,i2,...,id)i1∈I1,i2∈I2,...,id∈Id

where Ij ⊆ [nj], is the |I1| × · · · × |Id| matrix where Bj1,...,jd
= Aℓ1,...,ℓd

and ℓi is the jith

smallest number in Ii. When Ij = [nj] we just write j and when Ij = {ℓ} we just write

j = ℓ. For example, (Ai1,i2,...,id)i1,i2=ℓ,i3∈I2,...,id∈Id
= (Ai1,i2,...,id)i1∈[n1],i2∈{ℓ},i3∈I2,...,id∈Id

.

When n1 = n2 = · · · = nd = n then we denote F
n1×···×nd by F

×dn and 0n1×···×nd

by 0×dn.

We say that the entry Ai1,i2,...,id is of dimension r if |{i1, . . . , id}| = r. For d-dimensional

matrix A we denote by wt(A) the number of points in
∏d

i=1[ni] that are mapped to non-zero

elements in F. We denote by wtr(A) the number of points in
∏d

i=1[ni] of dimension r that

are mapped to non-zero elements in F. Therefore, wt(A) = wt1(A)+wt2(A)+ · · ·+wtd(A).
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We denote by Ad,m the set of d-dimensional matrices A ∈ F
×dn where wtd(A) ≤ m and

A⋆
d,m the set of d-dimensional matrices A ∈ F

×dn where 1 ≤ wtd(A) ≤ m.

For d-dimensional matrix A of size n1 × · · · × nd and xi ∈ F
ni we define

A(x1, . . . , xd) =

n1
∑

i1=1

· · ·

nd
∑

id=1

Ai1,i2,...,idx1i1 · · · xdid .

The vector v = A(·, x2, . . . , xd) is n1-dimensional vector that its ith entry is

n2
∑

i2=1

· · ·

nd
∑

id=1

Ai,i2,...,idx2i2 · · · xdid .

For a set of d-dimensional matrices B, a set S ⊆ ({0, 1}n)d is called a zero test set for B if

for every A ∈ B, A 6= 0, there is x ∈ S such that A(x) 6= 0.

A d-dimensional matrix is called symmetric if for every i = (i1, . . . , id) ∈ [n]d and any

permutation φ on [d], we have Ai = Aφi, where φi = (iφ(1), . . . , iφ(d)). Notice that for a

symmetric d-dimensional matrix A ∈ F
×dn, xi ∈ {0, 1}n and any permutation φ on [d], we

have A(x1, . . . , xd) = A(xφ(1), . . . , xφ(d)).
We will be interested mainly in the fields F = R the field of real numbers and F = Zp

the field of integers modulo p and in matrices of constant d = O(1) dimension. Also p > d!.

Although it seems that we are restricting the parameters, the final result has no restriction

on the parameters except for d = O(1). We will also abuse the notations Zp and =p and

allow p = ∞ (so in this paper ∞ is also prime number). In that case Z∞ = R and =∞ is

equality in the filed of real numbers.

2.2. Hypergraph

A hypergraph G is a pair G = (V,E) where V = [n] is a set of elements, called nodes

or vertices, and E is a set of non-empty subsets of 2V called hyperedges or edges. The rank
r(G) of a hypergraph G is the maximum cardinality of any of the edges in the hypergraph.

A hypergraph is called d-uniform if all of its edges are of size d.

A weighted hypergraph G = (V,E,w) over Zp is a hypergraph (V,E) with a weight

function w : E → Zp. For two weighted hypergraph G1 = (V,E1, w1) and G2 = (V,E2, w2)

we define the weighted hypergraph G1 −G2 = (V,E,w) where E = {e ∈ E1 ∪E2 | w1(e) 6=
w2(e)}, and for every e ∈ E, w(e) = w1(e) − w2(e). Obviously, G1 = G2 if and only if

G1 − G2 is an independent set, i.e., E = ∅.
We denote by Gd the set of all weighted hypergraphs over Zp of rank at most d, Gd,m

the set of all weighted hypergraphs over Zp of rank at most d and at most m edges and

G⋆
d,m the set of all weighted hypergraphs over Zp of rank d and at most m edges.

Let w⋆ : 2V → Zp be w extended to all possible edges where for e ∈ E, w⋆(e) = w(e)
and for e 6∈ E, w⋆(e) = 0.

An adjacency d-dimensional matrix of a weighted hypergraph G is a d-dimensional ma-

trix AG
d where d ≥ r(G) such that for every set e = {i1, i2, . . . , iℓ} of size at most d we have

AG
d(j1,...,jd) =p w⋆(e)/N(d, ℓ) for all j1, . . . , jd such that {j1, j2, . . . , jd} = {i1, . . . , iℓ} where

N(d, ℓ) =

ℓ
∑

i=0

(−1)i
(

ℓ

i

)

(ℓ − i)d.
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That is, N(d, ℓ) is the number of possible sequences (j1, . . . , jd) such that {j1, . . . , jd} =

{i1, . . . , iℓ}. Note that N(d, ℓ) ≤ d! < p and therefore N(d, ℓ) 6=p 0 and AG
d is well defined.

It is easy to see that the adjacency matrix of a weighted hypergraph is a symmetric

matrix and r(G) = r if and only if the adjacency matrix of G has an non-zero entry of

dimension r and all entries of dimension greater than r are zero.

2.3. Additive Model

In the Additive Model the goal is to exactly learn a hidden hypergraph with minimal

number of additive queries. Given a set of vertices S ⊆ V , an additive query, QG(S), returns

the sum of weights in the subgraph induces by S. That is, QG(S) =p
∑

e∈E∩2S w(e). Our

goal is to exactly reconstruct the set of edges and find their weights using additive queries.

See the many applications of this problem in [7, 11, 12].

We say that the set S = {S1, S2, · · · , Sk} ⊆ 2V is a detecting set for Gd,m if for

any hypergraph G ∈ Gd,m there is Si such that QG(Si) 6= 0. We say that the set S =

{S1, S2, · · · , Sk} ⊆ 2V is a search set for Gd,m if for any two distinct hypergraphs G1, G2 ∈
Gd,m there is Si such that QG1(Si) 6= QG2(Si). That is, given (QG(Si))i one can uniquely

determines G. We now prove the following,

Lemma 2.1. If S = {S1, S2, · · · , Sk} ⊆ 2V is a detecting set for Gd,2m then it is a search
set for Gd,m.

Proof. Let G1, G2 ∈ Gd,m be two distinct weighted hypergraphs. Let G = G1 − G2. Since

G ∈ Gd,2m there must be Si ∈ S such that QG(Si) 6= 0. Since QG(Si) = QG1(Si)− QG2(Si)

we have QG1(Si) 6= QG2(Si).

2.4. Algebraic View of the Model

It is easy to show that for any hypergraph G of rank r the adjacency d-dimensional

matrix of G, AG
d , for d ≥ r, is symmetric, contains a nonzero entry of dimension r and

QG(S) =p AG
d (xS , xS , d. . ., xS)

∆
= BG

d (xS).

For a symmetric d-dimensional matrix A let B(x) =p A(x, x, d. . ., x) where x ∈ {0, 1}n.

When x1, . . . , xd ∈ {0, 1}n are pairwise disjoint the following lemma shows that A(x1, . . . , xd)

can be found by 2d values of B.

Lemma 2.2. If x1, . . . , xd ∈ {0, 1}n are pairwise disjoint then

A(x1, . . . , xd) =p
1

d!

∑

I∈2[d]

(−1)d−|I|B

(

∑

i∈I

xi

)

.

Proof. Since

A(x1 + x′
1, x2, . . . , xd) =p A(x1, x2, . . . , xd) + A(x′

1, x2, . . . , xd)

and

A(x1, x2, . . . , xd) =p A(xφ(1), xφ(2), . . . , xφ(d))
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for any permutation φ on [d], the result is analogous to the fact that

y1y2 · · · yd =p
1

d!

∑

I∈2[d]

(−1)d−|I|

(

∑

i∈I

yi

)d

, (2.1)

for formal variables y1, . . . , yd. Now notice that
(

∑

i∈I

yi

)d

=p

∑

q1+···+qd=d

χ [{i|qi 6= 0} ⊆ I]

(

d

q1 q2 · · · qd

)

yq1
1 · · · yqd

d ,

where χ[L] = 1 if the statement L is true and 0 otherwise. Therefore, the coefficient of

yq1
1 · · · yqd

d in the right hand side of (2.1) is

∑

I∈2[d]

(−1)d−|I|χ [{i|qi 6= 0} ⊆ I]

(

d

q1 q2 · · · qd

)

=p

(

d

q1 q2 · · · qd

)

∑

I∈2[d]

(−1)d−|I|χ [{i|qi 6= 0} ⊆ I] .

Now if ℓ = |{i|qi 6= 0}| < d then

∑

I∈2[d]

(−1)d−|I|χ [{i|qi 6= 0} ⊆ I] =p

d
∑

i=ℓ

(−1)d−i

(

d − ℓ

i − ℓ

)

=p

d−ℓ
∑

i=0

(−1)d−ℓ−i

(

d − ℓ

i

)

= 0.

If ℓ = |{i|qi 6= 0}| = d then q1 = q2 = · · · = qd = 1 and
∑

I∈2[d]

(−1)d−|I|χ [{i|qi 6= 0} ⊆ I] =p 1.

This implies the result.

Let G be a hypergraph of rank d and G(i), i ≤ d, be the sub-hypergraph of G that

contains all the edges in G of size i then

Lemma 2.3. If x1, . . . , xd ∈ {0, 1}n are pairwise disjoint then, we have that AG
d (x1, . . . , xd) =

AG(d)

d (x1, . . . , xd). In particular, if r(G) < d then AG
d (x1, . . . , xd) = 0.

Proof. Since x1, . . . , xd ∈ {0, 1}n are pairwise disjoint we have

AG
d (x1, . . . , xd) =

n1
∑

i1=1

· · ·

nd
∑

id=1

w⋆({i1, i2, . . . , id})

N(d, |{i1, i2, . . . , id}|)
x1i1 · · · xdid

=
∑

|{i1,...,id}|=d

w⋆({i1, i2, . . . , id})

N(d, d)
x1i1 · · · xdid

= AG(d)

d (x1, . . . , xd).

Now when r(G) < d then G(d) is an independent set (has no edges) and AG(d)

d = 0. Then

AG
d (x) = AG(d)

d (x) = 0.
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We now prove

Lemma 2.4. Let Φd = {z
(d)
1 , . . . , z

(d)
kd

} ⊂ ({0, 1}n)d where for every i the vectors z
(d)
i,1 , . . . , z

(d)
i,d

are pairwise disjoint. If Φd is a zero test set for A⋆
d,(d!)m then

SΦd
∆
=







SyJ

∣

∣

∣

∣

∣

∣

yJ =
∑

j∈J

z
(d)
i,j , J ⊂ [d]







is a detecting set for G⋆
d,m.

Proof. Let Φd be a zero test set for A⋆
d,(d!)m. Let G ∈ G⋆

d,m. Then AG
d 6= 0 and AG

d ∈ A⋆
d,(d!)m.

Therefore, for every G ∈ G⋆
d,m there is z

(d)
i such that AG

d (z
(d)
i ) 6= 0. By Lemma 2.2,

AG
d (z

(d)
i ) =p

1

d!

∑

J∈2[d]

(−1)d−|J |BG
d





∑

j∈J

z
(d)
i,j



 6= 0,

and therefore for some J0 ⊂ [d],

BG
d





∑

j∈J0

z
(d)
i,j



 6= 0,

which implies that QG (SyJ0 ) 6= 0 for yJ0 =
∑

j∈J0
z
(d)
i,j .

We now show

Lemma 2.5. A detecting set for Gd,m over Zp is a detecting set for Gd,m over R.

Proof. Consider a detecting set S = {S1, S2, · · · , Sk} ⊆ 2V for Gd,m over Zp. Consider a

k × q matrix M where

q =

d
∑

i=0

(

n

i

)

that its columns are labelled with sets in 2[n] of size at most d and for every S ⊂ [n] of

size at most d we have M [i, S] = 1 if S ⊆ Si and 0 otherwise. Consider for every graph

G ∈ Gd,m a q-vector vG that its entries are labelled with subsets of [n] of size at most d and

vG[S] = w⋆(S). The labels in vG are in the same order as the labels of the columns of M .

Then it is easy to see that

MvG =p (QG(S1), . . . , QG(Sk))
T .

Since MvG 6=p 0 for every vG ∈ Z
q
p of weight at least one and at most m, every m columns

in M are linearly independent over Zp. Since the entries of M are zeros and ones every m
columns in M are linearly independent over R. Therefore,

MvG = (QG(S1), . . . , QG(Sk))
T 6= 0,

for every vG ∈ R
q of weight at least 1 and at most m.
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2.5. Distributions

In this subsection we give a distribution that will be used in this paper.

The uniform disjoint distribution Ωd,n(x) over ({0, 1}n)d is defined as

Ωd,n(x) =

{ 1
(d+1)n x1, . . . , xd is pairwise disjoint.

0 otherwise.

In order to choose a random vector x according to the uniform disjoint distribution, one

can randomly independently uniformly choose n elements w1, w2, . . . , wn where wi ∈ [d+ 1]

and define the following vector x = (x1, x2, . . . , xd) ∈ ({0, 1}n)d:

xji =

{

1 j = wi and wi ∈ [d]

0 otherwise.

We call any index k ∈ [n] such that xjk = 0 for all j ∈ [d] a free index. Let Γd,n ⊂ ({0, 1}n)d

be the set of all pairwise disjoint d-tuple.

2.6. Preliminary Results

In this section we prove,

Lemma 2.6. Let A ∈ F
×dn\{0×dn} be an adjacency d-dimensional matrix of a hypergraph G

of rank d. Let x = (x1, x2, . . . , xd) ∈ ({0, 1}n)d be a randomly chosen d-tuple, that is chosen
according to the distribution Ωd,n. Then

Pr
x∈Ωd,n

[A(x) = 0] ≤ 1 −
1

(d + 1)d
.

Proof. Let e = {i1, . . . , id} be an edge of size |e| = d and let x′
j = (xj,i1, . . . , xj,id). Consider

φ(x′
1, . . . , x

′
d) that is equal to A(x) with some fixed xj,i = ξj,i ∈ {0, 1} for i 6∈ e. Since A(x)

contains the monomial M = x1,i1x2,i2 · · · xd,id and no other monomial in A(x) contains it,

φ contains monomial M and therefore φ(x′
1, . . . , x

′
d) 6≡ 0. If we substitute xj1,ij2

= 0 in φ

for all j1 6= j2 we still get a nonzero function φ′(x1,i1 , x2,i2 , · · · , xd,id) that contains M .

Therefore, there is ξ = (ξ1i1 , ξ2i2 , · · · , ξdid) ∈ {0, 1}d such that φ′(ξ) 6= 0. The probability

that (x1,i1 , x2,i2 , · · · , xd,id) = ξ and xj1,ij2
= 0 for all j1 6= j2 is (1/d + 1)d. This implies the

result.

We will also use the following two lemmas from [9, 10].

Lemma 2.7. Let a ∈ Z
n
p be a non-zero vector, where p > wt(a) is a prime number. Then

for a uniformly randomly chosen vector x ∈ {0, 1}n we have

Pr
x

[aT x =p 0] ≤
1

wt(a)β
,

where β = 1
2+log 3 = 0.278943 · · · .

Let ι be a function on non-negative integers defined as follows: ι(0) = 1 and ι(i) = i
for i > 0.

Lemma 2.8. Let m1,m2, . . . ,mt be integers in [m]∪{0} such that m1+m2+· · ·+mt = ℓ ≥ t.

Then
∏t

i=0 ι(mi) ≥ m⌊(ℓ−t)/(m−1)⌋ .
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3. Reconstructing Hypergraphs

In this section we prove,

Theorem 3.1. There is a search set for Gd,m over R of size k = O
(

m log n
log m

)

.

Theorem 3.2. There is a search set for G′
d,m over R of size k = O

(

m log nd

m

log m

)

, where G′
d,m

denotes the set of all weighted hypergraphs over R of rank at most d, at most m edges and
weights that are integers bounded by w = poly(nd/m).

Proof. We give the proof of Theorem 3.1. The proof of Theorem 3.2 is similar. More details

in the full paper.

Let m < p < 2m be a prime number. Suppose there is a zero test set from Γd,n for

A⋆
d,m over Zp of size T (n,m, d). By Lemma 2.4, there is a detecting set for G⋆

d,m over Zp

of size 2dT (n, (d!)m,d). Therefore, by Lemma 2.3, there is a detecting set for Gd,m over Zp

of size T ′(n,m, d) =
∑d

ℓ=1 2ℓT (n, (ℓ!)m, ℓ). By Lemma 2.5, there is a detecting set for Gd,m

over R of size T ′(n,m, d). Finally, by Lemma 2.1, there is a search set for Gd,m over R of

size T ′(n, 2m,d). Now for constant d, if

T (n,m, d) = O

(

m log n

log m

)

, (3.1)

then T ′(n, 2m,d) = O(T (n,m, d)). Therefore it is enough to prove the following.

Lemma 3.3. Let p be a prime number such that m < p < 2m. There exists a set S =

{x1, x2, . . . , xk} ⊆ ({0, 1}n)d where xi = (xi,1, . . . , xi,d) ∈ Γd,n for i ∈ [k] and

k = O

(

m log n

log m

)

,

such that: for every d-dimensional matrix A ∈ Z
×dn
p \ {0×dn} with 1 ≤ wtd(A) ≤ m there

exists an i such that A(xi) 6=p 0.

Proof. Since wtd(A) > 1 the matrix A has at least one nonzero entry of dimension d. We

will assume that all the entries of dimension less than d are zero, that is, wt(A) = wtd(A).

This is because, by Lemma 2.3, the entries of dimension less than d have no effect when the

vectors xi ∈ Γd,n.

We divide the set of such matrices A = {A |A ∈ Z
×dn
p \ {0×dn} and wt(A) ≤ m} into

d + 1 (non-disjoint) sets:

• A0: The set of all non-zero matrices A ∈ Z
×dn
p such that wt(A) ≤ m/ log m.

• Aj for j = 1, . . . , d: The set of all non-zero matrices A ∈ Z
×dn
p such that m ≥

wt(A) > m/ log m and there are at least
(

m

log m

)1/d

non-zero elements in Ij = {ij |∃(i1, i2, . . . , ij−1, ij+1, . . . , id) : Ai1,i2,...,id 6= 0}.

Note that I = {(i1, i2, . . . , id)|Ai1,i2,...,id 6= 0} ⊆ I1 × I2 × · · · × Id and therefore either

I = wt(A) ≤ m/ log m or there is j such that |Ij | > (m/ log m)1/d. Therefore, A =

A0 ∪ A1 ∪ · · · ∪ Ad.
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Using the probabilistic method, we give d + 1 sets of pairwise disjoint tuples of vectors

S0, S1, . . . , Sd such that for every j ∈ {0} ∪ [d] and A ∈ Aj there exists a d-tuple x in Sj

such that A(x) 6= 0 and

|S0| + |S1| + · · · + |Sd| = O

(

m log n

log m

)

.

Case 1: A ∈ A0: For a random d-tuple x, chosen according to the distribution Ωd,n we

have that

Pr
x

[A(x) =p 0] ≤ 1 −
1

(d + 1)d
.

If we randomly choose

k1 =
cm log n

log m
d-tuples, x1, . . . , xk1 , according to the distribution Ωd,n, then the probability that A(xi) = 0

for all i ∈ [k1] is

Pr[∀i ∈ [k1] : A(xi) =p 0] ≤

(

1 −
1

(d + 1)d

)k1

.

Therefore, by union bound, the probability that there exists a matrix A ∈ A0 such that

A(xi) = 0 for all i ∈ [k1] is

Pr[∃A ∈ A0,∀i ∈ [k1] : A(xi) =p 0] ≤

(

nd

m
log m

)

p
m

log m

(

1 −
1

(d + 1)d

)
cm log n

log m

< nd m
log m n

m
log m n− c′cm

log m < 1,

for some constant c. This implies the result.

Case2: A ∈ Aj where j = 1, . . . , d: We will assume w.l.o.g that j = 1. We first prove the

following lemma

Lemma 3.4. Let U ⊆ Z
×d−1n
p be the set of all d − 1-dimensional matrices with weight

smaller than md/(d+1). For A ∈ U let Υ(A) ⊆ [n] be following set

Υ(A) = {j | ∃Ai1,i2,...,id−1
6= 0 and j 6∈ {i1, i2, . . . , id−1}}.

Define Q = {(A, j) |A ∈ U and j ∈ Υ(A)}. Then, there is a constant c0 such that for every
C > c0 and

k2 = C
m log n

log m

there exists a multi-set of d − 1-tuples of (0,1)-vectors Z = {z1, z2, . . . , zk2} ⊆ ({0, 1}n)d−1

such that for every (A, j) ∈ Q the size of the set

Z(A,j) = {i |A(zi) 6= 0 and j is a free index}

is at least k2

2dd .
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Proof. Let zi = (zi,1, zi,2, . . . , zi,d−1) ∈ ({0, 1}n)d−1 be random d − 1-tuple of (0, 1)-vector
chosen according to the distribution Ωd−1,n. For (A, j) ∈ Q, and by Lemma 2.6, we have

Pr
zi∈Ωd−1,n

[A(zi) 6= 0 and j is a free] = Pr[j is free] Pr[A(zi) 6= 0|j is free] ≥
1

d
·

1

dd−1
=

1

dd
.

Therefore, the expected size of Z(A,j) is greater than k2

dd . By Chernoff bound, if we

randomly choose all zi, i ∈ [k2] according to the distribution Ωd−1,n, then, we have

Pr

[

|Z(A,j)| ≤
k2

2dd

]

≤ e
−k2
8dd .

Thus, the probability that there exists (A, j) ∈ Q such that |Z(A,j)| ≤
k2

2dd is

Pr

[

∃(A, j) ∈ Q : |Z(A,j)| ≤
k2

2dd

]

≤
|Q|

e
−k2
8dd

≤
|U × [n]|

e
−k2
8dd

≤
n
(

nd−1

md/(d+1)

)

pmd/(d+1)

e
Cm log n

8dd log m

≤
n
( nd−1

md/(d+1)

)

nmd/(d+1)

n
C(log e)m

8dd log m

≤
nO(md/(d+1))

n
Cc′m
log m

< 1,

for large enough C. This implies the result.

Now, Let U and Q be the sets we defined in Lemma 3.4. Let A ∈ A1. Since wt(A) ≤ m

there are at most m1/(d+1) d − 1-dimensional matrices (Ai1,i2,...,id)i1=j,i2,...,id with weight

greater than md/(d+1). Therefore, there is at least

q =

(

m

log m

)1/d

− m1/(d+1)

indices j such that (Ai1,i2,...,id)i1=j,i2,...,id ∈ U . Let U ′ contain any q indices such that

(Ai1,i2,...,id)i1=j,i2,...,id ∈ U . Let AU be the matrix

(Ai1,i2,...,id)i1∈U ′,i2,...,id .

Let z1, z2, . . . , zk2 ∈ ({0, 1}n)d−1 be the set we proved its existence in Lemma 3.4. We now

choose xi ∈ {0, 1}n, i ∈ [k2] in the following way: Take zi. For every free index j, choose xij

to be “1” with probability 1/2 and “0” with probability 1/2 (independently for every j).
All other entries in xi are zero, that is, all entries that correspond to non-free index j in zi

are zero. Let u ∈ {0, 1}n be a vector where uj = 1 if j ∈ U ′ and zero otherwise. Also, for

a d − 1-tuple zi let vi ∈ {0, 1}n be the vector where vij = 1 if j is a free index in zi and

vij = 0 otherwise. By Lemma 2.7 we have that

Pr
x

[A(xi, zi) =p 0] ≤
∏

i

1

ι(wt(vi ∗ A(·, zi)))β
≤
∏

i

1

ι(wt(vi ∗ (u ∗ A(·, zi))))β
. (3.2)

Note that, A is a hypergraph, thus, for every j such that (Ai1,i2,...,id)i1=j,i2,...,id ∈ U , we

have that ((Ai1,i2,...,id)i1=j,i2,...,id , j) ∈ Q. Therefore,

∑

i

wt(vi ∗ (u ∗ A(·, zi))) ≥
qk2

2dd
.

Using Lemma 2.8 we have

∏

i

ι(wt(vi ∗ (u ∗ A(·, zi)))) ≥ q⌊
qk2
2dd

−k2

q−1
⌋

= mc1k2 .
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Therefore, using (3.2), Prx[A(xi, zi) =p 0] ≤ 1
mc1βk2

. Thus, the probability that there exists

a matrix A ∈ A1 such that for all i ∈ [k2] we have A(xi, zi) = 0 is

Pr
x

[A(xi, zi) =p 0] ≤
|A1|

mc1βk2
≤

(nd

m

)

pm

mc1βk2
≤

ndmnm

mc1βk2
< 1,

for large enough constant. This implies Lemma 3.3.

This completes the proof of Theorem 3.1.
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Abstract. A cellular automaton (CA) is a parallel synchronous computing model, which
consists in a juxtaposition of finite automata (cells) whose state evolves according to that
of their neighbors. Its trace is the set of infinite words representing the sequence of states
taken by some particular cell. In this paper we study the ultimate trace of CA and partial
CA (a CA restricted to a particular subshift). The ultimate trace is the trace observed
after a long time run of the CA. We give sufficient conditions for a set of infinite words to
be the trace of some CA and prove the undecidability of all properties over traces that are
stable by ultimate coincidence.

Introduction

Cellular automata are a formal computing model known to display many different dy-
namical behaviors, from the most simple like nilpotency or equicontinuity to the more com-
plex ones like transitivity, mixing or expansivity. These different behaviors together with
their ability to capture many features of natural phenomena increase their popularity in the
computer sciencists, mathematicians and physicians communities.

A cellular automaton consists in finite state automata (cells) distributed on a regular
lattice (or more generally, on any graph). Each cell updates its state depending on the states
of a fixed finite number of neighboring cells. This dependency is given by a local rule which
is common to all cells.

In this paper, we resume our study of traces of cellular automata, that is to say the
sequence of states taken by one particular cell. The main motivation for this work is to
study the way scientists deduce general laws from experiments. They proceed by making
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experimental observations using a finite number of observation variables (i.e. a trace in
the context of CA). From these observations, they conjecture the mathematical law that
rules the whole phenomenon. If this law is verified by (almost all) observations, then the
scientist concludes that this is the way the phenomenon behaves, until contradicted by new
experiments.

However, one also needs formal results ensuring the correctness of the procedure. Indeed,
can any observed trace be generated by a CA? How “large” should a trace be to ensure correct
reconstruction of the CA local rule?

The notion of trace for a CA has been studied in [CFG07, CG07]. In this paper, we
proceed with two generalizations: partial traces and ultimate traces. A partial trace is the
trace of a CA restricted to a particular subshift. This kind of trace is motivated by the fact
that there are some experiments where not all initial configurations are admissible: some
local constraints have to be respected (e.g. a sand grain cannot be above an empty cell or
two positively charged particles cannot be too close to one another etc.). The ultimate trace
is the trace for the long term behavior i.e. when the transient part of the phenomenon is
neglected, which is often the case in experimental sciences.

The notion of trace is strictly connected with the concept of symbolic factor. Recall
that given a CA (AZ, F ), the system (BN, G) is a (symbolic) factor of (AZ, F ), if there exists
a continuous surjection ϕ : AZ → BN such that ϕ ◦ F = G ◦ ϕ. Studying the dynamics of
factors is often simpler than studying the original system. Indeed, traces are special cases of
factor systems. They were introduced as a form of “back-ingeneering” tool to lift properties
of factors to CA. Along this research direction, in Section 5, we prove a Rice’s theorem for
traces. This is an improvement of a similar result in [CG07], in the sense that it is more
“natural” and covers more properties than the previous one.

The paper is organized into three parts. Section 1 recalls main definitions concerning
cellular automata and symbolic dynamics. Sections 2 to 4 concern new results about traces.
Section 5 presents a Rice-like theorem for traces.

1. Definitions

Let id denote the identity map. If F is a function on a set X, denote F|Y its restriction
to some subset Y ⊂ X. If F and G are functions on sets X and Y , then F ×G will denote
the function on the cartesian product X × Y which maps any (x, y) to (f(x), g(y)).

Configurations. A configuration is a bi-infinite sequence of letters, that is an element of
AZ. The set AZ of configurations is the phase space. For integers i, j, denote [i, j] the set
{i, . . . , j}, [i, j[ the set [i, j − 1], etc. . . For x ∈ AZ and I = {i0, . . . , ik} ⊂ N, i0 < · · · < ik,
note xI = xi0 . . . xik . Moreover, for a word u, we note u ⊏ x if u is a factor of x, that is
if there exists i and j such that u = x[i,j]. If u ∈ A+, |u| denotes its length, and x = u∞

[resp. x = ∞u∞] is the infinite word [resp. configuration] such that x[i,i+|u|[ = u for any
i in N [resp. Z]. A word or a configuration is uniform if it is made of a single repeated
letter. If L ⊂ Ak and k ∈ N \ {0}, we shall also note ∞L∞ the set of configurations x such
that x[ki,(k+1)i[ is in L for all i ∈ Z. Note that we shall assimilate the sets AZ × BZ and
(A×B)Z, for alphabets A,B.
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Topology. We endow the phase space with the Cantor topology. A base for open sets is given
by cylinders: for j, k ∈ N and a finite set W of words of length j, we will note [W ]k the
cylinder

{

w ∈ AZ
∣

∣w[k,k+j[ ∈W
}

. [W ]Ck is the complement of [W ]k.

Cellular automata. A (one-dimensional) cellular automaton is a parallel synchronous com-
putation model (A,m, d, f) consisting of cells distributed over a regular lattice indexed by
Z. Each cell i ∈ Z has a state xi in the finite alphabet A, which evolves depending on the
state of their neighbors x[i−m,i−m+d[ according to the local rule f : Ad → A. The integers
m ∈ Z and d > 0 are the anchor and the diameter of the CA, respectively. If the anchor
is 0, the automaton is said to be one-sided. In this case, a cell is only updated according
to its state and the ones of its right neighbors. The global function of the CA (or simply
the CA) is F : AZ → AZ such that F (x)i = f(x[i−m,i−m+d[) for every x ∈ AZ and i ∈ Z.
The space-time diagram of initial configuration x ∈ AZ is the sequence of the configurations
(F j(x))j∈N. When the neighborhood of the CA is symmetrical, instead of speaking of anchor
and diameter, we shall simply give a radius. A CA of radius r ∈ N \ {0}, has r for anchor
and 2r + 1 for diameter.

Shifts and subshifts. The twosided shift [resp. onesided shift ], denoted σ, is a particular CA
global function defined by σ(x)i = xi+1 for every x ∈ AZ and i ∈ Z [resp. x ∈ AN and
i ∈ N] . According to the Hedlund theorem [Hed69], the global functions of CA are exactly
the continuous self-maps of AZ commuting with the twosided shift.

A twosided subshift Σ is a closed subset of AZ with σ(Σ) = Σ. A onesided subshift Σ is
a closed subset of AN with σ(Σ) ⊂ Σ. We simply speak about the shift or subshifts when
the context allows to understand if it is twosided or onesided.

The language of Σ is L(Σ) = {w ∈ A∗| ∃z ∈ Σ, w ⊏ z } and characterizes Σ, since Σ =
{

z ∈ AN
∣

∣∀w ⊏ z,w ∈ L(Σ)
}

. For k ∈ N, denote Lk(Σ) = L(Σ) ∩Ak.
A subshift Σ is sofic if L(Σ) is a regular language, or equivalently if Σ is the set of labels

of infinite paths in some edge-labeled graph. In this case, such a graph is called a graph of
Σ.

A subshift is characterized by its language F ⊂ A∗ of forbidden words, i.e. such that
Σ =

{

z ∈ AN
∣

∣ ∀u ∈ F , u 6⊐ z
}

. A subshift is of finite type (SFT for short) if its language
of forbidden words is finite. It is a k-SFT (for k ∈ N) if it has a set of forbidden words of
length k. For Σ ⊂ AZ, define Oσ(Σ) =

⋃

i∈Z
σi(Σ).

Partial cellular automata. A partial CA is the restriction of some CA to some twosided
subshift.

Subshift projections. If B ⊂ Ak is an alphabet and 0 ≤ q < k, then the qth projection
of an infinite word x ∈ BN is noted πq(x) ∈ AN and defined by πq(x)j = aq when xj =
(a0, . . . , ak−1). If Σ is a subshift on B, we also note π(Σ) =

⋃

0≤q<k πq(Σ), which is a
subshift on A.

2. Tracebility

Definition 2.1 (Traceability). A subshift Σ ⊂ AN is traceable if there exists a CA F on
alphabet A whose trace τF =

{

(F j(x)0)j∈N

∣

∣x ∈ AZ
}

is Σ. In this case, we say that F traces
Σ. If F can be computed effectively from data D, we say that Σ is traceable effectively from
D. In this notion, D can be any mathematical objet, possibly infinite, provided it has a
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finite representation (SFT, sofic subshifts, regular languages, CA). In this case, it means one
of these representations.

Deterministic subshifts. Given some ξ : A → A, we call deterministic subshift the subshift
Oξ =

{

(ξj(a))j∈N ∈ AZ
∣

∣ a ∈ A
}

. The following proposition comes from an easy remark
on the evolution of uniform configurations – see Example 4.2 for a subshift which is not
traceable.

Proposition 2.2 ([CFG07]). Any traceable subshift Σ ⊂ AN contains a deterministic sub-
shift Oξ for some ξ : A→ A.

Nilpotent subshifts. A subshift Σ ⊂ AN is 0-nilpotent (or simply nilpotent) if 0 ∈ A and
there is some j ∈ N such that σj(Σ) is the singleton {0∞}. It is weakly nilpotent if there
is some state 0 ∈ A such that for every infinite word z ∈ Σ, there is some j ∈ N such that
σj(z) = 0∞. Note that a sofic subshift is weakly nilpotent if and only if it admits a unique
periodic infinite word, which is uniform.

The following gives another necessary condition for being the trace of a CA.

Theorem 2.3 ([GR08]). A traceable subshift cannot be weakly nilpotent without being nilpo-
tent.

Polytraceability. When performing some “back-engineering” from a trace over an alphabet A,
i.e. when trying to deduce from the trace which CA could have produced it, it is sometimes
easier to design a CA over an alphabeth B ⊆ Ak (for some integer k). Being stacked one
atop the other, letters of B can be seen as columns of letters of A. In the constructions,
the first column is used to produce all the elements of Σ and the other columns are used
to store elements that help to simulate all possible paths along some graph of Σ. This idea
leads to the following notion.

Definition 2.4 (Polytraceabilty). A subshift Σ ⊂ AN is polytraceable if there exists a

CA F of anchor 0 and diameter 2 on alphabet B ⊂ Ak for some k whose polytrace
◦
τF =

⋃

0≤i<k πi(τF ) is Σ. In this case, we say that F polytraces Σ. If, furthermore, B = Ak, we
say that the subshift is totally polytraceable. If F and B can be computed effectively from
data D, we say that Σ is (totally) polytraceable effectively from D.

Note that a polytrace cannot be weakly nilpotent without being nilpotent, otherwise it
would alors be the case of the corresponding trace. On the other hand, it need not contain
a deterministic subshift.

Theorem 2.5 ([CFG07]). Any subshift Σ which is either of finite type or sofic uncountable
is polytraceable effectively from Σ.

CDD subshifts. A sufficient condition for traceability can be given with the help of the
following definition. A subshift Σ ⊂ AN has cycle distinct from deterministic property
(CDD) if it contains some deterministic subshift Oξ and some periodic infinite word w∞

such that w contains one letter not in ξ(A). We say that Σ is a CDD subshift.

Lemma 2.6 ([CFG07]). Let ξ : A → A and Σ ⊂ AN a polytraceable subshift containing a
periodic word w∞, with w ∈ A+ \ ξ(A)+. Then Σ∪Oξ is traceable effectively from ξ, w and
a CA polytracing Σ.
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This lemma, together with Theorem 2.5, gives the following result.

Theorem 2.7 ([CFG07]). Any CDD subshift which is either of finite type or sofic uncount-
able is traceable effectively from the subshift.

3. Partial traceability

We already discussed about partial traceability in the introduction. Here is the formal
definition.

Definition 3.1 (Partial traceability). A subshift Σ is partially traceable if there exists a
partial CA F on an SFT Γ whose trace τF =

{

(F j(x)0)j∈N

∣

∣ x ∈ Γ
}

is Σ. In this case, we
say that F partially traces (or simply traces) Σ. If F and some graph of Γ can be computed
effectively from data D, we say that Σ is partially traceable effectively from D.

Assume that Σ is polytraced by some CA G : BZ → BZ, with B ⊂ Ah and h ∈ N\{0} –
for instance obtained from Theorem 2.5. We simulate it by a partial CA F on some SFT Λ
in order to get a partial trace instead of a polytrace. This is a kind of ungrouping operation
that splits macrocells (on B) into independent cells (on A).

Ungrouping. The ungrouping operation represents a standard encoding of configurations of
BZ, with B ⊂ Ah and h ∈ N \ {0}, into configurations of AZ and it is defined as follows

⊞h :
BZ → AZ

x 7→ y such that ∀i ∈ Z, y[hi,h(i+1)[ = xi .

We need to be able to perform this encoding locally, we add some constraints to the alphabet
B. Indeed, define the twosided subshift Λ = Oσ(⊞h(BZ)) =

⋃

0≤i<h σ
i(⊞h(BZ)). We want

this union to be disjoint, in order to know, for any configuration of Λ, up to which shift it
can be considered a sequence of macrocells. For this purpose, we add a freezing condition
to B as follows.

Freezingness. A set W ⊂ Ah is p-freezing, with p, h ∈ N, if ∀i ∈ [1, p] , AiW ∩WAi 6= ∅, i.e.
words from W cannot overlap on h− p letters or more.

When p is sufficiently large, we obtain the following property.

Proposition 3.2. Let W ⊂ Ah be
⌊

h
2

⌋

-freezing, with h ∈ N. Then W 2 is (h − 1)-freezing;

Λ =
⋃

0≤i<h σ
i(⊞h(WZ)) is a disjoint union and an SFT.

If G is a CA of radius 1 on alphabet B ⊂ Ah, we can define its h-ungrouped partial CA
⊠hG on the subshift Λ = Oσ(⊞h(BZ)), of radius 2h− 1 and local rule:

f :

L4h−1(Λ) → A

w 7→ g(u−1, u0, u1)i if







w ∈ Ah−1−iu−1u0u1Ai

u−1, u0, u1 ∈ B
i ∈ [0, h[ .

Proposition 3.3. Let B ⊂ Ah be
⌊

h
2

⌋

-freezing, and G a CA on alphabet B, of radius 1 and

local rule g : A3 → A. Then the ungrouped CA ⊠hG is well defined and its trace is
◦
τG.
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Proof. The local rule f as defined above is not ambiguous since the shift i is unique by
Proposition 3.2. By construction, f(Ah−1u−1u0u1Ah−1) = g(u−1u0u1), hence by a recur-
rence on j ∈ N, we see that if i ∈ [0, h[ and x ∈ σi(⊞h(BZ)), then ∀k ∈ Z,⊠hG

j(x)0 =
Gj((x[kh−i,(k+1)h−i[)i∈Z)i. As a result, τ⊠hG =

⋃

0≤i<h πi(τG).

Borders. The freezing condition is very restrictive, but any alphabet can be modified in
such way to satisfy this property, thanks to a suitable juxtaposition to some freezing set of
words. Formally, a border for B ⊂ Ak, with k ∈ N \ {0}, is a couple (Υ, δΥ), where Υ ⊂ Al

is
⌊

k+l
2

⌋

-freezing, and δΥ is a function from Υ into itself. From the latter, seen as the local
rule, we define the CA ∆Υ : ΥZ → ΥZ of radius 0 whose polytrace is

⋃

0≤i<l πi(OδΥ).
Borders will be used to separate words representing letters of B in an non-ambiguous

way.

Proposition 3.4. Let G be a CA on alphabet B ⊂ Ak and (Υ ⊂ Al, δΥ) a border for B.
Then, the ungrouped CA F = ⊠k+l(∆Υ ×G) on the SFT Λ = Oσ(∞(ΥB)∞) is well defined

and its trace is
◦
τG ∪

◦
τ∆Υ

.

Proof. If Υ ⊂ Al is
⌊

k+l
2

⌋

-freezing, then we can see that so is ΥB. Hence, Proposition 3.3
can be applied to ∆Υ ×G, seen as a CA on alphabet ΥB.

In the following, we describe a first example of borders.

Corollary 3.5. Let Σ be a polytraceable subshift which contains two distinct uniform infinite
words 0∞ et 1∞. Then, Σ is partially traceable effectively from a polytracing CA and these
two words.

Proof. Define Υk
(0,1) = {10k}. Note that Υk

(0,1) is k-freezing so (Υk
(0,1), id) is a border.

Applying Proposition 3.4, as
◦
τ∆

Υ
k

(0,1)

= {0∞, 1∞}, we get that Σ is partially traceable.

Dynamical borders. In the case where the polytraceable subshift does not contain two uni-
form infinite words, we must find another condition to get a freezing alphabet. Assume
it contains some periodic non-uniform infinite word u∞. We note u = u|u|−1 . . . u0 the
reverse of u and γi(u) the ith rotation u[i,|u|[u[0,i[ of u, for 0 ≤ i < |u|. Then the fol-

lowing represents a border: let Υk
u =

{

u
k+3|u|
i γi(u)γi(u)u

|u|
i

∣

∣

∣
0 ≤ i < |u|

}

⊂ Ak+6|u|, and

δΥk
u

: ak+3|u|vva|u| 7→ v
k+3|u|
1 γ(v)γ(v)v

|u|
1 .

Proposition 3.6 ([CFG10]). Υk
u is (k + 3 |u|)-freezing.

Corollary 3.7. Let Σ be a polytraceable subshift which contains a periodic infinite word
∞u∞ of smallest period |u| > 1. Then, Σ is partially traceable effectively from a polytracing
CA and u.

Proof. It is sufficient to apply Proposition 3.4 to the border (Υk
u, δΥk

u
). We can see that

◦
τ∆

Υ
k
u

= Oσ(u∞), which allows to obtain a CA F : Λ→ Λ such that τF =
◦
τG.
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Actually, the only sofic subshifts which are not concerned by the two previous construc-
tions are the nilpotent ones.

Lemma 3.8 ([CFG10]). Any nilpotent subshift is partially traceable effectively from the
subshift.

The following gives an example of subshift which is nilpotent, hence partially traceable,
but not traceable.

Example 3.9 ([CFG10]). No CA traces the subshift Oσ((λ+ 1 + 01 + 001 + 21)0∞).

Putting things together, we get the following important results.

Proposition 3.10. Any polytraceable sofic subshift is partially traceable effectively from a
polytracing CA.

Proof. It is known that any sofic subshift Σ admits some periodic infinite word u∞, and that
it is unique only if Σ is weakly nilpotent. In this case, as the projection of some trace, it is
nilpotent by Theorem 2.3, and Lemma 3.8 allows to conclude. If there are several distinct
periodic infinite words among which one is non-uniform, then we can apply Corollary 3.7;
otherwise there are several uniform periodic words and we can apply Corollary 3.5.

The previous proposition, together with Theorem 2.5, gives the following – note that
the SFT are partially traceable directly from the definition.

Corollary 3.11. Any uncountable sofic subshift is partially traceable effectively from it.

4. Ultimate traceability

In this section we consider traces of CA up to ultimate coincidence, i.e. assimilating any
two subshifts that are different in only a finite number of cells.

One of the difficulties in making traces (Theorem 2.7), avoided in partial traces, was
to deal with “invalid” configurations, not in Oσ(⊞h(BZ)). At location of “errors” (i.e. sites
where a pattern of the configuration is not a pattern of ⊞h(BZ)), instead of applying the
simulating rule, we apply a default rule. However, once one of these rules is chosen, the cell
must keep using it forever in order to stay in the “right” subshift.

The possibility of initially altering some cells of the subshift simplifies the problem.
Indeed, it allows us to build borders in one round and remove all the “errors” in the initial
configuration. We say that two subshifts Γ and Σ ultimately coincide if there exists some
generation J ∈ N such that σJ(Γ) = σJ(Σ).

Definition 4.1 (Ultimately traceable). A subshift Σ is ultimately traceable if there is a CA
G such that τG ultimately coincides with Σ. If F and J can be computed effectively from
data D, we say that Σ is ultimately traceable effectively from D.

Note that any ultimately traceable subhift is a subsystem of some traceable subshift,
and by Proposition 2.2 contains some deterministic subshift, but which may not involve all
the letters of the alphabet.

Example 4.2. Consider the subshift Σ = Oσ((001)∞). It is an SFT. It is thus polytraceable,
but not ultimately traceable since it does not admit any deterministic subshift.

The proof of the following proposition can be found in the online version.
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Proposition 4.3 ([CFG10]). Let Σ ⊂ AN be a totally polytraceable subshift which contains
some non-nilpotent deterministic subshift Oξ, ξ : A → A. Then Σ is traceable effectively
from a polytracing CA and ξ.

With respect to Lemma 2.6 two additional hypotheses – first, that the subshift is totally
polytraceable and, second, that the deterministic subshift is not nilpotent – help get rid of
the complex CDD condition, and therefore to get a more precise result about ultimate traces.

Lemma 4.4. If Σ is a polytraceable subshift, then there exists a subshift Σ̃ such that σ(Σ) =

σ(Σ̃), totally polytraceable effectively from a polytracing CA.

Proof. Let G be a CA polytracing Σ. Let ψ : Ak → B be a projection such that ψ|B = id;

it can be seen as the local rule of some CA Ψ of radius 0. Define G̃ = GΨ. By construction,
we can see that G̃|BZ = G and that G̃((Ak)Z) = G(BZ) ⊂ BZ, i.e. since the second time
step the two traces coincide.

Proposition 4.5. Let Σ ⊂ AN be a polytraceable sofic subshift that contains some deter-
ministic subshift Oξ, with ξ : A′ → A′ and A′ ⊂ A. Then Σ ultimately coincides with some

subshift Σ̃ which is traceable effectively from a polytracing CA, Σ and ξ.

Proof. Let G be a CA on B ⊂ Ak polytracing Σ, k ∈ N \ {0}. Should we replace Σ by the
corresponding Σ̃ of Lemma 4.4, we can assume that B = Ak.

• If Σ is weakly nilpotent, then, by Theorem 2.3, it is nilpotent, i.e. there is some
J ∈ N such that σJ(Σ) = {∞0∞}, property which can be effectively tested from Σ;
any nilpotent CA has a trace which ultimately coincides.

• If Oξ is not nilpotent, then Proposition 4.3 can be applied to build a CA whose trace
will be the polytrace of G.

• Suppose Oξ is nilpotent, i.e. there is some J ∈ N and some state 0 ∈ A such that
ξJ(A′) = {0}; we define:

ξ′ :
A → A
a 7→ 0 .

Since the trace τG̃ is not weakly nilpotent, it contains some periodic infinite word
w∞, with w ∈ A+\0+ = A+\ξ′(A)+. Hence, we can apply Lemma 2.6 to build a CA

G̃ : AZ → AZ such that τG̃ =
◦
τG ∪Oξ′ . As a result, σ(τG̃) = σ(

◦
τG)∪{∞0∞} = σ(

◦
τG).

Corollary 4.6. Any SFT containing some deterministic subshift and any uncountable sofic
subshift containing some deterministic subshift is ultimately traceable effectively from it.

Here is an example of subshift which is not traceable, but ultimately traceable.

Example 4.7 ([CFG07]). The subshift Σ = {0∞, (01)∞, (10)∞} is an SFT and contains
some deterministic subshift, but is not traceable.

The previous corollary is not an equivalence: there are countable sofic ultimately trace-
able subshifts which are not SFT.

Example 4.8 ([CFG07]). The subshift (0∗1 + 1∗)0∞ is sofic, numerable, of infinite type,
but traceable.
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The study of the ultimate trace of some CA F is related to that of the limit trace,
that is the set

⋂

j∈N
σj(τF ) of traces of configurations which can appear arbitrarily late. In

particular, we can see that a surjective subshift which ultimately coincides with the trace of
some CA is its limit trace. If it is sofic, the converse is true.

The bitrace of some CA F is the set of its “biorbits”:

τ∗F =
{

(xj
0)j∈Z

∣

∣

∣
∀j ∈ Z, xj ∈ AZ and F (xj) = xj+1

}

.

We can see that it is the twosided subshift with the same language than the limit trace. As
a consequence, we get the following.

Corollary 4.9. Any onesided surjective subshift containing some deterministic subshift
which is either of finite type or uncountable sofic is the limit trace of some stable CA.
Any twosided subshift containing some deterministic subshift which is either of finite type or
uncountable sofic is the bitrace of some stable CA.

5. Undecidability

Let F a CA of diameter d, anchor m, local rule f on alphabet A. A state 0 ∈ A is
0-spreading if d > 1 and for all u ∈ Ad such that 0 ⊏ u, we have f(u) = 0. The CA F is
spreading if it is s-spreading for some s ∈ A.

The CA F is 0-nilpotent (or simply nilpotent) if there exists a J > 0 such that F J(AZ) =
∞0∞. The proof technique developed in [Kar92] allows to prove the following.

Theorem 5.1. The problem whether a spreading CA F is nilpotent is undecidable.

In the sequel, we use the spreading state to control the evolution of another CA, gener-
alizing the construction used in [CG07].

Consider two CA F1 and F2 of local rules f1 and f2 on (disjoint) alphabets A1 and A2.
Without loss of generality, assume that they have the same diameter d and anchor m. Let
A = A1 ∪ A2 and ϕ : A → A1 a projection such that ϕ|A1

= id. Let N and N2 be two CA
with the same diameter d and anchor m, local rules n, n2, and alphabets B and B2 ⊂ B,
with 0 ∈ B2 being spreading for N2. We build the CA H of same diameter d and anchor m,
alphabet A×B and local rule:

h :
(A×B)d → A×B

(ai, bi)−m≤i<d−m 7→

∣

∣

∣

∣

(f2(a), n2(b)) if a ∈ Ad
2 and b ∈ (B2 \ {0})

d ,
(f1 ◦ ϕ(a), n(b)) otherwise .

Starting from a configuration in (A2 × B2)
Z, the CA simulates independently F2 and N2

(first part of the rule) until one 0 appears; at that moment they both change their rules; this
change can happen only once for each cell, since from then the letters of the left component
remain in A1; hence the two components simulate F1 and N respectively (second part).

The following notions and lemma will help us understand the dynamics of this CA. A
set U ⊂ Ak, with k ∈ N \ {0} is spreading if F ([U ]1) ⊂ [U ]0 ∩ [U ]1 or F ([U ]0) ⊂ [U ]0 ∩ [U ]1.
If F is a CA on alphabet A and A′ ⊂ A, then we say that F is (globally) A′-mortal if
∀x ∈ AZ,∃i ∈ Z,∃j ∈ N, F j(x)i ∈ A

′.

Lemma 5.2. If F is a CA on alphabet A and A′ ⊂ A is spreading, then F is A′-mortal if
and only if ∃J ∈ N,∀x ∈ AZ,∀i ∈ Z,∀j ≥ J, F j(x)i ∈ A

′.
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Proof. Suppose F is A′-mortal. By compacity, there is some J ∈ N and some radius I ∈ N

such that ∀x ∈ AZ,∃i ∈ [−I, I] , F J(x)i ∈ A′. If A′ is left-spreading, we obtain thanks to
a trivial recurrence, ∀x ∈ AZ, F J+2I(x)−I ∈ A′. Thanks to uniformity and shift-invariance,
we obtain the stated result. The right-spreading case is symetric.

Lemma 5.3.

• If N2 is nilpotent, then there is some J ∈ N such that π0(H
J ((A×B)Z)) ⊂ AZ

1 and
then, on HJ((A×B)Z), H behaves like F1 ×N .

• Otherwise, there is a subshift Λ ⊂ BZ
2 such that π0 ◦H|AZ

2
×Λ = F2 ◦ π0.

Proof. • Suppose N2 is nilpotent. From the definition of H, no orbit implies always
the first part of the rule: H is A1 × B-mortal. Moreover we can see that A1 × B
is spreading for H. Thanks to Lemma 5.2, H remains ultimately on the alphabet
A1 ×B.

• Otherwise, there exists, thanks to Lemma 5.2, some configuration x ∈ BZ
2 such that

∀i ∈ Z,∀j ∈ N, N j
2 (x)i 6= 0; the subshift Λ = Oσ(ON (x)) is such that AZ

2 × Λ is
H-invariant and its first column is F2.

Since they are reduced to the nilpotency of the spreading CAN2, the two cases presented
are recursively inseparable, provided that they are disjoint.

Properties of ultimate polytraces. As for the conditions of traceability, polytraces represent
here a useful intermediary tool.

Let G a CA on alphabet {0, 1} and N a CA on alphabet {0, 1} of radius 0 and locale rule
ξ : {0, 1} → {0, 1} such that Oξ ⊂ τG. We build the alphabets A1 = {(a, a, b)| a, b ∈ {0, 1} }
and A2 = {0, 1}3 \ A1, as well as the CA F1 = (N ×N ×G)|A1

, F2 = (σ × σ ×G)|A2
. We

can apply Lemma 5.3 to the CA H built as above from F1, F2, N , and any 0-spreading CA
N2 on alphabet {0, 1}.

The product is here composed of four layers. The fourth one controls the whole behavior
thanks to its spreading state 0. The third one simulates G independently. When the two
first ones are distinct, they simulate full shifts (whose trace is {0, 1}N) that hide the trace
of G. As soon as some 0 appears in the last layer, they stop, unify and then apply ξ, which
is contained in τG.

In the end of the section, we consider that H is built from G, N and N2, the CA F1

and F2 being defined as above.

Lemma 5.4.

• If N2 is nilpotent, then
◦
τH ultimately coincides with τG.

• Otherwise,
◦
τH= {0, 1}N.

Proof.

• Thanks to Lemma 5.3, if N2 is nilpotent, then the first three components of H and
(N×N×G)|A1

ultimately coincide, the trace of the last component being ultimately
included in τN . Considering that the polytrace of (N × N × G)|A1

is τG ∪ τN and
that, by hypothesis, τN ⊂ τG the polytrace of H ultimately coincides with τG.

• Otherwise, there exists a subshift Λ such that the partial CA H|AZ

2
×Λ admits as first

three projections (σ×σ×G)|AZ

2

. The first projection of the trace is {0, 1}N, since for

any infinite word a, there is another word b distinct in every cell (∀i ∈ N, ai 6= bi);
hence the trace τH contains and therefore is {0, 1}N.
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Properties of traces. As in the previous section, we are now going to simulate CA on alpha-
bets with several components to transform the result on polytraces into a result on traces.

Lemma 5.5. Let G a non-nilpotent onesided CA whose trace is not {0, 1}N. The set of CA
on alphabet {0, 1} whose trace is {0, 1}N is recursively inseparable from the set of CA on
alphabet {0, 1} whose trace ultimately coincides with τG.

Proof. Let N2 a onesided 0-spreading CA.

• Suppose that the trace τG contains some non-nilpotent deterministic subshift Oξ,
with ξ : {0, 1} → {0, 1}. ξ can be seen as the local rule of the CA N . Build CA H as
before. From Proposition 4.3, H can be transformed into some CA F on alphabet
{0, 1} such that τF =

◦
τH .

• If the trace τG does not contain any non-nilpotent deterministic subshift, then, as
it is still non-nilpotent, it contains some periodic infinite word w∞, w ∈ {0, 1}∗,
w /∈ 0∗. We can define the null CA N = 0 on {0, 1}N of local rule ξ′ : a 7→ 0 and
define H as before. Remark that w∞ and 0∞ are in the trace of H, hence we can
apply Lemma 2.6 to build a CA F on alphabet {0, 1} such that τF =

◦
τH .

In both cases, Lemma 5.4 gives that if N2 is 0-nilpotent, then τF ultimately coincides with
τG, otherwise τF = {0, 1}N. As F is computable from G, were the two cases separable,
Theorem 5.1 would be contradicted.

From the remark that some CA traces are not equal to the full shift, we can see that
this behavior is undecidable. But the previous lemma also infers other nontrivial properties
of traces.

A property P over subshifts is stable by ultimate coincidence if for any subshifts Σ and
Γ which ultimately coincide, we have Σ ∈ P ⇐⇒ Γ ∈ P.

Theorem 5.6. Let P be a property over subshifts which:

(1) is satisfied by the trace subshift of some CA over alphabet {0, 1}, but not all;
(2) is stable by ultimate coincidence.

Then, the problem

Instance: a CA G on alphabet {0, 1}.
Question: does τG satisfy property P?

is undecidable.

Proof. Let P be such a property and assume that {0, 1}N does not satisfy P, should we take
the complement. If P is only satisfied by nilpotent subshifts, then thanks to stability by
ultimate coincidence, it is equivalent either to 0-nilpotency, to 1-nilpotency or to nilpotency,
which are all undecidable by Theorem 5.1. Otherwise, P is satisfied by the trace τG of some
non-nilpotent CA G. Would an algorithm decide P, it would allow to separate the trace
τG to {0, 1}N among traces over alphabet {0, 1} up to ultimate coincidence, contradicting
Lemma 5.5.

This result includes in particular the so-called “nilpotent-stable” properties defined in
[CG07], such as fullness, finiteness, ultimate periodicity, soficness, finite type, inclusion of
a particular word as a factor. It also includes nilpotency, as well as all properties of the
trace of the limit system (

⋂

J∈N
F j(AZ), F ) of CA F , as stated in [Gui08]. Moreover, it can

be easily adapted to larger traces, i.e. taking the states of a central group of cells of each
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configuration. We can also see that this theorem implies the undecidability of all properties
of any line projection of two-dimensional SFT (tilings respecting local constraints).

6. Conclusions

In our study of CA traces, we have reached two kinds of important results. On the one
hand, we provided sufficient conditions for a subshift to be a polytrace, a trace, a partial
trace, an ultimate trace. On the other hand, we proved the undecidability of nearly all
properties over ultimate traces. Going beyond undecidability, when it is clear that the trace
has been generated by CA, it would be interesting to study which ones, and with which
minimal radius.

Remark that the contructions used in the paper build CA with a very large radius.
It would be interesting to study the traces produced by cellular automata of a given fixed
radius. This is not a so great limitation in complexity, since elementary CA (binary al-
phabet, radius 1) already present rich different behaviors. In particular, a deeper study of
the so-called “canonical factors”, i.e. traces which width is the radius of the CA, could be
fundamental to fully understand this notion.

Another interesting research direction consists in trying to adapt or find some refinement
of Kůrka’s language classification ([Kůr97]) to the case of traces or ultimate traces. This
would provide an interesting link between the complexity of the dynamics of CA and the
(language) complexity of its traces.
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ABSTRACT. A parametric weighted graphis a graph whose edges are labeled with continuous real
functions of a single common variable. For any instantiation of the variable, one obtains a standard
edge-weighted graph. Parametric weighted graph problems are generalizations of weighted graph
problems, and arise in various natural scenarios. Parametric weighted graph algorithms consist of
two phases. Apreprocessing phasewhose input is a parametric weighted graph, and whose output
is a data structure, the advice, that is later used by theinstantiation phase, where a specific value for
the variable is given. The instantiation phase outputs the solution to the (standard) weighted graph
problem that arises from the instantiation. The goal is to have the running time of the instantiation
phase supersede the running time of any algorithm that solves the weighted graph problem from
scratch, by taking advantage of the advice.

In this paper we construct several parametric algorithms for the shortest path problem. For the case
of linear function weights we present an algorithm for the single source shortest path problem. Its
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1. Introduction

In networking or telecommunications the search for the minimum-delay path (that is the short-
est path between two points) is always on. The cost on each edge, that is the time taken for a signal
to travel between two adjacent nodes of the network, is oftena function of real time. Hence the
shortest path between any two nodes changes with time. Of course one can run a shortest path al-
gorithm every time a signal has to be sent, but usually some prior knowledge of the network graph
is given in advance, such as the structure of the network graph and the cost functions on each edge
(with time as a variable).

How can one benefit from this extra information? One plausible way is to preprocess the
initial information and store the preprocessed information. Every time the rest of the input is given,
using the preprocessed information, one can solve the optimization problem faster than solving the
problem from scratch. Even if the preprocessing step is expensive one would benefit by saving
precious time whenever the optimal solution has to be computed. Also, if the same preprocessed
information is used multiple times then the total amount of resources used will be less in the long
run.

Similar phenomena can be observed in various other combinatorial optimization problems that
arise in practice; that is, a part of the input does not changewith time and is known in advance.
However, many times it is hard to make use of this extra information.

In this paper we consider only those problems where the wholeinput is a weighted graph.
We assume that the graph structure and some knowledge of how the weights on the edges are
generated are known in advance. We call this thefunction-weighted graph– it is a graph whose
edges are labeled with continuous real functions. When all the functions are univariate (and all
have the same variable), the graph is called aparametric weighted graph. In other words, the graph
is G = (V,E,W ) whereW : E → F andF is the space of all real continuous functions with
the variablex. If G is a parametric weighted graph, andr ∈ R is any real number, thenG(r)
is the standard weighted graph where the weight of an edgee is defined to be(W (e))(r). We
say thatG(r) is an instantiationof G, since the variablex in each function is instantiated by the
valuer. Parametric weighted graphs are therefore, a generic instance of infinitely many instances
of weighted graphs.

The idea is to use the generic instanceG to precompute some general generic informationI(G),
such that for any given instantiationG(r), we will be able to use the precomputed informationI(G)
in order to speed up the time to solve the given problem onG(r), faster than just solving the problem
onG(r) from scratch. Let us make this notion more precise.

A parametric weighted graph algorithm(or, for brevity, aparametric algorithm) consists of
two phases. Apreprocessing phasewhose input is a parametric weighted graphG, and whose
output is a data structure (the advice) that is later used by the instantiation phase, where a specific
value r for the variable is given. The instantiation phase outputs the solution to the (standard)
weighted graph problem on the weighted graphG(r). Naturally, the goal is to have the running
time of the instantiation phase significantly smaller than the running time of any algorithm that
solves the weighted graph problem from scratch, by taking advantage of the advice constructed in
the preprocessing phase. Parametric algorithms are therefore evaluated by a pair of running times,
thepreprocessing timeand theinstantiation time.

In this paper we show that parametric algorithms are beneficial for one of the most natural
combinatorial optimization problems: theshortest pathproblem in directed graphs. Recall that
given a directed real-weighted graphG, and two verticesu, v of G, the distance fromu to v, denoted
by δ(u, v), is the length of a shortest path fromu to v. Thesingle pairshortest path problem seeks to
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computeδ(u, v) and construct a shortest path fromu to v. Likewise, thesingle sourceshortest path
problem seeks to compute the distances and shortest paths from a given vertex to all other vertices,
and theall pairs version seeks to compute distances and shortest paths between all ordered pairs of
vertices. In some of our algorithms we forgo the calculationof the path itself to achieve a shorter
instantiation time. In all those cases the algorithms can beeasily modified to also output a shortest
path, in which case their instantiation time is the sum of thetime it takes to calculate the distance
and a time linear in the size of the path to be output.

Our first algorithm is a parametric algorithm for single source shortest path, in the case where
the weights arelinear functions. That is, each edgee is labeled with a functionaex + be whereae

andbe are reals. Such linear parametrization has practical importance. Indeed, in many problems
the cost of an edge is composed from some constant term plus a term which is a factor of some
commodity, whose cost varies (e.g. bank commissions, taxi fares, vehicle maintenance costs, and so
on). Our parametric algorithm has preprocessing timeÕ(n4) and instantiation timeO(m+n log n)
(throughout this papern andm denote the number of vertices and edges of a graph, respectively).
We note that the fastest algorithm for the single source shortest path in real weighted directed graphs
requiresO(nm) time; the Bellman-Ford algorithm [2]. The idea of our preprocessing stage is to
precompute some other linear functions, on thevertices, so that for every instantiationr, one can
quickly determine whetherG(r) has a negative cycle and otherwise use these functions to quickly
produce a reweighing of the graph so as to obtain only nonnegative weights similar to the weights
obtained by Johnson’s algorithm [12]. In other words, weavoid the need to run the Bellman-Ford
algorithm in the instantiation phase. TheÕ(n4) time in the preprocessing phase comes from the use
of Megiddo’s[13] technique that we need in order to compute the linear vertex functions.

Theorem 1.1.There exists a parametric algorithm for single source shortest path in graphs weighted
by linear functions, whose preprocessing time isÕ(n4) and whose instantiation time isO(m +
n log n).

Our next algorithm applies to a more general setting where the weights are polynomials of
degree at mostd. Furthermore, in this case our goal is to have the instantiation phase answering
distance queries between any two vertices insublineartime. Notice first that if we allow exponential
preprocessing time, this goal can be easily achieved. This is not hard to see since the overall possible
number of shortest paths (whenx varies over the reals) isO(n!), or from Fredman’s decision tree
for shortest paths whose height isO(n2.5) [8]. But can we settle forsub-exponentialpreprocessing
time and still be able to have sublinear instantiation time?Our next result achieves this goal.

Theorem 1.2. There exists a parametric algorithm for the single pair shortest path problem in
graphs weighted by degreed polynomials, whose preprocessing time isO(n(O(1)+log f(d)) log n) and
instantiation timeO(log2 n), wheref(d) is the time required to compute the intersection points
of two degreed polynomials. The size of the advice that the preprocessing algorithm produces is
O(n(O(1)+log d) log n).

The above result falls in the subject of sensitivity analysis where one is interested in studying
the effect on the optimal solution as the value of the parameter changes. We give a linear-time
(linear in the output size) algorithm that computes the breaking points.

The practical and theoretical importance of shortest path problems lead several researchers to
consider fast algorithms that settle for an approximate shortest path. For the general case (of real
weighted digraphs) most of the algorithms guarantee anα-stretchfactor. Namely, they compute a
path whose length is at mostαδ(u, v). We mention here the(1 + ǫ)-stretch algorithm of Zwick for
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the all-pairs shortest path problem, that runs inÕ(nω) time when the weights are non-negative reals
[18]. Hereω < 2.376 is the matrix multiplication exponent [5].

Here we consider probabilistic additive-approximation algorithms, orsurplusalgorithms, that
work for linear weights which may have positive and negativevalues (as long as there is no negative
weight cycle). We say that a shortest path algorithm has anǫ-surplus if it computes paths whose
lengths are at mostδ(u, v) + ǫ. We are unaware of any truly subcubic algorithm that guarantees an
ǫ-surplus approximation, and which outperforms the fastestgeneral all-pairs shortest path algorithm
[4].

In the linear-parametric setting, it is easy to obtainǫ-surplus parametric algorithms whose pre-
processing time isO(n4) time, and whose instantiation time, for any ordered pair of queried vertices
u, v is constant. It is assumed instantiations are taken from some intervalI whose length is inde-
pendent ofn. Indeed, we can partitionI into O(n) subintervalsI1, I2, . . . of sizeO(1/n) each,
and solve, in cubic time (say, using [7]), the exact all-pairs solution for any instantiationr that is
an endpoint of two consecutive intervals. Then, given anyr ∈ Ij = (aj , bj), we simply look at the
solution forbj and notice that we are (additively) off from the right answeronly byO(1). Standard
scaling arguments can make the surplus smaller thanǫ. But do we really need to spendO(n4) time
for preprocessing? In other words, can we invest (significantly) less thanO(n4) time and still be
able to answer instantiated distance queries inO(1) time? The following result gives a positive
answer to this question.

Theorem 1.3. Let ǫ > 0, let [α, β] be any fixed interval and letγ be a fixed constant. SupposeG
is a linear-parametric graph that has no negative weight cycles in the interval[α, β], and for which
every edge weightae + xbe satisfies|ae| ≤ γ. There is a parametric randomized algorithm for the
ǫ-surplus shortest path problem, whose preprocessing time is Õ(n3.5) and whose instantiation time
is O(1) for a single pair, and henceO(n2) for all pairs.

We note that this algorithm works in the restricted addition-comparison model. We also note
that given an ordered pairu, v andr ∈ [α, β], the algorithm outputs, inO(1) time, a weight of an
actual path fromu to v in G(r), and points to a linked list representing that path. Naturally, if one
wants to output the vertices of this path then the time for this is linear in the length of the path.

The rest of this paper is organized as follows. The next subsection shortly surveys related
research on parametric shortest path problems. In the threesections following it we prove Theorems
1.1, 1.2 and 1.3. Section 5 contains some concluding remarksand open problems.

1.1. Related research

Several researchers have considered parametric versions of combinatorial optimization prob-
lems. In particular function-weighted graphs (under different names) have been extensively studied
in the subject of sensitivity analysis (see [11]) where theystudy the effect on the optimal solution
as the parameter value changes.

Murty [14] showed that for parametric linear programming problems the optimal solution
can change exponentially many times (exponential in the number of variables). Subsequently,
Carstensen [3] has shown that there are constructions for which the number of shortest path changes
while x varies over the reals isnΩ(log n). In fact, in her example each linear function is of the form
ae + xbe and bothae andbe are positive, andx varies in[0,∞]. Carstensen also proved that this is
tight. In other words, for any linear-parametric graph the number of changes in the shortest paths
is nO(log n). A simpler proof was obtained by Nikolova et al. [16], that also supply annO(log n)

time algorithm to compute the path breakpoints. Their method, however, does not apply to the case
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where the functions are not linear, such as in the case of degreed polynomials. Gusfield [10] also
gave a proof for the upper bound of the number of breakpoints in the linear function version of the
parametric shortest path problem, in addition to studying anumber of other parametric problems.

Karp and Orlin [15], and, later, Young, Tarjan, and Orlin [17] considered a special case of
the linear-parametric shortest path problem. In their case, each edge weighte is either some fixed
constantbe or is of the formbe−x. It is not too difficult to prove that for any given vertexv, whenx
varies from−∞ to the largestx0 for whichG(x0) has no negative weight cycle (possiblyx0 = ∞),
then there are at mostO(n2) distinct shortest path trees fromv to all other vertices. Namely, for
eachr ∈ [−∞, x0] one of the trees in this family is a solution for single-source shortest path in
G(r). The results in [15, 17] cleverly and compactly compute all these trees, and the latter does it
in O(nm + n2 log n) time.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 follows from the following two lemmas.

Lemma 2.1. Given a linear-weighted graphG = (V,E,W ), there existα, β ∈ R∪{−∞}∪{+∞}
such thatG(r) has no negative cycles if and only ifα ≤ r ≤ β. Moreoverα andβ can be found in
Õ(n4) time.

Lemma 2.2. LetG = (V,E,W ) be a linear-weighted graph. Also letα, β ∈ R ∪ {−∞} ∪ {+∞}
be such that at least one of them is finite and for allα ≥ r ≥ β the graphG(r) has no negative

cycle. Then for every vertexv ∈ V there exists a linear functiong[α,β]
v such that if the new weight

functionW ′ is given by

W ′ ((u, v)) = W ((u, v)) + g[α,β]
u − g[α,β]

v

then the new linear-weighted graphG′ = (V,E,W ′) has the property that for any realα ≤ r ≤ β

all the edges inG′(r) are non-negative. Moreover the functionsg
[α,β]
v for all v ∈ V can be found in

O(mn) time.

So given a linear-weighted graphG, we first use Lemma 2.1 to computeα andβ. If at least one
of α andβ is finite then using Lemma 2.2 we compute then linear functionsg[α,β]

v , one for each
v ∈ V . If α = −∞ andβ = +∞, then using Lemma 2.2 we compute the2n linear functionsg[α,0]

v

andg
[0,β]
v . These linear functions will be the advice that the preprocessing algorithm produces. The

above lemmas guarantee us that the advice can be computed in timeÕ(n4), that is the preprocessing
time isÕ(n4).

Now when computing the single source shortest path problem from vertexv for the graphG(r)
our algorithm proceeds as follows:

(1) If r < α or r > β output “−∞” as there exists a negative cycle (such instances are consid-
ered invalid).

(2) If α ≤ r ≤ β and at least one ofα or β is finite then computegu(r) for all u ∈ V . Use
these to re-weight the edges in the graph as in Johnson’s algorithm [12]. If α = −∞ and
β = +∞ then if r ≤ 0 computeg[α,0]

u (r) for all u ∈ V and if r ≥ 0 computeg[0,β]
u (r) for

all u ∈ V . Notice that after the reweighing we have an instance ofG′(r).
(3) Use Dijkstra’s algorithm [6] to solve the single source shortest path problem inG′(r). Di-

jkstra’s algorithm applies sinceG′(r) has no negative weight edges. The shortest paths tree
returned by Dijkstra’s algorithms applied toG′(r) is also the shortest paths tree inG(r). As
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in Johnson’s algorithm, we use the resultsd′(v, u) of G′(r) to deduced(v, u) in G(r) since,
by Lemma 2.2d(v, u) = d′(v, u) − gv(r) + gu(r).

The running time of the instantiation phase is dominated by the running time of Dijkstra’s algorithm
which isO(m + n log n) [9].

2.1. Proof of Lemma 2.1

Since the weight on the edges of the graphG are linear functions, we have that the weight of
any directed cycle in the graph is also a linear function. LetC1, C2, . . . , CT be the set of all directed
cycles in the graph. The linear weight function of a cycleCi will be denoted by wt(Ci). If wt(Ci)
is not the constant function, then letγi be the real number for which the linear equation wt(Ci)
evaluates to0.
Let α andβ be defined as follows:

α = max
i

{γi | wt(Ci) has a positive slope} .

β = min
i

{γi | wt(Ci) has a negative slope} .

Note that if wt(Ci) has a positive slope thenγi = minx {wt(Ci)(x) ≥ 0} . Thus for allx ≥ γi

the value of wt(Ci) evaluated atx is non-negative. So by definition for allx ≥ α the value of the
wt(Ci) is non-negative if the slope of wt(Ci) is positive, and for anyx < α there exists a cycleCi

such that wt(Ci) has positive slope and wt(Ci)(x) is negative. Similarly, for allx ≤ β the value of
the wt(Ci) is non-negative if the slope of wt(Ci) is negative and for anyx > β there exists a cycle
Ci such that wt(Ci) has negative slope and wt(Ci)(x) is negative.

This proves the existence ofα and β. There are, however, two bad cases that we wish to
exclude. Notice that ifα > β this means that for any evaluation atx, the resulting graph has a
negative weight cycle. The same holds if there is some cycle for which wt(Ci) is constant and
negative. Let us now show howα andβ can be efficiently computed whenever these bad cases
do not hold. Indeed,α is the solution to the following Linear Program (LP), which has a feasible
solution if and only if the bad cases do not hold.

Minimize x under the constraints

∀i, wt(Ci)(x) ≥ 0.

This is an LP on one variable, but the number of constraints can be exponential. Using Megiddo’s[13]
technique for finding the minimum ratio cycles we can solve the linear-program inO(n4 log n)
steps.

2.2. Proof of Lemma 2.2

Let α andβ be the two numbers such that for allα ≤ r ≤ β the graphG(r) has no negative
cycles and at least one ofα andβ is finite.

First let us consider the case when bothα andβ are finite. Recall that, given any numberr,
Johnson’s algorithm associates a weight functionhr : V → R such that, for any edge(u, v) ∈ E,

W(u,v)(r) + hr(u) − hr(v) ≥ 0.
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(Johnson’s algorithm computes this weight function by running the Bellman-Ford algorithm over
G(r)). Define the weight functiong[α,β]

v as

g[α,β]
v (x) =

(

hβ(v) − hα(v)

β − α

)

x + hα(v) −

(

hβ(v) − hα(v)

β − α

)

α .

This is actually the equation of the line joining(α, hα(v)) and(β, hβ(v)) in R
2.

Now we need to prove that for everyα ≤ r ≤ β and for every(u, v) ∈ V ,

W(u,v)(r) + g[α,β]
u (r) − g[α,β]

v (r) ≥ 0 .

Sinceα ≤ r ≤ β, one can writer = (1 − δ)α + δβ where1 ≥ δ ≥ 0. Then for allv ∈ V ,

g[α,β]
v (r) = (1 − δ)hα(v) + δhβ(v) .

SinceW(u,v)(r) is a linear function we can write

W(u,v)(r) = (1 − δ)W(u,v)(α) + δW(u,v)(β) .

So after re-weighting the weight of the edge(u, v) is

(1 − δ)W(u,v)(α) + δW(u,v)(β) + (1 − δ)hα(u) + δhβ(u) − (1 − δ)hα(v) − δhβ(v) .

Now this is non-negative as by the definition ofhβ andhα we know that bothW(u,v)(β) + hβ(u)−

hβ(v) andW(u,v)(α) + hα(u) − hα(v) are non-negative.
We now consider the case when one ofα or β is not finite. We will prove it for the case

whereβ = +∞. The caseα = −∞ follows similarly. Consider the simple weighted graph
G∞ = (V,E,W∞) where the weight functionW∞ is defined as: if the weight of the edgee is
W (e) = aex + be thenW∞(e) = ae.

We run the Johnson’s algorithm on the graphG∞. Let h∞(v) denote the weight that Johnson’s

algorithm associates with the vertexv. Then define the weight functiong[α,∞]
v as

g[α,∞]
v (x) = hα(v) + (x − α)h∞(v) .

We need to prove that for everyα ≤ r and for every(u, v) ∈ V ,

W(u,v)(r)+g[α,∞]
u (r)−g[α,∞]

v (r) = W(u,v)(r)+hα(u)+(r−α)h∞(u)−hα(v)−(r−α)h∞(v) ≥ 0 .

Let r = α + δ whereδ ≥ 0. By the linearity ofW we can writeW(u,v)(r) = W(u,v)(α) + δa(u,v),
whereW(u,v)(r) = a(u,v)r + b(u,v). So the above inequality can be restated as

W(u,v)(α) + δa(u,v) + hα(u) + δh∞(u) − hα(v) − δh∞(v) ≥ 0 .

This now follows from the fact that bothW(u,v)(α) + hα(u)− hα(v) anda(u,v) + h∞(u)− h∞(v)
are non-negative.

Since the running time of the reweighing part of Johnson’s algorithm takesO(mn) time, the

overall running time of computing the functionsg
[α,β]
v is O(mn), as claimed.
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3. Proof of Theorem 1.2

In this section we construct a parametric algorithm that computes the distanceδ(u, v) between
a given pair of vertices. If one is interested in the actual path realizing this distance, then it can be
found with some extra book-keeping that we omit in the proof.

The processing algorithm will output the following advice:for any pair(u, v) ∈ V × V the
advice consists of a set oft + 2 increasing real numbers−∞ = b0 < b1 < · · · < bt < bt+1 = ∞
and an ordered set of degree-d polynomialsp0, p1, . . . , pt, such that for allbi ≤ r ≤ bi+1 the weight
of a shortest path inG(r) from u to v is pi(r). Note that eachpi corresponds to the weight of a path
from u to v. Thus if we are interested in computing the exact path then weneed to keep track of the
path corresponding to eachpi.

Givenr, the instantiation algorithm has to find thei such thatbi ≤ r ≤ bi+1 and then output
pi(r). So the output algorithm runs in timeO(log t). To prove our result we need to show that for
any(u, v) ∈ V × V we can find the advice in timeO(f(d)n)log n. In particular this will prove that
t = O(dn)log n and hence the result will follow.

Definition 3.1. A minBaseis a sequence of increasing real numbers−∞ = b0 < b1 < · · · < bt <
bt+1 = ∞ and an ordered set of degree-d polynomialsp0, p1, . . . , pt, such that for allbi ≤ r ≤ bi+1

and allj 6= i, pi(r) ≤ pj(r).

We call the sequence of real numbers thebreaks. We call each interval[bi, bi+1] thei-th interval
of the minBase and the polynomialpi thei-th polynomial. Thesizeof the minBase ist.

The final advice that the preprocessing algorithm produces is a minBase for every pair(u, v) ∈
V × V where thei-th polynomial has the property thatpi(r) is the distance fromu to v in G(r) for
eachbi ≤ r ≤ bi+1.

Definition 3.2. A minBaseℓ(u, v) is a minBase corresponding to the ordered pairu, v, where the
i-th polynomialpi has the property that forr ∈ [bi, bi+1], pi(r) is the length of a shortest path from
u to v in G(r), that is taken among all paths that use at most2ℓ edges.
A minBaseℓ(u,w, v) is a minBase corresponding to the ordered triple(u,w, v) where thei-th
polynomial pi has the property that for eachr ∈ [bi, bi+1], pi(r) is the sum of the lengths of a
shortest path fromu to w in G(r), among all paths that use at most2ℓ edges, and a shortest path
from w to v in G(r), among all paths that use at most2ℓ edges.

Note that in both of the above definitions some of the polynomials can be+∞ or −∞.

Definition 3.3. If B1 andB2 are two minBases (not necessarily of the same size), with polynomials
p1

i andp2
j , we say that another minBase with breaksb′k and polynomialsp′k is min(B1 + B2) if the

following holds.

(1) For allk there existi, j such thatp′k = p1
i + p2

j , and
(2) Forb′k ≤ r ≤ b′k+1 and for alli, j we havep′k(r) ≤ p1

i (r) + p2
j(r).

Definition 3.4. If B1, B2, . . . , Bs ares minBases (not necessarily of the same size), with polynomi-
alsp1

i1
, p2

i2
, . . . , ps

is
, another minBase with breaksb′k and polynomialsp′k is min{B1, B2, . . . , Bs}

if the following holds.

(1) For allk there existq such thatp′k = pq
iq

, and
(2) Forb′k ≤ r ≤ b′k+1 and for all1 ≤ q ≤ s and alliq, we havep′k(r) ≤ pq

iq
(r).

Note that using the above definition we can write the following two equations:

minBaseℓ+1(u, v) = min
w∈V

{

minBaseℓ(u,w, v)
}

. (3.1)
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minBaseℓ(u,w, v) = min
(

minBaseℓ(u,w) + minBaseℓ(w, v)
)

. (3.2)

The following claim will prove the result. The proof of the claim is omitted due to lack of
space.

Claim 3.5. If B1 andB2 are two minBases of sizest1 andt2 respectively, then

(a) min(B1 + B2) can be computed fromB1 andB2 in timeO(t1 + t2).
(b) min{B1, B2} can be computed fromB1 andB2 in time O(f(d)(t1 + t2)), wheref(d) is

the time required to compute the intersection points of two degree-d polynomials. The size
of min{B1, B2} is O(d(t1 + t2)).

In order to computemin{B1, . . . , Bs} one recursively computesX = min{B1, . . . , Bs/2} and
Y = min{Bs/2+1, . . . , Bs} and then takesmin{X,Y }.

If there are no negative cycles, then the advice that the instantiation algorithm needs from
the preprocessing algorithm consists ofminBase⌈log n⌉(u, v). To deal with negative cycles, both
minBase⌈log n⌉(u, v) and minBase⌈log n⌉+1(u, v) are produced, and the instantiation algorithm
compares them. if they are not equal, then the correct outputis −∞.

Also note thatminBase0(u, v) is the trivial minBase where the breaks are−∞ and+∞ and
the polynomial is weightW ((u, v)) associated to the edge(u, v) if (u, v) ∈ E and+∞ otherwise.

If the size ofminBaseℓ(u, v) is sℓ, then by (3.1), (3.2), and by Claim 3.5 the time to compute
minBaseℓ+1(u, v) is O(f(d))log nsℓ and the size ofminBaseℓ+1(u, v) is O(d)log nsℓ. Thus one
can compute the advice foru andv in time

(O(f(d))log n)log n = O(n(O(1)+log f(d)) log n) ,

and the length of the advice string isO(n(O(1)+log d) log n).

4. Proof of Theorem 1.3

Given the linear-weighted graphG = (V,E,W ), our preprocessing phase begins by verifying
that for allr ∈ [α, β], G(r) has no negative weight cycles. From the proof of Lemma 2.2 we know
that this holds if and only if bothG(α) andG(β) have no negative weight cycles. This, in turn, can
be verified inO(mn) time using the Bellman-Ford algorithm. We may now assume that G(r) has
no negative cycles for anyr ∈ [α, β]. Moreover, since our preprocessing algorithm will solve a large
set of shortest path problems, each of them on a specific instantiation ofG, we will first compute the
reweighing functionsg[α,β]

v of Lemma 2.2 which will enable us to apply, in some cases, algorithms
that assume nonnegative edge weights. Recall that by Lemma 2.2, the functionsg[α,β]

v for all v ∈ V
are computed inO(mn) time.

The advice constructed by the preprocessing phase is composed of two distinct parts, which we
respectively call thecrude-shortadvice and therefined-longadvice. We now describe each of them.

For each edgee ∈ E, the weight is a linear functionwe = ae + xbe. SetK = 8(β −
α)maxe |ae|. LetN0 = ⌈K

√
n ln n/ǫ⌉ and letN1 = ⌈Kn/ǫ⌉. We defineN0 +1 andN1 +1 points

in [α, β] and solve certain variants of shortest path problems instantiated in these points.
Consider first the case of splitting[α, β] into N0 intervals. Letρ0 = (β − α)/N0 and consider

the pointsα + iρ0 for i = 0, . . . , N0. The crude-short part of the preprocessing algorithm solves
N0 + 1 limitedall-pairs shortest path problems inG(α + iρ0) for i = 0, . . . , N0. Sett = 4

√
n ln n,

and letdi(u, v) denote the length of a shortest path fromu to v in G(α + iρ0) that is chosen among
all paths containing at mostt vertices (possiblydi(u, v) = ∞ if no such path exists). Notice that
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di(u, v) is not necessarily the distance fromu to v in G(α + iρ0), since the latter may require more
than t vertices. It is straightforward to compute shortest paths limited to at mostk vertices (for
any 1 ≤ k ≤ n) in a real-weighted directed graph withn vertices in timeO(n3 log k) time, by
the repeated squaring technique. In fact, they can be computed in O(n3) time (saving thelog k
factor) using the method from [1], pp. 204–206. This algorithm also constructs the predecessor data
structure that represents the actual paths. It follows thatfor each ordered pair of verticesu, v and
for eachi = 0, . . . , N0, we can computedi(u, v) and a pathpi(u, v) yieldingdi(u, v) in G(α+ iρ0)
in O(n3|N0|) time which isO(n3.5 ln n) . We also maintain, at no additional cost, linear functions
fi(u, v) which sum the linear functions of the edges ofpi(u, v). Note also that ifdi(u, v) = ∞ then
pi(u, v) andfi(u, v) are undefined.

Consider next the case of splitting[α, β] into N1 intervals. Letρ1 = (β − α)/N1 and consider
the pointsα + iρ1 for i = 0, . . . , N1. However, unlike the crude-short part, the refined-long part
of the preprocessing algorithm cannot afford to solve an all-pairs shortest path algorithm for each
G(α + iρ1), as the overall running time will be too large. Instead, we randomly select a setH ⊂ V
of (at most)

√
n vertices. H is constructed by performing

√
n independent trials, where in each

trial, one vertex ofV is chosen toH uniformly at random (notice that since the same vertex can be
selected toH more than once|H| ≤

√
n). For eachh ∈ H and for eachi = 0, . . . , N1, we solve

the single source shortest path problem inG(α + iρ1) from h, and also (by reversing the edges)
solve the single-destination shortest pathtowardh. Notice that by using the reweighing functions
g
[α,β]
v we can solve all of these single source problems using Dijkstra’s algorithm. So, for allh ∈ H

andi = 0, . . . , N1 the overall running time is

O(|N1||H|(m + n log n)) = O(n1.5m + n2.5 log n) = O(n3.5) .

We therefore obtain, for eachh ∈ H and for eachi = 0, . . . , N1, a shortest path treeTi(h), together
with distancesd∗i (h, v) from h to each other vertexv ∈ V , which is the distance fromh to v in
G(α + iρ1). We also maintain the functionsf∗

i (h, v) that sum the linear equations on the path
in T ∗

i (h) from h to v. Likewise, we obtain a “reversed” shortest path treeS∗
i (h), together with

distancesd∗i (v, h) from eachv ∈ V to h, which is the distance fromv to h in G(α+ iρ1). Similarly,
we maintain the functionsf∗

i (v, h) that sum the linear equations on the path inS∗
i (h) from v to h.

Finally, for each ordered pair of verticesu, v and for eachi = 0, . . . , N1 we compute a vertex
hu,v,i ∈ H which attainsminh∈H d∗i (u, h) + d∗i (h, u) . Notice that the time to construct thehu,v,i

for all ordered pairsu, v and for alli = 0, . . . , N1 is O(n3.5). This concludes the description of the
preprocessing algorithm. Its overall runtime is thusO(n3.5 ln n).

We now describe the instantiation phase. Givenu, v ∈ V andr ∈ [α, β] we proceed as follows.
Let i be the index for which the number of the formα + iρ0 is closest tor. As we have the advice
fi(u, v), we letw0 = fi(u, v)(r) (recall thatfi(u, v) is a function). Likewise, letj be the index for
which the number of the formα + jρ1 is closest tor. As we have the adviceh = hu,v,j , we let
w1 = f∗

j (u, h)(r)+f∗
j (h, u)(r). Finally, our answer isz = min{w0, w1}. Clearly, the instantiation

time isO(1). Notice that if we also wish to output a path of weightz in G(r) we can easily do so
by using eitherpi(u, v), in the case wherez = w0 or usingS∗

j (h) andT ∗
j (h) (we take the path from

u to h in S∗
j (h) and concatenate it with the path fromh to v in T ∗

j (h)) in the case wherez = w1.
It remains to show that, with very high probability, the result z that we obtain from the instanti-

ation phase is at mostǫ larger than the distance fromu to v in G(r). For this purpose, we first need
to prove that the random setH possesses some “hitting set” properties, with very high probability.

For every pair of verticesu andv and parameterr, let pu,v,r be a shortest path inG(r) among
all simple paths fromu to v containing at leastt = 4

√
n ln n vertices (ifG is strongly connected
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then such a path always exist, and otherwise we can just put+∞ for all u, v pairs for which no such
path exists). The following simple lemma is used in an argument similar to one used in [18].

Lemma 4.1. For fixedu, v andr, with probability at least1 − o(1/n3) the pathpu,v,r contains a
vertex fromH.

Proof. Indeed, the path frompu,v,r by its definition has at least4
√

n ln n vertices. The probability
that all of the

√
n independent selections toH failed to choose a vertex from this path is therefore

at most
(

1 −
4
√

n ln n

n

)

√
n

< e−4 ln n <
1

n4
= o(1/n3) .

Let us return to the proof of Theorem 1.3. Suppose that the distance fromu to v in G(r) is δ.
We will prove that with probability1− o(1), H is such that for everyu, v andr we havez ≤ δ + ǫ
(clearly z ≥ δ as it is the precise length of some path inG(r) from u to v). Assume first that
there is a pathp of lengthδ in G(r) that uses less than4

√
n ln n edges. Consider the length ofp in

G(α+ iρ0). When going fromr to α+ iρ0, each edgee with weightaex+ be changed its length by
at most|ae|ρ0. By the definition ofK, this is at mostρ0K/(8(β − α)). Thus,p changed its weight
by at most

(4
√

n ln n) · ρ0
K

8(β − α)
= (4

√
n ln n)

K

8N0
<

ǫ

2
.

It follows that the length ofp in G(α+ iρ0) is less thanδ + ǫ/2. But pi(u, v) is a shortest path from
u to v in G(α+ iρ0) of all the paths that contain at mostt vertices. In particular,di(u, v) ≤ δ+ ǫ/2.
Consider the length ofpi(u, v) in G(r). The same argument shows that the length ofpi(u, v) in
G(r) changed by at mostǫ/2. But w0 = fi(u, v)(r) is that weight, and hencew0 ≤ δ + ǫ. In
particular,z ≤ δ + ǫ.

Assume next that every path of lengthδ in G(r) uses at least4
√

n ln n edges. Letp be one such
path. When going fromr to r′ = α + jρ1, each edgee with weightaex + be changed its length by
at most|ae|ρ1. By the definition ofK, this is at mostρ1K/(8(β − α)). Thus,p changed its weight
by at most

n · ρ1
K

8(β − α)
= n

K

8N1
<

ǫ

8
.

In particular, the length ofpu,v,r′ is not more than the length ofp in G(r′), which, in turn, is at
mostδ + ǫ/8. By Lemma 4.1, with probability1 − o(1/n3), some vertex ofh appears onpu,v,r′ .
Moreover, by the union bound, with probability1− o(1) all paths of the typepu,v,r′ (remember that
r′ can hold one ofO(n) possible values) are thus covered by the setH. Let h′ be a vertex ofH
appearing inpu,v,r′ . We therefore haved∗j (u, h′) + d∗j (h

′, v) ≤ δ + ǫ/8. Sinceh = hu,v,j is taken
as the vertex which minimizes these sums, we have, in particular, d∗j(u, h) + d∗j(h, v) ≤ δ + ǫ/8.
Consider the pathq in G(α + jρ1) realizingd∗j (u, h) + d∗j (h, v). The same argument shows that
the length ofq in G(r) changed by at mostǫ/8. But w1 = f∗

j (u, h)(r) + f∗
j (h, v)(r) is that weight,

and hencew1 ≤ δ + ǫ/4. In particular,z ≤ δ + ǫ/4.

5. Concluding remarks

We have constructed several parametric shortest path algorithms, whose common feature is that
they preprocess the generic instance and produce an advice that enables particular instantiations to
be solved faster than running the standard weighted distance algorithm from scratch. It would be
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of interest to improve upon any of these algorithms, either in their preprocessing time or in their
instantiation time, or both.

Perhaps the most challenging open problem is to improve the preprocessing time of Theorem
1.2 to a polynomial one, or, alternatively, prove an hardness result for this task. Perhaps less ambi-
tious is the preprocessing time in Theorem 1.1.

Finally, parametric algorithms are of practical importance for other combinatorial optimization
problems as well. It would be interesting to find applications where, indeed, a parametric algorithm
can be truly beneficial, as it is in the case of shortest path problems.
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Abstract. The past decade has witnessed many interesting algorithms for maintaining
statistics over a data stream. This paper initiates a theoretical study of algorithms for
monitoring distributed data streams over a time-based sliding window (which contains a
variable number of items and possibly out-of-order items). The concern is how to mini-
mize the communication between individual streams and the root, while allowing the root,
at any time, to be able to report the global statistics of all streams within a given error
bound. This paper presents communication-efficient algorithms for three classical statis-
tics, namely, basic counting, frequent items and quantiles. The worst-case communication
cost over a window is O( k

ε
log εN

k
) bits for basic counting and O( k

ε
log N

k
) words for the

remainings, where k is the number of distributed data streams, N is the total number of
items in the streams that arrive or expire in the window, and ε < 1 is the desired error
bound. Matching and nearly matching lower bounds are also obtained.

1. Introduction

The problems studied in this paper are best illustrated by the following puzzle. John

and Mary work in different laboratories and communicate by telephone only. In a forever-

running experiment, John records which devices have an exceptional signal in every 10

seconds. To adjust her devices, Mary at any time needs to keep track of the number of

exceptional signals generated by each device of John in the last one hour. John can call

Mary every 10 seconds to report the exceptional signals, yet this requires too many calls in

an hour and the total message size per hour is linear to the total number N of exceptional

signals in an hour. Mary’s devices actually allow some small error. Can the number of

calls and message size be reduced to o(N), or even poly-log N if a small error (say, 0.1%) is
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allowed? It is important to note that the input is given online and Mary needs to know the

answers continuously; this makes our problem different from those in other similar classical

models, such as the Simultaneous Communication Complexity model [4], in which all inputs

are given in advance and the parties need to compute an answer only once.

Motivation. The above problem appears in data stream applications, e.g., network

monitoring or stock analysis. In the last decade, algorithms for continuous monitoring of a

single massive data stream gained a lot of attention (see [1,26] for a survey), and the main

challenge has been how to represent the massive data using limited space, while allowing

certain statistics (e.g., item counts, quantiles) to be computed with sufficient accuracy.

The space-accuracy tradeoff for representing a single stream has gradually been un-

derstood over the years (e.g., [2, 15, 18, 19]). Recently, motivated by large scale networks,

the database community is enthusiastic about communication-efficient algorithms for con-

tinuous monitoring of multiple, distributed data streams. In such applications, we have

k ≥ 1 remote sites each monitoring a data stream, and there is a root (or coordinator)

responsible for computing some global statistics. A remote site needs to maintain cer-

tain statistics itself, and has to communicate with the root often enough so that the root

can compute, at any time, the statistics of the union of all data streams within a certain

error. The objective is to minimize the communication. The communication aspects of

data streams introduce several challenging theoretical questions such as what is the opti-

mal communication-accuracy tradeoff for maintaining a particular statistic, and whether

two-way communication is inherently more efficient than one-way communication.

Data stream models and ε-approximate queries. The data stream at each remote

site is a sequence of items from a totally ordered set U . Each item is associated with an

integral time-stamp recording its arrival time. Each remote site has limited space and hence

it can only maintain the required statistics approximately. The statistics can be based on

the whole data stream [2, 15, 18, 19] or only the recent items [3, 14, 22]. Recent items can

be modeled by two types of sliding windows [5, 13]. Let W be the window size, which is

a positive integer. The count-based sliding window includes the last W items in the data

stream, while the time-based sliding window includes items whose time-stamps are within

the last W time units. The latter assumes that zero or more items can arrive at a time.

Items in a sliding window will expire and are more difficult to handle than in the whole

data stream. For example, counting the frequency of a certain item in the whole stream

can be done easily by maintaining a single counter, yet the same problem requires space

Θ(1
ε log2(εW )) bits for a count-based sliding window even if we allow a relative error of at

most ε [13, 16]. In fact, the whole data stream model can be viewed as a special case of

the sliding window model with window size being infinite. Also, a count-based window is a

special case of a time-based window in which exactly one item arrives at a time. This paper

focuses on time-based window, and the algorithms are applicable to the other two models.

We study algorithms that enable the root to answer three types of classical ε-approximate

queries, defined as follows. Let 0 < ε < 1. For any stream σ, let cj,σ and cσ be the count

of item j and all items whose timestamps are in the current window, respectively. Denote

cj =
∑

σ cj,σ and c =
∑

σ cσ as the total count of item j and all items in all the data

streams, respectively.

• Basic Counting. Return an estimate ĉ on the total count c such that |ĉ − c| ≤ εc.
(Note that this query can be generalized to count data items of a fixed subset X ⊆ U ;

the literature often refers to the special case with U = {0, 1} and X = {1}.)
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• Frequent Items. Given any 0 < φ < 1, return a set F ⊆ U which includes all items

j with cj ≥ φc and possibly some items j′ with cj′ ≥ φc − εc.

• Quantiles. Given any 0 < φ < 1, return an item whose rank is in
[

φc− εc, φc + εc
]

among the c items in the current sliding window.

As in most previous works, we need to answer the following type of ε-approximate queries

in order to answer queries on frequent items.

• Approximate Counting. Given any item j, return an estimate ĉj such that |ĉj−cj | ≤
εc. (Note that this query gives estimate for any item, not just the frequent items.

Also, the error bound is in term of c, which may be much larger than cj .)

We need an algorithm to determine when and how the remote sites communicate with

the root so that the root can answer the queries at any time. The objective is to minimize

the worst-case communication cost within a window of W time units.

Previous works. Recently, the database literature has a flurry of results on continuous

monitoring of distributed data streams, e.g. [6, 8, 9, 12,17,20,24,25,27, 28]. The algorithms

studied can be classified into two types: one-way algorithms only allow messages sent from

each remote site to the root, and two-way algorithms allow bi-directional communication

between the root and each site. One-way algorithms are often very simple as a remote

site has little information and all it can do is to update the root when its local statistics

deviate significantly from those previously sent. On the other hand, most two-way algo-

rithms are complicated and often involve non-trivial heuristics. It is commonly believed

in the database community that two-way algorithms are more efficient; however, for most

existing two-way algorithms, their worst-case communication costs are still waiting for rig-

orous mathematical analysis, and existing works often rely on experimental results when

evaluating the communication cost.

The literature contains several results on the mathematical analysis of the worst-case

performance of one-way algorithms. They are all for the whole data stream setting. Ker-

alapura et al. [21] studied the thresholded-count problem, which leads to an algorithm for

basic counting with communication cost O(k
ε log N

k ) words, where k and N are the number

of streams and the number of items in these streams, respectively. Cormode et al. [9] gave

an algorithm for quantiles with communication cost O( k
ε2 log N

k ) words per stream. They

also showed how to handle frequent items via a reduction to quantiles, so the communication

cost remains the same. More recently, Yi and Zhang [29] have reduced the communication

cost for frequent items to O(k
ε log N

k ) words, and quantile to O(k
ε log2(1

ε ) log N
k ) words, using

some two-way algorithms; these are the only analyses for two-way algorithms so far.

There have been attempts to devise heuristics to extend some whole-data-stream al-

gorithms to sliding windows, yet not much has been known about their worst-case perfor-

mance. For example, Cormode et al. [9] have extended their algorithms for quantiles and

frequent items to sliding windows. They believed that the communication cost would only

have a mild increase, but no supporting analysis has been given. The analysis of sliding-

window algorithms is more difficult because the expiry of items destroys some monotonic

property that is important to the analysis for whole data stream. In fact, finding sliding-

window algorithms with efficient worst-case communication has been posed as an open

problem in the latest work of Yi and Zhang [29].

Our results. This paper gives the first mathematical analysis of the communication

cost in the sliding window model. We derive lower bounds on the worst-case communication

cost of any two-way algorithm (and hence any one-way algorithm) for answering the four
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Basic Counting Approximate Counting/ Quantiles
(bits) Frequent items (words) (words)

Whole data O(k
ε log N

k ) words [21] O(k
ε log N

k ) [29] O(k
ε log2(1

ε ) log N
k ) [29]

stream Θ(k
ε log εN

k ) bits Ω(k
ε log εN

k ) [29, 30]

Sliding window Θ(k
ε log εN

k )
O(k

ε log N
k ) O( k

ε2 log N
k )

Ω(k
ε log εN

k )

Sliding window
O(( W

W−τ )k
ε log εN

k ) O(( W
W−τ )k

ε log N
k ) O(( W

W−τ ) k
ε2 log N

k )

& out-of-order Ω(max{ W
W−τ , k

ε log εN
k }) Ω(max{ W

W−τ , k
ε log εN

k })

Table 1: Bounds on the communication costs. Note that the bounds are stated in bits for
basic counting, and in words for the other problems.

types of ε-approximate queries. These lower bounds hold even when each remote site has

unlimited space to maintain the local statistics exactly. More interestingly, we analyze some

common-sense algorithms that use one-way communication only and prove that their com-

munication costs match or nearly match the corresponding lower bounds. In our algorithms,

each remote site only needs to maintain some Θ(ε)-approximate statistics for its local data,

which actually adds more complication to the problem. These results demonstrate optimal

or near optimal communication-accuracy tradeoffs for supporting these queries over the

sliding window. Our work reveals that two-way algorithms could not be much better than

one-way algorithms in the worst case.

Below we state the lower and upper bounds precisely. Recall that there are k remote

sites and the sliding window contains W time units. We prove that within any window,

the root and the remote sites need to communicate, in the worst case, Ω(k
ε log εN

k ) bits

for basic counting and Ω(k
ε log εN

k ) words for the other three queries, where N is the total

number of items arriving or expiring within that window.1 For upper bounds, our analysis

shows that basic counting requires O(k
ε log εN

k ) bits within any window, and approximate

counting O(k
ε log N

k ) words. The estimates given by approximate counting are sufficient

to find frequent items, hence the latter problem has the same communication cost. For

quantiles, it takes O( k
ε2 log N

k ) words. See the second row (sliding window) of Table 1 for a

summary.

As mentioned before, sliding-window algorithms can be applied to handle the special

case of whole data streams in which the window size W is infinite and N is the total number

of arrived items. The first row of Table 1 shows the results on whole data streams. Our

work has improved the communication cost for basic counting from O(k
ε log N

k ) words [21] to

O(k
ε log εN

k ) bits. For approximate counting and frequent items, our work implies a one-way

algorithm with communication cost of O(k
ε log N

k ) words; this matches the performance of

the two-way algorithm by Yi and Zhang [29]. In their algorithm, the root regularly updates

every remote site about the global count of all items. In contrast, we use the idea that

1Note that the number of items arriving or expiring within window [t − W + 1, t] is no greater than the
number of items arriving within [t − 2W + 1, t].
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items with small count could be “turned off” for further updating. As a remark, our upper

bound on quantiles is O( k
ε2 log N

k ) words which is weaker than that of [29].

Our algorithms can be readily applied to out-of-order streams [7, 10]. In an out-of-

order stream, each item is associated with an integral time-stamp recording its creation

time, which may be different from its arrival time. We say that the stream has tardiness
τ if any item with time-stamp t must arrive within τ time units from t, i.e., at any time

in [t, t + τ ]. Without loss of generality, we assume that τ ∈ {0, 1, 2, . . . ,W − 1} (if an item

time-stamped at t arrives after t + W − 1, it has already expired and can be ignored). Note

that for any data stream with tardiness greater than zero, the items may not be arriving in

non-decreasing order of their time-stamps. Our previous discussion of data streams assumes

tardiness equal to 0, and such data streams are called in-order data streams. The previous

lower bounds for in-order streams are all valid in the out-of-order setting. In addition, we

obtain lower bounds related to τ , namely, Ω( W
W−τ ) bits for basic counting and Ω( W

W−τ )

words for the other three problems. Regarding upper bounds, our algorithms when applied

to out-of-order streams with tardiness τ will just increase the communication cost by a

factor of W
W−τ . The results are summarized in the last row of Table 1.

The idea for basic counting is relatively simple. As the root does not require an exact

total count, each data stream can communicate to the root only when its local count in-

creases or decreases by a certain ratio ε > 0; we call such a communication step an up or

down event, respectively. To answer the total count of all streams, the root simply sums up

all the individual counts it has received. It is easy to prove that this answer is within some

desired error bound. If each count is over the whole stream (i.e., window size = ∞ and N
is the total number of arrived items), the count is increasing and there is no down event. A

stream would have at most O(log1+ε N) up events and the communication cost is at most

that many words. However, the analysis becomes non-trivial in a sliding time window. Now

items can expire and down events can occur. An up event may be followed by some down

events and the count is no longer increasing. The tricky part is to find a new measure of

progress. We identify a “characteristic set” of each up event such that each up event must

increase the size of this set by a factor of at least 1 + ε, hence bounding the number of up

events to be O(log1+ε N). Down events are bounded using another characteristic set. Due

to space limitation, the details can only be given in the full paper.

Approximate counting of all possible items is much more complicated, which will be

covered in details in the rest of this paper. Assuming in-order streams, we derive and

analyze two algorithms for approximate counting in Section 2. In Section 3, we discuss

frequent items, quantiles, and finally out-of-order streams. The lower bound results are

relatively simple and omitted due to space limitation.

2. Approximate Counting of all items

This section presents algorithms for the streams to communicate to the root so that

the root at any time can approximate the count of each item. As a warm-up, we first

consider the simple algorithm in which a stream will inform the root whenever its count

of an item increases or decreases by a certain fraction of its total item count. We show

in Section 2.1 that within any window of W time units, each data stream σi (1 ≤ i ≤ k)

needs to send at most O((∆ + 1
ε ) log ni) words to the root, where ∆ is the number of

distinct items and ni is the number of items of σi that arrive or expire within the window.

Then, the total communication cost within this window is
∑

1≤i≤k(∆ + 1
ε ) log ni, which, by
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Jensen’s inequality, is no greater than (∆ + 1
ε )k log(

∑

1≤i≤k ni)/k = (∆ + 1
ε )k log N

k where

N =
∑

1≤i≤k ni. We then modify the algorithm so that a stream can “turn off” items whose

counts are too small, and we give a more complicated analysis to deal with the case when

many such items increase their counts rapidly (Section 2.2). The communication cost is

reduced to O(k
ε log N

k ) words, independent of ∆.

2.1. A simple algorithm

Consider any stream σ. At any time t, let c(t) and cj(t) be the number of all items

and item j arriving at σ in [t−W + 1, t], respectively. Let λ < 1/11 be a positive constant

(which will be set to ε/11). We maintain two λ-approximate data structures [13, 23] at σ
locally, which can report estimates ĉ(t) and ĉj(t) for c(t) and cj(t), respectively, such that 2

(1 − λ/6)c(t) ≤ ĉ(t) ≤ (1 + λ/6)c(t); and cj(t) − λc(t) ≤ ĉj(t) ≤ cj(t) + λc(t).

Simple algorithm. At any time t, for any item j, let p < t be the last time

ĉj(p) is sent to the root. The stream sends the estimate 〈j, ĉj(t)〉 to the root if the

following event occurs.

• Up: ĉj(t) > ĉj(p) + 9λĉ(t).
• Down: ĉj(t) < ĉj(p) − 9λĉ(t).

Root’s perspective. At any time t, let rj,σ(t) be the last estimate received from a stream σ
for item j (at or before t). The root can estimate the total count of item j over all streams by

summing all rj,σ(t) received. More precisely, for any 0 < ε < 1, we set λ = ε/11 and let each

stream use the simple algorithm. Then for each stream σ, the approximate data structures

for ĉj(t) and ĉ(t) together with the simple algorithm guarantee that cj(t) − 11λc(t) ≤
rj,σ(t) ≤ cj(t) + 11λc(t). Summing rj,σ(t) over all streams would give the root an estimate

of the total count of item j within an error of ε of the total count of all items.

Communication Complexity. At any time t, we denote the reference window as [to, t],
where to = t − W + 1. Let n be the number of items of σ that arrive or expire in [to, t].
Assume that there are at most ∆ distinct items. We first show that a stream σ encounters

O(( 1
λ + ∆) log n) up events and sends O(( 1

λ + ∆) log n) words within [to, t]. The analysis of

down events is similar and will be detailed later. For any time t1 ≤ t2, it is useful to define

σ[t1,t2] (resp. σj,[t1,t2]) as the multi-set of all items (resp. item j only) arriving at σ within

[t1, t2], and |σ[t1,t2]| as the size of this multi-set.

Consider an up event Uj of some item j that occurs at time v ∈ [to, t]. Define the

previous event of Uj to be the latest event (up or down) of item j that occurs at time p < v.

We call p the previous-event time of Uj . The number of up events with previous-event

time before to is at most ∆. To upper bound the number of up events with previous-event

time p ≥ to is, however, non-trivial; below we call such an up event a follow-up (event).

Intuitively, a follow-up can be triggered by frequent arrivals of an item, or mainly the

relative decrease of the total count. This motivates us to classify follow-ups into two types

and analyze them differently. A follow-up Uj is said to be absolute if c(p) ≤ 6
5c(v), and

relative otherwise. Define Recent-items(Uj) to be the multi-set of item j’s that arrive after

the previous event of Uj, i.e., Recent-items(Uj) = σj,[p+1,v].

2The constant 6 in the inequality is arbitrary. It can be replaced with any number provided that other con-
stants in the algorithm and analysis (e.g., the constant 9 in definition of up events) are adjusted accordingly.
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Absolute follow-ups. To obtain a tight bound of absolute follow-ups, we need a

characteristic-set argument that can consider the growth of different items together. Let

t1, t2, ..., tk be the times in [to, t] when some absolute follow-ups (of one or more items)

occur. Let xi be the number of items having an absolute follow-up at ti. Note that for all

i, xi ≤ min{1/(7λ),∆},3 and
∑k

i=1 xi is the number of absolute follow-ups in [to, t]. We

define the characteristic set Si at each ti as follows:

Si = the union of Recent-items(Uj) over all absolute follow-ups Uj occurring at t1, t2, . . . , ti.

Recall that n is the number of items of σ that arrive or expire in [t − W + 1, t].

Lemma 2.1. (i) For any 2 ≤ i ≤ k, |Si| > (1 + 6xiλ)|Si−1|. (ii) There are
∑k

i=1 xi =

O( 1
λ log n) absolute follow-ups within [to, t].

Proof. For (i), consider an absolute follow-up Uj of an item j, occurring at time ti with

previous-event time pi. Note that the increase in the count of item j from pi to ti must be

due to the recent items. We have

|Recent-items(Uj)| ≥ cj(ti) − cj(pi)

≥ ĉj(ti) − ĉj(pi) − λc(ti) − λc(pi) (by σ’s local data structures)

> 9λĉ(ti) − λc(ti) − λc(pi) (definition of an up event)

≥ (9λ(1 − λ
6 ) − λ − 6

5λ)c(ti) ≥ 6λc(ti) (Uj is absolute)

There are xi absolute follow-ups at ti, so |Si| > |Si−1| + xi (6λc(ti)). Since Si ⊆ σ[to,ti],

c(ti) ≥ |Si| ≥ |Si−1|. Therefore, we have |Si| > |Si−1| + 6xiλ|Si| ≥ (1 + 6xiλ)|Si−1|.

For (ii), we note that n ≥ |Sk| >
∏k

i=2(1 + 6xiλ)|S1|, and |S1| ≥ 1. Thus,
∏k

i=2(1 +

6xiλ) < n, or equivalently, ln n >
∑k

i=2 ln(1 + 6xiλ). The latter is at least
∑k

i=2
6xiλ

1+6xiλ
≥

λ
∑k

i=2 xi. The last inequality follows from that xi ≤ 1/(7λ) for all i. Thus,
∑k

i=1 xi ≤

x1 + 1
λ ln n = O( 1

λ log n).

Relative follow-ups. A relative follow-up occurs only when a lot of items expire,

and relative follow-ups of the same item cannot occur too frequently. Below we define

O(log n) time intervals and argue that no item can have two relative follow-ups within an

interval. For an item with time-stamp t1, we define the first expiry time to be t1 + W . At

any time u in [to, t], define Hu to be the set of all items whose first expiry time is within

[u + 1, t], i.e., Hu = σ[u−W+1,to−1]. |Hu| is non-increasing as u increases. Consider the

times to = u0 < u1 < u2 < · · · < uℓ ≤ t such that for i ≥ 1, ui is the first time such that

|Hui
| < 5

6 |Hui−1
|. For convenience, let uℓ+1 = t + 1. Note that |Hu0

| ≤ n and ℓ = O(log n).

Lemma 2.2. (i) Every item j has at most one relative follow-up Uj within each interval
[ui, ui+1 − 1]. (ii) There are at most O(∆ log n) relative follow-ups within [to, t].

Proof. For (i), assume Uj occurs at time v in [ui, ui+1 − 1], and its previous event occurs at

time p. By definition, c(p) > 6
5c(v). Thus,

|Hp| − |Hv| = |σ[p−W+1,v−W ]| ≥ c(p) − c(v) > 1
5c(v) ≥ 1

5 |σ[v−W+1,to−1]| = 1
5 |Hv| ,

and |Hv| < 5
6 |Hp|. Since v < ui+1 and |Hv| ≥

5
6 |Hui

|, we have |Hp| > |Hui
| and p < ui.

For (ii), there are ∆ distinct items, so there are at most ∆ relative follow-ups within each

interval [ui, ui+1 − 1], and at most O(∆ log n) relative follow-ups within [to, t].

3If an up event of an item j occurs at time ti, then cj(ti) ≥ ĉj(ti) − λc(ti) > 9λĉ(ti) − λc(ti) ≥ 7λc(ti).
Thus the number of up events at time ti is at most c(ti)/(7λc(ti)) = 1/(7λ).
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Down events. The analysis is symmetric to that of up events. The only non-trivial

thing is the definition of the characteristic set for bounding the absolute follow-downs Dj ,

which is defined in an opposite sense: Assume Dj occurs at time v and its previous event

occurs at p ≥ to. Dj is said to be absolute if c(p) ≤ 6
5c(v). Let Expire(Dj) be the multi-set

of item j’s whose first expiry time is within [p + 1, v]. I.e., Expire(Dj) = σj,[p−W+1,v−W ].

It is perhaps a bit tricky that instead of defining the characteristic set of absolute

follow-downs at the time they occur, we consider the times of the corresponding previous
events of these follow-downs. Let p1, p2, ..., pk be the times in [to, t] such that there is at

least one event Ej (up or down) at pi which is the previous event of an absolute follow-down

Dj occurring after pi. Let yi be the number of such previous events at pi, and let AD(pi)

be the set of corresponding absolute follow-downs. Note that yi (unlike xi) only admits a

trivial upper bound of ∆. We define the characteristic set Ti for each pi as follows:

Ti = the union of Expire(Dj) over all Dj ∈ AD(pi), AD(pi+1), . . . , AD(pk).

Similar to Lemma 2.1, we can show that |Ti| > (1 + 5yiλ)|Ti+1|. Owing to a weaker bound

of individual yi, the number of absolute follow-downs, which equals
∑k

i=1 yi, is shown to be

O(( 1
λ + ∆) log n).

Combining the analyses on up and down events, and let λ = ε/11, we have the following.

Theorem 2.3. The simple algorithm sends at most O((1
ε + ∆) log n) words to the root

during window [t − W + 1, t].

2.2. The full algorithm

In this section, we extend the previous algorithm and give a new characteristic-set

analysis that is based on future events (instead of the past events) to show that each

stream’s communication cost per window can be reduced to O(1
ε log n) words. Then, by

Jensen’s inequality again, we conclude that the total communication cost per window is

O(k
ε log N

k ). Intuitively, when the estimate ĉj(t) of an item j is too small, say, less than

3λĉ(t), the algorithm treats this estimate as 0 and set the offj flag of j to be true. This

restricts the number of items with a positive estimate to O( 1
λ). Initially, the offj flag is true

for all items j. Given 0 < λ < ε/11, the stream communicates with the root as follows.

Algorithm AC. At any time t, for any item j, let p < t be the time the last

estimate of j, i.e., ĉj(p), is sent to the root. The stream sends the estimate of j to

the root if the following event occurs.

• Up: If ĉj(t) > ĉj(p) + 9λĉ(t), send 〈j, ĉj(t)〉 and set offj = false .

• Off: If offj = false and ĉj(t) < 3λĉ(t), reset ĉj(t) to 0, send 〈j, ĉj(t)〉
and set offj = true.

• Down: If offj = false and ĉj(t) < ĉj(p) − 9λĉ(t), send 〈j, ĉj(t)〉.

It is straightforward to check that the root can answer the approximate counting query

for any item. We analyze the communication complexity of different events as follows.

Fact 1. At any time v, the number of items j with offj = false is at most 1
λ .4

4For any item j, if offj = false, then ĉj(v) ≥ 3λĉ(v) and cj(v) ≥ ĉj(v)−λc(v) ≥ (3λ(1−λ)−λ)c(v) ≥ λc(v).

Thus the number of items j with offj = false is at most c(v)/λc(v) = 1

λ
.
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Off events. Recall that we are considering the window [to, t], and n is the number of

items arriving or expiring within [to, t]. By Fact 1, just before to, there are at most 1
λ items

with offj = false. Within [to, t], only an up event can set the off flag to false. Thus the

number of off events within [to, t] is bounded by 1
λ plus the number of up events.

Up and Down events. The assumption of ∆ gives a trivial bound on those events

involving items with very small counts and in particular, those up events immediately

following the off events. Such up events are called poor-up events or simply poor-ups. Using

the off flag, we can easily adapt the analysis of the simple algorithm to bound all the

down and up events of the full algorithm, but except the poor-ups. The following simple

observations, derived from Fact 1, allow us to replace ∆ with 1/λ in the previous analysis

to obtain a tighter upper bound of O( 1
λ log n). Let v be any time in [to, t].

• There are at most 1/λ items whose first event after v is a down event.

• There are at most 1/λ non-poor-up events after v whose previous event is before v.

It remains to analyze the poor-ups. Consider a poor-up Uj at time v in [to, t]. By

definition, offj = false at time v. The trick of analyzing Uj ’s is to consider when the

corresponding items will be “off” again instead of what items constitute the up events.

Then a characteristic set argument can be formulated easily. Specifically, we first observe

that, by Fact 1, there are at most 1
λ poor-ups whose off flags remain false up to time t.

Then it remains to consider those Uj whose off flags will be set to true at some time d ≤ t.
Below we refer to d as the first off time of Uj.

Poor-up with early off. Consider a poor-up Uj that occurs at time v in [to, t] and has

its first off time at d in [v + 1, t]. Let F-Expire(Uj) be all the item j whose first expiry time

is within [v + 1, d]. I.e., F-Expire(Uj) = σj,[v+1−W,d−W ]. As an early off can be due to the

expiry of many copies of item j or the arrival of a lot of items, it is natural to divide the

poor-ups into two types: with an absolute off if c(d) ≤ 6
5c(v), and relative off otherwise. For

the case with absolute off, we consider the distinct times t1, t2, . . . , tk in [to, t] when such

poor-ups occur. Let xi be the number of such poor-ups at time ti. Note that xi ≤ 1/(7λ).

For each time ti, we define the characteristic set

Fi = the union of F-Expire(Uj) over all Uj occurring at ti, ti+1, . . . , tk.

Lemma 2.4. (i) For any 1 ≤ i ≤ k− 1, |Fi| > (1+ xiλ)|Fi+1|. (ii) Within [to, t], there are
∑k

i=1 xi = O( 1
λ log n) poor-ups each with an absolute off.

Proof. For (i), consider an item j and a poor-up Uj with an absolute off that occurs at time

ti and has its first off at time di. The decrease in cj must be due to expiry of item j.

|F-Expire(Uj)| ≥ cj(ti) − cj(di) ≥ ĉj(ti) − ĉj(di) − λc(ti) − λc(di)

> 9λĉ(ti) − 3λĉ(di) − λc(ti) − λc(di) (definition of up and off)

≥ (9λ(1 − λ
6 ) − λ)c(ti) − (3λ(1 + λ

6 ) + λ)c(di) ≥ 7λc(ti) − 5λc(di)

≥ (7 − 5(6
5 ))λc(ti) = λc(ti) (definition of absolute off)

Thus, |Fi| > |Fi+1| + xi (λc(ti)). Since Fi ⊆ σ[ti−W+1,t−W ], |Fi| ≤ c(ti). Therefore, |Fi| >
|Fi+1| + xiλ|Fi| > (1 + xiλ)|Fi+1|. By (i), we can prove (ii) similarly to Lemma 2.1 (ii).

Analyzing poor-ups with a relative off is again based on an isolating argument. We

divide [to, t] into O(log n) intervals according to how fast the total item count starting

from to grow; specifically, we want two consecutive time boundaries ui−1 and ui to satisfy
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|σ[to,ui]| > 6
5 |σ[to,ui−1]|. Then we show that for any poor-up within [ui−1, ui − 1], its relative

off, if exists, occurs at or after ui. Thus there are at most 1
λ such poor-ups within each

interval and a total of O( 1
λ log n) within [to, t].

Lemma 2.5. (i) Consider a poor-up Uj with a relative off. Suppose it occurs at time v in

[to, t], and its first off time is at d in [v + 1, t]. Then |σ[to,d]| > 6
5 |σ[to,v]|. (ii) Within [to, t],

there are at most O( 1
λ log n) poor-ups each with a relative off.

Proof. For (i), by the definition of a relative off, c(d) > 6
5c(v). Thus, |σ[to,d]| − |σ[to,v]| =

|σ[v+1,d]| ≥ c(d) − c(v) > 1
6c(d) ≥ 1

6 |σ[to,d]|. This implies |σ[to,d]| > 6
5 |σ[to,v]|.

For (ii), consider the times to = u0 < u1 < u2 < · · · < uℓ ≤ t such that for i ≥ 1,

ui is the first time such that |σ[to,ui]| > 6
5 |σ[to,ui−1]|. For convenience, let uℓ+1 = t + 1.

Note that |σ[to,t]| ≤ n and ℓ = O(log n). Furthermore, for any time v ∈ [ui−1, ui − 1],

|σ[to,v]| ≤
6
5 |σ[to,ui−1]|. Therefore, by (i), for any poor-up of an item j within [ui−1, ui−1], its

relative off, if exists, occurs at or after ui, which implies at time ui−1, cj(ui−1) ≥ λc(ui−1).

Then within each interval [ui−1, ui−1], the number of such j as well as the number of poor-

ups with a relative off are at most 1
λ . Within [to, t], there are ℓ = O(log n) intervals and

hence O( 1
λ log n) poor-ups each with a relative off.

Theorem 2.6. For approximate counting, each individual stream can use the algorithm AC
with λ = ε/11 and it sends at most O(1

ε log n) words to the root within a window.

Memory usage of each remote site. Recall that we use two λ-approximate data

structures [13, 23] for the total item count and individual item counts, which respectively

require O( 1
λ log2(λn)) bits and O( 1

λ) words. Note that O( 1
λ log2(λn)) bits is equivalent to

O( 1
λ log(λn)) words. Furthermore, at any time, we only need to keep track of the last

estimate sent to the root of all item j with offj = false, which by Fact 1, requires O( 1
λ )

words. By setting λ = ε/11 (see Theorem 2.6), the total memory usage of a remote site is

O( 1
λ log(λn)) = O(1

ε log(εn)) words.

3. Extensions

We extend the previous techniques to solve the problems of frequent items and quantiles

and handle out-of-order streams. Below BC refers to our algorithm for basic counting.

Frequent items. Using the algorithms BC and AC, the root can answer the ε-
approximate frequent items as follows. Each stream σ communicates with the root using

BC with error parameter ε/24 and AC with error parameter 11ε/24. At any time t, let

rσ(t) and rj,σ(t) be the latest estimates of the numbers of all items and item j, respectively,

received by the root from σ. To answer a query of frequent items with threshold φ ∈ (0, 1]
at time t, the root can return all items j with

∑

σ rj,σ(t) ≥ (φ − ε
2)

∑

σ rσ(t) as the set of

frequent items.

To see the correctness, let cσ(t) and cj,σ(t) be the number of all items and item j in σ
at time t, respectively. Algorithm BC guarantees |rσ(t) − cσ(t)| ≤ ε

24cσ(t), and algorithm

AC guarantees |rj,σ(t) − cj,σ(t)| ≤ 11ε
24 cσ(t). Therefore, if an item j is returned by the

root, then
∑

σ cj,σ(t) ≥
∑

σ rj,σ(t) − 11ε
24

∑

σ cσ(t) ≥ (φ − ε
2 )

∑

σ rσ(t) − 11ε
24

∑

σ cσ(t) ≥

(φ − ε
2)(1 − ε

24)
∑

σ cσ(t) − 11ε
24

∑

σ cσ(t) ≥ (φ − ε
2 − φ ε

24 − 11ε
24 )

∑

σ cσ(t) where the second

inequality comes from the definition of the algorithm. The last term above is at least
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(φ − ε)
∑

σ cσ(t), so j is a frequent item. If an item j is not returned by the root, then
∑

σ rj,σ(t) < (φ − ε
2)

∑

σ rσ(t) and we can show similarly that
∑

σ cj,σ(t) < φ
∑

σ cσ(t).

Quantiles. We give an algorithm for ε-approximate quantiles queries. Let λ = ε/20.
For each stream, we keep track of the λ-approximate φ-quantiles for φ = 5λ, 10λ, 15λ, . . . , 1.
We update the root for all these φ-quantiles when one of the following two events occurs:

(i) for any k, the value of the (5kλ)-quantile is larger than the value of the (5(k + 1)λ)-

quantile last reported to the root, or (ii) for any k, the value of the (5kλ)-quantile is

smaller than the value of the (5(k−1)λ)-quantile last reported to the root. The stream also

communicates with the root using BC with error parameter λ. In the root’s perspective,

at any query time t, let φ ∈ (0, 1] be the query given and let rσ(t) be the last estimate

sent by σ for the number of all items. The root sorts the quantiles last reported by all

streams and for each stream σ, gives a weight of 5λrσ(t) to each quantile of σ. Then the

root returns the smallest item j in the sorted sequence such that the sum of weights for all

items no greater than j is at least ⌈φ
∑

σ rσ(t)⌉. Careful counting can show that j is an

ε-approximate φ-quantile. To bound the communication cost, let n be the number of items

of σ arriving or expiring during the window [t − W + 1, t]. We observe that when an event

occurs, many items have either arrived or expired after the previous event. Using similar

analysis as before, we can show that within a window, there are at most O(1
ε log n) such

events and thus each stream sends O( 1
ε2 log n) words. By Jensen’s inequality again, our

algorithm’s total communication cost per window is O( k
ε2 log N

k ) where N is the number of

items of the k streams that arrive or expire within the window. Note that the lower bound

of O(1
ε log(εn)) words for approximate frequent items carries to approximate quantiles, as

we can answer approximate frequent items using approximate quantiles as follows. The

root poses ε-approximate φ-quantile queries for φ = ε, 2ε, . . . , 1. Given the threshold φ′

for frequent items, the root returns all items that repeatedly occur as φ′

ε − 2 (or more)

consecutive quantiles, and these items are (4ε)-approximate frequent items.

Out-of-order streams. All our algorithms can be extended to out-of-order stream

with a communication cost increased by a factor of W
W−τ , as follows. Each stream uses

the data structures for out-of-order streams (e.g., [7, 10]) to maintain the local estimates.

Then each stream uses our communication algorithms for in-order streams. It is obvious the

root can answer the corresponding queries. For the communication cost, consider any time

interval P = [t−(W −τ)+1, t] of size W −τ . Items arriving in P must have time-stamps in

[t − W + 1, t]. Using the same arguments as before, we can show the same communication

cost of each algorithm, but only for a window of size W − τ instead of W . Equivalently, in

any window of size W , the communication cost is increased by a factor of O( W
W−τ ).
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Abstract. In the uncapacitated facility location problem, given a graph, a set of demands
and opening costs, it is required to find a set of facilities R, so as to minimize the sum
of the cost of opening the facilities in R and the cost of assigning all node demands to
open facilities. This paper concerns the robust fault-tolerant version of the uncapacitated
facility location problem (RFTFL). In this problem, one or more facilities might fail, and
each demand should be supplied by the closest open facility that did not fail. It is required
to find a set of facilities R, so as to minimize the sum of the cost of opening the facilities
in R and the cost of assigning all node demands to open facilities that did not fail, after
the failure of up to α facilities. We present a polynomial time algorithm that yields a 6.5-
approximation for this problem with at most one failure and a 1.5 + 7.5α-approximation
for the problem with at most α > 1 failures. We also show that the RFTFL problem is
NP-hard even on trees, and even in the case of a single failure.

Introduction

The robust fault-tolerant facility location problem

For a given optimization problem, the robust fault-tolerant version of the problem calls

for finding a solution that is still valid even when some components of the system fail.

We consider the robust fault-tolerant version of the uncapacitated facility location (UFL)

problem. In this problem, given a graph G, a demand ω(v) for every node v and a cost f(v)

for opening a facility at v, it is required to find a set of facilities R, so as to minimize the

sum of the costs of opening the facilities in R and of shipping the demands of each node

from the nearest open facility (at a cost proportional to the distance). In the robust fault-

tolerant version of this problem (RFTFL), one or more facilities might fail. Subsequently,

each demand should be supplied by the closest open facility that did not fail. It is required

to select a set of facilities R, so as to minimize the sum of the costs of opening the facilities

in R and the costs of assigning all node demands to open facilities that did not fail, after

the failure of up to α facilities. We present a polynomial time algorithm that yields a 6.5-

approximation for this problem with at most one failure and a 1.5 + 7.5α-approximation
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for the problem with at most α > 1 failures. We also show that the RFTFL problem is

NP-hard even on trees, and even in the case of a single failure.

Related Work

Many papers deal with approximating the UFL problem, cf. [3, 4, 7, 9, 12, 13]. The

best approximation ratio known for this problem is 3/2, shown by Byrka in [2].

A fault-tolerant version of the facility location problem was first introduced by Jain

and Vazirani [10], who gave it an approximation algorithm with ratio dependent on the

problem parameters. The approximation ratio was later improved by Guha et al. to 2.41

[8] and then by Swamy and Shmoys to 2.076 [14]. However, the variant of the problem

studied in these papers is different from the one studied here. In that version, every node j
is assigned in advance to a number of open facilities, and pays in advance for all of them.

More explicitly, every node j is assigned to rj open facilities, and its shipping cost is some

weighted linear combination of the costs of shipping its demand from all the facilities to

which it is assigned. It is required to find a set of facilities R that minimizes the sum of the

costs of opening the facilities in R and the sum of costs of shipping the demand of each node

j from its rj facilities in R. This approach is used to capture the expected cost of supplying

all clients demand when some of the facilities fail. In contrast, in our definition a node j
does not pay in advance for shipping its demand from a number of open facilities. Rather,

it pays only for the cost of shipping its demand from the surviving facility that actually

supplied its demand. Hence our definition for the fault-tolerant facility location problem

requires searching for a set of facilities R that minimizes the sum of the costs of opening

the facilities in R and the costs of assigning the demands of each node to one open facility

that did not fail, for any failure of up to α facilities. Our approach is used to capture the

worst case cost of supplying all clients demand when some of the facilities fail. We argue

that our definition may be more natural in some cases, where after the failure of some

facilities, each demand should still be supplied by a single supplier, preferably the closest

surviving open facility, and each client should pay only for the cost of shipping its demand

from that surviving facility, and not for all the other (possibly failed) facilities to which it

was assigned originally. On the technical level, the approach taken in [8, 10, 14] is based on

applying randomized rounding techniques and primal-dual methods to the corresponding

integer linear program. This approach does not readily apply to our version of the problem,

and we use a direct combinatorial algorithmic approach instead.

Two other closely related types of problems are the 2-stage stochastic and robust opti-

mization problems (cf. [5, 6]). Both of these models involve two decision stages. In the first

stage, some facilities may be purchased. This stage is followed by some scenario depending

on the specifics of the problem at hand (in a facility location problem for example, the

scenario may specify the clients and their corresponding demands). Subsequently, a second

stage is entered, in which it is allowed to purchase additional facilities (whose cost might

be much higher than in the first stage). In stochastic optimization there is a distribution

over all possible scenarios and the goal is to minimize the expected total cost. In robust

optimization the goal is to minimize the cost of the first stage plus the cost of the worst case

scenario in the second stage. In contrast with these two models, in our variant the facilities

must be selected and opened in advance, and these advance decisions must be adequate

under all possible future scenarios.
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Billionnet and Costa [1] showed a polynomial time algorithm for solving the ordinary

(non-fault-tolerant) UFL problem on trees. In contrast, we show that the fault-tolerant

variant RFTFL is NP-hard on trees.

1. Preliminaries

Let us start with common notation to be used later on. Consider an optimization

problem Π over a universe V , which given an instance I, requires finding a solution consisting

of a set of elements R ⊆ V . Denote by CΠ(I,R) the cost of the solution R on the instance

I of Π. Let R∗
Π(I) denote the optimal solution to the problem Π on instance I, and let

C∗
Π(I) = CΠ(I,R∗

Π(I)) be the cost of the optimal solution. We denote our algorithm for

each problem Π studied later by AΠ(I). The solution returned by the algorithm is referred

to as Ralg
Π (I) and its cost is Calg

Π (I) = CΠ(I,Ralg
Π (I)).

Let us now define the uncapacitated facility location (UFL) problem. Let I = 〈G, l, f, ω〉
be an instance of the problem, where G = (V,E) is a graph with vertex set V = {1, ..., n}
and edge set E. Each node v ∈ V hosts a client in need of service, and may host a facility,

providing service to clients in nearby nodes. Each edge e ∈ E has a positive length l(e).
The distance d(u, v) between two points u and v on G is defined to be the length of the

shortest path between them, where the length of a path is the sum of the lengths of its

edges. For each node v, let f(v) denote the opening cost associated with placing a facility

at v, and let ω(v) denote the demand of the node v. The shipping cost of assigning the

demand ω(u) of a client u to an open facility v is the product SCu,v = ω(u)d(u, v). The

shipping cost SCu,R from a set of open facilities R to a node u is the minimum cost of

assigning u to a server in R, namely, SCu,R = min{SCu,v | v ∈ R}. Defining the distance

d(v,R) between a set of points R and a point v on G to be the minimum distance between

v and any node in R, i.e., d(v,R) = minr∈R d(v, r), we also have SCv,R = ω(v)d(v,R).

It is required to find a subset R ⊆ V that minimizes the sum of costs of opening the

facilities in R and the shipping costs from R to all other nodes. This problem can be

formulated as searching for a subset R ⊆ {1, ..., n} that minimizes the cost function

CUFL(I,R) = Cfacil(I,R) + Cship(I,R), (1.1)

where

Cfacil(I,R) =
∑

r∈R

f(r) and Cship(I,R) =

n
∑

u=1

SCu,R =

n
∑

u=1

ω(u) · d(u,R).

Given a set R of open facilities and a facility r ∈ R, let ϕ(I, r,R) denote the set of clients

that are served by r under R, i.e., ϕ(I, r,R) = {u | d(v, r) ≤ d(v, r′) for every r′ ∈ R}, or

in other words, the nodes u that satisfy d(u,R) = d(u, r), where ties are broken arbitrarily,

i.e., if there is more than one open facility r such that d(u,R) = d(u, r), then just choose

one open facility r that satisfies d(u,R) = d(u, r) and add u to ϕ(I, r,R). (When the set R
is clear from the context we omit it and write simply ϕ(I, r), or even ϕ(r) when the instance

I is clear as well.)

The robust fault-tolerant facility location (RFTFL) problem is defined as follows. Each

client is supplied by the nearest open facility, and in case this facility fails - it is supplied

by the next nearest open facility. We would like to find a solution that is tolerant against a

failure of one node. This problem can be formulated as searching for a subset R ⊆ {1, ..., n}
that minimizes the cost function
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CRFTFL(I,R) = Cfacil(I,R) + Cship(I,R) + Cbackup(I,R), (1.2)

where Cfacil(I,R) and Cship(I,R) are defined as above and

Cbackup(I,R) = max
r∈R







∑

v∈ϕ(I,r,R)

ω(v) · (d(v,R\{r}) − d(v, r))







. (1.3)

Note that

CRFTFL(I,R) = Cfacil(I,R) + max
r∈R
{Cship(I,R \ {r})}

= Cfacil(I,R) + max
r∈R

{

n
∑

v=1

SCv,R\{r}

}

= Cfacil(I,R) + max
r∈R

{

n
∑

v=1

ω(v) · d(v,R\{r})

}

. (1.4)

Again, when the instance I is clear from the context we omit it and write simply CRFTFL(R),

Cfacil(R), Cship(R), Cbackup(R), etc.

We also consider the robust α-fault-tolerant facility location (α RFTFL) problem, for

integer α ≥ 1, where the solution should be resilient against a failure of up to α nodes. We

define the α RFTFL as follows. Each client is supplied by the nearest open facility which

did not fail. We are looking for a subset R ⊆ {1, ..., n} that minimizes the cost function

Cα RFTFL(I,R) = Cfacil(I,R) + max
|R′|≤α

{

n
∑

v=1

ω(v) · d(v,R \R′)

}

. (1.5)

2. A constant approximation algorithm for RFTFL

2.1. The concentrated backup problem and its approximation

Towards developing a constant ratio approximation algorithm for RFTFL, we first

consider a different problem, named concentrated backup (conc bu), defined as follows. An

instance of the problem consists of a pair 〈I,R1〉 where I = 〈G, l, f, ω〉 is defined as before

and R1 = {r1, ..., rk} is a set of nodes. In this version, the nodes of R1 act as both clients

and servers (with open facilities), and all other nodes v /∈ R1 have zero demands. Informally,

it is assumed that we have already paid for opening the facilities in R1, and each r ∈ R1

serves itself, at zero shipping cost. The problem requires to assign each client r ∈ R1 to a

backup server v 6= r, which may be either some server in R1 or a new node from V \R1. For

a set of nodes R2, define the backup cost

Cbu(I,R1, R2) = max
r∈R1

{

SCr,R1∪R2\{r}

}

= max
r∈R1

{ω(r)d(r,R1 ∪R2\{r})}.

We are looking for a set R2 minimizing

Cconc bu(I,R1, R2) = Cfacil(R2) + Cbu(R1, R2). (2.1)

We denote this minimum cost by C∗
conc bu(I,R1). We show a 2-approximation algorithm for

the concentrated backup problem.
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The problems studied in this section and in section 3.1 are closely related to those

considered in [11], and to solve them we use methods similar to the ones presented in [11].

Let us consider a simpler variant of the backup problem, named the bounded backup (bb)

problem, which is defined on 〈I,R1,M〉 and requires looking for a solution R2 minimizing

Cbb(I,R1,M,R2) = Cfacil(R2)

subject to the constraint Cbu(R1, R2) ≤ M , for integer M . We now present a relaxation

algorithm that finds a set R2 satisfying Cfacil(R2) ≤ C∗
bb(R1,M) but obeying only the

relaxed constraint Cbu(R1, R2) ≤ 2M instead Cbu(R1, R2) ≤M .

Algorithm Abb(I, R1, M)

(1) Ralg
bb ← ∅

(2) For i = 1 to k do:

• Si ← {v | ω(ri)d(v, ri) ≤ 2M}\{ri} /* “relaxed” backup servers for ri

*/

• If Si ∩ (R1 ∪ Ralg
bb ) = ∅ then add to Ralg

bb the node v in Si with the

minimum facility cost f(v).

(3) Return Ralg
bb .

Let us now prove the properties of algorithm Abb. For every ri ∈ R1 let the set of

feasible backup servers be Ti = {v | ω(ri)d(v, ri) ≤M}\{ri}. Let the set of relaxed backup

servers selected by the algorithm (namely, the final set Ralg
bb it returns) be Ralg

bb (R1,M) =

{qalg
1 , ..., qalg

J }. Let ℓj be the phase in which the algorithm adds the new facility qalg
j to Ralg

bb ,

for 1 ≤ j ≤ J .

Lemma 2.1. Tℓi
∩ Tℓj

= ∅ for 1 ≤ i, j ≤ J .

Proof: Assume otherwise, and let v ∈ Tℓi
∩ Tℓj

for some 1 ≤ i, j ≤ J, i 6= j. Assume

without loss of generality that ω(rℓi
) ≤ ω(rℓj

). Since ω(rℓj
)d(v, rℓj

) ≤ M , necessarily

ω(rℓi
)d(v, rℓj

) ≤M as well, and by the definition of Tℓi
, also ω(rℓi

)d(v, rℓi
) ≤M , hence

ω(rℓi
)d(rℓi

, rℓj
) ≤ ω(rℓi

)(d(v, rℓi
) + d(v, rℓj

)) ≤ 2M,

implying that rℓj
∈ Sℓi

∩ R1, so the algorithm should not have opened a new facility in

phase ℓi, contradiction.

Lemma 2.2. Cfacil(R
alg
bb (R1,M)) ≤ C∗

bb(R1,M).

Proof: Notice that there must be at least one node from every Ti in the optimal solution

R∗
bb(R1,M). By Lemma 2.1 the sets Tℓ1 , ..., TℓJ

are disjoint, so there are at least J distinct

nodes q∗j ∈ R∗
bb(R1,M), one from each Tℓj

, for 1 ≤ j ≤ J . In each phase i, the algorithm

selects the cheapest node in Si ⊇ Ti. Therefore, f(qalg
j ) ≤ f(q∗j ) for every 1 ≤ j ≤ J . Hence

Cfacil(R
alg
bb (R1,M)) =

J
∑

j=1
f(qalg

j ) ≤
J
∑

j=1
f(q∗j ) ≤ C∗

bb(R1,M).

Lemma 2.3. Cbu(R1, R
alg
bb (R1,M)) ≤ 2M .
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Proof: For each server ri in R1, the algorithm ensures that there is at least one open facility

from the set Si, so ω(ri)d(ri, R1 ∪Ralg
bb (R1,M) \ {ri}) ≤ 2M .

Now we present an approximation algorithm Aconc bu for the concentrated backup prob-

lem using the relaxation algorithm Abb for the bounded backup problem. First note that

there can be at most nk possible values for the shipping costs SCu,v = ω(u)d(u, v).

Algorithm Aconc bu(I, R1)

(1) For every M ∈ {SCu,v | u, v ∈ V } do:

• let Ralg
bb (R1,M)← Abb(I,R1,M).

(2) Return the set Ralg
bb (R1,M) with the minimum cost

Cconc bu(R1, R
alg
bb (R1,M)).

Lemma 2.4. Calg
conc bu(I,R1) ≤ 2C∗

conc bu(I,R1).

Proof: Recall that, letting R∗
2 = R∗

conc bu(R1),

C∗
conc bu(I,R1) = Cconc bu(I,R1, R

∗
2) = Cfacil(R

∗
2) + Cbu(I,R1, R

∗
2).

Let u ∈ R1 be the node that attains the maximum shipping cost SCu,R1∪R2\{u}, i.e., satisfies

ω(u)d(u,R1 ∪ R∗
2\{u}) = Cbu(I,R1, R

∗
2), and let v ∈ R1 ∪ R∗

2\{u} be its backup, i.e., the

closest node to u. Then C∗
conc bu(I,R1) = Cconc bu(I,R1, R

∗
2) = Cfacil(R

∗
2)+SCu,v. Since the

algorithm examines all possible values of M , it tests also M0 = SCu,v. For this value, the

returned set Ralg
bb (R1,M0) has opening cost at most C∗

bb(R1,M0) = Cfacil(R
∗
2) and backup

cost at most

Cbu(I,R1, R
alg
bb (R1,M0)) ≤ 2M0 by Lemmas 2.2 and 2.3. Since the algorithm takes the

minimum cost Cconc bu(R1, R
alg
bb (R1,M)) over all possible values of M , the resulting cost

satisfies Calg
conc bu(I,R1) ≤ Cfacil(R

∗
2)+2SCu,v ≤ 2C∗

conc bu(I,R1), namely, an approximation

ratio of 2.

2.2. 6.5-approximation algorithm for RFTFL

We now present a polynomial time algorithm ARFTFL that yields 6.5-approximation

for the robust fault-tolerant uncapacitated facility location problem RFTFL. Consider an

instance I = 〈G, l, f, ω〉 of the problem. The algorithm consists of three stages.

Stage 1: Apply the 1.5-approximation algorithm of [2] to the original UFL problem in

order to find an initial subset R1 of servers. Notice that the cost of this solution satisfies

CUFL(R1) ≤ 1.5C∗
UFL ≤ 1.5C∗

RFTFL . (2.2)

Each node is now assigned to a server in R1. Next, we need to assign to each node a backup

server which will serve it in case its original server fails.

Stage 2: Transform the given instance I = 〈V, l, ω, f〉 of the problem into an instance

I ′ = 〈V, l, ω′, f ′〉 as follows. First, change the facility cost f by setting f ′(r) = 0 for r ∈ R1.

Next, for each server r ∈ R1, relocate all the demands of the nodes that are served by r,
and place them at the server r itself, that is, set

ω′(r) =

{
∑

v∈ϕ(I,r,R1)

ω(v), for r ∈ R1,

0, for r /∈ R1.
(2.3)
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Stage 3: Invoke the 2-approximation algorithm Aconc bu for the concentrated backup prob-

lem on the new instance I ′ and the set R1. The approximation algorithm returns a new set

R2. We then return the set R1 ∪R2 as the final set of open facilities.

Lemma 2.5. For every instance I and set R1 ⊆ V , C∗
conc bu(I ′, R1) ≤ C∗

RFTFL(I) +

CUFL(I,R1).

Proof: Consider some vertex r ∈ R1 and let ϕ(I, r,R1) = {vr
1, ..., v

r
kr
} be the nodes it

serves. Consider the optimal solution R∗
RFTFL(I) to the RFTFL problem. Let dr

i be the

distance from r to vr
i for 1 ≤ i ≤ kr, and also let xr

i be the distance from vr
i to its optimal

backup server, which is also its distance to R∗
r ≡ R1 ∪R∗

RFTFL(I)\{r}, i.e., xr
i = d(vr

i , R
∗
r).

By the triangle inequality, d(r,R∗
r) ≤ dr

i + xr
i , for every 1 ≤ i ≤ kr, so

ω′(r) · d(r,R∗
r) =

kr
∑

l=1

ω(vr
l ) · d(r,R∗

r) ≤

kr
∑

l=1

ω(vr
l )(d

r
l + xr

l )

=

kr
∑

l=1

ω(vr
l )d(vr

l , R1) +

kr
∑

l=1

ω(vr
l )x

r
l

≤

n
∑

v=1

ω(v) · d(v,R1) +

n
∑

v=1

ω(v) · d(v,R∗
r).

Therefore,

Cbu(I ′, R1, R
∗
RFTFL(I)) = max

r∈R1

{

ω′(r) · d(r,R∗
r)

}

≤ Cship(I,R1) + max
r∈R1

{

n
∑

v=1

ω(v) · d(v,R∗
r)

}

.

Using (1.4) and (2.1) we now bound the cost of the optimal solution for problem conc bu
by

C∗
conc bu(I ′, R1) ≤ Cconc bu(I ′, R1, R

∗
RFTFL(I))

= Cfacil(I
′, R∗

RFTFL(I)) + Cbu(I ′, R1, R
∗
RFTFL(I))

≤ Cfacil(I
′, R∗

RFTFL(I)) + max
r∈R1

{

n
∑

v=1

ω(v)d(v,R∗
r )

}

+ Cship(I,R1)

≤ C∗
RFTFL(I) + Cship(I,R1) ≤ C∗

RFTFL(I,R1) + CUFL(I,R1).

Lemma 2.6. For every instance I and sets R1, R2 ⊆ V ,

CRFTFL(I,R1 ∪R2) ≤ CUFL(I,R1) + Cconc bu(I ′, R1, R2).

Proof: The cost of opening the facilities in R1∪R2 is clearly at most the cost of opening the

facilities in R1 plus the cost of opening the facilities in R2. For every facility r ∈ R1 ∪R2,

in order to bound Cship(I,R1 ∪ R2 \ {r}), note that one can first move each client v to its

closest open facility in R1, and then move all the clients assigned to r (if r ∈ R1) to the

backup facility of r in R2. The inequality follows. More formally we have the following.

Recall that by (1.4),

CRFTFL(I,R1 ∪R2) = Cfacil(I,R1 ∪R2) + max
r∈R1∪R2

{ Cship(I,R1 ∪R2 \ {r})} .
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Consider first the case that max
r∈R1∪R2

{Cship(I,R1 ∪R2 \ {r})} is attained for some r′ ∈ R2.

In this case, we get by (1.1) that

CRFTFL(I,R1 ∪R2) = Cfacil(I,R1 ∪R2) + Cship(I,R1 ∪R2 \ {r
′})

≤ Cfacil(I,R1 ∪R2) + Cship(I,R1)

= CUFL(I,R1) + Cfacil(I,R2) ≤ CUFL(I,R1) + Cconc bu(I ′, R1, R2).

So now assume that max
r∈R1∪R2

{Cship(I,R1 ∪R2 \ {r})} is attained for some r′ ∈ R1. There-

fore,

CRFTFL(I,R1 ∪R2) = Cfacil(I,R1 ∪R2) + Cship(I,R1 ∪R2 \ {r
′})

= Cfacil(I,R1) + Cfacil(I,R2) +

n
∑

v=1

SCv,R1∪R2

+
∑

v∈ϕ(I,r′,R1∪R2)

ω(v) · (d(v,R1 ∪R2\{r
′})− d(v, r′))

≤ CUFL(I,R1) + Cfacil(I,R2)

+ max
r∈R1







∑

v∈ϕ(I,r,R1)

ω(v) · (d(r,R1 ∪R2\{r}))







= CUFL(I,R1) + Cfacil(I,R2) + max
r∈R1

{

w′(r) · (d(r,R1 ∪R2\{r}))
}

= CUFL(I,R1) + Cconc bu(I ′, R1, R2).

Lemma 2.7. Algorithm ARFTFL yields a 6.5-approximation for the RFTFL problem.

Proof: Consider the set of opened facilities R1∪R2. By Lemma 2.4, R2 is a 2-approximation

of the concentrated backup problem on the instance I ′, so

Cconc bu(I ′, R1, R2) ≤ 2C∗
conc bu(I ′, R1).

By Lemma 2.5, C∗
conc bu(I ′, R1) ≤ C∗

RFTFL(I) + CUFL(I,R1), hence

Cconc bu(I ′, R1, R2) ≤ 2C∗
RFTFL(I) + 2CUFL(I,R1).

Using Lemma 2.6 we get

CRFTFL(I,R1 ∪R2) ≤ 3CUFL(I,R1) + 2C∗
RFTFL(I),

and by (2.2), CRFTFL(I,R1 ∪R2) ≤ 6.5C∗
RFTFL(I).

3. An approximation algorithm for α RFTFL

3.1. The concentrated α backup problem

As in the case of a single failure, we first consider a different problem, named concen-

trated α backup (conc α bu), defined as follows. An instance of the problem consists of a

pair 〈I,R1〉 where I = 〈G, l, f, ω〉 is defined as before and R1 is a set of nodes. The nodes

of R1 act as both clients and servers (with open facilities), and all other nodes v /∈ R1 have

zero demands. We are looking for a set R2 minimizing

Cconc α bu(I,R1, R2) = Cfacil(R2) + Cα bu(I,R1, R2), (3.1)
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where Cα bu is the maximum α backup cost for a set of nodes R2, defined as

Cα bu(I,R1, R2) = max
|F |≤α







∑

r∈(F∩R1)

ω(r) · d(r,R1 ∪R2\F )







.

We will shortly present a 3α-approximation algorithm for the concentrated α-backup

problem.

Towards this, let us first consider a simpler variant of the backup problem, named the

α-bounded backup (α bb) problem, which is defined on 〈I,R1,M〉 and requires looking for

a solution R2 minimizing

Cα bb(R1,M,R2) = Cfacil(R2)

subject to the constraint Clight α bu(R1, R2) ≤M for some integer M , where

Clight α bu(R1, R2) = max
r∈R1,|F |≤α

{ω(r)d(r,R1 ∪R2\F )}.

We now present a relaxation algorithm that finds a set R2 satisfying Cfacil(R2) ≤
C∗

α bb(R1,M) but allowing the relaxed constraint Clight α bu(R1, R2) ≤ 3M instead of

Clight α bu(R1, R2) ≤M .

Algorithm Aα bb(I, R1, M)

(1) Ralg
α bb ← ∅

(2) Let r1, ..., rk be the servers in R1 sorted by nonincreasing order of demands.

(3) Z ← ∅ /* The set of servers ri where the algorithm opens facilities in phase

i */

(4) For i = 1 to k do:

(5) • Si ← {v | ω(ri)d(v, ri) ≤ 2M}\{ri}.
• Ti ← {v | ω(ri)d(v, ri) ≤M}\{ri}
• If Si ∩ Z = ∅ then:

– Add to Ralg
α bb, the α− |Ti ∩ (R1 ∪Ralg

α bb)| nodes in Ti\(R1 ∪Ralg
α bb)

with the lowest facility costs.

– Z ← Z ∪ {ri}

(6) Return Ralg
α bb.

Let us now prove the properties of Alg. Aα bb. Let {ℓj | 1 ≤ j ≤ J} be the phases in

which the algorithm adds new facilities to Ralg
α bb. By a proof similar to that of Lemma 2.1,

we have the following.

Lemma 3.1. Tℓi
∩ Tℓj

= ∅ for 1 ≤ j < i ≤ J .

Lemma 3.2. Cfacil(R
alg
α bb(R1,M)) ≤ C∗

α bb(R1,M).

Proof: There must be at least α nodes in every Tℓj
in the optimal solution R∗

α bb(R1,M).

By Lemma 3.1 the sets Tℓj
for 1 ≤ j ≤ J are disjoint, so the only nodes that the algorithm

adds to Ralg
α bb from the set Tℓj

are added at phase ℓj . The algorithm selects the cheapest

nodes in Tℓj
in order to complete to α nodes. Therefore, Cfacil(R

alg
α bb(R1,M) ∩ Tℓj

) ≤
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Cfacil(R
∗
α bb(R1,M) ∩ Tℓj

) for every 1 ≤ j ≤ J . Hence

Cfacil(R
alg
α bb(R1,M)) =

J
∑

j=1

Cfacil(R
alg
α bb(R1,M) ∩ Tℓj

) ≤
J

∑

j=1

Cfacil(R
∗
α bb(R1,M) ∩ Tℓj

)

≤ C∗
α bb(R1,M).

Lemma 3.3. Cα bu(R1, R
alg
α bb(R1,M)) ≤ 3M .

Proof: For each server vi ∈ R1, the algorithm ensures that either there are at least α open

facilities from the set Ti or vi is at distance at most 2M from another vj ∈ R1 that has α
open facilities from the set Tj. In the first case the distance is at most M and in the second

- at most 3M .

Now we present an approximation algorithm Aconc α bu for the concentrated α backup

problem, using the relaxation algorithm Aα bb for the α bounded backup problem.

Algorithm Aconc α bu(I, R1)

(1) For every subset T ⊆ {SCv,u | v, u ∈ V } such that |T | ≤ α do:

• M(T )←
∑

m∈T m

• let Ralg
α bb(R1,M(T ))← Aα bb(I,R1,M(T )).

(2) Return the set Ralg
α bb(R1,M(T )) with the minimum cost

Cconc α bu(R1, R
alg
α bb(R1,M(T ))).

Lemma 3.4. Calg
conc α bu(I,R1) ≤ 3αC∗

conc α bu(I,R1).

Proof: Denote the optimal solution for conc α bu on 〈I,R1〉 by R∗
2 = R∗

conc α bu(R1). Then

C∗
conc α bu(I,R1) = Cconc α bu(I,R1, R

∗
2) = Cfacil(R

∗
2) + Cα bu(I,R1, R

∗
2).

Let {u1, ..., uj} ⊆ R1 and {v1, ..., vj} ⊆ R1 ∪ R∗
2 for some j ≤ α be the sets of

nodes that attain the maximum shipping cost, i.e., satisfy Cα bu(I,R1, R
∗
2) = M0 for

M0 =
j

∑

i=1
SCui,vi

=
j

∑

i=1
ω(ui)d(ui, vi). Then C∗

conc α bu(I,R1) = Cfacil(R
∗
2) + M0. Notice

that there must be at least α nodes in the set R∗
2 ∪ R1 at distance at most M0 from

every server r in R1. Clearly Cfacil(R
∗
α bb(R1,M0)) ≤ Cfacil(R

∗
2). Since the algorithm

examines all possible values of M(T ), it tests also M0. For this value, the returned set

Ralg
α bb(R1,M0) has opening cost at most C∗

α bb(R1,M0) ≤ Cfacil(R
∗
2) and backup cost at

most Cα bu(I,R1, R
alg
α bb(R1,M0)) ≤ 3M0 by Lemmas 3.2 and 3.3. Since the algorithm takes

the minimum cost Cconc α bu(R1, R
alg
α bb(I,R1,M(T ))) over all possible subsets T , the result-

ing cost is at most

Calg
conc α bu(I,R1) ≤ Cconc α bu(I,R1, R

alg
α bb(R1,M0))

≤ Cfacil(R
∗
2) + max

|F |≤α







∑

r∈(F∩R1)

ω(r)d(r,R1 ∪Ralg
α bb(R1,M0)\F )







≤ Cfacil(R
∗
2) + 3αM0 ≤ 3αC∗

conc α bu(I,R1).
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3.2. (1.5 + 7.5α)-approximation algorithm to the α RFTFL

We now present a polynomial time algorithm named Aα RFTFL, yielding a (1.5 +

7.5α)-approximation for the robust fault-tolerant uncapacitated facility location prob-

lem α RFTFL against a failure of α nodes, for constant α > 1. Consider an instance

I = 〈G, l, f, ω〉 of the problem. The algorithm is similar to Algorithm RFTFL, except for

the third stage. Instead of invoking the 2-approximation algorithm Aconc bu for the concen-

trated backup problem on the new instance I ′ and the set R1, invoke the 3α-approximation

algorithm Aconc α bu for the concentrated α backup problem on the new instance I ′ and the

set R1. Algorithm Aconc α bu returns a new set Ralg
2 . Algorithm Aα RFTFL now returns the

set R1 ∪Ralg
2 . Proof of the following lemma is deferred to the full paper.

Lemma 3.5. Algorithm Aα RFTFL yields a (1.5 + 7.5α)-approximation for the α RFTFL

problem.

4. Robust Fault-tolerant uncapacitated facility location on trees

In this section we show that the RFTFL problem is NP-hard even on trees. The claim

holds even in the case where only the edge lengths or only the node demands are variable

and the other parameters are uniform. An instance of the RFTFL problem is 〈T, l, f, ω, P 〉,
where T is a tree, l, f and ω are defined as before and P is an integer. It is required to

decide if the cost of the optimal solution to the RFTFL problem on the instance 〈T, l, f, ω〉
is P or less.

The proofs, via reductions from subset sum and from a variant of the partition problem,

are deferred to the full paper. The following results are established.

Theorem 4.1. RFTFL on trees is NP-complete even with

(1) unit edge lengths and opening costs (but variable node demands),

(2) unit node demands and opening costs (but variable edge lengths).
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s log n that answers membership queries withO(1) bit-probes. This nearly matches the asymp-
totically optimal parameters for the noiseless case: lengthO(s log n) and one bit-probe, due to
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evaluate the output ofg on a given integer modulon.
We construct an error-correcting data structure for this problem with length nearly linear in
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1. Introduction

The area of data structures is one of the oldest and most fundamental parts of computer science,
in theory as well as in practice. The underlying question is a time-space tradeoff: we are given a
piece of data, and we would like to store it in a short, space-efficient data structure that allows
us to quickly answer specific queries about the stored data. On one extreme, we can store the
data as just a list of the correct answers to all possible queries. This is extremely time-efficient
(one can immediately look up the correct answer without doing any computation) but usually takes
significantly more space than the information-theoretic minimum. At the other extreme, we can
store a maximally compressed version of the data. This method is extremely space-efficient but not
very time-efficient since one usually has to undo the whole compression first. A good data structure
sits somewhere in the middle: it does not use much more space than the information-theoretic
minimum, but it also stores the data in a structured way that enables efficient query-answering.

It is reasonable to assume that most practical implementations of data storage are susceptible to
noise: over time some of the information in the data structure may be corrupted or erased by various
accidental or malicious causes. This buildup of errors may cause the data structure to deteriorate
so that most queries are not answered correctly anymore. Accordingly, it is a natural task to design
data structures that are not only efficient in space and time but also resilient against a certain amount
of adversarialnoise, where the noise can be placed in positions that make decoding as difficult as
possible.

Ways to protect information and computation against noise have been well studied in the theory
of error-correcting codes and of fault-tolerant computation. In the data structure literature, construc-
tions under often incomparable models have been designed to cope with noise. We mention a few
of these models here. First, Aumann and Bender [1] studied pointer-based data structures such as
linked lists, stacks, and binary search trees. In this model, errors (adversarial but detectable) occur
whenever all the pointers from a node are lost. They studied the dependence between the number of
errors and the number of nodes that become irretrievable, and designed a number of efficient data
structures where this dependence is reasonable.

Another model for studying data structures with noise is the faulty-memory RAM model, in-
troduced by Finocchi and Italiano [10]. In a faulty-memory RAM, there areO(1) memory cells
that cannot be corrupted by noise. Elsewhere, errors (adversarial and undetectable) may occur at
any time, even during the decoding procedure. Many data structure problems have been examined
in this model, such as sorting [8], searching [9], priority queues [13] and dictionaries [4]. How-
ever, the number of errors that can be tolerated is typically less than a linear portion of the size
of the input. Furthermore, correctness can only be guaranteed for keys that are not affected by
noise. For instance, for the problem of comparison-sorting onn keys, the authors of [8] designed
a resilient sorting algorithm that tolerates

√
n log n keys being corrupted and ensures that the set of

uncorrupted keys remains sorted.
Recently, de Wolf [19] considered another model of resilient data structures. The representa-

tion of the data structure is viewed as a bit-string, from which a decoding procedure can read any
particular set of bits to answer a data query. The representation must be able to tolerate a constant
fractionδ of adversarial noise in the bit-string1 (but not inside the decoding procedure). His model
generalizes the usual noise-free data structures (whereδ = 0) as well as the so-called “locally de-
codable codes” (LDCs) [14]. Informally, an LDC is an encoding that is tolerant of noise and allows

1We only consider bit-flip-errors here, not erasures. Since erasures are easier to deal with than bit-flips, it suffices to
design a data structure dealing with bit-flip-errors.
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fast decoding so that each message symbol can be retrieved correctly with high probability. Using
LDCs as building blocks, de Wolf constructed data structures for several problems.

Unfortunately, de Wolf’s model has the drawback that the optimal time-space tradeoffs are
much worse than in the noise-free model. The reason is that all known constructions of LDCs that
makeO(1) bit-probes [21, 7] have very poor encoding length (super-polynomial in the message
length). In fact, this encoding length provably must be super-linear in the message length [14, 16,
20]. As his model is a generalization of LDCs, data structures cannot have a succinct representation
that has length proportional to the information-theoretic bound.

We thus ask: what is a clean model of data structures that allows efficient representationsand
has error-correcting capabilities? Compared with the pointer-based model and the faulty-memory
RAM, de Wolf’s model imposes a rather stringent requirement on decoding:everyquery must
be answered correctly with high probability from the possibly corrupted encoding. While this re-
quirement is crucial in the definition of LDCs due to their connection to complexity theory and
cryptography, for data structures it seems somewhat restrictive.

In this paper we consider a broader, more relaxed notion of error-correction for data structures.
In our model, for most queries, the decoder has to return the correct answer with high probability.
However, for the few remaining queries, the decoder may claim ignorance, i.e., declare the data
item unrecoverable from the (corrupted) data structure. Still, foreveryquery, the answer is incorrect
only with small probability. In fact, just as de Wolf’s model is a generalization of LDCs, our model
in this paper is a generalization of the “relaxed” locally decodable codes (RLDCs) introduced by
Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [3]. They relax the usual definition of an
LDC by requiring the decoder to return the correct answer onmostrather than all queries. For the
remaining queries it is allowed to claim ignorance, i.e., to output a special symbol ‘⊥’ interpreted
as “don’t know” or “unrecoverable.” As shown in [3], relaxing the LDC-definition like this allows
for constructions of RLDCs withO(1) bit-probes ofnearly linear length.

Using RLDCs as building blocks, we construct error-correcting data structures that are very
efficient in terms of time as well as space. Before we describe our results, let us define our model
formally. First, adata structure problemis specified by a setD of data items, a setQ of queries, a
setA of answers, and a functionf : D×Q→ Awhich specifies the correct answerf(x, q) of query
q to data itemx. A data structure forf is specified by four parameters:t the number bit-probes,
δ the fraction of noise,ε an upper bound on the error probability for each query, andλ an upper
bound on the fraction of queries inQ that are not answered correctly with high probability (the ‘λ’
stands for “lost”).

Definition 1.1. Let f : D×Q→ A be a data structure problem. Lett > 0 be an integer,δ ∈ [0, 1],
ε ∈ [0, 1/2], andλ ∈ [0, 1]. We say thatf has a(t, δ, ε, λ)-data structureof lengthN if there exist
an encoderE : D → {0, 1}N and a (randomized) decoderD with the following properties: for
everyx ∈ D and everyw ∈ {0, 1}N at Hamming distance∆(w, E(x)) ≤ δN ,

(1) D makes at mostt bit-probes tow,
(2) Pr[Dw(q) ∈ {f(x, q),⊥}] ≥ 1 − ε for everyq ∈ Q,
(3) the setG = {q : Pr[Dw(q) = f(x, q)] ≥ 1− ε} has size at least(1− λ)|Q| (‘G’ stands for

“good”),
(4) if w = E(x), thenG = Q.

HereDw(q) denotes the random variable which is the decoder’s output on inputsw andq. The
notation indicates that it accesses the two inputs in different ways: while it has full access to the
queryq, it only has bit-probe access (or “oracle access”) to the stringw.
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We say that a(t, δ, ε, λ)-data structure iserror-correcting, or anerror-correcting data structure,
if δ > 0. Settingλ = 0 recovers the original notion of error-correction in de Wolf’s model [19].
A (t, δ, ε, λ)-relaxed locally decodable code (RLDC), defined in [3], is an error-correcting data
structure for the membership functionf : {0, 1}n ×[n] → {0, 1}, wheref(x, i) = xi. A (t, δ, ε)-
locally decodable code (LDC), defined by Katz and Trevisan [14], is an RLDC withλ = 0.

Remark 1.2. For the data structure problems considered in this paper, our decoding procedures
make onlynon-adaptiveprobes, i.e., the positions of the probes are determined all at once and
sent simultaneously to the oracle. For other data structure problems it may be natural for decod-
ing procedures to be adaptive. Thus, we do not requireD to be non-adaptive in Condition 1 of
Definition 1.1.

1.1. Our results

We obtain efficient error-correcting data structures for the following two data structure prob-
lems.

M EMBERSHIP : Consider a universe[n] = {1, . . . , n} and some nonnegative integers ≤ n. Given
a setS ⊆ [n] with at mosts elements, one would like to storeS in a compact representation that
can answer “membership queries” efficiently, i.e., given an indexi ∈ [n], determine whether or
not i ∈ S. FormallyD = {S : S ⊆ [n], |S| ≤ s}, Q = [n], andA = {0, 1}. The function
MEMn,s(S, i) is 1 if i ∈ S and0 otherwise.

Since there are at least
(n

s

)

subsets of the universe of size at mosts, each subset requiring a
different instantiation of the data structure, the information-theoretic lower bound on the space of
any data structure is at leastlog

(n
s

)

≈ s log n bits.2 An easy way to achieve this is to storeS in
sorted order. If each number is stored in its ownlog n-bit “cell,” this data structure takess cells,
which is s log n bits. To answer a membership query, one can do a binary search on the list to
determine whetheri ∈ S using aboutlog s “cell-probes,” orlog s · log n bit-probes. The length
of this data structure is essentially optimal, but its number of probes is not. Fredman, Komlós,
and Szemerédi [11] developed a famous hashing-based data structure that has lengthO(s) cells
(which isO(s log n) bits) and only needs aconstantnumber of cell-probes (which isO(log n) bit-
probes). Buhrman, Miltersen, Radhakrishnan, and Venkatesh [5] improved upon this by designing
a data structure of lengthO(s log n) bits that answers queries withonly one bit-probeand a small
error probability. This is simultaneously optimal in terms of time (clearly one bit-probe cannot be
improved upon) and space (up to a constant factor).

None of the aforementioned data structures can tolerate a constant fraction of noise. To protect
against noise for this problem, de Wolf [19] constructed an error-correcting data structure with
λ = 0 using a locally decodable code (LDC). That construction answers membership queries in
t bit-probes and has length roughlyL(s, t) log n, whereL(s, t) is the shortest length of an LDC
encodings bits with bit-probe complexityt. Currently, all known LDCs witht = O(1) have
L(s, t) super-polynomial ins [2, 21, 7]. In fact,L(s, t) must be super-linear for all constantt, see
e.g. [14, 16, 20].

Under our present model of error-correction, we can construct much more efficient data struc-
tures with error-correcting capability. First, it is not hard to show that by composing the BMRV data
structure [5] with the error-correcting data structure for MEMn,n (equivalently, an RLDC) [3], one

2Our logs are always to base2.
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can already obtain an error-correcting data structure of lengthO((s log n)1+η), whereη is an arbi-
trarily small constant. However, following an approach taken in [19], we obtain a data structure of
lengthO(s1+η log n), which is much shorter than the aforementioned construction ifs = o(log n).

Theorem 1.3. For everyε, η ∈ (0, 1), there exist an integert > 0 and realτ > 0, such that for all
s andn, and everyδ ≤ τ , MEMn,s has a(t, δ, ε, s

2n)-data structure of lengthO(s1+η log n).

We will prove Theorem 1.3 in Section 2. Note that the size of the good setG is at leastn− s
2 .

Hence corrupting aδ-fraction of the bits of the data structure may cause a decoding failure for at
most half of the queriesi ∈ S but not all. One may replace this factor1

2 easily by another constant
(though the parameterst andτ will then change).

POLYNOMIAL EVALUATION : Let Zn denote the set of integers modulon and s ≤ n be some
nonnegative integer. Given a univariate polynomialg ∈ Zn[X] of degree at mosts, we would
like to storeg in a compact representation so that for each evaluation querya ∈ Zn, g(a) can be
computed efficiently. Formally,D = {g : g ∈ Zn[X],deg(g) ≤ s},Q = Zn, andA = Zn, and the
function is POLYEVAL n,s(g, a) = g(a).

Since there arens+1 polynomials of degree at mosts, with each polynomial requiring a dif-
ferent instantiation of the data structure, the information-theoretic lower bound on the space of any
data structure for this problem is at leastlog(ns+1) ≈ s log n bits. Since each answer is an element
of Zn and must be represented by⌊log n⌋ + 1 bits, ⌊log n⌋ + 1 is the information-theoretic lower
bound on the bit-probe complexity.

Consider the following two naive solutions. On one hand, one can simply record the evaluations
of g in a table withn entries, each with⌊log n⌋ + 1 bits. The length of this data structure is
O(n log n) and each query requires reading only⌊log n⌋+1 bits. On the other hand,g can be stored
as a table of itss + 1 coefficients. This gives a data structure of length and bit-probe complexity
(s+ 1)(⌊log n⌋ + 1).

A natural question is whether one can construct a data structure that is optimal both in terms of
space and time, i.e., has lengthO(s log n) and answers queries withO(log n) bit-probes. No such
constructions are known to exist. However, some lower bounds are known in the weaker cell-probe
model, where each cell is a sequence of⌊log n⌋ + 1 bits. For instance, as noted in [18], any data
structure forPOLYNOMIAL EVALUATION that storesO(s2) cells (O(s2 log n) bits) requires reading
at leastΩ(s) cells. Moreover, by [17], iflog n≫ s log s and the data structure is constrained to store
sO(1) cells, then its query complexity isΩ(s) cells. This implies that the second trivial construction
described above is essentially optimal in the cell-probe model.

Recently, Kedlaya and Umans [15] obtained a data structure of lengths1+η log1+o(1) n (where
η is an arbitrarily small constant) that answers evaluation queries withO(polylog s · log1+o(1) n)
bit-probes. These parameters exhibit the best tradeoff betweens andn so far. Whens = nη for
some0 < η < 1, the data structure of Kedlaya and Umans [15] is much superior to the trivial
solution: its length is nearly optimal, and the query complexity drops frompoly n to onlypolylog n
bit-probes.

Here we construct an error-correcting data structure for the polynomial evaluation problem that
works even in the presence of adversarial noise, with length nearly linear ins log n and bit-probe
complexityO(polylog s · log1+o(1) n). Formally:

Theorem 1.4.For everyε, λ, η ∈ (0, 1), there existsτ ∈ (0, 1) such that for all positive integerss ≤
n, for all δ ≤ τ , the data structure problemPOLYEVAL n,s has a(O(polylog s·log1+o(1) n), δ, ε, λ)-
data structure of lengthO((s log n)1+η).
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Remark 1.5. We note that Theorem 1.4 easily holds whens = (log n)o(1). As we discussed
previously, one can just store a table of thes + 1 coefficients ofg. To make this error-correcting,
encode the entire table by a standard error-correcting code. This has length and bit-probe complexity
O(s log n) = O(log1+o(1) n).

1.2. Our techniques

At a high level, for both data structure problems we build our constructions by composing
a relaxed locally decodable code with an appropriate noiseless data structure. If the underlying
probe-accessing scheme in a noiseless data structure is “pseudorandom,” then the noiseless data
structure can be made error-correcting by appropriate compositions with other data structures. By
pseudorandom, we mean that if a query is chosen uniformly at random fromQ, then the positions of
the probes selected also “behave” as if they are chosen uniformly at random. Such property allows
us to analyze the error-tolerance of our constructions.

More specifically, for theMEMBERSHIP problem we build upon the noiseless data structure
of Buhrman et al. [5]. While de Wolf [19] combined this with LDCs to get a rather long data
structure withλ = 0, we will combine it here with RLDCs to get nearly optimal length with
small (but non-zero)λ. In order to boundλ in our new construction, we make use of the fact
that the [5]-construction is a bipartiteexpander graph, as explained below after Theorem 2.2. This
property wasn’t needed in [19]. The left side of the expander represents the set of queries, and a
neighborhood of a query (a left node) represents the set of possible bit-probes that can be chosen to
answer this query. The expansion property of the graph essentially implies that for a random query,
the distribution of a bit-probe chosen to answer this query is close to uniform.3 This property allows
us to construct an efficient, error-correcting data structure for this problem.

For the polynomial evaluation problem, we rely upon the noiseless data structure of Kedlaya
and Umans [15], which has a decoding procedure that uses the reconstruction algorithm from the
Chinese Remainder Theorem. The property that we need is the simple fact that ifa is chosen
uniformly at random fromZn, then for anym ≤ n, a modulom is uniformly distributed inZm.
This implies that for a random evaluation pointa, the distribution of certain tuples of cell-probes
used to answer this evaluation point is close to uniform. This observation allows us to construct
an efficient, error-correcting data structure for polynomial evaluation. Our construction follows the
non-error-correcting one of [15] fairly closely; the main new ingredient is to add redundancy to their
Chinese Remainder-based reconstruction by using more primes, which gives us the error-correcting
features we need.

Time-complexity of decoding and encoding.So far we have used the number of bit-probes as a
proxy for the actual time the decoder needs for query-answering. This is fairly standard, and usually
justified by the fact that the actual time complexity of decoding is not much worse than its number
of bit-probes. This is also the case for our constructions. ForMEMBERSHIP, it can be shown that
the decoder usesO(1) probes andpolylog(n) time (as do the RLDCs of [3]). ForPOLYNOMIAL

EVALUATION , the decoder usespolylog(s) log1+o(1)(n) probes andpolylog(sn) time.
The efficiency ofencoding, i.e., the “pre-processing” of the data into the form of a data struc-

ture, for both our error-correcting data structuresMEMBERSHIP and POLYNOMIAL EVALUATION

3We remark that this is different from the notion of smooth decoding in the LDC literature, which requires that for
everyfixedquery, each bit-probe by itself is chosen with probability close to uniform (though not independent of the other
bit-probes).
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depends on the efficiency of encoding of the RLDC constructions in [3]. This is not addressed
explicitly there, and needs further study.

2. The MEMBERSHIP problem

In this section we construct a data structure for the membership problem MEMn,s. First we
describe some of the building blocks that we need to prove Theorem 1.3. Our first basic building
block is the relaxed locally decodable code of Ben-Sasson et al. [3] with nearly linear length. Using
our terminology, we can restate their result as follows:

Theorem 2.1(BGHSV [3]). For everyε ∈ (0, 1/2) andη > 0, there exist an integert > 0 and
reals c > 0 and τ > 0, such that for everyn and everyδ ≤ τ , the membership problemMEMn,n

has a(t, δ, ε, cδ)-data structure forMEMn,n of lengthO(n1+η).

Note that by picking the error-rateδ a sufficiently small constant, one can setλ = cδ (the
fraction of unrecoverable queries) to be very close to0.

The other building block that we need is the following one-probe data structure of Buhrman et
al. [5].

Theorem 2.2(BMRV [5]) . For everyε ∈ (0, 1/2) and for every positive integerss ≤ n, there is
an (1, 0, ε, 0)-data structure forMEMn,s of lengthm = 100

ε2 s log n bits.

Properties of the BMRV encoding:The encoding can be represented as a bipartite graphG =

(L,R,E) with |L| = n left vertices and|R| = m right vertices, and regular left degreed = log n
ε .

This G is anexpander graph: for each setS ⊆ L with |S| ≤ 2s, its neighborhoodΓ(S) satisfies
|Γ(S)| ≥

(

1 − ε
2

)

|S|d. For each assignment of bits to the left vertices with at mosts ones, the
encoding specifies an assignment of bits to the right vertices. In other words, eachx ∈ {0, 1}n

of weight |x| ≤ s corresponds to an assignment to the left vertices, and them-bit encoding ofx
corresponds to an assignment to the right vertices.

For eachi ∈ [n] we write Γi := Γ({i}) to denote the set ofd neighbors ofi. A crucial
property of the encoding functionEbmrv is that for everyx of weight |x| ≤ s, for eachi ∈ [n], if
y = Ebmrv(x) ∈ {0, 1}m thenPrj∈Γi

[xi = yj ] ≥ 1 − ε. Hence the decoder for this data structure
can just probe a random indexj ∈ Γi and return the resulting bityj. Note that this construction is
not error-correcting at all, since|Γi| errors in the data structure suffice to erase all information about
thei-th bit of the encodedx.

As we mentioned in the Section 1.1, by combining the BMRV encoding with the data structure
for MEMn,n from Theorem 2.1, one easily obtains an(O(1), δ, ε,O(δ))-data structure for MEMn,s

of lengthO((s log n)1+η). However, we can give an even more efficient, error-correcting data
structure of lengthO(s1+η log n). Our improvement follows an approach taken in de Wolf [19],
which we now describe. For a vectorx ∈ {0, 1}n with |x| ≤ s, consider a BMRV structure
encoding20n bits intom bits. The following “balls and bins estimate” is known:

Proposition 2.3(From Section 2.3 of [19]). For every positive integerss ≤ n, the BMRV bipartite
graphG = ([20n], [m], E) for MEM20n,s with error parameter 1

10 andm = 104s log(20n) has the
following property: there exists a partition of[m] into b = 10 log(20n) disjoint setsB1, . . . , Bb of
103s vertices each, such that for eachi ∈ [n], there are at leastb4 setsBk satisfying|Γi ∩Bk| = 1.

Proposition 2.3 suggests the following encoding and decoding procedures. To encodex, we
rearrange them bits of Ebmrv(x) into Θ(log n) disjoint blocks ofΘ(s) bits each, according to the
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partition guaranteed by Proposition 2.3. Then for each block, encode these bits with the error-
correcting data structure (RLDC) from Theorem 2.1. Given a received wordw, to decodei ∈ [n],
pick a blockBk at random. With probability at least14 , Γi ∩Bk = {j} for somej. Run the RLDC
decoder to decode thej-th bit of thek-th block ofw. Since most blocks don’t have much higher
error-rate than the average (which is at mostδ), with high probability we recoverEbmrv(x)j , which
equalsxi with high probability. Finally, we can argue that most queries do not receive a blank
symbol⊥ as an answer, using the expansion property of the BMRV encoding structure. Due to
space limitation, we give only a proof sketch of Theorem 1.3 here.

Proof of Theorem 1.3.We only construct an error-correcting data structure with error probability
0.49. By a standard amplification technique we can reduce the error probability to any other positive
constant (i.e., repeat the decoderO(log(1/ε)) times).

By Theorem 2.2, there exists an encoderEbmrv for an(1, 0, 1
10 , 0)-data structure for the mem-

bership problem MEM20n,s of lengthm = 104s log(20n). Let s′ = 103s. By Theorem 2.1, for
everyη > 0, for somet = O(1), and sufficiently smallδ, MEMs′,s′ has a(t, 105δ, 1

100 , O(δ))-data
structure of lengths′′ = O(s′1+η). Let Ebghsv andDbghsv be its encoder and decoder, respectively.

Encoding.Let B1, . . . , Bb be a partition of[m] as guaranteed by Proposition 2.3. For a string
w ∈ {0, 1}m, we abuse notation and writew = wB1

· · ·wBb
to denote the string obtained fromw

by applying the permutation on[m] according to the partitionB1, . . . , Bb. In other words,wBk
is

the concatenation ofwi wherei ∈ Bk. We now describe the encoding process.
EncoderE : on inputx ∈ {0, 1}n, |x| ≤ s,

(1) Lety = Ebmrv

(

x019n
)

and writey = yB1
. . . yBb

.
(2) Output the concatenationE(x) = Ebghsv (yB1

) . . . Ebghsv (yBb
).

The length ofE(x) isN = b ·O(s′1+η) = O(s1+η log n).

Decoding.Given a stringw ∈ {0, 1}N , we writew = w(1) . . . w(b), where fork ∈ [b],w(k) denotes
thes′′-bit stringws′′·(k−1)+1 . . . ws′′·k.

DecoderD: on inputi and with oracle access to a stringw ∈ {0, 1}N ,

(1) Pick a randomk ∈ [b].
(2) If |Γi ∩Bk| 6= 1, then output a random bit.

Else, letΓi ∩ Bk = {j}. Run and output the answer given by the decoderDbghsv(j), with
oracle access to thes′′-bit stringw(k).

Analysis. We defer the analysis to the full version [6].

3. The POLYNOMIAL EVALUATION problem

In this section we prove Theorem 1.4. Given a polynomialg of degrees overZn, our goal is
to write down a data structure of length roughly linear ins log n so that for eacha ∈ Zn, g(a) can
be computed with roughlypolylog s · log n bit-probes. Our data structure is built on the work of
Kedlaya and Umans [15]. Since we cannot quite use their construction as a black-box, we first give
a high-level overview of our proof, motivating each of the proof ingredients that we need.
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Encoding based on reduced polynomials:The most naive construction, by recordingg(a) for each
a ∈ Zn, has lengthn log n and answers an evaluation query withlog n bit-probes. As explained
in [15], one can reduce the length by using the Chinese Remainder Theorem (CRT): IfP1 is a
collection of distinct primes, then a nonnegative integerm <

∏

p∈P1
p is uniquely specified by

(and can be reconstructed efficiently from) the values[m]p for eachp ∈ P1, where[m]p denotesm
mod p.

Consider the valueg(a) over Z, which can be bounded above byns+2, for a ∈ Zn. Let
P1 consist of the firstlog(ns+2) primes. For eachp ∈ P1, compute the reduced polynomial
gp := g mod p and write downgp(b) for eachb ∈ Zp. Consider the data structure that sim-
ply concatenates the evaluation table of every reduced polynomial. This data structure has length
|P1|(maxp∈P1

p)1+o(1), which is s2+o(1) log2+o(1) n by the Prime Number Theorem. Note that
g(a) <

∏

p∈P1
p. So to compute[g(a)]n, it suffices to apply CRT to reconstructg(a) overZ from

the values[g(a)]p = gp([a]p) for eachp ∈ P1. The number of bit-probes is|P1| log(maxp∈P1
p),

which iss1+o(1) log1+o(1) n.

Error-correction with reduced polynomials: The above CRT-based construction has terrible pa-
rameters, but it serves as an important building block from which we can obtain a data structure
with better parameters. For now, we explain how the above CRT-based encoding can be made
error-correcting. One can protect the bits of the evaluation tables of each reduced polynomial by an
RLDC as provided by Theorem 2.1. However, the evaluation tables can have non-binary alphabets,
and a bit-flip in just one “entry” of an evaluation table can destroy the decoding process. To remedy
this, one can first encode each entry by a standard error-correcting code and then encode the con-
catenation of all the tables by an RLDC. This is encapsulated in Lemma 3.1, which can be viewed
as a version of Theorem 2.1 over non-binary alphabet. We defer this proof to the full version of this
paper [6].

Lemma 3.1. Let f : D × Q → {0, 1}ℓ be a data structure problem. For everyε, η, λ ∈ (0, 1),
there existsτ ∈ (0, 1) such that for everyδ ≤ τ , f has an(O(ℓ), δ, ε, λ)-data structure of length
O((ℓ|Q|)1+η).

To apply Lemma 3.1, letD be the set of degree-s polynomials overZn, Q be the set of all
evaluation points of all the reduced polynomials ofg (eachq ∈ Q specified by a pair(a, p) of an
evaluation pointa and a prime modulusp), and the data structure problemf outputs evaluations of
some reduced polynomial ofg.

By itself, Lemma 3.1 cannot guarantee resilience against noise. In order to apply the CRT to
reconstructg(a), all the values{[g(a)]p : p ∈ P1} must be correct, which is not guaranteed by
Lemma 3.1. To fix this, we add redundancy, taking a larger set of primes than necessary so that the
reconstruction via CRT can be made error-correcting. Specifically, we apply a Chinese Remainder
Code, or CRT code for short, to the encoding process.

Definition 3.2 (CRT code). Let p1 < p2 < . . . < pN be distinct primes,K < N , andT =
K
∏

i=1
pi.

The Chinese Remainder Code (CRT code)with basisp1, . . . , pN and rateK
N over message space

ZT encodesm ∈ ZT as〈[m]p1
, [m]p2

, . . . , [m]pN
〉.

Remark 3.3. By CRT, for distinctm1,m2 ∈ ZT , their encodings agree on at mostK − 1 coor-
dinates. Hence the Chinese Remainder Code with basisp1 < . . . < pN and rateK

N has distance
N −K + 1.
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It is known that good families of CRT code exist and that unique decoding algorithms for CRT
codes can correct up to almost half of the distance of the code (see e.g., [12]). The following
statement can be easily derived from known facts, and we defer its proof to the full version [6].

Theorem 3.4.For every positive integerT , there exists a setP consisting of distinct primes, with (1)
|P | = O(log T ), and (2)∀p ∈ P, log T < p < 500 log T , such that a CRT code with basisP and
message spaceZT has rate1

2 , relative distance12 , and can correct up to a(1
4−O( 1

log log T ))-fraction
of errors.

We apply Theorem 3.4 to a message space of sizens+2 to obtain a set of primesP1 with the
properties described above. Note that these primes are all within a constant factor of one another,
and in particular, the evaluation table of each reduced polynomial has the same length, up to a con-
stant factor. This fact and Lemma 3.1 will ensure that our CRT-based encoding is error-correcting.

Reducing the bit-probe complexity:We now explain how to reduce the bit-probe complexity of
the CRT-based encoding, using an idea from [15]. Writes = dm, whered = logC s,m = log s

C log log s ,
andC > 1 is a sufficiently large constant. Consider the following multilinear extension mapψd,m :
Zn[X] → Zn[X0, . . . ,Xm−1] that sends a univariate polynomial of degree at mosts to anm-variate
polynomial of degree less thand in each variable. For everyi ∈ [s], write i =

∑m−1
j=0 ijd

j in base

d. Defineψd,m which sendsXi toXi0
1 · · ·X

im−1

m and extends multilinearly toZn[X].
To simplify our notation, we writẽg to denote the multivariate polynomialψd,m(g). For every

a ∈ Zn, defineã ∈ Z
m
n to be ([a]n, [a

d]n, [a
d2

]n, . . . , [a
dm−1

]n). Note that for everya ∈ Zn,
g(a) = g̃(ã) (modn). Now the trick is to observe that the total degree of the multilinear polynomial
g̃ is less than the degree of the univariate polynomialg, and hence its maximal value over the integers
is much reduced. In particular, for everya ∈ Z

m
n , the valueψd,m(g)(a) over the integers is bounded

above bydmndm+1.
We now work with the reduced polynomials ofg̃ for our encoding. LetP1 be the collection

of primes guaranteed by Theorem 3.4 whenT1 = dmndm+1. Forp ∈ P1, let g̃p denoteg̃ mod p

and ãp denote the point([a]p, [ad]p, . . . , [a
dm−1

]p). Consider the data structure that concatenates
the evaluation table of̃gp for eachp ∈ P1. For eacha ∈ Zn, to computeg(a), it suffices to
computeg̃(ã) over Z, which by Theorem 3.4 can be reconstructed (even with noise) from the set
{g̃p(ãp) : p ∈ P1}.

Since the maximum value of̃g is at mostT1 = dmndm+1 (whereas the maximum value of
g is at mostdmndm+1), the number of primes we now use is significantly less. This effectively
reduces the bit-probe complexity. In particular, each evaluation query can be answered with|P1| ·

maxp∈P1
log p = (dm log n)1+o(1) bit-probes, which by our choice ofd andm is equal topolylog s·

log1+o(1) n. However, thelength of this encoding is still far from the information-theoretically
optimals log n bits. We shall explain how to reduce the length, but since encoding with multilinear
reduced polynomials introduces potential complications in error-correction, we first explain how to
circumvent these complications.

Error-correction with reduced multivariate polynomials: There are two complications that arise
from encoding with reduced multivariate polynomials. The first is that not all the points in the
evaluation tables are used in the reconstructive CRT algorithm. Lemma 3.1 only guarantees that
most of the entries of the table are decoded correctly with high probability, but not all of them (even
if the fraction of errors in the table is low, aλ-fraction of queries may be answered by⊥). So if the
entries that are used in the reconstruction via CRT are not decoded by Lemma 3.1, then the whole
decoding procedure fails.
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More specifically, to reconstruct̃g(ã) overZn, it suffices to query the point̃ap in the evaluation
table ofg̃p for eachp ∈ P1. Typically the set{ãp : a ∈ Zn} will be much smaller thanZm

p , so not
all the points inZm

p are used. To circumvent this issue, we only store the query points that are used
in the CRT reconstruction. LetBp = {ãp : a ∈ Zn}. For eachp ∈ P1, the encoding only stores the
evaluation of̃gp at the pointsBp instead of the entire domainZm

p . The disadvantage of computing
the evaluation at the points inBp is that the encoding stage takes time proportional ton. We thus
give up on encoding efficiency (which was one of the main goals of Kedlaya and Umans) in order
to guarantee error-correction.

The second complication is that the sizes of the evaluation tables may no longer be within a
constant factor of each other. (This is true even if the evaluation points come from all ofZ

m
p .) If one

of the tables has length significantly longer than the others, then a constant fraction of noise may
completely corrupt the entries of all the other small tables, rendering decoding via CRT impossible.
This potential problem is easy to fix; we apply a repetition code to each evaluation table so that all
the tables have equal length.

Reducing the length:Now we explain how to reduce the length of the data structure to nearly
s log n, along the lines of Kedlaya and Umans [15]. To reduce the length, we need to reduce
the magnitude of the primes used by the CRT reconstruction. We can effectively achieve that by
applying the CRT twice. Instead of storing the evaluation table ofg̃p, we apply CRT again and store
evaluation tables of the reduced polynomials ofg̃p instead. Whenever an entry ofg̃p is needed, we
can apply the CRT reconstruction to the reduced polynomials ofg̃p.

Note that forp1 ∈ P1, the maximum value of̃gp1
(over the integers rather than modn) is at

mostT2 = dmpdm+1
1 . Now apply Theorem 3.4 withT2 the size of the message space to obtain a

collection of primesP2. Recall that eachp1 ∈ P1 is at mostO(dm log n). So eachp2 ∈ P2 is at
mostO((dm)1+o(1) log log n), which also bounds the cardinality ofP2 from above.

For each query, the number of bit-probes made is at most|P1||P2|maxp2∈P2
log p2, which is

at most(dm)2+o(1) log1+o(1) n. Recall that by our choice ofd andm, dm = logC+1 s
C log log s . Thus, the

bit-probe complexity ispolylog s · log1+o(1) n. Now, by Lemma 3.1, the length of the encoding is
nearly linear in|P1||P2|maxp2∈P2

pm
2 log p2, which is at mostpolylog s·log1+o(1) n·maxp2∈P2

pm
2 .

So it suffices to boundmaxp2∈P2
pm
2 from above. To this end, recall that by the remark following

Theorem 1.4, we may assume without loss of generality thats = Ω(logζ n) for some0 < ζ < 1.
This implies thatlog log log n ≤ log log s− log ζ. Then for eachp2 ∈ P2,

pm
2 ≤

(

O
(

(dm)1+o(1) log log n
))m

≤ (dm)(1+o(1))m · s
1

C
+o(1).

It is easy to see that(dm)(1+o(1))m can be bounded above bys(1+o(1))(1+ 1

C
−o(1)). Thus,pm

2 =

s1+
2

C
+o(1). Putting everything together, the length of the encoding is nearly linear ins log n. As

mentioned, we defer the formal proof to the full version of this paper [6].
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Abstract. Reachability and shortest path problems are NL-complete for general graphs.
They are known to be in L for graphs of tree-width 2 [14]. However, for graphs of tree-
width larger than 2, no bound better than NL is known. In this paper, we improve these
bounds for k-trees, where k is a constant. In particular, the main results of our paper are
log-space algorithms for reachability in directed k-trees, and for computation of shortest
and longest paths in directed acyclic k-trees.

Besides the path problems mentioned above, we consider the problem of deciding
whether a k-tree has a perfect macthing (decision version), and if so, finding a perfect
matching (search version), and prove that these problems are L-complete. These problems
are known to be in P and in RNC for general graphs, and in SPL for planar bipartite
graphs [8].

Our results settle the complexity of these problems for the class of k-trees. The results
are also applicable for bounded tree-width graphs, when a tree-decomposition is given as
input. The technique central to our algorithms is a careful implementation of divide-and-
conquer approach in log-space, along with some ideas from [14] and [19].

1. Introduction

Reingold’s striking result [21], showed that undirected reachability is in L, thus col-

lapsing the class SL to L. On the other hand, directed reachability, which happens to be

NL-complete is another similar sounding problem for which there is only partial progress to

report. A result of Allender and Reinhardt, [22] hints at a partial collapse of NL by showing

that directed reachability is in the formally smaller class UL, although, non-uniformly.
In the absence of better constructive upper bounds it is natural to consider natural

restrictions on graphs which allow us to improve the upper bounds on reachability and

related problems. Typical examples of this approach are [1],[23], where the complexity of

various versions of planar and somewhat non-planar (in the sense of excluding only a K5 or

only a K3,3 minor) are considered. In the same spirit, but using different techniques, [14]
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considers reachability and related questions in series-parallel graphs and places all of these

in L. They leave open the question of complexity of such problems in bounded tree-width

graphs. Series-parallel graphs have tree-width two and happen to be planar. But higher

tree widths graphs are highly non-planar. In fact, any k-tree for k > 4 contains both K5

and K3,3.

We resolve the open questions posed in [14] and show a matching L lower bound to

complete the characterization of reachability problems in k-trees. Thus one of the main

results of our paper is the following:

Theorem 1.1. The following problems are L-complete:
1. Computing reachability between two vertices in directed k-trees,
2. Computing shortest and longest paths in directed acyclic k-trees.

In this paper, we also consider the perfect matching problem. The parallel complexity of

perfect matching problems is a long standing open problem where the best known algorithms

use randomness as a resource [20],[15]. Even in the planar case, the search problem for

perfect matchings is known to be in NC for bipartite graphs only [8].

We prove a complete characterization for the decision and search versions of the perfect

matching problem for k-trees. This improves significantly upon previous best known upper

bound of LogCFL for bounded tree-width graphs. Thus another main result of our paper

is:

Theorem 1.2. Deciding whether a k-tree has a perfect matching, and if so, finding a perfect
matching is L-complete.

Our primary technique is a careful use of divide-and-conquer to enable the algorithm to

run in L. However, for the distance computation we need to import a constructive version

of tree separation from [19] where it is stated in the context of Visibly Pushdown Automata

(VPAs). We believe that porting this technique for use in general log-space computation is

an important contribution of this paper.

At this point, we must mention an important caveat. All our log-space results hold

directly only for k-trees and not for partial k-trees which are also equivalent to tree-width

k graphs. The reason being that a tree decomposition for partial k-trees is apparently more

difficult to construct (best known upper bound is LogCFL[24]) as opposed to k-trees (for

which it can be done in L [17]). Having mentioned that it is important to observe that if

we are given the tree decomposition of a partial k-tree, we can do the rest of computation

in L.

The rest of the paper is organized as follows: Section 2 gives the necessary background.

Section 3 contains log-space algorithms for reachability in directed k-paths and k-trees.

Section 4 contains log-space algorithms for shortest and longest path in directed acyclic

k-paths and k-trees. Section 5 contains log-space algorithms for perfect matching problems

in a k-tree.

2. Preliminaries

We define k-trees and a subclass of k-trees known as k-paths here, and also describe

a suitable representation for the graphs in these two classes. This representation is used

in our algorithms in the rest of the paper. All the definitions given here are applicable

to both directed as well as undirected graphs. For directed graphs, the directions of the
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edges can be ignored while defining k-trees and k-paths and while computing their suitable

representations.

The class of graphs known as k-trees is defined as (cf. [12] ):

Definition 2.1. The class of k-trees is inductively defined as follows.

• A clique with k vertices (k-clique for short) is a k-tree.

• Given a k-tree G′ with n vertices, a k-tree G with n + 1 vertices can be constructed

by picking a k-clique X (called the support)in G′ and then joining a new vertex v to

each vertex u in X. Thus, V (G) = V (G′) ∪ {v}, E(G) = E(G′) ∪ {{u, v} | u ∈ X}.

A partial k-tree is a subgraph of a k-tree. The class of partial k-trees coincides with

the class of graphs that have tree-width at most k. k-trees are recognizable in log-space

[2] but partial k-trees are not known to be recognizable in log-space. In literature, several

different representations of k-trees have been considered [10, 2, 17]. We use the following

representation given by Köbler and Kuhnert [17]:

Definition 2.2. Let G = (V,E) be a k-tree. The tree representation T (G) of G is defined

by

V (T (G)) = {M ⊆ V |M is a k-clique or a (k + 1)-clique},

E(T (G)) = {{M1,M2} ⊆ V |M1 ( M2}

In [17], it is proved that T (G) is a tree and can be computed in log-space. In the rest

of the paper, we use G in place of T (G). Thus, by a k-tree G, we always mean that G is

in fact represented as T (G). The term vertices in G refers to the vertices in the original

graph, whereas a node in G and a clique in G refer to the nodes of T (G). Partial k-trees

also have a tree-decomposition similar to that of k-trees, which is also not known to be

log-space computable.

k-paths is a sub-class of k-trees (e.g. see [11]). The recursive definition of k-paths is

similar to that of k-trees. However, a new vertex can be added only to a particular clique

called the current clique. After addition of a vertex, the current clique may remain the same,

or may change by dropping a vertex and adding the new vertex in the current clique. We

consider the following representation of k-paths, which is based on the recursive definition

of k-paths, and is known to be computable in log-space [2]:

Given a k-path G = (V,E), for i = 1, · · · ,m, let Xi be the current cliques at the ith
stage of the recursive construction of the k-path. Let V1 = ∪iXi and V2 = V \ V1. We call

the vertices in V2 as spikes. The following facts are easy to see:

1. No two spikes have an edge between them.

2. Each spike is connected to all the vertices of exactly one of the Xi’s.

3. Xi and Xi+1 share exactly k − 1 vertices

The representation of G consists of a graph G′ = (V ′, E′) where V ′ = {X1, . . . ,Xm} ∪
V2 and E′ = {(Xi,Xi+1) | 1 ≤ i < m} ∪ {(X, v)|X is a clique in ∈ V ′, v ∈
V2 has a neighbour in X}.

3. Reachability

We give log-space algorithms to compute reachability in k-paths and in k-trees. Al-

though the graphs considered in this section are directed, when we refer to any of the

definitions or decompositions in Section 2, we consider the underlying undirected graph.
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3.1. Reachability in k-paths

Without loss of generality, we can assume that s and t are vertices in some k-cliques

Xi and Xj , and not spikes. If s (t) is a spike, then it has at most k out-neighbors (resp. in-

neighbors) and we can take one of the out-neighbors (resp. in-neighbors) as the new source

s′ and new sink t′ and check reachability. As there are only k2 such pairs, we can cycle

through all of them in log-space. The algorithm is based on the observation that a simple

s to t path ρ can pass through any clique at most k times. We use a divide- and-conquer

approach similar to that used in Savitch’s algorithm (which shows that directed reachability

can be computed in DSPACE(log2 n)). The main steps involved in the algorithm are as

follows:

1. Preprocessing step: Make the cliques disjoint by labeling different copies of each ver-

tex with different labels and introducing appropriate edges. Compute reachabilities within

each clique including its spikes, and remove the spikes. Number the cliques X1, . . . ,Xm left

to right.

2. Now assume that s and t are in cliques Xi and Xj respectively. Note that i = j is

also possible, but without loss of generality, we can assume i < j. This is because, if i = j,
we can make another copy X ′

i of Xi, join the copies of the same vertex by bidirectional

edges to preserve reachabilities, and choose the copy of s from Xi and that of t from X ′
i.

3. Divide the k-path into three parts P1, P2 and P3 where P1 consists of cliques

X1, . . . ,Xi, P2 consists of Xi, . . . ,Xj , and P3 consists of Xj , . . . ,Xm. Note that Xi (Xj)

appears in both P1 and P2 (P2 and P3 respectively). Now compute reachabilities of all

pairs of vertices in Xi (Xj) when the graph is restricted to P1 (respectively P3). Then the

reachability of t from s within P2 is computed, using the previously computed reachabilities

within P1 and P3.

Each of these steps can be done by a log-space transducer. The details are given below.

Preprocessing: Although adjacent k-cliques in a k-path decomposition share k − 1

vertices, we perform a preprocessing step, where we give distinct labels to each copy of a

vertex. As all the copies of a vertex form a (connected) sub-path in the k-path decomposi-

tion, we join two copies of a vertex appearing in two adjacent cliques by bidirectional edges.

It can be seen that this preserves reachabilities. Any copy of s and t can be taken as the new

s and t. Another preprocessing step involves removing the spikes maintaining reachabilities

between all pairs of vertices, and computing reachabilities within each k-clique. Both of

these preprocessing steps can be done by a log-space transducer. The proof appears in the

full version of the paper.

The Algorithm: We describe an algorithm to compute pairwise reachabilities in Xi

and Xj in P1 and P3 respectively, and also s-t reachability in P2 using these previously

computed pairwise reachabilities. Algorithm 1 describes this reachability routine. The

routine gets as input two vertices u and v, and two indices i and j. It determines whether

v is reachable from u in the sub-path P = (Xi, . . . ,Xj). This input is given in such a way

that u and v always lie in Xi or Xj . Consider the case when both u and v are in Xi (or

both in Xj). Let l be the center of P . Then a path from u to v either lies entirely in the

sub-path P ′ = (Xi, . . . ,Xl) or it crosses Xl at most k times. Thus if Xl = {v1, . . . , vk}
then for {vi1 , · · · , vir} ⊆ Xl we need to check reachabilities between u and say vi1 in P ′,

then between vi1 and vi2 in P ′′ = (Xl, . . . ,Xj) and so on, and finally between vir and v in

P ′. It suffices to check all the r-tuples in Xl, where 0 ≤ r ≤ k. The case when u ∈ Xi

and v ∈ Xj (and vice versa) is analogous. In Algorithm 1, we present only one case where



LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 219

u, v ∈ Xi. Other three cases are analogous. Thus at each recursive call, the length of the

sub-path under consideration is halved, and O(log m) iterations suffice. The algorithm can

Algorithm 1 Procedure IsReach(u, v, i, j)

1: Input: Pre-processed k-path decomposition of graph G, clique indices i, j, vertex labels

u, v ∈ Xi. {Other three cases are analogous.}
2: Decide: Whether v is reachable from u in sub-path P = (Xi, . . . ,Xj).

3: if j − i = 1 then

4: Compute the reachability directly, as the sub-path has only 2k vertices.

5: Return the result.

6: end if

7: l = j+i
2

8: if u, v ∈ Xi then

9: if IsReach(u, v, i, l) then

10: Return 1;

11: else

12: for q = 1 to k do

13: v0 ← u, vq+1 ← v
14: for all q-tuples (v1, . . . , vq) of vertices in Xl do

15: if
∧q+1

x=0
x even

IsReach(vx,vx+1,i,l) ∧
∧q+1

x=1
x odd

IsReach(vx,vx+1,l,j) then

16: Return 1;

17: end if

18: end for

19: end for

20: end if

21: end if

be implemented in log-space. The correctness and complexity analysis of the algorithm

appears in the full version.

3.2. Reachability in k-trees

Given a directed k-tree G in its tree decomposition and two vertices s and t in G, we

describe a log-space algorithm that checks whether t is reachable from s. This algorithm

uses Algorithm 1 as a subroutine and involves the following steps: The complexity analysis

is given in Lemma 3.1.

1. Preprocessing: Like k-paths, assign distinct labels to the copies of each vertex

u in different cliques. Introduce a bidirectional edge between the copies of u in all the

adjacent pairs of cliques. As reachabilities are maintained during this process, any copy of

s and t can be taken as the new s and t. Let Xi and Xj be the cliques containing s and t
respectively.

2. The Procedure: After this preprocessing, we have a tree T with its nodes as

disjoint k-cliques of vertices of G, and s and t are contained in cliques Xi and Xj . Compute

the unique undirected path ρ between Xi and Xj in T in log-space. Each node on ρ has

two of its neighbors on ρ, except Xi and Xj , which have one neighbor each. An s to t path

has to cross each clique in ρ, and additionally, it can pass through the subtrees attached to
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each node Xl on ρ. Hence for each node Xl on ρ, we pre-compute the pairwise reachabilities

among the k vertices contained in Xl when the k-tree is restricted to the subtree rooted

at Xl. We define the subtree rooted at Xl as the subtree consisting of Xl and those nodes

which can be reached from Xl without going through any node on ρ. Note that once this

is done for each node Xl on ρ, we are left with ρ. As ρ is a k-path, we can use Algorithm 1

in Section 3.1 to compute reachabilities within ρ.

3. Computing reachabilities within the subtree rooted at Xl: We do this induc-

tively. If the subtree rooted at Xl contains only one node Xl, we have only k vertices, and

their pairwise reachabilities within Xl can be computed in O(k log k) space. We recursively

find the reachabilities within the subtrees rooted at each of the children of Xl. Let the size

of the subtree rooted at Xl be N . At most one of the children of Xl can have a subtree of

size larger than N
2 . Let Xa be such a child. Recursively compute the pairwise reachabilities

for each pair of vertices in Xa within the subtree rooted at Xa. The reachabilities are repre-

sented as a k×k boolean matrix referred to as the reachability matrix M for the vertices in

Xa, when the graph is confined to the subtree rooted at Xa. M is then used to compute the

pairwise reachabilities of vertices in Xl, when the graph is confined to Xl and the subtree

rooted at Xa. This gives a new matrix M ′ of size k2. It is stored on stack while computing

the reachability matrix M ′′ for another child Xb of Xl. The matrix M ′ is updated using

M ′′, so that it represents reachabilities between each pair of vertices in Xl when the graph

is confined to Xl and the subtrees rooted at Xa and Xb. This process is continued till all the

children of Xl are processed. The matrix M ′ at this stage reflects the pairwise reachabilities

between vertices of Xl, when the graph is confined to the subtree rooted at Xl. Note that

the storage required while making a recursive call is only the current reachability matrix

M ′. Recall that M ′ contains the pairwise reachabilitities among the vertices in Xl in the

subgraph corresponding to Xl and the subtrees rooted at those children of Xl which are

processed so far. We give the complexity analysis in the full version.

Lemma 3.1. The procedure described above can be implemented in log-space.

Hardness for L: L-hardness of reachability in k-trees follows from L-hardness of the problem

of path ordering (proved to be SL-hard in [9], and is L-hard due to SL=L result of [21]).

We give the details in the full version.

4. Shortest and Longest Paths

We show that the shortest and longest paths in weighted directed acyclic k-trees can be

computed in log-space, when the weights are positive and are given in unary. Throughout

this section, the terms k-path and k-tree always refer to directed acyclic k-paths and k-

trees respectively, with integer weights on edges and we here onwards omit the specification

weighted directed acyclic. We use the following (weighted) form of the result from [18]: The

proof is exactly similar to that in [18] and we omit it here.

Theorem 4.1 (See[18], Theorem 9). Let C be any subclass of weighted directed acyclic
graphs closed under vertex deletions. There is a function f , computable in log-space with
oracle access to Reach(C), that reduces Distance(C) to Long-Path(C) and Long-Path(C) to
Distance(C), where Reach(C), Distance(C), and Long-Path(C) are the problems of deciding
reachability, computing distance and longest path respectively for graphs in C.
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We use this theorem to reduce the shortest path problem in k-trees to the longest

path problem, and then compute the longest (that is, maximum weight) s to t path. The

reduction involves changing the weights of the edges such that the shortest path becomes

the longest path and vice versa. This gives a directed acyclic k-tree with positive integer

weights on edges given in unary. The class of k-trees is not closed under vertex deletions.

However, once a tree decomposition of a k-tree is computed, deleting vertices from the

cliques leaves some cliques of size smaller than k, which does not affect the working of the

algorithm.

We show that the maximum weight of an s to t path can be computed in log-space

using a technique which uses ideas from [14]. The algorithm to compute maximum weight

s to t path in k-trees uses the algorithm for computing maximum weight path in k-paths

as subroutine. Therefore we first describe the algorithm for k-paths in Section 4.1

4.1. Maximum Weight Path in Directed Acyclic k-paths

Let G be a directed acyclic k-path and s and t be two designated vertices in G. The

computation of maximum weight of an s to t path is done in five stages, described below in

detail. The main idea is to obtain a log-depth circuit by a suitable modification of Algorithm

1, and to transform this circuit to an arithmetic formula over integers, whose value is used

to compute the maximum weight of an s to t path in G.

Computing the maximum weight s to t path in G involves the following steps:

(1) Construct a log-depth formula from Algorithm 1: Modify Algorithm 1 so

that it outputs a circuit C that has nodes corresponding to the recursive calls made

in Line 15 and the tuples considered in the for loop in Line 14. A node q in

C that corresponds to a recursive call IsReach(u, v, i, j) has children q1, · · · , qN ,

which correspond to the tuples considered in that recursive call (for-loop on Line

12 of Algorithm 1). We refer to q as a call-node and q1, . . . , qN as tuple-nodes. A

tuple-node q′ corresponding to a tuple (v1, . . . , vN ) has call-nodes q′1, . . . , q
′
N as its

children, which correspond to the recursive calls made while considering the tuple

(v1, . . . , vN ) (Line 15 of Algorithm 1). The leaves of C are those recursive calls which

satisfy the if condition on Line 3 of Algorithm 1, thus they are always call-nodes.

As the depth of the recursion in Algorithm 1 is O(log n), the circuit C also has

O(log n) depth. Hence it can be converted to a formula F by only a polynomial

factor blow-up in its size. The maximum number of children of a node is O(kk) and

hence the size of F is bounded by O(kk log n), which is polynomial in n for constant

k.

(2) Prune the boolean formula: The internal call-nodes of F are replaced by ∨
gates and tuple-nodes are replaced by ∧ gates. The leaves of F are replaced by 0

or 1 depending on whether the corresponding recursive call returned 0 or 1 in the if

block on Line 3 of Algorithm 1. It can be seen that a sub-formula of F rooted at a

call-node evaluates to 1 if and only if the corresponding recursive call returns 1 in

Algorithm 1. Similarly, the sub-formula rooted at a tuple-node evaluates to 1 if and

only if the conjunction corresponding to it (on Line 15 of Algorithm 1) evaluates

to 1. Now, we evaluate the sub-formula rooted at each node of F . Note that a

node that evaluates to 0 does not contribute to any path from s to t, and hence its

subtree can be safely removed.
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(3) Transformation into a {+,max}-tree: The new, pruned formula obtained in

Step 2 is then relabeled: Each ∧ label is replaced with a + label and each ∨ label

with a max label. Each leaf corresponds to calls of the form IsReach(u, v, i, i + 1).

It is labeled with the length of the maximum weight u to v path confined within

cliques i and i + 1, which can be computed in O(1) space. This weight is strictly

positive, since the 0-weight leaves are removed in Step 2. Further, all the weights

are in unary. Thus we now have a {+,max}-tree T with positive, unary weights on

its leaves. It is easy to see that the value of the {+,max}-tree T is the maximum

weight of any s to t path in G.

(4) Transformation into a {+,×}-tree: The evaluation problem on the {+,max}-
tree T obtained in Step 3 is then reduced to the evaluation problem on a {+,×}-
tree T ′ whose leaves are labeled with positive integer weights coded in binary. This

reduction works in log-space and is similar to that of [14]. The reduction involves

replacing a +-node of T with a ×-node, and a max-node with a + node. The weight

w of a leaf is replaced with rmw, where r is the smallest power of 2 such that r ≥ n,

and m is the sum of the weights of all the leaves of T plus one. The correctness of

the reduction follows from a similar result in [14], and we omit the proof here.

(5) Evaluation of the {+,×} tree: This can be done in log-space due to [5, 3, 7, 13].

The value of T is v = ⌊ logrv′

m ⌋.

4.2. Maximum Weight Path in Directed Acyclic k-trees

Given a directed acyclic k-tree (in its tree-decomposition) G, two vertices s and t in G,

and weights on the edges of G, encoded in unary, we show how to compute the maximum

weight of an s to t path in G. Unlike the case of k-paths, the reachability algorithm for

k-trees given in Section 3.2 can not be used to get a log-depth circuit since the recursion

depth of the algorithm is same as the depth of the k-tree. Therefore we need to find another

way of recursively dividing the k-tree into smaller and smaller subtrees, as we did for k-

paths in Sections 3.1 and 4.1. This is based on the technique used in the following result of

[19]:

Lemma 4.2. (Lemma 6 of [19], also see [4]) Let M be a visibly pushdown automaton ac-
cepting well-matched strings over an alphabet ∆. Given an input string x, checking whether
x ∈ L(M) can be done in log-space.

Using Lemma 4.2, we can compute a set of recursive separators for a tree defined below:

Definition 4.3. Given a rooted tree T , separators of T are two nodes a and b of T such

that

1. The subtrees rooted at a and b respectively are disjoint,

2. T is split into subtrees T1, T2, T3 where T1 consists of a, some (or possibly all) of

the children of a, and subtrees rooted at them, T2 is defined similarly for b, and T3 consists

of the rest of the tree along with a copy of a and b each.

3. Each of T1, T2, T3 consists of at most a 3
4 fraction of the leaves of T .

This process is done recursively for T1, T2, T3, until the number of leaves in the subtrees

is two. Such a subtree is in fact a path. A set of recursive separators of T consists of the

separators of T and of all the subtrees obtained in the recursive process.
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The following lemma gives the procedure to compute a set of recursive separators of a

tree T :

Lemma 4.4. Given a tree T , the set of recursive separators of T can be computed in
log-space.

Proof. The algorithm of [19] deals with well-matched strings. An example of a well-matched

string is a balanced parentheses expression, which is a string over {(, )}. In [19], a log-space

algorithm is given for membership testing in those languages which are subsets of well-

matched strings and are accepted by visibly pushdown automata. We restrict ourselves

to balanced parentheses expressions. To check whether a string on parentheses is in the

language, the algorithm of [19] recursively partitions the string into three disjoint substrings,

such that each of the parts forms a balanced parentheses expression, and length of each

part is at most 3
4th of the length of the original string. To use this algorithm, we order the

children of each node of T in a specific way, label the leaves with parentheses ‘(′ and ‘)′

such that the leaves of the subtree rooted at any internal node form a string on balanced

parentheses. We add dummy leaves if needed. The steps are as follows:

1. By adding dummy leaves, ensure that each internal node has an even number of

children which are leaves, and there are at least two such children.

2. Arrange the children of each node from left to right such that the non-leaves are

consecutive, and they have an equal number of leaves to the left and to the right.

3. For each internal node, label the left half of its leaf-children with ‘(’ and the right

ones by ‘)’. This ensures that the leaves of the subtree rooted at each internal node form

a balanced parentheses expression. Conversely, leaves which form a balanced parentheses

expression are consecutive leaves in the subtree rooted at an internal node.

The leaves of T now form a balanced parentheses expression, and we run the algorithm

of [19] on this string. The recursive splitting of the string into smaller substrings corre-

sponds to the recursive splitting of T at some internal nodes, which satisfies Definition 4.3.

This is ensured by the way the leaves are labeled. Each balanced parentheses expression

corresponds to either a subtree rooted at an internal node or the subtrees rooted at some

of the children of an internal node.

The subtrees obtained by splitting a tree have at most 3
4 th of the number of leaves in

the tree. Thus at each stage of recursion, the number of leaves in the subtrees is reduced by

a constant fraction. Moreover, the algorithm of [19] can output all the substrings formed

at each stage of recursion in log-space. As a substring completely specifies a subtree of T ,

our procedure outputs the set of recursive separators for T in log-space.

Once an algorithm to compute the set of recursive separators for k-trees is known,

a reachability routine similar to Algorithm 1 can be designed in a straight forward way.

We give the details in the full version. From the reachability routine, the computation of

maximum weight path follows from the steps 1 to 5 described in Section 4.1.

4.3. Distance Computation in Undirected k-trees

We give a simple log-space algorithm for computing the shortest path between two

given vertices in an undirected k-tree. We use the decomposition of [16], where a k-tree is

decomposed into layers. We use the following properties of the decomposition:

1. Layer 0 is a k-clique. Each vertex in layer i > 0 has exactly k neighbors in layers

j < i. Further, these neighbors of i which are in layers lower than that of i form a k-clique.
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2. No two vertices in the same layer share an edge.

This decomposition is log-space computable [17]. Moreover, given two vertices s and t,
it is always possible to find a decomposition in which t lies in layer 0. This can also be done

in log-space. If both s and t are in layer 0, then there is an edge between s and t, which is

the shortest path from s to t. Therefore assume that s lies in a layer r > 0. The following

claim leads to a simple algorithm. The proof appears in the full version.

Claim 4.5. 1. The shortest s to t path never passes through two vertices u and v such that

layer(u) < layer(v). 2. There is a shortest path from s to t passing through the neighbor

of s in the lowest layer.

This claim suggests a simple algorithm which can be implemented in log-space: Start

from s and choose the next vertex from the lowest possible layer, at each step till we reach

layer 0.

5. Perfect Matching in k-trees

Hardness for L: To show that the decision version of perfect matching is hard for L, we

show that the problem of path ordering, can be reduced to the perfect matching problem

for k-trees. We give the proof in the full version:

Lemma 5.1. Determining whether a k-tree has a perfect matching is L-hard.

L upper bounds: We describe a log-space algorithm to decide whether a k-tree has a

perfect matching and, if so, output a perfect matching. The algorithm is inspired by an

O(n3) algorithm [6] for computing the matching polynomial in series-parallel graphs. The

idea is to exploit the fact that k-trees have a tree decomposition of bounded width, so that

any perfect matching of the entire k-tree induces a partial matching on any subtree which

leaves at most constantly many vertices unmatched. Thus we generalize the problem to

that of determining, for each set, S, of constantly many vertices in the root of the subtree,

whether there is a matching of the subtree that leaves exactly the vertices in S unmatched.

Now we “recursively” solve the generalized problem and for this purpose we need to maintain

a bit-vector indexed by the sets S which is still of bounded length. The algorithm composes

the bit-vectors of the children of a node to yield the bit-vector for the node. The bit-vector,

which we refer to as matching vector, is defined as follows:

Definition 5.2. Let G be a k-tree with tree-decomposition T . T has alternate levels of

k-cliques and k+1-cliques. Root T arbitrarily at a k-clique. Let s be a node in T that shares

vertices {u1, . . . , uk} with its parent. Further, let H be the subgraph of G corresponding to

the subtree of T rooted at s. The matching vector for s is a vector ~vH = (v
(S1)
H , . . . , v

(S
2k )

H )

of dimension 2k, where S1, . . . , S2k are all the distinct subsets of {u1, . . . , uk}, and v
(Si)
H = 1

if H has a matching in which all the vertices of H matched, except those in Si, v
(Si)
H = 0 if

there is no such matching.

It can be seen that G has a perfect matching if and only if v
(∅)
G = 1.We show how to

compute ~vG in L, and also show how to construct a perfect matching in G, if one exists. We

prove Part 1 of the following theorem. For a proof of part 2, we refer to the full version.
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Theorem 5.3. 1. The problem of deciding whether a k-tree has a perfect matching is in L.
2. Finding a perfect matchings in a k-tree is in FL.

Proof. (of 1) We compute the matching vector for the root by recursively computing the

matching vectors of each of its children. For a leaf node in the tree-decomposition, the

matching vector can be computed in a brute-force way. At an internal node s, the matching

vector is computed from the matching vectors of its children, which we describe here:

Case 1: s is a k-node Let s has vertices Vs = {u1, . . . , uk}. Recall that a k-node

shares all its vertices with all its neighbors. Let the children of s in T be s1, . . . , sr. Let

the subgraph corresponding to the subtree rooted at s be H and those at its children be

H1, . . . ,Hr. In order to determine v
(S)
H , we need to know if there is a matching in H that

leaves exactly the vertices in S unmatched. This holds if and only if the vertices in S are

not matched in any of the Hj ’s, and each vertex in Vs \ S is matched in exactly one of the

Hj’s. In other words, we need to determine if there is a partition T1, T2, ..., Tr of Vs \ S,

such that Hj has a matching in which precisely Vs \ Tj is unmatched. That is, v
(Vs\Tj)
Hj

= 1

for all 1 ≤ j ≤ r. More formally,

v
(S)
H =

∨

T1,...,Tr⊆Vs\S:
∀j 6=j′∈[r]Tj∩Tj′=∅:

∪j∈[r]Tj=Vs\S

∧

j∈[r]

v
(Vs\Tj)
Hj

=
∨

∅=U0⊆...⊆Ur=Vs\S

∧

j∈[r]

v
(Vs\(Uj\Uj−1))
Hj

(5.1)

where, the second equality follows by defining U0 = ∅ and Ui = ∪j∈[i]Tj for i ∈ [r]. The size

of the above DNF formula depends on r which is not a constant hence the straightforward

implementation of the above computation would not be in L. However, consider a conjunct

in the big disjunction in the second line above. The jth factor of this conjunct depends

only on Uj and Uj−1, each of which can be represented by a constant number (= 2k) of bits.

Thus, we can iteratively extend Uj−1 in all possible ways to Uj and use the bit indexed by

Vs \ (Uj \ Uj−1) in the vector for the child. How to obtain the vector of the child within a

log-space bound is detailed in the full version.

Case 2: s is a k + 1 node The procedure is slightly more complex in this case. Let s
have vertices {u1, . . . , uk+1}. Let the subgraph corresponding to the subtree rooted at s be

H. Let s1, . . . , sr be the children of s, with corresponding subgraphs H1, . . . ,Hr. Note that

s may share a different subset of k vertices with each of its children and with its parent. Let

the vertices s shares with its parent be {u1, . . . , uk}. Then its matching vector is indexed

by the subsets of {u1, . . . , uk}, and moreover, uk+1 should always be matched in H. To

compute ~vH , we first extend the matching vectors of each of its children and make a 2k+1

dimensional vector ~wH . The matching vector ~vHj
of a child sj of s is extended to the new

vector ~wHj
as follows: Let sj contain {u1, . . . , uk}. We consider an entry v

(S)
Hj

of ~vHj
. The

vector ~wHj
has two entries corresponding to it.

w
(S∪{uk+1})
Hj

= v
(S)
Hj

, w
(S)
Hj

=
∨

p∈[k],up /∈S,
(uk+1,vp)∈E

u
(S∪{up})
Hj

These new vectors of each of the children can be composed similar to that in the previous

case to get ~wH . To get ~vH , we remove the 2k entries from ~wH which are indexed on subsets

containing uk+1. This vector is passed on to the parent of s. The complexity analysis, and

a proof of (2) appears in the full version.
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Abstract. The Graph Isomorphism problem restricted to graphs of bounded treewidth
or bounded tree distance width are known to be solvable in polynomial time [2],[19]. We
give restricted space algorithms for these problems proving the following results:

• Isomorphism for bounded tree distance width graphs is in L and thus complete for
the class. We also show that for this kind of graphs a canon can be computed within
logspace.

• For bounded treewidth graphs, when both input graphs are given together with a
tree decomposition, the problem of whether there is an isomorphism which respects
the decompositions (i.e. considering only isomorphisms mapping bags in one decom-
position blockwise onto bags in the other decomposition) is in L.

• For bounded treewidth graphs, when one of the input graphs is given with a tree
decomposition the isomorphism problem is in LogCFL.

• As a corollary the isomorphism problem for bounded treewidth graphs is in LogCFL.
This improves the known TC1 upper bound for the problem given by Grohe and
Verbitsky [8].

1. Introduction

The Graph Isomorphism problem consists in deciding whether two given graphs are

isomorphic, or in other words, whether there exists a bijection between the vertices of both

graphs preserving the edge relation. Graph Isomorphism is a well studied problem in NP

because of its many applications and also because it is one of the few natural problems in this

class not known to be solvable in polynomial time nor known to be NP-complete. Although

for the case of general graphs no efficient algorithm for the problem is known, the situation

is much better when certain parameters in the input graphs are bounded by a constant. For
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example the isomorphism problem for graphs of bounded degree [13], bounded genus [15],

bounded color classes [14], or bounded treewidth [2] is known to be in P. Recently some of

these upper bounds have been improved with the development of space efficient techniques,

most notably Reingold’s deterministic logspace algorithm for connectivity in undirected

graphs [16]. In some cases logspace algorithms have been obtained. For example graph

isomorphism for trees [12], planar graphs [5] or k-trees [10]. In other cases the problem has

been classified in some other small complexity classes below P. The isomorphism problem

for graphs of bounded treewidth is known to be in TC1 [8] and the problem restricted to

graphs of bounded color classes is known to be in the #L hierarchy [1].

In this paper we address the question of whether the isomorphism problem restricted

to graphs of bounded treewidth and bounded tree distance width can be solved in logspace.

Intuitively speaking, the treewidth of a graph measures how much it differs from a tree.

This concept has been used very successfully in algorithmics and fixed-parameter tractability

(see e.g. [3, 4]). For many complex problems, efficient algorithms have been found for the

cases when the input structures have bounded treewidth. As mentioned above Bodlaender

showed in [2] that Graph Isomorphism can be solved in polynomial time when restricted

to graphs of bounded treewidth. More recently Grohe and Verbitsky [8] improved this

upper bound to TC1. In this paper we improve this result showing that the isomorphism

problem for bounded treewidth graphs lies in LogCFL, the class of problems logarithmic

space reducible to a context free language. LogCFL can be alternatively characterized as

the class of problems computable by a uniform family of polynomial size and logarithmic

depth circuits with bounded AND and unbounded OR gates, and is therefore a subclass of

TC1. LogCFL is also the best known upper bound for computing a tree decomposition of

bounded treewidth graphs [18, 7], which is one bottleneck in our isomorphism algorithm.

We prove that if tree decompositions of both graphs are given as part of the input, the

question of whether there is an isomorphism respecting the vertex partition defined by the

decompositions can be solved in logarithmic space. Our proof techniques are based on

methods from recent isomorphism results [5, 6] and are very different from those in [8].

The notion of tree distance width, a stronger version of the treewidth concept, was

introduced in [19]. There it is shown that for graphs with bounded tree distance width the

isomorphism problem is fixed parameter tractable, something that is not known to hold for

the more general class of bounded treewidth graphs. We prove that for graphs of bounded

tree distance width it is possible to obtain a tree distance decomposition within logspace.

Using this result we show that graph isomorphism for bounded tree distance width graphs

can also be solved in logarithmic space. Since it is known that the question is also hard

for the class L under AC0 reductions [9], this exactly characterizes the complexity of the

problem. We show that in fact a canon for graphs of bounded tree distance width, i.e.

a fixed representative of the isomorphism equivalence class, can be computed in logspace.

Due to space reasons, some proofs are omitted and will be provided in the full version of

the paper.

2. Preliminaries

We introduce the complexity classes used in this paper. L is the class of decision prob-

lems computable by deterministic logarithmic space Turing machines. LogCFL consists of

all decision problems that can be Turing reduced in logarithmic space to a context free lan-

guage. There are several alternative more intuitive characterizations of LogCFL. Problems
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in this class can be computed by uniform families of polynomial size and logarithmic depth

circuits over bounded fan-in AND gates and unbounded fan-in OR gates. We will also

use the characterization of LogCFL as the class of decisional problems computable by non-

deterministic auxiliary pushdown machines (NAuxPDA). These are Turing machines with

a logarithmic space work tape, an additional pushdown and a polynomial time bound [17].

The class TC1 contains the problems computable by uniform families of polynomial size

and logarithmic depth threshold circuits. The known relationships among these classes are:

L ⊆ LogCFL ⊆ TC1.

In this paper we consider undirected simple graphs with no self loops. For a graph

G = (V,E) and two vertices u, v ∈ V , dG(u, v) denotes the distance between u and v in

G (number of edges in the shortest path between u and v in G). For a set S ⊆ V , and

a vertex u ∈ V , dG(S, u) denotes minv∈SdG(v, u). Γ(S) denotes the set of neighbors of

S in G. In a connected graph G, a separating set is a set of vertices such that deleting

the vertices in S (and the edges connected to them) produces more than one connected

component. For G = (V,E) and two disjoint subsets U,W of V we use the following

notion for an induced bipartite subgraph BG[U,W ] of G on vertex set U ∪ W with edge set

{{u,w} ∈ E | u ∈ U,w ∈ W}. Let G[U ] be the induced subgraph of G on vertex set V \ U .

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F )), where

{Xi | i ∈ I} is a collection of subsets of V called bags, and T is a tree with node set I and

edge set F , satisfying the following properties:

i)
⋃

i∈I Xi = V
ii) for each {u, v} ∈ E, there is an i ∈ I with u, v ∈ Xi and

iii) for each v ∈ V , the set of nodes {i | v ∈ Xi} forms a subtree of T .

The width of a tree decomposition of G, is defined as max{|Xi| | i ∈ I} − 1. The

treewidth of G is the minimum width over all tree decompositions of G.

A tree distance decomposition of a graph G = (V,E) is a triple ({Xi | i ∈ I}, T =

(I, F ), r), where {Xi | i ∈ I} is a collection of subsets of V called bags, Xr = S a set of

vertices and T is a tree with node set I, edge set F and root r, satisfying:

i)
⋃

i∈I Xi = V and for all i 6= j,Xi ∩ Xj = ∅
ii) for each v ∈ V , if v ∈ Xi then dG(Xr, v) = dT (r, i) and

iii) for each {u, v} ∈ E(G), there are i, j ∈ I with u ∈ Xi, v ∈ Xj and i = j or {i, j} ∈ F
(for every edge in G its two endpoints belong to the same or to adjacent bags in T ).

Let D = ({Xi | i ∈ I}, T = (I, F ), r) be a tree distance decomposition of G. Xr is the

root bag of D. The width of D is the maximum number of elements of a bag Xi. The tree
distance width of G is the minimum width over all tree distance decompositions of G.

The tree distance decomposition D is called minimal if for each i ∈ I, the set of vertices

in the bags with labels in the subtree rooted at i in T induce a connected subgraph in G.

In [19] it is shown that for every root set S ⊆ V there is a unique minimal tree distance

decomposition of G with root set S. The width of such a decomposition is minimal among

the tree distance decompositions of G with root set S.

An isomorphism from G onto H respects their tree (distance) decompositions D,D′ if

vertices in a bag of D in G are mapped blockwise onto vertices in a bag of D′ in H. Not

every isomorphism has this property.

Sym(V ) is the symmetric group on a set V .
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3. Graphs of bounded tree distance width

3.1. Tree distance decomposition in L

We describe an algorithm that on input a graph G and a subset S ⊂ V produces the

minimal tree distance decomposition D = ({Xi | i ∈ I}, T = (I, F ), r) of G with root set

Xr = S. The algorithm works within space c · k log n for some constant c, where k is the

width of the minimal tree distance decomposition of G with root set S. The output of

the algorithm is a sequence of strings of the form ( bag label, bag depth, vi1 , vi2 , . . . , vil),

indicating the number of the bag, the distance of its elements to S and the list of the

elements in the bag.

The algorithm basically performs a depth first traversal of the tree T in the decompo-

sition while constructing it. Starting at S the algorithm uses three functions for traversing

T . These functions perform queries to a logspace subroutine computing reachability [16].

Parent(Xi): On input the elements of a bag Xi the function returns the elements

of the parent bag in T . These are the vertices v ∈ V with the following two properties:

v ∈ Γ(Xi) \Xi and v is reachable from S in G \Xi. For a vertex v these two properties can

be tested in space O(log n) by an algorithm with input G,S and Xi. In order to find all

the vertices in the parent set, the algorithm searches through all the vertices in V .

First Child(Xi): This function returns the elements of the first child of i in T . This is

the child with the vertex vj ∈ V with the smallest index j. vj satisfies that vj ∈ Γ(Xi) \Xi

and that vj is not reachable from S in G \ Xi. It can be found cycling in order through

the vertices of G until the first one satisfying the properties is found. The other elements

w ∈ Xi must satisfy the same two properties as vj and additionally, they must be in the

same connected component in G \ Xi where vj is contained. In case Xi does not have any

children, the function outputs some special symbol.

Next Sibling(Xi): This function first computes Xp :=Parent(Xi) and then searches

for the child of p in T next to Xi. Let vi be the vertex with the smallest label in Xi. This

is done similarly as the computation of First Child. The next sibling is the bag containing

the unique vertex vj with the following properties: vj is the vertex with the smallest label

in this bag, label(vj) > label(vi) and there is no other bag which has a vertex with a label

> vi and < vj. The vertex vj is not reachable from S in G \ Xp. The other elements in

the bag are the vertices satisfying these properties and which are in the same connected

component of G \ Xp where vj is contained.

With these three functions the algorithm performs a depth-first traversal of T . It only

needs to remember the initial bag X0 = S which is part of the input, and the elements of the

current bag. On a bag Xi it searches for its first child. If it does not exist then it searches

for the next sibling. When there are no further siblings the next move goes up in the tree

T . The algorithm finishes when it returns to S. It also keeps two counters in order to be

able to output the number and depth of the bags. The three mentioned functions only need

to keep at most two bags (Xi and its father) in memory, and work in logarithmic space.

On input a graph G with n vertices, and a root set S, the space used by the algorithm is

therfore bounded by c · k log n, for a constant c, and k being the minimum width of a tree

distance decomposition of G with root set S. When considering how the three functions are
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defined it is clear that the algorithm constructs a tree distance decomposition with root set

S. Also they make sure that for each i the subgraph induced by the vertices of the bags in

the subtree rooted at i is connected thus producing a minimal decomposition. As observed

in [19], this is the unique minimal tree distance decomposition of G with root set S.

3.2. Isomorphism Algorithm for Bounded Tree Distance Width Graphs

For our isomorphism algorithm we use a tree called the augmented tree which is based

on the underlying tree of a minimal tree distance decomposition. This augmented tree,

apart from the bags, contains information about the separating sets which separate bags.

Definition 3.1. Let G be a bounded tree distance width graph with a minimal tree dis-

tance decomposition D = ({Xi | i ∈ I}, T = (I, F ), r). The augmented tree T(G,D) =

(I(G,D), F(G,D), r) corresponding to G and D is a tree defined as follows:

• The set of nodes of T(G,D) is I(G,D) which contains two kinds of nodes, namely

I(G,D) = I ∪ J . Those in I form the set of bag nodes in D, and those in J the

separating set nodes. For each bag node a ∈ I and each child b of a in T we consider

the set Xa ∩Γ(Xb), i.e. the minimum separating set in Xa which separates Xb from

the root bag Xr in G. Let Msa
1
, . . . ,Msa

l(a)
be the set of all minimum separating sets

in Xa, free of duplicates. There are nodes for these sets sa
1, . . . , s

a
l(a), the separating

set nodes. We define J =
⋃

a∈I{s
a
1, . . . , s

a
l(a)}. The node r ∈ I is the root in T(G,D).

• In F(G,D) there are edges between bag nodes a ∈ I and the separating set nodes

sa
1, . . . , s

a
l(a) ∈ J (edges between bag nodes and their children in the augmented tree).

There are also edges between nodes b ∈ I and sa
j if Msa

j
is the minimum separating

set in Xa which separates Xb from Xr (edges between bag nodes and their parents).

To simplify notation, we later say for example that s1, . . . , sl are the children of a bag

node a if the context is clear. The odd levels of the augmented tree T ′ correspond to bag

nodes and the even levels correspond to separating set nodes.

Observe that for each node in the augmented tree, we associate a bag to a bag node and

a minimum separating set to a separating set node. Hence, every vertex v in the original

graph occurs in at least one associated component and it might occur in more than one,

e.g. if v is contained in a bag and in a minimum separating set.

Let T(G,D) be an augmented tree of some minimal tree distance decomposition D of a

graph G. Let a be a node of T(G,D). The subtree of T(G,D) rooted at a is denoted by Ta.

Note that T(G,D) = Tr where Xr is the bag corresponding to the root of the tree distance

decomposition D. We define graph(Ta) as the subgraph of G induced by all the vertices

associated to at least one of the nodes of Ta. The size of Ta, denoted |Ta| is the number of

vertices which occur in at least one component which is associated to a node in Ta. Note,

|Ta| is polynomially related to |graph(Ta)|, i.e. the number of vertices in the corresponding

subgraph of G.

When given a tree distance decomposition the augmented tree can be computed in

logspace. Using the result in Section 3.1 we immediately get:

Lemma 3.2. Let G be a graph of bounded tree distance width. The augmented tree for G
can be computed in logspace.



232 B. DAS, J. TORÁN, AND F. WAGNER
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Figure 1: The augmented trees Sr and Tr′ rooted at bag nodes r and r′. Node r has

separating set nodes s1, . . . , sl as children. The children of s1 are again bag nodes

a1,1, . . . , a1,k1
. Sai,j

is the subtree rooted at ai,j. Bag nodes and separating set

nodes alternate in the tree.

Isomorphism Order of Augmented Trees. We describe an isomorphism order proce-

dure for comparing two augmented trees S(G,D) and T(H,D′) corresponding to the graphs G
and H and their tree distance decompositions D and D′, respectively. This isomorphism

order algorithm is an extension of the one for trees given by Lindell [12] and it is different

from that for planar graphs given by Datta et.al. [5]. The trees S(G,D) and T(H,D′) are

rooted at bag nodes r and r′. The rooted trees are denoted then Sr and Tr′ as shown in

Figure 1.

We will show that two graphs of bounded tree distance width are isomorphic if and

only if for some root nodes r and r′ the augmented trees corresponding to the minimal tree

distance decompositions have the same isomorphism order.

The isomorphism order depends on the order of the vertices in the bags r and r′.
Let Xr and X ′

r′ be the corresponding bags in D and D′. We define the sets of mappings

Θ(r,r′) = Sym(Xr) × Sym(X ′
r′). Let (σ, σ′) be such a mapping, then the tuples (G[Xr ], σ)

and (G[X ′
r′ ], σ

′) describe a fixed ordering on the vertices of the induced subgraphs. If r is

not the top-level root of the augmented tree then Θ(r,r′) may become restricted to a subset,

when going into recursion. The isomorphism order is defined to be Sr <T Tr′ if there exist

mappings (σ, σ′) ∈ Θ(r,r′) such that one of the following holds:

1) (G[Xr], σ) < (H[X ′
r′ ], σ

′) via lexicographical comparison of both ordered subgraphs

2) (G[Xr], σ) = (H[X ′
r′ ], σ

′) but |Sr| < |Tr′ |
3) (G[Xr], σ) = (H[X ′

r′ ], σ
′) and |Sr| = |Tr′ | but #r < #r′ where #r and #r′ is the

number of children of r and r′

4) (G[Xr], σ) = (H[X ′
r′ ], σ

′) and |Sr| = |Tr′ | and #r = #r′ = l but (Ss1
, . . . , Ssl

) <T

(Tt1 , . . . , Ttl) where we assume that Ss1
≤T · · · ≤T Ssl

and Tt1 ≤T · · · ≤T Ttl are

ordered subtrees of Sr and Tr′ , respectively. To compute the order between the

subtrees Ssi
≤T Ttj we consider

i: the lexicographical order of the minimal separating sets (si and tj) in Xr and

X ′
r′ according to σ and σ′, as the primary criterion (observe that the separating

sets are subsets of Xr (resp. Xr′) and are therefore ordered by σ and σ′) and

ii: pairwise the children ai,i′ of si and a′j,j′ of tj (for all i′ and j′ via

cross-comparisons) such that the induced bipartite graphs BG[si, ai,i′ ] and
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BH [tj , a
′
j,j′] can be matched according to σ and σ′ (i.e. σσ′−1 is an isomor-

phism) and

iii: recursively the subtrees rooted at the children of si and tj . Note, that these

children are again bag nodes. For the cross camparison of bag nodes ai,i′ and

a′j,j′ we restrict the set Θ(ai,i′ ,a
′
j,j′

) to a subset of Sym(Xai,i′
) × Sym(X ′

a′
j,j′

).

Namely, Θ(ai,i′ ,a
′
j,j′

) contains the pair (φ, φ′) ∈ Sym(Xai,i′
) × Sym(X ′

a′
j,j′

) if

φφ′−1 extends the partial isomorphism σσ′−1 from child ai,i′ onto a′j,j′ blockwise

and which induces an isomorphism from BG[si, ai,i′ ] onto BH [tj , a
′
j,j′].

We say that two augmented trees Sr and Tr′ are equal according to the isomorphism
order, denoted Sr =T Tr′ , if neither Sr <T Tr′ nor Tr′ <T Sr holds.

Isomorphism of two subtrees rooted at bag nodes r and r′. We have constant size

components associated to the bag nodes. A logspace machine can easily run through all the

mappings of Xr and X ′
r′ and record the mappings which gives the minimum isomorphism

order. This can be done with cross-comparison of trees (Sr, σ) and (Tr′ , σ
′) with all possible

mappings σ, σ′. Later we will see, that in recursion not all possible mappings for σ and σ′

are considered. Observe that |Sym(Xr)| ∈ O(1).

The comparison of (Sr, σ) and (Tr′ , σ
′) itself can be done simply by renaming the

vertices of Xr and X ′
r according to the mappings σ and σ′ and then comparing the ordered

sequence of edges lexicographically. When equality is found then we recursively compute

the isomorphism order of the subtrees rooted at the children of r and r′.

Isomorphism of two subtrees rooted at separating set nodes si and tj. Datta

et.al. [5] decompose biconnected planar graphs into triconnected components and obtain a

tree on these components and separating pairs, i.e. separating sets of size two. We have

separating sets of arbitrary constant size.

Since si and tj correspond to subgraphs of Xr and X ′
r′ , we have an order for them

given by the fixed mappings σ and σ′. Therefore, we can order the children s1, . . . , sl and

t1, . . . , tl according to their occurrence in Xr and X ′
r′ (e.g. assume si = (1, 2, 3, 7) according

to the mapping σ and also sj = (1, 2, 4, 7), then we get (si, σ) <T (sj, σ)). Hence, when

comparing si with tj we have to check whether both come on the same position in that order

of s1, . . . , sl and t1, . . . , tl. If so, then we go to the next level in the tree, to the children of

si and tj.
Now we have a cross comparison among the children of si and the children of tj. In

Steps 4i, 4ii and 4iii we partition the children ai,1, . . . , ai,li of si and a′j,1, . . . , a
′
j,lj

of tj ,

respectively, into isomorphism classes, step by step.

The membership of a child to a class according to Step 4i and 4ii can be recomputed.

It suffices to keep counters on the work-tape to notice the current class and traversing the

siblings from left to right. After these two steps, ai,i′ and a′j,j′ are in the same class if and

only if vertices of si and tj appear lexicographically at the same positions in σ and σ′ and

the bipartite graphs B[si, ai,i′ ] and B[tj, a
′
j,j′ ] are isomorphic where si is mapped onto tj

blockwise corresponding to σσ′−1 in an isomorphism. In Step 4iii we go into recursion and

compare members of one class which are rooted at subtrees of the same size. When going

into recursion at ai,i′ and a′j,j′ we consider only those mappings from (φ, φ′) ∈ Θ(ai,i′ ,a
′
j,j′

)

which induce an isomorphism φφ′−1 from B[si, ai,i′ ] onto B[tj, a
′
j,j′ ].
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Correctness of the isomorphism order. Both, the bag nodes and the separating set

nodes correspond to subgraphs which are basically separating sets. A bag separates all its

subtrees from the root and the separating set nodes refine the bag to separating sets of

minimum size. Hence, a partial isomorphism is constructed and extended from each node

to its child nodes, traversing the augmented tree (the whole graph, accordingly) in depth

first manner. In the recursion, the isomorphism between the roots of the current subtrees,

say Sr and Tr′ , is partially fixed by the partial isomorphism between their parents. With an

exhaustive search we check every possible remaining isomorphism from Xr onto X ′
r′ and go

into recursion again partially fixing the isomorphism for the subtrees rooted at children of

r and r′. By an inductive argument, the partial isomorphism described for the augmented

tree can be followed simultaneously in the original graph and we get:

Theorem 3.3. The graphs G and H of bounded tree distance width are isomorphic if and
only if there is a choice of a root bag r and r′ producing augmented trees Sr and Tr′ such
that Sr =T Tr′ . The isomorphism order between two augmented trees of G and H can be
computed in logspace.

The proof is based on a careful space analysis at each computational step building on

concepts of the isomorphism order algorithm of Lindell [12]. The isomorphism order is the

basis for a canonization procedure. This is shown in a full version of this paper.

Theorem 3.4. A graph of bounded tree distance width can be canonized in logspace.

4. Graphs of bounded treewidth

In this section we consider several isomorphism problems for graphs of bounded

treewidth. We are interested in isomorphisms respecting the decompositions (i.e. vertices

are mapped blockwise from a bag to another bag). We show first that if the tree decomposi-

tion of both input graphs is part of the input then the isomorphism problem can be decided

in L. We also show that if a tree decomposition of only one of the two given graphs is part

of the input, then the isomorphism problem is in LogCFL. It follows that the isomorphism

problem for graphs of bounded treewidth is also in LogCFL.

Assume the decompositions of both input graphs are given. Let (G,D), (H,D′) be two

bounded treewidth graphs together with tree decompositions D and D′, respectively. We

look for an isomorphism between G and H satisfying the condition that the images of the

vertices in one bag in D belong to the same bag in D′.

We prove that this problem is in L. For this we show that given tree decompositions

together with designated bags as roots for G and H the question of whether there is an

isomorphism between the graphs mapping root to root and respecting the decompositions

(i.e. mapping bags in G blockwise onto bags in H) can be reduced to the isomorphism

problem for graphs of bounded tree distance decomposition. We argued in the previous

section that this problem belongs to L.

Theorem 4.1. The isomorphism problem for bounded treewidth graphs with given tree
decompositions reduces to isomorphism for bounded tree distance width graphs under AC0

many-one reductions.

Since bounded tree distance width GI is in L, this almost proves the desired result. To

obtain it, we have to find roots for the tree decompositions. We fix an arbitrary bag in the

one graph and try all bags from the decomposition of the other graph as roots. We get:
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Corollary 4.2. For every k ≥ 1 there is a logarithmic space algorithm that, on input a pair
of graphs together with a tree decompositions of width k for each of them, decides whether
there is an isomorphism between the graphs, respecting the decompositions.

4.1. A LogCFL algorithm for isomorphism

We consider now the more difficult situation in which only one of the input graphs is

given together with a tree decomposition.

Theorem 4.3. Isomorphism testing for two graphs of bounded treewidth, when a tree de-
composition for one of them is given, can be done in LogCFL.

Proof. We describe an algorithm which runs on a non-deterministic auxiliary pushdown

automaton (NAuxPDA). Besides a read-only input tape and a finite control, this machine

has access to a stack of polynomial size and a O(log n) space bounded work-tape. On the

input tape we have two graphs G,H of treewidth k and a tree decomposition D = ({Xi |
i ∈ I}, T = (I, F ), r) for G. For j ∈ I we define Gj to be the subgraph of G induced on

the vertex set {v | v ∈ Xi, i ∈ I and i = j or i a descendant of j in T}. That is, Gj

contains the vertices which are separated by the bag Xj from Xr and those in Xj . We

define Dj = ({Xi, |, i ∈ Ij}, Tj = (Ij , Fj), j) as the tree decomposition of Gj corresponding

to Tj, the subtree of T rooted at j. We also consider a way to order the children of a node

in the tree decomposition:

Definition 4.4. Let 1, . . . , l be the children of r in the tree T . We define the lexicographical
subtree order, as the order among the subtrees (G1,D1), . . . , (Gl,Dl) which is given by:

(Gi,Di) < (Gj ,Dj) iff there is a vertex w ∈ V (Gi)\Xr which has a smaller label than every

vertex in V (Gj) \ Xr.

The algorithm non-deterministically guesses two main structures. First, we guess a tree

decomposition of width k for H. This is done in a similar way as in the LogCFL algorithm

from Wanke [18] for testing that a graph has bounded treewidth. Second, we guess an

isomorphism φ from G to H by extending partial mappings from bag to bag.

Very simplified, Wanke’s algorithm on input a graph H starts guessing a root bag and

it guesses then non-deterministically further bags in the decomposition using the pushdown

to test that these bags fulfill the properties of a tree decomposition and that every edge in

G is included in some bag. Our algorithm simulates Wanke’s algorithm as a subroutine. In

the description of the new algorithm we concentrate on the isomorphism testing part and

hide the details of how to choose the bags. For simplicity the sentence “guess a bag Xj in H
according to Wanke’s algorithm” means that we simulate the guessing steps from Wanke,

checking at the same time that the constructed structure is in fact a tree decomposition.

Note, if the bags were not chosen appropriately, then the algorithm would halt and reject.

We start guessing a root bag X ′
r′ of size ≤ k + 1 for a decomposition of H. With

X ′
r′ as root bag we guess the tree decomposition D′ of H which corresponds to D and

its root r. We also construct a mapping φ describing a partial isomorphism from the

vertices of G onto the vertices of H. At the beginning, φ is the empty mapping and

we guess an extension of φ from Xr onto X ′
r′ . The algorithm starts with a = r (and

a′ = r′). Then we describe isomorphism classes for 1, . . . , l, the children of a. First, the

children of a can be distinguished because X1, . . . ,Xl may intersect with Xa differently.

Second, we further partition the children within one class according to the number of
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isomorphic siblings in that class. This can be done in logspace with cross comparisons of

pairs among (G1,D1), . . . , (Gl,Dl), see Corollary 4.2. It suffices to order the isomorphism

classes according to the lexicographical subtree order of the members in the classes. We

compare then the children of a with guessed children of a′ keeping the following information:

For each isomorphism class we check whether there is the same number of isomorphic

subtrees of a′ in H and whether those intersect with X ′
a′ , accordingly. For this we use the

lexicographical subtree order to go through the isomorphic siblings from left to right, just

keeping a pointer to the current child on the work tape. For two such children, say s1 of a
and t1 of a′, we check then recursively whether (G1,D1) is isomorphic to the corresponding

subgraph of t1 in H, by an extension of φ.

When we go into recursion, we push on the stack O(log n) bits for a description of Xa

and X ′
a′ as well as a description of the partial mapping φ from Xa onto X ′

a′ .

In general, we do not keep all the information of φ on the stack. We only have the

partial isomorphism φ : {v | v ∈ Xr ∪ · · · ∪ Xa} → {v | v ∈ X ′
r′ ∪ · · · ∪ X ′

a′}, where r, . . . , a
(r′, . . . , a′, respectively) is a simple path in T from the root to the node at the current level

of recursion. After we ran through all children of some node we go one level up in recursion

and recompute all the other information which is given implicitly by the subtrees from

which we returned. Suppose now, we returned to the bag Xa, we have to do the following:

• Pop from the stack the partial isomorphism φ of the bags Xa onto X ′
a′

• Compute the lexicographical next isomorphic sibling. For this we consider the par-

tition into isomorphism classes according to φ and the lexicographical subtree order

of Definition 4.4. Recall, isomorphism testing of two subtrees of Xa can be done in

logspace.

• If there is no such sibling then we compute the lexicographical first child of Xa

inside the same isomorphism class. From this child of Xa we compute the sibling

which is not in the same isomorphism class and which comes next to the right in

the lexicographical subtree order.

• If there is neither a further sibling in the same isomorphism class nor a non-

isomorphic sibling of higher lexicographical order then we ran through all children

of Xa and we are ready to further return one level up in recursion.

Also for X ′
a′ we guess all children in an isomorphism class from left to right in lexico-

graphical subtree order. If there is no further level to go up in recursion then the stack is

empty and we halt in an accepting state. Algorithm 1 summarizes the above considerations.

In Line 1, we guess an extension of φ to include a mapping from Xa onto X ′
a′ . We know

the partial isomorphism of their parent bags since this information can be found on the top

of the stack. In Line 3, we have e.g. the partition E1 = {T1, . . . , Tl1}, E2 = {Tl1+1, . . . , Tl2}
and so on. It can be obtained in logspace by testing isomorphism of the tree structures

(G1,D1), . . . , (Gl,Dl). Two subtrees rooted at Xi and Xj are in the same isomorphism

class iff there is an automorphism in G which maps Xi onto Xj and fixes their parent Xa

setwise. In Lines 6 to 9, we guess X ′
i′ in H which corresponds to Xi, we test recursively

whether the corresponding subgraphs Gi and Hi′ are isomorphic with an extension of φ.

In Line 7, we check whether X ′
i′ fulfills the properties of a correct tree-decomposition as in

Wanke’s algorithm (i.e. X ′
i′ must be a separating set which separates its split components

from the vertices in X ′
a′ \ X ′

i′).

To see that the algorithm correctly computes an isomorphism, we make the following

observation. A bag Xa is a separating set which defines the connected subgraphs G1, . . . , Gl.
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Algorithm 1 Treewidth Isomorphism with one tree decomposition

Input: Graphs G,H, tree decomposition D for G, bags Xa in G and X ′
a′ in H.

Top of Stack: Partial isomorphism φ mapping the vertices in the parent bag of Xa onto

the vertices in the parent bag of X ′
a′ .

Output: Accept, if G is isomorphic to H by an extension of φ.

1: Guess an extension of φ to a partial isomorphism from Xa onto X ′
a′

2: if φ cannot be extended to a partial isomorphism which maps Xa onto X ′
a′ then reject

3: Let 1, . . . , l be the children of a in T . Partition the subtrees of T rooted at 1, . . . , l into

p isomorphism classes E1, . . . , Ep

4: for each class Ej from j = 1 to p
5: for each subtree Ti ∈ Ej (in lexicographical subtree order)

6: guess a bag X ′
i′ in H (in increasing lexicographical subtree order). Let Hi′ be the

subgraph of H induced by the vertices in X ′
i′ and by those which are separated

from X ′
r′ in H \ X ′

i′

7: if X ′
i′ is not a correct child bag of X ′

a′ (see Wanke’s algorithm) then reject.

8: Invoke this algorithm with input (Gi,Hi′ ,Di,Xi,X
′
i′) recursively and push Xa, X ′

a′

and the partial isomorphism φ on the stack

9: After recursion pop these informations from the stack

10: if the stack is not empty then go one level up in recursion

11: accept and halt

These subgraphs do not contain the root Xr and V (Gi)∩ V (Gj) ⊆ Xa since we have a tree

decomposition D (V (Gi) are the vertices of Gi). We guess and keep from the partial

isomorphism φ exactly those parts which correspond to the path from the roots Xr and

X ′
r′ to the current bags Xa and X ′

a′ . Once we verified a partial isomorphism from one child

component (e.g. Gi) of Xa onto a child component (e.g. Hi′) of X ′
a′ , for the other child

components it suffices to know the partial mapping of φ from Xa onto X ′
a′ .

Observe that for each v in G in a computation path from the algorithm there can only

be a value for φ(v). Clearly, if G and H are isomorphic then the algorithm can guess

the decomposition of H which fits to D, and the extensions of φ correctly. In this case

the NAuxPDA has some accepting computation. On the other hand, if the input graphs

are non-isomorphic then in every non-deterministic computation either the guessed tree

decomposition of H does not fulfill the conditions of a tree decomposition (and would be

detected) or the partial isomorphism φ cannot be extended at some point.

Wanke’s algorithm decides in LogCFL whether the treewidth of a graph is at most k
by guessing all possible tree decompositions. Using a result from [7] it follows that there is

also a (functional) LogCFL algorithm that on input a bounded treewidth graph computes

a particular tree decomposition for it. Since LogCFL is closed under composition, from this

result and Theorem 4.3 we get:

Corollary 4.5. The isomorphism problem for bounded treewidth graphs is in LogCFL.

Conclusions and open problems. We have shown that the isomorphism problem for

graphs of bounded treewidth is in the class LogCFL and that isomorphism testing and

canonization of bounded tree distance width graphs is complete for L. By using standard
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techniques in the area it can be shown that the same upper bounds apply for other problems

related to isomorphism on these graph classes. For example the automorphism problem or

the functional versions of automorphism and isomorphism can be done within the same

complexity classes. The main question remaining is whether the LogCFL upper bound

for isomorphism of bounded treewidth graphs can be improved. On the one hand, no

LogCFL-hardness result for the isomorphism problem is known, so maybe the result can be

improved. We believe that proving a logspace upper bound for the isomorphism problem of

bounded treewidth graphs would require to compute tree decompositions within logarithmic

space, which is a long standing open question. Another interesting open question is whether

bounded treewidth graphs can be canonized in LogCFL.
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Abstract. Let P be a set of points in R
d, and let α > 1 be a real number. We define the

distance between two points p, q ∈ P as |pq|α, where |pq| denotes the standard Euclidean
distance between p and q. We denote the traveling salesman problem under this distance
function by Tsp(d,α). We design a 5-approximation algorithm for Tsp(2,2) and generalize

this result to obtain an approximation factor of 3α−1 +
√

6
α

/3 for d = 2 and all α > 2.
We also study the variant Rev-Tsp of the problem where the traveling salesman is

allowed to revisit points. We present a polynomial-time approximation scheme for Rev-
Tsp(2, α) with α > 2, and we show that Rev-Tsp(d,α) is apx-hard if d > 3 and α > 1.
The apx-hardness proof carries over to Tsp(d, α) for the same parameter ranges.

1. Introduction

Motivated by a power-assignment problem in wireless networks (see below for a short

discussion of this application) Funke et al. [12] studied the following special case Tsp(d, α)

of the Traveling Salesman Problem (Tsp) which is specified by an integer d > 2 and a real

number α > 0. The cities are n points in d-dimensional space R
d, and the distance between

two points p and q is |pq|α, where |pq| denotes the standard Euclidean distance between p
and q.

• The objective in problem Tsp(d, α) is to find a shortest tour (under distances | · |α)

that visits every city exactly once.
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• In the closely related problem Rev-Tsp(d, α), the objective is to find a shortest tour

that visits every city at least once; thus the salesman is allowed to revisit cities.

Note that Tsp(2, 1) is the classical two-dimensional Euclidean Tsp and that Tsp(d,∞) is

the so-called bottleneck Tsp in R
d, where the goal is to find a tour whose longest edge has

minimum length. We are, however, mainly interested in the case where α is some small

constant, and we will not touch the case α =∞.

Similarities and differences to the classical Euclidean TSP. The classical Euclidean Tsp is

np-hard even in two dimensions, but it is relatively easy to approximate. In particular, it

admits a polynomial-time approximation scheme: Given a parameter ε > 0 and a set of n

points in d-dimensional Euclidean space, one can find in 2(d/ε)O(d)

+ (d/ε)O(d)n log n time a

tour whose length is at most 1 + ε times the optimal length [23].

A crucial property of the Euclidean Tsp is that the underlying Euclidean distances

satisfy the triangle inequality. The triangle inequality implies that no reasonable salesman

would ever revisit the same city: Instead of returning to a city, it is always cheaper to skip

the city and to travel directly to the successor city. All positive approximation results for

the Euclidean Tsp rely heavily on the triangle inequality. In strong contrast to this, for

exponents α > 1 the distance function | · |α does not satisfy the triangle inequality. Thus

the combinatorial structure of the problem changes significantly—for example, revisits may

suddenly become helpful—and the existing approximation algorithms for Euclidean Tsp

cannot be applied.

Another nice property of the classical Euclidean problem Tsp(2, 1) is that, sloppily

speaking, instances with many cities have long optimal tours. Consider for instance a set P
of n points in the unit square. Then there exists a tour whose Euclidean length is bounded

by O(
√
n) [15]. This bound is essentially tight since there are point sets for which every

tour has Euclidean length Ω(
√
n). Interestingly, these results do not carry over to Tsp(2, 2)

with squared Euclidean distances. Problem #124 in the book by Bollobás [8] shows that

there always exists a tour for P such that the sum of the squared Euclidean distances is

bounded by 4, and that this bound of 4 is best possible. Since, as a rule of thumb, large

objective values are easier to approximate than small objective values, this already indicates

a substantial difference in the approximability behaviors of Tsp(2,1) and Tsp(2,2).

Previous work and our results. Funke et al. [12] note that the distance function | · |α satisfies

the so-called τ -relaxed triangle inequality with parameter τ = 2α−1 (see Section 2 for a

definition). The classical TSP under the τ -relaxed triangle inequality has been extensively

studied [2, 3, 6, 7], and all the corresponding machinery from the literature can be applied

directly to Tsp(d, α). For instance, Andreae [6] derives a (τ2 + τ)-approximation for the

classical Tsp under the τ -relaxed triangle inequality (∆τ -Tsp, for short). This result trans-

lates into a (4α−1 + 2α−1)-approximation for Tsp( · , α). For τ > 3, it is better to apply

Bender and Chekuri’s 4τ -approximation [2] for ∆τ -Tsp, which yields a 2α+1-approximation

for Tsp( · , α). Funke et al. derive a (2 ·3α−1)-approximation algorithm for Tsp( · , α), which

for the range 2 < α < log3/2 3 ≈ 2.71 is better than applying the known results [6, 2].

The best result for α < 2 is obtained by Böckenhauer et al. [7] whose Christofides-based

(3τ2/2)-approximation for ∆τ -Tsp yields a (3 · 22α−3)-approximation for Tsp( · , α).

We will demonstrate in Section 2 that essentially every variant of the original T3-

algorithm by Andreae and Bandelt [3] already gives a (2·3α−1)-approximation for Tsp(d, α).

The bottom-line of all this, and the actual starting point of our paper, is that the machinery
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around the τ -relaxed triangle inequality only yields a bound of roughly 2 · 3α−1. This

raises the following questions: How much can geometry help us in getting even better

approximation ratios? Can we beat the 6-approximation for Tsp(2, 2) of Funke et al.? We

answer these questions affirmatively: We develop a new variant of the T3-algorithm which

we call the geometric T3-algorithm. An intricate analysis in Section 3 shows that this yields

a 5-approximation for Tsp(2, 2). We then extend our analysis to Tsp(2, α) with α > 2,

and thus obtain a (3α−1 +
√

6
α
/3)-approximation; see Section 4. This new bound is always

better than the bound 2 · 3α−1 of Funke et al. and of our analysis of the T3-algorithm.

Finally, in Section 5, we turn our attention to the following two questions: (a) How

does the approximability of Tsp behave when we make α larger than one? (b) Does al-

lowing revisits change the complexity or the approximability of the problem? As we know,

classical Euclidean Tsp (that is, Tsp(d, 1)) is np-hard [19] and has a polynomial-time ap-

proximation scheme (PTAS) in any fixed number d of dimensions [4]. On the other hand,

Rev-Tsp(d, α) has—to the best of our knowledge—not been studied before. Concerning

question (b), complexity behaves as expected: Rev-Tsp(d, α) is NP-hard for any d > 2 and

any α > 0, and our (straightforward) hardness argument also works for Tsp(d, α). In terms

of approximability, we show that whereas the two-dimensional problem Rev-Tsp(2, α) still

has a PTAS for all values α > 2, the problem becomes apx-hard for all α > 1 in three

dimensions. We were surprised that the apx-hardness proof, too, carried over to Tsp(3, α)

for all α > 1. This inapproximability result stands in strong contrast to the behavior of the

classical Euclidean Tsp (the case α = 1).

The connection to wireless networks. Consider a wireless network whose nodes are equipped

with omni-directional antennas. The nodes are modeled as points in the plane, and every

node can communicate with all other nodes that are within its transmission radius. The

power (that is, the energy) needed to achieve a transmission radius of r is roughly propor-

tional to rα for some real parameter α called the distance-power gradient. Depending on

environmental conditions, α typically is in the range 2 to 6 [13, Chapter 1]. The goal is to

assign powers to the nodes such that the resulting network has certain desirable properties,

while the overall power consumption is minimized. A widely studied variant has the objec-

tive to make the resulting network strongly connected [1, 11, 16]. Other variants (finding

broadcast trees; having small hop diameter; etc) have been studied as well. Funke et al. [12]

suggest that it is useful to have a tour through the network, which can be used to pass a

virtual token around. The resulting power-assignment problem is Tsp(2, α).

Another setting related to Tsp(2, α) is the following. Instead of omni-directional anten-

nas, some wireless networks use directional antennas. This achieves the same transmission

radius under a smaller energy consumption [17, 22]. To model directional antennas, Cara-

giannis et al. [9] assume that a node can communicate with other nodes in a circular sector

of a given angle (where the sector’s radius is still determined by the power of the node’s

signal). For directional antennas one not only has to assign a power level to each node, but

also has to decide on the direction in which each node transmits. If the opening angle tends

to zero and the points are in general position, a strongly connected network becomes a tour.

Hence, our results on Tsp(2, α) may shed some light on the difficulty of power assignment

for directional antennas with small opening angles.
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2. Approximating Tsp( · , α)

In this section we lay the basis for our main contribution, a 5-approximation for

Tsp(2, 2) in Section 3. We review known algorithms for a related version of Tsp, which

can be applied to our setting. As it turns out, these algorithms already yield the same

worst-case bounds as the algorithm that Funke et al. [12] gave recently.

We recall some definitions. Let S be a set, let dist(·, ·) : S × S → R>0 be a distance

function on S, and let τ > 1. We say that dist(·, ·) fulfills the τ -relaxed triangle inequality
if any three elements p, q, r ∈ S satisfy dist(p, r) 6 τ · (dist(p, q) + dist(q, r)). Recall that

we denote by ∆τ -Tsp the Tsp problem on complete graphs whose weight function (when

viewed as a distance function on the vertices) fulfills the τ -relaxed triangle inequality. The

following lemma, which has been observed by Funke et al. [12], allows us to apply algorithms

for ∆τ -Tsp to our problem. The proof relies on Hölder’s inequality.

Lemma 2.1 ([12]). Let α > 0 be a fixed constant. The distance function | · |α : R
d ×R

d →
R>0, (p, q) 7→ |pq|

α fulfills the τ -relaxed triangle inequality for τ = 2α−1.

Andreae and Bandelt [3] gave an approximation algorithm for ∆τ -Tsp. Their T3-

algorithm is an adaptation of the well-known double-spanning-tree heuristic for Tsp. This

heuristic finds a minimum spanning tree (MST) in the given graph G, doubles all edges,

finds an Euler tour in the resulting multigraph, and finally constructs a Hamiltonian cycle

from the Euler tour by skipping all nodes that have already been visited. The weight of

the MST is a lower bound for the length of a Tsp-tour since removing any edge from a

tour yields a spanning tree whose weight is at least the weight of the MST. Note that

this statement holds for arbitrary weight functions. If the triangle inequality holds, the

heuristic yields a 2-approximation since then skipping over visited nodes never increases

the length of the tour, which initially equals twice the weight of the MST. For the weight

function | · |α, however, the heuristic can perform arbitrarily badly—consider a sequence of

n equally-spaced points on a line.

The T3-algorithm of Andreae and Bandelt also creates a Hamiltonian tour by short-

cutting the MST, but their algorithm never skips more than two consecutive nodes. It is

never necessary to skip more than two consecutive nodes because the cube T 3 of a tree T is

always Hamiltonian by a result of Sekanina [24]. Recall that the cube of a graph G contains

an edge uv if there is a path from u to v in G that uses at most three edges. The proof of

Sekanina is constructive; Andreae and Bandelt use it to construct a tour in MST3.

The recursive procedure of Sekanina [24] to obtain a Hamiltonian cycle in T 3 intuitively

works as illustrated in Fig. 1; for the pseudo-code, see Algorithm 1. The algorithm is

applied to a tree T and an edge e = u1u2 of T . Removing the edge e splits the tree into

two components T1 and T2. In each component Ti (i = 1, 2), the algorithm selects an

arbitrary edge ei = uiwi incident to ui and recursively computes a Hamiltonian cycle of Ti

that includes the edge ei. The algorithm returns a Hamiltonian cycle of T that includes e.
The cycle consists of the cycles in T1 and T2 without the edges e1 and e2, respectively. The

two resulting paths are stitched together with the help of e and the new edge w1w2.

Note that different choices of the edge ei in line 5 give rise to different versions of the

algorithm. The standard T3-algorithm takes an arbitrary such edge, while Andreae’s refined

version [2] makes a specific choice, which gives a better result. (In the next section we will

choose ei based on the local geometry of the MST, which will lead to an improved result

for our problem.) Andreae’s tour in MST3 has weight at most (τ2 + τ) times the weight of

the MST, which is worst-case optimal [3]. Combining his result with Lemma 2.1 yields that
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u1 u2

w1 w2

T1 T2e
e1 e2

Figure 1: Recursively find-

ing a Hamiltonian

cycle in the cube

of the tree T .

Algorithm 1: CycleInCube(T , e = u1u2)

for i← 1 to 2 do1

Ti ← component of T − e that contains ui2

if |Ti| = 1 then Pi ← ∅; wi ← ui3

else4

pick an edge ei = uiwi incident to ui in Ti5

if |Ti| = 2 then Πi ← ei6

else Πi ← CycleInCube(Ti, ei)− ei7

return Π1 + e+ Π2 + w1w28

the refined T3-algorithm is a (4α−1 + 2α−1)-approximation for Tsp( · , α). We now improve

on this with the help of a simple argument. We will frequently use the following definition.

Let T be a tree and let v0, . . . , vk be a simple path in T . Then we call v0vk a k-shortcut
of T . We say that a shortcut vw uses an edge e if e lies on the path connecting v and w
in T . It is not hard to see that the weight of a k-shortcut can be bounded as follows.

Lemma 2.2. Let α > 1 and let e be a k-shortcut using edges e1, . . . , ek. Then |e|α 6

kα−1
∑k

i=1 |ei|
α.

Given a tree T , the tour constructed by the T3-algorithm consists of edges of T and 2-

and 3-shortcuts that use edges of T . Note that in this tour each edge of T is used exactly

twice. Thus, for α > 2, the original T3-algorithm does actually better than the bound we

obtained above for the refined T3-algorithm.

Corollary 2.3. Every version of the T3-algorithm is a (2·3α−1)-approximation for Tsp( · , α).

Note that our improved analysis of the T3-algorithm yields the same result as the

algorithm of Funke et al. [12].

Bender and Chekuri [6] designed a 4τ -approximation for ∆τ -Tsp using a different lower

bound: the optimal Tsp tour is a biconnected subgraph of the original graph. The weight

of the optimal Tsp tour is at least that of the minimum-weight biconnected subgraph.

The latter is np-hard to compute [10], but can be approximated within a factor of 2 [21].

Moreover, the square of a biconnected subgraph is always Hamiltonian. Thus using only

edges of the biconnected subgraph and two-shortcuts yields a 4τ -approximation for ∆τ -

Tsp. Combining the result of Bender and Chekuri with Lemma 2.1 immediately yields the

following result, which is better than Corollary 2.3 for α > log3/2 3 ≈ 2.71.

Corollary 2.4. The algorithm of Bender and Chekuri is a 2α+1-approximation for Tsp( · , α).

3. A 5-Approximation for TSP(2,2)

In the previous section we have used graph-theoretic arguments to determine the per-

formance of the T3-algorithm. By Corollary 2.3, the T3-algorithm yields a 6-approximation

for α = 2, independently of the dimension of the underlying Euclidean space. We now

define what we call the geometric T3-algorithm and show that it yields a 5-approximation

for Tsp(2, 2). The geometric T3-algorithm simply chooses in line 5 of Algorithm 1 the edge

ei that makes the smallest angle with the edge e.
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b

a
c

b1 b2

s(a, b, c)

ψba ψbc

∆x

∆y

(a) a and c lie on the same side of the
line through b

b

a

c

b1

b2

s(a, b, c)

ψba

ψbc

∆x

∆y

(b) a and c lie on different sides of the line
through b

Figure 2: Two cases for computing the length of the 3-shortcut s(a, b, c).

The idea behind taking advantage of geometry is as follows. In Corollary 2.3 we have

exploited the fact that each edge is used in two (6 3)-shortcuts. The weight of a 3-shortcut

is maximum if the corresponding points lie on a line. For the case of the Euclidean MST it

is well-known that edges make an angle of at least π/3 if they share an endpoint. The same

proof also works for the MST w.r.t. | · |α. This guarantees that in line 5 of Algorithm 1, we

can pick an edge ei that makes a relatively small angle with e—if the degree of ui is larger

than 2. Otherwise, it is easy to see that ei is used by a (6 2)- and a (6 3)-shortcut, which

is favorable to being used by two 3-shortcuts, see Lemma 2.2.

Although the intuition behind our geometric T3-algorithm is clear, its analysis turns

out to be non-trivial. We start with the following lemma that can be proved with some

elementary trigonometry. Given two line segments s and t incident to the same point, we

denote the smaller angle between s and t by ∠st and define ψst = π − ∠st.

Lemma 3.1. Given a tree T , the 3-shortcut s(a, b, c) that uses the edges a, b, c of T in this
order has weight

|s(a, b, c)|2 = |a|2 + |b|2 + |c|2 + 2|a||b| cos ψba + 2|b||c| cos ψbc + 2|a||c| cos(ψba + δ · ψbc),

where δ = +1 if a and c lie on the same side of the line through b, and δ = −1 if a and c lie
on opposite sides. Moreover, |s(a, b, c)|2 6 2|a|2 + |b|2 +2|c|2 +2|a||b| cosψba +2|b||c| cos ψbc.

Lemma 3.1 (illustrated in Fig. 2) expresses the weight of a 3-shortcut in terms of the

lengths of the edges and the angles between them. Now we show that if an edge a is used in

two 3-shortcuts, two of these angles are related. Note that the T3-algorithm generates the

two 3-shortcuts that use a in two consecutive recursive calls, see Fig. 3. The T3-algorithm

is first applied to edge b and then recursively to edge a. In the recursive call, the shortcut

s(e, a, d) is generated where d is an edge incident to both a and b. Then the algorithm

returns from the recursion and generates the 3-shortcut s(a, b, c). Thus a is the middle edge

in one 3-shortcut and the first or last edge in the other 3-shortcut. We rely on the following.

Lemma 3.2. If the geometric T3-algorithm generates the two 3-shortcuts s(a, b, c) and
s(e, a, d) in two recursive calls and d is incident to both a and b, then ψba > (π − ψad)/2.

Now we are ready to prove the main result of this section.

Theorem 3.3. The geometric T3-algorithm yields a 5-approximation for Tsp(2, 2).

Proof. We express the length of each shortcut s of the T3-tour in terms of the lengths of the

MST edges that s uses. Changing the perspective, for each MST edge a, we use contrib(a)
to denote the sum of all terms that contain the factor |a|. The edge a is used in at most



THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES 245

two shortcuts. Bounding their lengths yields an upper bound on contrib(a). The sum of all

contributions relates the length of the T3-tour to that of the MST (w.r.t. | · |α), which in

turn is a lower bound for the length of an optimal Tsp tour.

Due to Lemma 2.2, contrib(a) 6 5|a|2 if a is used in a (62)-shortcut on one side and a

(63)-shortcut on the other side. So we focus on the case that a is used in two 3-shortcuts,

see Fig. 3. We rewrite the composite terms in the bound for s(a, b, c) in Lemma 3.1 using

Young’s inequality with ε, which, given x, y ∈ R and ε > 0, states that xy 6 x2/(2ε)+y2ε/2.
Let v be the vertex that is incident to edges a and b. If there are multiple 3-shortcuts

that use edges that are incident to v then the T3-algorithm generates these in consecutive

recursive calls. We renumber the edges incident to v such that the algorithm is first applied

to vv1, then recursively to vv2 etc. Then there is some i > 1 such that b = vvi and

a = vvi+1 because the algorithm is first applied to b and then recursively to a. We define

ψi = ψvvi,vvi+1
(= ψba). We rewrite the term 2|a||b| cos ψba in the bound for |s(a, b, c)|2 in

Lemma 3.1 as follows.

2|a||b| cos ψba = 2|vvi||vvi+1| cosψi 6 f(|vvi+1|, |vvi|, ψi), (3.1)

where

f(|vvi+1|, |vvi|, ψi) =



















0 if ψi >
π
2 ,

|vvi|
2 + |vvi+1|

2 cos2 ψi if ψi <
π
2 and

(

i = 1 or
(

i > 1 and ψi−1 >
π
2

))

,
(

|vvi|
2 + |vvi+1|

2
)

cosψi if ψi <
π
2 and i > 1 and ψi−1 <

π
2 .

The second case of inequality (3.1) follows from Young’s inequality with ε = 1/ cosψi and

the third case from Young’s inequality with ε = 1. Replacing 2|b||c| cos ψbc in the bound for

|s(a, b, c)|2 in Lemma 3.1 is analogous. Together, the two replacements yield the bound

|s(a, b, c)|2 6 2|a|2 + |b|2 + 2|c|2 + f(|a|, |b|, ψba) + f(|c|, |b|, ψbc). (3.2)

We use (3.2) to bound the weights of all 3-shortcuts. The weight of the final tour is the

sum of the weights of all shortcuts. In this sum we can take the two occurrences of an

edge a = vvi+1 together and analyze the contribution of a to the tour. Note that the result

of (3.2) is still at most 3(|a|2 + |b|2 + |c|2). So if an edge a is used in a (63)-shortcut on one

side and a (6 2)-shortcut on the other side, then we still have that contrib(a) 6 5|a|2. It

remains to consider the case that a is used in two 3-shortcuts. Let s(a, b, c) and s(e, a, d) be

these 3-shortcuts. The algorithm is first applied to edge b and generates shortcut s(a, b, c),
where a is the first or the third edge of the shortcut. Then the algorithm is recursively

applied to edge a and generates shortcut s(e, a, d), where a is the middle edge. Fig. 3 shows

how the vertices are numbered in this case.

b

a
c

d

e s(a, b, c)

s(e, a, d
)

ψi = ψba ψbc

ψae

v
vi

vi+1

vi+1

ψi+1 = ψad

Figure 3: Two 3-shortcuts that use edge a.

a
v vi−1

vi

vi+1

vj

6 i

6 i+1

6 i−1

Figure 4: Illustration of case III.
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Let σa be a function that takes a sum of terms and returns the sum of all terms that

contain |a|. We derive the following expression for contrib(a).

contrib(a) = σa(weight(s(a, b, c))) + σa(weight(s(e, a, d)))

6 σa

(

2|a|2 + |b|2 + 2|c|2 + f(|a|, |b|, ψba) + f(|c|, |b|, ψbc)
)

+ σa

(

2|e|2 + |a|2 + 2|d|2 + f(|e|, |a|, ψae) + f(|d|, |a|, ψad)
)

6 4|a|2 + σa(f(|vvi+1|, |vvi|, ψi)) + σa(f(|vvi+2|, |vvi+1|, ψi+1)) (3.3)

By definition of f we have to consider three cases in (3.3) for contrib(a).

Case I: ψi > π/2 or ψi+1 > π/2.
We assume w.l.o.g. that ψi > π/2. Then we know that f(|vvi+1|, |vvi|, ψi)) = 0 and in

the worst case σa(f(|vvi+2|, |vvi+1|, ψi+1)) 6 |a|2. Thus we have that contrib(a) 6 5|a|2.

Case II: ψi < π/2 and ψi+1 < π/2 and (i = 1 or (i > 1 and ψi−1 > π/2)).
By definition of f we have:

σa(f(|vvi+1|, |vvi|, ψi)) = σa

(

|vvi|
2 + |vvi+1|

2 cos2 ψi

)

= |a|2 cos2 ψi

σa(f(|vvi+2|, |vvi+1|, ψi+1)) = σa

(

(|vvi+1|
2 + |vvi+2|

2) cosψi+1

)

= |a|2 cosψi+1

Lemma 3.2 states that ψi > (π − ψi+1)/2. We also know that ψi 6 π by definition. Thus

we have

contrib(a) 6

(

4 + cos2
π − ψi+1

2
+ cosψi+1

)

|a|2 6 5|a|2.

Case III: ψi < π/2 and ψi+1 < π/2 and i > 1 and ψi−1 < π/2.
It can be shown that this leads to a contradiction, see Fig. 4 (on page 245).

In cases I and II, the contribution of any edge |a| to the tour is at most 5|a|2. The

theorem follows by summing up the contributions of all edges.

When using the MST as a lower bound in the analysis, there is not much room for

improvement. There are instances of Tsp(2,2) where the T3-algorithm yields a tour whose

weight is 4 4
11 times that of the MST; see also [18, Theorem 4.19].

4. Approximating Tsp(2, α) with α > 2

In this section we generalize the main result of the previous section to α > 2. Our new

bound is always better than the bound 2 · 3α−1 of Funke et al. [12], see also Corollary 2.3.

For α < 3.41 our bound is better than the bound 2α+1 that follows from the algorithm of

Bender and Chekuri [6], see Corollary 2.4.

Theorem 4.1. The geometric T 3-algorithm yields a (3α−1 +
√

6
α
/3)-approximation for

Tsp(2, α) if α > 2.

Proof. If an edge a is used in a (62)-shortcut on one side and a (63)-shortcut on the other

side then the total contribution of a to the tour is at most (2α−1 +3α−1)|a|α by Lemma 2.2.

So we will focus our analysis again on the case that a is used in two 3-shortcuts. For α = 2

we can express the weight of a 3-shortcut by Lemma 3.1 and rewrite the composite terms
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as in inequality (3.1). For α > 2 we apply Hölder’s inequality.

|s(a, b, c)|α =
(

|s(a, b, c)|2
)α/2

6

(

2|a|2 + |b|2 + 2|c|2 + f(|a|, |b|, ψba) + f(|c|, |b|, ψbc)
)α/2

=
(

βa|a|
2 + βb|b|

2 + βc|c|
2
)α/2

(4.1)

6 3α/2−1
(

βα/2
a |a|α + β

α/2
b |b|α + βα/2

c |c|α
)

(4.2)

We introduced the constants of type β to shorten the expression. Note that the last in-

equality holds only if α > 2.

In order to bound the contribution of an edge a that is used in two 3-shortcuts we

follow the proof of Theorem 3.3. Since the assumptions of case III in that proof led to a

contradiction, it suffices to consider cases I and II.

Case I: ψi > π/2 or ψi+1 > π/2.

contrib(a) 6 3α/2−1
(

(2 + cosψi)
α/2 + (2 + cosψi+1)

α/2
)

|a|α

6 3α/2−1
(

2α/2 + 3α/2
)

|a|α =
(

3α−1 +
√

6
α
/3

)

|a|α

Case II: ψi < π/2 and ψi+1 < π/2 and (i = 1 or (i > 1 and ψi−1 > π/2)).

contrib(a) 6 3α/2−1
(

(2 + cosψi+1)
α/2

+
(

2 + sin2 ψi+1/2
)α/2

)

︸ ︷︷ ︸

gα(ψi+1)

|a|α

Now we use the fact that the function h : [0, 2π] → R, x 7→ (2 + cos x)k + (2 + sin2 x/2)k

attains its maximum value at x = 0. Thus gα also attains its maximum in the range [0, π/2)
in x = 0. This yields

contrib(a) 6 3α/2−1 · gα(0) · |a|α 6

(

3α−1 +
√

6
α
/3

)

|a|α.

In both cases we showed that contrib(a) 6 (3α−1 +
√

6
α
/3)|a|α. The theorem follows for

α > 2 by summing up the contributions of all edges. The case α = 2 corresponds to

Theorem 3.3.

5. The Approximability of TSP and Rev-TSP

In this section we discuss complexity and approximability of Tsp and its variant Rev-

Tsp, where the salesman is allowed to revisit the cities. Recall that for any fixed dimension

d > 2, Tsp(d, 1) is np-hard [19] and admits a PTAS [4].

Theorem 5.1. Tsp(d, α) and Rev-Tsp(d, α) are np-hard for any d > 2 and α > 0.

Proof. Itai et al. [14] showed that, given n points in the unit grid, it is np-hard to decide

whether there is a Tsp tour of Euclidean length n. Thus for both of our problems it is

np-hard to distinguish between opt = n and opt > n− 1 +
√

2
α
.
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Theorem 5.2. Tsp(d, α) and Rev-Tsp(d, α) are apx-hard for any d > 3 and any α > 1.

Proof. We only discuss the case d = 3 and α = 2—all other cases can be settled by slightly

modified arguments—Tsp. and we only consider Rev-Tsp; a similar reduction can be used

for Tsp. We reduce from {1, 2}-Tsp, the Tsp on the complete graph where the weight

of every edge is either 1 or 2; this problem is apx-hard [20]. An instance of {1, 2}-Tsp

consists of the complete graph Kn = (Vn, En) with vertex set Vn = {v1, . . . , vn}, edge

set En = {e1, . . . , em} where m = n(n − 1)/2, and edge lengths that are specified by a

weight function w : En → {1, 2}. Given Kn and w, we construct a corresponding instance

Pn,w ⊂ R
3 of Rev-Tsp(3, 2).

We start our construction by introducing several auxiliary line segments. For each

vertex vi ∈ Vn we define its spine to be the vertical line segment going from point (ni, ni, n)

to point (ni, ni, nm). For each edge ek = vivj ∈ En with i < j, we define two corresponding

line segments that are parallel to the xy-plane and that are called bones. The first bone

connects point (ni, ni, nk) on the spine of vi to the point (nj, ni, nk). The other bone

connects point (nj, nj, nk) on the spine of vj to the point (nj, ni− δk, nk), where δk = 1 if

w(ek) = 1 and δk =
√

2 if w(ek) = 2. Note that these two bones do not quite touch; they

are separated by a gap of length δk.
In order to get the instance Pn,w of Rev-Tsp(3, 2), we subdivide every single (spine

or bone) line segment introduced above by a dense, evenly distributed set of points—we

call these points cities from now on—so that every unit-length piece receives n5 cities.

The distance between adjacent cities is 1/n5, and so the cost for going from one city to

an adjacent city is 1/n10. All these cities together form instance Pn,w, and this completes

our construction. Since we have introduced line segments with a total length of at most

n · n(m− 1) +m · 2n(n − 1) < 2n4, the overall number of cities is at most 2n9.

For 1 6 i 6 n we call the cities on the spine of vi and on all bones incident to this spine

the city cluster of vi. Traversing all cities within such a city cluster is very cheap; even if

we visit every city twice, this costs at most 2 ·2n9/n10 = 4/n for all cities in all city clusters

together. In a traveling salesman tour, the only expensive steps occur when the salesman

jumps from one city cluster to another city cluster. By the above definition of δk, when

jumping from bone to bone across the gap corresponding to edge ek the incurred cost is

exactly w(ek). Note that jumping from city cluster to city cluster in any other way would

be much more expensive and would thus not reduce the total cost of the tour.

Finally, let us show that our reduction is approximation preserving. Fix an ε with

0 < ε < 1. Consider an instance Kn and w of {1, 2}-Tsp, and assume without loss of

generality that n > 4/ε. Consider an optimal tour π0 for this instance. If π0 uses ℓ > 0

edges of length 2 and n − ℓ edges of length 1, then it has cost n + ℓ. Given a PTAS for

Rev-Tsp, we show how to compute in polynomial time a tour of cost at most (1+ ε)(n+ ℓ)
for Kn and w.

First note that the tour π0 can be transformed into a tour π1 through Pn,w that makes ℓ
jumps of cost 2 and n − ℓ jumps of cost 1. That tour π1 costs at most n + ℓ+ 4/n. Using

our hypothetical PTAS for Rev-Tsp, we can compute for any ε′ > 0 in polynomial time

a tour π2 through Pn,w of cost at most (1 + ε′)copt, where copt is the cost of an optimal

Rev-Tsp tour. The existence of π1 yields copt 6 n+ℓ+4/n. The tour π2 can be transformed

into a tour π3 through Kn: Just map the jumps of π2 to the corresponding edges of Kn.

Since this mapping cannot increase the cost, tour π3 costs at most (1 + ε′)(n + ℓ + 4/n).
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Choosing ε′ = ε/2 and using 4/n < ε < 1, we can bound the cost of π3 from above by
(

1 +
ε

2

)

(n+ ℓ) +
(

1 +
ε

2

)

ε =
(

1 +
ε

2

)

(n+ ℓ) +
ε

2
(2 + ε) = (1 + ε)(n + ℓ)

as desired. Like π2, the tour π3 may visit vertices more than once. This can be fixed by

greedily introducing shortcuts. The shortcuts do not increase the cost of the tour since the

weight function w (trivially) fulfills the triangle inequality.

Theorem 5.3. There exists a PTAS for Rev-Tsp(2, α) for any α > 2.

Proof. Given a set P of points in the plane, consider the Gabriel graph GP that has a vertex

for each point in P . There is an edge between points p and q, if the open disk with diameter

pq is empty, in other words, if for all points r ∈ P \ {p, q}, the angle ∠prq is at most π/2.
The weight of the edge is |pq|α. Note that |pr|α + |rq|α 6 |pq|α if ∠prq is at least π/2.
Therefore, there is an optimal Tsp tour with revisits through P that only uses the edges

of GP : Indeed, if a tour uses an edge pq for which there is a point r with ∠prq > π/2,
then replacing pq by pr and rq would shorten the tour. Such a replacement is feasible since

revisiting city r is allowed. The Gabriel graph is planar. Hence we end up with an instance

of the Tsp on weighted planar graphs, for which a PTAS is known [5].

Recall that a quasi-PTAS is an approximation scheme with running time npolylog n,

where n is the size of the input. The following result follows immediately from the facts

that (a) the metric |·|α has bounded doubling dimension and (b) Tsp on metrics of bounded

doubling dimension admits a quasi-PTAS [25].

Theorem 5.4. There exists a quasi-PTAS for Rev-Tsp(d, α) for any α ∈ (0, 1] and d > 1.

6. Conclusions

In order to construct considerably better approximation algorithms for Tsp(d, α), we

expect that substantially different methods of analysis have to be found. A result of Van

Nijnatten [18, Theorem 4.19] indicates that there is not much room left for improvement

as long as we compare to the MST.

The approximability of Rev-Tsp(2, α) for 1 < α < 2 is an interesting open question.

We believe that a (quasi)-PTAS may be obtained using the framework of the PTAS for

weighted planar graph Tsp by Arora et al. [5]. A simple reduction shows that deriving a

PTAS for our problem is at least as hard as deriving a PTAS for weighted planar graph

Tsp. Assume we have a PTAS for Rev-Tsp(2, α) for some α > 1. Given a weighted planar

graph and a planar embedding, we replace each edge by a dense set of points such that

traversing a subedge basically costs zero. By making one subedge of each edge e longer, we

can make the cost of that subedge (and thus of e) in Rev-Tsp proportional to the weight

of e. Then, the costs of the optimal solutions of the two problems will be the same up to an

arbitrarily small constant factor of 1 + ε. Such a reduction is polynomially bounded if all

weights are polynomially bounded, which can be achieved by a standard rounding scheme.

A PTAS for Rev-Tsp(2, α) for any α > 1 would be an interesting generalization of the

existing PTAS’s for weighted planar graphs. Ideally, one would have a PTAS with running

time independent of α since it would contain both Euclidean Tsp and weighted planar

graph Tsp as special cases.
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Abstract. In this paper we make the first step beyond bidimensionality by obtaining
subexponential time algorithms for problems on directed graphs. We develop two different
methods to achieve subexponential time parameterized algorithms for problems on sparse
directed graphs. We exemplify our approaches with two well studied problems. For the
first problem, k-Leaf Out-Branching, which is to find an oriented spanning tree with

at least k leaves, we obtain an algorithm solving the problem in time 2O(
√

k log k)n + nO(1)

on directed graphs whose underlying undirected graph excludes some fixed graph H as a
minor. For the special case when the input directed graph is planar, the running time can

be improved to 2O(
√

k)n+nO(1). The second example is a generalization of the Directed

Hamiltonian Path problem, namely k-Internal Out-Branching, which is to find an
oriented spanning tree with at least k internal vertices. We obtain an algorithm solving

the problem in time 2O(
√

k log k) + nO(1) on directed graphs whose underlying undirected
graph excludes some fixed apex graph H as a minor. Finally, we observe that for any
ε > 0, the k-Directed Path problem is solvable in time O((1+ε)knf(ε)), where f is some
function of ε.

Our methods are based on non-trivial combinations of obstruction theorems for undi-
rected graphs, kernelization, problem specific combinatorial structures and a layering tech-
nique similar to the one employed by Baker to obtain PTAS for planar graphs.

1. Introduction

Parameterized complexity theory is a framework for a refined analysis of hard (NP-

hard) problems. Here, every input instance I of a problem Π is accompanied with an

integer parameter k and Π is said to be fixed parameter tractable (FPT) if there is an

algorithm running in time f(k) · nO(1), where n = |I| and f is a computable function.

A central problem in parameterized algorithms is to obtain algorithms with running time
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f(k) · nO(1) such that f is as slow growing function as possible. This has led to the devel-

opment of various graph algorithms with running time 2O(k)nO(1)— notable ones include

k-Feedback Vertex Set [7], k-Leaf Spanning Tree [26], k-Odd Cycle Transver-

sal [29], k-Path [4], and k-Vertex Cover [8] in undirected graphs. A natural question

was whether we can get subexponential time algorithms for these problems, that is, can we

have algorithms with running time 2o(k)nO(1). It is now possible to show that these prob-

lems do not admit algorithms with running time 2o(k)nO(1) unless the Exponential Time

Hypothesis (ETH) [21, 25] fails. Finding algorithms with subexponential running time on

general undirected graphs is a trait uncommon to parameterized algorithms.

However, the situation changes completely when we consider problems on topological

graph classes like planar graphs or graphs of bounded genus. In 2000, Alber et al. [1]

obtained the first parameterized subexponential algorithm on undirected planar graphs by

showing that k-Dominating Set is solvable in time 2O(
√

k)nO(1). This result triggered an

extensive study of parameterized problems on planar and more general classes of sparse

graphs like graphs of bounded genus, apex minor-free graphs and H-minor free graphs. All

this work led to subexponential time algorithms for several fundamental problems like k-
Feedback Vertex Set, k-Edge Dominating Set, k-Leaf Spanning Tree, k-Path, k-

r-Dominating Set, k-Vertex Cover to name a few on planar graphs [1, 12, 23], and more

generally, on H-minor-free graphs [13, 14, 15]. These algorithms are obtained by showing

a combinatorial relation between the parameter and the structure of the input graph and

proofs require strong graph theoretic arguments. This graph-theoretic and combinatorial

component in the design of subexponential time parameterized algorithms makes it of an

independent interest.

Demaine et al. [13] abstracted out the “common theme” among the parameterized

subexponential time algorithms on sparse graphs and created the meta-algorithmic theory

of Bidimensionality. The bidimensionality theory unifies and improves almost all known

previous subexponential algorithms on spare graphs. The theory is based on algorithmic

and combinatorial extensions to various parts of Graph Minors Theory of Robertson and

Seymour [30] and provides a simple criteria for checking whether a parameterized problem

is solvable in subexponential time on sparse graphs. The theory applies to graph prob-

lems that are bidimensional in the sense that the value of the solution for the problem

in question on k × k grid or “grid like graph” is at least Ω(k2) and the value of solution

decreases while contracting or sometime deleting the edges. Problems that are bidimen-

sional include k-Feedback Vertex Set, k-Edge Dominating Set, k-Leaf Spanning

Tree, k-Path, k-r-Dominating Set, k-Vertex Cover and many others. In most cases

we obtain subexponential time algorithms for a problem using bidimensionality theory in

following steps. Given an instance (G, k) to a bidimensional problem Π, in polynomial

time we either decide that it is an yes instance to Π or the treewidth of G is O(
√

k). In

the second case, using known constant factor approximation algorithm for the treewidth,

we find a tree decomposition of width O(
√

k) for G and then solve the problem by doing

dynamic programming over the obtained tree decomposition. This approach combined with

Catalan structure based dynamic programming over graphs of bounded treewidth has led

to 2O(
√

k)nO(1) time algorithm for k-Feedback Vertex Set, k-Edge Dominating Set,

k-Leaf Spanning Tree, k-Path, k-r-Dominating Set, k-Vertex Cover and many

others on planar graphs [12, 13, 19] and in some cases like k-Dominating Set and k-Path

on H-minor free graphs [13, 17]. We refer to surveys by Demaine and Hajiaghayi [14] and
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Dorn et al. [18] for further details on bidimensionality and subexponential parameterized

algorithms.

While bidimensionality theory is a powerful algorithmic framework on undirected graphs,

it remains unclear how to apply it to problems on directed graphs (or digraphs). The main

reason is that Graph Minor Theory for digraphs is still in a nascent stage and there are no

suitable obstruction theorems so far. For an example, even the first step of the framework

does not work easily on digraphs, as there is no unique notion of directed k×k grid. Given a

k×k undirected grid we can make 2O(k2) distinct directed grids by choosing orientations for

the edges. Hence, unless we can guarantee a lower bound of Ω(k2) on the size of solution of

a problem for any directed k × k grid, the bidimensionality theory does not look applicable

for problems on digraphs. Even the analogue of treewidth for digraphs is not unique and

several alternative definitions have been proposed. Only recently the first non-trivial subex-

ponential parameterized algorithms on digraphs was obtained. Alon et al. [3] introduced

the method of chromatic coding, a variant of color coding [4], and combined it with divide

and conquer to obtain 2O(
√

k log k)nO(1) for k-Feedback Arc Set in tournaments.

Our contribution. In this paper we make the first step beyond bidimensionality by

obtaining subexponential time algorithms for problems on sparse digraphs. We develop

two different methods to achieve subexponential time parameterized algorithms for digraph

problems when the input graph can be embedded on some surface or the underlying undi-

rected graph excludes some fixed graph H as a minor.

Quasi-bidimensionality. Our first technique can be thought of as “bidimensionality in

disguise”. We observe that given a digraph D, whose underlying undirected graph UG(D)

excludes some fixed graph H as a minor, if we can remove o(k2) vertices from the given

digraph to obtain a digraph whose underlying undirected graph has a constant treewidth,

then the treewidth of UG(D) is o(k). So given an instance (D, k) to a problem Π, in

polynomial time we either decide that it is an yes instance to Π or the treewidth of UG(D)

is o(k). In the second case, as in the framework based on bidimensionality, we solve the

problem by doing dynamic programming over the tree decomposition of UG(D). The

dynamic programming part of the framework is problem-specific and runs in time 2o(k) +

nO(1). We exemplify this technique on a well studied problem of k-Leaf Out-Branching.

We say that a subdigraph T on vertex set V (T ) of a digraph D on vertex set V (D)

is an out-tree if T is an oriented tree with only one vertex r of in-degree zero (called the

root). The vertices of T of out-degree zero are called leaves and every other vertex is called

an internal vertex. If T is a spanning out-tree, that is, V (T ) = V (D), then T is called an

out-branching of D. Now we are in position to define the problem formally.

k-Leaf Out-Branching (k-LOB): Given a digraph D with the vertex set

V (D) and the arc set A(D) and a positive integer k, check whether there

exists an out-branching with at least k leaves.

The study of k-Leaf Out-Branching has been at forefront of research in param-

eterized algorithms in the last few years. Alon et al. [2] showed that the problem is

fixed parameter tractable by giving an algorithm that decides in time O(f(k)n) whether a

strongly connected digraph has an out-branching with at least k leaves. Bonsma and Dorn

[6] extended this result to all digraphs, and improved the running time of the algorithm.

Recently, Kneis et al. [26] provided a parameterized algorithm solving the problem in time

4knO(1). This result was further improved to 3.72knO(1) by Daligaut et al. [10]. Fernau et
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al. [20] showed that for the rooted version of the problem, where apart from the input in-

stance we are also given a root r and one asks for a k-leaf out-branching rooted at r, admits

a O(k3) kernel. Furthermore they also show that k-LOB does not admit polynomial kernel

unless polynomial hierarchy collapses to third level. Finally, Daligault and Thomassé [11]

obtained a O(k2) kernel for the rooted version of the k-LOB problem and gave a constant

factor approximation algorithm for k-LOB.

Using our new technique in combination with kernelization result of [20], we get an

algorithm for k-LOB that runs in time 2O(
√

k log k)n + nO(1) for digraphs whose underlying

undirected graph is H-minor-free. For planar digraphs our algorithm runs in 2O(
√

k)n+nO(1)

time.

Kernelization and Divide & Conquer. Our second technique is a combination of divide

and conquer, kernelization and dynamic programming over graphs of bounded treewidth.

Here, using a combination of kernelization and a Baker style layering technique for obtain-

ing polynomial time approximation schemes [5], we reduce the instance of a given problem

to 2o(k)nO(1) many new instances of the same problem. These new instances have the fol-

lowing properties: (a) the treewidth of the underlying undirected graph of these instances

is bounded by o(k); and (b) the original input is an yes instance if and only if at least one

of the newly generated instance is. We exhibit this technique on the k-Internal Out-

Branching problem, a parameterized version of a generalization of Directed Hamilton-

ian Path.

k-Internal Out-Branching (k-IOB): Given a digraph D with the vertex

set V (D) and the arc set A(D) and a positive integer k, check whether there

exists an out-branching with at least k internal vertices.

Prieto and Sloper [28] studied the undirected version of this problem and gave an algorithm

with running time 24k log knO(1) and obtained a kernel of size O(k2). Recently, Fomin et

al. [22] obtained a vertex kernel of size 3k and gave an algorithm for the undirected version

of k-IOB running in time 8knO(1). Gutin et al. [24] obtained an algorithm of running time

2O(k log k)nO(1) for k-IOB and gave a kernel of size of O(k2) using the well known method

of crown-decomposition. Cohen et al. [9] improved the algorithm for k-IOB and gave an

algorithm with running time 49.4knO(1). Here, we obtain a subexponential time algorithm

for k-IOB with running time 2O(
√

k log k) + nO(1) on directed planar graphs and digraphs

whose underlying undirected graphs are apex minor-free.

Finally, we also observe that for any ε > 0, there is an algorithm finding in time

O((1 + ε)knf(ε)) a directed path of length at least k (the k-Directed Path problem) in

a digraph which underlying undirected graph excludes a fixed apex graph as a minor. The

existence of subexponential parameterized algorithm for this problem remains open.

2. Preliminaries

Let D be a digraph. By V (D) and A(D) we represent the vertex set and arc set of

D, respectively. Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the digraph

induced by V ′. The underlying graph UG(D) of D is obtained from D by omitting all

orientations of arcs and by deleting one edge from each resulting pair of parallel edges. A

vertex u of D is an in-neighbor (out-neighbor) of a vertex v if uv ∈ A(D) (vu ∈ A(D),

respectively). The in-degree d−(v) (out-degree d+(v)) of a vertex v is the number of its

in-neighbors (out-neighbors). We say that a subdigraph T of a digraph D is an out-tree if
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T is an oriented tree with only one vertex r of in-degree zero (called the root). The vertices

of T of out-degree zero are called leaves and every other vertex is called an internal vertex.
If T is a spanning out-tree, that is, V (T ) = V (D), then T is called an out-branching of D.

An out-branching (respectively. out-tree) rooted at r is called r-out-branching (respectively.

r-out-tree). We define the operation of a contraction of a directed arc as follows. An arc

uv is contracted as follows: add a new vertex u′, and for each arc wv or wu add the arc

wu′ and for an arc vw or uw add the arc u′w, remove all arcs incident to u and v and the

vertices u and v. We call a loopless digraph D rooted, if there exists a pre-specified vertex r
of in-degree 0 as a root r and d+(r) ≥ 2. The rooted digraph D is called connected if every

vertex in V (D) is reachable from r by a directed path.

Let G be an undirected graph with the vertex set V (G) and the edge set E(G). For

a subset V ′ ⊆ V (G), by G[V ′] we mean the subgraph of G induced by V ′. By N(u)

we denote (open) neighborhood of u that is the set of all vertices adjacent to u and by

N [u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V , we define N [D] = ∪v∈DN [v]. The

diameter of a graph G, denoted by diam(G), is defined to be the maximum length of a

shortest path between any pair of vertices of V (G).

Given an edge e = uv of a graph G, the graph G/e is obtained by contracting the edge

uv; that is, we get G/e by identifying the vertices u and v and removing all the loops and

duplicate edges. A minor of a graph G is a graph H that can be obtained from a subgraph

of G by contracting edges. A graph class C is minor closed if any minor of any graph in C
is also an element of C. A minor closed graph class C is H-minor-free or simply H-free if

H /∈ C. A graph H is called an apex graph if the removal of one vertex makes it a planar

graph.

A tree decomposition of a (undirected) graph G is a pair (X,T ) where T is a tree whose

vertices we will call nodes and X = ({Xi | i ∈ V (T )}) is a collection of subsets of V (G)

such that (a)
⋃

i∈V (T ) Xi = V (G), (b) for each edge vw ∈ E(G), there is an i ∈ V (T ) such

that v,w ∈ Xi, and (c) for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree

of T . The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) equals maxi∈V (T ){|Xi| − 1}.
The treewidth of a graph G is the minimum width over all tree decompositions of G. We

use notation tw(G) to denote the treewidth of a graph G.

A parameterized problem is said to admit a polynomial kernel if there is a polynomial

time algorithm (where the degree of the polynomial is independent of k), called a kernel-
ization algorithm, that reduces the input instance down to an instance with size bounded

by a polynomial p(k) in k, while preserving the answer. This reduced instance is called a

p(k) kernel for the problem. See [27] for an introduction to kernelization.

3. Method I – Quasi Bidimensionality

In this section we present our first approach. In general, a subexponential time al-

gorithm using bidimensionality is obtained by showing that the solution for a problem in

question is at least Ω(k2) on k × k (contraction) grid minor. Using this we reduce the

problem to a question on graph with treewidth o(k). We start with a lemma which enables

us to use the framework of bidimensionality for digraph problems, though not as directly

as for undirected graph problems.
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Lemma 3.1. Let D be a digraph such that UG(D) excludes a fixed graph H as a mi-
nor. For any constant c ≥ 1, if there exists a subset S ⊆ V (D) with |S| = s such that
tw(UG(D[V (D) \ S])) ≤ c, then tw(UG(D)) = O(

√
s).

Proof. By [14], for any H-minor-free graph G with treewidth more than r, there is a constant

δ > 1 only dependent on H such that G has a r
δ × r

δ grid minor. Suppose tw(UG(D)) >
δ(c + 1)

√
s then UG(D) contains a (c + 1)

√
s× (c + 1)

√
s grid as a minor. Notice that this

grid minor can not be destroyed by any vertex set S of size at most s. That is, if we delete

any vertex set S with |S| = s from this grid, it will still contain a (c + 1)× (c + 1) subgrid.

Thus, UG(D[V (D) \ S]) contains a (c + 1) × (c + 1) grid minor and hence by [21, Exercise

11.6] we have that tw(UG(D[V (D)\S])) > c. This shows that we need to delete more than

s vertices from UG(D) to obtain a graph with treewidth at most c, a contradiction.

Using Lemma 3.1, we show that k-Leaf-Out-Branching problem has a subexponen-

tial time algorithm on digraphs D such that UG(D) exclude a fixed graph H as a minor.

For our purpose a rooted version of k-LOB will also be useful which we define now. In

the Rooted k-Leaf-Out-Branching (R-k-LOB) problem apart from D and k the root

r of the tree searched for is also a part of the input and the objective is to check whether

there exists an r-out-branching with at least k leaves. We now state our main combinatorial

lemma and postpone its proof for a while.

Lemma 3.2. Let D be a digraph such that UG(D) excludes a fixed graph H as a minor,
k be a positive integer and r ∈ V (D) be the root. Then in polynomial time either we can
construct an r-out-branching with at least k leaves in D or find a digraph D′ such that
following holds.

• UG(D′) excludes the fixed graph H as a minor;
• D has an r-out-branching with at least k leaves if and only if D′ has an r-out-

branching with at least k leaves;
• there exists a subset S ⊆ V (D′) such that |S| = O(k) and tw(U(D′[V (D′)\S]) ≤ c,

c a constant.

Combining Lemmata 3.1 and 3.2 we obtain the following result.

Lemma 3.3. Let D be a digraph such that UG(D) excludes a fixed graph H as a minor,
k be a positive integer and r ∈ V (D) be a root. Then in polynomial time either we can
construct an r-out-branching with at least k leaves in D or find a digraph D′ such that D
has an r-out-branching with at least k leaves if and only if D′ has an r-out-branching with
at least k leaves. Furthermore tw(UG(D′)) = O(

√
k).

When a tree decomposition of UG(D) is given, dynamic programming methods can be

used to decide whether D has an out-branching with at least k leaves, see [24]. The time

complexity of such a procedure is 2O(w log w)n, where n = |V (D)| and w is the width of the

tree decomposition. Now we are ready to prove the main theorem of this section assuming

the combinatorial Lemma 3.2.

Theorem 3.4. The k-LOB problem can be solved in time 2O(
√

k log k)n+nO(1) on digraphs
with n vertices such that the underlying undirected graph excludes a fixed graph H as a
minor.

Proof. Let D be a digraph where UG(D) excludes a fixed graph H as a minor. We guess a

vertex r ∈ V (D) as a root. This only adds a factor of n to our algorithm. By Lemma 3.3,



PARAMETERIZED SUBEXPONENTIAL ALGORITHMS ON DIRECTED GRAPHS 257

we can either compute, in polynomial time, an r-out-branching with at least k leaves in D
or find a digraph D′ with UG(D′) excluding a fixed graph H as a minor and tw(UG(D′)) =

O(
√

k). In the later case, using the constant factor approximation algorithm of Demaine et

al. [16] for computing the treewidth of a H-minor free graph, we find a tree decomposition

of width O(
√

k) for UG(D′) in time nO(1). With the previous observation that we can find

an r-out-branching with at least k leaves, if exists one, in time 2O(
√

k log k)n using dynamic

programming over graphs of bounded treewidth, we have that we can solve R-k-LOB in

time 2O(
√

k log k)nO(1). Hence, we need 2O(
√

k log k)nO(1) to solve the k-LOB problem.

To obtain the claimed running time bound we use the known kernelization algorithm

after we have guessed the root r. Fernau et al. [20] gave an O(k3) kernel for R-k-LOB which

preserves the graph class. That is, given an instance (D, k) of R-k-LOB, in polynomial time

they output an equivalent instance (D′′, k) of R-k-LOB such that (a) if UG(D) is H-minor

free then so is UG(D′′); and (b) |V (D′′)| = O(k3). We will use this kernel for our algorithm

rather than the O(k2) kernel for R-k-LOB obtained by Daligault and Thomassé [11], as

they do not preserve the graph class. So after we have guessed the root r, we obtain an

equivalent instance (D′′, k) for R-k-LOB using the kernelization procedure described in [20].

Then using the algorithm described in the previous paragraph we can solve R-k-LOB in

time 2O(
√

k log k) + nO(1). Hence, we need 2O(
√

k log k)n + nO(1) to solve k-LOB.

Given a tree decomposition of width w of UG(D) for a planar digraph D, we can

solve k-LOB using dynamic programming methods in time 2O(w)n. This brings us to the

following theorem.

Theorem 3.5. [⋆]1 The k-LOB problem can be solved in time 2O(
√

k)n+nO(1) on digraphs
with n vertices when the underlying undirected graph is planar.

3.1. Proof of Lemma 3.2

To prove the combinatorial lemma we need a few recent results from the literature on

out-branching problems. We start with some definitions given in [11]. A cut of D is a

subset S such that there exists a vertex z ∈ V (D) \ S such that z is not reachable from

r in D[V (D) \ S]. We say that D is 2-connected if there exists no cut of size one in D or

equivalently there are at least two vertex disjoint paths from r to every vertex in D.

Lemma 3.6 ([11]). Let D be a rooted 2-connected digraph with r being its root. Let α be
the number of vertices in D with in-degree at least 3. Then D has an out-branching rooted
at r with at least α/6 leaves and such an out-branching can be found in polynomial time.

A vertex v ∈ V (D) is called a nice vertex if v has an in-neighbor which is not its

out-neighbor. The following lemma is proved in [11].

Lemma 3.7 ([11]). Let D be a rooted 2-connected digraph rooted at a vertex r. Let β be
the number of nice vertices in D. Then D has an out-branching rooted at r with at least
β/24 leaves and such an out-branching can be found in polynomial time.

Proof of Lemma 3.2. To prove the combinatorial lemma, we consider two cases based on

whether or not D is 2-connected.

Case 1) D is a rooted 2-connected digraph.

1The proofs marked with [⋆] will appear in the final version of the paper.
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We prove this case in the following claim.

Claim 1. [⋆] Let D be a rooted 2-connected digraph with root r and a positive integer k.
Then in polynomial time, we can find an out-branching rooted at r with at least k leaves or
find a set S of at most 30k vertices whose removal results in a digraph whose underlying
undirected graph has treewidth one.

Case 2) D is not 2-connected.

Since D is not 2-connected, it has cut vertices, those vertices that separate r from some

other vertices. We deal with the cut vertices in three cases. Let x be a cut vertex of D.

The three cases we consider are following.

Case 2a) There exists an arc xy that disconnects at least two vertices from r.
In this case, we contract the arc xy. After repeatedly applying Case 2a), we obtain a

digraph D′ such that any arc out of a cut vertex x of D′ disconnects at most 1 vertex. The

resulting digraph D′ is the one mentioned in the Lemma. Since we have only contracted

some arcs iteratively to obtain D′, it is clear that UG(D′) also excludes H as a minor. The

proof that such contraction does not decrease the number of leaves follows from a reduction

rule given in [20]. We provide a proof for completion.

Claim 2. [⋆] Let D be a rooted connected digraph with root r, let xy be an arc that dis-
connects at least two vertices from r and D′ be the digraph obtained after contracting the
arc xy. Then D has an r-out-branching with at least k leaves if and only if D′ has an
r-out-branching with at least k leaves.

Now we handle the remaining cut-vertices of D′ as follows. Let S be the set of cut

vertices in D′. For every vertex x ∈ S, we associate a cut-neighborhood C(x), which is

the set of out-neighbors of x such that there is no path from r to any vertex in C(x) in

D′[V (D′)\{x}]. By C[x] we denote C(x)∪{x}. The following observation is used to handle

other cases.

Claim 3. Let S be the set of cut vertices in D′. Then for every pair of vertices x, y ∈ S
and x 6= y, we have that C[x] ∩ C[y] = ∅.

Proof. To the contrary let us assume that C[x] ∩ C[y] 6= ∅. We note that C[x] ∩ C[y] can

only have a vertex v ∈ {x, y}. To prove this, assume to the contrary that we have a vertex

v ∈ C[x] ∩C[y] and v /∈ {x, y}. But then it contradicts the fact that v ∈ C[x], as x doesn’t

separate v from r due to the path between r and v through y. Thus, either x ∈ C(y) or

y ∈ C(x). Without loss of generality let y ∈ C(x). This implies that we have an arc xy and

there exists a vertex z ∈ C(y) such that z /∈ C(x). But then the arc xy disconnects at least

two vertices y and z from r and hence Case 2a would have applied. This proves the claim.

Now we distinguish cases based on cut vertices having cut-neighborhood of size at least

2 or 1. Let S≥2 and S=1 be the subset of cut-vertices of D′ having at least two cut-neighbors

and exactly one neighbor respectively.

Case 2b) S≥2 6= ∅.
We first bound |S≥2|. Let Ac = {xy | x ∈ S≥2, y ∈ C(x)} be the set of out-arcs

emanating from the cut vertices in S≥2 to its cut neighbors. We now prove the following

structural claim which is useful for bounding the size of S≥2.

Claim 4. [⋆] If D′ has an r-out-branching T ′ with at least k leaves then D′ has an r-out-
branching T with at least k leaves and containing all the arcs of Ac, that is, Ac ⊆ A(T ).
Furthermore such an out-branching can be found in polynomial time.
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We know that in any out-tree, the number of internal vertices of out-degree at least 2

is bounded by the number of leaves. Hence if |S≥2| ≥ k then we obtain an r-out-branching

T of D′ with at least k leaves using Claim 4 and we are done. So from now onwards we

assume that |S≥2| = ℓ ≤ k − 1.

We now do a transformation to the given digraph D′. For every vertex x ∈ S≥2, we

introduce an imaginary vertex xi and add an arc uxi if there is an arc ux ∈ A(D′) and add

an arc xiv if there is an arc xv ∈ A(D′). Basically we duplicate the vertices in S≥2. Let the

transformed graph be called Ddup. We have the following two properties about Ddup. First,

no vertex in S≥2 ∪ {xi|x ∈ S≥2} is a cut vertex in Ddup. We sum up the second property in

the following claim.

Claim 5. [⋆] The digraph D′ has an r-out-branching T with at least k leaves if and only if
Ddup has an r-out-branching T ′ with at least k + ℓ leaves.

Now we move on to the last case.

Case 2c) S=1 6= ∅.
Consider the arc set Ap = {xy | x ∈ S=1, y ∈ C(x)}. Observe that Ap ⊆ A(D′) ⊆

A(Ddup) and Ap forms a matching in Ddup because of Claim 3. Let Ddup
c be the digraph

obtained from Ddup by contracting the arcs of Ap. That is, for every arc uv ∈ Ap, the

contracted graph is obtained by identifying the vertices u and v as uv and removing all the

loops and duplicate arcs.

Claim 6. Let Ddup
c be the digraph obtained by contracting the arcs of Ap in Ddup. Then

the following holds.

(1) The digraph Ddup
c is 2-connected;

(2) If Ddup
c has an r-out-branching T with at least k + ℓ leaves then Ddup has an r-out-

branching with at least k + ℓ leaves.

Proof. The digraph Ddup
c is 2-connected by the construction as we have iteratively removed

all cut-vertices. If Ddup
c has an r-out-branching T with at least k + ℓ leaves then we can

obtain a r-out-branching with at least k + ℓ leaves for Ddup by expanding each of the

contracted vertices to arcs in Ap.

We are now ready to combine the above claims to complete the proof of the lemma. We

first apply Claim 1 on Ddup
c with k + ℓ. Either we get an r-out-branching T ′ with at least

k + ℓ leaves or a set S′ of size at most 30(k + ℓ) such that tw(UG(Ddup
c [V (Ddup

c ) \ S])) is

one. In the first case, by Claims 5 and 6 we get an r-out-branching T with at least k leaves

in D′. In the second case we know that there is a vertex set S′ of size at most 30(k+ℓ) such

that tw(UG(Ddup
c [V (Ddup

c ) \S′])) is one. Let S∗ = {u | uv ∈ S′, vu ∈ S′, u ∈ S′} be the set

of vertices obtained from S′ by expanding the contracted vertices in S′. Clearly the size of

|S∗| ≤ 2|S′| ≤ 60(k + ℓ) ≤ 120k = O(k). We now show that the treewidth of the underlying

undirected graph of Ddup[V (Ddup)\S∗] is at most 3. This follows from the observation that

tw(UG(Ddup
c [V (Ddup

c ) \ S′])) is one. Hence given a tree-decomposition of width one for

UG(Ddup
c [V (Ddup

c ) \ S′]) we can obtain a tree-decomposition for UG(Ddup[V (Ddup) \ S∗])

by expanding the contracted vertices. This can only double the bag size and hence the

treewidth of UG(Ddup[V (Ddup) \ S∗]) is at most 3, as the bag size can at most be 4. Now

we take S = S∗∩V (D′) and since V (D′) ⊆ V (Ddup), we have that tw(UG(D[V (D)\S])) ≤ 3.

This concludes the proof of the lemma.
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4. Method II - Kernelization and Divide & Conquer

In this section we exhibit our second method of designing subexponential time algo-

rithms for digraph problems through the k-Internal Out-Branching problem. In this

method we utilize the known polynomial kernel for the problem and obtain a collection

of 2o(k) instances such that the input instance is an “yes” instance if and only if one of

the instances in our collection is. The property of the instances in the collection which we

make use of is that the treewidth of the underlying undirected graph of these instances is

o(k). The last property brings dynamic programming on graphs of bounded treewidth into

picture as the final step of the algorithm.

Here, we will solve a rooted version of the k-IOB problem, called Rooted k-Internal

Out-Branching (R-k-IOB), where apart from D and k we are also given a root r ∈ V (D),

and the objective is to find an r-out-branching, if exists one, with at least k internal vertices.

The k-IOB problem can be reduced to R-k-IOB by guessing the root r at the additional

cost of |V (D)| in the running time of the R-k-IOB problem. Henceforth, we will only

consider R-k-IOB. We call an r-out-tree T with k internal vertices minimal if deleting any

leaf results in an r-out-tree with at most k−1 internal vertices. A well known result relating

minimal r-out-tree T with k internal vertices with a solution to R-k-IOB is as follows.

Lemma 4.1 ([9]). Let D be a rooted connected digraph with root r. Then D has an r-out-
branching T ′ with at least k internal vertices if and only if D has a minimal r-out-tree T
with k internal vertices with |V (T )| ≤ 2k − 1. Furthermore, given a minimal r-out-tree T ,
we can find an r-out-branching T ′ with at least k internal vertices in polynomial time.

We also need another known result about kernelization for k-IOB.

Lemma 4.2 ([24]). k-Internal Out-Branching admits a polynomial kernel of size 8k2+

6k.

In fact, the kernelization algorithm presented in [24] works for all digraphs and has a

unique reduction rule which only deletes vertices. This implies that if we start with a graph

G ∈ G where G excludes a fixed graph H as a minor, then the graph G′ obtained after

applying kernelization algorithm still belongs to G .

Our algorithm tries to find a minimal r-out-tree T with k internal vertices with |V (T )| ≤

2k − 1 recursively. As the first step of the algorithm we obtain a set of 2o(k) digraphs such

that the underlying undirected graphs have treewidth O(
√

k), and the original problem is

a “yes” instance if and only at least one of the 2o(k) instances is a “yes” instance. More

formally, we prove the following lemma.

Lemma 4.3. [⋆] Let H be a fixed apex graph and G be a minor closed graph class exclud-
ing H as a minor. Let (D, k) be an instance to k-Internal Out-Branching such that
UG(D) ∈ G . Then there exists a collection

C =
{

(Di, k
′, r) | Di is a subgraph of D, k′ ≤ k, r ∈ V (D), 1 ≤ i ≤

(

8k2 + 6k
√

k

)

}

,

of instances such that tw(UG(Di)) = O(
√

k) for all i and (D, k) has an out-branching with
at least k internal vertices if and only if there exists an i, r and k′ ≤ k such that (Di, k

′, r)
has an r-out-branching with at least k′ internal vertices.
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Given a tree decomposition of width w for UG(D), one can solve R-k-IOB in time

2O(w log w)n using a dynamic programming over graphs of bounded treewidth as described

in [24]. This brings us to the main theorem of this section.

Theorem 4.4. [⋆] The k-IOB problem can be solved in time 2O(
√

k log k)+nO(1) on digraphs
with n vertices such that the underlying undirected graph excludes a fixed apex graph H as
a minor.

5. Conclusion and Discussions

We have given the first subexponential parameterized algorithms on planar digraphs

and on the class of digraphs whose underlying undirected graph excludes a fixed graph H
or an apex graph as a minor. We have outlined two general techniques, and have illustrated

them on two well studied problems concerning oriented spanning trees (out branching)—

one that maximizes the number of leaves and the other that maximizes the number of

internal vertices. One of our techniques uses the grid theorem on H-minor graphs, albeit

in a different way than how it is used on undirected graphs. The other uses Baker type

layering technique combined with kernelization and solves the problem on a subexponential

number of problems whose instances have sublinear treewidth.

We believe that our techniques will be widely applicable and it would be interesting

to find other problems where such subexponential algorithms are possible. Two famous

open problems in this context are whether the k-Directed Path problem (does a digraph

contains a directed path of length at least k) and the k-Directed Feedback Vertex

Set problem (does a digraph can be turned into acyclic digraph by removing at most k
vertices) have subexponential algorithms (at least) on planar digraphs. However, for the

k-Directed Path problem, we can reach “almost” subexponential running time. More

precisely, we have the following theorem.

Theorem 5.1. [⋆] For any ε > 0, there is δ such that the k-Directed Path problem
is solvable in time O((1 + ε)k · nδ) on digraphs with n vertices such that the underlying
undirected graph excludes a fixed apex graph H as a minor.

Let use remark that similar O((1+ε)knf(ε)) results can also be obtained for many other

problems including Planar Steiner Tree.
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Abstract. The problem of Subgraph Isomorphism is defined as follows: Given a pat-
tern H and a host graph G on n vertices, does G contain a subgraph that is isomorphic
to H? Eppstein [SODA 95, J’GAA 99] gives the first linear time algorithm for subgraph
isomorphism for a fixed-size pattern, say of order k, and arbitrary planar host graph, im-

proving upon the O(n
√

k)-time algorithm when using the “Color-coding” technique of Alon

et al [J’ACM 95]. Eppstein’s algorithm runs in time k
O(k)

n, that is, the dependency on

k is superexponential. We improve the running time to 2O(k)
n, that is, single exponential

in k while keeping the term in n linear. Next to deciding subgraph isomorphism, we can
construct a solution and count all solutions in the same asymptotic running time. We may
enumerate ω subgraphs with an additive term O(ωk) in the running time of our algorithm.
We introduce the technique of “embedded dynamic programming” on a suitably structured
graph decomposition, which exploits the number and topology of the underlying drawings
of the subgraph pattern (rather than of the host graph).

Introduction

In the literature, we often find results on polynomial time or even linear time algorithms for

NP-hard problems. Take for example the NP-complete problem of computing an optimal

tree-decomposition of a graph. Bodlaender [3] gives a linear time algorithm—restricted

to graphs of constant treewidth. The Graph Minor Theory by Robertson and Seymour

implies amongst others that there is an O(n3) algorithm for the disjoint path problem,

that is for finding disjoint paths between a constant number of terminals. Taking a closer

look at such results, one notices that a function exponential in size of some constant c is

hidden in the O-notation of the running time—here, c is the treewidth and the number of

terminals, respectively. In another line of research, parameterized complexity, the primary

goal is to rather find algorithms that minimize the exponential term of the running time—

the exponential function of the problem parameter k. The first step here is to prove that

such an algorithm with a separate exponential function exists, that is, that the studied

problem is fixed parameter tractable (FPT) [13, 16, 21]. Such problem has an algorithm

with time complexity bounded by a function of the form f(k) · nO(1), where the parameter
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function f is a computable function only depending on k. The second step in the design of

FPT-algorithms is to decrease the growth rate of the parameter function.

We can identify two different trends in which exact algorithms are improved. Either one

decreases the degree of the polynomial term in the asymptotic running time, or one focusses

on obtaining parameter functions with better exponential growth. In the present work, we

achieve both goals for the computational problem Planar Subgraph Isomorphism.

Subgraph Isomorphism generalizes many important graph problems, such as Hamil-

tonicity, Longest Path, and Clique. It is known to be NP -complete, even when re-

stricted to planar graphs [18]. Until now, the best known algorithm to solve Subgraph

Isomorphism, that is to find a subgraph of a given host graph isomorphic to a pattern

H on k vertices, is the näıve exhaustive search algorithm with running time O(nk) and no

FPT-algorithm can be expected here [13]. For a pattern H of treewidth at most t, Alon

et al. [1] give an algorithm of running time 2O(k)nO(t). For Planar Subgraph Isomor-

phism, given planar pattern and input graph, some considerable improvements have been

made mostly during the 90’s ([23], [1]). The current benchmark has been set by Eppstein [14]

to kO(k)n, by employing graph decomposition methods, similar to the Baker-approach [2]

for approximating NP-complete problems on planar graphs. Eppstein’s algorithm is actu-

ally the first FPT-algorithm for Planar Subgraph Isomorphism with k as parameter.

Eppstein poses three open problems: a) whether one can extend the technique in [1] to im-

prove the dependence on the size of the pattern from kO(k) to 2O(k) for the decision problem

of subgraph isomorphism; and whether one can achieve similar improvements, b) for the

counting version, and c) for the listing version of the subgraph isomorphism problem.

Our results. In this work, we do not only achieve this single exponential behavior in k for

all three problems—without applying the randomized coloring technique—we also keep the

term in n linear. That is, we give an algorithm for Planar Subgraph Isomorphism for a

pattern H of order k with running time 2O(k)n. Next to deciding subgraph isomorphism, we

can construct a solution and count all solutions in the same asymptotic running time. We

may list ω subgraphs with an additive term O(ωk) in the running time of our algorithm. Our

algorithm also improves the time complexity of [17] for large patterns of size k ∈ o(
√

n log n).

The novelty of our result comes from embedded dynamic programming, a technique

we find interesting on its own. Here, one decomposes the graph by separating it into

induced subgraphs. In the dynamic programming step, one computes partial solutions for

the separated subgraphs, that are updated to an overall solution for the whole graph. In

ordinary dynamic programming, one would argue how the subgraph pattern hits separators

of the host graph. Instead, in embedded dynamic programming for subgraph isomorphism,

we proceed exactly the opposite way: we look at how separators can be routed through

the subgraph pattern. As a consequence, we bound the number of partial solutions by a

function of both the separator size of the host graph and the pattern size—as it turns out,

for the planar subgraph isomorphism problem, that function is single exponential in the

number of vertices of the pattern. To obtain a good bound on the parameter function, we

apply several fundamental enumerative combinatorics results in the technical sections of

this work. Next to the number of face-vertex sequences in embedded graphs, these counting

results give an upper bound on the number of planar drawings of the pattern.

Our algorithm is divided into two parts with the second part being the aforementioned

embedded dynamic programming. For keeping the time complexity of our algorithm linear
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in the size of the host graph, we give a fast method for computing sphere-cut decomposi-

tions—natural extensions of tree-decompositions to plane graphs—with separators of size

linearly bounded by the size of the subgraph pattern.

Theorem 0.1. Let G be a planar graph on n vertices and H a pattern of order k. We can

decide if there is a subgraph of G that is isomorphic to H in time 2O(k)n. We find subgraphs

and count subgraphs of G isomorphic to H in time 2O(k)n and enumerate ω subgraphs in

time 2O(k)n + O(ωk).

Let us mention that for k-Longest Path on planar graphs, the authors of [12] give

the first algorithm with subexponential running time behaviour, namely 2O(
√

k)n + O(n3),

employing the techniques Bidimensionality and topological dynamic programming. Bidi-

mensionality Theory employs results of Graph Minor Theory for planar graphs [24] and

other structural graph classes to algorithmic graph theory (entry [6], for a survey [7]). Un-

fortunately, Bidimensionality does only work for finding specific patterns in a graph, such

as k-paths, but not for subgraph isomorphism problems in general. For a survey on other

planar subgraph isomorphism problems with restricted patterns, please consider [14].

Organization. Following the definitions in Section 1, we state in Section 2 how to obtain

a sphere-cut decomposition of small width. In Section 3 we restrict Planar Subgraph

Isomorphism to Plane Subdrawing Equivalence. We give some technical lemmas in

Section 3.1 to bound the number of ways a separator of the sphere-cut decomposition can be

routed through a plane pattern. We describe embedded dynamic programming in Section 3.2

and subsume the entire algorithm for Plane Subdrawing Equivalence in Section 3.3.

In Section 4 we extend our algorithm for solving Planar Subgraph Isomorphism.

1. Preliminaries

Subgraph isomorphism. Let G,H be two graphs. We call G and H isomorphic if there

exists a bijection ν : V (G) → V (H) with {v,w} ∈ E(G) ⇔ {ν(v), ν(w)} ∈ E(H). We call

H subgraph isomorphic to G if there is a subgraph H ′ of G isomorphic to H.

Branch decompositions. A branch decomposition 〈T, µ〉 of a graph G consists of an un-

rooted ternary tree T (internal vertex-degree 3) and a bijection µ : L → E(G) from the

set L of leaves of T to the edge set of G. We define for every edge e of T the middle

set mid(e) ⊆ V (G) as follows: Let T1 and T2 be the two connected components of T \ {e}.
Then let Gi be the graph induced by the edge set {µ(f) : f ∈ L∩V (Ti)} for i ∈ {1, 2}. The

middle set is the intersection of the vertex sets of G1 and G2, i.e., mid(e) := V (G1)∩V (G2).

The width bw of 〈T, µ〉 is the maximum order of the middle sets over all edges of T , i.e.,

bw(〈T, µ〉) := max{|mid(e)| : e ∈ T}. An optimal branch decomposition of G is defined by

a tuple 〈T, µ〉 which provides the minimum width, the branchwidth bw(G).

Plane graphs and equivalent drawings. Let Σ be the unit sphere. A planar drawing

or simply drawing of a graph G with vertex set V (G) and edge set E(G) maps vertices to

points in the sphere, and edges to simple curves between their end vertices, such that edges

do not cross, except in common end vertices. A plane graph is a graph G together with a

planar drawing. A planar graph is a graph that admits a planar drawing. For details, see

e.g. [9]. The set of faces F (G) of a plane graph G is defined as the union of the connected

regions of Σ\G. A subgraph of a plane graph G, induced by the vertices and edges incident
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to a face f ∈ F (G), is called a bound of f . If G is 2-connected, each bound of a face is

a cycle. We call this cycle face-cycle (for further reading, see e.g. [9]). For a subgraph

H of a plane graph G, we refer to the drawing of G reduced to the vertices and edges of

H as a subdrawing of G. Consider any two drawings G1 and G2 of a planar graph G. A

homeomorphism of G1 onto G2 is a homeomorphism of Σ onto itself which maps vertices,

edges, and faces of G1 onto vertices, edges, and faces of G2, respectively. We call two planar

drawings equivalent, if there is a homeomorphism from one onto the other.

Theorem 1.1. e.g. [9] Every 3-connected planar graph has a unique drawing in a sphere

Σ up to homeomorphism.

Proposition 1.2. e.g. [22] Every planar n-vertex graph has 2O(n) non-equivalent drawings.

Remark 1.3. Let G and H be two plane graphs. If their drawings are equivalent, then

G is isomorphic to H. On the contrary, if G is isomorphic to H and neither graphs are

3-connected, then their drawings are not necessarily equivalent.

Triangulations. We call a plane graph G a planar triangulation or simply a triangulation

if every face in F (G) is bounded by a triangle (a cycle of length three). If H is a subdrawing

of a triangulation G, we call G a triangulation of H.

Nooses and combinatorial nooses. A noose of a Σ-plane graph G is a simple closed

curve in Σ that meets G only in vertices. From the Jordan Curve Theorem, it then follows

that nooses separate Σ into two regions. Let V (N) = N ∩ V (G) be the vertices and F (N)

be the faces intersected by a noose N . The length of N is the number |V (N)| of vertices in

V (N). The clockwise order in which N meets the vertices of V (N) is a cyclic permutation

π on the set V (N).

Remark 1.4. Let a plane graph H be a subdrawing of a plane graph G. Every noose N
in G is also a noose in H and N ∩ V (H) ⊆ N ∩ V (G).

A combinatorial noose NC = [v0, f0, v1, f1, . . . , fℓ−1, vℓ] in a plane graph G is an alternating

sequence of vertices and faces of G, such that

• fi is a face incident to both vi, vi+1 for all i < ℓ,

• v0 = vℓ and the vertices v1, . . . , vℓ are mutually distinct and

• if fi = fj for any i 6= j and i, j = 0, . . . , ℓ − 1, then the vertices vi, vi+1, vj , and vj+1 do

not appear in the order (vi, vj , vi+1, vj+1) on the bound of face fi = fj.

The length of a combinatorial noose [v0, f0, v1, f1, . . . , fℓ−1, vℓ] is ℓ.

Remark 1.5. The order in which a noose N intersects the faces F (N) and the vertices

V (N) of a plane graph G gives a unique alternating face-vertex sequence of F (N) ∪ V (N)

which is a combinatorial noose NC . Conversely, for every combinatorial noose NC there

exists a noose N with face-vertex sequence NC .

We may view combinatorial nooses as equivalence classes of nooses, that can be represented

by the same face-vertex sequence.

Sphere cut decompositions. For a Σ-plane graph G, we define a sphere cut decomposition

or sc-decomposition 〈T, µ, π〉 as a branch decomposition which for every edge e of T has

a noose Ne that cuts Σ into two regions ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Ne, where Gi

is the graph induced by the edge set {µ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2} and T1∪̇T2 =

T \ {e}. Thus Ne meets G only in V (Ne) = mid(e) and its length is |mid(e)|. The vertices

of mid(e) = V (G1)∩V (G2) are enumerated according to a cyclic permutation π on mid(e).
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The following two propositions will be crucial in that they give us upper bounds on the

number of partial solutions we will compute in our dynamic programming approach. With

both propositions, we will bound the number of combinatorial nooses in a plane graph by

the number of cycles in the triangulation of some auxiliary graph.

Proposition 1.6. ([4]) No planar n-vertex graph has more than 21.53n simple cycles.

Proposition 1.7. ([27]) The number of non-isomorphic maximal planar graphs on n ver-

tices is approximately 23.24n.

Proposition 1.7 also gives a bound on the number of non-isomorphic triangulations. Any

drawing of a maximal planar graph G must be a triangulation, otherwise G would not be

maximal. With Theorem 1.1, every maximal planar graph has a unique drawing which is a

triangulation. On the other hand, every triangulated graph is maximal planar.

2. Computing sphere-cut decompositions in linear time

In this section we sketch an algorithm for computing sc-decompositions of bounded width.

Let H be a connected subgraph of G with |V (H)| = k, and let v ∈ V (H). Then H
is a subgraph of the induced subgraph Gv of G, where Gv = G[S] with S = {w ∈ S |
dist(v,w) ≤ k} (dist(v,w) denotes the length of a shortest path between v and w in G).

This observation helps us to shrink the search space of our algorithm by cutting out chunks

of G of bounded width and solve subgraph isomorphism separately on each chunk. With

the algorithm of Tamaki [26], one can compute a branch decomposition of Gv of width

≤ 2k + 1, following similar ideas as in the approach of Baker [2] for tree decompositions.

With some simple modifications, we achieve the same result for sc-decompositions. In an

extended version of this paper [10], we prove the following lemma and give an algorithm

that computes a sc-decomposition of bounded width in linear time.

Lemma 2.1. ([2],[26],[10]) Let G be a plane graph with a rooted spanning tree whose root-

leaf-paths have length ≤ k. We can find an sc-decomposition of width 2k +1 in time O(kn).

3. Plane Subdrawing Equivalence

In this section, we study the variant of the subgraph isomorphism problem on patterns and

host graphs drawn in the unit sphere. In Plane Subdrawing Equivalence, the question

is to find a subdrawing of a plane host graph G that is equivalent to the drawing of a plane

pattern H. By Remark 1.3, the problem is equivalent to Planar Subgraph Isomorphism

for 3-connected planar graphs. In Section 4 we carry over our results to all planar graphs.

We first introduce some topological tools that we need for embedded dynamic programming.

At every step of the dynamic programming, we compute every way how a combinatorial

noose N corresponding to a middle set of the sc-decomposition 〈T, µ, π〉 of G can intersect

a subdrawing equivalent to the drawing of pattern H. Each intersection gives rise to a

combinatorial noose of H. See Figure 1 for an illustration.

The running time of the algorithm crucially depends on the number of combinatorial

nooses in H. The aim of this section is to prove the following:
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G

H

N

G

N

H

Figure 1: On the left, we draw graph G with an emphasized subdrawing H intersected by a com-

binatorial noose N indicated by dashed lines. On the right, we have the same graph G

with a different copy of H intersected by N .

Theorem 3.1. Let G be a plane graph on n vertices and H be a plane graph on k ≤ n
vertices. We can decide if there is a subdrawing of G that is equivalent to the drawing of H
in time 2O(k)n. We can find and count subdrawings equivalent to the drawing of H in time

2O(k)n, and enumerate ω subdrawings in time 2O(k)n + O(ωk).

3.1. Combinatorial nooses in plane graphs

For a refined algorithm analysis we now take a close look at combinatorial nooses of plane

graphs. In particular we are interested in counting the number of combinatorial nooses. In

this subsection, we will prove the following proposition:

Proposition 3.2. Every plane k-vertex graph has 2O(k) combinatorial nooses.

Before proving this proposition, we state that every combinatorial noose of a plane graph

on k vertices corresponds to a cycle in some other plane graph on at most O(k) vertices. The

proofs of the following lemmas can be found in [10]. First we relate combinatorial nooses

in a planar triangulation H to the cycles of H. Then we state that for any plane graph H
there is an auxiliary graph H∗, such that the combinatorial nooses of H can be injectively

mapped to the cycles of the triangulations of H∗. From Proposition 1.6 we know an upper

bound on the number of cycles in planar graphs, which we employ to prove Proposition 3.2.

Lemma 3.3. Let H be a planar triangulation and NC = [v0, f0, v1, f1, . . . , fℓ−1, vℓ] a com-

binatorial noose of H. Then for every pair of consecutive vertices vi, vi+1 in NC , there is a

unique edge {vi, vi+1} in E(H). That is, the sequence [v0, v1, . . . , vℓ] is a simple cycle in H
if |V (NC)| > 2, and if |V (NC)| = 2, it corresponds to a single edge in H.

For an edge e = {v,w} of a graph H we subdivide e by adding a vertex u to V (H) and

replacing e by two new edges e1 = {v, u} and e2 = {u,w}. In a drawing of H, we place

point u in the middle of the drawing of e partitioning e into e1 and e2.

Lemma 3.4. Let H be plane graph and NC = [v0, f0, v1, f1, . . . , fℓ−1, vℓ] a combinatorial

noose of H with |V (NC)| > 2. Let H∗ be obtained by subdividing every edge in E(H). There

exists a planar triangulation H ′ of H∗ such that [v0, v1, . . . , vℓ] is a cycle in H ′.
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Proof of Proposition 3.2. If H is triangulated, we have with Lemma 3.3 that every

combinatorial noose corresponds to a unique cycle in H. By Proposition 1.6, the number of

cycles in H is bounded by 21.53k. Since for every edge of a cycle in H, we have two choices

for a combinatorial noose to visit an incident face, we get the overall upper bound of 22.53k

on the number of combinatorial nooses. If H is plane, we have to count the triangulations

of H∗ (Lemma 3.4). By Proposition 1.7 and the comments below it, there are at most 23.24n

non-isomorphic triangulations on n vertices. Let us denote this set of triangulated graphs

by Φ. We note that H∗ is a subgraph of some graph of Φ, say of all graphs in ΦH ⊆ Φ

with |ΦH | ≥ 1. Since every triangulated graph is 3-connected, we have with Theorem 1.1

that every graph H ′ in ΦH has a unique drawing in Σ up to homeomorphism. The plane

graph H∗ is then a subdrawing of a drawing equivalent to an arbitrary planar drawing of

H ′ in Σ. The number of triangulations times the number of combinatorial nooses in each

triangulation is an upper bound on the number of combinatorial nooses in H∗.

For embedded dynamic programming on a sc-decomposition 〈T, µ, π〉, we can argue

with Remark 1.4 that if H is a subdrawing of G, then noose N formed by the middle set

mid(e) is a noose of H, too. Recalling Remark 1.5, the alternating sequence of vertices and

faces of H visited by N forms a combinatorial noose NC in H. This observation allows us

to discuss the results from a combinatorial point of view without the underlying topological

arguments. Instead of nooses we will refer to combinatorial nooses in the remaining section.

3.2. Embedded dynamic programming

In embedded dynamic programming, the basic difference to usual dynamic programming is

that we do not check for every partial solution for a given problem if or how it lies in the

graph processed so far. Instead, we check how the graph that we have processed so far is

intersecting the entire solution, that is how the graph is embedded into our solution. For

subdrawing equivalence, we are interested in how G is drawn in the plane pattern H up to

homeomorphism. Each edge of an sc-decomposition tree T corresponds to a noose N of G.

We will associate to N the list of all possible subgraphs of H that appear in the part of G
bounded by N . Therefore, we will describe all possible ways H is intersected by N . The

number of solutions we get is bounded by the number of combinatorial nooses in H we can

map N onto. We describe the algorithm in what follows.

Dynamic programming. We root sc-decomposition 〈T, µ, π〉 at some node r ∈ V (T ). For

each edge e ∈ T , let Le be the set of leaves of the subtree rooted at e. The subgraph Ge of

G is induced by the edge set {µ(v) | v ∈ Le}. The vertices of mid(e) form a combinatorial

noose N that separates Ge from the residual graph.

Assuming H is a subgraph of G, the basic idea of embedded dynamic programming is

that we are interested in how the vertices of the combinatorial noose N are intersecting faces

and vertices of H. Since every noose in G is a noose in H, we can map N to a combinatorial

noose NH of H, bounding (clockwise) a unique subgraph Hsub of H.

In each step of the algorithm, all solutions for a sub-problem in Ge are computed,

namely all possibilities of how N is mapped onto a combinatorial noose NH in H that

separates Hsub from the rest of H, where Hsub ⊆ H is isomorphic to subgraphs of Ge. For

every middle set, we store this information in an array. It is updated in a bottom-up process

starting at the leaves of 〈T, µ, π〉. During this updating process it is guaranteed that the

‘local’ solutions for each subgraph associated with a middle set of the sc-decomposition are

combined into a ‘global’ solution for the overall graph G.
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Valid mappings. Let G be a plane graph with a rooted sc-decomposition 〈T, µ, π〉 and

let H be a plane pattern. For every middle set mid(e) of 〈T, µ, π〉 let N be the associated

combinatorial noose in G with face-vertex sequence of F (N) ∪ V (N). Let L denote the set

of all combinatorial nooses of H whose length is at most the length of N . We now want

to map N order preserving to each NH ∈ L. We map vertices of N to both vertices and

faces of H. Therefore, we consider partitions of V (N) = V1(N)∪̇V2(N) where vertices in

V1(N) are mapped to vertices of V (H) and vertices in V2(N) to faces of F (H). We define

a mapping γ : V (N) ∪ F (N) → V (H) ∪ F (H) relating N to the combinatorial nooses in

L. For every NH ∈ L on faces and vertices of set F (NH) ∪ V (NH) and for every partition

V1(N)∪̇V2(N) of V (N) mapping γ is valid if

a) γ restricted to V1(N) is a bijection to V (NH);

b) for every v ∈ V2(N) and f ∈ F (N) we have γ(v) and γ(f) in F (NH);

c) for every vi ∈ V (N) and subsequence [fi−1, vi, fi] of N , face γ(vi) is equal to both

γ(fi−1) and γ(fi), and vertex γ(vi) is incident to both γ(fi−1) and γ(fi) ;

d) for every pair wi, wj ∈ V (NH): if {wi, wj} ∈ E(H) then {γ−1(wi), γ
−1(wj)} ∈ E(G).

Items a) and b) say where to map the faces and vertices of N to. Item c) (with a)) makes

sure that if two vertices vh, vj in sequence N = [. . . , vh, . . ., vj , . . .] are mapped to two

vertices wi, wi+1 that appear in sequence NH as [. . . , wi, fi, wi+1, . . .] then every face and

vertex inbetween vh, vj in sequence N (here underlined) is mapped to face fi. Item d) rules

out the invalid solutions, that is, we do not map a pair of vertices in G that have no edge

in common to the endpoints of an edge in H. We do so because if H is a subgraph of G
then an edge in H is an edge in G, too. For an illustration, see Figure 2.

G

N

Ge

N N
Hγ

N
H

H

Hsub

Figure 2: On the left, we have a plane graph G with a subgraph H emphasized. A combinatorial

noose N separating subgraph Ge is indicated by dashed lines. The vertices of N are

full and empty circles and the faces triangles. In the middle, we have H and indicate to

which faces (big triangles) of H vertices and faces of N are mapped by γ. This gives us

combinatorial noose NH on the right, separating subgraph Hsub.

We assign an array Ae to each mid(e) consisting of all tuples 〈NH , γe〉 each representing

a valid mapping γe from combinatorial noose N corresponding to mid(e) to a combinatorial

noose NH ∈ L. The vertices and faces of N are oriented clockwise around the drawing of

Ge. Without loss of generality, we assume for every 〈NH , γe〉 ∈ Ae the orientation of NH

to be clockwise around the subdrawing Hsub of H equivalent to a subdrawing of Ge.

Step 0: Initializing the leaf edges. For each parent edge eℓ of a leaf ℓ of T we initialize

the valid mappings from the combinatorial noose bounding the edge µ(ℓ) of G to every

combinatorial noose in H of length at most two.
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Step 1: Update process. We update the arrays of the middle sets in post-order manner

from the leaves of T to root r. In each dynamic programming step, we compare the arrays

of two middle sets mid(e),mid(f) in order to create a new array assigned to the middle

set mid(g), where e, f and g have a vertex of T in common. From [12] we know about a

special property of sc-decompositions: namely that the combinatorial noose Ng is formed

by the symmetric difference of the combinatorial nooses Ne, Nf and that Gg = Ge ∪Gf . In

other words, we are ensured that if two solutions on Ge and Gf bounded by Ne and Nf fit

together, then they form a new solution on Gg bounded by Ng. We now determine when

two solutions represented as tuples in the arrays Ae and Af fit together. We update two

tuples 〈NH
e , γe〉 ∈ Ae and 〈NH

f , γf 〉 ∈ Af to a new tuple in Ag if

• for every x ∈ (V (Ne) ∪ F (Ne) ) ∩ (V (Nf ) ∪ F (Nf ) ), we have γe(x) = γf (x);

• for the subgraph He of H separated by NH
e and the subgraph Hf of H separated by NH

f ,

we have that E(He) ∩ E(Hf ) = ∅ and V (He) ∩ V (Hf ) ⊆ {γ(v) | v ∈ V (Ne) ∩ V (Nf )}.

If Ne and Nf fit together, we get a valid mapping γg : Ng → NH
g as follows:

• for every x ∈ (V (Ne)∪F (Ne) )∩ (V (Nf )∪F (Nf ) )∩ (V (Ng)∪F (Ng), ) we have γe(x) =

γf (x) = γg(x);

• for every y ∈ (V (Ne) ∪ F (Ne) ) \ (V (Nf ) ∪ F (Nf ) ) we have γe(y) = γg(y);

• for every z ∈ (V (Nf ) ∪ F (Nf ) ) \ (V (Ne) ∪ F (Ne) ) we have γf (z) = γg(z).

We have that γg is a valid mapping from Ng to the combinatorial noose NH
g that bounds

subgraph Hg = He ∪ Hf . Thus, we add tuple 〈NH
g , γg〉 to array Ag.

Step 2: End of DP. If, at some step, we have a solution where the entire subgraph H is

formed, we exit the algorithm confirming. That is, if H = He ∪ Hf and Hi is bounded by

Ni (for both i ∈ {e, f}) then the combinatorial noose Ng is bounding the subdrawing of G
equivalent to the drawing of H. We output this subdrawing by reconstructing the solution

top-down in 〈T, µ, π〉. If at root r no subdrawing equivalent to the drawing of H has been

found, we output ’FALSE’.

Correctness of DP. Let plane graph H be a subdrawing of G. We have already seen how

to map every combinatorial noose of G that identifies a separation of G via a valid mapping

γ to a combinatorial noose of H determining a separation of H. Step 0 ensures that every

edge of H is bounded by a combinatorial noose NH of length two, which is determined

by tuple 〈NH , γ〉 in an array assigned to a leaf edge of T . We need to show that Step 1

computes a valid solution for Ng from Ne and Nf for incident edges e, f, g. We note that

the property that the symmetric difference of the combinatorial nooses Ne and Nf forms a

new combinatorial noose Ng is passed on to the combinatorial nooses NH
e , NH

f and NH
g of

H, too. If the two solutions fit together, then He of H separated by NH
e and subgraph Hf

of H separated by NH
f only intersect in the image of V (Ne)∩V (Nf ). We may observe that

NH
e and NH

f intersect in a continuous alternating subsequence with order reversed to each

other, i.e., NH
e |Ne∩Nf

= NH
f |Ne∩Nf

, where NH means the reversed sequence NH . Since

every oriented NH identifies uniquely a separation of E(H), we can easily determine if two

tuples 〈NH
e , γe〉 ∈ Ae and 〈NH

f , γf 〉 ∈ Af fit together and form a new subgraph of H. If H
is a subdrawing of G, then at some step we will enter Step 2 and produce the entire H.

Running time analysis. We first give an upper bound on the size of each array. The

number of combinatorial nooses in L we are considering is bounded by the total number of

combinatorial nooses in H, which is 2O(|V (H)|) by Proposition 3.2. The number of partitions
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of vertices of any combinatorial noose N is bounded by 2|V (N)|. Since the order of both NH

and N is given we only have 2|V (H)| possibilities to map vertices of N to NH , once the

vertices of N are partitioned. Thus, in an array Ae we may have up to 2O(|V (H)|) · 2|V (N)| ·
|V (H)| tuples 〈NH

e , γe〉. We first create all tuples in the arrays assigned to the leaves. Since

middle sets of leaves only consist of an edge in G, we get arrays of size O(|V (H)|2) which we

compute in the same asymptotic running time. When updating middle sets mid(e),mid(f),

we compare every tuple of one array Ae to every tuple in array Af to check if two tuples fit

together. We can compute the unique subgraph He (resp. Hf ) described by a tuple in Ae

(resp. Af ), compare two tuples in Ae, Af and create a new tuple in Ag in time linear in the

order of V (N) and V (H). Since the size of Ag is bounded by 2O(|V (H)|)·2O(|V (N)|), the update

process for two middle sets takes the same asymptotic time. Assuming sc-decomposition

〈T, µ, π〉 of G has width ω and |V (H)| ≤ ω, we get the following result.

Lemma 3.5. For a plane graph G with a given sc-decomposition 〈T, µ, π〉 of G of width w
and a plane pattern H on k ≤ w vertices we can search for a subdrawing of G equivalent to

H in time 2O(w) · n.

3.3. The algorithm

We present the overall algorithm for solving Plane Subdrawing Equivalence with run-

ning time stated in Theorem 3.1.

Algorithm 3.1: Plane Subdrawing Equivalence: PLSE.

Input : Plane graph G; Plane pattern H of order k.

Choose an arbitrary vertex v in G.1

Partition V (G) into S0 ∪ S1 ∪ . . . ∪ Sℓ with Si = {w ∈ V (G) : dist(v,w) = i}2

for every Gi = G[Si ∪ . . . ∪ Si+k] with 0 ≤ i ≤ ℓ − k do3

Compute sc-decomposition 〈T, µ, π〉 of Gi.4

Do embedded dynamic programming on 〈T, µ, π〉 to find a subdrawing of Gi5

equivalent to the drawing of H and intersecting Si.

Partitioning the vertex set in Line 2 of Algorithm 3.1 PLSE, is a similar approach to

the well-known Baker-approach [2]. Every vertex set Si contains the vertices of distance i
to the chosen vertex v. S0 = {v} and ℓ is the maximum distance in G from v. The graph

Gi in Line 3 is induced by the sets Si, . . . , Si+k. As in [14], we may argue that every vertex

in G appears in at most k subgraphs Gi. This keeps our running time linear in n. We can

apply Lemma 2.1 to each Gi in Line 4 to a compute sc-decomposition 〈T, µ, π〉 of width

≤ 2k +1, by adding a root vertex r for the BFS tree and make r adjacent to every vertex in

Si. The dynamic programming approach can easily be turned into an algorithm counting

subdrawing equivalences (similar to [14]), by using a counter in the dynamic programming.

Using an inductive argument, for every subgraphs Gi in Line 5 we only compute subgraphs

intersecting with vertices in Si and thus omit double-counting. We can adopt our technique

to list the subdrawings of G equivalent to the drawing of H.
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4. Planar subgraph isomorphism

Now we consider the case when both pattern H and host graph G are planar but not plane.

From Remark 1.3 we know that two isomorphic planar graphs must not need to come with

equivalent drawings. However, we observe that if H is isomorphic to a subgraph of G, then

for every planar drawing of G there exists a drawing of H that is equivalent to a subdrawing

of G. Hence, we may simply draw G planarly, and run the algorithm of the previous section

for all non-equivalent drawings of H.

Algorithm 4.1: Planar subgraph isomorphism.

Input : Planar graph G, Planar pattern H of size k.

Compute a planar drawing of G.

if H 3-connected then Return PLSE(G,H).

for every non-equivalent drawing I of H do
Return PLSE(G, I).

The whole algorithm. We compute in Algorithm 4.1 every non-equivalent drawing of

H as follows. First, we compute the set H of non-isomorphic maximal planar graphs in

time proportional to its size using the algorithm in [20]. For every graph H ′ ∈ H and

every subdrawing I of H ′ we check whether I is isomorphic to H by using the linear

time algorithm for planar graph isomorphism in [19]1 . By Proposition 1.2, we then call

Algorithm 3.1 2O(k) times, for each plane graph I isomorphic to H. This ensures us that

Algorithm 3.1 has running time as stated in Theorem 0.1 2.

Conclusion

We have shown how to use topological graph theory to improve the results on the already

mentioned variations of Planar Subgraph Isomorphism, solving the open problems

posed in [14] and [12]. With the results of [15], [14] extends the feasible graph class from

planar graphs to apex-minor-free graphs. This cannot be done with the tools presented

here. However, the authors of [11] devise a truly subexponential algorithm for k-Longest

Path in H-minor-free graphs and thus apex-minor-free graphs, employing the structural

theorem of Robertson and Seymour [25] and the results of [8, 5]. Can the structure of

H-minor-free graphs, be exploited for our purposes?

It seems unlikely that our work can be extended to obtain a subexponential algorithm.

The first reason, mentioned in the introduction, is that Bidimensionality applies to sub-

graphs with minor properties rather than to general subgraphs. Secondly, our enumerative

bounds are either tight or of lower bound 2Ω(k). We want to pose the open problem: Is

Plane Subdrawing Equivalence solvable in time 2o(k)nO(1)?

Acknowledgments. The author thanks Paul Bonsma, Holger Dell and Fedor Fomin for

discussions and comments of great value to the presentation of these results.

1We get a list of drawings of H , from which we can delete equivalent drawings by a modification of the
algorithm in [19]—namely isomorphism test for face-vertex graphs.

2It can be show that Algorithm 3.1 runs in time O(212.57k
n) and Algorithm 4.1 in O(218.81k

n)
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where the goal is to give a single tile assembly system that simulates the behavior of any
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Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant R2824A01 and
the Canada Research Chair Award in Biocomputing.

c© D. Doty, J.H. Lutz, M.J. Patitz, S.M. Summers, and D. Woods
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010 
Editors: Jean-Yves Marion, Thomas Schwentick 
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2461



276 D. DOTY, J.H. LUTZ, M.J. PATITZ, S.M. SUMMERS, AND D. WOODS

1. Introduction

The development of DNA tile self-assembly has moved nanotechnology closer to the

goal of engineering useful systems that assemble themselves from molecular components.

Since Seeman’s pioneering work in the 1980s [21], many laboratory experiments have shown

that DNA tiles can be designed to spontaneously assemble with one another into desired

structures [20]. As physical and mathematical error-suppression techniques improve [3, 8,

13,22,24], this molecular programming of matter will become practical at ever larger scales.

The Tile Assembly Model, developed by Winfree [19, 26], is a discrete mathematical

model of DNA tile self-assembly that enables us to explore the potentialities and limitations

of this kind of molecular programming. It is essentially an “effectivization” of classical Wang

tiling [25] in which the fundamental components are un-rotatable, but translatable square

“tile types” whose sides are labeled with glue “colors” and “strengths.” Two tiles that are

placed next to each other interact if the glue colors on their abutting sides match, and they

bind if the strength on their abutting sides matches with total strength at least a certain

ambient “temperature.” Extensive refinements of the abstract Tile Assembly Model were

given by Rothemund and Winfree in [18,19]. (Consult the technical appendix for full details

of the abstract Tile Assembly Model.) The model deliberately oversimplifies the physical

realities of self-assembly, but Winfree proved that it is Turing universal [26], implying that

self-assembly can be algorithmically directed.

In this paper we investigate whether the Tile Assembly Model is capable of a much

stronger notion of universality where the goal is to give a single tile assembly system that

simulates the behavior of any other tile assembly system. We give a tile assembly system

that is capable of simulating a very wide class of tile systems, including itself. Our notion

of simulation is inspired by, but somewhat stronger than, intrinsic universality in cellular

automata [2, 7, 14–16]. In our construction a simulated tile assembly system is encoded in

a seed assembly of the simulating system. This encoding is done in a very simple (logspace

computable) way. The seed assembly then grows to form an assembly that is a re-scaled

(larger) version of the simulated assembly, where each tile in the latter is represented by a

supertile (square of tiles) in the simulator. Not only this, but each of the possible (nondeter-

ministically chosen) assembly sequences of the simulated tile system is modeled by a possible

assembly sequence in the simulating system (also nondeterministically chosen). The latter

property of our system is important and highlights one way in which this work distinguishes

itself from other notions of intrinsic universality found in the cellular automata literature:

not only do we want to simulate the final assembly but we also want the simulator to have

the ability to dynamically simulate each of the valid growth processes that could lead to

that final assembly.

A second distinguishing property of our universal tile set is that it simulates nonde-

terministic choice in a “fair” way. An inherent feature of the Tile Assembly Model is the

fact there are often multiple (say k) tiles that can go into any one position in an assembly

sequence, and one of these k is nondeterministically chosen. One way to simulate this fea-

ture is to nondeterministically choose which of k supertiles should grow in the analogous

(simulated) position. However, due to the size blowup in supertiles caused by encoding an

arbitrary-sized simulated tile set into a fixed-sized universal tile set, it seems that we need

to simulate one nondeterministic choice by using a sequence of nondeterministic choices

within the supertile. Interpreting the nondeterministic choice to be made according to uni-

form random selection, if the selection by the simulating tile set is implemented in a näıve
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way, this can lead to unfair selection: when selecting 1 supertile out of k, some supertiles

are selected with extremely low probability. To get around this problem, our system uses

a random number selector that chooses a random tile with probability Θ(1/k) and so we

claim that we are simulating nondeterminism in a “fair” way.

Thirdly, the Tile Assembly Model has certain geometric constraints that are not seen

in cellular automata, and this adds some difficulty to our construction. Existing techniques

for constructing intrinsically universal cellular automata are not directly applicable to tile

assembly. For example, when a tile is placed at a position, that position can not be reused

for further “computation” and this presents substantial difficulties when trying to fit the

various components of our construction into a supertile. Each supertile encodes the entire

simulated tile set and has the functionality to propagate this information to other (yet to

be formed) supertiles. Not only this, each supertile must decide which tile placement to

simulate, whilst making (fair) nondeterministic choices if necessary. Finally, each supertile

should correctly propagate (output) sides that are consistent with the chosen supertile.

We give a number of figures to illustrate how these goals were met within the geometric

constraints of the model.

Our main result presented in this paper is, in some sense, a continuation of some previ-

ous results in self-assembly. For instance, Soloveichik and Winfree [23] exhibit a beautiful

connection between the Kolmogorov complexity of a finite shape X and the minimum num-

ber of tiles types needed to assemble X. It turns out that their construction can be made

to be “universal” in the following sense: there exists a tile set T , such that for every “tem-

perature 1” tile assembly system that produces a finite shape whose underlying binding

graph is a spanning tree, T simulates the given temperature 1 tile system with a corre-

sponding blow-up in the scale. Note that this method restricts the simulated tile system to

be temperature 1, i.e., a non-cooperative tile assembly system, which are conjectured [6] to

produce “simple” shapes and patterns in the sense of Presburger arithmetic [17].

A similar result, recently discovered by Demaine, Demaine, Fekete, Ishaque, Rafalin,

Schweller, and Souvaine [4], established the existence of a general-purpose “staged-assembly”

system that is capable of simulating any temperature 1 tile assembly system that produces a

“fully connected” finite shape. Note that, in this construction, the scaling factor is propor-

tional to O(log |T |), where T is the simulated tile set. This construction has the desirable

property that the set of tile types belonging to the simulator is general purpose (i.e., the

size of the simulator tile set is independent of the to-be-simulated tile set) and all of the

information needed to carry out the simulation is, in some sense, encoded in a sequence

of laboratory steps. An open question in [4] is whether or not their construction can be

augmented to handle temperature 2 tile assembly systems.

Our construction is general enough to be able to simulate powerful and interesting

tile sets, yet sufficiently simple so that it actually belongs to the class of tile assembly

systems that it can simulate, a class we term locally consistent. Systems in this class

have the properties that each tile binds with exactly strength 2, and there are no glue

mismatches in any producible assembly. This captures a wide class of tile assembly systems,

including counters, square-builders and other shape-building tile assembly systems, and the

tile assembly systems described in [1, 12, 19, 23]. Modulo re-scaling, our universal tile set

can be said to display the characteristics of the entire collection of tile sets in its class. Our

construction is a direct simulation in that the technique does not involve the simulation

of intermediate models (such as circuits or Turing machines), which have been used in

intrinsically universal cellular automata constructions [16].
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One of the nice properties of intrinsic universality [16] is that it provides a clear def-

inition that facilitates proofs that a given tile set is not universal. We leave as an open

problem the intrinsic universality status of the Tile Assembly Model in its full generality.

Lafitte and Weiss [9–11] have also studied universality in the related model of Wang

tiling [25]. Some of their definitions, particularly in [10], are similar to our definitions of

simulation and universality, and also to those of Ollinger [16]. However, Wang tiling is not

a model of self-assembly, as it is concerned with the ability of finite tile sets to tile the whole

plane (with no mismatches), without regard to the process by which these tiles are placed.

What is important is simply the existence of some valid tiling. In the TAM, which takes the

order in which tiles are placed, one by one, into account, it must be shown that not only is

there a sequence by which tiles could be individually and stably added to form the output

assembly, but that every possible such sequence leads to the desired output. Furthermore,

in the TAM a tile addition can be valid even if it causes mismatches as long as it is stable.

Most attempts to adapt the constructions of Wang tiling studies (such as those in [9–11])

to self-assembly result in a tile assembly system in which many junk assemblies are formed

due to incorrect nondeterministic choices being made that arrest any further growth and/or

result in assemblies which are inconsistent with the desired output assembly. We therefore

require novel techniques to ensure that no nondeterminism is introduced, other than that

already present in the tile system being simulated, and that the only produced assemblies

are those that represent the intended result or valid partial progress toward it.

2. Intrinsic Universality in Self-Assembly

In this section, we define our notion of intrinsic universality of tile assembly systems.

It is inspired by, but distinct from, similar notions for cellular automata [16]. Where

appropriate, we identify where some part of our definition differs from the “corresponding”

parts in [16], typically due to a fundamental difference between the abstract Tile Assembly

Model and cellular automata models.

Intuitively, a tile set U is universal for a class C of tile assembly systems if U can

“simulate” any tile assembly system in C, where we use an appropriate seed assembly to

give a tile assembly system U . U is intrinsically universal if the simulation of T by U can be

done according to a simple “block substitution scheme” where equal-size square blocks of

tiles in assemblies produced by U represent tiles in assemblies produced by T . Furthermore,

since we wish to simulate the entire process of self-assembly, and not only the final result, it

is critical that the simulation be such that the “local transition rules” involving intermediate

producible (and nonterminal) assemblies of T be faithfully represented in the simulation.

In the subsequent definitions, given two partial functions f, g, we write f(x) = g(x) if f
and g are both defined and equal on x, or if f and g are both undefined on x. Let c, c′ ∈ N, let

[c : c′] denote the set {c, c+1, . . . , c′−1}, and let [c] denote the set [0 : c] = {0, 1, . . . , c−1},
so that [c]2 forms a c × c square with the origin as the lower-left corner.

The natural analog of a configuration of a cellular automaton is an assembly of a tile

assembly system. However, unlike cellular automata in which every cell has a well-defined

state, in tile assembly, there is a fundamental difference between a point being empty space

and being occupied by a tile. Therefore we keep the convention of representing an assembly

as a partial function α : Z
2

99K T (for some tile set T ), rather than treating empty space

as just another type of tile.
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Let T = (T, σT , τ) and S = (S, σS , τ) be tile assembly systems. For simplicity, assume

that σT (0, 0) is defined, and σT is undefined on Z
2−{(0, 0)} (i.e., T is singly-seeded with the

seed tile placed at the origin). We will use this assumption of a single seed throughout the

paper, but it is not strictly necessary and is only used for simplicity of discussion. Define a

representation function to be a partial function of the form r : ([c]2 99K S) 99K T . That is, r
takes a pattern p : [c]2 99K S of tile types from S painted onto a c× c square (with locations

at which p is undefined representing empty space), and (if r is defined for input p) gives a

single tile type from T . Intuitively, r tells us how to interpret c× c blocks within assemblies

of S as single tiles of T . We write REPR for the set of all representation functions.

We say S (intrinsically) simulates T with resolution loss c if there exists a representation

function r : ([c]2 99K S) 99K T such that the following conditions hold.

(1) dom σS ⊆ [c]2 and r(σS) = σT (0, 0), i.e., the seed assembly of S represents the seed

of T .

(2) For every producible assembly αT ∈ A[T ] of T , there is a producible assembly

αS ∈ A[S] of S such that, for every x, y ∈ Z,

r ((αS ↾ ([cx : c(x + 1)] × [cy : c(y + 1)])) + (−cx,−cy)) = αT (x, y).

That is, the c×c block at (relative) position (x, y) (relative to the other c×c blocks;

the absolute position is (cx, cy)) of assembly αS represents the tile type at (absolute)

position (x, y) of assembly αT . In this case, write r∗(αS) = αT ; i.e., r induces a

function r∗ : A[S] → A[T ].

(3) For all αT , α′
T ∈ A[T ], it holds that αT →T α′

T if and only if there exist αS , α′
S ∈

A[S] such that r∗(αS) = αT , r∗(α′
S) = α′

T (in the sense of condition (2)), and

αS →S α′
S . That is, every valid assembly sequence of T can be “mimicked” by S,

but no other assembly sequences can be so mimicked, so that the meaning of the

relation → is preserved by r∗.

Let C be a class of singly-seeded tile assembly systems, and let U be a tile set (with tile

assembly systems having tile set U not necessarily elements of C). Note that every element

of C, REPR, and FIN(U) is a finite object, hence can be represented in a suitable format for

computation in some formal system such as Turing machines. We say U is (intrinsically)

universal for C if there are computable functions R : C −→ REPR and A : C −→ FIN(U)

such that, for each T = (T, σT , τ) ∈ C, there is a constant c ∈ N such that, letting r = R(T ),

σ = A(T ), and UT = (U, σ, τ), UT simulates T with resolution loss c and representation

function r. That is, R(T ) outputs a representation function that interprets assemblies of

UT as assemblies of T , and A(T ) outputs the seed assembly used to program tiles from U
to represent the seed tile of T .

3. An Intrinsically Universal Tile Set

In this section, we exhibit an intrinsically universal tile set for any “nice” tile assembly

system. Before proceeding, we must first define the notion of a “nice” tile assembly system.

Let T = (T, σ, 2) be a tile assembly system, and ~α be an assembly sequence in T whose

result is denoted as α. We say that T is locally consistent if the following conditions hold.

(1) For all ~m ∈ dom α − dom σ,
∑

~u∈IN~α(~m) strα(~m)(~u) = 2, where IN~α (~m) is the set of

sides on which the tile that ~α places at location ~m initially binds. That is, every

tile initially binds to the assembly with exactly bond strength equal to 2 (either a

single strength 2 bond or two strength 1 bonds).
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(2) For all producible assemblies α ∈ A[T ], ~u ∈ U2, and ~m ∈ dom α, if α(~m + ~u) is

defined, then the following condition holds:

strα(~m)(~u) > 0 ⇒ labelα(~m)(~u) = labelα(~m+~u)(−~u) and strα(~m)(~u) = strα(~m+~u)(−~u).

While condition (1) of the above definition is reminiscent of the first condition of local

determinism [23], the second condition says that there are no (positive strength) label mis-

matches between abutting tiles. However, we must emphasize that a locally consistent tile

assembly system need not be directed, and moreover, even a locally deterministic tile assem-

bly system need not be locally consistent because of the lack of any kind of “determinism

restriction” in the latter definition. Our main result is the following.

Theorem 3.1 (Main theorem). Let C be the set of all locally consistent tile assembly sys-

tems. There exists a finite tile set U that is intrinsically universal for C.

In the remainder of this section, we prove Theorem 3.1, that is, we show that for every

locally consistent tile assembly system T = (T, σ, 2), there exists a seed assembly σT , such

that the tile assembly system UT = (U, σT , 2) simulates T with a resolution loss c ∈ N

that depends only on the glue complexity of T . Instead of giving an explicit (and tedious)

definition of the tile types in U , we implicitly define U by describing how UT simulates T .

3.1. High-Level Overview

Intuitively, U simulates T by growing “supertiles” that correspond to tile types in T . In

other words, every supertile is a c×c block of tiles that is mapped to a tile type t ∈ T . To do

this, each supertile that assembles in UT contains the full specification of T as a lookup table

(a long row of tiles that encodes all of the information in the set of tile types T ), analogous

to the genome of an organism being fully replicated in each cell of that organism, no matter

how specialized the function of the cell. This lookup table is carefully propagated through

each supertile in UT via a series of “rotation” and “copy” operations – both of which are

well-known self-assembly primitives.

In the table, we represent each (glue,direction) pair as a binary string, and represent

the tile set as a table mapping 1-2 input glue(s) to 0-3 output glue(s). Since each tile type

of T may not have well-defined input sides, when two supertiles representing tiles of T must

potentially cooperate to place a new supertile within a block adjacent to both of them, it

is imperative that each grows into the block in such a way as to remain unobtrusive to the

other supertile. This is done with a “probe” that grows toward the center of the block, as

shown in Figure 1. At the moment the probes meet in the middle, they “find out” in what

direction the other input supertile lies, and at that point decide in which direction to grow

the rest of the forming supertile. so as to avoid the tiles that were already placed as part of

the probes. We do not know how to deal with three probes at once, which is the reason both

parts of the definition of locally consistent, which imply that only two input probes will

ever be present at one time. The next step is to bring the values of two input glues together

before doing a lookup on the table, because they are both needed to simulate cooperation.

The table must be read and copied at the same time, otherwise the planarity of the tiles

would hide the table as it is read and it could not be propagated to the output supertiles.

Many choices made in the construction, such as the relative positioning of glues/table, or

the counter-clockwise order of assembly, are choices that simply were convenient and seemed

to work, but are not necessarily required.



INTRINSIC UNIVERSALITY IN SELF-ASSEMBLY 281

3.2. Construction of the Lookup Table

In order to simulate the behavior of T with UT , we must first encode the definition of

T using tiles from U . We will do this by constructing a “glue lookup table,” denoted as

TT , and is essentially the self-assembly version of a kind of hash table. Informally, TT is a

(very) long string (of tiles from U) consisting of two copies of the definition of the tile set

T separated by a small group of spacer symbols. The left copy of the lookup table is the

reverse of the right copy. The lookup table maps all possible sets of input sides for each

tile type t ∈ T to the corresponding sets of output sides.

3.2.1. Addresses. The lookup table TT consists of a contiguous sequence of “addresses,”

which are formed from the definition of T . Namely, for each tile type t ∈ T , we create a

unique binary key for each combination of sides of t whose glue strengths sum to exactly

2. Each of these combinations represents a set of sides which could potentially serve as the

input sides for a tile of type t in a producible assembly in T .

We say that a pad is an ordered triple (g, d, s) where g is a glue label in T , d ∈
{N,S,E,W} is an edge direction, and s ∈ {0, 1, 2} is an allowable glue strength. Note that

a set of four pads – one for each direction d – fully specifies a tile type. We use Pad(t, d) to

denote the pad on side d of the tile type t ∈ T
Let Bin(p) be the binary encoding of a pad p = (g, d, s), consisting of the concatenation

of the following component binary strings:

(1) g (glue specification): Let G be the set of glue types from all edges with positive glue

strengths in T∪{gnull} (a.k.a., the null glue). Fix some ordering gnull ≤ g0 ≤ g1 ≤ · · ·
of the set G. The binary representation of gi is the binary value of i padded with

0’s to the left (as necessary) to ensure that the string is exactly ⌈log(|G| + 1)⌉ bits.

(2) d (direction): If d = N (E, S, or W ), append 00 (01, 10, or 11, respectively).

(3) s (strength): If s = 1 (2) append 0 (1).

Note that ⌈log(|G|+ 1)⌉+ 2+ 1 is the length of the binary string encoding an arbitrary

pad p, and is a constant that depends only on T .

An address is a binary string that represents a set of pads which, themselves, can

potentially serve as the input sides of some tile type t ∈ T . It can be composed of one of

the two following binary strings:

(1) A prefix of zeros, 0⌈log(|G|+1)⌉+3, followed by Bin(p) for p = (g, d, 2), or

(2) the concatenation of Bin(p1) and Bin(p2) for p1 = (g1, d1, 1) and p2 = (g2, d2, 1).
The ordering of Bin(p1) and Bin(p2) in an address must be consistent with the

following orderings: EN,SE,WS,NW,NS,EW .

Note that it is possible for more than one tile type t ∈ T to share a set of input pads

and therefore an address.

3.2.2. Encoding of T . We will now construct the string wT , which will represent the defini-

tion of T . Intuitively, wT will be composed of a series of “entries.” Each entry is associated

to exactly one address of a tile type t ∈ T and specifies the pads for the output sides of t.
In this way, once the input sides for a supertile have formed, the corresponding pads can

be used to form an address specifying (a set of) appropriate output pads. Note that since

more than one tile type may share an address in a nondeterministic tile assembly system,

more than one tile type may share a single entry.
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We define an entry to be a string beginning with ‘#’ followed by zero or more “sub-

entries”, each corresponding to a different tile type, separated by semicolons. Let A be the

set of all binary strings representing every address created for each t ∈ T . The string wT

will consist of 1 + maxA entries for addresses 0 to maxA. The ith entry, denoted as ei,

corresponds to the ith address, which may or may not be in A (if it is not, then ei is empty).

We say that a sub-entry consists of a string specifying the pads for the output sides

of a tile type t ∈ T . Let ei be the entry containing a given sub-entry (note that i is the

address of ei), and Ti ⊆ T be the set of tile types addressable by i (i.e., the set of tile types

for which i is a valid address). The entry ei will be comprised of exactly |Ti| sub-entries.

For 0 ≤ k < j, the kth sub-entry in ei, where tk ∈ Ti is the kth element of Ti (relative to

some fixed ordering), is the string OUT(N),OUT(E),OUT(S),OUT(W ) (the commas in

the previous string are literal) with OUT(d) = Bin(Pad(tk, d))R if the glue for Pad(tk, d)

is not gnull and d is not a component of the address i, otherwise OUT(d) = λ. Intuitively,

a sub-entry is a comma-separated list of the (reversed) binary representations of the pads

for an addressed tile type, but including only pads whose glues are not gnull and whose

directions are not a part of the address (and therefore input sides). We will now use the

string wT to construct the lookup table TT .

3.2.3. Full specification of TT . We now give the full specification for the lookup table TT .

First, define the following strings: w0 = ‘>’, w1 = ‘< %% >’, w2 = ‘<’. Now let TT

be as follows: TT = sb(w0 ◦ wT ◦ w1 ◦ (wT )R ◦ w2), where, for strings x and y, x ◦ y
is the concatenation of x and y, and sb : Σ∗ → Σ∗ is defined to “splice blanks” into its

input: between every pair of adjacent symbols in the string x, a single ‘xy’ (blank) symbol

is inserted to create sb(x). This splicing of blanks is required to be able to read from the

table without “locking it from view”, when reading the table for operations that require

growing a column of tiles in towards the table (as opposed to away from it), a blank column

is used, and for growing a column away from the table, a symbol column is used so that

the symbol can be propagated to the top of the column for later copying.

3.2.4. The Lookup Procedure. In our construction, when a supertile t∗ that is simulating a

tile type t ∈ T forms, we must overcome the following problem: once we combine the input

pads (given as the output pads of the supertiles to which t∗ attaches), how do we use TT

to lookup the output pads for t∗? In what follows, we briefly describe how we achieve this.

In other words, we show how an address, a string of random bits, and a copy of TT are

used to compute the pad values for the non-input sides of a supertile. A detailed figure and

example of this procedure can be found in the technical appendix.

For ease of discussion and without loss of generality, we assume that the row of tiles

encoding TT (assembled West to East) and the column of tiles encoding an address and a

random string of bits (assembled North to South at the West end of TT ) are fully assembled,

forming an ‘L’ shape with no tiles in the area between them. For other orientations of the

table and address the logical behavior is identical, simply rotated.

Intuitively, the assembly of the lookup procedure assembles column wise in a zig-zag

fashion from left to the right. In the “first phase,” a counter initialized to 0 is incremented

in each column where the value of the tile in the representation of TT is a ‘;’, thus counting

up at each entry contained in TT . Once that number matches the value of the given

address (which, along with the random bits is copied through this procedure), the entry e
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corresponding to that address has been reached and a new counter begins which counts the

number of sub-entries n in that entry. Note that for directed tile systems, n ≤ 1. Once the

end of that entry is encountered, yet another counter, initialized to 0, begins and increments

on each remaining entry until the end of the first copy of wT is reached (the number n is

propagated to the right). This counts the number of entries, denoted as m, between e and

the end of the lookup table. The “second phase” is used to perform, in some sense, an

operation equivalent to calculating p = b mod n, where b is the binary value of the string

of random bits required for the lookup procedure (this is how we simulate nondeterministic

assemblies). This selects the index of the sub-entry in e which will be used, completing the

random selection of one of the possibly many tile types contained in entry e.
In the current version of our construction, we merely use a random number selection

procedure reminiscent of the more involved (but more uniform) random selection procedures

discussed in [5]. Although it is possible to incorporate these more advanced techniques

into our construction (and thus achieve a higher degree of uniformity in the simulation of

randomized tile systems), we choose not to do so for the sake of simplicity.

Next, a reverse counter, a.k.a., a subtractor, counts down at each entry from m to 0,

and by the way we constructed TT , this final counter obtains the value 0 at the entry e (in

the reverse of wT ). Now, another subtractor counts from p to 0 to locate the correct sub-

entry that was selected randomly. Finally, each pad in the sub-entry is rotated “up and to

the right,” and the group of pads is propagated through the remainder of the lookup table,

thus ending with the values of the non-input pads represented in the rightmost column.

3.3. Supertile design

A supertile s is a subassembly in UT consisting of a c× c block of tiles from T , where c
depends on the glue complexity of T . Each s can be mapped to a unique tile type t ∈ T . In

our construction there are two logical supertile designs. The first, denoted type-0, simulates

tile additions in T in which there are 2 input sides, each with glue strength = 1. The

second, denoted type-1, simulates the addition of tiles via a single strength 2 bond.

While there are several differences in the designs of type-0 and type-1 supertiles, one

commonality is how their edges are defined. Namely each input or output edge of any

supertile is defined by the same sequence of variable values. Since the edges for each direction

are rotations of each other, we will discuss only the layout of the south side of a supertile.

From left to right, the tiles along the south edge of a supertile will represent a string formed

by the concatenation (in order) of the strings: TT , Bin(Pad(t, S)), 0c′ , Bin(Pad(t, S)), and

TT . Note that c′ is a constant that depends on the glue complexity of T .

3.3.1. Type-0 Supertiles (i.e., simulating tiles that attach via two single-strength bonds).

When a tile binds to an assembly in T with two input sides whose glues are each single

strength, there are
(4
2

)

= 6 possible combinations of directions for those input sides: north

and east (NE), north and south (NS), north and west (NW), east and south (ES), east

and west (EW), and south and west (SW). These combinations can be divided into two

categories, those in which the sides are opposite each other (NS and EW), and those in

which the sides are adjacent to each other (NE, NW, ES, and SW).

Opposite Input Sides: Supertiles which represent tile additions with two opposite

input sides, NS and EW, are logically identical to rotations of each other, so here we will

only describe the details of a supertile with NS input sides. Figure 1 shows a detailed image
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Figure 1: NS supertile

depicting the formation of an NS supertile, with arrows giving the direction of growth

for each portion and numbers specifying the order of growth. For ease of discussion and

without loss of generality, we assume that the rows of tiles which form the input sides of

a supertile have fully formed before any other part of the supertile assembles. The first

portions to assemble are the center blocks to the interior of each input side, labeled 1.

This subassembly forms a square in which a series of nondeterministic selections of tile

types is used to generate a random sequence of bits. These bits are propagated to the left

and right sides of the block, to ensure that each side uses the same random bits for the

randomized selection after the sides have been “sealed off” from each other by “probes”

described next. Once that block has completed, a log-width binary subtractor, which is

half the width of the block, assembles. The subtractors from the north and south count

down from a specified value (that depends on T and is encoded into the seed supertile) to

0, and shrink in width until they terminate at positions adjacent to the center square of the

block. These subtractors are “probes” that grow to the center where the direction of the

input sides (the type) is detected. It is at this point that the central (black in the figure)

tile can attach. It is this tile which determines the type of the supertile (NS in this case)

because it is unique to the combination of directions from which the inputs came. At this
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Intuitive depiction of (a portion of) the self-assembly of a type-0 supertile. Note that

the lookup procedure is performed in (d) and (e).

point, symmetry is broken and two paths of tiles assemble from the center back towards the

north side. They in turn initiate the growth of subassemblies which propagate the value of

the north input pad down towards the South of the supertile. Once that growth nears the

southern side, the two input pads are rotated and brought together, with this combination

of input pads forming an address in the lookup table. In the manner described previously,

this address along with the random bits generated within block 1 (which are also passed

through block 5) is used to form the subassembly of block 6 whose southern row contains a

representation of TT and results in the correct output pads being represented in the final

column of that block. Note that Figure 1 only shows the details of the east side of the block

since the West side is an identical but rotated version. Finally, subassemblies 7 through

13 form which rotate and pass the necessary information to the locations where it must be

correctly deposited to form the output sides of the supertile. Every side of a supertile that

is not an input side receives an output pad, even if it is for the null glue (in which case it

does not initiate the growth of the input side of a possible adjacent supertile).
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Abstract. Two-sided matching markets play a prominent role in economic theory. A
prime example of such a market is the sponsored search market where n advertisers com-
pete for the assignment of one of k sponsored search results, also known as “slots”, for
certain keywords they are interested in. Here, as in other markets of that kind, market
equilibria correspond to stable matchings. In this paper, we show how to modify Kuhn’s
Hungarian Method (Kuhn, 1955) so that it finds an optimal stable matching between ad-
vertisers and advertising slots in settings with generalized linear utilities, per-bidder-item
reserve prices, and per-bidder-item maximum prices. The only algorithm for this problem
presented so far (Aggarwal et al., 2009) requires the market to be in “general position”.
We do not make this assumption.

1. Introduction

Two-sided matching markets play a prominent role in economic theory. A prime ex-

ample of such a market is the sponsored search market [14] where n advertisers (or bidders)

compete for the assignment of one of k sponsored search results, also known as “slots”, for

certain keywords (or items) they are interested in. Here, as in other markets of that kind,

market equilibria correspond to stable matchings. A stable matching that is preferred by

all bidders over all other stable matchings is bidder optimal. Mechanisms that compute

bidder optimal matchings typically provide the bidders with the incentive to reveal their

true preferences, i.e., they are truthful.
In the most basic model of a two-sided matching market, known as the stable marriage

problem [9], each bidder has a strict preference ordering over the items and each item has

a strict preference ordering over the bidders. In a more general model, see e.g. [16], each

bidder has a linear utility function for each item that depends on the price of the item and
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every item can have a reserve price, i.e., a price under which the item cannot be sold to any
bidder. In the even stronger model that we study here every bidder-item pair can have a

reserve price, i.e., a price under which the item cannot be sold to this specific bidder, and a

maximum price, i.e., a price above which this bidder does not want to buy this specific item.

We call this model the sponsored search market. An interesting property of this model is

that it generalizes standard auction formats such as VCG [17, 4, 10] and GSP [7].

While the problem of finding a bidder optimal matching in the first two models has

been largely solved in the 60s, 70s, and 80s [9, 16, 5, 15], the problem of finding a bidder

optimal matching in the sponsored search market has been addressed only recently [2].

The main finding of [2] is that if the market is in “general position”, then (a) there is

a unique bidder optimal matching and (b) it can be found in O(nk3) steps by a truthful

mechanism. For a market to be in “general position”, however, any two reserve prices

and/or maximum prices must be distinct. In practice, this will rarely be the case and

so we typically have to deal with markets that are not in general position. The authors

of [2] propose to bring such markets into “general position” using random perturbations

and/or symbolic tie-breaking. The problem with this approach, however, is that there is no

guarantee that a bidder optimal solution of the perturbed market leads to a bidder optimal

solution of the original market. In fact, such a solution may not even exist (see Section 3).

Additionally, a pertubation-based mechanism may not be truthful.

We improve upon the results of [2] as follows: First, in Section 3, we show how to

modify the definition of stability so that a bidder optimal matching is guaranteed to exist for

arbitrary markets. Then, in Section 5, 6, and 7, we show how to modify Kuhn’s Hungarian
Method [13, 8] so that it finds a bidder optimal matching in time O(nk3 log(k)). Afterwards,

in Section 8, we show that with our notion of stability bidder optimality no longer implies

truthfulness, unless further restrictions are imposed on the model. Finally, in Section 9, we

show how to reduce more general linear utility functions to our setting.1

Independently of us Ashlagi et al. [3] also improved upon the results of [2] by (a)

showing the existence of a unique feasible, envy free, and Pareto efficient solution for position
auctions with budgets and by (b) providing a truthful mechanism that finds it. The notion

of envy-freeness is equivalent to our notion of stability. Their model, however, is a special

case of our model as it requires a common preference ordering over the items, it does not

incorporate reserve prices, it does not allow the maximum prices to depend on the bidder

and the item, and it requires the maximum prices to be distinct.

Recently, Kempe et al. [12] presented an efficient algorithm that finds the minimum

envy-free prices (if they exist) for a given matching.

To summarize our main contributions are: (1) We show how to modify the Hungarian

Method so that it finds a bidder optimal solution for arbitrary markets, including markets

that are not in “general position”. (2) We show how different definitions of stability affect

the existence of a bidder optimal solution. (3) We show how to reduce more general linear

utility functions to the setting that we study in this paper with no loss in performance.

2. Problem Statement

We are given a set I of n bidders and a set J of k items. We use letter i to denote a

bidder and letter j to denote an item. For each bidder i and item j we are given a valuation

1These utilities can be used to model that the click probability in the pay-per-click model has a bidder-
dependent component ci and an item-dependent component cj . See [1, 7] for details.
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vi,j, a reserve price ri,j , and a maximum price mi,j. We assume that the set of items J
contains a dummy item j0 for which all bidders have a valuation of zero, a reserve price of

zero, and a maximum price of ∞.2

We want to compute a matching µ ⊆ I × J and per-item prices p = (p1, . . . , pk). We

require that every bidder i appears in exactly one bidder-item pair (i, j) ∈ µ and that every

non-dummy item j 6= j0 appears in at most one such pair. We allow the dummy item j0 to

appear more than once. We call bidders (items) that are not matched to any non-dummy

item (bidder) unmatched. We regard the dummy item as unmatched.

We define the utility ui of bidder i to be ui = 0 if bidder i is unmatched and ui = ui,j(pj)

if bidder i is matched to item j at price pj . We set ui,j(pj) = vi,j − pj if pj < mi,j and

ui,j(pj) = −∞ if pj ≥ mi,j. We say that a matching µ with prices p is feasible if (1) ui ≥ 0

for all i, (2) pj0 = 0 and pj ≥ 0 for all j 6= j0, and (3) ri,j ≤ pj < mi,j for all (i, j) ∈ µ. We

say that a feasible matching µ with prices p is stable if ui ≥ ui,j(pj) for all (i, j) ∈ I × J.3

Finally, we say that a stable matching µ with prices p is bidder optimal if ui ≥ u′
i for all i

and stable matchings µ′ with prices p′.
We say that an algorithm is truthful if for every bidder i with utility functions ui,1(·), . . . ,

ui,k(·) and any two inputs (u′
i,j(·), ri,j ,m

′
i,j) and (u′′

i,j(·), ri,j ,m
′′
i,j) with u′

i,j(·) = ui,j(·) for i

and all j and u′
k,j(·) = u′′

k,j(·) for k 6= i and all j and matchings µ′ with p′ and µ′′ with p′′ we

have that ui,j′(p
′
j′) ≥ ui,j′′(p

′′
j′′) where (i, j) ∈ µ and (i, j′′) ∈ µ′′. This definition formalizes

the notion that “lying does not pay off” as follows: Even if bidder i claims that his utility

is u′′
i,j instead of ui,j he will not achieve a higher utility with the prices and the matching

computed by the algorithm. Thus, the algorithm “encourages truthfulness”.

3. Motivation

The definition of stability in [2], which we call relaxed stability to indicate that every

stable solution is also relaxed stable (but not vice versa), requires that for every pair (i, j) ∈
I×J either (a) ui ≥ vi,j−max(pj, ri,j) or (b) pj ≥ mi,j. The disadvantage of relaxed stability

is that there can be situations where no bidder optimal solution exists if the market is not
in “general position” (see [2] for a formal definition). Here are two canonical examples:

• Example 1. There are three bidders and two items. The valuations and reserve prices

are as follows: v1,1 = 1, v2,1 = 4, v2,2 = 4, v3,2 = 1, r1,1 = 0, r2,1 = r2,2 = 2, and r3,2 = 0.

While µ = {(1, 1), (2, 2)} with p = (0, 2) is “best” for bidder 1, µ = {(2, 1), (3, 2)} with

p = (2, 0) is “best” for bidder 3.

• Example 2. There are two bidders and one item. The valuations and maximum prices

are as follows: v1,1 = 10, v2,1 = 10, and m1,1 = m2,1 = 5. While µ = {(1, 1)} with p1 = 5

is “best” for bidder 1, µ = {(2, 1)} with p1 = 5 is “best” for bidder 2.

In the market of the first example no bidder optimal solution exists as long as there

exists a bidder that has the same utility functions and reserve prices for two items and two

other bidders that are only interested in one of the items. In the market of the second

example no bidder optimal solution exists as long as both bidders have the same maximum

price and a non-zero utility at the maximum price. Since these cases are quite general, we

conjecture that they occur rather frequently in practice.

2Reserve utilities, or outside options oi, can be incorporated by setting vi,j0 = oi for all bidders i.
3Since we have ui ≥ 0 and ui,j(pj) = −∞ if pj ≥ mi,j , this definition is equivalent to requiring ui ≥

vi,j − pj for all items j with pj < mi,j .
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Figure 1: The left two graphs illustrate Example 1. The right two graphs illustrate Example

2. Bidders are on the left side, items on the right side of the bipartite graph. The

numbers next to the bidder indicate her utility, the numbers next to the item

indicate its price. The labels along the edge show valuations and reserve prices

for the left two graphs and valuations and maximum prices for the right two

graphs. With relaxed stability a bidder optimal matching does not exist.

With our notion of stability a bidder optimal solution is guaranteed to exist (e.g. µ =

{(2, 1)} with p1 = p2 = 2 in Example 1 and µ = ∅ with p1 = 5 in Example 2) for all kinds

of markets, including markets that are not in general position.

4. Preliminaries

We define the first choice graph Gp = (I ∪ J, Fp) at prices p as follows: There is one

node per bidder i, one node per item j, and an edge from i to j if and only if item j gives

bidder i the highest utility possible, i.e., ui,j(pj) ≥ ui,j′(pj′) for all j′. For i ∈ I we define

Fp(i) = {j : ∃ (i, j) ∈ Fp} and similarly Fp(j) = {i : ∃ (i, j) ∈ Fp}. Analogously, for T ⊆ I
we define Fp(T ) = ∪i∈T Fp(i) and for S ⊆ J we define Fp(S) = ∪j∈SFp(j). Note that (1)

pj < mi,j for all (i, j) ∈ Fp and (2) if the matching µ with prices p is stable then µ ⊆ Fp.

We define the feasible first choice graph G̃p = (I ∪ J, F̃p) at prices p as follows: There

is one node per bidder i, one node per item j, and an edge from i to j if and only if

item j gives bidder i the highest utility possible, i.e., ui,j(pj) ≥ ui,j′(pj′) for all j′, and

pj ≥ ri,j. Note that F̃p ⊆ Fp. For i ∈ I we define F̃p(i) = {j : ∃ (i, j) ∈ F̃p} and similarly

F̃p(j) = {i : ∃ (i, j) ∈ F̃p}. Analogously, for T ⊆ I we define F̃p(T ) = ∪i∈T F̃p(i) and for

S ⊆ J we define F̃p(S) = ∪j∈SF̃p(i). Note that (1) ri,j ≤ pj < mi,j for all (i, j) ∈ F̃p and

(2) the matching µ with prices p is stable if and only if µ ⊆ F̃p. Also note that the edges in

Fp(i) \ F̃p(i) are all the edges (i, j) with maximum ui,j(pj) but pj < ri,j.

We define an alternating path is a sequence of edges in F̃p that alternates between

matched and unmatched edges. We require that all but the last item on the path are non-

dummy items. The last item can (but does not have to) be the dummy item. A tree in the

feasible first choice graph G̃p is an alternating tree rooted at bidder i if all paths from its

root to a leaf are alternating paths that either end with the dummy item, an unmatched

item, or a bidder whose feasible first choice items are all contained in the tree. We say that

an alternating tree with root i is maximal if it is the largest such tree. See Figure 2 for an

example.

5. Algorithm

Our algorithm starts with an empty matching and prices all zero. It then matches one

bidder after the other by augmenting the current matching along an alternating path. If

there is no such path, it repeatedly raises the price of all items in the maximal alternating
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Figure 2: The graph on the left is the (feasible) first choice graph. The bidders i1 to i6 are

on the left. The items j1 to j5 are on the right. The dummy item is j0. Edges in

µ ∩ F̃p are thick. Edges in F̃p are thin. Edges in Fp \ F̃p are dashed. The graph

on the right is a maximal alternating tree rooted at i1.

tree under consideration by the minimum amount (a) to make some item j 6∈ Fp(i) desirable

for some bidder i in the tree, or (b) to make some item j ∈ Fp(i) \ F̃p(i) feasible for some

bidder i in the tree, or (c) to make some item j ∈ F̃p(i) no longer desirable for some bidder i
in the tree. Thus it ensures that eventually an alternating path will exist and the matching

can be augmented. Note that a matched bidder i can become unmatched if the price of the

item j she is matched to reaches mi,j. Case (a) corresponds to δout, Case (b) corresponds

to δres, and Case (c) corresponds to δmax in the pseudocode below.

Modified Hungarian Method

1 set pj := 0 for all j ∈ J , ui := maxj′ vi,j′ for all i ∈ I, and µ := ∅,
2 while ∃ unmatched bidder i do

3 find a maximal alternating tree rooted at bidder i in G̃p

4 let T and S be the set of bidders and items in this tree

5 while all items j ∈ S are matched and j0 6∈ S do

6 compute δ := min(δout, δres, δmax) where

7 δout := mini∈T,j 6∈Fp(i)(ui + pj − vi,j)
4

8 δres := mini∈T,j∈Fp(i)\F̃p(i)(ri,j − pj)
4

9 δmax := mini∈T,j∈Fp(i)(mi,j − pj)

10 update prices, utilities, and matching by setting

11 pj := pj + δ for all j ∈ Fp(T ) \\ leads to a new graph G̃p

12 ui := maxj′(vi,j′ − pj′) for all i ∈ I

13 µ := µ ∩ F̃p \\ removes unfeasible edges from µ

14 find a maximal alternating tree rooted at bidder i in G̃p

15 let T and S be the set of bidders and items in this tree

16 end while

17 augment µ along alternating path rooted at i in G̃p

18 end while

19 output p, u, and µ

4We need to define mini∈T,j∈∅(...) = ∞ as we might have Fp(I) = J or Fp(i) \ F̃p(i) = ∅.
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6. Feasibility and Stability

Theorem 6.1. The Modified HM finds a feasible and stable matching. It can be implemented
to run in O(nk3 log(k)).

Proof. The matching µ constructed by the Modified HM is a subset of the feasible first

choice graph G̃p at all times. Hence it suffices to show that after O(nk3 log(k)) steps all

bidders are matched.

The algorithm consists of two nested loops. We analyze the running time in two steps:

(1) The time spent in the outer loop without the inner loop (ll. 2–4 and 17–18) and (2)

the time spent in the inner loop (ll. 5–16). Note that after each execution of the outer

while loop the number of matched bidder increases by one. A matched bidder i can only

become unmatched if the price of the item j she is matched to reaches mi,j. This can happen

only once for each pair (i, j), which implies that each bidder can become at most k times

unmatched. Thus, the outer loop is executed at most nk times. Since |S| ≤ k, it follows

that |T | ≤ k. Thus it is straightforward to implement the outer while loop in time O(k2).
We call an execution of the inner while loop special if (a) right before the start of

the execution the outer while loop was executed, (b) in the previous iteration of the inner

while loop the maximum price of a pair (i, j) was reached, or (c) the reserve price of a

pair (i, j) was reached. As each of these cases can happen at most nk times, there are

at most 3nk special executions of the inner while loop. Non-special executions increase

the number of items in the maximal alternating tree by at least one. Thus there are at

most k non-special executions between any two consecutive special executions. We present

next a data structure that (1) can be built in time O(k2) and (2) allows to implement all
non-special executions of the inner while loop between two consecutive special iterations in

time O(k2 log k). Thus the total time of the algorithm is O(nk3 log k).

Data structure:

(1) Keep a list of all bidders in T and a bit vector of length n where bit i is set to 1 if bidder

i belongs currently to T and to 0 otherwise. Keep a list of all items in S and bit vector

of length k, where bit j is set of 1 if item j belongs currently to S and to 0 otherwise.

Finally also keep a list and a bit vector of length k representing all items in Fp(T ).
(2) Keep a heap Hout and a value δout, such that Hout stores xi + pj − vi,j for all pairs

(i, j) with i ∈ T and j 6∈ Fp(i) and δout + xi equals ui for every i ∈ T. Keep a heap

Hres and a value δres, such that Hres stores ri,j − yj for all pairs (i, j) with i ∈ T and

j ∈ Fp(i) \ F̃p(i) and δres + yj equals pj for every j ∈ Fp(i) \ F̃p(i). Keep a heap Hmax
and a value δmax, such that Hmax stores mi,j − yj for all pairs (i, j) with i ∈ T and

j ∈ Fp(i) and δmax + yj equals pj for every j ∈ Fp(i).
(3) We also store at each bidder i its current ui, at each item j its current pj . Thus given a

pair (i, j) we can decide in constant time whether ui = vi,j − pj, i.e., whether j ∈ Fp(i).
Finally we keep a list of edges in µ.

At the beginning of each special execution of the inner while loop a list of bidders and

items currently in T and S are passed in either from the preceding execution of the outer

while loop (where T and S are constructed in time O(k2)) or from the previous execution

of the inner while loop. Recall that |S| ≤ k and thus |T | ≤ k. Thus we can build the above

data structures from scratch in time O(k2) as follows. To initialize the bit vector for T we

use the following approach: At the beginning of the algorithm the vector is once initialized
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to 0, taking time O(n). Then at the beginning of all but the first special execution of the

inner while loop the bit vector is “cleaned” by setting the bit of all elements of T in the

previous iteration to 0 using the list of elements of T of the previous iteration. Then the

list of elements currently in T is used to set the appropriate bits to 1. This takes time

O(k) per special execution. The bit vector of items in S has only k entries and thus is

simply initialized to 0 at the beginning of each special execution. Then the list of elements

currently in S is used to set the appropriate bits to 1. Given the list of bidders in T we

decide in constant time for each pair (i, j) with i ∈ T into which heap(s) its appropriate

values should be inserted. If j ∈ Fp(i) we also add j to Fp(T ) if it is not already in this set

update the bit vector and the list. When we have processed all pairs (i, j) with i ∈ T we

build the three heaps in time linear in their size such that all δ values are 0. Since |S| = k
we know that |T | = k. Thus, the initialization takes time O(k2).

To implement each iteration of the inner while loop we first perform a find-min operation

on all three heaps to determine δ. Then we remove all heap values that equal δ. Afterwards

we update the price of all items in Fp(T ) using the list of Fp(T ). We also update the utility

of all items in T as follows. If δ 6= δmax updating the utilities is just a simple subtraction

per bidder. If δ = δmax, i.e., pj becomes mi,j for some pair (i, j), then updating ui requires

computing vi,j − pj for all j and potentially removing the edge (i, j) from µ, which in turn

might cut a branch of the alternating tree. Thus, in this case we completely rebuild the

alternating tree, including S, T , and Fp(T ) from scratch. Note however that this can only

happen in a special execution of the inner while loop. If δ 6= δmax the elements removed

from the heaps tell us which new edges are added to F̃p(T ) and which new items to add

to Fp(T ). The new items in Fp(T ) gives a set of items from which we start to augment

the alternating tree in breadth first manner. For each new item j, we add to F̃p(T ) the

bidder it is matched to as new bidder to S and to F̃p(T ). For each new bidder i added to

F̃p(T ) we spend time O(k) to determine its adjacent edges in Fp(i) and insert the suitable

values for the pairs (i, j) into the three heaps. This process repeats until no new items and

no new bidders are added to Fp(i). During this traversal we also update the bit vectors

and lists representing T , S, and Fp(T ). Let Tnew be the set of bidders added to T during

an execution of the inner while loop and let r be the number of elements removed from

the heaps during the execution. Then the above data structures implement the inner while

loop in time O(r ∗ log k + |Tnew| ∗ k.) Now note that during a sequence of non-special

executions of the inner while loop between two consecutive special executions bidders are

never removed from T and each (i, j) pair with i ∈ T is added (and thus also removed)

at most once from each heap. Thus the total number of heap removals during all such

non-special executions is 3k2 and the total number of elements added to T is k, giving a

total running time of O(k2 log k) for all such non-special executions. Since there are at most

3nk special executions, the total time for all inner while loops is O(nk3 log k).

7. Bidder Optimality

Theorem 7.1. The Modified HM finds a bidder optimal matching in O(nk3 log(k)) steps.

We say that a (possibly empty) set S ⊆ J is strictly overdemanded for prices p wrt

T ⊆ I if (i) F̃p(T ) ⊆ S and (ii) ∀ R ⊆ S and R 6= ∅ : |F̃p(R) ∩ T | > |R|. Using Hall’s

Theorem [11] one can show that a feasible and stable matching exists for given prices p if

and only if there is no strictly overdemanded set of items S in F̃p.
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The proof strategy is as follows: In Lemma 7.2 we show that a feasible and stable

matching µ with prices p is bidder optimal if we have that pj ≤ p′j for all items j and all

feasible and stable matchings µ′ with prices p′. Afterwards, in Lemma 7.3, we establish a

lower bound on the price increase of strictly overdemanded items. Finally, in Lemma 7.4 we

argue that whenever the Modified HM updates the prices it updates the prices according

to Lemma 7.3. This completes the proof.

Lemma 7.2. If the matching µ with prices p is stable and pj ≤ p′j for all j and all stable

matchings µ′ with prices p′, then the matching µ with prices p is bidder optimal.

Proof. For a contradiction suppose that there exists a feasible and stable matching µ′ with

prices p′ such that u′
i > ui for some bidder i. Let j be the item that bidder i is matched

to in µ and let j′ be the item that bidder i is matched to in µ′. Since pj′ ≤ p′j′ and

p′j′ < mi,j′ we have that ui,j′(pj′) = vi,j′ − pj′. Since the matching µ with prices p is

stable we have that ui = ui,j(pj) = vi,j − pj ≥ ui,j′(pj′) = vi,j′ − pj′. It follows that

u′
i = vi,j′ − p′j′ > ui = vi,j − pj ≥ vi,j′ − pj′ and, thus, p′j′ < pj′ . This gives a contradiction.

Lemma 7.3. Given p = (p1, . . . , pk) let ui = maxj ui,j(pj) for all i. Suppose that S ⊆ J is
strictly overdemanded for prices p with respect to T ⊆ I and let δ = min(δout, δres, δmax),
where δout = mini∈T,j 6∈Fp(i)(ui +pj − vi,j), δres = mini∈T,j∈Fp(i)\F̃p(i)(ri,j −pj), and δmax =

mini∈T,j∈Fp(i)(mi,j − pj). Then, for any stable matching µ′ with prices p′ with p′j ≥ pj for

all j, we have that p′j ≥ pj + δ for all j ∈ Fp(T ).

Proof. We prove the claim in two steps. In the first step, we show that p′j ≥ pj + δ for all

j ∈ F̃p(T ). In the second step, we show that p′j ≥ pj + δ for all j ∈ Fp(T ) \ F̃p(T ).

Step 1. Consider the set of items A = {j ∈ F̃p(T ) | ∀k ∈ F̃p(T ) : p′j − pj ≤ p′k − pk} and

the set of bidders B = F̃p(A)∩T. Assume by contradiction that δ′ = minj∈F̃p(T )(p
′
j−pj) < δ.

We show that this implies that |B| > |A| ≥ |F̃p′(B)|, which gives a contradiction.

The set of items S is strictly overdemanded for prices p wrt to T and A. Thus, since

A ⊆ S and A 6= ∅, |B| = |F̃p(A) ∩ T | > |A|. Next we show that A ⊇ F̃p′(B) and, thus,

|A| ≥ |F̃p′(B)|. It suffices to show that F̃p′(i)\A = ∅ for all bidders i ∈ B. For a contradiction

suppose that there exists a bidder i ∈ B and an item k ∈ F̃p′(i) \ A. Recall that we must

have (1) ui,k(p
′
k) ≥ 0, (2) ui,k(p

′
k) ≥ ui,k′(p′k′) for all k′, and (3) pk ≥ ri,k. Recall also that

(1)–(3) imply that ri,k ≤ p′k < mi,k and so ui,k(p
′
k) = vi,k − p′k.

We know that there exists j ∈ A such that j ∈ F̃p(i). Since j ∈ A we have that p′j <

pj + δ ≤ mi,j and so ui,j(p
′
j) = vi,j −p′j . Thus, since k ∈ F̃p′(i), vi,k −p′k ≥ vi,j −p′j . Finally,

since j ∈ F̃p(i) and pk ≤ p′k < mi,k, we have that ui,j(pj) = vi,j − pj ≥ ui,k(pk) = vi,k − pk.

Case 1: k ∈ J \ Fp(B). Since δ ≤ δout ≤ ui + pk − vi,k and ui = vi,j − pj we have that

δ ≤ vi,j − pj + pk − vi,k. Rearranging this gives vi,k − pk + δ ≤ vi,j − pj. Since p′k ≥ pk and

pj > p′j − δ this implies that vi,k − p′k < vi,j − p′j. Contradiction!

Case 2: k ∈ Fp(B) \ F̃p(B). If p′k − pk ≤ p′j − pj = δ′ then p′k ≤ pk + δ′ < pk + δ. Since

δ ≤ δres ≤ ri,k −pk this implies that p′k < ri,k. Contradiction! Otherwise, p′k −pk > p′j −pj.

Since vi,j − pj ≥ vi,k − pk this implies that vi,j − p′j > vi,k − p′k. Contradiction!

Case 3: k ∈ F̃p(B) \ A. Since j ∈ A and k 6∈ A we have that p′k − pk > δ′ = p′j − pj .

Since vi,j − pj ≥ vi,k − pk this implies that vi,j − p′j > vi,k − p′k. Contradiction!
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Step 2. Consider an arbitrary item j ∈ Fp(T ) \ F̃p(T ) such that p′j − pj ≤ p′j′ − pj′ for

all j′ ∈ Fp(T )\ F̃p(T ) and a bidder i ∈ T such that j ∈ Fp(i). Assume by contradiction that

δ′ = p′j − pj < δ. We show that this implies that F̃p′(i) = ∅, which gives a contradiction.

First observe that δ′ < δ ≤ δres ≤ ri,j − pj and, thus, p′j < pj + δ ≤ ri,j, which shows

that j 6∈ F̃p′(i). Next consider an arbitrary item k 6= j. For a contradiction suppose that

k ∈ F̃p′(i). It follows that ri,k ≤ p′k < mi,k and ui,k(p
′
k) = vi,k − p′k ≥ ui,j(p

′
j).

Since p′j = pj + δ′ < pj + δ ≤ mi,j we have that ui,j(p
′
j) = vi,j − p′j and so vi,k − p′k ≥

vi,j − p′j. Finally, since j ∈ Fp(i) and pk ≤ p′k < mi,k, we have that ui,j(pj) = vi,j − pj ≥

ui,k(pk) = vi,k − pk.

Case 1: k ∈ J \ Fp(T ). Since δ ≤ δout ≤ ui + pk − vi,k and ui = vi,j − pj we have that

δ ≤ vi,j − pj + pk − vi,k. Rearranging this gives vi,k − pk + δ ≤ vi,j − pj. Since p′k ≥ pk and

pj > p′j − δ this implies that vi,k − p′k < vi,j − p′j. Contradiction!

Case 2: k ∈ Fp(T ) \ F̃p(T ). If p′k − pk ≤ p′j − pj = δ′ then p′k ≤ pk + δ′ < pk + δ. Since

δ ≤ δres ≤ ri,k −pk this implies that p′k < ri,k. Contradiction! Otherwise, p′k −pk > p′j −pj.

Since vi,j − pj ≥ vi,k − pk this implies that vi,j − p′j > vi,k − p′k. Contradiction!

Case 3: k ∈ F̃p(T ). From Step 1 we know that p′k − pk ≥ δ > δ′ = p′j − pj. Since

vi,j − pj ≥ vi,k − pk this implies that vi,j − p′j > vi,k − p′k. Contradiction!

Lemma 7.4. Let p be the prices computed by the Modified HM. Then for any stable matching
µ′ with prices p′ we have that pj ≤ p′j for all j.

Proof. We prove the claim by induction over the price updates. Let pt denote the prices

after the t-th price update.

For t = 0 the claim follows from the fact that pt = 0 and p′j ≥ 0 for all items j and all

feasible matchings µ′ with prices p′.
For t > 0 assume that the claim is true for t− 1. Let S be the set of items and let T be

the set of bidders considered by the matching mechanism for the t-th price update. We claim

that S is strictly overdemanded for prices pt−1 wrt to T. This is true because: (1) S and T
are defined as the set of items resp. bidders in a maximal alternating tree and, thus, there

are no edges in F̃pt−1 from bidders in T to items in J \ S which shows that F̃pt−1(T ) ⊆ S.
(2) For all subsets R ⊂ S and R 6= ∅ the number of “neighbors” in the alternating tree

under consideration is strictly larger than |R| which shows that |F̃pt−1(R) ∩ T | > |R|. By

the induction hypothesis p′j ≥ pt−1
j for all items j ∈ J and, thus, Lemma 7.3 shows that

p′j ≥ pt−1
j + δ for all items j ∈ Fpt−1(t). The Modified HM sets pt

j = pt−1
j + δ for all items

j ∈ Fpt−1(T ) and pt
j = pt−1

j for all items j 6∈ Fpt−1(T ) and so p′j ≥ pt
j for all items j ∈ J .

8. Truthfulness

The following example shows that with our notion of stability bidder optimality no

longer implies truthfulness, even if (i) there are no reserve prices, i.e., ri,j = 0 for all i and

j, (ii) maximum prices depend only on the item, i.e., for all i there exists a constant mi

such that mi,j = mi for all j, and (iii) no two bidders have the same maximum price, i.e.,

mi 6= mk for any two bidders i 6= k. More specifically, it shows that a bidder can improve her

utility by lying about the valuation of a single item. Since the bidder optimal utilities are

uniquely defined, this shows that no mechanism that computes a bidder optimal matching

µ with prices p can be truthful. Note that if (i) to (iii) hold and there exists constants
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α1 ≥ · · · ≥ αk and v1, . . . , vk such that vi,j = vi · αj for all i and j, then Ashlagi et al. [3]

show the existence of a truthful mechanism.
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Figure 3: Bidders are on the left and items are on the right. The numbers next to the

bidders indicate their utilities. The numbers next to the items indicate their

prices. The labels along the edges show valuations and maximum prices. The

graph on the left depicts the bidder optimal matching for the “true” valuations.

The graph on the right depicts the bidder optimal matching for the “falsified”

valuations. Specifically, in the matching on the right bidder 2 misreports her

valuation for item 1. This gives her a strictly higher utility, and shows that lying

“pays off”.

9. Generalized Linear Utilities

The following theorem generalizes our results to utilities of the form ui,j(pj) = vi,j −
ci · cj · pj for pj < mi,j and ui,j(pj) = −∞ otherwise. This reduction does not work if

ui,j(pj) = vi,j − ci,j · pj for pj < mi,j and ui,j(pj) = −∞ otherwise. We prove the existence

of a bidder optimal solution for more general utilities in [6].

Theorem 9.1. The matching µ̂ with prices p̂ is bidder optimal for v̂ = (v̂i,j), r̂ = (r̂i,j),
m̂ = (m̂i,j) and utilities ui,j(pj) = vi,j − ci · cj · pj if pj < mi,j and ui,j(pj) = −∞ otherwise
if and only if the matching µ with prices p, where µ = µ̂ and p = (cj · p̂j), is bidder optimal
for v = (v̂i,j/ci), r = (cj · r̂i,j), m = (cj · m̂i,j) and utilities ui,j(pj) = vi,j − pj if pj < mi,j

and ui,j(pj) = −∞ otherwise.

Proof. Since p̂j < m̂i,j if and only if p < mi,j we have that ûi,j(p̂j) = ci · ui,j(pj). Since

µ̂ = µ this implies that ûi = ci · ui for all i.
Feasibility. Since ci > 0 for all i we have that ûi ≥ 0 for all i if and only if ui = ûi/ci ≥ 0

for all i. Since cj > 0 for all i we have that p̂j ≥ 0 for all j if and only if pj = cj · p̂j ≥ 0 for

all j. Since µ = µ̂ and ri,j = cj · r̂i,j, pj = cj · p̂j, and mi,j = cj · m̂i,j for all i and j we have

that r̂i,j ≤ p̂j < m̂i,j for all (i, j) ∈ µ̂ if and only if ri,j ≤ pj < mi,j for all (i, j) ∈ µ.

Stability. If µ̂ with p̂ is stable then µ with p is stable because ui = ci · ûi ≥ ci ·
ûi,j(p̂j) = ui,j(pj) for all i and j. If µ with p is stable then µ̂ with p̂ is stable because

ûi = ui/ci ≥ ui,j(pj)/ci = ûi,j(p̂j) for all i and j.
Bidder Optimality. For a contraction suppose that µ̂ with p̂ is bidder optimal but µ

with p is not. Then there must be a feasible and stable matching µ′ with p′ such that

u′
i > ui for at least one bidder i. By transforming µ′ with p′ into µ̂′ with p̂′ we get a feasible

and stable matching for which û′
i = ci · u

′
i > ci · ui = ûi. Contradiction!
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For a contraction suppose that µ with p is bidder optimal but µ̂ with p̂ is not. Then

there must be a feasible and stable matching µ̂′ with p̂′ such that û′
i > ûi for at least one

bidder i. By transforming µ̂′ with p̂′ into µ′ with p′ we get a feasible and stable matching

for which u′
i = û′

i/ci > ûi/ci = ui. Contradiction!
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Abstract. We present two new approximation algorithms with (improved) constant ra-
tios for selecting n points in n unit disks such that the minimum pairwise distance among
the points is maximized.

(I) A very simple O(n log n)-time algorithm with ratio 0.5110 for disjoint unit disks. In
combination with an algorithm of Cabello [3], it yields a O(n2)-time algorithm with ratio
of 0.4487 for dispersion in n not necessarily disjoint unit disks.

(II) A more sophisticated LP-based algorithm with ratio 0.6495 for disjoint unit disks
that uses a linear number of variables and constraints, and runs in polynomial time. The
algorithm introduces a novel technique which combines linear programming and projections
for approximating distances.

The previous best approximation ratio for disjoint unit disks was 1

2
. Our results give a

partial answer to an open question raised by Cabello [3], who asked whether 1

2
could be

improved.

1. Introduction

Let R be a family of n subsets of a metric space. The problem of dispersion in R is

that of selecting n points, one in each subset, such that the minimum inter-point distance is

maximized. This dispersion problem was introduced by Fiala et al. [6] as “systems of distant

representatives”, generalizing the classic problem “systems of distinct representatives”. An

especially interesting version of the dispersion problem, which has natural applications to

wireless networking and map labeling, is in a geometric setting where R is a set of unit

disks in the plane.

Fiala et al. [6] showed that dispersion in (not necessarily disjoint) unit disks is NP-hard.

It is not difficult to modify their construction, which gives a reduction from Planar-3SAT,

to show that dispersion in disjoint unit disks is also NP-hard. Moreover, by a slackness

argument [7, 8], the same construction also implies that the problem is APX-hard; i.e, unless
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P = NP, the problem does not admit any polynomial-time approximation scheme. On the

positive side, Cabello [3] presented a quadratic-time approximation algorithm with ratio

0.4465 . . . (1/2.2393 . . .) for dispersion in not necessarily disjoint unit disks. For dispersion

in disjoint unit disks, Cabello [3] noticed that a naive algorithm called Centers, which

simply selects the centers of the given disks as the points, gives a 1

2
-approximation.

We first introduce some preliminaries. For two points, p = (xp, yp) and q = (xq, yq), let

|pq| denote the Euclidean distance between them: |pq| =
√

(xp − xq)2 + (yp − yq)2. A unit
disk is a disk of radius one. Let the distance between two disks be the distance between

their centers; e.g., the distance between two tangent disks is 2. Let D be a set of n disjoint

unit disks in the plane. Let δ be the minimum pairwise distance of the disks in D; clearly

δ ≥ 2. The algorithm Centers, by the obvious inequalities APX ≥ δ and OPT ≤ δ + 2,

achieves an approximation ratio

APX

OPT
≥

δ

δ + 2
≥

1

2
.

Observe that the approximation ratio of Centers gets better as δ increases; in fact, it

can get arbitrarily close to 1, if δ is large enough. Cabello asked whether this trivial 1

2
-

approximation can be improved for disjoint unit disks [3, p. 72].

We start with a very simple and efficient algorithm that achieves a ratio better than 1

2

for dispersion in disjoint unit disks, and a ratio slightly better than 0.4465 for dispersion in

not necessarily disjoint unit disks:

Theorem 1.1. There is an O(n log n)-time approximation algorithm with ratio 0.5110 for
dispersion in n disjoint unit disks. In combination with an algorithm of Cabello, it yields a
O(n2)-time algorithm with ratio of 0.4487 for dispersion in n not necessarily disjoint unit
disks.

Using linear programming, we then obtain the following substantially better approxi-

mation for dispersion in disjoint unit disks:

Theorem 1.2. There is an LP-based approximation algorithm, with O(n) variables and
constraints, and running in polynomial time, that achieves approximation ratio 0.6495, for
dispersion in n disjoint unit disks.

It is likely that our method for proving Theorem 1.2, which uses projections for ap-

proximating distances, and linear programming for optimization, is also applicable to other

optimization problems involving distances.

Related work. The problem studied in this paper, dispersion in unit disks, is related to

a few other problems in computational geometry. We mention three results that are more

closely related to ours:

(1) For labeling n points with n disjoint congruent disks, each point on the boundary

of a distinct disk, such that radius of the disks is maximized, Jiang et al. [8] pre-

sented a 1

2.98+ε -approximation algorithm, and proved that the problem is NP-hard

to approximate with ratio more than 1

1.0349 .

(2) For packing of n axis-parallel congruent squares (congruent disks in the L∞ metric)

in the same rectilinear polygon such that the side length of the squares is maximized,

Baur and Fekete [1] presented a 2

3
-approximation algorithm, and proved that the

problem is NP-hard to approximate with ratio more than 13

14
.
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(3) A 2

3
-approximation algorithm for a related problem of packing n unit disks in a

rectangle without overlapping an existent set of m unit disks in the same rectangle,

has been obtained by Benkert et al. [2].

(4) Given n points in the plane, Demaine et al. [4] considered the problem of moving

them to an independent set in the unit disk graph metric: that is, each point has to

move to a position such that all pairwise distances are at least 1, and such that the

maximum distance a point moved is minimized. They presented an approximation

algorithm, which achieves a good ratio if the points are initially “far from” an

independent set. However the approximation ratio becomes unbounded for instances

that are “very close to” an independent set. Observe that in this problem, the

optimum may be arbitrarily small, i.e., arbitrarily close to 0.

2. A simple approximation algorithm for unit disks

In this section we present a very simple approximation algorithm A1 for dispersion in

(not necessarily disjoint) unit disks, and prove Theorem 1.1. The idea of the algorithm is as

follows. Recall that δ is the minimum pairwise distance among the unit disks. Let σ = σ(δ)
be a positive parameter to be specified; in particular, at the threshold distance δ = 2 for

disjoint unit disks, we have σ(2) = 2.0883 . . ., which is only slightly larger than δ. Consider

the distance graph of the unit disks for the parameter σ, which has a vertex for each disk,

and an edge between two vertices if and only if the corresponding disks have distance at

most σ. If there is a vertex of degree at least two in the distance graph, that is, if there is

a disk close to two other disks, then a packing argument shows that the minimum pairwise

distance of any three points in the three disks must be small. Thus simply placing the

points at the disk centers already achieves a good approximation ratio. Otherwise, every

vertex in the distance graph has degree at most one, and the edges form a matching. In this

case, the disks that are close to each other are grouped into pairs. The distance between

the two points in each pair can be slightly increased by moving them away from the disk

centers, at the cost of possibly decreasing the distances between points in different pairs.

Let D be a set of n (not necessarily disjoint) unit disks in the plane. The algorithm A1

consists of three steps:

1. Compute the minimum pairwise distance δ of the disks in D, and for each disk, find

the two disks closest to it.

2. If the distance from some disk to its second closest disk is at most σ = σ(δ), return

the n disk centers as the set of points. Otherwise, proceed to the next step.

3. Place a point at the center of each disk. Then, for each disk, if the distance from the

disk to its closest disk is at most σ, move the point away from the closest disk for

a distance of (σ − δ)/4, so that the two points in each close pair of disks are moved

in opposite directions; we will show that δ < σ < δ + 4, thus the distance (σ − δ)/4
is between 0 and 1, and each point remains in its own disk. Finally, return the set

of points.

Algorithm analysis. The bottleneck for the running time of the algorithm A1 is simply

the computation of the two closest disks from each disk in step 1, which takes O(n log n)

time [5, p. 306]. The other two steps of the algorithm can clearly be done in O(n) time.
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For the proof of the approximation ratio, define the following function f(s) for s ≥ 0:

f(s) =

√

(1 + s)2 + 1/2 +
√

3(1 + s)2 − 3/4. (2.1)

The function f(·) is increasing and f(0) =
√

3. The justification for step 2 of the algorithm

A1 is the following packing lemma (its proof is omitted). Here the disk with center O is

close to two other disks with centers P and Q, respectively; see Figure 1.

A

A

B
B

C

C

O

O

P

P

Q
Q

1

1

1

s

s

t

t

t

(a) (b)

Figure 1: (a) A linkage of the five segments AP, BQ, CO, OP, OQ for three points A, B, C in three

unit disks with centers P, Q, O, respectively. (b) The extreme configuration: A, P, O
are collinear, B, Q, O are collinear, |AP | = |BQ| = |CO| = 1, |OP | = |OQ| = s,
|AC| = |BC| = |AB| = t.

Lemma 2.1. Let A,B,C be three points in three unit disks with centers P,Q,O, respec-
tively. Let s = max{|OP |, |OQ|} and t = min{|AC|, |BC|, |AB|}. Then t ≤ f(s).

Consider the following equation in σ:

δ

f(σ)
=

σ + δ

2(δ + 2)
. (2.2)

The next lemma (its proof is omitted) confirms that σ exists and lies in the desired range:

Lemma 2.2. There is a unique solution σ to (2.2). Moreover, δ < σ < δ + 4.

We now analyze the approximation ratio of the algorithm A1. Let APX be the mini-

mum pairwise distance of the points returned by the algorithm. Let OPT be the minimum

pairwise distance of the optimal set of points. Let

c = c(δ) =
δ

f(σ)
=

σ + δ

2(δ + 2)
. (2.3)

We next prove that APX ≥ c · OPT by considering two cases:

• If the algorithm returns the n disk centers as the set of points in step 2, then there

is a disk such that the distances from the disk to its two closest disks are at most

σ. By Lemma 2.1, we have OPT ≤ f(σ). Since APX = δ, it follows that

APX

OPT
≥

δ

f(σ)
. (2.4)
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• If the algorithm proceeds to step 3, then the distance from each disk to its second

closest disk is more than σ. If two disks have distance at most σ, then they must be

the closest disks of each other, and the movements of points in step 3 ensure that

their two points have distance at least δ + 2(σ − δ)/4 = (σ + δ)/2. On the other

hand, if two disks have distance more than σ, then after the movements their two

points have distance at least σ − 2(σ − δ)/4 = (σ + δ)/2. Thus APX ≥ (σ + δ)/2.
Since OPT ≤ δ + 2, it follows that

APX

OPT
≥

σ + δ

2(δ + 2)
. (2.5)

By (2.3), (2.4), and (2.5), the algorithm A1 achieves an approximation ratio of c(δ)
for δ ≥ 0. It can be verified that c(δ) is an increasing function of δ for δ ≥ 0. Thus, for

dispersion in disjoint unit disks, the approximation ratio is

c(δ) ≥ c(2) = 0.5110 . . . , for δ ≥ 2.

For dispersion in not necessarily disjoint unit disks, Cabello [3] presented a hybrid

algorithm that applies two different algorithms Placement and Centers then returns

the better solution. We now briefly review Cabello’s analysis for the hybrid algorithm. Let

x = OPT/2 (the scaling here is necessary because Cabello defined a unit disk as a disk of

unit diameter instead of unit radius). The algorithm Placement, which runs in O(n2)

time, achieves a ratio of

c1(x) =
−
√

3 +
√

3x +
√

3 + 2x − x2

4x
, for 1 ≤ x ≤ 2,

and a ratio of at least 1

2
for 0 ≤ x ≤ 1. The algorithm Centers achieves a ratio of

c2(x) =
x − 1

x
, for x ≥ 1,

which is at least 1

2
for x ≥ 2. Refer to Figure 2. Since c1(x) is decreasing in x and c2(x)

is increasing in x, the minimum approximation ratio of the hybrid algorithm occurs at the

intersection of the two curves c1(x) and c2(x) for 1 ≤ x ≤ 2: precisely, c1(x) = c2(x) =

0.4465 . . . (1/2.2393 . . .) for x = 1.8068 . . ..

 2

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  1.2  1.4  1.6  1.8
 0

Figure 2: Approximation ratios c1(x), c2(x), and c3(x) for 1 ≤ x ≤ 2. The solid decreasing curve

is c1(x). The dashed increasing curve is c2(x). The solid increasing curve is c3(x).

Now define

c3(x) = c(2x − 2), for x ≥ 1.
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From the obvious inequality OPT ≤ δ + 2, we have δ ≥ OPT− 2 = 2x− 2. Recall that the

function c(δ) is increasing in δ. Thus our algorithm A1 achieves an approximation ratio of

at least c(δ) ≥ c(2x − 2) = c3(x) for x ≥ 1. It can be verified that c2(x) = c3(x) = 0 for

x = 1 and 0 < c2(x) < c3(x) < 1 for x > 1. Refer back to Figure 2. Replace the algorithm

Centers by our algorithm A1 in the hybrid algorithm. Then the two curves c1(x) and c3(x)

intersects at x = 1.7750 . . . and, correspondingly, the minimum approximation ratio of the

new hybrid algorithm is 0.4487 . . . (1/2.2284 . . .). This completes the proof of Theorem 1.1.

3. An LP-based approximation algorithm for disjoint unit disks

In this section we present and analyze approximation algorithm A2. We first introduce

some definitions and notations. Let Ω1, . . . ,Ωn be n pairwise disjoint unit disks, and let oi

be the center of Ωi. Denote by δ the minimum pairwise distance among the disks; clearly,

δ ≥ 2. The algorithm computes δ in O(n log n) time in a preliminary step.

Let r = r(δ), where 0 < r ≤ 1, be a parameter that will be chosen later, in order to

maximize the approximation ratio. For i = 1, . . . , n, let ωi ⊂ Ωi be a concentric disk of

radius r. Let αij ∈ [−π/2, π/2) be the direction (or angle) of the line determined by oi and

oj . For α ∈ [−π/2, π/2), let ℓα be any line of direction α. For two vectors u = (u1, u2), and

v = (v1, v2), their dot product is 〈u · v〉 = u1v1 + u2v2. The scalar projection of v onto u is

given by the formula

projuv =
〈u · v〉

|u|
. (3.1)

For two points, p and q, let projα(p, q) denote the length of the projection of the segment

pq onto a line ℓα of direction α, i.e., onto the vector (cos α, sin α).

Our approximation algorithm can be viewed as a two step process: Step 1. We first

restrict the feasible region of each point pi, from the given unit disk Ωi to a smaller concentric

disk ωi of radius r, 0 < r < 1. Further, we approximate each smaller disk ωi by an inscribed

regular polygon with sufficiently many sides (say, 64). For convenience however, we still

use “disks” when referring to the convex polygons approximating (inscribed in) the smaller

disks. Note that this first step is only conceptual. Step 2. We find a good approximation

for the dispersion problem constrained to the smaller size disks.

The idea is as follows: Observe that after Step 1, the centers of the original disks

Ωi are still in the feasible regions for each of the n points. So the 1

2
approximation that

we could easily achieve earlier, is still attainable. Secondly, observe that if r is sufficiently

small, then the distance between two points (in two smaller disks) can be well approximated

by the projection of the segment connecting the two points onto the line connecting the

centers of the two disks. The length of each such projection can be expressed as a linear

combination of the coordinates of the two points, and we can use linear programming in

order to maximize the smallest projection length of an inter-point distance. So all the

constraints in the dispersion problem will be expressed as linear inequalities, at the cost of

finding only an approximate solution. The resulting approximation ratio of the algorithm

is the product of the ratios achievable in Step 1 and Step 2. In the end, we select r so as

to maximize the overall ratio. We now present the technical details.

We start with a technical lemma that guarantees that a large fraction of the distance

between two points in two smaller disks is preserved by projection onto the line through

the two disk centers (Step 2).
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Lemma 3.1. Let ωi, ωj be two congruent disjoint disks of radius r, where 0 < r ≤ 1, at
distance d ≥ δ ≥ 2. Let ℓij be the line determined by oi and oj , and ℓ be a line that intersects

both ωi and ωj. Let α be the (nonnegative) angle between ℓij and ℓ. Then cos α ≥
√

d2−4r2

d ≥
√

δ2−4r2

δ .

Proof. We can assume w.l.o.g. that ℓij is horizontal; see Figure 3. By symmetry, we can

ωj

ℓij

ℓ

ojoi

ωi

p

Figure 3: Lemma 3.1.

assume that ℓ has positive slope. We claim that if α ∈ [0, π/2] is maximized, then ℓ must

be tangent to ωi and ωj. Assume for instance that ℓ is not tangent to ωj, as illustrated in

the figure. Select a point p on ℓ left of the intersections points of ℓ with ∂ωi, and ∂ωj, and

rotate ℓ counterclockwise around p until ℓ becomes tangent to ωj. The angle α increases

in this operation, a contradiction of the assumed maximality. We conclude that ℓ must be

tangent to ωi and ωj in the first place, as desired. The angle formula cos α =
√

d2−4r2

d is

now easily verified to hold in the tangent case.

The next two lemmas guarantee that a large fraction of OPT survives after restricting

the feasible regions to smaller disks (Step 1).

Lemma 3.2. Consider two disjoint unit disks Ωi and Ωj at distance |oioj| = d. Let pi ∈ Ωi

and pj ∈ Ωj be two points. Let qi ∈ ωi be the point on oipi at distance r|oipi| from oi.
Similarly define qj ∈ ωj as the point on ojpj at distance r|ojpj| from oj. Then

|qiqj|

|pipj|
≥

d + 2r

d + 2
. (3.2)

This inequality is tight.

Proof. We can assume w.l.o.g. that oi = (0, 0) and oj = (d, 0), where d ≥ 2. To represent

points, we use complex numbers in the proof. The point pi is represented by z1, where

z1 ∈ C, with |z1| ≤ 1; hence qi is represented by rz1. The point pj is represented by d + z2,

where z2 ∈ C, with |z2| ≤ 1; hence qj is represented by d + rz2. With this notation, the

claimed inequality is

|d + rz2 − rz1|

|d + z2 − z1|
≥

d + 2r

d + 2
. (3.3)

Write z = z2 − z1, and note that |z| ≤ |z1| + |z2| ≤ 2. Inequality (3.3) can be written

now as
|d + rz|

|d + z|
≥

d + 2r

d + 2
. (3.4)
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Let z = a(cos α + i sin α), be the complex number representation of z, where 0 ≤ a ≤ 2,

and α ∈ [0, 2π]. We have

|d + z|2 = (a cos α + d)2 + a2 sin2 α = a2 + d2 + 2ad cos α.

|d + rz|2 = (ar cos α + d)2 + a2r2 sin2 α = a2r2 + d2 + 2adr cos α.

Inequality (3.4) is thus equivalent to the following inequality:

(d + 2)2(a2r2 + d2 + 2adr cos α) ≥ (d + 2r)2(a2 + d2 + 2ad cos α). (3.5)

After performing the multiplications, canceling the same terms, and simplifying by

(1 − r), this amounts to verifying that

4d3 + 4d2(1 + r) + 8adr cos α ≥ a2d2(1 + r) + 2ad3 cos α + 4a2dr. (3.6)

Observe that

4d2(1 + r) ≥ a2d2(1 + r).

It remains to show that (after simplifying by 2d):

2d2 + 4ar cos α ≥ ad2 cos α + 2a2r. (3.7)

This last inequality is equivalent to

2(d2 − a2r) ≥ a(d2 − 4r) cos α. (3.8)

Inequality (3.8) is clearly satisfied when cos α < 0, so assume now that cos α ≥ 0. Obviously

2 ≥ a cos α, and from a2 ≤ 4, we also get

d2 − a2r ≥ d2 − 4r.

Putting these two inequalities together (taking the product) gives inequality (3.8), hence

inequality (3.2) is proved.

To see that (3.2) is tight, take pi = (−1, 0), and pj = (d + 1, 0), i.e., all six points

pi, pj , oi, oj , qi, qj are on the same line. The proof of Lemma 3.2 is now complete.

Lemma 3.3. Let p1, . . . , pn be n points, where pi ∈ Ωi, such that for any i 6= j, |pipj| ≥ d,
for some d > 0. Then there exist n points, q1, . . . , qn, such that qi ∈ ωi, and for any i 6= j,
|qiqj| ≥

δ+2r
δ+2

· d.

Proof. Let qi be defined as in Lemma 3.2. It suffices to show that

|qiqj|

|pipj|
≥

δ + 2r

δ + 2
.

By Lemma 3.2,
|qiqj|

|pipj|
≥

|oioj | + 2r

|oioj| + 2
.

Since |oioj| ≥ δ, we obviously have

|oioj| + 2r

|oioj | + 2
≥

δ + 2r

δ + 2
.

By combining the two inequalities the lemma follows.



DISPERSION IN UNIT DISKS 307

For δ ≥ 2, and 0 < r ≤ 1, let

c1(δ, r) =
δ + 2r

δ + 2
, c2(δ, r) =

√
δ2 − 4r2

δ
.

Observe that c1(δ, r) ≤ 1, and c2(δ, r) ≤ 1. We will show that Step 1 and Step 2 can

be implemented as to achieve approximation ratios c1(δ, r) and c2(δ, r), respectively. The

resulting overall approximation ratio is then

c(δ, r) = c1(δ, r) · c2(δ, r),

and it remains to choose r = r(δ) over the whole range δ ≥ 2, so as to maximize c(δ, r).

Selecting r(δ). For a fixed δ ≥ 2, let

f(r) = c(δ, r) = c1(δ, r) · c2(δ, r) =
δ + 2r

δ + 2
·

√
δ2 − 4r2

δ
.

Note that r ≤ 1 ≤ δ
2
, hence f(r) is well defined.

Consider first the case 2 ≤ δ < 4. Assume further that r < 1, so that
√

δ2 − 4r2 and

f(r) are strictly positive. The derivative of f(r) is

f ′(r) =
2(δ + 2r)(δ − 4r)

δ(δ + 2)
√

δ2 − 4r2
. (3.9)

The function f(r) is maximized by setting f ′(r) to zero, which yields r = δ
4
, (note that

r < 1), and correspondingly,

c

(

δ,
δ

4

)

= c1

(

δ,
δ

4

)

· c2

(

δ,
δ

4

)

=
3δ

2
·

1

δ + 2
·

√

3

4
=

3
√

3

4
·

δ

δ + 2
.

Observe that c(δ, δ
4
) ≥ c(2, 1

2
) = 0.6495 . . ., in our interval 2 ≤ δ < 4.

Consider now the case δ ≥ 4, and assume further that r ≤ 1. Since δ ≥ 4 > 2, the

expression of the derivative f ′(r) in equation (3.9) is still valid. We have f ′(r) > 0, hence

f(r) is an increasing function, so

c(δ, r) = f(r) ≤ f(1) =

√
δ2 − 4

δ
.

Thus for δ ≥ 4, we set r = 1. To summarize, we set

r = r(δ) =

{

δ
4

if 2 ≤ δ ≤ 4,

1 if δ ≥ 4.
(3.10)

Note that r(δ) is a continuous function over the entire range δ ≥ 2. The resulting

overall approximation ratio of the algorithm, denoted by c = c(δ), is at least

c(δ) =

{

3
√

3

4
· δ

δ+2
if 2 ≤ δ ≤ 4,

√
δ2−4

δ if δ ≥ 4.
(3.11)

Define also for future reference the approximation ratios achieved in Step 1 and Step

2 of the algorithm, based on our previous choice of r, depending on δ.

c1 = c1(δ) =

{

3

2
· δ

δ+2
if 2 ≤ δ ≤ 4,

1 if δ ≥ 4.
(3.12)
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c2 = c2(δ) =

{√
3

2
if 2 ≤ δ ≤ 4,

√
δ2−4

δ if δ ≥ 4.
(3.13)

In particular, for δ = 2, we have

r =
1

2
, c1 =

3

4
, c2 =

√
3

2
,

hence the overall ratio for Step 1 and Step 2 is c1c2 = 3
√

3

8
.

To implement Step 2, we are lead to the following linear program, with the constraints

expressed symbolically at this point. LP1 maximizes the minimum projection on the set of

lines connecting the centers of the disks; that is, for each pair of disks, the length of the

projection of the segment connecting the corresponding two points on the line connecting

the two disk centers.

maximize z (LP1)

subject to

{

pi ∈ ωi, 1 ≤ i ≤ n
projαij

(pi, pj) ≥ z, 1 ≤ i < j ≤ n

Approximating the small disks by regular polygons. Let λ > 0 be small. Recall that

r = r(δ) is a fixed precomputed value. Select k large enough so that the apothem of the

regular k-gon inscribed in a circle of radius r is at least r(1 − λ). Recall that the apothem

length a is given by the formula: a = r cos π
k , so we need to choose k so that

cos
π

k
≥ 1 − λ. (3.14)

The symbolic constraint pi ∈ ωi is replaced by the k linear constraints defining the sides of

the regular polygon (the polygon is the intersection of k half-planes). Let ε > 0 be small.

By setting λ = λ(ε) sufficiently small, we can ensure that the approximation ratio remains

at least (1 − ε)3
√

3

8
, say at least 0.649. Let now

c3(δ, r) =
δ + 2r(1 − λ)

δ + 2r
. (3.15)

Replacing the small disks of radius r by regular polygons with k sides incurs only a

slight loss in the approximation ratio for k sufficiently large, since the disks of radii a are

contained in the regular polygons with k sides, and a is close to r. Analogous to inequality

(3.2) in Lemma 3.2, the setting in (3.15) is justified, and the overall approximation ratio

of the algorithm is at least c3(δ, r) · c(δ, r). Recall the setting of r(δ) given by (3.10). For

2 ≤ δ ≤ 4, we have

c3

(

δ,
δ

4

)

=
δ + 2 δ

4
(1 − λ)

δ + 2 δ
4

= 1 −
λ

3
.

For δ ≥ 4, we have

c3(δ, 1) =
δ + 2(1 − λ)

δ + 2
= 1 −

2λ

δ + 2
≥ 1 −

λ

3
.
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Consequently, to ensure that the approximation ratio of the algorithm is at least (1 −
ε) · c(δ) over the entire range δ ≥ 2, let λ = 3ε, and choose k such that (recall (3.14)):

cos
π

k
≥ 1 − 3ε.

For instance, setting ε = 7

10000
, and k = 50 satisfies the above inequality and ensures

that the approximation ratio remains at least (1 − ε)3
√

3

8
≥ 0.649.

Writing the linear constraints. Implement each symbolic constraint projαij
(pi, pj) ≥ z

as follows: Let oi = (ξi, ηi) be coordinates of oi, for i = 1, . . . , n (part of the input). For

simplicity, assume that the disk centers are non-decreasing order of their x-coordinates:

ξ1 ≤ ξ2 ≤ . . . ≤ ξn. Consider a pair i, j, where i < j. Recall that αij ∈ (−π/2, π/2) is the

angle of the line determined by oi and oj. We have

cos αij =
ξj − ξi

|oioj|
, sinαij =

ηj − ηi

|oioj |
. (3.16)

Let aij = (cos αij , sin αij), so that |aij | = 1. Let sij = (xj − xi, yj − yi). According to (3.1),

projαij
(pi, pj) =

〈aij · sij〉

|aij |
= 〈aij · sij〉 = (xj − xi) cos αij + (yj − yi) sin αij.

Consequently, for each pair i, j, where i < j, generate the constraint:

(xj − xi) cos αij + (yj − yi) sin αij ≥ z;

where cos αij and sinαij are as in (3.16).

Establishing the approximation ratio.

Lemma 3.4. Let p1, . . . , pn be n points, where pi ∈ ωi, such that for any i 6= j, |pipj | ≥ d,
for some d > 0. Then for any i 6= j, projαij

(pi, pj) ≥ c2 · d.

Proof. Observe that the line determined by the points pi and pj intersects both disks ωi

and ωj. The claimed inequality is now immediate from Lemma 3.1.

Lemma 3.5. Let p1, . . . , pn be n points, where pi ∈ ωi, such that for any i 6= j, projαij
(pi, pj) ≥

d, for some d > 0. Then, for any i 6= j, |pipj| ≥ d.

Proof. Obviously, |pipj| ≥ projαij
(pi, pj) ≥ d, as required.

Lemma 3.6. The ratio of the approximation algorithm A2 is at least (1 − ε)3
√

3

8
, for any

given ε > 0. (3
√

3

8
= 0.6495 . . .) Moreover, if δ ≥ 2 is the minimum distance among the

unit disk centers, the approximation ratio is at least (1 − ε) · c(δ) ≥ (1 − ε)3
√

3

8
, where c(δ)

is given by (3.11).

Proof. Let p1, . . . , pn be n points, where pi ∈ Ωi, such that for any i 6= j, |pipj| ≥ d, for

some d > 0. In other words, assume that OPT ≥ d. By Lemma 3.3, there exist n points,

q1, . . . , qn, such that qi ∈ ωi, and for any i 6= j, |qiqj| ≥ c1 · d. (This inequality is trivial for

δ ≥ 4, since we set r = 1, and c1 = 1 in that case; refer to (3.12).) By Lemma 3.4, for any

i 6= j, projαij
(qi, qj) ≥ c2 ·c1 ·d = c(δ) ·d. Recall that the linear program (LP1) finds a point

set {pi = (xi, yi), i = 1, . . . , n}, for which the minimum projection is maximized. However,

the feasible regions for each point are the slightly smaller inscribed regular polygons rather

than the small disks. By Lemma 3.5, and the preceding discussion, the computed point set
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satisfies that, for any i 6= j, |pipj| ≥ (1 − ε) · c(δ) · d. Hence the approximation algorithm

has ratio at least (1 − ε) · c(δ) ≥ (1 − ε)3
√

3

8
, as claimed.

Reducing the number of constraints to O(n). Recall that OPT ≤ δ+2. So there is no

need to write any constraints for pairs of disks at distance δ + 4 or more, since the distance

between the corresponding points is at least δ + 2. An easy packing argument shows that

the number of pairs of disks at distance at most δ + 4 is only O(n).

Solving the LP. The constraints of the LP involve irrational numbers, and hence it cannot

be claimed that the original LP is solvable in polynomial time. However, it is enough to solve

the LP up to some precision. For this, it is enough to approximate the numbers involved in

the constraints up to some precision, which is polynomial in the error of the output. There

are bounds on how many bits of precision are needed in the constraints to obtain a bound

on the precision of the solution, and they are polynomially related [9]. Consequently, since

we are dealing with ε-approximation anyway, we can encode each coefficient into a rational

number with (1/ε)O(1)
bits. Then, by our choice of ε, each coefficient has a constant number

of bits. Thus the LP algorithm runs in polynomial time; e.g., O(n4) or O(n3.5) using interior

point methods.
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Abstract. We revisit several maximization problems for geometric networks design under
the non-crossing constraint, first studied by Alon, Rajagopalan and Suri (ACM Symposium
on Computational Geometry, 1993). Given a set of n points in the plane in general position
(no three points collinear), compute a longest non-crossing configuration composed of
straight line segments that is: (a) a matching (b) a Hamiltonian path (c) a spanning tree.
Here we obtain new results for (b) and (c), as well as for the Hamiltonian cycle problem:

(i) For the longest non-crossing Hamiltonian path problem, we give an approximation
algorithm with ratio 2

π+1
≈ 0.4829. The previous best ratio, due to Alon et al., was

1/π ≈ 0.3183. Moreover, the ratio of our algorithm is close to 2/π on a relatively broad
class of instances: for point sets whose perimeter (or diameter) is much shorter than the

maximum length matching. The algorithm runs in O(n7/3 log n) time.
(ii) For the longest non-crossing spanning tree problem, we give an approximation

algorithm with ratio 0.502 which runs in O(n log n) time. The previous ratio, 1/2, due to
Alon et al., was achieved by a quadratic time algorithm. Along the way, we first re-derive
the result of Alon et al. with a faster O(n log n)-time algorithm and a very simple analysis.

(iii) For the longest non-crossing Hamiltonian cycle problem, we give an approximation
algorithm whose ratio is close to 2/π on a relatively broad class of instances: for point sets
with the product 〈 diameter × convex hull size 〉 much smaller than the maximum length

matching. The algorithm runs in O(n7/3 log n) time. No previous approximation results
were known for this problem.

1. Introduction

Self-crossing in planar configurations is typically an undesirable attribute. Many struc-

tures studied in computational geometry, in particular those involving a minimization con-

dition, have the non-crossing attribute for free, for instance minimum spanning trees, min-

imum length matchings, Voronoi diagrams, etc. The non-crossing property usually follows
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from the triangle inequality. Alon et al. [3] have considered the problems of computing (i)

the longest non-crossing matching, (ii) the longest non-crossing Hamiltonian path and (iii)

the longest non-crossing spanning tree, given n points in the plane. Although they were

unable to prove it, they suspected that all these problems are NP -hard. The survey articles

by Eppstein [8, pp. 439] and Mitchell [14, pp. 680] list these as open problems in the area

of geometric network optimization. The problem of approximating the longest non-crossing

Hamiltonian cycle is also of interest and wide open [4, pp. 338].

Without the non-crossing condition explicitly enforced, the problem of minimizing or

maximizing the length of a spanning tree, Hamiltonian cycle or path, perfect matching, tri-

angulation, etc. has a rich history. However if such structures are required to be non-crossing

much less is known, in particular for the maximization variants. While for minimization

problems, the non-crossing property comes usually for free via the triangle inequality, in

contrast, for maximization problems, the non-crossing property conflicts directly with the

length maximizing objective. This is another reason why these problems are interesting to

study.

Related work. The existence of non-crossing Hamiltonian paths and cycles in geometric

graphs has been studied in [2, 5]. Various Ramsey-type results for non-crossing spanning

trees, paths and cycles have been obtained in [11] and [12]. The Euclidean MAX TSP, the

problem of computing a longest straight-line tour of a set of points, has been proven NP -

hard in dimensions three or higher [9], while its complexity in the Euclidean plane remains

open [14]. In contrast, the shortest non-crossing matching and the shortest non-crossing

spanning tree are both computable in polynomial time [8, 14], as they coincide with the

shortest matching and the shortest spanning tree respectively.

Definitions and notations. A set S of points in the plane is said to be in general
position if no three points are collinear. General position will be assumed throughout this

paper. Given a set of n points in the plane, the results of Alon al. are as follows: (i) A

non-crossing matching whose total length is at least 2/π of the longest (possibly crossing)

matching can be computed in O(n7/3 log n) time. (ii) A non-crossing Hamiltonian path

whose total length is at least 1/π of the longest (possibly crossing) Hamiltonian path can

be computed in O(n7/3 log n) time. (iii) A non-crossing spanning tree whose total length is

at least n/(2n − 2) ≥ 1/2 of the longest (possibly crossing) spanning tree can be computed

in O(n2) time. The running times have been adjusted to reflect the current best upper

bound of O(n4/3) on the number of halving lines as established by Dey [6].

A geometric graph G is a pair (V,E) where V is a finite set of points in general position

in the plane, and E is a set set of segments (edges) connecting points in V . The length of

G, denoted L(G), is the sum of the Euclidean lengths of all edges in G. The graph G is said

to be non-crossing if its edges have pairwise disjoint interiors (collinear triples of points are

forbidden in order to avoid overlapping collinear edges).

For a point set S, let conv(S) be the convex hull of S, and let P = P (S) denote the

perimeter of conv(S). Denote by D = D(S) the diameter of S and write n = |S|. Let

MOPT be a longest (possibly crossing) matching of S, and let M∗
OPT be a longest non-

crossing matching of S; observe that for odd n, MOPT is a nearly perfect matching, with

(n − 1)/2 edges. Let HOPT be a longest (possibly crossing) Hamiltonian path of S, and let

H∗
OPT be a longest non-crossing Hamiltonian path of S. Let TOPT be a longest (possibly

crossing) spanning tree of S, and let T ∗
OPT be a longest non-crossing spanning tree of S.

Finally, let QOPT be a longest (possibly crossing) Hamiltonian cycle of S, and let Q∗
OPT
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be a longest non-crossing Hamiltonian cycle of S. The following inequalities are obvious:

L(MOPT) ≤ L(HOPT) ≤ L(TOPT).

Given a set S of n points in the plane, a line ℓ going through two points of S is called a

halving line if there are ⌊(n − 2)/2⌋ points on one side and ⌈(n − 2)/2⌉ points on the other

side [13]. A bisecting line ℓ of S is any line that partitions the point set evenly, i. e., neither

of the two open halfplanes defined by ℓ contains more than n/2 points of S [7]. Observe that

any halving line of S is also a bisecting line of S. Any bisecting line of S yields (perhaps

non-uniquely) a bipartition S = R ∪ B, with R ∩ B = ∅, ||R| − |B|| ≤ 1, with R contained

in one of the closed halfplanes determined by ℓ, and B contained in the other. We call

S = R∪B a linearly separable bipartition, or balanced partition of S. Observe that for any

non-zero direction vector ~v, there is a bisecting line orthogonal to ~v, see [7, Lemma 4.4].

Two bisecting lines are called equivalent if they can yield the same balanced partition of

S. It is well known that the number of non-equivalent bisecting lines of a set is of the

same order as the number of halving lines of the set, and any balanced bipartition can be

obtained from a halving line [7, pp. 67].

Our results are summarized in the following three theorems1.

Theorem 1.1. (i) For the longest non-crossing Hamiltonian path problem, there is an

approximation algorithm with ratio 2
π+1 ≈ 0.4829 that runs in O(n7/3 log n) time.

(ii) Given a set of n points in the plane, one can compute a non-crossing Hamiltonian path

H in O(n7/3 log n) time such that L(H) ≥ 2
πL(HOPT) − P

π . In particular, if the point set

satisfies the condition P
π ≤ δL(HOPT) for some small δ > 0, then L(H) ≥ ( 2

π − δ)L(HOPT).
(iii) Alternatively, one can compute a non-crossing Hamiltonian path H in O(n log n/

√
ε)

time, such that L(H) ≥ (1 − ε) 2
π L(HOPT) − P

π .

Theorem 1.2. For the longest non-crossing spanning tree problem for a given set of n
points in the plane, there is an approximation algorithm with ratio 0.502 and O(n log n)

running time. More precisely, the algorithm computes a non-crossing spanning tree T such
that L(T ) ≥ 0.502 · L(TOPT).

Theorem 1.3. Given a set S of n points in the plane, with |conv(S)| = h:

(i) One can compute a non-crossing Hamiltonian cycle Q in O(n7/3 log n) time such that
L(Q) ≥ 2

πL(QOPT) − (2h − 1)P
π . In particular, if the point set satisfies the condition

(2h − 1)P
π ≤ δL(QOPT) for some small δ > 0, then L(Q) ≥

(

2
π − δ

)

L(QOPT).

(ii) Alternatively, one can compute a non-crossing Hamiltonian cycle Q in O(n3 log n) time
such that L(Q) ≥ 2

πL(QOPT) − (h + 2)P
π .

(iii) Alternatively, one can compute a non-crossing Hamiltonian cycle Q in O(n log n/
√

ε)
time, such that L(Q) ≥ (1 − ε) 2

πL(QOPT) − (2h − 1)P
π .

2. The Hamiltonian path

In this section we prove Theorem 1.1. Let S = {p1, . . . , pn}. We follow an approach

similar to that of Alon et al. using projections and an averaging argument, in conjunction

with a result on bipartite embeddings of spanning paths in the plane. Abellanas et al. [1,

Theorem 3.1] showed that every linearly separable bipartition S = R∪B with ||R|−|B|| ≤ 1,

admits an alternating non-crossing spanning path such that the edges cross any separating

1Due to space limitations, some proofs are omitted.
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line ℓ at points ordered monotonically along ℓ. Such a Hamiltonian path can be computed

in O(n log n) time. Their algorithm computes the same Hamiltonian path for any two

equivalent halving lines, that is, the alternating path depends on the bipartition only rather

than the separating line.

We now recall the algorithm of Abellanas et al. [1]; see Fig. 4 for an example. Let

S = R ∪ B with ||R| − |B|| ≤ 1 be the red-blue bipartition given by a vertical line ℓ: R on

the left, B on the right. Their algorithm constructs an alternating path A in the following

way: Let rb be the top red-blue edge of the convex hull conv(S), called the top bridge. If

|R| > |B|, set A := {r}, if |R| < |B|, set A := {b}, else set A to {r} or {b} arbitrarily.

At every step, recompute the top bridge rb of S \ A, and add r to A if the last point in A
was blue, or add b to A if the last point in A was red. As pointed out by the authors, the

resulting path A is non-crossing because A is disjoint from the convex hull of S \A at each

step.

We improve the lower bound of Alon et al. by computing the longest Hamiltonian path

corresponding to a bipartition and a Hamiltonian path of length at least the perimeter of

the convex hull, and returning the longest of the two.

Lemma 2.1. For a point set S, |S| = n ≥ 31, a non-crossing Hamiltonian path of length
at least P (S) can be computed in O(n log n) time. The bound on the length is best possible.

Consider a geometric graph G = (V,E), and a point q /∈ V , so that V ∪{q} is in general

position. We say that q sees a vertex v ∈ V if the segment qv does not intersect any edge

of G. Similarly, we say that q sees an edge e ∈ E, if the triangle formed by v and e does

not intersect any other edge of G. We make use of the fact that if n is even then the two

endpoints of an alternating path are on opposite sides of the separating line ℓ. If n is odd,

we first construct an alternating path for a specific subset of n−1 points, and then augment

it to a Hamiltonian path on all n points using the following lemma.

Lemma 2.2. Let S = R ∪ B with ||R| − |B|| ≤ 1, be a linearly separable bipartition given
by line ℓ. Let q ∈ S, and A′ be a non-crossing alternating path on S \ {q} such that its
(consecutive) edges cross ℓ at points ordered monotonically along ℓ. Then q sees one edge of
A′ and consequently, A′ can be extended to a Hamiltonian path A on S, with L(A′) < L(A).
The path A can be computed in O(n) time, given A′.

Fix a Cartesian coordinate system Γ. Let k be the number of halving lines of S, denote

the angles they make with the x-axis of Γ by 0 ≤ α1 < . . . αk < π. By relabeling the points

assume that the optimal path is HOPT = p1, p2, . . . , pn. For two points pi, pj ∈ S, let βij

be the angle in [0, π) formed by the line through pipj and the x-axis. If n is odd, then a

bisecting line of direction α (for any α) must be incident to at least one point of S, and

denote an arbitrary such point by qα.

Algorithm A1:

Step 1. Compute a non-crossing Hamiltonian path H1 of length at least P (S), by Lemma 2.1.

Step 2. If n is even, then for all non-equivalent bisections of S (i.e., for all balanced bi-

partitions of S), compute a non-crossing alternating path using the algorithm of Abellanas

et al. [1], and let the longest such path be H2. If n is odd, then for all non-equivalent bi-

sections of S, compute a non-crossing alternating path of the even point set S \ {qα} using

the algorithm of [1] and let the longest such path be H ′
2. Augment H ′

2 with vertex qα by

Lemma 2.2 to a Hamiltonian path H2.

Step 3. Output the longest of the two paths H1 and H2.
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By Lemma 2.1, the running time of Step 1 is O(n log n). Since the number of halving

lines of an n-element point set is O(n4/3) and all can be generated within this time [6], the

running time of Step 2 is O(n7/3 log n), consequently the total running time of A1 is also

O(n7/3 log n).

We proceed with the analysis of the approximation ratio. For simplicity, we assume

that n is even. The case of n odd is slightly different. For each α ∈ [0, π), let Γα be a

(rotated) coordinate system, obtained from Γ via a counterclockwise rotation by α, and

with the y-axis dividing evenly the point set S. Let xi be the x-coordinate of point pi with

respect to Γα. For a given α, let Hα be a non-crossing alternating path with respect to a

balanced bipartition induced by the y-axis of Γα, as computed by the algorithm. There are

O(1) balanced bipartitions given by any halving line of S. Recall that Hα does not depend

continuously on α; it depends only on the discrete bipartition. However, the coordinates of

the points depend continuously on α. Assume that Hα = pσ(1), pσ(2), . . . , pσ(n), where σ is

a permutation of [n]; here σ depends on the bipartition (hence also on α). Let Wα denote

the width of S in direction α, that is, the width of the smallest parallel strip of direction α
that contains S. By projecting on the x-axis of Γα, we get

L(Hα) ≥ |xσ(1)| + 2|xσ(2)| + . . . + 2|xσ(n−1)| + |xσ(n)| = 2

n
∑

i=1

|xi| − |xσ(1)| − |xσ(n)|

=

n−1
∑

j=1

(|xj | + |xj+1|) + |x1| + |xn| − |xσ(1)| − |xσ(n)| ≥

n−1
∑

j=1

(|xj | + |xj+1|) − Wα

≥

n−1
∑

j=1

|pjpj+1|| cos(βjj+1 − α)| − Wα (2.1)

In the 2nd line of the above chain of inequalities, we use the fact that pσ(1) and pσ(n)

lie on opposite sides of ℓ, since n is even, hence |xσ(1)| + |xσ(n)| ≤ |pσ(1)pσ(n)| ≤ Wα,

In the 3rd line, we make use of the following inequality: for any two points pi, pj ∈ S,

|pipj|| cos(βij − α)| ≤ |xi| + |xj |, with equality if and only if the two points lie on opposite

sides of the y-axis of Γα. Recall: for even n, H2 is the longest of the O(k) Hamiltonian

non-crossing paths Hαi
over all O(k) balanced bipartitions of S. (A given angle αi yields

O(1) balanced partitions, and corresponding alternating paths denoted here Hαi
.) We thus

have for each α ∈ [0, π):

L(H2) ≥

n−1
∑

j=1

|pjpj+1|| cos(βjj+1 − α)| − Wα.

Note that
∫ π

0
| cos(βjj+1 − α)| dα =

∫ π

0
| cos α| dα = 2,

and according to Cauchy’s surface area formula, we have
∫ π
0 Wα dα = P (S). By integrating

both sides of the previous inequality over the α-interval [0, π], we obtain

πL(H2) ≥ 2

n−1
∑

j=1

|pjpj+1| − P (S) = 2L(HOPT) − P (S),

L(H2) ≥
2

π
L(HOPT) −

P (S)

π
. (2.2)
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We now improve the old approximation ratio of 1
π ≈ 0.3183 to 2

π+1 ≈ 0.4829, by balancing

the lengths of the two paths computed in Step 1 and Step 2. Set c = π+1
2 .

Case 1: L(HOPT) ≤ cP (S). By considering the path computed in Step 1, we get a

ratio of at least
L(H1)

L(HOPT)
≥

P (S)

L(HOPT)
≥

P (S)

cP (S)
=

2

π + 1
.

Case 2: L(HOPT) ≥ cP (S). By considering the path computed in Step 2 (inequality

(2.2)), we get a ratio of at least

L(H2)

L(HOPT)
≥

2
πL(HOPT) − 1

πP (S)

L(HOPT)
≥

2

π
−

1

cπ
=

2

π

(

1 −
1

π + 1

)

=
2

π + 1
.

Observe that if the point set satisfies the condition
P (S)

π ≤ δL(HOPT), then by (2.2),

we have

L(H) ≥
2

π
L(HOPT) − δL(HOPT) =

(

2

π
− δ

)

L(HOPT).

This concludes the proofs of parts (i) and (ii) of Theorem 1.1.

(iii) With the same approach as in [3], a Hamiltonian path of length at least (1 −

ε) 2
π L(HOPT) − P (S)

π can be found by considering only b/
√

ε angles θi =
iπ

√
ε

b , for i =

0, 1, . . . , ⌊b/
√

ε⌋, where b is a suitable absolute constant. The resulting running time is

O(n log n/
√

ε). This concludes the proof of Theorem 1.1.

3. The spanning tree

In this section we prove Theorem 1.2. Let S = {p1, . . . , pn}, where pi = (xi, yi). Given

a point p ∈ S, the star centered at p, denoted Sp, is the spanning tree on S whose edges join

p to all the other points. Since S is in general position, Sp is non-crossing for any p ∈ S.

An extended star centered at p is a spanning tree of S consisting of paths of length 1 or 2

(edges) connecting p to all the other points. See Fig. 1. While the star centered at a point

is unique, there may be many extended stars centered at the same point, and some of them

may be self-crossing. In particular Sp is also an extended star.

pp

Figure 1: A star (left) and a non-crossing extended star (right) on a same point set, both centered

at the same point p.

The algorithm of Alon et al. computes the n stars centered at each of the points, and

then outputs the longest one. The algorithm takes quadratic time, and the analysis shows a

ratio of n
2n−2 (which tends to 1/2 in the limit). Their algorithm works in any metric space.



LONG NON-CROSSING CONFIGURATIONS IN THE PLANE 317

As pointed out by Alon et al., the ratio 1/2 is best possible (in the limit) for this specific

algorithm. We first re-establish the 1/2 approximation ratio using a faster algorithm, and

also with a simpler analysis. Our algorithm works also in any metric space; however in this

general setting, the running time remains quadratic.

Algorithm A2: Compute a diameter of the point set, and output the longest of the two

stars centered at one of its endpoints.

Obviously the algorithm runs in O(n log n) time, with bottleneck being the diameter

computation [15]. Let ab be a diameter pair, and assume w.l.o.g. that |ab| = 1. The ratio

1/2 (or even n
2n−2) follows from the next lemma in conjunction with the obvious upper

bound L(TOPT) ≤ n (or L(TOPT) ≤ n − 1).

Lemma 3.1. Let Sa and Sb be the stars centered at the points a and b, respectively. Then
L(Sa) + L(Sb) ≥ n.

Proof. Assume that a = p1, b = p2. For each i = 3, . . . , n, the triangle inequality for the

triple a, b, pi gives

|api| + |bpi| ≥ |ab| = 1.

By summing up we have

L(Sa) + L(Sb) =

n
∑

i=3

(|api| + |bpi|) + 2|ab| ≥ (n − 2) + 2 = n.

We now continue with the new algorithm that achieves a (provable) 1
2 + 1

500 approxi-

mation ratio within the same running time O(n log n).

Algorithm A3: Compute a diameter ab of the point set, and output the longest of the 5

non-crossing structures Sa, Sb, Sh, Ea, Eb, described below.

Assume w.l.o.g. that the ab is a horizontal unit segment, where a = (0, 0) and b = (1, 0).
Let h = (xh, yh) be a point in S with a largest value of |y|. By symmetry, we can assume

that yh ≥ 0. Sa, Sb, and Sh are the 3 stars centered at a, b, and h respectively. Ea, resp.

Eb, are two non-crossing extended stars centered at a, resp, b; details to follow. Each of

the five structures can be computed in O(n log n) time, so the total execution time is also

O(n log n).

Set δ = 0.05, w = 0.6, t = 0.6 and z = 0.48, and refer to Fig. 2. Let ℓ1, ℓ2, ℓ3, and ℓ4,

be four parallel vertical lines: ℓ1 : x = 0, ℓ2 : x = 0.2, ℓ3 : x = 0.8, ℓ4 : x = 1. Obviously,

all points in S lie in the strip bounded by ℓ1 and ℓ4. Let Vm be the vertical parallel strip

symmetric about the midpoint of ab and of width w. We refer to Vm as the middle strip; Vm

is bounded by the vertical lines ℓ2 and ℓ3. Let Va and Vb be the two vertical strips of width

0.2 bounded by ℓ1 and ℓ2, and by ℓ3 and ℓ4 respectively. Let c = (xc, yc) be the intersection

point between ℓ3 and the circular arc γa of unit radius centered at a and sub-tending an

angle of 60◦. We have xc = 0.8 and

yc =
√

1 − 0.82 = 0.6 = t.

We now describe the two extended star structures Ea and Eb. See also Fig. 3 for an

example. To construct Ea, first compute the order of visibility of the points in Vb from point

a by sorting. Then connect a with each point in the right strip Vb. Note that b ∈ Vb, thus

Vb 6= ∅. Call S′
a the resulting star. The edges of this star together with the vertical line ℓ3

divide Va ∪Vm into convex regions (wedges with a common apex a) ordered top-down. The

subset of points in each wedge can be computed using binary search in overall O(n log n)
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c

ℓ1 ℓ2 ℓ4

Vm

p

ℓ3

Va Vb

ba

y = 0.6

Figure 2: A diameter pair a, b at unit distance, and the three vertical strips Va, Vm, and Vb. The

two circular arcs γa and γb of unit radius centered at a and b intersect at the point

(1/2,
√

3/2). All points of S above ab lie in the region bounded by ab, γa and γb.

time (over all wedges). S′
a is extended (augmented) as follows. In each wedge, say paq, all

points are connected either to a or to p, depending on the best (longest) overall connection

cost. We denote the resulting extended star structure by Ea. The construction of Eb is

analogous. It is clear by construction that both Ea and Eb are non-crossing.

Lemma 3.2. For each p ∈ S, let dmax(p) denote the maximum distance from p to other
points in S. Then

L(TOPT) ≤

[

n
∑

i=1

dmax(pi)

]

− 1.

Proof. Consider TOPT rooted at a and drawn as an abstract tree with the root at the top in

the usual manner. Let π(v) denote the parent of a (non-root) vertex v. Uniquely assign each

edge π(v)v of TOPT to vertex v. Obviously, L(π(v)v) ≤ dmax(v) holds for each edge in the

tree. By adding up the above inequalities, and taking into account that dmax(a) = |ab| = 1,

the lemma follows.

Lemma 3.3. Assume that
∑n

i=1 |yi| ≥ δn for some positive constant δ ≤ 1. Then

L(Sa) + L(Sb) ≥ 2n

√

1

4
+ δ2.

Lemma 3.4. Let na and nb denote the number of points in the left and right vertical strips
Va and Vb. Then L(Ea) ≥

1+w
4 (n + nb), and similarly L(Eb) ≥

1+w
4 (n + na). Consequently

L(Ea) + L(Eb) ≥
1+w

4 (2n + na + nb). Ea and Eb can be constructed in O(n log n) time.

Proof. The distance between ℓ1 and ℓ3 is 1+w
2 . By an argument similar to that in the proof

of Lemma 3.1, the connection cost for a wedge with m points is at least 1+w
4 m. Therefore

the total length of Ea is

L(Ea) ≥
1 + w

2
nb +

1 + w

4
(n − nb) =

1 + w

4
(n + nb).

The estimation of L(Eb) is analogous. The running time has been established previously.
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Lemma 3.5. Assume that
∑n

i=1 |yi| ≤ δn and yh ≥ t. Then L(Sh) ≥ (t − δ)n.

Proof.

L(Sh) ≥

n
∑

i=1

(yh − yi) = nyh −

n
∑

i=1

yi ≥ nyh −

n
∑

i=1

|yi| ≥ nyh − δn ≥ (t − δ)n.

Lemma 3.6. Assume that |yh| ≤ t = 0.6. Let p ∈ S be a point in the middle strip Vm, with
y-coordinate satisfying |y| ≤ 0.15. Then dmax(p) ≤ 0.9605.

Proof. It is straightforward to check that the maximum distance is attained for a point p
on ℓ2 with y-coordinate −0.15. The furthest point from p in the allowed region is c. Hence

dmax(p) ≤ |pc| =
√

w2 + (0.15 + t)2 =
√

0.62 + 0.752 ≤ 0.9605.

We now distinguish the following four cases to complete our estimation of the approxi-

mation ratio.

Case 1:
∑n

i=1 |yi| ≥ δn. The algorithm outputs2 Sa or Sb. By Lemma 3.3, the approx-

imation ratio is at least

L(Sa) + L(Sb)

2L(TOPT)
≥

√

1

4
+ δ2 ≥ 0.502.

Case 2:
∑n

i=1 |yi| ≤ δn and yh ≥ t. The algorithm outputs Sh. By Lemma 3.5, the

approximation ratio is at least t − δ = 0.55.

Case 3:
∑n

i=1 |yi| ≤ δn and yh ≤ t and na + nb ≥ (1 − z)n. The algorithm outputs

Ea or Eb. We only need the last inequality in estimating the length. By Lemma 3.4, the

approximation ratio is at least

L(Ea) + L(Eb)

2L(TOPT)
≥

1 + w

4
·
2n + na + nb

2n
≥

(1 + w)(3 − z)

8
=

1.6 · 2.52

8
= 0.504.

Case 4:
∑n

i=1 |yi| ≤ δn and yh ≤ t and na + nb ≤ (1 − z)n. The algorithm outputs Sa

or Sb. There are at least zn = 0.48n points in the middle strip Vm. Observe that at most

n/3 points in Vm have |yi| ≥ 0.15; otherwise we would have

n
∑

i=1

|yi| ≥
∑

Vm

|yi| > 0.15 ·
n

3
= 0.05n = δn,

a contradiction. It follows that at least 12n/25 − n/3 = 11n/75 points in the middle strip

have |yi| ≤ 0.15. By Lemma 3.2 and Lemma 3.6,

L(TOPT) ≤
64n

75
+ 0.9605 ·

11n

75
≤ 0.9943n.

The approximation ratio is at least

L(Sa) + L(Sb)

2L(TOPT)
≥

n

2 · 0.9943n
≥ 0.502.

This completes the list of cases and thereby the proof of Theorem 1.2.

Remark. The example in Fig. 3 with n points (n even) equally spaced along a circle shows

that the constant 0.502 measuring the approximation ratio achieved by our algorithm A3

2Here and in other instances it is meant that the algorithm outputs a structure at least as long as these.
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cannot be improved to anything larger than 2/π. Indeed the lengths of the five structures

computed by the algorithm are L(Sa) = L(Sb) = L(Sh) = L(Ea) = L(Eb) = (1 − o(1)) 2
π n,

while L(TOPT) ≥ L(HOPT) = (1 − o(1))n.

ba

h

Figure 3: The non-crossing structure Ea for an example with n = 16 points on the circle. The

middle strip Vm is bounded by the two dashed vertical lines.

4. The Hamiltonian cycle

In this section we present the proof of Theorem 1.3, which is similar (including notation)

to that of Theorem 1.1. The rotated coordinate system Γα, and the x-coordinates xi with

respect to this system are denoted in the same way. By relabeling the points assume that

the optimal cycle is QOPT = p1, p2, . . . , pn (with the convention that pn+1 = p1). We

approximate QOPT by constructing a non-crossing alternating path A on a subset of S, and

then completing it to a non-crossing cycle using convex hull vertices. We need to observe

that the alternating path A on the subset I of interior (non-hull) vertices of S produced

by the algorithm of Abellanas et al. [1] is not good enough for this strategy: even though

one endpoint of A (the first computed by the algorithm) is always on the convex hull of I,

the other endpoint might be blocked by edges of A, so that A might not be extendible to a

non-crossing Hamiltonian cycle (an example is shown in Fig. 4). Here, we give a stronger

result that fits our purpose (for an even number of points).

Lemma 4.1. Let S = R ∪ B with with |R| = |B|, be a linearly separable bipartition given
by line ℓ. Then S admits an alternating non-crossing spanning path A such that (1) the
edges of A cross ℓ at points ordered monotonically along ℓ; and (2) the two endpoints of
A are incident to the two distinct edges of the convex hull that connect R and B (the two
red-blue bridges). Such a Hamiltonian path can be computed in O(n log n) time. We refer
to the underlying procedure as the two-endpoint path construction algorithm.

Proof. We modify the algorithm of Abellanas et al. for path construction, so that the path

is grown from the two endpoints and the two sub-paths merge ”in the middle”. Recall that

S = R ∪ B, and |R| = |B|, thus |S| is even. Let r1b1 and r2b2 be the top and bottom

red-blue edges of the convex hull conv(S), respectively, called top and bottom bridges; it

is possible that r1 = r2 or b1 = b2 but not both. One endpoint of A is an endpoint of

the top bridge, and the other endpoint of A is an endpoint of the bottom bridge, and they
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1

2

ℓ

3

4

6

7

5

Figure 4: A non-crossing alternating path obtained by the algorithm of Abellanas et al. For the

purpose of cycle construction, the path is non-extendible from its 2nd endpoint, vertex 7.

are chosen of opposite colors. Let A = {r1, b2} or A = {b1, r2} arbitrarily, containing two

endpoints of the path. At every step, recompute the top and bottom bridges of S \ A,

and append either the red or the blue vertex of each bridge to A such that the appended

edges cross the separating line ℓ. In the last step, the convex hull of S \ A is a red-blue

segment that merges the two sub-paths. The two new edges added simultaneously at each

step cannot cross each other; and they cannot cross previous edges, since they are separated

from them by the convex hull of S \ A. Finally, they cannot extend the two sub-paths by

the same point either, because |S| is even.

The next lemma follows from [10, Lemma 2.1]; we will only need its corollary, Lemma 4.3.

Lemma 4.2. ([10]). Let P = p1, p2, . . . , pn be a simple polygon (with the convention that
pn+1 = p1) and q be a point in the exterior of the convex hull of P , where P ∪ {q} is in
general position. Then q sees one edge pipi+1 of P . Such an edge can be found in O(n)

time.

Lemma 4.3. Let P = p1, p2, . . . , pn be a simple polygon (with the convention that pn+1 =

p1) and q be a point in the exterior of the convex hull of P , where P ∪ {q} is in general
position. Then the polygonal cycle P can be extended to include q so that P ∪ {q} is still a
simple polygon. More precisely, there exists i ∈ [n], so that Q = p1, . . . , pi, q, pi+1, . . . , pn is
a simple polygon. Moreover, L(Q) > L(P ). The extension can be computed in O(n) time.

Proof. By Lemma 4.2, q sees one edge pipi+1 of P . Replacing this edge of P by the two

edges piq and qpi+1 results in a simple polygon Q = p1, . . . , pi, q, pi+1, . . . , pn. By the triangle

inequality, L(Q) > L(P ). The extension can be computed in O(n) time, as determined by

the time needed to find a visible edge.

Note that the condition in the lemma that q lies in the exterior of the convex hull of

P , is indeed necessary. Otherwise one cannot guarantee that q sees an edge of P .

(i) Let S = S′∪S′′, where S′ is the set of convex hull vertices and S′′ is the set of interior

points. Let S′ = {pj1, pj2, . . . , pjh
}. Put h = |S′|, m = |S′′|, thus n = h + m. Assume first

for simplicity that m is even. An easy modification of the algorithm, explained below, is

used for m odd.
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Algorithm A4:

Step 1. For all non-equivalent bisections of S′′ (i.e., for all balanced bipartitions of S′′):

1. Compute a non-crossing alternating path A by using the two-endpoint path construction

algorithm (Lemma 4.1). 2. Extend A to a cycle by connecting its endpoints to (one or two)

convex hull vertices. 3. Further extend this cycle to include the remaining hull vertices, by

repeated invocation of Lemma 4.3.

Step 2. Output the longest such cycle (containing all points of S).

Observe that after Step 1.1, the two endpoints of the path are vertices of conv(S′′),

hence they can be connected to hull vertices to make a cycle. If m is odd, then there is a

point q ∈ S′′ on the line ℓ. Use the two-endpoint path construction algorithm for S′′ \ {q},
and the same bisecting line ℓ. If q is in the interior of conv(S′′ \ {q}), then extend the path

with point q, using Lemma 2.2. Otherwise, q sees the top or bottom bridge of conv(S′′\{q}),
so the path can be extended by connecting q to the endpoint visible to q. The two endpoints

of the extended path are on conv(S′′), hence they can be connected to hull vertices to make

a cycle, as in the case of even m.
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Abstract. The degree of a CSP instance is the maximum number of times that a variable
may appear in the scope of constraints. We consider the approximate counting problem
for Boolean CSPs with bounded-degree instances, for constraint languages containing the
two unary constant relations {0} and {1}. When the maximum degree is at least 25 we
obtain a complete classification of the complexity of this problem. It is exactly solvable
in polynomial-time if every relation in the constraint language is affine. It is equivalent
to the problem of approximately counting independent sets in bipartite graphs if every
relation can be expressed as conjunctions of {0}, {1} and binary implication. Otherwise,
there is no FPRAS unless NP = RP. For lower degree bounds, additional cases arise in
which the complexity is related to the complexity of approximately counting independent
sets in hypergraphs.

1. Introduction

In the constraint satisfaction problem (CSP), we seek to assign values from some domain

to a set of variables, while satisfying given constraints on the combinations of values that

certain subsets of the variables may take. Constraint satisfaction problems are ubiquitous in

computer science, with close connections to graph theory, database query evaluation, type

inference, satisfiability, scheduling and artificial intelligence [20, 22, 25]. CSP can also be

reformulated in terms of homomorphisms between relational structures [14] and conjunctive

query containment in database theory [20]. Weighted versions of CSP appear in statistical

physics, where they correspond to partition functions of spin systems [31].
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We give formal definitions in Section 2 but, for now, consider an undirected graph G
and the CSP where the domain is {red, green,blue}, the variables are the vertices of G
and the constraints specify that, for every edge xy ∈ G, x and y must be assigned different

values. Thus, in a satisfying assignment, no two adjacent vertices are given the same colour:

the CSP is satisfiable if, and only if, the graph is 3-colourable. As a second example, given

a formula in 3-CNF, we can write a system of constraints over the variables, with domain

{true, false}, that requires the assignment to each clause to satisfy at least one literal.

Clearly, the resulting CSP is directly equivalent to the original satisfiability problem.

1.1. Decision CSP

In the uniform constraint satisfaction problem, we are given the set of constraints ex-

plicitly, as lists of allowable combinations for given subsets of the variables; these lists can

be considered as relations over the domain. Since it includes problems such as 3-sat and

3-colourability, uniform CSP is NP-complete. However, uniform CSP also includes

problems in P, such as 2-sat and 2-colourability, raising the natural question of what

restrictions lead to tractable problems. There are two natural ways to restrict CSP: we can

restrict the form of the instances and we can restrict the form of the constraints.

The most common restriction to CSP is to allow only certain fixed relations in the

constraints. The list of allowed relations is known as the constraint language and we write

CSP(Γ) for the so-called non-uniform CSP in which each constraint states that the values

assigned to some tuple of variables must be a tuple in a specified relation in Γ.

The classic example of this is Schaefer’s dichotomy for Boolean constraint languages Γ

(i.e., those with domain {0, 1}; often called “generalized satisfiability”) [26]. He showed that

CSP(Γ) is in P if Γ is included in one of six classes and is NP-complete, otherwise. More

recently, Bulatov has produced a corresponding dichotomy for the three-element domain [2].

These two results restrict the size of the domain but allow relations of arbitrary arity in

the constraint language. The converse restriction — relations of restricted arity, especially

binary relations, over arbitrary finite domains — has also been studied in depth [16,17].

For all Γ studied so far, CSP(Γ) has been either in P or NP-complete and Feder and

Vardi have conjectured that this holds for every constraint language [14]. Ladner has shown

that it is not the case that every problem in NP is either in P or NP-complete since, if

P 6= NP, there is an infinite, strict hierarchy between the two [23]. However, there are

problems in NP, such as graph Hamiltonicity and even connectedness, that cannot be

expressed as CSP(Γ) for any finite Γ 1 and Ladner’s diagonalization does not seem to be

expressible in CSP [14], so a dichotomy for CSP appears possible.

Restricting the tree-width of instances has also been a fruitful direction of research

[15, 21]. In contrast, little is known about restrictions on the degree of instances, i.e., the

maximum number of times that any variable may appear. Dalmau and Ford have shown

that, for any fixed Boolean constraint language Γ containing the constant unary relations

Rzero = {0} and Rone = {1}, the complexity of CSP(Γ) for instances of degree at most

three is exactly the same as the complexity of CSP(Γ) with no degree restriction [6]. The

case where variables may appear at most twice has not yet been completely classified; it is

known that degree-2 CSP(Γ) is as hard as general CSP(Γ) whenever Γ contains Rzero and

Rone and some relation that is not a ∆-matroid [13]; the known polynomial-time cases come

from restrictions on the kinds of ∆-matroids that appear in Γ [6].

1This follows from results on the expressive power of existential monadic second-order logic [12].
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1.2. Counting CSP

A generalization of classical CSP is to ask how many satisfying solutions there are.

This is referred to as counting CSP, #CSP. Clearly, the decision problem is reducible to

counting: if we can efficiently count the solutions, we can efficiently determine whether there

is at least one. The converse does not hold: for example, we can determine in polynomial

time whether a graph admits a perfect matching but it is #P-complete to count the perfect

matchings, even in a bipartite graph [29].

#P is the class of functions f for which there is a nondeterministic, polynomial-time

Turing machine that has exactly f(x) accepting paths for input x [28]. It is easily seen

that the counting version of any NP decision problem is in #P and #P can be considered

the counting “analogue” of NP. Note, though that problems that are #P-complete under

appropriate reductions are, under standard complexity-theoretic assumptions, considerably

harder than NP-complete problems: P#P includes the whole of the polynomial hierarchy

[27], whereas PNP is generally thought not to.

Although no dichotomy is known for CSP, Bulatov has recently shown that, for all

Γ, #CSP(Γ) is either computable in polynomial time or #P-complete [3]. However, Bu-

latov’s dichotomy sheds little light on which constraint languages yield polynomial-time

counting CSPs and which do not. The criterion of the dichotomy is based on “defects” in

a certain infinite algebra built up from the polymorphisms of Γ and it is open whether the

characterization is even decidable. It also seems not to apply to bounded-degree #CSP.

So, although there is a full dichotomy for #CSP(Γ), results for restricted forms of

constraint language are still of interest. Creignou and Hermann have shown that only one of

Schaefer’s polynomial-time cases for Boolean languages survives the transition to counting:

#CSP(Γ) ∈ FP (i.e., has a polynomial time algorithm) if Γ is affine (i.e., each relation is

the solution set of a system of linear equations over GF2) and is #P-complete, otherwise [5].

This result has been extended to rational and even complex-weighted instances [4,10] and, in

the latter case, the dichotomy is shown to hold for the restriction of the problem in which

instances have degree 3. This implies that the degree-3 problem #CSP3(Γ) (#CSP(Γ)

restricted to instances of degree 3) is in FP if Γ is affine and is #P-complete, otherwise.

1.3. Approximate counting

Since #CSP(Γ) is very often #P-complete, approximation algorithms play an impor-

tant role. The key concept is that of a fully polynomial randomized approximation scheme
(FPRAS). This is a randomized algorithm for computing some function f(x), taking as its

input x and a constant ǫ > 0, and computing a value Y such that e−ǫ
6 Y/f(x) 6 eǫ with

probability at least 3
4 , in time polynomial in both |x| and ǫ−1. (See Section 2.4.)

Dyer, Goldberg and Jerrum have classified the complexity of approximately computing

#CSP(Γ) for Boolean constraint languages [9]. When all relations in Γ are affine, #CSP(Γ)

can be computed exactly in polynomial time by the result of Creignou and Hermann dis-

cussed above [5]. Otherwise, if every relation in Γ can be defined by a conjunction of pins

(i.e., assertions v = 0 or v = 1) and Boolean implications, then #CSP(Γ) is as hard to

approximate as the problem #BIS of counting independent sets in a bipartite graph; other-

wise, #CSP(Γ) is as hard to approximate as the problem #SAT of counting the satisfying

truth assignments of a Boolean formula. Dyer, Goldberg, Greenhill and Jerrum have shown

that the latter problem is complete for #P under appropriate approximation-preserving

reductions (see Section 2.4) and has no FPRAS unless NP = RP [8], which is thought to
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be unlikely. The complexity of #BIS is currently open: there is no known FPRAS but it is

not known to be #P-complete, either. #BIS is known to be complete for a logically-defined

subclass of #P with respect to approximation-preserving reductions [8].

1.4. Our result

We consider the complexity of approximately solving Boolean #CSP problems when

instances have bounded degree. Following Dalmau and Ford [6] and Feder [13] we consider

the case in which Rzero = {0} and Rone = {1} are available. We proceed by showing that

any Boolean relation that is not definable as a conjunction of ORs or NANDs can be used

in low-degree instances to assert equalities between variables. Thus, we can side-step degree

restrictions by replacing high-degree variables with distinct variables asserted to be equal.

Our main result, Corollary 6.6, is a trichotomy for the case in which instances have

maximum degree d for some d > 25. If every relation in Γ is affine, then #CSPd(Γ ∪
{Rzero, Rone}) is solvable in polynomial time. Otherwise, if every relation in Γ can be defined

as a conjunction of Rzero, Rone and binary implications, then #CSPd(Γ ∪ {Rzero, Rone}) is

equivalent in approximation complexity to #BIS. Otherwise, it has no FPRAS unless

NP = RP. Theorem 6.5 gives a partial classification of the complexity when d < 25. In

the new cases that arise here, the complexity is given in terms of the complexity of counting

independent sets in hypergraphs with bounded degree and bounded hyper-edge size. The

complexity of this problem is not fully understood and we explain what is known about it

in Section 6.

2. Preliminaries

2.1. Basic notation

We write a for the tuple 〈 a1, . . . , ar 〉, which we often shorten to a = a1 . . . ar. We

write ar for the r-tuple a . . . a and ab for the tuple formed from the elements of a followed

by those of b. The bit-wise complement of a relation R ⊆ {0, 1}r is the relation ˜R =

{〈 a1 ⊕ 1, . . . , ar ⊕ 1 〉 | a ∈ R}, where ⊕ denotes addition modulo 2.

We say that a relation R is ppp-definable2 in a relation R′ and write R 6ppp R′ if R
can be obtained from R′ by some sequence of the following operations:

• permutation of columns (for notational convenience only);

• pinning (taking sub-relations of the form Ri7→c = {a ∈ R | ai = c} for some i and

some c ∈ {0, 1}); and

• projection (“deleting the ith column” to give the relation {a1 . . . ai−1ai+1 . . . ar |
a1 . . . ar ∈ R}).

It is easy to see that 6ppp is reflexive and transitive and that, if R 6ppp R′, then R can

be obtained from R′ by first permuting the columns, then making some pins and then

projecting.

We write R= = {00, 11}, R 6= = {01, 10}, ROR = {01, 10, 11}, RNAND = {00, 01, 10},

R→ = {00, 01, 11} and R← = {00, 10, 11}. For k > 2, we write R=,k = {0k, 1k}, ROR,k =

{0, 1}k \ {0k} and RNAND,k = {0, 1}k \ {1k} (i.e., k-ary equality, OR and NAND).

2This should not be confused with the concept of primitive positive definability (pp-definability) which
appears in algebraic treatments of CSP and #CSP, for example in the work of Bulatov [3].
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2.2. Boolean constraint satisfaction problems

A constraint language is a set Γ = {R1, . . . , Rm} of named Boolean relations. Given a

set V of variables, the set of constraints over Γ is the set Cons(V,Γ) which contains R(v)

for every relation R ∈ Γ with arity r and every v ∈ V r. Note that v = v′ and v 6= v′ are

not constraints unless the appropriate relations are included in Γ. The scope of a constraint

R(v) is the tuple v, which need not consist of distinct variables.

An instance of the constraint satisfaction problem (CSP) over Γ is a set V of variables

and a set C ⊆ Cons(V,Γ) of constraints. An assignment to a set V of variables is a function

σ : V → {0, 1}. An assignment to V satisfies an instance (V,C) if 〈σ(v1), . . . , σ(vr) 〉 ∈ R
for every constraint R(v1, . . . , vr). We write Z(I) for the number of satisfying assignments

to a CSP instance I. We study the counting CSP problem #CSP(Γ), parameterized by Γ,

in which we must compute Z(I) for an instance I = (V,C) of CSP over Γ.

The degree of an instance is the greatest number of times any variable appears among

its constraints. Note that the variable v appears twice in the constraint R(v, v). Our specific

interest in this paper is in classifying the complexity of bounded-degree counting CSPs. For

a constraint language Γ and a positive integer d, define #CSPd(Γ) to be the restriction of

#CSP(Γ) to instances of degree at most d. Instances of degree 1 are trivial.

Theorem 2.1. For any Γ, #CSP1(Γ) ∈ FP.

When considering #CSPd for d > 2, we follow established practice by allowing pinning
in the constraint language [6, 13]. We write Rzero = {0} and Rone = {1} for the two

singleton unary relations. We refer to constraints in Rzero and Rone as pins. To make

notation easier, we will sometimes write constraints using constants instead of explicit pins.

That is, we will allow the constants 0 and 1 to appear in the place of variables in the scopes

of constraints. Such constraints can obviously be rewritten as a set of “proper” constraints,

without increasing degree. We let Γpin denote the constraint language {Rzero, Rone}.

2.3. Hypergraphs

A hypergraph H = (V,E) is a set V = V (H) of vertices and a set E = E(H) ⊆ P(V )

of non-empty hyper-edges. The degree of a vertex v ∈ V (H) is the number d(v) = |{e ∈
E(H) | v ∈ e}| and the degree of a hypergraph is the maximum degree of its vertices. If

w = max{|e| | e ∈ E(H)}, we say that H has width w. An independent set in a hypergraph

H is a set S ⊆ V (H) such that e * S for every e ∈ E(H). Note that an independent set

may contain more than one vertex from any hyper-edge of size at least three.

We write #w-HIS for the problem of counting the independent sets in a width-w hy-

pergraph H, and #w-HISd for the restriction of #w-HIS to inputs of degree at most d.

2.4. Approximation complexity

A randomized approximation scheme (RAS) for a function f : Σ∗ → N is a probabilistic

Turing machine that takes as input a pair (x, ǫ) ∈ Σ∗ × (0, 1), and produces, on an output

tape, an integer random variable Y with Pr(e−ǫ
6 Y/f(x) 6 eǫ) >

3
4 .3 A fully polynomial

randomized approximation scheme (FPRAS) is a RAS that runs in time poly(|x|, ǫ−1).

3The choice of the value 3

4
is inconsequential: the same class of problems has an FPRAS if we choose any

probability p with 1

2
< p < 1 [18].
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To compare the complexity of approximate counting problems, we use the AP-reductions

of [8]. Suppose f and g are two functions from some input domain Σ∗ to the natural numbers

and we wish to compare the complexity of approximately computing f to that of approxi-

mately computing g. An approximation-preserving reduction from f to g is a probabilistic

oracle Turing machine M that takes as input a pair (x, ǫ) ∈ Σ∗ × (0, 1), and satisfies the

following three conditions: (i) every oracle call made by M is of the form (w, δ) where

w ∈ Σ∗ is an instance of g, and 0 < δ < 1 is an error bound satisfying δ−1
6 poly(|x|, ǫ−1);

(ii) M is a randomized approximation scheme for f whenever the oracle is a randomized

approximation scheme for g; and (iii) the run-time of M is polynomial in |x| and ǫ−1.

If there is an approximation-preserving reduction from f to g, we write f 6AP g and

say that f is AP-reducible to g. If g has an FPRAS, then so does f . If f 6AP g and

g 6AP f , then we say that f and g are AP-interreducible and write f ≡AP g.

3. Classes of relations

A relation R ⊆ {0, 1}r is affine if it is the set of solutions to some system of linear

equations over GF2. That is, there is a set Σ of equations in variables x1, . . . , xr, each of

the form xi1 ⊕ · · · ⊕ xin = c, where ⊕ denotes addition modulo 2 and c ∈ {0, 1}, such that

a ∈ R if, and only if, the assignment x1 7→ a1, . . . , xr 7→ ar satisfies every equation in Σ.

Note that the empty and complete relations are affine.

We define IM-conj to be the class of relations defined by a conjunction of pins and

(binary) implications. This class is called IM2 in [9].

Lemma 3.1. If R ∈ IM-conj is not affine, then R→ 6ppp R.

Let OR-conj be the set of Boolean relations that are defined by a conjunction of pins

and ORs of any arity and NAND-conj the set of Boolean relations definable by conjunctions

of pins and NANDs (i.e., negated conjunctions) of any arity. We say that one of the defining

formulae of these relations is normalized if no pinned variable appears in any OR or NAND,

the arguments of each individual OR and NAND are distinct, every OR or NAND has at

least two arguments and no OR or NAND’s arguments are a subset of any other’s.

Lemma 3.2. Every OR-conj (respectively, NAND-conj) relation is defined by a unique
normalized formula.

Given the uniqueness of defining normalized formulae, we define the width of an OR-conj

or NAND-conj relation R to be wd(R), the greatest number of arguments to any of the

ORs or NANDs in the normalized formula that defines it. Note that, from the definition of

normalized formulae, there are no relations of width 1.

Lemma 3.3. If R ∈ OR-conj has width w, then ROR,2, . . . , ROR,w 6ppp R. Similarly, if
R ∈ NAND-conj has width w, then RNAND,2, . . . , RNAND,w 6ppp R.

Given tuples a, b ∈ {0, 1}r, we write a 6 b if ai 6 bi for all i ∈ [1, r]. If a 6 b and a 6= b,
we write a < b. We say that a relation R ⊆ {0, 1}r is monotone if, whenever a ∈ R and

a 6 b, then b ∈ R. We say that R is antitone if, whenever a ∈ R and b 6 a, then b ∈ R.

Clearly, R is monotone if, and only if, ˜R is antitone. Call a relation pseudo-monotone
(respectively, pseudo-antitone) if its restriction to non-constant columns is monotone (re-

spectively, antitone). The following is a consequence of results in [19, Chapter 7.1.1].

Proposition 3.4. A relation R ⊆ {0, 1}r is in OR-conj (respectively, NAND-conj) if, and
only if, it is pseudo-monotone (respectively, pseudo-antitone).
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4. Simulating equality

An important ingredient in bounded-degree dichotomy theorems [4] is expressing equal-

ity using constraints from a language that does not necessarily include the equality relation.

A constraint language Γ is said to simulate the k-ary equality relation R=,k if, for some

ℓ > k, there is a (Γ∪ Γpin)-CSP instance I with variables x1, . . . , xℓ that has exactly m > 1

satisfying assignments σ with σ(x1) = · · · = σ(xk) = 0, exactly m with σ(x1) = · · · =

σ(xk) = 1 and no other satisfying assignments. If, further, the degree of I is d and the

degree of each variable x1, . . . , xk is at most d− 1, we say that Γ d-simulates R=,k. We say

that Γ d-simulates equality if it d-simulates R=,k for all k > 2.

The point is that, if Γ d-simulates equality, we can express the constraint y1 = · · · = yr

in Γ ∪ Γpin and then use each yi in one further constraint, while still having an instance of

degree d. The variables xk+1, . . . , xℓ in the definition function as auxiliary variables and are

not used in any other constraint. Simulating equality makes degree bounds moot.

Proposition 4.1. If Γ d-simulates equality, then #CSP(Γ) 6AP #CSPd(Γ ∪ Γpin).

We now investigate which relations simulate equality.

Lemma 4.2. R ∈ {0, 1}r 3-simulates equality if R= 6ppp R, R 6= 6ppp R or R→ 6ppp R.

Proof. For each k > 2, we show how to 3-simulate R=,k. We may assume without loss of

generality that the ppp-definition of R=, R 6= or R→ from R involves applying the identity

permutation to the columns, pinning columns 3 to 3 + p − 1 inclusive to zero, pinning

columns 3 + p to 3 + p + q − 1 inclusive to one (that is, pinning p > 0 columns to zero and

q > 0 to one) and then projecting away all but the first two columns.

Suppose first that R= 6ppp R or R→ 6ppp R. R must contain α > 1 tuples that begin

000p1q, β > 0 that begin 010p1q and γ > 1 that begin 110p1q, with β = 0 unless we are

ppp-defining R→. We consider, first, the case where α = γ, and show that we can 3-simulate

R=,k, expressing the constraint R=,k(x1, . . . , xk) with the constraints

R(x1x20
p1q∗), R(x2x30

p1q∗), . . . , R(xk−1xk0
p1q∗), R(xkx10

p1q∗) ,

where ∗ denotes a fresh (r−2−p−q)-tuple of variables in each constraint. These constraints

are equivalent to x1 = · · · = xk = x1 or to x1 → . . . → xk → x1 so constrain the variables

x1, . . . , xk to have the same value, as required. Every variable appears at most twice and

there are αk solutions to these constraints that put x1 = · · · = xk = 0, γk = αk solutions

with x1 = · · · = xk = 1 and no other solutions. Hence, R 3-simulates R=,k, as required.

We now show, by induction on r, that we can 3-simulate R=,k even in the case that

α 6= γ. For the base case, r = 2, we have α = γ = 1 and we are done. For the inductive

step, let r > 2 and assume, w.l.o.g. that α > γ (α < γ is symmetric). In particular, we have

α > 2, so there are distinct tuples 000p1qa, and 000p1qb and 110p1qc in R. Choose j such

that aj 6= bj. Pinning the (2+p+q+j)th column of R to cj and projecting out the resulting

constant column gives a relation R′ of arity r − 1 containing at least one tuple beginning

000p1q and at least one beginning 110p1q: by the inductive hypothesis, R′ 3-simulates R=,k.

Finally, we consider the case that R 6= 6ppp R. R contains α > 1 tuples beginning 010p1q

and β > 1 beginning 100p1q. We express the constraint R=,k(x1, . . . , xk) by introducing

fresh variables y1, . . . , yk and using the constraints

R(x1y10
p1q∗), R(x2y20

p1q∗), . . . , R(xk−1yk−10
p1q∗), R(xkyk0

p1q∗),
R(y1x20

p1q∗), R(y2x30
p1q∗), . . . , R(yk−1xk0

p1q∗), R(ykx10
p1q∗) .
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There are αkβk solutions when x1 = · · · = xk = 0 (and y1 = · · · = yk = 1) and βkαk

solutions when the xs are 1 and the ys are 0. There are no other solutions and no variable

is used more than twice.

For c ∈ {0, 1}, an r-ary relation is c-valid if it contains the tuple cr.

Lemma 4.3. Let r > 2 and let R ⊆ {0, 1}r be 0- and 1-valid but not complete. Then R
3-simulates equality.

In the following lemma, we do not require R and R′ to be distinct. The technique is to

assert x1 = · · · = xk by simulating the formula OR(x1, y1) ∧ NAND(y1, x2) ∧ OR(x2, y2) ∧
NAND(y2, x3) ∧ · · · ∧ OR(xk, yk) ∧ NAND(yk, x1).

Lemma 4.4. If ROR 6ppp R and RNAND 6ppp R′, then {R,R′} 3-simulates equality.

5. Classifying relations

We are now ready to prove that every Boolean relation R is in OR-conj, in NAND-conj

or 3-simulates equality. If R0 and R1 are r-ary, let R0 +R1 = {0a | a ∈ R0}∪{1a | a ∈ R1}.

Lemma 5.1. Let R0, R1 ∈ OR-conj and let R = R0 + R1. Then R ∈ OR-conj, R ∈
NAND-conj or R 3-simulates equality.

Proof. Let R0 and R1 have arity r. We may assume that R has no constant columns. If it

does, let R′ be the relation that results from projecting them away. R′ = R′0 + R′1, where

both R′0 and R′1 are OR-conj relations. By the remainder of the proof, R′ ∈ OR-conj,

R′ ∈ NAND-conj or R′ 3-simulates equality. Re-instating the constant columns does not

alter this. For R without constant columns, there are two cases.

Case 1. R0 ⊆ R1. Suppose Ri is defined by the normalized OR-conj formula φi in variables

x2, . . . , xr+1. Then R is defined by the formula

φ0 ∨ (x1 = 1 ∧ φ1) ≡ (φ0 ∨ x1 = 1) ∧ (φ0 ∨ φ1) ≡ (φ0 ∨ x1 = 1) ∧ φ1 , (5.1)

where the second equivalence is because φ0 implies φ1, because R0 ⊆ R1. R1 has no

constant column, since such a column would have to be constant with the same value in

R0, contradicting our assumption that R has no constant columns. There are two cases.

Case 1.1. R0 has no constant columns. x1 = 1 is equivalent to OR(x1) and φ0 contains

no pins, so we can rewrite φ0 ∨ x1 = 1 in CNF. Therefore, (5.1) is OR-conj.

Case 1.2. R0 has a constant column. Suppose first that the kth column of R0 is constant-

zero. R1 has no constant columns, so the projection of R onto its first and (k+1)st columns

gives the relation R←, and R 3-simulates equality by Lemma 4.2. Otherwise, all constant

columns of R0 contain ones. Then φ0 is in CNF, since every pin xi = 1 in φ0 can be written

OR(xi). Thus, we can write φ0 ∨ x1 = 1 in CNF, so (5.1) defines an OR-conj relation.

Case 2. R0 * R1. We will show that R 3-simulates equality or is in NAND-conj. We

consider two cases (recall that no relation has width 1).

Case 2.1. At least one of R0 and R1 has positive width. There are two sub-cases.

Case 2.1.1. R1 has a constant column. Suppose the kth column of R1 is constant. If the

kth column of R0 is also constant, then the projection of R to its first and (k+1)st columns

is either equality or disequality (since the corresponding column of R is not constant) so R 3-

simulates equality by Lemma 4.2. Otherwise, if the projection of R to the first and (k+1)st
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columns is R→, then R 3-simulates equality by Lemma 4.2. Otherwise, that projection

must be RNAND. By Lemma 3.3 and the assumption of Case 2.1, ROR is ppp-definable in

at least one of R0 and R1 so R 3-simulates equality by Lemma 4.4.

Case 2.1.2. R1 has no constant columns. By Proposition 3.4, R1 is monotone. Let

a ∈ R0 \ R1: by applying the same permutation to the columns of R0 and R1, we may

assume that a = 0ℓ1r−ℓ. We must have ℓ > 1 as every non-empty r-ary monotone relation

contains the tuple 1r. Let b ∈ R1 be a tuple such that ai = bi for a maximal initial segment

of [1, r]. By monotonicity of R1, we may assume that b = 0k1r−k. Further, we must have

k < ℓ, since, otherwise, we would have b < a, contradicting our choice of a /∈ R1.

Now, consider the relation R′ = {a0a1 . . . aℓ−k | a00
ka1 . . . aℓ−k1

r−ℓ ∈ R}, which is the

result of pinning columns 2 to (k + 1) of R to zero and columns (r − ℓ + 1) to (r + 1) to

one and discarding the resulting constant columns. R′ contains 0ℓ−k+1 and 1ℓ−k+1 but is

not complete, since 10ℓ−k /∈ R′. By Lemma 4.3, R′ and, hence, R 3-simulates equality.

Case 2.2. Both R0 and R1 have width zero, i.e., are complete relations, possibly padded

with constant columns. For i ∈ [1, r], let R′i be the relation obtained from R by projecting

onto its first and (i+1)st columns. Since R has no constant columns, R′i is either complete,

R=, R 6=, ROR, RNAND, R→ or R←. If there is a k such that R′k is R=, R 6=, R→ or R←, then

R=, R6= or R→ is ppp-definable in R and hence R 3-simulates equality by Lemma 4.2. If

there are k1 and k2 such that R′k1
= ROR and R′k2

= RNAND, then R 3-simulates equality

by Lemma 4.4. It remains to consider the following two cases.

Case 2.2.1. Each R′i is either ROR or complete. R1 must be complete, which contradicts

the assumption that R0 6⊆ R1.

Case 2.2.1. Each R′i is either RNAND or complete. R0 must be complete. Let I = {i |
R′i = RNAND}. Then R =

∧

i∈I NAND(x1, xi+1), so R ∈ NAND-conj.

Using the duality between OR-conj and NAND-conj relations, we can prove the corre-

sponding result for R0, R1 ∈ NAND-conj. The proof of the classification is completed by a

simple induction on the arity of R. Decomposing R as R0 + R1 and assuming inductively

that R0 and R1 are of one of the stated types, we use the previous results in this section

and Lemma 4.4 to show that R is.

Theorem 5.2. Every Boolean relation is OR-conj or NAND-conj or 3-simulates equality.

6. Complexity

The complexity of approximating #CSP(Γ) where the degree of instances is unbounded

is given by Dyer, Goldberg and Jerrum [9, Theorem 3].

Theorem 6.1. Let Γ be a Boolean constraint language.

• If every R ∈ Γ is affine, then #CSP(Γ) ∈ FP.
• Otherwise, if Γ ⊆ IM-conj, then #CSP(Γ) ≡AP #BIS.
• Otherwise, #CSP(Γ) ≡AP #SAT.

Working towards our classification of the approximation complexity of #CSP(Γ), we

first deal with subcases. The IM-conj case and OR-conj/NAND-conj cases are based on

links between those classes of relations and the problems of counting independent sets in

bipartite and general graphs, respectively [8, 9], the latter extended to hypergraphs.
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Proposition 6.2. If Γ ⊆ IM-conj contains at least one non-affine relation, then #CSPd(Γ∪
Γpin) ≡AP #BIS for all d > 3.

Proposition 6.3. Let R be an OR-conj or NAND-conj relation of width w. Then, for
d > 2, #w-HISd 6AP #CSPd({R} ∪ Γpin).

Proposition 6.4. Let R be an OR-conj or NAND-conj relation of width w. Then, for
d > 2, #CSPd({R} ∪ Γpin) 6AP #w-HISkd, where k is the greatest number of times that
any variable appears in the normalized formula defining R.

We now give the complexity of approximating #CSPd(Γ ∪ Γpin) for d > 3.

Theorem 6.5. Let Γ be a Boolean constraint language and let d > 3.

• If every R ∈ Γ is affine, then #CSPd(Γ ∪ Γpin) ∈ FP.
• Otherwise, if Γ ⊆ IM-conj, then #CSPd(Γ ∪ Γpin) ≡AP #BIS.
• Otherwise, if Γ ⊆ OR-conj or Γ ⊆ NAND-conj, then let w be the greatest width

of any relation in Γ and let k be the greatest number of times that any variable
appears in the normalized formulae defining the relations of Γ. Then #w-HISd 6AP

#CSPd(Γ ∪ Γpin) 6AP #w-HISkd.
• Otherwise, #CSPd(Γ ∪ Γpin) ≡AP #SAT.

Proof. The affine case is immediate from Theorem 6.1. (Γ∪Γpin is affine if, and only if, Γ is.)

Otherwise, if Γ ⊆ IM-conj and some R ∈ Γ is not affine, then #CSPd(Γ ∪ Γpin) ≡AP #BIS

by Proposition 6.2. Otherwise, if Γ ⊆ OR-conj or Γ ⊆ NAND-conj, then #w-HISd 6AP

#CSPd(Γ ∪ Γpin) 6AP #w-HISkd by Propositions 6.3 and 6.4.

Finally, suppose that Γ is not affine, Γ * IM-conj, Γ * OR-conj and Γ * NAND-conj.

Since (Γ∪Γpin) is neither affine or a subset of IM-conj, we have #CSP(Γ∪Γpin) ≡AP #SAT

by Theorem 6.1 so, if we can show that Γ d-simulates equality, then #CSPd(Γ ∪ Γpin) ≡AP

#CSP(Γ ∪ Γpin) by Proposition 4.1 and we are done. If Γ contains a R relation that is

neither OR-conj nor NAND-conj, then R 3-simulates equality by Theorem 5.2. Otherwise,

Γ must contain distinct relations R1 ∈ OR-conj and R2 ∈ NAND-conj that are non-affine

so have width at least two. So Γ 3-simulates equality by Lemma 4.4.

Unless NP = RP, there is no FPRAS for counting independent sets in graphs of

maximum degree at least 25 [7], and, therefore, no FPRAS for #w-HISd with r > 2 and

d > 25. Further, since #SAT is complete for #P under AP-reductions [8], #SAT cannot

have an FPRAS unless NP = RP. From Theorem 6.5 above we have the following corollary.

Corollary 6.6. Let Γ be a Boolean constraint language and let d > 25.

• If every R ∈ Γ is affine, then #CSPd(Γ ∪ Γpin) ∈ FP.
• Otherwise, if Γ ⊆ IM-conj, then #CSPd(Γ ∪ Γpin) ≡AP #BIS.
• Otherwise there is no FPRAS for #CSPd(Γ ∪ Γpin), unless NP = RP.

Γ ∪ Γpin is affine (respectively, in OR-conj or in NAND-conj) if, and only if Γ is, so the

case for large-degree instances (d > 25) corresponds exactly in complexity to the unbounded

case [9]. The case for lower degree bounds is more complex. To put Theorem 6.5 in context,

we summarize the known approximability of #w-HISd, parameterized by d and w.

The case d = 1 is clearly in FP (Theorem 2.1) and so is the case d = w = 2, which

corresponds to counting independent sets in graphs of maximum degree two. For d = 2 and

width w > 3, Dyer and Greenhill have shown that there is an FPRAS for #w-HISd [11].

For d = 3, they have shown that there is an FPRAS if the the width w is at most 3.
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Degree d Width w Approximability of #w-HISd

1 > 2 FP

2 2 FP

2 > 3 FPRAS [11]

3 2, 3 FPRAS [11]

3, 4, 5 2 PTAS [30]

6, . . . , 24 > 2 The MCMC method is likely to fail [7]

> 25 > 2 No FPRAS unless NP = RP [7]

Table 1: Approximability of #w-HISd (still open for all other values of d and w).

For larger width, the approximability of #w-HIS3 is still not known. With the width

restricted to w = 2 (normal graphs), Weitz has shown that, for degree d ∈ {3, 4, 5}, there

is a deterministic approximation scheme that runs in polynomial time (a PTAS) [30]. This

extends a result of Luby and Vigoda, who gave an FPRAS for d 6 4 [24]. For d > 5,

approximating #w-HISd becomes considerably harder. More precisely, Dyer, Frieze and

Jerrum have shown that for d = 6 the Monte Carlo Markov chain technique is likely to

fail, in the sense that “cautious” Markov chains are provably slowly mixing [7]. They

also showed that, for d = 25, there can be no polynomial-time algorithm for approximate

counting, unless NP = RP. These results imply that for d ∈ {6, . . . , 24} and w > 2 the

Monte Carlo Markov chain technique is likely to fail and for d > 25 and w > 2, there can

be no FPRAS unless NP = RP. Table 1 summarizes the results.

Returning to bounded-degree #CSP, the case d = 2 seems to be rather different to

degree bounds three and higher. This is also the case for decision CSP — recall that

degree-d CSP(Γ∪Γpin) has the same complexity as unbounded-degree CSP(Γ∪Γpin) for all

d > 3 [6], while degree-2 CSP(Γ∪Γpin) is often easier than the unbounded-degree case [6,13]

but the complexity of degree-2 CSP(Γ ∪ Γpin) is still open for some Γ.

Our key techniques for determining the complexity of #CSPd(Γ ∪ Γpin) for d > 3 were

the 3-simulation of equality and Theorem 5.2, which says that every Boolean relation is in

OR-conj, in NAND-conj or 3-simulates equality. However, it seems that not all relations that

3-simulate equality also 2-simulate equality so the corresponding classification of relations

does not appear to hold. It seems that different techniques will be required for the degree-2

case. For example, it is possible that there is no FPRAS for #CSP3(Γ ∪ Γpin) except when

Γ is affine. However, Bubley and Dyer have shown that there is an FPRAS for degree-2

#SAT, even though the exact counting problem is #P-complete [1]. This shows that there

is a class C of constraint languages for which #CSP2(Γ ∪ Γpin) has an FPRAS for every

Γ ∈ C but for which no exact polynomial-time algorithm is known.

We leave the complexity of degree-2 #CSP and of #BIS and the the various parame-

terized versions of the counting hypergraph independent sets problem as open questions.
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E-mail address: laszlo.egri@mail.mcgill.ca

2 School of Engineering and Computing Sciences, Durham University, Durham, UK
E-mail address: andrei.krokhin@durham.ac.uk

3 Department of Mathematics and Statistics, Concordia University, Montréal, Canada
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graph H the problem is either NP-complete, NL-complete, L-complete or is first-order de-
finable; descriptive complexity equivalents are given as well via Datalog and its fragments.
Our algebraic characterisations match important conjectures in the study of constraint
satisfaction problems.

1. Introduction

Homomorphisms of graphs, i.e. edge-preserving mappings, generalise graph colourings,

and can model a wide variety of combinatorial problems dealing with mappings and assign-

ments [17]. Because of the richness of the homomorphism framework, many computational

aspects of graph homomorphisms have recently become the focus of much attention. In

the list H-colouring problem (for a fixed graph H), one is given a graph G and a list Lv

of vertices of H for each vertex v in G, and the goal is to determine whether there is a

homomorphism h from G to H such that h(v) ∈ Lv for all v. The complexity of such

problems has been studied by combinatorial methods, e.g., in [13, 14]. In this paper, we

study the complexity of the list homomorphism problem for graphs in the wider context of

classifying the complexity of constraint satisfaction problems (CSP), see [3, 15, 18]. It is

well known that the CSP can be viewed as the problem of deciding whether there exists a

homomorphism from a relational structure to another, thus naturally extending the graph

homomorphism problem.
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One line of CSP research studies the non-uniform CSP, in which the target (or template)

structure T is fixed and the question is whether there exists a homomorphism from an

input structure to T. Over the last years, much work has been done on classifying the

complexity of this problem, denoted Hom(T) or CSP(T), with respect to the fixed target

structure, see surveys [6, 7, 8, 18]. Classification here is understood with respect to both

computational complexity (i.e. membership in a given complexity class such as P, NL, or

L, modulo standard assumptions) and descriptive complexity (i.e. definability of the class

of all positive, or all negative, instances in a given logic).

The best-known classification results in this direction concern the distinction between

polynomial-time solvable and NP-complete CSPs. For example, a classical result of Hell and

Nešeťril (see [17, 18]) shows that, for a graph H, Hom(H) (aka H-colouring) is tractable if H

is bipartite or admits a loop, and is NP-complete otherwise, while Schaefer’s dichotomy [24]

proves that any Boolean CSP is either in P or NP-complete. Recent work [1] established a

more precise classification in the Boolean case: if T is a structure on {0, 1} then CSP(T)

is either NP-complete, P-complete, NL-complete, ⊕L-complete, L-complete or in AC0.

Much of the work concerning the descriptive complexity of CSPs is centred around

the database-inspired logic programming language Datalog and its fragments (see [6, 9, 12,

15, 20]). Feder and Vardi initially showed [15] that a number of important tractable cases

of CSP(T) correspond to structures for which ¬CSP(T) (the complement of CSP(T)) is

definable in Datalog. Similar ties were uncovered more recently between the two fragments

of Datalog known as linear and symmetric Datalog and structures T for which CSP(T)

belongs to NL and L, respectively [9, 12].

Algebra, logic and combinatorics provide three angles of attack which have fueled

progress in this classification effort [6, 7, 8, 17, 18, 20]. The algebraic approach (see [7, 8])

links the complexity of CSP(T) to the set of functions that preserve the relations in T.

In this framework, one associates to each T an algebra AT and exploits the fact that the

properties of AT completely determine the complexity of CSP(T). This angle of attack was

crucial in establishing key results in the field (see, for example, [2, 5, 7]).

Tame Congruence Theory, a deep universal-algebraic framework first developed by

Hobby and McKenzie in the mid 80’s [19], classifies the local behaviour of finite alge-

bras into five types (unary, affine, Boolean, lattice and semilattice.) It was recently shown

(see [6, 7, 22]) that there is a strong connection between the computational and descriptive

complexity of CSP(T) and the set of types that appear in AT and its subalgebras. There are

strong conditions involving types which are sufficient for NL-hardness, P-hardness and NP-

hardness of CSP(T) as well as for inexpressibility of ¬CSP(T) in Datalog, linear Datalog

and symmetric Datalog. These sufficient conditions are also suspected (and in some cases

proved) to be necessary, under natural complexity-theoretic assumptions. For example, (a)

the presence of unary type is known to imply NP-completeness, while its absence is conjec-

tured to imply tractability (see [7]); (b) the absence of unary and affine types was recently

proved to be equivalent to definability in Datalog [2]; (c) the absence of unary, affine, and

semilattice types is proved necessary, and suspected to be sufficient, for membership in NL

and definability in linear Datalog [22]; (d) the absence of all types but Boolean is proved

necessary, and suspected to be sufficient, for membership in L and definability in symmet-

ric Datalog [22]. The strength of evidence varies from case to case and, in particular, the

conjectured algebraic conditions concerning CSPs in NL and L (and, as mentioned above,

linear and symmetric Datalog) still rest on relatively limited evidence [6, 9, 11, 10, 22].
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The aim of the present paper is to show that these algebraic conditions are indeed

sufficient and necessary in the special case of list H-colouring for undirected graphs (with

possible loops), and to characterise, in this special case, the dividing lines in graph-theoretic

terms (both via forbidden subgraphs and through an inductive definition). One can view the

list H-colouring problem as a CSP where the template is the structure HL consisting of the

binary (edge) relation of H and all unary relations on H (i.e. every subset of H). Tractable

list homomorphism problems for general structures were characterised in [5] in algebraic

terms. The tractable cases for graphs were described in [14] in both combinatorial and

(more specific) algebraic terms; the latter implies, when combined with a recent result [10],

that in these cases ¬CSP(HL) definable in linear Datalog and therefore CSP(HL) is in fact

in NL. We complete the picture by refining this classification and showing that CSP(HL)

is either NP-complete, or NL-complete, or L-complete or in AC0 (and in fact first-order

definable). We also remark that the problem of recognising into which case the problem

CSP(HL) falls can be solved in polynomial time.

As we mentioned above, the distinction between NP-complete cases and those in NL

follows from earlier work [14], and the situation is similar with distinction between L-hard

cases and those leading to membership in AC0 [21, 22]. Therefore, the main body of

technical work in the paper concerns the distinction between NL-hardness and membership

in L. We give two equivalent characterisations of the class of graphs H such that CSP(HL)

is in L. One characterisation is via forbidden subgraphs (for example, the reflexive graphs

in this class are exactly the (P4, C4)-free graphs, while the irreflexive ones are exactly the

bipartite (P6, C6)-free graphs), while the other is via an inductive definition. The first

characterisation is used to show that graphs outside of this class give rise to NL-hard

problems; we do this by providing constructions witnessing the presence of a non-Boolean

type in the algebras associated with the graphs. The second characterisation is used to

prove positive results. We first provide operations in the associated algebra which satisfy

certain identities; this allows us to show that the necessary condition on types is also

sufficient in our case. We also use the inductive definition to demonstrate that the class

of negative instances of the corresponding CSP is definable in symmetric Datalog, which

implies membership of the CSP in L.

2. Preliminaries

2.1. Graphs and relational structures

In the following we denote the underlying universe of a structure S, T, ... by its

roman equivalent S, T , etc. A signature is a (finite) set of relation symbols with associated

arities. Let T be a structure of signature τ ; for each relation symbol R ∈ τ we denote the

corresponding relation of T by R(T). Let S be a structure of the same signature. A homo-
morphism from S to T is a map f from S to T such that f(R(S)) ⊆ R(T) for each R ∈ τ .

In this case we write f : S → T. A structure T is called a core if every homomorphism

from T to itself is a permutation on T . We denote by CSP(T) the class of all τ -structures

S that admit a homomorphism to T, and by ¬CSP(T) the complement of this class.

The direct n-th power of a τ -structure T, denoted Tn, is defined to have universe T n

and, for any (say m-ary) R ∈ τ , (a1, . . . ,am) ∈ R(Tn) if and only if (a1[i], . . . ,am[i]) ∈ R(T)

for each 1 ≤ i ≤ n. For a subset I ⊆ T , the substructure induced by I on T is the structure

I with universe I and such that R(I) = R(T) ∩ Im for every m-ary R ∈ τ .
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For the purposes of this paper, a graph is a relational structure H = 〈H; θ〉 where θ
is a symmetric binary relation on H. The graph H is reflexive (irreflexive) if (x, x) ∈ θ
((x, x) 6∈ θ) for all x ∈ H. Given a graph H, let S1, . . . , Sk denote all subsets of H; let

HL be the relational structure obtained from H by adding all the Si as unary relations;

more precisely, let τ be the signature that consists of one binary relational symbol θ and

unary symbols Ri, i = 1, . . . , k. The τ -structure HL has universe H, θ(HL) is the edge

relation of H, and Ri(H
L) = Si for all i = 1, . . . , k. It is easy to see that HL is a core.

We call CSP(HL) the list homomorphism problem for H. Note that if G is an instance of

this problem then θ(G) can be considered as a digraph, but the directions of the arcs are

unimportant because H is undirected. Also, if an element v ∈ G is in Ri(G) then this is

equivalent to v having Si as its list, so G can be thought of as a digraph with H-lists.

In [14], a dichotomy result was proved, identifying bi-arc graphs as those whose list

homomorphism problem is tractable, and others as giving rise to NP-complete problems.

Let C be a circle with two specified points p and q. A bi-arc is a pair of arcs (N,S) such

that N contains p but not q and S contains q but not p. A graph H is a bi-arc graph if

there is a family of bi-arcs {(Nx, Sx) : x ∈ H} such that, for every x, y ∈ H, the following

hold: (i) if x and y are adjacent, then neither Nx intersects Sy nor Ny intersects Sx, and

(ii) if x is not adjacent to y then both Nx intersects Sy and Ny intersects Sx.

2.2. Algebra

An n-ary operation on a set A is a map f : An → A, a projection is an operation of

the form ei
n(x1, . . . , xn) = xi for some 1 ≤ i ≤ n. Given an h-ary relation θ and an n-ary

operation f on the same set A, we say that f preserves θ or that θ is invariant under f if

the following holds: given any matrix M of size h× n whose columns are in θ, applying f
to the rows of M will produce an h-tuple in θ.

A polymorphism of a structure T is an operation f that preserves each relation in T;

in this case we also say that T admits f . In other words, an n-ary polymorphism of T is

simply a homomorphism from Tn to T. With any structure T, one associates an algebra AT

whose universe is T and whose operations are all polymorphisms of T. Given a graph H, we

let H denote the algebra associated with HL. An operation on a set is called conservative
if it preserves all subsets of the set (as unary relations). So, the operations of H are the

conservative polymorphisms of H. Polymorphisms can provide a convenient language when

defining classes of graphs. For example, it was shown in [4] that a graph is a bi-arc graph

if and only if it admits a conservative majority operation where a majority operation is a

ternary operation m satisfying the identities m(x, x, y) = m(x, y, x) = m(y, x, x) = x.

In order to state some of our results, we will need the notions of a variety and a term

operation. Let I be a signature, i.e. a set of operation symbols f each of a fixed arity (we

use the term “signature” for both structures and algebras, this will cause no confusion). An

algebra of signature I is a pair A = 〈A;F 〉 where A is a non-empty set (the universe of A)

and F = {fA : f ∈ I} is the set of basic operations (for each f ∈ I, fA is an operation on

A of the corresponding arity). The term operations of A are the operations built from the

operations in F and projections by using composition. An algebra all of whose (basic or

term) operations are conservative is called a conservative algebra. A class of similar algebras

(i.e. algebras with the same signature) which is closed under formation of homomorphic

images, subalgebras and direct products is called a variety. The variety generated by an
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algebra A is denoted by V(A), and is the smallest variety containing A, i.e. the class of all

homomorphic images of subalgebras of powers of A.

Tame Congruence Theory, as developed in [19], is a powerful tool for the analysis of

finite algebras. Every finite algebra has a typeset, which describes (in a certain specified

sense) the local behaviour of the algebra. It contains one or more of the following 5 types:
(1) the unary type, (2) the affine type, (3) the Boolean type, (4) the lattice type and (5)

the semilattice type. The numbering of the types is fixed, and they are often referred to

by their numbers. Simple algebras, i.e. algebras without non-trivial proper homomorphic

images, admit a unique type; the prototypical examples are: any 2-element algebra whose

basic operations are all unary has type 1. A finite vector space has type 2. The 2-element

Boolean algebra has type 3. The 2-element lattice is the 2-element algebra with two binary

operations 〈{0, 1};∨,∧〉: it has type 4. The 2-element semilattices are the 2-element algebras

with a single binary operation 〈{0, 1};∧〉 and 〈{0, 1};∨〉: they have type 5. The typeset

of a variety V, denoted typ(V), is simply the union of typesets of the algebras in it. We

will be mostly interested in type-omitting conditions for varieties of the form V(AT), and

Corollary 3.2 of [25] says that in this case it is enough to consider the typesets of AT and

its subalgebras.

On the intuitive level, if T is a core structure then the typeset typ(V(AT)) contains

crucial information about the kind of relations that T can or cannot simulate, thus implying

lower/upper bounds on the complexity of CSP(T). For our purposes here, it will not be

necessary to delve further into the technical aspects of types and typesets. We only note

that there is a very tight connection between the kind of equations that are satisfied by

the algebras in a variety and the types that are admitted or omitted by a variety, i.e. those

types that do or do not appear in the typesets of algebras in the variety [19].

In this paper, we use ternary operations f1, . . . , fn satisfying the following identities:

x = f1(x, y, y) (2.1)

fi(x, x, y) = fi+1(x, y, y) for all i = 1, . . . n− 1 (2.2)

fn(x, x, y) = y. (2.3)

The following lemma contains some type-omitting results that we use in this paper.

Lemma 2.1. [19] A finite algebra A has term operations f1, . . . , fn, for some n ≥ 1,
satisfying identities (2.1)–(2.3) if and only if the variety V(A) omits types 1, 4 and 5.
If a finite algebra A has a majority term operation then V(A) omits types 1, 2 and 5.

We remark in passing that operations satisfying identities (2.1)–(2.3) are also known

to characterise a certain algebraic (congruence) condition called (n + 1)-permutability [19].

2.3. Datalog

Datalog is a query and rule language for deductive databases (see [20]). A Datalog

program D over a (relational) signature τ is a finite set of rules of the form h← b1∧ . . .∧bm

where h and each bi are atomic formulas Rj(v1, ..., vk). We say that h is the head of the rule

and that b1∧ . . .∧ bm is its body. Relational predicates Rj which appear in the head of some

rule of D are called intensional database predicates (IDBs) and are not part of the signature

τ . All other relational predicates are called extensional database predicates (EDBs) and are

in τ . So, a Datalog program is a recursive specification of IDBs (from EDBs).
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A rule of D is linear if its body contains at most one IDB and is non-recursive if its

body contains only EDBs. A linear but recursive rule is of the form I1(x̄) ← I2(ȳ) ∧
E1(z̄1) ∧ . . . ∧ Ek(z̄k) where I1, I2 are IDBs and the Ei are EDBs (note that the variables

occurring in x̄, ȳ, z̄i are not necessarily distinct). Each such rule has a symmetric I2(ȳ) ←
I1(x̄) ∧ E1(z̄1) ∧ . . . ∧ Ek(z̄k). A Datalog program is non-recursive if all its rules are non-

recursive, linear if all its rules are linear and symmetric if it is linear and if the symmetric

of each recursive rule of D is also a rule of D.

A Datalog program D takes a τ -structure A as input and returns a structure D(A)

over the signature τ ′ = τ ∪ {I : I is an IDB in D}. The relations corresponding to τ are

the same as in A, while the new relations are recursively computed by D , with semantics

naturally obtained via least fixed-point of monotone operators. We also want to view a

Datalog program as being able to accept or reject an input τ -structure and this is achieved

by choosing one of the IDBs of D as the goal predicate: the τ -structure A is accepted by
D if the goal predicate is non-empty in D(A). Thus every Datalog program with a goal

predicate defines a class of structures - those that are accepted by the program.

When using Datalog to study CSP(T), one usually speaks of the definability of ¬CSP(T)

in Datalog (i.e. by a Datalog program) or its fragments (because any class definable in Dat-

alog must be closed under extension). Examples of CSPs definable in Datalog and its

fragments can be found, e.g., in [6, 12]. As we mentioned before, any problem CSP(T) is

tractable if its complement is definable in Datalog, and all such structures were recently iden-

tified in [2]. Definability of ¬CSP(T) in linear (symmetric) Datalog implies that CSP(T)

belongs to NL and L, respectively [9, 12]. As we discussed in Section 1, there is a connection

between definability of CSPs in Datalog (and its fragments) and the presence/absence of

types in the corresponding algebra (or variety).

Note that it follows from Lemma 2.1 and from the results in [22, 26] that if, for a core

structure T, ¬CSP(T) is definable in symmetric Datalog then T must admit, for some n,

operations satisfying identities (2.1)–(2.3). Moreover, with the result of [2], a conjecture

from [22] can be restated as follows: for a core structure T, if ¬CSP(T) is definable in

Datalog and, for some n, T admits operations satisfying (2.1)–(2.3), then ¬CSP(T) is

definable in symmetric Datalog. This conjecture is proved in [11] for n = 1.

3. A class of graphs

In this section, we give combinatorial characterisations of a class of graphs whose list

homomorphism problem will turn out to belong to L.

Let H1 and H2 be bipartite irreflexive graphs, with colour classes B1, T1 and B2 and T2

respectively, with T1 and B2 non-empty. We define the special sum H1⊙H2 (which depends

on the choice of the Bi and Ti) as follows: it is the graph obtained from the disjoint union

of H1 and H2 by adding all possible edges between the vertices in T1 and B2. Notice that

we can often decompose a bipartite graph in several ways, and even choose B1 or T2 to be

empty. We say that an irreflexive graph H is a special sum or expressed as a special sum
if there exist two bipartite graphs and a choice of colour classes on each such that H is

isomorphic to the special sum of these two graphs.

Definition 3.1. Let K denote the smallest class of irreflexive graphs containing the one-

element graph and closed under (i) special sum and (ii) disjoint union. We call the graphs

in K basic irreflexive.
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Figure 1: The forbidden mixed graphs.

The following result gives a characterisation of basic irreflexive graphs in terms of

forbidden subgraphs:

Lemma 3.2. Let H be an irreflexive graph. Then the following conditions are equivalent:

(1) H is basic irreflexive;
(2) H is bipartite, contains no induced 6-cycle, nor any induced path of length 5.

We shall now describe our main family of graphs, first by forbidden induced subgraphs,

and then in an inductive manner.

Definition 3.3. Define the class L of graphs as follows: a graph H belongs to L if it

contains none of the following as an induced subgraph:

(1) the reflexive path of length 3 and the reflexive 4-cycle;

(2) the irreflexive cycles of length 3, 5 and 6, and the irreflexive path of length 5;

(3) B1, B2, B3, B4, B5 and B6 (see Figure 1.)

We will now characterise the class L in an inductive manner.

Definition 3.4. A connected graph H is basic if either (i) H is a single loop, or (ii) H is a

basic irreflexive graph, or (iii) H is obtained from a basic irreflexive graph H1 with colour

classes B and T by adding every edge (including loops) of the form {t, t′} where t, t′ ∈ T .

Definition 3.5. Given two vertex-disjoint graphs H1 and H2, the adjunction of H1 to H2

is the graph H1 ⊘H2 obtained by taking the disjoint union of the two graphs, and adding

every edge of the form {x, y} where x is a loop in H1 and y is a vertex of H2.

Lemma 3.6. Let LR denote the class of reflexive graphs in L. Then LR is the smallest
class D of reflexive graphs such that:

(1) D contains the one-element graph;
(2) D is closed under disjoint union;
(3) if H1 is a single loop and H2 ∈ D then H1 ⊘H2 ∈ D.

Lemma 3.6 states that the reflexive graphs avoiding the path of length 3 and the 4-

cycle are precisely those constructed from the one-element loop using disjoint union and

adjunction of a universal vertex. These graphs can also be described by the following

property: every connected induced subgraph of size at most 4 has a universal vertex. These

graphs have been studied previously as those with NLCT width 1, which were proved to

be exactly the trivially perfect graphs [16]. Our result provides an alternative proof of the

equivalence of these conditions.

Theorem 3.7. The class L is the smallest class C of graphs such that:
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(1) C contains the basic graphs;
(2) C is closed under disjoint union;
(3) if H1 is a basic graph and H2 ∈ C then H1 ⊘H2 ∈ C.

Proof. We start by showing that every basic graph is in L, i.e. that a basic graph does not

contain any of the forbidden graphs. If H is a single loop or a basic irreflexive graph, then

this is immediate. Otherwise H is obtained from a basic irreflexive graph H1 with colour

classes B and T by adding every edge of the form (t1, t2) where ti ∈ T . In particular, the

loops form a clique and no edge connects two non-loops; it is clear in that case that H

contains none of B1, B2, B3, B4. On the other hand if H contains B5 or B6, then H1

contains the path of length 5 or the 6-cycle, contradicting the fact that H1 is basic.

Next we show that L is closed under disjoint union and adjunction of basic graphs.

It is obvious that the disjoint union of graphs that avoid the forbidden graphs will also

avoid these. So suppose that an adjunction H1 ⊘H2, where H1 is a basic graph, contains

an induced forbidden graph B whose vertices are neither all in H1 nor H2; without loss

of generality H1 contains at least one loop, its loops form a clique and none of its edges

connects two non-loops. It is then easy to verify that B contains both loops and non-loops.

Because the other cases are similar, we prove only that B is not B3: since vertex d is not

adjacent to a it must be in H2, and similarly for c. Since b is not adjacent to d it must also

be in H2; since non-loops of H1 are not adjacent to elements of H2 it follows that a is in

H2 also, a contradiction.

Now we must show that every graph in L can be obtained from the basic graphs by

disjoint union and adjunction of basic graphs. Suppose this is not the case. If H is a

counterexample of minimum size, then obviously it is connected, and it contains at least

one loop for otherwise it is a basic irreflexive graph. By Lemma 3.6, H also contains at

least one non-loop.

For a ∈ H let N(a) denote its set of neighbours. Let R(H) denote the subgraph of H

induced by its set R(H) of loops, and let J(H) denote the subgraph induced by J(H), the

set of non-loops of H. Since H is connected and neither B1 nor B2 is an induced subgraph

of H, the graph R(H) is also connected, and furthermore every vertex in J(H) is adjacent

to some vertex in R(H). By Lemma 3.6, we know that R(H) contains at least one universal

vertex: let U denote the (non-empty) set of universal vertices of R(H). Let J denote the

set of all a ∈ J(H) such that N(a)∩R(H) ⊆ U . Let us show that J 6= ∅. For every u ∈ U ,

there is w ∈ J(H) not adjacent to u because otherwise H is obtained by adjoining u to the

rest of H, a contradiction with the choice of H. If this w has a neighbour r ∈ R(H)\U then

there is some s ∈ R(H)\U not adjacent to r, and the graph induced by {w, u, s, r} contains

B2 or B3, a contradiction. Hence, w ∈ J . Let S denote the subgraph of H induced by

U ∪ J . The graph S is connected. We claim that the following properties also hold:

(1) if a and b are adjacent non-loops, then N(a) ∩ U = N(b) ∩ U ;

(2) if a is in a connected component of the subgraph of S induced by J with more than

one vertex, then for any other b ∈ J , one of N(a) ∩ U,N(b) ∩ U contains the other.

The first statement holds because B1 is forbidden, and the second follows from the first

because B4 is also forbidden. Let J1, . . . , Jk denote the different connected components of

J in S. By (1) we may let N(Ji) denote the set of common neighbours of members of Ji in

U . By (2), we can re-order the Ji’s so that for some 1 ≤ m ≤ k we have N(Ji) ⊆ N(Jj) for

all i ≤ m and all j > m, and, in addition, we have m = 1 or |Ji| = 1 for all 1 ≤ i ≤ m. Let

B denote the subgraph of S induced by B =
⋃m

i=1 (Ji ∪N(Ji)), and let C be the subgraph
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of H induced by H \B. We claim that H = B⊘C. For this, it suffices to show that every

element in
⋃m

i=1 N(Ji) is adjacent to every non-loop c ∈ C. By construction this holds if

c ∈ J ∩ C. Now suppose this does not hold: then some x ∈ J(H) \ J is not adjacent to

some y ∈ N(Ji) for some i ≤ m. Since x 6∈ J we may find some z ∈ R(H) \ U adjacent to

x; it is of course also adjacent to y. Since z 6∈ U there exists some z′ ∈ R(H) \U that is not

adjacent to z, but it is of course adjacent to y. If x is adjacent to z′, then {x, z, z′} induces

a subgraph isomorphic to B2, a contradiction. Otherwise, {x, z, y, z′} induces a subgraph

isomorphic to B3, also a contradiction.

If every Ji with i ≤ m contains a single element, notice that B is a basic graph: indeed,

removing all edges between its loops yields a bipartite irreflexive graph which contains

neither the path of length 5 nor the 6-cycle, since B contains neither B5 nor B6. Since

this contradicts our hypothesis on H, we conclude that m = 1. But this means that N(J1)

is a set of universal vertices in H. Let u be such a vertex and let D denote its complement

in H: clearly H is obtained as the adjunction of the single loop u to D, contradicting our

hypothesis. This concludes the proof.

4. Classification results

Recall the standard numbering of types: (1) unary, (2) affine , (3) Boolean, (4) lattice
and (5) semilattice. We will need the following auxiliary result (which is well known). Note

that the assumptions of this lemma effectively say that CSP(T) can simulate the graph

k-colouring problem (with k = |U |) or the directed st-connectivity problem.

Lemma 4.1. Let S,T be structures, let s1, s2 ∈ S, and let R = {(f(s1), f(s2)) | f : S→ T}.

(1) If R = {(x, y) ∈ U2 | x 6= y} for some subset U ⊆ T with |U | ≥ 3 then V(AT)

admits type 1.
(2) If R = {(t, t), (t, t′), (t′, t′)} for some distinct t, t′ ∈ T then V(AT) admits at least

one of the types 1, 4, 5.

Proof [sketch]: The assumption of this lemma implies that AT has a subalgebra (induced by

U and {t, t′}, respectively) such that all operations of the subalgebra preserve the relation

R. It is well-known (see, e.g., [17]) that all operations preserving the disequality relation

on U are essentially unary, while it is easy to check that the order relation on a 2-element

set cannot admit operations satisfying identities (2.1)–(2.3), so one can use Lemma 2.1. �

The following lemma connects the characterisation of bi-arc graphs given in [4] with a

type-omitting condition.

Lemma 4.2. Let H be a graph. Then the following conditions are equivalent:

(1) the variety V(H) omits type 1;
(2) the graph H admits a conservative majority operation;
(3) the graph H is a bi-arc graph.

The results summarised in the following theorem are known (or easily follow from known

results, with a little help from Lemma 4.2).

Theorem 4.3. Let H be a graph.

• If typ(V(H)) admits type 1, then ¬CSP(HL) is not expressible in Datalog and
CSP(HL) is NP-complete (under first-order reductions);
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• if typ(V(H)) omits type 1 but admits type 4 then ¬CSP(HL) is not expressible in
symmetric Datalog but is expressible in linear Datalog, and CSP(HL) is NL-complete
(under first-order reductions.)

Proof. The first statement is shown in [22]. If the variety omits type 1, then HL admits

a majority operation by Lemma 4.2 and then ¬CSP(HL) is expressible in linear Datalog

by [10]; in particular the problem is in NL. If, furthermore, the variety admits type 4, then

¬CSP(HL) is not expressible in symmetric Datalog and is NL-hard by results in [22].

By Lemma 2.1, the presence of a majority operation in H implies that typ(V(H)) can

contain only types 3 and 4. Type 4 is dealt with in Theorem 4.3, so it remains to investigate

graphs H with typ(V(H)) = {3}.
The next theorem is the main result of this paper.

Theorem 4.4. Let H be a graph. Then the following conditions are equivalent:

(1) H admits conservative operations satisfying (2.1)–(2.3) for n = 3;
(2) H admits conservative operations satisfying (2.1)–(2.3) for some n ≥ 1;
(3) typ(V(H)) = {3};
(4) H ∈ L;
(5) ¬CSP(HL) is definable in symmetric Datalog.

If the above holds then CSP(HL) is in the complexity class L.

Proof [sketch]: (1) ⇒ (2) is trivial. If (2) holds then by Lemma 2.1 V(H) omits types 1, 4,

and 5. By Lemma 4.2, H admits a majority operation, so Lemma 2.1 implies that V(H) also

omits type 2; hence (3) holds. Implication (3)⇒(4) is the content of Lemma 4.5 below, and

(5) implies (3) by a result of [22]. By using Theorem 3.7, one can show that (4) implies both

(1) and (5). Finally, definability in symmetric Datalog implies membership in L by [12]. �

Lemma 4.5. If H 6∈ L then typ(V(H)) 6= {3}.

Proof. By Theorem 9.15 of [19], typ(V(H)) = {3} if and only if H admits a sequence

of conservative operations satisfying certain identities (in the spirit of (2.1)–(2.3)). By

conservativity, such operations can be restricted to any subset of H while satisfying the

same identities, so the property typ(V(H)) = {3} is inherited by induced subgraphs. It

follows that it is enough to prove this lemma for the forbidden graphs from Definition 3.3.

For the irreflexive odd cycles, the lemma follows immediately from the main results

of [3, 23]. The proof of Theorem 3.1 of [13] shows that the conditions of Lemma 4.1(1) are

satisfied by (some S, s1, s2 and) T = FL where F is the irreflexive 6-cycle. One can check

that the reflexive 4-cycle is not a bi-arc graph, so we can apply Lemma 4.2 in this case.

For the remaining forbidden graphs F from Definition 3.3, we use Lemma 4.1(2) with

T = FL. In each case, the binary relation of the structure S will be a short undirected

path, and s1, s2 will be the endpoints of the path. We will represent such a structure S by a

sequence of subsets of F (indicating lists assigned to vertices of the path). It can be easily

checked that, in each case, the relation R defined as in Lemma 4.1 is of the required form.

If F is the reflexive path of length 3, say a− b− c− d, then S = ac− bc− ad− ac. If F

is the irreflexive path of length 5, say a− b− c− d− e− f then S = ae− bd− ce− bf − ae.
For graphs B1−B6, we use notation from Fig. 1. For B1, S = bc− bc− ab− ab− bc. For

B2, S = bc− ac− ab− bc. For B3, S = bc− ad− bd− bc. For B4, S = ae− bd− cd− ae.
Finally, for both B5 and B6, S = ac− b′c′ − ab− a′c′ − ac.
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For completeness’ sake, we describe graphs whose list homomorphism problem is de-

finable in first-order logic (equivalently, is in AC0, see [6].) By results in [22], any problem

CSP(T) is either first-order definable or L-hard under FO reductions. Hence, it follows

from Theorem 4.4 that, for a graph H ∈ L, the list homomorphism problem for H is either

first-order definable or L-complete.

We need the following characterisation of structures whose CSP is first-order definable

[21]. Let T be a relational structure and let a, b ∈ T . We say that b dominates a in T if for

any relation R of T, and any tuple t ∈ R, replacement of any occurrence of a by b in t will

yield a tuple of R. Recall the definition of a direct power of a structure from Subsection 2.1.

If T is a relational structure, we say that the structure T2 dismantles to the diagonal if

there exists a sequence of elements {a0, . . . , an} = T 2 \ {(a, a) : a ∈ T} such that, for all

0 ≤ i ≤ n, ai is dominated in Ti, where T0 = T2 and Ti is the substructure of T2 induced

by T 2 \ {a0, . . . , ai−1} for i > 0.

Lemma 4.6 ([21]). Let T be a core relational structure. Then CSP(T) is first-order defin-
able if and only if T2 dismantles to the diagonal.

Theorem 4.7. Let H be a graph. Then CSP(HL) is first-order definable if and only if
H has the following form: H is the disjoint union of two sets L and N such that (i) L
is the set of loops of H and induces a complete graph, (ii) N is the set of non-loops of H

and induces a graph with no edges, and (iii) N = {x1, . . . , xm} can be ordered so that the
neighbourhood of xi is contained in the neighbourhood of xi+1 for all 1 ≤ i ≤ m− 1.

Proof. We first prove that conditions (i) and (ii) are necessary. Notice that if CSP(HL) is

first-order definable then so is CSP(KL) for any induced substructure K of H. Let x and

y be distinct vertices of H and let KL be the substructure of HL induced by {x, y}. If x
and y are non-adjacent loops, then θ(K) = {(x, x), (y, y)} the equality relation on {x, y}; if

x and y are adjacent non-loops, then θ(K) = {(x, y), (y, x)}, the adjacency relation of the

complete graph on 2 vertices. It is well known (and can be easily derived from Lemma 4.6)

that neither of these classes CSP(KL) is first-order definable. It follows that the loops of

H induce a complete graph and the non-loops induce a graph with no edges.

Now we prove (iii) is necessary. Suppose for a contradiction that there exist distinct

elements x and y of N and elements n and m of L such that m is adjacent to x but not

to y, and n is adjacent to y but not to x. Then CSP(G) is first-order definable, where G

is the substructure of HL induced by {x, y,m, n}. By Lemma 4.6, G2 dismantles to the

diagonal. Then (x, y) must be dominated by one of (x, x), (y, x) or (y, y), since domination

respects the unary relation {x, y}2 (on G2). But (m,n) is a neighbour of (x, y) and none of

the other three, a contradiction.

For the converse: we show that we can dismantle (HL)2 to the diagonal. Let x ∈ H:

then (x1, x) and (x, x1) are dominated by (x, x). Suppose that we have dismantled every

element containing a coordinate equal to xi with i ≤ j − 1: if x is any element of H such

that the elements (xj , x) and (x, xj) remain, then either x is a loop or x = xk with k ≥ j;
in any case the elements (xj, xk) and (xk, xj) are dominated by (x, x). In this way we can

remove all pairs (x, y) with one of x or y a non-loop. For the remaining pairs, notice that

if u and v are any loops then (u, v) is dominated (in what remains of (HL)2) by (u, u).

Finally, given a graph H, it can be decided in polynomial time which of the different

cases delineated in Theorems 4.3, 4.4, 4.7 the list homomorphism problem for H satisfies.

Indeed, it is known that bi-arc graphs can be recognised in polynomial time (see [14]).

Assume that H is a bi-arc graph: the forbidden substructure definition of the class L gives
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an AC0 algorithm to recognise them; and those graphs whose list homomorphism problem

is first-order definable can be recognised in polynomial time by results of [21].
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[18] P. Hell and J. Nešetřil. Colouring, constraint satisfaction, and complexity. Computer Science Review,

2(3):143–163, 2008.
[19] D. Hobby and R.N. McKenzie. The Structure of Finite Algebras. AMS, Providence, R.I., 1988.
[20] Ph.G. Kolaitis and M.Y. Vardi. A logical approach to constraint satisfaction. In Complexity of Con-

straints, volume 5250 of LNCS, pages 125–155. 2008.
[21] B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint satisfaction problems.

Logical Methods in Computer Science, 3(4), 2007. (electronic).
[22] B. Larose and P. Tesson. Universal algebra and hardness results for constraint satisfaction problems.

Theoretical Computer Science, 410(18):1629–1647, 2009.
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A. We study the maximum weight matching problem in the semi-streaming model, and im-
prove on the currently best one-pass algorithm due to Zelke (Proc. STACS ’08, pages 669–680) by
devising a deterministic approach whose performance guarantee is 4.91+ ε. In addition, we study
preemptiveonline algorithms, a sub-class of one-pass algorithms where we are only allowed to main-
tain a feasible matching in memory at any point in time. All known results prior to Zelke’s belong to
this sub-class. We provide a lower bound of 4.967 on the competitive ratio of any such deterministic
algorithm, and hence show that future improvements will have to store in memory a set of edges
which is not necessarily a feasible matching. We conclude by presenting an empirical study, con-
ducted in order to compare the practical performance of our approach to that of previously suggested
algorithms.

1. Introduction

The computational task of detecting maximum weight matchings is one of the most fundamen-
tal problems in discrete optimization, attracting plenty of attention from the operations research,
computer science, and mathematics communities. (For a wealth of references on matching prob-
lems see [16].) In such settings, we are given an undirected graphG = (V,E) whose edges are
associated with non-negative weights specified byw : E→ R+. A set of edgesM ⊆ E is amatching
if no two of the edges share a common vertex, that is, the degree of any vertex in (V,M) is at most 1.
The weightw(M) of a matchingM is defined as the combined weight of its edges, i.e.,

∑

e∈M w(e).
The objective is to compute a matching of maximum weight. We study this problem in two related
computational models: thesemi-streamingmodel and thepreemptive onlinemodel.

The semi-streaming model.Even though these settings appear to be rather simple as first glance, it
is worth noting that matching problems have an abundance of flavors, usually depending on how the
input is specified. In this paper, we investigate weighted matchings in thesemi-streamingmodel,
first suggested by Muthukrishnan [14]. Specifically, agraph streamis a sequenceei1 , ei2, . . . of
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distinct edges, whereei1, ei2, . . . is an arbitrary permutation ofE. When an algorithm is processing
the stream, edges are revealed sequentially, one at a time. Lettingn = |V| andm= |E|, efficiency in
this model is measured by the spaceS(n,m) a graph algorithm uses, the timeT(n,m) it requires to
process each edge, and the number of passesP(n,m) it makes over the input stream. Throughout the
paper, however, we focus on one-pass algorithms, that is,P(n,m) = 1. The main restriction is that
the spaceS(n,m) is limited toO(n · polylog(n)) bits of memory. We refer the reader to a number of
recent papers [14, 4, 5, 2, 12] and to the references therein for a detailed literature review.

Online version. Online matching has previously been modeled as follows [9]. Edges are presented
one by one to the algorithm, along with their weight. Once an edge is presented, we must make an
irrevocable decision, whether to accept it or not. An edge may be accepted only if its addition to
the set of previously accepted edges forms a feasible matching. In other words, an algorithm must
keep a matching at all times, and its final output consists of all edges which were ever accepted.
In this model, it is easy to verify that the competitive ratio of any (deterministic or randomized)
algorithm exceeds any function of the number of vertices, meaning that no competitive algorithm
exists. However, if all weights are equal, a greedy approach which accepts an edge whenever
possible, has a competitive ratio of 2, which is best possible for deterministic algorithms [9].

Similarly to other online settings (such as call control problems [6]), a preemptive model can
be defined, allowing us to remove a previously accepted edge from the current matching at any
point in time; this event is calledpreemption. Nevertheless, an edge which was either rejected or
preempted cannot be inserted to the matching later on. We point out that other types of online
matching problems were studied as well [9, 7, 10, 1].

Comparison between the models. Both one-pass semi-streaming algorithms and online algo-
rithms perform a single scan of the input. However, unlike semi-streaming algorithms, online algo-
rithms are allowed to concurrently utilize memory for two different purposes. The first purpose is
obviously to maintain the current solution, which must always be a feasible matching, implying that
the memory size of this nature is bounded by the maximal size of a matching. The second purpose is
to keep track of arbitrary information regarding the past, without any concrete bound on the size of
memory used. Therefore, in theory, online algorithms are allowed to use much larger memory than
is allowed in the semi-streaming model. Moreover, although this possibility is rarely used, online
algorithms may perform exponential time computations whenever a new piece of input is revealed.
On the other hand, a semi-streaming algorithm may re-insert an edge to the current solution, even
if it has been temporarily removed, as long as this edge was kept in memory. This extra power is
not allowed for online (preemptive) algorithms, making them inferior in this sense in comparison to
their semi-streaming counterparts.

Previous work. Feigenbaum et al. [4] were the first to study matching problems under similar
assumptions. Their main results in this context were a semi-streaming algorithm that computes a
(3/2 + ε)-approximation inO(log(1/ε)/ε) passes for maximum cardinality matching in bipartite
graphs, as well as a one-pass 6-approximation for maximum weighted matching in arbitrary graphs.
Later on, McGregor [12] improved on these findings, to obtain performance guarantees of (1+ ε)
and (2+ ε) for the maximum cardinality and maximum weight versions, respectively, being able
to handle arbitrary graphs with only a constant number of passes (depending on 1/ε). In addition,
McGregor [12] tweaked the one-pass algorithm of Feigenbaum et al. into achieving a ratio of 5.828.
Finally, Zelke [17] has recently attained an improved approximation factor of 5.585, which stands as
the currently best one-pass algorithm. Note that the 6-approximation algorithm in [4] and the 5.828-
approximation algorithm in [12] are preemptive online algorithms. On the other hand, the algorithm
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of Zelke [17] uses the notion of shadow-edges, which may be re-inserted into the matching, and
hence it is not an online algorithm.

Main result I. The first contribution of this paper is to improve on the above-mentioned results,
by devising a deterministic one-pass algorithm in the semi-streaming model, whose performance
guarantee is 4.91+ ε. In a nutshell, our approach is based on partitioning the edge set intoO(logn)
weight classes, and computing a separate maximal matching for each such class in online fashion,
usingO(n · polylog(n)) memory bits overall. The crux lies in proving that the union of these match-
ings contains a single matching whose weight compares favorably to the optimal one. The specifics
of this algorithm are presented in Section 2.

Main result II. Our second contribution is motivated by the relation between semi-streaming al-
gorithms andpreemptiveonline algorithms, which must maintain a feasible matching at any point
in time. To our knowledge, there are currently no lower bounds on the competitive ratio that can
be achieved by incorporating preemption. Thus, we also provide a lower bound of 4.967 on the
performance guarantee of any such deterministic algorithm. As a result, we show that improved one
pass algorithms for this problem must store more than just a matching in memory. Further details
are provided in Section 3.

Main result III. We conclude with the first ever experimental study in the context of semi-
streaming algorithms for matching problems, conducted in order to compare the practical perfor-
mance of our approach to that of previously suggested algorithms. In Section 4, we demonstrate
that by carefully calibrating some cut-off parameters, combined with the idea of running multiple
algorithms in parallel, one can achieve practical performance guarantees that far exceed theoretical
ones, at least when real-life instances are considered.

2. The Semi-Streaming Algorithm

This section is devoted to obtaining main result I, that is, an improved one-pass algorithm for
the weighted matching problem in the semi-streaming model. We begin by presenting a simple
deterministic algorithm with a performance guarantee of 8. We then show how to randomize its
parameters, still within the semi-streaming framework, and obtain an expected approximation ratio
of 4.9108. Finally, we de-randomize the algorithm by showing how to emulate the required ran-
domness using multiple copies (constant number) of the deterministic algorithm, while paying an
additional additive factor of at mostε, for any fixedε > 0.

2.1. A simple deterministic approach

Preliminaries. We maintain the maximum weight of any edgewmax seen so far in the input
stream. Clearly, the maximum weight matching of the edges seen so far has weight in the interval
[

wmax,
n
2wmax

]

. We denote a maximum weight matching and its cost by; it should be clear which

one is meant from the context. Note that if we disregard all edges with weight at most2ε̃wmax
n , the

weight of the maximum weight matching in the resulting instance decreases by an additive term of
at most ˜εwmax ≤ ε̃ .

Our algorithm has a parameterγ > 1, and a valueφ > 0. We define weight classes of edges
in the following way. For everyi ∈ Z, we let the classWi be the collection of edges whose weight
is in the interval

[

φγi , φγi+1
)

. We note that by our initial assumption, the weight of each edge is in

the interval
[

2ε̃wmax
n ,wmax

]

, and we say that a weight classWi is under considerationif its weight
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interval
[

φγi , φγi+1
)

intersects
[

2ε̃wmax
n ,wmax

]

. The number of classes which are under consideration

at any point in time isO
(

logγ
n
ε̃

)

.

The algorithm. Our algorithm simply maintains the list of classes under consideration and main-
tains a maximal (unweighted) matching for each such class. In other words, when the value ofwmax

changes, we delete from the memory some of these matchings, corresponding to classes that are
no longer under consideration. Note that to maintain a maximal matching in a given subgraph, we
only need to check if the two endpoints of the new edge are not covered by existing edges of the
matching.

To conclude, for every new edgee ∈ E we proceed as follows. We first check ifw(e) is greater
than the current value ofwmax. If so, we updatewmax and the list of weight classes under consid-
eration accordingly. Then, we find the weight class ofw(e), and try to extend its corresponding
matching; i.e.,ewill be added to this matching if it remains a matching after doing so.

Note that at each point the content of the memory is comprised of a fixed number of parameter
values and a collection ofO

(

logγ
n
ε̃

)

matchings, consisting ofO
(

n logγ
n
ε̃

)

edges overall. Therefore,
our algorithm indeed falls in the semi-streaming model.

At the conclusion of the input sequence, we need to return a single matching rather than a
collection of matchings. To this end, we could compute a maximum weighted matching of the edges
in the current memory. However, for the specific purposes of our analysis, we use the following
faster algorithm. We sort the edges in memory in decreasing order of weight classes, such that
the edges inWi appear before those inWi−1, for everyi. Using this sorted list of edges, we apply
a greedy algorithm for selecting a maximal matching, in which the current edge is added to this
matching if it remains a matching after doing so. Then, the post-processing time needed is linear in
the size of the memory used, that is,O

(

n logγ
n
ε̃

)

. This concludes the presentation of the algorithm
and its implementation as a semi-streaming algorithm.

Analysis. For purposes of analysis, we round down the weight of each edge so that the weight of
all edges inWi equalsφγi . This way, we obtainroundededge weights. For our optimal solution
let us denote by′ its rounded weight. The next claim follows from the definition ofWi.

Lemma 2.1.  ≤ γ ′.

As an intermediate step, we analyze an improved algorithm that keeps all weight classes. That
is, for eachi, we useMi to denote the maximal matching of classWi at the end of the input, and
denote byM the solution obtained by this algorithm, if we would have applied it. Similarly, we
denote byi the set of edges in which belong toWi. For everyi, we define the set of vertices
Pi, associated withWi, to be the set of endpoints of edges inMi that are not associated with higher
weight classes:

Pi = { u, v | (u, v) ∈ Mi} \ (Pi+1 ∪ Pi+2 ∪ · · · ).

For a vertexp ∈ Pi, we define its associated weight to beφγi . For vertices which do not belong
to anyPi, we let their associated weight be zero. We next bound the total associated weight of all
vertices.

Lemma 2.2. The total associated weight of all vertices is at most2γ
γ−1 ·w(M).

Proof. Consider a vertexu ∈ Pi and let (u, v) be the edge inMi adjacent tou. If (u, v) ∈ M then
we charge the weight associated withu to the edge (u, v). Thus, an edgee ∈ Mi is charged at most
twice from vertices associated with its own weight class. Otherwise, if (u, v) < M then there must
be some other edgee∈ M ∩M j, for somej > i, that prevented us from adding (u, v) to M, in which
case we charge the weight associated withu to e. Notice thatu < e, or otherwise,u would not be
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associated withWi . Thus, the edgee ∈ M j must be of the forme = (v, x) and can only be charged
twice from vertices in weight classi, once throughv and once throughx.

To bound the ratio betweenw(M) and the total associated weight of the vertices, it suffices to
bound the ratio between the weight of an edgee∈ M and the total associated weight of the vertices
which are charged toe. Assume thate ∈ M j, then there are at most two vertices which are charged
to e and classi for all i ≤ j, and no vertex is associated toe and classi for i > j. Hence, the total
associated weight of these vertices is at most

2
∑

i≤ j

φγi < 2φγ j ·

∞
∑

i=0

1
γi
= 2φγ j ·

1
1− 1/γ

= φγ j ·
2γ
γ − 1

,

and the claim follows sincew(e) ≥ φγ j .

It remains to bound′ with respect to the total associated weight.

Lemma 2.3. The total weight associated with all vertices is at most′.

Proof. It suffices to show that for every edgee = (x, y) ∈ i the maximum of the associated
weights ofx andy is at least the rounded weight ofe. Suppose that this claim does not hold, then
x andy are not covered byMi, as otherwise their associated weight would be at leastφγi . Hence,
when the algorithm considerede, we would have addede to Mi, contradicting our assumption that
x andy are not covered byMi.

Now instead of considering all weight categories, we construct the matchingM only using
edges with weight at least2ε̃wmax

n . Using the above sequence of lemmas, and recalling that we lose
another 1

1−ε̃ factor in the approximation ratio due to disregarding these cheap edges, we obtain the
following inequality:

 ≤ γ′ ≤
1

1− ε̃
·

2γ2

γ − 1
· w(M). (2.1)

For anyε > 0, setting ˜ε = ε

(2γ2/(γ−1))+ε , we get an approximation ratio of2γ
2

γ−1 + ε. This ratio is

optimized forγ = 2, where it equals (8+ ε). Hence, we have established the following theorem.

Theorem 2.4. For any fixedε > 0, there is a deterministic one-pass semi-streaming algorithm
whose approximation ratio is8+ ε.

2.2. Improved approximation ratio through randomization

In what follows, we analyze a randomized variant of the deterministic algorithm which was
presented in the previous subsection. In general, this variant sets the value ofφ to beφ = γδ whereδ
is a random variable. This method is commonly referred to asrandomized geometric grouping[8].

Formally, letδ be a continuous random variable which is uniformly distributed on the interval
[0, 1). We define the weight classWi(δ) to be the edges whose weight is in the interval

[

γi+δ, γi+1+δ
)

,
and run the algorithm as in the previous subsection. Note that this algorithm uses only the partition
of the edges into classes and not the precise values of their weights. In addition, we denote byM(δ)
the resulting matching obtained by the algorithm, and byTW(δ) the total associated weight of the
vertices, where for a vertexp ∈ Pi we define its associated weight to beγi+δ; i.e., the minimal value
in the interval definingWi(δ). We also denote by′(δ) the value of′ for this particularδ.

For any fixed value ofδ, inequality (2.1) immediately implies′(δ) ≤
(

2γ
γ−1 + ε

)

· w(M(δ)).
Note that′(δ) andw(M(δ)) are random variables, such that for each realization ofδ the above
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inequality holds. Hence, this inequality holds also for their expected values. That is, we have
established the following lemma where Eδ[·] represents expectation with respect to the random
variableδ.

Lemma 2.5. Eδ[′(δ)] ≤
(

2γ
γ−1 + ε

)

· Eδ[w(M(δ))].

We next upper bound in terms of Eδ[′(δ)].

Lemma 2.6. γ ln γ
γ−1 · Eδ[

′(δ)] ≥ .

Proof. We will show the corresponding inequality for each edgee ∈ . We denote byw′
δ
(e) the

rounded weight ofe for a specific value ofδ. Then, it suffices to show thatγ ln γ
γ−1 · Eδ[w

′
δ
(e)] ≥ w(e).

Let p be an integer, and let 0≤ α < 1 be the value that satisfiesw(e) = γp+α. Then, forδ ≤ α,
w′
δ
(e) = γp+δ, and forδ > α, w′

δ
(e) = γp−1+δ, thus the expected rounded weight ofeover the choices

of δ is

Eδ[w
′
δ(e)] =

∫ α

0
γp+δdδ +

∫ 1

α

γp−1+δdδ =
1

ln γ
·
(

γp(γα − 1) + γp−1(γ − γα)
)

= w(e) ·

(

1−
1
γ

)

1
ln γ
,

and the claim follows.

Combining the above two lemmas we obtain that the expected weight of the resulting solution

is at least
(

(γ−1)2

2γ2 lnγ + ε

)

·. This approximation ratio is optimized forγ ≈ 3.513, where it is roughly

(4.9108+ ε). Hence, we have established the following theorem.

Theorem 2.7. For any fixedε > 0, there is a randomized one-pass semi-streaming algorithm whose
expected approximation ratio is roughly4.9108+ ε.

2.3. Derandomization

Prior to presenting our de-randomization, we slightly modify the randomized algorithm of the
previous subsection. In this variation, instead of pickingδ uniformly at random from the interval
[0, 1) we pickδ′ uniformly at random from the discrete set

{

0, 1
q ,

2
q , . . . ,

q−1
q

}

, whereq is a param-
eter whose value will be determined later. We apply the same method as in the previous section,
replacingδ by δ′. Then, using Lemma 2.5, we obtain Eδ′ [′(δ′)] ≤

(

2γ
γ−1 + ε

)

· Eδ′ [w(M(δ′))]. To
extend Lemma 2.6 to this new setting, we note thatδ′ can be obtained by first pickingδ and then
rounding it down to the largest number in

{

0, 1
q,

2
q, . . . ,

q−1
q

}

which is at mostδ. In this way, we
couple the distributions ofδ andδ′. Now consider the rounded weight of an edgee in  in the two
distinct values ofδ andδ′. The ratio between the two rounded weights is at mostγ1/q. Therefore,
we establish thatγ ln γ

γ−1 · γ
1/q · Eδ′ [′(δ′)] ≥ , and the resulting approximation ratio of the new

variation is 2γ2+1/q ln γ
(γ−1)2 + ε. By settingq to be large enough (pickingq =

⌈

log−1
γ (ε/5)

⌉

is sufficient),

the resulting approximation ratio is bounded by2γ2 ln γ
(γ−1)2 + 2ε.

De-randomizing the new variation in the semi-streaming model is straightforward. We simply
run in parallel allq possible outcomes of the algorithm, one for each possible value ofδ′, and pick
the best solution among theq solutions obtained. Sinceq is a constant (for fixed values ofε), the
resulting algorithm is still a semi-streaming algorithm whose performance guarantee is 4.9108+2ε.
By scalingε prior to applying the algorithm, we establish the following result.
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Theorem 2.8. For any fixedε > 0, there is a deterministic one-pass semi-streaming(4.9108+ ε)-
approximation algorithm for the weighted matching problem. This algorithm processes each input
edge in constant time and required O(n) time at the end of the input to compute the final output.

3. Online Preemptive Matching

In this section, we establish the following theorem.

Theorem 3.1. The competitive ratio of any deterministic preemptive online algorithm is at least
R − ε for anyε > 0, whereR ≈ 4.967 is the unique real solution of the equation x3 = 4(x2 + x+ 1).

Recall that the algorithm of Feigenbaum et al. [4] and that of McGregor [12] can be viewed as
online preemptive algorithms; their competitive ratios are 6 and 5.828, respectively.

Definitions and properties. LetC = R − ε for some arbitrary but fixedε > 0. Our goal is to show
that the competitive ratio of any deterministic algorithm is at leastC. To this end, we construct an
input graph iteratively. In the construction of the input, edge weights come from two sequences.
The main sequencew1,w2, . . ., and the additional sequence isw′1,w

′
2, . . ., are defined as follows:

wi =















1 i=1
1

2C+1

(

(C2 + 1)wi−1 − C
∑i−2

j=1 w j

)

i>1
w′i =















1 i=1
1
C

(

(C + 1)wi − wi−1

)

i>1
(3.1)

The sequences are defined according to (3.1) as long aswi−1 ≥ wi−2. As soon aswn−1 < wn−2

for somen, both sequences stop withwn andw′n, respectively. In the full version [3] of this paper
we show that the sequences are well defined in the sense that they indeed have finite length. Let
Si =

∑i
j=1 w j andS0 = 0.

From the definition (3.1) and simple algebra, one can derive the following properties of these
sequences. We omit their justification due to lack of space.

Property 1. For all i = 1, . . . , n− 2 we havewi ≤ w′i , butwn−1 > w′n−1.

Property 2. For all i = 1, . . . , n− 2 we haveCwi = Si−1 + wi+1 + w′i+1.

Property 3. For all i = 1, . . . , n− 2 we haveCw′i = Si−2 + wi + wi+1 + w′i+1.

Input construction, step 1. To better understand our construction, we advise the reader to consult
Figure 1. The input is created inn steps. In the initial step, two edges (a1, x1) and (b1, x1), each of
weight w1, are introduced. Assume that after both edges have arrived, the online algorithm keeps
the edge (a1, x1).

Every future step can be of two distinct types, which will be described later on. We maintain
the following invariants throughout the construction.

Invariant 1. Immediately after theith step, the setMi = {(x1, b1), . . . , (xi , bi)} forms a matching.

Invariant 2. Immediately after theith step, the algorithm keeps a single edgeei , which can be one
of two edges:

i) If ei = (xi , ai) then its weight iswi andai is unmatched inMi.
ii) If ei = (yi , ci) then its weight isw′i , yi = x j for some j < i, andci is unmatched inMi.
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Figure 1: An example of five steps of the lower bound construction. The curved edges denote the
edge kept by the online algorithm at each time. In the first two steps, the edges (xi , ai)
are chosen by the algorithm. In the third step, (x3, a3) is not chosen by the algorithm, so
(y3, c3) arrives next. In the fourth step, (x4, a4) is not chosen by the algorithm, so (y4, c4)
arrives next. In the fifth step, (x5, a5) is chosen by the algorithm, so no further edges
arrive in this step.

The invariants clearly holds after the first step: The algorithm keeps (x1, a1) anda1 is free in
M1 = {(x1, b1)}. We next define the subsequent steps and show that the invariants holds throughout.

Input construction, step i + 1 < n. We now show how to construct the edges of stepi + 1, for
the casei + 1 < n. We introduce two new edges of weightwi+1. Let xi+1 beai if ei = (xi , ai), and
xi+1 be ci if ei = (yi , ci). The new edges are (xi+1, bi+1), and (xi+1, ai+1), whereai+1 andbi+1 are
new vertices. According to Invariant 2, the vertexxi+1 is unmatched inMi. It follows thatMi+1 is a
matching and thus Invariant 1 holds in this step. Both edges have a common endpoint with the edge
that the algorithm has, and the algorithm can either preemptei , in which case we assume (without
loss of generality) that it now has (xi+1, ai+1), or else it keeps the previous edge. If the algorithm
holds ontoei then letyi+1 be xi if ei = (xi , ai), andyi+1 be yi if ei = (yi , ci). In this case a third
edge, (yi+1, ci+1), with weight ofw′i+1 is introduced. The vertexci+1 is new. There are four cases
to consider depending on which edge the algorithm had at the end of theith step and whether it is
preempted right away or not.

In the first case, the algorithm hasei = (xi , ai) at the end of theith step and replaces it with
(xi+1, ai+1) = (ai , ai+1). Sinceai+1 is a new vertex (and different thanxi+1) it follows thatai+1 is free
in Mi+1. Thus, case i) of Invariant 2 holds.

In the second case, the algorithm hasei = (yi , ci) at the end of theith step and it replaces it with
(xi+1, ai+1) = (ci , ai+1). It follows thatai+1 is free inMi+1. Thus, case ii) of Invariant 2 holds.

For the remaining two cases note that ifw′i ≤ 0 or wi < 0 and the algorithm has a single
edge of weightw′i or wi , respectively, then the optimal solution is strictly positive and the value
of the algorithm is non-positive, hence the resulting approximation ratio in this case is unbounded.
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Consequently, we can assume without loss of generality that if the algorithm has a single edge at
the end of stepi then its weight is strictly positive.

Now consider the case where the algorithm hasei = (ai , xi) at the end of theith step but does
not replace it with (xi+1, ai+1) = (ai , ai+1). If this happens, we show that the algorithm must replace
the edge with (yi+1, ci+1) = (xi , ci+1). Assume that this is not the case. Then the profit of the
algorithm iswi. Consider the solutionMi+1 − (xi , bi) + (yi+1, ci+1). The cost of this matching is
Si+1−wi+w′i+1, which equalsCwi, by Property 2. In other words, the solution kept by the algorithm
isC-competitive. Since our goal is to prove precisely this, we can assume this event never happens.
Thus, the algorithm must switch to the edge (yi+1, ci+1), which leads us to case ii) of Invariant 2.

Finally, consider the case where the algorithm hasei = (yi , ci) at the end of theith step but
does not replace it with (xi+1, ai+1) = (ci , ai+1). If this happens, we show that the algorithm must
replace the edge with (yi+1, ci+1) = (yi , ci+1). Assume that this is not the case. Then the profit of the
algorithm isw′i . Consider the solutionMi+1 − (x j , b j) + (yi+1, ci+1), where j < i is the index from
case ii) in Invariant 2 that corresponds toei . The cost of this matching is at leastSi+1 −wi−1 +w′i+1,
which equalsCw′i , by Property 3. As in the previous case, we can assume this never happens. Thus,
the algorithm must switch to the edge (xi+1, ai+1), which leads us to case ii) of Invariant 2.

This finishes the description of the input graph construction, as well as the justification that
Invariants 1 and 2 hold at each step along the way.

Bounding the competitive ratio. We next define a recursive formula forSi . By definition (3.1) of
the sequencewi, we have























S0 = 0
S1 = 1
Sk+1 =

C2+2C+2
2C+1 Sk −

C2+C+1
2C+1 Sk−1, for k ≥ 1

(3.2)

Lemma 3.2. There exists a value of n such that wn−2 > wn−1; for this value,Sn−1
wn−1
> C holds.

Proof. The first claim is proved by solving the recurrence (3.2), using standard tools [3]. To prove
the second part, note thatwn−2 > wn−1 is equivalent toSn−1 −Sn−2 < Sn−2 −Sn−3. Hence using the
recursive formula we conclude that

Sn−1 − 2Sn−2 +
2C + 1

−C2 − C − 1
Sn−1 +

C2 + 2C + 2
C2 + C + 1

Sn−2 < 0,

that is,
Sn−1 · (C

2 + C + 1− 2C − 1)+ Sn−2 · (C
2 + 2C + 2− 2C2 − 2C − 2) < 0,

which is equivalent to (C2−C)Sn−1 −C
2Sn−2 < 0, soC(Sn−1−Sn−2) < Sn−1, and we conclude that

Cwn−1 < Sn−1, as claimed.

Everything is in place to prove the main claim of this section.

Proof of Theorem 3.1.From Invariant 2, we conclude that at the end of iterationn−1, the algorithm
only has the edgeen−1, which can have weightw′n−1 or wn−1. From Property 1, it follows that
max{wn−1,w′n−1} = wn−1. On the other hand, from Invariant 1, we know that there is a matching
with costSn−1. Therefore, the competitive ratio of any algorithm is at leastSn−1

wn−1
. From Lemma 3.2

we then conclude that the competitive ratio is at leastC.
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4. Experimental Evaluation

In this section, we present the results of an empirical study, conducted in order to compare the
practical performance of our approach to that of previously suggested algorithms. More specifically,
the complete set of algorithms that have been implemented and extensively tested can be briefly
listed as follows:

• : The algorithm described in Section 2, which keepsO
(

log n
ǫ

)

matchings.
• : The algorithm of McGregor [12], based on keeping a single matching at all times.
• : The algorithm of Zelke [17], with two shadow edges for each matching edge.

For and, we made use of an addition optimization phase, in which a maximum
weight matching is computed among the edges that were kept in memory. The main reason for this
extra effort is that we were interested in determining the best possible practical performance that
can be extracted out of these algorithms, rather than in worse case performance and nothing more.
We point out that this phase is performed only once, and that one can always employ a linear-time
approximation [11] should running time be a concern.

Special features. Each of above-mentioned algorithms is parameterized. Typically, this parameter
is chosen to minimize the worst-case approximation ratio obtained in theory. However, this choice
need not be the one leading to the best performance in practice. Therefore, we considered three
versions of each algorithm, with different parameters: one was chosen empirically to obtain best
possible guarantees; another is the value emanating from the theoretical analysis; and the last one
is just averaging these two. We also examined the consequences of combining different algorithms.
Under this scheme, all algorithms are executed in parallel and, at the end, a maximum weight
matching is computed with respect to the collection of edges kept by any of these algorithms.

Actual tests performed. We evaluated, , and with test graphs of roughly
1000 vertices. Following the approach of previous experimental papers in this context [13, 11], we
investigated three different classes of graphs:

• Geometric: Points were drawn uniformly at random from the unit square; the weight of an
edge is the Euclidean distance between its endpoints.
• Real world: Points are taken from geometric instances in the TSPLIB [15]; once again,

edge weights are determined by Euclidean distances.
• Random: The weight of each edge is an integer picked uniformly and independently at

random from 1, . . . , |V|.

From each of these classes, we generated 10 base instances. In addition, as the performance
of all algorithms under consideration depends heavily on the particular order by which edges are
revealed, each algorithm was tested on every base instance for 200 independent runs, with a random
edge permutation each time. To speed up the experiments all graphs were sparsified by keeping, for
each vertex, the connections to one third of its closest nodes. The results are presented in Figure 2.

Conclusions. One can notice right away that the algorithms in question perform significantly better
when their respective parameters are set considerably lower than the best theoretical value (1.2 for
, and 1.1 for and). With this optimization in place, it appears that and
 have comparable performance, but outperform.

Regarding the combination of several algorithms, we compared for each algorithm the com-
bined output of its three versions (depending on parameter setting) and the outcome of combining
the best version of each of the three algorithms. We consistently observed that it is preferable to
combine the output of completely different algorithms rather than the same algorithm with different
parameters.
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(b) Geometric. Combined algorithms.
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(c) Random. Individual algorithms.
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(d) Random. Combined algorithms.
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(e) Real. Individual algorithms.
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(f) Real. Combined algorithms.

Figure 2: The results of individual algorithms appear on the left column, while the performance
of combining them is shown on the right. The algorithms are specified as x-axis labels
using first letters (L for, O for , and S for), followed by the precise
parameter value for that version. Box plots describing the outcome of our experiments
are given above. Each box contains outcomes with performance between the .25 and .75
quartile, where the horizontal line inside designated the median.
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Finally, we point out that, as it is often the case for approximation algorithms, the observed
performance of all algorithms is significantly better than the theoretical worst case guarantee. It
is worth noting, however, that their performance is still worse than traditional heuristics (such as
the greedy algorithm) that are not constrained by the extent of memory usage. For example, in
geometric graphs, these heuristics can recover on average 99% of the optimal value [11], whereas
none of the individual algorithms can recover more than 90%.
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ABSTRACT. We study systems of equations of the formX1 = f1(X1, . . . , Xn), . . . , Xn =
fn(X1, . . . , Xn) where eachfi is a polynomial with nonnegative coefficients that add up to1. The
least nonnegative solution, sayµ, of such equation systems is central to problems from various areas,
like physics, biology, computational linguistics and probabilistic program verification. We give a
simple and strongly polynomial algorithm to decide whetherµ = (1, . . . , 1) holds. Furthermore, we
present an algorithm that computes reliable sequences of lower and upper bounds onµ, converging
linearly toµ. Our algorithm has these features despite using inexact arithmetic for efficiency. We
report on experiments that show the performance of our algorithms.

1. Introduction

We study how to efficiently compute the least nonnegative solution of an equation system of
the form

X1 = f1(X1, . . . ,Xn) . . . Xn = fn(X1, . . . ,Xn) ,

where, for everyi ∈ {1, . . . , n}, fi is a polynomial overX1, . . . ,Xn with positive rational coef-
ficients thatadd up to 1.1 The solutions are the fixed points of the functionf : R

n → R
n with

f = (f1, . . . , fn). We callf aprobabilistic system of polynomials(short:PSP). E.g., the PSP

f(X1,X2) =

(

1

2
X1X2 +

1

2
,

1

4
X2X2 +

1

4
X1 +

1

2

)

induces the equation system

X1 = 1

2
X1X2 + 1

2
X2 = 1

4
X2X2 + 1

4
X1 + 1

2
.

Obviously, 1 = (1, . . . , 1) is a fixed point of every PSP. By Kleene’s theorem, every PSP has a
least nonnegative fixed point (called just least fixed point in what follows), given by the limit of the
sequence0, f(0), f(f(0)), . . .

PSPs are important in different areas of the theory of stochastic processes and computational
models. A fundamental result of the theory of branching processes, with numerous applications in
physics, chemistry and biology (see e.g. [9, 2]), states that extinction probabilities of species are
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1Later, we allow that the coefficients add up toat most1.
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equal to the least fixed point of a PSP. The same result has been recently shown for the probability
of termination of certain probabilistic recursive programs [7, 6]. The consistency of stochastic
context-free grammars, a problem of interest in statistical natural language processing, also reduces
to checking whether the least fixed point of a PSP equals1 (see e.g. [11]).

Given a PSPf with least fixed pointµf , we study how to efficiently solve the following two
problems: (1) decide whetherµf = 1, and (2) given a rational numberǫ > 0, computelb,ub ∈ Q

n

such thatlb ≤ µf ≤ ub and ub − lb ≤ ǫ (whereu ≤ v for vectorsu,v means≤ in all
components). While the motivation for Problem (2) is clear (compute the probability of extinction
with a given accuracy), the motivation for Problem (1) requires perhaps some explanation. In the
case study of Section 4.3 we consider a family of PSPs, taken from [9], modelling the neutron
branching process in a ball of radioactive material of radiusD (the family is parameterized byD).
The least fixed point is the probability that a neutron produced through spontaneous fissiondoes
not generate an infinite “progeny” through successive collisions with atoms of the ball; loosely
speaking, this is the probability that the neutrondoes notgenerate a chain reaction and the balldoes
notexplode. Since the number of atoms in the ball is very large, spontaneous fission produces many
neutrons per second, and so even if the probability that a given neutron produces a chain reaction is
very small, the ball will explode with large probability in a very short time. It is therefore important
to determine the largest radiusD at which the probability of no chain reaction is still1 (usually
called thecritical radius). An algorithm for Problem (1) allows to compute the critical radius using
binary search. A similar situation appears in the analysis of parameterized probabilistic programs.
In [7, 6] it is shown that the question whether a probabilistic program almost surely terminates can
be reduced to Problem (1). Using binary search one can find the “critical” value of the parameter
for which the program may not terminate any more.

Etessami and Yannakakis show in [7] that Problem (1) can be solved in polynomial time by
a reduction to (exact) Linear Programming (LP), which is not known to be strongly polynomial.
Our first result reduces Problem (1) to solving a system of linear equations, resulting in a strongly
polynomial algorithm for Problem (1). The Maple library offers exact arithmetic solvers for LP and
systems of linear equations, which we use to test the performance of our new algorithm. In the
neutron branching process discussed above we obtain speed-ups of about one order of magnitude
with respect to LP.

The second result of the paper is, to the best of our knowledge, the first practical algorithm for
Problem (2). Lower bounds forµf can be computed using Newton’s method for approximating a
root of the functionf(X) −X . This has recently been investigated in detail [7, 10, 5]. However,
Newton’s method faces considerable numerical problems. Experiments show that naive use of exact
arithmetic is inefficient, while floating-point computation leads to false results even for very small
systems. For instance, the PReMo tool [12], which implements Newton’s method with floating-
point arithmetic for efficiency, reportsµf ≥ 1 for a PSP with only 7 variables and small coefficients,
althoughµf < 1 is the case (see Section 3.1).

Our algorithm produces a sequence of guaranteed lower and upper bounds, both of which con-
verge linearly toµf . Linear convergence means that, loosely speaking, the number of accurate bits
of the bound is a linear function of the position of the bound in the sequence. The algorithm is
based on the following idea. Newton’s method is an iterative procedure that, given a current lower
boundlb onµf , applies a certain operatorN to it, yielding a new, more precise lower boundN (lb).
Instead of computingN (lb) using exact arithmetic, our algorithm computestwoconsecutive New-
ton steps, i.e.,N (N (lb)), usinginexactarithmetic. Then it checks if the result satisfies a carefully
chosen condition. If so, the result is taken as the next lower bound. If not, then the precision is
increased, and the computation redone. The condition is eventually satisfied, assuming the results
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of computing with increased precision converge to the exact result. Usually, the repeated inexact
computation is much faster than the exact one. At the same time, a careful (and rather delicate)
analysis shows that the sequence of lower bounds converges linearly toµf .

Computingupperbounds is harder, and seemingly has not been considered in the literature be-
fore. Similarly to the case of lower bounds, we applyf twice toub, i.e., we computef(f(ub)) with
increasing precision until a condition holds. The sequence so obtained may not even converge toµf .
So we need to introduce a further operation, after which we can then prove linear convergence.

We test our algorithm on the neutron branching process. The time needed to obtain lower and
upper bounds on the probability of no explosion withǫ = 0.0001 lies below the time needed to
check, using exact LP, whether this probability is1 or smaller than one. That is, in this case study
our algorithm is faster, and provides more information.

The rest of the paper is structured as follows. We give preliminary definitions and facts in
Section 2. Sections 3 and 4 present our algorithms for solving Problems (1) and (2), and report on
their performance on some case studies. Section 5 contains our conclusions. The full version of the
paper, including all proofs, can be found in [4].

2. Preliminaries

Vectors and matrices.We use bold letters for designating (column) vectors, e.g.v ∈ R
n. We write

s with s ∈ R for the vector(s, . . . , s)⊤ ∈ R
n (where⊤ indicates transpose), if the dimensionn

is clear from the context. Thei-th component ofv ∈ R
n will be denoted byvi. We writex = y

(resp.x ≤ y resp.x ≺ y) if xi = yi (resp.xi ≤ yi resp.xi < yi) holds for alli ∈ {1, . . . , n}.
By x < y we meanx ≤ y andx 6= y. By R

m×n we denote the set of real matrices withm rows
andn columns. We writeId for the identity matrix. For a square matrixA, we denote byρ(A)
thespectral radiusof A, i.e., the maximum of the absolute values of the eigenvalues. A matrix is
nonnegativeif all its entries are nonnegative. A nonnegative matrixA ∈ R

n×n is irreducible if for
everyk, l ∈ {1, . . . , n} there exists ani ∈ N so that(Ai)kl 6= 0.

Probabilistic Systems of Polynomials.We investigate equation systems of the form

X1 = f1(X1, . . . ,Xn) . . . Xn = fn(X1, . . . ,Xn),

where thefi are polynomials in the variablesX1, . . . ,Xn with positive real coefficients, and for
every polynomialfi the sum of its coefficients isat most1. The vectorf := (f1, . . . , fn)⊤ is called
a probabilistic system of polynomials(PSP for short) and is identified with its induced function
f : R

n → R
n. If X1, . . . ,Xn are the formal variables off , we defineX := (X1, . . . ,Xn)⊤

and Var(f) := {X1, . . . ,Xn}. We assume thatf is represented as a list of polynomials, and each
polynomial is a list of its monomials. IfS ⊆ {X1, . . . ,Xn}, thenfS denotes the result of removing
the polynomialfi(X1, . . . ,Xn) from f for everyxi /∈ S; further, givenx ∈ R

n andB ∈ R
n×n,

we denote byxS andBSS the vector and the matrix obtained fromx andB by removing the entries
with indicesi such thatXi 6∈ S. The coefficients are represented as fractions of positive integers.
Thesizeof f is the size of that representation. Thedegreeof f is the maximum of the degrees of
f1, . . . , fn. PSPs of degree0 (resp.1 resp.>1) are calledconstant(resp. linear resp.superlinear).
PSPsf where the degree of eachfi is at least2 are calledpurely superlinear. We writef ′ for the
Jacobianof f , i.e., the matrix of first partial derivatives off .

Given a PSPf , a variableXi depends directlyon a variableXj if Xj “occurs” in fi, more
formally if ∂fi

∂Xj
is not the constant0. A variableXi dependson Xj if Xi depends directly onXj
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or there is a variableXk such thatXi depends directly onXk andXk depends onXj . We often
consider thestrongly connected components(or SCCs for short) of the dependence relation. The
SCCs of a PSP can be computed in linear time using e.g. Tarjan’s algorithm. An SCCS of a PSPf
is constantresp.linear resp.superlinearresp.purely superlinearif the PSPf̃ has the respective
property, wheref̃ is obtained by restrictingf to theS-components and replacing all variables not
in S by the constant1. A PSP is anscPSPif it is not constant and consists of only one SCC. Notice
that a PSPf is an scPSP if and only iff ′(1) is irreducible.

A fixed point of a PSPf is a vectorx ≥ 0 with f(x) = x. By Kleene’s theorem, there exists
a least fixed pointµf of f , i.e., µf ≤ x holds for every fixed pointx. Moreover, the sequence
0, f(0), f(f(0)), . . . converges toµf . Vectorsx with x ≤ f(x) (resp.x ≥ f(x)) are calledpre-
fixed(resp.post-fixed) points. Notice that the vector1 is always a post-fixed point of a PSPf , due
to our assumption on the coefficients of a PSP. By Knaster-Tarski’s theorem,µf is the least post-
fixed point, so we always have0 ≤ µf ≤ 1. It is easy to detect and remove all componentsi with
(µf )i = 0 by a simple round-robin method (see e.g. [5]), which needs linear time in the size off .
We therefore assume in the following thatµf ≻ 0.

3. An algorithm for consistency of PSPs

Recall that for applications like the neutron branching process it is crucial to know exactly
whetherµf = 1 holds. We say a PSPf is consistentif µf = 1; otherwise it isinconsistent.
Similarly, we call a componenti consistent if(µf )i = 1. We present a new algorithm for the
consistency problem, i.e., the problem to check a PSP for consistency.

It was proved in [7] that consistency is checkable in polynomial time by reduction to Linear
Programming (LP). We first observe that consistency of general PSPs can be reduced to consistency
of scPSPs by computing the DAG of SCCs, and checking consistency SCC-wise [7]: Take any
bottom SCCS, and check the consistency offS. (Notice thatfS is either constant or an scPSP;
if constant,fS is consistent ifffS = 1, if an scPSP, we can check its consistency by assumption.)
If fS is inconsistent, then so isf , and we are done. IffS is consistent, then we remove everyfi

from f such thatxi ∈ S, replace all variables ofS in the remaining polynomials by the constant1,
and iterate (choose a new bottom SCC, etc.). Note that this algorithm processes each polynomial at
most once, as every variable belongs to exactly one SCC.

It remains to reduce the consistency problem for scPSPs to LP. The first step is:

Proposition 3.1. [9, 7] An scPSPf is consistent iffρ(f ′(1)) ≤ 1 (i.e., iff the spectral radius of
the Jacobi matrixf ′ evaluated at the vector1 is at most1).

The second step consists of observing that the matrixf ′(1) of an scPSPf is irreducible and non-
negative. It is shown in [7] thatρ(A) ≤ 1 holds for an irreducible and nonnegative matrixA iff the
system of inequalities

Ax ≥ x + 1 , x ≥ 0 (3.1)

is infeasible. However, no strongly polynomial algorithm for LP is known, and we are not aware
that (3.1) falls within any subclass solvable in strongly polynomial time [8].

We provide a very simple, strongly polynomial time algorithm to check whetherρ(f ′(1)) ≤ 1
holds. We need some results from Perron-Frobenius theory (see e.g. [3]).

Lemma 3.2. LetA ∈ R
n×n be nonnegative and irreducible.

(1) ρ(A) is asimpleeigenvalue ofA.
(2) There exists an eigenvectorv ≻ 0 with ρ(A) as eigenvalue.
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(3) Every eigenvectorv ≻ 0 hasρ(A) as eigenvalue.
(4) For all α, β ∈ R \ {0} andv > 0: if αv < Av < βv, thenα < ρ(A) < β.

The following lemma is the key to the algorithm:

Lemma 3.3. LetA ∈ R
n×n be nonnegative and irreducible.

(a) Assume there isv ∈ R
n \{0} such that(Id −A)v = 0. Thenρ(A) ≤ 1 iff v ≻ 0 or v ≺ 0.

(b) Assumev = 0 is the only solution of(Id − A)v = 0. Then there exists a uniquex ∈ R
n

such that(Id −A)x = 1, andρ(A) ≤ 1 iff x ≥ 1 and Ax < x.

Proof.

(a) From(Id − A)v = 0 it follows Av = v. We see thatv is an eigenvector ofA with
eigenvalue1. Soρ(A) ≥ 1.
(⇐): As bothv and−v are eigenvectors ofA with eigenvalue1, we can assume w.l.o.g.
thatv ≻ 0. By Lemma 3.2(3),ρ(A) is the eigenvalue ofv, and soρ(A) = 1.
(⇒): Sinceρ(A) ≤ 1 andρ(A) ≥ 1, it follows thatρ(A) = 1. By Lemma 3.2(1) and
(2), the eigenspace of the eigenvalue1 is one-dimensional and contains a vectorx ≻ 0. So
v = α · x for someα ∈ R, α 6= 0. If α > 0, we havev ≻ 0, otherwisev ≺ 0.

(b) With the assumption and basic facts from linear algebra it follows that(Id − A) has full
rank and therefore(Id−A)x = 1 has a unique solutionx. We still have to prove the second
part of the conjunction:
(⇐): Follows directly from Lemma 3.2(4).
(⇒): Let ρ(A) ≤ 1. Assume for a contradiction thatρ(A) = 1. Then, by Lemma 3.2(1),
the matrixA would have an eigenvectorv 6= 0 with eigenvalue1, so (Id − A)v = 0,
contradicting the assumption. So we have, in fact,ρ(A) < 1. By standard matrix facts
(see e.g. [3]), this implies that(Id − A)−1 = A∗ =

∑∞
i=0

Ai exists, and so we have
x = (Id −A)−11 = A∗1 ≥ 1. Furthermore,Ax =

∑∞
i=1

Ai1 <
∑∞

i=0
Ai1 = x.

In order to check whetherρ(A) ≤ 1, we first solve the system(Id −A)v = 0 using Gaussian
elimination. If we find a vectorv 6= 0 such that(Id−A)v = 0, we apply Lemma 3.3(a). Ifv = 0 is
the only solution of(Id−A)v = 0, we solve(Id −A)v = 1 using Gaussian elimination again, and
apply Lemma 3.3(b). Since Gaussian elimination of a rationaln-dimensional linear equation system
can be carried out in strongly polynomial time usingO(n3) arithmetic operations (see e.g. [8]), we
obtain:

Proposition 3.4. Given a nonnegative irreducible matrixA ∈ R
n×n, one can decide in strongly

polynomial time, usingO(n3) arithmetic operations, whetherρ(A) ≤ 1.

Combining Propositions 3.1 and 3.4 directly yields an algorithm for checking the consistency
of scPSPs. Extending it to multiple SCCs as above, we get:

Theorem 3.5. Let f(X1, . . . ,Xn) be a PSP. There is a strongly polynomial time algorithm that
usesO(n3) arithmetic operations and determines the consistency off .

3.1. Case study: A family of “almost consistent” PSPs

In this section, we illustrate some issues faced by algorithms that solve the consistency problem.
Consider the following familyh(n) of scPSPs,n ≥ 2:

h(n) =
(

0.5X2
1 + 0.1X2

n + 0.4 , 0.01X2
1 + 0.5X2 + 0.49 , . . . , 0.01X2

n−1 + 0.5Xn + 0.49
)⊤

.



364 J. ESPARZA, A. GAISER, AND S. KIEFER

n = 25 n = 100 n = 200 n = 400 n = 600 n = 1000
Exact LP < 1 sec 2 sec 8 sec 67 sec 208 sec > 2h
Our algorithm < 1 sec < 1 sec 1 sec 4 sec 10 sec 29 sec

Table 1: Consistency checks forh(n)-systems: Runtimes of different approaches.

It is not hard to show thath(n)(p) ≺ p holds forp = (1− 0.02n, . . . , 1− 0.022n−1)⊤, so we have
µh(n) ≺ 1 by Proposition 4.4, i.e., theh(n) are inconsistent.

The tool PReMo [12] relies on Java’s floating-point arithmetic to compute approximations of
the least fixed point of a PSP. We invoked PReMo for computing approximants ofµh(n) for different
values ofn between5 and100. Due to its fixed precision, PReMo’s approximations forµh(n) are
≥ 1 in all components ifn ≥ 7. This might lead to the wrong conclusion thath(n) is consistent.

Recall that the consistency problem can be solved by checking the feasibility of the system (3.1)
with A = f ′(1). We checked it with lpsolve, a well-known LP tool using hardware floating-point
arithmetic. The tool wrongly states that (3.1) has no solution forh(n)-systems withn > 10. This is
due to the fact that the solutions cannot be represented adequately using machine number precision.2

Finally, we also checked feasibility with Maple’s Simplex package, which uses exact arithmetic, and
compared its performance with the implementation, also in Maple, of our consistency algorithm. Ta-
ble 1 shows the results. Our algorithm clearly outperforms the LP approach. For more experiments
see Section 4.3.

4. Approximating µf with inexact arithmetic

It is shown in [7] thatµf may not be representable by roots, so one can only approximateµf . In
this section we present an algorithm that computes two sequences,(lb(i))i and(ub(i))i, such that
lb(i) ≤ µf ≤ ub(i) andlimi→∞ ub(i) − lb(i) = 0. In words: lb(i) andub(i) are lower and upper
bounds onµf , respectively, and the sequences converge toµf . Moreover, they converge linearly,
meaning that thenumber of accurate bitsof lb(i) andub(i) are linear functions ofi. (The number of
accurate bits of a vectorx is defined as the greatest numberk such that|(µf − x)j |/|(µf )j | ≤ 2−k

holds for all j ∈ {1, . . . , n}.) These properties are guaranteed even though our algorithm uses
inexact arithmetic: Our algorithm detects numerical problems due to rounding errors, recovers from
them, and increases the precision of the arithmetic as needed. Increasing the precision dynamically
is, e.g., supported by the GMP library [1].

Let us make precise what we mean by increasing the precision. Consider an elementary op-
erationg, like multiplication, subtraction, etc., that operates on two input numbersx andy. We
cancomputeg(x, y) with increasing precisionif there is a procedure that on inputx, y outputs a
sequenceg(1)(x, y), g(2)(x, y), . . . that converges tog(x, y). Note that there are no requirements
on the convergence speed of this procedure — in particular, we do not require that there is ani
with g(i)(x, y) = g(x, y). This procedure, which we assume exists, allows to implementfloating
assignmentsof the form

z

 

g(x, y) such thatφ(z)

with the following semantics:z is assigned the valueg(i)(x, y), wherei ≥ 1 is the smallest index
such thatφ(g(i)(x, y)) holds. We say that the assignment isvalid if φ(g(x, y)) holds andφ involves

2The mentioned problems of PReMo and lpsolve are not due to the fact that the coefficients ofh
(n) cannot be

properly represented using basis 2: The problems persist if one replaces the coefficients ofh
(n) by similar numbers

exactly representable by machine numbers.
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only continuous functions and strict inequalities. Our assumption on the arithmetic guarantees that
(the computation underlying) a valid floating assignment terminates. As “syntactic sugar”, more
complex operations (e.g., linear equation solving) are also allowed in floating assignments, because
they can be decomposed into elementary operations.

We feel that any implementation of arbitrary precision arithmetic should satisfy our require-
ment that the computed values converge to the exact result. For instance, the documentation of
the GMP library [1] states: “Each function is defined to calculate with ‘infinite precision’ followed
by a truncation to the destination precision, but of course the work done is only what’s needed to
determine a result under that definition.”

To approximate the least fixed point of a PSP, we first transform it into a certain normal form. A
purely superlinear PSPf is calledperfectly superlinearif every variable depends directly on itself
and every superlinear SCC is purely superlinear. The following proposition states that any PSPf
can be made perfectly superlinear.

Proposition 4.1. Letf be a PSP of sizes. We can compute in timeO(n · s) a perfectly superlinear
PSPf̃ with Var(f̃) = Var(f) ∪ {X̃} of sizeO(n · s) such thatµf = (µf̃ )Var(f).

4.1. The algorithm

The algorithm receives as input a perfectly superlinear PSPf and an error boundǫ > 0, and
returns vectorslb,ub such thatlb ≤ µf ≤ ub and ub − lb ≤ ǫ. A first initialization step
requires to compute a vectorx with 0 ≺ x ≺ f(x), i.e., a “strict” pre-fixed point. This is done in
Section 4.1.1. The algorithm itself is described in Section 4.1.2.

4.1.1. Computing a strict pre-fixed point.Algorithm 1 computes a strict pre-fixed point:

Algorithm 1 : ProcedurecomputeStrictPrefix
Input : perfectly superlinear PSPf
Output : x with 0 ≺ x ≺ f(x) ≺ 1
x← 0;
while 0 6≺ x do

Z ← {i | 1 ≤ i ≤ n, fi(x) = 0};
P ← {i | 1 ≤ i ≤ n, fi(x) > 0};
yZ ← 0;
yP

 

fP (x) such that0 ≺ yP ≺ fP (y) ≺ 1;
x← y;

Proposition 4.2. Algorithm 1 is correct and terminates after at mostn iterations.

The reader may wonder why Algorithm 1 uses a floating assignmentyP

 

fP (x), given that
it must also perform exact comparisons to obtain the setsZ andP and to decide exactly whether
yP ≺ fP (y) holds in thesuch that clause of the floating assignment. The reason is that, while we
perform such operations exactly, we do not want to use theresultof exact computations as input for
other computations, as this easily leads to an explosion in the required precision. For instance, the
size of the exact result offP (y) may be larger than the size ofy, while an approximation of smaller
size may already satisfy thesuch that clause. In order to emphasize this, weneverstore the result
of an exact numerical computation in a variable.
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4.1.2. Computing lower and upper bounds.Algorithm 1 uses Kleene iteration0, f(0), f(f(0)), . . .
to compute a strict pre-fixed point. One could, in principle, use the same scheme to compute lower
bounds ofµf , as this sequence converges toµf from below by Kleene’s theorem. However, conver-
gence of Kleene iteration is generally slow. It is shown in [7] that for the1-dimensional PSPf with
f(X) = 0.5X2 + 0.5 we haveµf = 1, and thei-th Kleene approximantκ(i) satisfiesκ(i) ≤ 1− 1

i .
Hence, Kleene iteration may converge only logarithmically, i.e., the number of accurate bits is a
logarithmic function of the number of iterations.

In [7] it was suggested to use Newton’s method for faster convergence. In order to see how
Newton’s method can be used, observe that instead of computingµf , one can equivalently compute
the least nonnegative zero off(X)−X. Given an approximantx of µf , Newton’s method first
computesg(x)(X), the first-order linearization off at the pointx:

g(x)(X) = f(x) + f ′(x)(X − x)

The next Newton approximanty is obtained by solvingX = g(x)(X), i.e.,

y = x + (Id − f ′(x))−1(f(x)− x) .

We writeNf (x) := x + (Id − f ′(x))−1(f(x) − x), and usually drop the subscript ofNf . If
ν

(0) ≤ µf is any pre-fixed point off , for instanceν(0) = 0, we can define aNewton sequence
(ν(i))i by settingν(i+1) = N (ν(i)) for i ≥ 0. It has been shown in [7, 10, 5] that Newton sequences
converge at least linearly toµf . Moreover, we have0 ≤ ν

(i) ≤ f(ν(i)) ≤ µf for all i.
These facts were shown only for Newton sequences that are computed exactly, i.e., without

rounding errors. Unfortunately, Newton approximants are hard to compute exactly: Since each
iteration requires to solve a linear equation system whose coefficients depend on the results of the
previous iteration, the size of the Newton approximants easily explodes. Therefore, we wish to
use inexact arithmetic, but without losing the good properties of Newton’s method (reliable lower
bounds, linear convergence).

Algorithm 2 accomplishes these goals, and additionally computes post-fixed pointsub of f ,
which are upper bounds onµf . Let us describe the algorithm in some detail. The lower
bounds are stored in the variablelb. The first value oflb is not simply0, but is computed by
computeStrictPrefix(f), in order to guarantee the validity of the following floating assign-
ments. We use Newton’s method for improving the lower bounds because it converges fast (at least
linearly) when performed exactly. In each iteration of the algorithm,two Newton steps are per-
formed using inexact arithmetic. The intention is that two inexact Newton steps should improve the
lower bound at least as much as one exact Newton step. While this may sound like a vague hope
for small rounding errors, it can be rigorously proved thanks to thesuch that clause of the floating
assignment in line 4. The proof involves two steps. The first step is to prove thatN (N (lb)) is a
(strict) post-fixed point of the functiong(X) = f(lb) + f ′(lb)(X − lb), i.e.,N (N (lb)) satisfies
the first inequality in thesuch that clause. For the second step, recall thatN (lb) is the least fixed
point of g. By Knaster-Tarski’s theorem,N (lb) is actually the least post-fixed point ofg. So, our
valuex, the inexact version ofN (N (lb)), satisfiesx ≥ N (lb), and hence two inexact Newton
steps are in fact at least as “fast” as one exact Newton step. Thus, thelb converge linearly toµf .

The upper boundsub are post-fixed points, i.e.,f(ub) ≤ ub is an invariant of the algorithm.
The algorithm computes the setsZ andP so that inexact arithmetic is only applied to the compo-
nentsi with fi(ub) < 1. In theP -components, the functionf is applied toub in order to improve
the upper bound. In fact,f is applied twice in line 9, analogously to applyingN twice in line 4.
Here, thesuch thatclause makes sure that the progress towardsµf is at least as fast as the progress
of one exact application off would be. One can show that this leads to linear convergence toµf .
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Algorithm 2 : ProcedurecalcBounds
Input : perfectly superlinear PSPf , error boundǫ > 0
Output : vectorslb,ub such thatlb ≤ µf ≤ ub andub− lb ≤ ǫ
lb← computeStrictPrefix(f);1

ub← 1;2

while ub− lb 6≤ ǫ do3

x

 

N (N (lb)) such that f(lb) + f ′(lb)(x− lb) ≺ x ≺ f(x) ≺ 1;4

lb← x;5

Z ← {i | 1 ≤ i ≤ n, fi(ub) = 1};6

P ← {i | 1 ≤ i ≤ n, fi(ub) < 1};7

yZ ← 1;8

yP

 

fP (f(ub)) such thatfP (y) ≺ yP ≺ fP (ub);9

forall superlinear SCCsS of f with yS = 1 do10

t← 1− lbS ;11

if f ′
SS(1)t ≻ t then12

yS

 

1−min

{

1,
mini∈S(f ′

SS(1)t − t)i

2 ·maxi∈S(fS(2))i

}

· t such that fS(y) ≺ yS ≺ 1;
13

ub← y;14

The rest of the algorithm (lines 10-13) deals with the problemthat, given a post-fixedub, the
sequenceub, f(ub), f(f(ub)), . . . does not necessarily converge toµf . For instance, iff(X) =
0.75X2 + 0.25, thenµf = 1/3, but 1 = f(1) = f(f(1)) = · · · . Therefore, the if-statement
of Algorithm 2 allows to improve the upper bound from1 to a post-fixed point less than1, by
exploiting the lower boundslb. This is illustrated in Figure 1 for a2-dimensional scPSPf . The

(a) (b)

Figure 1: Computation of a post-fixed point less than1.
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dotted lines indicate the curve of the points(X1,X2) satisfyingX1 = 0.8X1X2 + 0.2 andX2 =
0.4X2

1
+ 0.1X2 + 0.5. Notice thatµf ≺ 1 = f(1). In Figure 1 (a) the shaded area consists of

those pointslb wheref ′(1)(1 − lb) ≻ 1 − lb holds, i.e., the condition of line 12. One can show
thatµf must lie in the shaded area, so by continuity, any sequence converging toµf , in particular
the sequence of lower boundslb, finally reaches the shaded area. In Figure 1 (a) this is indicated
by the points with the square shape. Figure 1 (b) shows how to exploit such a pointlb to compute
a post-fixed pointub ≺ 1 (post-fixed points are shaded in Figure 1 (b)): The post-fixed pointub

(diamond shape) is obtained by starting at1 and moving a little bit along the straight line between
1 and lb, cf. line 13. The sequenceub, f(ub), f(f(ub)), . . . now converges linearly toµf .

Theorem 4.3. Algorithm 2 terminates and computes vectorslb,ub such thatlb ≤ µf ≤ ub and
ub− lb ≤ ǫ. Moreover, the sequences of lower and upper bounds computed by the algorithm both
converge linearly toµf .

Notice that Theorem 4.3 is about the convergence speed of the approximants, not about the time
needed to compute them. To analyse the computation time, one would need stronger requirements
on how floating assignments are performed.

The lower and upper bounds computed by Algorithm 2 have a special feature: they satisfy
lb ≺ f(lb) andub ≥ f(ub). The following proposition guarantees that such points are in fact
lower and upper bounds.

Proposition 4.4. Let f be a perfectly superlinear PSP. Let0 ≤ x ≤ 1. If x ≺ f(x), thenx ≺ µf .
If x ≥ f(x), thenx ≥ µf .

So a user of Algorithm 2 can immediately verify that the computed bounds are correct. To summa-
rize, Algorithm 2 computes provably and even verifiably correct lower and upper bounds, although
exact computation is restricted to detecting numerical problems. See Section 4.3 for experiments.

4.2. Proving consistency using the inexact algorithm

In Section 3 we presented a simple and efficient algorithm to check the consistency of a PSP.
Algorithm 2 is aimed at approximatingµf , but note that it can also prove the inconsistency of a
PSP: when the algorithm setsubi < 1, we know(µf )i < 1. This raises the question whether
Algorithm 2 can also be used for proving consistency. The answer is yes, and the procedure is
based on the following proposition.

Proposition 4.5. Letf be an scPSP. Lett ≻ 0 be a vector withf ′(1)t ≤ t. Thenf is consistent.

Proposition 4.5 can be used to identify consistent components.
Use Algorithm 2 with some (small)ǫ to computeub andlb. Take any bottom SCCS.

• If f ′(1)(1 − lbS) ≤ 1 − lbS , mark all variables inS as consistent and remove theS-
components fromf . In the remaining components, replace all variables inS with 1.
• Otherwise, removeS and all other variables that depend onS from f .

Repeat with the new bottom SCC until all SCCs are processed.
There is no guarantee that this method detects alli with (µf )i = 1.
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D 2 3 6 10
n 20 50 100 20 50 100 20 50 100 20 50 100

inconsistent (yes/no) n n n y y y y y y y y y
Cons. check (Alg. Sec. 3)< 1 < 1 2 < 1 < 1 2 < 1 < 1 2 < 1 < 1 2
Cons. check (exact LP) < 1 20 258 < 1 22 124 < 1 16 168 < 1 37 222
Approx.QD (ǫ = 10−3) < 1 < 1 4 2 8 32 1 5 21 1 4 17
Approx.QD (ǫ = 10−4) < 1 < 1 4 2 8 34 2 7 28 1 6 23

Table 2: Runtime in seconds of various algorithms on different values ofD andn.

4.3. Case study: A neutron branching process

One of the main applications of the theory of branching processes is the modelling of cascade
creation of particles in physics. We study a problem described by Harris in [9]. Consider a ball of
fissionable radioactive material of radiusD. Spontaneous fission of an atom can liberate a neutron,
whose collision with another atom can produce further neutrons etc. IfD is very small, most
neutrons leave the ball without colliding. IfD is very large, then nearly all neutrons eventually
collide, and the probability that the neutron’s progeny never dies is large. A well-known result shows
that, loosely speaking, the population of a process that does not go extinct grows exponentially over
time with large probability. Therefore, the neutron’s progeny never dying out actually means that
after a (very) short time all the material is fissioned, which amounts to a nuclear explosion. The
task is to compute the largest value ofD for which the probability of extinction of a neutron born
at the centre of the ball is still1 (if the probability is1 at the centre, then it is1 everywhere). This
is often called the critical radius. Notice that, since the number of atoms that undergo spontaneous
fission is large (some hundreds per second for the critical radius of plutonium), if the probability of
extinction lies only slightly below 1, there is already a large probability of a chain reaction. Assume
that a neutron born at distanceξ from the centre leaves the ball without colliding with probability
l(ξ), and collides with an atom at distanceη from the centre with probability densityR(ξ, η). Let
further f(x) =

∑

i≥0
pix

i, wherepi is the probability that a collision generatesi neutrons. For a
neutron’s progeny to go extinct, the neutron must either leave the ball without colliding, or collide
at some distanceη from the centre, but in such a way that the progeny of all generated neutrons goes
extinct. So the extinction probabilityQD(ξ) of a neutron born at distanceξ from the centre is given
by [9], p. 86:

QD(ξ) = l(ξ) +

∫ D

0

R(ξ, η)f(QD(η)) dη

Harris takesf(x) = 0.025 + 0.830x + 0.07x2 + 0.05x3 + 0.025x4, and gives expressions for both
l(ξ) andR(ξ, η). By discretizing the interval[0,D] into n segments and replacing the integral by
a finite sum we obtain a PSP of dimensionn + 1 over the variables{QD(jD/n) | 0 ≤ j ≤ n}.
Notice thatQD(0) is the probability that a neutron born in the centre does not cause an explosion.

Results.For our experiments we used three different discretizationsn = 20, 50, 100. We applied
our consistency algorithm from Section 3 and Maple’s Simplex to check inconsistency, i.e., to check
whether an explosion occurs. The results are given in the first 3 rows of Table 2: Again our algorithm
dominates the LP approach, although the polynomials are much denser than in theh(n)-systems.

We also implemented Algorithm 2 using Maple for computing lower and upper bounds
on QD(0) with two different values of the error boundǫ. The runtime is given in the last two
rows. By setting theDigits variable in Maple we controlled the precision of Maple’s software
floating-point numbers for the floating assignments. In all cases starting with the standard value
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of 10, Algorithm 2 increasedDigits at most twice by5, resulting in a maximalDigits value of20.
We mention that Algorithm 2 computed an upper bound≺ 1, and thus proved inconsistency, after
the first few iterations in all investigated cases, almost as fast as the algorithm from Section 3.

Computing approximations for the critical radius.After computingQD(0) for various values ofD
one can suspect that the critical radius, i.e., the smallest value ofD for which QD(0) = 1, lies
somewhere between 2.7 and 3. We combined binary search with the consistency algorithm from
Section 3 to determine the critical radius up to an error of0.01. During the binary search, the algo-
rithm from Section 3 has to analyze PSPs that come closer and closer to the verge of (in)consistency.
For the last (and most expensive) binary search step that decreases the interval to0.01, our algorithm
took <1, 1, 3, 8 seconds forn = 20, 50, 100, 150, respectively. Forn = 150, we found the critical
radius to be in the interval[2.981, 2.991]. Harris [9] estimates2.9.

5. Conclusions

We have presented a new, simple, and efficient algorithm for checking the consistency of PSPs,
which outperforms the previously existing LP-based method. We have also described the first al-
gorithm that computes reliable lower and upper bounds onµf . The sequence of bounds converges
linearly toµf . To achieve these properties without sacrificing efficiency, we use a novel combina-
tion of exact and inexact (floating-point) arithmetic. Experiments on PSPs from concrete branching
processes confirm the practicality of our approach. The results raise the question whether our com-
bination of exact and inexact arithmetic could be transferred to other computational problems.
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Malostranské nám. 2/25, 118 00, Prague, Czech Republic
E-mail address: fiala@kam.mff.cuni.cz

E-mail address: bernard@kam.mff.cuni.cz

2 Computer Science Department, Université Libre de Bruxelles,
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Abstract. Testing whether there is an induced path in a graph spanning k given vertices
is already NP-complete in general graphs when k = 3. We show how to solve this problem
in polynomial time on claw-free graphs, when k is not part of the input but an arbitrarily
fixed integer.

1. Introduction

Many interesting graph classes are closed under vertex deletion. Every such class can

be characterized by a set of forbidden induced subgraphs. One of the best-known examples

is the class of perfect graphs. A little over 40 years after Berge’s conjecture, Chudnovsky et

al. [18] proved that a graph is perfect if and only if it contains neither an odd hole (induced

cycle of odd length) nor an odd antihole (complement of an odd hole). This motivates the

research of detecting induced subgraphs such as paths and cycles, which is the topic of this

paper. To be more precise, we specify some vertices of a graph called the terminals and

study the computational complexity of deciding if a graph has an induced subgraph of a

certain type containing all the terminals. In particular, we focus on the following problem.
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k-in-a-Path

Instance: a graph G with k terminals.

Question: does there exist an induced path of G containing the k terminals?

Note that in the problem above, k is a fixed integer. Clearly, the problem is polynomially

solvable for k = 2. Haas and Hoffmann [11] consider the case k = 3. After pointing out

that this case is NP-complete as a consequence of a result by Fellows [9], they prove W[1]-

completeness (where they take as parameter the length of an induced path that is a solution

for 3-in-a-Path). Derhy and Picouleau [6] proved that the case k = 3 is NP-complete even

for graphs with maximum degree at most three.

A natural question is what will happen if we relax the condition of “being contained

in an induced path” to “being contained in an induced tree”. This leads to the following

problem.

k-in-a-Tree

Instance: a graph G with k terminals.

Question: does there exist an induced tree of G containing the k terminals?

As we will see, also this problem has received a lot of attention in the last two years. It

is NP-complete if k is part of the input [6]. However, Chudnovsky and Seymour [4] have

recently given a deep and complicated polynomial-time algorithm for the case k = 3.

Theorem 1.1 ([4]). The 3-in-a-Tree problem is solvable in polynomial time.

The computational complexity of k-in-a-Tree for k = 4 is still open. So far, only

partial results are known, such as a polynomial-time algorithm for k = 4 when the input

is triangle-free by Derhy, Picouleau and Trotignon [7]. This result and Theorem 1.1 were

extended by Trotignon and Wei [20] who showed that k-in-a-Tree is polynomially solvable

for graphs of girth at least k. The authors of [7] also show that it is NP-complete to decide

if a graph G contains an induced tree T covering four specified vertices such that T has at

most one vertex of degree at least three.

In general, k-in-a-Path and k-in-a-Tree are only equivalent for k ≤ 2. However, in

this paper, we study claw-free graphs (graphs with no induced 4-vertex star). Claw-free

graphs are a rich and well-studied class containing, e.g., the class of (quasi)-line graphs

and the class of complements of triangle-free graphs; see [8] for a survey. Notice that any

induced tree in a claw-free graph is in fact an induced path.

Observation 1.2. The k-in-a-Path and k-in-a-Tree problem are equivalent for the class

of claw-free graphs.

Motivation. The polynomial-time algorithm for 3-in-a-Tree [4] has already proven to be

a powerful tool for several problems. For instance, it is used as a subroutine in polynomial

time algorithms for detecting induced thetas and pyramids [4] and several other induced

subgraphs [16]. The authors of [12] use it to solve the Parity Path problem in polynomial

time for claw-free graphs. (This problem is to test if a graph contains both an odd and even

length induced paths between two specified vertices. It is NP-complete in general as shown

by Bienstock [1].)

Lévêque et al. [16] use the algorithm of [4] to solve the 2-Induced Cycle problem

in polynomial time for graphs not containing an induced path or subdivided claw on some

fixed number of vertices. The k-Induced Cycle problem is to test if a graph contains an

induced cycle spanning k terminals. In general it is NP-complete already for k = 2 [1]. For

fixed k, an instance of this problem can be reduced to a polynomial number of instances
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of the k-Induced Disjoint Paths problem, which we define below. Paths P1, . . . , Pk in

a graph G are said to be mutually induced if for any 1 ≤ i < j ≤ k, Pi and Pj have

neither common vertices (i.e. V (Pi)∩V (Pj) = ∅) nor adjacent vertices (i.e. uv /∈ E for any

u ∈ V (Pi), v ∈ V (Pj)).

k-Induced Disjoint Paths

Instance: a graph G with k pairs of terminals (si, ti) for i = 1, . . . , k.

Question: does G contain k mutually induced paths Pi such that Pi connects si and ti for

i = 1, . . . , k?

This problem is NP-complete for k = 2 [1]. Kawarabayashi and Kobayashi [14] showed

that, for any fixed k, the k-Induced Disjoint Paths problem is solvable in linear time on

planar graphs and that consequently k-Induced Disjoint Cycle is solvable in polynomial

time on this graph class for any fixed k. In [15], Kawarabayashi and Kobayashi improve the

latter result by presenting a linear time algorithm for this problem, and even extend the

results for both these problems to graphs of bounded genus. As we shall see, we can also

solve k-Induced Disjoint Paths and k-Induced Cycle in polynomial time in claw-free

graphs. The version of the problem in which any two paths are vertex-disjoint but may have

adjacent vertices is called the k-Disjoint Paths problem. For this problem Robertson and

Seymour [17] proved the following result.

Theorem 1.3 ([17]). For fixed k, the k-Disjoint Paths problem is solvable in polynomial
time.

Our Results and Paper Organization. In Section 2 we define some basic terminology.

Section 3 contains our main result: k-in-a-Path is solvable in polynomial time in claw-free

graphs for any fixed integer k. This, in fact, follows from a stronger theorem proved in

Section 4; the problem is solvable in polynomial time even if the terminals are to appear

on the path in a fixed order. A consequence of our result is that the k-Induced Disjoint

Paths and k-Induced Cycle problems are polynomially solvable in claw-free graphs for

any fixed integer k. In Section 4 we present our polynomial-time algorithm that solves

the ordered version of k-in-a-Path. The algorithm first performs “cleaning of the graph”.

This is an operation introduced in [12]. After cleaning the graph is free of odd antiholes

of length at least seven. Next we treat odd holes of length five that are contained in the

neighborhood of a vertex. The resulting graph is quasi-line. Finally, we solve the problem

using a recent characterization of quasi-line graphs by Chudnovsky and Seymour [3] and

related algorithmic results of King and Reed [13]. In Section 5 we mention relevant open

problems.

2. Preliminaries

All graphs in this paper are undirected, finite, and neither have loops nor multiple edges.

Let G be a graph. We refer to the vertex set and edge set of G by V = V (G) and E = E(G),

respectively. The neighborhood of a vertex u in G is denoted by NG(u) = {v ∈ V | uv ∈ E}.
The subgraph of G induced by U ⊆ V is denoted G[U ]. Analogously, the neighborhood of

a set U ⊆ V is N(U) :=
⋃

u∈U N(u) \ U . We say that two vertex-disjoint subsets of V are

adjacent if some of their vertices are adjacent. The distance d(u, v) between two vertices u
and v in G is the number of edges on a shortest path between them. The edge contraction
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of an edge e = uv removes its two end vertices u, v and replaces it by a new vertex adjacent

to all vertices in N(u) ∪N(v) (without introducing loops or multiple edges).

We denote the path and cycle on n vertices by Pn and Cn, respectively. Let P =

v1v2 . . . vp be a path with a fixed orientation. The successor vi+1 of vi is denoted by v+
i and

its predecessor vi−1 by v−i . The segment vivi+1 . . . vj is denoted by vi
−→
P vj. The converse

segment vjvj−1 . . . vi is denoted by vj
←−
P vi.

A hole is an induced cycle of length at least 4 and an antihole is the complement of a

hole. We say that a hole is odd if it has an odd number of edges. An antihole is called odd

if it is the complement is an odd hole.

A claw is the graph ({x, a, b, c}, {xa, xb, xc}), where vertex x is called the center of the

claw. A graph is claw-free if it does not contain a claw as an induced subgraph. A clique is

a subgraph isomorphic to a complete graph. A diamond is a graph obtain from a clique on

four vertices after removing one edge. A vertex u in a graph G is simplicial if G[N(u)] is a

clique.

Let s and t be two specified vertices in a graph G = (V,E). A vertex v ∈ V is called

irrelevant for vertices s and t if v does not lie on any induced path from s to t. A graph G
is clean if none of its vertices is irrelevant. We say that we clean G for s and t by repeatedly

deleting irrelevant vertices for s and t as long as possible. In general, determining if a vertex

is irrelevant is NP-complete [1]. However, for claw-free graphs, the authors of [12] could

show the following (where they used Observation 1.2 and Theorem 2.7 for obtaining the

polynomial time bound).

Lemma 2.1 ([12]). Let s, t be two vertices of a claw-free graph G. Then G can be cleaned
for s and t in polynomial time. Moreover, the resulting graph does not contain an odd
antihole of length at least seven.

The line graph of a graph G with edges e1, . . . , ep is the graph L = L(G) with vertices

u1, . . . , up such that there is an edge between any two vertices ui and uj if and only if ei and

ej share an end vertex in H. We note that mutually induced paths in a line graph L(G) are

in one-to-one correspondence with vertex-disjoint paths in G. Combining this observation

with Theorem 1.3 leads to the following result.

Corollary 2.2. For fixed k, the k-Induced Disjoint Paths problem can be solved in
polynomial time in line graphs.

A graph G = (V,E) is called a quasi-line graph if for every vertex u ∈ V there exist

two vertex-disjoint cliques A and B in G such that N(u) = V (A) ∪ V (B) (where V (A)

and V (B) might be adjacent). Clearly, every line graph is quasi-line and every quasi-line

graph is claw-free. The following observation is useful and easy to see by looking at the

complements of neighborhood in a graph.

Observation 2.3. A claw-free graph G is a quasi-line graph if and only if G does not

contain a vertex with an odd antihole in its neighborhood.

A clique in a graph G is called nontrivial if it contains at least two vertices. A nontrivial

clique A is called homogeneous if every vertex in V (G)\V (A) is either adjacent to all vertices

of A or to none of them. Notice that it is possible to check in polynomial time if an edge of

the graph is a homogeneous clique. This justifies the following observation.

Observation 2.4. The problem of detecting a homogeneous clique in a graph is solvable

in polynomial time.
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Figure 1: Composition of three linear interval strips (only part of the graph is displayed).

Two disjoint cliques A and B form a homogeneous pair in G if the following two

conditions hold. First, at least one of A,B contains more than one vertex. Second, every

vertex v ∈ V (G) \ (V (A)∪ V (B)) is either adjacent to all vertices of A or to none vertex of

A as well as either adjacent to all of B or to none of B. The following result by King and

Reed [13, Section 3] will be useful.

Lemma 2.5 ([13]). The problem of detecting a homogeneous pair of cliques in a graph is
solvable in polynomial time.

Let V be a finite set of points of a real line, and I be a collection of intervals. Two

points are adjacent if and only if they belong to a common interval I ∈ I. The resulting

graph is a linear interval graph. Analogously, if we consider a set of points of a circle and

set of intervals (angles) on the circle we get a circular interval graph. Graphs in both classes

are claw-free, in fact linear interval graphs coincide with proper interval graphs (intersection

graph of a set of intervals on a line, where no interval contains another from the set) and

circular interval graphs coincide with proper circular arc graphs (defined analogously). We

need the following result of Deng, Hell, and Huang [5].

Theorem 2.6 ([5]). Circular interval graphs and linear interval graphs can be recognized in
linear time. Furthermore, a corresponding representation of such graphs can be constructed
in linear time as well.

A linear interval strip (S, a, b) is a linear interval graph S where a and b are the leftmost

and the rightmost points (vertices) of its representation. Observe that in such a graph the

vertices a and b are simplicial. Let S0 be a graph with vertices a1, b1, . . . , an, bn that is

isomorphic to an arbitrary disjoint union of complete graphs. Let (S′
1, a

′
1, b

′
1), . . . , (S

′
n, a′n, b′n)

be a collection of linear interval strips. The composition Sn is defined inductively where Si

is formed from the disjoint union of Si−1 and S′
i, where:

• all neighbors of ai are connected to all neighbors of a′i;
• all neighbors of bi are connected to all neighbors of b′i;
• vertices ai, a

′
i, bi, b

′
i are removed.

See Figure 1 for an example. We are now ready to state the structure of quasi-line graphs

as characterized by Chudnovsky and Seymour [3].

Theorem 2.7 ([3]). A quasi-line graph G with no homogeneous pair of cliques is either a
circular interval graph or a composition of linear interval strips.

Finally, we need another algorithmic result of King and Reed [13]. They observe that

the composition of the final strip in a composition of linear interval graphs is a so-called
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nontrivial interval 2-join and that every nontrivial interval 2-join contains a so-called canon-

ical interval 2-join. In Lemma 13 of this paper they show how to find in polynomial time a

canonical interval 2-join in a quasi-line graph with no homogeneous pair of cliques and no

simplicial vertex or else to conclude that none exists. Recursively applying this result leads

to the following lemma.

Lemma 2.8 ([13]). Let G be a quasi-line graph with no homogeneous pairs of cliques and
no simplicial vertex that is a composition of linear interval strips. Then the collection of
linear interval strips that define G can be found in polynomial time.

3. Our Main Result

Here is our main result.

Theorem 3.1. For any fixed k, the k-in-a-Path problem is solvable in polynomial time in
claw-free graphs.

In order to prove Theorem 3.1 we define the following problem.

Ordered-k-in-a-Path

Instance: a graph G with k terminals ordered as t1, . . . , tk.
Question: does there exist an induced path of G starting in t1 then passing through

t2, . . . , tk−1 and ending in tk?

We can resolve the original k-in-a-Path problem by k! rounds of the more specific version

defined above, where in each round we order the terminals by a different permutation.

Hence, since we assume that k is fixed, it suffices to prove Theorem 3.2 in order to obtain

Theorem 3.1.

Theorem 3.2. For any fixed k, the Ordered-k-in-a-Paths problem is solvable in poly-
nomial time in claw-free graphs.

We prove Theorem 3.2 in Section 4 and finish this section with the following consequence

of it.

Corollary 3.3. For any fixed k, the k-Disjoint Induced Paths and k-Induced Cycle

problem are solvable in polynomial time in claw-free graphs.

Proof. Let G be a claw-free graph that together with terminals t1, . . . , tk is an instance of

k-Induced Cycle. We fix an order of the terminals, say, the order is t1, . . . , tk. We fix

neighbors ai and bi−1 of each terminal ti. This way we obtain an instance of k-Induced

Disjoint Paths with pairs of terminals (ai, bi) where b0 = bk. Clearly, the total number

of instances we have created is polynomial. Hence, we can solve k-Induced Cycle in

polynomial time if we can solve k-Induced Disjoint Paths in polynomial time.

Let G be a claw-free graph that together with k pairs of terminals (ai, bi) for i =

1, . . . , k is an instance of the k-Induced Disjoint Paths problem. First we add an edge

between each pair of non-adjacent neighbors of every terminal in T = {a1, . . . , ak, b1, . . . , bk}.
We denote the resulting graphs obtained after performing this operation on a terminal by

G1, . . . , G2k, and define G0 := G. We claim that G′ = G2k is claw-free and prove this by

induction.

The claim is true for G0. Suppose the claim is true for Gj for some 0 ≤ j ≤ 2k − 1.

Consider Gj+1 and suppose, for contradiction, that Gj+1 contains an induced subgraph
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isomorphic to a claw. Let K := {x, a, b, c} be a set of vertices of Gj+1 inducing a claw with

center x. Let s ∈ T be the vertex of Gj that becomes simplicial in Gj+1. Then x 6= s. Since

Gj is claw-free, we may without loss of generality assume that at least two vertices of K must

be in NGj+1
(s)∪{s}. Since NGj+1

(s)∪{s} is a clique of Gj+1 and {a, b, c} is an independent

set of Gj+1, we may without loss of generality assume that K ∩ (NGj+1
(s) ∪ {s}) = {x, a}

and {b, c} ⊆ V (Gj+1) \ (NGj+1
(s) ∪ {s}). Then {x, b, c, s} induces a claw in Gj with center

x, a contradiction. Hence, G′ is indeed claw-free.

We note that G with terminals (a1, b1), . . . , (ak, bk) forms a Yes-instance of k-Induced

Disjoint Paths if and only if G′ with the same terminal pairs is a Yes-instance of this

problem. In the next step we identify terminal bi with ai+1, i.e., for i = 1, . . . , k − 1 we

remove bi, ai+1 and replace them by a new vertex ti+1 adjacent to all neighbors of ai+1 and

to all neighbors of bi. We call the resulting graph G′′ and observe that G is claw-free. We

define t1 := a1 and tk+1 := bk and claim that G′ with terminal pairs (a1, b1), . . . , (ak, bk)

forms a Yes-instance of the k-Induced Paths problem if and only if G′′ with terminals

t1, . . . , tk+1 forms a Yes-instance of the Ordered-(k + 1)-in-a-Path problem.

In order to see this, suppose G′ contains k mutually induced paths Pi such that Pi

connects ai to bi for 1 ≤ i ≤ k. Then

P = t1
−→
P1b

−
1 t2a

+
2

−→
P2b

−
2 . . . tka

+
k

−→
Pktk

is an induced path passing through the terminals ti in prescribed order. Now suppose

G′′ contains an induced path P passing through terminals in order t1, . . . , tk+1. For i =

1, . . . , k + 1 we define paths Pi = ait
+
i

−→
P t−i+1bi, which are mutually induced. We now apply

Theorem 3.2. This completes the proof.

4. The Proof of Theorem 3.2

We present a polynomial-time algorithm that solves the Ordered-k-in-a-Path prob-

lem on a claw-free graph G with terminals in order t1, . . . , tk for any fixed integer k. We

call an induced path P from t1 to tk that contains the other terminals in order t2, . . . , tk−1

a solution of this problem. Furthermore, an operation in this algorithm on input graph G
with terminals t1, . . . , tk preserves the solution if the following holds: the resulting graph G′

with resulting terminals t′1, . . . , t
′
k′ for some k′ ≤ k is a Yes-instance of the Ordered-k′-in-

a-Path problem if and only if G is a Yes-instance of the Ordered-k-in-a-Path problem.

We call G simple if the following three conditions hold:

(i) t1, tk are of degree one in G and all other terminals ti (1 < i < k) are of degree two

in G, and the two neighbors of such ti are not adjacent;

(ii) the distance between any pair ti, tj is at least four;

(iii) G is connected.

The Algorithm and Proof of Theorem 3.2

Let G be an input graph with terminals t1, . . . , tk.

If k = 2, we compute a shortest path from t1 to t2. If k = 3, we use Theorem 1.1 together

with Observation 1.2. Suppose k ≥ 4.

Step 1. Reduce to a set of simple graphs.

We apply Lemma 4.1 and obtain in polynomial time a set G that consists of a polynomial
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number of simple graphs of size at most |V (G)| such that there is a solution for G if and

only if there is a solution for one of the graphs in G. We consider each graph in G. For

convenience we denote such a graph by G as well.

Step 2. Reduce to a quasi-line graph.

We first clean G for t1 and tk. If during cleaning we remove a terminal, then we output No.

Otherwise, clearly, we preserve the solution. By Lemma 2.1, this can be done in polynomial

time and ensures that there are no odd antiholes of length at least seven left. Also, G stays

simple. Then we apply Lemma 4.2, which removes vertices v whose neighborhood contain

an odd hole of length five, as long as we can. Clearly, we can do this in polynomial time.

Note that G stays connected since we do not remove cut-vertices due to the claw-freeness.

By condition (i), we do not remove a terminal either. Afterwards, we clean G again for t1
and tk. If we remove a terminal, we output No. Otherwise, as a result of our operations,

G becomes a simple quasi-line graph due to Observation 2.3.

Step 3. Reduce to a simple quasi-line graph with no homogeneous clique

We first exhaustively search for homogeneous cliques by running the polynomial algorithm

mentioned in Observation 2.4 and apply Lemma 4.3 each time we find such a clique. Clearly,

we can perform the latter in polynomial time as well. After every reduction of such a clique

to a single vertex, G stays simple and quasi-line, and at some moment does not contain any

homogeneous clique anymore, while we preserve the solution.

Step 4. Reduce to a circular interval graph or to a composition of interval

strips.

Let t′1, t
′
k be the (unique) neighbor of t1 and t′k, respectively. As long as G contains homo-

geneous pairs of cliques (A,B) so that A neither B is equal to {t1, t
′
1} or {tk, t

′
k}, we do as

follows. We first detect such a pair in polynomial time using Lemma 2.5 and reduce them

to a pair of single vertices by applying Lemma 4.4. Also performing Lemma 4.4 clearly

takes only polynomial time. After every reduction, G stays simple and quasi-line, and we

preserve the solution. At some moment, the only homogeneous pairs of cliques that are

possibly left in G are of the form ({t1, t
′
1}, B) and ({tk, t′k}, B). As G does not contain a

homogeneous clique (see Step 3), the cliques in such pairs must have adjacent vertex sets.

Hence, there can be at most two of such pairs. We perform Lemma 4.4 and afterwards

make the graph simple again. Although this might result in a number of new instances,

their total number is still polynomial because we perform this operation at most twice.

Hence, we may without loss of generality assume that G stays simple. By Theorem 2.7, G
is either a circular interval graph or a composition of linear interval strips; we deal with

theses two cases separately after recognizing in polynomial time in which case we are by

using Theorem 2.6.

Step 5a. Solve the problem for a circular interval graph.

Let G be a circular interval graph. Observe that the order of vertices in an induced path

must respect the natural order of points on a circle. Hence, deleting all points that lie on

the circle between tk and t1 preserves the solution. So, we may even assume that G is a

linear interval graph. We solve the problem in these graphs in Theorem 4.5.

Step 5b. Solve the problem for a composition of linear interval strips.

Let G be a composition of linear interval strips. Because G is assumed to be clean for

t1, . . . , tk, G contains no simplicial vertex. Then we can find these strips in polynomial

time using Lemma 2.8 and use this information in Lemma 4.6. There we create a line
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graph G′ with |V (G′)| ≤ |V (G)|, while preserving the solution. Moreover, this can be done

in polynomial time by the same theorem. Then we use Corollary 2.2 to prove that the

problem is polynomially solvable in line graphs in Theorem 4.7.

Now it remains to state and prove Lemmas 4.1–4.6 and Theorems 4.5– 4.7.

Lemma 4.1. Let G be a graph with terminals ordered t1, . . . , tk. Then there exists a set G
of nO(k) simple graphs, each of size at most |V (G)|, such that G has a solution if and only if
there exists a graph in G that has a solution. Moreover, G can be constructed in polynomial
time.

Proof. We branch as follows. First we guess the first six vertices after t1 in a possible

solution. Then we guess the last six vertices before tn. Finally, for 2 ≤ i ≤ n − 1, we

guess the last six vertices preceding ti and the first six vertices following ti. We check if

the subgraph induced by the terminals and all guessed vertices has maximum degree 2. If

not we discard this guess. Otherwise, for every terminal and for every guessed vertex that

is not an end vertex of a guessed subpath, we remove all its neighbors that are not guessed

vertices. This way we obtain a number of graphs which we further process one by one.

Let G′ be such a created subgraph. If G′ does not contain all terminals, we discard G′.

If G′ is disconnected then we discard G′ if two terminals are in different components, or else

we continue with the component of G′ that contains all the terminals. Suppose there is a

guessed subpath in G′ containing more than one terminal. If the order is not ti, ti+1, . . . , tj
for some i < j, we discard G′. Otherwise, if necessary, we place ti and tj on this subpath

such that they are at distance at least four of each other and also are of distance at least

four of each end vertex of the subpath. Because the guessed subpaths are sufficiently long,

such a placement is possible. We then remove ti+1, . . . , tj−1 from the list of terminals. After

processing all created graphs as above, we obtain the desired set G. Since k is fixed, G can

be constructed in polynomial time.

Lemma 4.2. Let G be a simple claw-free graph. Removing a vertex u ∈ V (G), the neigh-
borhood of which contains an induced odd hole of length five, preserves the solution.

Proof. Because G is simple, u is not a terminal. We first show the following claim.

Claim 1. Let G[{v,w, x, y}] be a diamond in which vw is a non-edge. If there is a solution

P that contains v, x,w, then there is another solution that contains v, y, w (and that does

not contain x).

In order to see this take the original solution P and notice that by claw-freeness any neighbor

of y on P must be in the (closed) neighborhood of v or w. This way the solution can be

rerouted via y, without using x. This proves Claim 1.

Now suppose that u is a vertex which has an odd hole C of length five in its neighborhood.

Obviously, G is a Yes-instance if G−u is a Yes-instance. To prove the reverse implication,

suppose G is a Yes-instance. Let P be a solution. If u does not belong to P then we

are done. Hence, we suppose that u belongs to P and consider three cases depending on

|V (C) ∩ V (P )|.
Case 1. |V (C)∩V (P )| ≥ 2. Then |V (C)∩V (P )| = 2, as any vertex on P will have at most

two neighbors. We are done by Claim 1.
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Case 2. |V (C) ∩ V (P )| = 1. Let w ∈ V (C) belong to P and let the other neighbor of u
that belongs to P be x. We note that x must be adjacent to at least one of the neighbors

of w in C. Then we can apply Claim 1 again.

Case 3. |V (C) ∩ V (P )| = 0. Let the two neighbors of u on P be x and y. To avoid a claw

at u, every vertex of C must be adjacent to x or y. If there is a vertex in C adjacent to

both, we apply Claim 1. Suppose there is no such vertex and that the vertices of the C
are partitioned in two sets X (vertices of C only adjacent to x) and Y (vertices of C only

adjacent to y). We assume without loss of generality that |X| = 3, and hence contains a pair

of independent vertices which together with u and y form a claw. This is a contradiction.

Lemma 4.3. Let G be a simple quasi-line graph with a homogeneous clique A. Then
contracting A to a single vertex preserves the solution and the resulting graph is a simple
quasi-line graph containing the same terminals as G.

Proof. Each vertex in A lies on a triangle, unless G is isomorphic to P2, which is not possible.

Hence, by condition (i), A does not contain a terminal. We remove all vertices of A except

one. The resulting graph will be a simple quasi-line graph containing the same terminals,

and we will preserve the solution.

Lemma 4.4. Let G be a simple quasi-line graph with terminals ordered t1, . . . , tk that has
no homogeneous clique. Contracting the cliques A and B in a homogeneous pair to single
vertices preserves the solution. The resulting graph is quasi-line; it is simple unless A or B
consists of two vertices u, u′ with u ∈ {t1, tk} and d(u′, ti) ≤ 3 for some ti 6= u.

Proof. Because G does not contain a homogeneous clique, V (A) and V (B) must be adjacent.

Then, due to condition (ii), there can be at most one terminal in V (A) ∪ V (B). In all the

cases discussed below we will actually not contract edges but only remove vertices from A
and B. Hence, the resulting graph will always be a quasi-line graph.

Suppose A contains t1 or tk, say t1. Suppose |V (A)| = 1, so A only contains t1. Then

the neighbor of t1 is in B and |V (B)| ≥ 2. We delete all vertices from B except this neighbor,

because they will not be used in any solution. Clearly, the resulting graph is simple and

the solution is preserved. Suppose |V (A)| ≥ 2. Because t1 is of degree one, A consists of

two vertices, namely t1 and its neighbor t′1. Note that t′1 does not have a neighbor outside

A and B, as t1 is of degree one. As V (A) and V (B) are adjacent, t′1 has a neighbor u in

B. We delete t1 and replace it by t′1 in the set of terminals. We delete all vertices of B
except u, because of the following reasons. If these vertices are not adjacent to t′1, they will

never appear in any solution. If they are adjacent to t′1, they will not appear in any solution

together with u, and as such they can be replaced by u. Note that t′1 has degree one in the

new graph and that this graph is only simple if d(t′1, tj) ≥ 4 for all 2 ≤ j ≤ k. Clearly, the

solution is preserved.

Suppose A contains a terminal ti for some 2 ≤ i ≤ k − 1. Suppose A only contains ti.
Because V (A) and V (B) are adjacent, ti is adjacent to a vertex u in B. By condition (i),

u is the only vertex in B adjacent to ti. We delete all vertices of B except u. Clearly, the

resulting graph is simple and the solution is preserved. Suppose |V (A)| ≥ 2. By condition

(ii), A contains only one other vertex t′i and ti, t
′
i do not have a common neighbor. Then

A must be separated of the rest of the graph by B. Furthermore, the other neighbor of ti
must be in B. We delete t′i and all vertices of B except the neighbor of ti. Clearly, the

resulting graph is simple and the solution is preserved.

Suppose A does not contain a terminal. By symmetry, we may assume that B does not

contain a terminal either. Let a′b′ ∈ E(G) with a′ ∈ V (A) and b′ ∈ V (B). Let G′ be the
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graph obtained from G by removing all vertices of A except a′ and B except a′, b′. Note

that we have kept all terminals and that the resulting graph is simple. Any solution P ′ for

G′ is a solution for G.

Now assume we have a solution P for G. We claim that |P ∩ A| ≤ 1 and |P ∩B| ≤ 1.

Suppose otherwise, say |P ∩A| ≥ 2. Then |P ∩A| = 2, as P is a path. Since t1 and tk are

not in A, we find that P contains a subpath xuvy with u, v ∈ A. Since x is adjacent to

u ∈ A, but also non-adjacent to v ∈ A, we find that x ∈ B. Analogously we get that y ∈ B.

However, then xy ∈ E(G). This is a contradiction.

Suppose |P ∩ A| = 0 and |P ∩ B| = 0. Then P is a solution for G′ as well. Suppose

|P ∩A| = 0 and |P ∩B| = 1. Then we may without loss of generality assume that b′ ∈ V (P )

and find that P is a solution for G′ as well. The case |P ∩A| = 1 and |P ∩B| = 0 follows by

symmetry. Suppose |P ∩A| = |P ∩B| = 1, say P intersects A in a and B in b. If ab ∈ E(G)

then we replace ab by a′b′ and obtain a solution for G′. Suppose ab /∈ E(G). Because a
is not a terminal, a has neighbors x and y on P . If x, y /∈ N(b) then {a′, x, y, b′} induces

a claw in G with center a′. This is not possible. Hence, we may assume without loss of

generality that y is adjacent to b. Since A or B contains at least two vertices, y has degree

at least three. Then y is not a terminal. Thus we can skip y and exchange ayb in P with

a′b′ to get the desired induced path P ′.

Theorem 4.5. The Ordered-k-in-a-Path problem can be solved in polynomial time in
linear interval graphs.

Proof. Let G be a linear interval graph. We may assume without loss of generality that

the terminals form an independent set. We use its linear representation that we obtain

in polynomial time by Lemma 2.8. In what follows the notions of predecessors (left) and

successors (right) are considered for the linear ordering of the points on the line. Without

loss of generality we may assume that t1 is the first point and that tk is the last and that no

two points coincide. By our assumption, ti and ti+1 are nonadjacent. From the set of points

belonging to the closed interval [ti, ti+1] we remove all neighbors of ti except the rightmost

one and all neighbors of ti+1 except the leftmost. Then the shortest path between ti and

ti+1 is induced. In addition, these partial paths combined together provide a solution unless

for some terminal ti its leftmost predecessor is adjacent to its rightmost successor. Hence,

no induced path may have ti among its inner vertices.

Lemma 4.6 (proof postponed to journal version). Let G be a composition of linear interval
strips. It is possible to create in polynomial time a line graph G′ with |V (G′)| ≤ |V (G)|,
while preserving the solution.

Theorem 4.7. For fixed k, Ordered-k-in-a-Path is polynomially solvable in line graphs.

Proof. A version of Ordered-k-in-a-Path in which the path is not necessarily induced

can be easily translated into an instance of the k-Disjoint Paths problem and solved in

polynomial time due to Theorem 1.3. Noting that mutually induced paths in a line graph

L(G) are in one-to-one correspondence with vertex-disjoint paths in G enables us to solve

the Ordered-k-in-a-Path problem in polynomial time for line graphs.

5. Conclusions and Further Research

We showed that, for any fixed k, the problems k-in-a-Path, k-Disjoint Induced

Paths and k-Induced Cycle are polynomially solvable on claw-free graphs. If k is part of
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the input these problems are known to be NP-complete. In the journal version we show this

is true, even when the input is restricted to be claw-free. Perhaps the two most fascinating

related open problems are to determine the complexity of deciding if a graph contains an

odd hole (whereas the problem of finding an even hole is polynomially solvable [2]) and

to determine the computational complexity of deciding if a graph contains two mutually

induced holes (whereas it is known that the case of two mutually induced odd holes is

NP-complete [10]). For claw-free graphs these two problems are solved. Shrem et al. [19]

even obtained a polynomial-time algorithm for detecting a shortest odd hole in a claw-free

graph. In the journal version we will address the second problem for claw-free graphs.
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Abstract. Potential maximal cliques and minimal separators are combinatorial objects
which were introduced and studied in the realm of minimal triangulation problems in-
cluding Minimum Fill-in and Treewidth. We discover unexpected applications of these
notions to the field of moderate exponential algorithms. In particular, we show that given
an n-vertex graph G together with its set of potential maximal cliques, and an integer t,
it is possible in time the number of potential maximal cliques times O(nO(t)) to find a
maximum induced subgraph of treewidth t in G and for a given graph F of treewidth t, to
decide if G contains an induced subgraph isomorphic to F. Combined with an improved
algorithm enumerating all potential maximal cliques in time O(1.734601n), this yields that

both the problems are solvable in time 1.734601n * n
O(t).

1. Introduction

One of the most fundamental problems in Graph Algorithms is, for a given graph

G = (V,E), to find a maximum or minimum subset S of V that satisfies some property Π.

For example, when S is required to be a maximum set of pairwise adjacent vertices this

is the Maximum Clique problem. When S is required to be a maximum set of pairwise

non-adjacent vertices this is the Maximum Independent Set problem. Its complement,

the Minimum Vertex Cover problem, is to find a minimum set S such that the graph

G \ S is an independent set. Another examples are Maximum Induced Forest, where

one is seeking for a set of vertices inducing a forest of maximum size, or its complement

Minimal Feedback Vertex Set which is to remove the minimum number of vertices to

destroy all cycles.

All these examples are special cases of the problem, where one seeks a maximum subset

of vertices that induces a subgraph of G from some given graph class C. If G is an n-vertex

graph, and recognition of graphs from C can be done in polynomial time, then the trivial

brute force algorithm solves the problem in time 2nnO(1). One of the crucial questions in
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the area of moderate exponential algorithms is if the brute force algorithm can be avoided

to solve any hard (NP-hard, #P , PSPACE-hard, etc.) problem. So far we are still very

far from answering this question. For some problems we know how to avoid the brute force

search, and for some problems, like SAT, it is a big open problem in the area. Similar

situation is with the problem of finding a maximum induced subgraph from a given class

C. For some simple graph classes C the trivial 2n-barrier has been broken. The most

well studied case is when C is the class of graphs without edges, or the class of graphs of

treewidth 0. In this case, we are looking for an independent set of maximum size. This is

the classical NP-hard problem and it is well studied in the realm of moderate exponential

algorithms. The classical result of Moon and Moser [19] (see also Miller and Muller [18])

from the 1960s can be easily turned into algorithms finding a maximum independent set in

time 3n/3nO(1). Tarjan and Trojanowski [25] gave a O(2n/3) time algorithm. There were

several non-trivial steps in improving the running time of the algorithm including the work

of Jian [17], Robson [23], and Grandoni et al. [11]. A significant amount of research was also

devoted to algorithms for the Maximum Independent Set problem on sparse graphs, some

examples are [7, 14, 21]. It is easy to show that a simple branching algorithm can compute

a maximum induced path or cycle in time 3n/3nO(1). However, breaking the 2n-barrier even

for the case when the class C is a forest, i.e. the class of graphs of treewidth 1, was an

open problem in the area until very recently. The first exact algorithm breaking the trivial

2n-barrier is due to Razgon [20]. The running time O(1.8899n) of the algorithm from [20]

was improved in [9, 10] to O(1.7548n). All these algorithms for Maximum Independent

Set and Maximum Induced Forest are so-called branching algorithms (a variation of

Davis-Putnam-style exponential-time backtracking [8]). There is also a relevant work of

Gupta et al. [15] who used branching to show that for every fixed r, there are at most cn

r-regular subgraphs for some c < 2. For example, for Maximum Induced Matching and

Maximum 2-Regular Induced Subgraph, their results yield algorithms solving these

problems in time O(1.695733n) and O(1.7069n), respectively. However, the results of Gupta

et al. strongly depend on the regularity of the maximum subgraphs. To our knowledge,

prior to our work no algorithms better than the trivial brute-force O(2n) were known for

more complicated classes C.

In this work we make a step aside the “branching” path and use a completely dif-

ferent approach for problems on finding induced subgraphs. Our approach is based on a

tools from the area of minimal triangulations, namely, potential maximal cliques. Minimal

triangulations are the result of adding an inclusion minimal set of edges to produce a trian-

gulation (or chordal graph). The study of minimal triangulations dates back to the 1970s

and originated from research on sparse matrices and vertex elimination in graphs. Minimal

separators are one of the main tools in the study of minimal triangulations. We refer to

the survey of Heggernes [16] for more information on triangulations. Potential maximal

cliques were defined by Bouchitté and Todinca [5, 6] and were used in different algorithms

for computing the treewidth of a graph [12, 13]. A subset of vertices C of a graph G is

a potential maximal clique if there is a minimal triangulation TG of G such that C is a

maximal clique in TG. At first glance it is not clear, what is the relation between potential

maximal cliques and induced subgraphs. Our first main result establishes such a relation.

• Let ΠG be the set of potential maximal cliques in G. A maximum induced subgraph

of treewidth t in an n-vertex graph G can be found in time O(|ΠG|·n
O(t)) (Section 3).
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As we already mentioned, the well studied Maximum Independent Set (and its dual

Minimum Vertex Cover) and Maximum Induced Forest (and Minimum Feedback

Vertex Set) are the special cases for t = 0 and t = 1, respectively. Our second main

result shows that

• All potential maximal cliques can be enumerated in time O(1.734601n) (Section 5).

Combining both results, we obtain that a maximum induced subgraph of treewidth t
in an n-vertex graph G can be found in time O(1.734601n ·nO(t)). While for t = 0 (the case

of Maximum Independent Set) the existing branching algorithms are much faster than

O(1.734601n), already for t = 1 (the case of Maximum Induced Forest) our algorithm is

already faster than the best known branching algorithm [10]. For fixed t ≥ 2, no algorithm

better than the trivial O(2nnO(1)) brute force algorithm was known.

With small modifications, our algorithm can be used for other problems involving in-

duced subgraphs. As an example, we show how to solve the induced subgraph isomorphism

problem, which is to decide if G contains an induced subgraph isomorphic to a given graph

F (Section 4). We show that when the treewidth of F is at most t, then this problem is

solvable in time 1.734601n · nO(t). In particular, when the treewidth of F is o(n/ log n), for

example when F is a planar graph, or a graph excluding some fixed graph as a minor, the

running time of our algorithm is 1.734601n+o(n). Let us note that no algorithm faster than

the trivial brute-force algorithm was known even when F is a tree.

Finally, our new algorithm enumerating potential maximal cliques is not only (slightly)

faster than the algorithm from [13] and thus by [12], directly implies faster exact algorithm

computing the treewidth of a graph. It is also significantly simpler than the previous

algorithms and is easy to implement. Due to space limitations, some proofs are omitted. A

full version will appear at some later point.

2. Preliminaries

We denote by G = (V,E) a finite, undirected, and simple graph with |V | = n vertices

and |E| = m edges. For any nonempty subset W ⊆ V , the subgraph of G induced by W is

denoted by G[W ]. For S ⊆ V we often use G \ S to denote G[V \ S]. The neighborhood of

a vertex v is N(v) = {u ∈ V : {u, v} ∈ E}, N [v] = N(v) ∪ {v}, and for a vertex set S ⊆ V
we set N(S) =

⋃

v∈S N(v) \ S, N [S] = N(S) ∪ S. A clique C of a graph G is a subset of

V such that all the vertices of C are pairwise adjacent. By ω(G) we denote the maximum

clique-size of a graph G.

A graph H is chordal (or triangulated) if every cycle of length at least four has a chord,

i.e., an edge between two nonconsecutive vertices of the cycle. A triangulation of a graph

G = (V,E) is a chordal graph H = (V,E′) such that E ⊆ E′. Graph H is a minimal

triangulation of G if for every edge set E′′ with E ⊆ E′′ ⊂ E′, the graph F = (V,E′′) is not

chordal.

The notion of treewidth is due to Robertson and Seymour [22]. A tree decomposition

of a graph G = (V,E), denoted by TD(G), is a pair (X,T ) in which T = (VT , ET ) is a tree

and X = {Xi | i ∈ VT } is a family of subsets of V , called bags, such that

(i)
⋃

i∈VT
Xi = V ;

(ii) for each edge e = {u, v} ∈ E there exists an i ∈ VT such that both u and v belong

to Xi;

(iii) for all v ∈ V , the set of nodes {i ∈ VT | v ∈ Xi} induces a connected subtree of T .
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The maximum of |Xi|−1, i ∈ VT , is called the width of the tree decomposition. The treewidth

of a graph G, denoted by tw(G), is the minimum width taken over all tree decompositions

of G.

Theorem 2.1 (folklore). For any graph G, tw(G) ≤ k if and only if there is a triangulation

H of G such that ω(H) ≤ k + 1.

Let u and v be two non adjacent vertices of a graph G = (V,E). A set of vertices S ⊆ V
is a u, v-separator if u and v are in different connected components of the graph G[V \ S].

A connected component C of G[V \ S] is a full component associated to S if N(C) = S.

Separator S is a minimal u, v-separator of G if no proper subset of S is a u, v-separator.

Notice that a minimal separator can be strictly included in another one. We denote by ∆G

the set of all minimal separators of G.

A set of vertices Ω ⊆ V of a graph G is called a potential maximal clique if there is a

minimal triangulation H of G such that Ω is a maximal clique of H. We denote by ΠG the

set of all potential maximal cliques of G.

For a minimal separator S and a full connected component C of G \ S, we say that

(S,C) is a block associated to S. We sometimes use the notation (S,C) to denote the set of

vertices S ∪C of the block. It is easy to see that if X ⊆ V corresponds to the set of vertices

of a block, then this block (S,C) is unique: indeed, S = N(V \ X) and C = X \ S.

We also need the following result of Bouchitté and Todinca on the structure of potential

maximal cliques.

Theorem 2.2 (Bouchitté and Todinca [5]). Let K ⊆ V be a set of vertices of the graph

G = (V,E). Let C(K) = {C1, . . . , Cp} be the set of connected components of G \ K and let

S(K) = {S1, S2, . . . , Sp}, where Si = N(Ci), i ∈ {1, 2, . . . , p}, is the set of those vertices of

K which are adjacent to at least one vertex of the component Ci. Then K is a potential

maximal clique of G if and only if

1. G \ K has no full component associated to K, and

2. the graph on the vertex set K obtained from G[K] by completing each Si ∈ S(K)

into a clique is a complete graph.

Moreover, if K is a potential maximal clique, then S(K) is the set of minimal separators

of G contained in K.

3. Induced subgraph of bounded treewidth

In this section we prove the first result relating the problems of finding an induced

subgraph and enumerating potential maximal cliques. The following lemma is crucial for

our algorithm.

Lemma 3.1. Let F = (VF , EF ) be an induced subgraph of a graph G = (VG, EG). Then for

every minimal triangulation TF of F , there is a minimal triangulation TG of G such that

for every clique K of TG, the intersection K ∩ VF is either empty, or is a clique of TF .

Now we are ready to proceed with the main result of this section.

Theorem 3.2. Let G be a graph on n vertices and m edges given together with the set ΠG

of its potential maximal cliques and the set ∆G of its minimal separators. For any integers

0 ≤ t, ℓ ≤ n, there is an algorithm that checks in time O(nt+4m(|ΠG|+ |∆G|)) if G contains

an ℓ-vertex induced subgraph of treewidth at most t.
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Proof. Let F be an induced subgraph of treewidth at most t. By Lemma 2.1, there is a

minimal triangulation TF of F , such that the size of a maximal clique of TF is at most

t + 1. By Lemma 3.1, there is a minimal triangulation TG of G, such that every clique

of TG contains at most t + 1 vertices of F . If we knew such a minimal triangulation TG,

dynamic programming over the clique-tree of TG will provide the answer to our question

in time O(nt+3m). However, we are not given such a triangulation a priori. Thus, the

computations require multiplicative factor n|ΠG|.
We start by enumerating all full blocks and sorting them by their sizes. This can be

done by enumerating all minimal separators, and checking for each minimal separator S
and each of the connected component of G\S if this is a full component or not. By making

use of Theorem 5.6, this step can be performed in time O(|∆G| ·n
3). Sorting blocks can be

done in O(n|∆G|) time using a bucket sort.

For a minimal separator S, a full block (S,C), and a potential maximal clique Ω, we

call the triple (S,C,Ω) good if S ⊆ Ω ⊆ C ∪ S. For each full block we also enumerate all

good triples that can be obtained from this block as follows. By Theorem 2.2, if a minimal

separators S is a subset of a potential maximal clique Ω, then S = N(C) for some connected

component C of G[V \ Ω], and thus, the number of minimal separators contained in Ω is

at most n. By Theorem 2.2, G \ Ω has no full component associated to Ω, and thus for

every minimal separator S ⊆ Ω, we have that Ω \ S 6= ∅. Therefore, there exists a vertex

u ∈ Ω \ S and thus Ω is a subset of the full block (S,C) such that u ∈ C. But this yields

that every potential maximal clique is contained in at most n good triples, and the total

number of good triples is at most n|ΠG|. Computing for every potential maximal clique all

good triples containing it, in time O(m|ΠG|) one can create a data structure that for each

full block assigns the set of potential maximal cliques that make a good triple with that

block.

After preprocessing blocks and creating good triples, we proceed with dynamic pro-

gramming. The dynamic programming consists of two step. In the first, most technical

step, we compute the sizes of maximal subgraphs in full blocks (S,C) subject to the con-

dition that the minimal separator S contains at most t + 1 vertices of the subgraph. To

compute these values we use deep combinatorial results of Bouchitté and Todinca on the

structure of potential maximal cliques. In the second step, we go through all minimal

separators, and for each separator we glue solutions found at the first step.

Step 1: Processing full blocks. We need to define several functions. For a full block

(S,C), and for every subset W ⊆ S, |W | ≤ t+1, and integer 0 ≤ ℓ ≤ n, α(ℓ,W, S,C) = 1 if

there exits an induced subgraph F = (VF , EF ) of G[C∪W ] such that |VF | = ℓ, VF ∩S = W ,

and F has a minimal triangulation TF such that ω(TF ) ≤ t + 1 and W is a clique of TF .

Otherwise, α(ℓ,W, S,C) = 0.

For every inclusion minimal block (S,C), we have that S ∪ C is a potential maximal

clique. Thus for every inclusion minimal block (S,C), and for every set W ⊆ S ∪ C,

|W | ≤ t + 1, we put

α(ℓ,W, S,C) =

{

1, if ℓ = |W |,
0, otherwise.

To compute the values of α for larger blocks, we perform dynamic programming over

sets of good triples formed by smaller blocks. For every good triple (S,C,Ω), and for every

subset W ⊆ Ω, |W | ≤ t + 1, and integer 0 ≤ ℓ ≤ n, we want to compute an auxiliary

function such that β(ℓ,W, S,C,Ω) = 1 if there exits an induced subgraphs F = (VF , EF ) of
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G[C ∪ W ] such that |VF | = ℓ, VF ∩ Ω = W , and F has a minimal triangulation TF such

that ω(TF ) ≤ t + 1, and W is a clique of TF . Otherwise, β(ℓ,W, S,C,Ω) = 0.

Let us remark that

α(ℓ,W, S,C) = 1 ⇔ ∃ good triple (S,C,Ω) and W ⊆ W ′ ⊆ Ω s.t. β(ℓ,W ′, S, C,Ω) = 1.

Indeed, if β(ℓ,W ′, S, C,Ω) = 1, then there is a minimal triangulation TF of an induced

subgraph F = (VF , EF ) of G[C ∪ W ] such that |VF | = ℓ, ω(TF ) ≤ t + 1, and W is a clique

of TF , simply because this is true for W ′ and W ⊆ W ′. Then TF [VF \ (W ′ \ W )] is the

triangulation of F [VF \ (W ′ \W )] that certifies α(ℓ,W, S,C) = 1. For the opposite direction

the arguments are similar.

We start computing β from inclusion minimal blocks. For every inclusion minimal block

(S,C), and for every set W ⊆ S ∪ C, |W | ≤ t + 1,

β(ℓ,W, S,C,Ω) =

{

1, if ℓ = |W |,
0, otherwise.

To compute β(ℓ,W, S,C,Ω) we define an auxiliary function γ as follows. Let {C1, . . . ,
Cp} be the vertex sets of the connected components of G[(S ∪ C) \ Ω]. By Theorem 2.2,

the sets Si = N(Ci), 1 ≤ i ≤ p, are minimal separators of G, and moreover, Si ⊂ Ω for

1 ≤ i ≤ p. The values of function γ(ℓ, j,W, S,C,Ω) are in {0, 1}. For every good triple

(S,C,Ω), and for every subset W ⊂ Ω, |W | ≤ t + 1, and 0 ≤ ℓ ≤ n, γ(ℓ, j,W, S,C,Ω) = 1

if and only if there exits an induced subgraph F = (VF , EF ) of G[W ∪
⋃j

i=1 Ci] such that

|VF | = ℓ, VF ∩ Ω = W , and F has a minimal triangulation TF such that ω(TF ) ≤ t + 1

and W is a clique in TF . Note that G[W ∪
⋃p

i=1 Ci] = G[W ∪ C], and by definitions of β
and γ, we have that

β(ℓ,W, S,C,Ω) = γ(ℓ, p,W, S,C,Ω).

Now for every ℓ ≥ 0,

γ(ℓ, 1,W, S,C,Ω) = α(ℓ − |W \ S1|,W ∩ S1, S1, C1).

For j > 1,

γ(ℓ, j,W, S,C,Ω) =







1, if γ(i, j − 1,W, S,C,Ω) = 1 ∧ α(ℓ − i + |W ∩ Sj|,
W ∩ Sj, Sj , Cj) = 1, for some i, 1 ≤ i ≤ ℓ,

0, otherwise.

This is because for every ℓ-vertex subgraph F = (VF , EF ) of G[C1 ∪ · · ·Cj ∪ W ] with

VF ∩ Ω = W , there is i ≤ ℓ such that i vertices of F are in C1 ∪ · · ·Cj−1 ∪ W and

ℓ − i + |W ∩ Sj| vertices are in Cj ∩ Sj .

To compute γ(ℓ, j,W, S,C,Ω), we find the blocks (Sj , Cj), 1 ≤ j ≤ p, in G, which can

be done in time O(m) and read already computed values α(ℓ− i+ |W ∩Sj|,W ∩Sj, Sj , Cj)

and γ(i, j − 1,W, S,C,Ω). Similarly, the values of α(ℓ,W, S,C) and β(ℓ,W, S,C,Ω) are

computable in time O(m) from the values of the smaller blocks and the values of γ. The

total running time required to compute the values of all α(ℓ,W, S,C) is O(m) times the

number of different 6-tuple (ℓ, i,W, S,C,Ω) plus the time O(n3(|∆G| + |ΠG|)) required for

preprocessing step. The number of good triples (S,C,Ω) is at most n|ΠG|, and the number

of subsets W of size at most t + 1 is O(nt+1). Thus the total running time required to

compute all values α(ℓ,W, S,C) is

O(mnt+4(|ΠG| + |∆G|)).



FINDING INDUCED SUBGRAPHS VIA MINIMAL TRIANGULATIONS 389

Now everything is prepared to solve the problem on graph G and to conclude the

proof. By Lemma 3.1, if F is an induced subgraph of G of treewidth at most t, there

exists a minimal separator S of G, such that |VF ∩ S| ≤ t + 1. We go through all minimal

separators, and for each minimal separator S, we try to glue solutions obtained during the

first step.

Step 2: Gluing pieces together. Let S be a minimal separator and let {C1, . . . , Cp} be

the vertex sets of the connected components of G[V \ S]. We put Si = N(Ci). For every

subset W ⊆ S of size at most t+1, and integer 0 ≤ ℓ ≤ n, we define δ(ℓ, j,W, S) = 1 if there

is an induced ℓ-vertex subgraph F = (VF , EF ) of G[W ∪
⋃j

i=1 Ci] which poses a minimal

triangulation TF with ω(TF ) ≤ t + 1, and such that W = VF ∩ S is a clique in TF . If no

such graph F exists, we put δ(ℓ, j,W, S) = 0. By Lemma 3.1, G has an induced ℓ-vertex
subgraph of treewidth at most t if and only if δ(ℓ, p,W, S) = 1 for some minimal separator

S. Thus computing the value δ for all minimal separators is sufficient for deciding if G has

an induced subgraph on ℓ vertices of treewidth at most t.
For every ℓ ≥ 0 and j = 1, we have that

δ(ℓ, 1,W, S) = α(ℓ − |W \ S1|,W ∩ S1, S1, C1).

For j > 1,

δ(ℓ, j,W, S) =







1, if δ(i, j − 1,W, S) = 1 ∧ α(ℓ − i + |W ∩ Sj|,W ∩ Sj, Sj , Cj) = 1,
for some 1 ≤ i ≤ ℓ,

0, otherwise.

Like in the case with γ, the correctness of the formula above follows from the fact, that for

every ℓ-vertex subgraph F = (VF , EF ) of G[C1 ∪ · · ·Cj ∪ W ] with VF ∩ S = W , there is

i ≤ ℓ such that i vertices of F are in C1 ∪ · · ·Cj−1 ∪ W and ℓ − i + |W ∩ Sj| vertices are in

Cj ∩ Sj.

Concerning the time required to perform this step. Like in above, in time O(m) we

can find the connected components {C1, . . . , Cp} of G[V \ S], and the corresponding full

blocks (Si, Ci). Thus the running of this step is proportional to m times the number of

4-tuples (ℓ, j,W, S), and we conclude that this step of the algorithm can be performed in

time O(mnt+3 · |∆G|).

4. Induced subgraph isomorphism

The technique described in the previous section with slight modifications can be ap-

plied for many different problems. In this section we give an important example of such

modification.

Theorem 4.1. Let G be an n-vertex graph given together with the set ΠG of its potential

maximal cliques and the set ∆G of its minimal separators. Let F be a graph of treewidth t.
There is an algorithm checking if G contains an induced subgraph isomorphic to F in time

O(nO(t)(|∆G| + |ΠG|)).

Proof. The proof of the theorem follows the lines of Theorem 3.2 with modifications that are

similar to the well known Bodlaender’s algorithm for solving the graph isomorphism problem

on graphs of bounded treewidth [4]. We outline only the most important differences of such

a modification.
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The treewidth of F is at most t, and we use the algorithm of Arnborg et.al. [2] to

construct a minimal triangulation TF of F such that ω(TF ) ≤ t + 1. The running time

of this algorithm is in O(nt+2). The number of maximal cliques and minimal separators in

an n-vertex chordal graph is O(n) [24]. Thus the number of full blocks and good triples in

TF is O(n). We list and keep all these blocks and triples. This can be done in polynomial

time.

As in the proof of Theorem 3.2, we perform two steps of dynamic programming. First

we run computations over full blocks of G, and then use computed values to glue solutions

in minimal separators.

For every full block (S,C) of G, every full block (SF , CF ) of TF , every subset W ⊆
S, where |W | = |SF | ≤ t + 1, and every bijection µ : SF → W , we define the value

α(SF , CF ,W, µ, S,C) to be equal to 1 if there is an injection λ : SF ∪CF → W ∪C such that

F [SF ∪CF ] is isomorphic to G[λ(SF ∪CF )], and for every v ∈ SF , λ(v) = µ(v). Otherwise,

we put α(SF , CF ,W, µ, S,C) = 0. In other words, α is equal to 1, when G[W ∪C] contains

a subgraph isomorphic to F [SF ∪ CF ], and moreover, the restriction of the corresponding

isomorphic mapping on SF is exactly µ.

As in Theorem 3.2, to compute α(SF , CF ,W, µ, S,C) we run through good triples

(S,C,Ω), where Ω is a potential maximal clique, S ⊆ Ω ⊆ S ∪ C. For every good

triple (S,C,Ω) of G and every good triple (SF , CF ,ΩF ) of F , for every subset W ⊆ Ω,

such that |W | = |ΩF | ≤ t + 1, and every bijection µ : ΩF → W , we define the function

β(SF , CF ,ΩF ,W, µ, S,C,Ω) ∈ {0, 1}. We put β(SF , CF ,ΩF ,W, µ, S,C,Ω) = 1 if and only

if there is an injection λ : SF ∪ CF → W ∪ C such that F [SF ∪ CF ] is isomorphic to

G[λ(SF ∪ CF )], and for every v ∈ ΩF , λ(v) = µ(v). Following the lines of Theorem 3.2, it

is possible to show that α(SF , CF ,W, µ, S,C) = 1 if and only if there exist

• Good triple (S,C,Ω) of G and good triple (SF , CF ,ΩF ) of F ;

• Set W ′, W ⊆ W ′ ⊆ Ω;

• Bijection µ′ : ΩF → W ′, µ′
|W (·) = µ(·)

such that β(SF , CF ,ΩF ,W ′, µ′, S, C,Ω) = 1.

The main difference with the proof of Theorem 3.2 is in the way we compute β. We com-

pute the values of β(SF , CF ,ΩF ,W, µ, S,C,Ω) from the values of smaller blocks contained in

G[S \Ω]. This is done by reducing to the problem of finding a maximum matching in some

auxiliary bipartite graph. This step is quite similar to the algorithm of Bodlaender [4] for

isomorphism of bounded treewidth graphs. Let F1, F2, . . . , Fp be the connected components

of the graph F [CF \ΩF ]. Then the sets Qi = NF (Fi) ⊆ ΩF are minimal separators and pairs

(Fi, Qi), 1 ≤ i ≤ p, are blocks in F . Similarly, for the connected components G1, G2, . . . , Gq

of G[C \ Ω], we put Si = NG(Gi), and define blocks (Gi, Si), 1 ≤ i ≤ q. We construct an

auxiliary bipartite graph B with bipartition X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq}.
There is an edge {xi, yj} in B if and only if there is an isomorphic mapping of block (Fi, Qi)

to block (Gj , Qj) which agrees with µ. But then to decide if blocks (Fi, Qi) can be mapped

to blocked (Gi, Si) is equivalent to deciding if B has a matching of size p. More formally,

{xi, yj} is an edge in B if and only if there is an injection λ : Fi ∪ Qi → Gj ∪ Sj such that

F [Fi ∪ Qi] is isomorphic to G[λ(Fi ∪ Qi)], and for every v ∈ Qi, λ(v) = µ(v). But such

an injection λ exists if and only if α(Fi, Qi,W
′, µ′, Gj , Sj) = 1, where W ′ = µ(Qi) and

µ′(·) = µ|Qi
(·). Therefore, to compute the value of β, it is sufficient to run through the

already computed values of α of smaller blocks, construct an auxiliary graph and find if

this graph contains a matching of specific size.
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Finally, as in Theorem 3.2, after all values α are computed, we run through all minimal

separators of G and for each minimal separator S, we try to glue solutions obtained for all

blocks attached to this separator. Here again, we need only the values of α computed for

all such blocks and reduce the problem to bipartite matchings. The running time of the

algorithm is up to multiplicative polynomial factor equal to the number of states of the

dynamic programming. To compute the values of α and β, we run through all potential

maximal cliques, blocks, and good triples of TF and G, which is nO(1)|ΠG|. For every pair

of blocks or triples, we run through all subsets W of size at most t + 1, which is O(nt+1),

and through all mappings between sets of cardinality at most t + 1, which is O((t + 1)t+1).

Finally, we run through all minimal separators. Thus the total running time of the algorithm

is O(nO(t)(|∆G| + |ΠG|)). The proof of the correctness of the algorithm follows the lines of

Theorem 3.2, and we omit it here.

Let us also remark that with a standard bookkeeping, the algorithm of Theorem 4.1

can also output a subgraph of G isomorphic to F .

5. Enumerating potential maximal cliques

In this section we show that all potential maximal cliques of graph G = (V,E) can be

enumerated by making use of connected vertex sets with special restrictions. This approach

represents a significant simplification over previous algorithms for listing potential maximal

cliques [12, 13]. More precisely, we show that for every potential maximal clique Ω there

exists a vertex set Z ⊂ V and a vertex z ∈ Z such that

• |Z| − 1 ≤ (2/3)(n − |Ω|),
• G[Z] is connected,

• Ω = N(Z \ {z}) or Ω = N(Z) ∪ {z}.

As far as we obtain such a classification, the enumeration algorithm is extremely simple:

For each vertex z ∈ V enumerate every connected vertex set Z containing z where |Z|−1 ≤
2|V \ N [Z − {z}]|. (In other words we test for each connected vertex set Z containing z,

where at least
|Z|−1

2 vertices are not contained in N [Z \{z}].) For each of these subsets, we

run the algorithm of Bouchitté and Todinca from [5] to check if N(Z\{z}) or N(Z)∪{z} is a

potential maximal clique. The algorithm of Bouchitté and Todinca checks in O(nm) time if

a vertex set Ω is a potential maximal clique. This is a significant simplification comparing to

previous enumeration algorithms [12, 13] avoiding complications with different treatments

of nice and (not) nice potential maximal cliques.

We proceed with a sequence of technical lemmas. For a potential maximal clique Ω and

a vertex x ∈ Ω we define by Dx the vertex sets of all connected components C of G[V \ Ω]

with x ∈ N(C).

Lemma 5.1. Let Ω be a potential maximal clique of G = (V,E), and let {x, y} be an edge

of G[Ω] such that Ω is not a potential maximal clique in G \ {x, y}. Then there is Z ⊆ V
and z ∈ Z, such that

• Ω = N(Z) ∪ {z},
• G[Z] is connected, and

• |Z| − 1 ≤ (1/2)(n − |Ω|).



392 F. V. FOMIN AND Y. VILLANGER

Corollary 5.2. Let Ω be a potential maximal clique of G = (V,E), such that Ω is a potential

maximal clique in G\{x, y} for every edge {x, y} of G[Ω]. Then N(Dx) = Ω for every vertex

x ∈ Ω.

Let C be the set of connected components of G[V \Ω] with the following two properties:

For each connected component C ∈ C there exists a pair of vertices x, y ∈ Ω such that C
is the unique component from C with x, y ∈ N(C), and for each pair of vertices x, y ∈ Ω

there exists a connected component C ∈ C such that x, y ∈ N(C). Let W be the vertex

set of C, we refer to the graph G′ = G[Ω ∪ W ] as to a reduced graph for Ω. In other words

C is an inclusion minimal witness for Ω being a potential maximal clique of G, by only

using connected components of G[V \ Ω]. The set C can be constructed by the following

procedure which is repeated recursively if possible: If there exists a connected component

C of G[V \ Ω] such that for each pair x, y ∈ N(C) there is a connected component C ′ 6= C
in G[V \ Ω] such that x, y ∈ N(C ′), then remove C from the graph.

Lemma 5.3. Let Ω be a potential maximal clique of G = (V,E) such that Ω is also a

potential maximal clique in G\{x, y} for every edge {x, y} of G[Ω], and where G′ = G[Ω∪W ]

contains at least 4 connected components. Then there is Z ⊂ V and z ∈ Z such that

• Ω = N(Z \ {z}),
• G[Z] is connected, and

• |Z| − 1 ≤ (3/5)(n − |Ω|).

The following characterization is used in the new algorithm enumerating potential max-

imal cliques.

Lemma 5.4. For every potential maximal clique Ω of G = (V,E), there exists a vertex set

Z ⊆ V and z ∈ Z such that

• |Z| − 1 ≤ (2/3)(n − |Ω|),
• G[Z] is connected, and

• Ω = N(Z \ {z}) or Ω = N(Z) ∪ {z}.

Let us remark that Lemma 5.4 yields a simple algorithm enumerating potential maximal

cliques. We just connected vertex sets Z of bounded size and check if either N(Z \ {z}) or

N(Z) ∪ {z} is a potential maximal clique. The enumeration of such connected vertex sets

can be done in time O(n2 · 1.7549n) [13] and checking if a set is a potential maximal clique

in O(nm) time [5].

In what follows we improve (slightly) the running time of the algorithm. The improve-

ment is based on the previous lemmata. The proof gain by exploiting the fact that the most

time consuming case is when there are exactly three connected components in the reduced

graph.

Theorem 5.5. All potential maximal cliques of an n-vertex graph can be enumerated in

time O(1.734601n).

We need the following results.

Theorem 5.6 (Berry, Bordat, and Cogis [3]). There is an algorithm listing all minimal

separators of an input graph G in O(n3|∆G|) time.

Theorem 5.7 (Fomin and Villanger [13]). Every n-vertex graph has O(1.6181n) minimal

separators.
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Putting together Theorems 3.2, 5.5, 5.6, and 5.7, we arrive at the following corollary.

Corollary 5.8. For every t ≥ 0, a maximum induced subgraph of treewidth at most t in an

n-vertex graph G can be found in time O(1.734601n · nO(t)).

Similarly, by Theorem 4.1, we have the following corollary.

Corollary 5.9. For every t ≥ 0 and graph F of treewidth t, checking if an n-vertex graph

G contains an induced subgraph isomorphic to F (and finding one if such exist) can be done

in time O(1.734601n · nO(t)).

Let us remark that the treewidth of an n-vertex planar, and more generally, graph

excluding some fixed graph as a minor, is O(
√

n) [1]. Therefore, if F is a graph excluding

some fixed graph as a minor, deciding if G has induced subgraph isomorphic to F can be

done in time 1.734601n+o(n).

6. Conclusion and open questions

In this paper we have shown how the theory of minimal triangulations can be used to

obtain moderate exponential algorithms for a number of problems about induced subgraphs.

With some modifications our technique can be used for different problems of the same

flavor, like finding a maximum connected induced subgraph of small treewidth. It would be

interesting to see if Theorem 3.2 can be extended for finding maximum induced subgraphs

with other specific properties like being planar or excluding some h-vertex graph H as a

minor.

Another very interesting question is, how many potential maximal cliques can be in

an n-vertex graph? Theorem 5.5 says that roughly at most 1.734601n. How tight is this

bound? There are graphs with roughly 3n/3 ≈ 1.442n potential maximal cliques [12]. Let us

remind that by the classical result of Moon and Moser [19] (see also Miller and Muller [18])

that the number of maximal cliques in a graph on n vertices is at most 3n/3. Can it be that

the right upper bound on the number of potential maximal cliques is also roughly 3n/3?

By Theorem 3.2, this would yield a dramatic improvement for many moderate exponential

algorithms.
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Abstract. This paper investigates the existence of inseparable disjoint pairs of NP lan-
guages and related strong hypotheses in computational complexity. Our main theorem
says that, if NP does not have measure 0 in EXP, then there exist disjoint pairs of NP
languages that are P-inseparable, in fact TIME(2(n k))-inseparable. We also relate these
conditions to strong hypotheses concerning randomness and genericity of disjoint pairs.

1. Introduction

The main objective of complexity theory is to assess the intrinsic difficulties of naturally

arising computational problems. It is often the case that a problem of interest can be

formulated as a decision problem, or else associated with a decision problem of the same

complexity, so much of complexity theory is focused on decision problems. Nevertheless,

other types of problems also require investigation.

This paper concerns promise problems, a natural generalization of decision problems

introduced by Even, Selman, and Yacobi [7]. A decision problem can be formulated as a

set A ⊆ {0, 1}∗, where a solution of this problem is an algorithm, circuit, or other device

that decides A, i.e., tells whether or not an arbitrary input x ∈ {0, 1}∗ is an element

of A. In contrast, a promise problem is formulated as an ordered pair (A,B) of disjoint

sets A,B ⊆ {0, 1}∗, where a solution is an algorithm or other device that decides any set

S ⊆ {0, 1}∗ such that A ⊆ S and B ∩ S = ∅. Such a set S is called a separator of the

disjoint pair (A,B). Intuitively, if we are promised that every input will be an element of
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A ∪ B, then a separator of (A,B) enables us to distinguish inputs in A from inputs in B.

Since each decision problem A is clearly equivalent to the promise problem (A,Ac), where

Ac = {0, 1}∗ −A is the complement of A, promise problems are, indeed, a generalization of

decision problems.

A disjoint NP pair is a promise problem (A,B) in which A,B ∈ NP. Disjoint NP pairs

were first investigated by Selman and others in connection with public key cryptosystems

[7, 15, 26, 17]. They were later investigated by Razborov [25] as a setting in which to prove

the independence of complexity-theoretic conjectures from theories of bounded arithmetic.

In this same paper, Razborov established a fundamental connection between disjoint NP

pairs and propositional proof systems. Propositional proof systems had been used by Cook

and Reckhow [6] to characterize the NP versus co-NP problem. Razborov [25] showed that

each propositional proof system has associated with it a canonical disjoint NP pair and that

important questions about propositional proof systems are thereby closely related to natural

questions about disjoint NP pairs. This connection with propositional proof systems has

motivated more recent work on disjoint NP pairs by Glaßer, Selman, Sengupta, and Zhang

[10, 9, 12, 13]. It is now known that the degree structure of propositional proof systems

under the natural notion of proof simulation is identical to the degree structure of disjoint

NP pairs under reducibility of separators [12]. Much of this recent work is surveyed in [11].

Goldreich [14] gives a recent survey of promise problems in general.

Our specific interest in this paper is the existence of disjoint NP pairs that are P-

inseparable, or even TIME(2nk

)-inseparable. As the terminology suggests, if C is a class

of decision problems, then a disjoint pair is C-inseparable if it has no separator in C. The

existence of P-inseparable disjoint NP pairs is a strong hypothesis in the sense that (1) it

clearly implies P 6= NP, and (2) the converse implication is not known (and fails relative to

some oracles [17]). It is clear that P 6= NP ∩ coNP implies the existence of P-inseparable

disjoint NP pairs, and Grollmann and Selman [15] proved that P 6= UP also implies the

existence of P-inseparable disjoint NP pairs.

The hypothesis that NP is a non-measure 0 subset of EXP, written µ(NP | EXP) 6= 0,

is a strong hypothesis in the above sense. This hypothesis has been shown to have many

consequences not known to follow from more traditional hypotheses such as P 6= NP or

the separation of the polynomial-time hierarchy into infinitely many levels. Each of these

known consequences has resolved some pre-existing complexity-theoretic question in the

way that agreed with the conjecture of most experts. This explanatory power of the µ(NP |
EXP) 6= 0 hypothesis is discussed in the early survey papers [23, 2, 24] and is further

substantiated by more recent papers listed at [16] (and too numerous to discuss here). In

several instances, the discovery that µ(NP | EXP) 6= 0 implies some plausible conclusion has

led to subsequent work deriving the same conclusion from some weaker hypothesis, thereby

further illuminating the relationships among strong hypotheses.

Our main theorem states that, if NP does not have measure zero in EXP, then, for

every positive integer k, there exist disjoint NP pairs that are TIME(2nk

)-inseparable. Such

pairs are a fortiori P-inseparable, but the conclusion of our main theorem actually gives

exponential lower bounds on the inseparability of some disjoint NP pairs. These are the

lower bounds that most experts conjecture to be true, even though an unconditional proof

of such bounds may be long in coming.

The proof of our main theorem combines known closure properties of NP with the

randomness that the µ(NP | EXP) 6= 0 hypothesis implies must be present in NP to give an

explicit construction of a disjoint NP pair that is TIME(2nk

)-inseparable. (Technically, this
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is an overstatement. The last step of the “construction” is the removal of a finite set whose

existence we prove, but which we do not construct.) The details are perhaps involved, but

we preface the proof with an intuitive motivation for the approach.

We also investigate the relationships between the two strong hypotheses in our main

theorem (i.e., its hypothesis and its conclusion) and strong hypotheses involving the exis-

tence of disjoint NP pairs with randomness and genericity properties. Roughly speaking

(i.e., omitting quantitative parameters), we show that the existence of disjoint NP pairs

that are random implies both the µ(NP | EXP) 6= 0 hypothesis and the existence of disjoint

NP pairs that are generic in the sense of Ambos-Spies, Fleischhack, and Huwig [1]. We also

show that the existence of such generic pairs implies the existence of disjoint NP pairs that

are TIME(2nk

)-inseparable. Taken together, these results give the four implications at the

top of Figure 1. (The four implications at the bottom are well known.) We prove that three

of these implications cannot be reversed by relativizable techniques, and we conjecture that

this also holds for the remaining implication.

2. Preliminaries

We write N for the set of nonnegative integers and Z
+ for the set of (strictly) positive

integers. The Boolean value of an assertion φ is [[φ]] = if φ then 1 else 0. All logarithms

here are base-2.

We write λ for the empty string, |w| for the length of a string w, and s0, s1, s2, . . . for

the standard enumeration of {0, 1}∗. The index of a string x is the value ind(x) ∈ N such

that sind(x) = x. We write next(x) for the string following x in the standard enumeration,

i.e., next(sn) = sn+1. More generally, for k ∈ N, we write nextk for the k-fold composition

of next with itself, so that nextk(sn) = sn+k.

A Boolean function is a function f : {0, 1}m → {0, 1} for some m ∈ N. The support of

such a function f is supp(f) =
{

x ∈ {0, 1}m

∣

∣

∣
f(x) = 1

}

.

We write w[i] for the ith symbol in a string w and w[i..j] for the string consisting of the

ith through jth symbols. The leftmost symbol of w is w[0], so that w = w[0..|w| − 1]. For

(infinite) sequences S ∈ Σ∞, the notations S[i] and S[i..j] are defined similarly. A string

w ∈ Σ∗ is a prefix of a string or sequence x ∈ Σ∗ ∪ Σ∞, and we write w ⊑ x, if there is

a string or sequence y ∈ Σ∗ ∪ Σ∞ such that wy = x. A language, or decision problem, is

a set A ⊆ {0, 1}∗. We identify each language A with the sequence A ∈ {0, 1}∞ defined by

A[n] = [[sn ∈ A]] for all n ∈ N. If A is a language, then expressions like limw→A f(w) refer

to prefixes w ⊑ A, e.g., limw→A f(w) = limn→∞ f(A[0..n − 1]).

A martingale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) =
d(w0) + d(w1)

2
(2.1)

for all w ∈ {0, 1}∗. Intuitively, d is a strategy for betting on the successive bits of a sequence

S ∈ {0, 1}∞: The quantity d(w) is the amount of money that the gambler using this strategy

has after |w| bets if w ⊑ S. Condition (2.1) says that the payoffs are fair.

A martingale d succeeds on a language A ⊆ {0, 1}∗, and we write A ∈ S∞[d], if

lim supw→A d(w) = ∞. If t : N → N, then a martingale d is (exactly) t(n)-computable if

its values are rational and there is an algorithm that computes each d(w) in t(|w|) time. A
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martingale is p-computable if it is nk-computable for some k ∈ N, and it is p
2
-computable

if it is 2(log n)k

-computable for some k ∈ N.

Definition 2.1. [22] Let X be a set of languages, and let R be a language.

(1) X has p-measure 0, and we write µp(X) = 0, if there is a p-computable martingale

d such that X ⊆ S∞[d]. The condition µp
2
(X) = 0 is defined analogously.

(2) X has measure 0 in EXP, and we write µ(X | EXP) = 0, if µp
2
(X ∩ EXP) = 0.

(3) R is p-random if µp({R}) 6= 0, i.e., if there is no p-computable martingale that suc-

ceeds on R. Similarly, R is t(n)-random if no t(n)- computable martingale succeeds

on R.

It is well known that these definitions impose a nontrivial measure structure on EXP

[22]. For example, µ(EXP | EXP) 6= 0.

We use the following fact in our arguments.

Lemma 2.2. [3, 18] The following five conditions are equivalent.

(1) µ(NP | EXP) 6= 0.
(2) µp(NP) 6= 0.
(3) µp

2
(NP) 6= 0.

(4) There exists a p-random language R ∈ NP.

(5) For every k ≥ 2, there exists an 2log nk

-random language R ∈ NP.

Finally, we note that µ(P | EXP) = 0 [22], so µ(NP | EXP) 6= 0 implies P 6= NP.

3. Inseparable Disjoint NP Pairs and the Measure of NP

This section presents our main theorem, which says that, if NP does not have measure

0 in EXP, then there are disjoint NP pairs that are P-inseparable. In fact, for each k ∈ N,

there is a disjoint NP pair that is TIME(2nk

)-inseparable.

It is convenient for our arguments to use a slight variant of the separability notion.

Definition 3.1. Let (A,B) be a pair of (not necessarily disjoint) languages, and let C be

a class of languages.

(1) A language S ⊆ {0, 1}∗ almost separates (A,B) if there is a finite set D ⊆ {0, 1}∗

such that S separates (A − D,B − D).

(2) We say that (A,B) is C-almost separable if there is a language S ∈ C that almost

separates (A,B).

Observation 3.2. If a pair (A,B) is not C-almost separable, then (A − D,B − D) is

C-inseparable for every finite set D.

Before proving our main theorem, we sketch the intuitive idea of the proof. We want

to construct a disjoint NP pair (A,B) that is P-inseparable. Our hypothesis, that NP does

not have measure 0 in EXP, implies that NP contains a language R that is p-random. Since

we are being intuitive, we ignore the subtleties of p-randomness and regard R as a sequence

of independent, fair coin tosses (with the nth toss heads iff sn ∈ R) that just happens to be

in NP. If we use these coins to randomly put strings in A or B but not both, we can count

on the randomness to thwart any would-be separator in P.
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The challenge here is that, if we are to deduce A,B ∈ NP from R ∈ NP, we must make

the conditions “sn ∈ A” and “sn ∈ B” depend on the coin tosses in a monotone way; i.e.,

adding a string to R must not move a string out of A or out of B.

This monotonicity restriction might at first seem to prevent us from ensuring that A
and B are disjoint. However, this is not the case. Suppose that we decide membership of

the nth string sn in A and B in the following manner. We toss 2 log n independent coins.

If the first log n tosses all come up heads, we put sn in A. If the second log n tosses all

come up heads, we put sn in B. If our coin tosses are taken from R, which is in NP, then A
and B will be in NP. Each string sn will be in A with probability 1

n
, in B with probability

1
n
, and in A ∩ B with probability 1

n2 . Since
∑

∞

n=1
1
n

diverges and
∑

∞

n=1
1
n2 converges, the

first and second Borel-Cantelli lemmas tell us that A and B are infinite and A∩B is finite.

Since A ∩ B is finite, we can subtract it from A and B, leaving two disjoint NP languages

that are, by the randomness of the construction, P-inseparable.

What prevents this intuitive argument from being a proof sketch is the fact that the

language R is not truly random, but only p-random. The proof that A ∩ B is finite thus

becomes problematic. There is a resource-bounded extension of the first Borel-Cantelli

lemma [22] that works for p-random sequences, but this extension requires the relevant sum

of probabilities to be p-convergent, i.e., to converge much more quickly than
∑

∞

n=1
1
n2 .

Fortunately, in this particular instance, we can achieve our objective without p-conver-

gence or the (classical or resource-bounded) Borel-Cantelli lemmas. We do this by modifying

the above construction. Instead of putting the nth string into each language with probability
1
n
, we put each string x into each of A and B with probability 2−|x| so that x is in A ∩ B

with probability 2−2|x|. By the Cauchy condensation test, the relevant series have the

same convergence behavior as those in our intuitive argument, but we can now replace slow

approximations of tails of
∑

∞

n=1
1
n2 with fast and exact computations of geometric series.

We now turn to the details.

Construction 3.3. (1) Define the functions u, v : {0, 1}∗ → {0, 1}∗ by the recursion

u(λ) = λ,

v(x) = next|x|(u(x)),

u(next(x) = next|x|(v(x)).

(2) For each x ∈ {0, 1}∗, define the intervals

Ix = [u(x), v(x)), Jx = [v(x), u(next(x))).

(3) For each R ⊆ {0, 1}∗, define the languages

A+(R) =
{

x
∣

∣

∣
Ix ⊆ R

}

, B+(R) =
{

x
∣

∣

∣
Jx ⊆ R

}

,

A(R) = A+(R) − B+(R), B(R) = B+(R) − A+(R).

Note that each |Ix| = |Jx| = |x|. Also, Iλ = Jλ = ∅ (so λ ∈ A+(R) ∩ B+(R)), and

I0 < J0 < I1 < J1 < I00 < J00 < I01 < . . . ,

with these intervals covering all of {0, 1}∗.
A routine witness argument gives the following.

Observation 3.4. (1) If R ∈ NP, then A+(R), B+(R) ∈ NP.

(2) If R ∈ NP and |A+(R) ∩ B+(R)| < ∞, then (A(R), B(R)) is a disjoint NP pair.

We now prove two lemmas about Construction 3.3.
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Lemma 3.5. Let k ∈ N. If R ⊆ {0, 1}∗ is 2(log n)k+2

- random, then (A+(R), B+(R)) is not

TIME(2nk

)-almost separable.

Lemma 3.6. If R ⊆ {0, 1}∗ is p-random, then |A+(R) ∩ B+(R)| < ∞.

We now have what we need to prove our main result.

Theorem 3.7. (main theorem) If NP does not have measure 0 in EXP, then, for every

k ∈ Z
+, there is a disjoint NP pair that is TIME(2nk

)-inseparable, hence certainly P-
inseparable.

Proof. Assume that µ(NP | EXP) 6= 0, and let k ∈ N. Then, by Lemma 2.2, there is

a 2(log n)k+2

-random language R ∈ NP. By Lemma 3.5, the pair (A+(R), B+(R)) is not

TIME(2nk

)-almost separable. Since R is certainly p-random, Lemma 3.6 tells us that

|A+(R) ∩ B+(R)| < ∞. It follows by Observation 3.4 that (A(R), B(R)) is a disjoint

NP pair, and it follows by Observation 3.2 that (A(R), B(R)) is TIME(2nk

)-inseparable.

4. Genericity and Measure of Disjoint NP Pairs

In this section we introduce the natural notions of resource-bounded measure and gener-

icity for disjoint pairs and relate them to the existence of P-inseparable pairs in NP. We

compare the different strength hypothesis on the measure and genericity of NP and disjNP

establishing all the relations in Figure 1.

Notation. Each disjoint pair (A,B) will be coded as an infinite sequence T ∈ {−1, 0, 1}∞

defined by

T [n] =







1 if sn ∈ A
−1 if sn ∈ B
0 if sn 6∈ A ∪ B

We identify each disjoint pair with the corresponding sequence.

Resource-bounded genericity for disjoint pairs is the natural extension of the concept

introduced for languages by Ambos-Spies, Fleischhack and Huwig [1].

Definition 4.1. A condition C is a set C ⊆ {−1, 0, 1}∗. A t(n)-condition is a condition

C ∈ DTIME(t(n)). A condition C is dense along a pair (A,B) if there are infinitely many

n ∈ N such that (A,B)[0..n − 1]i ∈ C for some i ∈ {−1, 0, 1}. A pair (A,B) meets a

condition C if (A,B)[0..n− 1] ∈ C for some n. A pair (A,B) is t(n)-generic if (A,B) meets

every t(n)-condition that is dense along (A,B).

We first prove that generic pairs are inseparable.

Theorem 4.2. Every t(log n)-generic disjoint pair is TIME(t(n))-inseparable.

We can now relate genericity in disjNP and inseparable pairs as follows.

Corollary 4.3. If disjNP contains a 2(log n)k

-generic pair for every k ∈ N, then disjNP

contains a TIME(2nk

)-inseparable pair for every k ∈ N.

Resource-bounded measure on classes of disjoint pairs is the natural extension of the

concept introduced for languages by Lutz [22], and is defined by using martingales on a

three-symbol alphabet as follows.
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Definition 4.4. (1) A pair martingale is a function d : {−1, 0, 1}∗ → [0,∞) such that

for every w ∈ {−1, 0, 1}∗

d(w) =
1

4
d(w0) +

3

8
d(w1) +

3

8
d(w(−1)).

(2) A pair martingale d succeeds on a pair (A,B) if lim supw→(A,B) d(w) = ∞.

(3) A pair martingale d succeeds on a class of pairs X ⊆ {−1, 0, 1}∞ if it succeeds on

each (A,B) ∈ X.

Our intuitive rationale for the coefficients in part 1 of this definition is the following.

We toss one fair coin to decide whether s|w| ∈ A and another to decide whether s|w| ∈ B.

If both coins come up heads, we toss a third coin to break the tie. The reader may feel

that some other coefficients, such as 1
3 , 1

3 , 1
3 are more natural here. Fortunately, a routine

extension of the main theorem of [5] shows that the value of µ(disjNP | disjEXP) will be

the same for any choice of three positive coefficients summing to 1.

When restricting martingales to those computable within a certain resource bound, we

obtain a resource-bounded measure that is useful within a complexity class. Here we are

interested in the class of disjoint EXP pairs, disjEXP.

Definition 4.5. (1) Let p
2

be the class of functions that can be computed in time

2(log n)O(1)

.

(2) A class of pairs X ⊆ {−1, 0, 1}∞ has p
2
-measure 0 if there is a martingale d ∈ p

2

that succeeds on X.

(3) X ⊆ {−1, 0, 1}∞ has p
2
-measure 1 if Xc has p

2
-measure 0.

(4) A class of pairs X ⊆ {−1, 0, 1}∞ has measure 0 in disjEXP, denoted µ(X | disjEXP) =

0, if X ∩ disjEXP has p
2
-measure 0.

(5) X ⊆ {−1, 0, 1}∞ has measure 1 in disjEXP if Xc has measure 0 in disjEXP.

It is easy to verify that p
2
-measure is nontrivial on disjEXP (as proven for languages

in [22]).

In the following we consider the hypothesis that disjNP does not have measure 0 in

disjEXP (written µ(disjNP | disjEXP) 6= 0). We start by proving that this hypothesis is at

least as strong as the well studied µ(NP | EXP) 6= 0 hypothesis.

Theorem 4.6. If µ(disjNP | disjEXP) 6= 0 then µ(NP | EXP) 6= 0.

We finish by relating measure and genericity for disjoint pairs.

Theorem 4.7. If µ(disjNP | disjEXP) 6= 0, then disjNP contains a 2(log n)k

-generic pair
for every k ∈ N.

5. Oracle Results

All the techniques in this and related papers relativize, that is they hold when all

machines involved have access to the same oracle A. In this section we give relativized

worlds where the converses of most of the results in this paper, as expressed in Figure 1, do

not hold. Since the implications trivially all hold in any relativized world where P = NP [4],

one cannot use relativizable techniques to settle these converses.

We’ll work our way from the bottom up of Figure 1.
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µ(disjNP | disjEXP) 6= 0

Theorem 4.6

µ(NP | EXP) 6= 0

Theorem 4.7

(∀k)disjNP contains

a 2(log n)k

−generic pair

Theorem 3.7 Corollary 4.3

(∀k) disjNP contains

a TIME(2nk

)-inseparable
pair

P 6= NP ∩ coNP disjNP contains
P-inseparable pairs

P 6= UP

P 6= NP

Grollmann & Selman [15]

Figure 1: Relations among some strong hypotheses.

Theorem 5.1 (Homer-Selman [17], Fortnow-Rogers [8]). There exists oracles A and B
such that

• PA 6= NPA and disjNPA does not contain PA-inseparable pairs.
• PB = NPB ∩ coNPB = UPB and disjNPB does contain PB-inseparable pairs.

Theorem 5.2. There exists an oracle C such that PC 6= UPC but NPC is contained in
TIMEC(nO(log n)). In particular this means that relative to C, disjNP contains P-inseparable

pairs but there is a k (and in fact any real k > 0) such that disjNP has no TIME(2nk

)-
inseparable pairs.

Theorem 5.3. There exists a relativized world D, relative to which for all k, disjNP con-

tains a TIME(2nk

)-inseparable pair but µ(NP|EXP) = 0 and disjNP does not contain a

2(log n)k

-generic pair.

Theorem 5.4. There exists an oracle E relative to which for all k, disjNP contains a

2(log n)k

-generic pair but µ(disjNP|disjEXP) = 0.

Conjecture 5.5. There exists an oracle H relative to which µ(NP|EXP) 6= 0 but

µ(disjNP|disjEXP) = 0.
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Let K be a PSPACE-compete set, R be a “random” oracle and let

H = K ⊕ R = {〈0, x〉 | x ∈ K} ∪ {〈1, y〉 | y ∈ R}.

Kautz and Miltersen show in [20] that relative to H, µ(NP|EXP) 6= 0. Kahn, Saks and

Smyth [19] combined with unpublished work of Impagliazzo and Rudich show that relative

to H there is a polynomial-time algorithm that solves languages in NP ∩ coNP on average

for infinitely-many lengths which would imply µ(NP ∩ coNP|EXP) = 0 relative to H. We

conjecture that one can modify this proof to show µ(disjNPH |disjEXPH) = 0.
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STEFAN GÖLLER1 AND MARKUS LOHREY 2

1 Universität Bremen, Fachbereich Mathematik und Informatik
E-mail address: goeller@informatik.uni-bremen.de

2 Universität Leipzig, Institut für Informatik
E-mail address: lohrey@informatik.uni-leipzig.de

ABSTRACT. One-counter processes (OCPs) are pushdown processes which operate only on a unary
stack alphabet. We study the computational complexity of model checking computation tree logic
(CTL) over OCPs. APSPACE upper bound is inherited from the modalµ-calculus for this problem.
First, we analyze the periodic behaviour ofCTL over OCPs and derive a model checking algorithm
whose running time is exponential only in the number of control locations and a syntactic notion of
the formula that we call leftward until depth. Thus, model checking fixed OCPs againstCTL formu-
las with a fixed leftward until depth is inP. This generalizes a result of the first author, Mayr, and To
for the expression complexity ofCTL’s fragmentEF. Second, we prove that already over some fixed
OCP,CTL model checking isPSPACE-hard. Third, we show that there already exists a fixedCTL

formula for which model checking of OCPs isPSPACE-hard. For the latter, we employ two results
from complexity theory: (i) Converting a natural number in Chinese remainder presentation into bi-
nary presentation is in logspace-uniformNC

1 and (ii)PSPACE is AC
0-serializable. We demonstrate

that our approach can be used to answer further open questions.

1. Introduction

Pushdown automata (PDAs) (or recursive state machines) are a natural model for sequential
programs with recursive procedure calls, and their verification problems have been studied ex-
tensively. The complexity of model checking problems for PDAs is quite well understood: The
reachability problem for PDAs can be solved in polynomial time [4, 10]. Model checking modal
µ-calculus over PDAs was shown to beEXPTIME-complete in [29], and the global version of the
model checking problem has been considered in [7, 21, 22]. TheEXPTIME lower bound for model
checking PDAs also holds for the simpler logicCTL and its fragmentEG [28], even for a fixed
formula (data complexity) [5] or a fixed PDA (expression complexity). On the other hand, model
checking PDAs against the logicEF (another natural fragment ofCTL) is PSPACE-complete [28],
and again the lower bound still holds if either the formula or the PDA is fixed [4]. Model checking
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problems for various fragments and extensions of PDL (Propositional Dynamic Logic) over PDAs
were studied in [12].

One-counter processes (OCPs) are Minsky counter machines with just one counter. They can
also be seen as a special case of PDAs with just one stack symbol, plus a non-removable bottom
symbol which indicates an empty stack (and thus allows to test the counter for zero) and hence con-
stitute a natural and fundamental computational model. In recent years, model checking problems
for OCPs received increasing attention [13, 15, 23, 25]. Clearly, all upper complexity bounds carry
over from PDAs. The question, whether these upper bounds can be matched by lower bounds was
just recently solved for several important logics: Model checking modalµ-calculus over OCPs is
PSPACE-complete. ThePSPACE upper bound was shown in [23], and a matching lower bound
can easily be shown by a reduction from emptiness of alternating unary finite automata, which was
shown to bePSPACE-complete in [18, 19]. This lower bound even holds if either the OCP or the
formula is fixed. The situation becomes different for the fragmentEF. In [13], it was shown that
model checkingEF over OCPs is in the complexity classPNP (the class of all problems that can be
solved on a deterministic polynomial time machine with access to an oracle fromNP). Moreover, if
the input formula is represented succinctly as a directed acyclic graph, then model checkingEF over
OCPs is also hard forPNP. For the standard (and less succinct) tree representation for formulas,
only hardness for the classPNP[log] (the class of all problems that can be solved on a deterministic
polynomial time machine which is allowed to makeO(log(n)) many queries to an oracle fromNP)
was shown in [13]. In fact, there already exists a fixedEF formula such that model checking this
formula over a given OCP is hard forPNP[log], i.e., the data complexity isPNP[log]-hard.

In this paper we consider the model checking problem forCTL over OCPs. By the known
upper bound for the modalµ-calculus [23] this problem belongs toPSPACE. First, we analyze
the combinatorics ofCTL model checking over OCPs. More precisely, we analyze the periodic
behaviour of the set of natural numbers that satisfy a givenCTL formula in a given control location
of the OCP (Thm. 4.1). By making use of Thm. 4.1, we can derive a model checking algorithm
whose running time is exponential only in the number of control locations and a syntactic measure
onCTL formulas that we call leftward until depth (Thm. 4.2). As a corollary, we obtain that model
checking a fixed OCP againstCTL formulas of fixed leftward until depth lies inP. This generalizes
a recent result from [13], where it was shown that the expression complexity ofEF over OCPs
lies in P. Next, we focus on lower bounds. We show that model checkingCTL over OCPs is
PSPACE-complete, even if we fix either the OCP (Thm. 5.3) or theCTL formula (Thm. 7.2). The
proof of Thm. 5.3 uses a reduction from QBF. We have to construct a fixed OCP for which we
can construct for a given unary encoded numberi CTL formulas that express, when interpreted
over our fixed OCP, whether the current counter value is divisible by2i and whether theith bit in
the binary representation of the current counter value is1, respectively. For the proof of Thm. 7.2
(PSPACE-hardness of data complexity forCTL) we use two techniques from complexity theory,
which to our knowledge have not been applied in the context of verification so far: (i) the existence
of small depth circuits for converting a number from Chinese remainder representation to binary
representation and (ii) the fact thatPSPACE-computations are serializable in a certain sense (see
Sec. 6 for details). One of the main obstructions in getting lower bounds for OCPs is the fact that
OCPs are well suited for testing divisibility properties of the counter value and hence can deal with
numbers in Chinese remainder representation, but it is not clear how to deal with numbers in binary
representation. Small depth circuits for converting a number from Chinese remainder representation
to binary representation are the key in order to overcome this obstruction.

We are confident that our new lower bound techniques described above can be used for proving
further lower bounds for OCPs. We present two other applications of our techniques in Sec. 8:
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(i) We show that model checkingEF over OCPs is complete forPNP even if the input formula is
represented by a tree (Thm. 8.1) and thereby solve an open problem from [13]. (ii) We improve a
lower bound on a decision problem for one-counter Markov decision processes from [6] (Thm. 8.2).
The following table summarizes the picture on the complexity of model checking for PDAs and
OCPs. Our new results are marked with (*).

Logic PDA OCP
modalµ-calculus EXPTIME-complete PSPACE-complete
modalµ-calculus, fixed formula EXPTIME-complete PSPACE-complete
modalµ-calculus, fixed system EXPTIME-complete PSPACE-complete
CTL, fixed formula EXPTIME-complete PSPACE-complete (*)
CTL, fixed system EXPTIME-complete PSPACE-complete (*)
CTL, fixed system, fixed leftward until depthEXPTIME-complete in P (*)
EF PSPACE-complete PNP-complete (*)
EF, fixed formula PSPACE-complete PNP[log]-hard, inPNP

EF, fixed system PSPACE-complete in P

Missing proofs due to space restrictions can be found in the full version of this paper [14].

2. Preliminaries

We denote the naturals byN = {0, 1, 2, . . .}. Fori, j ∈ N let [i, j] = {k ∈ N | i ≤ k ≤ j} and
[j] = [1, j]. In particular[0] = ∅. Forn ∈ N andi ≥ 1, let biti(n) denote theith least significant
bit of the binary representation ofn, i.e.,n =

∑

i≥1 2i−1 · biti(n). For every finite and non-empty
subsetM ⊆ N \ {0}, define LCM(M) to be theleast common multipleof all numbers inM . It
is known that2k ≤ LCM([k]) ≤ 4k for all k ≥ 9 [20]. As usual, for a possibly infinite alphabet
A, A∗ (resp.Aω) denotes the set of all finite (resp. infinite) words overA. Let A∞ = A∗ ∪ Aω

andA+ = A∗ \ {ε}, whereε is the empty word. The length of a finite wordw is denoted by|w|.
For a wordw = a1a2 · · · an ∈ A∗ (resp. w = a1a2 · · · ∈ Aω) with ai ∈ A and i ∈ [n] (resp.
i ≥ 1), we denote bywi the ith letter ai. A nondeterministic finite automaton (NFA) is a tuple
A = (S,Σ, δ, s0, Sf ), whereS is a finite set ofstates, Σ is afinite alphabet, δ ⊆ S × Σ × S is the
transition relation, s0 ∈ S is theinitial state, andSf ⊆ S is a set offinal states. We assume some
basic knowledge in complexity theory, see e.g. [1] for more details.

3. One-counter processes and computation tree logic

Fix a countable setP of propositions. A transition systemis a tripleT = (S, {Sp | p ∈ P},→),
whereS is the set ofstates, →⊆ S × S is the set oftransitionsandSp ⊆ S for all p ∈ P with
Sp = ∅ for all but finitely manyp ∈ P. We writes1 → s2 instead of(s1, s2) ∈→. The set of all
finite (resp. infinite) paths in T is path+(T ) = {π ∈ S+ | ∀i ∈ [|π| − 1] : πi → πi+1} (resp.
pathω(T ) = {π ∈ Sω | ∀i ≥ 1 : πi → πi+1}). For a subsetU ⊆ S of states, a (finite or infinite)
pathπ is called aU -path if π ∈ U∞.

A one-counter process(OCP) is a tupleO = (Q, {Qp | p ∈ P}, δ0, δ>0), whereQ is a finite
set ofcontrol locations, Qp ⊆ Q for all p ∈ P with Qp = ∅ for all but finitely manyp ∈ P,
δ0 ⊆ Q× {0, 1} ×Q is a set ofzero transitions, andδ>0 ⊆ Q× {−1, 0, 1} ×Q is a set ofpositive
transitions. Thesizeof the OCPO is |O| = |Q|+

∑

p∈P |Qp|+ |δ0|+ |δ>0|. The transition system
defined byO is T (O) = (Q × N, {Qp × N | p ∈ P},→), where(q, n) → (q′, n + k) if and only
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if either n = 0 and(q, k, q′) ∈ δ0, or n > 0 and(q, k, q′) ∈ δ>0. A one-counter net(OCN) is an

OCP, whereδ0 ⊆ δ>0. For(q, k, q′) ∈ δ0 ∪ δ>0 we usually writeq
k
−→ q′.

More details on the temporal logicCTL can be found for instance in [2].Formulasϕ of CTL

are defined by the following grammar, wherep ∈ P:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ∃Xϕ | ∃ϕUϕ | ∃ϕWUϕ.

Given a transition systemT = (S, {Sp | p ∈ P},→) and aCTL formulaϕ, we define the semantics
[[ϕ]]T ⊆ S by induction on the structure ofϕ as follows: [[p]]T = Sp for eachp ∈ P, [[¬ϕ]]T =
S \ [[ϕ]]T , [[ϕ1 ∧ϕ2]]T = [[ϕ1]]T ∩ [[ϕ2]]T , [[∃Xϕ]]T = {s ∈ S | ∃s′ ∈ [[ϕ]]T : s→ s′}, [[∃ϕ1Uϕ2]]T =
{s ∈ S | ∃π ∈ path+(T ) : π1 = s, π|π| ∈ [[ϕ2]]T ,∀i ∈ [|π| − 1] : πi ∈ [[ϕ1]]T }, [[∃ϕ1WUϕ2]]T =
[[∃ϕ1Uϕ2]]T ∪ {s ∈ S | ∃π ∈ pathω(T ) : π1 = s,∀i ≥ 1 : πi ∈ [[ϕ1]]T }. We also write(T, s) |= ϕ
(or briefly s |= ϕ if T is clear from the context) fors ∈ [[ϕ]]T . We introduce the usual abbreviations
ϕ1 ∨ϕ2 = ¬(¬ϕ1 ∧¬ϕ2), ∀Xϕ = ¬∃X¬ϕ, ∃Fϕ = ∃(p∨¬p)Uϕ, and∃Gϕ = ∃ϕWU(p ∧¬p) for
somep ∈ P. Formulas of theCTL-fragmentEF are given by the following grammar, wherep ∈ P:
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ∃Xϕ | ∃Fϕ. Thesizeof CTL formulas is defined as follows:|p| = 1,
|¬ϕ| = |∃Xϕ| = |ϕ|+ 1, |ϕ1 ∧ϕ2| = |ϕ1|+ |ϕ2|+ 1, |∃ϕ1Uϕ2| = |∃ϕ1WUϕ2| = |ϕ1|+ |ϕ2|+ 1.

4. CTL on OCPs: Periodic behaviour and upper bounds

The goal of this section is to prove a periodicity property ofCTL over OCPs, which implies
an upper bound forCTL on OCPs, see Thm. 4.2. As a corollary, we state that for a fixed OCP,
CTL model checking restricted to formulas of fixed leftward until depth (see the definition below)
can be done in polynomial time. We define theleftward until depthlud of CTL formulas induc-
tively as follows: lud(p) = 0 for p ∈ P, lud(¬ϕ) = lud(∃Xϕ) = lud(ϕ), lud(ϕ1 ∧ ϕ2) =
max{lud(ϕ1), lud(ϕ2)}, lud(∃ϕ1Uϕ2) = lud(∃ϕ1WUϕ2) = max{lud(ϕ1) + 1, lud(ϕ2)}. A
similar definition of until depth can be found in [24], but there the until depth of∃ϕ1Uϕ2 is 1 plus
the maximum of the until depths ofϕ1 andϕ2. Note thatlud(ϕ) ≤ 1 for everyEF formulaϕ.

Let us fix an OCPO = (Q, {Qp | p ∈ P}, δ0, δ>0) for the rest of this section. Let|Q| = k and
defineK = LCM([k]) andKϕ = K lud(ϕ) for eachCTL formulaϕ.

Theorem 4.1. For all CTL formulasϕ, all q ∈ Q and alln, n′ > 2·|ϕ|·k2·Kϕ withn ≡ n′ modKϕ:

(q, n) ∈ [[ϕ]]T (O) ⇐⇒ (q, n′) ∈ [[ϕ]]T (O). (4.1)

Proof sketch.We prove the theorem by induction on the structure ofϕ. We only treat the difficult
caseϕ = ∃ψ1Uψ2 here. LetT = max{2 · |ψi| · k

2 ·Kψi | i ∈ {1, 2}}. Let us prove equivalence
(4.1). Note thatKϕ = LCM{K ·Kψ1

,Kψ2
} by definition. Let us fix an arbitrary control location

q ∈ Q and naturalsn, n′ ∈ N such that2 · |ϕ| · k2 ·Kϕ < n < n′ andn ≡ n′ modKϕ. We have
to prove that(q, n) ∈ [[ϕ]]T (O) if and only if (q, n′) ∈ [[ϕ]]T (O). For this, letd = n′ − n, which is a
multiple ofKϕ. We only treat the “if”-direction here and recommend the reader to consult [14] for
helpful illustrations. So let us assume that(q, n′) ∈ [[ϕ]]T (O). To prove that(q, n) ∈ [[ϕ]]T (O), we
will use the following claim.

Claim: Assume some[[ψ1]]T (O)-pathπ = [(q1, n1) → (q2, n2) → · · · → (ql, nl)] with ni > T

for all i ∈ [l] andn1 − nl ≥ k2 · K · Kψ1
. Then there exists a[[ψ1]]T (O)-path from(q1, n1) to

(ql, nl +K ·Kψ1
), whose counter values are all strictly aboveT +K ·Kψ1

.

The claim tells us that paths that lose height at leastk2 ·K ·Kψ1
and whose states all have counter

values strictly aboveT can be flattened (without changing the starting state) by heightK ·Kψ1
.
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Proof of the claim. For each counter valueh ∈ {ni | i ∈ [l]} that appears inπ, let µ(h) =
min{i ∈ [l] | ni = h} denote the minimal position inπ whose corresponding state has counter
valueh. Define∆ = k ·Kψ1

. We will be interested ink ·K many consecutive intervals (of counter
values) each of size∆. Define the bottomb = n1 − (k · K) · ∆. Formally, aninterval is a set
Ii = [b + (i − 1) · ∆, b + i · ∆] for somei ∈ [k ·K]. Since each interval has size∆ = k ·Kψ1

,
we can think of each intervalIi to consist ofk consecutivesub-intervalsof sizeKψ1

each. Note
that each sub-interval has two extremal elements, namely itsupperandlower boundary. Thus allk
sub-intervals havek + 1 boundaries in total. Hence, by the pigeonhole principle, for each interval
Ii, there exists someci ∈ [k] and two distinct boundariesβ(i, 1) > β(i, 2) of distanceci · Kψ1

such that the control location ofπ’s earliest state of counter valueβ(i, 1) agrees with the control
location ofπ’s earliest state of counter valueβ(i, 2), i.e., formallyqµ(β(i,1)) = qµ(β(i,2)). Observe
that flattening the pathπ by gluing togetherπ’s states at positionµ(β(i, 1)) andµ(β(i, 2)) (for this,
we addci · Kψ1

to each counter value at a position≥ β(i, 2)) still results in a[[ψ1]]T (O)-path by
induction hypothesis, since we reduced the height ofπ by a multiple ofKψ1

. Our overall goal is to
flattenπ by gluing together states only of certain intervals such that we obtain a path whose height
is in total by preciselyK · Kψ1

smaller thanπ’s. Recall that there arek · K many intervals. By
the pigeonhole principle there is somec ∈ [k] such thatci = c for at leastK many intervalsIi.
By gluing togetherKc ∈ N pairs of states of distancec ·Kψ1

each, we reduceπ’s height by exactly
K
c · c ·Kψ1

= K ·Kψ1
. This proves the claim.

Let us finish the proof the “if”-direction. Since by assumption(q, n′) ∈ [[ϕ]]T (O), there exists
a finite pathπ = (q1, n1) → (q2, n2) → · · · → (ql, nl), whereπ[1, l − 1] is a [[ψ1]]T (O)-path,
(q, n′) = (q1, n1), and where(ql, nl) ∈ [[ψ2]]T (O). To prove(q, n) ∈ [[ϕ]]T (O), we will assume that
nj > T for eachj ∈ [l]. The case whennj = T for somej ∈ [l] can be proven similarly. Assume
first that the pathπ[1, l−1] contains two states whose counter difference is at leastk2 ·K ·Kψ1

+Kϕ

which is (strictly) greater thank2 ·K ·Kψ1
. SinceKϕ is a multiple ofK ·Kψ1

by definition, we can

apply the above claim Kϕ
K·Kψ1

∈ N many times toπ[1, l − 1]. This reduces the height byKϕ. We

repeat this flattening process ofπ[1, l−1] by heightKϕ as long as possible, i.e., until any two states
have counter difference smaller thank2 ·K ·Kψ1

+Kϕ. Letσ denote the[[ψ1]]T (O)-path starting in
(q, n′) that we obtain fromπ[1, l − 1] by this process. Thus,σ ends in some state, whose counter
value is congruentnl−1 moduloKϕ (since we flattenedπ[1, l − 1] by a multiple ofKϕ). SinceKϕ

is in turn a multiple ofKψ2
, we can build a pathσ′ which extends the pathσ by a single transition

to some state that satisfiesψ2 by induction hypothesis. Moreover, by our flattening process, the
counter difference between any two states inσ′ is at mostk2 ·K ·Kψ1

+Kϕ ≤ 2 · k2 ·Kϕ. Recall
thatT = max{2 · |ψi| · k

2 ·Kψi | i ∈ {1, 2}}. As

n > 2 · |ϕ| · k2 ·Kϕ = 2 · (|ϕ| − 1 + 1) · k2 ·Kϕ ≥ T + 2 · k2 ·Kϕ,

it follows that the path that results fromσ′ by subtractingd from each counter value (this path starts
in (q, n)) is strictly aboveT . Moreover, sinced is a multiple ofKψ1

andKψ2
, this path witnesses

(q, n) ∈ [[ϕ]]T (O) by induction hypothesis.

The following result can be obtained basically by using the standard model checking algorithm
for CTL on finite systems (see e.g. [2]) in combination with Thm. 4.1.

Theorem 4.2. For a given one-counter processO = (Q, {Qp | p ∈ P}, δ0, δ>0), a CTL formula
ϕ, a control locationq ∈ Q, andn ∈ N given in binary, one can decide(q, n) ∈ [[ϕ]]T (O) in time

O(log(n) + |Q|3 · |ϕ|2 · 4|Q|·lud(ϕ) · |δ0 ∪ δ>0|).
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Figure 1: The one-counter netO for whichCTL model checking isPSPACE-hard

As a corollary, we can deduce that for every fixed OCPO and every fixedk the question if for
a given states and a given CTL formulaϕ with lud(ϕ) ≤ k, we have(T (O), s) |= ϕ, is in P. This
generalizes a result from [13], stating that the expression complexity ofEF over OCPs is inP.

5. Expression complexity for CTL is hard for PSPACE

The goal of this section is to prove that model checkingCTL is PSPACE-hard already over a
fixed OCN. We show this via a reduction from the well-knownPSPACE-complete problem QBF.
Our lower bound proof is separated into three steps. In step one, we define a family ofCTL formulas
(ϕi)i≥1 such that over the fixed OCNO that is depicted in Fig. 1 we can express (non-)divisibility by
2i. In step two, we define a family ofCTL formulas(ψi)i≥1 such that overO we can express if the
ith bit in the binary representation of a natural is set to1. In our final step, we give the reduction from
QBF. For step one, we need the following simple fact which characterizes divisibility by powers of
two (recall that[n] = {1, . . . , n}, in particular[0] = ∅):

∀n ≥ 0, i ≥ 1 : 2i dividesn ⇔ (2i−1 dividesn ∧ |{n′ ∈ [n] | 2i−1 dividesn′}| is even) (5.1)

The set of propositions ofO in Fig. 1 coincides with its control locations. Recall thatO’s zero
transitions are denoted byδ0 andO’s positive transitions are denoted byδ>0. Sinceδ0 ⊆ δ>0, O is
indeed an OCN. Note that botht andt are control locations ofO. Now we define a family ofCTL

formulas(ϕi)i≥1 such that for eachn ∈ N we have: (i)(t, n) |= ϕi if and only if 2i dividesn and
(ii) (t, n) |= ϕi if and only if 2i doesnot divide n. On first sight, it might seem superfluous to let
the control locationt represent divisibility by powers of two and the control locationt to represent
non-divisibility by powers of two sinceCTL allows negation. However the fact that we haveonly
onefamily of formulas(ϕi)i≥1 to express both divisibility and non-divisibility is a crucial technical
subtlety that is necessary in order to avoid an exponential blowup in formula size. By making use of
(5.1), we construct the formulasϕi inductively. First, let us define the auxiliary formulas test= t∨t
andϕ⋄ = q0∨q1∨q2∨q3. Think ofϕ⋄ to hold in those control locations that altogether are situated
in the “diamond” in Fig. 1. We define

ϕ1 = test∧ ∃X (f ∧ EF(f ∧ ¬∃Xg)) and

ϕi = test ∧ ∃X
(

∃(ϕ⋄ ∧ ∃Xϕi−1) U (q0 ∧ ¬∃Xq1)
)

for i > 1.

Sinceϕi−1 is only used once inϕi, we get|ϕi| ∈ O(i). The following lemma states the correctness
of the construction.

Lemma 5.1. Letn ≥ 0 andi ≥ 1. Then

• (t, n) |= ϕi if and only if2i dividesn.
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• (t, n) |= ϕi if and only if2i does not dividen.

Proof sketch.The lemma is proved by induction oni. The induction base fori = 1 is easy to check.
For i > 1, observe thatϕi can only be true either in control locationt or t. Note that the formula
right to the until symbol inϕi expresses that we are inq0 and that the current counter value is zero.
Also note that the formula left to the until symbol requires thatϕ⋄ holds, i.e., we are always in one
of the four “diamond control locations”. In other words, we decrement the counter by moving along
the diamond control locations (by possibly looping atq1 andq3) and always check if∃Xϕi−1 holds,
just until we are inq0 and the counter value is zero. Since there are transitions fromq1 andq3 to t
(but not tot), the induction hypothesis implies that the formula∃Xϕi−1 can be only true inq1 and
q3 as long as the current counter value is not divisible by2i−1. Similarly, since there are transitions
from q0 andq2 to t (but not tot), the induction hypothesis implies that the formula∃Xϕi−1 can be
only true inq0 andq2 if the current counter value is divisible by2i−1. With (5.1) this implies the
lemma.

For expressing if theith bit of a natural is set to1, we make use of the following simple fact:

∀n ≥ 0, i ≥ 1 : biti(n) = 1 ⇐⇒ |{n′ ∈ [n] | 2i−1 dividesn′}| is odd (5.2)

Let us now define a family ofCTL formulas(ψi)i≥1 such that for eachn ∈ N we have biti(n) = 1
if and only if (t, n) |= ψi. We setψ1 = ϕ1 andψi = t ∧ ∃X ((q1 ∨ q2) ∧ µi), whereµi =
∃(ϕ⋄∧∃Xϕi−1) U (q0∧¬∃Xq1) for eachi > 1. Due to the construction ofψi and since|ϕi| ∈ O(i),
we obtain that|ψi| ∈ O(i). The following lemma states the correctness of the construction.

Lemma 5.2. Letn ≥ 0 and leti ≥ 1. Then(t, n) |= ψi if and only if biti(n) = 1.

Let us sketch the final step of the reduction from QBF. For this, let us assume some quantified
Boolean formulaα = QkxkQk−1xk−1 · · ·Q1x1 : β(x1, . . . , xk), whereβ is a Boolean formula
over variables{x1, . . . , xk} andQi ∈ {∃,∀} is a quantifier for eachi ∈ [k]. Think of each truth
assignmentϑ : {x1, . . . , xk} → {0, 1} to correspond to the natural numbern(ϑ) ∈ [0, 2k−1], where
biti(n(ϑ)) = 1 if and only if ϑ(xi) = 1, for eachi ∈ [k]. Let ̂β be the CTL formula that is obtained
from β by replacing each occurrence ofxi by ψi, which corresponds to applying Lemma 5.2. It
remains to describe how we deal with quantification. Think of this as to consecutively incrementing
the counter from state(t, 0) as follows. First, setting the variablexk to 1 will correspond to adding
2k−1 to the counter and getting to state(t, 2k−1). Settingxk to 0 on the other hand will correspond
to adding0 to the counter and hence remaining in state(t, 0). Next, settingxk−1 to 1 corresponds
to adding to the current counter value2k−2, whereas settingxk−1 to 0 corresponds to adding0,
as expected. These incrementation steps can be achieved using the formulasϕi from Lemma 5.1.
Finally, after setting variablex1 either to0 or 1, we verify if the CTL formulâβ holds. Formally, let
©i = ∧ if Qi = ∃ and©i =→ if Qi = ∀ for eachi ∈ [k] (recall thatQk, . . . , Q1 are the quantifiers
of our quantified Boolean formulaα). Let θ1 = Q1X ((p0 ∨ p1) ©1 ∃X ̂β) and fori ∈ [2, k]:

θi = QiX

(

(p0 ∨ p1) ©i ∃

(

(p0 ∨ ∃X (t ∧ ϕi−1)) U (t ∧ ¬ϕi−1 ∧ θi−1))

))

.

Then, it can be show thatα is valid if and only if(t, 0) ∈ [[θk]]T (O).

Theorem 5.3. CTL model checking of the fixed OCNO from Fig. 1 isPSPACE-hard.

Note that the constructedCTL formula has leftward until depth that depends on the size of
α. By Thm. 4.2 this cannot be avoided unlessP = PSPACE. Observe that in order to express
divisibility by powers of two, ourCTL formulas(ϕi)i≥0 have linearly growing leftward until depth.
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6. Tools from complexity theory

For Sec. 7 and 8 we need some concepts from complexity theory. ByPNP[log] we denote
the class of all problems that can be solved on a polynomially time bounded deterministic Turing
machines which can have access to anNP-oracle only logarithmically many times, and byPNP the
corresponding class without the restriction to logarithmically many queries. Let us briefly recall
the definition of the circuit complexity classNC1, more details can be found in [26]. We consider
Boolean circuitsC = C(x1, . . . , xn) built up from AND- and OR-gates. Each input gate is labeled
with a variablexi or a negated variable¬xi. The output gates are linearly ordered. Such a circuit
computes a functionfC : {0, 1}n → {0, 1}m, wherem is the number of output gates, in the obvious
way. Thefan-in of a circuit is the maximal number of incoming wires of a gate in the circuit. The
depth of a circuitis the number of gates along a longest path from an input gate to an output gate. A
logspace-uniformNC1-circuit family is a sequence(Cn)n≥1 of Boolean circuits such that for some
polynomialp(n) and constantc: (i) Cn contains at mostp(n) many gates, (ii) the depth ofCn is
at mostc · log(n), (iii) the fan-in ofCn is at most2, (iv) for eachm there is at most one circuit in
(Cn)n≥1 with exactlym input gates, and (v) there exists a logspace transducer that computes on
input 1n a representation (e.g. as a node-labeled graph) of the circuitCn. Such a circuit family
computes a partial mapping on{0, 1}∗ in the obvious way (note that we do not require to have for
everyn ≥ 0 a circuit with exactlyn input gates in the family, therefore the computed mapping is in
general only partially defined). In the literature on circuit complexity one can find more restrictive
notions of uniformity, see e.g. [26], but logspace uniformity suffices for our purposes. In fact,
polynomial time uniformity suffices for proving our lower bounds w.r.t. polynomial time reductions.

Form ≥ 1 and0 ≤ M ≤ 2m − 1 let BINm(M) = bitm(M) · · · bit1(M) ∈ {0, 1}m denote
them-bit binary representation ofM . Let pi denote theith prime number. It is well-known that
the ith prime requiresO(log(i)) bits in its binary representation. For a number0 ≤ M <

∏m
i=1 pi

we define theChinese remainder representationCRRm(M) as the Boolean tupleCRRm(M) =
(xi,r)i∈[m],0≤r<pi with xi,r = 1 if M modpi = r andxi,r = 0 else. By the following theorem, one
can transform a Chinese remainder representation very efficiently into binary representation.

Theorem 6.1 ([9]). There is a logspace-uniformNC1-circuit family (Bm((xi,r)i∈[m],0≤r<pi))m≥1

such that for everym ≥ 1, Bm hasm output gates and for every0 ≤ M <
∏m
i=1 pi we have that

Bm(CRRm(M)) = BINm(M mod2m).

By [17], we could replace logspace-uniformNC1-circuits in Thm. 6.1 even byDLOGTIME-
uniformTC0-circuits. The existence of aP-uniformNC1-circuit family for converting from Chinese
remainder representation to binary representation was already shown in [3]. Usually the Chinese
remainder representation ofM is the tuple(ri)i∈[m], whereri = M modpi. Since the primespi
will be always given in unary notation, there is no essential difference between this representation
and our Chinese remainder representation. The latter is more suitable for our purpose.

The following definition ofNC1-serializability is a variant of the more classical notion of se-
rializability [8, 16], which fits our purpose better. A languageL is NC1-serializableif there exists
an NFAA over the alphabet{0, 1}, a polynomialp(n), and a logspace-uniformNC1-circuit family
(Cn)n≥0, whereCn has exactlyn+p(n) many inputs and one output, such that for everyx ∈ {0, 1}n

we havex ∈ L if and only if Cn(x, 0p(n)) · · ·Cn(x, 1
p(n)) ∈ L(A), where “· · · ” refers to the lex-

icographic order on{0, 1}p(n). With this definition, it can be shown that all languages inPSPACE

areNC1-serializable. A proof can be found in the appendix of [14]; it is just a slight adaptation of
the proofs from [8, 16].
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7. Data complexity for CTL is hard for PSPACE

In this section, we prove that also the data complexity ofCTL over OCNs is hard forPSPACE

and thereforePSPACE-complete by the known upper bounds for the modalµ-calculus [23]. Let
us fix the set of propositionsP = {α, β, γ} for this section. In the following, w.l.o.g. we allow
in δ0 (resp. inδ>0) transitions of the kind(q, k, q′), wherek ∈ N (resp.k ∈ Z) is given in unary
representation with the expected intuitive meaning.

Proposition 7.1. For the fixedEF formulaϕ = (α → ∃X(β ∧ EF(¬∃Xγ))) the following problem
can be solved with a logspace transducer:
INPUT: A listp1, . . . , pm of the firstm consecutive (unary encoded) prime numbers and a Boolean
formulaF = F ((xi,r)i∈[m],0≤r<pi)
OUTPUT: An OCNO(F ) with distinguished control locationsin andout, such that for every num-
ber0 ≤M <

∏m
i=1 pi we have thatF (CRRm(M)) = 1 if and only if there exists a[[ϕ]]T (O(F ))-path

from (in,M) to (out,M) in the transition systemT (O(F )).

Proof. W.l.o.g., negations occur inF only in front of variables. Then additionally, a negated variable
¬xi,r can be replaced by the disjunction

∨

{xi,k | 0 ≤ k < pi, r 6= k}. This can be done in logspace,
since the primespi are given in unary. Thus, we can assume thatF does not contain negations.

The idea is to traverse the Boolean formulaF with the OCNO(F ) in a depth first manner. Each
time a variablexi,r is seen, the OCN may also enter another branch, where it is checked, whether the
current counter value is congruentr modulopi. Let O(F ) = (Q, {Qα, Qβ, Qγ}, δ0, δ>0), where
Q = {in(G), out(G) | G is a subformula ofF} ∪ {div(p1), . . . ,div(pm),⊥}, Qα = {in(xi,r) |
i ∈ [m], 0 ≤ r < pi}, Qβ = {div(p1), . . . ,div(pm)}, andQγ = {⊥}. We setin = in(F ) and
out = out(F ). Let us now define the transition setsδ0 andδ>0. For every subformulaG1 ∧G2 or
G1 ∨G2 of F we add the following transitions toδ0 andδ>0:

in(G1 ∧G2)
0
−→ in(G1), out(G1)

0
−→ in(G2), out(G2)

0
−→ out(G1 ∧G2)

in(G1 ∨G2)
0
−→ in(Gi), out(Gi)

0
−→ out(G1 ∨G2) for all i ∈ {1, 2}

For every variablexi,r we add toδ0 and δ>0 the transitionin(xi,r)
0
−→ out(xi,r). Moreover, we

add toδ>0 the transitionsin(xi,r)
−r
−−→ div(pi). The transitionin(xi,0)

0
−→ div(pi) is also added

to δ0. For the control locationsdiv(pi) we add toδ>0 the transitionsdiv(pi)
−pi
−−→ div(pi) and

div(pi)
−1
−−→⊥. This concludes the description of the OCNO(F ). Correctness of the construction

can be easily checked by induction on the structure of the formulaF .

We are now ready to provePSPACE-hardness of the data complexity.

Theorem 7.2. There exists a fixedCTL formula of the form∃ϕ1Uϕ2, whereϕ1 and ϕ2 are EF

formulas, for which it isPSPACE-complete to decide(T (O), (q, 0)) |= ∃ϕ1Uϕ2 for a given OCN
O and a control locationq of O.

Proof. Let us take an arbitrary languageL in PSPACE. Recall from Sec. 6 thatPSPACE is NC1-
serializable. Thus, there exists an NFAA = (S, {0, 1}, δ, s0 , Sf ) over the alphabet{0, 1}, a poly-
nomialp(n), and a logspace-uniformNC1-circuit family (Cn)n≥0, whereCn hasn + p(n) many
inputs and one output, such that for everyx ∈ {0, 1}n we have:

x ∈ L ⇐⇒ Cn(x, 0
p(n)) · · ·Cn(x, 1

p(n)) ∈ L(A), (7.1)

where “· · · ” refers to the lexicographic order on{0, 1}p(n). Fix an inputx ∈ {0, 1}n. Our reduction
can be split into the following five steps:
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Step 1.Construct in logspace the circuitCn. Fix the the firstn inputs ofCn to the bits inx, and
denote the resulting circuit byC; it has onlym = p(n) many inputs. Then, (7.1) can be written as

x ∈ L ⇐⇒

2m−1
∏

M=0

C(BINm(M)) ∈ L(A). (7.2)

Step 2.Compute the firstm consecutive primesp1, . . . , pm. This is possible in logspace, see e.g.
[9]. Everypi is bounded polynomially inn. Hence, everypi can be written down in unary notation.
Note that

∏m
i=1 pi > 2m (if m > 1).

Step 3. Compute in logspace the circuitB = Bm((xi,r)i∈[m],0≤r<pi) from Thm. 6.1. Thus,B
is a Boolean circuit of fan-in 2 and depthO(log(m)) = O(log(n)) with m output gates and
B(CRRm(M)) = BINm(M mod2m) for every0 ≤M <

∏m
i=1 pi.

Step 4. Now we compose the circuitsB andC: For everyi ∈ [m], connect theith input of
the circuitC(x1, . . . , xm) with the ith output of the circuitB. The result is a circuit with fan-
in 2 and depthO(log(n)). In logspace, we can unfold this circuit into a Boolean formulaF =
F ((xi,r)i∈[m],0≤r<pi). The resulting formula (or tree) has the same depth as the circuit, i.e., depth
O(log(n)) and every tree node has at most 2 children. Hence,F has polynomial size. For every
0 ≤M < 2m we haveF (CRRm(M)) = C(BINm(M)) and equivalence (7.2) can be written as

x ∈ L ⇐⇒

2m−1
∏

M=0

F (CRRm(M)) ∈ L(A). (7.3)

Step 5. We now apply our construction from Prop. 7.1 to the formulaF . More precisely, letG
be the Boolean formula

∧

i∈[m] xi,ri whereri = 2m modpi for i ∈ [m] (these remainders can be
computed in logspace). For every1-labeled transitionτ ∈ δ of the NFAA let O(τ) be a copy of the
OCNO(F ∧¬G). For every0-labeled transitionτ ∈ δ let O(τ) be a copy of the OCNO(¬F ∧¬G).
In both cases we writeO(τ) as(Q(τ), {Qα(τ), Qβ(τ), Qγ(τ)}, δ0(τ), δ>0(τ)). Denote within(τ)
(resp.out(τ)) the control location of this copy that corresponds toin (resp.out) in O(F ). Hence, for
everyb-labeled transitionτ ∈ δ (b ∈ {0, 1}) and every0 ≤M <

∏m
i=1 pi there exists a[[ϕ]]T (O(τ))-

path (ϕ is from Prop. 7.1) from(in(τ),M) to (out(τ),M) if and only if F (CRRm(M)) = b and
M 6= 2m.

We now define an OCNO = (Q, {Qα, Qβ , Qγ}, δ0, δ>0) as follows: We take the disjoint union
of all the OCNsO(τ) for τ ∈ δ. Moreover, every states ∈ S of the NFAA becomes a control
location ofO, i.e. Q = S ∪

⋃

τ∈δ Q(τ) andQp =
⋃

τ∈δ Qp(τ) for eachp ∈ {α, β, γ}. We add to

δ0 andδ>0 for everyτ = (s, b, t) ∈ δ the transitionss
0
−→ in(τ) andout(τ)

1
−→ t. Then, by Prop. 7.1

and (7.3) we havex ∈ L if and only if there exists a[[ϕ]]T (O)-path inT (O) from (s0, 0) to (s, 2m)
for somes ∈ Sf . Also note that there is no[[ϕ]]T (O)-path inT (O) from (s0, 0) to some configuration
(s,M) with s ∈ S andM > 2m. It remains to add toO some structure that enablesO to check that
the counter has reached the value2m. For this, use again Prop. 7.1 to construct the OCNO(G) (G

is from above) and add it disjointly toO. Moreover, add toδ>0 andδ0 the transitionss
0
−→ in for all

s ∈ Sf , wherein is thein control location ofO(G). Finally, introduce a new propositionρ and set
Qρ = {out}, whereout is theout control location ofO(G). By puttingq = s0 we obtain:x ∈ L if
and only if(T (O), (q, 0)) |= ∃(ϕ U ρ), whereϕ is from Prop. 7.1. This concludes the proof of the
theorem.
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By slightly modifying the proof of Thm. 7.2, one can also prove that the fixed CTL formula
can chosen to be of the form∃Gψ, whereψ is anEF formula.

8. Two further applications: EF and one-counter Markov decision processes

In this section, we present two further applications of Thm. 6.1 to OCPs. First, we state that the
combined complexity forEF over OCNs is hard forPNP. For formulas represented succinctly by
directed acyclic graphs this was already shown in [13]. The point here is that we use the standard
tree representation for formulas.

Theorem 8.1. It is PNP-hard (and hencePNP-complete by[13]) to check(T (O), (q0, 0)) |= ϕ for
given OCNO, stateq0 of O, andEF formulaϕ.

The proof of Thm. 8.1 is very similar to the proof of Thm. 7.2, but does not use the concept of
serializability. We prove hardness by a reduction from the question whether the lexicographically
maximal satisfying assignment of a Boolean formula is even when interpreted as a natural number.
This problem isPNP-hard by [27]. At the moment we cannot prove that the data complexity of
EF over OCPs is hard forPNP (hardness forPNP[log] was shown in [13]). Analyzing the proof of
Thm. 8.1 in [14] shows that the main obstacle is the fact that converting from Chinese remainder
representation into binary representation is not possible by uniformAC0 circuits (polynomial size
circuits of constant depth and unbounded fan-in); this is provably the case.

In the rest of the paper, we sketch a second application of our lower bound technique based
on Thm. 6.1, see [14] for more details. This application concerns one-counter Markov decision
processes.Markov decision processes(MDPs) extend classical Markov chains by allowing so called
nondeterministic vertices. In these vertices, no probability distribution on the outgoing transitions
is specified. The other vertices are calledprobabilistic vertices; in these vertices a probability
distribution on the outgoing transitions is given. The idea is that in an MDP a player Eve plays
against nature (represented by the probabilistic vertices). In each nondeterministic vertexv, Eve
chooses a probability distribution on the outgoing transitions ofv; this choice may depend on the
past of the play (which is a path in the underlying graph ending inv) and is formally represented by
a strategy for Eve. An MDP together with a strategy for Eve defines a Markov chain, whose state
space is the unfolding of the graph underlying the MDP. Here, we consider infinite MDPs, which
are finitely represented by OCPs; this formalism was introduced in [6] under the nameone-counter
Markov decision process(OC-MDP). With a given OC-MDPA and a setR of control locations
of the OCP underlyingA (a so calledreachability constraint), two sets were associated in [6]:
ValOne(R) is the set of all verticess of the MDP defined byA such that for everyǫ > 0 there
exists a strategyσ for Eve under which the probability of finally reaching froms a control location
in R and at the same time having counter value0 is at least1 − ε. OptValOne(R) is the set of all
verticess of the MDP defined byA for which there exists a specific strategy for Eve under which
this probability is1. It was shown in [6] that for a given OC-MDPA, a set of control locationsR,
and a vertexs of the MDP defined byA, the question ifs ∈ OptValOne(R) is PSPACE-hard and
in EXPTIME. The same question for ValOne(R) instead of OptValOne(R) was shown to be hard
for each level of the Boolean hierarchyBH, which is a hierarchy of complexity classes betweenNP

andPNP[log]. By applying our lower bound techniques (from Thm. 7.2) we can prove the following.

Theorem 8.2. Membership in ValOne(R) is PSPACE-hard.

As a byproduct of our proof, we also reprovePSPACE-hardness for OptValOne(R). It is
open, whether ValOne(R) is decidable; the corresponding problem for MDPs defined by pushdown
processes is undecidable [11].
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2001.
[10] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model checking pushdown systems.

In Proc. CAV 2000, LNCS 1855, 232–247. Springer, 2000.
[11] K. Etessami and M. Yannakakis. Recursive markov decision processes and recursive stochastic games. InProc.

ICALP 2005, LNCS 3580, 891–903. Springer, 2005.
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[14] S. Göller, M. Lohrey. Branching-time model checking of one-counter processes.http://arxiv.org/abs/

0909.1102.
[15] C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct and parametric one-counter automata.

In Proc. CONCUR’09, LNCS 5710, 369–383. Springer, 2009.
[16] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power of polynomial time

bit-reductions. InProc. 8th Annual Structure in Complexity Theory Conference, 200–207. IEEE Computer Society
Press, 1993.

[17] W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold circuits for division and iterated
multiplication.J. Comput. System Sci., 65:695–716, 2002.

[18] M. Holzer. On emptiness and counting for alternating finite automata. InProc. DLT 1995, 88–97. Wo. Scient., 1996.
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1. Introduction

What we prove in this paper. The fact that Abstract State Machines (ASMs) can

strict lock-step (i.e. “step-by-step ”) simulate any type of machines (Turing machines,

stack automata, RAM, etc) and grammars was shown long ago by Gurevich [10, 6]. A

systematic study is also done in Börger [2]. A tighter notion of simulation is also valid as

shown in Blass, Dershowitz & Gurevich [1].

The questions we consider in this paper are the following:

(Q1) Can we replace strict lock-step simulation by literal identity (up to a simple change
of view)?

(Q2) Given a computation model C, is it possible to get a natural characterization of the
class of ASMs which are equivalent to machines in C?

As far as we know, up to now, there is only one isolated answer which is about question

(Q2): Gurevich & al. [6] proved that Schönhage Storage Modification Machines correspond

exactly (for strict lock-step equivalence) to ASMs with unary functions only.

We bring positive answers to both questions for the diverse usual computation models C
(Turing machines, stack automata, RAMs, Schönhage Machines, Chomsky type 0 gram-

mars, etc.) slightly extended to models C+ using a tailored version of ASMs which (resur-

recting Gurevich’s original name for ASMs) we call Evolving Multialgebras (EMAs). These

answers have the following remarkably simple form:

Theorem 1.1. There exists a family of EMA static parts M (fixed semantical feature) and
a family of dynamic signatures S (fixed syntactical feature) such that, letting EM,S be the
family of EMAs with static part in M and dynamic signature in S,
- any computation device in C+ is literally identical to some EMA in EM,S,
- this “literal identity” correspondence is a bijection from C+ onto EM,S.

Of course, literal identity is not a formal notion. What we mean is as follows: the

diverse components of a computation device in C+ are in one-one correspondance with the

diverse components of the associated EMA, and this correspondance is an identity up to

a change of perspective (for instance, a “physical” bi-infinite tape will be considered to be

identical to the mathematical set Z of integers).

Remark 1.2. 1. This theorem is indeed a schema: one theorem per computation model.

We have proved it for a variety of usual sequential computation models (cf. [5]).

2. As said above, the diverse instances of Theorem 1.1 are proved for slight extension C+

of the usual computation models C. In all cases, C+ can be viewed as C considered with

different time units: for any k ≥ 1, a device M in C is seen as a device M(k) in C+ in which

one step of M(k) corresponds to k successive steps of M (or < k successive steps in case

the last of these steps has no successor).

3. Considering another presentation of C+, one can also view it as C in which some contin-

gencies have been removed (for instance, the read/write head will be able to scan a window

of cells instead of a single cell) but the computational paradigm has been preserved: local

computation and a particular topology of data storage for Turing machines, indirect ad-

dressing of registers for random access machines, etc. In our opinion, the classes C+ are the

right ones to carry the diverse computation paradigms.

4. In fact, contingencies can also be captured by families of EMAs with more technical

definitions (cf. [5]): we loose the remarkable simplicity of the above families EM,S .

5. This theorem schema strengthens Gurevich’s claim that ASMs constitute the natural
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mathematical modelization of algorithms: EMAs (which are a variant of ASMs) appear as
the computation model which unifies all usual sequential computation paradigms.

About the proof. No surprise, the proof of Theorem 1.1 for a particular C involves the

particular features of the class C. Thus, the claim (point 5 in Remark 1.2) that Theorem 1.1

is true for extensions C+ of every usual sequential computation model C cannot be proved

but only be supported by proved instances for a variety of classes C.

As for the common features to all such proofs, they come from an analysis of what

precludes positive solutions to questions (Q1) and (Q2). Let us list some of the difficulties

which are met. Some are easy to solve, other ones force to adequately tailor the definition

of ASMs (as that of EMAs) and those of the usual computation models.

(1) An ASM program mimicking the transition function δ of a Turing machine is a de-

scription of δ. Since there are many distinct descriptions of the same δ, there are many

ASMs which tightly simulate the same Turing machine. Thus, surprisingly as it is, looking

at this component – transition functions –, ASMs are less abstract than Turing machines.

Somehow, there is an extra operational feature in ASMs: the operational way to use δ is

not part of the formalization of Turing machines.

This is why we modify ASMs to EMAs: Evolving Multialgebras. The notion of EMA is

that of ASM in which the program (a syntactic object) is replaced by a semantic object: a

(very simply definable) functional operating on the function sets over the ASM domain. It

is then more natural to break the universe of an ASM into its natural parts: this allows a

very useful rudimentary typing of elements and functions.

(3) Again considering Turing machines, an ASM simulates the tape by the set Z of all inte-

gers and the moves of the head by the successor and predecessor operations on Z. Terms in

the ASM logical language allow to name the i-th successor and the i-th predecessor. Thus,

we cannot avoid the ASM program to move the head more than one cell left or right unless

we constrain terms in ASM programs to be of a simple form (somewhat “flat”). Which

would put technicalities to any positive answer to question (Q2). This is why we consider

slight extensions of the machine models which allow the read/write head to scan a window

of cells rather than only one cell and to move in a window. This is a kind of extra capabil-

ity which is much like allowing several tapes or several heads. Though it does modify the

model, it does preserves its core feature: successive local actions.

(4) For machine models having programs like RAMs and SMM (Schönhage Storage Modi-

cation Machines), there are two slight modifications. First, allow bounded blocks of parallel

and/or successive actions. Second, remove the program and the program counter in favor

of a transition function (much in the vein of Turing machines) which, though operating

on an infinite set (the contents of the accumulator and of the addressed registers in the

case of RAMs) is very simply definable in terms of the original program. Thus, we replace

an operational item (the program) by a denotational one (the transition function). Again,

though it does modify the model, it does preserves its core feature: indirect addressing (for

RAMs), dynamic storage topology (for Schönhage pointer machines).

EMAs versus ASMs. In our opinion, ASMs and EMAs are complementary models.

EMAs generalize any type of machine: it is the unification model. As for ASMs, they are

closer to programming. Indeed, the functioning of a EMA goes through the iteration of a

functional. To program an EMA, we need to add some operational information on how to

use this functional and this leads back to a program, hence to an ASM. . . Thus, ASMs are
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EMAs plus the instructions for using the functional: ASMs refine EMAs (in the sense of

software engineering) and EMAs are a (more) abstract version of ASMs.

2. From ASMs to EMA s: the deterministic case

2.1. How EMAs differ from ASMs

We detail the diverse features which are peculiar to EMAs.

A functional in place of a program. As said in the introduction, the main difference

between evolving multialgebras and Gurevich’s ASMs is as follows: the program (i.e. a
syntactic object) of an ASM is replaced by a functional (i.e. a semantic object) which does

exactly what the program tells to do. Thus, an operational feature is removed.

Multi-domains and multialgebras. The above modification leads to another very minor

one, really kind of “semantic sugar”: the universe of an ASM is broken into its natural
constituents and becomes a multi-domain. The reason for such multialgebras is that they

make it possible to type the symbols of the signature as functions (or elements) between

the diverse sets of the multi-domain.

Multialgebra operations with values in products of domains. Set theoretically,

a map F : A → B × C is identified with the pair of its component maps (FB , FC) where

FB : A → B and FC : A → C. We do view such an F as the pair (FB , FC) plus a correlation

condition: one cannot fire one of these two component maps without firing the other one,
and both have to be fired on the same argument.
We allow operations in the multialgebra to take values in products of domains. The above

condition leads to a notion of multiterms and a constraint in the definition of formulas

associated to the signature of an EMA. It is used in §?? to deal with Schönhage machines.

Halt/Fail and EMA status. In EMAs, the ASM program is replaced by the functional

which does exactly what the program tells to do. There are still the questions:

- is the functional to be applied or not on given arguments?

- if not, does it “halts and accepts” or “halts and rejects” or “get stuck”?

To deal with the three first alternatives, EMAs have a three valued dynamic component:

the status. Of course, there is no formal component carrying the information “stuck”.

Inputs and ASMs. In most presentations, Gurevich does not give any formal status to

inputs (his paper [4] with Dershowitz being an exception). When dealing with question

(Q2) it turns out that it is important to give a formal status to inputs. This is the case

for EMA characterizations of machines having some read-only tapes (e.g., finite automata).

We consider that inputs appear in two ways:
- as values of some particular static symbols,
- as initial values of dynamic symbols.
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2.2. Deterministic Evolving MultiAlgebras

Definition 2.1. Let n ≥ 1 and D = (Di)i=1,...,n be a sequence of n non empty sets (which

we call an n-multiset). An n-sort type is a triple (k, α, ℓ) where k ∈ N, ℓ ∈ {1, . . . , n} and

α is a map {1, . . . , k} → {1, . . . , n}. Its associated D-type (k, α, ℓ)D is the family of all

partial functions Dα(1) × . . . × Dα(k) → Dℓ. A D-type is functional if k ≥ 1. In case k = 0,

the D-type (0, ∅, ℓ)D is the family of partial functions {∅} → Dℓ, i.e. the set of “partial

elements” of Dℓ, i.e. Dℓ augmented with an “undefined element”.

Intuition: there are k arguments, α gives their types, and ℓ is the type of the range.
Typed ground terms and their types are defined in the obvious way.

Multialgebras. The notion of multisort algebra is a direct extension to multiset domains

of the usual notion of algebra of partial functions on a unique domain.

Definition 2.2 (Multialgebras). Let n ≥ 1 and S be an n-sort typed signature containing

function symbols ϕ1, . . . , ϕp. An S-multialgebra A is an n-multiset D = (Di)i=1,...,n endowed

with partial functions F1, . . . , Fp which interpret the symbols ϕi’s (Care: arity 0 symbols

with type Di are interpreted by elements of Di but can also be undefined).

If defined, the value, relative to A, of a ground S-term t is denoted by [[ t ]]A (it is an element

of some Di).

Semialgebraic functionals. Semialgebraic functionals are those which can be described

by ASM programs. They modify the interpretations in the multialgebra of constant and

functions symbols. For function symbols, this modification affects the values of only finitely

many points in the domain. These points and the associated new values of the argument

are given by ground S-terms. As in ASMs programs, there is a disjunction of cases for the

choice of the affected points and their associated new values.

First, a convenient notion.

Definition 2.3 (The ⊕ operation). Let F,G be partial functions X1 × . . . × Xk → Y and

Z ⊆ X1 × . . . × Xk. We define the partial function F ⊕Z G as follows:

Domain(F ⊕Z G) = (Domain(F ) \ Z) ∪ (Domain(G) ∩ Z)

(F ⊕Z G)(~x) =

{

F (~x) if ~x /∈ Z
G(~x) if ~x ∈ Z

In case p = 0, F,G are “partial elements” of Y and Z ⊆ {∅} and F ⊕Z G = F if Z = ∅ and

F ⊕Z G = G if Z = {∅}.

Definition 2.4 (Semialgebraic functionals). Let

• D = (Di)i=1,...,n be an n-multiset,

• S be an n-sort typed signature containing function symbols ϕ1, . . . , ϕp,

• A be a multialgebra with signature S \ {ϕ1, . . . , ϕp} on D,

• F1, . . . ,Fp be the D-types associated to ϕ1, . . . , ϕp,

• m ∈ {1, . . . , p} and (k, α, ℓ) be the n-sort type of ϕm.

• Ti be the family of ground S-terms of type Di,

For any p-tuple of functions ~F = (F1, . . . , Fp) ∈ F1 × . . . × Fp, let us denote by A(~F ) the

multialgebra A expanded to the signature S in which the ϕi’s are interpreted by the Fi’s.

A partial functional Φ :
∏

j=1,...,p Fj −→ Fm is (S,A)-semialgebraic if there exists a map

β : Boolq → Pfin(Tα(1) × . . . × Tα(k) × Tℓ) (where Pfin(X) is the family of finite subsets of
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X) and ground S-terms t1, . . . , tq, t′1 . . . , t′q such that, for any ~F ∈ G1 × . . . × Gp,

Φ(~F ) is defined if and only if










(a) all [[ ti ]]A(~F )’s, [[ t′i ]]A(~F )’s are defined

(b) ∀(u1, . . . , uk, v) ∈ β(. . . , [[ ti ]]A(~F ) = [[ t′i ]]A(~F ), . . .) all [[uj ]]A(~F )’s are defined

(c) ∀(~u, v), (~w, z) ∈ β(. . . , [[ ti ]]A(~F ) = [[ t′i ]]A(~F ), . . .) [[uj ]]A(~F ) 6= [[wj ]]A(~F ) for some j

Φ(~F ) = Fm ⊕Z G where

Z = {([[u1 ]]A(~F ), . . . , [[uk ]]A(~F )) | ∃v (~u, v) ∈ β(. . . , [[ ti ]]A(~F ) = [[ t′i ]]A(~F ), . . .)}

G = {([[u1 ]]A(~F ), . . . , [[uk ]]A(~F ), [[ v ]]A(~F )) | (~u, v) ∈ β(. . . , [[ ti ]]A(~F ) = [[ t′i ]]A(~F ), . . .)}

The tuple (β, t1, . . . , tq, t
′
1 . . . , t′q) is called a presentation of Φ.

For I ⊆ {1, . . . , p}, a functional Ψ :
∏

j=1,...,p Fj −→
∏

m∈I Fm is (S,A)-semialgebraic if so

are all its components.

Remark 2.5. Condition (a) in Definition 2.4 insures that all equality tests ti = t′i can be

achieved. Conditions (b) and (c) insure that, in equality Φ(~F ) = Fm ⊕Z G, the finite set Z
can be computed and G is a functional graph.

We do not require the [[ v ]]A(~F )’s to be defined (i.e. Domain(G) = Z): though this is incom-

patible with a call by value strategy, it makes sense with a call by name strategy.

Definition 2.6 (Deterministic EMAs). A deterministic evolving multialgebra (EMA)

is a tuple A = (n; Ssta,S
sta
input,S

dyn
input,Sdyn; D; Msta,Mini; Φ) consisting of the following

items.

• An n-multiset D = (Di)i=1,...,n such that Dn = {go, acc, rej}.
Intuition. Sets D1, . . . ,Dn−1 are the n − 1 different sorts of objects and Dn =

{go, acc, rej} is the set of possible statuses of the (evolving) multialgebra during the
run: “go on”, “halt and accept”, “halt and reject”.

• Four disjoint n-sort typed finite signatures Ssta,S
sta
input,S

dyn
input,Sdyn and two struc-

tures Msta,Mini with respective signatures Ssta,Sdyn. There is only one symbol s

which involves the sort n : it is a constant of type Dn in Sdyn
input.

Intuition. Msta is the static framework on D which remains fixed during any run.
Ssta

input is the signature for the static part of the input: its interpretation remains

fixed (hence accessible) during a run. Sdyn
input is the signature for the dynamic part

of the input: its interpretation can be modified (hence become inaccessible) during
a run. Mini initializes the part of the dynamic environment which is not initialized
by the input. The interpretation of s represents the status of the multialgebra.

• Let S = Ssta∪Ssta
input∪Sdyn

input∪Sdyn. Φ is a (S,Msta)-semialgebraic partial functional

Φ :







∏

ϕ∈Ssta
input

Fϕ






×






{go} ×

∏

ϕ∈(Sdyn∪S
dyn
input)\{s}

Fϕ






−→

∏

ϕ∈Sdyn∪S
dyn
input

Fϕ

where Fϕ denotes the semantic type of the function symbol ϕ. In particular, Φ rules

the evolution of the status. The sole status which can be an argument of Φ is “go”:

a multialgebra with status “acc” or “rej” is halted and does not evolve any more.

However, in the image of Φ the status can take any value.
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A state of A is any multialgebra on D with signature S which expands Msta.

Definition 2.7 (Runs of deterministic EMAs). We keep the notations of Definition

2.6. A run of A is a sequence (Mt)t∈I of states of A such that

• I is a finite or infinite non empty initial segment of N,

• [[ θ ]]M0
= [[ θ ]]Mini

for all θ ∈ Sdyn,

• If t ∈ I then [[ θ ]]Mt
= [[ θ ]]M0

for all θ ∈ Ssta
input,

• If t ∈ I then t + 1 is in I if and only if [[ s ]]Mt
= go and Φ is defined on ([[ϕ ]]M})ϕ∈S\Ssta

,

• If t + 1 ∈ I then ([[ θ ]]Mt+1
)
θ∈Sdyn∪S

dyn
input

= Φ(([[ϕ ]]Mt
})ϕ∈S\Ssta

).

In particular, if [[ s ]]M0
6= go then I = {0}. Also, if t + 1 ∈ I then [[ s ]]Mt

= go.

3. Turing machines

In order to identify Turing machines with a simple class of EMAs, we introduce a slight

variant of Turing machines, which we call “window Turing machines”: 1) the head is allowed

to scan a small window instead of a single cell, and to move inside a window in a single

step, 2) halting (be it accepting or rejecting) is not related to the current state but to the

current local configuration: the state plus the contents of the scanned window.

Definition 3.1. A deterministic k-window n-tape (bi-infinite tapes) Turing machine is

a tuple (n, k,Σ = {σ0, . . . , σs−1}, Q = {q0, . . . , qr−1}, F
+, F−, δ, ωi, µi)i=1,...,n where, for

i = 1, . . . , n,

• Σ and Q are finite sets (the alphabet and the set of states),

• F+, F− ⊆ Q × Σn(2k+1) (accepting/rejecting final local configurations),

• δ : Q × Σn(2k+1) → Q (state transition),

• τi : Q × Σn(2k+1) → Σn(2k+1) (read/write on tape i),

• µi : Q × Σn(2k+1) → {−k, . . . ,−1, 0, 1, . . . , k} (move on tape i).

On each tape, the head scans the cell on which it is positioned and the k cells to the left

and the k cells to the right, a total of 2k+1 cells. The argument of type Σn(2k+1) in δ, ωi, µi

is the contents of the n(2k + 1) cells scanned on the n tapes. The effect of a transition is

to change the state according to δ, to modify the contents of the scanned cells of tape i
according to ωi and to move its head according to µi.

The notions of run, halt, acceptance and rejection are defined as usual.

Remark 3.2. Usual deterministic n-tape Turing machines are the 1-window ones.

Definition 3.3 (The class of EMAs for Turing machines). We denote by C
(n)
wT the

class of EMAs A = (n + 3; Ssta,S
sta
input,S

dyn
input,Sdyn; D; Msta,Mini; Φ) which satisfy the

following conditions for some r, s ∈ N (for clarity, we abusively denote by the same letter

static constant symbols and the elements which interpret them in the structure D).

(1) The multidomain of A is D = (Z(1), . . . , Z(n), Q,Σ,S) where the Z
(i)’s are fixed pair-

wise disjoint copies of Z (for instance, Z
(i) = Z×{i}), Q,Σ are finite sets with r, s elements

respectively, and S = {go, acc, rej}.

(2) The static framework signature Ssta contains r constants q0, . . . , qr−1 of type Q, s con-

stants σ0, . . . , σs−1 of type Σ and three constants go, acc, rej of type S which are interpreted

in the obvious way in Msta. It also contains, for each i = 1, . . . , n, two unary functions
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symbols Succ(i),Pred(i) of type Z
(i) → Z

(i) which are interpreted in Msta as the successor

and predecessor functions in Z
(i).

(3) The signature Ssta
input is empty.

(4) The signature Sdyn (for the dynamic environment non initialized by the input) contains,

for each i = 1, . . . , n, one constant pos(i) of type Z
(i) one constant q of type Q, and one

constant s of type S, which are respectively interpreted in Mini as 0, q0 and go.

(5) The signature Sdyn
input (for the dynamic environment initialized by the input) contains,

for each i = 1, . . . , n, one unary function c(i) of type Z
(i) → Σ.

Thus, the EMAs in C
(n)
wT are defined as those having particular signature, multidomain, static

framework and initialization of some dynamic symbols with no condition on the functional

Φ (other than its semialgebraicity).

Theorem 3.4 (EMA representation theorem for Turing machines).

Any deterministic n-tape window Turing machine is literally identical to some EMA in the

class C
(n)
wT . Conversely, any EMA in C

(n)
wT is literally identical to some deterministic n-tape

window Turing machine.

Proof. The argument is based on the following literal identifications between the components

of a Turing machine (TM) and the interpretations of symbols of the EMA signature:

(1) (TM) i-th tape and the way the read/write head moves on it.

(EMA) the copy Z
(i) of Z structured as 〈Z(i),Succ(i),Pred(i)〉.

(2) (TM) diverse states and letters.

(EMA) interpretations of the static symbols q0, . . . , qr−1 and σ0, . . . , σs−1.

(3) (TM) current state, positions of the n heads and contents of the n tapes.

(EMA) current interpretations of the dynamic symbols q, pos(i), c(i).

(4) (TM) non final or final accepting/rejecting character of the current state.

(EMA) current interpretation of the dynamic symbol s.

(5) (TM) transition function.

(EMA) semialgebraic functional.

(6) (TM) initial configuration.

(EMA) interpretations of the ci’s in the initial multialgebra and of Sdyn
dyn in Mini.

The non trivial identifications are those of points 4 and 5.

Keeping the notations of Definition 2.4, let (βϕ, t1,ϕ, . . . , tqϕ,ϕ, t′1,ϕ . . . , t′qϕ,ϕ)ϕ∈S int
dyn

be a pre-

sentation of the semialgebraic functional Φ of an EMA:

βϕ : Boolqϕ → Pfin(Tαϕ(1) × . . . × Tαϕ(kϕ) × Tℓϕ
)

Observe that terms of type Z
(j) are of the form ξ1(ξ2(. . .))(pos(j)) where the ξk’s are Succ(j)

or Pred(j). Let k be the maximum value of the |ξ1(ξ2(. . .))(0)| for all terms of type some

Z
(j) which is among the ti,ϕ, t′i,ϕ or among the finite sets given by the βϕ’s.

First, let us look at the equalities ti,ϕ = t′i,ϕ which govern the domain of Φ.

• If ti,ϕ, t′i,ϕ have type Z
(j) then, as said above, they are of the form ξ1(ξ2(. . .))(pos(j)).

Hence any equality ti,ϕ = t′i,ϕ is trivially true or false independently of the current value of

pos(j).

If ti,ϕ, t′i,ϕ have type S then they are of the form s or go, acc, rej. Since Φ and β are restricted
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to values where s = go, all possible equalities are trivial.

Thus, we can suppose that there is no term with type Z
(j) or S among the ti,ϕ, t′i,ϕ’s.

• If ti,ϕ, t′i,ϕ have type Q then they are of the form q or qj (j = 0, . . . , r − 1). Since any

equality qj = qk is trivially true or false, we can suppose that there is at most one equality

between terms of type Q and that it is of the form q = qj.

• If ti,ϕ, t′i,ϕ have type Σ then they are of the form c(j)(ξ1(ξ2(. . .))(pos(j))) where the ξk’s

are Succ(j) or Pred(j). The equalities between terms of type Σ are all comparisons of letters

among the values of c(1)(−k), . . . , c(1)(k),. . . , c(n)(−k), . . . , c(n)(k) where k is defined above.

This shows that the values of Φ depend solely on the value of q and those of the

c(j)(pos(j) + i)’s for j = 1, . . . , n and i = −k, . . . , k). This is exactly to say that what

matters is the current state and the current letters in the n windows of diameter 2k + 1

centered at the positions of the n heads. Otherwise said, the tuple of arguments of the

functional Φ is literally identical to the current values of the state plus the contents of the

windows, that is a tuple in Q × Σn(2k+1).

Let us look at the image of Φ which is given through finite families of tuples of terms given

by the βϕ’s. Since the only terms of type Q are q and the qi’s. Thus, Φ can leave the

dynamic symbol q unchanged or modify it to any value. The same is valid for the dynamic

symbol s (using what is said above about the domain of Φ, this proves the non easy direction

of point 4).

Terms of type Σ name the contents of some c(j) at positions which are at distance ≤ k of

the position of the j-th head. Thus Φ can modify the values of the c(j) in the windows

around the positions of the heads.

Terms of type Z
(j) name an integer at distance k of the position of the j-th head. Thus Φ

can move any head left or right of at most k cells. This proves the non easy direction of

point 5. Thus, an EMA in C
(n)
T is literally identical to some window Turing machine. The

converse is proved in a similar (much easier) way.

Remark 3.5. A slight variation in the EMA model can have strong effect. For instance,

suppose we add a constant 0 to the static signature and interpret it as 0 in the structure

Msta. Then we get window Turing machines in which the head can jump to cell 0.

4. Random access machines

In order to identify RAMs with a simple class of EMAs, we introduce a slight variant of

RAMs, which we call “transition RAM” (TRAM): 1) a bounded number of registers can be

modified in one step, 2) it can test for equality to 0 and equality between combinations (via

the fixed set of operations on N) of the contents of the addressed registers, 3) the program

is replaced by a transition function. Though this function operates on an infinite domain,

it is finitarily defined via ground terms.

Definition 4.1 (n-transition RAMs). Let f1, . . . , fp operations on non negative integers,

A n-transition RAM (n-TRAM) with operations f1, . . . , fp is a tuple

(n, k,Q = {q0, . . . , qr−1}, F
+, F−, δ, ρi, τi,j)i=1,...,n, j=1,...,k

where

• n is the number of distinguished registers,

• Σ and Q are finite sets (the alphabet and the set of states),
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• F+, F− ⊆ Q × Bool
p (accepting/rejecting final local configurations),

• δ : Q × Bool
p → Q (state transition),

• ρi : Q × Bool
p → T (modification of register i) for i = 1, . . . , n, where T is a

finite family of terms built with the operations f1, . . . , fp and n(1 + k) constants

(representing the contents of the addressed registers),

• τi,j : Q× Bool
p → T (modification of the register addressed through an iteration of

j successive addressing, starting with register i), for i = 1, . . . , n, j = 1, . . . , k.

At any time the n-TRAM accesses registers 1, . . . , n and the registers addressed addressed

through at most k iterated addressing by these registers. The p = n(1 + k)(1 +
n(1+k)−1

2 )

Boolean arguments in the δ, ρi, τi’s test equalities or equalities to 0 of the contents of the

n(1 + k) adressed registers. Map δ tells how the state is modified. Maps ρi, τi,j’s tell how

the contents of the accessed registers are modified.

The notions of run, halt, acceptance and rejection are defined in the usual way.

Definition 4.2 (The class of EMAs for TRAMS). Let f1, . . . , fp operations on non

negative integers. We denote by C
(n)
TRAM the class of EMAs A which satisfy the following

conditions.

(1) A has 4 sorts and its multidomain is D = (N, Naddr, Q,S) where N
addr is a copy of N,

Q is a finite set with r elements, and S = {go, acc, rej}.

(2) The signature Ssta (for the static framework) contains n + r + 3 constants: 1, . . . , n
of type N, q0, . . . , qr−1 of type Q, “go”, “acc”, “rej” of type S, and n + 1 unary function

symbols cast of type N → Naddr, and, for each i = 1, . . . , n, fi of type N
ki → N. Their

interpretations in Msta are as follows: i) fi is interpreted as the given operation on N, ii) the

cast function is interpreted as the identity from N to its copy Naddr, iii) 1, . . . , n, the qi’s

and “go”, “acc”, “rej” are interpreted in the obvious way.

(3) The signature Ssta
input is empty.

(4) The signature Sdyn contains two constants q, s of types Q and S. Their interpretations

in Mini are q0 and “go”.

(5) The signature Sdyn
input contains one unary function c of type N

addr → N.

Thus, the EMAs in C
(n)
TRAM are defined as those having particular signature, multidomain,

static framework and initialization of some dynamic symbols with no condition on the

functional Φ (other than its semialgebraicity).

Theorem 4.3 (EMA representation theorem for TRAMs).

Any n-TRAM is literally identical to some EMA in the class C
(n)
TRAM. Conversely, any EMA

in C
(n)
TRAM is literally identical to some n-TRAM.

Proof. Analogous to the proof of Theorem 3.4.

5. Other models

Similar results can be proved with finite atomata, stack automata Schönhage machines.

Let us mention an interesting feature occurring in the EMA modelization of Schönhage

Storage Modification Machines (SMM) which illustrates what has been said in §2.1 about
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operations with values in products of domains. The tape of an SMM is a dynamic graph

which may grow or loose nodes. To manage the current set of nodes of this graph-tape, it

is convenient to introduce the following items:

• Among the sets of the multi-domain D, there is an infinite set X (where all nodes are

taken) and the set Pfin(X) of finite subsets of X. There is no structure on X nor on Pfin(X).

• In the signature Sdyn, there is a constant symbol U of type Pfin(X) (it tells which nodes

are in the current graph-tape).

• In the signature Ssta, there is a function symbol new with type Pfin(X) → X × Pfin(X).

It is interpreted as a choice function A 7→ (a,A ∪ {a}) which picks in X a point outside A,

i.e. such that a /∈ A.

To add a new node to the graph tape, we apply new to U . The constraint that both

components of new have to be fired simultaneously and on the same argument insures that

when a new node is picked, it is automatically added to (the interpretation) of U with no

condition on the functional Φ.

6. Uniformly bounded non determinism

Uniformly bounded non determinism allows at each step at most k choices where k
is some fixed constant independent of the step. EMAs with ‘such non determinism are

defined as are deterministic EMAs with the following modification: replace the semialgebraic
functional Φ by finitely many such functionals. All litteral identity results mentioned in the

previous sections extend easily to the non deterministic cases.

7. External non determinism

We now deal with a more powerful kind of non determinism: that given by external

choices which may be done during the run. This is the action of Gurevich’s “Choose”

instruction. To deal with such an “external non determinism”, we enrich EMAs with a

fifth signature: the “external dynamic” signature Sext. We illustrate this notion with the

example of Chomsky type 0 grammars.

Definition 7.1. A grammar is a finite set of rules (ui, vi)i=1,...,n where the ui, vi’s are words

in an alphabet Σ. The associated relation R ⊆ Σ⋆ × Σ⋆ is defined as follows: a pair (U, V )

is in R if and only if there exists a finite sequence U = U0, . . . , Uk = V such that, for all

j < k there exists words P, S and some i = 1, . . . , n such that Uj = PuiS and Uj+1 = PviS.

Definition 7.2. We denote by Cgra the class of non deterministic EMAs

A = (3; Ssta,S
sta
input,S

dyn
input,Sdyn,Sext; D; Msta,Mini; Φ)

which satisfy the following conditions.

(1) A has 3 sorts and its multidomain is D = (N,Σ∗,S) where Σ is a finite set.

(2) The signature Ssta (for the static framework) contains finitely many binary function

symbols substi, i = 1, . . . , n of type N × Σ∗ → Σ∗. There is some family (ui, vi)i=1,...,n of

pairs of words such that the interpretation in Msta (the static framework) of substi is the

function which acts on a pair (p, U) as follows: if U contains the factor ui in position p then

it is replaced by vi, else U is not modified.

(3) The signatures Ssta
input and Sdyn are empty.
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(4) The signature Sdyn
input contains one constant w of type Σ∗.

(5) The signature Sext (the external dynamic environment) contains one constant Choose
of type N. Its interpretation during the run is given as an external action: its value changes

at each step.

Thus, the EMAs in C
(n)
gra are defined as those having particular signature, multidomain, static

framework and initialization of some dynamic symbols with no condition on the functional

Φ (other than its semialgebraicity).

Using the fact that iteration of substitutions is also a substitution, one can prove :

Theorem 7.3. Any grammar is literally identical to some EMA in the class Cgra. Con-
versely, any EMA in Cgra is literally identical to some grammar.
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Abstract. This paper presents the following results on sets that are complete for NP.

(i) If there is a problem in NP that requires 2nΩ(1)

time at almost all lengths, then every
many-one NP-complete set is complete under length-increasing reductions that are
computed by polynomial-size circuits.

(ii) If there is a problem in co-NP that cannot be solved by polynomial-size nondetermin-
istic circuits, then every many-one complete set is complete under length-increasing
reductions that are computed by polynomial-size circuits.

(iii) If there exist a one-way permutation that is secure against subexponential-size cir-
cuits and there is a hard tally language in NP∩co-NP, then there is a Turing complete
language for NP that is not many-one complete.

Our first two results use worst-case hardness hypotheses whereas earlier work that showed
similar results relied on average-case or almost-everywhere hardness assumptions. The use
of average-case and worst-case hypotheses in the last result is unique as previous results
obtaining the same consequence relied on almost-everywhere hardness results.

1. Introduction

It is widely believed that many important problems in NP such as satisfiability, clique,

and discrete logarithm are exponentially hard to solve. Existence of such intractable prob-

lems has a bright side: research has shown that we can use this kind of intractability to

our advantage to gain a better understanding of computational complexity, for derandom-

izing probabilistic computations, and for designing computationally-secure cryptographic

primitives. For example, if there is a problem in EXP (such as any of the aforementioned

problems) that has 2nΩ(1)
-size worst-case circuit complexity (i.e., that for all sufficiently

large n, no subexponential size circuit solves the problem correctly on all instances of size
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n), then it can be used to construct pseudorandom generators. Using these pseudoran-

dom generators, BPP problems can be solved in deterministic quasipolynomial time [23].

Similar average-case hardness assumptions on the discrete logarithm and factoring problems

have important ramifications in cryptography. While these hardness assumptions have been

widely used in cryptography and derandomization, more recently Agrawal [1] and Agrawal

and Watanabe [2] showed that they are also useful for improving our understanding of NP-

completeness. In this paper, we provide further applications of such hardness assumptions.

1.1. Length-Increasing Reductions

A language is NP-complete if every language in NP is reducible to it. While there are

several ways to define the notion of reduction, the most common definition uses polynomial-

time computable many-one functions. Many natural problems that arise in practice have

been shown to be NP-complete using polynomial-time computable many-one reductions.

However, it has been observed that all known NP-completeness results hold when we restrict

the notion of reduction. For example, SAT is complete under polynomial-time reductions

that are one-to-one and length-increasing. In fact, all known many-one complete problems

for NP are complete under this type of reduction [9]. This raises the following question: are

there languages that are complete under polynomial-time many-one reductions but not com-

plete under polynomial-time, one-to-one, length-increasing reductions? Berman [8] showed

that every many-one complete set for E is complete under one-to-one, length-increasing re-

ductions. Thus for E, these two completeness notions coincide. A weaker result is known for

NE. Ganesan and Homer [17] showed that all NE-complete sets are complete via one-to-one

reductions that are exponentially honest.

For NP, until recently there had not been any progress on this question. Agrawal [1]

showed that if one-way permutations exist, then all NP-complete sets are complete via one-

to-one, length-increasing reductions that are computable by polynomial-size circuits. Hitch-

cock and Pavan [20] showed that NP-complete sets are complete under length-increasing

P/poly reductions under the measure hypothesis on NP [26]. Recently Buhrman et al. im-

proved the latter result to show that if the measure hypothesis holds, then all NP-complete

sets are complete via length-increasing, P/-computable functions with log log n bits of ad-

vice [10]. More recently, Agrawal and Watanabe [2] showed that if there exist regular

one-way functions, then all NP-complete sets are complete via one-one, length-increasing,

P/poly-computable reductions. All the hypotheses used in these works require the existence

of an almost-everywhere hard language or an average-case hard language in NP.

In the first part of this paper, we consider hypotheses that only concern the worst-case
hardness of languages in NP. Our first hypothesis concerns the deterministic time complex-

ity of languages in NP. We show that if there is a language in NP for which every correct

algorithm spends more than 2nǫ
time at almost all lengths, then NP-complete languages

are complete via P/poly-computable, length-increasing reductions. The second hypothe-

sis concerns nondeterministic circuit complexity of languages in co-NP. We show that if

there is a language in co-NP that cannot be solved by nondeterministic polynomial-size

circuits, then all NP-complete sets are complete via length-increasing P/poly-computable

reductions. For more formal statements of the hypotheses, we refer the reader to Section 3.

We stress that these hypotheses require only worst-case hardness. The worst-case hardness

is of course required at every length, a technical condition that is necessary in order to build

a reduction that works at every length rather than just infinitely often.
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1.2. Turing Reductions versus Many-One Reductions

In the second part of the paper we study the completeness notion obtained by allowing

a more general notion of reduction—Turing reduction. Informally, with Turing reductions

an instance of a problem can be solved by asking polynomially many (adaptive) queries

about the instances of the other problem. A language in NP is Turing complete if there is

a polynomial-time Turing reduction to it from every other language in NP. Though many-

one completeness is the most commonly used completeness notion, Turing completeness

also plays an important role in complexity theory. Several properties of Turing complete

sets are closely tied to the separation of complexity classes. For example, Turing complete

sets for EXP are sparse if and only if EXP contains polynomial-size circuits. Moreover, to

capture our intuition that a complete problem is easy, then the entire class is easy, Turing

reductions seem to be the “correct” reductions to define completeness. In fact, the seminal

paper of Cook [13] used Turing reductions to define completeness, though Levin [25] used

many-one reductions.

This raises the question of whether there is a Turing complete language for NP that

is not many-one complete. Ladner, Lynch and Selman [24] posed this question in 1975,

thus making it one of the oldest problems in complexity theory. This question is completely

resolved for exponential time classes such as EXP and NEXP [33, 12]. We know that for both

these classes many-one completeness differs from Turing-completeness. However progress

on the NP side has been very slow. Lutz and Mayordomo [27] were the first to provide

evidence that Turing completeness differs from many-one completeness. They showed that

if the measure hypothesis holds, then the completeness notions differ. Since then a few

other weaker hypotheses have been used to achieve the separation of Turing completeness

from many-one completeness [3, 30, 31, 21, 29].

All the hypotheses used in the above works are considered “strong” hypotheses as they

require the existence of an almost everywhere hard language in NP. That is, there is a

language L in NP and every algorithm that decides L takes exponential-time an all but
finitely many strings. A drawback of these hypotheses is that we do not have any candidate

languages in NP that are believed to be almost everywhere hard.

It has been open whether we can achieve the separation using more believable hypothe-

ses that involve average-case hardness or worst-case hardness. None of the proof techniques

used earlier seem to achieve this, as the they crucially depend on the almost everywhere

hardness.

In this paper, for the first time, we achieve the separation between Turing completeness

and many-one completeness using average-case and worst-case hardness hypotheses. We

consider two hypotheses. The first hypothesis states that there exist 2nǫ
-secure one-way

permutations and the second hypothesis states that there is a language in NEEE∩ coNEEE

that can not be solved in triple exponential time with logarithmic advice, i.e, NEEE ∩
coNEEE 6⊆ EEE/ log. We show that if both of these hypothesis are true, then there is a

Turing complete language in NP that is not many-one complete.

The first hypothesis is an average-case hardness hypothesis and has been studied exten-

sively in past. The second hypothesis is a worst-case hardness hypothesis. At first glance,

this hypothesis may look a little esoteric, however, it is only used to obtain hard tally lan-

guages in NP∩ co-NP that are sufficiently sparse. Similar hypotheses involving double and

triple exponential-time classes have been used earlier in the literature [7, 15, 19, 14].
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We use length-increasing reductions as a tool to achieve the separation of Turing com-

pleteness from many-one completeness. We first show that if one-way permutations ex-

ist then NP-complete sets are complete via length-increasing, quasipolynomial-time com-

putable reductions. We then show that if the second hypothesis holds, then there is a Turing

complete language for NP that is not complete via quasi polynomial-time, length-increasing

reductions. Combining these two results we obtain our separation result.

2. Preliminaries

In the paper, we use the binary alphabet Σ = {0, 1}. Given a language A, An denotes

the characteristic sequence of A at length n. We also view An as a boolean function from

Σn to Σ. For languages A and B, we say that A = ioB, if An = Bn for infinitely many

n. For a complexity class C, we say that A ∈ ioC if there is a language B ∈ C such that

A = ioB.

For a boolean function f : Σn → Σ, CC(f) is the smallest number s such that there is

circuit of size s that computes f . A function f is quasipolynomial time computable (QP-

computable) if can be computed deterministically in time O(2logO(1) n). We will use the

triple exponential time class EEE = DTIME(222O(n)

), and its nondeterministic counterpart

NEEE.

A language L is in NP/poly if there is a polynomial-size circuit C and a polynomial

p such that for every x, x is in L if and only if there is a y of length p(|x|) such that

C(x, y) = 1.

Our proofs make use a variety of results from approximable sets, instance compression,

derandomization and hardness amplification. We mention the results that we need.

Definition 2.1. A language A is t(n)-time 2-approximable [6] if there is a function f
computable in time t(n) such that for all strings x and y, f(x, y) 6= A(x)A(y).

A language A is io-lengthwise t(n)-time 2-approximable if there is a function f com-

putable in time t(n) such that for infinitely many n, for every pair of n-bit strings x and y,

f(x, y) 6= A(x)A(y).

Amir, Beigel, Gasarch [4] proved that every polynomial-time 2-approximable set is in

P/poly. Their proof also implies the following extension for a superpolynomial function

t(n).

Theorem 2.2 ([4]). If A is io-lengthwise t(n)-time 2-approximable, then for infinitely many
n, CC(An) ≤ t2(n).

Given a language H ′ in co-NP, let H be {〈x1, · · · , xn〉 | |x1| = · · · = |xn| = n, xi ∈ H ′}.
Observe that a n-tuple consisting of strings of length n can be encoded by a string of length

n2. From now we view a string of length n2 as an n-tuple of strings of length n.

Theorem 2.3 ([16, 11]). Let H and H ′ be defined as above. Suppose there is a language
L, a polynomial-size circuit family {Cm}, and a polynomial p such that for infinitely many

n, for every x ∈ Σn2
, x is in H if and only if there is a string y of length p(n) such that

C(x, y) is in L≤n. Then H ′ is in ioNP/poly.

The proof of Theorem 2.3 is similar to the proofs in [16, 11]. The difference is rather

than having a polynomial-time many-one reduction, here we have a NP/poly many-one

reduction which works infinitely often. The nondeterminism and advice in the reduction
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can be absorbed into the final NP/poly decision algorithm. The NP/poly decision algorithm

works infinitely often, corresponding to when the NP/poly reduction works.

Definition 2.4. A function f : {0, 1}n → {0, 1}m is s-secure if for every δ < 1, every t ≤ δs,
and every circuit C : {0, 1}n → {0, 1}m of size t, Pr[C(x) = f(x)] ≤ 2−m + δ. A function

f : {0, 1}∗ → {0, 1}∗ is s(n)-secure if it is s(n)-secure at all but finitely many length n.

Definition 2.5. An s(n)-secure one-way permutation is a polynomial-time computable

bijection π : {0, 1}∗ → {0, 1}∗ such that |π(x)| = |x| for all x and π−1 is s(n)-secure.

Under widely believed average-case hardness assumptions about the hardness of the RSA

cryptosystem or the discrete logarithm problem, there is a secure one-way permutation [18].

Definition 2.6. A pseudorandom generator (PRG) family is a collection of functions G =

{Gn : {0, 1}m(n) → {0, 1}n} such that Gn is uniformly computable in time 2O(m(n)) and for

every circuit of C of size n,
∣

∣

∣

∣

Pr
x∈{0,1}n

[C(x) = 1] − Pr
y∈{0,1}m(n)

[C(Gn(y)) = 1

∣

∣

∣

∣

≤
1

n
.

There are many results that show that the existence of hard functions in exponential

time implies PRGs exist. We will use the following.

Theorem 2.7 ([28, 23]). If there is a language A in E such that CC(An) ≥ 2nǫ
for all

sufficiently large n, then there exist a constant k and a PRG family G = {Gn : {0, 1}logk n →
{0, 1}n}.

3. Length-Increasing Reductions

In this section we provide evidence that many-one complete sets for NP are complete

via length-increasing reductions. We use the following hypotheses.

Hypothesis 1. There is a language L in NP and a constant ǫ > 0 such that L is not in

ioDTIME(2nǫ
).

Informally, this means that every algorithm that decides L takes more than 2nǫ
-time

on at least one string at every length.

Hypothesis 2. There is a language L in co-NP such that L is not in ioNP/poly.

This means that every nondeterministic polynomial size circuit family that attempts to

solve L is wrong on on at least one string at each length.

We will first consider the following variant of Hypothesis 1.

Hypothesis 3. There is a language L in NP and a constant ǫ > 0 such that for all but

finitely many n, CC(Ln) > 2nǫ
.

We will first show that Hypothesis 3 holds, then NP-complete sets are complete via

length-increasing reductions. Then we describe how to modify the proof to derive the

same consequence under Hypothesis 1. We do this because the proof is much cleaner with

Hypothesis 3. To use Hypothesis 1 we have to fix encodings of boolean formulas with certain

properties.
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3.1. If NP has Subexponentially Hard Languages

Theorem 3.1. If there is a language L in NP and an ǫ > 0 such that for all but finitely
many n, CC(Ln) > 2nǫ

, then all NP-complete sets are complete via length-increasing,
P/poly reductions.

Proof. Let A be a NP-complete set that is decidable in time 2nk
. Let L be a language in NP

that requires 2nǫ
-size circuits at every length. Since SAT is complete via polynomial-time,

length-increasing reductions, it suffices to exhibit a length-increasing, P/poly-reduction

from SAT to A.

Let δ = ǫ
2k . Consider the following intermediate language

S =
{

〈x, y, z〉
∣

∣

∣
|x| = |z|, |y| = |x|δ, MAJ[L(x),SAT(y), L(z)] = 1

}

.

Clearly S is in NP. Since A is NP-complete, there is a many-one reduction f from S
to A. We will first show that at every length n there exist strings on which the reduction

f must be honest. Let

Tn =
{

〈x, z〉 ∈ {0, 1}n × {0, 1}n
∣

∣

∣
L(x) 6= L(z), ∀y ∈ {0, 1}nδ

|f(〈x, y, z〉)| > nδ
}

Lemma 3.2. For all but finitely many n, Tn 6= ∅.

Assuming that the above lemma holds, we complete the proof of the theorem. Given

a length m, let n = m1/δ. Let 〈xn, zn〉 be the first tuple from Tn. Consider the following

reduction from SAT to A: Given a string y of length m, the reduction outputs f(〈xn, y, zn〉).
Given xn and yn as advice, this reduction can be computed in polynomial time. Since n is

polynomial in m, this is a P/poly reduction.

By the definition of Tn, L(xn) 6= L(zn). Thus y ∈ SAT if and only if 〈xn, y, zn〉 ∈ S,

and so y is in SAT if and only if f(〈xn, y, zn〉) is in A. Again, by the definition of Tn, for

every y of length m, the length of f(〈xn, y, zn〉) is bigger than nδ = m. Thus there is a

P/poly-computable, length-increasing reduction from SAT to A. This, together with the

proof of Lemma 3.2 we provide next, complete the proof of Theorem 3.1.

Proof of Lemma 3.2. Suppose Tn = ∅ for infinitely many n. We will show that this yields

a length-wise 2-approximable algorithm for L at infinitely many lengths. This enables us

to contradict the hardness of L. Consider the following algorithm:

(1) Input x, z with |x| = |z| = n.

(2) Find a y of length nδ such that |f(〈x, y, x〉)| ≤ nδ.

(3) If no such y is found, Output 10.

(4) If y is found, then solve the membership of f(〈x, y, z〉) in A. If f(〈x, y, z〉) ∈ A, then

output 00, else output 11.

We first bound the running time of the algorithm. Step 2 takes O(2nδ
) time. In Step

4, we decide the membership of f(〈x, y, z〉) in A. This step is reached only if the length of

f(〈x, y, z〉) is at most nδ. Thus the time taken to for this step is (2nδ
)k ≤ 2nǫ/2

time. Thus

the total time taken by the algorithm is bounded by 2nǫ/2.

Consider a length n at which Tn = ∅. Let x and z be any strings at this length.

Suppose for every y of length nδ, the length of f(〈x, y, z〉) is at least nδ. Then it must

be the case that L(x) = L(z), otherwise the tuple 〈x, z〉 belongs to Tn. Thus if the above

algorithm fails to find y in Step 2, then L(x)L(z) 6= 10.
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Suppose the algorithm succeeds in finding a y in Step 2. If f(〈x, y, z〉) ∈ A, then at

least one of x or z must belong to L. Thus L(x)L(z) 6= 00. Similarly, if f(〈x, y, z〉) /∈ A,

then at least one of x or z does not belong to L, and so L(x)L(z) 6= 11.

Thus L is 2-approximable at length n. If there exist infinitely many lengths n, at

which Tn is empty, then L is infinitely-often, length-wise, 2nǫ/2-time approximable. By

Theorem 2.2, L has circuits of size 2nǫ
at infinitely many lengths.

Now we will describe how to modify the proof if we assume that Hypothesis 1 holds.

Let L be the hard language guaranteed by the hypothesis. We will work with 3-SAT. Fix

an encoding of 3CNF formulas such that formulas with same numbers of variables can be

encoded as strings of same length. Moreover, we require that the formulas φ(x1, · · · , xn)

and φ(b1, · · · , bi, xi+1, · · · , xn) can be encoded as strings of same length, where bi ∈ {0, 1}.
Fix a reduction f from L to 3-SAT such that all strings of length n are mapped to formulas

with nr variables, r ≥ 1. Let 3-SAT′ = 3-SAT ∩ ∪rΣ
nr

. It follows that that if there is an

algorithm that decides 3-SAT′ such that for infinitely many n the algorithm runs in 2nǫ

time on all formulas with nr variables, then L is in ioDTIME(2nǫ
).

Now the proof proceeds exactly same as before except that we use 3-SAT′ instead of L,

i.e, our intermediate language will be

{〈x, y, z〉 | MAJ[3-SAT′(x),SAT(y), 3-SAT′(z)]} = 1.

Consider the set Tn as before. It follows that if Tn is empty at infinitely many lengths,

then for infinitely many n, 3-SAT′ is 2-approximable on formulas with nr variables. Now

we can use the disjunctive self-reducibility of 3-SAT′ to show that there is a an algorithm

that solves 3-SAT′ and for infinitely many n, this algorithm runs in DTIME(2nǫ
)-time on

formulas with nr variables. This contradicts the hardness of L. This gives the following

theorem.

Theorem 3.3. If there is a language in NP that is not in ioDTIME(2nǫ
), then all NP-

complete sets are complete via length-increasing P/poly reductions.

3.2. If co-NP is Hard for Nondeterministic Circuits

In this subsection we show that Hypothesis 2 also implies that all NP-complete sets are

complete via length-increasing reductions.

Theorem 3.4. If there is a language L in co-NP that is not in ioNP/poly, then NP-complete
sets are complete via P/poly-computable, length-increasing reductions.

Proof. We find it convenient to work with co-NP rather than NP. We will show that all

co-NP-complete languages are complete via P/poly, length-increasing reductions.

Let H ′ be a language in co-NP that is not in ioNP/poly. Let H be

{〈x1, · · · , xn〉 | ∀1 ≤ i ≤ n, [xi ∈ H ′ and |xi| = n]}.

Note that every n-tuple that may potentially belong to H can be encoded by a string of

length n2.

Let S = 0H ′ ∪ 1SAT . It is easy to show that S is in co-NP and S is not in ioNP/poly.

Observe that S is co-NP-complete via length-increasing reductions. Let A be any co-NP-

complete language. It suffices to exhibit a length-increasing reduction from S to A.
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Consider the following intermediate language:

L = {〈x, y, z〉 | |x| = |z| = |y|2, MAJ[x ∈ H, y ∈ S, z ∈ H] = 1}.

Clearly the above language is in co-NP. Let f be a many-one reduction from L to A.

As before we will first show at every length n that there exits strings x and z such that for

every y in S the length of f(〈x, y, z〉) is at least n.

Lemma 3.5. For all but finitely many n, there exist two strings xn and zn of length n2

with H(xn) 6= H(zn) and for every y ∈ Sn, |f(〈xn, y, zn〉)| > n.

Proof. Suppose not. Then there exist infinitely many lengths n at which for every pair of

strings (of length n2) x and z with H(x) 6= H(z), there exist a y of length n such that

|f(x, y, z)| ≤ n.

From this we obtain a NP/poly-reduction from H to A such that for infinitely many n,

for every x of length n2, |f(x)| ≤ n. By Theorem 2.3, this implies that H ′ is in ioNP/poly.

We now describe the reduction. Given n let zn be a string (of length n2) that is not in H.

(1) Input x, |x| = n2. Advice: zn.

(2) Guess a string y of length n.

(3) If |f(〈x, y, zn〉)| > n, the output ⊥.

(4) Output f(〈x, y, zn).

Suppose x ∈ H. Since zn /∈ H, there exists a string y of length n such that y ∈ S and

|f(〈x, y, zn〉)| ≤ n. Consider a path that correctly guesses such a y. Since zn /∈ H, and

y ∈ S, 〈x, y, zn〉 ∈ L. Thus f(〈x, y, zn〉) ∈ A≤n. Thus there exists at least one path on

which the reduction outputs a string from L∩Σ≤n. Now consider the case x /∈ H. On any

path, the reduction either outputs ⊥ or outputs f(〈x, y, zn〉). Since both zn and x are not

in H, 〈x, y, z〉 /∈ L. Thus f(〈x, y, zn〉) /∈ A for any y.

Thus there is a NP/poly many-one reduction from H to L such that for infinitely many

n, the output of the reduction, on strings of length n2, on any path is at most n. By

Theorem 2.3, this places H ′ in ioNP/poly.

Thus for all but finitely many lengths n, there exist strings xn and zn of length n2 with

H(xn) 6= H(zn) and for every y ∈ Sn, the length of f(〈xn, y, zn〉) is at least n.

This suggests the following reduction h from S to A. The reduction will have xn and zn

as advice. Given a string y of length n, the reductions outputs f(〈xn, y, zn〉). This reduction

is clearly length-increasing and is length-increasing on every string from S. Thus we have

the following lemma.

Lemma 3.6. Consider the above reduction h from S to A, for all y ∈ S, |h(y)| > |y|.

Now we show how to obtain a length-increasing reduction on all strings. We make the

following crucial observation.

Observation 3.7. For all but finitely many n, there is a string yn of length n such that

yn /∈ S and |f(〈xn, yn, zn〉)| > n.

Proof. Suppose not. This means that for infinitely many n, for every y from S ∩ Σn, the

length of f(〈xn, y, zn〉) is less than n. Now consider the following algorithm that solves S.

Given a string y of length n, compute f(〈xn, y, zn〉). If the length of f(〈xn, y, zn〉) > n, then

accept y else reject y.

The above algorithm can be implemented in P/poly given xn and zn as advice. If

y ∈ S, then we know that that the length of f(〈xn, y, zn〉) is bigger than n, and so the
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above algorithm accepts. If y /∈ S, then by our assumption, the length of f(〈xn, y, zn〉) is

at most n. In this case the algorithm rejects y. This shows that S is in ioP/poly which in

turn implies that H ′ is in ioP/poly. This is a contradiction.

Now we are ready to describe our length increasing reduction from S to A. At length n,

this reduction will have xn, yn and zn as advice. Given a string y of length n, the reduction

outputs f(〈xn, y, zn〉) if the length of f(〈xn, y, zn〉) is more than n. Else, the reduction

outputs f(〈xn, yn, zn〉).
Since H(xn) 6= H(zn), y ∈ S if and only if f(〈xn, y, zn〉) ∈ A. Thus the reduction

is correct when it outputs f(〈xn, y, zn〉). The reduction outputs f(〈xn, yn, zn〉) only when

the length of f(〈xn, y, zn〉) is at most n. We know that in this case y /∈ S. Since yn /∈ S,

f(〈xn, yn, zn) /∈ A.

Thus we have a P/poly-computable, length-increasing from S to A. Thus all co-NP-

complete languages are complete via P/poly, length-increasing reductions. This immedi-

ately implies that all NP-complete languages are complete via P/poly-computable, length-

increasing reductions.

4. Separation of Completeness Notions

In this section we consider the question whether the Turing completeness differs from

many-one completeness for NP under two plausible complexity-theoretic hypotheses:

(1) There exists a 2nǫ
-secure one-way permutation.

(2) NEEE ∩ coNEEE 6⊆ EEE/ log.

It turns out that the first hypothesis implies that every many-one complete language for

NP is complete under a particular kind of length-increasing reduction, while the second

hypothesis provides us with a specific Turing complete language that is not complete under

the same kind of length-increasing reduction. Therefore, the two hypotheses together sep-

arate the notions of many-one and Turing completeness for NP as stated in the following

theorem.

Theorem 4.1. If both of the above hypotheses are true, there is is a language that is
polynomial-time Turing complete for NP but not polynomial-time many-one complete for
NP.

Theorem 4.1 is immediate from Lemma 4.2 and Lemma 4.3 below.

Lemma 4.2. Suppose 2nǫ
-secure one-way permutations exist. Then for every NP-complete

language A and every B ∈ NP, there is a quasipolynomial-time computable, polynomial-
bounded, length-increasing reduction reduction f from B to A.

A function f is polynomial-bounded if there is a polynomial p such that the length of

f(x) is at most p(|x|) for every x.

Lemma 4.3. If NEEE ∩ coNEEE * EEE/ log, then there is a polynomial-time Turing
complete set for NP that is not many-one complete via quasipolynomial-time computable,
polynomial-bounded, length-increasing reductions.

The proof of Lemma 4.2 will appear in the full paper. The remainder of this section

is devoted to proving Lemma 4.3. It is well known that any set A over Σ∗ can be encoded

as a tally set TA such that A is worst-case hard if and only if TA is worst-case hard. For
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our purposes, we need an average-case version of the this equivalence. Below we describe

particular encoding of languages using tally sets that is helpful for us and prove the average-

case equivalence.

Let t0 = 2, ti+1 = t2i for all i ∈ N. Let T =
{

0ti | i ∈ N
}

. For each l ∈ N, let

Tl =
{

0ti
∣

∣ 2l − 1 ≤ i ≤ 2l+1 − 2
}

. Observe that T =
⋃∞

l=0 Tl. Given a set A ⊆ {0, 1}∗,

let TA =
{

022rx
∣

∣

∣
x ∈ A

}

, where rx is the rank index of x in the standard enumeration of

{0, 1}∗. It is easy to verify that for all l ∈ N and every x,

x ∈ A ∩ {0, 1}l ⇐⇒ 0trx ∈ TA ∩ Tl. (4.1)

Lemma 4.4. Let A and TA be as above. Suppose there is a quasipolynomial time algorithm
A such that for every l, on an ǫ fraction of strings from Tl, this algorithm correctly decides
the membership in TA, and on the rest of the strings the algorithm outputs “I do not know”.

There is a 222k(l+1)

-time algorithm A′ for some constant k that takes one bit of advice and
correctly decides the membership in A on 1

2 + ǫ
2 fraction of the strings at every length l.

We know several results that establish worst-case to average-case connections for classes

such as EXP and PSPACE [34, 5, 22, 23, 32]. The following lemma establishes a similar

connection for triple exponential time classes, and can be proved using known techniques.

Lemma 4.5. If NEEE∩coNEEE 6⊆ EEE/ log, then there is language L in NEEE∩coNEEE

such that no EEE/ log algorithm can decide L, at infinitely many lengths n, on more than
1
2 + 1

n fraction of strings from {0, 1}n.

Now we are ready to prove Lemma 4.3.

Proof of Lemma 4.3. By Lemma 4.5, there is a language L ∈ (NEEE∩coNEEE)−EEE/ log

such that no EEE/ log algorithm can decide L correctly on more than a 1
2 + 1

n fraction of

the inputs for infinitely many lengths n.

Without loss of generality, we can assume that L ∈ NTIME(222n

) ∩ coNTIME(222n

)

Let

TL =
{

022rx
∣

∣

∣
x ∈ L

}

.

Clearly, TL ∈ NP ∩ coNP.

Define τ : N → N such that τ(n) = max {i | ti ≤ n}. Now we will define our Turing

complete language. Let

SAT0 =
{

0x
∣

∣ 0tτ(|x|) /∈ TL and x ∈ SAT
}

,

SAT1 =
{

1x
∣

∣ 0tτ(|x|) ∈ TL and x ∈ SAT
}

.

Let A = SAT0 ∪ SAT1. Since L is in NP ∩ co-NP, A is in NP. The following is a Turing

reduction from SAT to A: Given a formula x, ask queries 0x and 1x, and accept if and only

if at least one them is in A. Thus A is polynomial-time 2-tt complete for NP.

Suppose A is complete via length-increasing, polynomial-bounded, quasipolynomial-

time reductions. Then there is such a reduction f from {0}∗ to A. There is a constant d
such that f is nd-bounded and runs in quasipolynomial time.

The following observation is easy to prove.

Observation 4.6. Let y ∈ {0, 1}∗ and b ∈ {0, 1} be such that f(0ti) = by. Then 0tτ(|y|) ∈ TL

if and only if b = 1.
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Fix a length l. We will describe a quasipolynomial-time algorithm that will decide the

membership in TL on at least 1
log d fraction of strings from Tl, and says “I do not know” on

other strings. By the Lemma 4.4, this implies that there is EEE/1 algorithm that decides

L on more than 1
2 + 1

2 log d fraction of strings from {0, 1}l. This contradicts the hardness of

L and completes the proof.

Let s = 2l − 1 and r = 2l+1 − 2. Recall that Tl =
{

0ti | s ≤ i ≤ r
}

. Divide Tl in

sets T0, T2, · · · Tr where Tk =
{

0ti | s + k log d ≤ r + (k + 1) log d
}

. This gives at least 2l

log d

sets. Consider the following algorithm that decides TL on strings from Tl: Let 0tj be the

input. Say, it lies in the set Tk. Compute f(0ts+k log d) = by. If tτ(|y|) 6= tj , then output

“I do not know”. Otherwise, accept 0tj if and only if b = 1. By Observation 4.6 this

algorithm never errs. Since f is computable in quasipolynomial time, this algorithm runs

in quasipolynomial time. Finally, observe that tτ(|y|) lies between ts+k log d and ts+(k+1) log d.

Thus for every k, 0 ≤ k ≤ r, there is at least one string from from Tk on which the above

algorithm correctly decides TL. Thus the above algorithm correctly decides TL on at least
1

log d fraction of strings from Tl, and never errs.
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Abstract. A cellular automaton is a parallel synchronous computing model, which con-
sists in a juxtaposition of finite automata whose state evolves according to that of their
neighbors. It induces a dynamical system on the set of configurations, i.e. the infinite
sequences of cell states. The limit set of the cellular automaton is the set of configurations
which can be reached arbitrarily late in the evolution. In this paper, we prove that all
properties of limit sets of cellular automata with binary-state cells are undecidable, except
surjectivity. This is a refinement of the classical “Rice Theorem” that Kari proved on
cellular automata with arbitrary state sets.

Introduction

Among all results on undecidability, Rice’s Theorem [Ric53] is probably one of the most

important. It can be seen as stating the following: for any property on the functions com-

puted by Turing machines, the set of corresponding machines is either trivial or undecidable.

Following Church-Turing thesis, it is often thought that this result should remain true for

other computational systems. It has, for instance, been extended with various restrictions

to general dynamical systems [DB04], tilings [LW08] or, in a weaker form [CD04].

In this paper, we shall focus on a specific model known as cellular automata, introduced

by Von Neumann [vN66]. Cellular automata are made of infinitely many cells endowed with

a finite state and interacting locally and synchronously with each other. As this system

does not have any way to give output, study of dynamics often uses the limit set, that

consists of configurations which can appear arbitrarily late [Hur87, Čuĺık IIPY89]. In this

domain, Jarkko Kari has already proved an equivalent of Rice theorem [Kar94b] for limit

set. A similar, “perpendicular”, result is also known for the trace, which consists on the

evolution of only one fixed cell [CG07].

On the other hand, it is known that the property of being surjective (i.e. having a full

limit set) is decidable and not trivial for one-dimensional cellular automata [AP72]. Such
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a statement is not contradictory with Kari’s theorem since it is not, properly speaking, a

property of the limit set: a surjective CA can have the same limit set than a non-surjective

one if the alphabets are distinct. Nevertheless, when fixing the alphabet, surjectivity be-

comes a property of the limit set. This leads to the question whether there exist other

decidable properties on limit sets of cellular automata with fixed alphabet [Kar05, DFM00].

In this paper, we shall answer negatively to this question by extending the result of

Kari when fixing the number of states, showing that all properties on limit sets other

than surjectivity are either trivial or undecidable. Note that surjectivity is undecidable for

higher dimensional cellular automata [Kar94a]. Our proofs use borders (example of similar

constructions can be found in [DFV03, CFG07, Pou08]). The idea here is to restrict our

study to nonsurjective cellular automata, since surjectivity is decidable. The (computable)

forbidden words of the image can be used as border words.

The paper is organised as follows: first we give all the necessary definitions in Section 1

and some first properties of limit sets in Section 2. After that, we detail the core encoding

of our construction in Section 3. With all this, we state the main Rice theorem in Section 4

before giving some concluding remarks in Section 5.

1. Definitions

We denote the set with two elements as 2 = {0, 1}. For any alphabet B, we denote

as BZ the set of configurations (all bi-infinite sequences over B). The length of some word

u ∈ B∗ will be noted |u|. A uniform word or configuration is one where a single letter

appears, with repetitions. For any configuration x ∈ BZ or any word x ∈ B∗, l, k ∈ Z, xJl,kJ

denotes the finite pattern xlxl+1 . . . xk−1. This notation is extended to the case where l or

k is infinite.

A cylinder is the subset of configurations [u]i = {x ∈ BZ | xJi,i+|u|J = u} sharing the

common pattern u ∈ B∗ at position i ∈ Z. Similarly, if E ⊂ Bk for some k ∈ N \ {0}, then

[E]i will stand for the set of configurations x ∈ BZ such that xJi,i+kJ ∈ E.

The set of configurations BZ is a compact metric space when endowing it with the

metric induced by the Cartesian product of the discrete topology on B. In this setting,

open sets correspond to unions of cylinders.

If b ∈ B, then we note ∞b∞ the configuration consisting in a uniform bi-infinite sequence

of b. If E ⊂ Bk, with k ∈ N \ {0}, then we will represent the set of bi-infinite sequences of

words of E as ∞E∞ =
{

x ∈ BZ∣

∣ ∃i < k,∀j ∈ Z, xJi+jk,i+(j+1)kJ ∈ E
}

.

The following definition will be very helpful for future constructions: it allows to build

borders so that some particular nonoverlapping zones of configurations can be recognized.

Definition 1.1. Let B be an alphabet and n ∈ N \ {0}. A strongly freezing word u ∈ Bn

is a word such that for all i ∈ J1, nJ, uBi ∩ Biu = ∅. Equivalently, [u]0 ∩ [u]i = ∅.
A set E ⊂ Bn is strongly freezing if for all i ∈ J1, nJ, EBi ∩ BiE = ∅.

One first remark is that any word u can be extended to some strongly freezing word:

simply take ubk, where b 6= u0 and k ∈ N \ {0} such that bk does not appear in u.

The shift σ : BZ → BZ is defined for all x ∈ BZ and i ∈ Z by σ(x)i = xi+1.

A subshift Σ is a closed subset of BZ which is strongly invariant by shift, i.e. σ(Σ) = Σ.

Equivalently, a subshift can be defined as the set of configurations avoiding a particular set

L ⊂ B∗ of finite patterns, called forbidden language:
{

x ∈ BZ∣

∣∀i ∈ Z,∀u ∈ L, xJi,i+|u|J 6= u
}

.
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If the forbidden language L can be taken finite, then we say that Σ is of finite type; if

it is empty it is the full shift. A subshift of finite type has order k ∈ N \ {0} if it admits a

forbidden language L ⊂ Bk containing only words of length k — or equivalently, of length

at most k.

For any subshift Σ and −∞ ≤ l ≤ m ≤ +∞, denote LJl,mK(Σ) =
{

xJl,mK

∣

∣x ∈ Σ
}

.

Note that, when l − m is finite, it only depends on this difference, justifying the definition

Lk(Σ) = LJ0,kJ(Σ) for k ∈ N. We note L(Σ) =
⋃

k∈NLk(Σ) =
{

xJl,mK

∣

∣x ∈ Σ, l,m ∈ Z}

the

language of the subshift Σ.

Definition 1.2. A (one-dimensional) cellular automaton is a triplet (B, r, f) where B is a

finite alphabet (or state set), r ∈ N is the neighborhood radius and f : B2r+1 → B is the

local transition function.

A cellular automaton acts on elements of BZ (called configurations) by synchronous and

uniform application of the local transition function, inducing the global transition function
F : BZ → BZ, formally defined for all x ∈ BZ and i ∈ Z by F (x)i = f(xi−r, xi−r+1, . . . , xi+r).

We will assimilate the cellular automaton with its global function.

It is easy to see that any cellular automaton commutes with the shift. In a more general

way, Curtis, Hedlund and Lyndon proved that cellular automata correspond exactly to

continuous self-maps of BZ which commute whith the shift [Hed69].

Note that a local rule f : B2r+1 → B can be extended in f : B∗ → B∗ by f(u) =

f(uJ0,2r+1J) . . . f(uJ|u|−2r−1,|u|J).

A partial cellular automaton is the restriction of the global function of some cellular

automaton to some subshift of finite type Σ. Note that it can be defined from an alphabet

B, a radius r ∈ N and a local rule f : L2r+1(Σ) → B.

For a cellular automaton (B, r, f), a state b ∈ B is said to be quiescent if f(b2r+1) = b.

It is said to be spreading if f(u) = b whenever the letter b appears in the word u.

Note that if F is a cellular automaton on alphabet B, then F (BZ) is a subshift. In

particular, either F is surjective, or F (BZ) admits (at least) a forbidden pattern. It is easy

to see that if j ∈ N \ {0}, then F j is also a cellular automaton, and the subshift F j(BZ) is

included in F j−1(BZ).

The evolution being parallel and synchronous, we can see that the image of any uniform

configuration remains uniform. The set of uniform configuration is then a finite subsystem,

with an ultimate period p ≤ |B|. In particular, F p admits some quiescent state.

Definition 1.3. The limit set of a cellular automaton F is the set

ΩF =
⋂

j∈NF j(BZ)

of the configurations that can be reached arbitrarily late.

From the remark above, the limit set of the cellular automaton F always contains

(at least) one uniform configuration. It is closed, and strongly invariant by F . More

precisely, the restriction of F over ΩF is its maximal surjective subsystem. In particular, F

is surjective if and only if ΩF = BZ.

Moreover, it can be seen from the definition that ΩF = ΩF k : the configurations that

can be reached arbitrarily late are the same.
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2. Preliminary results

In this section, we shall recall some classical results that will be needed in the proof.

The “Firing Squad” is a problem on algorithmics over cellular automata, introduced in

1964 by Moore and Myhill in [Moo64]: the goal is to synchronize cells of arbitrarily wide

zones so that they all take the same given state at the same time. It led to different solutions

(see [Maz96]); when dealing with infinitely many cells, we obtain that it is possible to make

them get this state arbitrarily late in time, and Kari’s theorem was the first extrinsic purpose

to this construction; we will reuse it as it was claimed.

Proposition 2.1 ([Kar94b]). There exist some cellular automaton S on some alphabet B

and some states κ, γ ∈ B, with κ spreading, such that:

(1) For any J ∈ N, there is some configuration z ∈ BZ such that F J(z) = ∞γ∞ and
∀i ∈ Z, j < J, F j(z)i 6= γ;

(2) ΩS ∩ [γ]0 ⊂ {κ, γ}Z.

To prove the undecidability of some property, we need to reduce to it some other

property which is already known to be undecidable. It is classical to reduce the nilpotency

problem, which was proved undecidable in [Kar92]. This proof reduced some tiling problem

to the nilpotency, but actually, the CA involved all admitted some spreading state. Hence

the following stronger result can be derived directly.

Theorem 2.2. The problem

Instance: a cellular automaton N with some spreading state θ.
Question: is N nilpotent?

is undecidable.

The restriction to cellular automata with spreading state is very convenient to allow

constructions of products of cellular automata, thanks to the following result (see for in-

stance [CG07] for a simple proof).

Proposition 2.3. A cellular automaton N on some alphabet A with some spreading state
θ ∈ A is nilpotent if and only if ∀x ∈ AZ,∃i ∈ Z, j ∈ N, N j(x)i = θ.

3. Binary simulation

The main construction in Kari’s proof is based on a simultaneous simulation of several

cellular automata thanks to some complex alphabet. In order to keep a fixed alphabet, we

now need to encode additionnal information into binary configurations. This can be done

thanks to the fact that one of the cellular automata is assumed to be non-surjective. The

non-reachable portions of configurations can be used for the complex encodings.

Lemma 3.1. Let C be an alphabet, Σ a subshift on alphabet 2 distinct from 2Z. Then we
can build some strongly freezing language E ⊂ 2k \ Lk(Σ), with k ∈ N \ {0}, and some
bijection ξ : Lk(Σ) × C → E.

Proof. The basic idea is to use the space outside Σ to compress the word of L(Σ) and make

space for the additional information v ∈ C. However, to construct it freezing, we shall

compress only the second half on the word. Let u be a forbidden pattern for Σ. Should we

extend it as stated before, we can suppose that it is strongly freezing. Should we rename
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the letters, we can suppose that C ⊂ 2l, with l ∈ N \ {0}. As a subset of (2|u| \ {u})m,

Lm|u|(Σ) has cardinal less than (2|u| − 1)m, and admits thus a bijection ξ̃ from Lm|u|(Σ)

onto some subset of 2n whenever 2n ≥ (2|u| − 1)m. Let us take m ≥ 2|u|+l

|u|−log(2|u|−1)
and

n = m|u| − 2 |u| − l. We now take k = 2m|u| and define ξ : (z, v) 7→ uzJ0,m|u|Jξ̃(zJm|u|,kJ)vu

(see Fig. 1) and E = ξ(Lk(Σ) × C).

z v

ξ

u zJ0,m|u|J ξ̃(zJm|u|,kJ) v u

Figure 1: Encoding into strongly freezing alphabet

Now let w ∈ E2i ∩ 2iE with 1 ≤ i < k. Note that wJi,i+|u|J = u. But we also have

u = wJ0,|u|J = wJk−|u|,kJ and u is strongly freezing, so |u| ≤ i < k − 2 |u|. Moreover,

wJ|u|,(m+1)|u|J is in Lm|u|(Σ) and therefore does not contain the pattern u. Hence i > m |u|.
Similarly, wJi+|u|,i+(m+1)|u|J cannot contain the pattern u, so k − |u| /∈ Ji + |u| , i + m |u|J,
i.e. i > k − 2 |u|, which gives a contradiction.

The language E will then be used as a particular alphabet, over which we can build

configurations in EZ. This full shift can be more or less seen – up to a short initial shift

– as the system (∞E∞, σk), but must not be confused with the subshift (∞E∞, σ) over 2.

The key point in that construction is that the inclusion of the information of another shift

can be done by a constant-space simulation: Σ and CZ are, in an independent way, factors

of respectively (∞E∞, σ) and of EZ – or, thanks to freezingness, of (∞E∞, σk). This could

not be done in the absence of any forbidden word u.

Given some partial cellular automaton G on some subshift of finite type Σ, some cellular

automata N and S on alphabets A ∋ θ and B ∋ γ, κ. Considering C = A × B, we

can build E, k, ξ as in Lemma 3.1. As a local rule of radius 1, and with a little abuse

of notation corresponding to commuting the products, ξ can be extended to injections

ξ : Lik(Σ) × Ai × Bi → Ei. Let δG, δN and δS be the local rules of G, N and S, and

assume, without loss of generality, that S and N have same radius rS and that G has radius

rG < rSk. Define some cellular automaton ∆G,N,S of radius r = (rS + 1)k − 1 and local

rule δ : 22r+1 → 2 defined as:
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δ(y) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δG(yJr−rG,r+rGK) if y ∈ L(2r+1)(Σ) (1)

zi if

{

y ∈ 2iErSξ(z, v, γ)ErS2k−1−i

0 ≤ i < k, z ∈ Lk(Σ), v ∈ A
(2)

ξ(z, δN (v), δS(w))i if















y ∈ 2iξ(z, v, w)2k−1−i

0 ≤ i < k, z ∈ L(2rS+1)k(Σ)

v ∈ ArS × A \ {θ} × ArS

w ∈ BrS × B \ {γ, κ} × BrS

(3)

0 otherwise (4)

This rule is well-defined since the freezingness of E imposes the unicity of i in the

cases (2) and (3). Intuitively, the constructed automaton behaves as G on Σ (1) and uses

the freezing alphabet to simulate both automata N and S while keeping “compressed”

an element of Σ (3). This element is uncompressed when automaton S reaches state γ

(2). When N reaches state θ, S reaches state κ or when the encoding is invalid, the local

transition goes to 0 (4).

Through the end of the section, the cellular automaton S will be a Firing Squad solution

as built in Proposition 2.1. This will allow to make any configuration of Σ appear arbitrarily

late during the evolution, since before the synchronization of S, the configuration of Σ will

not be altered.

We will also assume that θ is a spreading state for the cellular automaton N . Intuitively,

we wonder if N is nilpotent, and show that we can get an answer if we assume that some

property over ∆G,N,S is decidable.

Finally, we assume that the domain Σ of G is the subshift of finite type avoiding a single

forbidden pattern u (of length less than k) such that u0 6= 0 6= u|u|−1. This last property

allows that 0∗L(Σ) ⊂ L(Σ) and L(Σ)0∗ ⊂ L(Σ).

The following lemma shows that the non-encoding patterns will give words in Σ after

one evolution step.

Lemma 3.2. Let x be such that ∆G,N,S(x) ∈ [u]0. Then there is some i ∈ K−k, 0K such that
x ∈ [E2rS+1]i−rSk.

Proof.

• If case (4) of the rule is applied to x in cell 0, then ∆G,N,S(x)0 = 0 6= u0, hence

∆G,N,S(x) /∈ [u]0.

• If case (1) is applied to x in all cells of J0, kJ, then ∆G,N,S(x)J0,kJ ∈ [Lk(Σ)]0, hence

∆G,N,S(x) /∈ [u]0.

• If x applies case (1) in cell 0, but there exists some i ∈ K0, kJ (say minimal) which

applies some other rule. This means that the neighborhood xJi−1−r,i−1+rK is in

L2r+1(Σ) whilst the neighborhood xJi−r,i+rK is not, i.e. x ∈ [u]i+r−|u|. As a result,

all cells of Ji, kJ (and many more) will see a non-homogeneous neighborhood and

apply (4). xJ0,kJ ∈ Li(Σ)0k−i ⊂ Lk(Σ), hence ∆G,N,S(x) /∈ [u]0.

• If x applies either (2) or (3) in cell 0, then we get the result.

The following lemma completes the previous one: not only cannot u appear from

scratch, but no encoding pattern can appear from a non-encoding pattern.
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Lemma 3.3. Let x be such that ∆G,N,S(x) ∈ [E]0. Then x ∈ [E2rS+1]−rSk.

Proof.

• If case (3) of the rule is applied in some cell j ∈ J0, kJ, then ∆G,N,S(x) ∈ [E]j−i for

some j ∈ J0, kJ. E being freezing, we get ∆G,N,S(x) ∈ [E]0.

• Since all words of E contain some occurrence of u, Lemma 3.2 gives some i ∈
K−k, k − |u|K such that xJi−rSk,i+(rS+1)kJ = ξ(z, v, w), for some z ∈ L(2rS+1)k(Σ), v ∈

A2rS+1, w ∈ B2rS+1. Assume that i ≥ 0 – the symmetric case is similar. If the

previous point does not occur, then case (2) is applied to cells of Ji, i + kJ, and

either case (2) or case (3) to cells of Ji − k, iJ. Since 0kLk(Σ) ⊂ L2k(Σ), both

cases imply that ∆G,N,S(x)Ji−k,i+kJ ∈ L2k(Σ). This contradicts the assumption that

∆G,N,S(x)J0,kJ ∈ E.

To study more in details the limit set of the constructed automaton, let us first consider

the set

Λ =
⋃

0≤i<k
−∞≤l<m≤+∞

{

x ∈ 2Z∣

∣

∣
xJi+lk,i+mkJ ∈ Em−l and ∀j /∈ Ji + lk, i + mkJ , xj = 0

}

of configurations or pieces of configurations of ∞E∞ surrounded by 0. Note that this set

does not depend on G – only on the subshift Σ. These partially encoding configurations

correspond exactly to those of the limit set of our cellular automaton which are not in Σ,

as proved below.

Lemma 3.4. Ω∆G,N,S
⊂ Σ ∪ Λ.

Proof. From Lemma 3.2, the image of the subshift which avoids all patterns of E is included

in Σ, which itself is invariant. By shift-invariance, it is thus sufficient to prove that Ω∆G,N,S
∩

[E]0 ⊂ Λ. One can remark that the patterns of
{

v ∈ E2k2∗∣∣ vJk,2kJ /∈ E and vJk,2kJ 6= 0k
}

are forbidden in the image ∆G,N,S(2Z). Indeed, if you apply case (3) of the rule in some cell

and another one in another cell, then between these two cells there will be at least a range of

k cells seeing a non-homogeneous neighborhood and applying case (4). By induction on n ≥
1, we can prove that the patterns of

{

v ∈ E2nk2∗∣∣ vJk,2kJ /∈ E and vJk,2k+n−1J 6= 0k+n−1
}

are forbidden in ∆n
G,N,S(2Z), since at least the rS extremal encoding patterns of E disap-

pears at each step, whereas the non-zero patterns of Σ can spread only by rG < rSk cells

every step. In the limit, we obtain that all configurations of Ω∆G,N,S
containing a pattern

of E are in Λ.

In the case where N is nilpotent, we can see that the second part of the limit set is

empty, and therefore we obtain the limit set of the original cellular automaton G.

Lemma 3.5. If N is nilpotent, then Ω∆G,N,S
= ΩG.

Proof. From Lemma 3.4 and the fact that (∆G,N,S)|Σ = G|Σ , it is sufficient to prove the

emptyness of Ω∆G,N,S
∩ Λ. Let x ∈ Ω∆G,N,S

∩ [E]0 and J ∈ N. There exists yJ ∈ 2Z such

that ∆J
G,N,S(yJ) = x. Applying inductively Lemma 3.3, we obtain that yJ

J−JrSk,(JrS+1)kJ ∈

E2JrS+1. By compactness, there is some configuration y such that for any i ∈ Z and any

j ∈ N, F j(y)Jik,(i+1)kJ ∈ E. Clearly, in the successive evolution step from y, case (3) of

the local rule is always applied, which implies that there is a configuration in AZ in the

evolution of which θ never appears, hence contradicting the nilpotency of N .
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When N is not nilpotent, we can see that there is a way to let the Firing Squad inject

any configurations of Σ at any time, hiding the action of G: the limit set does not depend

on G.

Lemma 3.6. If N is not nilpotent, then Σ ⊂ Ω∆G,N,S
.

Proof. Let x ∈ Σ. From Proposition 2.3, there is some configuration y ∈ AZ such that for

any i ∈ Z and any j ∈ N, N j(x)i 6= θ. Let J ∈ N\{0}. From Proposition 2.1, there is some

configuration z ∈ BZ such that F J−1(z) = ∞γ∞ and for any j < J − 1, F j(z) /∈ {γ, κ}
(since κ is spreading). Consider now the configuration x̃ defined by ∀i ∈ Z, x̃Jik,(i+1)kJ =

ξ(xJik,(i+1)kJ, yi, zi). By a quick induction on j < J , we can see that for any cell i ∈ Z, only

case (3) of the local rule is used, and ∆G,N,S(x̃)Jik,(i+1)kJ = ξ(xJik,(i+1)kJ, N
j(y)i, S

j(z)i). At

time J , since NJ−1(y)i = γ, the second part of the rule is applied and ∆G,N,S(x̃)Jik,(i+1)kJ =

xJik,(i+1)kJ. As a result, x ∈
⋂

J∈N\{0} ∆J
G,N,S(2Z).

4. Rice Theorem

The construction of the previous section allows us to separate the cases whether N is

nilpotent in the same time as we separate properties of the limit set.

Lemma 4.1. For any nontrivial property P over the limit sets of nonsurjective cellular
automata on 2, there exist two cellular automata G0, G1 on alphabet 2 sharing the same
quiescent state q ∈ 2, and such that ΩG0

∈ P, ΩG1
/∈ P.

Proof. Take any nonsurjective cellular automaton M on 2 which has both 0 and 1 quies-

cent (such as a minimum cellular automaton). If its limit set satisfies P, then take some

nonsurjective cellular automaton G on 2 whose limit set does not satisfy P. Then G2 has

the same limit set and some quiescent state q ∈ 2. If the limit set of M does not satisfy the

property P, then we can do the same with some nonsurjective cellular automaton G whose

limit set does satisfy P.

Lemma 4.2. Let G0, G1 be two nonsurjective cellular automata on alphabet 2 sharing the
same quiescent state q ∈ 2, and N a cellular automaton with a spreading state θ. Then
we can build two cellular automata Fi, i ∈ {0, 1} such that ΩFi

= ΩGi
, i ∈ {0, 1}, if N is

nilpotent; ΩF0
= ΩF1

otherwise.

Proof. Should we invert 0 and 1 in the construction, we can assume that q = 0. Let ui be

a forbidden pattern of the (non-full) shift Gi(2Z), and consider the word u = 1u0u11. The

restrictions G̃i of Gi on the subshift Σ forbidding {u} are partial cellular automata with

the same limit sets than the respective Gi. Define Fi = ∆G̃i,N,S with S being as obtained

in Proposition 2.1. Note that, except in the first case of the locale rule, the definitions of

these two cellular automata are equivalent since they are based on the same subshift. If N

is not nilpotent, then by Lemmas 3.4 and 3.6, Ω∆
G̃i,N,S

= Σ ∪Ω(∆
G̃i,N,S

)|Λ . It can be noted

that the restrictions of ∆G̃0,N,S and ∆G̃1,N,S on Λ are equal. Hence Ω∆
G̃0,N,S

= Ω∆
G̃1,N,S

.

Now if N is nilpotent, Lemma 3.5 gives the statement.
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Here is now the main result.

Theorem 4.3. Let P be a property satisfied by the limit set of at least one nonsurjective
cellular automaton on 2, but not all. Then the problem

Instance: a cellular automaton F on 2.
Question: ΩF ∈ P?

is undecidable.

Proof. Assume such a property P is decidable. Let Gi, i ∈ {0, 1} be as in Lemma 4.1. Let

us show a procedure to decide whether a given cellular automaton N on alphabet A with

spreading state θ is nilpotent or not, which will contradict Theorem 2.2. We build the two

cellular automata Fi as in Lemma 4.2 and we algorithmically check whether their limit sets

satisfy property P. If ΩF0
∈ P and ΩF1

/∈ P, then N is nilpotent (otherwise the two limit

sets would be equal). Otherwise, we know that one ΩFi
is not equal to ΩGi

, so N is not

nilpotent.

From the decidability of the surjectivity problem, established in [AP72], we can rephrase

the previous theorem as follows: surjectivity is the only nontrivial property of the limit sets

of cellular automata on alphabet 2 to be decidable. Of course, this can be translated to

any other fixed alphabet (of at least two letters).

5. Perspectives

This result is a very complete one, since it states that nothing can be said algorithmically

with respect to how the long-time configurations look like. In spite of this, concrete examples

of properties concerned are not so numerous, except nilpotency or apparition of a given state

or pattern.

This is due to the fact that it does not include any dynamical idea. Various results

have been obtained in this direction, about some properties of the restriction of the cellular

automaton to the limit set [dLM09], the properties of the sequences of states taken by a

particular cell [CG07], or the regularity of the languages obtained this way [dL06].

Among the properties that are not known to be concerned by our result, an important

open problem consists in asking whether stability, which corresponds to the fact that the

limit set is reached whithin a finite number of states (and the undecidability of which is not

very hard to establish anyway), is a property of the limit sets or not. This issue is linked

to the understanding of the different types of limit sets we can get with cellular automata,

treated in particular in [Maa95].

Note that space-time diagrams of cellular automata, which represent the superposition

of successive configurations in its application, are two-dimensional subshifts of finite type,

i.e. drawings defined by some local constraints. Hence our result directly implies some

kind of Rice theorem on subshift projections (multidimensional subshifts can be defined

similarly).

Corollary 5.1. Let P be a property satisfied by the limit set of at least one non-surjective

cellular automaton on 2, but not all, and π : 2Z2

→ 2Z defined by π((xij)i,j∈Z) = (x0j)j∈Z.
Then the problem

Instance: a subshift of finite type Σ ⊂ 2Z2

.
Question: π(Σ) ∈ P?
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is undecidable.

The previous collary can obviously be generalized to any projection defined similarly

from some k-dimensional tiling to some q-dimensional tiling, where 0 < q < k. This does

not include the property of being the full shift, but the undecidability of this property was

already a consequence of the “perpendicular” Rice theorem in [CG07].

One may also wonder what happens for higher-dimensionnal cellular automata. In this

case, our construction seems to extend well. Moreover, surjectivity is also undecidable which

makes any non-trivial property undecidable.

Moreover, one can ask the same question on another characteristic set of cellular au-

tomata: the ultimate set, containing all the adhering values of orbits, studied for instance

in [GR08]. One can notice that, when shifting enough a cellular automaton, the limit set

is unchanged but the ultimate set becomes equal to the limit set. Hence, any nontrivial

property of limit sets of cellular automata, except being a full shift, is an undecidable prop-

erty of the ultimate set. We can wonder if it is the case for other nontrivial properties of

ultimate sets.

More generally, the Firing Squad can be seen as a very powerful tool to touch the limit

set. Our binary simulation can help hide its evolution within any alphabet. This could

allow other complex constructions desolidarizing the simulation of a cellular automaton

and the structure of its limit set. For instance, could we build an intrinsically universal

cellular automaton (i.e. that can simulate any other cellular automaton) whose limit set is

any given subshift of finite type?
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1. Introduction

Given a specific problem, does there exist the “fastest” algorithm for it? Does there exist

a proof system possessing the “shortest” proofs of the positive solutions to the problem?
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Classical version of the problem. According to Cook and Reckhow [CR79], a proof system

is a polynomial-time mapping of all strings (“proofs”) onto “theorems” (elements of cer-

tain language L; if L is the language of all propositional tautologies, the system is called a

propositional proof system). The existence of a polynomially bounded propositional proof

system (that is, a system that has a polynomial-size proof for every tautology) is equiva-

lent to NP = co -NP. In the context of polynomial boundedness a proof system can be

equivalently viewed as a function that given a formula and a “proof”, verifies in polynomial

time that a formula is a tautology: it must accept at least one “proof” for each tautology

(completeness) and reject all proofs for non-tautologies (soundness).
One proof system Πw is simulated by another one Πs if the shortest proofs for every

tautology in Πs are at most polynomially longer than the shortest proofs in Πw. The

notion of p-simulation is similar, but requires also a polynomial-time computable function

for translating the proofs from Πw to Πs. A (p-)optimal propositional proof system is one

that (p-)simulates all other propositional proof systems.

The existence of an optimal (or p-optimal) propositional proof system is a major open

question. If one would exist, it would allow to reduce the NP vs co -NP question to

proving proof size bounds for just one proof system. It would also imply the existence of

a complete disjoint NP pair [Raz94, Pud03]. Kraj́ıček and Pudlák [KP89] show that the

existence of a p-optimal system is equivalent to the existence of an algorithm that is optimal

on all propositional tautologies, namely, it always solves the problem correctly and it takes

for it at most polynomially longer to stop on every tautology than for any other correct

algorithm on the same tautology. Monroe [Mon09] recently gave a conjecture implying that

such algorithm does not exist. Note that Levin [Lev73] showed that an optimal algorithm

does exist for finding witnesses to non-tautologies; however, (1) its behaviour on tautologies

is not restricted; (2) after translating to the decision problem by self-reducibility the running

time in the optimality condition is compared to the running time for all shorter formulas
as well.

An automatizable proof system is one that has an automatization procedure that given

a tautology, outputs its proof of length polynomially bounded by the length of the shortest

proof in time bounded by a polynomial in the output length. The automatizability of a

proof system Π implies polynomial separability of its canonical NP pair [Pud03], and the

latter implies the automatizability of a system that p-simulates Π. This, however, does not

imply the existence of (p-)optimal propositional proof systems in the class of automatizable

proof systems. To the best of our knowledge, no such system is known to the date.

Proving propositional tautologies heuristically. An obvious obstacle to constructing an op-

timal proof system by enumeration is that no efficient procedure is known for enumerating

the set of all complete and sound proof systems. Recently a number of papers overcome

similar obstacles in other settings by considering either computations with non-uniform

advice (see [FS06] for survey) or heuristic algorithms [FS04, Per07, Its09]. In particular,

optimal propositional proof systems with advice do exist [CK07]. We try to follow the

approach of heuristic computations to obtain a “heuristic” proof system. While our work is

motivated by propositional proof complexity, i.e., proof systems for the set of propositional

tautologies, our results apply to proof systems for any recursively enumerable language.

We introduce a notion of a randomized heuristic automatizer (a randomized semideci-

sion procedure that may have false positives) and a corresponding notion of a simulation.
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Its particular case, a deterministic automatizer (making no errors) for language L, along

with deterministic simulations, can be viewed in two ways:

• as an automatizable proof system for L (note that such proof system can be iden-

tified with its automatization procedure; however, it may not be the case for ran-

domized algorithms, whose running time may depend on the random coins), where

simulations are p-simulations of proof systems;

• as an algorithm for L, where simulations are simulations of algorithms for L in the

sense of [KP89].

Given x ∈ L, an automatizer must return 1 and stop. The question (handled by

simulations) is how fast it does the job. For x /∈ L, the running time does not matter.

Given x /∈ L, a deterministic automatizer simply must not return 1. A randomized heuristic

automatizer may erroneously return 1; however, for “most” inputs it may do it only with

bounded probability (“good” inputs). The precise notion of “most” inputs is: given an

integer parameter d and a sampler for L, “bad” inputs must have probability less than 1/d
according to the sampler. The parameter d is handled by simulations in the way such that

no automatizer can stop in time polynomial in d and the length of input unless an optimal

automatizer can do that.

In Sect. 2 we give precise definitions. In Sect. 3 we construct an optimal randomized

heuristic automatizer. In Sect. 4 we give a notion of heuristic probabilistic proof system

and discuss the relation of automatizers to such proof systems.

2. Preliminaries

2.1. Distributional proving problems

In this paper we consider algorithms and proof systems that allow small errors, i.e.,

claim a small amount of wrong theorems. Formally, we have a probability distribution

concentrated on non-theorems and require that the probability of sampling a non-theorem

accepted by an algorithm or validated by the system is small.

Definition 2.1. We call a pair (D,L) a distributional proving problem if D is a collection

of probability distributions Dn concentrated on L ∩ {0, 1}n.

In what follows we write Prx←Dn
to denote the probability taken over x from such

distribution, while PrA denotes the probability taken over internal random coins used by

algorithm A.

2.2. Automatizers

Definition 2.2. A (λ, ǫ)-correct automatizer for distributional proving problem (D,L) is

a randomized algorithm A with two parameters x ∈ {0, 1}∗ and d ∈ N that satisfies the

following conditions:

(1) A either outputs 1 (denoted A(. . .) = 1) or does not halt at all (denoted A(. . .) = ∞);

(2) For every x ∈ L and d ∈ N, A(x, d) = 1.

(3) For every n, d ∈ N,

Pr
r←Dn

{

Pr
A
{A(r, d) = 1} > ǫ

}

<
1

λd
.
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Here λ > 0 is a constant and ǫ > 0 may depend on the first input (x) length. An automatizer
is a (1, 1

4 )-correct automatizer.

Remark 2.3. For recursively enumerable L, conditions 1 and 2 can be easily enforced at

the cost of a slight overhead in time by running L’s semidecision procedure in parallel.

In what follows, all automatizers are for the same problem (D,L).

Definition 2.4. The time spent by automatizer A on input (x, d) is defined as the median

time

tA(x, d) = min

{

t ∈ N

∣

∣

∣

∣

Pr
A
{A(x, d) stops in time at most t} ≥

1

2

}

.

We will also use a similar notation for “probability p time”:

t
(p)
A (x, d) = min

{

t ∈ N

∣

∣

∣

∣

Pr
A
{A(x, d) stops in time at most t} ≥ p

}

.

Definition 2.5. Automatizer S simulates automatizer W if there are polynomials p and q
such that for every x ∈ L and d ∈ N,

tS(x, d) ≤ max
d′≤q(d·|x|)

p(tW (x, d′) · |x| · d).

Definition 2.6. An optimal automatizer is one that simulates every other automatizer.

Definition 2.7. Automatizer A is polynomially bounded if there is a polynomial p such

that for every x ∈ L and every d ∈ N,

tA(x, d) ≤ p(d · |x|).

The following proposition follows directly from the definitions.

Proposition 2.8.

(1) If W is polynomially bounded and is simulated by S, then S is polynomially bounded
too.

(2) An optimal automatizer is not polynomially bounded if and only if no automatizer
is polynomially bounded.

3. Optimal automatizer

The optimal automatizer that we construct runs all automatizers in parallel and stops

when the first of them stops (recall Levin’s optimal algorithm for SAT [Lev73]). A major

obstacle to this simple plan is the fact that it is unclear how to enumerate all automatizers

efficiently (put another way, how to check whether a given algorithm is a correct automa-

tizer). The plan of overcoming this obstacle (similar to constructing a complete public-key

cryptosystem [HKN+05] (see also [GHP09])) is as follows:

• Prove that w.l.o.g. a correct automatizer is very good: in particular, amplify its

probability of success.

• Devise a “certification” procedure that distinguishes very good automatizers from

incorrect automatizers with overwhelming probability.

• Run all automatizers in parallel, try to certify automatizers that stop, and halt

when the first automatizer passes the check.

The amplification is obtained by repeating and the use of Chernoff bounds.



ON OPTIMAL HEURISTIC RANDOMIZED SEMIDECISION PROCEDURES 457

Proposition 3.1 (Chernoff bounds (see, e.g., [MR95, Chapter 4])).

Let X1,X2, . . . ,Xn ∈ {0, 1} be independent random variables. Then if X is the sum of Xi

and if µ is E[X], for any δ, 0 < δ ≤ 1:

Pr{X < (1 − δ)µ} < e−µδ2/2, Pr{X > (1 + δ)µ} < e−µδ2/3.

Corollary 3.2. Let X1,X2, . . . ,Xn ∈ {0, 1} be independent random variables. Then if X
is the sum of Xi and if 1 ≥ µ1 ≥ E[X] ≥ µ2 ≥ 0, for any δ, 0 < δ ≤ 1:

Pr{X < (1 − δ)µ2} < e−µ2δ2/2, Pr{X > (1 + δ)µ1} < e−µ1δ2/3.

Lemma 3.3 (amplification). Every automatizer W is simulated by a (4, e−m/48)-correct
automatizer S, where m ∈ N may depend at most polynomially on d · |x| (for input (x, d)).
Moreover, there are polynomials p and q such that for every x ∈ L and d ∈ N,

t
(1−e−m/64)
S (x, d) ≤ max

d′≤q(d·|x|)
p(tW (x, d′)). (3.1)

Proof. S(x, d) runs m copies of W (x, 4d) in parallel and stops as soon as the 3
8 fraction of

copies stop.

By Chernoff bounds, S is (4, e−m/48)-correct. The “strong” simulation condition

(3.1) is satisfied because by Chernoff bounds the running time of the fastest 3
8 fraction of

executions is less than median time with probability at least 1 − e−m/64.

Theorem 3.4 (optimal automatizer). Let (D,L) be a distributional proving problem, where
L is recursively enumerable and D is polynomial-time samplable, i.e., there is a polynomial-
time randomized Turing machine that given 1n on input outputs x with probability Dn(x)

for every x ∈ {0, 1}n. Then there exists an optimal automatizer for (D,L).

Proof. For algorithm A, we say that it is (λ, ǫ)-correct for input length n and parameter d
if it it satisfies condition 3 of Definition 2.2 for n and d. If an algorithm is (λ, ǫ)-correct for

every n (resp., every d), we omit n (resp., d).

In order to check an algorithm for correctness, we define a certification procedure that

takes an algorithm A and distinguishes between the cases where A is (4, 1
18d log2

∗ n
)-correct

for given n, d (from Lemma 3.3 we know that one can assume such correctness) or it is not

(1, 1
16d log2

∗ n
)-correct ((1, 1

16d log2
∗ n

)-correct automatizers suffice for the correctness of further

constructions). W.l.o.g. we may assume that

A satisfies conditions 1 and 2 of Definition 2.2 (3.2)

(for the latter condition, notice that L is recursively enumerable and one may run its

semidecision procedure in parallel).

The certification procedure has a subroutine Test that estimates the probability of A’s

error simply by repeating A and couting its faults.

Test(A,x, d′, T, l, f):

(1) Repeat for each i ∈ {1, . . . , l}
(a) If A(x, d′) stops in T steps, let ci = 1; otherwise let ci = 0.

(2) If
∑

i ci ≥ l/f , then reject; otherwise accept.

Lemma 3.5. For every A,x, d′, T, l, f ,
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(1) If A(x, d′) stops with probability less than 1
1.01f , then Test will reject it with prob-

ability less than e
− l

3.03·104·f .
(2) If A(x, d′) stops in time at most T with probability more than 1

0.99f , then Test will

accept it with probability less than e
− l

2·104·f .

Proof. Follows directly from Chernoff bounds.

Certify(A,n, d′, T, k, l, f):

(1) Repeat for each i ∈ {1, . . . , k}
(a) Generate xi according to Dn.

(b) If Test(A,xi, d
′, T, l, f) rejects, let bi = 1; otherwise let bi = 0.

(2) If
∑

i bi ≥ k/(2d′), then reject; otherwise accept.

Lemma 3.6. Let d, n, T ∈ N. Let A be an algorithm pretending to be an automatizer. Run

Certify(A,n, d′, T, k, l, f).

Then

(1) If A is (4, 1
1.011f )-correct, then A is accepted by Certify almost for sure, failing

with probability less than e−
k

12d′ + k · e
− l

3.03·104·f .
(2) Let AT be a restricted version of A that behaves similarly to A for T steps and enters

an infinite loop afterwards. If AT is not (1, 1
0.99f )-correct for length n and parameter

d, then A is accepted by Certify with probability less than e−
k

8d′ + k · e
− l

2·104·f .

Proof. 1. Let ∆ = {x ∈ Im Dn | Pr{A(x, d) = 1} > 1
1.011f }. By assumption, Dn(∆) < 1

4d′ .

The certification procedure takes k samples from Dn. For every sample xi ∈ L \∆, the

probability that the corresponding bi equals 1 is less than e
− l

3.03·104·f . Thus, the probability

that there is a sample xi from L \ ∆ that yields bi = 1 is less than k · e
− l

3.03·104 ·f . Denote

this unfortunate event by E. If it does not hold, only samples from ∆ may cause bi = 1

and by Chernoff’s bound

Pr{
∑

i

bi ≥ k/(2d′) | E} < e−
k

12d′ .

Thus, the total probability of reject is as claimed.

2. Let ∆ = {x ∈ ImDn | Pr{A(x, d) = 1} > 1
0.99f }. By assumption, Dn(∆) ≥ 1

d′ .

The certification procedure takes k samples from Dn. For every sample xi ∈ ∆, the

probability that the corresponding bi equals 0 is less than e
− l

2·104·f . Thus, the probability

that there is a sample xi from ∆ that yields bi = 0 is less than k · e
− l

2·104·f . Denote this

unfortunate event by E. Assuming it does not hold only samples outside ∆ may cause

bi = 0 and by Chernoff’s bound

Pr{
∑

i

bi < k/(2d′) | E} < e−
k

8d′ .
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We now define the optimal automatizer U . It works as follows:

U(x, d):

(1) Let

n = |x|,

d′ = 16d log2
∗ n,

f = 17d log2
∗ n,

k = 12d′ ln(16d log2
∗ n),

l = (3.03 · 104) · f · ln(16kd log2
∗ n).

(2) Run the following processes for i ∈ {1, . . . , log∗ n} in parallel:

(a) Run Ai(x, d′), the algorithm with Turing number i satisfying assumption (3.2),

and compute the number of steps Ti made by it before it stops.

(b) If Certify(Ai, n, d′, Ti, k, l, f) accepts,

then output 1 and stop U (all processes).

(3) If none of the processes has stopped, go into an infinite loop.

Correctness. We now show that U errs with probability less than 1/4.

What are the inputs that cause U to error? For every such input x there exists i ≤ log∗ n
such that

ui
x =

∞
∑

T=1

pi
x,T ci

T ≥
1

4 log∗ n
, (3.3)

where

pi
x,t = Pr{Ai(x, d′) stops in exactly t steps},

ci
t = Pr{Certify(Ai, n, d′, t, k, l, f) accepts}.

Let Ei be the set of inputs x /∈ L satisfying inequality (3.3).

We claim that D(Ei) < 1
d log∗ n , which suffices to show the (1, 1/4)-correctness.

Assume the contrary. Let Ti = min{t | ci
t < e−

k

8d′ + k · e
− l

2·104·f }. Note that by

Lemma 3.6 ATi−1
i is (1, 1

0.99f )-correct for n and d′, i.e.,

Pr
x←Dn

{
∑

T<T i
∗

pi
x,T >

1

0.99f
} <

1

d′
.
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We omit i and n in the estimations that follow. Here is how we get a contradiction:

1

4d log2
∗ n

≤
D(Ei)

4 log∗ n
=

∑

x∈Ei

1

4 log∗ n
D(x) ≤

∑

x∈Ei

uxD(x) ≤

∑

x/∈L

uxD(x) =
∑

x/∈L

∞
∑

T=1

px,T cT D(x) =

∑

x/∈L





∑

T<T∗

px,T cT D(x) +
∑

T≥T∗

px,T cT D(x)



 ≤

∑

T<T∗









∑

x/∈L,
P

t<T∗

px,t≤
1

0.99f

px,T D(x) +
∑

x/∈L,
P

t<T∗

px,t>
1

0.99f

px,TD(x)









+ e−
k

8d′ + k · e
− l

2·104·f ≤

1

0.99f
+

1

d′
+ e−

k

8d′ + k · e
− l

2·104·f <
1

16d log2
∗ n

+
1

16d log2
∗ n

+
1

8d log2
∗ n

=
1

4d log2
∗ n

.

Simulation. Assume we are give a correct automatizer As. Plug in m = 48 · ln(18d log2
∗ n)

into Lemma 3.3. The lemma yields that As is “strongly” simulated by a (4, 1
18d log2

∗ n
)-correct

automatizer A. It remains to estimate, for given “theorem” x ∈ L, the (median) running

time of U in terms of t
(1−e−m/64)
A (x, d) = t

(1− 1

(18d log2∗ n)3/4
)

A (x, d) (as we know that the latter

is bounded by max
d′≤q(d·|x|)

p(tAs(x, d′)) for a polynomials p and q).

Since the definition of simulation is asymptotic, we consider only x of length greater

than the Turing number of A. By Lemma 3.6, A is not certified with probability less than

e−
k

12d′ + k · e
− l

3.03·104 ·f ≤ 1
8d log2

∗ n
. If A is certified, U stops in time upper bounded by a

polynomial of the time spent by A with an overhead polynomial in |x| and d for running

other algorithms and the certification procedures. Thus the median time tU (x, d) is bounded

by a polynomial in |x|, d, and t
( 1
2
+ 1

8d log2∗ n
)

A (x, d) ≤ t
(1− 1

(18d log2∗ n)3/4
)

A (x, d).

4. Heuristic proof systems

In this section we define proof systems that make errors (claim a small fraction of

wrong theorems). We consider automatizable systems of this kind and show that every such

system defines an automatizer taking time at most polynomially larger than the length of

the shortest proof in the initial system. This shows that automatizers form a more general

notion than automatizable heuristic proof systems. The opposite direction is left as an open

question.

Definition 4.1. Randomized Turing machine Π is a heuristic proof system for distributional

proving problem (D,L) if it satisfies the following conditions.

(1) The running time of Π(x,w, d) is bounded by a polynomial in d, |x|, and |w|.
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(2) (Completeness) For every x ∈ L and every d ∈ N, there exists a string w such that

Pr{Π(x,w, d) = 1} ≥ 1
2 . Every such string w is called a Π(d)-proof of x.

(3) (Soundness) Prx←Dn
{∃w : Pr{Π(x,w, d) = 1} > 1

4} < 1
d .

Definition 4.2. Heuristic proof system is automatizable if there is a randomized Turing

machine A satisfying the following conditions.

(1) For every x ∈ L and every d ∈ N, with probability at least 1
2 algorithm A(x, d)

outputs a correct Π(d)-proof of size bounded by a polynomial in d, |x|, and |w|,

where w is the shortest Π(d)-proof of x.

(2) The running time of A(x, d) is bounded by a polynomial in |x|, d, and the size of

its own output.

Definition 4.3. We say that heuristic proof system Π1 simulates heuristic proof system

Π2 if there exist polynomials p and q such that for every x ∈ L, the shortest Π
(d)
1 -proof of

x has size at most

p(d · |x| · max
d′≤q(|x|d)

{the size of the shortest Π
(d′)
2 -proof of x}).

Note that this definition essentially ignores proof systems that have much shorter proofs

for some inputs than the inputs themselves. We state it this way for its similarity to the

automatizers case.

Definition 4.4. Heuristic proof system Π is polynomially bounded if there exists a polyno-

mial p such that for every x ∈ L and every d ∈ N, the size of the shortest Π(d)-proof of x is

bounded by p(|x|d).

Proposition 4.5. If heuristic proof system Π1 simulates system Π2 and Π2 is polynomially
bounded, then Π1 is also polynomially bounded.

We now show how automatizers and automatizable heuristic proof systems are related.

Consider automatizable proof system (Π, A) for distributional proving problem (D,L)

with recursively enumerable language L. Let us consider the following algorithm AΠ(x, d):

(1) Execute 1000 copies of A(x, d) in parallel.

For each copy,

(a) if it stops with result w, then

• execute Π(x,w, d) 10000 times;

• if there were at least 4000 accepts of Π (out of 10000), stop all parallel

processes and output 1.

(2) Execute the enumeration algorithm for L; output 1 if this algorithm says that x ∈ L;

go into an infinite loop otherwise.

Proposition 4.6. If (Π, A) is a (correct) heuristic automatizable proof system for recur-
sively enumerable language L, then AΠ is a correct automatizer for x ∈ L and tAΠ

(x, d) is
bounded by polynomial in size of the shortest Πd-proof of x.

Proof. Soundness (condition 3 in Def. 2.2). Let ∆n = {x ∈ L | ∃w : Pr{Π(x,w, d) = 1} >
1
4}. By definition, Dn(∆n) < 1

d . For x ∈ {0, 1}n \ ∆n and specific w, Chernoff bounds

imply that Π(x,w, d) accepts in 0.4 or more fraction of executions with exponentially small

probability, which remains much smaller than 1
4 even after multiplying by 1000.

Completeness (conditions 2 and 1 in Def. 2.2) is guaranteed by the execution of the

semi-decision procedure for L.
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Simulation. For x ∈ L, the probability that A errs 1000 times is negligible (at most

2−1000). Thus with high probability at least one of the parallel executions of A(x, d) outputs

a correct Πd-proof of size bounded by a polynomial in the size of the shortest Πd-proof of x.

For x ∈ L and (correct) Π(d)-proof w, Chernoff bounds imply that Π(x,w, d) accepts in at

least 0.4 fraction of executions with probability close to 1. Therefore, tAΠ
(x, d) is bounded

by a polynomial in |x|, d, and the size of the shortest Πd-proof of x.

5. Further research

One possible direction is to show that automatizers are equivalent to automatizable

heuristic proof systems or, at least, that there is an optimal automatizable heuristic proof

system. That may require some tweak in the definitions, because the first obstacle to proving

the latter fact is the inability to check a candidate proof system for the non-existence of a

much shorter (correct) proof than those output by a candidate automatizer.

Also Kraj́ıček and Pudlák [KP89] and Messner [Mes99] list equivalent conditions for

the existence of (deterministic) optimal and p-optimal proof systems. It seems promising

(and, in some places, challenging) to prove similar statements in the heuristic setting.
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Abstract. Kabanets and Impagliazzo [9] show how to decide the circuit polynomial iden-
tity testing problem (CPIT) in deterministic subexponential time, assuming hardness of
some explicit multilinear polynomial family {fm}m≥1 for arithmetic circuits.

In this paper, a special case of CPIT is considered, namely non-singular matrix com-
pletion (NSMC) under a low-individual-degree promise. For this subclass of problems it
is shown how to obtain the same deterministic time bound, using a weaker assumption in
terms of the determinantal complexity dc(fm) of fm.

Building on work by Agrawal [17], hardness-randomness tradeoffs will also be shown in
the converse direction, in an effort to make progress on Valiant’s VP versus VNP problem.
To separate VP and VNP, it is known to be sufficient to prove that the determinantal
complexity of the m × m permanent is mω(log m). In this paper it is shown, for an ap-
propriate notion of explicitness, that the existence of an explicit multilinear polynomial
family {fm}m≥1 with dc(fm) = mω(log m) is equivalent to the existence of an efficiently

computable generator {Gn}n≥1 for multilinear NSMC with seed length O(n1/
√

log n). The
latter is a combinatorial object that provides an efficient deterministic black-box algorithm
for NSMC. “Multilinear NSMC” indicates that Gn only has to work for matrices M(x) of
poly(n) size in n variables, for which det(M(x)) is a multilinear polynomial.

1. Introduction

Let F be a field of characteristic zero, let Q ⊆ F denote the field of rational numbers,

and let Xn = {x1, x2, . . . , xn} be a set of variables. AF(Xn) denotes the set of affine

forms over Xn and F. In this paper we study a special case of circuit polynomial identity

testing, namely the non-singular matrix completion problem over F. Matrix completion is

an important problem, both in theory and in practice. The history of the problem dates

back to work by Lovász [1] and Edmonds [2].

1998 ACM Subject Classification: F.2.3 Tradeoffs among Complexity Measures.
Key words and phrases: computational complexity, arithmetic circuits, hardness-randomness tradeoffs,

identity testing, determinant versus permanent.
This work was supported in part by the National Natural Science Foundation of China Grant 60553001,

and the National Basic Research Program of China Grant 2007CB807900,2007CB807901.

c© M. Jansen
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010 
Editors: Jean-Yves Marion, Thomas Schwentick 
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2477



466 M. JANSEN

As was done in [3] for CPIT, we study non-singular matrix completion under a promise

restriction on individual degrees:

Problem. NSMCk
r (F) : k × k Non-Singular Matrix Completion over F with individual

degrees at most r.

• Input: A k × k matrix M(x) with entries in AF(Xn).

• Promise : Individual degrees of the polynomial det(M) are bounded by r.

• Question: Does there exist a ∈ F
n such that det M(a) 6= 0 ?

Over a field of characteristic zero, the problem is equivalent to asking whether

detM(x) 6≡ 0. Since detn has O(n6) size skew circuits [4], and is universal for skew circuits

(Implicit in [5], see Proposition 3.1), NSMC
poly(n)
r(n) (F) is equivalent to identity testing poly(n)

size skew circuits over F, under the semantic promise that the circuit outputs a polynomial

with individual degrees bounded by r(n). Over Q, for any r(n), the latter can be verified

with a coRP-algorithm, using the Schwartz-Zippel Lemma [6, 7]. Moreover, Lovász showed

that a random assignment for x maximizes the rank of M(x) with high probability [1].

Whether there exists an efficient deterministic algorithm for matrix completion is a

major open problem. Currently, such an algorithm exists only for special instances. For

example, Ivanyos, Karpinkski and Saxena give a polynomial time deterministic algorithm

for finding a maximum rank completion, provided M(x) is of the form M0 +x1M1 +x2M2 +

. . . + xnMn, where M1,M2, . . . ,Mn are rank one matrices [8].

Kabanets and Impagliazzo provide algebraic hardness-randomness tradeoffs for CPIT

[9]. They show that the existence of an explicit polynomial with super-polynomial arithmetic

circuit size, implies CPIT, and hence NSMC, can be decided deterministically in time 2nǫ
,

for any ǫ > 0, provided n is large enough. In order to make progress towards unconditionally

proven deterministic subexponential time algorithms for NSMC, it is important to consider

whether the same bound can be obtained for NSMC under any weaker assumptions.

In this paper we will only assume hardness of an explicit polynomial for skew circuits,

or equivalently, we make hardness assumptions in terms of determinantal complexity [10].

In other words, we aim for specialized algebraic hardness-randomness tradeoffs for the skew

circuit model. For this, we will use the hardness-randomness tradeoffs for constant-depth

arithmetic circuits due to Dvir, Shpilka and Yehudayoff [3] as a starting point.

Another motivation is the VP versus VNP question, or the permanent versus determi-

nant problem [10]. The latter problem asks us to prove lower bounds for the determinantal

complexity of an explicit1 polynomial. We firmly establish the role of NSMC in the quest

for such lower bounds, firstly, by the characterization mentioned in the abstract. Secondly,

it is shown that the existence of an explicit multilinear polynomial family {fm}m≥1 with

dc(fm) = mω(1) is equivalent to the existence of an efficiently computable multilinear gen-

erator {Gn}n≥1 for NSMC
poly(n)
1 with seed length ⌈nǫ⌉, for some 0 < ǫ < 1.

2. Results

We require some formal definitions to properly state the results.

1Necessarily in the sense of Definition 2.2. A sufficient condition would require an even more stringent
notion.
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Definition 2.1 ([10]). The determinantal complexity dc(f) of a polynomial f ∈ F[Xn] is

defined to be the minimum size of a matrix M with entries in AF(Xn) such that detM = f .

We use standard definitions of arithmetic circuits and formulas with binary addition

and multiplication operations (See [11]). Arithmetic circuit complexity of f is denoted

by L(f). A skew circuit satisfies that for every multiplication gate one of its inputs is a

variable or a constant. Lskew(f) denotes skew circuit size of f . The following is our notion

of explicitness of a multilinear polynomial:

Definition 2.2. Let {fm}m≥1 be a family of multilinear polynomials with fm ∈
Z[x1, x2, . . . , xm]. We say this family is explicit provided there exists a deterministic Turing

machine running in time 2O(m), that on input e ∈ {0, 1}m, outputs the binary representation

of the coefficient of the monomial xe1
1 xe2

2 . . . xem
m of fm.

Hardness Hypothesis 1 (HH1). There exists an explicit family of multilinear polynomials

{fm}m≥1, such that L(fm) = mω(1).

Hardness Hypothesis 2 (HH2). There exists an explicit family of multilinear polynomials

{fm}m≥1, such that dc(fm) = mω(1).

If in the above we replace mω(1) by mω(log m), we refer to this as Strengthened HH1 and

Strengthened HH2.

Proposition 2.3. HH2 is equivalent to the statement that there exists an explicit family of
multilinear polynomials {fm}m≥1, such that Lskew(fm) = mω(1). A similar statement holds

for Strengthened HH2, but with mω(1) replaced by mω(log m).

Proof. In one direction this follows from the fact that the n × n determinant has skew

circuits of size O(n6) [4]. For the converse, apply the fact that if fm can be computed by a

skew circuit of size s, then dc(fm) = O(s) (Implicit in [5], see Proposition 3.1).

Proposition 2.4. Strengthened HH1 ⇒ Strengthened HH2 ⇒ HH1 ⇒ HH2 .

Proof. The first and the last implication follow from Proposition 2.3. To show that

Strengthened HH2 ⇒ HH1, suppose we have an explicit multilinear p-family {fm}m≥1,

such that dc(fm) = mω(log m). This implies dc(fm) = mω(log m), even when restricting to

m ∈ M, for any infinite set M. If L(fm) 6∈ mω(1), then there exists constant c > 0 and

an infinite set M′, such that L(fm) ≤ mc, for all m ∈ M′. Using the construction of [12],

we obtain formulas for fm of size 2O(log L(fm) log m) = mO(log m), for m ∈ M′. Hence by [5],

dc(fm) = mO(log m), for m ∈ M′. This is a contradiction.

Our algorithms will be of the black-box kind. This is formalized as follows:

Definition 2.5. For a function ℓ : N → N, a multilinear (ℓ(n), n)-generator for NSMCk
r (F)

is given by a multilinear polynomial mapping Gn : F
ℓ(n) → F

n. We say Gn provides a test
for NSMCk

r (F), if for any instance M(x) of NSMCk
r (F), it holds that

(∃a ∈ F
n),det M(a) 6= 0 iff (∃b ∈ F

ℓ(n)),det M(Gn(b)) 6= 0.

Families {Gn}n≥1 of generators are also simply called “generator”. For a generator

{Gn}n≥1 with coefficients in Z, we say it is efficiently computable, if there exists a deter-

ministic Turing machine M that runs in time 2O(ℓ(n)), so that on input (i, n, e), where i
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and n are given in binary and e ∈ {0, 1}ℓ(n), M computes the binary representation of the

coefficient of the monomial xe1
1 xe2

2 . . . x
eℓ(n)

ℓ(n) of the ith component (Gn)i in the image of Gn.

We are now ready to state the results.

Theorem 2.6. If HH2 holds over F, then for any 0 < ǫ < 1, there exists an efficiently
computable multilinear (⌈nǫ⌉, n)-generator {Gn}n≥1, such that for any k(n) ∈ nO(1) and

r(n) ∈ O(1), Gn provides a test for NSMC
k(n)
r(n)(F), for all large enough n.

Theorem 2.7. If Strengthened HH2 holds over F, then there exists an efficiently computable

multilinear (O(n1/
√

log n), n)-generator {Gn}n≥1, such that for any k(n) ∈ nO(1) and r(n) ∈

2O(
√

log n), Gn provides a test for NSMC
k(n)
r(n)(F), for all large enough n.

From this we will derive the following:

Theorem 2.8. If HH2 holds over Q, then non-singular matrix completion over Q for
matrices M(x) of poly(n) size and with coefficients of poly(n) bits, where the individual
degrees of det(M(x)) are bounded by a constant, can be decided deterministically in time
2nǫ

, for any ǫ > 0, provided n is large enough.

Theorem 2.9. If Strengthened HH2 holds over Q, then non-singular matrix completion
over Q for matrices M(x) of poly(n) size and with coefficients of poly(n) bits, can be de-

cided deterministically in time 2O(n1/
√

log n log n), under the promise that individual degrees of

det(M(x)) are bounded by 2O(
√

log n).

A central technical part of this paper is the following “Root Extraction Lemma” for

skew circuits, which is of independent interest:

Lemma 2.10. Let n, s, and m be integers with s ≥ n. Let P (x, y) ∈ F[Xn, y] be a non-zero
polynomial such that Lskew(P ) = s. Let f ∈ F[Xn] be a polynomial with deg(f) = m such

that P (x, f(x)) ≡ 0. Then Lskew(f) ≤ s · 2O(log2 m)r4+log m, where r = degy(P ).

Finally, we also prove the following randomness-to-hardness results:

Theorem 2.11. If for some 0 < ǫ < 1, there exists an efficiently computable multilin-
ear (⌈nǫ⌉, n)-generator {Gn}n≥1, such that for any k(n) ∈ nO(1), Gn provides a test for

NSMC
k(n)
1 (F), for all large enough n, then HH2 holds over F.

Theorem 2.12. If there exists an efficiently computable multilinear (O(n1/
√

log n), n)-

generator {Gn}n≥1, such that for any k(n) ∈ nO(1), Gn provides a test for NSMC
k(n)
1 (F),

for all large enough n, then Strengthened HH2 holds over F.

Theorem 2.12 & Theorem 2.7 and Theorem 2.11 & Theorem 2.6 provide us with char-

acterizations, which we summarize as follows:

Corollary 2.13.

(1) HH2 holds over F if and only if there exists an efficiently computable multilinear

(⌈nǫ⌉, n)-generator {Gn}n≥1, for some 0 < ǫ < 1, such that for all k(n) ∈ nO(1), Gn

provides a test for NSMC
k(n)
1 (F), for all large enough n.

(2) Strengthened HH2 holds over F if and only if there exists an efficiently computable

multilinear (O(n1/
√

log n), n)-generator {Gn}n≥1, such that for all k(n) ∈ nO(1), Gn

provides a test for NSMC
k(n)
1 (F), for all large enough n.
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3. Preliminaries

For a polynomial f , Hk(f) denotes the homogeneous part of degree k, and H≤k(f) ,

∑k
i=0 Hi(f).

An algebraic branching program (ABP) Φ over F ∪ Xn is given by a directed acyclic

graph G with source node s and sink node t. Edges of G are labeled with elements of Xn∪F.

The weight of a directed path in Φ is defined to be the product of the edge labels. The

polynomial computed by Φ is defined to be the sum of weights over all directed s, t-paths.

For the size of Φ we count the number of edges in G. For a polynomial f , B(f) is the size of

any smallest ABP computing f . This generalizes in the obvious way to multi-output ABPs,

by having several sink nodes t1, t2, . . . , tm. One easily proves the following proposition:

Proposition 3.1. Lskew(f) = Θ(B(f)).

We will use this to switch freely between skew circuits and ABPs. The latter model

gives us some convenience. For example, for ABPs it is easy to see that if f(x1, x2, . . . , xn)

is computed by an ABP A of size sA, and g is computed by an ABP B of size sB, then

f(g, x2, . . . , xn) can be computed by an ABP of size O(sAsB). Indeed, simply replace each

edge labeled with x1 in A with the s, t-dag given by B. Addition and multiplication of

ABPs is done by parallel and series composition, respectively.

Proposition 3.2. Suppose Φ is a skew circuit of size s computing f ∈ F[Xn]. Then for
any i, there exists a skew circuit of size O(s · i) computing Hj(f) for all 0 ≤ j ≤ i.

Proof. This is achieved using the standard homogenization trick of keeping for each gate in

Φ, i + 1 many copies that compute the homogeneous components up to degree i.

Lemma 3.3 (cf. Lemma 2.4 in [3]). Suppose P (x, y) ∈ F[Xn, y] can be computed by a skew

circuit over F of size s. Then for any i, ∂iP
∂iy

can be computed by a skew circuit of size

O(r · s), where r = degy(P ).

Proof. Let C(x, y) be a skew circuit for P of size s. We can compute C0(x), C1(x), . . . , Cr(x)

with an r + 1-output skew circuit of size O(r · s) by evaluating C(x, ai) at r + 1 distinct

elements a1, a2, . . . , ar+1 ∈ F, and then use linear interpolation. Next we can compute ∂iP
∂iy

by adding O(r2) many gates. Since r ≤ s, the lemma follows.

Lemma 3.4 (Lemma 2.1 in [13]). Let f ∈ F[Xn] be a non-zero polynomial such that the
degree of f in xi is bounded by ri, and let Si ⊆ F be of size at least ri + 1, for all i ∈ [n].
Then there exists (s1, s2, . . . , sn) ∈ S1 × S2 × . . . × Sn with f(s1, s2, . . . , sn) 6= 0.

Lemma 3.5 (Nisan-Wigderson Design [14]). Let n,m be integers with n < 2m. There
exists a family of sets S1, S2, . . . , Sn ⊆ [ℓ], such that (1) ℓ = O(m2/ log n), (2) For each i,
|Si| = m, and (3) For every i 6= j, |Si ∩ Sj | ≤ log n. Furthermore, the above family of sets

can be computed deterministically in time poly(n, 2ℓ).

Berkowitz [15] observes that Samuelson’s algorithm [16] for computing the characteristic

polynomial, does not use divisions and can be implement in NC2 (Also see [4]). From this

one derives the following statement, sufficient for our purpose:

Proposition 3.6. The determinant of an n × n matrix M with integer entries of at most
m bits each can be computed in time poly(n,m).
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4. Root Extraction within the Skew Circuit Model

We start with the observation that Theorem 3.1 in [3] can be modified into the following

lemma. A proof will appear in the full version of this paper.

Lemma 4.1. Let n, s, and m be integers with s ≥ n. Let P (x, y) ∈ F[Xn, y] be a non-zero
polynomial with s = Lskew(P ). Let f ∈ F[Xn] be a polynomial with deg(f) = m such that
P (x, f(x)) ≡ 0. Then Lskew(f) = O(s · rmr+1), where r = degy(P ).

Comparing this with the s · 2O(log2 m)r4+log m bound of Lemma 2.10, which can be

bounded by s·mO(log m+log r), we see that we get a significant improvement for any m << 2r.

Let us briefly indicate the idea behind the proof of Lemma 2.10. Similar as was done

in [3], we want to approximate f up to some degree k, i.e. find a polynomial g with

H≤k(f) = H≤k(g). In [3] this is done in increments of k by one. This will not be good

enough for our purpose. Due to the nature of the skew circuit model, typically any increment

of k requires duplication of previously constructed circuitry, leading to an overall exponential

blowup by a factor of 2m. The solution is to aim for a faster convergence rate that doubles k
in stages. This way, one can keep circuit blow-up due to duplications more or less in check.

We now proceed with the proof of Lemma 2.10. In the following, for any polynomial q
the homogeneous component Ht[q] will also be denoted by qt.

Lemma 4.2. Let P ∈ F[Xn, y] be such that degy(P ) = r. Write P =
∑r

i=0 Ci(x)yi, and let

P ′(x, y) =
∑r

i=0 iCi(x)yi−1. Let f ∈ F[Xn] be such that P (x, f(x)) = 0 and P ′(0, f(0)) =

ξ0 6= 0. Let k ≥ 1 be an integer. Suppose g ∈ F[Xn] satisfies H≤k[g] = H≤k[f ]. Then for
any 1 ≤ j ≤ k,

fk+j = gk+j −
1

ξ0

(

P (x, g)k+j +

j−1
∑

i=1

(fk+i − gk+i)P
′(x, g)j−i

)

.

Proof. Let h = (fk+1 − gk+1) + . . . + (f2k − g2k). Then

0 = H≤2k[P (x, f(x))]

= H≤2k[P (x, g + h)]

= H≤2k[

r
∑

i=0

Ci(x) (g + h)
i
]

= H≤2k[

r
∑

i=0

Ci(x)
(

gi + i · gi−1 · h
)

]

= H≤2k[P (x, g) + P ′(x, g) · h]

Let 1 ≤ j ≤ k be given. By the above

0 = P (x, g)k+j +

j
∑

i=1

(fk+i − gk+i)P
′(x, g)j−i

= P (x, g)k+j + (fk+j − gk+j)P
′(x, g)0 +

j−1
∑

i=1

(fk+i − gk+i)P
′(x, g)j−i

Since P ′(x, g)0 = P ′(0, g(0)) = P ′(0, f(0)), the lemma follows.
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Applying the above lemma for g = H≤k(f) yields the following corollary:

Corollary 4.3. Let P ∈ F[Xn, y] be such that degy(P ) = r. Write P =
∑r

i=0 Ci(x)yi, and

let P ′(x, y) =
∑r

i=0 iCi(x)yi−1. Let f ∈ F[Xn] be such that P (x, f(x)) = 0 and P ′(0, f(0)) =

ξ0 6= 0. Let k ≥ 1 be an integer. Then for any 1 ≤ j ≤ k,

fk+j = −
1

ξ0

(

P (x, g)k+j +

j−1
∑

i=1

fk+i · P
′(x, g)j−i

)

, (4.1)

where g = H≤k[f ].

Lemma 4.4. Let P ∈ F[Xn, y] be such that degy(P ) = r. Write P =
∑r

i=0 Ci(x)yi, and let

P ′(x, y) =
∑r

i=0 iCi(x)yi−1. Let f ∈ F[Xn] be such that P (x, f(x)) = 0 and P ′(0, f(0)) =

ξ0 6= 0. Let k ≥ 1 be an integer. Let

P = {P (x, g)j : 1 ≤ j ≤ 2k} ∪ {P ′(x, g)j : 1 ≤ j ≤ k − 1},

where g = H≤k[f ]. Suppose any polynomial in P can be computed by a single output ABP
of size at most B. Then for any 1 ≤ j ≤ k, there exist a (j + 1)-output ABP Φj computing
1, fk+1, fk+2, . . . , fk+j of size at most 2Bj2.

Proof. We prove the lemma by induction on j. For j = 1, we see by Corollary 4.3 that

fk+1 = − 1
ξ0

P (x, g)k+j . Hence we have an single output ABP computing fk+1 of size at most

B. This means we certainly can compute 1 and fk+1 by means of a 2-output ABP of size

at most 2B.

Now suppose 1 < j < k. By induction hypothesis we have a j-output ABP Φj−1 of size

at most 2B(j − 1)2 computing 1, fk+1, fk+2, . . . , fk+j−1. The ABP Φj is constructed from

Φj−1 by first of all passing along all of 1, fk+1, fk+2, . . . , fk+j−1 to the outputs. Then by

drawing wires from each of these we can compute fk+j according to Equation (4.1). For this

we use a new copy of a single output ABP computing some polynomial in P exactly j times.

This construction can be implemented such that size(Φj) ≤ size(Φj−1)+jB+j+1 ≤ 2Bj2

(For this exact count we use that the cross wires are not actually needed, since we can

identify nodes).

Lemma 4.5. Let n, s, r,m and be integers with s ≥ n. Let P ∈ F[Xn, y] be a non-zero
polynomial with degy(P ) = r. Write P =

∑r
i=0 Ci(x)yi, and let P ′(x, y) =

∑r
i=0 iCi(x)yi−1.

Assume that both P and P ′ can be computed by skew circuits of size at most s over F. Let
f ∈ F[Xn] be a polynomial with deg(f) = m such that P (x, f(x)) ≡ 0 and P ′(0, f(0)) 6= 0.

Then f can be computed by a skew circuit of size at most s · 2O(log2 m)r3+log m.

Proof. We compute f in at most ⌈log m⌉ stages. At stage i we construct an ABP Ψi

computing H≤2i [f ] of size si.

For stage i = 0, since H≤2i [f ] is an affine linear form in n variables, Ψ0 can be con-

structed with s0 = O(n).

We now describe stage i, for i > 0. Let g = H≤2i−1 [f ]. In the previous stage an ABP

Ψi−1 was constructed for g of size si−1.

We claim P (x, g) and P ′(x, g) can be computed by an ABP of size O(rsi−1 + r2s).
Namely, like in proof of Lemma 3.3, we have for any i, an ABP of size O(rs) computing

Ci(x). Using r copies of the ABP computing g we can then compute
∑r

i=0 Ci(x)gi with

size O(rsi−1 + r2s). Similarly, for P ′(x, g).
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Hence, by Proposition 3.2 and Proposition 3.1, for any j ≤ 2i, P (x, g)j can be computed

by an ABP of size O(2i(rsi−1+r2s)). Similarly, for any j ≤ 2i−1, P ′(x, g)j can be computed

by an ABP of size O(2i−1(rsi−1 + r2s)).
Therefore, we can apply Lemma 4.4 with k = 2i−1 and B := O(2i(rsi−1 + r2s)). This

gives us an ABP Φ2k computing fk+1, fk+2, . . . , f2k of size at most 2Bk2. Combining Ψk

and Φ2k to add all components of f gives us the ABP Ψ2k computing H≤2k[f ] of size

O(23i(rsi−1 + r2s) + si−1). We can thus bound si ≤ αr23i · (si−1 + rs), for some absolute

constant α > 1. From this, one gets that si ≤ s · βi2+1ri+2, for some absolute constant

β > 1.

Taking i = ⌈log m⌉, we see there exists an ABP computing f with size bounded by

s · 2O(log2 m)r3+log m. Applying Proposition 3.1 completes the proof.

4.1. Proof of Lemma 2.10

Write P =
∑r

i=0 Ci(x)yi with Cr(x) 6≡ 0. Let P i(x, y) = ∂iP
∂iy

. Then P r(x, y) = r!·Cr(x).

Since the characteristic of F is zero, r! 6= 0, and hence P r(x, f(x)) 6≡ 0. By assumption,

P 0(x, f(x)) ≡ 0. Let i be the smallest number such that P i(x, f(x)) 6≡ 0. Then 0 < i ≤ r,
and P i−1(x, f(x)) ≡ 0. We have that there exists x0 ∈ F such that P i(x0, f(x0)) 6= 0.

Let Q(x, y) = P i−1(x+x0, y), and let g = f(x+x0). Q is computable by a skew circuit

of size O(r · s) by Lemma 3.3. Let Q′ = ∂Q
∂y . Observe Q′(x, y) = P i(x + x0, y). Q is a

nonzero polynomial such that Q(x, g(x)) = P i−1(x + x0, f(x + x0)) ≡ 0, and Q′(0, g(0)) =

P i(x0, f(x0)) 6= 0. We apply Lemma 4.5 and obtain a skew circuit Ψ computing g(x) of

size s · 2O(log2 m)r4+log m. From this a skew circuit computing f is obtained that is at most

a constant factor larger by performing the substitution x := x − x0 within Ψ.

5. Constructing a Generator from a Hard Polynomial

With the “Root Extraction” Lemmas 2.10 and 4.1 proved, the following lemma fol-

lows by the technique of Lemma 7.6 in [9], which was also employed to prove Lemma 4.1

in [3]. We use the notation that for a set S ⊆ [ℓ] of size m, and a vector of variables

y = (y1, y2, . . . , yl), f(y|S) denotes f(ys1, ys2, . . . , ysm), where s1, s2, . . . , sm is an arbitrary

ordering of the elements of S. A proof of the lemma will appear in the full version of this

paper.

Lemma 5.1. Let n, r and s be integers, and let g ∈ F[Xn] be a non-zero polynomial with
individual degrees bounded by r with Lskew(g) = s ≥ n. Let m > log n be an integer
and let S1, S2, . . . , Sn ⊆ [ℓ] be given by Lemma 3.5, so that ℓ = O(m2/ log n), |Si| = m,
and |Si ∩ Sj| ≤ log n. Let f ∈ F[z1, z2, . . . , zm] be a multilinear polynomial such that
g(f(y|S1), f(y|S2), . . . , f(y|Sn)) ≡ 0, where y = (y1, y2, . . . , yℓ) is a vector of variables. Then

Lskew(f) ≤ sn · min(2c1(log2 m)r4+log m, c2 · rm
r+1), for absolute constants c1, c2 > 1.
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5.1. Proof of Theorem 2.6 and 2.7

Proof. We first consider Theorem 2.7. Suppose {fm} is an explicit multilinear family with

dc(fm) = mω(log m). Consider some large enough n. Set m = ⌈2
1
2

√
log n⌉. Construct

the Nisan-Wigderson design S1, S2, . . . , Sn as in Lemma 5.1 with ℓ(n) = O(m2/ log n) =

O(n1/
√

log n). We claim the required (ℓ(n), n)-generator Gn can be given by

Gn(y1, y2, . . . , yℓ(n)) , (fm(y|S1), fm(y|S2), . . . , fm(y|Sn)),

To verify this, consider any k(n) ∈ nO(1) and r(n) ∈ 2O(
√

log n), and arbitrary k(n) ×
k(n) matrix M(x) with entries in AF(Xn). Let g = det(M(x)). Assume the individual

degrees of g are bounded by r(n) = poly(m). Observe it suffices to verify that if g 6≡ 0,

then det(M(Gn(y))) 6≡ 0. Due to [4], we know g has a skew circuit over F of size at

most O(n · k(n)6) ≤ nd, for some constant d (provided n is large enough). Hence by

Lemma 5.1, if det(M(Gn(y))) ≡ 0, we obtain a skew circuit over F for fm of size at most

nd+1 · 2c1(log
2 m)r(n)4+log m ≤ 24(d+1) log2 m · 2c1(log

2 m)r(n)4+log m. Since r(n) = poly(m)

and n is assumed to be large enough, this contradicts the hardness of fm. (Here we use

dc(fm) = O(Lskew(fm))).

For Theorem 2.6 one argues similarly, but with m := ⌈nǫ⌉. We bound the size of the

skew circuit for fm by c2n
d+1 · r(n)mr(n)+1 ≤ c2r(n)m(d+1)/ǫ+r(n)+1. This contradicts the

hardness of fm, assuming dc(fm) = mω(1), for any constant 0 < ǫ < 1 and r(n) = O(1),

provided n is large enough.

We now check that in any of the above cases, {Gn}n≥1 is efficiently computable. Given

(i, n, e), where e ∈ {0, 1}ℓ(n), one first constructs the sets S1, S2, . . . , Sn. This can be done

deterministically in time 2O(ℓ(n)) by Lemma 3.5. Then if for some j 6∈ Si, ej = 1, return

zero. Otherwise, let c = e|Si . Return the coefficient of the monomial xc1
1 xc2

2 . . . xcm
m of fm.

Since fm is explicit, this coefficient can be computed deterministically in time 2O(m). Hence

the total deterministic time is bounded by 2O(ℓ(n)).

Remark 5.2. From the above we see an (⌈nǫ⌉, n)-generator for NSMC
poly(n)
r(n) (F) can be

obtained by assuming dc(fm) = mω(r(m1/ǫ)). For example, assuming dc(fm) = mω(log log m)

yields an (⌈nǫ⌉, n)-generator for NSMC
poly(n)
log log n(F), for any 0 < ǫ < 1.

6. Using the Generator to decide NSMC(Q) Deterministically

Theorem 6.1. Let ℓ(n) and r(n) be functions of type N → N such that log n < ℓ(n) < n, for
all large enough n. If there exists an efficiently computable multilinear (ℓ(n), n)-generator

{Gn}n≥1, such that for any p(n) ∈ nO(1), Gn provides a test for NSMC
p(n)
r(n)(Q), for all large

enough n, then for any k(n) ∈ nO(1), NSMC
k(n)
r(n)(Q) can be decided deterministically in time

2O(ℓ(n) log n+ℓ(n) log r(n)), provided coefficients of the input matrix have bit size nO(1).

Proof. Say Gn is defined over variables z1, z2, . . . , zℓ(n). Consider an arbitrary matrix M of

size k(n), with entries in AQ(Xn), where coefficients have bit size nO(1), and with individual

degrees of det(M(x)) bounded by r(n). We assume wlog. that entries of M are in AZ(Xn),

since we can multiply out all denominators and still leave bit sizes bounded by nO(1).
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For large enough n, by Definition 2.5, (∃a ∈ Q
n),det M(a) 6= 0 iff (∃b ∈

Q
ℓ(n)),det M(Gn(b)) 6= 0. Let m = ℓ(n). We have that (∃b ∈ Q

m),det M(Gn(b)) 6= 0

if and only if h := det M(Gn(z)) 6≡ 0. Individual degrees of h are at most nr(n). By

Lemma 3.4, if h 6≡ 0, then for some b ∈ V m, h(b) 6= 0, where V = {0, 1, . . . , nr(n)}. Hence

we can use the following test, for any n larger than some fixed threshold depending on k:

Algorithm. Test (input : an instance M(x) of NSMC
k(n)
r(n)(Z))

(1) Let V = {0, 1, . . . , nr(n)}.

(2) For all b ∈ V ℓ(n), compute vb := det(M(Gn(b))).

(3) If for all b ∈ V ℓ(n), vb = 0, then Reject else Accept.

If the above algorithm accepts, one also knows a non-singular completion. Let us

estimate the running time. Since Gn is efficiently computable, for any b ∈ V ℓ(n), Gn(b)j
can be computed in time 2O(m). Each entry of N := M(Gn(b)) is an integer computable in

time 2O(m). By Proposition 3.6, det(N) is computable in time poly(k(n), 2O(m)) = 2O(m).

Hence the total time is bounded by 2O(m) · (nr(n) + 1)m = 2O(m log n+m log r(n)).

Using Theorem 6.1, the proofs of Theorem 2.8 and Theorem 2.9 immediately follow

from Theorem 2.6 and Theorem 2.7, respectively.

7. Constructing a Hard Polynomial from a Generator

Let δ > 0. We say a function ℓ : R>0 → R>0 is δ-nice if 1) ℓ is monotone increasing, 2)

ℓ(t)1+δ < t and |ℓ(t + 1)1+δ − ℓ(t)1+δ| ≤ 1, for all large enough t, and 3) for all large enough

N , given N in unary, we can2 compute an n such that N = ⌈ℓ(n)1+δ⌉ deterministically in

time 2O(N).

Theorem 7.1. Let δ > 0, and let ℓ : R>0 → R>0 be a δ-nice function. Given any effi-
ciently computable multilinear (⌈ℓ(n)⌉, n)-generator {Gn}n≥1, we can construct an explicit
multilinear family {gN}N≥1, such that if for some integer d > 0, Gn provides a test for

NSMCnd

1 (F) for all large enough n, then for all large enough N , dc(gN ) > ℓ−1(N1/(1+δ))d,
over the field F.

Proof. Consider some large enough N . Let n be such that N = ⌈ℓ(n)1+δ⌉ (such an n can be

found in time 2O(N)). Let m = ⌈ℓ(n)⌉. We have that N ≤ n. Let V = {1, 2, . . . , N +1} ⊆ F.

Similarly3 as in [17], define the polynomial gN (x1, x2, . . . , xN ) =
∑

I⊆[1,N ] cI
∏

i∈I xi, where

cI is taken to be an integer nonzero solution of the following system of linear equations:
∑

I⊆[1,N ]

cI

∏

i∈I

Gn(a1, a2, . . . , am)i = 0, (7.1)

for all a ∈ V m. These are (N + 1)m equations in 2N variables. Provided n is large

enough, m log(N +1) < N , and hence there exists a nonzero solution over F. The technical

conditions placed on ℓ(t) ensure gN is defined for all large enough N . Below we will argue

how to compute an integer solution within time 2O(N), so that gN is explicit in the sense of

Definition 2.2.

2Note: conditions 1) and 2) imply the n in condition 3) always exists, provided N is large enough.
3Agrawal [17] works with a different notion of a generator, and does not demand integer coefficients for

explicitness.
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For the purpose of contradiction, suppose that dc(gN ) ≤ nd. Hence we can write

gN = det(M), where M is an nd × nd matrix with entries in AF(XN ). The entries of

M are elements of AF(Xn), since AF(XN ) ⊆ AF(Xn). Since F is an infinite field and

gN 6≡ 0, there exists a ∈ F
n such that det(M(a)) = gN (a1, a2, . . . , aN ) 6= 0. The individual

degrees of gN are bounded by one. Hence, by Definition 2.5, there exists b ∈ F
m such

that gN (Gn(b)1, Gn(b)2, . . . , Gn(b)N ) = det(M(Gn(b))) 6= 0. This implies h 6≡ 0, where

h(z) := gN (Gn(z)1, Gn(z)2, . . . , Gn(z)N ). Observe that individual degrees of h are bounded

by N . Hence by Lemma 3.4, there exists b′ ∈ V m such that h(b′) 6= 0, but this contradicts

(7.1). Therefore dc(gN ) > nd ≥ ℓ−1(N1/(1+δ))d, for all large enough N .

We now argue how to obtain an integer solution to (7.1). Since Gn is efficiently com-

putable, we can compute any coefficient Gn(a1, a2, . . . , am)i by summing over all 2m mono-

mials. This takes time 2O(m). We write (7.1) as Ax = 0, for an r × 2N matrix A, with

integer coefficients of bit size 2O(m) and r = (N + 1)m. To construct A takes time 2O(N).

First, we want to find an independent set S of rank(A) many rows of A, and then

extend S to an independent set of size 2N . Let e1, e2, . . . , e2N denote the standard basis

row-vectors of F
2N

. One can do this as follows:

(1) let vi equal row i of A, for i ∈ [r], and let vr+i = ei, for i ∈ [2N ].

(2) let S = ∅
(3) for i = 1 to r + 2N

(4) let S′ = S ∪ {vi}
(5) compute β = det(BBT ), where B is the |S′| × 2N matrix of rows in S′.

(6) if β 6= 0, then set S = S′

By the Binet-Cauchy Theorem, det(BBT ) =
∑

I⊆2N ,|I|=|S′|[det(BI)]
2, where BI is the

|S′|× |S′| matrix consisting of the columns in I of B. Hence β 6= 0 if and only if there exists

a set I of |S′| independent columns in B. The latter holds if and only if S′ is an independent

set. The above procedure therefore maintains the invariant that after execution of line 6,

S is an independent set with {v1, . . . , vi} ⊆ span(S) (We use the convention that ∅ is an

independent set with span(∅) = {0}). This implies that after the rth iteration, S contains

rank(A) many rows of A, and after the final iteration, S is a basis.

Entries of BBT have bit size 2O(N). By Proposition 3.6, det(BBT ) can be computed

in time 2O(N). Hence the above procedure takes time 2O(N) in total.

Let B be the matrix consisting of the rows in S computed by the above procedure. B is

computable in time 2O(N). Consider the adjugate adj(B). It satisfies B ·adj(B) = det(B)I.

Hence we can pick a nonzero column from adj(B) that is a solution to the original system

(7.1). The entry adj(B)ij = (−1)i+jMji, where Mij is the determinant of the matrix B
with rows i and j removed. The latter is an integer, and by Proposition 3.6 it is computable

in time 2O(N).

One proves Theorem 2.11 using Theorem 7.1 with ℓ(t) = tǫ, and selecting a small

δ > 0 such that ǫ(1 + δ) ∈ Q ∩ (0, 1). Then ℓ is δ-nice. This yields an explicit multilinear

family {gN}N≥1, such that for any d, for all large enough N , dc(gN ) > Nd/(ǫ(1+δ)). Hence

dc(gN ) = Nω(1).

For Theorem 2.12, assume wlog. {Gn}n≥1 is an efficiently computable multilinear

(⌈ℓ(n) := c · n1/
√

log n⌉, n)-generator, for a constant c ∈ Z>0. Then ℓ−1(n) = 2log2(n/c), and
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ℓ is δ-nice, for δ = 1. Theorem 7.1 yields an explicit multilinear family {gN}N≥1, such that

for any d, for all large enough N , dc(gN ) > 2d·log2(N1/2

c
). Hence dc(gN ) = Nω(log N).
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Abstract. Systems of equations with sets of integers as unknowns are considered. It is
shown that the class of sets representable by unique solutions of equations using the oper-
ations of union and addition S + T = {m + n |m ∈ S, n ∈ T} and with ultimately periodic
constants is exactly the class of hyper-arithmetical sets. Equations using addition only can
represent every hyper-arithmetical set under a simple encoding. All hyper-arithmetical sets
can also be represented by equations over sets of natural numbers equipped with union,
addition and subtraction S −

·
T = {m−n |m ∈ S, n ∈ T, m > n}. Testing whether a given

system has a solution is Σ1

1-complete for each model. These results, in particular, settle
the expressive power of the most general types of language equations, as well as equations
over subsets of free groups.

1. Introduction

Language equations are equations with formal languages as unknowns. The simplest

such equations are the context-free grammars [4], as well as their generalization, the con-

junctive grammars [15]. Many other types of language equations have been studied in the

recent years, see a survey by Kunc [11], and most of them were found to have strong con-

nections to computability. In particular, for equations with concatenation and Boolean

operations it was shown by Okhotin [19, 17] that the class of languages representable by

their unique (least, greatest) solutions is exactly the class of recursive (r.e., co-r.e.) sets.

A computationally universal equation of the simplest form was constructed by Kunc [10],

who proved that the greatest solution of the equation XL = LX, where L ⊆ {a, b}∗ is a

finite constant language, may be co-r.e.-complete.

A seemingly trivial case of language equations over a unary alphabet Ω = {a} has

recently been studied. Strings over such an alphabet may be regarded as natural numbers,

1998 ACM Subject Classification: F.4.3 (Formal languages), F.4.1 (Mathematical logic).
Key words and phrases: Language equations, computability, arithmetical hierarchy, hyper-arithmetical

hierarchy.
Research supported by the Polish Ministry of Science and Higher Education under grants N N206 259035

2008–2010 and N N206 492638 2010–2012, and by the Academy of Finland under grant 134860.
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and languages accordingly become sets of numbers. As established by the authors [8], these

equations are as powerful as language equations over a general alphabet: a set of natural

numbers is representable by a unique solution of a system with union and elementwise

addition if and only if it is recursive. Furthermore, even without the union operation

these equations remain almost as powerful [9]: for every recursive set S ⊆ N, its encoding

σ(S) ⊆ N satisfying S = {n | 16n+ 13 ∈ σ(S)} can be represented by a unique solution of a

system using addition only, as well as ultimately periodic constants. At the same time, as

shown by Lehtinen and Okhotin [12], some recursive sets are not representable without an

encoding.

Equations over sets of numbers are, on one hand, interesting on their own as a basic

mathematical object. On the other hand, these equations form a very special case of

language equations with concatenation and Boolean operations, which turned out to be

as hard as the general case, and this is essential for understanding language equations.

However, it must be noted that these cases do not exhaust all possible language equations.

The recursive upper bound on unique solutions [19] is applicable only to equations with

continuous operations on languages, and using the simplest non-continuous operations,

such as homomorphisms or quotient [18], leads out of the class of recursive languages. In

particular, a quotient with regular constants was used to represent all sets in the arithmetical

hierarchy [18].

The task is to find a natural limit of the expressive power of language equations, which

would not assume continuity of operations. As long as operations on languages are express-

ible in first-order arithmetic (which is true for every common operation), it is not hard to

see that unique solutions of equations with these operations always belong to the family of

hyper-arithmetical sets [14, 20, 21]. This paper shows that this obvious upper bound is in

fact reached already in the case of a unary alphabet.

To demonstrate this, two abstract models dealing with sets of numbers shall be in-

troduced. The first model are equations over sets of natural numbers with addition

S + T = {m+ n |m ∈ S, n ∈ T} and subtraction S−· T = {m− n |m ∈ S, n ∈ T, m > n}
(corresponding to concatenation and quotient of unary languages), as well as set-theoretic

union. The other model has sets of integers, including negative numbers, as unknowns, and

the allowed operations are addition and union. The main result of this paper is that unique

solutions of systems of either kind can represent every hyper-arithmetical set of numbers.

The base of the construction is the authors’ earlier result [8] on representing every

recursive set by equations over sets of natural numbers with union and addition. In Sec-

tion 2, this result is adapted to the new models introduced in this paper. The next task

is representing every set in the arithmetical hierarchy, which is achieved in Section 3 by

simulating existential and universal quantifiers over a recursive set. These arithmetical

sets are then used in Section 4 as constants for the construction of equations representing

hyper-arithmetical sets. Finally, the constructed equations are encoded in Section 5 using

equations over sets of integers with addition only and periodic constant sets.

This result brings to mind a study by Robinson [20], who considered equations, in which

the unknowns are functions from N to N, the only constant is the successor function and

the only operation is superposition, and proved that a function is representable by a unique

solution of such an equation if and only if it is hyper-arithmetical. Though these equations

deal with objects different from sets of numbers, there is one essential thing in common: in

both results, unique solutions of equations over second-order arithmetical objects represent

hyper-arithmetical sets.
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Some more related work can be mentioned. Halpern [5] studied the decision problem of

whether a formula of Presburger arithmetic with set variables is true for all values of these

set variables, and showed that it is Π1
1-complete. The equations studied in this paper can

be regarded as a small fragment of Presburger arithmetic with set variables.

Another relevant model are languages over free groups, which have been investigated,

in particular, by Anisimov [3] and by d’Alessandro and Sakarovitch [2]. Equations over sets

of integers are essentially equations for languages over a monogenic free group.

An important special case of equations over sets of numbers are expressions and circuits
over sets of numbers, which are equations without iterated dependencies. Expressions and

circuits over sets of natural numbers were studied by McKenzie and Wagner [13], and a

variant of these models defined over sets of integers was investigated by Travers [22].

2. Equations and their basic expressive power

The subject of this paper are systems of equations of the form










ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

where Xi ⊆ Z are unknown sets of integers, and the expressions ϕi and ψi use such oper-

ations as union, intersection, complementation, as well as the main arithmetical operation

of elementwise addition of sets, defined as S + T = {m + n |m ∈ S, n ∈ T}. Subtraction

S − T = {m − n |m ∈ S, n ∈ T} shall be occasionally used. The constant sets contained

in a system sometimes will be singletons only, sometimes any ultimately periodic constants

will be allowed (a set of integers S ⊆ Z is ultimately periodic if there exist numbers d > 0

and p > 1, such that n ∈ S if and only if n + p ∈ S for all n with |n| > d), and in

some cases the constants will be drawn from wider classes of sets, such as all recursive sets.

Systems over sets of natural numbers shall have subsets of N both as unknowns and as

constant languages; whenever subtraction is used in such equations, it will be used in the

form S−· T = (S − T ) ∩ N.

Consider systems with a unique solution. Every such system can be regarded as a

specification of a set, and for every type of systems there is a natural question of what kind

of sets can be represented by unique solutions of these systems. For equations over sets of

natural numbers, these are the recursive sets:

Proposition 1 (Jeż, Okhotin [8, Thm. 4]). The family of sets of natural numbers rep-
resentable by unique solutions of systems of equations of the form ϕi(X1, . . . ,Xn) =

ψi(X1, . . . ,Xn) with union, addition and singleton constants, is exactly the family of re-
cursive sets.

Turning to the more general cases of equations over sets of integers and of equations

over sets of natural numbers with subtraction, an upper bound on their expressive power

can be obtained by reformulating a given system in the notation of first-order arithmetic.

Lemma 1. For every system of equations in variables X1, . . . Xn using operations express-
ible in first-order arithmetic there exists an arithmetical formula Eq(X1, . . . ,Xn), where
X1, . . . ,Xn are free second-order variables, such that Eq(S1, . . . , Sn) is true if and only if
Xi = Si is a solution of the system.
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Constructing this formula is only a matter of reformulation. As an example, an equation

Xi = Xj +Xk is represented by (∀n)
[

n ∈ Xi ↔ (∃n′)(∃n′′)n = n′+n′′∧n′ ∈ Xj ∧n
′′ ∈ Xk

]

.

Now consider the following formulae of second-order arithmetic:

ϕ(x) = (∃X1) . . . (∃Xn)Eq(X1, . . . ,Xn) ∧ x ∈ X1

ϕ′(x) = (∀X1) . . . (∀Xn)Eq(X1, . . . ,Xn) → x ∈ X1

The formula ϕ(x) represents the membership of x in any solution of the system, while

ϕ′(x) states that every solution of the system contains x. Since, by assumption, the system

has a unique solution, these two formulae are equivalent and each of them specifies the

first component of this solution. Furthermore, ϕ and ϕ′ belong to the classes Σ1
1 and Π1

1,

respectively, and accordingly the solution belongs to the class ∆1
1 = Σ1

1 ∩Π1
1, known as the

class of hyper-arithmetical sets [14, 21].

Lemma 2. For every system of equations in variables X1, . . . Xn using operations and
constants expressible in first-order arithmetic that has a unique solution Xi = Si, the sets
Si are hyper-arithmetical.

Though this looks like a very rough upper bound, this paper actually establishes the

converse, that is, that every hyper-arithmetical set is representable by a unique solution of

such equations. The result shall apply to equations of two kinds: over sets of integers with

union and addition, and over sets of natural numbers with union, addition and subtraction.

In order to establish the properties of both families of equations within a single construction,

the next lemma introduces a general form of systems that can be converted to either of the

target types of systems:

Lemma 3. Consider any system of equations ϕ(X1, . . . ,Xm) = ψ(X1, . . . ,Xm) and in-
equalities ϕ(X1, . . . ,Xm) ⊆ ψ(X1, . . . ,Xm) over sets of natural numbers that uses the fol-
lowing operations: union; addition of a recursive constant; subtraction of a recursive con-
stant; intersection with a recursive constant. Assume that the system has a unique solution
Xi = Si ⊆ N. Then there exist:

(1) a system of equations over sets of natural numbers in variables
X1, . . . ,Xm, Y1, . . . , Ym′ using the operations of addition, subtraction and union
and singleton constants, which has a unique solution with Xi = Si;

(2) a system of equations over sets of integers in variables X1, . . . ,Xm, Y1, . . . , Ym′ using
the operations of addition and union, singleton constants and the constants N and
−N, which has a unique solution with Xi = Si.

Inequalities ϕ ⊆ ψ can be simulated by equations ϕ ∪ ψ = ψ. For equations over sets

of natural numbers, each recursive constant is represented according to Proposition 1, and

this is sufficient to implement each addition or subtraction of a recursive constant by a large

subsystem using only singleton constants. In order to obtain a system over sets of integers,

a straightforward adaptation of Proposition 1 is needed:

Lemma 3.1. For every recursive set S ⊆ N there exists a system of equations over sets of
integers in variables X1, . . . ,Xn using union, addition, singleton constants and constant N,
such that the system has a unique solution with X1 = S.

This is essentially the system given by Proposition 1, with additional equations Xi ⊆ N.

Now a difference X −· R for a recursive constant R ⊆ N shall be represented as (X +

(−R)) ∩ N, where the set −R = {−n | n ∈ R} is specified by taking a system for R and

applying the following transformation:
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Lemma 3.2 (Representing sets of opposite numbers). Consider a system of equations over
sets of integers, in variables X1, . . . ,Xn, using union and addition, and any constant sets,
which has a unique solution Xi = Si. Then the same system, with each constant C ⊆ Z

replaced by the set of the opposite numbers −C, has the unique solution Xi = −Si.

The last step in the proof of Lemma 3 is eliminating intersection with recursive con-

stants. This is done as follows:

Lemma 3.3 (Intersection with constants). Let R ⊆ N be a recursive set. Then there exists
a system of equations over sets of natural numbers using union, addition and singleton
constants, which has variables X,Y, Y ′, Z1, . . . , Zm, such that the set of solutions of this
system is

{

(X = S, Y = S ∩R, Y ′ = S ∩R, Zi = Si)
∣

∣ S ⊆ N
}

,

where S1, . . . , Sm are some fixed sets.

In plain words, the constructed system works as if an equation Y = X ∩R (and also as

another equation Y ′ = X ∩R, which may be ignored). This completes the transformations

needed for Lemma 3.

The last basic element of the construction is representing a set of integers (both positive

and negative) by first representing its positive and negative subsets individually:

Lemma 4 (Assembling positive and negative subsets). Let sets S ∩ N and (−S) ∩ N be
representable by unique solutions of equations over sets of integers using union, addition,
and ultimately periodic constants. Then S is representable by equations over integers using
only union, addition and ultimately periodic constants.

3. Representing the arithmetical hierarchy

Each arithmetical set can be represented by a recursive relation with a quantifier prefix,

and arithmetical sets form the arithmetical hierarchy based on the number of quantifier

alternations in such a formula. The bottom of the hierarchy are the recursive sets, and

every next level is comprised of two classes, Σ0
k or Π0

k, which correspond to the cases of the

first quantifier’s being existential or universal. For every k > 1, a set is in Σ0
k if it can be

represented as

{w | ∃x1∀x2 . . . Qkxk R(w, x1, . . . , xk)}

for some recursive relation R, where Qk = ∀ if k is even and Qk = ∃ if k is odd. A set is

in Π0
k if it admits a similar representation with the quantifier prefix ∀x1∃x2 . . . Qkxk. It is

easy to see that Π0
k = {L | L ∈ Σ0

k}. The sets Σ0
1 and Π0

1 are the recursively enumerable

sets and their complements, respectively. The arithmetical hierarchy is known to be strict:

Σ0
k ⊂ Σ0

k+1 and Π0
k ⊂ Π0

k+1 for every k > 0. Furthermore, for every k > 1 the inclusion

Σ0
k ∪Π0

k ⊂ Σ0
k+1 ∩Π0

k+1 is proper, i.e., there is a gap between the k-th and (k+ 1)-th level.

For this paper, the definition of arithmetical sets shall be arithmetized in base-7 nota-

tion1 as follows: a set S ⊆ N is in Σ0
k if it is representable as

S = { (w)7 | ∃x1 ∈ {3, 6}∗∀x2 ∈ {3, 6}∗ . . . Qkxk ∈ {3, 6}∗(1x11y11 . . . xk1yk1w)7 ∈ R},

for some recursive set R ⊆ N, where (w)7 for w ∈ {0, 1, . . . , 6}∗ denotes the natural number

with base-7 notation w. The strings xi ∈ {3, 6}∗ represent binary notation of some numbers,

1Base 7 is the smallest base, for which the details of the constructions could be conveniently implemented.
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where 3 stands for zero and 6 stands for one. The notation (x)2 for x ∈ {3, 6}∗ shall be

used to denote the number represented by this encoding. The digits 1 act as separators.

Throughout this paper, the set of base-7 digits {0, 1, . . . , 6} shall be denoted by Ω7.

In general, the construction of a system of equations representing the set S begins with

representing R, and proceeds with evaluating the quantifiers, eliminating the prefixes 1x1,

1x2, and so on until 1xk. In the end, all numbers (1w)7 with (w)7 ∈ S will be produced.

These manipulations can be expressed in terms of the following three functions:

Remove1(X) = {(w)7 | (1w)7 ∈ X},

E(X) = {(1w)7 | ∃x ∈ {3, 6}∗ : (x1w)7 ∈ X},

A(X) = {(1w)7 | ∀x ∈ {3, 6}∗ : (x1w)7 ∈ X}.

The expression converting numbers of the form (1w)7 to (w)7 is constructed as follows:

Lemma 5 (Removing leading digit 1). The value of the expression

(X−{1} ∩ {0}) ∪
⋃

i∈Ω7\{0}

⋃

t∈{0,1}

[

(X ∩ (1iΩt
7(Ω

2
7)

∗)7)−
· (10∗)7

]

∩ (iΩt
7(Ω

2
7)

∗)7 (3.1)

on any S ⊆ (1(Ω∗
7 \ 0Ω

∗
7))7 is {(w)7 | (1w)7 ∈ S}. The value on S ⊆ (10Ω∗

7)7 equals ∅.

With Lemma 5 established and the expression (3.1) proved to implement the function

Remove1(X), the notation Remove1(X) is used in equations to refer to this subexpression.

Next, consider the function E(X) representing the existential quantifier ranging over

strings in {3, 6}∗. This function can be implemented by a single expression as follows:

Lemma E (Representing the existential quantifier). The value of the expression

(X ∩ (1Ω∗
7)7) ∪

([

(X ∩ ({3, 6}+
1Ω∗

7)7)−
· ({3, 6}+

0
∗)7

]

∩ (1Ω∗
7)7

)

on any S ⊆ ({3, 6}∗1Ω∗
7)7 is E(S) = {(1w)7 | ∃w

′ ∈ {3, 6}∗(w′
1w)7 ∈ S}.

Note that E(X) can already produce any recursively enumerable set from a recursive

argument, and therefore it is essential to use subtraction in the expression.

With the existential quantifier implemented, the next task is to represent a universal

quantifier. Ideally, one would be looking for an expression implementing A(X), but, unfor-

tunately, no such expression was found, and the actual construction given below implements

the universal quantifier using multiple equations. The first step is devising an equation rep-

resenting the function f(X) = {(x1w)7 | x ∈ {3, 6}∗, (1w)7 ∈ X}, which appends every

string of digits in {3, 6}∗ to numbers in its argument set.

Lemma 6. For every constant set X ⊆ (1Ω∗
7)7, the equation

Y = X ∪Append3,6(Y ), where

Append3,6(Y ) =
⋃

i,j∈{3,6}

[(

[(

Y ∩ (jΩ∗
7)7

)

+ (20∗)7

]

∩ (2jΩ∗
7)7

)

+ ((i− 2)0∗)7

]

∩ (ijΩ∗
7)7

∪
⋃

i∈{3,6}

[

(Y ∩ (1Ω∗
7)7) + (i0∗)7

]

∩ (i1Ω∗
7)7

has the unique solution Y = {(x1w)7 | x ∈ {3, 6}∗, (1w)7 ∈ X}.
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Lemma A (Representing the universal quantifier). Let S, ˜S ⊆ ({3, 6}∗1Ω∗
7)7 be any sets,

such that ˜S ∩S = ∅ and for x′, x ∈ {3, 6}∗ (x1w)7 ∈ S and (x′1w)7 /∈ S implies (x′1w)7 ∈
˜S. Then the following system of equations over sets of integers in variables Y , ˜Y and Z

Y = Z ∪Append3,6(Y )

˜Y = E(˜S) ∪Append3,6(˜Y )

Z ⊆ (1Ω+
7 )7

Y ⊆ S ⊆ Y ∪ ˜Y ,

has the unique solution Z = A(S) = {(1w)7 |∀x ∈ {3, 6}∗ : (x1w)7 ∈ S}, Y = {(y1w)7 |y ∈

{3, 6}∗,∀x ∈ {3, 6}∗ : (x1w)7 ∈ S}, ˜Y = {(y1w)7 | y ∈ {3, 6}∗, ∃x ∈ {3, 6}∗ : (x1w)7 ∈ ˜S}.

Once the above quantifiers process a number (1xk1xk−1 . . . 1x11w)7, reducing it to

(1w)7, the actual number (w)7 is obtained from this encoding by Lemma 5.

Theorem 1. Every arithmetical set S ⊆ Z (S ⊆ N) is representable as a component of
a unique solution of a system of equations over sets of integers (sets of natural numbers,
respectively) with ϕj , ψj using the operations of addition and union and ultimately periodic
constants (addition, subtraction, union and singleton constants, respectively).

4. Representing hyper-arithmetical sets

Following Moschovakis [14, Sec. 8E] and Aczel [1, Thm. 2.2.3], hyper-arithmetical sets

B1, B2, . . . shall be defined as the smallest effective σ-ring, which is the recursion-theoretic

counterpart to Borel sets (the smallest family of sets containing all open sets and closed

under countable union and countable intersection).

Let f1, f2, . . . be an enumeration of all partial recursive functions and let τ1, τ2 be two

recursive functions. Then, for all k ∈ N,

Bτ1(k) = N \ {k}, Cτ1(k) = {k}

Moreover, for all numbers k ∈ N, if fk is a total function, then

Bτ2(k) =
⋃

n∈N

Cfk(n), Cτ2(k) =
⋂

n∈N

Bfk(n),

where the former operation is known as effective σ-union, while the latter is effective σ-
intersection. Note that the only distinction between Be and Ce is that the former is defined

as a union and the latter as an intersection. As the definitions are dual, Be = Ce.

The family of sets B = {Be, Ce | e ∈ I}, where I ⊆ N is an index set, is called an

effective σ-ring, if it contains {Bτ1(e), Cτ1(e) | e ∈ N} and is closed under effective σ-union

and effective σ-intersection. Then the hyper-arithmetical sets are defined as the smallest

effective σ-ring, which can be formally defined as the least fixed point of a certain operator

on the set A = 2N×2N×2N

, where a triple (e,Be, Ce) indicates that the sets Be and Ce have

been defined for the index e in the above inductive definition, and an operator Φ : A → A
represents one step of this inductive definition. Furthermore, this least fixed point can be

obtained constructively by a transfinite induction on countable ordinals, which is essential

for any proofs about hyper-arithmetical sets. It is known [14, Sec. 8E] [1, Thm. 2.2.3]

that for some (easy) choices of τ1 and τ2 the smallest effective σ-ring coincides with ∆1
1 sets.
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Fix those two functions and the corresponding B. Note that the definition is valid not for

every choice of τ1 and τ2: in particular, they must be one-to-one and have disjoint images.

With every set Be ∈ B one can associate a tree of Be, labelled with sets from B: its root

is labelled with Be, and each vertex Bτ2(e′) (Cτ2(e′), respectively) in the tree has children

labelled with {Cfe′ (n) | n ∈ N} ({Bfe′ (n) | n ∈ N}, respectively). Vertices of the form Bτ1(e′)

or Cτ1(e′) have no children; these are the only leaves in the tree.

A partial order ≺ is well-founded, if it has no infinite descending chain. Extending this

notion to oriented trees, a tree is well-founded if it contains no infinite downward path.

Lemma 7. For each pair of sets Be, Ce ∈ B the trees of Be, Ce are well-founded.

The well-foundedness of a set allows using the well-founded induction principle: given

a property φ and a well founded order ≺ on a set A, φ(n) is true for all n ∈ A if

(∀m ≺ n φ(m)) ⇒ φ(n).

This principle shall be used in the proof of the main construction, which is described in the

rest of this section. Note, that the basis of the induction are ≺-minimal elements n of A,

as for them φ(n) has to be shown directly.

Fix Bi0 as the target set in the root. Consider a path of length k in this tree, going

from Bi0 to Ci1 , Bi2 , . . . , Bik (or Cik , depending on the parity of k). Then, for each j-th
set in this path, ij = fτ−1

2
(ij−1)(nj) for some number nj, and the path is uniquely defined by

the sequence of numbers n1, . . . , nk. Consider the binary encoding of each of these numbers

written using digits 3 and 6 (representing zero and one, respectively), and let Resolve be a

partial function that maps finite sequences of such “binary” strings representing numbers

n1, . . . , nk to the number ik of the set Bik or Cik in the end of this path. The value of this

function can be formally defined by induction:

Resolve(〈〉) = i0, Resolve(x1, . . . , xk) = fτ−1

2
(Resolve(x1,...,xk−1))

((xk)2),

Note that Resolve may be undefined if some τ2-preimage is undefined.

The goal is to construct a system of equations, such that the following two sets are

among the components of its unique solution:

Goal0 = {(1xk1xk−1 . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ BResolve(x1,...,xk)},

Goal1 = {(1xk1xk−1 . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ CResolve(x1,...,xk)}.

These sets encode the sets B0, B1, . . . needed to compute Bi0. In this way the (possi-

bly infinite) amount of equations defining sets in hyper-arithmetical hierarchy is encoded

in a finite amount of equations using only small number of variables. The set Bi in

the node with path to the root encoded by xk, xk−1, . . . , x1 ∈ {3, 6}∗ is represented by

{(1xk1 . . . 1xk10w)7 | (w)7 ∈ Bi} ⊆ Goal0.
The following set defines the admissible encodings, that is, numbers encoding paths in

the tree of Bi0 :

Admissible = {(1xk1xk−11 . . . 1x110w)7|k > 0, xi ∈ {3, 6}∗, Resolve(x1, . . . , xk) is defined}

The next two sets represent the leaves of the tree of Bi0 , and the numbers in those leaves:

R0 = {(1xk1xk−1 . . . 1x110w)7 |

k > 0, xi ∈ {3, 6}∗,∃e ∈ N : Resolve(x1, . . . , xk) = τ1(e), (w)7 ∈ Bτ1(e)},
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R1 = {(1xk1xk−1 . . . 1x110w)7 |

k > 0, xi ∈ {3, 6}∗,∃e ∈ N : Resolve(x1, . . . , xk) = τ1(e), (w)7 ∈ Cτ1(e)}.

Lemma 8. The sets Goali, Admissible, Ri are r.e. sets, Resolve is an r.e. predicate.

Consider the following system of equations:

X0 = E(Remove1(X1)) ∪R0 (4.1)

X1 = Z ∪R1 (4.2)

˜Y = E(Remove1(X1)) ∪Append3,6(˜Y ) (4.3)

Y = Z ∪Append3,6(Y ) (4.4)

Y ⊆ Remove1(X0 ∩Admissible) ⊆ Y ∪ ˜Y (4.5)

Z ⊆ (1Ω+
7 )7 (4.6)

X0,X1 ⊆ Admissible (4.7)

X0 ∩R1 = X1 ∩R0 = ∅ (4.8)

Its intended unique solution has X0 = Goal0 and X1 = Goal1, and accordingly encodes

the set Bi0 , as well as all sets of B on which Bi0 logically depends. The system implements

the functions E(X) and A(X) to represent effective σ-union and σ-intersection, respectively.

For that purpose, the expression for E(X) introduced in Lemma E, as well as the system

of equations implementing A(X) defined in Lemma A, are applied iteratively to the same

variables X0 and X1. Intuitively, the above system may be regarded as an implementation

of an equation X0 = A(E(X0)) ∪ const.
The proof uses the principle of induction on well-founded structures. The membership

of numbers of the form (1xk1xk−1 . . . 1x110w)7 in the variables X0 and X1, where k > 0,

xi ∈ {3, 6}∗ and w ∈ Ω∗
7 \ 0Ω

∗
7, is first proved for larger k’s and then inductively extended

down to k = 0, which allows extracting Bi0 out of the solution. The well-foundedness of the

tree of Bi0 means that although Bi0 depends upon infinitely many sets, each dependency is

over a finite path ending with a constant, that is, the self-dependence of numbers in X0,X1

on the numbers in X0,X1 reaches a constant R0, R1 in finitely many steps (yet the number

of steps is unbounded).

Lemma 9. The unique solution of the system (4.1)–(4.8) is

X0 = Goal0 = {(1xk . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ BResolve(x1,...,xk)}

X1 = Goal1 = {(1xk . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ CResolve(x1,...,xk)}

Y = {(xk+11xk . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗,∀xk+1 : (w)7 ∈ BResolve(x1,...,xk+1)}

˜Y = {(xk+11xk . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗,∃xk+1 : (w)7 ∈ CResolve(x1,...,xk+1)}

Z = Goal1 \R1 = {(1xk . . . 1x110w)7 |

k > 0, e ∈ N, xi ∈ {3, 6}∗, Resolve(x1, . . . , xk) = τ2(e), (w)7 ∈ Cτ2(e)}

Then, in order to obtain the set Bi0 , it remains to intersect X0 = Goal0 with the

recursive constant set (10Ω∗
7)7, and then remove the leading digits 10 by a construction

analogous to the one in Lemma 5.

Theorem 2. For every hyper-arithmetical set B ⊆ Z (B ⊆ N) there is a system of equations
over subsets of Z (over subsets of N, respectively) using union, addition and ultimately
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periodic constants (union, addition, subtraction and singleton constants, respectively), such
that (B, . . .) is its unique solution.

5. Equations with addition only

Equations over sets of natural numbers with addition as the only operation can represent

an encoding of every recursive set, with each number n ∈ N represented by the number

16n + 13 in the encoding [9]. In order to define this encoding, for each i ∈ {0, 1, . . . , 15}
and for every set S ⊆ Z, denote:

τi(S) = {16n + i | n ∈ S}.

The encoding of a set of natural numbers ̂S ⊆ N is defined as

S = σ0(̂S) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(̂S),

Proposition 2 ([9, Thm. 5.3]). For every recursive set S there exists a system of equations
over sets of natural numbers in variables X,Y1, . . . , Ym using the operation of addition and
ultimately periodic constants, which has a unique solution with X = σ0(S).

This result is proved by first representing the set S by a system with addition and union,

and then by representing addition and union of sets using addition of their σ0-encodings.

The purpose of this section is to obtain a similar result for equations over sets of integers:

namely, that they can represent the same kind of encoding of every hyper-arithmetical set.

For every set ̂S ⊆ Z, define its encoding as the set

S = σ(̂S) = {0} ∪ τ6(Z) ∪ τ8(Z) ∪ τ9(Z) ∪ τ12(Z) ∪ τ13(̂S).

The subset S ∩ {16n + i | n ∈ Z} is called the i-th track of S.

The first result on this encoding is that the condition of a set X being an encoding of

any set can be specified by an equation of the form X + C = D.

Lemma 10 (cf. [9, Lemma 3.3]). A set X ⊆ Z satisfies an equation

X + {0, 4, 11} =
⋃

i∈{0,1,3,4,6,7,
8,9,10,12,13}

τi(Z) ∪ {11}

if and only if X = σ( ̂X) for some ̂X ⊆ Z.

Now, assuming that the given system of equations with union and addition is decom-

posed to have all equations of the form X = Y + Z, X = Y ∪ Z or X = const, these

equations can be simulated in a new system as follows:

Lemma 11 (cf. [9, Lemma 4.1]). For all sets X,Y,Z ⊆ Z,

σ(Y ) + σ(Z) + {0, 1} = σ(X) + σ({0}) + {0, 1} if and only if Y + Z = X

σ(Y ) + σ(Z) + {0, 2} = σ(X) + σ(X) + {0, 2} if and only if Y ∪ Z = X.

Using these two lemmata, one can simulate any system with addition and union by a

system with addition only. Taking systems representing different hyper-arithmetical sets,

the following result on the expressive power of systems with addition can be established:
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Sets representable Complexity of decision problems

by unique solutions solution existence solution uniqueness

over 2N, with {+,∪} ∆0
1 (recursive) [8] Π0

1-complete [8] Π0
2-complete [8]

over 2N, with {+} encodings of ∆0
1 [9] Π0

1-complete [9] Π0
2-complete [9]

over 2N, with {+,−· ,∪} ∆1
1 (hyper-arithmetical) Σ1

1-complete Π1
1 6 · 6 ∆1

2

over 2Z, with {+,∪} ∆1
1 Σ1

1-complete Π1
1 6 · 6 ∆1

2

over 2Z, with {+} encodings of ∆1
1 Σ1

1-complete Π1
1 6 · 6 ∆1

2

Table 1: Summary of the results.

Theorem 3. For every hyper-arithmetical set S ⊆ Z there exists a system of equations over
sets of integers using the operation of addition and ultimately periodic constants, which has
a unique solution with X1 = T , where S = {n | 16n ∈ T}.

6. Decision problems

Having a solution (solution existence) and having exactly one solution (solution unique-

ness) are basic properties of a system of equations. For language equations with continuous

operations, solution existence is Π0
1-complete [19], and it remains Π0

1-complete already in the

case of a unary alphabet, concatenation as the only operation and regular constants [9], that

is, for equations over sets of natural numbers with addition only. For the same formalisms,

solution uniqueness is Π0
2-complete.

Consider equations over sets of integers. Since their expressive power extends beyond

the arithmetical hierarchy, the decision problems should accordingly be harder. In fact,

the solution existence is Σ1
1-complete, which will now be proved using a reduction from the

following problem:

Proposition 3 (Rogers [21, Thm. 16-XX]). Consider trees with nodes labelled by finite
sequences of natural numbers, such that a node (x1, . . . , xk−1, xk) is a son of (x1, . . . , xk−1),
and the empty sequence ε is the root. Then the following problem is Π1

1-complete: “Given
a description of a Turing machine recognizing the set of nodes of a certain tree, determine
whether this tree has no infinite paths”.

In other words, a given Turing machine recognizes sequences of natural numbers, and

the task is to determine whether there is no infinite sequence of natural numbers, such that

all of its prefixes are accepted by the machine. The Σ1
1-complete complement of the problem

is testing whether such an infinite sequence exists, and it can be reformulated as follows:

Corollary 1. The following problem is Σ1
1-complete: “Given a Turing machine M working

on natural numbers, determine whether there exists an infinite sequence of strings {xi}
∞
i=1

with xi ∈ {3, 6}∗, such that M accepts (1xk1xk−1 . . . 1x11)7 for all k > 0”.

This problem can be reduced to testing existence of a solution of equations over sets of

numbers.

Theorem 4. The problem of whether a given system of equations over sets of integers with
addition and ultimately periodic constants has a solution is Σ1

1-complete.

Now consider the solution uniqueness property. The following upper bound on its

complexity naturally follows by definition:
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Theorem 5. The problem of whether a given system of equations over sets of integers
using addition and ultimately periodic constants has a unique solution can be represented
as a conjunction of a Σ1

1-formula and a Π1
1-formula, and is accordingly in ∆1

2. At the same
time, the problem is Π1

1-hard.

The exact hardness of testing solution uniqueness is still open. The properties of dif-

ferent families of equations over sets of numbers are summarized in Table 1.
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Abstract. In 2005 Li et al. gave a φ-competitive deterministic online algorithm for
scheduling of packets with agreeable deadlines [12] with a very interesting analysis. This
is known to be optimal due to a lower bound by Hajek [7]. We claim that the algorithm
by Li et al. can be slightly simplified, while retaining its competitive ratio. Then we
introduce randomness to the modified algorithm and argue that the competitive ratio
against oblivious adversary is at most 4

3
. Note that this still leaves a gap between the best

known lower bound of 5

4
by Chin et al. [5] for randomized algorithms against oblivious

adversary.

1. Introduction

We consider the problem of buffer management with bounded delay (aka packet sched-
uling), introduced by Kesselman et al. [11]. It models the behaviour of a single network

switch. We assume that time is slotted and divided into steps. At the beginning of a time

step, any number of packets may arrive at a switch and are stored in its buffer. A packet

has a positive weight and a deadline, which is the number of step right before which the

packet expires: unless it has already been transmitted, it is removed from the buffer at the

very beginning of that step and thus can no longer be transmitted. Only one packet can

be transmitted in a single step. The goal is to maximize the weighted throughput, i.e., the

total weight of transmitted packets.

As the process of managing packet queue is inherently a real-time task, we investigate

the online variant of the problem. This means that the algorithm has to base its decision

of which packet to transmit solely on the packets which have already arrived at a switch,

without the knowledge of the future.
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1.1. Competitive Analysis.

To measure the performance of an online algorithm, we use a standard notion of com-

petitive analysis [3], which compares the gain of the algorithm to the gain of the optimal

solution on the same input sequence. For any algorithm Alg, we denote its gain on the

input sequence I by GALG(I); we denote the optimal offline algorithm by Opt. We say that

a deterministic algorithm Alg is R-competitive if on any input sequence I, it holds that

GALG(I) ≥ 1

R · GOPT(I).

When analysing the performance of an online algorithm Alg, we view the process as

a game between Alg and an adversary. The adversary controls the packets’ injection into

the buffer and chooses which of them to send. The goal is then to show that the adversary’s

gain is at most R times Alg’s gain.

If the algorithm is randomized, we consider its expected gain, E[GALG(I)], where the

expectation is taken over all possible random choices made by Alg. However, in the ran-

domized case, the power of the adversary has to be further specified. Following Ben-David

et al. [1], we distinguish between an oblivious and adaptive-online adversary (called adaptive

for short). An oblivious adversary has to construct the whole input sequence in advance,

not knowing the random bits used by an algorithm. The expected gain of Alg is com-

pared to the gain of the optimal offline solution on I. An adaptive adversary decides packet

injections upon seeing which packets are transmitted by the algorithm. However, it has

to provide an answering entity Adv, which creates a solution on-line (in parallel to Alg)

and cannot change it afterwards. We say that Alg is R-competitive against an adaptive

adversary if for any input sequence I created adaptively and any answering algorithm Adv,

it holds that E[GALG(I)] ≥ 1

R ·E[GADV(I)]. We note that Adv is (wlog) deterministic, but

as Alg is randomized, so is the input sequence I.

In the literature on online algorithms (see e.g. [3]), the definition of the competitive ratio

sometimes allows an additive constant, i.e., a deterministic algorithm is R-competitive if

there exists a constant α ≥ 0 such that GALG(I) ≥ 1

R · GOPT(I) − α holds for evry input

sequence I. An analogous definition applies to randomized case. Our upper bounds hold

for α = 0.

1.2. Previous work

The best known deterministic and randomized algorithms for general instances have

competitive ratios at most 2
√

2 − 1 ≈ 1.828 [6] and e/(e − 1) ≈ 1.582 [4], respectively.

A recent analysis of the latter algorithm shows that it retains its competitive ratio even

against adaptive-online adversary [8].

The best known lower bounds on competitive ratio against either adversary type use

rather restricted 2-bounded sequences in which every packet has lifespan (deadline − re-

lease time) either 1 or 2. The lower bounds in question are φ ≈ 1.618 for deterministic

algorithms [7], 4

3
for randomized algorithms against adaptive adversary [2], and 5

4
for ran-

domized algorithms against oblivious adversary [5]. All these bounds are tight for 2-bounded

sequences [11, 2, 4].

We restrict ourselves to sequences with agreeable deadlines, in which packets released

later have deadlines at least as large as those released before (ri < rj implies di ≤ dj).

These strictly generalize the 2-bounded sequences. Sequences with agreeable deadlines also

properly contain s-uniform sequences for all s, i.e., sequences in which every packet has
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lifespan exactly s. An optimal φ-competitive deterministic algorithm for sequences with

agreeable deadlines is known [12].

Jeżabek studied the impact of resource augmentation on the deterministic competitive

ratio [10, 9]. It turns out that while allowing the deterministic algorithm to transmit k
packets in a single step for any constant k cannot make it 1-competitive (compared to the

single-speed offline optimum) on unrestricted sequences [10], k = 2 is sufficient for sequences

with agreeable deadlines [9].

1.3. Our contribution

Motivated by aforementioned results for sequences with agreeable deadlines, we inves-

tigate randomized algorithms for such instances. We devise a 4

3
-competitive randomized

algorithm against oblivious adversary. The algorithm and its analysis are inspired by those

by Li et al. [12] for deterministic case. The key insight is as follows. The algorithm MG by

Li et al. [12] can be simplified by making it always send either e, the heaviest among the

earliest non-dominated packets, or h, the earliest among the heaviest non-dominated pack-

ets. We call this algorithm MG
′, and prove that it remains φ-competitive. Then we turn it

into a randomized algorithm RG, simply by making it always transmit e with probability
we

wh
and h with the remaining probability. The proof of RG’s 4

3
-competitiveness against

oblivious adversary follows by similar analysis.

2. Preliminaries

We denote the release time, weight, and deadline of a packet j by rj, wj, and dj ,

respectively. A packet j is pending at step t if rj ≤ t, it has not yet been transmitted, and

dj > t. We introduce a linear order � on the packets as follows: i � j if either

di < dj , or

di = dj and wi > wj , or

di = dj and wi = wj and ri ≤ rj .

To make � truly linear we assume that in every single step the packets are released one

after another rather then all at once, e.g. that they have unique fractional release times.

A schedule is a mapping from time steps to packets to be transmitted in those time

steps. A schedule is feasible if it is injective and for every time step t the packet that t maps

to is pending at t. It is convenient to view a feasible schedule S differently, for example as

the set {S(t) : t > 0}, the sequence S(1), S(2), . . ., or a matching in the schedulability graph.
The schedulability graph is a bipartite graph, one of whose partition classes is the set of

packets and the other is the set of time steps. Each packet j is connected precisely to each

of the time steps t such that rj ≤ t < dj by an edge of weight wj ; an example is given in

Figure 1. Observe that optimal offline schedules correspond to maximum weight matchings

in the schedulability graph. Thus an optimal offline schedule can be found in polynomial

time using the classic “Hungarian algorithm”, see for example [13]. One may have to remove

appropriately chosen time step vertices first, so that the remaining ones match the number

of packet vertices, though.

Given any linear order � on packets and a (feasible) schedule S, we say that S is

consistent with �, or that S is a �-schedule, if for every t the packet S(t) is the minimum

pending packet with respect to �. It is fairly easy to observe that if � is any earliest deadline
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j1 j2 j3 j4 j5

1 2 3 4 5 6 7

timesteps

packets

Figure 1: Schedulability graph for packets j1, j2, . . . , j5, whose release times and deadlines

are (2,3), (2,4), (3,7), (4,7), (6,7) respectively; we ignore packet weights in the figure. Packets

are represented by discs, time steps by squares.

first, with ties broken in an arbitrary way, then any feasible schedule can be turned to a

unique �-schedule by reordering its packets; in particular this applies to �.

Recall that the oblivious adversary prepares the whole input sequence in advance and

cannot alter it later on. Thus its solution is simply the offline optimal schedule for the

complete sequence. Nevertheless, we still refer to the answering entity Adv rather than

Opt in our analysis, as it involves altering the set of packets pending for the adversary,

which may well be viewed as altering the input sequence. Now we introduce two schedules

that are crucial for our algorithms and our analyzes.

Definition 2.1. The oblivious schedule at time step t, denoted Ot, is any fixed optimal

feasible �-schedule over all the packets pending at step t. For fixed Ot, a packet j pending

at t is called dominated if j /∈ Ot, and non-dominated otherwise. For fixed Ot let e denote

Ot(t), the �-minimal of all non-dominated packets, and h denote the �-minimal of all

non-dominated maximum-weight packets.

Note that both the adversary and the algorithm can calculate their oblivious schedules

at any step, and that these will coincide if their buffers are the same.

Definition 2.2. For a fixed input sequence, the clairvoyant schedule at time step t, denoted

Ct, is any fixed optimal feasible schedule over all the packets pending at step t and all the

packets that will arrive in the future.

Naturally, the adversary can calculate the clairvoyant schedule, as it knows the fixed

input sequence, while the algorithm cannot, since it only knows the part of input revealed

so far. However, the oblivious schedule gives some partial information about the clairvoyant

schedule: intuitively, if p is dominated at t, it makes no sense to transmit it at t. Formally,

(wlog) dominated packets are not included in the clairvoyant schedule, as stated in the

following.

Fact 2.3. For any fixed input sequence, time step t, and oblivious schedule Ot, there is a
clairvoyant schedule C∗

t such that C∗
t ∩ {j : rj ≤ t} ⊆ Ot.

Proof. This is a standard alternating path argument about matchings. If you are unfamiliar

with these concepts, refer to a book by A. Schrijver [13] for example.

Let Ot be the oblivious schedule and Ct be any clairvoyant schedule. Treat both as

matchings in the schedulability graph and consider their symmetric difference Ct ⊕ Ot.
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Consider any job j ∈ Ct \ Ot such that rj ≤ t. It is an endpoint of an alternating path P
in Ct ⊕Ot. Note that all the jobs on P are already pending at time t: this is certainly true

about j, and all the successive jobs belong to Ot, so they are pending as well.

First we prove that P has even length, i.e., it ends in a node corresponding to a job.

Assume for contradiction that P ’s length is odd, and that P ends in a node corresponding

to a timestep t′. Note that no job is assigned to t′ in Ot. Then Ot⊕P is a feasible schedule

that, treated as a set, satisfies Ot ⊆ Ot ⊕ P and j ∈ Ot ⊕ P . This contradicts optimality

of Ot. See Figure 2a for illustration.

Thus P has even length and ends with a job j′ ∈ Ot \ Ct. By optimality of both Ot

and Ct, wj = wj′ holds. Thus Ct ⊕ P is an optimal feasible schedule: in terms of sets the

only difference between Ct and Ct ⊕ P is that j has been replaced by j′, a job of the same

weight. See Figure 2b for illustration.

j

t′

(a) P cannot have odd length: in such case
the assignment of jobs on P in Ot could be
changed to match the strictly better assign-
ment of Ct.

j j′

(b) P has even length: now the assignment of jobs on
P in Ct can be changed to match the assignment of Ot

so that the value of ∆ drops.

Figure 2: The alternating path P . Packets are represented by discs, time steps by squares.

Dashed lines represent Ct, solid lines represent Ot.

Applying such changes iteratively transforms Ct to a clairvoyant schedule C∗
t as an-

nounced. To observe that a finite number of iterations suffices, define ∆(S) := |S∩{j : rj ≤
t} \Ot| for any schedule S. It follows that ∆(Ct⊕P ) = ∆(Ct)− 1. Since ∆ is non-negative

and its value drops by one with each iteration, C∗
t is obtained in a finite number of steps.

Definition 2.4. We say that a clairvoyant schedule Ct conforms with an oblivious sched-

ule Ot if Ct is a �-schedule, Ct∩{j : rj ≤ t} ⊆ Ot, and for all i ∈ Ot such that i� j = Ct(t),
wi < wj holds.

Fact 2.5. For every oblivious schedule Ot there is a conforming clairvoyant schedule C∗
t .

Proof. Let Ct be a clairvoyant schedule such that Ct∩{j : rj ≤ t} ⊆ Ot; Fact 2.3 guarantees

its existence. Let C∗
t be the schedule obtained from Ct by first turning it into a �-schedule

C ′
t and then replacing j = C ′

t(t) with a �-minimal non-dominated packet j′ of the same

weight.

If j′ = j, then C∗
t = C ′

t, and thus it is a clairvoyant �-schedule. Assume j′ 6= j, i.e.,

j′ � j. Then j′ /∈ C ′
t, since C ′

t is a �-schedule. Thus C∗
t is feasible as we replace C ′

t’s very

first packet by another pending packet which was not included in Ct. Observe that C∗
t is

indeed a clairvoyant �-schedule: optimality follows from wj′ = wj , while consistency with

� follows from j′ � j.
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It remains to prove that for every i ∈ Ot such that i � j′, wi < wj′ = wj holds. Note

that i /∈ C∗
t as C∗

t is a �-schedule, and that wi 6= wj′ = wj holds by the choice of j′.
Assume for contradiction that wi > wj . Then C∗

t with j replaced by i is a feasible schedule

contradicting optimality of C∗
t .

Now we inspect some properties of conforming schedules.

Fact 2.6. Let Ct be a clairvoyant schedule conforming with an oblivious schedule Ot. If
i, j ∈ Ot, wi < wj and di < dj (or, equivalently wi < wj and i � j), and i ∈ Ct, then also
j ∈ Ct.

Proof. Assume for contradiction that j /∈ Ct. Then Ct with i replaced by j is a feasible

schedule contradicting optimality of Ct.

Lemma 2.7. Let Ct be a clairvoyant schedule conforming with an oblivious schedule Ot.
Suppose that e = Ot(t) /∈ Ct. Then there is a clairvoyant schedule C∗

t obtained from Ct by
reordering of packets such that C∗

t (t) = h.

Proof. Let j = Ct(t) 6= h and let Ot = p1, p2, . . . , ps. Observe that h ∈ Ct by Fact 2.6. So

in particular e = p1, j = pk, and h = pl for some 1 < k < l ≤ s. Let di denote the deadline

of pi for 1 ≤ i ≤ s. Since Ot is feasible in the absence of future arrivals, di ≥ t + i for

i = 1, . . . , s.
Recall that pk, pl ∈ Ct and that there can be some further packets p ∈ Ct such that

pk � p � pl; some of these packets may be not pending yet. We construct a schedule C ′
t by

reordering Ct. Precisely, we put all the packets from Ct that are not yet pending at t after

all the packets from Ct that are already pending, keeping the order between the pending

packets and between those not yet pending. By the agreeable deadlines property, this is an

earliest deadline first order, so C ′
t is a clairvoyant schedule.

As e = p1 /∈ C ′
t and di ≥ t + i for i = 1, . . . , s, all the packets x ∈ C ′

t preceding h
in C ′

t (i.e., x ∈ C ′
t such that rx ≤ t and x � pl = h) have slack in C ′

t, i.e., each of them

could also be scheduled one step later. Hence h = pl can be moved to the very front of C ′
t

while keeping its feasibility, i.e., C ′
t = pk, pk′ , . . . , pl′ , pl can be transformed to a clairvoyant

schedule C∗
t = pl, pk, pk′ , . . . , pl′ . The reordering is illustrated in Figure 3.

Ot

C∗
t

p1 = e p2 p3 p4 p5 p6 p7 pl−2 pl−1 pl = h

pl = h p2 p3 p4 p6 pl−1

Figure 3: Construction of the schedule C∗
t . Packets are represented by circles: the ones

included in Ct (C∗
t ) are filled, the remaining ones are hollow.
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3. Algorithms and their analyzes

3.1. The Algorithms

The algorithm MG [12] works as follows: at the beginning of each step t it considers the

packets in the buffer and the newly arrived packets, and calculates Ot. Then MG identifies

the packets e and h. If φwe ≥ wh, MG sends e. Otherwise, it sends the �-minimal packet

f such that wf ≥ φwe and φwf ≥ wh; the latter exists as h itself is a valid candidate. Our

deterministic algorithm MG′ does exactly the same with one exception: if φwe < wh, it

sends h rather than f . Our randomized algorithm RG also works in a similar fashion: it

transmits e with probability we

wh

and h with the remaining probability. For completeness,

we provide pseudo-codes of all three algorithms in Figure 4.

MG (step t)

Ot ← oblivious schedule at t
e← the �-minimal packet from Ot

h← the �-minimal of all the heaviest packets from Ot

if φwe ≥ wh

then transmit e
else f ← the �-minimal of all j ∈ Ot s.t. wj ≥ φwe and φwj ≥ wh

transmit f

MG′ (step t)

Ot ← oblivious schedule at t
e← the �-minimal packet from Ot

h← the �-minimal of all the heaviest packets from Ot

if φwe ≥ wh

then transmit e
else transmit h

RG (step t)

Ot ← oblivious schedule at t
e← the �-minimal packet from Ot

h← the �-minimal of all the heaviest packets from Ot

transmit e with probability we

wh

and h with probability 1− we

wh

Figure 4: The three algorithms

3.2. Analysis Idea

The analysis of Li et al. [12] uses the following idea: in each step, after both MG and

Adv transmitted their packets, modify Adv’s buffer in such a way that it remains the

same as MG’s and that this change can only improve Adv’s gain, both in this step and

in the future. Sometimes Adv’s schedule is also modified to achieve this goal, specifically,

the packets in it may be reordered, and Adv may sometimes be allowed to transmit two

packets in a single step. It is proved that in each such step the ratio of Adv’s to MG’s gain
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is at most φ. As was already noticed by Li et al. [12], this is essentially a potential function

argument. To simplify the analysis, it is assumed (wlog) that Adv transmits its packets in

the � order.

Our analysis follows the outline of the one by Li et al., but we make it more formal.

Observe that there may be multiple clairvoyant schedules, and that Adv can transmit Ct(t)
at every step t, where Ct is a clairvoyant schedule chosen arbitrarily in step t. As our

algorithms MG
′ and RG determine the oblivious schedule Ot at each step, we assume that

every Ct is a clairvoyant schedule conforming with Ot.

There is one exception though. Sometimes, when a reordering in Ct does not hinder

Adv’s performance (taking future arrivals into account), we “force” Adv to follow the

reordered schedule. This is the situation described in Lemma 2.7: when e /∈ Ct, there is

a clairvoyant schedule C∗
t such that h = C∗

t (t). In such case we may assume that Adv

follows C∗
t rather than Ct, i.e., that it transmits h at t. Indeed, we make that assumption

whenever our algorithm (either MG′ or RG) transmits h at such step: then Adv and MG′

(RG) transmit the same packet, which greatly simplifies the analysis.

Our analysis of MG
′ is essentially the same as the original analysis of MG by Li et al. [12],

but lacks one case which is superfluous due to our modification. As our algorithm MG
′

always transmits either e or h, and the packet j that Adv transmits always satisfies j � h
by definition of the clairvoyant schedule conforming with Ot, the case which MG transmits

f such that e � f � j does not occur to MG
′. The same observation applies to RG, whose

analysis also follows the ideas of Li et al.

3.3. Analysis of the Deterministic Algorithm

We analyze this algorithm as mentioned before, i.e., assuming (wlog) that at every step

t Adv transmits Ct(t), where Ct is a clairvoyant schedule conforming with Ot.

Theorem 3.1. MG′ is φ-competitive on sequences with agreeable deadlines.

Proof. Note that whenever MG′ and Adv transmit the same packet, clearly their gains

are the same, as are their buffers right after such step. In particular this happens when

e = h as then MG
′ transmits e = h and Adv does the same: in such case h is both the

heaviest packet and the �-minimal non-dominated packet, so h = Ct(t) by definition of the

clairvoyant schedule conforming with Ot.

In what follows we inspect the three remaining cases.

φwe ≥ wh : MG
′ transmits e. Adv transmits j 6= e.. To make the buffers of MG′ and

Adv identical right after this step, we replace e in Adv’s buffer by j. This is advantageous

for Adv as dj ≥ de and wj ≥ we follows from e � j and the definition of a clairvoyant

schedule conforming with Ot. As φwe ≥ wh, the ratio of gains is
wj

we
≤

wh

we
≤ φ .
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φwe < wh : MG
′ transmits h. Adv transmits e.. Note that Adv’s clairvoyant schedule

from this step contains h by Fact 2.6. We let Adv transmit both e and h in this step

and keep e in its buffer, making it identical to the buffer of MG′. Keeping e, as well as

transmitting two packets at a time is clearly advantageous for Adv. As φwe < wh, the ratio

of gains is
we + wh

wh
≤

1

φ
+ 1 = φ .

φwe < wh : MG
′ transmits h. Adv transmits j 6= e.. Note that j � h: by definition of

the clairvoyant schedule conforming with Ot, for every i ∈ Ot such that i�j, wi < wj holds.

There are two cases: either j = h, or wj < wh and dj < dh. In the former one both

players do the same and end up with identical buffers. Thus we focus on the latter case.

Fact 2.6 implies that h ∈ Ct. By Lemma 2.7, Ct remains feasible when h is moved to its

very beginning. Hence we assume that Adv transmits h in the current step. As this is the

packet that MG′ sends, the gains of Adv and MG
′ are the same and no changes need be

made to Adv’s buffer.

3.4. Analysis of the Randomized Algorithm

We analyze this algorithm as mentioned before, i.e., assuming (wlog) that at every step

t Adv transmits Ct(t), where Ct is a clairvoyant schedule conforming with Ot.

Theorem 3.2. RG is 4

3
-competitive against oblivious adversary on sequences with agreeable

deadlines.

Proof. Observe that if e = h, then RG transmits e = h and Adv does the same: as in such

case h is both the heaviest packet and the �-minimal non-dominated packet, h = Ct(t) by

definition of the clairvoyant schedule conforming with Ot. In such case the gains of RG

and Adv are clearly the same, as are their buffers right after step t. Thus we assume e 6= h
from now on.

Let us first bound the algorithm’s expected gain in one step. It equals

GRG =
we

wh
· we +

(

1−
we

wh

)

· wh

=
1

wh

(

w2
e − wewh + w2

h

)

=
1

wh

(

(

we −
wh

2

)2

+
3

4
w2

h

)

≥
3

4
wh . (3.1)

Now we describe the changes to Adv’s scheduling policy and buffer in the given step.

These make Adv’s RG’s buffers identical, and, furthermore, make the expected gain of the

adversary equal exactly wh. This, together with (3.1) yields the desired bound. To this end

we consider cases depending on Adv’s choice.
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(1) Adv transmits e. Note that Adv’s clairvoyant schedule from this step contains h
by Fact 2.6.

If RG transmits e, which it does with probability we

wh

, both players gain we and

no changes are required.

Otherwise RG transmits h, and we let Adv transmit both e and h in this step

and keep e in its buffer, making it identical to RG’s buffer. Keeping e, as well as

transmitting two packets at a time is clearly advantageous for Adv.

Thus in this case the adversary’s expected gain is

GADV =
we

wh
· we +

(

1−
we

wh

)

(we + wh) = we + (wh − we) = wh .

(2) Adv transmits j 6= e. Note that j � h: by definition of the clairvoyant schedule

conforming with Ot, for every i ∈ Ot such that i � j, wi < wj holds.

If RG sends e, which it does with probability we

wh
, we simply replace e in Adv’s

buffer by j. This is advantageous for Adv as wj > we and dj > de follow from e� j
and the definition of the clairvoyant schedule conforming with Ot.

Otherwise RG sends h, and we claim that (wlog) Adv does the same. Suppose

that j 6= h, which implies that wj < wh and dj < dh. Then h ∈ Ct, by Fact 2.6.

Thus, by Lemma 2.7, Ct remains feasible when h is moved to its very beginning.

Hence we assume that Adv transmits h in the current step. No further changes

need be made to Adv’s buffer as RG also sends h.

Thus in this case the adversary’s expected gain is wh.

4. Conclusion and Open Problems

We have shown that, as long as the adversary is oblivious, the ideas of Li et al. [12]

can be applied to randomized algorithms, and devised a 4

3
-competitive algorithm this way.

However, the gap between the 5

4
lower bound and our 4

3
upper bound remains.

Some parts of our analysis hold even in the adaptive adversary model [8]. On the

other hand, other parts do not extend to adaptive adversary model, since in general such

adversary’s schedule is a random variable depending on the algorithm’s random choices.

Therefore it is not possible to assume that this “schedule” is ordered by deadlines, let alone

perform reordering like the one in proof of Lemma 2.7.

This makes bridging either the
[

5

4
, 4

3

]

gap in the oblivious adversary model, or the
[

4

3
, e

e−1

]

gap in the adaptive adversary model all the more interesting.
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COLLAPSIBLE PUSHDOWN GRAPHS OF LEVEL 2 ARE

TREE-AUTOMATIC
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Abstract. We show that graphs generated by collapsible pushdown systems of level 2
are tree-automatic. Even when we allow ε-contractions and add a reachability predicate
(with regular constraints) for pairs of configurations, the structures remain tree-automatic.
Hence, their FO theories are decidable, even when expanded by a reachability predicate.
As a corollary, we obtain the tree-automaticity of the second level of the Caucal-hierarchy.

1. Introduction

Higher-order pushdown systems were first introduced by Maslov [10, 11] as accepting

devices for word languages. Later, Knapik et al. [8] studied them as generators for trees.

They obtained an equi-expressivity result for higher-order pushdown systems and for higher-

order recursion schemes that satisfy the constraint of safety, which is a rather unnatural

syntactic condition. Recently, Hague et al. [6] introduced collapsible pushdown systems as

extensions of higher-order pushdown systems and proved that these have exactly the same

power as higher-order recursion schemes as methods for generating trees.

Both – higher-order and collapsible pushdown systems – also form interesting devices

for generating graphs. Carayol and Wöhrle [3] showed that the graphs generated by higher-

order pushdown systems1 of level l coincide with the graphs in the l-th level of the Caucal-

hierarchy, a class of graphs introduced by Caucal [4]. Every level of this hierarchy is

obtained from the preceding level by applying graph unfoldings and MSO interpretations.

Both operations preserve the decidability of the MSO theory whence the Caucal-hierarchy

forms a rather large class of graphs with decidable MSO theories. If we use collapsible

pushdown systems as generators for graphs we obtain a different situation. Hague et al.

showed that even the second level of the hierarchy contains a graph with undecidable MSO

theory. But they showed the decidability of the modal µ-calculus theories of all graphs in the

hierarchy. This turns graphs generated by collapsible pushdown systems into an interesting

class from a model theoretic point of view. There are few natural classes that share these

properties. In fact, the author only knows one further example, viz. nested pushdown

trees. Alur et al.[1] introduced these graphs for µ-calculus model checking purposes. We
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proved in [7] that nested pushdown trees also have decidable first-order theories. We gave an

effective model checking algorithm using pumping techniques, but we also proved that nested

pushdown trees are tree-automatic structures. Tree-automatic structures were introduced

by Blumensath [2]. These structures enjoy decidable first-order theories due to the good

closure properties of finite automata on trees.

In this paper, we are going to extend our previous result to the second level of the

collapsible pushdown hierarchy. All graphs of the second level are tree-automatic. This

subsumes our previous result as nested pushdown trees are first-order interpretable in col-

lapsible pushdown graphs of level two. Furthermore, we show that collapsible pushdown

graphs of level 2 are still tree-automatic when expanded by a reachability predicate, i.e.,

by the binary relation which contains all pairs of configurations such that there is a path

from the first to the second configuration. Thus, first-order logic extended by reachability

predicates is decidable on level 2 collapsible pushdown graphs.

In the next section, we introduce the necessary notions concerning tree-automaticity

and in Section 3 we define collapsible pushdown graphs. We explain the translation of

configurations into trees in Section 4. Section 5 is a sketch of the proof that this translation

yields tree-automatic representations of collapsible pushdown graphs, even when enriched

with certain regular reachability predicates. The last section contains some concluding

remarks about questions arising from our result.

2. Preliminaries

We write MSO for monadic second order logic and FO for first-order logic. For words

w1, w2 ∈ Σ∗, we write w1 ⊓ w2 for the greatest common prefix of w1 and w2. A Σ-labelled
tree is a function T : D → Σ for a finite D ⊆ {0, 1}∗ which is closed under prefixes.

For d ∈ D we denote by Td the subtree rooted at d.

Sometimes it is useful to define trees inductively by describing their left and right

subtrees. For this purpose we fix the following notation. Let T̂0 and T̂1 be Σ-labelled trees

and σ ∈ Σ. Then we write T := σ(T̂0, T̂1) for the Σ-labelled tree T with the following three

properties

1. T (ε) = σ, 2. T0 = T̂0, and 3. T1 = T̂1 .

In the rest of this section, we briefly present the notion of a tree-automatic structure

as introduced by Blumensath [2].

The convolution of two Σ-labelled trees T and T ′ is given by a function

T ⊗ T ′ : dom(T ) ∪ dom(T ′) → (Σ ∪ {�})2

where � is a new symbol for padding and

(T ⊗ T ′)(d) :=











(T (d), T ′(d)) if d ∈ dom(T ) ∩ dom(T ′)

(T (d),�) if d ∈ dom(T ) \ dom(T ′)

(�, T ′(d)) if d ∈ dom(T ′) \ dom(T )

By “tree-automata” we mean a nondeterministic finite automaton that labels a finite tree

top-down.

Definition 2.1. A structure B = (B,E1, E2, . . . , En) with domain B and binary rela-

tions Ei is tree-automatic if there are tree-automata AB, AE1
, AE2

, . . . , AEn
and a bijection
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f : L → B for L the language accepted by AB such that the following hold. For T, T ′ ∈ L,

the automaton AEi
accepts T ⊗ T ′ if and only if

(

f(T ), f(T ′)
)

∈ Ei.

Tree-automatic structures form a nice class because automata theoretic techniques may

be used to decide first-order formulas on these structures:

Lemma 2.2 ([2]). If B is tree-automatic, then its first-order theory is decidable.

We will use the classical result that regular sets of trees are MSO definable.

Theorem 2.3 ([12], [5]). For a set T of finite Σ-labelled trees, there is a tree automaton
recognising T if and only if T is MSO definable.

3. Definition of Collapsible Pushdown Graphs (CPG)

In this section we define our notation of collapsible pushdown systems. For a more

comprehensive introduction, we refer the reader to [6].

3.1. Collapsible Pushdown Stacks

First, we provide some terminology concerning stacks of (collapsible) higher-order push-

down systems. We write Σ∗2 for (Σ∗)∗ and Σ+2 for (Σ+)+. We call an s ∈ Σ∗2 a 2-word.

Let us fix a 2-word s ∈ Σ∗2 which consists of an ordered list w1, w2, . . . , wm ∈ Σ∗. We

separate the words of this list by colons writing s = w1 : w2 : . . . : wm. By |s| we denote

the number of words s consists of, i.e., |s| = m.

For another word s′ = w′
1 : w′

2 : . . . : w′
n ∈ Σ∗2, we write s : s′ for the concatenation

w1 : w2 : . . . : wm : w′
1 : w′

2 : . . . : w′
n.

If w ∈ Σ∗, we write [w] for the 2-word that consists of a list of one word which is w.

A level 2 collapsible pushdown stack is a special element of (Σ × {1, 2} × N)+2 that

is generated by certain stack operations from an initial stack which we introduce in the

following definitions. The natural numbers following the stack symbol represent the so-

called collapse pointer : every element in a collapsible pushdown stack has a pointer to some

substack and applying the collapse operation returns the substack to which the topmost

symbol of the stack points. Here, the first number denotes the collapse level. If it is 1 the

collapse pointer always points to the symbol below the topmost symbol and the collapse

operations just removes the topmost symbol. The more interesting case is when the collapse

level of the topmost symbol of the stack s is 2. Then the stack obtained by the collapse

contains the first n words of s where n is the second number in the topmost element of s.

The initial level 1 stack is ⊥1 := (⊥, 1, 0) and the initial level 2 stack is ⊥2 := [⊥1].

For k ∈ {1, 2} and for a 2-word s = w1 : w2 : . . . : wn ∈ (Σ × {1, 2} × N)+2 such that

wn = a1a2 . . . am with ai ∈ Σ × {1, 2} × N for all 1 ≤ i ≤ m:

• we define the topmost (k − 1)-word of s as topk(s) :=

{

wn if k = 2

am if k = 1

• for top1(s) = (σ, i, j) ∈ Σ × {1, 2} × N, we define the topmost symbol Sym(s) := σ,

the collapse-level of the topmost element CLvl(s) := i, and the collapse-link of the
topmost element CLnk(s) := j.
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For s, wn and k as before, σ ∈ Σ\{⊥}, and w′
n := a1 . . . am−1, we define the stack operations

popk(s) :=











w1 : w2 : . . . : wn−1 if k = 2, n ≥ 2

w1 : w2 : . . . : wn−1 : w′
n if k = 1,m ≥ 2

undefined otherwise

clone2(s) := w1 : w2 : . . . : wn−1 : wn : wn

pushσ,k(s) :=

{

w1 : w2 : . . . : wn(σ, 2, n − 1) if k=2

w1 : w2 : . . . : wn(σ, 1,m) if k=1

collapse(s) :=











w1 : w2 : . . . : wr if CLvl(s) = 2,CLnk(s) = r > 0

pop1(s) if CLvl(s) = 1

undefined otherwise

The set of level 2-operations is OP :=
{

pushσ,1,pushσ,2, clone2,pop1,pop2, collapse
}

. The

set of level 2 stacks, Stck(Σ), is the smallest set that contains ⊥2 and is closed under all

operations from OP.

Note that collapse- and popk-operations are only allowed if the resulting stack is in

(Σ+)+. This avoids the special treatment of empty words or stacks. Furthermore, a collapse

on level 2 summarises a non-empty sequence of pop2-operations. For example, starting from

⊥2, we can apply a clone2, a pushσ,2, a clone2, and finally a collapse. This sequence first

creates a level 2 stack that contains 3 words and then performs the collapse and ends in the

initial stack again. This example shows that clone2-operations are responsible for the fact

that collapse-operations on level 2 may remove more than one word from the stack.

For s, s′ ∈ Stck(Σ), we call s′ a substack of s if there are n1, n2 ∈ N such that

s′ = pop1
n1(pop2

n2(s)). We write s′ ≤ s if s′ is a substack of s.

3.2. Collapsible Pushdown Systems and Collapsible Pushdown Graphs

Now we introduce collapsible pushdown systems and graphs (of level 2) which are

analogues of pushdown systems and pushdown graphs using collapsible pushdown stacks

instead of ordinary stacks.

Definition 3.1. A collapsible pushdown system of level 2 (CPS) is a tuple S = (Σ, Q,∆, q0)

where Σ is a finite stack alphabet with ⊥ ∈ Σ, Q a finite set of states, q0 ∈ Q the initial

state, and ∆ ⊆ Q × Σ × Q × OP the transition relation.

For q ∈ Q and s ∈ Stck(Σ) the pair (q, s) is called a configuration. We define la-

belled transitions on pairs of configurations by setting (q1, s) ⊢(q2,op) (q2, t) if there is a

(q1, σ, q2, op) ∈ ∆ such that Sym(s) = σ and op(s) = t. The union of the labelled transition

relations is denoted as ⊢:=
⋃

l∈Q×OP ⊢l. We set C(S) to be the set of all configurations

that are reachable from (q0,⊥2) via ⊢-paths. We call C(S) the set of reachable or valid
configurations. The collapsible pushdown graph (CPG) generated by S is

CPG(S) :=
(

C(S), (C(S)2∩ ⊢ℓ)ℓ∈Q×OP

)

Example 3.2. The following example of a collapsible pushdown graph of level 2 is taken

from [6]. Let Q := {0, 1, 2},Σ := {⊥, a}, and ∆ given by (0, ∗, 1, clone2), (1, ∗, 0,pusha,2),

(1, ∗, 2,pusha,2), (2, a, 2,pop1), and (2, a, 0, collapse), where ∗ denotes any letter in Σ. In our

picture (see Figure 1), the labels are abbreviated as follows: cl := (1, clone2), a := (0,pusha,2),
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a′ := (2,pusha,2), p := (2,pop1), and co := (0, collapse).

0,⊥
cl

1,⊥ : ⊥
a

a′

0,⊥ : ⊥a
cl

1,⊥ : ⊥a : ⊥a
a

a′

0,⊥ : ⊥a : ⊥aa
cl

1,⊥ : ⊥a : ⊥aa : ⊥aa

a′

a . . .

2,⊥ : ⊥a
p

co

2,⊥ : ⊥a : ⊥aa
p

co

2,⊥ : ⊥a : ⊥aa : ⊥aaa
p

co
. . .

2,⊥ : ⊥ 2,⊥ : ⊥a : ⊥a
p

co

2,⊥ : ⊥a : ⊥aa : ⊥aa
p

co

. . .

2,⊥ : ⊥a : ⊥ 2,⊥ : ⊥a : ⊥aa : ⊥a
p

co

. . .

2,⊥ : ⊥a : ⊥aa : ⊥ . . .

Figure 1: Example of a collapsible pushdown graph

Remark 3.3. Hague et al. [6] showed that modal µ-calculus model checking on level n CPG

is n-EXPTIME complete. Note that there is an MSO interpretation which turns the graph

of the previous example into a grid-like structure. Hence its MSO theory is undecidable.

The next definition introduces runs of collapsible pushdown systems.

Definition 3.4. Let S be a CPS. A run r of S of length n is a function

r : {0, 1, 2, . . . , n} → Q × (Σ × {1, 2} × N)∗2 such that r(0) ⊢ r(1) ⊢ · · · ⊢ r(n).

We write ln(r) := n and call r a run from r(0) to r(n). We say r visits a stack s at i if

r(i) = (q, s).

For runs r, r′ of length n and m, respectively, with r(n) = r′(0), we define the compo-

sition r ◦ r′ of r and r′ in the obvious manner.

Remark 3.5. Note that we do not require runs to start in the initial configuration.

4. Encoding of Collapsible Pushdown Graphs in Trees

In this section we prove that CPG are tree-automatic. For this purpose we have to

encode stacks in trees. The idea is to divide a stack into blocks and to encode different

blocks in different subtrees. The crucial observation is that every stack is a list of words

that share the same first letter. A block is a maximal list of words in the stack that share

the same two first letters2. If we remove the first letter of every word of such a block, the

resulting 2-word decomposes again as a list of blocks. Thus, we can inductively carry on

to decompose parts of a stack into blocks and code every block in a different subtree. The

roots of these subtrees are labelled with the first letter of the corresponding block. This

results in a tree in which every initial left-closed path represents one word of the stack. By

left-closed, we mean that the last element of the path has no left successor.

It turns out that – via this encoding – each stack operation corresponds to a simple

MSO-definable tree-operation. The main difficulty is to provide a tree-automaton that

checks whether there is a run to the configuration represented by some tree. This problem

is addressed in Section 5.

2see Figure 2 for an example of blocks and Definition 4.1 for their formal definition
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f

e g i

b d d d h j l

a c c c c c c k

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Figure 2: Example of blocks in a stack. These form a c-blockline.

As already mentioned, the encoding works by dividing stacks into blocks. The following

definition makes our notion of blocks precise. For w ∈ Σ∗ and s = w1 : w2 : . . . : wn ∈ Σ∗2,

we write s′ := w \ s for s′ = [ww1] : [ww2] : . . . : [wwn].

Definition 4.1 (σ-block(line)). For σ ∈ Σ, we call b ∈ Σ∗2 a σ-block if b = [σ] or b = στ \ s′

for some τ ∈ Σ and s′ ∈ Σ∗2. See Figure 2 for examples of blocks. If b1, b2, . . . , bn are σ-

blocks, then we call b1 : b2 : . . . : bn a σ-blockline.

Note that every stack in Stck(Σ) forms a (⊥, 1, 0)-blockline. Furthermore, every block-

line l decomposes uniquely as l = b1 : b2 : . . . : bn of maximal blocks bi in l. Another crucial

observation is that a σ-block b ∈ Σ∗2 \ Σ decomposes as b = σ \ l for some blockline l and

we say l is the induced blockline of b. For b ∈ Σ the induced blockline of [b] is just the

empty 2-word.

Now we encode a (σ, n,m)-blockline l in a tree by labelling the root with (σ, n), by

encoding the blockline induced by the first block of l in the left subtree, and by encoding

the rest of the blockline in the right subtree. In order to avoid repetitions, we do not repeat

the symbol (σ, n) in the right subtree, but replace it by the default letter ε.

Definition 4.2. Let s = w1 : w2 : . . . : wn ∈ (Σ× {1, 2} × N)+2 be a (σ, l, k)-blockline. Let

w′
i be words such that s = (σ, l, k) \ [w′

1 : w′
2 : . . . : w′

n] and set s′ := w′
1 : w′

2 : . . . : w′
n. As

an abbreviation we write hsi := wh : wh+1 : . . . : wi. Furthermore, let w1 : w2 : . . . : wj be a

maximal block of s. Note that j > 1 implies wj′ = (σ, l, k)(σ′, l′, k′)w′′
j′ for all j′ ≤ j, some

fixed (σ′, l′, k′) ∈ Σ × {1, 2} × N, and appropriate w′′
j′ ∈ Σ∗. For ρ ∈

(

Σ × {1, 2}
)

∪ {ε}, we

define recursively the
(

Σ × {1, 2}
)

∪ {ε}-labelled tree Enc(s, ρ) via

Enc(s, ρ) :=



















ρ if |w1| = 1, n = 1

ρ(∅,Enc(2sn, ε)) if |w1| = 1, n > 1

ρ(Enc(1s
′
n, (σ′, l′)), ∅) if j = n, |w1| > 1

ρ(Enc(1s
′
j, (σ

′, l′)),Enc(j+1sn, ε)) otherwise.

Enc(s) := Enc(s, (⊥, 1)) is called the (tree-)encoding of the stack s ∈ Stck(Σ).

Figure 3 shows a configuration and its encoding.

Remark 4.3. In this encoding, the first block of a (σ, l, k)-blockline is encoded in a subtree

whose root d is labelled (σ, l). We can restore k from the position of d in the tree Enc(s) as

follows. If l = 1 then k = |d|0, i.e., the number of occurrences of 0 in d. This is due to the

fact that level 1 links always point to the preceding letter and that we always introduce a

left-successor tree in order to encode letters that are higher in the stack.

The case l = 2 needs some closer inspection. Assume that some d ∈ T := Enc(s)

is labelled (σ, 2). Then it encodes a letter (σ, 2, k) and this is not a cloned element.
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(c, 2, 1) (e, 1, 3)

(b, 2, 0) (b, 2, 0) (c, 1, 2) (d, 2, 3)

(a, 2, 0) (a, 2, 0) (a, 2, 2) (a, 2, 2) (a, 2, 2)

(⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0)

c, 2 e, 1

b, 2 ε c, 1 d, 2

a, 2 a, 2 ε ε

⊥, 1 ε

Figure 3: A stack s and its encoding Enc(s): right arrows lead to 1-successors (right suc-

cessors), upward arrows lead to 0-successors (left successors).

Thus, k equals the numbers of words to the left of this letter (σ, 2, k). We claim that

k =
∣

∣

{

e ∈ T ∩ {0, 1}∗1 : e ≤lex d
}∣

∣. The existence of a pair e, e1 ∈ T corresponds to the

fact that there is some blockline consisting of blocks b1 : b2 : . . . : bn with n ≥ 2 such that b1

is encoded in Te \ Te1 and b2 : . . . : bn is encoded in Te1. By induction, one easily sees that

for each such pair e, e1 ∈ T all the letters that are in words left of the letter encoded by

e1 are encoded in lexicographically smaller elements. Furthermore, the size of ((0∗)1)∗ ∩ T

corresponds to the number of words in s since the introduction of a 1-successor corresponds

to the separation of the first block of some blockline from the other blocks. Each of these

separation can also be seen as the separation of the last word of the first block from the first

word of the second block of this blockline. Note that we separate two words that are next

to each other in exactly one blockline. Putting these facts together our claim is proved.

Another view on this correspondence is the bijection f : {1, 2, . . . , |s|} → R where

R := ((0∗)1)∗ ∩ dom(T ) and i is mapped to the i-th element of R in lexicographic order.

f(i) is exactly the position where the (i − 1)-st word is separated from the i-th one for all

i ≥ 2. In order to state the properties of f , we need some more notation. We write π for

the canonical projection π : (Σ×{1, 2}×N)∗ → (Σ×{1, 2})∗ and wi for the i-th word of s.

Furthermore, let w′
i be a word such that, wi = (wi ⊓wi−1) ◦w′

i (here we set w0 := ε). Then

the word along the path3 from the root to f(i) is exactly π(wi ⊓ wi−1) for all 2 ≤ i ≤ |s|
and the path from f(j) to f(j) ◦ 0m for maximal m ∈ N is π(w′

j) for all 1 ≤ j ≤ |s|.

In order to encode a configuration c := (q, s), we add q as a new root of the tree and

attach the encoding of s as the left subtree, i.e., Enc(c) := q(Enc(s), ∅).
The image of this encoding function contains only trees of a very specific type. We call

this class TEnc. In the next definition we state the characterising properties of TEnc. This

class is MSO definable, whence automata-recognisable.

Definition 4.4. Let TEnc be the class of all trees T that satisfy the following conditions.

(1) The root of T is labelled by some element of Q (T (ε) ∈ Q).

(2) Every element of the form {0, 1}∗0 is labelled by some (σ, l) ∈ Σ×{1, 2}; especially,

T (0) = (⊥, 1) and there are no other occurrences of (⊥, 1) or (⊥, 2).

(3) Every element of the form {0, 1}∗1 is labelled by ε.

(4) 1 /∈ dom(T ), 0 ∈ dom(T ).

(5) For all t ∈ T , if T (t0) = (σ, 1) then T (t10) 6= (σ, 1).

3By the word along a path from one node to another we mean the word consisting of the non ε-labels
along this path.
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(σ, l) ε . . . ε ε

(τ, k)

...

(σ′, l′)

(σ, l) ε . . . ε

Figure 4: pop2-operation

...

(σ, 2) ε . . . ε ε

Figure 5: collapse-operation of level 2.

Remark 4.5. Note that (5) holds as T (t0) = T (t10) = (σ, 1) would imply that the subtree

rooted at t encodes a blockline l such that the first block of l induces a (σ, 1, n)-blockline

and the second one induces a (σ, 1,m)-blockline. But as level 1 links always point to the

preceding letter, n and m are equal to the length of the prefix of l in the stack plus 1, i.e.,

if T encodes a stack s then s = s1 : [w \ l] : s2 and n = m = |w|+ 1. This would contradict

the maximality of the blocks in the encoding.

Remark 4.6. Enc : Q × Stck(Σ) → TEnc is a bijection and we denote its inverse by Dec.

Our encoding turns the transitions of a CPG into regular tree-operations. The tree-

operations corresponding to pop2 and collapse can be seen in Figures 4 and 5. For the pop2,

note that if v1 is the 0-successor of v0 then v0 and v1 encode symbols in the same word of

the encoded stack. As a pop2 removes the rightmost word, we have to remove all the nodes

encoding information about this word. As the rightmost leaf corresponds to the topmost

symbol of the stack, we have to remove this leaf and all its 0-ancestors.

For the collapse (on level 2), we note that each ε represents a cloned element. The

collapse induced by such an element produces the same stack as a pop2 of its original

version. The original symbol of the rightmost leaf is its first ancestor not labelled by ε.

Note that the operations corresponding to pop2 and collapse are clearly MSO definable.

All other transitions in CPG correspond to MSO definable tree-operations, too. Due to

space restrictions we skip the details.

Lemma 4.7. Let C be the set of encodings of configurations of a CPS S. Then there are
automata A(q,op) for all q ∈ Q and all op ∈ OP such that for all c1, c2 ∈ C

A(q,op) accepts Enc(c1) ⊗ Enc(c2) iff c1 ⊢(q,op) c2 .
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5. Recognising Reachable Configurations

We show that Enc maps the reachable configurations of a given CPS to a regular set.

For this purpose we introduce milestones of a stack s. It turns out that these are exactly

those substacks of s that every run to s has to visit. Furthermore, the milestones of s are

represented by the nodes of Enc(s): with every d ∈ Enc(s), we can associate a subtree

of s which encodes a milestone. Furthermore, the substack relation on the milestones

corresponds exactly to the lexicographical order ≤lex of the elements of Enc(s). For every

d ∈ Enc(s) we can guess the state in which the corresponding milestone is visited for the

last time by some run to s and we can check the correctness of this guess using MSO or,

equivalently, tree-automata.

We prove that we can check the correctness of such a guess by introducing a special

type of run, called loop, which is basically a run that starts and ends with the same stack.

A run from one milestone to the next will mainly consist of loops combined with a finite

number of stack operations.

5.1. Milestones

Definition 5.1 (Milestone). A substack s′ of s = w1 : w2 : . . . : wn is a milestone if

s′ = w1 : w2 : . . . : wi : w′ such that 0 ≤ i < n and wi ⊓ wi+1 ≤ w′ ≤ wi+1. We denote by

MS(s) the set of milestones of s.

Note that the substack relation ≤ linearly orders MS(s).

Lemma 5.2. If s, t,m are stacks with m ∈ MS(t) but m 6≤ s, then every run from s to t

visits m. Thus, for every run r from the initial configuration to s, the function

f : MS(s) → dom(r), s′ 7→ max{i ∈ dom(r) : r(i) = (q, s′) for some q ∈ Q}

is an order embedding with respect to substack relation on the milestones and the natural
order of dom(r).

In order to state the close correspondence between milestones of a stack s and the

elements of Enc(s), we need the following definition.

Definition 5.3. Let T ∈ TEnc be a tree and d ∈ T \ {ε}. Then the left and downward
closed tree induced by d is LT (d, T ) := T ↾D where D := {d′ ∈ T : d′ ≤lex d} \ {ε}. Then we

denote by LStck(d, T ) := Dec(LT (d, T )) the left stack induced by d.

Remark 5.4. LStck(d, s) is a substack of s for all d ∈ dom(Enc(s)). This observation

follows from Remark 4.3 combined with the fact that the left stack is induced by a lexico-

graphically downward closed subset. In fact, LStck(d, s) is a milestone of s.

Lemma 5.5. The map given by g : d 7→ LStck(d,Enc(s)) is an order isomorphism between
(dom(Enc(q, s)) \ {ε},≤lex) and (MS(s),≤).

Lemmas 5.5 and 5.2 imply that every run r decomposes as r = r1 ◦ r2 ◦ . . . ◦ rn where

ri is a run from the i-th milestone of r(ln(r)) to the (i + 1)-st milestone.

In order to describe the structure of the ri, we have to introduce the notion of a loop.

Informally speaking, a loop is a run r that starts and ends with the same stack s and which

does not look too much into s.

Definition 5.6. Let r be a run of length n with r(i) = (qi, si) for all 0 ≤ i ≤ n.
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• r is called a simple high loop if s0 = sn and if s0 < si for all 0 < i < n.

• r is called a simple low loop of s if s0 = sn = s, between 0 and n the stack s is never

visited, s1 = pop1(s), CLvl(s) = 1, |si| ≥ |s| for all 0 ≤ i ≤ n, and r↾[2,n−1] is the

composition of simple low loops and simple high loops of pop1(s).

• r is called loop if it is a finite composition of low loops and high loops.

Lemma 5.7. Let s be some stack, m1,m2 milestones of s, and r a run from m1 to m2 that
never visits any other milestone of s. Then either r = l1 ◦ p ◦ l2 or r = l0 ◦ c ◦ l1 ◦ p1 ◦ l2 ◦
p2 ◦ l3 ◦ . . . ◦ pn ◦ ln+1 where each li is a loop, and all pi, p, and c are runs of length 1, p

performs one pushσ,k, c performs one clone2, and the pi perform one pop1 each.

This lemma motivates why we only define low loops for stacks s with CLvl(s) = 1.

Whenever the topmost symbol of a milestone m is not a cloned element, then pop1(m) is

another milestone. Hence, the li can only contain low loops if they start at a stack with

cloned topmost symbol. But any stack s with cloned topmost symbol and CLvl(s) = 2

cannot be restored from pop1(s) without passing pop2(s) since a pushσ,2-operation would

create the wrong link-level.

From Lemma 5.7 we can derive that deciding whether there is a run from one milestone

to the next is possible if we know the pairs of initial and final states of loops of certain

stacks s. Hence we are interested in the sets Loops(s) ⊆ Q × Q with (q1, q2) ∈ Loops(s) if

and only if there is a loop from (q1, s) to (q2, s). The crucial observation is that Loops(s)

may be calculated by a finite automaton reading top2(s).

Lemma 5.8. For every CPS there exists a finite automaton A that calculates4 on in-
put w ∈ (Σ × {1, 2})∗ the set Loops(s) for all stacks s such that w = π(top2(s)). Here,
π : (Σ × {1, 2} × N)∗ → (Σ × {1, 2})∗ is the projection onto the symbols and collapse-levels.

5.2. Detection of Reachable Configurations

We have already seen that every run to a valid configuration (q, s) passes all the mile-

stones of s. Now, we use the last state in which a run r to (q, s) visits each milestone as

a certificate for the reachability of (q, s). To be precise, a certificate for the reachability of
(q, s) is a map f : dom

(

Enc(q, s)
)

\ {ε} → Q such that there is some run r from ⊥2 to

(q, s) and f(d) = q if and only if r(i) =
(

q,LStck(d)
)

for i the maximal position in r where

LStck(d) is visited.

Lemma 5.9. For every CPG G, there is a tree-automaton that checks for each map

f : dom(Enc(q, s)) \ {ε} → Q

whether f is a certificate of the reachability of (q, s), i.e., whether f is induced by some run
r from the initial configuration to (q, s).

The proof of the lemma uses Lemma 5.8 and the fact that the path from the root to

some d ∈ Enc(s) encodes the topmost word of LStck(d,Enc(s)). Hence, a tree automaton

reading Enc(s) is able to calculate for each position d ∈ Enc(s) the pairs of initial and final

states of loops of LStck(d). As every run decomposes as a sequence of loops separated by

a single operation, knowing Loops(s′) for each s′ ≤ s enables the automaton to check the

correctness of a candidate for a certificate of reachability.

4We consider the final state reached by A on input w as the value it calculates for w.
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As a tree-automaton may non-deterministically guess a certificate of the reachability of

a configuration, the encodings of reachable configurations form a regular set.

5.3. Extension to Regular Reachability

By now, we have already established the tree-automaticity of each CPG G since we

have seen that our encoding yields a regular image of the vertices of G and the transition

relations are turned into regular relations of the tree encoding. Using similar techniques,

we can improve this result:

Theorem 5.10. If G is the ε-closure of some CPG G′ then (G,Reach) is tree-automatic
where Reach is the binary predicate that is true on a pair (c1, c2) of configurations if there
is a path from c1 to c2 in G.

Remark 5.11. Each graph in the second level of the Caucal-hierarchy can be obtained as

the ε-contraction of some level 2 CPG (see [3]) whence all these graphs are tree-automatic.

For a CPS S let R ⊆ ∆∗ be a regular language over the transitions of S. As collapsible

pushdown graphs are closed under products with finite automata even the reachability pred-

icate ReachR with restriction to R is tree-automatic. Here, ReachRxy holds if there is a path

from x to y in CPG(S) that uses a sequence of transitions in R. If A is the automaton recog-

nising R, we obtain that ReachR(q, s)(q′, s′) holds in CPG(S) iff Reach
(

(q, qi), s
)(

(q′, qf ), s′
)

holds in CPG(S × A) where qi is the initial and qf the unique final state of A. Using this

idea one can define a CPG G′ which is basically CPG(S ∪ (S ×A)) extended by transitions

from (q, s) to ((q, qi), s) and to ((q, qf ), s). CPG(S) as well as ReachR w.r.t. CPG(S) are

FO[Reach]-interpretable in G′. Hence we obtain:

Theorem 5.12. Given a collapsible pushdown graph of level 2, its FO[ReachR] theory is
decidable for each regular R ⊆ ∆∗.

5.4. Computation of concrete tree-automatic representations of CPG

Up to now, we have only seen that there is a tree-automatic representation for each

CPG. For computing a concrete representation, we rely on the following lemma.

Lemma 5.13. Given some CPS S = (Γ, Q,∆, q0), some q ∈ Q, and some stack s, it is
decidable whether (q, s) is a vertex of CPG(S).

The proof is based on the idea that a stack is uniquely determined by its top element and

the information which substacks can be reached via collapse- and popi-operations. Hence we

can construct an extension S′ of S and a modal formula ϕq,s such that there is some element

v ∈ CPG(S′) satisfying CPG(S′), v |= ϕq,s iff (q, s) ∈ CPG(S). S′ basically contains new

states for every substack of s and connects the different states via the appropriate popi-

operations which are only applied if the topmost symbol of the stack agrees with the symbol

we would expect when starting the popi-sequence in configuration (q, s).

From this lemma we can derive the computability of the automata in Lemma 5.8.

Having obtained these automata, the construction of a tree-automatic representation of

some CPG is directly derived from the proofs yielding the following theorem.

Theorem 5.14. There is an algorithm that, given a level 2 CPG G and regular sets
R1, . . . , Rn ⊆ ∆∗, computes a tree-automatic representation of (G,ReachR1

, . . . ,ReachRn
).
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6. Conclusion

We have seen that level 2 collapsible pushdown graphs are tree-automatic. This result

holds also if we apply ε-contractions and if we add regular reachability predicates. This

implies that the second level of the Caucal-hierarchy is tree-automatic. But our result can

only be seen as a starting point for further investigations of the CPG hierarchy: are level 3

collapsible pushdown graphs tree-automatic? We know an example of a level 5 CPG which

is not tree-automatic. But even when tree-automaticity of all CPG cannot be expected,

the question remains whether all CPG have decidable FO theories. In order to solve this

problem one has to come up with new techniques.

A rather general question concerning our result aims at our knowledge about tree-

automatic structures. Recent developments in the string case [9] show the decidability of

rather large extensions of first-order logic for automatic structures. It would be interesting

to clarify the status of the analogous claims for tree-automatic structures. Positive answers

concerning the decidability of extensions of first-order logic on tree-automatic structures

would give us the corresponding decidability results for collapsible pushdown graphs of

level 2.
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Abstract. Let G = (V, E) be any undirected graph on V vertices and E edges. A path P
between any two vertices u, v ∈ V is said to be t-approximate shortest path if its length is
at most t times the length of the shortest path between u and v. We consider the problem
of building a compact data structure for a given graph G which is capable of answering
the following query for any u, v, z ∈ V and t > 1.

report t-approximate shortest path between u and v when vertex z fails
We present data structures for the single source as well all-pairs versions of this problem.

Our data structures guarantee optimal query time. Most impressive feature of our data
structures is that their size nearly match the size of their best static counterparts.

1. Introduction

The shortest paths problem is a classical and well studied algorithmic problem of com-

puter science. This problem requires processing of a given graph G = (V,E) on n = |V |
vertices and m = |E| edges to compute a data structure using which shortest path or dis-

tance between any two vertices can be efficiently reported. Two famous and thoroughly

studied versions of this problem are single source shortest paths (SSSP) problem and all-

pairs shortest paths (APSP) problem.

Most of the applications of the shortest paths problem involve real life graphs and

networks which are prone to failure of nodes (vertices) and links (edges). This has motivated

researchers to design dynamic solution for the shortest paths problem. For this purpose, one

has to first develop a suitable model for the shortest paths problem in dynamic networks.

In fact two such models exists, and each of them has its own algorithmic objectives.

The shortest paths problem in the first model is described as follows : There is an

initial graph followed by an on-line sequence of insertion and deletion of edges interspersed
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with shortest path (or distance) queries. Each query has to be answered with respect to the

graph which exists at that moment (incorporating all the updates preceding the query on

the initial graph). A trivial solution of this problem is to recompute all-pairs shortest paths

from scratch after each update. This is certainly a wasteful approach since a single update

usually does not cause a huge change in the all-pairs distance information. Therefore, the

algorithmic objective here is to maintain a data structure which can answer distance query

efficiently and can be updated after any edge insertion or deletion in an efficient manner. In

particular, the time required to update the data structure has to be substantially less than

the running time of the best static algorithm. Many novel algorithms have been designed

in the last ten years for this problem and its variants (see [6] and the references therein).

On one hand the first model is important since it captures the worst possible hardness

of any dynamic graph problem. On the other hand, it can also be considered as a pessimistic

model for real life networks. It is true that the networks are never immune to failures. But

in addition to it, it is also rare to have networks which may have arbitrary number of failures

in normal circumstances. It is essential for network designers to choose suitable technology

to make sure that the failures are quite infrequent in the network. In addition, when a

vertex or edge fails (goes down), it does not remain failed/down indefinitely. Instead, it

comes up after some finite time due to simultaneous repair mechanism going on in the

network. These aspects can be captured in the second model which takes as input a graph

and a number ℓ ≪ n. This model assumes that there will be at most ℓ vertices or edges

which may be inactive at any time, though the corresponding set of failed vertices or edges

may keep changing as the time progresses : the old failed vertices become active while some

new active vertices may fail. The algorithmic objective in this model is to preprocess the

given graph to construct a compact data structure which for any subset S of at most ℓ
vertices may answer the following query for any u, v ∈ V .

Report the shortest-path (or distance) from u to v in G\S.
It is desired that each query gets answered in optimal time : retrieval of distance in

O(1) time and the shortest path in time which is of the order of the number of its edges.

The ultimate research goal would be to understand the complexity of the above problem

for any given value ℓ. In this pursuit, the first natural step would be to efficiently solve

and thoroughly understand the complexity of the problem for the case ℓ = 1, that is, the

shortest paths problem avoiding any failed vertex. Interestingly, this problem appears as a

sub problem in many other related problems, namely, Vickrey pricing of networks [9], most

vital node of a shortest path [11], the replacement path problem [12], and shortest paths

avoiding forbidden subpaths [1].

The first nontrivial and quite significant breakthrough on the all-pairs version of this

problem was made by Demetrescu et al. [7]. They designed an O(n2 log n) space data

structure, namely distance sensitivity oracle, which is capable of reporting the shortest path

between any two vertices avoiding any single failed vertex. The preprocessing time of this

data structure is O(mn2). Recently, Bernstein and Karger [4] improved the preprocessing

time to O(mn log n). Though Θ(n2 log n) space bound of this all-pairs distance sensitivity

oracle is optimal up to logarithmic factors, it is too large for many real life graphs which

appear in various large scale applications [13]. In most of these graphs usually m ≪ n2,

hence a table of Θ(n2) size may be too large for practical purposes. However, it is also known

[7] that even a data structure which reports exact distances from a fixed source avoiding a

single failed vertex will require Ω(n2) space in the worst case. So approximation seems to

be the only way to design a small space compact data structure for the problem of shortest
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paths avoiding a failed vertex. A path between u, v ∈ V is said to be t-approximate shortest

path if its length is at most t times that of the shortest path between the two. The factor

t is usually called the stretch. We would like to state here that many algorithms and data

structures have been designed in the last fifteen years for the static all-pairs approximate

shortest paths (see [2, 13] and references therein). The prime motivation underlying these

algorithms has been to achieve sub-quadratic space and/or sub-cubic preprocessing time

for the static APSP problem. However, no data structure was designed in the past for

approximate shortest paths avoiding any failed vertex.

In this paper, we present really compact data structures which are capable of reporting

approximate shortest paths between two vertices avoiding any failed vertex in undirected

graphs. The most impressive feature of our data structures is their nearly optimal size. In

fact their size almost matches the size of their best static counterparts.

1.1. New Results

Single source approximate shortest paths avoiding any failed vertex.

First we address weighted graphs. For the weighted graphs, we present an O(m log n) time

constructible data structure of size O(n log n) which can report 3-approximate shortest

path from the source to any vertex v ∈ V avoiding any x ∈ V . We then consider the case

of undirected unweighted graphs. For these graphs, we present an O(n log n
ǫ3

) space data

structure which can even report (1 + ǫ)-approximate shortest path for any ǫ > 0.

All-pairs approximate shortest paths avoiding any failed vertex.

Among the existing data structures for static all-pairs approximate shortest paths, the

approximate distance oracle of Thorup and Zwick [13] stands out due to its amazing features.

Thorup and Zwick [13] showed that an undirected graph can be preprocessed in sub-cubic

time to build a data structure of size O(kn1+1/k) for any k > 1. This data structure, despite

of its sub-quadratic size, is capable of reporting (2k− 1)-approximate distance between any

two vertices in O(k) time (and the corresponding approximate shortest path in optimal

time), and hence the name oracle. Moreover, the size-stretch trade off achieved by this data

structure is essentially optimal. It is a very natural question to explore whether it is possible

to design all-pairs approximate distance oracle which may handle single vertex failure. We

show that it is indeed possible for unweighted graphs. For this purpose, we suitably modify

the approximate distance oracle of Thorup and Zwick [13] using some new insights and our

single source data structure mentioned above. These modifications make the approximate

shortest-paths oracle of Thorup and Zwick handle vertex failure easily, and (surprisingly)

still preserving the old (optimal) trade-off between the space and the stretch. For precise

details, see Theorem 5.3.

For the algorithmic details missing in this extended abstract due to page limitations,

we suggest the reader to refer to the journal version [10]. Our data structures can be easily

adapted for handling edge failure as well without any increase in space or time complexity.

2. Preliminaries

We use the following notations and definitions in the context of a given undirected

graph G = (V,E) with n = |V |, m = |E| and a weight function ω : E → R+.

• Tr : single source shortest path tree rooted at r.
• P(x, y) : the shortest path between x and y.
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• δ(x, y) : the length of the shortest path between x and y.

• P(x, y, z) : the shortest path between x and y avoiding vertex z.

• δ(x, y, z) : the length of the shortest path between x and y avoiding vertex z.

• Tr(x) : the subtree of Tr rooted at x.

• Gr(x) : the subgraph induced by the vertices of set Tr(x) and augmented by vertex

r and edges from r as follows. For each v ∈ Tr(x) with neighbors outside Tr(x),

keep an edge (r, v) of weight = min(u,v)∈E,u/∈Tr(x)(δ(r, u) + ω(u, v)).

• P :: Q : a path formed by concatenating path Q at the end of path P with an edge

(u, v) ∈ E, where u is the last vertex of P and v is the first vertex of Q.

• E(X) : the set of edges from E with at least one endpoint in X.

Our algorithms will also use a data structure for answering lowest common ancestor (LCA)

queries on Tr. There exists an O(n) time computable data structure which occupies O(n)

space and can answer any LCA query in O(1) time (see [3] and references therein).

3. Single source 3-approximate shortest paths avoiding a failed vertex

We shall first solve a simpler sub-problem where the vertex which may fail belong to

a given path P ∈ Tr. Then we use divide and conquer strategy wherein we decompose Tr

into a set of disjoint paths and for each such path, we solve this sub-problem.

3.1. Solving the Sub-Problem : the failures of a vertex from a given path P(r, t)

Given the shortest path tree Tr, let P(r, t) = 〈r(= x0), x1, ..., xk(= t)〉 be any shortest path

present in Tr. We shall design an O(n) space data structure which will support retrieval of a

3-approximate shortest path from r to any v ∈ V when some vertex from P(r, t) fails. The

preprocessing time of our algorithm will be O(m+n log n) which matches that of Dijkstra’s

algorithm. The algorithm is inspired by the algorithm of Nardelli et al. [11] for computing

the most vital vertex on a shortest path. Consider vertex xi lying on the path P(r, t). We

r

xi−1
xi

xi+1

Oi

Ui

Di

P

Figure 1: Partitioning of the shortest path tree Tr at xi ∈ P

partition the tree Tr\{xi} into the following 3 parts (see Figure 1).

(1) Ui : the tree Tr after removing the subtree Tr(xi)

(2) Di : the subtree of Tr rooted at xi+1

(3) Oi : the portion of Tr left after removing Ui, xi, and Di.

Note that a vertex of the tree Tr is either a vertex of the path P(r, t) or it belongs to some

Oi for some i. We build the following two data-structures of total O(n) size.
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(1) a data structure to retrieve 3-approximate shortest path from r to any v ∈ Di.

(2) a data structure to retrieve 3-approximate shortest path from r to any v ∈ Oi.

3.1.1. Data structure for 3-approximate shortest paths to vertices of Di when xi has failed.
Consider the vertex xi+1 and any other vertex y ∈ Di. Note that the shortest path P(xi+1, y)

remains intact even after removal of xi, and its length is certainly less than δ(r, y). Based

on this simple observation one can intuitively see that in order to travel from r to y when

xi fails, we may travel along shortest route to xi+1 (that is P(r, xi+1, xi)) and then along

P(xi+1, y). Using triangle inequality and the fact that the graph is undirected, the length

of this path P(r, xi+1, xi) :: P(xi+1, y) can be approximated as follows.

δ(r, xi+1, xi) + δ(xi+1, y) ≤ δ(r, y, xi) + δ(y, xi+1, xi) + δ(xi+1, y)

≤ δ(r, y, xi) + 2δ(xi+1, y)

≤ δ(r, y, xi) + 2δ(r, y) ≤ 3δ(r, y, xi)

Therefore, in order to support retrieval of 3-approximate shortest path to any v ∈ Di in

optimal time, it suffices to store the path P(r, xi+1, xi).

In order to devise ways of efficient computation and compact storage of P(r, xi+1, xi)

for a given i, we use the following lemma about the structure of the path P(r, xi+1, xi).

Lemma 3.1. The shortest path P(r, xi+1, xi) is of the form P1 :: P2 where P1 is a shortest
path from r in the subgraph induced by Ui ∪ Oi, and P2 is a path present in Di.

It follows that in order to compute P(r, xi+1, xi), first we need to compute shortest paths

from r in the subgraph induced by Ui ∪ Oi. Let δi(r, v) denote the distance from r to v ∈
Ui∪Oi in this subgraph. Note that δi(r, v) for v ∈ Ui and the corresponding shortest path is

the same as in the original graph, and is already present in Tr. For computing shortest paths

from r to vertices of Oi, we build a shortest path tree (denoted as Tr(Oi)) from r in the

subgraph induced by vertices Oi ∪ {r} and the following additional edges. For each z ∈ Oi

with at least one neighbor in Ui, we add an edge (r, z) with weight = min(u,z)∈E,u∈Ui
(δ(r, u)+

ω(u, z)). Applying Lemma 3.1, let (yi, zi) be the edge of P(r, xi+1, xi) joining the sub

path present in Ui ∪ Oi with the sub path present in Di. This edge can be identified

using the fact that this is the edge which minimizes δi(r, y) + ω(y, z) + δ(xi+1, z) over all

z ∈ Di, y ∈ Ui ∪ Oi, (y, z) ∈ E. The vertex xi+1 stores the path P(r, xi+1, xi) implicitly

by keeping the edge (yi, zi) and the tree Tr(Oi). The shortest path P(r, xi+1, xi) can be

retrieved in optimal time using the trees Tr, Tr(Oi), and the edge (yi+1, zi+1). Due to

mutual disjointness of Oi’s, the overall space requirement of the data structure for retrieving

P(r, xi+1, xi) for all i ≤ k will be O(n).

3.1.2. Data structure for 3-approximate shortest paths to vertices of Oi when xi has failed.
In order to compute 3-approximate shortest path to Oi upon failure of xi, we shall use the

approximate shortest paths to Di as computed above. Here we use an interesting observation

which states that if we have a data structure to retrieve α-approximate shortest paths from

r to vertices of Di when xi fails, then we can use it to have a data-structure to retrieve

α-approximate shortest paths to vertices of Oi as well. To prove this result, this is how

we proceed. Consider the subgraph induced by Oi and augmented with vertex r and some

extra edges which are defined as follows.
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• For each o ∈ Oi having neighbors from Ui, keep an edge (r, o) and assign it weight

= min(u,o)∈E,u∈Ui
(δ(r, u) + ω(u, o)).

• For each o ∈ Oi having neighbors from Di, keep an edge (r, o) and assign it weight =

min(u,o)∈E,u∈Di
(δ̂(r, u, xi) + ω(u, o)), where δ̂(r, u, xi) is the α-approximate distance

to u upon failure of xi. (In the present situation we have α = 3.)

Let us denote this graph as Gr(Oi). Observation 3.3 is based on the following lemma which

is easy to prove.

Lemma 3.2. The Dijkstra’s algorithm from r in the graph Gr(Oi) computes α-approximate
shortest paths from r to all v ∈ Oi avoiding xi.

Observation 3.3. If we can design a data structure for retrieving (1 + ǫ)-approximate

shortest paths from r to vertices of Di upon failure of xi, then it can also be used to design

a data structure which can support retrieval of (1 + ǫ)-approximate shortest paths to all

vertices of the graph upon failure of xi.

We compute and store the shortest path tree rooted at r in the graph Gr(Oi). This tree

along with the tree Tr and the data structure described in the previous sub-section suffice

for retrieval of 3-approximate shortest paths to o ∈ Oi upon failure of xi.

Query answering: Suppose the oracle receives a query asking for approximate shortest

path from r to v avoiding xi ∈ P(r, t). It first invokes lowest common ancestor (LCA)

query between v and xi on Tr. If LCA(v, xi) 6= xi, the shortest path from r to v remains

unaffected and so it reports the path P(r, t). Otherwise, it determines if v ∈ Di or v ∈ Oi.

Depending upon the two cases, it reports the approximate shortest path between r and vi

using one of the two data structures described above.

Theorem 3.4. An undirected weighted graph G = (V,E), a source r ∈ V , and a shortest
path P ∈ Tr can be processed in O(m + n log n) time to build a data structure of O(n) space
which can report 3-approximate shortest path from r to any v ∈ V avoiding any single failed
vertex from P .

3.2. Handling the failure of any vertex in Tr

We follow divide and conquer strategy based on the following simple lemma.

Lemma 3.5. There exists an O(n) time algorithm to compute a path P in Tr whose removal
splits Tr into a collection of disjoint subtrees Tr(v1), ...Tr(vj) such that

• |Tr(vi)| < n/2 for each i ≤ j.
• P ∪i Tr(vi) = T and P ∩ Tr(vi) = ∅ ∀i.

First we compute the path P ∈ Tr as mentioned in Lemma 3.5. We build the data

structure for handling failure of any vertex from P by executing the algorithm of Theorem

3.4. Let v1, ..., vj be the roots of the sub trees of Tr connected to the path P with an edge.

For each 1 ≤ i ≤ j, we solve the problem recursively on the subgraph Gr(vi), and build

the corresponding data structures. Lemma 3.5 and Theorem 3.4 can be used in straight

forward manner to prove the following theorem.

Theorem 3.6. An undirected weighted graph G = (V,E) can be processed in O(m log n +

n log2 n) time to build a data structure of size O(n log n) which can answer, in optimal time,
any 3-approximate shortest path query from a given source r to any vertex v ∈ V avoiding
any single failed vertex.
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4. Single source (1+ǫ)-approximate shortest paths avoiding a failed vertex

In this section, we shall present a compact data structure for single source (1 + ǫ)-
approximate shortest paths avoiding a failed vertex in an unweighted graph. Let level(v)

denote the level (or distance from r) of vertex v in the tree Tr. Let Ux,Dx, Ox denote

the partitions of the tree Tr formed by deletion of vertex x, with the same meaning as

that of Ui,Di, Oi defined for xi in the previous section. On the basis of Observation 3.3,

our objective is to build a compact data structure which will support retrieval of (1 + ǫ)-
approximate shortest-paths to vertices of Dx upon failure of x for any x ∈ V . Let uchild(x)

denote the root of the subtree corresponding to Dx (it is similar to xi+1 in case of Di). For

reporting approximate distance between r and v ∈ Dx when x fails, the data structure of

previous section reports path of length δ(r, uchild(x), x)+δ(uchild(x), v) which is bounded

by δ(r, v, x)+2δ(uchild(x), v). It should be noted that the approximation factor associated

with it is already bounded by (1 + ǫ) for any ǫ > 0 if the following condition holds.

C : uchild(x) is close to v, that is, δ(uchild(x), v) ≤ ǫ
2δ(r, v).

We shall build a supplementary data structure which will ensure that whenever the

condition C does not hold, there will be some ancestor w of v lying on P(x, v), called a

special vertex, satisfying the following two properties.

(1) δ(w, v) ≪ δ(r, v), that is w is much closer to v than r.
(2) vertex w stores approximate shortest path to r avoiding x (with the approximation

factor arbitrarily close to 1).

We shall refer to such vertices w as special-vertices.

4.1. Constructing the set of special vertices

Let h be the height of BFS tree rooted at r. Let L be a set of integers such that

L = {i|⌊(1 + ǫ)i⌋ < h}. For a given i ∈ L, we define a subset Si of special vertices as

Si = {u ∈ V |level(u) = ⌊(1 + ǫ)i⌋ ∧ |Tr(u)| ≥ ǫlevel(u)}. We define the set of special

vertices as S = ∪∀i∈LSi. In addition, we also introduce the following terminologies.

• S(v): the nearest ancestor of v which belongs to set S.

• V (u): For a vertex u ∈ S, V (u) denotes the set of vertices v ∈ V with S(v) = u.

In essence, the vertex u will serve as the special vertex for each vertex from V (u).

For failure of any vertex x ∈ P(r, u), each vertex of set V (u) will query the data

structure stored at u for retrieval of approximate shortest path/distance from the

source.

We now state two simple lemmas based on the above construction.

Lemma 4.1. Let v ∈ V \S, then δ(v, S(v)) ≤
(

2ǫ
1+ǫ

)

level(v) if ǫ < 1

Lemma 4.2. Let u be a vertex at level ℓ and u ∈ S. Then V (u) ≥ ǫℓ.

If we can ensure that the data structure for a special vertex u (for retrieving approximate

shortest paths from r upon failure of any x ∈ P(r, u)) is of size O(level(u)), then it would

follow from Lemma 4.2 that the space required by our supplementary data structure will

be linear in n.
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4.2. The data structure for a special vertex

Consider a special vertex v with level(v) = ⌊(1 + ǫ)i⌋ We shall now describe a compact

data structure stored at v which will facilitate retrieval of approximate shortest path from

r to v upon failure of any vertex x ∈ P(r, v).

Let v′ be the special vertex which is present at level ⌊(1 + ǫ)i−1⌋ and is ancestor of v.

The data structure stored at v will be defined in a way that will prevent it from storing

information that is already present in the data structure of some special vertex lying on

P(r, v′).
If x ∈ P(v′, v), then the data structure described in the previous section itself stores a

path which is (1 + 2ǫ)-approximation of P(r, v, x).

Let us now consider the nontrivial case when x ∈ P(r, v′), x 6= v′. In order to discuss

this case, we would like to introduce the notion of detour. To understand it, let us visualize

the paths P(r, v, x) and P(r, v) simultaneously. Since P(r, v, x) and P(r, v) have the same

end-points and x doesn’t lie on P(r, v, x), there must be a middle portion of P(r, v, x) which

intersects P(r, v) at exactly two vertices, and the remaining portion of P(r, v, x) overlaps

with P(r, v). This middle portion is called a detour. We now define it more formally. Let

a and b be two vertices on the shortest path P(r, v). We use a ≺ b to denote that vertex a
is closer to r than vertex b. The notation a � b would mean that either a ≺ b or a = b. .

So here is the definition of detour (and the underlying observation).

Definition 4.3. Let x ∈ P(r, y). When x fails, the path P(r, y, x) will be of the form

of P(r, a) :: pa,b :: P(b, y), where r � a ≺ x ≺ b � y and the path pa,b is such that

pa,b ∩ P(a, b) = {a, b}. In other words, pa,b meets P(a, b) only at the end points. We shall

call pa,b as the detour associated with the shortest path P(r, y, x).

Let pa,b represent the detour w.r.t. to P(r, v, x). The handling of failure of vertices

x ∈ P(r, v) which lie above v′ would depend upon the detour pa,b. This detour can be of

any of the following types (see Figure 2 for illustration).

• I : b � v′.
• II : v′ ≺ b.

x x

aa

b

b

v′ v′

v v

rr

⌊(1 + ǫ)i⌋⌊(1 + ǫ)i⌋

pa,bpa,b

(i) (ii)

Figure 2: pa,b is shortest detour of P(r, v, x). (i) : detour of type I, (ii) : detour of type II

Handling detours of type I is relatively easy. Let w be the farthest ancestor of v such

that w ∈ S and level of w is greater or equal to the level of b. In this case, v stores the

corresponding detour implicitly by just keeping a pointer to the vertex w.

Handling detours of type II is slightly tricky since we can’t afford to store each of them

explicitly. However, we shall employ the following observation associated with the detours

of type II to guarantee low space requirement.
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Observation 4.4. Let α1, α2,. . . ,αt be the vertices on P(r, v) (in the increasing order of

their levels) such that the shortest detour corresponding to P(r, v, αi) is of type II ∀i, then

δ(r, v, α1) ≥ δ(r, v, α2) ≥ · · · ≥ δ(r, v, αt)

It follows from the above observation that if δ(r, v, αi) ≤ (1+ ǫ)δ(r, v, αj ) for any i < j,
then P(r, v, αi) may as well serve as (1+ ǫ)-approximate shortest path from r to v avoiding

αj . In other words, we need not store the detour associated with P(r, v, αj) in such situation.

Using this observation, we shall have to explicitly store only O(log1+ǫ n) detours of type II.

Moreover, we do not store explicitly detours of type II whose length is much larger than

level(v). Specifically, if P(r, v, x) ≥ 1
ǫ level(v), then v will merely store pointer to the path

P(r, uchild(x), x) :: P(uchild(x), v). This ensures that each detour of type II which v has

to explicitly store will have length O(1
ǫ level(v)).

It follows from the above description that for a special vertex v and x ∈ P(r, v), the data

structure associated with v stores (1 + 2ǫ)-approximation of the path P(r, v, x). Moreover,

the total space required by the data structure associated with all the special vertices will be

O(n log n
ǫ3

). This supplementary data structure combined with the data structure of previous

section can report (1 + 6ǫ)-approximation of P(r, z, x) for any z, x ∈ V .

Theorem 4.5. Given an undirected unweighted graph G = (V,E), source r ∈ V , and any

ǫ > 0, we can build a data structure of size O(n log n
ǫ3 ) that can report (1 + ǫ)-approximate

shortest path from r to any z ∈ V avoiding any failed vertex in optimal time.

5. All-pairs (2k − 1)(1 + ǫ)-approx. distance oracle avoiding a failed vertex

We start with a brief description of the approximate distance oracle of Thorup and

Zwick [13]. The key idea to achieve sub-quadratic space is to store distance from each

vertex to only a small set of vertices. For retrieving approximate distance between any two

vertices u, v ∈ V , it is ensured that there is a third vertex w which is close to both of them,

and whose distance from both of them is known. To realize this idea, Thorup and Zwick

[13] introduced two novel structures called ball and cluster which are defined for any two

subsets A,B of vertices as follows. (here δ(v,B) denotes the distance between v and its

nearest vertex from B).

Ball(v,A,B) = {w ∈ A|δ(v,w) < δ(v,B)} C(w,A,B) = {v ∈ V |δ(v,w) < δ(v,B)}

Construction of (2k − 1)-approximate distance oracle of Thorup and Zwick [13] employs a

k-level hierarchy Ak = 〈A0 ⊇ A1 ⊇ A2... ⊇ Ak−1 ⊃ Ak〉 of subsets of vertices as follows.

A0 = V , Ak = ∅, and Ai+1 for any i < k − 1 is formed by selecting each vertex from Ai

independently with probability n−1/k.

The data structure associated with the (2k− 1)-approximate distance oracle of Thorup

and Zwick [13] stores for each vertex v ∈ V the following information :

• the vertices of set ∪i<kBall(v,Ai, Ai+1) (and their distances).

• the vertex from Ai nearest to v (to be denoted as pi(v)).

Due to randomization underlying the construction of Ak, the expected size of

Ball(v,Ai, Ai+1) is O(n1/k), and hence the space required by the oracle is O(kn1+1/k).

We shall now outline the ideas in extending the (2k − 1)-approximate distance oracle to

handle single vertex failure. Kindly refer to the extended version [10] of this paper for

complete details.
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5.1. Overview of all-pairs approx. distance oracles avoiding a failed vertex

Firstly the notations used by the static approximate distance oracle of [13], in particular

ball and cluster, get extended for single vertex failure in a natural manner as follows. (here

δ(v,B, x) is the distance between v and its nearest vertex from B in G\{x}).

Ballx(v,A,B) = {w ∈ A|δ(v,w, x) < δ(v,B, x)}

Cx(w,A,B) = {v ∈ V |δ(v,w, x) < δ(v,B, x)}

Let px
i (v) denote the vertex from Ai which is nearest to v in G\{x}. Along the lines of the

static approximate distance oracle of Thorup and Zwick [13], the basic operation which the

approximate distance oracle avoiding a failed vertex should support is the following :

Report distance (exact or approximate) between v and w ∈ Ai if w ∈ Ballx(v,Ai, Ai+1)

for any given v, x ∈ V .
However, it can be observed that we would have to support this operation implicitly in-

stead of explicitly keeping Ballx(v,Ai, Ai+1) for each v, x, i. Our starting point is the simple

observation that clusters and balls are inverses of each others, that is, w ∈ Ballx(v,Ai, Ai+1)

is equivalent to v ∈ Cx(w,Ai, Ai+1). Now we make an important observation. Consider

the subgraph Gi(w) induced by the vertices of set ∪x∈V Cx(w,Ai, Ai+1). This subgraph

preserves the path P(w, v, x) for each x, v ∈ V if w ∈ Ballx(v,Ai, Ai+1). So it suffices

to keep a single source (approximate) shortest paths oracle on Gi(w) with w as the root.

Keeping this data structure for each w ∈ Ai provides an implicit compact data structure for

supporting the basic operation mentioned above. Using Theorem 4.5, it can be seen that

the space required at a level i will be of the order of
∑

w∈Ai
| ∪x∈V Cx(w,Ai, Ai+1)|, but

it is not clear whether we can get an upper bound of the order of n1+1/k on this quantity.

Here, as a new tool, we introduce the notion of ǫ-truncated balls and clusters.

Definition 5.1. Given a vertex x, any subsets A,B, and ǫ > 0

Ballx(v,A,B, ǫ) =

{

w ∈ A|δ(v,w, x) <
δ(v,B, x)

1 + ǫ

}

Instead of dealing with the usual balls (and clusters) under deletion of single vertex,

we deal with ǫ-truncated balls (and clusters) under deletion of single vertex. We note that

the inverse relationship between clusters and balls gets seamlessly extended to ǫ-truncated

balls and clusters under single vertex failure as well. That is,
∑

w∈Ai

| ∪x∈V Cx(w,Ai, Ai+1, ǫ)| =
∑

v∈V

| ∪x∈V Ballx(v,Ai, Ai+1, ǫ)|

So it suffices to get an upper bound on the size of the set ∪x∈V Ballx(v,Ai, Ai+1, ǫ) for any

vertex v ∈ V . The following lemma states a very crucial property of ǫ-truncated balls which

leads to prove the existence of a small set S of O( 1
ǫ2

log n) vertices such that

∪x∈V Ballx(v,Ai, Ai+1, ǫ) ⊆ ∪x∈SBallx(v,Ai, Ai+1) ∪ Ball(v,Ai, Ai+1) (5.1)

Lemma 5.2. In a given graph G = (V,E), let v be any vertex and let u = pi+1(v). Let x1

and x2 be any two vertices on the P(v, u) path with x1 appearing closer to v on this path
and δ(v,Ai+1, x1) ≤ (1 + ǫ)δ(v,Ai+1, x2). Then

Ballx1(v,Ai, Ai+1, ǫ) ⊆ Ball(v,Ai, Ai+1) ∪ Ballx2(v,Ai, Ai+1)
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Proof. Let w be any vertex in Ai. It suffices to show the following. If w does not belong

to Ball(v,Ai, Ai+1) ∪ Ballx2(v,Ai, Ai+1), then w does not belong to Ballx1(v,Ai, Ai+1, ǫ).
The proof is based on the analysis of the following two cases.

Case 1 : The vertex x2 is present in P(v,w, x1).

Since, w /∈ Ball(v,Ai, Ai+1), therefore, δ(v,w) is at least δ(v, u). Hence using triangle

inequality, δ(v, x2) + δ(x2, w) ≥ δ(v, u). Now δ(v, u) = δ(v, x2) + δ(x2, u) (since x2 lies on

P (v, u)). Hence δ(x2, w) ≥ δ(x2, u). Moreover, since x1 does not appear on P(x2, u), so

δ(x2, u) = δ(x2, u, x1). So

δ(x2, w, x1) ≥ δ(x2, u, x1) (5.2)

Now it is given that x2 ∈ P(v,w, x1), so P(v,w, x1) must be of the form P(v, x2, x1) ::

P(x2, w, x1), the length of which is at least δ(v, x2, x1) + δ(x2, u, x1) using Equation 5.2.

The latter quantity is at least δ(v, u, x1) which by definition is at least δ(v,Ai+1, x1). Hence

w /∈ Ballx1(v,Ai, Ai+1), and therefore, w /∈ Ballx1(v,Ai, Ai+1, ǫ).
Case 2 : The vertex x2 is not present in P(v,w, x1).

In this case, δ(v,w, x1) = δ(v,w, {x1 , x2}) ≥ δ(v,w, x2). The value δ(v,w, x2) is in turn

at least δ(v,Ai+1, x2) since w /∈ Ballx2(v,Ai, Ai+1). It is given that δ(v,Ai+1, x2) ≥
δ(v,Ai+1,x1)

1+ǫ , hence conclude that δ(v,w, x1) ≥
δ(v,Ai+1,x1)

1+ǫ . So w /∈ Ballx1(v,Ai, Ai+1, ǫ).

We shall now outline the construction of a small set S of vertices which will satisfy

Equation 5.1. Let u = pi+1(v) and let P(v, u) = v(= x0), x1, ..., xℓ(= u). Observe that

∪x∈V Ballx(v,Ai, Ai+1, ǫ) = ∪1≤j≤ℓBallxj(v,Ai, Ai+1, ǫ). For any node x ∈ P(u, v), let

value(x) = δ(v,Ai+1, x), and let h be the maximum value of any node on this path. The

set S is initially empty.

Let α(1) be the largest index from [1, ℓ] such that value(xi) ≥ h/(1 + ǫ). It can

be seen that for all j < α(1), δ(v,Ai+1, xj) ≤ (1 + ǫ)δ(v,Ai+1, xα(1)). Therefore, it

follows from Lemma 5.2 that for each vertex x ∈ {x1, ..., xα(1)}, Ballx(v,Ai, Ai+1, ǫ) ⊆
Ballxα(1)(v,Ai, Ai+1) ∪ Ball(v,Ai, Ai+1). So we insert xα(1) to S. Similarly α(2) ∈

[α(1) + 1, ℓ] be the greatest integer such that value(xα(2)) ≥ h/(1 + ǫ)2. We add xα(2)

to S, and so on. It can be seen that the set S constructed in this manner will satisfy

Equation 5.1 and its size will be O(log1+ǫ h) = O( log n
ǫ ).

It can be shown using elementary probability theory that for each x ∈ V , the set

Ballx(v,Ai, Ai+1) has size O(n1/k log n) with high probability. Therefore, the construction

of the set S outlined above implies the following crucial bound for each v ∈ V, i < k − 1

which helps us design all-pairs approximate distance oracle avoiding a failed vertex.

| ∪x∈V Ballx(v,Ai, Ai+1, ǫ)| = O

(

n1/k log2 n

ǫ

)

Using this equation, and owing to inverse relationship between clusters and balls, it fol-

lows that
∑

w∈Ai
| ∪x∈V Cx(w,Ai, Ai+1, ǫ)| = O

(

n1+1/k log2 n
ǫ

)

. Our all-pairs approximate

distance oracle avoiding any failed vertex will keep the following data structures.

• Let px
i (v, ǫ) denote a vertex w from Ai with δ(v,w, x) ≤ (1+ǫ)δ(v, px

i (v), x). We keep

a data structure Ni ∀i < k, using which we can retrieve px
i (v, ǫ). This data-structure

is obtained by suitable augmentation of our single source (1+ǫ)-approximate oracle.

• For each w ∈ Ai, we keep our single source (1 + ǫ)-approximate oracle in Gi(w, ǫ)
which is the subgraph induced by ∪x∈V Cx(w,Ai, Ai+1, ǫ).



524 N. KHANNA AND S. BASWANA

It follows that the overall space required by the data structure will be O(kn1+1/k log3 n
ǫ4 ).

The query algorithm and the analysis on the stretch of the approximate distance reported

by the oracle are similar in spirit to that of Thorup and Zwick [13] (see [10] for details).

Theorem 5.3. Given an integer k > 1 and a fraction ǫ > 0, an unweighted graph G =

(V,E) can be processed to construct a data structure which can answer (2k − 1)(1 + ǫ)-
approximate distance query between any two nodes u ∈ V and v ∈ V avoiding any single

failed vertex in O(k) time. The total size of the data structure is O(kn1+1/k log3 n
ǫ4

).

Future work. (i) Can we design a data structure for single source (1+ǫ)-approx. shortest

paths avoiding a failed vertex for weighted graphs ? Such a data structure will immediately

extend our all-pairs approx. distance oracle avoiding a failed vertex to weighted graphs.

(ii) How to design approx. distance oracles avoiding two or more failed vertices ? Recent

work of Duan and Pettie [8], and Chechik et al. [5] provides additional motivation for this.
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Abstract. We prove a complexity dichotomy theorem for Holant Problems on 3-regular
graphs with an arbitrary complex-valued edge function. Three new techniques are intro-
duced: (1) higher dimensional iterations in interpolation; (2) Eigenvalue Shifted Pairs,
which allow us to prove that a pair of combinatorial gadgets in combination succeed in
proving #P-hardness; and (3) algebraic symmetrization, which significantly lowers the
symbolic complexity of the proof for computational complexity. With holographic reduc-
tions the classification theorem also applies to problems beyond the basic model.

1. Introduction

In this paper we consider the following subclass of Holant Problems [5, 6]. An in-

put regular graph G = (V,E) is given, where every e ∈ E is labeled with a (sym-

metric) edge function g. The function g takes 0-1 inputs from its incident nodes and

outputs arbitrary values in C. The problem is to compute the quantity Holant(G) =
∑

σ:V →{0,1}

∏

{u,v}∈E g({σ(u), σ(v)}).

Holant Problems are a natural class of counting problems. As introduced in [5, 6],

the general Holant Problem framework can encode all Counting Constraint Satisfaction

Problems (#CSP). This includes special cases such as weighted Vertex Cover, Graph

Colorings, Matchings, and Perfect Matchings. The subclass of Holant Problems

in this paper can also be considered as (weighted) H-homomorphism (or H-coloring) prob-

lems [2, 3, 7, 8, 9, 10] with an arbitrary 2×2 symmetric complex matrix H, however restricted

to regular graphs G as input. E.g., Vertex Cover is the case when H =

[

0 1

1 1

]

. When

the matrix H is a 0-1 matrix, it is called unweighted. Dichotomy theorems (i.e., the prob-

lem is either in P or #P-hard, depending on H) for unweighted H-homomorphisms with

undirected graphs H and directed acyclic graphs H are given in [8] and [7] respectively. A

1998 ACM Subject Classification: F.2.1.
Key words and phrases: Computational complexity.
The second author is supported by NSF CCF-0830488 and CCF-0914969.

c© M. Kowalczyk and J-Y. Cai
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010 
Editors: Jean-Yves Marion, Thomas Schwentick 
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2482



526 M. KOWALCZYK AND J-Y. CAI

dichotomy theorem for any symmetric matrix H with non-negative real entries is proved

in [2]. Goldberg et al. [9] proved a dichotomy theorem for all real symmetric matrices H.

Finally, Cai, Chen, and Lu have proved a dichotomy theorem for all complex symmetric

matrices H [3].

The crucial difference between Holant Problems and #CSP is that in #CSP, Equality

functions of arbitrary arity are presumed to be present. In terms of H-homomorphism prob-

lems, this means that the input graph is allowed to have vertices of arbitrarily high degrees.

This may appear to be a minor distinction; in fact it has a major impact on complexity. It

turns out that if Equality gates of arbitrary arity are freely available in possible inputs

then it is technically easier to prove #P-hardness. Proofs of previous dichotomy theorems

make extensive use of constructions called thickening and stretching. These constructions

require the availability of Equality gates of arbitrary arity (equivalently, vertices of ar-

bitrarily high degrees) to carry out. Proving #P-hardness becomes more challenging in

the degree restricted case. Furthermore there are indeed cases within this class of count-

ing problems where the problem is #P-hard for general graphs, but solvable in P when

restricted to 3-regular graphs.

We denote the (symmetric) edge function g by [x, y, z], where x = g(0, 0), y = g(0, 1) =

g(1, 0) and z = g(1, 1). Functions will also be called gates or signatures. (For Vertex

Cover, the function corresponding to H is the Or gate, and is denoted by the signature

[0, 1, 1].) In this paper we give a dichotomy theorem for the complexity of Holant Problems

on 3-regular graphs with arbitrary signature g = [x, y, z], where x, y, z ∈ C. First, if y = 0,

the Holant Problem is easily solvable in P. Assuming y 6= 0 we may normalize g and assume

y = 1. Our main theorem is as follows:

Theorem 1.1. Suppose a, b ∈ C, and let X = ab, Z = (a3+b3

2 )2. Then the Holant Problem
on 3-regular graphs with g = [a, 1, b] is #P-hard except in the following cases, for which the
problem is in P.

(1) X = 1.
(2) X = Z = 0.
(3) X = −1 and Z = 0.
(4) X = −1 and Z = −1.

If we restrict the input to planar 3-regular graphs, then these four categories are solvable in
P, as well as a fifth category X3 = Z. The problem remains #P-hard in all other cases. 1

These results can be extended to k-regular graphs (we detail how this is accomplished

in a forthcoming work). One can also use holographic reductions [15] to extend this theorem

to more general Holant Problems.

In order to achieve this result, some new proof techniques are introduced. To discuss

this we first take a look at some previous results. Valiant [13, 14] introduced the powerful

technique of interpolation, which was further developed by many others. In [5] a dichotomy

theorem is proved for the case when g is a Boolean function. The technique from [5] is to

provide certain algebraic criteria which ensure that interpolation succeeds, and then apply

these criteria to prove that (a large number yet) finitely many individual problems are #P-

hard. This involves (a small number of) gadget constructions, and the algebraic criteria

1Technically, computational complexity involving complex or real numbers should, in the Turing model,
be restricted to computable numbers. In other models such as the Blum-Shub-Smale model [1] no such
restrictions are needed. Our results are not sensitive to the exact model of computation.
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are powerful enough to show that they succeed in each case. Nonetheless this involves a

case-by-case verification. In [6] this theorem is extended to all real-valued a and b, and

we have to deal with infinitely many problems. So instead of focusing on one problem, we

devised (a large number of) recursive gadgets and analyzed the regions of (a, b) ∈ R
2 where

they fail to prove #P-hardness. The algebraic criteria from [5] are not suitable (Galois

theoretic) for general a and b, and so we formulated weaker but simpler criteria. Using

these criteria, the analysis of the failure set becomes expressible as containment of semi-

algebraic sets. As semi-algebraic sets are decidable, this offers the ultimate possibility that

if we found enough gadgets to prove #P-hardness, then there is a computational proof (of

computational intractability) in a finite number of steps. However this turned out to be a

tremendous undertaking in symbolic computation, and many additional ideas were needed

to finally carry out this plan. In particular, it would seem hopeless to extend that approach

to all complex a and b.
In this paper, we introduce three new ideas. (1) We introduce a method to construct

gadgets that carry out iterations at a higher dimension, and then collapse to a lower di-

mension for the purpose of constructing unary signatures. This involves a starter gadget, a

recursive iteration gadget, and a finisher gadget. We prove a lemma that guarantees that

among polynomially many iterations, some subset of them satisfies properties sufficient for

interpolation to succeed (it may not be known a priori which subset worked, but that does

not matter). (2) Eigenvalue Shifted Pairs are coupled pairs of gadgets whose transition ma-

trices differ by δI where δ 6= 0. They have shifted eigenvalues, and by analyzing their failure

conditions, we can show that except on very rare points, one or the other gadget succeeds.

(3) Algebraic symmetrization. We derive a new expression of the Holant polynomial over

3-regular graphs, with a crucially reduced degree. This simplification of the Holant and

related polynomials condenses the problem of proving #P-hardness to the point where all

remaining cases can be handled by symbolic computation. We also use the same expression

to prove tractability.

The rest of this paper is organized as follows. In Section 2 we discuss notation and

background information. In Section 3 we cover interpolation techniques, including how to

collapse higher dimensional iterations to interpolate unary signatures. In Section 4 we show

how to perform algebraic symmetrization of the Holant, and introduce Eigenvalue Shifted

Pairs (ESP) of gadgets. Then we combine the new techniques to prove Theorem 1.1. Some

proofs are omitted due to space limitations; a full version will appear in [11].

2. Notations and Background

We state the counting framework more formally. A signature grid Ω = (G,F , π) consists

of a labeled graph G = (V,E) where π labels each vertex v ∈ V with a function fv ∈ F . We

consider all edge assignments ξ : E → {0, 1}; fv takes inputs from its incident edges E(v)

at v and outputs values in C. The counting problem on the instance Ω is to compute2

HolantΩ =
∑

ξ

∏

v∈V

fv(ξ |E(v)).

Suppose G is a bipartite graph (U, V,E) such that each u ∈ U has degree 2. Furthermore

suppose each v ∈ V is labeled by an Equality gate =k where k = deg(v). Then any non-

zero term in HolantΩ corresponds to a 0-1 assignment σ : V → {0, 1}. In fact, we can merge

2The term Holant was first introduced by Valiant in [15] to denote a related exponential sum.
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the two incident edges at u ∈ U into one edge eu, and label this edge eu by the function

fu. This gives an edge-labeled graph (V,E′) where E′ = {eu : u ∈ U}. For an edge-labeled

graph (V,E′) where e ∈ E′ has label ge, HolantΩ =
∑

σ:V →{0,1}

∏

e=(v,w)∈E′ ge(σ(v), σ(w)).

If each ge is the same function g (but assignments σ : V → [q] take values in a finite set [q])
this is exactly the H-coloring problem (for undirected graphs g is a symmetric function).

In particular, if (U, V,E) is a (2, k)-regular bipartite graph, equivalently G′ = (V,E′) is a

k-regular graph, then this is the H-coloring problem restricted to k-regular graphs. In this

paper we will discuss 3-regular graphs, where each ge is the same symmetric complex-valued

function. We also remark that for general bipartite graphs (U, V,E), giving Equality (of

various arities) to all vertices on one side V defines #CSP as a special case of Holant

Problems. But whether Equality of various arities are present has a major impact on

complexity, thus Holant Problems are a refinement of #CSP.

A symmetric function g : {0, 1}k → C can be denoted as [g0, g1, . . . , gk], where gi is

the value of g on inputs of Hamming weight i. They are also called signatures. Frequently

we will revert back to the bipartite view: for (2, 3)-regular bipartite graphs (U, V,E), if

every u ∈ U is labeled g = [g0, g1, g2] and every v ∈ V is labeled r = [r0, r1, r2, r3],

then we also use #[g0, g1, g2] | [r0, r1, r2, r3] to denote the Holant Problem. Note that

[1, 0, 1] and [1, 0, 0, 1] are Equality gates =2 and =3 respectively, and the main dichotomy

theorem in this paper is about #[x, y, z] | [1, 0, 0, 1], for all x, y, z ∈ C. We will also denote

Hol(a, b) = #[a, 1, b] | [1, 0, 0, 1]. More generally, If G and R are sets of signatures, and

vertices of U (resp. V ) are labeled by signatures from G (resp. R), then we also use

#G | R to denote the bipartite Holant Problem. Signatures in G are called generators and

signatures in R are called recognizers. This notation is particularly convenient when we

perform holographic transformations. Throughout this paper, all (2, 3)-regular bipartite

graphs are arranged with generators on the degree 2 side and recognizers on the degree 3

side.

We use Arg to denote the principal value of the complex argument; i.e., Arg(c) ∈ (−π, π]

for all nonzero c ∈ C.

2.1. F-Gate

Any signature from F is available at a vertex as part of an input graph. Instead of a

single vertex, we can use graph fragments to generalize this notion. An F-gate Γ is a pair

(H,F), where H = (V,E,D) is a graph with some dangling edges D (Figure 1 contains

some examples). Other than these dangling edges, an F-gate is the same as a signature

grid. The role of dangling edges is similar to that of external nodes in Valiant’s notion [16],

however we allow more than one dangling edge for a node. In H = (V,E,D) each node is

assigned a function in F (we do not consider “dangling” leaf nodes at the end of a dangling

edge among these), E are the regular edges, and D are the dangling edges. Then we can

define a function for this F-gate Γ = (H,F),

Γ(y1, y2, . . . , yq) =
∑

(x1,x2,...,xp)∈{0,1}p

H(x1, x2, . . . , xp, y1, y2, . . . , yq),

where p = |E|, q = |D|, (y1, y2, . . . , yq) ∈ {0, 1}q denotes an assignment on the dan-

gling edges, and H(x1, x2, . . . , xp, y1, y2, . . . , yq) denotes the value of the signature grid

on an assignment of all edges, i.e., the product of evaluations at every vertex of H, for

(x1, x2, . . . , xp, y1, y2, . . . , yq) ∈ {0, 1}p+q . We will also call this function the signature of the
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(a) A starter gadget (b) A recursive gadget (c) A finisher gadget (d) A planar embedding
of a single iteration

Figure 1: Examples of binary starter, recursive, and finisher gadgets

F-gate Γ. An F-gate can be used in a signature grid as if it is just a single node with the

same signature. We note that even for a very simple signature set F , the signatures for all

F-gates can be quite complicated and expressive. Matchgate signatures are an example [16].

The dangling edges of an F-gate are considered as input or output variables. Any

m-input n-output F-gate can be viewed as a 2n by 2m matrix M which transforms arity-m
signatures into arity-n signatures (this is true even if m or n are 0). Our construction will

transform symmetric signatures to symmetric signatures. This implies that there exists an

equivalent n + 1 by m + 1 matrix ˜M which operates directly on column vectors written in

symmetric signature notation. We will henceforth identify the matrix ˜M with the F-gate

itself. The constructions in this paper are based upon three different types of bipartite

F-gates which we call starter gadgets, recursive gadgets, and finisher gadgets. An arity-r
starter gadget is an F-gate with no input but r output edges. If an F-gate has r input

and r output edges then it is called an arity-r recursive gadget. Finally, an F-gate is an

arity-r finisher gadget if it has r input edges 1 output edge. As a matter of convention, we

consider any dangling edge incident with a generator as an output edge and any dangling

edge incident with a recognizer as an input edge; see Figure 1.

3. Interpolation Techniques

3.1. Binary recursive construction

In this section, we develop our new technique of higher dimensional iterations for in-

terpolation of unary signatures.

Lemma 3.1. Suppose M ∈ C
3×3 is a nonsingular matrix, s ∈ C

3 is a nonzero vector,
and for all integers k ≥ 1, s is not a column eigenvector of Mk. Let Fi ∈ C

2×3 be three
matrices, where rank(Fi) = 2 for 1 ≤ i ≤ 3, and the intersection of the row spaces of
Fi is trivial {0}. Then for every n, there exists some F ∈ {Fi : 1 ≤ i ≤ 3}, and some
S ⊆ {FMks : 0 ≤ k ≤ n3}, such that |S| ≥ n and vectors in S are pairwise linearly
independent.

Proof. Let k > j ≥ 0 be integers. Then Mks and M js are nonzero and also linearly

independent, since otherwise s is an eigenvector of Mk−j. Let N = [M js,Mks] ∈ C
3×2,

then rank(N) = 2, and ker(NT) is a 1-dimensional linear subspace. It follows that there

exists an F ∈ {Fi : 1 ≤ i ≤ 3} such that the row space of F does not contain ker(NT),

and hence has trivial intersection with ker(NT). In other words, ker(NTFT) = {0}. We

conclude that FN ∈ C
2×2 has rank 2, and FM js and FMks are linearly independent.
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Each Fi, where 1 ≤ i ≤ 3, defines a coloring of the set K = {0, 1, . . . , n3} as follows:

color k ∈ K with the linear subspace spanned by FiM
ks. Thus, Fi defines an equivalence

relation ≈i where k ≈i k′ iff they receive the same color. Assume for a contradiction that

for each Fi, where 1 ≤ i ≤ 3, there are not n pairwise linearly independent vectors among

{FiM
ks : k ∈ K}. Then, including possibly the 0-dimensional space {0}, there can be at

most n distinct colors assigned by Fi. By the pigeonhole principle, some k and k′ with

0 ≤ k < k′ ≤ n3 must receive the same color for all Fi, where 1 ≤ i ≤ 3. This is a

contradiction and we are done.

The next lemma says that under suitable conditions we can construct all unary sig-

natures [x, y]. The method will be interpolation at a higher dimensional iteration, and

finishing up with a suitable finisher gadget. The crucial new technique here is that when

iterating at a higher dimension, we can guarantee the existence of one finisher gadget that

succeeds on polynomially many steps, which results in overall success. Different finisher

gadgets may work for different initial signatures and different input size n, but these need

not be known in advance and have no impact on the final success of the reduction.

Lemma 3.2. Suppose that the following gadgets can be built using complex-valued signatures
from a finite generator set G and a finite recognizer set R.

(1) A binary starter gadget with nonzero signature [z0, z1, z2].
(2) A binary recursive gadget with nonsingular recurrence matrix M , for which [z0, z1, z2]

T

is not a column eigenvector of Mk for any positive integer k.
(3) Three binary finisher gadgets with rank 2 matrices F1, F2, F3 ∈ C

2×3, where the
intersection of the row spaces of F1, F2, and F3 is the zero vector.

Then for any x, y ∈ C, #G ∪ {[x, y]} | R ≤T #G | R.

Proof. The construction begins with the binary starter gadget with signature [z0, z1, z2],

which we call N0. Let F = G ∪R. Recursively, F-gate Nk+1 is defined to be Nk connected

to the binary recursive gadget in such a way that the input edges of the binary recursive

gadget are merged with the output edges of Nk. Then F-gate Gk is defined to be Nk

connected to one of the finisher gadgets, with the input edges of the finisher gadget merged

with the output edges of Nk (see Figure 1(d)). Herein we analyze the construction with

respect to a given bipartite signature grid Ω for the Holant Problem #G ∪{[x, y]} | R, with

underlying graph G = (V,E). Let Q ⊆ V be the set of vertices with [x, y] signatures, and

let n = |Q|. By Lemma 3.1 fix j so that at least n + 2 of the first (n + 2)3 + 1 vectors

of the form FjM
k[z0, z1, z2]

T are pairwise linearly independent. We use finisher gadget Fj

in the recursive construction, so that the signature of Gk is FjM
k[z0, z1, z2]

T, which we

denote by [Xk, Yk]. We note that there exists a subset S of these signatures for which each

Yk is nonzero and |S| = n + 1. We will argue using only the existence of S, so there is no

need to algorithmically “find” such a set, and for that matter, one can try out all three

finisher gadgets without any need to determine which finisher gadget is “the correct one”

beforehand. If we replace every element of Q with a copy of Gk, we obtain an instance of

#G | R (note that the correct bipartite signature structure is preserved), and we denote

this new signature grid by Ωk. Then

HolantΩk
=

∑

0≤i≤n

ciX
i
kY

n−i
k

where ci =
∑

σ∈Ji

∏

v∈V \Q fv(σ|E(v)), Ji is the set of {0, 1} edge assignments where the

number of 0s assigned to the edges incident to the copies of Gk is i, fv is the signature at v,
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and E(v) is the set of edges incident to v. The important point is that the ci values do not

depend on Xk or Yk. Since each signature grid Ωk is an instance of #G | R, HolantΩk
can be

solved exactly using the oracle. Carrying out this process for every k ∈ {0, 1, . . . , (n + 2)3},
we arrive at a linear system where the ci values are the unknowns.










HolantΩ0

HolantΩ1

...

HolantΩ
(n+2)3











=











X0
0Y n

0 X1
0Y n−1

0 · · · Xn
0 Y 0

0

X0
1Y n

1 X1
1Y n−1

1 · · · Xn
1 Y 0

1
...

...
. . .

...

X0
(n+2)3Y

n
(n+2)3 X1

(n+2)3Y
n−1
(n+2)3

· · · Xn
(n+2)3Y

0
(n+2)3





















c0

c1
...

cn











.

Define xi = Xki
and yi = Yki

where S = {k0, k1, . . . , kn}, so that [xi, yi] ∈ S for 0 ≤ i ≤ n,

and we have a subsystem










y−n
0 · HolantΩ0

y−n
1 · HolantΩ1

...

y−n
n · HolantΩn











=











x0
0y

0
0 x1

0y
−1
0 · · · xn

0y−n
0

x0
1y

0
1 x1

1y
−1
1 · · · xn

1y−n
1

...
...

. . .
...

x0
ny0

n x1
ny−1

n · · · xn
ny−n

n





















c0

c1
...

cn











.

The matrix above has entry (xr/yr)
c at index (r, c). Due to pairwise linear independence

of [xr, yr], xr/yr is pairwise distinct for each r ∈ S. Hence this is a Vandermonde system

of full rank. Therefore the initial feasible linear system has full rank and we can solve it

for the ci values. With these values in hand, we can calculate HolantΩ =
∑

0≤i≤n cix
iyn−i

directly, completing the reduction.

The ability to simulate all unary signatures will allow us to prove #P-hardness. The

next lemma says that, if R contains the Equality gate =3, then other than on a 1-

dimensional curve ab = 1 and an isolated point (a, b) = (0, 0), the ability to simulate unary

signatures gives a reduction from Vertex Cover. Note that counting Vertex Cover on

3-regular graphs is just #[0, 1, 1] | [1, 0, 0, 1]. Xia et al. showed that this is #P-hard even

when the input is restricted to 3-regular planar graphs [17]. We will see shortly that on the

curve ab = 1 and at (a, b) = (0, 0), the problem Hol(a, b) is tractable.

Lemma 3.3. Suppose that (a, b) ∈ C
2−{(a, b) : ab = 1}−{(0, 0)} and let G and R be finite

signature sets where [a, 1, b] ∈ G and [1, 0, 0, 1] ∈ R. Further assume that #G∪{[xi, yi] : 0 ≤
i < m} | R ≤T #G | R for any xi, yi ∈ C and m ∈ Z

+. Then #G∪{[0, 1, 1]} | R ≤T #G | R,
and #G | R is #P-hard.

Proof. Since #[0, 1, 1] | [1, 0, 0, 1] is #P-hard, we only need to show how to simulate the

generator signature [0, 1, 1]. Respectively, Gadgets 1, 2, and 3 (Figure 2) can be used to

simulate generator signatures [b−1, 1, 2b], [0, 1, 5/(2a)], and [0, 1, 1] in the cases where ab = 0,

ab = −1, and both ab 6= 0 and ab 6= −1 (when ab = 0, we assume without loss of generality

that a = 0 and b 6= 0). To carry this out, we set θ = [b, b−1] in Gadget 1; θ = [1/(6a),−a/24]
and γ = [−3/a, a] in Gadget 2; and θ = (ab+1)(1−ab)−1[1,−a2], γ = [−a−2, b−1(1+ab)−1],

and ρ = (ab − 1)−1[−b, a] in Gadget 3. This results in a chain of reductions to simulate

[0, 1, 1] in all cases (i.e. Gadget 2 simulates a signature to be used with Gadget 1, which in

turn simulates a signature to be used with Gadget 3, and Gadget 3 simulates [0, 1, 1]).

It will be helpful to have conditions that are easier to check than those in Lemma

3.2. To this end, we establish condition 2 in terms of eigenvalues, and we build general-

purpose finisher gadgets to eliminate condition 3. Let M4, M5, and F be the recurrence

matrices for Gadget 4, Gadget 5, and the simplest possible binary finisher gadget (each
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θ

(a) Gadget 1

γ θ γ

(b) Gadget 2

ρ γ θ γ ρ

(c) Gadget 3

Figure 2: Gadgets used to simulate the [0,1,1] signature

built using generator signature [a, 1, b] and recognizer signature [1, 0, 0, 1]; see Figures 3(a),

3(b), and 1(c)). Provided that ab 6= 1 and a3 6= b3, it turns out that the finisher gadget sets

{F,FM4, FM2
4 } and {F,FM4, FM5} satisfy condition 3 of Lemma 3.2 when ab 6= 0 and

ab = 0, respectively. Together with Lemma 3.3, these observations yield the following.

Theorem 3.4. If the following gadgets can be built using generator [a, 1, b] and recognizer
[1, 0, 0, 1] where a, b ∈ C, ab 6= 1, and a3 6= b3, then the problem Hol(a, b) is #P-hard.

(1) A binary recursive gadget with nonsingular recurrence matrix M which has eigen-
values α and β such that α

β is not a root of unity.

(2) A binary starter gadget with signature s which is not orthogonal to any row eigen-
vector of M .

3.2. Unary recursive construction

Now we consider the unary case. The following lemma arrives from [12] and is stated

explicitly in [6]. It can be viewed as a unary version of Lemma 3.2 without finisher gadgets.

Lemma 3.5. Suppose there is a unary recursive gadget with nonsingular matrix M and a
unary starter gadget with nonzero signature vector s. If the ratio of the eigenvalues of M is
not a root of unity and s is not a column eigenvector of M , then these gadgets can be used
to interpolate all unary signatures.

Surprisingly, a set of general-purpose starter gadgets can be made for this construction

as long as ab 6= 1 and a3 6= b3, so we refine this lemma by eliminating the starter gadget

requirement. The starter gadgets are Fs, FM4s, and FM6s where M6 is Gadget 6 and s is

the single-vertex starter gadget (see Figures 3(c) and 1(a)).

Theorem 3.6. Suppose there is a unary recursive gadget with nonsingular matrix M , and
the ratio of the eigenvalues of M is not a root of unity. Then for any a, b ∈ C where ab 6= 1

and a3 6= b3, there is a starter gadget built using generator [a, 1, b] and recognizer [1, 0, 0, 1]
for which the resulting construction can be used to interpolate all unary signatures.

(a) Gadget 4 (b) Gadget 5 (c) Gadget 6 (d) Gadget 7 (e) Gadget 8 (f) Gadget 9

Figure 3: Binary recursive gadgets
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4. Complex Signatures

Now we aim to characterize Hol(a, b) where a, b ∈ C. The next lemma introduces the

technique of algebraic symmetrization. We show that over 3-regular graphs, the Holant

value is expressible as an integer polynomial P (X,Y ), where X = ab and Y = a3 + b3.

This change of variable, from (a, b) to (X,Y ), is crucial in two ways. First, it allows us to

derive tractability results easily, drawing connections between problems that may appear

unrelated, and the tractability of one implies the other. Second, it facilitates the proof of

hardness for those (a, b) where the problem is indeed #P-hard by reducing the degree of

the polynomials involved. Once this transformation is made, four binary recursive gadgets

easily cover all of the #P-hard problems where X and Y are real-valued, with a straightfor-

ward symbolic computation using CylindricalDecomposition in MathematicaTM. All

gadget constructions in this section use [a, 1, b] and [1, 0, 0, 1] signatures exclusively, and we

henceforth denote X = ab and Y = a3 + b3 for the remainder of this paper.

Lemma 4.1. Let G be a 3-regular graph. Then there exists a polynomial P (·, ·) with two
variables and integer coefficients such that for any signature grid Ω having underlying graph
G and every edge labeled [a, 1, b], the Holant value is HolantΩ = P (ab, a3 + b3).

Proof. Consider any {0, 1} vertex assignment σ with a non-zero valuation. If σ′ is the

complement assignment switching all 0’s and 1’s in σ, then for σ and σ′, we have the

sum of valuations aibj + ajbi for some i and j. Here i (resp. j) is the number of edges

connecting two degree 3 vertices both assigned 0 (resp. 1) by σ. We note that aibj +ajbi =

(ab)min(i,j)(a|i−j| + b|i−j|).

We prove i ≡ j (mod 3) inductively. For the all-0 assignment, this is clear since every

edge contributes a factor a and the number of edges is divisible by 3 for a 3-regular graph.

Now starting from any assignment σ, if we switch the assignment on one vertex from 0 to 1,

it is easy to verify that it changes the valuation from aibj to ai′bj′ , where i− j = i′ − j′ + 3.

As every {0, 1} assignment is obtainable from the all-0 assignment by a sequence of switches,

the conclusion i ≡ j (mod 3) follows.

Now aibj +ajbi = (ab)min(i,j)(a3k +b3k), for some k ≥ 0 and a simple induction a3(k+1)+

b3(k+1) = (a3k +b3k)(a3 +b3)−(ab)3(a3(k−1) +b3(k−1)) shows that the Holant is a polynomial

P (ab, a3 + b3) with integer coefficients.

Corollary 4.2. If ab = −1 and a12 = 1, then Hol(a, b) is in P.

Proof. Immediate from Lemma 4.1, since the problems Hol(1,−1), Hol(−i,−i), and Hol(i, i)
are all known to be solvable in P (these fall within the families F1, F2, and F3 in [3]).

We now list all of the cases where Hol(a, b) is computable in polynomial time.

Theorem 4.3. If any of the following four conditions is true, then Hol(a, b) is solvable in
P:

(1) ab = 1,
(2) a = b = 0,
(3) a12 = 1 and b = −a−1,
(4) a3 = b3 and the input is restricted to planar graphs.

Proof. If ab = 1 then the signature [a, 1, b] is degenerate and the Holant can be computed

in polynomial time. If a = b = 0, a 2-coloring algorithm can be employed on the edges. If

a12 = 1 and b = −a−1 then we are done by Corollary 4.2. If we restrict the input to planar

graphs and a3 = b3, holographic algorithms can be applied [4].
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(a) Gadget 10 (b) Gadget 11 (c) Gadget 12 (d) Gadget 13 (e) Gadget 14 (f) Gadget 15 (g) Gadget 16

Figure 4: Unary recursive gadgets

Our main task in this paper is to prove that all remaining problems are #P-hard. The

following two lemmas provide sufficient conditions to satisfy the eigenvalue requirement of

the recursive constructions.

Lemma 4.4. If both roots of the complex polynomial x2 + Bx + C have the same norm,

then B|C| = BC and B2C = B
2
C. If further B 6= 0 and C 6= 0, then Arg(B2) = Arg(C).

Lemma 4.5. If all roots of the complex polynomial x3+Bx2+Cx+D have the same norm,
then C|C|2 = B|B|2D.

Now we introduce a powerful new technique called Eigenvalue Shifted Pairs.

Definition 4.6. A pair of nonsingular square matrices M and M ′ is called an Eigenvalue
Shifted Pair (ESP) if M ′ = M +δI for some non-zero δ ∈ C, and M has distinct eigenvalues.

Clearly for such a pair, M ′ also has distinct eigenvalues. The recurrence matrices of

Gadgets 10 and 11 (Figure 4) differ only by ab−1 along the diagonal, and form an Eigenvalue

Shifted Pair for nearly all a, b ∈ C. We will make significant use of such Eigenvalue Shifted

Pairs, but first we state a technical lemma.

Lemma 4.7. Suppose α, β, δ ∈ C, |α| = |β|, α 6= β, δ 6= 0, and |α + δ| = |β + δ|. Then
there exists r, s ∈ R such that rδ = α + β and sδ2 = αβ.

Corollary 4.8. Let M and M ′ be an Eigenvalue Shifted Pair of 2 by 2 matrices. If both
M and M ′ have eigenvalues of equal norm, then there exists r, s ∈ R such that tr(M) = rδ
(possibly 0) and det(M) = sδ2.

Proof. Let α and β be the eigenvalues of M , so α + δ and β + δ are the eigenvalues of M ′.

Suppose that |α| = |β| and |α+ δ| = |β + δ|. Then by Lemma 4.7, there exists r, s ∈ R such

that tr(M) = α + β = rδ and det(M) = αβ = sδ2.

We now apply an ESP to prove that most settings of Hol(a, b) are #P-hard.

Lemma 4.9. Suppose X 6= ±1, X2 + X + Y 6= 0, and 4(X − 1)2(X + 1) 6= (Y + 2)2. Then
either unary Gadget 10 or unary Gadget 11 has nonzero eigenvalues with distinct norm,
unless X and Y are both real numbers.

Proof. Gadgets 10 and 11 have M10 =

[

a3 + 1 a + b2

a2 + b b3 + 1

]

and M11 =

[

a3 + ab a + b2

a2 + b ab + b3

]

as their recurrence matrices, so M11 = M10 + (X − 1)I, and the eigenvalue shift is nonzero.

Checking the determinants, det(M10) = (X −1)2(X +1) 6= 0 and det(M11) = (X −1)(X2 +

X + Y ) 6= 0. Also, tr(M10)
2 − 4 det(M10) = (Y + 2)2 − 4(X − 1)2(X + 1) 6= 0, so the

eigenvalues of M10 are distinct. Therefore by Corollary 4.8, either M10 or M11 has nonzero

eigenvalues of distinct norm unless tr(M10) = r(X − 1) and det(M10) = s(X − 1)2 for

some r, s ∈ R. Then we would have (X − 1)2(X + 1) = s(X − 1)2 so X = s − 1 ∈ R and

Y + 2 = r(X − 1) so Y = r(X − 1) − 2 ∈ R.
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Now we will deal with the following exceptional cases from Lemma 4.9 (X = 1 is

tractable by Theorem 4.3).

0. X ∈ R and Y ∈ R

1. X2 + X + Y = 0

2. X = −1

3. 4(X − 1)2(X + 1) = (Y + 2)2

The case where X and Y are both real is dealt with using the tools developed in

Section 3, and some symbolic computation. This includes the case where a and b are both

real as a subcase. When a and b are both real, a dichotomy theorem for the complexity of

Hol(a, b) has been proved in [6] with a significant effort. With the new tools developed, we

offer a simpler proof. This also covers some cases where a or b is complex. Working with

real-valued X and Y is a significant advantage, since the failure condition given by Lemma

4.5 is simplified by the disappearance of norms and conjugates. This brings the problem of

proving #P-hardness within reach of symbolic computation via cylindrical decomposition.

We apply Theorem 3.4 to Gadgets 4, 7, 8, and 9 (Figure 3) together with a starter gadget

(Figure 1(a)) to prove that these problems are #P-hard. Conditions 1 and 2 of Theorem 3.4

are encoded directly into a query for CylindricalDecomposition in MathematicaTM.

Theorem 4.10. Suppose a, b ∈ C, X,Y ∈ R, ab 6= 1, a3 6= b3, and it is not the case that
a6 = 1 and ab = −1. Then the problem Hol(a, b) is #P-hard.

Now we can assume that X /∈ R or Y /∈ R, and we deal with the remaining three

conditions. Note that if X2 + X + Y = 0 then X ∈ R implies Y ∈ R. So in the following

lemma, the assumption that X and Y are not both real numbers amounts to X /∈ R.

Lemma 4.11. If X2 + X + Y = 0 and X /∈ R then the recurrence matrix of unary Gadget
12 has nonzero eigenvalues with distinct norm.

Proof. Let M12 be the recurrence matrix for unary Gadget 12. Then det(M12) = X6−6X5−
X4Y + 16X4 + 11X3Y − 10X3 + 5X2Y 2 − 7X2Y −X2 + XY 3 − 4XY 2 − 3XY − Y 3 − Y 2.

Amazingly, with the condition X2 + X + Y = 0, this polynomial factors into −X2(X − 1)5.

Similarly, the trace, which is −2X3+6X2+3XY +Y 2+Y , also factors into X(X−1)3. Since

det(M12) 6= 0, tr(M12) 6= 0, and (1 − X) det(M12) = tr(M12)
2, we know Arg(det(M12)) 6=

Arg(tr(M12)
2) and conclude by Lemma 4.4 that the eigenvalues of M12 (which are nonzero)

have distinct norm.

Similarly, Gadgets 11 and 13 can be used to deal with the X = −1 condition. The

4(X −1)2(X +1) = (Y +2)2 condition can be dealt with using Gadgets 13 and 14 (an ESP)

in addition to Gadgets 15 and 16. These gadgets, together with Lemma 3.3 and Theorem

3.6, give the following theorem (note that X = −1 and Y = ±2i if and only if a3 = ±i and

b = −a−1; any such setting of a and b is tractable by Theorem 4.3).

Theorem 4.12. Suppose a, b ∈ C such that X and Y are not both real, X 6= 1, a3 6= b3,
and either X 6= −1 or Y 6= ±2i. Then the problem Hol(a, b) is #P-hard.

Recall Vertex Cover is #P-hard on 3-regular planar graphs, and note that all gadgets

discussed are planar (in the case of Gadget 8, each iteration can be redrawn in a planar

way by “going around” the previous iterations; see Figure 1(d)). Thus, all of the hardness

results proved so far still apply when the input graphs are restricted to planar graphs. There

are, however, a few cases where the problem is #P-hard in general, yet is polynomial time

computable when restricted to planar graphs. The relevant interpolation results can be
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obtained with Gadget 4 and holographic reductions, using a technique demonstrated in [5].

Given this, we have the following result.

Theorem 4.13. The problem Hol(a, b) is #P-hard for all a, b ∈ C except in the following
cases, for which the problem is in P.

(1) ab = 1

(2) a = b = 0

(3) a12 = 1 and b = −a−1

If we restrict the input to planar graphs, then these three categories are tractable in P, as
well as a fourth category a3 = b3, and the problem remains #P-hard in all other cases.

A simple coordinate change from (a, b) to (X, (Y
2 )2) translates this into Theorem 1.1.

References

[1] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1998.

[2] A. Bulatov and M. Grohe. The complexity of partition functions. Theoretical Computer Science, 348(2-
3):148–186, 2005.

[3] J-Y. Cai, X. Chen, and P. Lu. Graph homomorphisms with complex values: a dichotomy theorem.
CoRR, abs/0903.4728, 2009.

[4] J-Y. Cai and P. Lu. Holographic algorithms: from art to science. In STOC ’07: Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, pages 401–410, 2007.

[5] J-Y. Cai, P. Lu, and M. Xia. Holographic algorithms by Fibonacci gates and holographic reductions for
hardness. In FOCS ’08: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer
Science, pages 644–653, 2008.

[6] J-Y. Cai, P. Lu, and M. Xia. A computational proof of complexity of some restricted counting prob-
lems. In TAMC ’09: Proceedings of Theory and Applications of Models of Computation, 6th Annual
Conference, LNCS 5532, pages 138–149, 2009.

[7] M. Dyer, L.A. Goldberg, and M. Paterson. On counting homomorphisms to directed acyclic graphs.
Journal of the ACM, 54(6), 2007.

[8] M. Dyer and C. Greenhill. The complexity of counting graph homomorphisms (extended abstract).
In SODA ’00: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
246–255, 2000.

[9] L.A. Goldberg, M. Grohe, M. Jerrum, and M. Thurley. A complexity dichotomy for partition functions
with mixed signs. CoRR, abs/0804.1932, 2008.
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Abstract. We study the existence of infinite cliques in ω-automatic (hyper-)graphs. It
turns out that the situation is much nicer than in general uncountable graphs, but not as
nice as for automatic graphs.

More specifically, we show that every uncountable ω-automatic graph contains an un-
countable co-context-free clique or anticlique, but not necessarily a context-free (let alone
regular) clique or anticlique. We also show that uncountable ω-automatic ternary hyper-
graphs need not have uncountable cliques or anticliques at all.

Introduction

Every infinite graph has an infinite clique or an infinite anticlique – this is the paradig-
matic formulation of Ramsey’s theorem [Ram30]. But this theorem is highly non-construc-
tive since there are recursive infinite graphs whose infinite cliques and anticliques are all
non-recursive (not even in Σ0

2, [Joc72], cf. [Gas98, Thm. 4.6]). Recall that a graph is re-
cursive if both its set of nodes and its set of edges can be decided by a Turing machine.
Replacing these Turing machines by finite automata, one obtains the more restrictive no-
tion of an automatic graph: the set of nodes is a regular set and whether a pair of nodes
forms an edge can be decided by a synchronous two-tape automaton (this concept is known
since the beginning of automata theory, a systematic study started with [KN95, BG04], see
[Rub08] for a recent overview). In this context, the situation is much more favourable: every
infinite automatic graph contains an infinite regular clique or an infinite regular anticlique
(cf. [Rub08]).

Soon after Ramsey’s paper from 1930, authors got interested in a quantitative analysis.
For finite graphs, one can ask for the minimal number of nodes that guarantee the existence
of a clique or anticlique of some prescribed size. This also makes sense in the infinite: how
many nodes are necessary and sufficient to obtain a clique or anticlique of size ℵ0 (Ramsey’s
theorem tells us: ℵ0) or ℵ1 (here one needs more than 2ℵ0 nodes [Sie33, ER56]).

Since automatic graphs contain at most ℵ0 nodes, we need a more general notion for
a recursion-theoretic analysis of this situation. For this, we use Blumensath & Grädel’s
[BG04] ω-automatic graphs: the names of nodes form a regular ω-language and the edge
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relation (on names) as well as the relation “these two names denote the same node” can be
decided by a synchronous 2-tape Büchi-automaton. In this paper, we answer the question
whether these ω-automatic graphs are more like automatic graphs (i.e., large cliques or
anticliques with nice properties exist) or like general graphs (large cliques need not exist).

Our answer to this question is a clear “somewhere in between”: We show that every
ω-automatic graph of size 2ℵ0 contains a clique or anticlique of size 2ℵ0 (Theorem 3.1) – this
is in contrast to the case of arbitrary graphs where such a subgraph need not exist [Sie33].
But in general, there is no regular clique or anticlique (Theorem 3.13) – this is in contrast
with the case of automatic graphs where we always find a large regular clique or anticlique.
Finally, we also provide an ω-automatic “ternary hypergraph” of size 2ℵ0 without any clique
or anticlique of size ℵ1, let alone 2ℵ0 (Theorem 3.11).

For Theorem 3.1, we re-use the proof from [BKR08] that was originally constructed to
deal with infinity quantifiers in ω-automatic structures. The proof of Theorem 3.13 makes
use of the “ultimately equal” relation. This relation was also crucial in the separation of
injectively from general ω-automatic structures [HKMN08] as well as in the handling of
infinity quantifiers in [KL08] and [BKR08]. In the ternary hypergraph from Theorem 3.11,
a 3-set {x, y, z} of infinite words with x <lex y <lex z forms an undirected hyperedge iff the
longest common prefix of x and y is shorter than the longest common prefix of y and z.

¿From Theorem 3.1 (i.e., the existence of large cliques or anticliques in ω-automatic
graphs), we derive that any ω-automatic partial order of size 2ℵ0 contains an antichain of
size 2ℵ0 or a copy of the real line.

1. Preliminaries

1.1. Ramsey-theory

For a set V and a natural number k ≥ 1, let [V ]k denote the set of k-element subsets
of V . A (k, ")-partition is a pair G = (V,E1, . . . , E!) where V is a set and (E1, . . . , E!)
is a partition of [V ]k into (possibly empty) sets. For 1 ≤ i ≤ ", a set W ⊆ V is Ei-
homogeneous if [W ]k ⊆ Ei; it is homogeneous if it is Ei-homogeneous for some 1 ≤ i ≤ ".
The case k = " = 2 is special: any (2, 2)-partition G = (V,E1, E2) can be considered as an
(undirected loop-free) graph (V,E1). Homogeneous sets in G are then complete or discrete
induced subgraphs of (V,E1).

Ramsey theory is concerned with the following question: Does every (k, ")-partition
G = (V,E1, . . . , E!) with |V | = κ have a homogeneous set of size λ (where κ and λ are
cardinal numbers and k, " ≥ 2 are natural numbers). If this is the case, one writes

κ → (λ)k!

(a notation due to Erdős and Rado [ER56]). This allows to formulate Ramsey’s theorem
concisely:

Theorem 1.1 (Ramsey [Ram30]). If k, " ≥ 2, then ℵ0 → (ℵ0)k! .

In particular, every graph with ℵ0 nodes contains a complete or discrete induced sub-
graph of the same size. If one wants to find homogeneous sets of size ℵ1, the base set has
to be much larger:

Theorem 1.2 (Sierpiński [Sie33]). If k, " ≥ 2, then 2ℵ0 &→ (ℵ1)k! and therefore in particular
2ℵ0 &→ (2ℵ0)k! .
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Erdős and Rado [ER56] proved that partitions of size properly larger than 2ℵ0 have
homogeneous sets of size ℵ1. For more details on infinite Ramsey theory, see [Jec02, Chap-
ter 9].

1.2. ω-languages

Let Γ be a finite alphabet. With Γ∗ we denote the set of all finite words over the
alphabet Γ. The set of all nonempty finite words is Γ+. An ω-word over Γ is an infinite
ω-sequence x = a0a1a2 · · · with ai ∈ Γ, we set x[i, j) = aiai+1 . . . aj−1 for natural numbers
i ≤ j. In the same spirit, x[i, ω) denotes the ω-word aiai+1 . . . . The set of all ω-words
over Γ is denoted by Γω and Γ∞ = Γ∗ ∪ Γω. For a set V ⊆ Γ+ of finite words let V ω ⊆ Γω

be the set of all ω-words of the form v0v1v2 · · · with vi ∈ V . Two infinite words x, y ∈ Γω

are ultimately equal, briefly x ∼e y, if there exists i ∈ N with x[i, ω) = y[i, ω). By ≤lex, we
denote the lexicographic order on the set Σω (with some, implicitly assumed linear order
on the letters from Σ) and ≤pref the prefix order on Σ∞.

For Σ = {0, 1}, the support supp(x) ⊆ N is the set of positions of the letter 1 in the
word x ∈ Σω.

A (nondeterministic) Büchi-automaton M is a tuple M = (Q,Γ, δ, ι, F ) where Q is
a finite set of states, ι ∈ Q is the initial state, F ⊆ Q is the set of final states, and
δ ⊆ Q × Γ × Q is the transition relation. If Γ = Σn for some alphabet Σ, then we speak
of an n-dimensional Büchi-automaton over Σ. A run of M on an ω-word x = a0a1a2 · · · is
an ω-word r = p0p1p2 · · · over the set of states Q such that (pi, ai, pi+1) ∈ δ for all i ≥ 0.
The run r is successful if p0 = ι and there exists a final state from F that occurs infinitely
often in r. The ω-language L(M) ⊆ Γω defined by M is the set of all ω-words that admit
a successful run. An ω-language L ⊆ Γω is regular if there exists a Büchi-automaton M
with L(M) = L.

Alternatively, regular ω-languages can be represented algebraically. To this end, one
defines ω-semigroups to be two-sorted algebras S = (S+, Sω; ·, ∗, π) where · : S+×S+ → S+

and ∗ : S+×Sω → Sω are binary operations and π : (S+)ω → Sω is an ω-ary operation such
that the following hold:

• (S+, ·) is a semigroup,
• s ∗ (t ∗ u) = (s · t) ∗ u,
• s0 · π((si)i≥1) = π((si)i≥0),
• π((s1

i · s
2
i · · · s

ki
i )i≥0) = π((tj)j≥0) whenever

(tj)j≥0 = (s1
0, s

2
0, . . . , s

k0

0 , s1
1, . . . , s

k1

1 , . . . ) .

The ω-semigroup S is finite if both, S+ and Sω are finite. The free ω-semigroup generated
by Γ is

Γ∞ = (Γ+,Γω; ·, ∗, π)

where u ·v and u∗x are the natural operations of prefixing a word by the finite word u, and
π((ui)i≥0) is the omega-word u0u1u2 . . . . A homomorphism h : Γ∞ → S of ω-semigroups
maps finite words to elements of S+ and ω-words to elements of Sω and commutes with the
operations ·, ∗, and π. The algebraic characterisation of regular ω-languages then reads as
follows.

Proposition 1.3. An ω-language L ⊆ Γω is regular if and only if there exists a finite
ω-semigroup S, a set T ⊆ Sω, and a homomorphism η : Γ∞ → S such that L = η−1(T ).
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Hence, every Büchi-automaton is “equivalent” to a homomorphism into some finite
ω-semigroup together with a distinguished set T (and vice versa).

For ω-words xi = a0
i a

1
i a

2
i · · · ∈ Γω, the convolution x1 ⊗x2 ⊗ · · · ⊗xn ∈ (Γn)ω is defined

by
(x1, . . . , xn)⊗ = (a0

1, . . . , x
0
n) (a1

1, . . . , a
1
n) (a2

1, . . . , a
2
n) · · · .

An n-ary relation R ⊆ (Γω)n is called ω-automatic if the ω-language {(x1, . . . , xn)⊗ |
(x1, . . . , xn) ∈ R} is regular.

To describe the complexity of ω-languages, we will use language-theoretic terms. Let
LANG denote the class of all languages (i.e., sets of finite words over some finite set of sym-
bols) and ωLANG the class of all ω-languages. By REG and ωREG, we denote the regular
languages and ω-languages, resp. An ω-language is context-free if it can be accepted by a
pushdown-automaton with Büchi-acceptance (on states), it is co-context-free if its comple-
ment is context-free. We denote by ωCF the set of context-free ω-languages and by co-ωCF
their complements. An ω-language belongs to LANG∗ if it is of the form

⋃

1≤i≤n UiV ω
i

with Ui, Vi ∈ LANG. Then ωREG ⊆ LANG∗ and ωCF ⊆ LANG∗ where the sets Ui and
Vi are regular and context-free, resp [Sta97]. In between these two classes, we define the
class ωerCF of eventually regular context-free ω-languages that comprises all sets of the
form

⋃

1≤i≤n UiV ω
i with Ui ∈ LANG context-free and Vi ∈ LANG regular. Alternatively,

eventually regular context-free ω-languages are the finite unions of ω-languages of the form
C ·L where C is a context free-language and L a regular ω-language. Let co-ωerCF denote
the set of complements of eventually regular context-free ω-languages.

A final, rather peculiar class of ω-languages is Λ: it is the class of ω-languages L such
that (R,≤) embeds into (L,≤lex) (the name derives from the notation λ for the order type
of (R,≤)).

1.3. ω-automatic (k, ")-partitions

An ω-automatic presentation of a (k, ")-partition (V,E1, . . . , E!) is a pair (L, h) consist-
ing of a regular ω-language L and a surjection h : L → V such that {(x1, x2, . . . , xk) ∈ Lk |
{h(x1), h(x2), . . . , h(xk)} ∈ Ei} for 1 ≤ i ≤ k and R≈ = {(x1, x2) ∈ L2 | h(x1) = h(x2)} are
ω-automatic. An ω-automatic presentation is injective if h is a bijection. A (k, ")-partition
is (injectively) ω-automatic if it has an (injective) ω-automatic presentation. From [BKR08],
it follows that an uncountable ω-automatic (k, ")-partition has 2ℵ0 elements.

This paper is concerned with the question whether every (injective) ω-automatic pre-
sentation (L, h) of a (k, ")-partition admits a “simple” set H ⊆ L such that h(H) has λ
elements and is homogeneous. More precisely, let C be a class of ω-languages, k, " ≥ 2
natural numbers, and κ and λ cardinal numbers. Then we write

(κ, ωA) → (λ, C)k!

if the following partition property holds: for every ω-automatic presentation (L, h) of a
(k, ")-partition G of size κ, there exists H ⊆ L in C such that h(H) is homogeneous in G
and of size λ.

(κ, ωiA) → (λ, C)k!
is to be understood similarly where we only consider injective ω-automatic presentations.

Remark 1.4. Let G = (V,E1, . . . , E!) be some (k, ")-partition with ω-automatic presenta-
tion (L, h). Then the partition property above requires that there is a “large” homogeneous
set X ⊆ V and an ω-language H ∈ C such that h(H) = X, in particular, every element of
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X has at least one representative in H. Alternatively, one could require that h−1(X) ⊆ L
is an ω-language from C. In this paper, we only encounter classes C of ω-languages such
that the following closure property holds: if H ∈ C and R is an ω-automatic relation, then
also R(H) = {y | ∃x ∈ H : (x, y) ∈ R} ∈ C. Since h−1h(H) = R≈(H), all our results also
hold for this alternative requirement h−1(X) ∈ C.

This paper shows

(0) if k, " ≥ 2, then (ℵ0, ωA) → (ℵ0, ωREG)k! , but (2ℵ0 , ωA) &→ (ℵ0, ωREG)k! , see Theo-
rem 2.1.

(1) if " ≥ 2, then (2ℵ0 , ωA) → (2ℵ0 , co-ωerCF)2! , see Theorem 3.1.
(2) if k ≥ 3, " ≥ 2, and λ > ℵ0, then (2ℵ0 , ωiA) &→ (λ, ωLANG)k! , see Theorem 3.11.
(3) if k, " ≥ 2 and λ > ℵ0, then (2ℵ0 , ωiA) &→ (λ, ωCF)k! , see Theorem 3.13.

Here, the first part of (0) is a strengthening of Ramsey’s theorem since the infinite homo-
geneous set is regular. The second part might look surprising since larger (k, ")-partitions
should have larger homogeneous sets – but not necessarily regular ones! In contrast to
Sierpiński’s result, (1) shows that ω-automatic (2, ")-partitions have a larger degree of ho-
mogeneity than arbitrary (2, ")-partitions. Even more, the complexity of the homogeneous
set can be bound in language-theoretic terms (there is always a homogeneous set that is
the complement of an eventually regular context-free ω-language). Statement (2) is an
analogue of Sierpiński’s Theorem 1.2 showing that (injective) ω-automatic (k, ")-partitions
are as in-homogeneous as arbitrary (k, ")-partitions provided k ≥ 3. The complexity bound
from (1) is shown to be optimal by (3) proving that one cannot always find context-free
homogeneous sets. Hence, despite the existence of large homogeneous sets for k = 2, for
some ω-automatic presentations, they are bound to have a certain (low) level of complexity
that is higher than the regular ω-languages.

2. Countably infinite homogeneous sets

Let k, " ≥ 2 be arbitrary. Then, from Ramsey’s theorem, we obtain immediately
(ℵ0, ωA) → (ℵ0, ωLANG)k! and (2ℵ0 , ωA) → (ℵ0, ωLANG)k! , i.e., all infinite ω-automatic
(k, ")-partitions have homogeneous sets of size ℵ0. In this section, we ask whether such
homogeneous sets can always be chosen regular:

Theorem 2.1. Let k, " ≥ 2. Then

(a) (ℵ0, ωA) → (ℵ0, ωREG)k! .
(b) (2ℵ0 , ωiA) → (ℵ0, ωREG)k! .
(c) (2ℵ0 , ωA) &→ (ℵ0,LANG∗)k! , and therefore in particular (2ℵ0 , ωA) &→ (ℵ0, ωCF)k! and

(2ℵ0 , ωA) &→ (ℵ0, ωREG)k! .

Proof. Let (L, h) be an ω-automatic presentation of some (k, ")-partition G = (V,E1, . . . , E!)
with |V | = ℵ0. By [BKR08], there exists L′ ⊆ L regular such that (L′, h) is an injective
ω-automatic presentation of G. From a Büchi-automaton for L′, one can compute a finite
automaton accepting some language K such that (K,h′) is an injective automatic presenta-
tion of G [Blu99]. Hence, by [Rub08], there exists a regular set H ′ ⊆ K such that h′(H ′) is
homogeneous in G and countably infinite. From this set, one obtains a regular ω-language
H ⊆ L′ ⊆ L with h(H) = h′(H ′), i.e., h(H) is a homogeneous set of size ℵ0. This proves (a).

To prove (b), let (L, h) be an injective ω-automatic presentation of some (k, ")-partition
G = (V,E1, . . . , E!) of size 2ℵ0 . Then there exists a regular ω-language L′ ⊆ L with
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|L′| = ℵ0. Consider the sub-partition G′ = (h(L′), E′
1, . . . , E

′
!) with E′

i = Ei∩ [h(L′)]k. This
(k, ")-partition has as ω-automatic presentation the pair (L′, h). Then, by (a), there exists
L′′ ⊆ L′ regular and infinite such that h(L′′) is homogeneous in G′ and therefore in G. Since
h is injective, this implies |h(L′)| = |L′| = ℵ0.

Finally, we show (c) by a counterexample. Let L = {0, 1}ω , V = L/∼e, and h : L → V
the canonical mapping. Furthermore, set E1 = [L]k. Then G = (V,E1, ∅, . . . , ∅) is a (k, ")-
partition with ω-automatic presentation (L, h).

Now let H =
⋃

1≤i≤n UiV ω
i ⊆ L for some non-empty languages Ui, Vi ⊆ {0, 1}+ such

that h(H) is homogeneous and infinite.
If |V ω

i | = 1, then UiV ω
i /∼e is finite. Since h(H) is infinite, there exists 1 ≤ i ≤ n with

|V ω
i | > 1 implying the existence of words v,w ∈ V +

i such that |v| = |w| and v &= w. For
u ∈ Ui, the set u{v,w}ω ⊆ H has 2ℵ0 equivalence classes wrt. ∼e. Hence |h(H)| = 2ℵ0 .

3. Uncountable homogeneous sets

3.1. A Ramsey theorem for ω-automatic (2, ")-partitions

The main result of this section is the following theorem that follows immediately from
Prop. 3.7 and Lemma 3.5.

Theorem 3.1. For all " ≥ 2, we have (2ℵ0 , ωA) → (2ℵ0 , co-ωerCF ∩Λ)2! .

3.1.1. The proof. The proof of this theorem will construct a language from co-ωerCF that
describes a homogeneous set. This language is closely related to the following language

N = 1{0, 1}ω ∩
⋂

n≥0

{0, 1}n(0{0, 1}n00 ∪ 10n{01, 10}){0, 1}ω ,

i.e., an ω-word x belongs to N iff it starts with 1 and, for every n ≥ 0, we have x[n, 2n+3) ∈
0{0, 1}∗00 ∪ 10∗01 ∪ 10∗10. We first list some useful properties of this language N :

Lemma 3.2. The ω-language N is contained in (1+0+)ω, belongs to co-ωerCF ∩ Λ, and
supp(x) ∩ supp(y) is finite for any x, y ∈ N distinct.

Proof. Let bi ∈ {0, 1} for all i ≥ 0 and suppose the word x = b0b1 . . . belongs to N . Then
b0 = 1, hence the word x contains at least one occurrence of 1. Note that, whenever bn = 1,
then {b2n+1, b2n+2} = {0, 1}, hence x contains infinitely many occurrences of 1 and therefore
infinitely many occurrences of 0, i.e., N ⊆ (1+0+)ω.

Note that the complement of N equals

0{0, 1}ω ∪
⋃

n≥0

(

{0, 1}n(0{0, 1}n{01, 10, 11} ∪ 1{0, 1}n{00, 11}){0, 1}ω
)

=



0 ∪
⋃

n≥0

{0, 1}n(0{0, 1}n{01, 10, 11} ∪ 1{0, 1}n{00, 11})



 {0, 1}ω .

Since the expression in square brackets denotes a context-free language, {0, 1}ω \ N is an
eventually regular context-free ω-language.
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Note that a word 10n010n110n2 . . . belongs to N iff, for all k ≥ 0, we have 0 ≤ nk −
|10n010n1 . . . 10nk−1 | ≤ 1. Hence, when building a word from N , we have two choices for

any nk, say n0
k and n1

k with n0
k < n1

k. But then a0a1a2 . . . 1→ 10n
a0
0 10n

a1
1 10n

a2
2 . . . defines an

order embedding ({0, 1}ω ,≤lex) ↪→ (N,≤lex). Since (R,≤) ↪→ ({0, 1}ω ,≤lex), we get N ∈ Λ.
Now let x, y ∈ N with supp(x)∩ supp(y) infinite. Then there are arbitrarily long finite

words u and v of equal length such that u1 and v1 are prefixes of x and y, resp. Since u1
is a prefix of x ∈ N , it is of the form u1 = u′10|u

′|1 (if |u| is even) or u1 = u′10|u
′|01 (if |u|

is odd) and analogously for v. Inductively, one obtains u′ = v′ and therefore u = v. Since
u and v are arbitrarily long, we showed x = y.

Lemma 3.3. Let ∼ and ≈ be two equivalence relations on some set L such that any equiva-
lence class [x]∼ of ∼ is countable and ≈ has 2ℵ0 equivalence classes. Then there are elements
(xα)α<2ℵ0 of L such that [xα]∼e ∩ [xβ]≈ = ∅ for all α < β.

Proof. We construct the sequence (xα)α<2ℵ0 by ordinal induction. So assume we have
elements (xα)α<κ for some ordinal κ < 2ℵ0 with [xα]∼ ∩ [xβ]≈ = ∅ for all α < β < κ.

Suppose
⋃

α<κ[xα]∼ ∩ [x]≈ &= ∅ for all x ∈ L. For x, y ∈ L with x &≈ y, we have
(
⋃

α<κ[xα]∼ ∩ [x]≈) ∩ (
⋃

α<κ[xα]∼ ∩ [y]≈) ⊆ [x]≈ ∩ [y]≈ = ∅. Since
⋃

α<κ[xα]∼ has κ · ℵ0 ≤
max(κ,ℵ0) < 2ℵ0 elements, we obtain |L| < 2ℵ0 , contradicting |L| ≥ |L/≈| = 2ℵ0 . Hence
there exists an element xκ ∈ L with [xα]∼ ∩ [xκ]≈ = ∅ for all α < κ.

Definition 3.4. Let u, v, and w be nonempty words with |v| = |w| and v &= w. Define an
ω-semigroup homomorphism h : {0, 1}∞ → Σ∞ by h(0) = v and h(1) = w and set

Hu,v,w = u · h(N)

where N is the set from Lemma 3.2.

Lemma 3.5. Let u, v, and w be as in the previous definition. Then Hu,v,w ∈ co-ωerCF∩Λ.

Proof. Assume v <lex w. Then the mapping χ : {0, 1}ω → Σω : x 1→ uh(x) (where
h is the homomorphism from the above definition) embeds (N,≤lex) (and hence (R,≤))
into (Hu,v,w,≤lex). If w <lex v, then (R,≤) ∼= (R,≥) ↪→ (N,≥lex) ↪→ (Hα,β,γ ,≤lex). This
proves that Hu,v,w belongs to Λ.

Since v &= w, the mapping χ is injective. Hence

Σω \ Hα,β,γ = Σω \ χ(N) = Σω \ χ({0, 1}ω) ∪ χ({0, 1}ω \ N) .

Since χ can be realized by a generalized sequential machine with Büchi-acceptance, χ({0, 1}ω)
is regular and χ({0, 1}ω \N) (as the image of an eventually regular context-free ω-language)
is eventually regular context-free. Hence Σω \ Hu,v,w is eventually regular context-free.

Proposition 3.6. Let G = (L,E0, E1, . . . , E!) be some (2, 1 + ")-partition with injective
ω-automatic presentation (L, id) such that {(x, y) | {x, y} ∈ E0} ∪ {(x, x) | x ∈ L} is
an equivalence relation on L (denoted ≈) with 2ℵ0 equivalence classes. Then there exist
nonempty words u, v, and w with v and w distinct, but of the same length, such that Hu,v,w

is i-homogeneous for some 1 ≤ i ≤ ".

Proof. There are finite ω-semigroups S and T and homomorphisms γ : Σ∞ → S and
δ : (Σ× Σ)∞ → T such that

(a) x ∈ L, y ∈ Σω, and γ(x) = γ(y) imply y ∈ L and
(b) x, x′, y, y′ ∈ L, {h(x), h(x′)} ∈ Ei, and δ(x, x′) = δ(y, y′) imply {h(y), h(y′)} ∈ Ei (for

all 0 ≤ i ≤ ").
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By Lemma 3.3, there are words (xα)α<2ℵ0 in L such that [xα]∼e ∩ [xβ]≈ = ∅ for all α < β.
In the following, we only need the words x0, x1, . . . , xC with C = |S| · |T |. Then

[BKR08, Sections 3.1-3.3]1 first constructs two ω-words y1 and y2 and an infinite sequence
1 ≤ g1 < g2 < . . . of natural numbers such that in particular y1[g1, g2) <lex y2[g1, g2). Set
u = y2[0, g1), v = y1[g1, g2), and w = y2[g1, g2). In the following, let h : {0, 1}∞ → Σ∞ be
the homomorphism from Def. 3.4 and set χ(x) = uh(x) for x ∈ {0, 1}∗. As in [BKR08], one
can then show that all the words from Hu,v,w belong to the ω-language L. In the following,
set x◦• = χ((01)ω) and x•◦ = χ((10)ω). Then obvious alterations in the proofs by Bárány
et al. show:

(1) [BKR08, Lemma 3.4]2 If x, y ∈ {0, 1}ω with supp(x) \ supp(y) and supp(y) \ supp(x)
infinite, then

{δ(χ(x), χ(y)), δ(χ(y), χ(x))} = {δ(x•◦, x◦•), δ(x◦•, x•◦)} .

(2) [BKR08, Lemma 3.5] x•◦ &≈ x◦•.

There exists 0 ≤ i ≤ " with {x•◦, x◦•} ∈ Ei. Then (2) implies i > 0.
Let x, y ∈ N be distinct. Then supp(x)∩ supp(y) is finite by Lemma 3.2. Since, on the

other hand, supp(x) and supp(y) are both infinite, the two differences supp(x) \ supp(y)
and supp(y)\supp(x) are infinite. Hence we obtain δ(χ(x), χ(y)) ∈ {δ(x•◦, x◦•), δ(x◦•, x•◦)}
from (1). Hence (b) implies {χ(x), χ(y)} ∈ Ei, i.e., Hu,v,w is Ei-homogeneous.

Since Hu,v,w ∈ co-ωerCF ∩Λ by Lemma 3.5, the result follows.

Proposition 3.7. Let G = (V,E′
1, . . . , E

′
!) be some (2, ")-partition with automatic presen-

tation (L, h). Then there exist u, v, w ∈ Σ+ with v and w distinct of equal length such that
h(Hu,v,w) is homogeneous and of size 2ℵ0 .

Proof. To apply Prop. 3.6, consider the following (2, 1 + ")-partition G = (L,E0, . . . , E!):

• The underlying set is the ω-language L,
• E0 comprises all sets {x, y} with h(x) = h(y) and x &= y, and
• Ei (for 1 ≤ i ≤ ") comprises all sets {x, y} with {h(x), h(y)} ∈ E′

i.

Then (L, id) is an injective ω-automatic presentation of the (2, 1 + ")-partition G. By
Prop. 3.6, there exists 1 ≤ i ≤ " and words u, v and w such that Hu,v,w is i-homogeneous
in G. Since (E0, . . . , E!) is a partition of [L]2, we have {x, y} /∈ E0 (and therefore h(x) &=
h(y)) for all x, y ∈ Hu,v,w distinct. Hence h is injective on Hu,v,w. Furthermore [Hu,v,w]2 ⊆
Ei implies [h(Hu,v,w)]2 ⊆ E′

i. Hence h(Hu,v,w) is an i-homogeneous set in G′ of size 2ℵ0 .

This finishes the proof of Theorem 3.1.

3.1.2. Effectiveness. Note that the proof above is non-constructive at several points: Lemma
3.3 is not constructive and the proof proper uses Ramsey’s theorem [BKR08, page 390] and
makes a Ramseyan factorisation coarser [BKR08, begin of section 3.2]. We now show that
nevertheless the words u, v, and w can be computed. By Prop. 3.7, it suffices to decide for
a given triple (u, v, w) whether h(Hu,v,w) is i-homogeneous for some fixed 1 ≤ i ≤ ".

To be more precise, let (V,E1, . . . , E!) be some (2, ")-partition with ω-automatic pre-
sentation (L, h). Furthermore, let u, v, w ∈ Σ+ with v &= w of the same length and write H

1The authors of [BKR08] require [xi]∼e
∩ [xj ]≈ = ∅ for all 0 ≤ i, j ≤ C distinct, but they use it only for

i < j. Hence we can apply their result here.
2The authors of [BKR08] only require one of the two differences to be infinite, but the proof uses that

they both are infinite.
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for Hu,v,w. We have to decide whether H ⊆ L and H ⊗ H ⊆ Li ∪ L=. Note that H ⊆ L iff
L ∩ Σω \ H = ∅. But Σω \ H is context-free, so the intersection is context-free. Hence the
emptiness of the intersection can be decided.

Towards a decision of the second requirement, note that

(Σ× Σ)ω \ (H ⊗ H) = (Σω \ H ⊗ Σω) ∪ (Σω ∪ Σω \ H)

is the union of two context-free ω-languages and therefore context-free itself. Since Li ∪L=

is regular, the intersection (Li ∪L=)∩ (Σ×Σ)ω \ (H ⊗H) is context-free implying that its
emptiness is decidable. But this emptiness is equivalent to H ⊗ H ⊆ L1 ∪ L=.

3.1.3. ω-automatic partial orders. ¿From Theorem 3.1, we now derive a necessary condition
for a partial order of size 2ℵ0 to be ω-automatic. A partial order (V,3) is ω-automatic iff
there exists a regular ω-language L and a surjection h : L → V such that the relations
R= = {(x, y) ∈ L2 | h(x) = h(y)} and R, = {(x, y) ∈ L2 | h(x) 3 h(y)} are ω-automatic.

Corollary 3.8 ([BKR08]3). If (V,3) is an ω-automatic partial order with |V | ≥ ℵ1, then
(R,≤) or an antichain of size 2ℵ0 embeds into (V,3).

Proof. Let (V,3) be a partial order, L ⊆ Σω a regular ω-language and h : L → V a
surjection such that R= and R, are ω-automatic. Define an injective ω-automatic (2, 4)-
partition G = (L,E0, E1, E2, E3):

• E0 comprises all pairs {x, y} ∈ [L]2 with h(x) = h(y),
• E1 comprises all pairs {x, y} ∈ [L]2 with h(x) ! h(y) and x <lex y,
• E2 comprises all pairs {x, y} ∈ [L]2 with h(x) " h(y) and x <lex y, and
• E3 = [L]2 \ (E0 ∪E1 ∪E2) comprises all pairs {x, y} ∈ [L]2 such that h(x) and h(y)

are incomparable.

From |L| ≥ |V | > ℵ0, we obtain |L| = 2ℵ0 . Hence, by Prop. 3.6, there exists H ⊆ L 1-, 2-
or 3-homogeneous with (R,≤) ↪→ (H,≤lex). Since [H]2 ⊆ E1 ∪ E2 ∪ E3 and since G is a
partition of L, the mapping h acts injectively on H. If [H]2 ⊆ E1 (the case [H]2 ⊆ E2 is
symmetrical) then (R,≤) ↪→ (H,≤lex) ∼= (h(H),3). If [H]2 ⊆ E3, then h(H) is an antichain
of size 2ℵ0 .

A linear order (L,3) is scattered if (Q,≤) cannot be embedded into (L,3). Automatic
partial orders are defined similarly to ω-automatic partial orders with the help of finite
automata instead of Büchi-automata.

Corollary 3.9 ([BKR08]3). Any scattered ω-automatic linear order (V,3) is countable.
Hence,

• a scattered linear order is ω-automatic if and only if it is automatic, and
• an ordinal α is ω-automatic if and only if α < ωω.

Proof. If (V,3) is not countable, then it embeds (R,≤) by the previous corollary and
therefore in particular (Q,≤). The remaining two claims follow immediately from [BKR08]
(“countable ω-automatic structures are automatic”) and [Del04] (“an ordinal is automatic
iff it is properly smaller than ωω”), resp.

3As pointed out by two referees, the paragraph before Sect. 4.1 in [BKR08] already hints at this result,
although in a rather implicit way.
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Contrast Theorem 3.1 with Theorem 1.2: any uncountable ω-automatic (k, ")-partition
contains an uncountable homogeneous set of size 2ℵ0 . But we were able to prove this for
k = 2, only. One would also wish the homogeneous set to be regular and not just from
co-ωerCF. We now prove that these two shortcomings are unavoidable: Theorem 3.1 does
not hold for k = 3 nor is there always an ω-regular homogeneous set. These negative results
hold even for injective presentations.

3.2. A Sierpiński theorem for ω-automatic (k, ")-partitions with k ≥ 3

We first concentrate on the question whether some form of Theorem 3.1 holds for
k ≥ 3. The following lemma gives the central counterexample for k = 3 and " = 2, the
below theorem then derives the general result.

Lemma 3.10. (2ℵ0 , ωiA) &→ (ℵ1, ωLANG)32.

Proof. Let Σ = {0, 1}, V = L = {0, 1}ω . Furthermore, for H ⊆ L, we write
∧

H ∈ Σ∞ for
the longest common prefix of all ω-words in H,

∧

{x, y} is also written x ∧ y. Then let E1

consist of all 3-sets {x, y, z} ∈ [L]3 with x <lex y <lex z and x ∧ y <pref y ∧ z; E2 is the
complement of E1. This finishes the construction of the (3, 2)-partition (V,E1, E2) of size
2ℵ0 with injective ω-automatic presentation (L, id).

Note that 1∗0ω is a countable E1-homogeneous set and that 0∗1ω is a countable E2-
homogeneous set. But there is no uncountable homogeneous set: First suppose H ⊆ L
is infinite and x ∧ y <pref y ∧ z for all x <lex y <lex z from H. Let u ∈ Σ∗ such that
H ∩ u0Σω and H ∩ u1Σω are both nonempty and let x, y ∈ H ∩ u0Σω with x ≤lex y and
z ∈ H ∩ u1Σω. Then x ∧ y >pref u = y ∧ z and therefore x = y (for otherwise, we would
have x <lex y <lex z in H with x ∧ y >pref y ∧ z). Hence we showed |H ∩ u0Σω| = 1. Let
u0 =

∧

H and H1 = H ∩ u01Σω. Since H ∩ u00Σω is finite, the set H1 is infinite. We
proceed by induction: un =

∧

Hn and Hn+1 = Hn ∩ un1Σω satisfying |Hn ∩ un0Σω| = 1.
Then u0 <pref u01 ≤pref u1 <pref u11 ≤pref u2 · · · with

H =
⋃

n≥0

(H ∩ un0Σω) ∪
⋂

n≥0

(H ∩ un1Σω) .

Then any of the sets H ∩ un0Σω = Hn ∩ un0Σω and
⋂

(H ∩ un1Σω) is a singleton, proving
that H is countable. Thus, there cannot be an uncountable E1-homogeneous set.

So let H ⊆ L be infinite with x ∧ y ≥pref y ∧ z for all x <lex y <lex z. Since we have
only two letters, we get x ∧ y >pref y ∧ z for all x <lex y <lex z which allows to argue
symmetrically to the above. Thus, indeed, there is no uncountable homogeneous set in L.

Theorem 3.11. For all k ≥ 3, " ≥ 2, and λ > ℵ0, we have (2ℵ0 , ωiA) &→ (λ, ωLANG)k! .

Proof. Let G be the (3, 2)-partition from Lemma 3.10 that does not have homogeneous sets
of size λ and let (L, id) be an injective ω-automatic presentation of G = (V,E1, E2) (in
particular, V = L).

For a set X ∈ [L]k, let X1 <lex X2 <lex X3 be the three lexicographically least elements
of X. Then set G′ = (V,E′

1, E
′
2, . . . , E

′
!) with

E′
1 = {X ∈ [V ]k | {X1,X2,X3} ∈ E1},

E′
2 = {X ∈ [V ]k | {X1,X2,X3} ∈ E2}, and

E′
i = ∅ for 3 ≤ i ≤ " .
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Then (L, id) is an injective ω-automatic presentation of G′. Now suppose H ′ ⊆ L is homo-
geneous in G′ and of size λ. Then there exists H ⊆ H ′ of size λ such that for any words
x1 <lex x2 <lex x3 from H, there exists X ⊆ H ′ with Xi = xi for 1 ≤ i ≤ 3 (if necessary,
throw away some lexicographically largest elements of H ′). Hence H is homogeneous in G,
contradicting Lemma 3.10.

3.3. Complexity of homogeneous sets in ω-automatic (2, ")-partitions

Having shown that k = 2 is a central assumption in Theorem 3.1, we now turn to the
question whether homogeneous sets of lower complexity can be found.

Construction. Let V = L denote the regular ω-language (1+0+)ω. Furthermore, E1 ⊆ [L]2

comprises all 2-sets {x, y} ⊆ L such that supp(x) ∩ supp(y) is finite or x ∼e y. The set
E2 is the complement of E1 in [L]2. This completes the construction of the (2, 2)-partition
G = (L,E1, E2). Note that (L, idL) is an injective ω-automatic presentation of G.

By Theorem 3.1, G has an E1- or an E2-homogeneous set of size 2ℵ0 . We convince
ourselves that G has large homogeneous sets of both types. By Lemma 3.2, there is an ω-
language N ⊆ (1+0+)ω of size 2ℵ0 such that the supports of any two words from N have finite
intersection. Hence [N ]2 ⊆ E1 and N has size 2ℵ0 . But there is also an E2-homogeneous
set L2 of size 2ℵ0 : Note that the words from N are mutually non-∼e-equivalent and let
L2 denote the set of all words 1a11a21a3 . . . for a1a2a3 · · · ∈ N . Then for any x, y ∈ L2

distinct, we have 2N ⊆ supp(x) ∩ supp(y) and x &∼e y, i.e., {x, y} ∈ E2.

Lemma 3.12. Let H ∈ LANG∗ have size λ > ℵ0. Then H is not homogeneous in G.

Proof. By definition of LANG∗, there are languages Ui, Vi ∈ LANG with H =
⋃

1≤i≤n UiV ω
i .

Since H is infinite, there are 1 ≤ i ≤ n and x, y ∈ UiV ω
i distinct with x ∼e y and

therefore {x, y} ∈ E1.
Since |H| > ℵ0, there is 1 ≤ i ≤ n with |UiV ω

i | > ℵ0; we set U = Ui and V = Vi.
From |U | ≤ ℵ0, we obtain |V ω| > ℵ0. Hence there are v1, v2 ∈ V + distinct with |v1| = |v2|.
Since uvω

1 ∈ H and each element of H contains infinitely many occurrences of 1, the word
v1 belongs to {0, 1}∗10∗. Let u ∈ U be arbitrary (such a word exists since UV ω &= ∅) and
consider the ω-words x′ = u(v1v2)ω and y′ = u(v1v1)ω from UV ω ⊆ H. Then x′ &∼e y′ since
v1 &= v2 and |v1| = |v2|. At the same time, supp(x′) ∩ supp(y′) is infinite since v1 contains
an occurrence of 1. Hence {x′, y′} ∈ E2.

Thus, we found ω-words x, y, x′, y′ ∈ H with {x, y} ∈ E1 and {x′, y′} /∈ E1 proving that
H is not homogeneous.

Thus, we found a (2, 2)-partition G = (V,E1, E2) with 2ℵ0 elements and an injective
ω-automatic presentation (L, h) such that

(1) G has sets L1 and L2 in co-ωerCF of size 2ℵ0 with [Li]2 ⊆ Ei for 1 ≤ i ≤ 2.
(2) There is no ω-language H ∈ LANG∗ with H ⊆ L such that h(H) is homogeneous

of size 2ℵ0 .

Since all context-free ω-languages belong to LANG∗, the following theorem follows the same
way that Lemma 3.10 implied Theorem 3.11.

Theorem 3.13. For all k, " ≥ 2 and λ > ℵ0, we have (2ℵ0 , ωiA) &→ (λ, ωCF)k! and
(2ℵ0 , ωiA) &→ (λ, ωREG)k! .
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This result can be understood as another Sierpiński theorem for ω-automatic (k, ")-
partitions. This time, it holds for all k ≥ 2 (not only for k ≥ 3 as Theorem 3.11). The price
to be paid for this is the restriction of homogeneous sets to “simple” ones. In particular
the non-existence f regular homogeneous sets provides a Sierpiński theorem in the spirit of
automatic structures.

Open questions

Our positive result Theorem 3.1 guarantees the existence of some clique or anticlique
of size 2ℵ0 (and such a clique or anticlique can even be constructed). But the following
situation is conceivable: the ω-automatic graph contains large cliques without containing
large cliques that can be described by a language from co-ωerCF. In particular, it is not
clear whether the existence of a large clique is decidable.

A related question concerns Ramsey quantifiers. Rubin [Rub08] has shown that the set
of nodes of an automatic graph whose neighbors contain an infinite anticlique is regular (his
result is much more general, but this formulation suffices for our purpose). It is not clear
whether this also holds for ω-automatic graphs. A positive answer to this second question
(assuming that it is effective) would entail an affirmative answer to the decidability question
above.
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Abstract. In this paper we consider the problem of testing whether two finite groups are
isomorphic. Whereas the case where both groups are abelian is well understood and can
be solved efficiently, very little is known about the complexity of isomorphism testing for
nonabelian groups. Le Gall has constructed an efficient classical algorithm for a class of
groups corresponding to one of the most natural ways of constructing nonabelian groups
from abelian groups: the groups that are extensions of an abelian group A by a cyclic
group Zm with the order of A coprime with m. More precisely, the running time of that
algorithm is almost linear in the order of the input groups. In this paper we present
a quantum algorithm solving the same problem in time polynomial in the logarithm of
the order of the input groups. This algorithm works in the black-box setting and is the
first quantum algorithm solving instances of the nonabelian group isomorphism problem
exponentially faster than the best known classical algorithms.

1. Introduction

Testing group isomorphism (the problem asking to decide, for two given finite groups G
and H, whether there exists an isomorphism between G and H) is a fundamental problem

in computational group theory but little is known about its complexity. It is known that

the group isomorphism problem (for groups given by their multiplication tables) reduces

to the graph isomorphism problem [18], and thus the group isomorphism problem is in

the complexity class NP ∩ coAM (since the graph isomorphism problem is in this class

[2]). Miller [24] has developed a general technique to check group isomorphism in time

O(nlog n+O(1)), where n denotes the size of the input groups and Lipton, Snyder and Zalcstein

[22] have given an algorithm working in O(log2 n) space. However, no polynomial-time

algorithm is known for the general case of this problem.

Another line of research is the design of algorithms solving the group isomorphism prob-

lem for particular classes of groups. For abelian groups polynomial-time algorithms follow

directly from efficient algorithms for the computation of the Smith normal form of integer

matrices [8, 15]. More efficient methods have been given by Vikas [28] and Kavitha [16] for
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abelian groups given by their multiplication tables, and fast parallel algorithms have been

constructed by McKenzie and Cook [23] for abelian permutation groups. The current fastest

algorithm solving the abelian group isomorphism problem for groups given as black-boxes

has been developed by Buchmann and Schmidt [5] and works in time O(n1/2(log n)O(1)).

However, as far as nonabelian groups are concerned, very little is known. For solvable groups

Arvind and Torán [1] have shown that the group isomorphism problem is in NP ∩coNP un-

der certain complexity assumptions but, until recently, the only polynomial-time algorithms

testing isomorphism of nontrivial classes of nonabelian groups were a result by Garzon and

Zalcstein [12], which holds for a very restricted class, and a body of works initiated by

Cooperman et al. [9] on simple groups.

Very recently, Le Gall [19] proposed an efficient classical algorithm solving the group

isomorphism problem over another class of nonabelian groups. Since for abelian groups the

group isomorphism problem can be solved efficiently, that work focused on one of the most

natural next targets: cyclic extensions of abelian groups. Loosely speaking such extensions

are constructed by taking an abelian group A and adding one element y that, in general,

does not commute with the elements in A. More formally the class of groups considered in

[19], denoted by S , was the following.

Definition 1.1. Let G be a finite group. The group G is said to be in the class S if there

exist a normal abelian subgroup A in G and an element y ∈ G of order coprime with |A|
such that G = 〈A, y〉.

In technical words G is an extension of an abelian group A by a cyclic group Zm with

gcd(|A|,m) = 1. This class of groups includes all the abelian groups and many non-abelian

groups too, as discussed in details in [19]. For example, for A = Z
4
3 and m = 4, there are

exactly 9 isomorphism classes in S (1 class of abelian groups and 8 classes of nonabelian

groups). Moreover, the class S includes several groups that have been the target of quantum

algorithms, as discussed later. The main result in [19] was the following theorem.

Theorem 1.2 ([19]). There exists a deterministic algorithm checking whether two groups
G and H in the class S (given as black-box groups) are isomorphic and, if this is the case,

computing an isomorphism from G to H. Its running time has for upper bound n1+o(1),
where n = min(|G|, |H|).

In the present paper, we focus on quantum algorithms solving the group isomorphism

problem in the black-box setting. Cheung and Mosca [7] have shown how to compute

the decomposition of an abelian group into a direct product of cyclic subgroups in time

polynomial in the logarithm of its order on a quantum computer, and thus how to solve

the abelian group isomorphism problem in time polynomial in log n in the black-box model.

This then gives an exponential speed-up with respect to the best known classical algorithms

for the same task. One can naturally ask whether a similar speed-up can be obtained for

classes of nonabelian groups. In this paper, we prove that this is the case. Our main result

is the following theorem.

Theorem 1.3. There exists a quantum algorithm checking with high probability whether
two groups G and H in the class S given as black-box groups are isomorphic and, if this is
the case, computing an isomorphism from G to H. Its running time is polynomial in log n,
where n = min(|G|, |H|).

To our knowledge, this is the first quantum algorithm solving nonabelian instances of the

group isomorphism problem exponentially faster than the best known classical algorithms.
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Our algorithm relies on several new quantum reductions to instances of the so-called abelian

Hidden Subgroup Problem, a problem that can be solved efficiently on a quantum computer.

Our result can then be seen as an extension of the polynomial-time library of computational

tasks which can be accomplished using Shor’s factoring and discrete logarithm algorithms

[27], and further quantum algorithms for abelian groups. We also mention that groups in

the class S appear at several occasions in the quantum computation literature, mostly

connected to the Hidden Subgroup Problem over semidirect product groups [4, 10, 13, 25].

Our techniques may have applications in the design of further quantum algorithms for this

problem, or for other similar group-theoretic tasks.

Our quantum algorithm follows the same line as the classical algorithm in [19], but the

two main technical parts are both significantly improved and modified.

Since a group G in the class S may in general be written as the extension of an abelian

group A1 by a cyclic group Zm1 and as the extension of an abelian group A2 by a cyclic

group Zm2 with A1 6∼= A2 and m1 6= m2, we use, as in [19], the concept of a standard

decomposition of G, which is an invariant for the groups in the class S in the sense that

two isomorphic groups have similar standard decompositions (but the converse is false). A

method for computing efficiently standard decompositions in the black-box model was one

of the main contributions of [19], where the time complexity of this step was O(n1+o(1)) due

to the fact that the procedure proposed had to try, in the worst case, for each generator g of

G, all the divisors of |g|. Instead, in the present work we propose a different procedure for

this task (Section 3), which can be implemented in time polynomial in log n on a quantum

computer, based on careful reductions to group-theoretic problems for which known efficient

quantum algorithms are known: order finding, decomposing abelian groups and constructive

membership in abelian groups.

Knowing standard decompositions of G and H allows us to consider only the case where

H and G are two extensions of the same abelian group A by the same cyclic group Zm

(Proposition 6.1). Two matrices M1 and M2 in the group GL(r, F) of invertible matrices of

size r×r over some well-chosen finite field F can then be associated to the action of Zm on A
in the groups G and H respectively. The second main technical contribution of [19] showed

that, loosely speaking, testing isomorphism of G and H then reduces (when the order of

A is coprime with m) to checking whether there exists an integer k ∈ {1, . . . ,m} such that

M1 and Mk
2 are conjugate in GL(r, F). The strategy adopted in [19] to solve this problem

had time complexity close to n in the worst case (basically, all the integers k in {1, . . . ,m}
were checked). In the present paper, we give a poly(log n) time quantum algorithm for this

problem. More generally, we show in Section 5 that the problem of testing, for any two

matrices M1 and M2 in GL(r, F) where r is any positive integer and F is any finite field,

whether there exists a positive integer k such that M1 and Mk
2 are conjugate in the group

GL(r, F) reduces to solving an instance of a problem we call Set Discrete Logarithm.

This quantum reduction is efficient in that it can be implemented in time polynomial in

both r and log |F|, and works by considering field extensions of F and matrix invariants of

M1 and M2.

Loosely speaking, the problem Set Discrete Logarithm asks, given two sets {x1, . . . ,
xv} and {y1, . . . , yv} of elements in F, to compute an integer k such that {yk

1 , . . . , yk
v} =

{x1, . . . , xv}, if such an integer exists. This computational problem is a generalization of

the standard discrete logarithm problem (which is basically the case v = 1) but appears to

be much more challenging. The quantum algorithm we propose (in Section 4) works in time

polynomial in v and log |F|, and relies on a reduction to several instances of the abelian



552 F. LE GALL

Hidden Subgroup Problem. Our solution to the problem Set Discrete Logarithm is

then an extension of the computational tasks which can be solved efficiently using known

quantum algorithms for abelian groups.

2. Preliminaries

2.1. Group theory and standard decompositions

We assume that the reader is familiar with the basic notions of group theory and state

without proofs definitions and properties of groups we will use in this paper.

For any positive integer m, we denote by Zm the additive cyclic group of integers

{0, . . . ,m − 1}, and by Z
∗
m the multiplicative group of integers in {1, . . . ,m − 1} coprime

with m.

Let G be a finite group. For any subgroup H and any normal subgroup K of G we

denote by HK the subgroup {hk | h ∈ H, k ∈ K} = {kh | h ∈ H, k ∈ K}. Given a set

S of elements of G, the subgroup generated by the elements of S is written 〈S〉. We say

that two elements g1 and g2 of G are conjugate in G if there exists an element y ∈ G such

that g2 = yg1y
−1. For any two elements g, h ∈ G we denote by [g, h] the commutator of

g and h, i.e., [g, h] = ghg−1h−1. More generally, given two subsets S1 and S2 of G, we

define [S1, S2] = 〈[s1, s2] | s1 ∈ S1, s2 ∈ S2〉. The commutator subgroup of G is defined as

G′ = [G,G]. The derived series of G is defined recursively as G(0) = G and G(i+1) = (G(i))′.

The group G is said to be solvable if there exists some integer k such that G(k) = {e}.
Given two groups G1 and G2, a map φ : G1 → G2 is a homomorphism from G1 to G2 if,

for any two elements g and g′ in G1, the relation φ(gg′) = φ(g)φ(g′) holds. We say that

G1 and G2 are isomorphic if there exists a one-one homomorphism from G1 to G2, and we

write G1
∼= G2.

Given any finite group G, we denote by |G| its order and, given any element g in G,

we denote by |g| the order of g in G. For any prime p, we say that a group is a p-group

if its order is a power of p. If |G| = pei
1 . . . per

r for distinct prime numbers pi, then for each

i ∈ {1, . . . , r} the group G has a subgroup of order pei
i . Such a subgroup is called a Sylow pi-

subgroup of G. Moreover, if G is additionally abelian, then each Sylow pi-group is unique

and G is the direct product of its Sylow subgroups. Abelian p-groups have remarkably

simple structures: any abelian p-group is isomorphic to a direct product of cyclic p-groups

Zpf1 × · · · × Zpfs for some positive integer s and positive integers f1 ≤ . . . ≤ fs, and this

decomposition is unique. We say that a set {g1, . . . , gt} of elements of an abelian group G
is a basis of G if G = 〈g1〉 × · · · × 〈gt〉 and the order of each gi is a prime power.

For a given group G in the class S in general many different decompositions as an

extension of an abelian group by a cyclic group exist. For example, the abelian group

Z6 = 〈x1, x2 | x
2
1 = x3

2 = [x1, x2] = e〉 can be written as 〈x1〉 × 〈x2〉, 〈x2〉 × 〈x1〉 or

〈x1, x2〉 × {e}. That is why we introduce the notion of a standard decomposition, as it was

done in [19].

Definition 2.1. Let G be a finite group in the class S . For any positive integer m denote

by Dm
G the set (possibly empty) of pairs (A,B) such that the following three conditions

hold: (i) A is a normal abelian subgroup of G of order coprime with m; and (ii) B is a

cyclic subgroup of G of order m; and (iii) G = AB. Let γ(G) be the smallest positive

integer such that D
γ(G)
G 6= ∅. A standard decomposition of G is an element of D

γ(G)
G .
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2.2. Black-box groups

In this paper we work in the black-box model. A black-box group is a representation of

a group G where elements are represented by strings, and an oracle is available to perform

group operations. To be able to take advantage of the power of quantum computation

when dealing with black-box groups, the oracles performing group operations have to be

able to deal with quantum superpositions. These quantum black-box groups have been first

studied by Ivanyos et al. [14] and Watrous [29, 30], and have become the standard model

for studying group-theoretic problems in the quantum setting.

More precisely, a quantum black-box group is a representation of a group where elements

are represented by strings (of the same length, supposed to be logarithmic in the order of the

group). We assume the usual unique encoding hypothesis, i.e., each element of the group is

encoded by a unique string, which is crucial for technical reasons (without it, most quantum

algorithms do not work). A quantum oracle VG is available, such that VG(|g〉|h〉) = |g〉|gh〉
for any g and h in G (using strings to represent the group elements), and behaving in an

arbitrary way on other inputs. We say that a group G is input as a black-box if a set of

strings representing generators {g1, . . . , gs} of G with s = O(log |G|) is given as input, and

queries to the oracle can be done at cost 1. The hypothesis on s is natural since every

group G has a generating set of size O(log |G|), and enables us to make the exposition of

our results easier. Also notice that a set of generators of any size can be converted efficiently

into a set of generators of size O(log |G|) if randomization is allowed.

Any efficient quantum black-box algorithm gives rise to an efficient concrete quantum

algorithm whenever the oracle operations can be replaced by efficient procedures. Espe-

cially, when a mathematical expression of the generators input to the algorithm is known,

performing group operations can be done directly on the elements in polynomial time (in

log |G|) for many natural groups, including permutation groups and matrix groups.

Quantum algorithms are very efficient for solving computational problems over abelian

groups. In the following theorem, we describe the main results we will need in this paper.

Theorem 2.2 ([7, 14, 27]). There exists quantum algorithms solving, in time polynomial
in log |G|, the following computational tasks with probability at least 1− 1/poly(|G|):

(i) Given a group G given as a black-box (with unique encoding) and any element g ∈ G,
compute the order of g in G.

(ii) Given an abelian group G given as a black-box (with unique encoding), compute a
basis (g1, . . . , gs) of G.

(iii) Given an abelian group G given as a black-box (with unique encoding), a basis
(g1, . . . , gs) of G, and any g ∈ G, compute a decomposition of g over (g1, . . . , gs),
i.e., integers u1, . . . , us such that g = gu1

1 · · · g
us
s .

Actually, all the tasks in Theorem 2.2 can be seen as black-boxes versions of instances

of the so-called Hidden Subgroup Problem (HSP) over abelian groups. It is known that

the abelian HSP can be solved in time polynomial in log |G| [17], even if G is given as a

black-box group with unique encoding [14, 26].

3. Computing a Standard Decomposition

In this section we present a quantum algorithm computing a standard decomposition

of any group in the class S in time polynomial in the logarithm of the order of the group.
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The precise description of the algorithm, which we denote Procedure Decompose, is

given in metacode in Figure 1. Further descriptions on how each step is implemented follow.

Procedure Decompose

input: a set of generators {g1, . . . , gs} of a group G in S with s = O(log |G|).
output: a pair (U, v) where U is a subset of G and v ∈ G.

1 compute generators {g′1, . . . , g
′
t} of the derived subgroup G′ with t = O(log |G|);

2 compute κ = lcm(|g1|, . . . , |gs|);
3 factorize κ and write κ = pe1

1 · · · p
er
r where the prime numbers pi are distinct;

4 U ← {g′1, . . . , g
′
t}; V ← ∅; Σ← ∅;

5 for i = 1 to r
6 do

7 Γi ← ∅;

8 for j = 1 to s do Γi ← Γi ∪ {g
κ/p

ei
i

j };

9 if [Γi, G
′] = e and gcd(pi, |G

′|) 6= 1 then U ← U ∪ Γi;

10 if [Γi, G
′] = e and gcd(pi, |G

′|) = 1

11 then

12 search for an element γi ∈ Γi such that 〈Γi〉G
′ = 〈γi, G

′〉;
13 if no such element exists

14 then U ← U ∪ Γi

15 else Σ← Σ ∪ {γi};
16 endthen

17 if [Γi, G
′] 6= e then { take an element γi ∈ Γi such that |γi| = maxγ∈Γi |γ|;

18 V ← V ∪ {γi}; }
19 enddo

20 for all w in Σ

21 do

22 if there exists an element z in Σ such that [w, z] 6= e
23 then { if zwz−1 ∈ 〈w〉 then U ← U ∪ {w} else V ← V ∪ {w}; }
24 enddo

25 for all w ∈ Σ\(U ∪ V )

26 do

27 if [w, u] = {e} for all u ∈ U then U ← U ∪ {w} else V ← V ∪ {w};
28 enddo

29 b← Πg∈V |g|; z ← Πg∈V g; v ← z|z|/b;

30 output (U, v);

Figure 1: Procedure Decompose.

• At Step 1 a set of generators {g′1, . . . , g
′
t} of the derived subgroup G′ with t =

O(log |G|) is computed in time polynomial in log |G| with success probability 1 −
1/poly(|G|) using the classical algorithm by Babai et al. [3].

• The order of G′ at Steps 9 and 10, and the orders of elements at Steps 2, 17 and 29

are computed using the quantum algorithms for Tasks (i) and (ii) in Theorem 2.2.

• The least common multiple at Step 2 is computed using standard algorithms, and

is factorized at Step 3 using Shor’s factoring algorithm [27].
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• At Step 12, notice that [Γi, G
′] = e implies that 〈Γi〉G

′ is an abelian group. For each

element γi in Γi (there are O((log |G|)2) such elements), the quantum algorithms

for Tasks (i) and (ii) in Theorem 2.2 are used to check whether |〈Γi〉G
′| = |〈γi, G

′〉|.
Since necessarily 〈γi, G

′〉 ≤ 〈Γi〉G
′, this test is sufficient to check whether 〈Γi〉G

′ =

〈γi, G
′〉.

• The tests at Steps 9, 10 to 17 are done by noticing that [Γi, G
′] = {e} if and only if

[γ, g′j ] = e for each γ ∈ Γi and each j ∈ {1, . . . , t} .

• Testing whether zwz−1 is in 〈w〉 at Step 23 is done by trying to decompose zwz−1

over 〈w〉 using the quantum algorithm for Task (iii) in Theorem 2.2, and then

checking if the decomposition indeed represents zwz−1 (since, a priori, this algorithm

can have an arbitrary behavior when zwz−1 /∈ 〈w〉).

This description, along with Theorem 2.2 and with the observation that the sets U , V
and Σ have size O((log |G|)2), show that all the steps of Procedure Decompose can be

implemented in time polynomial in log |G|. The following theorem states its correctness.

Theorem 3.1. Let G be a group in the class S , given as a black-box group (with unique
encoding). The procedure Decompose on input G outputs, with high probability, a pair
(U, v) such that (〈U〉, 〈v〉) is a standard decomposition of G. It can be implemented in time
polynomial in log |G| on a quantum computer.

A complete proof of Theorem 3.1 can be found in the full version of this paper [20].

4. Set Discrete Logarithm

We first introduce the following useful notation. Let F be a finite field, and Σ =

{x1, . . . , xt} be any subset of F with possible repetitions, i.e., all the xi’s are elements of F,

but may not be distinct. For any integer k, we denote by Σk the subset of F with possible

repetitions {xk
1 , . . . , x

k
t }.

In this section we consider the following problem. Here u is a positive integer which is

a parameter of the problem (taking u ≥ 2 does not make the problem significantly harder,

but this enables us to give a more convenient presentation of our results).

Set Discrete Logarithm

input: two lists (S1, . . . , Su) and (T1, . . . , Tu) where, for each integer h ∈ {1, . . . , u},
Sh and Th are subsets with possible repetitions of some finite field Fh.

output: a positive integer k such that T k
h = Sh for all h ∈ {1, . . . , u}, if such k exists.

Notice that the case u = 1 with |S1| = |T1| = 1 is the usual discrete logarithm problem

over the multiplicative group of the field F1. Actually, our algorithm solving the problem

Set Discrete Logarithm will only need the multiplicative structure of the fields, and

then also works if we replace in the definition each field Fh by any multiplicative finite group

Gh. However, since the main applications of our algorithm deal with field structures, we

describe our results in the present slightly less general form.

Given an instance of Set Discrete Logarithm, let mS denote the smallest positive

integer such that xmS = 1 for all x ∈ S1 ∪ · · · ∪ Su, and let mT denote the smallest positive

integer such that ymT = 1 for all y ∈ T1 ∪ · · · ∪ Tu. The main result of this section is the

following theorem.
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Theorem 4.1. There exists a quantum algorithm that solves with high probability the prob-
lem Set Discrete Logarithm, and runs in time polynomial in u, log(mS + mT ), and
max1≤h≤u(|Sh|+ |Th|+ log |Fh|).

Proof. For the sake of brevity, let us denote Σ = S1 ∪ · · · ∪ Su ∪ T1 ∪ · · · ∪ Tu. We first

compute the orders of all the elements in Σ using Shor’s algorithm [27]. The value mS is

the least common multiple of the orders of all the elements in S1 ∪ · · · ∪ Su, and the value

mT is the least common multiple of the orders of all the elements in T1 ∪ · · · ∪ Tu. The

values mS and mT can then be computed in time polynomial in log(mS + mT ), |Σ|, and

max1≤h≤u log |Fh|. Notice that, for any positive integer k, the least common multiple of the

orders of all the elements in T k
1 ∪ · · · ∪ T k

u is mT/gcd(k,mT ). Then, if mS does not divide

mT , there is no solution to the problem Set Discrete Logarithm. If mS divides mT

but mS 6= mT , then a solution (if it exists) can be found by replacing the list (T1, . . . , Tu)

by the list (T
mT /mS

1 , . . . , T
mT /mS
u ). Thus, without loss of generality, we suppose hereafter

that mS = mT and denote by m this value. Then a solution k can be searched for in the

set Z
∗
m.

Let {m1, . . . ,mℓ} = ∪z∈Σ{|z|} denote the set of orders of the elements in Σ. For each

h ∈ {1, . . . , u} and each i ∈ {1, . . . , ℓ}, we define the subsets

Sh,i = {x ∈ Sh | |x| = mi} and Th,i = {y ∈ Th | |y| = mi}.

Let us also define the sets

Kh,i = {k ∈ Z
∗
m | T

k
h,i = Sh,i} and Kh,i = {k ∈ Z

∗
m | T

k
h,i = Th,i}.

It is straightforward to check that the set Kh,i is a subgroup of Z
∗
m, and that the set Kh,i

is either empty, or is a coset of Kh,i in Z
∗
m.

Let K ⊆ Z
∗
m denote the set of solutions of the instance of Set Discrete Logarithm

we are considering. Then

K =
⋂

1≤h≤u

(

⋂

1≤i≤ℓ

Kh,i

)

.

The set K can be computed efficiently using a quantum computer if, for each h ∈ {1, . . . , u}
and each i ∈ {1, . . . , ℓ}, the set Kh,i is known. More precisely, this is done by using a

quantum algorithm for computing the intersections of two cosets of an abelian group —

more details can be found in the full version of this paper [20].

The final part of the proof shows how to compute these sets Kh,i. Let us fix an integer

h ∈ {1, . . . , u} and an integer i ∈ {1, . . . , ℓ}. We suppose that Sh,i and Th,i have the same size

(otherwise Kh,i = ∅ and thus K = ∅). Denote Sh,i = {x1, . . . , xv} and Th,i = {y1, . . . , yv},
where v = |Sh,i| depends on h and i. We present a quantum procedure computing a set of

generators of Kh,i, and an element kh,i in Kh,i when this set is not empty, in time polynomial

in v, log m, and log |Fh|.
We first show how to compute the subgroup Kh,i. Let ≺ be an arbitrary strict total

ordering of the elements of Fh. Without loss of generality we can suppose that x1 � x2 �
· · · � xv. Let µ be the function from Z

∗
m × {1, . . . , v} to Fh defined as follows: for any

k ∈ Z
∗
m and any j ∈ {1, . . . , v}, µ(k, j) is the j-th element (with respect to the order ≺) of

the set T k
h,i. Let f be the function from Z

∗
m to (Fh)v such that, for any k ∈ Z

∗
m:

f(k) = (µ(k, 1)y−1
1 , . . . , µ(k, v)y−1

v ).
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Notice that the set {k ∈ Z
∗
m | f(k) = (1, . . . , 1)} is precisely the subgroup Kh,i of Z

∗
m.

Moreover, the function f is constant on cosets of Kh,i in Z
∗
m, with distinct values on

distinct cosets (since f(k1) = f(k2) implies that T k1
h,i = T k2

h,i and thus k1 ∈ k2Kh,i). This is

thus an instance of the abelian HSP, and a set of generators of Kh,i can be found in time

polynomial in v, log m and log |Fh| using the algorithm described in Subsection 2.2 (notice

that the underlying group is Z
∗
m, and that the value of the function f can be computed in

time v, log m and log |Fh|).
We now show how to compute an element kh,i in Kh,i if this set is not empty. We first try

to find an element α ∈ Z
∗
mi

such that Tα
h,i = Sh,i. This is done by, for each j ∈ {1, . . . , v},

trying to find an integer αj ∈ Z
∗
mi

such that x
αj

1 = yj, if such an integer exists (notice

that, for each j, there is at most one element αj in Z
∗
mi

satisfying this condition, which

can be computed in time polynomial in log mi and log |Fh| using the quantum algorithm

for the standard discrete logarithm problem [27]) and checking whether T
αj

h,i = Sh,i. If no

such value α can be found, we conclude that Kh,i is empty. Otherwise we take any such

value α and compute kh,i as follows. Let us write the prime power decomposition of m as

m = pǫ1
1 · · · p

ǫr
r p′η1

1 · · · p
′ηs
s qδ1

1 · · · q
δt
t , where each prime pl divides mi for l ∈ {1, . . . , r}, each

prime p′l divides α but not mi for l ∈ {1, . . . , s}, and each prime ql divides neither mi nor

α for l ∈ {1, . . . , t}. Then the integer

kh,i = α + miq
δ1
1 · · · q

δt
t mod m

is coprime with m (since α is coprime with mi and then each prime pl, p′l or ql does not

divide kh,i), and hence is in Z
∗
m. From the choice of α and since any element in Th,i has

order mi, we conclude that kh,i is in the set Kh,i.

5. Discrete Logarithm up to Conjugacy

Given a positive integer r and a finite field F, remember that GL(r, F) denotes the

multiplicative group of invertible matrices of size r× r with entries in F. In this section we

consider the following problem. Here u is again a positive integer which is a parameter of

the problem.

Discrete Log up to Conjugacy

input: two lists of matrices (M
(1)
1 , . . . ,M

(u)
1 ) and (M

(1)
2 , . . . ,M

(u)
2 ) where, for each

integer h ∈ {1, . . . , u}, M
(h)
1 and M

(h)
2 are in GL(rh, Fh) for some positive

integer rh and some finite field Fh.

output: a positive integer k and u matrices M (h) ∈ GL(rh, Fh) such that

M (h) ·M
(h)
1 = [M

(h)
2 ]k ·M (h) for each h ∈ {1, . . . , u}, if such elements exist.

In the statement of the above problem, the notation [M
(h)
2 ]k simply means M

(h)
2 raised

to the k-th power. Notice that the case u = 1 and r1 = 1 is basically the usual discrete

logarithm problem over the multiplicative group of the finite field F1.

Let m1 and m2 denote the smallest positive integers such that [M
(h)
1 ]m1 = I and

[M
(h)
2 ]m2 = I for all h ∈ {1, . . . , u}. The main result of this section is the following theorem.
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Theorem 5.1. There exists a quantum algorithm that solves with high probability the prob-
lem Discrete Log up to Conjugacy, and runs in time polynomial in u, log(m1 + m2),
and max1≤h≤u(rh + log |Fh|)

The quantum algorithm solving the problem Discrete Log up to Conjugacy fol-

lows from an efficient reduction to the problem Set Discrete Logarithm, using the con-

cepts of elementary divisors, Jordan normal forms and similarity of matrices. A complete

proof of Theorem 5.1 is given in the full version of this paper [20].

6. Proof of Theorem 1.3

We will need the following result from [19] that shows necessary and sufficient conditions

for the isomorphism of two groups in the class S .

Proposition 6.1 (Proposition 5.1 in [19]). Let G and H be two groups in S . Let (A1, 〈y1〉)
and (A2, 〈y2〉) be standard decompositions of G and H respectively and let ϕ1 ∈ Aut(A1)

(resp. ϕ2 ∈ Aut(A2)) be the action by conjugation of y1 on A1 (resp. of y2 on A2). The
groups G and H are isomorphic if and only if the following three conditions hold: (i)
A1
∼= A2; and (ii) |y1| = |y2|; and (iii) there exist a positive integer k and an isomorphism

χ : A1 → A2 such that ϕ1 = χ−1ϕk
2χ, where ϕk

2 means ϕ2 composed by itself k times.

We now present our proof of Theorem 1.3.

Proof of Theorem 1.3. Suppose that G and H are two groups in the class S . In order to

test whether these two groups are isomorphic, we first run Procedure Decompose on G
and H and obtain outputs (U1, y1) and (U2, y2) such that (〈U1〉, 〈y1〉) and (〈U2〉, 〈y2〉) are

standard decompositions of G and H respectively with high probability (from Theorem

3.1). The running time of this step is polynomial in the logarithms of |G| and |H|, from

Theorem 3.1. Denote A1 = 〈U1〉 and A2 = 〈U2〉. The orders of A1, A2, y1 and y2 are then

computed using the quantum algorithms for Tasks (i) and (ii) in Theorem 2.2. Notice that

|G| = |A1| · |y1| and |H| = |A2| · |y2|. If |G| 6= |H|, we conclude that G and H are not

isomorphic. In the following, we suppose that |G| = |H| and denote by n this order.

If |y1| 6= |y2| we conclude that G and H are not isomorphic, from Proposition 6.1.

Otherwise denote |y1| = |y2| = m. Then we compute a basis (g1, . . . , gs) of A1 and a basis

(h1, . . . , hs′) of A2 using the quantum algorithm for Task (ii) in Theorem 2.2. Given these

bases it is easy to check the isomorphism of A1 and A2: the groups A1 and A2 are isomorphic

if and only if s = s′ and there exists a permutation σ of {1, . . . , s} such that |gi| = |hσ(i)|
for each i ∈ {1, . . . , s}. If A1 6∼= A2 we conclude that G and H are not isomorphic, from

Proposition 6.1.

Now suppose that A1
∼= A2

∼= (Z
p

f1
1

)r1 × · · · × (Z
p

ft
t

)rt , where each pi is a prime, but

pfi
i 6= p

fj

j for i 6= j. We want to decide whether the action by conjugation ϕ1 ∈ Aut(A1)

of y1 on A1 and the action by conjugation ϕ2 ∈ Aut(A2) of y2 on A2 satisfy Condition

(iii) in Proposition 6.1. Notice that, for each j ∈ {1, . . . , s}, we can compute (in time

polynomial in log n) integers uij and vij such that ϕ1(gj) = y1gjy
−1
1 = g

u1j

1 · · · g
usj
s and

ϕ2(hj) = y2hjy
−1
2 = h

v1j

1 · · ·h
vsj
s using the quantum algorithm for Task (iii) in Theorem 2.2.

Denote V = GL(r1, Zp1)×· · ·×GL(rt, Zpt). The theory developed in [19] shows that we

can compute efficiently two elements M1 and M2 in V satisfying the following two conditions:

(a) Mm
1 = Mm

2 = I; and
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(b) for each integer k, M1 and Mk
2 are conjugate in the group V if and only if there

exists an isomorphism χ : A1 → A2 such that ϕ1 = χ−1ϕk
2χ.

If we denote M1 = (M
(1)
1 , . . . ,M

(t)
1 ) and M2 = (M

(1)
2 , . . . ,M

(t)
2 ), where each M

(ℓ)
1 and each

M
(ℓ)
2 are matrices in GL(rℓ, Zpℓ

), then checking if the later condition holds becomes an

instance of the problem Discrete Log up to Conjugacy, and can be solved using the

algorithm of Theorem 5.1 in time polynomial in t, log m, and max1≤ℓ≤t(rℓ + log pℓ), i.e., in

time polynomial in log n.

If the above instance of Discrete Log up to Conjugacy has no solution, we con-

clude that G and H are not isomorphic. Otherwise we take one value k such that M1 and

Mk
2 are conjugate, along with an element X ∈ V such that XM1 = Mk

2 X (such an element

is obtained from the output of the algorithm of Theorem 5.1), and compute an isomorphism

χ from A1 to A2 such that ϕ1 = χ−1ϕk
2χ. The map µ : G→ H defined as µ(xyj

1) = χ(x)ykj
2

for any x ∈ A1 and any j ∈ {0, . . . ,m − 1} is then an isomorphism from G to H — more

details on this construction can be found in the full version of this paper [20].
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Birkhäuser, 1993.
[19] Le Gall, F. Efficient isomorphism testing for a class of group extensions. In Proceedings of the 26th

International Symposium on Theoretical Aspects of Computer Science (2009), pp. 625–636. Full version
available at http://arxiv.org/abs/0812.2298.

[20] Le Gall, F. An efficient quantum algorithm for some instances of the group isomorphism problem.
Full version of the present paper. Available at http://arxiv.org/abs/1001.0608.

[21] Lidl, R., and Niederreiter, H. Finite fields. Cambridge University Press, 2008.
[22] Lipton, R. J., Snyder, L., and Zalcstein, Y. The complexity of word and isomorphism problems

for finite groups. Tech. rep., John Hopkins, 1976.
[23] McKenzie, P., and Cook, S. A. The parallel complexity of abelian permutation group problems.

SIAM Journal on Computing 16, 5 (1987), 880–909.
[24] Miller, G. On the n

log n isomorphism technique. In Proceedings of the 10th Annual ACM Symposium

on Theory of Computing (1978), pp. 51–58.
[25] Moore, C., Rockmore, D. N., Russell, A., and Schulman, L. J. The power of basis selection in

fourier sampling: hidden subgroup problems in affine groups. In Proceedings of the Fifteenth Annual

ACM-SIAM Symposium on Discrete Algorithms (2004), pp. 1113–1122.
[26] Mosca, M. Quantum Computer Algorithms. PhD thesis, Oxford university, 1999.
[27] Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer. SIAM Journal on Computing 26, 5 (1997), 1484–1509.
[28] Vikas, N. An O(n) algorithm for Abelian p-group isomorphism and an O(n log n) algorithm for Abelian

group isomorphism. Journal of Computer and System Sciences 53, 1 (1996), 1–9.
[29] Watrous, J. Succinct quantum proofs for properties of finite groups. In Proceedings of the 41st Annual

Symposium on Foundations of Computer Science (2000), pp. 537–546.
[30] Watrous, J. Quantum algorithms for solvable groups. In Proceedings of the 33rd Annual ACM Sym-

posium on Theory of Computing (2001), pp. 60–67.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.



Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 561-572
www.stacs-conf.org

TREEWIDTH REDUCTION FOR CONSTRAINED SEPARATION AND
BIPARTIZATION PROBLEMS
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ABSTRACT. We present a method for reducing the treewidth of a graph while preserving all the
minimal s − t separators. This technique turns out to be very useful for establishing the fixed-
parameter tractability of constrained separation and bipartization problems. To demonstrate the power
of this technique, we prove the fixed-parameter tractability of a number of well-known separation and
bipartization problems with various additional restrictions (e.g., the vertices being removed from the
graph form an independent set). These results answer a number of open questions in the area of
parameterized complexity.

1. Introduction

Finding cuts and separators is a classical topic of combinatorial optimization and in recent
years there has been an increase in interest in the fixed-parameter tractability of such problems
[19, 11, 15, 28, 16, 13, 5, 20]. Recall that a problem isfixed-parameter tractable(or FPT) with
respect to a parameterk if it can be solved in timef(k) · nO(1) for some functionf(k) depending
only on k [10, 12, 21]. In typical parameterized separation problems, the parameterk is the size
of the separator we are looking for, thus fixed-parameter tractability with respect to this parameter
means that the combinatorial explosion is restricted to the size of the separator, but otherwise the
running time depends polynomially on the size of the graph.

The main technical contribution of the present paper is a theorem stating that given a graphG,
two terminal verticess andt, and a parameterk, we can compute in aFPT-time a graphG∗ having
its treewidth bounded by a function ofk while (roughly speaking) preserving all the minimals − t
separators of size at mostk. Combining this theorem with the well-known Courcelle’s Theorem,
we obtain a powerful tool for proving the fixed parameter tractability of constrained separation and
bipartization problems. We demonstrate the power of the methodology with the following results.

• We prove that theMINIMUM STABLE s − t CUT problem (Is there an independent setS of
size at mostk whose removal separatess andt?) is fixed-parameter tractable. This problem

1998 ACM Subject Classification:G.2.2. Graph Theory, Subject: Graph Algorithms.
Key words and phrases:fixed-parameter algorithms, graph separation problems, treewidth.
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received some attention in the community. Our techniques allow us to prove various gen-
eralizations of this result very easily. First, instead of requiring thatS is independent, we
can require that it induces a graph that belongs to a hereditary classG; the problem remains
FPT. Second, in theMULTICUT problem a list of pairs of terminals are given(s1, t1), . . . ,
(sℓ, tℓ) and the solutionS has to be a set of at mostk vertices that induces a graph fromG
and separatessi from ti for everyi. We show that this problem isFPT parameterized byk
andℓ, which is a very strong generalization of previous results [19, 28]. Third, the results
generalize to theMULTICUT-UNCUT problem, where two setsT1, T2 of pairs of terminals
are given, andS has to separate every pair ofT1 andshould notseparate any pair ofT2.

• We prove that theEXACT STABLE BIPARTIZATION problem (Is there an independent set
of sizeexactlyk whose removal makes the graph bipartite?) is fixed-parameter tractable
(FPT) answering an open question posed in 2001 by Dı́az et al. [9]. We establish this result
by proving that theSTABLE BIPARTIZATION problem (Is there an independent set of size
at mostk whose removal makes the graph bipartite?) isFPT, answering an open question
posed by Fernau [7].

• We show that theEDGE-INDUCED VERTEX CUT (Are there at mostk edges such that the
removal of their endpoints separates two given terminalss and t?) is FPT, answering an
open problem posed in 2007 by Samer [7]. The motivation behind this problem is described
in [27].

We believe that the above results nicely demonstrate the message of the paper. Slightly chang-
ing the definition of a well-understood cut problem usually makes the problem NP-hard and deter-
mining the parameterized complexity of such variants directly is by no means obvious. On the other
hand, using our techniques, the fixed-parameter tractability of many such problems can be shown
with very little effort. Let us mention (without proofs) three more variants that can be treated in a
similar way: (1) separates andt by the deletion of at mostk edges and at mostk vertices, (2) in a
2-colored graph, separates andt by the deletion of at mostk black and at mostk white vertices, (3)
in ak-colored graph, separates andt by the deletion of one vertex from each color class.

As the examples above show, our method leads to the solution of several independent problems;
it seems that the same combinatorial difficulty lies at the heart of these problems. Our technique
manages to overcome this difficulty and it is expected to be of use for further problems of similar
flavor. Note that while designingFPT-time algorithms for bounded-treewidth graphs and in particu-
lar the use of Courcelle’s Theorem is a fairly standard technique, we use this technique for problems
where there is no bound on the treewidth of the graph appearing in the input.

(Multiterminal) cut problems [19, 16, 13, 5] play a mysterious, and not yet fully understood,
role in the fixed-parameter tractability of certain problems. Proving thatBIPARTIZATION [25], DI-
RECTED FEEDBACK VERTEX SET[6], and ALMOST 2-SAT [23] are FPT answered longstanding
open questions, and in each case the algorithm relies on a non-obvious use of separators. Fur-
thermore,EDGE MULTICUT has been observed to be equivalent toFUZZY CLUSTER EDITING, a
correlation clustering problem [3, 8, 1]. Thus aiming for a better understanding of separators in
a parameterized setting seems to be a fruitful direction of research. Our results extend our under-
standing of separators by showing that various additional constraints can be accommodated. It is
important to point out that our algorithm is very different from previous parameterized algorithms
for separation problems [19, 16, 13, 5]. Those algorithms in the literature exploit certain nice prop-
erties of separators, and hence it seems impossible to generalize them for the problems we consider
here. On the other hand, our approach is very robust and, as demonstrated by our examples, it is
able to handle many variants.
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The paper assumes the knowledge of the definition of treewidth and its algorithmic use, includ-
ing Courcelle’s Theorem (see the surveys [2, 14]).

2. Treewidth Reduction

The main combinatorial result of the paper is presented in this section. We start with some
preliminary definitions. Two slightly different notions of separation will be used in the paper:

Definition 2.1. We say that a setS of verticesseparatessets of verticesA andB if no component
of G \ S contains vertices from bothA \ S andB \ S. If s andt are two distinct vertices ofG,
then ans − t separatoris a setS of vertices disjoint from{s, t} such thats andt are in different
components ofG \ S.

In particular, ifS separatesA andB, thenA∩B ⊆ S. Furthermore, given a setW of vertices,
we say that a setS of vertices is abalanced separatorof W if |W∩C| ≤ |W |/2 for every connected
componentC of G \ S. A k-separatoris a separatorS with |S| = k. The treewidth of a graph is
closely connected with the existence of balanced separators:

Lemma 2.2([24], [12, Section 11.2]).
(1) If G(V,E) has treewidth greater than3k, then there is a setW ⊆ V of size2k + 1 having

no balancedk-separator.
(2) If G(V,E) has treewidth at mostk, then everyW ⊆ V has a balanced(k + 1)-separator.

Note that the contrapositive of (1) in Lemma 2.2 says that if every setW of vertices has a
balancedk-separator, then the treewidth is at most3k. This observation, and the following simple
extension, will be convenient tools for showing that a certain graph has low treewidth.

Lemma 2.3. LetG be a graph,C1,. . . , Cr subsets of vertices, and letC :=
⋃r

i=1
Ci. Suppose that

everyWi ⊆ Ci has a balanced separatorSi ⊆ Ci of size at mostw. Then everyW ⊆ C has a
balanced separatorS ⊆ C of sizewr.

If we are interested in separators of a graphG contained in a subsetC of vertices, then each
component ofG \ C (or the neighborhood of each component inC) can be replaced by a clique,
since there is no way to disconnect these components with separators inC. The notion of torso and
Proposition 2.5 formalize this concept.

Definition 2.4. Let G be a graph andC ⊆ V (G). The graph torso(G,C) has vertex setC and
verticesa, b ∈ C are connected by an edge if{a, b} ∈ E(G) or there is a pathP in G connectinga
andb whose internal vertices are not inC.

Proposition 2.5. LetC1 ⊆ C2 be two subsets of vertices inG and leta, b ∈ C1 be two vertices. A set
S ⊆ C1 separatesa andb in torso(G,C1) if and only ifS separates these vertices intorso(G,C2).
In particular, by settingC2 = V (G), we get thatS ⊆ C1 separatesa andb in torso(G,C1) if and
only if it separates them inG.

Analogously to Lemma 2.3, we can show that if we have a treewidth bound on torso(G,Ci) for
everyi, then these bounds add up for the union of theCi’s.

Lemma 2.6. Let G be a graph andC1,. . . , Cr be subsets ofV (G) such that for every1 ≤ i ≤ r,
the treewidth oftorso(G,Ci) is at mostw. Then the treewidth oftorso(G,C) for C :=

⋃r
i=1

Ci is
at most3r(w + 1).
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If the minimum size of ans− t separator isℓ, then theexcessof ans− t separatorS is |S| − ℓ
(which is always nonnegative). Note that ifs andt are adjacent, then nos − t separator exists, and
in this case we say that the minimum size of ans − t separator is∞. The aim of this section is to
show that, for everyk, we can construct a setC ′ covering all thes − t separators of size at mostk
such that torso(G,C ′) has treewidth bounded by a function ofk. Equivalently, we can require that
C ′ covers everys − t separator of excess at moste := k − ℓ, whereℓ is the minimum size of an
s − t separator.

If X is a set of vertices, we denote byδ(X) the set of those vertices inV (G) \ X that are
adjacent to at least one vertex ofX. The following result is folklore; it can be proved by a simple
application of the uncrossing technique (see the proof below) and it can be deduced also from the
observations of [22] on the strongly connected components of the residual graph after solving a flow
problem.

Lemma 2.7. Lets, t be two vertices in graphG such that the minimum size of ans− t separator is
ℓ. Then there is a collectionX = {X1, . . . ,Xq} of sets where{s} ⊆ Xi ⊆ V (G) \ ({t} ∪ δ({t}))
(1 ≤ i ≤ q), such that

(1) X1 ⊂ X2 ⊂ · · · ⊂ Xq,
(2) |δ(Xi)| = ℓ for every1 ≤ i ≤ q, and
(3) everys − t separator of sizeℓ is a subset of

⋃q
i=1

δ(Xi).

Furthermore, such a collectionX can be found in polynomial time.

Proof. Let X = {X1, . . . ,Xq} be a collection of sets such that (2) and (3) holds. Let us choose
the collection such thatq is the minimum possible, and among such collections,

∑q
i=1

|Xi|
2 is the

maximum possible. We show that for everyi, j, eitherXi ⊂ Xj or Xj ⊂ Xi holds, thus the sets
can be ordered such that (1) holds.

Suppose that neitherXi ⊂ Xj nor Xj ⊂ Xi holds for somei and j. We show that after
replacingXi andXj in X with the two setsXi ∩ Xj andXi ∪ Xj , properties (2) and (3) still hold,
and the resulting collectionX ′ contradicts the optimal choice ofX . The functionδ is well-known
to be submodular, i.e.,

|δ(Xi)| + |δ(Xj)| ≥ |δ(Xi ∩ Xj)| + |δ(Xi ∪ Xj)|.

Bothδ(Xi ∩Xj) andδ(Xi ∪Xj) ares− t separators (because bothXi∩Xj andXi ∪Xj contains)
and hence have size at leastk. The left hand side is2ℓ, hence there is equality and|δ(Xi ∩ Xj)| =
|δ(Xi ∪ Xj)| = ℓ follows. This means that property (2) holds after the replacement. Observe that
δ(Xi ∩ Xj) ∪ δ(Xi ∪ Xj) ⊆ δ(Xi) ∪ δ(Xj): any edge that leavesXi ∩ Xj or Xi ∪ Xj leaves
eitherXi or Xj . We show that there is equality here, implying that property (3) remains true after
the replacement. It is easy to see thatδ(Xi ∩ Xj) ∩ δ(Xi ∪ Xj) ⊆ δ(Xi) ∩ δ(Xj), hence we have

|δ(Xi∩Xj)∪δ(Xi∪Xj)| = 2ℓ−|δ(Xi∩Xj)∩δ(Xi∪Xj)| ≥ 2ℓ−|δ(Xi)∩δ(Xj)| = |δ(Xi)∪δ(Xj)|,

showing the required equality.
If Xi ∩Xj or Xi ∪Xj was already present inX , then the replacement decreases the size of the

collection, contradicting the choice ofX . Otherwise, we have that|Xi|
2 + |Xj |

2 < |Xi ∩ Xj |
2 +

|Xi∪Xj|
2 (to verify this, simply represent|Xi| as|Xi∩Xj|+|Xi\Xj |, |Xj | as|Xi∩Xj|+|Xj\Xi|,

|Xi ∪ Xj | as|Xi ∩Xj | + |Xi \Xj | + |Xj \ Xi| and do direct calculation having in mind that both
|Xi \ Xj| and|Xj \ Xi| are greater than0), again contradicting the choice ofX . Thus an optimal
collectionX satisfies (1) as well.

To constructX in polynomial time, we proceed as follows. It is easy to check in polynomial
time whether a vertexv is in a minimums − t separator, and if so to produce such a separatorSv.
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Let Xv be the set of vertices reachable froms in G \ Sv. It is clear thatXv satisfies (2) and if we
take the collectionX of all suchXv ’s, then together they satisfy (3). If (1) is not satisfied, then we
start doing the replacements as above. Each replacement either decreases the size of the collection
or increases

∑t
i=1

|Xi|
2 (without increasing the collection size), thus the procedure terminates after

a polynomial number of steps.

Lemma 2.7 shows that the unionC of all minimum s − t separators can be covered by a chain
of minimum s − t separators. It is not difficult to see that this chain can be used to define a tree
decomposition (in fact, a path decomposition) of torso(G,C). This observation solves the problem
for e = 0. For the general case, we use induction one.

Lemma 2.8. Lets, t be two vertices of graphG and letℓ be the minimum size of ans− t separator.
For somee ≥ 0, let C be the union of all minimals − t separators havingexcessat moste (i.e. of
size at mostk = ℓ + e). Then, for some constantd, there is anO(f(ℓ, e) · |V (G)|d) time algorithm
that returns a setC ′ ⊇ C ∪ {s, t} such that the treewidth oftorso(G,C ′) is at mostg(ℓ, e), where
functionsf andg depend only onℓ ande .

Proof. We prove the lemma by induction one. Consider the collectionX of Lemma 2.7 and define
Si := δ(Xi) for 1 ≤ i ≤ q. For the sake of uniformity, we defineX0 := ∅, Xq+1 := V (G) \ {t},
S0 := {s}, Sq+1 := {t}. For1 ≤ i ≤ q + 1, let Li := Xi \ (Xi−1 ∪Si−1). Also, for1 ≤ i ≤ q + 1
and two disjointnon-emptysubsetsA,B of Si ∪ Si−1, we defineGi,A,B to be the graph obtained
from G[Li ∪ A ∪ B] by contracting the setA to a vertexa and the setB to a vertexb. Taking into
account that ifC includes a vertex of someLi thene > 0, we prove the key observation that makes
it possible to use induction.

Claim 2.9. If a vertexv ∈ Li is in C, then there are disjoint non-empty subsetsA,B of Si ∪ Si−1

such thatv is part of a minimala− b separatorK2 in Gi,A,B of size at mostk (recall thatk = ℓ+ e)
and excess at moste − 1.

Proof. By definition ofC, there is a minimals − t separatorK of size at mostk that containsv.
Let K1 := K \Li andK2 := K ∩Li. Partition(Si ∪Si−1) \K into the setA of vertices reachable
from s in G \ K and the setB of vertices non-reachable froms in G \ K. Let us observe that both
A andB are non-empty. Indeed, due to the minimality ofK, G has a pathP from s to t such that
V (P ) ∩K = {v}. By selection ofv, Si−1 separatesv from s andSi separatesv from t. Therefore,
at least one vertexu of Si−1 occurs inP beforev and at least one vertexw of Si occurs inP afterv.
The prefix ofP ending atu and the suffix ofP starting atw are both subpaths inG \ K. It follows
thatu is reachable froms in G\K, i.e. belongs toA and thatw is reachable fromt in G\K, hence
non-reachable froms and thus belongs toB.

To see thatK2 is ana − b separator inGi,A,B, suppose that there is a pathP connectinga and
b in Gi,A,B avoidingK2. Then there is a corresponding pathP ′ in G connecting a vertex ofA and a
vertex ofB. PathP ′ is disjoint fromK1 (since it contains vertices ofLi and(Si ∪ Si−1) \ K only)
and fromK2 (by construction). Thus a vertex ofB is reachable froms in G \ K, a contradiction.

To see thatK2 is a minimala − b separator, suppose that there is a vertexu ∈ K2 such that
K2 \ {u} is also ana − b separator inGi,A,B. SinceK is minimal, there is ans − t pathP in
G\ (K \u), which has to pass throughu. Arguing as when we proved thatA andB are non-empty,
we observe thatP includes vertices of bothA andB, hence we can consider a minimal subpath
P ′ of P between a vertexa′ ∈ A and a vertexb′ ∈ B. We claim that all the internal vertices of
P ′ belong toLi. Indeed, due to the minimality ofP ′, an internal vertex ofP ′ can belong either
to Li or to V (G) \ (K1 ∪ Li ∪ Si−1 ∪ Si). If all the internal vertices ofP ′ are from the latter set
then there is a path froma′ to b′ in G \ (K1 ∪ Li) and hence inG \ (K1 ∪ K2) in contradiction to
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b′ ∈ B. If P ′ contains internal vertices of both sets thenG has an edge{u,w} whereu ∈ Li while
w ∈ V (G)\ (K1 ∪Li∪Si−1∪Si). But this is impossible sinceSi−1∪Si separatesLi from the rest
of the graph. Thus it follows that indeed all the internal vertices ofP ′ belong toLi. Consequently,
P ′ corresponds to a path inGi,A,B from a to b that avoidsK2 \ u, a contradiction that proves the
minimality of K2.

Finally, we show thatK2 has excess at moste − 1. Let K ′
2

be a minimuma − b separator
in Gi,A,B . Observe thatK1 ∪ K ′

2 is ans − t separator inG. Indeed, consider a pathP from s
to t in G \ (K1 ∪ K ′

2). It necessarily contains a vertexu ∈ K2, hence arguing as in the previous
paragraph we notice thatP includes vertices of bothA andB. Considering a minimal subpathP ′

of P between a vertexa′ ∈ A andb′ ∈ B we observe, analogously to the previous paragraph that all
the internal vertices of this path belong toLi. Hence this path corresponds to a path betweena and
b in Gi,A,B . It follows thatP ′, and henceP , includes a vertex ofK ′

2, a contradiction showing that
K1 ∪ K ′

2 is indeed ans − t separator inG. Due to the minimality ofK2, K ′
2 6= ∅. ThusK1 ∪ K ′

2

contains at least one vertex fromLi, implying thatK1 ∪K ′
2 is not a minimums− t separator inG.

Thus|K2| − |K ′
2| = (|K1| + |K2|) − (|K1| + |K ′

2|) < k − ℓ = e, as required. This completes the
proof of Claim 2.9.

Now we defineC ′. Let C0 :=
⋃q+1

i=0
Si. For e = 0, C ′ = C0. Assume thate > 0. For

1 ≤ i ≤ q + 1 and disjoint non-empty subsetsA,B of Si ∪ Si−1. Let Ci,A,B be such a superset
of the union of all minimala − b separators ofGi,A,B of size mostk and excess at moste − 1 that
Ci,A,B ∪{a, b} satisfies the induction assumption with respect toGi,A,B (if the minimum size of an
a − b separator ofGi,A,B is greater thank then we setCi,A,B = ∅). We defineC ′ as the union of
C0 and all setsCi,A,B as above. Observe thatC ′ is defined correctly in the sense that any vertexv
participating in ans − t minimal separator of size at mostk indeed belongs toC ′. For e = 0, the
correctness ofC ′ follows from the definition of setsSi. Fore > 0, the correctness follows from the
above Claim if we take into account that since

⋃q+1

i=1
Li ∪ C0 = V (G), v belongs to someLi.

We shall show that the treewidth of torso(G,C ′) is at mostg(ℓ, e), a function recursively de-
fined as follows:g(ℓ, 0) := 6ℓ andg(ℓ, e) := 3 · (2ℓ + 32ℓ · (g(ℓ, e − 1) + 1)) for e > 0. We do
this by showing that in graphG, every setW ⊆ C ′ has a balanced separator of size at most2ℓ (for
e = 0) and at most2ℓ + 32ℓ · (g(ℓ, e − 1) + 1) (for e > 0). By Proposition 2.5, this will imply
that in torso(G,C ′), W has a balanced separator with the same upper bound. By Lemma 2.2(1), the
desired upper bound on the treewidth will immediately follow.

Let W ⊆ C ′ be an arbitrary set. Let1 ≤ i ≤ q + 1 be the smallest value such that|W ∩Xi| ≥
|W |/2. Consider the separatorSi ∪ Si−1 (whose size is at most2ℓ). In G \ (Si ∪ Si−1), the sets
Xi−1, Li, andV (G) \ (Si ∪ Si−1 ∪ Xi−1 ∪ Li) are pairwise separated from each other. By the
selection ofi, the first and the third sets do not contain more than half ofW . If e = 0, thenC ′ is
disjoint fromLi, hence the treewidth upper bound follows fore = 0. We assume thate > 0 and,
using the induction assumption, will show thatW ∩ Li has a balanced separatorS of size at most
32ℓ · (g(ℓ, e− 1) + 1). This will immediately imply thatS ∪Si ∪Si−1 is a balanced separator ofW
of size at most2ℓ + 32ℓ · (g(ℓ, e − 1) + 1), which, in turn, will imply the desired upper bound on
the treewidth of torso(G,C ′).

By the induction assumption, the treewidth of torso(Gi,A,B , Ci,A,B) is at mostg(ℓ, e − 1) for
any pair of disjoint subsetsA, B of Si ∪Si−1 such thatGi,A,B has ana− b separator of size at most
k. By the combination of Lemma 2.2(2) and Proposition 2.5, graphG has a balanced separator of
size at mostg(ℓ, e − 1) + 1 for any setWi,A,B ⊆ Ci,A,B. Let C∗ be the union ofCi,A,B for all
suchA andB. Taking into account that the number of choices ofA andB is at most32ℓ, for any
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W ∗ ⊆ C∗, G has a balanced separator of size at most32ℓ ·(g(ℓ, e−1)+1) according to Lemma 2.3.
By definition ofC ′, W ∩ Li ⊆ C∗, hence the existence of the desired separatorS follows.

We conclude the proof by showing that the above setC ′ can be constructed in timeO(f(ℓ, e) ·
|V (G)|d). In particular, we present an algorithm whose running time isO(f(ℓ, e) · (|V (G)| −
2)d) (we assume thatG has more than 2 vertices), wheref(ℓ, e) is recursively defined as follows:
f(ℓ, 0) = 1 andf(ℓ, e) = f(ℓ, e − 1) · 32ℓ + 1 for e > 0.

The setXi can be computed as shown in the proof of Lemma 2.7. Then the setSi can be
obtained as in the first paragraph of the proof of the present lemma. Their union results inC0

which is C ′ for e = 0. Thus fore = 0, C ′ can be computed in timeO(|V (G)| − 2)d) (instead
of considerings andt, we may consider their sets of neighbors). Since the computation involves
computing a minimum cut, we may assume thatd > 1. Now assume thate > 0. For eachi such
that1 ≤ i ≤ q + 1 and|Li| > 0, we explore all possible disjoint subsetsA andB of Si ∪ Si−1. For
the given choice, we check if the size of a minimuma− b separator ofGi,A,B is at mostk (observe
that it can be done inO(|Li|

d)) and if yes, compute the setCi,A,B. By the induction assumption,
the computation takesO(f(ℓ, e − 1) · |Li|

d). So, exploring all possible choices ofA andB takes
O(f(ℓ, e − 1) · 32ℓ · |Li|

d). The overall complexity of computingC ′ is

O((|V (G)| − 2)d + f(ℓ, e − 1) · 32ℓ ·

q+1
∑

i=1

|Li|
d).

Since allLi are disjoint and
⋃q+1

i=1
Li ⊆ V (G)\{s, t},

∑q+1

i=1
|Li| ≤ |V (G)|−2, hence

∑q+1

i=1
(|Li|)

d ≤

(|V (G)| − 2)d. Taking into account the recursive expression forf(ℓ, e), the desired runtime fol-
lows.

Remark 2.10. The recursiong(ℓ, e) := 3 · (2ℓ + 32ℓ · g(ℓ, e − 1)) implies thatg(ℓ, e) is 2O(eℓ),
i.e., the treewidth bound is exponential inℓ ande. It is an obvious question whether it is possible to
improve this dependence to polynomial. However, a simple example (graphG is then-dimensional
hypercube,k = (n − 1)n, s andt are opposite vertices) shows that the functiong(ℓ, e) has to be
exponential. The size of the minimums− t separator isℓ := n. We claim that every vertexv of the
hypercube (other thans andt) is part of a minimals − t separator of size at mostn(n − 1). To see
this, letP be a shortest path connectings andv. Let P ′ = P − v be the subpath ofP connectings
with a neighborv′ of v. LetS be the neighborhood ofP ′; clearlyS is ans− t separator andv ∈ S.
However,S \v is not ans− t separator: the pathP is not blocked byS \v asS \v does not contain
any vertex farther froms thanv. SinceP ′ has at mostn − 1 vertices and every vertex has degree
n, we have|S| ≤ n(n − 1). Thusv (and every other vertex) is part of a minimal separator of size
at mostn(n − 1). Hence if we setℓ := n ande := n(n − 1), thenC contains every vertex of the
hypercube. The treewidth of ann-dimensional hypercube isΩ(2n/

√
n) [4], which is also a lower

bound ong(ℓ, e).

The following theorem states our main combinatorial tool in a form that will be very convenient
to use.

Theorem 2.11(The Treewidth Reduction Theorem). LetG be a graph,S ⊆ V (G), and letk be
an integer. LetC be the set of all vertices ofG participating in a minimals − t cut of size at most
k for somes, t ∈ S. Then there is anFPT algorithm, parameterized byk and |S|, that computes a
graphG∗ having the following properties:

(1) C ∪ S ⊆ V (G∗)
(2) For everys, t ∈ S, a setK ⊆ V (G∗) with |K| ≤ k is a minimals − t separator ofG∗ if

and only ifK ⊆ C ∪ S andK is a minimals − t separator ofG.
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(3) The treewidth ofG∗ is at mosth(k, |S|) for some functionh.
(4) For anyK ⊆ C, G∗[K] is isomorphic toG[K].

Proof. For everys, t ∈ S that can be separated by the removal of at mostk vertices, the algorithm
of Lemma 2.8 computes a setC ′

s,t containing all the minimals − t separators of size at mostk.

By Lemma 2.6, ifC ′ is the union of these at most
(|S|

2

)

sets, thenG′ = torso(G,C ′) has treewidth
bounded by a function ofk and|S|. Note thatG′ satisfies all the requirements of the theorem except
the last one: two vertices ofC ′ non-adjacent inG may become adjacent inG′ (see Definition 2.4).
To fix this problem we subdivide each edge{u, v} of G′ such that{u, v} /∈ E(G) into two edges
with a vertex between them, and, to avoid selecting this vertex into a cut, we split it intok+1 copies.
In other words, for each edge{u, v} ∈ E(G′)\E(G) we introducek+1 new verticesw1, . . . , wk+1

and replace{u, v} by the set of edges{{u,w1}, . . . , {u,wk+1}, {w1, v}, . . . , {wk+1, v}}. Let G∗

be the resulting graph. It is not hard to check thatG∗ satisfies all the properties of the present
theorem.

Remark 2.12. The treewidth ofG∗ may be larger than the treewidth ofG. We use the phrase
“treewidth reduction” in the sense that the treewidth ofG∗ is bounded by a function ofk and|S|,
while the treewidth ofG is unbounded.

3. Constrained Separation Problems

Let G be a class of graphs. Given a graphG, verticess andt, and parameterk, theG-MINCUT

problem asks ifG has ans − t separatorC of size at mostk such thatG[C] ∈ G. The following
theorem is the central result of this section.

Theorem 3.1. Assume thatG is decidableand hereditary(i.e. wheneverG ∈ G then for any
V ′ ⊆ V , G[V ′] ∈ G). Then theG-MINCUT problem isFPT.

Proof. (Sketch) LetG∗ be a graph satisfying the requirements of Theorem 2.11 forS = {s, t}.
According to Theorem 2.11,G∗ can be computed inFPT time. We claim that(G, s, t, k) is a ‘YES’
instance of theG-MINCUT problem if and only if(G∗, s, t, k) is a ‘YES’ instance of this problem.
Indeed, letK be ans − t separator inG such that|K| ≤ k andG(K) ∈ G. SinceG is hereditary,
we may assume thatK is minimal (otherwise we may consider a minimal subset ofK separatings
from t). By the second and fourth properties ofG∗ (see Theorem 2.11),K separatess from t in G∗

andG∗[K] ∈ G. The opposite direction can be proved similarly.
Thus we have established anFPT-time reduction from an instance of theG-MINCUT problem to

another instance of this problem where the treewidth is bounded by a function of parameterk. Now,
let G1 = (V (G∗), E(G∗), ST ) be a labeled graph whereST = {s, t}. We present an algorithm for
constructing a monadic second-order (MSO) formulaϕ whose atomic predicates (besides equality)
areE(x1, x2) (showing thatx1 andx2 are adjacent inG∗) and predicates of the formX(v) (showing
thatv is contained inX ⊆ V ), whose size is bounded by a function ofk, andG1 |= ϕ if and only if
(G∗, s, t, k) is a ‘YES’ instance of theG-MINCUT problem. According to a restricted version of the
well-known Courcelle’s Theorem (see the survey article of Grohe [14], Remarks 3.191 and 3.20), it
will follow that theG-MINCUT problem isFPT. The part ofϕ describing the separation ofs andt is
based on the ideas from [13].

1Although the branchwidth ofG1 appears in the parameter, it can be replaced by the treewidth ofG1 since the former
is bounded by a function ofk if and only if the latter is [26].
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We construct the formulaϕ as

ϕ = ∃C(AtMostk(C) ∧ Separates(C) ∧ InducesG(C)),

where AtMostk(C) is true if and only if|C| ≤ k, Separates(C) is true if and only ifC separates the
vertices ofST in G∗, and InducesG(C) is true if and onlyC induces a graph ofG.

In particular, AtMostk(C) states thatC does not havek + 1 mutually non-equal elements: this
can be implemented as

∀c1, . . . ,∀ck+1

∨

1≤i,j≤k+1

(ci = cj).

Formula Separates(C) is a slightly modified formula uvmc(X) from [13], that looks as follows:

∀s∀t∀Z
(

ST (s)∧ST (t)∧¬(s = t)∧¬C(s)∧¬C(t)∧Connects(Z, s, t)
)

→
(

∃v(C(v)∧Z(v)))
)

,

where Connects(Z, s, t) is true if and only if in the modeling graph there is a path froms andt
all vertices of which belong toZ. For the definition of the predicate Connects, see Definition 3.1 in
[13].

To construct InducesG(C), we explore all possible graphs having at mostk vertices and for
each of these graphs we check whether it belongs toG. Since the number of graphs being ex-
plored depends onk andG is a decidable class, inFPT time we can compile the set{G′

1
, . . . , G′

r}
of all graphs of at mostk vertices that belong toG. Let k1, . . . kr be the respective numbers of
vertices ofG′

1
, . . . G′

r. Then InducesG(C) = Induces1(C)∨ · · · ∨ Inducesr(C), where Inducesi(C)
states thatC inducesG′

i. To define Inducesi, let v1, . . . , vki
be the set of vertices ofG′

i and define
Adji(c1, . . . , cki

) as the conjunction of allE(cx, cy) such thatvx andvy are adjacent inG′
i and of

all ¬E(cx, cy) such thatvx andvy are not adjacent inG′
i. Then

Inducesi(C) = AtMostki
(C)∧∃c1 . . . ∃cki

(

∧

1≤j≤ki

C(cj)∧
∧

1≤x,y≤ki

cx 6= cy∧Adji(c1, . . . , cki
)
)

.

It is not hard to verify that indeedG1 |= ϕ if and only if (G∗, s, t, k) is a ‘YES’ instance of the
G-MINCUT problem.

In particular, letG0 be the class of all graphs without edges. ThenG0-MINCUT is theMINIMUM

STABLE s − t CUT problem whose fixed-parameter tractability has been posed as an open question
by Kanj [17]. Clearly,G0 is hereditary and hence theG0-MINCUT is FPT.

Theorem 3.1 can be used to decide if there is ans−t separator of sizeat mostk having a certain
property, but cannot be used if we are looking fors − t separators of sizeexactlyk. We show (with
a very easy argument) that some of these problems actually become hard if the size is required to
be exactlyk. Let graphG′ be obtained from graphG by introducing two isolated verticess andt.
Now there is an independent set of size exactlyk that is ans − t separator inG′ if and only if there
is an independent set of sizek in G, implying that finding such a separator is W[1]-hard.

Theorem 3.2. It is W[1]-hard to decide ifG has ans − t separator that is an independent set of
size exactlyk.

Samer and Szeider [27] introduced the notion ofedge-induced vertex-cutand the corresponding
computational problem: given a graphG and two verticess andt, the task is to decide if there are
k edges such that deleting theendpointsof these edges separatess and t. It remained an open
question in [27] whether this problem isFPT. Samer reposted this problem as an open question in
[7]. Using Theorem 3.1, we answer this question positively. For this purpose, we introduceGk,
the class of graphs where the number of vertices minus the size of the maximum matching is at



570 D.MARX, B.O’SULLIVAN, AND I.RAZGON

most k, observe that this class is hereditary, and show that(G, s, t, k) is a ‘YES’-instance of the
edge-induced vertex-cutproblem if and only if(G, s, t, 2k) is a ‘YES’ instance of theGk-mincut
problem. Then we apply Theorem 3.1 to get the following corollary.

Corollary 3.3. TheEDGE-INDUCED VERTEX-CUT problem isFPT.

MULTICUT is the generalization ofMINCUT where, instead ofs andt, the input contains a set
(s1, t1), . . . , (sℓ, tℓ) of terminal pairs. The task is to find a setS of at mostk nonterminal vertices
that separatesi andti for every1 ≤ i ≤ ℓ. MULTICUT is known to beFPT [19, 28] parameterized
by k and ℓ. In the G-MULTICUT problem, we additionally require thatS induces a graph from
G. It is not difficult to generalize Theorem 3.1 forG-MULTICUT : all we need to do is to change
the construction ofϕ such that it requires the separation of each pair(si, ti). We state this here in
an even more general form. In theG-MULTICUT-UNCUT problem the input contains an additional
integerℓ′ ≤ ℓ, and we change the problem by requiring for everyℓ′ ≤ i ≤ ℓ thatS does notseparate
si andti.

Theorem 3.4. If G is decidableandhereditary,thenG-MULTICUT-UNCUT is FPT parameterized by
k andℓ.

Theorem 3.4 helps clarify a theoretical issue. In Section 2, we definedC as the set of all vertices
appearing in minimals − t separators of size at mostk. There is no obvious way of finding this set
in FPT-time and Lemma 2.6 produces only a supersetC ′ of C. However, Theorem 3.4 can be used
to find C: a vertexv is in C if and only if there is a setS of size at mostk − 1 and two neighbors
v1, v2 of v such thatS separatess andt in G \ v, butS does not separates from v1 andt from v2 in
G \ v (including the possibility thatv1 = s or v2 = t).

4. Constrained Bipartization Problems

Reed et al. [25] solved a longstanding open question by proving the fixed-parameter tractability
of theBIPARTIZATION problem: given a graphG and an integerk, find a setS of at mostk vertices
such thatG \ S is bipartite (see also [18] for a somewhat simpler presentation of the algorithm). In
fact, they showed that theBIPARTIZATION problem can be solved by at most3k applications of a
procedure solvingMINCUT. The key result that allows to transformBIPARTIZATION to a separation
problem is the following lemma.

Lemma 4.1. LetG be a bipartite graph and let(B′,W ′) be a 2-coloring of the vertices. LetB and
W be two subsets ofV (G). Then for anyS, G\S has a 2-coloring whereB \S is black andW \S
is white if and only ifS separatesX := (B ∩ B′) ∪ (W ∩ W ′) andY := (B ∩ W ′) ∪ (W ∩ B′).

In this section we consider theG-BIPARTIZATION problem: a generalization of theBIPARTIZA-
TION problem where, in addition toG \ S being bipartite, it is also required thatS induces a graph
belonging to a classG.

Theorem 4.2.G-BIPARTIZATION is FPT if G is hereditary and decidable.

Proof. Using the algorithm of [25], we first try to find a setS0 of size at mostk such thatG \ S0 is
bipartite. If no such set exists, then clearly there is no setS satisfying the requirements. Otherwise,
we branch in3|S0| directions: each vertex ofS0 is removed or colored black or colored white. For
a particular branch, letR = {v1, . . . , vr} be the vertices ofS0 to be removed and letB0 (resp.,
W0) be the vertices ofS0 having color black (resp., white) in a 2-coloring of the resulting bipartite
graph. Let us call a setS such thatS∩S0 = R, andG\S is bipartite and having a 2-coloring where
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B0 andW0 are colored black and white, respectively, a setcompatiblewith (R,B0,W0). Clearly,
(G, k) is a ‘YES’ instance of theG-BIPARTIZATION problem if and only if for at least one branch
corresponding to partition(R,B0,W0) of S0, there is a set compatible with(R,B0,W0) having
size at mostk and such thatG[S] ∈ G. Clearly, we need to check only those branches whereG[B0]
andG[W0] are both independent sets.

We transform the problem of finding a set compatible with(R,B0,W0) into a separation prob-
lem. Let(B′,W ′) be a 2-coloring ofG \ S0. Let B = N(W0) \ S0 andW = N(B0) \ S0. Let us
defineX andY as in Lemma 4.1, i.e.,X := (B∩B′)∪(W ∩W ′), andY := (B∩W ′)∪(W ∩B′).
We construct a graphG′ that is obtained fromG by deleting the setB0 ∪W0, adding a new vertexs
adjacent toX ∪ R, and adding a new vertext adjacent withY ∪ R. Note that everys − t separator
in G′ containsR. By Lemma 4.1, a setS is compatible with(R,B0,W0) if and only if S is ans− t
separator inG′. Thus what we have to decide is whether there is ans− t separatorS of size at most
k such thatG′[S] = G[S] is in G. That is, we have to solve theG-MINCUT instance(G′, s, t, k).
The fixed-parameter tractability of theG-BIPARTIZATION problem now immediately follows from
Theorem 3.1.

Theorem 4.2 immediately implies that theSTABLE BIPARTIZATION problem isFPT: just setG
to be the class of all graphs without edges. This answers an open question of Fernau [7]. Next, we
show that theEXACT STABLE BIPARTIZATION problem isFPT, answering a question posed by Dı́az
et al. [9]. This result may seem surprising because the corresponding exact separation problem is
W[1]-hard by Theorem 3.2 and hence the approach of Theorem 4.2 is unlikely to work. Instead,
we argue that under appropriate conditions, any solution of size at mostk can be extended to an
independent set of size exactlyk.

Theorem 4.3. Given a graphG and an integerk, deciding whetherG can be made bipartite by the
deletion of an independent set of size exactlyk is fixed-parameter tractable.

Proof. (Sketch) It is more convenient to consider an annotated version of the problem where the
independent set being deleted has to be a subset of a setD ⊆ V (G) given as part of the input.
Without the annotation,D is initially set toV (G). If G is not bipartite, then the algorithm starts by
finding an odd cycleC of minimum length (which can be done in polynomial time). It is not difficult
to see that the minimality ofC implies that eitherC is a triangle orC is chordless. Moreover, in the
latter case, every vertex not inC is adjacent to at most 2 vertices of the cycle.

If |V (C)∩D| = 0, then clearly no subset ofD is a solution. If1 ≤ |V (C)∩D| ≤ 3k+1, then
we branch on the selection of each vertexv ∈ V (C) ∩ D into the setS of vertices being removed
and apply the algorithm recursively with the parameterk being decreased by1 and the setD being
updated by the removal ofv andN(v) ∩ D. If |V (C) ∩ D| > 3k + 1, then we apply the approach
of Theorem 4.2 to find an independent setS ⊆ D of size at mostk whose removal makes the graph
bipartite, and then argue thatS can be extended to an independent set of size exactlyk. To ensure
thatS ⊆ D, we may, for example split all verticesv ∈ V (G) \ D into k + 1 independent copies
with the same neighborhood asv. If |S| = k, we are done. Otherwise,|S| = k′ < k. In this
case we observe that by the minimality ofC, each vertex ofS (either inC or outsideC) forbids
the selection of at most3 vertices ofV (C) ∩ D including itself. Thus the number of vertices of
V (C)∩D allowed for selection is at least3k+1−3k′ = 3(k−k′)+1. Since the cycle is chordless,
we can selectk − k′ independent vertices among them and thus complementS to be of size exactly
k.

The above algorithm has a number of stopping conditions, the only non-trivial of them occurs
if G is bipartite butk > 0. In this case we check ifG[D] hask independent vertices, which can be
done in a polynomial time.
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Abstract. We study the online clustering problem where data items arrive in an online
fashion. The algorithm maintains a clustering of data items into similarity classes. Upon
arrival of v, the relation between v and previously arrived items is revealed, so that for
each u we are told whether v is similar to u. The algorithm can create a new cluster for v
and merge existing clusters.

When the objective is to minimize disagreements between the clustering and the input,
we prove that a natural greedy algorithm is O(n)-competitive, and this is optimal.

When the objective is to maximize agreements between the clustering and the input, we
prove that the greedy algorithm is .5-competitive; that no online algorithm can be better
than .834-competitive; we prove that it is possible to get better than 1/2, by exhibiting a
randomized algorithm with competitive ratio .5+c for a small positive fixed constant c.

1. Introduction

We study online correlation clustering. In correlation clustering [2, 15], the input is

a complete graph whose edges are labeled either positive, meaning similar, or negative,
meaning dissimilar. The goal is to produce a clustering that agrees as much as possible

with the edge labels. More precisely, the output is a clustering that maximizes the number

of agreements, i.e., the sum of positive edges within clusters and the negative edges between

clusters. Equivalently, this clustering minimizes the disagreements. This has applications

in information retrieval, e.g. [8, 10].

In the online setting, vertices arrive one at a time and the total number of vertices is

unknown to the algorithm a priori. Upon the arrival of a vertex, the labels of the edges that

connect this new vertex to the previously discovered vertices are revealed. The algorithm

updates the clustering while preserving the clusters already identified (it is not permitted to

split any pre-existing cluster). Motivated by information retrieval applications, this online

model was proposed by Charikar, Chekuri, Feder and Motwani [5] (for another clustering

problem). As in [5], our algorithms maintain Hierarchical Agglomerative Clusterings at all

times; this is well suited for the applications of interest.
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The problem of correlation clustering was introduced by Ben-Dor et al. [3] to cluster

gene expression patterns. Unfortunately, it was shown that even the offline version of

correlation clustering is NP-hard [15, 2]. The following are the two approximation problems

that have been studied [2, 7, 1]: Given a complete graph whose edges are labeled positive

or negative, find a clustering that minimizes the number of disagreements, or maximizes

the number of agreements. We will call these problems MinDisAgree and MaxAgree

respectively. Bansal et al. [2] studied approximation algorithms both for minimization

and maximization problems, giving a constant factor algorithm for MinDisAgree, and

a Polynomial Time Approximation Scheme (PTAS) for MaxAgree. Charikar et al. [7]

proved that MinDisAgree is APX-hard and gave a factor 4 approximation. Ailon et al.

[1] presented a randomized factor 2.5 approximation for MinDisAgree, which is currently

the best known factor. The problem has attracted significant attention, with further work

on several variants [9, 6, 11, 13, 3, 12, 14].

In this paper, we study online algorithms for MinDisAgree and MaxAgree. We

prove that MinDisAgree is essentially hopeless in the online setting: the natural greedy

algorithm is O(n)-competitive, and this is optimal up to a constant factor, even with ran-

domization (Theorem 3.4). The situation is better for MaxAgree: we prove that the

greedy algorithm is a .5-competitive (Theorem 2.1), but that no algorithm can be better

than 0.803 competitive (0.834 for randomized algorithms, see Theorem 2.2). What is the

optimal competitive ratio? We prove that it is better than .5 by exhibiting an algorithm

with competitive ratio 0.5 + ǫ0 where ǫ0 is a small absolute constant (Theorem 2.6). Thus

Greedy is not always the best choice!

More formally, let v1, . . . , vn denote the sequence of vertices of the input graph, where

n is not known in advance. Between any two vertices, vi and vj for i 6= j, there is an

edge labeled positive or negative. In MinDisAgree (resp. MaxAgree), the goal is to

find a clustering C, i.e. a partition of the nodes, that minimizes the number of disagree-

ments cost(C): the number of negative edges within clusters plus the number of positive

edges between clusters (resp. maximizes the number of agreements profit(C): the number

of positive edges within clusters plus the number of negative edges between clusters). Al-

though these problems are equivalent in terms of optimality, they differ from the point of

view of approximation. Let OPT denote the optimum solution of MinDisAgree and of

MaxAgree.

In the online setting, upon the arrival of a new vertex, the algorithm updates the

current clustering: it may either create a new singleton cluster or add the new vertex to a

pre-existing cluster, and may decide to merge some pre-existing clusters. It is not allowed

to split pre-existing clusters.

A c-competitive algorithm for MinDisAgree outputs, on any input σ, a clustering C(σ)

such that cost(C(σ)) ≤ c · cost(OPT(σ)). For MaxAgree, we must have profit(C(σ)) ≥
c · profit(OPT(σ)). (When the algorithm is randomized, this must hold in expectation).

2. Maximizing Agreements Online

2.1. Competitiveness of Greedy

For subsets of vertices S and T we define Γ(S, T ) as the set of edges between S and T .

We write Γ+(S, T ) (resp. Γ−(S, T )) for the set of positive (resp. negative) edges of Γ(S, T ).
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We define the gain of merging S with T as the change in the profit when clusters S and T
are merged:

gain(S, T ) = |Γ+(S, T )| − |Γ−(S, T )| = 2|Γ+(S, T )| − |S||T |.

We present the following greedy algorithm for online correlation clustering.

Algorithm 1 Algorithm Greedy

1: Upon the arrival of vertex v do

2: Put v in a new cluster consisting of {v}.
3: while there are two clusters C, C ′ such that gain(C,C ′) > 0 do

4: Merge C and C ′

5: end while

6: end for

Theorem 2.1. Let OPT denote the offline optimum.

• For every instance, profit(Greedy) ≥ 0.5 profit(OPT).
• There are instances with profit(Greedy) ≤ (0.5 + o(1))profit(OPT).

2.2. Bounding the optimal competitive ratio

Theorem 2.2. The competitive ratio of any randomized online algorithm for MaxAgree is
at most 0.834. The competitive ratio of any deterministic online algorithm for MaxAgree

is at most 0.803.

The proof uses Yao’s Min-Max Theorem [4] (maximization version).

Theorem 2.3 (Yao’s Min-Max Theorem). Fix a distribution D over a set of inputs (Iσ)σ.
The competitive ratio of any randomized online algorithm is at most

max{
EI [profit(A(I))]

EI [profit(OPT(I))]
: A deterministic online algorithm},

where the expectations are over a random input I drawn from distribution D.

To prove Theorem 2.2, we first define two generic inputs that we will use to apply

Theorem 2.3. The first input is a graph G1 with 2m vertices and all positive edges between

them The second input is a graph with 6m vertices defined as follows. The first 2m vertices

have all positive edges between them, the next 2m vertices have all positive edges between

them, and the last 2m vertices also have all positive edges between them. In each of these

three sets G1, G2, G3 of 2m vertices, half are labelled “left side” vertices and the other half

are labelled ”right side” vertices. All edges between left vertices are positive, but edges

between a vertex u on the left side of Gi and a vertex v on the right side of Gj , j 6= i, are

all negative.

The online algorithm cannot distinguish between the two inputs until time 2m + 1, so

it must hedge against two very different possible optimal structures.
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2.3. Beating Greedy

2.3.1. Designing the algorithm. Our algorithm is based on the observation that Algorithm

Greedy always satisfies at least half of the edges. Thus, if profit(OPT) is less than (1 −
α/2)|E| for some constant α, then the profit of Greedy is better than half of optimal.

We design an algorithm called Dense, parameterized by constants α and τ , such that if

profit(OPT) is greater than (1−α/2)|E|, then the approximation factor is at least 0.5+η for

some positive constant η. We use both algorithms Greedy and Dense to define Algorithm

2.

Theorem 2.4. Let α ∈ (0, 1), τ > 1 and η ∈ (0, 1
2 ) be such that

η ≤ 1.5 − τ2 − ((2
√

3 + 9/2)α1/4 +
α1/4

1 − α1/4
+ α/2)2

2τ − 1

(τ − 1)
. (2.1)

Then, for every instance such that OPT ≥ (1 − α/2)E, Algorithm Denseα,τ has profit at
least (1/2 + η)OPT.

Using Theorem 2.4 we can bound the competitive ratio of Algorithm 2.

Corollary 2.5. Let α, τ and η be as above, and let p = α/(2 + 2η(2 − α)). Then Algorithm

2 has competitive ratio at least 1
2 +

αη/2
1+2η(1−α/2) .

Corollary 2.6. For α = 10−12, τ = 1.0946, η = 0.0555 and p = 4, 5 · 10−13, Algorithm 2 is
1
2 + 2 · 10−14-competitive.

Algorithm 2 A 1
2 + ǫ0-competitive algorithm

Given p, α, τ ,

With probability 1 − p, run Greedy,

With probability p, run Denseα,τ .

Algorithm 3 Algorithm Denseα,τ

1: Let C = ÔPT1 and for every cluster D ∈ C, let repr1(D) := D ∈ ÔPT1 .

2: Upon the arrival of a vertex v at time t do

3: Put v in a new cluster {v}.
4: if t = ti for some i then

5: for every cluster D in ÔPTi do

6: Define a cluster D′′ obtained by merging the restriction of D to {ti−1, . . . , ti}
with every cluster C ∈ C in {1, . . . , ti−1} such that repri−1(C) is defined and is

half-contained in D.

7: If D′′ is not empty, set repri(D
′′) := D ∈ ÔPTi.

8: end for

9: end if

10: end for

How do we define algorithm Dense? Using the PTAS of [2], one can compute offline a

factor (1−α/2) approximative solution OPT′ of any instance of MaxAgree in polynomial
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time. We will design algorithm Dense so that it guarantees an approximation factor of

0.5+η whenever profit(OPT′) ≥ (1−α)|E|. Since profit(OPT) ≥ (1−α/2)|E| implies that

profit(OPT′) ≥ (1 − α)|E|, Theorem 2.4 will follow.

We say that OPT′
t is large if profit(OPT′

t) ≥ (1 − α)|E|. We define a sequence (ti)i
of update times inductively as follows: By convention t0 = 0. Time t1 is the earliest time

t ≥ 100 such that OPT′
t is large. Assume ti is already defined, and let j be such that

τ j−1 ≤ ti < τ j. If OPT′
τ j is large, then ti+1 = τ j, else ti+1 is the earliest time t ≥ τ j such

that OPT′
t is large. Let t1, t2, . . . , tK be the resulting sequence. We will note, with an abuse

of notation, OPT′
i instead of OPT′

ti for 1 ≤ i ≤ K.

We say that a cluster A is half-contained in B if |A ∩ B| > |A|/2. Let ǫ = α1/4. For

each ti, we inductively define a near optimal clustering of the nodes [1, ti]. For the base

case, let ÔPT1 be the clustering obtained from OPT′
1 by keeping the 1/ǫ2 largest clusters

and splitting the other clusters into singletons. For the general case, to define ÔPTi given

ÔPTi−1, mark the clusters of OPT′
i as follows. For any D in OPT′

i, mark D if either one

of the 1/ǫ2 − 1/ǫ largest clusters of ÔPTi−1 is half-contained in D, or D is one of the 1/ǫ

largest clusters OPT′
i. Then ÔPTi contains all the marked clusters of OPT′

i and the rest

of the vertices in [1, ti] as singleton clusters. (Note that, by definition, any ÔPTi contains

at most 1/ǫ2 non-singleton clusters; this will be useful in the analysis.)

Note that Dense only depends on parameters α and τ indirectly via the definition of

update times and of ÔPT.

2.3.2. Analysis: Proof of Theorem 2.4. The analysis is by induction on i, assuming that we

start from clustering ÔPTi at time ti, then apply the above algorithm from time ti to the

final time t. If i = 1 this is exactly our algorithm, and if i = K then this is simply ÔPTK ;

in general it is a mixture of the two constructions.

More formally, define a forest F (at time t) with one node for each ti ≤ t and cluster of

ÔPTi. The node associated to a cluster A of ÔPTi−1 is a child of the node associated to a

cluster B of ÔPTi if and only if A is half-contained in B. With a slight abuse of notation,

we define the following clustering F associated to the forest. There is one cluster T for each

tree of the forest: for each node A of the tree, if i is such that A ∈ ÔPTi, then cluster T
contains A ∩ (ti−1, ti]. This defines T .

One interpretation of Dense is that at all times t, there is an associated forest and

clustering F ; and our algorithm Dense simply maintains it. See Figure 1 for an example.

Lemma 2.7. Algorithm 3 is an online algorithm that outputs clustering F at time t.

Let Fi be the forest obtained from F by erasing every node associated to clusters of

ÔPTj for every j < i. With a slight abuse of notation, we define the following clustering

Fi associated to that forest: there is one cluster C for each tree of the forest defined as

follows. For each node A of the tree, let k ≥ i be such that A ∈ ÔPTk: then C contains

A∩ (tk−1, tk] if k > i, and C contains A if k = i. This defines a sequence of clusterings such

that F1 = F is the output of the algorithm, and FK = ÔPTK .

Lemma 2.8 (Main lemma). For any 2 ≤ i ≤ K,

cost(Fi−1) − cost(Fi) ≤

(

(4 + 2
√

3)ǫ +
ǫ

1 − ǫ

)

titK .
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Figure 1: An example of a forest F given in left, and the corresponding clustering given in

right. Here, we have ÔPTi = {B1, B2} and ÔPTi−1 = {A1, . . . , A5}.

We defer the proof of Lemma 2.8 to next section. Assuming Lemma 2.8, we upper-

bound the cost of clustering F .

Lemma 2.9 (Lemma 14, [2]). For any 0 < c < 1 and clustering C, let C′ be the clustering
obtained from C by splitting all clusters of C of size less than cn, where n is the number of
vertices. Then cost(C′) ≤ cost(C) + cn2/2.

Lemma 2.10. cost(F) ≤ ((2
√

3 + 9/2)ǫ + ǫ
1−ǫ + ǫ4/2)2τ−1

τ−1 t2K .

Proof. We write: cost(F) = cost(ÔPTK) +
∑K

i=2(cost(Fi−1) − cost(Fi)).By definition,

ÔPTK contains the 1/ǫ largest clusters of OPT′
K . Then the remaining clusters of OPT′

K

are of size at most ǫtK . By Lemma 2.9, the cost of ÔPTK is at most cost(OPT′
K)+ǫt2K/2 ≤

(α + ǫ)t2K/2. Applying Lemma 2.8, and summing over 2 ≤ i ≤ K, we get

cost(F) ≤ (α + ǫ)t2K/2 +

(

(4 + 2
√

3)ǫ +
ǫ

1 − ǫ

)

∑

i

titK .

By definition of the update times (ti)i, for any j > 0 there exists at most one ti such that

τ j ≤ ti < τ j+1. Let L be such that τL ≤ tK < τL+1. Then

∑

1≤i≤K

ti ≤
∑

1≤i≤K−1

ti + tK ≤
∑

1≤j≤L

τ j + tK ≤
τL+1

τ − 1
+ tK ≤

2τ − 1

τ − 1
tK .

Hence the desired bound on cost(F).
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Proof of Theorem 2.4. Fix an input graph of size n, such that profit(OPT) ≥ (1−α/2)
(n
2

)

.

By Lemma 2.10, at time tK , Algorithm 3 has clustering F with cost(F) ≤ O(ǫ)2τ−1
τ−1 t2K .

By definition of the update times, n < τtK . To guarantee a competitive ratio of 0.5+η,

for some η, the cost must not exceed (0.5− η)
(

n
2

)

at time n, when all vertices tK + 1, . . . , n
are added as singleton clusters. The number of new edges added to the graph between times

tK and n is
(n−tK

2

)

+ tK(n − tK). We must have

2τ − 1

τ − 1
O(ǫ)t2K +

(

n − tK
2

)

+ tK(n − tK) ≤ (0.5 − η)

(

n

2

)

, (2.2)

for some 0 < η < 0.5. Using the fact that n − tK ≤ (τ − 1)tK and tK ≤ n − 1, to satisfy

(2.2), it suffices to have

2τ − 1

τ − 1
O(ǫ)t2K + t2K(τ − 1)2/2 + (τ − 1)t2K ≤ (0.5 − η)t2K/2,

which is equivalent to (2.1). Moreover we have the following natural constraints on constants

η, ǫ and τ : 0 < η < 0.5, 0 < ǫ < 1, and τ > 1. Then, for any set of values of constants η, ǫ,
τ verifying those constraints, Algorithm Dense is 0.5 + η-competitive.

2.3.3. The core of the analysis: proof of Lemma 2.8.

Lemma 2.11. Let Si be the set of vertices of the non-singleton clusters that are not among

the 1/ǫ2 − 1/ǫ largest clusters of ÔPTi−1. Then |Si| ≤ ǫ
1−ǫti−1.

Proof. Let C be a cluster of ÔPTi−1, such that C ⊆ Si. Then |C| ≤ (1/ǫ2 − 1/ǫ)−1ti−1.

Since there are at most 1/ǫ such clusters, the number of vertices of these are at most

1/ǫ(1/ǫ2 − 1/ǫ)−1ti−1.

Notation 2.12. For any i 6= j, and a cluster B of OPT′
i, we denote by γi,j

B the square root

of the number of edges of [1, tmin(i,j)]× [1, tmin(i,j)], adjacent to at least one node of B, and

which are classified differently in OPT′
i and in OPT′

j.

We refer to non singleton clusters as large clusters.

Lemma 2.13. Let T i be the set of vertices of those 1/ǫ2 − 1/ǫ largest clusters of ÔPTi−1

that are not half-contained in any cluster of OPT′
i. Then |T i| ≤

√
6
∑

large C∈ ̂OPTi−1

γi,i−1
C .

Let B be a cluster of ÔPTi. For any j ≤ i, we define Cj(B) as the cluster associated

with the tree of Fj that contains B. For any B ∈ ÔPTi, we call Ci−1(B) the extension of

Ci(B) to Fi−1. By definition of Fi, the following lemma is easy.

Lemma 2.14. For any B ∈ ÔPTi, the restriction of Ci−1(B) to (ti−1, tK ] is equal to the
restriction of Ci(B) to (ti−1, tK ].

Let (Aj)j denote the clusters of ÔPTi−1 that are half-contained in B. We define δi(B)

as the symmetric difference of the restriction of B to [1, ti−1] and ∪jAj :

δi(B) = (B ∩ [1, ti−1])∆ ∪j Aj.
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Lemma 2.15. For any cluster Ci of Fi, let C ′
i denote the extension of Ci to Fi−1. Then

⋃

Ci∈Fi

Ci \ C ′
i ⊆ Si ∪ T i ∪

⋃

large B∈ÔPTi

δi(B)

Proof. By Lemma 2.14, the partition of the vertices (ti−1, tK ] is the same for Ci as for C ′
i.

So Ci and C ′
i only differ in the vertices of [1, ti−1):

⋃

Ci∈Fi

Ci \ C ′
i ⊆

⋃

B∈ÔPTi

δi(B).

We will show that for a singleton cluster B of ÔPTi, δi(B) is included in Si ∪
T i
⋃

large B∈ÔPTi
δi(B), which yields the lemma.

Let B = {v} be a singleton cluster of ÔPTi such that δi(B) 6= {}. A non-singleton

cluster cannot be half-contained in a singleton cluster so we conclude no clusters are half-

contained in B and hence δi(B) = {v}. By definition of δi(B), v ∈ [1, ti−1]. So there exists

a cluster A of ÔPTi−1 that contains v. Clearly A is not a singleton since otherwise δi(B)

would be {}. There are two cases.

First, if A is half-contained in a cluster B′ 6= B of ÔPTi then cluster B′ is necessarily

large since it contains more than one vertex of A. Then we have v ∈ δi(B′).

Second, if A is not half-contained in any cluster of ÔPTi then A ⊆ Si ∪ T i. In fact, if

A is half-contained in a cluster of OPT′
i which is split into singletons in ÔPTi, then A is

not one of the 1/ǫ2 − 1/ǫ largest clusters of ÔPTi−1, and A ⊆ Si. If A is not half-contained

in any cluster of OPT′
i, then A ⊆ T i if A is one of the 1/ǫ2 − 1/ǫ largest clusters of ÔPTi−1

and A ⊆ Si otherwise.

Lemma 2.16. For any large cluster B of ÔPTi, |δ
i(B)| ≤ 2

√
2γi,i−1

B .

Proof. Let B′ denote the restriction of B to [1, ti−1]. We first show that

1/2(| ∪j Aj \ B′|)2 ≤ (γi,i−1
B )2.

Observe that (γi,i−1
B )2 includes all edges uv such that one of the following two cases occurs.

First, if u ∈ Aj \B and v ∈ Aj∩B: such edges are internal in the clustering OPT′
i−1 but

external in the clustering OPT′
i. The number of edges of this type is

∑

j |Aj \B| · |Aj ∩B|.

Since Aj is half-contained in B, this is at least
∑

j |Aj \ B|2.
Second, if u ∈ Aj ∩ B and v ∈ Ak ∩ B with j 6= k: such edges are external in the

clustering OPT′
i−1 but internal in the clustering OPT′

i. The number of edges of this type

is
∑

j<k |Aj ∩ B| · |Ak ∩ B| ≥
∑

j<k |Aj \ B| · |Ak \ B|.

Summing, it is easy to infer that (γi,i−1
B )2 ≥ (1/2)

(

∑

j |Aj \ B|
)2

= (1/2)| ∪j Aj \B′|2.

Let (A′
j)j denote the clusters of ÔPTi−1 that are not half-contained in B, but have non-

empty intersections with B. We now show that

1/2(|B′ \ ∪jA
′
j|)

2 ≤ (γi,i−1
B )2.

We have B′ \∪jAj = ∪j(A
′
j ∩ B). Observe that any A′

j is a large cluster of ÔPTi−1, thus a

cluster of OPT′
i−1. Then (γi,i−1

B )2 includes all edges uv such that one of the following two

cases occurs
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First, if u ∈ A′
j \B and v ∈ A′

j∩B: such edges are internal in the clustering OPT′
i−1 but

external in the clustering OPT′
i. The number of edges of this type is

∑

j |A
′
j \B| · |A′

j ∩B|.

Since A′
j is not half-contained in B, this is at least

∑

j |A
′
j ∩ B|2.

Second, if u ∈ A′
j ∩ B and v ∈ A′

k ∩ B with j 6= k: such edges are external in the

clustering OPT′
i−1 but internal in the clustering OPT′

i. The number of edges of this type

is
∑

j<k |A
′
j ∩ B| · |A′

k ∩ B|.
Summing, we get

(γi,i−1
B )2 ≥ (1/2)





∑

j

|A′
j ∩ B|





2

= (1/2)|B′ \ ∪jA
′
j|

2.

Lemma 2.17. For any i ≥ 1, ÔPTi has at most 1/ǫ2 non singleton clusters, all of which
are clusters of OPT′

i

Proof. By definition, ÔPT1 has at most 1/ǫ2 non singleton clusters. For any i > 1, a cluster

of ÔPTi−1 can only be half-contained in one cluster of OPT′
i. Therefore given ÔPTi−1, at

most 1/ǫ2 clusters of OPT′
i are marked. Thus ÔPTi has at most 1/ǫ2 clusters.

We can now prove Lemma 2.8.

Proof of Lemma 2.8. By Lemma 2.14, clusterings Fi and Fi−1 only differ in their partition

of [1, ti−1]. Then the set of the vertices that are classified differently in Fi and Fi−1 is

∪iCi \ Ci−1. Each of these vertices creates at most tK disagreements:

cost(Fi−1) − cost(Fi) ≤
∑

Ci∈Fi

|Ci \ Ci−1|tK (2.3)

By Lemmas 2.15 and 2.16,

∑

Ci∈Fi

|Ci \ Ci−1|tK ≤



2
√

2

(

∑

large B∈ÔPTi

γi,i−1
B

)

+ |Si| + |T i|



 tK . (2.4)

By Lemmas 2.11 and 2.13,

|Si| ≤
ǫ

1 − ǫ
ti−1 and |T i| ≤

√
6

∑

large B∈ ̂OPTi−1

γi−1,i
B (2.5)

The term
∑

large B∈ ̂OPTi−1

γi−1,i
B can be seen as the ℓ1 norm of the vector (γi−1,i

B )large B. Since

ÔPTi−1 has at most 1/ǫ2 large clusters by Lemma 2.17, we can use Hölder’s inequality:
∑

large B∈ ̂OPTi−1

γi−1,i
B = ‖(γi−1,i

B )large B‖1 ≤ 1/ǫ‖(γi−1,i
B )large B‖2.

By definition we have ‖(γi−1,i
B )large B‖2 ≤

√

2(cost(OPT′
i−1) + cost(OPT′

i)). Thus

∑

large B∈ ̂OPTi−1

γi−1,i
B ≤ 1/ǫ

√

2(αt2i−1/2 + αt2i /2) ≤

√
2α

ǫ
ti. (2.6)
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Similarly, we have
∑

large B∈ÔPTi

γi,i−1
B ≤

√
2α

ǫ
ti. (2.7)

Combining equations (2.3) through (2.7) and α = ǫ4 yields

cost(Fi−1) − cost(Fi) ≤

(

(4 + 2
√

3)ǫ +
ǫ

1 − ǫ

)

titK

3. Minimizing Disagreements Online

Theorem 3.1. Algorithm Greedy is (2n + 1)-competitive for MinDisAgree.

To prove Theorem 3.1, we need to compare the cost of the optimal clustering to the

cost of the clustering constructed by the algorithm. The following lemma reduces this to,

roughly, analyzing the number of vertices classified differently.

Lemma 3.2. Let W and W ′ be two clusterings such that there is an injection W ′
i ∈ W ′ →

Wi ∈ W. Then cost(W ′) − cost(W) ≤ n
∑

i |W
′
i \ Wi|.

For subsets of vertices S1, . . . , Sm, we will write, with a slight abuse of notation,

Γ+(S1, . . . , Sm) for the set of edges in Γ+(Si, Sj) for any i 6= j: Γ+(S1, . . . , Sm) =

∪i6=jΓ
+(Si, Sj).

Lemma 3.3. Let C be a cluster created by Greedy, and W = {W1, . . . ,WK} denote
the clusters of OPT. Then |C| ≤ maxi |C ∩ Wi| + 2|Γ+(C ∩ W1, . . . , C ∩ WK)|.. We call
i0 = arg max

i
|C ∩ Wi| the leader of C.

Proof of Theorem 3.1. Let C denote the clustering given by Greedy. For every cluster

Wi of OPT, merge all the clusters of C that have i as their leaders. Let C′ = (W ′
i ) be

this new clustering. By definition of the greedy algorithm, this operation can only in-

crease the cost since every pair of clusters have a negative-majority cut at the end of the

algorithm:cost(C) ≤ cost(C′). We apply Lemma 3.2 to W =OPT and W ′ = C′, and ob-

tain: cost(C′) ≤ cost(OPT) + n
∑

i |W
′
i \ Wi|. By definition of C′ we have |W ′

i \ Wi| =
∑

C∈C:leader(C)=i

∑

j 6=i |C ∩ Wj |, hence
∑

i

|W ′
i \ Wi| =

∑

C∈C

∑

j 6=leader(C)

|C ∩ Wj|.

By Lemma 3.3,
∑

j 6=leader(C) |C ∩ Wj| ≤ 2|Γ+(C∩W1, . . . , C∩WK)|. Finally, to bound OPT

from below, we observe that, for any two clusterings C and W, it holds that the sum over

C ∈ C of |Γ+(C ∩ W1, . . . , C ∩ WK)| is less than cost(W). Combining these inequalities

yields the theorem.
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Theorem 3.4. Let ALG be a randomized algorithm for MinDisAgree. Then there exists
an instance on which ALG has cost at least n − 1 − cost(OPT) where OPT is the offline
optimum. If OPT is constant then cost(ALG) = Ω(n)cost(OPT).

Proof. Consider two cliques A and B, each of size m, where all the internal edges of A and

B are positive. Choose a vertex a in A, and a set of vertices b1, . . . , bk in B. Define the

edge labels of abi as positive, for all 1 ≤ i ≤ k and the rest of the edges between A and B
as negative. Define an input sequence starting with a, b1, . . . , bk, followed by the rest of the

vertices in any order.
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Abstract. Tolerance graphs model interval relations in such a way that intervals can
tolerate a certain degree of overlap without being in conflict. This subclass of perfect
graphs has been extensively studied, due to both its interesting structure and its numerous
applications. Several efficient algorithms for optimization problems that are NP-hard on
general graphs have been designed for tolerance graphs. In spite of this, the recognition of
tolerance graphs – namely, the problem of deciding whether a given graph is a tolerance
graph – as well as the recognition of their main subclass of bounded tolerance graphs,
have been the most fundamental open problems on this class of graphs (cf. the book on
tolerance graphs [14]) since their introduction in 1982 [11]. In this article we prove that
both recognition problems are NP-complete, even in the case where the input graph is
a trapezoid graph. The presented results are surprising because, on the one hand, most
subclasses of perfect graphs admit polynomial recognition algorithms and, on the other
hand, bounded tolerance graphs were believed to be efficiently recognizable as they are a
natural special case of trapezoid graphs (which can be recognized in polynomial time) and
share a very similar structure with them. For our reduction we extend the notion of an
acyclic orientation of permutation and trapezoid graphs. Our main tool is a new algorithm
that uses vertex splitting to transform a given trapezoid graph into a permutation graph,
while preserving this new acyclic orientation property. This method of vertex splitting is
of independent interest; very recently, it has been proved a powerful tool also in the design
of efficient recognition algorithms for other classes of graphs [21].

1. Introduction

1.1. Tolerance graphs and related graph classes

A simple undirected graph G = (V,E) on n vertices is a tolerance graph if there

exists a collection I = {Ii | i = 1, 2, . . . , n} of closed intervals on the real line and a set
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Key words and phrases: Tolerance graphs, bounded tolerance graphs, recognition, vertex splitting, NP-

complete, trapezoid graphs, permutation graphs.
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t = {ti | i = 1, 2, . . . , n} of positive numbers, such that for any two vertices vi, vj ∈ V ,

vivj ∈ E if and only if |Ii ∩ Ij | ≥ min{ti, tj}. The pair 〈I, t〉 is called a tolerance repre-
sentation of G. If G has a tolerance representation 〈I, t〉, such that ti ≤ |Ii| for every

i = 1, 2, . . . , n, then G is called a bounded tolerance graph and 〈I, t〉 a bounded tolerance
representation of G.

Tolerance graphs were introduced in [11], in order to generalize some of the well known

applications of interval graphs. The main motivation was in the context of resource alloca-

tion and scheduling problems, in which resources, such as rooms and vehicles, can tolerate

sharing among users [14]. If we replace in the definition of tolerance graphs the operator

min by the operator max, we obtain the class of max-tolerance graphs. Both tolerance and

max-tolerance graphs find in a natural way applications in biology and bioinformatics, as in

the comparison of DNA sequences from different organisms or individuals [17], by making

use of a software tool like BLAST [1]. Tolerance graphs find numerous other applications

in constrained-based temporal reasoning, data transmission through networks to efficiently

scheduling aircraft and crews, as well as contributing to genetic analysis and studies of the

brain [13,14]. This class of graphs has attracted many research efforts [2,4,8,12–15,18,22,24],

as it generalizes in a natural way both interval graphs (when all tolerances are equal) and

permutation graphs (when ti = |Ii| for every i = 1, 2, . . . , n) [11]. For a detailed survey on

tolerance graphs we refer to [14].

A comparability graph is a graph which can be transitively oriented. A co-comparability
graph is a graph whose complement is a comparability graph. A trapezoid (resp. parallelo-
gram and permutation) graph is the intersection graph of trapezoids (resp. parallelograms

and line segments) between two parallel lines L1 and L2 [10]. Such a representation with

trapezoids (resp. parallelograms and line segments) is called a trapezoid (resp. parallelo-
gram and permutation) representation of this graph. A graph is bounded tolerance if and

only if it is a parallelogram graph [2, 19]. Permutation graphs are a strict subset of par-

allelogram graphs [3]. Furthermore, parallelogram graphs are a strict subset of trapezoid

graphs [25], and both are subsets of co-comparability graphs [10,14]. On the contrary, tol-

erance graphs are not even co-comparability graphs [10, 14]. Recently, we have presented

in [22] a natural intersection model for general tolerance graphs, given by parallelepipeds

in the three-dimensional space. This representation generalizes the parallelogram represen-

tation of bounded tolerance graphs, and has been used to improve the time complexity of

minimum coloring, maximum clique, and weighted independent set algorithms on tolerance

graphs [22].

Although tolerance and bounded tolerance graphs have been studied extensively, the

recognition problems for both these classes have been the most fundamental open problems

since their introduction in 1982 [5, 10, 14]. Therefore, all existing algorithms assume that,

along with the input tolerance graph, a tolerance representation of it is given. The only re-

sult about the complexity of recognizing tolerance and bounded tolerance graphs is that they

have a (non-trivial) polynomial sized tolerance representation, hence the problems of recog-

nizing tolerance and bounded tolerance graphs are in the class NP [15]. Recently, a linear

time recognition algorithm for the subclass of bipartite tolerance graphs has been presented

in [5]. Furthermore, the class of trapezoid graphs (which strictly contains parallelogram,

i.e. bounded tolerance, graphs [25]) can be also recognized in polynomial time [20,21,26]. On

the other hand, the recognition of max-tolerance graphs is known to be NP-hard [17]. Un-

fortunately, the structure of max-tolerance graphs differs significantly from that of tolerance
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graphs (max-tolerance graphs are not even perfect, as they can contain induced C5’s [17]),

so the technique used in [17] does not carry over to tolerance graphs.

Since very few subclasses of perfect graphs are known to be NP-hard to recognize, it

was believed that the recognition of tolerance graphs was in P. Furthermore, as bounded

tolerance graphs are equivalent to parallelogram graphs [2, 19], which constitute a natural

subclass of trapezoid graphs and have a very similar structure, it was plausible that their

recognition was also in P.

1.2. Our contribution

In this article, we establish the complexity of recognizing tolerance and bounded tol-

erance graphs. Namely, we prove that both problems are surprisingly NP-complete, by

providing a reduction from the monotone-Not-All-Equal-3-SAT (monotone-NAE-3-SAT)

problem. Consider a boolean formula φ in conjunctive normal form with three literals in

every clause (3-CNF), which is monotone, i.e. no variable is negated. The formula φ is

called NAE-satisfiable if there exists a truth assignment of the variables of φ, such that

every clause has at least one true variable and one false variable. Given a monotone 3-

CNF formula φ, we construct a trapezoid graph Hφ, which is parallelogram, i.e. bounded

tolerance, if and only if φ is NAE-satisfiable. Moreover, we prove that the constructed

graph Hφ is tolerance if and only if it is bounded tolerance. Thus, since the recognition

of tolerance and of bounded tolerance graphs are in the class NP [15], it follows that these

problems are both NP-complete. Actually, our results imply that the recognition problems

remain NP-complete even if the given graph is trapezoid, since the constructed graph Hφ

is trapezoid.

For our reduction we extend the notion of an acyclic orientation of permutation and

trapezoid graphs. Our main tool is a new algorithm that transforms a given trapezoid graph

into a permutation graph by splitting some specific vertices, while preserving this new acyclic

orientation property. One of the main advantages of this algorithm is its robustness, in the

sense that the constructed permutation graph does not depend on any particular trapezoid

representation of the input graph G. Moreover, besides its use in the present paper, this

approach based on splitting vertices has been recently proved a powerful tool also in the

design of efficient recognition algorithms for other classes of graphs [21].

Organization of the paper. We first present in Section 2 several properties of

permutation and trapezoid graphs, as well as the algorithm Split-U , which constructs a

permutation graph from a trapezoid graph. In Section 3 we present the reduction of the

monotone-NAE-3-SAT problem to the recognition of bounded tolerance graphs. In Section 4

we prove that this reduction can be extended to the recognition of general tolerance graphs.

Finally, we discuss the presented results and further research directions in Section 5. Some

proofs have been omitted due to space limitations; a full version can be found in [23].

2. Trapezoid graphs and representations

In this section we first introduce (in Section 2.1) the notion of an acyclic representation
of permutation and of trapezoid graphs. This is followed (in Section 2.2) by some structural

properties of trapezoid graphs, which will be used in the sequel for the splitting algorithm

Split-U . Given a trapezoid graph G and a vertex subset U of G with certain properties, this
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algorithm constructs a permutation graph G#(U) with 2|U | vertices, which is independent

on any particular trapezoid representation of the input graph G.

Notation. We consider in this article simple undirected and directed graphs with no

loops or multiple edges. In an undirected graph G, the edge between vertices u and v is

denoted by uv, and in this case u and v are said to be adjacent in G. If the graph G is

directed, we denote by uv the arc from u to v. Given a graph G = (V,E) and a subset

S ⊆ V , G[S] denotes the induced subgraph of G on the vertices in S, and we use E[S]

to denote E(G[S]). Whenever we deal with a trapezoid (resp. permutation and bounded

tolerance, i.e. parallelogram) graph, we will consider w.l.o.g. a trapezoid (resp. permuta-

tion and parallelogram) representation, in which all endpoints of the trapezoids (resp. line

segments and parallelograms) are distinct [9, 14, 16]. Given a permutation graph P along

with a permutation representation R, we may not distinguish in the following between a

vertex of P and the corresponding line segment in R, whenever it is clear from the con-

text. Furthermore, with a slight abuse of notation, we will refer to the line segments of a

permutation representation just as lines.

2.1. Acyclic permutation and trapezoid representations

Let P = (V,E) be a permutation graph and R be a permutation representation of P .

For a vertex u ∈ V , denote by θR(u) the angle of the line of u with L2 in R. The class of

permutation graphs is the intersection of comparability and co-comparability graphs [10].

Thus, given a permutation representation R of P , we can define two partial orders (V,<R)

and (V,≪R) on the vertices of P [10]. Namely, for two vertices u and v of G, u <R v if

and only if uv ∈ E and θR(u) < θR(v), while u ≪R v if and only if uv /∈ E and u lies to

the left of v in R. The partial order (V,<R) implies a transitive orientation ΦR of P , such

that uv ∈ ΦR whenever u <R v.

Let G = (V,E) be a trapezoid graph, and R be a trapezoid representation of G, where

for any vertex u ∈ V , the trapezoid corresponding to u in R is denoted by Tu. Since

trapezoid graphs are also co-comparability graphs [10], we can similarly define the partial

order (V,≪R) on the vertices of G, such that u ≪R v if and only if uv /∈ E and Tu lies

completely to the left of Tv in R. In this case, we may denote also Tu ≪R Tv.

In a given trapezoid representation R of a trapezoid graph G, we denote by l(Tu)

and r(Tu) the left and the right line of Tu in R, respectively. Similarly to the case of per-

mutation graphs, we use the relation ≪R for the lines l(Tu) and r(Tu), e.g. l(Tu)≪R r(Tv)

means that the line l(Tu) lies to the left of the line r(Tv) in R. Moreover, if the trapezoids

of all vertices of a subset S ⊆ V lie completely to the left (resp. right) of the trapezoid Tu

in R, we write R(S) ≪R Tu (resp. Tu ≪R R(S)). Note that there are several trapezoid

representations of a particular trapezoid graph G. Given one such representation R, we

can obtain another one R′ by vertical axis flipping of R, i.e. R′ is the mirror image of R
along an imaginary line perpendicular to L1 and L2. Moreover, we can obtain another

representation R′′ of G by horizontal axis flipping of R, i.e. R′′ is the mirror image of R
along an imaginary line parallel to L1 and L2. We will extensively use these two operations

throughout the article.

Definition 2.1. Let P be a permutation graph with 2n vertices {u1
1, u

2
1, u

1
2, u

2
2, . . . , u

1
n, u2

n}.
Let R be a permutation representation and ΦR be the corresponding transitive orientation

of P . The simple directed graph FR is obtained by merging u1
i and u2

i into a single vertex ui,
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for every i = 1, 2, . . . , n, where the arc directions of FR are implied by the corresponding

directions in ΦR. Then,

(1) R is an acyclic permutation representation with respect to {u1
i , u

2
i }

n
i=1

∗, if FR has no

directed cycle,

(2) P is an acyclic permutation graph with respect to {u1
i , u

2
i }

n
i=1, if P has an acyclic

representation R with respect to {u1
i , u

2
i }

n
i=1.

Definition 2.2. Let G be a trapezoid graph with n vertices and R be a trapezoid represen-

tation of G. Let P be the permutation graph with 2n vertices corresponding to the left and

right lines of the trapezoids in R, RP be the permutation representation of P induced by R,

and {u1
i , u

2
i } be the vertices of P that correspond to the same vertex ui of G, i = 1, 2, . . . , n.

Then,

(1) R is an acyclic trapezoid representation, if RP is an acyclic permutation represen-

tation with respect to {u1
i , u

2
i }

n
i=1,

(2) G is an acyclic trapezoid graph, if it has an acyclic representation R.

The following lemma follows easily from Definitions 2.1 and 2.2.

Lemma 2.3. Any parallelogram graph is an acyclic trapezoid graph.

2.2. Structural properties of trapezoid graphs

In the following, we state some definitions concerning an arbitrary simple undirected

graph G = (V,E), which are useful for our analysis. Although these definitions apply to

any graph, we will use them only for trapezoid graphs. Similar definitions, for the restricted

case where the graph G is connected, were studied in [6]. For u ∈ V and U ⊆ V , N(u) =

{v ∈ V | uv ∈ E} is the set of adjacent vertices of u in G, N [u] = N(u) ∪ {u}, and

N(U) =
⋃

u∈U N(u) \ U . If N(U) ⊆ N(W ) for two vertex subsets U and W , then U is said

to be neighborhood dominated by W . Clearly, the relationship of neighborhood domination

is transitive.

Let C1, C2, . . . , Cω, ω ≥ 1, be the connected components of G \N [u] and Vi = V (Ci),

i = 1, 2, . . . , ω. For simplicity of the presentation, we will identify in the sequel the compo-

nent Ci and its vertex set Vi, i = 1, 2, . . . , ω. For i = 1, 2, . . . , ω, the neighborhood domination
closure of Vi with respect to u is the set Du(Vi) = {Vp | N(Vp) ⊆ N(Vi), p = 1, 2, . . . , ω} of

connected components of G \N [u]. A component Vi is called a master component of u if

|Du(Vi)| ≥ |Du(Vj)| for all j = 1, 2, . . . , ω. The closure complement of the neighborhood

domination closure Du(Vi) is the set D∗
u(Vi) = {V1, V2, . . . , Vω} \Du(Vi). Finally, for a

subset S ⊆ {V1, V2, . . . , Vω}, a component Vj ∈ S is called maximal if there is no com-

ponent Vk ∈ S such that N(Vj) $ N(Vk).

For example, consider the trapezoid graph G with vertex set {u, u1, u2, u3, v1, v2, v3, v4},
which is given by the trapezoid representation R of Figure 1. The connected compo-

nents of G \N [u] = {v1, v2, v3, v4} are V1 = {v1}, V2 = {v2}, V3 = {v3}, and V4 = {v4}.
Then, N(V1) = {u1}, N(V2) = {u1, u3}, N(V3) = {u2, u3}, and N(V4) = {u3}. Hence,

Du(V1) = {V1}, Du(V2) = {V1, V2, V4}, Du(V3) = {V3, V4}, and Du(V4) = {V4}; thus, V2

is the only master component of u. Furthermore, D∗
u(V1) = {V2, V3, V4}, D∗

u(V2) = {V3},
D∗

u(V3) = {V1, V2}, and D∗
u(V4) = {V1, V2, V3}.

∗To simplify the presentation, we use throughout the paper {u1

i , u
2

i }
n

i=1 to denote the set of n unordered
pairs {u1

1, u
2

1}, {u
1

2, u
2

2}, . . . , {u
1

n, u
2

n}.
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L1

L2

Tv1

Tv2

Tv3
Tv4

Tu

Tu2Tu1

Tu3

R :

Figure 1: A trapezoid representation R of a trapezoid graph G.

Lemma 2.4. Let G be a simple graph, u be a vertex of G, and let V1, V2, . . . , Vω, ω ≥ 1,
be the connected components of G \N [u]. If Vi is a master component of u, such that
D∗

u(Vi) 6= ∅, then D∗
u(Vj) 6= ∅ for every component Vj of G \N [u].

In the following we investigate several properties of trapezoid graphs, in order to derive

the vertex-splitting algorithm Split-U in Section 2.3.

Remark 2.5. Similar properties of trapezoid graphs have been studied in [6], leading to

another vertex-splitting algorithm, called Split-All. However, the algorithm proposed in [6]

is incorrect, since it is based on an incorrect property†, as was also verified by [7]. In the

sequel of this section, we present new definitions and properties. In the cases where a

similarity arises with those of [6], we refer to it specifically.

Lemma 2.6. Let R be a trapezoid representation of a trapezoid graph G, and Vi be a
master component of a vertex u of G, such that R(Vi)≪RTu. Then, Tu≪RR(Vj) for every
component Vj ∈ D∗

u(Vi).

Definition 2.7. Let G be a trapezoid graph, u be a vertex of G, and Vi be an arbitrarily

chosen master component of u. Then, δu = Vi and

(1) if D∗
u(Vi) = ∅, then δ∗u = ∅.

(2) if D∗
u(Vi) 6= ∅, then δ∗u = Vj , for an arbitrarily chosen maximal component Vj ∈

D∗
u(Vi).

Actually, as we will show in Lemma 2.10, the arbitrary choice of the components Vi

and Vj in Definition 2.7 does not affect essentially the structural properties of G that we

will investigate in the sequel. From now on, whenever we speak about δu and δ∗u, we assume

that these arbitrary choices of Vi and Vj have been already made.

Definition 2.8. Let G be a trapezoid graph and u be a vertex of G. The vertices of N(u)

are partitioned into four possibly empty sets:

(1) N0(u): vertices not adjacent to either δu or δ∗u.

(2) N1(u): vertices adjacent to δu but not to δ∗u.

(3) N2(u): vertices adjacent to δ∗u but not to δu.

(4) N12(u): vertices adjacent to both δu and δ∗u.

†In Observation 3.1(5) of [6], it is claimed that for an arbitrary trapezoid representation R of a connected
trapezoid graph G, where Vi is a master component of u such that D

∗
u(Vi) 6= ∅ and R(Vi) ≪R Tu, it holds

R(Du(Vi)) ≪R Tu ≪R R(D∗
u(Vi)). However, the first part of the latter inequality is not true. For instance, in

the trapezoid graph G of Figure 1, V2 = {v2} is a master component of u, where D
∗
u(V2) = {V3} = {{v3}}6= ∅

and R(V2) ≪R Tu. However, V4 = {v4} ∈ Du(V2) and Tu ≪RTv4
, and thus, R(Du(V2)) 6≪R T

u
.
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In the following definition we partition the neighbors of a vertex of a trapezoid graph G
into four possibly empty sets. Note that these sets depend on a given trapezoid representa-

tion R of G, in contrast to the four sets of Definition 2.8 that depend only on the graph G
itself.

Definition 2.9. Let G be a trapezoid graph, R be a representation of G, and u be a vertex

of G. Denote by D1(u,R) and D2(u,R) the sets of trapezoids of R that lie completely to

the left and to the right of Tu in R, respectively. Then, the vertices of N(u) are partitioned

into four possibly empty sets:

(1) N0(u,R): vertices not adjacent to either D1(u,R) or D2(u,R).

(2) N1(u,R): vertices adjacent to D1(u,R) but not to D2(u,R).

(3) N2(u,R): vertices adjacent to D2(u,R) but not to D1(u,R).

(4) N12(u,R): vertices adjacent to both D1(u,R) and D2(u,R).

Suppose now that δ∗u 6= ∅, and let Vi be the master component of u that corresponds

to δu, cf. Definition 2.7. Then, given any trapezoid representation R of G, we may assume

w.l.o.g. that R(Vi)≪RTu, by possibly performing a vertical axis flipping of R. The following

lemma connects Definitions 2.8 and 2.9; in particular, it states that, if R(Vi) ≪R Tu, then

the partitions of the set N(u) defined in these definitions coincide. This lemma will enable

us to use in the vertex splitting (cf. Definition 2.11) the partition of the set N(u) defined

in Definition 2.8, independently of any trapezoid representation R of G, and regardless of

any particular connected components Vi and Vj of G \N [u].

Lemma 2.10. Let G be a trapezoid graph, R be a representation of G, and u be a vertex of G
with δ∗u 6= ∅. Let Vi be the master component of u that corresponds to δu. If R(Vi)≪RTu,
then NX(u) = NX(u,R) for every X ∈ {0, 1, 2, 12}.

2.3. A splitting algorithm

We define now the splitting of a vertex u of a trapezoid graph G, where δ∗u 6= ∅. Note that

this splitting operation does not depend on any trapezoid representation of G. Intuitively,

if the graph G was given along with a specific trapezoid representation R, this would have

meant that we replace the trapezoid Tu in R by its two lines l(Tu) and r(Tu).

Definition 2.11. Let G be a trapezoid graph and u be a vertex of G, where δ∗u 6= ∅. The

graph G#(u) obtained by the vertex splitting of u is defined as follows:

(1) V (G#(u)) = V (G) \ {u} ∪ {u1, u2}, where u1 and u2 are the two new vertices.

(2) E(G#(u)) = E[V (G)\{u}]∪{u1x | x ∈ N1(u)}∪{u2x | x ∈ N2(u)}∪{u1x, u2x | x ∈
N12(u)}.

The vertices u1 and u2 are the derivatives of vertex u.

We state now the notion of a standard trapezoid representation with respect to a

particular vertex.

Definition 2.12. Let G be a trapezoid graph and u be a vertex of G, where δ∗u 6= ∅. A

trapezoid representation R of G is standard with respect to u, if the following properties are

satisfied:

(1) l(Tu)≪R R(N0(u) ∪N2(u)).

(2) R(N0(u) ∪N1(u))≪R r(Tu).
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Algorithm 1 Split-U

Input: A trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such that δ∗ui
6= ∅

for all i = 1, 2, . . . , k
Output: The permutation graph G#(U)

U ← V (G) \ U ; H0 ← G

for i = 1 to k do

Hi ← H#
i−1(ui) {Hi is obtained by the vertex splitting of ui in Hi−1}

G#(U)← Hk[V (Hk) \ U ] {remove from Hk all unsplitted vertices}

return G#(U)

Now, given a trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such that

δ∗ui
6= ∅ for every i = 1, 2, . . . , k, Algorithm Split-U returns a graph G#(U) by splitting

every vertex of U exactly once. At every step, Algorithm Split-U splits a vertex of U , and

finally, it removes all vertices of the set V (G) \ U , which have not been split.

Remark 2.13. As mentioned in Remark 2.5, a similar algorithm, called Split-All, was

presented in [6]. We would like to emphasize here the following four differences between the

two algorithms. First, that Split-All gets as input a sibling-free graph G (two vertices u, v
of a graph G are called siblings, if N [u] = N [v]; G is called sibling-free if G has no pair of

sibling vertices), while our Algorithm Split-U gets as an input any graph (though, we will

use it only for trapezoid graphs), which may contain also pairs of sibling vertices. Second,

Split-All splits all the vertices of the input graph, while Split-U splits only a subset of

them, which satisfy a special property. Third, the order of vertices that are split by Split-

All depends on a certain property (inclusion-minimal neighbor set), while Split-U splits the

vertices in an arbitrary order. Last, the main difference between these two algorithms is

that they perform a different vertex splitting operation at every step, since Definitions 2.7

and 2.8 do not comply with the corresponding Definitions 4.1 and 4.2 of [6].

Theorem 2.14. Let G be a trapezoid graph and U = {u1, u2, . . . , uk} be a vertex subset
of G, such that δ∗ui

6= ∅ for every i = 1, 2, . . . , k. Then, the graph G#(U) obtained by
Algorithm Split-U , is a permutation graph with 2k vertices. Furthermore, if G is acyclic,
then G#(U) is acyclic with respect to {u1

i , u
2
i }

k
i=1, where u1

i and u2
i are the derivatives of ui,

i = 1, 2, . . . , k.

3. The recognition of bounded tolerance graphs

In this section we provide a reduction from the monotone-Not-All-Equal-3-SAT
(monotone-NAE-3-SAT) problem to the problem of recognizing whether a given graph

is a bounded tolerance graph. The problem of deciding whether a given monotone 3-CNF

formula φ is NAE-satisfiable is known to be NP-complete. We can assume w.l.o.g. that

each clause has three distinct literals, i.e. variables. Given a monotone 3-CNF formula φ,

we construct in polynomial time a trapezoid graph Hφ, such that Hφ is a bounded toler-

ance graph if and only if φ is NAE-satisfiable. To this end, we construct first a permutation

graph Pφ and a trapezoid graph Gφ.
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3.1. The permutation graph Pφ

Consider a monotone 3-CNF formula φ = α1 ∧ α2 ∧ . . . ∧ αk with k clauses and n
boolean variables x1, x2, . . . , xn, such that αi = (xri,1

∨ xri,2
∨ xri,3

) for i = 1, 2, . . . , k, where

1 ≤ ri,1 < ri,2 < ri,3 ≤ n. We construct the permutation graph Pφ, along with a permuta-

tion representation RP of Pφ, as follows. Let L1 and L2 be two parallel lines and let θ(ℓ)
denote the angle of the line ℓ with L2 in RP . For every clause αi, i = 1, 2, . . . , k, we corre-

spond to each of the literals, i.e. variables, xri,1
, xri,2

, and xri,3
a pair of intersecting lines

with endpoints on L1 and L2. Namely, we correspond to the variable xri,1
the pair {ai, ci},

to xri,2
the pair {ei, bi} and to xri,3

the pair {di, fi}, respectively, such that θ(ai) > θ(ci),

θ(ei) > θ(bi), θ(di) > θ(fi), and such that the lines ai, ci lie completely to the left of ei, bi

in RP , and ei, bi lie completely to the left of di, fi in RP , as it is illustrated in Figure 2.

Denote the lines that correspond to the variable xri,j
, j = 1, 2, 3, by ℓ1

i,j and ℓ2
i,j, respec-

tively, such that θ(ℓ1
i,j) > θ(ℓ2

i,j). That is, (ℓ1
i,1, ℓ

2
i,1) = (ai, ci), (ℓ1

i,2, ℓ
2
i,2) = (ei, bi), and

(ℓ1
i,3, ℓ

2
i,3) = (di, fi). Note that no line of a pair {ℓ1

i,j , ℓ
2
i,j} intersects with a line of another

pair {ℓ1
i′,j′, ℓ

2
i′,j′}.

L1

L2

ℓ1i,1 = ai ℓ2i,1 = ci ℓ1i,2 = ei ℓ2i,2 = bi ℓ1i,3 = di ℓ2i,3 = fi

xri,1
xri,2

xri,3

θ(ai)

Figure 2: The six lines of the permutation graph Pφ, which correspond to the clause

αi = (xri,1
∨ xri,2

∨ xri,3
) of the boolean formula φ.

Denote by Sp, p = 1, 2, . . . , n, the set of pairs {ℓ1
i,j, ℓ

2
i,j} that correspond to the vari-

able xp, i.e. ri,j = p. We order the pairs {ℓ1
i,j, ℓ

2
i,j} such that any pair of Sp1

lies com-

pletely to the left of any pair of Sp2
, whenever p1 < p2, while the pairs that belong to the

same set Sp are ordered arbitrarily. For two consecutive pairs {ℓ1
i,j, ℓ

2
i,j} and {ℓ1

i′,j′, ℓ
2
i′,j′}

in Sp, where {ℓ1
i,j , ℓ

2
i,j} lies to the left of {ℓ1

i′,j′, ℓ
2
i′,j′}, we add a pair {ui′,j′

i,j , vi′,j′

i,j } of parallel

lines that intersect both ℓ1
i,j and ℓ1

i′,j′ , but no other line. Note that θ(ℓ1
i,j) > θ(ui′,j′

i,j ) and

θ(ℓ1
i′,j′) > θ(ui′,j′

i,j ), while θ(ui′,j′

i,j ) = θ(vi′,j′

i,j ). This completes the construction. Denote the

resulting permutation graph by Pφ, and the corresponding permutation representation of Pφ

by RP . Observe that Pφ has n connected components, which are called blocks, one for each

variable x1, x2, . . . , xn.

An example of the construction of Pφ and RP from φ with k = 3 clauses and n = 4

variables is illustrated in Figure 3. In this figure, the lines ui′,j′

i,j and vi′,j′

i,j are drawn in bold.

The formula φ has 3k literals, and thus the permutation graph Pφ has 6k lines ℓ1
i,j, ℓ

2
i,j

in RP , one pair for each literal. Furthermore, two lines ui′,j′

i,j , vi′,j′

i,j correspond to each pair of

consecutive pairs {ℓ1
i,j , ℓ

2
i,j} and {ℓ1

i′,j′, ℓ
2
i′,j′} in RP , except for the case where these pairs of

lines belong to different variables, i.e. when ri,j 6= ri′,j′. Therefore, since φ has n variables,

there are 2(3k − n) = 6k − 2n lines ui′,j′

i,j , vi′,j′

i,j in RP . Thus, RP has in total 12k − 2n lines,

i.e. Pφ has 12k− 2n vertices. In the example of Figure 3, k = 3, n = 4, and thus, Pφ has 28

vertices.
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a1 d1 d3a3 a2 d2e3 b3c1 f1c2 b2 f2 f3c3 e2

x1 x2 x3 x4

b1e1

RP :

Figure 3: The permutation representation RP of the permutation graph Pφ for φ = α1 ∧
α2 ∧ α3 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4).

Let m = 6k − n, where 2m is the number of vertices in Pφ. We group the lines of RP ,

i.e. the vertices of Pφ, into pairs {u1
i , u

2
i }

m
i=1, as follows. For every clause αi, i = 1, 2, . . . , k,

we group the lines ai, bi, ci, di, ei, fi into the three pairs {ai, bi}, {ci, di}, and {ei, fi}. The

remaining lines are grouped naturally according to the construction; namely, every two lines

{ui′,j′

i,j , vi′,j′

i,j } constitute a pair.

Lemma 3.1. If the permutation graph Pφ is acyclic with respect to {u1
i , u

2
i }

m
i=1 then the

formula φ is NAE-satisfiable.

The truth assignment (x1, x2, x3, x4) = (1, 1, 0, 0) is NAE-satisfying for the formula φ
of Figure 3. The acyclic permutation representation R0 of Pφ with respect to {u1

i , u
2
i }

m
i=1,

which corresponds to this assignment, can be obtained from RP by performing a horizontal

axis flipping of the two blocks that correspond to the variables x3 and x4, respectively.

3.2. The trapezoid graphs Gφ and Hφ

Let {u1
i , u

2
i }

m
i=1 be the pairs of vertices in the permutation graph Pφ and RP be its

permutation representation. We construct now from Pφ the trapezoid graph Gφ with m
vertices {u1, u2, . . . , um}, as follows. We replace in the permutation representation RP for

every i = 1, 2, . . . ,m the lines u1
i and u2

i by the trapezoid Tui
, which has u1

i and u2
i as its

left and right lines, respectively. Let RG be the resulting trapezoid representation of Gφ.

Finally, we construct from Gφ the trapezoid graph Hφ with 7m vertices, by adding to

every trapezoid Tui
, i = 1, 2, . . . ,m, six parallelograms Tui,1

, Tui,2
, . . . , Tui,6

in the trapezoid

representation RG, as follows. Let ε be the smallest distance in RG between two different

endpoints on L1, or on L2. The right (resp. left) line of Tu1,1
lies to the right (resp. left)

of u1
1, and it is parallel to it at distance ε

2 . The right (resp. left) line of Tu1,2
lies to the

left of u1
1, and it is parallel to it at distance ε

4 (resp. 3ε
4 ). Moreover, the right (resp. left)

line of Tu1,3
lies to the left of u1

1, and it is parallel to it at distance 3ε
8 (resp. 7ε

8 ). Similarly,

the left (resp. right) line of Tu1,4
lies to the left (resp. right) of u2

1, and it is parallel to it

at distance ε
2 . The left (resp. right) line of Tu1,5

lies to the right of u2
1, and it is parallel to

it at distance ε
4 (resp. 3ε

4 ). Finally, the right (resp. left) line of Tu1,6
lies to the right of u2

1,

and it is parallel to it at distance 3ε
8 (resp. 7ε

8 ), as illustrated in Figure 4.

After adding the parallelograms Tu1,1
, Tu1,2

, . . . , Tu1,6
to a trapezoid Tu1

, we update the

smallest distance ε between two different endpoints on L1, or on L2 in the resulting repre-

sentation, and we continue the construction iteratively for all i = 2, . . . ,m. Denote by Hφ

the resulting trapezoid graph with 7m vertices, and by RH the corresponding trapezoid

representation. Note that in RH , between the endpoints of the parallelograms Tui,1
, Tui,2

,
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L1

L2

u2
iu1

i

Tui

Tui,2
Tui,1

Tui,3
Tui,4 Tui,5

Tui,6

Figure 4: The addition of the six parallelograms Tui,1
, Tui,2

, . . . , Tui,6
to the trapezoid Tui

,

i = 1, 2, . . . ,m, in the construction of the trapezoid graph Hφ from Gφ.

and Tui,3
(resp. Tui,4

, Tui,5
, and Tui,6

) on L1 and L2, there are no other endpoints of Hφ, ex-

cept those of u1
i (resp. u2

i ), for every i = 1, 2, . . . ,m. Furthermore, note that RH is standard

with respect to ui, for every i = 1, 2, . . . ,m.

Theorem 3.2. The formula φ is NAE-satisfiable if and only if the trapezoid graph Hφ is a
bounded tolerance graph.

For the sufficiency part of the proof of Theorem 3.2, the algorithm Split-All plays a

crucial role. Namely, given the parallelogram graph Hφ (which is acyclic trapezoid by

Lemma 2.3), we construct with this algorithm the acyclic permutation graph Pφ and then a

NAE-satisfying assignment of the formula φ. Since monotone-NAE-3-SAT is NP-complete,

the problem of recognizing bounded tolerance graphs is NP-hard by Theorem 3.2. Moreover,

since this problem lies in NP [15], we summarize our results as follows.

Theorem 3.3. Given a graph G, it is NP-complete to decide whether it is a bounded
tolerance graph.

4. The recognition of tolerance graphs

In this section we show that the reduction from the monotone-NAE-3-SAT problem

to the problem of recognizing bounded tolerance graphs presented in Section 3, can be

extended to the problem of recognizing general tolerance graphs. In particular, we prove

that the constructed trapezoid graph Hφ is a tolerance graph if and only if it is a bounded

tolerance graph. Then, the main result of this section follows.

Theorem 4.1. Given a graph G, it is NP-complete to decide whether it is a tolerance
graph. The problem remains NP-complete even if the given graph G is known to be a
trapezoid graph.

5. Concluding remarks

In this article we proved that both tolerance and bounded tolerance graph recognition

problems are NP-complete, by providing a reduction from the monotone-NAE-3-SAT prob-

lem, thus answering a longstanding open question. The recognition of unit and of proper

tolerance graphs, as well as of any other subclass of tolerance graphs, except bounded

tolerance and bipartite tolerance graphs [5], remain interesting open problems [14].
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Abstract. In this paper, we focus our attention on the interval temporal logic of the
Allen’s relations “meets”, “begins”, and “begun by” (ABB for short), interpreted over
natural numbers. We first introduce the logic and we show that it is expressive enough to
model distinctive interval properties, such as accomplishment conditions, to capture basic
modalities of point-based temporal logic, such as the until operator, and to encode relevant
metric constraints. Then, we prove that the satisfiability problem for ABB over natural
numbers is decidable by providing a small model theorem based on an original contraction
method. Finally, we prove the EXPSPACE-completeness of the problem.

1. Introduction

Interval temporal logics are modal logics that allow one to represent and to reason about

time intervals. It is well known that, on a linear ordering, one among thirteen different bi-

nary relations may hold between any pair of intervals, namely, “ends”, “during”, “begins”,

“overlaps”, “meets”, “before”, together with their inverses, and the relation “equals” (the

so-called Allen’s relations [1])1. Allen’s relations give rise to respective unary modal opera-

tors, thus defining the modal logic of time intervals HS introduced by Halpern and Shoham
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formal languages.
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A systematic analysis of its fragments has been recently given by Hodkinson et al. [13].
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in [12]. Some of these modal operators are actually definable in terms of others; in partic-

ular, if singleton intervals are included in the structure, it suffices to choose as basic the

modalities corresponding to the relations “begins” B and “ends” E, and their transposes

B, E. HS turns out to be highly undecidable under very weak assumptions on the class of

interval structures over which its formulas are interpreted [12]. In particular, undecidability

holds for any class of interval structures over linear orderings that contains at least one

linear ordering with an infinite ascending or descending chain, thus including the natural

time flows N, Z, Q, and R. Undecidability of HS over finite structures directly follows

from results in [15]. In [14], Lodaya sharpens the undecidability of HS showing that the

two modalities B,E suffice for undecidability over dense linear orderings (in fact, the result

applies to the class of all linear orderings [11]). Even though HS is very natural and the

meaning of its operators is quite intuitive, for a long time such sweeping undecidability

results have discouraged the search for practical applications and further investigations in

the field. A renewed interest in interval temporal logics has been recently stimulated by

the identification of some decidable fragments of HS, whose decidability does not depend

on simplifying semantic assumptions such as locality and homogeneity [11]. This is the case

with the fragments BB, EE (logics of the “begins/begun by” and “ends/ended by” relations)

[11], A, AA (logics of temporal neighborhood, whose modalities capture the “meets/met

by” relations [10]), and D, DD (logics of the subinterval/superinterval relations) [3, 16].

In this paper, we focus our attention on the product logic ABB, obtained from the join

of BB and A (the case of AEE is fully symmetric), interpreted over the linear order N of

the natural numbers (or a finite prefix of it). The decidability of BB can be proved by

translating it into the point-based propositional temporal logic of linear time with temporal

modalities F (sometime in the future) and P (sometime in the past), which has the finite

(pseudo-)model property and is decidable, e.g., [9]. In general, such a reduction to point-

based temporal logics does not work: formulas of interval temporal logics are evaluated

over pairs of points and translate into binary relations. For instance, this is the case with

A. Unlike the case of BB, when dealing with A one cannot abstract way from the left

endpoint of intervals, as contradictory formulas may hold over intervals with the same right

endpoint and a different left endpoint. The decidability of AA, and thus that of its fragment

A, over various classes of linear orderings has been proved by Bresolin et al. by reducing

its satisfiability problem to that of the two-variable fragment of first-order logic over the

same classes of structures [4], whose decidability has been proved by Otto in [18]. Optimal

tableau methods for A with respect to various classes of interval structures can be found in

[6, 7]. A decidable metric extension of A over the natural numbers has been proposed in

[8]. A number of undecidable extensions of A, and AA, have been given in [2, 5].

ABB retains the simplicity of its constituents BB and A, but it improves a lot on their

expressive power (as we shall show, such an increase in expressiveness is achieved at the cost

of an increase in complexity). First, it allows one to express assertions that may be true at

certain intervals, but at no subinterval of them, such as the conditions of accomplishment.

Moreover, it makes it possible to easily encode the until operator of point-based temporal

logic (this is possible neither with BB nor with A). Finally, meaningful metric constraints

about the length of intervals can be expressed in ABB, that is, one can constrain an interval

to be at least (resp., at most, exactly) k points long. We prove the decidability of ABB

interpreted over N by providing a small model theorem based on an original contraction

method. To prove it, we take advantage of a natural (equivalent) interpretation of ABB

formulas over grid-like structures based on a bijection between the set of intervals over N
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and (a suitable subset of) the set of points of the N × N grid. In addition, we prove that

the satisfiability problem for ABB is EXPSPACE-complete (that for A is NEXPTIME-

complete). In the proof of hardness, we use a reduction from the exponential-corridor tiling

problem.

The paper is organized as follows. In Section 2 we introduce ABB. In Section 3, we

prove the decidability of its satisfiability problem. We first describe the application of the

contraction method to finite models and then we generalize it to infinite ones. In Section

4 we deal with computational complexity issues. Conclusions provide an assessment of the

work and outline future research directions. Missing proofs can be found in [17].

2. The interval temporal logic ABB

In this section, we briefly introduce syntax and semantics of the logic ABB, which fea-

tures three modal operators 〈A〉, 〈B〉, and 〈B〉 corresponding to the three Allen’s relations A

(“meets”), B (“begins”), and B (“begun by”), respectively. We show that ABB is expressive

enough to capture the notion of accomplishment, to define the standard until operator of

point-based temporal logics, and to encode metric conditions. Then, we introduce the basic

notions of atom, type, and dependency. We conclude the section by providing an alternative

interpretation of ABB over labeled grid-like structures.

2.1. Syntax and semantics

Given a set Prop of propositional variables, formulas of ABB are built up from Prop
using the boolean connectives ¬ and ∨ and the unary modal operators 〈A〉, 〈B〉, 〈B〉. As

usual, we shall take advantage of shorthands like ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), [A]ϕ =

¬〈A〉¬ϕ, [B]ϕ = ¬〈B〉¬ϕ, ⊤ = p ∨ ¬p, and ⊥ = p ∧ ¬p, with p ∈ Prop. Hereafter, we

denote by |ϕ| the size of ϕ.

We interpret formulas of ABB in interval temporal structures over natural numbers

endowed with the relations “meets”, “begins”, and “begun by”. Precisely, we identify any

given ordinal N 6 ω with the prefix of length N of the linear order of the natural numbers

and we accordingly define IN as the set of all non-singleton closed intervals [x,y], with

x,y ∈ N and x < y. For any pair of intervals [x,y], [x ′,y ′
] ∈ IN, the Allen’s relations

“meets” A, “begins” B, and “begun by” B are defined as follows (note that B is the inverse

relation of B):

• “meets” relation: [x,y] A [x ′,y ′
] iff y = x ′;

• “begins” relation: [x,y] B [x ′,y ′
] iff x = x ′ and y ′ < y;

• “begun by” relation: [x,y] B [x ′,y ′
] iff x = x ′ and y < y ′.

Given an interval structure S = (IN,A,B,B,σ), where σ : IN → P(Prop) is a labeling

function that maps intervals in IN to sets of propositional variables, and an initial interval

I, we define the semantics of an ABB formula as follows:

• S, I � a iff a ∈ σ(I), for any a ∈ Prop;

• S, I � ¬ϕ iff S, I 6� ϕ;

• S, I � ϕ1 ∨ ϕ2 iff S, I � ϕ1 or S, I � ϕ2;

• for every relation R ∈ {A,B,B}, S, I � 〈R〉ϕ iff there is an interval J ∈ IN such that

I R J and S, J � ϕ.
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Given an interval structure S and a formula ϕ, we say that S satisfies ϕ if there is an

interval I in S such that S, I � ϕ. We say that ϕ is satisfiable if there exists an interval

structure that satisfies it. We define the satisfiability problem for ABB as the problem of

establishing whether a given ABB-formula ϕ is satisfiable.

We conclude the section with some examples that account for ABB expressive power.

The first one shows how to encode in ABB conditions of accomplishment (think of formula

ϕ as the assertion: “Mr. Jones flew from Venice to Nancy”): 〈A〉
(

ϕ ∧ [B](¬ϕ ∧ [A]¬ϕ) ∧

[B]¬ϕ
)

. Formulas of point-based temporal logics of the form ψ U ϕ, using the standard

until operator, can be encoded in ABB (where atomic intervals are two-point intervals) as

follows: 〈A〉
(

[B]⊥ ∧ ϕ
)

∨ 〈A〉
(

〈A〉([B]⊥ ∧ ϕ) ∧ [B](〈A〉([B]⊥ ∧ ψ))
)

. Finally, metric

conditions like: “ϕ holds over a right neighbor interval of length greater than k (resp., less

than k, equal to k)” can be captured by the following ABB formula: 〈A〉
(

ϕ ∧ 〈B〉k⊤
)

(resp., 〈A〉
(

ϕ ∧ [B]
k−1⊥

)

, 〈A〉
(

ϕ ∧ [B]
k⊥ ∧ 〈B〉k−1⊤

)

)2.

2.2. Atoms, types, and dependencies

Let S = (IN,A,B,B,σ) be an interval structure and ϕ be a formula of ABB. In the

sequel, we shall compare intervals in S with respect to the set of subformulas of ϕ they

satisfy. To do that, we introduce the key notions of ϕ-atom, ϕ-type, ϕ-cluster, and ϕ-

shading.

First of all, we define the closure Cl(ϕ) of ϕ as the set of all subformulas of ϕ and of

their negations (we identify ¬¬α with α, ¬〈A〉α with [A]¬α, etc.). For technical reasons,

we also introduce the extended closure Cl+(ϕ), which is defined as the set of all formulas

in Cl(ϕ) plus all formulas of the forms 〈R〉α and ¬〈R〉α, with R ∈ {A,B,B} and α ∈ Cl(ϕ).

A ϕ-atom is any non-empty set F ⊆ Cl+(ϕ) such that (i) for every α ∈ Cl+(ϕ), we have

α ∈ F iff ¬α 6∈ F and (ii) for every γ = α ∨ β ∈ Cl+(ϕ), we have γ ∈ F iff α ∈ F or β ∈ F
(intuitively, a ϕ-atom is a maximal locally consistent set of formulas chosen from Cl+(ϕ)).

Note that the cardinalities of both sets Cl(ϕ) and Cl+(ϕ) are linear in the number |ϕ| of

subformulas of ϕ, while the number of ϕ-atoms is at most exponential in |ϕ| (precisely, we

have |Cl(ϕ)| = 2|ϕ|, |Cl+(ϕ)| = 14|ϕ|, and there are at most 27|ϕ| distinct atoms).

We also associate with each interval I ∈ S the set of all formulas α ∈ Cl+(ϕ) such that

S, I � α. Such a set is called ϕ-type of I and it is denoted by TypeS(I). We have that every

ϕ-type is a ϕ-atom, but not vice versa. Hereafter, we shall omit the argument ϕ, thus

calling a ϕ-atom (resp., a ϕ-type) simply an atom (resp., a type).

Given an atom F, we denote by Obs(F) the set of all observables of F, namely, the

formulas α ∈ Cl(ϕ) such that α ∈ F. Similarly, given an atom F and a relation R ∈ {A,B,B},

we denote by ReqR(F) the set of all R-requests of F, namely, the formulas α ∈ Cl(ϕ) such

that 〈R〉α ∈ F. Taking advantage of the above sets, we can define the following two relations

between atoms F and G:

F A−→G iff ReqA(F) = Obs(G) ∪ ReqB(G) ∪ ReqB(G);

F B−→G iff

{

Obs(F) ∪ ReqB(F) ⊆ ReqB(G) ⊆ Obs(F) ∪ ReqB(F) ∪ ReqB(F),

Obs(G) ∪ ReqB(G) ⊆ ReqB(F) ⊆ Obs(G) ∪ ReqB(G) ∪ ReqB(G).

2It is not difficult to show that ABB subsumes the metric extension of A given in [8]. A simple game-
theoretic argument shows that the former is in fact strictly more expressive than the latter.
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p0
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p2

p3

I0
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Figure 1: Correspondence between intervals and points of a discrete grid.

Note that the relation B−→ is transitive, while A−→ is not. Moreover, both A−→ and B−→
satisfy a view-to-type dependency, namely, for every pair of intervals I, J in S, we have that

I A J implies TypeS(I) A−→ TypeS(J)

I B J implies TypeS(I) B−→ TypeS(J).

Relations A−→ and B−→ will come into play in the definition of consistency conditions (see

Definition 2.1).

2.3. Compass structures

The logic ABB can be equivalently interpreted over grid-like structures (the so-called

compass structures [20]) by exploiting the existence of a natural bijection between the

intervals I = [x,y] and the points p = (x,y) of an N × N grid such that x < y. As an

example, Figure 1 depicts four intervals I0, ..., I3 such that I0 A I1, I0 B I2, and I0 B I3,

together with the corresponding points p0, ...,p3 of a discrete grid (note that the three

Allen’s relations A,B,B between intervals are mapped to corresponding spatial relations

between points; for the sake of readability, we name the latter ones as the former ones).

Definition 2.1. Given anABB formulaϕ, a (consistent and fulfilling) compass (ϕ-)structure
of length N 6 ω is a pair G = (PN,L), where PN is the set of points p = (x,y), with

0 6 x < y < N, and L is function that maps any point p ∈ PN to a (ϕ-)atom L(p) in such

a way that

• for every pair of points p,q ∈ PN and every relation R ∈ {A,B}, if p R q holds, then

L(p) R−→L(q) follows (consistency);

• for every point p ∈ PN, every relation R ∈ {A,B,B}, and every formula α ∈
ReqR

(

L(p)
)

, there is a point q ∈ PN such that p R q and α ∈ Obs
(

L(q)
)

(ful-

fillment).

We say that a compass (ϕ-)structure G = (PN,L) features a formula α if there is a point

p ∈ PN such that α ∈ L(p). The following proposition implies that the satisfiability problem
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for ABB is reducible to the problem of deciding, for any given formula ϕ, whether there

exists a ϕ-compass structure that features ϕ.

Proposition 2.2. An ABB-formula ϕ is satisfied by some interval structure if and only if
it is featured by some (ϕ-)compass structure.

3. Deciding the satisfiability problem for ABB

In this section, we prove that the satisfiability problem for ABB is decidable by pro-

viding a “small-model theorem” for the satisfiable formulas of the logic. For the sake of

simplicity, we first show that the satisfiability problem for ABB interpreted over finite in-

terval structures is decidable and then we generalize such a result to all (finite or infinite)

interval structures.

As a preliminary step, we introduce the key notion of shading. Let G = (PN,L) be

a compass structure of length N 6 ω and let 0 6 y < N. The shading of the row y of
G is the set ShadingG(y) =

{

L(x,y) : 0 6 x < y
}

, namely, the set of the atoms of all

points in PN whose vertical coordinate has value y (basically, we interpret different atoms

as different colors). Clearly, for every pair of atoms F and F ′ in ShadingG(y), we have

ReqA(F) = ReqA(F ′).

3.1. A small-model theorem for finite structures

Let ϕ be an ABB formula. Let us assume that ϕ is featured by a finite compass

structure G = (PN,L), with N < ω. In fact, without loss of generality, we can assume that

ϕ belongs to the atom associated with a point p = (0,y) of G, with 0 < y < N. We prove

that we can restrict our attention to compass structures G = (PN,L), where N is bounded

by a double exponential in |ϕ|. We start with the following lemma that proves a simple,

but crucial, property of the relations A−→ and B−→ (the proof can be found in [17]).

Lemma 3.1. If F A−→H and G B−→H hold for some atoms F,G,H, then F A−→G holds as
well.

The next lemma shows that, under suitable conditions, a given compass structure G

may be reduced in length, preserving the existence of atoms featuring ϕ.

Lemma 3.2. Let G be a compass structure featuring ϕ. If there exist two rows 0 < y0 <

y1 < N in G such that ShadingG(y0) ⊆ ShadingG(y1), then there exists a compass structure
G ′ of length N′ < N that features ϕ.

Proof. Suppose that 0 < y0 < y1 < N are two rows of G such that ShadingG(y0) ⊆
ShadingG(y1). Then, there is a function f : {0, ...,y0 − 1} → {0, ...,y1 − 1} such that, for

every 0 6 x < y0, L(x,y0) = L(f(x),y1). Let k = y1 − y0, N
′
= N − k (< N), and PN ′

be the portion of the grid that consists of all points p = (x,y), with 0 6 x < y < N ′. We

extend f to a function that maps points in PN ′ to points in PN as follows:

• if p = (x,y), with 0 6 x < y < y0, then we simply let f(p) = p;

• if p = (x,y), with 0 6 x < y0 6 y, then we let f(p) = (f(x),y + k);

• if p = (x,y), with y0 6 x < y, then we let f(p) = (x+ k,y+ k).



DECIDABILITY OF THE INTERVAL TEMPORAL LOGIC ABB 603

F1 F2 F3

F2 F3 F1 F4 F3 F2

y0

y1

ff f

G

F1 F2 F3

G ′

Figure 2: Contraction G ′ of a compass structure G.

We denote by L ′ the labeling of PN ′ such that, for every point p ∈ PN ′ , L ′
(p) = L(f(p))

and we denote by G ′ the resulting structure (PN ′ ,L ′
) (see Figure 2). We have to prove

that G ′ is a consistent and fulfilling compass structure that features ϕ (see Definition 2.1).

First, we show that G ′ satisfies the consistency conditions for the relations B and A; then

we show that G ′ satisfies the fulfillment conditions for the B-, B-, and A-requests; finally,

we show that G ′ features ϕ.

Consistency with relation B. Consider two points p = (x,y) and p ′
= (x ′,y ′

) in

G ′ such that p B p ′, i.e., 0 6 x = x ′ < y ′ < y < N ′. We prove that L ′
(p) B−→L ′

(p ′
) by

distinguishing among the following three cases (note that exactly one of such cases holds):

(1) y < y0 and y ′ < y0,

(2) y > y0 and y ′
> y0,

(3) y > y0 and y ′ < y0.

If y < y0 and y ′ < y0, then, by construction, we have f(p) = p and f(p ′
) = p ′. Since G is

a (consistent) compass structure, we immediately obtain L ′
(p) = L(p) B−→L(p ′

) = L ′
(p ′

).

If y > y0 and y > y0, then, by construction, we have either f(p) = (f(x),y + k) or

f(p) = (x + k,y + k), depending on whether x < y0 or x > y0. Similarly, we have either

f(p ′
) = (f(x ′),y ′

+k) = (f(x),y ′
+k) or f(p ′

) = (x ′+k,y ′
+k) = (x+k,y ′

+k). This implies

f(p) B f(p ′
) and thus, since G is a (consistent) compass structure, we have L ′

(p) = L(f(p))
B−→ L(f(p ′

)) = L ′
(p ′

).

If y > y0 and y ′ < y0, then, since x < y ′ < y0, we have by construction f(p) =

(f(x),y + k) and f(p ′
) = p ′. Moreover, if we consider the point p ′′

= (x,y0) in G ′, we

easily see that (i) f(p ′′
) = (f(x),y1), (ii) f(p) B f(p ′′

) (whence L(f(p)) B−→L(f(p ′′
))),

(iii) L(f(p ′′
)) = L(p ′′

), and (iv) p ′′ B p ′ (whence L(p ′′
) B−→L(p ′

)). It thus follows that

L ′
(p) = L(f(p)) B−→L(f(p ′′

)) = L(p ′′
) B−→ L(p ′

) = L(f(p ′
)) = L ′

(p ′
). Finally, by ex-

ploiting the transitivity of the relation B−→ , we obtain L ′
(p) B−→L ′

(p ′
).
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Consistency with relation A. Consider two points p = (x,y) and p ′
= (x ′,y ′

) such

that p A p ′, i.e., 0 6 x < y = x ′ < y ′ < N ′. We define p ′′
= (y,y + 1) in such a way that

p A p ′′ and p ′ B p ′′ and we distinguish between the following two cases:

(1) y > y0,

(2) y < y0.

If y > y0, then, by construction, we have f(p) A f(p ′′
). Since G is a (consistent) compass

structure, it follows that L ′
(p) = L(f(p)) A−→ L(f(p ′′

)) = L ′
(p ′′

).

If y < y0, then, by construction, we have L(p ′′
) = L(f(p ′′

)). Again, since G is a (consistent)

compass structure, it follows that L ′
(p) = L(f(p)) = L(p) A−→ L(p ′′

) = L(f(p ′′
)) =

L ′
(p ′′

).

In both cases we have L ′
(p) A−→L ′

(p ′′
). Now, we recall that p ′ B p ′′ and that, by previous

arguments, G ′ is consistent with the relation B. We thus have L ′
(p ′

) B−→L ′
(p ′′

). Finally,

by applying Lemma 3.1, we obtain L ′
(p) A−→L ′

(p ′
).

Fulfillment of B-requests. Consider a point p = (x,y) in G ′ and some B-request

α ∈ ReqB

(

L ′
(p)

)

associated with it. Since, by construction, α ∈ ReqB

(

L(f(p))
)

and G is

a (fulfilling) compass structure, we know that G contains a point q ′
= (x ′,y ′

) such that

f(p) B q ′ and α ∈ Obs
(

L(q ′
)
)

. We prove that G ′ contains a point p ′ such that p B p ′ and

α ∈ Obs
(

L ′
(p ′

)
)

by distinguishing among the following three cases (note that exactly one

of such cases holds):

(1) y < y0

(2) y ′
> y1,

(3) y > y0 and y ′ < y1.

If y < y0, then, by construction, we have p = f(p) and q ′
= f(q ′

). Therefore, we

simply define p ′
= q ′ in such a way that p = f(p) B q ′

= p ′ and α ∈ Obs
(

L ′
(p ′

)
)

(= Obs
(

L(f(p ′
))

)

= Obs
(

L(q ′
)
)

).

If y ′
> y1, then, by construction, we have either f(p) = (f(x),y+k) or f(p) = (x+k,y+k),

depending on whether x < y0 or x > y0. We define p ′
= (x,y ′

− k) in such a way that

p B p ′. Moreover, we observe that either f(p ′
) = (f(x),y ′

) or f(p ′
) = (x+k,y ′

), depending

on whether x < y0 or x > y0, and in both cases f(p ′
) = q ′ follows. This shows that

α ∈ Obs
(

L ′
(p ′

)
)

(= Obs
(

L(f(p ′
)
)

= Obs
(

L(q ′
)
)

).

If y > y0 and y ′ < y1, then we define p = (x,y0) and q = (x ′,y1) and we observe that

f(p) B q, q B q ′, and f(p) = q. From f(p) B q and q B q ′, it follows that α ∈ ReqB

(

L(q)
)

and hence α ∈ ReqB

(

L(p)
)

. Since G is a (fulfilling) compass structure, we know that there

is a point p ′ such that p B p ′ and α ∈ Obs
(

L(p ′
)
)

. Moreover, since p B p ′, we have

f(p ′
) = p ′, from which we obtain p B p ′ and α ∈ Obs

(

L(p ′
)
)

.

Fulfillment of B-requests. The proof that G ′ fulfills all B-requests of its atoms is

symmetric with respect to the previous one.

Fulfillment of A-requests. Consider a point p = (x,y) in G ′ and some A-request α ∈
ReqA

(

L ′
(p)

)

associated with p in G ′. Since, by previous arguments, G ′ fulfills all B-requests

of its atoms, it is sufficient to prove that either α ∈ Obs
(

L ′
(p ′

)
)

or α ∈ ReqB

(

L ′
(p ′

)
)

, where

p ′
= (y,y+1). This can be easily proved by distinguishing among the three cases y < y0−1,

y = y0 − 1, and y > y0.

Featured formulas. Recall that, by previous assumptions, G contains a point p =

(0,y), with 0 < y < N, such that ϕ ∈ L(p). If y 6 y0, then, by construction, we have
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ϕ ∈ L ′
(p) (= L(f(p)) = L(p)). Otherwise, if y > y0, we define q = (0,y0) and we observe

that q B p. Since G is a (consistent) compass structure and 〈B〉ϕ ∈ Cl+(ϕ), we have

that ϕ ∈ ReqB

(

L(q)
)

. Moreover, by construction, we have L ′
(q) = L(f(q)) and hence

ϕ ∈ ReqB

(

L ′
(q)

)

. Finally, since G ′ is a (fulfilling) compass structure, we know that there

is a point p ′ in G ′ such that f(q) B p ′ and ϕ ∈ Obs
(

L ′
(p ′

)
)

. 2

On the grounds of the above result, we can provide a suitable upper bound for the

length of a minimal finite interval structure that satisfies ϕ, if there exists any. This yields

a straightforward, but inefficient, 2EXPSPACE algorithm that decides whether a given

ABB-formula ϕ is satisfiable over finite interval structures.

Theorem 3.3. An ABB-formula ϕ is satisfied by some finite interval structure iff it is

featured by some compass structure of length N 6 227|ϕ|

(i.e., double exponential in |ϕ|).

Proof. One direction is trivial. We prove the other one (“only if” part). Suppose that ϕ is

satisfied by a finite interval structure S. By Proposition 2.2, there is a compass structure G

that features ϕ and has finite length N < ω. Without loss of generality, we can assume that

N is minimal among all finite compass structures that feature ϕ. We recall from Section

2.2 that G contains at most 27|ϕ| distinct atoms. This implies that there exist at most 227|ϕ|

different shadings of the form ShadingG(y), with 0 6 y < N. Finally, by applying Lemma

3.2, we obtain N 6 227|ϕ|

(otherwise, there would exist two rows 0 < y0 < y1 < N such that

ShadingG(y0) = ShadingG(y1), which is against the hypothesis of minimality of N). 2

3.2. A small-model theorem for infinite structures

In general, compass structures that feature ϕ may be infinite. Here, we prove that,

without loss of generality, we can restrict our attention to sufficiently “regular” infinite

compass structures, which can be represented in double exponential space with respect to

|ϕ|. To do that, we introduce the notion of periodic compass structure.

Definition 3.4. An infinite compass structure G = (Pω,L) is periodic, with threshold ỹ0,

period ỹ, and binding g̃ : {0, ..., ỹ0 + ỹ− 1} → {0, ..., ỹ0 − 1}, if the following conditions are

satisfied:

• for every ỹ0 + ỹ 6 x < y, we have L(x,y) = L(x− ỹ,y − ỹ),

• for every 0 6 x < ỹ0 + ỹ 6 y, we have L(x,y) = L(g̃(x),y − ỹ).

Figure 3 gives an example of a periodic compass structure (the arrows represent some

relationships between points induced by the binding function g̃). Note that any periodic

compass structure G = (Pω,L) can be finitely represented by specifying (i) its threshold

ỹ0, (ii) its period ỹ, (iii) its binding g̃, and (iv) the labeling L restricted to the portion

Pỹ0+ỹ−1 of the domain.

The following theorem leads immediately to a 2EXPSPACE algorithm that decides

whether a given ABB-formula ϕ is satisfiable over infinite interval structures (the proof is

provided in [17]).

Theorem 3.5. An ABB-formula ϕ is satisfied by an infinite interval structure iff it is

featured by a periodic compass structure with threshold ỹ0 < 227|ϕ|

and period ỹ < 2|ϕ| ·

227|ϕ|

· 227|ϕ|

.
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...

ỹ0

ỹ0 + ỹ

ỹ0 + 2ỹ

g̃ g̃ g̃ g̃ g̃ g̃

Figure 3: A periodic compass structure with threshold ỹ0, period ỹ, and binding g̃.

4. Tight complexity bounds to the satisfiability problem for ABB

In this section, we show that the satisfiability problem for ABB interpreted over (either

finite or infinite) interval temporal structures is EXPSPACE-complete.

The EXPSPACE-hardness of the satisfiability problem for ABB follows from a re-

duction from the exponential-corridor tiling problem, which is known to be EXPSPACE-

complete [19]. Formally, an instance of the exponential-corridor tiling problem is a tuple

T = (T , t⊥, t⊤,H, V ,n) consisting of a finite set T of tiles, a bottom tile t⊥ ∈ T , a top tile

t⊤ ∈ T , two binary relations H,V over T (specifying the horizontal and vertical constraints),

and a positive natural number n (represented in unary notation). The problem consists in

deciding whether there exists a tiling f : N × {0, ..., 2n
− 1} → T of the infinite discrete

corridor of height 2n, that associates the tile t⊥ (resp., t⊤) with the bottom (resp., top) row

of the corridor and that respects the horizontal and vertical constraints H and V , namely,

i) for every x ∈ N, we have f(x, 0) = t⊥,

ii) for every x ∈ N, we have f(x, 2n
− 1) = t⊤,

iii) for every x ∈ N and every 0 6 y < 2n, we have f(x,y) H f(x + 1,y),

iv) for every x ∈ N and every 0 6 y < 2n
− 1, we have f(x,y) V f(x,y + 1).

The proof of the following lemma, which reduces the exponential-corridor tiling problem

to the satisfiability problem for ABB, can be found in [17]. Intuitively, such a reduction

exploits (i) the correspondence between the points p = (x,y) inside the infinite corridor

N×{0, ..., 2n
−1} and the intervals of the form Ip = [y+2nx,y+2nx+1], (ii) |T | propositional

variables which represent the tiling function f, (iii) n additional propositional variables

which represent (the binary expansion of) the y-coordinate of each row of the corridor, and
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(iv) the modal operators 〈A〉 and 〈B〉 by means of which one can enforce the local constrains

over the tiling function f (as a matter of fact, this shows that the satisfiability problem for

the AB fragment is already hard for EXPSPACE).

Lemma 4.1. There is a polynomial-time reduction from the exponential-corridor tiling
problem to the satisfiability problem for ABB.

As for the EXPSPACE-completeness, we claim that the existence of a compass structure

G that features a given formula ϕ can be decided by verifying suitable local (and stronger)

consistency conditions over all pairs of contiguous rows. In fact, in order to check that

these local conditions hold between two contiguous rows y and y+1, it is sufficient to store

into memory a bounded amount of information, namely, (i) a counter y that ranges over
{

1, ..., 227|ϕ|

+ |ϕ| · 227|ϕ|}

, (ii) the two guessed shadings S and S ′ associated with the rows y

and y + 1, and (iii) a function g : S → S ′ that captures the horizontal alignment relation

between points with an associated atom from S and points with an associated atom from

S ′. This shows that the satisfiability problem for ABB can be decided in exponential space,

as claimed by the following lemma. Further details about the decision procedure, including

soundness and completeness proofs, can be found in [17].

Lemma 4.2. There is an EXPSPACE non-deterministic procedure that decides whether a
given formula of ABB is satisfiable or not.

Summing up, we obtain the following tight complexity result.

Theorem 4.3. The satisfiability problem for ABB interpreted over (prefixes of) natural
numbers is EXPSPACE-complete.

5. Conclusions

In this paper, we proved that the satisfiability problem for ABB interpreted over (pre-

fixes of) the natural numbers is EXPSPACE-complete. We restricted our attention to these

domains because it is a common commitment in computer science. Moreover, this gave us

the possibility of expressing meaningful metric constraints in a fairly natural way. Never-

theless, we believe it possible to extend our results to the class of all linear orderings as

well as to relevant subclasses of it. Another restriction that can be relaxed is the one about

singleton intervals: all results in the paper can be easily generalized to include singleton

intervals in the underlying structure IN. The most exciting challenge is to establish whether

the modality A can be added to ABB preserving decidability (and complexity). It is easy

to show that there is not a straightforward way to lift the proof for ABB to ABBA (notice

that 〈A〉, 〈B〉, and 〈B〉 are all future modalities, while 〈A〉 is a past one).

References

[1] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the Association for

Computing Machinery, 26(11):832–843, 1983.
[2] D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. Decidable and undecid-

able fragments of Halpern and Shoham’s interval temporal logic: towards a complete classification. In
Proceedings of the 15th International Conference on Logic for Programming, Artificial Intelligence, and

Reasoning (LPAR), volume 5330 of Lecture Notes in Computer Science, pages 590–604. Springer, 2008.



608 A. MONTANARI, G. PUPPIS, P. SALA, AND G. SCIAVICCO

[3] D. Bresolin, V. Goranko, A. Montanari, and P. Sala. Tableau-based decision procedures for
the logics of subinterval structures over dense orderings. Journal of Logic and Computation,
doi:10.1093/logcom/exn063, 2008.

[4] D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. On decidability and expressiveness of propo-
sitional interval neighborhood logics. In Proceedings of the International Symposium on Logical Foun-

dations of Computer Science (LFCS), volume 4514 of Lecture Notes in Computer Science, pages 84–99.
Springer, 2007.

[5] D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood logics:
expressiveness, decidability, and undecidable extensions. Annals of Pure and Applied Logic, 161(3):289–
304, 2009.

[6] D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco. Optimal tableaux for right propositional neigh-
borhood logic over linear orders. In Proceedings of the 11th European Conference on Logics in Artificial

Intelligence (JELIA), volume 5293 of Lecture Notes in Artificial Intelligence, pages 62–75. Springer,
2008.

[7] D. Bresolin, A. Montanari, and G. Sciavicco. An optimal decision procedure for Right Propositional
Neighborhood Logic. Journal of Automated Reasoning, 38(1-3):173–199, 2007.

[8] D. Bresolin, V. Goranko A. Montanari, and G. Sciavicco. Right propositional neighborhood logic over
natural numbers with integer constraints for interval lengths. In Proceedings of the 7th IEEE Interna-

tional Conference on Software Engineering and Formal Methods (SEFM), pages 240–249. IEEE Comp.
Society Press, 2009.

[9] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: mathematical foundations and computa-

tional aspects. Oxford University Press, 1994.
[10] V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood temporal logics.

Journal of Universal Computer Science, 9(9):1137–1167, 2003.
[11] V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval temporal logics and duration

calculi. Applied Non-classical Logics, 14(1-2):9–54, 2004.
[12] J.Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal of the Association

for Computing Machinery, 38:279–292, 1991.
[13] I. Hodkinson, A. Montanari, and G. Sciavicco. Non-finite axiomatizability and undecidability of interval

temporal logics with C, D, and T. In Proceedings of the 17th Annual Conference of the EACSL, volume
5213 of Lecture Notes in Computer Science, pages 308–322. Springer, 2008.

[14] K. Lodaya. Sharpening the undecidability of interval temporal logic. In Proceedings of the 6th Asian

Computing Science Conference on Advances in Computing Science, volume 1961 of Lecture Notes in

Computer Science, pages 290–298. Springer, 2000.
[15] C. Lutz and F. Wolter. Modal logics of topological relations. Logical Methods in Computer Science,

2(2), 2006.
[16] A. Montanari, G. Puppis, and P. Sala. A decidable spatial logic with cone-shaped cardinal directions. In

Proceedings of the 18th Annual Conference of the EACSL, volume 5771 of Lecture Notes in Computer

Science, pages 394–408. Springer, 2009.
[17] A. Montanari, G. Puppis, P. Sala, and G. Sciavicco. Decidability of the interval tem-

poral logic ABB over the natural numbers. Research Report UDMI/2009/07, Depart-
ment of Mathematics and Computer Science, University of Udine, Udine, Italy, 2009,
http://users.dimi.uniud.it/∼angelo.montanari/rr200907.pdf.

[18] M. Otto. Two variable first-order logic over ordered domains. Journal of Symbolic Logic, 66(2):685–702,
2001.

[19] P. Van Emde Boas. The convenience of tilings. In Complexity, Logic and Recursion Theory, volume 187
of Lecture Notes in Pure and Applied Mathematics, pages 331–363. Marcel Dekker Inc., 1997.

[20] Y. Venema. A modal logic for chopping intervals. Journal of Logic and Computation, 1(4):453–476,
1991.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.



Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 609-620
www.stacs-conf.org

RELAXED SPANNERS FOR DIRECTED DISK GRAPHS
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Abstract. Let (V, δ) be a finite metric space, where V is a set of n points and δ is
a distance function defined for these points. Assume that (V, δ) has a constant doubling
dimension d and assume that each point p ∈ V has a disk of radius r(p) around it. The disk
graph that corresponds to V and r(·) is a directed graph I(V,E, r), whose vertices are the
points of V and whose edge set includes a directed edge from p to q if δ(p, q) ≤ r(p). In [8]

we presented an algorithm for constructing a (1 + ǫ)-spanner of size O(n/ǫd log M), where
M is the maximal radius r(p). The current paper presents two results. The first shows that
the spanner of [8] is essentially optimal, i.e., for metrics of constant doubling dimension it
is not possible to guarantee a spanner whose size is independent of M . The second result
shows that by slightly relaxing the requirements and allowing a small perturbation of the
radius assignment, considerably better spanners can be constructed. In particular, we show
that if it is allowed to use edges of the disk graph I(V,E, r1+ǫ), where r1+ǫ(p) = (1+ǫ)·r(p)
for every p ∈ V , then it is possible to get a (1 + ǫ)-spanner of size O(n/ǫd) for I(V,E, r).
Our algorithm is simple and can be implemented efficiently.

Introduction

This paper concerns efficient constructions of spanners for disk graphs, an important

family of directed graphs. A spanner is essentially a skeleton of the graph, namely, a sparse

spanning subgraph that faithfully represents distances. Formally, a subgraph H of a graph

G is a t-spanner of G if δH(u, v) ≤ t · δG(u, v) for every two nodes u and v, where δG′(u, v)

denotes the distance between u and v in G′. We refer to t as the stretch factor of the spanner.

Graph spanners have received considerable attention over the last two decades, and were

used implicitly or explicitly as key ingredients of various distributed applications. It is

known how to efficiently construct a (2k − 1)-spanner of size O(n1+1/k) for every weighted

undirected graph, and this size-stretch tradeoff is conjectured to be tight. Baswana and
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Sen [?] presented a linear time randomized algorithm for computing such a spanner. In

directed graphs, however, the situation is different. No such general size-stretch tradeoff

can exist, as indicated by considering the example of a directed bipartite graph G in which

all the edges are directed from one side to the other; clearly, the only spanner of G is G
itself, as any spanner for G must contain every edge.

The main difference between undirected and directed graphs is that in undirected graphs

the distances are symmetric, that is, a path of a certain length from u to v can be used also

from v to u. In directed graphs, however, the existence of a path from u to v does not imply

anything on the distance in the opposite direction from v to u. Hence, in order to obtain

a spanner for a directed graph one must impose some restriction either on the graph or on

its distances. In order to bypass the problem of asymmetric distances of directed graphs,

Cowen and Wagner [5] introduced the notion of roundtrip distances in which the distance

between u and v is composed of the shortest path from u to v plus the shortest path from

v to u. It is easy to see that under this definition distances are symmetric also in directed

graphs. It is shown by Cowen and Wagner [5] and later by Roditty, Thorup and Zwick [6]

that methods of path approximations from undirected graphs can work using more ideas

also in directed graphs when roundtrip distances are considered. Bollobás, Coppersmith

and Elkin [?] introduced the notion of distance preservers and showed that they exist also

in directed graphs.

In [8] we presented a spanner construction for directed graphs without symmetric dis-

tances. The restriction that we imposed on the graph was that it must be a disk graph.

More formally, let (V, δ) be a finite metric space of constant doubling dimension d, where

V is a set of n points and δ is a distance function defined for these points. A metric is said

to be of constant doubling dimension if a ball with radius r can be covered by at most a

constant number of balls of radius r/2. Every point p ∈ V is assigned with a radius r(p).

The disk graph that corresponds to V and r(·) is a directed graph I(V,E, r), whose vertices

are the points of V and whose edge set includes a directed edge from p to q if q is inside

the disk of p, that is, δ(p, q) ≤ r(p). In [8] we presented an algorithm for constructing a

(1 + ǫ)-spanner with size O(n/ǫd log M), where M is the maximal radius. In the case that

we remove the radius restriction the resulted graph is the complete undirected graph where

the weight of every edge is the distance between its endpoint. In such a case it is possible

to create (1 + ǫ)-spanners of size O(n/ǫd), see [4], [2] and [9] for more details. Moreover,

when the radii are all the same and the graph is the unit disk graph then it is also possible

to create (1 + ǫ)-spanners of size O(n/ǫd), see [3], [8].

As a result of that, a natural question is whether a spanner size of O(n/ǫd log M) in

the case of directed disk graph is indeed the best possible or maybe it is possible to get

a spanner of size O(n/ǫd) as in the cases of the complete graph and the unit disk graph.

For the case of the Euclidean metric space, the answer turns out to be positive; a simple

modification of the Yao graph construction [11] to fit the directed case yields a directed

spanner of size O(n/ǫd). However, the question remains for more general metric spaces,

and in particular for the important family of metric spaces of bounded doubling dimension.

In this paper we provide an answer for this question. We show that our construction

from [8] is essentially optimal by providing a metric space with a constant doubling dimen-

sion and a radius assignment whose corresponding disk graph has Ω(n2) edges and none of

its edges can be removed. (This does not contradict our spanner construction from [8] as

the maximal radius in that case is Θ(2n) and hence log M = n.)
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This (essentially negative) optimality result motivates our main interest in the current

paper, which focuses on attempts to slightly relax the assumptions of the model, in order

to obtain sparser spanner constructions. Indeed, it turns out that such sparser spanner

constructions are feasible under a suitably relaxed model. Specifically, we demonstrate the

fact that if a small perturbation of the radius assignment is allowed, then a (1 + ǫ)-spanner

of size O(n/ǫd) is attainable. More formally, we show that if we are allowed to use edges

of the disk graph I(V,E, r1+ǫ), where r1+ǫ(p) = (1 + ǫ) · r(p) for every p ∈ V , then it is

possible to get a (1 + ǫ)-spanner of size O(n/ǫd) for the original disk graph I(V,E, r). This

approach is similar in its nature to the notation of emulators introduced by Dor, Halperin

and Zwick [1]. An emulator of a graph may use any edge that does not exist in the graph in

order to approximate its distances. It was used in the context of spanners with an additive

stretch.

The main application of disk graph spanners is for topology control in the wireless

ad hoc network model. In this model the power required for transmitting from p to q is

commonly taken to be δ(p, q)α, where δ(p, q) denotes the distance between p and q and α is

a constant typically assumed to be between 2 and 4. Most of the ad hoc network literature

makes the assumption that the transmission range of all nodes is identical, and consequently

represents the network by a unit disk graph (UDG), namely, a graph in which two nodes

p, q are adjacent if their distance satisfies δ(p, q) ≤ 1. A unit disk graph can have as many

as O(n2) edges.

There is an extensive body of literature on spanners of unit disk graphs. Gao et al. [3],

Wang and Yang-Li [10] and Yang-Li et al. [7] considered the restricted Delaunay graph,

whose worst-case stretch is constant (larger than 1 + ǫ). In [8] we showed that any (1 + ǫ)-
geometric spanner can be turned into a (1 + ǫ)-UDG spanner.

Disk graphs are a natural generalization of unit disk graphs, that provide an intermedi-

ate model between the complete graph and the unit disk graph. Our size efficient spanner

construction for disk graphs whose radii are allowed to be slightly larger falls exactly into

the model of networks in which the stations can change their transmission power. In partic-

ular our constriction implies that if any station increases its transmission power by a small

fraction then a considerably improved topology can be built for the network.

Our result has both practical and theoretical implications. From a practical point of

view it shows that, in certain scenarios, extending the transmission radii even by a small

factor can significantly improve the overall quality of the network topology. The result

is also very intriguing from a theoretical standpoint, as to the best of our knowledge, our

relaxed spanner is the first example of a spanner construction for directed graphs that enjoys

the same properties as the best constructions for undirected graphs. (As mentioned above,

it is easy to see that for general directed graphs, it is not possible to have an algorithm

that given any directed graph produces a sparse spanner for it.) In that sense, our result

can be viewed as a significant step towards gaining a better understanding for some of the

fundamental differences between directed and undirected graphs. Our result also opens

several new research directions in the relaxed model of disk graphs. The most obvious

research questions that arise are whether it is possible to obtain other objects that are

known to exist in undirected graphs, such as compact routing schemes and distance oracles,

for disk graphs as well.

The rest of this paper is organized as follows. In the next section we present a metric

space of constant doubling dimension in which no edge can be removed from its corre-

sponding disk graph. Section 2 first describes a simple variant of our construction from [8],
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Figure 1: (a) First step in constructing the non-sparsifiable disk graph G. (b) The non-

sparsifiable disk graph G.

and then uses it together with new ideas in order to obtain our new relaxed construction.

Finally, in Section 3 we present some concluding remarks and open problems.

1. Optimality of the spanner construction

In this section we build a disk graph G with 2n vertices and Ω(n2) edges that is non-

sparsifiable, namely, whose only spanner is G itself. In this graph M = Ω(2n) hence our

spanner construction from [8] has a size of Ω(n2) and is essentially optimal.

Given a set of points, we present a distance function such that for a given assignment

of radii for the points any spanner of the resulting disk graph must have Ω(n2) edges. We

then prove that the underlying metric space has a constant doubling dimension.

We partition the points into two types, Y = {y1, . . . , yn} and X = {x1, . . . , xn}. We

now define the distance function δ(·, ·) and the radii assignment r(·). The main idea is to

create a bipartite graph G(X,Y,E) in which every point of Y is connected by a directed

edge to all the points of X.

The distance between any two points xi and xj is at least 1+ ǫ for some small 0 < ǫ < 1

and the radius assignment of every point xi is exactly 1. Thus, there are no edges between

the points of X.

We now define the distances between the points of Y and the points of X. We start

with the point y1. Let δ(y1, xi) = n for every xi ∈ X and let r(y1) = n. Place the points of

X on the boundary of a ball of radius n centered at y1 such that the distance between any

two consecutive points xi and xi+1 is exactly 1 + ǫ. This is depicted in Figure 1(a).

Turning to the point y2, let δ(y2, xi) = 2n for every xi ∈ X, δ(y2, y1) = 2n + ǫ, and

r(y2) = 2n. Hence there is an edge from y2 to all the points of X, but no edge connects y2

and y1.

We now turn to define the general case. Consider yi ∈ Y . Let r(yi) = 2i−1n and

δ(yi, xj) = 2i−1n for every xj ∈ X. Let δ(yi, yi−1) = 2i−1n + ǫ, and in general, for every

0 < j < i we have

δ(yi, yj) =

i−1
∑

k=j

δ(yk+1, yk) , (1.1)
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implying that

δ(yi, yj) < 2in. (1.2)

It is easy to verify that yi has outgoing edges to the points of X (and to them only) and it

does not have any incoming edges. See Figure 1(b).

The resulting disk graph G has 2n vertices and Ω(n2) edges. Clearly, removing any

edge from G will increase the distance between its head and its tail to infinity, and thus the

only spanner of G is G itself.

It is left to show that the metric space defined above for G has a constant doubling

dimension. Given a metric space (V, δ), its doubling dimension is defined to be the minimal

value d such that every ball B of radius r in the metric space can be covered by 2d balls of

radius r/2. In the next Theorem we prove that for the metric space described above, d is

constant.

Theorem 1.1. The metric space (X∪Y, δ) defined for G has a constant doubling dimension.

Proof. Let B be a ball with an arbitrary radius r. We show that it is possible to cover all

the points of X ∪ Y within B using a constant number of balls whose radius is r/2. The

proof is divided into two cases.

Case a: There is some yj ∈ Y within the ball B. (If there is more than one such

point, then let yj be the point whose index is maximal.) Let B′ be a ball of radius R = 2r
centered at yj. Clearly B ⊂ B′, so B′ contains all the points of B. In what follows we

show that all the points of X ∪ Y within B′ can be covered by a constant number of balls

of radius r/2. Let yi be the point within B′ whose index is maximal. We have to consider

two possible scenarios. The first is that yj = yi. This implies that yj+1 /∈ B′, hence

R < δ(yj+1, yj) = 2jn + ǫ. We now show that it is possible to cover B′ by a constant

number of balls of radius R/4. If R < 2j−1n, then only yj is within B′ and it is covered by

a ball of radius R/4 centered at itself. If 2j−1n ≤ R < 2j−1n + ǫ, then B′ contains all the

points of X and yj . From packing arguments it follows that it is possible to cover all the

points of X by a constant number of balls of radius n/4, hence also by a constant number

of balls of radius R ≥ n. The point yj itself is covered by a ball centered at it. Finally, if

2j−1n + ǫ ≤ R < 2jn + ǫ, then R/4 is at least 2j−3n + ǫ/4. A ball centered at yj−3 of radius

R/4 covers every yk within B′, where 1 ≤ k ≤ j−3, as δ(yj−3, yk) ≤ 2j−3n. Hence, we cover

Y ∩B′ by balls of radius R/4 whose centers are yj, yj−1, yj−2 and yj−3. We cover X ∩B′

as before. This completes the first scenario, where yi = yj. Assume now that yi 6= yj. This

implies that δ(yi, yj) ≤ R and that R < δ(yi+1, yj), where the first inequality follows from

the fact that yi ∈ B′ and the second inequality follows from the fact that yi is the point

with maximal index inside B′, hence, yi+1 /∈ B′. As δ(yi, yi−1) ≤ δ(yi, yj), we get that

2i−1n + ǫ ≤ R. Also, by (1.2), δ(yi+1, yj) < 2i+1n. We conclude that 2i−1n ≤ R < 2i+1n
and that R/4 ≥ 2i−3n. A ball centered at yi−3 of radius R/4 covers every yk within B′,

where k ≤ i− 3, as δ(yi−3, yk) ≤ 2i−3n. Hence, we can cover B′ ∩ Y by balls of radius R/4
whose centers are yi, yi−1, yi−2 and yi−3. We cover X ∩ B′ as before. This completes the

first case.

Case b: The ball B does not contain any point from Y . The points of X are spread

as appears in Figure 1(a), thus by standard packing arguments, any ball that contains only

points from X is covered by a constant number of balls of half the radius.
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2. Improved spanner in the relaxed disk graph model

The (negative) optimality result from the previous section motivates us to look for a

slightly relaxed definition of disk graphs in which it will still be possible to create a spanner

of size O(n/ǫd).

Let (V, δ) be a metric space of constant doubling dimension d with a radius assignment

r(·) for its points and let I = (V,E, r) be its corresponding disk graph. Assume that we

multiply the radius assignment of every point by a factor of 1 + ǫ, for some ǫ > 0, and

let I ′ = (V,E′, r1+ǫ) be the corresponding disk graph. It is easy to see that E ⊆ E′. In

this section we show that it is possible to create a (1 + ǫ)-spanner of size O(n/ǫd) if we are

allowed to use edges of I ′. As a first step we present a simple variant of our (1 + ǫ)-spanner

construction of size O(n/ǫd log M) from [8]. This variation is needed in order to obtain the

efficient construction in the relaxed model which is presented right afterwards.

2.1. Spanners for general disk graphs

Let (V, δ) be a metric space of constant doubling dimension and assume that any point

p ∈ V is the center of a ball of radius r(p), where r(p) is taken from the range [1,M ]. In

this section we describe a simple variant of our construction from [8], which computes a

(1 + ǫ)-spanner with O(n/ǫd log M) edges for a given disk graph. We then use this variant,

together with new ideas, in order to obtain (in the next section) our main result, namely, a

spanner with only O(n/ǫd) edges.

The spanner construction algorithm receives as input a directed graph I(V,E, r) and

an arbitrarily small (constant) approximation factor ǫ > 0, and constructs a set of span-

ner edges EDIR
SP , returning the spanner subgraph HDIR(V,EDIR

SP ). The construction of the

spanner is based on a hierarchical partition of the points of V that takes into account the

different radius of each point. The construction operates as follows. Let α and β be two

small constants depending on ǫ, to be fixed later on. Assume that the ball radii are scaled

so that the smallest edge in the disk graph is of weight 1. Let i be an integer from the

range [0, ⌊log1+α M⌋] and let Mi = M/(1+α)i. The edges of I(V,E, r) are partitioned into

classes by length, letting E(Mi+1,Mi) = {(x, y) |Mi+1 ≤ δ(x, y) ≤Mi}. Let ℓ(x, y) be the

level of the edge (x, y), that is, ℓ(x, y) = i such that (x, y) ∈ E(Mi+1,Mi). Let p be a point

whose ball is of radius r(p) ∈ [Mi+1,Mi]. It follows that level i is the first level in which p
can have outgoing edges. We denote this level by ℓ(p).

For every i ∈ [0, ⌊log1+α M⌋], starting from i = 0, the edges of the class E(Mi+1,Mi)

are considered by the algorithm in a non-decreasing order. (Assume that in each class the

edges are sorted by their weight.) In each stage of the construction we maintain a set of

pivots Pi. Let x ∈ V and let NN(x, Pi) be the nearest neighbor of x among the points of

Pi. For a pivot p ∈ Pi, define Γi(p) = {x | x ∈ V, NN(x, Pi) = p, r(x) ≥ δ(x, p)}, namely, all

the points that have a directed edge to p and p is their nearest neighbor from Pi. We refer

to Γi(p) as the close neighborhood of p.

The algorithm is given in Figure 2. Let (x, y) be an edge considered by the algorithm

in the ith iteration. The algorithm first checks whether x or y or both should be added

to the pivots set Pi. The main change with respect to [8] is that if y is assigned with

a large enough radius it might become a pivot when the edge (x, y) is examined. When

considering the edge (x, y), the algorithm acts according to the following rule: If the distance

from x to its nearest neighbor in Pi is greater than βMi+1 then x is added to Pi. If the

distance from y to its nearest neighbor in Pi is greater than βMi+1 and the radius of y
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Algorithm disk-spanner (I(V,E,R), ǫ)

EDIR
SP ← φ

P0 ← φ
for i← 0 to ⌊log1+α M⌋

for each (x, y) ∈ E(Mi+1,Mi) do

if δ(NN(x, Pi), x) > βMi+1 then Pi ← Pi ∪ {x}
if δ(NN(y, Pi), y) > βMi+1 ∧ r(y) ≥Mi+1 then Pi ← Pi ∪ {y}
if r(y) ≥Mi+1

if ∄(x′, y′) ∈ EDIR
SP s.t. x′ ∈ Γi(NN(x, Pi))∧ y′ ∈ Γi(NN(y, Pi))

then EDIR
SP ← EDIR

SP ∪ {(x, y)}
if r(y) < Mi+1

if ∄(x′, y) ∈ EDIR
SP s.t. x′ ∈ Γi(NN(x, Pi))

then EDIR
SP ← EDIR

SP ∪ {(x, y)}
Pi+1 ← Pi

return HDIR(V,EDIR
SP )

Figure 2: A high level implementation of the spanner construction algorithm for general
disk graphs

is at least Mi+1 then y is added to Pi. To decide whether the edge (x, y) is added to the

spanner, the following two cases are considered. The first case is when r(y) ≥ Mi+1. In

this case, if there is no edge from the close neighborhood of x to the close neighborhood

of y then (x, y) is added to the spanner. The second case is when r(y) < Mi+1. In this

case, if there is no edge from the close neighborhood of x to y then (x, y) is added to the

spanner. When i reaches ⌊log1+α M⌋, the algorithm handles all the edges that belong to

E(M⌊log
1+α M⌋+1,M⌊log

1+α M⌋). This includes also edges whose weight is 1, the minimal

possible weight. The algorithm returns the directed graph HDIR(V,EDIR
SP ).

In what follows we prove that for suitably chosen α and β, HDIR(V,EDIR
SP ) is a (1 + ǫ)-

spanner with O(n/ǫd log M) edges of the directed graph I(V,E, r).

Lemma 2.1 (Stretch). Let ǫ > 0, set α = β < ǫ/6 and let H = HDIR(V,EDIR

SP
) be the

graph returned by Algorithm disk-spanner(I(V,E, r), ǫ). If (x, y) ∈ E then δH(x, y) ≤
(1 + ǫ)δ(x, y).

Proof. Recall that the radii are scaled so that the shortest edge is of weight 1. We prove

that every directed edge of an arbitrary node x ∈ V is approximated with 1 + ǫ stretch.

Let i ∈ [0, ⌊log1+α M⌋]. The proof is by induction on i. For a given node x, the base of the

induction is the maximal value of i in which x has an edge in E(Mi+1,Mi). Let j be this

value for x, that is, the set E(Mj+1,Mj) contains the shortest edge that touches x. Every

other node is at distance at least Mj+1 away from x, hence x is a pivot at this stage and

every edge that touches x from the set E(Mj+1,Mj) is added to EDIR
SP .

Let (x, y) ∈ E(Mi+1,Mi) for some i < j and let p = NN(x, Pi). Assume that r(y) ≥
Mi+1 and let q = NN(y, Pi). It follows from definition that δ(x, p) ≤ βMi+1 and δ(y, q) ≤
βMi+1.

If the edge (x, y) is not in the spanner, then there must be an edge (x̂, ŷ) ∈ EDIR
SP , where

x̂ ∈ Γi(p) and ŷ ∈ Γi(q). The crucial observation is that the radius of x and ŷ is at least

Mi+1. By the choice of β, it follows that 2βMi+1 < Mi+1 and (x, x̂), (ŷ, y) ∈ E. Thus,
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there is a (directed) path from x to y of the form 〈x, x̂, ŷ, y〉 whose length is 4βMi+1 + Mi.

However, only its middle edge, (x̂, ŷ), is in EDIR
SP . The length of this edge is bounded by the

length of the edge (x, y) since the algorithm picked the minimal edge that connects between

the neighborhoods. This implies that the length of (x̂, ŷ) is at most Mi.

By the inductive hypothesis, the edges (x, x̂) and (ŷ, y) whose weight is at most 2βMi+1

are approximated with 1+ ǫ stretch. Thus, there is a path in the spanner from x to y whose

length is at most (1 + ǫ)δ(x, x̂) + Mi + (1 + ǫ)δ(ŷ, y), and this can be bounded by

(1 + ǫ)4βMi+1 + Mi = ((1 + ǫ)4β + (1 + α))Mi+1.

As the edge (x, y) ∈ E(Mi+1,Mi) it follows that δ(x, y) ≥ Mi+1. It remains to prove that

1 + 4ǫβ + 4β + α ≤ 1 + ǫ, which follows directly from the choice of α and β.

If r(y) < Mi+1 then there must be an edge (x̂, y) ∈ EDIR
SP , where x̂ ∈ Γi(p). Following

similar arguments to those used above it can be shown that there is a path in the spanner

from x to y of length at most (1 + ǫ)2βMi+1 + Mi and hence bounded by (1 + ǫ)Mi+1.

The size of the spanner. We now prove that the size of the spanner HDIR(V,EDIR
SP ) is

O(n/ǫd log M). As a first step, we state the following well-known lemma, cf. [2].

Lemma 2.2. [Packing Lemma] If all points in a set U ∈ R
d are at least r apart from each

other, then there are at most (2R/r + 1)d points in U within any ball X of radius R.

The next lemma establishes a bound on the number of incoming spanner edges that a

point may be assigned on stage i ∈ [0, ⌊log1+α M⌋] of the algorithm.

Lemma 2.3. Let i ∈ [0, ⌊log1+α M⌋] and let y ∈ V . The total number of incoming edges of

y that were added to the spanner on stage i is O(ǫ−d).

Proof. Let (x, y) be a spanner edge and let NN(x, Pi) = p. We associate (x, y) to p. From

the spanner construction algorithm it follows that this is the only incoming edge of y whose

source is in Γi(p). Thus, this is the only incoming edge of y which is associated to p.

Now consider all the incoming edges of y on stage i. The source of each of these edges is

associated to a unique pivot within distance of at most Mi + 2βMi+1 away from y and any

two pivots are βMi+1 apart from each other. Using Lemma 2.2, we get that the number of

edges entering y is (
Mi+2βMi+1

βMi+1

+ 1)d = ((1 + α)/β + 3)d = O(ǫ−d).

It follows from the above lemma that the total number of edges that were added to

EDIR
SP in the main loop is O(n/ǫd log M). The total cost of the construction algorithm is

O(m log n). For more details on the construction time see [8].

2.2. Spanner for relaxed disk graphs

Let (V, δ) be a metric space of constant doubling dimension d with a radius assignment

r(·) for its points and let I = (V,E, r) be its corresponding disk graph. Assume that we

multiply the radius assignment of every point by a factor of 1 + ǫ, for some ǫ > 0, and

let I ′ = (V,E′, r1+ǫ) be the corresponding disk graph. In this section we show that it is

possible to create a (1 + ǫ)-spanner of I of size O(n/ǫd) if we are allowed to use edges of I ′.
Our construction consists of two stages: a building stage and a pruning stage. The

building stage creates two spanners, H and H ′, using the algorithm of Section 2.1, where

H is the spanner of I and H ′ is the spanner of I ′. In the pruning stage we prune the union

of these two spanners. Throughout the pruning stage we use the radius assignment of each
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point before the increase. Let q ∈ V and let ℓ(q) be the first level in which q can have

outgoing edges, that is, r(q) ∈ [Mℓ(q)+1,Mℓ(q)] (recall that as the levels get larger the edges

get shorter). In the pruning stage we only prune incoming edges of q whose level is below

ℓ(q). In other words, we do not touch the incoming edges of q that are shorter than the

radius of q. The pruning is done as follow. Let γ = log1+α 1/β + 1. We keep in the spanner

the incoming edges of q that come from the first 4γ different levels below ℓ(q).

Let Ĥ be the resulting spanner and let Ê be the remaining set of edges after the pruning

step. In the remainder of this section we show that the size of Ĥ is O(n/ǫd) and its stretch

with respect to the distances in I(V,E, r) is 1+ ǫ. We start by showing that the size of Ĥ is

O(n/ǫd). Notice that the first part of the proof below is possible only due to the change we

have done in the previous section to our spanner construction from [8]. Roughly speaking,

given an edge (p, q) ∈ E that is shorter than r(q) we use pivot selection also on q’s side

(and not only on p’s) to sparisify the graph. This allows us to deal separately with edges

of q of length larger than r(q) and those of length smaller than r(q).

Lemma 2.4. |Ê| = O(n/ǫd).

Proof. Let (p, q) be a spanner edge that survived the pruning step. There are two possible

cases to consider.

The first case is that ℓ(p, q) > ℓ(q). Let i = ℓ(p, q) and let x = NN(p, Pi) and y =

NN(q, Pi). By packing considerations similar to Lemma 2.3 it follows that the total number

of edges at level i that connects between two pivots as the edge (p, q) that are associated

with x (and with y) is O(1/ǫd). The distance between x and y is at most 2βMi+1 + Mi,

therefore at level i− 2γ either x or y are no longer pivots.

Let x ∈ Pj and x 6∈ Pj−1, that is, Pj is the first pivot set that contains x. Then we

charge x with every (incoming and outgoing) edge of this type from levels [j, j + 2γ] that

is incident to x. Now given such an edge (p, q) whose level is i, either x or y are not pivots

in level i− 2γ, which means that either x or y has been charged for this edge, since one of

them first becomes a pivot between levels i− 2γ and i.
The second case is that ℓ(p, q) ≤ ℓ(q). In this case, it must be that level ℓ(p, q) is among

the 4γ first different levels below ℓ(q) from which an incoming edge is allowed to enter q.
Subsequently, we associate the edge (p, q) with q, as the total number of such edges that q
can have is O(γ/ǫd).

We now turn to prove that the stretch of the spanner Ĥ with respect to the disk graph

I is 1 + ǫ.

Lemma 2.5. Let (p, q) be an edge of the spanner H that was pruned. We show that there

is a path in Ĥ whose length is at most (1 + ǫ)δ(p, q).

Proof. The proof is by induction on the lengths of the pruned edges. For the induction base

let (p, q) be the shortest edge that was pruned. For every x ∈ V , let s(x) be the head of

an edge whose level is the γ-th level below ℓ(x) from which x has an incoming edge. Let

q1, . . . qi, . . . be a sequence of points, where q1 = q and qi = s(qi−1). As qi+1 = s(qi), it

follows that ℓ(qi+1, qi) ≤ ℓ(qi)− γ. Combining this with the fact that ℓ(qi) ≤ ℓ(qi, qi−1) we

get that ℓ(qi+1, qi) ≤ ℓ(qi, qi−1)− γ. Therefore, δ(qi, qi−1) ≤ βδ(qi+1, qi).

The analysis distinguishes between two cases.

Case a: There is a point qt such that δ(qt, q) > βδ(p, q). This situation is depicted

in Figure 3. (If there is more than one point that satisfies this requirement, take the one

whose index is minimal.)
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p q

βδ(p, q)

> β/2δ(p, q)

qt−1

qt

Figure 3: The case in which qt exists

Claim: δ(qt, qt−1) ≥
β
2 δ(p, q).

Proof. For the sake of contradiction, assume that δ(qt, qt−1) < β
2 δ(p, q). This implies that

2δ(qt, qt−1) < βδ(p, q) < δ(qt, q) ≤

t
∑

i=2

δ(qi, qi−1) , (2.1)

where the last inequality follows from the triangle inequality as the distance between q and

qt is at most
∑t

i=2 δ(qi−1, qi). For every 2 ≤ i ≤ t − 1 we have δ(qi, qi−1) ≤ βδ(qi+1, qi),

which implies that δ(qi, qi−1) ≤ βt−iδ(qt, qt−1). Combined with (2.1), we get

δ(qt, qt−1) <

t−1
∑

i=2

δ(qi, qi−1) ≤ δ(qt, qt−1)

t−1
∑

i=2

βt−i .

If β < 1/2 we have
∑t−1

i=2 βt−i < 1 and this yields a contradiction.

We now focus our attention on the point qt−1. The minimality of qt implies that

δ(q, qt−1) ≤ βδ(p, q). By combining it with the triangle inequality we get that δ(p, qt−1) ≤
δ(p, q) + βδ(p, q). Therefore, in the graph I ′ there must be an edge from p to qt−1.

Let i = ℓ(p, qt−1). There are two possible scenarios for the spanner H ′. The first scenario

is when r′(qt−1) < Mi+1. In this case, there is an edge in H ′ from some x ∈ Γi(NN(p, i)) to

qt−1, whose length is at most δ(p, q) + βδ(p, q).
There are 4γ different levels below ℓ(qt−1) from which edges that belong to the spanners

H and H ′ are not being pruned and survived to the spanner Ĥ. We know that the edge

(qt, qt−1) is such an edge from the γ-th non-empty level below ℓ(qt−1). We also know that

δ(qt, qt−1) > β
2 δ(p, q). Therefore, as the length of the edge (x, qt−1) is at most δ(p, q) +

βδ(p, q) it is within the 4γ non-empty levels below ℓ(qt−1) and it is not pruned. We can now

build a path from p to q by concatenating three segments as follows: A path from p to x,

the edge (x, qt−1) and a path from qt−1 to q. The point x is at most 2βδ(p, q) + 2β2δ(p, q)
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away from p and for the right choice of β it is less than δ(p, q)/(1 + ǫ), hence the weight

of every edge on the path that approximates the distance between x and p in H ∪ H ′ is

less than δ(p, q), the shortest pruned edge, and the entire path survived the punning stage.

Similarly, the point qt−1 is at most βδ(p, q) away from q and again for the right choice of

β every edge on the path that approximates the distance between qt−1 and q survived the

punning stage. Thus, we get that there is a path whose length is at most

(1 + ǫ)(3βδ(p, q) + 2β2δ(p, q)) + δ(p, q) + βδ(p, q) ,

which is less than (1 + ǫ)δ(p, q) for β < ǫ/11.
The second scenario is when r′(qt−1) ≥Mi+1. In this case, there is an edge in H ′ from

some x ∈ Γi(NN(p, i)) to some y ∈ Γi(NN(qt−1, i)) whose length is at most δ(p, q)+βδ(p, q),
which is not being pruned. We can build a path from p to q by concatenating three segments

as follows: A path from p to x, the edge (x, y) and a path from y to q. As before, for the

right choice of β the paths from p to x and from y to q are composed from edges that are

shorter from δ(p, q), the length of the shortest pruned edge, hence, from the minimality

δ(p, q) every edge on these paths survived the punning stage. We get that there is a path

whose length is at most

(1 + ǫ)(4βδ(p, q) + 5β2δ(p, q)) + δ(p, q) + βδ(p, q) ,

which is less than (1 + ǫ)δ(p, q) for β < ǫ/19. This completes the proof for case a.

Case b: There is no point qt such that δ(qt, q) > βδ(p, q). In this case, let qt−1 be the

last point in the sequence of points q1, . . . qi, . . ., where qi = s(qi−1) and q1 = q. Similarly

to before, there are two possible scenarios for the spanner H ′. Let i = ℓ(p, qt−1). The

first scenario is when r′(qt−1) < Mi+1. In this case, there is an edge in H ′ from some

x ∈ Γi(NN(p, i)) to qt−1 whose length is at most δ(p, q) + βδ(p, q). This edge could not be

pruned, since if it was pruned then qt−1 could not have been the last point in the sequence.

Hence we can construct a path from p to q exactly as we have done in the first scenario

of case a, described above. The second scenario is when r′(qt−1) ≥ Mi+1. In this case, we

can construct a path from p to q exactly as we have done in the second scenario of case a,

described above.

This completes the proof of the induction base. The proof of the general inductive step

is almost identical. The only difference is that when a path is constructed from p to q, its

portions from p to x and from qt−1 to q in the first scenario and from p to x and from y to

q in the second scenario exist in Ĥ by the induction hypothesis and not by the minimality

of δ(p, q).

We end this section by stating its main Theorem. The proof of this Theorem stems

from Lemma 2.4 and Lemma 2.5.

Theorem 2.6. Let (V, δ) be a metric space of constant doubling dimension with a radius
assignment r(·) for its points and let I = (V,E, r) be its corresponding disk graph. Let
I ′ = (V,E′, r1+ǫ) be the corresponding disk graph in the relaxed model. It is possible to
create a (1 + ǫ)-spanner of size O(n/ǫd) for I using edges of I ′.

3. Concluding remarks and open problems

This paper presents a spanner construction for disk graphs in a slightly relaxed model

that is as good as spanners for complete graphs and unit disk graphs. This result opens
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many other research directions for disk graphs. We list here two questions that we find

particularly intriguing: Is it possible to design an efficient compact routing scheme for disk

graphs? And is it possible to build an efficient distance oracle for disk graphs?
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Abstract. We call a CNF formula linear if any two clauses have at most one variable in
common. We show that there exist unsatisfiable linear k-CNF formulas with at most 4k

24k

clauses, and on the other hand, any linear k-CNF formula with at most 4k

8e2k2 clauses is
satisfiable. The upper bound uses probabilistic means, and we have no explicit construction
coming even close to it. One reason for this is that unsatisfiable linear formulas exhibit a
more complex structure than general (non-linear) formulas: First, any treelike resolution

refutation of any unsatisfiable linear k-CNF formula has size at least 22
k

2
−1

. This implies
that small unsatisfiable linear k-CNF formulas are hard instances for Davis-Putnam style
splitting algorithms. Second, if we require that the formula F have a strict resolution tree,

i.e. every clause of F is used only once in the resolution tree, then we need at least a
a

.
.
.
a

clauses, where a ≈ 2 and the height of this tower is roughly k.

1. Introduction

How can CNF formulas become unsatisfiable? Roughly speaking, there are two ways:

Either some constraint (clause) is itself impossible to satisfy – the empty clause; or, every

clause can be satisfied individually, but one cannot satisfy all of them simultaneously. In the

latter case, the clauses have to somehow overlap. How much? For example, take k boolean

variables x1, . . . , xk. The conjunction of all 2k possible clauses of size k is the complete
k-CNF formula and denote by Kk. It is unsatisfiable, and as small as possible: Any k-CNF

formula with less than 2k clauses is satisfiable. Clearly, the clauses of Kk overlap a lot.

What if we require that any two distinct clauses share at most one variable? We call such

a formula linear. There are unsatisfiable linear k-CNF formulas, but they are significantly

larger and have a much more complex structure than Kk.

A CNF formula is a conjunction (AND) of clauses, and a clause is a disjunction (OR)

of literals. A literal is either a boolean variable x or its negation x̄. We require that a clause

does not contain the same literal twice, and does not contain complementary literals, i.e.,
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both x and x̄. To simplify notation, we also regard formulas as sets of clauses and clauses

as sets of literals. A clause with k literals is a k-clause, and a k-CNF formula is a CNF

formula consisting of k-clauses. For a clause C, we denote by vbl(C) set of variables x with

x ∈ C or x̄ ∈ C. Consequently, a CNF formula F is linear if |vbl(C) ∩ vbl(D)| ≤ 1 for any

two distinct clauses C,D ∈ F . As a relaxation of this notion, we call F weakly linear if

|C ∩ D| ≤ 1 for any distinct C,D ∈ F .

Example. The formula (x̄1 ∨ x2) ∧ (x̄2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x̄4 ∨ x̄1) is linear, whereas

(x̄1 ∨ x2)∧ (x1 ∨ x2)∧ (x2 ∨ x3) is weakly linear, but not linear, and finally (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x2 ∨ x̄3) is not weakly linear (and not linear, either).

It is not very difficult to construct an unsatisfiable linear 2-CNF formula, but signifi-

cantly more effort is needed for a 3-CNF formula. It is not obvious whether unsatisfiable

linear k-CNF formulas exist for every k. These questions have been asked first by Porschen,

Speckenmeyer and Randerath [15], who also proved that for any k ≥ 3, if an unsatisfiable

linear k-CNF formula exists, then deciding satisfiability of linear k-CNF formulas is NP-

complete. Later, Porschen, Speckenmeyer and Zhao [16] and, independently, myself [18]

gave a construction of unsatisfiable linear k-CNF formulas, for every k ∈ N0:

Theorem 1.1 ([16], [18]). For every k ≥ 0, there exists an unsatisfiable linear k-CNF

formula Fk, with F0 containing one clause and Fk+1 containing |Fk|2
|Fk| clauses.

The |Fk| are extremely large. Here, we will give an almost optimal construction.

Theorem 1.2. All weakly linear k-CNF formulas with at most 4k

8e2(k−1)2
clauses are satis-

fiable. There exists an unsatisfiable linear k-CNF formula with 4k24k clauses.

It is a common phenomenon in extremal combinatorics that by probabilistic means one

can show that a certain object exists (in our case, a “small” linear unsatisfiable k-CNF

formula), but one cannot explicitly construct it. We have no explicit construction avoiding

the tower-like growth in Theorem 1.1. We give some arguments why this is so, and show

that small linear unsatisfiable k-CNF formulas have a more complex structure than their

non-linear relatives. To do so, we speak about resolution.

1.1. Resolution Trees

If C and D are clauses and there is unique literal u such that u ∈ C and ū ∈ D, then

(C \ {u}) ∪ (D \ {ū}) is called the resolvent of C and D. It is easy to check that every

assignment satisfying C and D also satisfies the resolvent.

Definition 1.3. A resolution tree for a CNF formula F is a tree T whose vertices are

labeled with clauses, such that

• each leaf of T is labeled with a clause of F ,

• the root of T is labeled with the empty clause,

• if vertex a has children b and c, and these are labeled with clauses Ca, Cb, Cc,

respectively, then Ca is the resolvent of Cb and Cc.

It is well-known that a CNF formula F is unsatisfiable if and only if it has a resolution

tree (which can be exponentially large in |F |). Proving lower bounds on the size of resolution
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trees (and general resolution proofs, which we will not introduce here) has been and still is

an area of intensive research. See for example Ben-Sasson and Wigderson [2].

Theorem 1.4. Let k ≥ 2. Every resolution tree of an unsatisfiable weakly linear k-CNF

formula has at least 22
k
2 −1

leaves.

A large ratio between the size of F and the size of a smallest resolution tree is an indi-

cation that F has a complex structure. For example, it is well-known that the running time

of so-called Davis-Putnam procedures on a formula F is lower bounded by the size of the

smallest resolution tree of F (actually those procedures were introduces by Davis, Logeman

and Loveland [3]). Such a procedure tries to find a satisfying assignment for a formula F
(or to prove that none exists) by choosing a variable x, and then recursing on the formulas

F [x 7→0] and F [x 7→1], obtained from F by fixing the value of x to 0 or 1, respectively. If F is

unsatisfiable, the procedure implicitly constructs a resolution tree.

A CNF formula F is minimal unsatisfiable if it is unsatisfiable, and for every clause

C ∈ F , F \ {C} is satisfiable. The complete k-CNF formula introduced above is minimal

unsatisfiable, and has a resolution tree with 2k leaves, one for every clause. This is as small

as possible, since for a minimal unsatisfiable formula, every clause must appear as label

of at least one leaf of any resolution tree. We call a resolution tree strict if no two leaves

are labeled by the same clause, and a formula F strictly treelike if it has a strict resolution

tree. In some sense, strictly treelike formulas are the least complex formulas possible. For

example, the complete formula Kk and the formulas constructed in the proof of Theorem 1.1

are strictly treelike.

Theorem 1.5. For any ǫ > 0, there exists a constant c such that for any k ∈ N, any strictly
treelike weakly linear k-CNF formula has at least tower2−ǫ(k − c) clauses, where towera(n)

is defined by towera(0) = 1 and towera(n + 1) = atowera(n).

Strictly treelike formulas appear in other contexts, too. Consider MU(1), the class

of minimal unsatisfiable formulas whose number of variables is one less than the number

of clauses. A result of Davydov, Davydova and Kleine Büning ([4], Theorem 12) implies

that every MU(1)-formula is strictly treelike. Also, MU(1)-formulas serve as “universal

patterns” for unsatisfiable formulas: Szeider [19] shows that a formula F is unsatisfiable if

and only if it can be obtained from a MU(1)-formula G by renaming the variables of G (in

a possibly non-injective manner). It is not difficult to show that a strictly treelike linear

k-CNF formula can be transformed into a linear MU(1)-formula with the same number of

clauses.

1.2. Related Work

For a CNF formula F and a variable x, let dF (x) denote the degree of x, i.e. the

number of clauses of F containing x or x̄, and let d(F ) := maxx dF (x) denote the maximum
degree of F . For the complete k-CNF formula Kk, we have d(Kk) = 2k. Intuitively, in an

unsatisfiable k-CNF formula, some variables should occur in many clauses. In other words,

the following function should be large:

f(k) := max{d
∣

∣ every k-CNF formula F with d(F ) ≤ d is satisfiable} . (1.1)
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The function f(k) has first been investigated by Tovey [20], who showed f(k) ≥ k,using

Hall’s Theorem. Using the famous Lovász Local Lemma (see [5] for the original proof, or [1]

for several generalized versions), Kratochv́ıl, Savický and Tuza [12] proved that f(k) ≥ 2k

ek ,

and that while all k-CNF formulas F with d(F ) ≤ f(k) are trivially satisfiable, deciding

satisfiability of k-CNF formulas F with d(F ) ≤ f(k) + 1 is already NP-complete, for k ≥ 3.

For k = 3, this is already observed in [20]. For an upper bound, the complete k-CNF

formula witnesses that f(k) ≤ 2k − 1. Savický and Sgall [17] showed f(k) ∈ O(k−0.262k).

This was improved by Hoory and Szeider [9] to f(k) ∈ O
(

ln(k)2k

k

)

, and recently Gebauer [7]

proved that f(k) ≤ 2k+2

k . Thus, f(k) is known up to a constant factor. The best upper

bounds on f(k) come from MU(1)-formulas. This is true for large values of k, since the

formulas constructed in [7] are MU(1), as for small values: Hoory and Szeider [8] show that

the function f(k), when restricted to MU(1)-formulas, is computable (in general this is not

known), and derive the currently best-known bounds on f(k) for small k (k ≤ 9). To sum-

marize: When we try to find unsatisfiable k-CNF formulas minimizing a certain parameter,

like number of clauses or maximum degree, strictly treelike formulas do an excellent job.

However, if we try to construct a small unsatisfiable linear k-CNF formula, they perform

horribly. Just compare our upper bound in Theorem 1.2 with the lower bound for strictly

treelike formulas in Theorem 1.5

While interest in linear CNF formulas is rather young, linear hypergraphs have been

studied for quite some time. A hypergraph H = (V,E) is linear if |e ∩ f | ≤ 1 for any

two distinct hyperedges e, f ∈ E. A k-uniform hypergraph is a hypergraph where every

hyperedge has cardinality k. We ask when a hypergraph 2-colorable, i.e., admits a 2-coloring

of its vertices such that no hyperedge becomes monochromatic. Bounds on the number of

edges in such a hypergraph were given by Erdős and Lovász [5] (interestingly, this is the

paper where the Local Lemma has been proven). They show that there are non-2-colorable

linear k-uniform hypergraphs with ck44k hyperedges, but not with less than c′4k

k3 . The proof

of the lower bound directly translates into our lower bound for linear k-CNF formulas. For

the number of edges in linear k-uniform hypergraphs that are not 2-colorable, the currently

best upper bound is ck24k by Kostochka and Rödl [11], and the best lower bound is k−ǫ4k,

for any ǫ > 0 and sufficiently large k, due to Kostochka and Kumbhat [10].

2. Existence and Upper and Lower Bounds

Proof of Theorem 1.1. Choose F0 to be the formula consisting of only the empty clause.

Suppose we have constructed Fk, and want to construct Fk+1. Let m = |Fk|. We create m
new variables x1, . . . , xm, and let Km = {D1,D2, . . . ,D2m} be the complete m-CNF formula

over x1, . . . , xm. It is unsatisfiable, but not linear. We take 2m variable disjoint copies of

Fk, denoted by F
(1)
k , F

(2)
k , . . . , F

(2m)
k . For each 1 ≤ i ≤ 2m, we build a linear (k + 1)-CNF

formula F̃
(i)
k from F

(i)
k by adding, for each 1 ≤ j ≤ m, the jth literal of Di to the jth

clause of F
(i)
k . Note that every assignment satisfying F̃

(i)
k also satisfies Di. Finally, we set

Fk+1 :=
⋃2m

i=1 F̃
(i)
k . This is an unsatisfiable linear (k + 1)-CNF formula with m2m clauses.

Using induction, it is not difficult to see that the formulas Fk are strictly treelike.

We will prove the upper bound in Theorem 1.2 by giving a probabilistic construction of
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a comparably small unsatisfiable linear k-CNF formula. Our construction consists of two

steps. First, we construct a linear k-uniform hypergraph H that is “dense” in the sense

that m
n is large, where m and n are the number of hyperedges and vertices, respectively,

and then transform it randomly into a linear k-CNF formula F that is unsatisfiable with

high probability.

Lemma 2.1. If there is a linear k-uniform hypergraph H with n vertices and m edges such
that m

n ≥ 2k, then there is an unsatisfiable linear k-CNF formula with m clauses.

Proof. Let H = (V,E). By viewing V as a set of variables and E as a set of clauses

(each containing only positive literals), this is a (satisfiable) linear k-CNF formula. We

replace each literal in each clause by its complement with probability 1
2 , independently in

each clause. Let F denote the resulting (random) formula. For any fixed truth assignment

α, it holds that Pr[α satisfies F ] = (1 − 2−k)m. Hence the expected number of satisfying

assignments of F is

2n(1 − 2−k)m < 2ne−2−km = eln(2)n−2−km ≤ 1 ,

where the last inequality follows from m
n ≥ 2k. Hence some formula F has fewer than one

satisfying assignment, i.e., none.

How can we construct a dense linear hypergraph? We use a construction by Kuzjurin [13].

Our application of this construction is motivated by Kostochka and Rödl [11], who use it

to construct linear hypergraphs of large chromatic number.

Lemma 2.2. For any prime power q and any k ∈ N, there exists a k-uniform linear
hypergraph with kq vertices and q2 edges.

With n = kq, this hypergraph has n2/k2 hyperedges. This is almost optimal, since

any linear k-uniform hypergraph on n vertices has at most
(n
2

)

/
(k
2

)

hyperedges: The n

vertices provide us with
(

n
2

)

vertex pairs. Each hyperedge occupies
(

k
2

)

pairs, and because

of linearity, no pair can be occupied by more than one hyperedge.

Proof. Choose the vertex set V = V1 ⊎ · · · ⊎Vk, where each Vi is a disjoint copy of the finite

field GF (q). The hyperedges consist of all k-tuples (x1, . . . , xk) with xi ∈ Vi, 1 ≤ i ≤ k,

such that















1 1 1 1

1 2 . . . i . . . k
1 4 i2 k2

...
...

...
...

1 2k−3 . . . ik−3 . . . kk−3



































x1

x2
...
xi
...

xk





















= 0 . (2.1)

Consider two distinct vertices x ∈ Vi, y ∈ Vj. How many hyperedges contain both of

them? If i = j, none. If i 6= j, we can find out by plugging the fixed values x, y into (2.1).

We obtain a (possibly non-uniform) (k − 2) × (k − 2) linear system with a Vandermonde

matrix, which has a unique solution. In other words, x and y are in exactly one hyperedge,

and the hypergraph is linear. By the same argument, there are exactly q2 hyperedges.
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Proof of the upper bound in Theorem 1.2. Choose a prime power q ∈ {k2k, . . . , 2k2k − 1}.
By Lemma 2.2, there is a linear k-uniform hypergraph H with n = qk vertices and m = q2

hyperedges. Since m
n = q

k ≥ 2k, Lemma 2.1 shows that there is an unsatisfiable linear

k-CNF formula with q2 ≤ 4k24k clauses.

Let us prove the lower bound of Theorem 1.2. For a literal u and a CNF formula

F , we write occF (u) := |{C ∈ F | u ∈ C}|, the degree of the literal u. Thus dF (x) =

occF (x)+occF (x̄). We write occ(F ) = maxu occF (u). In analogy to f(k), we define focc(k)

to be the largest integer d such that any k-CNF formula F with occ(F ) ≤ d is satisfiable.

Clearly focc(k) ≥ f(k)
2 , and thus from [12] it follows that focc(k) ≥ 2k

2ek . Actually, an

application of the Lopsided Lovász Local Lemma [6, 1, 14] yields focc(k) ≥ 2k

ek − 1.

Lemma 2.3. Let F be a linear k-CNF formula with at most 1 + focc(k − 1) variables of
degree at least 1 + focc(k − 1). Then F is satisfiable.

Proof. Transform F into a (k−1)-CNF formula F ′ by removing in every clause in F a literal

of maximum degree. We claim that degF ′(u) ≤ focc(k − 1) for every literal u. Therefore F ′

is satisfiable, and F is, as well.

For the sake of contradiction, suppose there is a literal u such that t := occF ′(u) ≥
1 + focc(k − 1). Let C ′

i, i = 1, 2, . . . , t, be the clauses in F ′ containing u. C ′
i is obtained

by removing some literal vi from some clause Ci ∈ F . By construction of F ′, occF (vi) ≥
occF (u) ≥ focc(k − 1) + 1 for all 1 ≤ i ≤ t. The vi are pairwise distinct: If vi = vj , then

{u, vi} ⊆ Ci ∩ Cj. Since F is weakly linear, this can only mean i = j. Now u, v1, v2, . . . , vt

are t + 1 ≥ 2+ focc(k− 1) variables of degree at least 1 + focc(k− 1) in F, a contradiction.

We see that an unsatisfiable weakly linear k-CNF formula has at least focc(k−1)+2 ≥
2k

2e(k−1) + 1 literals of degree at least focc(k − 1) + 1 ≥ 2k

2e(k−1) . Double counting yields

k|F | =
∑

u occF (u) > 4k

4e2(k−1)2
, thus |F | > 4k

16e2k3 . By a more careful argument, we can

improve this by a factor of k. We call a hypergraph (j, d)-rich if at least j vertices have

degree at least d. The following lemma is due to Welzl [22].

Lemma 2.4. For d ∈ N0, every linear (d, d)-rich hypergraph has at least
(

d+1
2

)

edges. This
bound is tight for all d ∈ N0.

Proof. We proceed by induction over d. Clearly, the assertion of the lemma is true for d = 0.

Now let H = (V,E) be a linear (d, d)-rich hypergraph for d ≥ 1. Choose some vertex v of

degree at least d in H and let H ′ = (V,E′) be the hypergraph with E′ := E\{e ∈ E | e ∋ v}.
We have (i) |E| ≥ |E′| + d, (ii) H ′ is linear, since this property is inherited when edges are

removed, and (iii) H ′ is (d − 1, d − 1)-rich, since for no vertex other than v the degree

decreases by more than 1 due to the linearity of H. It follows hat |E| ≥
(

d
2

)

+ d =
(

d+1
2

)

.

The complete 2-uniform hypergraph (graph, so to say) on d + 1 vertices shows that the

bound given is tight for all d ∈ N0.

Proof of the lower bound in Theorem 1.2. A weakly linear k-CNF formula F is a linear k-

uniform hypergraph, with literals as vertices. If F is unsatisfiable, then by Lemma 2.3, it is

(focc(k−1)+1, focc(k−1)+1)-rich. By Lemma 2.4, F has at least
(focc(k−1)+2

2

)

> 4k

8e2(k−1)2

clauses.



UNSATISFIABLE LINEAR CNF FORMULAS ARE LARGE AND COMPLEX 627

{x} {x̄}

{x, y} {ȳ} {x̄, u} {x̄, ū}

x
7→

0

y
7→

0

x 7→
1

u
7→

1

y
7→

1
u
7→

0

Figure 1: A resolution tree, with its edges labeled in the obvious way. Every clause is

unsatisfied when applying the assignments on the path to the root.

There is an obvious generalization of the notion of being linear. We say a CNF formula

is b-linear, if any two distinct clauses C,D ∈ F fulfill |vbl(C) ∩ vbl(D)| ≤ b, and weakly
b-linear if |C ∩ D| ≤ b holds for all distinct C,D ∈ F . Thus, a (weakly) 1-linear formula

is (weakly) linear. We can generalize Theorem 1.2 for b ≥ 2. However, the proofs do not

introduce new ideas and goes along the lines of the proofs presented above.

Theorem 2.5. Let b ≥ 2. Every weakly b-linear k-CNF formula with at most 2k(1+ 1
b
)

2b+2e2k2+1
b

clauses is satisfiable. There exists an unsatisfiable b-linear k-CNF formula with at most

2b+1(k2k)1+
1
b clauses.

3. Proof of Theorem 1.4

Let F be an unsatisfiable weakly linear k-CNF formula, and let T be a resolution tree

of minimal size of F . We want to show that T has a large number of nodes. It is not

difficult to see that a resolution tree of minimal size is regular, meaning that no variable is

resolved more than once on a path from a leaf to the root. See Urquhart [21], Lemma 5.1,

for a proof of this fact. We take a random walk of length ℓ in T starting at the root, in

every step choosing randomly to go to one of the two children of the current node. If we

arrive at a leaf, we stay there. We claim that if ℓ ≤
√

2k−2, then with probability at least
1
2 , our walk does not end at a leaf. Thus, T has at least 2ℓ−1 inner vertices at distance ℓ

from the root, thus at least 22
k
2 −1

leaves.

As illustrated in Figure 1, we label each edge in T with an assignment. If C is the

resolvent of D1 and D2, x ∈ D1 and x̄ ∈ D2, we label the edge from C to D1 by x 7→ 0

and from C to D2 by x 7→ 1. Each path from the root to a node gives a partial assignment

α. If that node is labeled with clause C, then C evaluates to false under α. In our

random walk, let αi denote the partial assignment associated with the first i steps. α0 is

the empty assignment, and αi assigns exactly i variables (if we are not yet at a leaf). We

set Fi := F [αi], i.e., the formula obtained from F by fixing the variables according to the

partial assignment αi. For a formula G, we define the weight w(G) to be

w(G) :=
∑

C∈G,|C|≤k−2

2k−|C| . (3.1)
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Since F is a k-CNF formula, w(F ) = 0. If some formula G contains the empty clause, then

w(G) ≥ 2k. In our random walk, w(Fi) is a random variable.

Lemma 3.1. E[w(Fi+1)] ≤ E[w(Fi)] + 4i.

Since w(F0) = 0, this implies E[w(Fℓ)] ≤ 4
(

ℓ
2

)

≤ 2ℓ2. If our random walk ends at a

leaf, then Fℓ contains the empty clause, thus w(Fℓ) ≥ 2k. Therefore 2ℓ2 ≥ E[w(Fℓ)] ≥
2k Pr[the random walk ends at a leaf]. We conclude that at least half of all paths of length

ℓ∗ =
√

2k−2 starting at the root do not end at a leaf. Thus T has at least 2ℓ∗−1 internal

nodes at distance ℓ∗ from the root, and thus at least 2ℓ∗ leaves, which proves the theorem.

It remains to prove the lemma.

Proof of the lemma. For a formula G and a variable x, let dk−1(x,G) denote the number

of (k − 1)-clauses containing x or x̄. Since F0 is a k-CNF formula, dk−1(x, F0) = 0, for all

variables x. We claim that dk−1(x, Fi+1) ≤ dk−1(x, Fi)+ 2 for every variable x. To see this,

note that in step i, some variable y is set to b ∈ {0, 1}, say to 0. At most one k-clause

of Fi contains y and x, and at most one contains y and x̄, since Fi is weakly linear, thus

dk−1(x, Fi+1) ≤ dk−1(x, Fi) + 2. It follows immediately that dk−1(x, Fi) ≤ 2i.

Consider w(Fi), which was in (3.1). Fi+1 is obtained from Fi by setting some variable

y randomly to 0 or 1. Consider a clause C. How does its contribution to (3.1) change

when setting y? If (i) y 6∈ vbl(C) or |C| = k, it does not change. If (ii) y ∈ vbl(C) and

|C| ≤ k−2, then with probability 1
2 each, its contribution to (3.1) doubles or vanishes. Hence

on expectation, it does not change. If (iii) y ∈ vbl(C) and |C| = k − 1, then C contributes

nothing to w(Fi), and with probability 1
2 , it contributes 4 to w(Fi+1). On expectation, its

contribution to (3.1) increases by 2. Case (iii) applies to at most dk−1(y, Fi) ≤ 2i clauses.

Hence E[w(Fi+1)] ≤ E[w(Fi)] + 4i.

4. Proof of Theorem 1.5

Let F be a strictly treelike weakly linear k-CNF formula F , and let T be a strict

resolution tree of F . Letters a, b, c denote nodes of T , and u, v,w denote literals. Every

node a of T is labeled with a clause Ca. We define a graph Ga with vertex set Ca, connecting

u, v ∈ Ca if u, v ∈ D for some clause D ∈ F that occurs as a label of a leaf in the subtree of

a. Since T is a strict resolution tree and F is weakly linear, every edge in Ga comes from a

unique leaf of T . Resolution now has a simple interpretation as a ”calculus on graphs”, see

Figure 2. If a is a leaf, then Ga = Kk. Since the root of a resolution tree is labeled with the

empty clause, we have Groot = (∅, ∅), For a graph G, let κi(G) denote the minimum size

of a set U ⊆ V (G) such that G−U contains no i-clique. Here, G−U is the subgraph of G
induced by V (G) \ U . Thus, κ1(G) = |V (G)|, and κ2(G) is the size of a minimum vertex

cover of G. For the complete graph Kk, κi(Kk) = k− i + 1. We write κi(a) := κi(Ga). The

tuple (κ1(a), . . . , κk(a)) can be viewed as the complexity measure for a. We observe that if

a is a leaf, then κi(a) = k − i + 1, and κi(root) = 0, for all 1 ≤ i ≤ k. If a is an ancestor

of b in T , let dist(a, b) denote the number of edges in the T -path from a to b. Since one

resolution step deletes one literal (and may add several), the next proposition is immediate:

Proposition 4.1. If b is a descendant of a in T , then κi(b) ≤ κi(a) + dist(a, b).
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zx

y

z

y

u

v

y

u

v

y v

z̄ u

v

x̄ u

w

uz̄ vy

w̄

Figure 2: Resolution as a calculus on graphs. A resolution step amounts to deleting the

resolved vertex and taking the union of the two graphs.

At this point we want to give an intuition of the proofs that follow. Our goal is to show

that if the values κi(a) are small for some node a in the tree, then the subtree of a is big. The

proof goes roughly as follows: If the subtree of a is small, then there are many descendants

b of a that are not too far from a and have even smaller subtrees. By induction, we will be

able to show that κi+1(b) is fairly large. Thus, on the path from b to a, not all (i+1)-cliques

are destroyed, and every such descendant b of a provides Ga with an (i + 1)-clique. These

cliques need not be vertex-disjoint, but they are edge-disjoint. This implies that Ga has

many vertex-disjoint i-cliques, a contradiction to κi(a) being small. To make this intuition

precise, we have to define what small and big actually means in this context: We fix a value

1 ≤ ℓ ≤ k and define νi and θi for 1 ≤ i ≤ ℓ as follows: θℓ :=
⌊

k−ℓ+1
2

⌋

− 1 and νℓ := 1, and

for 1 ≤ i < ℓ, we inductively define θi :=
⌊

2νi+1θi+1−2

θi+1

⌋

− 1 and νi :=
νi+1θi+1−1

θi

⌊

θi
θi+1

⌋

. One

should not worry about these ugly expressions too much, they are only chosen that way to

make the induction go through. For the right value of ℓ, one checks that θ1 is a tower

function in k. More precisely, for any ǫ > 0, there exists a c ∈ N such that when choosing

ℓ = k − c, then θ1 ≥ tower2−ǫ(k − c). The following theorem is a more precise version of

Theorem 1.5.

Theorem 4.2. Let F be a strictly treelike linear k-CNF formula. Then F has at least 2ν1θ1

clauses.

Proof. A node a in T is i-extendable if κj(a) ≤ θj for each i ≤ j ≤ ℓ. We observe that if a
is i-extendable, it is also (i + 1)-extendable. For i = ℓ + 1, the condition is void, so every

node is (ℓ + 1)-extendable. Also, the root is 1-extendable, since κ1(root) = 0.

Definition 4.3. A set A of descendants of a in T such that (i) no vertex in A is an ancestor

of any other vertex in A and (ii) dist(a, b) ≤ d for all b ∈ A is called an antichain of a at
distance at most d. If furthermore every b ∈ A is i-extendable, we call A an i-extendable

antichain.

Lemma 4.4. Let 1 ≤ i ≤ ℓ, and let a be a node in T . If a is i-extendable, then there is an
(i + 1)-extendable antichain A of a at distance at most θi such that |A| = 2νiθi.

Proof. We use induction on ℓ − i. For the base case i = ℓ, we have κℓ(a) ≤ θℓ, as a is

ℓ-extendable. Since each leaf b of T has κℓ(b) = k − ℓ + 1 ≥ 2θℓ + 2, Proposition 4.1 tells us

that every leaf in the subtree of a has distance at least θℓ + 2 from a. Since T is a complete

binary tree, there are 2θℓ descendants of a at distance exactly θℓ from a. This is the desired

antichain A of a. Since every node is (ℓ + 1)-extendable, the base case holds. For the step,
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a

θi
b

A

θi+1

Figure 3: Illustration of the claim in the proof of Lemma 4.4. If node a is i-extendable,

and b is a close (i + 1)-extendable descendant of a, then b itself has many close

descendants A, at least half of which are (i + 1)-extendable themselves.

let a be i-extendable, for 1 ≤ i < ℓ.

Claim: Let b be a descendant of a with dist(a, b) ≤ θi. If b is (i + 1)-extendable, then

there is an (i + 1)-extendable antichain A of b at distance at most θi+1 of size 2νi+1θi+1−1.

Proof of the claim. By applying the induction hypothesis of the lemma to b, there is an

(i + 2)-extendable antichain A of b at distance at most θi+1 of size 2νi+1θi+1 . Let Agood :=

{c ∈ A | κi+1(c) ≤ θi+1}. This is an (i + 1)-extendable antichain. If Agood contains at least

half of A, we are done. See Figure 3 for an illustration. Write Abad := A\Agood and suppose

for the sake of contradiction that Abad > 2νi+1θi+1−1. Consider any c ∈ Abad. On the path

from c to b, in each step some literal gets removed (and others may be added). Let P denote

the set of the removed literals. Then Cc \ {P} ⊆ Cb, and Gc −P is a subgraph of Gb. Node

c is not (i + 1)-extendable, thus κi+1(c) ≥ θi+1 + 1. Since |P | = dist(b, c) ≤ θi+1, the graph

Gc−P contains at least one (i+1)-clique, which is also contained in Gb. This holds for every

c ∈ Abad, and by weak linearity, Gb contains at least |Abad| edge disjoint (i + 1)-cliques.

Since b is (i + 1)-extendable, there exists a set U ⊆ V (Gv), |U | = κi+1(b) such that Gb − U
contains no (i + 1)-clique. Each of the |Abad| edge-disjoint (i + 1)-cliques Gb contains some

vertex of U , thus some vertex v ∈ U is contained in at least
|Abad|
|U | ≥ 2νi+1θi+1−1

θi+1
≥ 2θi + 1

edge-disjoint (i + 1)-cliques. Two such cliques overlap in no vertex besides v, hence Gb

contains at least 2θi + 1 vertex-disjoint i-cliques, thus κi(b) ≥ 2θi + 1. By Proposition 4.1,

κi(a) ≥ κi(b) − dist(a, b) ≥ θi + 1. This contradicts the assumption of Lemma 4.4 that a is

i-extendable. We conclude that |Abad| ≤
1
2 |A|, which proves the claim.

Let us continue with the proof of the lemma. If A is an (i + 1)-extendable antichain

of a at distance d ≤ θi, then by the claim for each vertex b ∈ A there exists an (i + 1)-

extendable antichain of b at distance at most θi+1, of size 2νi+1θi+1−1. Their union is an

(i + 1)-extendable antichain A′ of a at distance at most d + θi+1, of size |A|2νi+1θi+1−1.

Hence we can “inflate” A to A′, as long as d ≤ θi. Starting with the (i + 1)-extendable

antichain {a} and inflate it
⌊

θi
θi+1

⌋

times, and obtain a final (i + 1)-extendable antichain of

a at distance at most θi of size at least
(

2νi+1θi+1−1
)

j

θi
θi+1

k

= 2νiθi .
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Applying Lemma 4.4 to the root of T , which is 1-extendable, we obtain an antichain A
of size 2ν1θ1 nodes. Since T has at least |A| leaves, this proves the theorem.

5. Open Problems

Let fLIN(k) be the largest integer d such that any linear k-CNF formula F with d(F ) ≤ d
is satisfiable. Clearly fLIN(k) ≥ f(k), and from the proof of the upper bound in Theorem 1.2

it follows that fLIN(k) ≤ 2k2k. Is there a significant gap between f(k) and fLIN(k)? It is

not difficult to show that f(2) = fLIN(2) = 2, but we do not know the value of fLIN(k) for

any k ≥ 3. How do unsatisfiable linear k-CNF formulas look like? Can one find an explicit

construction of an unsatisfiable linear k-CNF formula whose size is singly exponential in k?

We suspect one has to come up with some algebraic construction. What is the resolution

complexity of linear k-CNF formulas? Tree resolution complexity is doubly exponential in

k. We suspect the same to be true for general resolution.
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Abstract. Tutte proved that every 3-connected graph on more than 4 nodes has a con-
tractible edge. Barnette and Grünbaum proved the existence of a removable edge in the
same setting. We show that the sequence of contractions and the sequence of removals from
G to the K4 can be computed in O(|V |2) time by extending Barnette and Grünbaum’s
theorem. As an application, we derive a certificate for the 3-connectedness of graphs that
can be easily computed and verified.

1. Introduction

Instead of dealing with contractions or removals in a 3-connected graph G = (V,E)

we take the equivalent view of starting with the complete graph on four vertices K4 and

applying their inverse operations until G is constructed. Such a sequence is called a con-
struction sequence of G. We will define contractions, removals and their inverse operations

in Section 2.

Although existence theorems on contractible and removable edges are used frequently

in graph theory [14, 10, 11], we are not aware of any computational results to find the whole

construction sequence, except when contractions and removals are allowed to intermix [1].

Moreover, efficient algorithms are unlikely to be derived from the existence proofs as they,

e. g., in the case of Barnette and Grünbaum, depend heavily on adding longest paths, which

are NP-hard to find. In contrast, we show that it is possible to find a construction sequence

for a graph G in time O(|V |2) for Barnette and Grünbaum’s characterization, at the expense

of having parallel edges in intermediate graphs. In addition, we show that Barnette and

Grünbaum’s sequence can be transformed in linear time to Tutte’s sequence of contractions

and is therefore algorithmically at least as powerful. Both algorithms do not rely on the

3-connectedness test of Hopcroft and Tarjan [6], which runs in linear time but is rather

involved.

Blum and Kannan [3] introduced the concept of certifying algorithms, which give an

easy-to-verify proof of correctness along with their output. While being important for

program verification, certifying algorithms provide often new insights into a problem, which
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can lead to new methods. For that reasons they are a major goal for problems on which

the fast solutions known are complicated and difficult to implement. Testing a graph on

3-connectedness is such a problem, but surprisingly few work has been devoted to certifying

algorithms, although a sophisticated linear-time algorithm without certificates is known

for over 35 years [6, 15, 16]. In fact, we are aware of only one certifying algorithm for

that problem [1], which runs in quadratic time, but is quite involved. Using construction

sequences, we give a simple, alternative solution with running time O(|V |2) and show that

the used certificate is easy to verify in time O(|E|).
We first recapitulate well-known results on the existence of construction sequences in

Sections 2.1 and 2.2 and point out how Tutte’s sequence can be obtained from Barnette

and Grünbaum’s sequence in linear time. Sections 2.3 and 3 cover the main idea for the

existence result that we use for computing Barnette and Grünbaum’s sequence. Section 4

deals with the question how construction sequences are efficiently represented and Section 5

shows how to use construction sequences for a certifying 3-connectedness test.

2. Construction Sequences

Let G = (V,E) be a finite graph with n := |V |, m := |E|, V (G) = V and E(G) = E.

A graph is connected if there is a path between any two nodes and disconnected otherwise.

For k ≥ 1, a graph is k-connected if n > k and deleting every k−1 nodes leaves a connected

graph. A node (a pair of nodes) that leaves a disconnected graph upon deletion is called

a cut vertex (a separation pair). Note that k-connectedness does not depend on parallel

edges nor on self-loops. A path leading from node v to node w is denoted by v → w. For

a node v in a graph, let N(v) = {w | vw ∈ E} denote its set of neighbors and deg(v) its

degree. For a graph G, let δ(G) be the minimum degree of its vertices.

A subdivision of a graph replaces each edge by a path of length at least one. Conversely,

we want a notation to get back to the graph without subdivided edges. If deg(v) = 2,

|N(v)| = 2 and v /∈ N(v) for a graph G, let smoothv(G) be the graph obtained from G by

deleting v followed by adding an edge between its neighbors; we say v is smoothed. If one

of the conditions is violated, let smoothv(G) = G. Let smooth(G) be the graph obtained by

smoothing every node in G. For an edge e ∈ E, let G \ e denote the graph obtained from

G by deleting e. Let Kn be the complete graph on n nodes.

The following are well-known corollaries of Menger’s theorem [8].

Lemma 2.1. (Fan Lemma) Let v be a node in a graph G that is k-connected with k ≥ 1 and
let A be a set of at least k nodes in G with v /∈ A. Then there are k internally node-disjoint
paths P1, . . . , Pk from v to distinct nodes a1, . . . , ak ∈ A such that for each of these paths
V (Pi) ∩ A = ai.

Lemma 2.2. (Expansion Lemma [17]) Let G be a k-connected graph. Then the graph
obtained by adding a new node v joined to at least k nodes in G is still k-connected.

2.1. Tutte’s Characterization and their Inverse

From now on we assume for simplicity that our input graph G = (V,E) is simple al-

though all results can be extended to multigraphs. Generally, contractions cannot always

avoid parallel edges in intermediate graphs, e. g., for wheels. That is why we define con-

tractions to preserve graphs to be simple: Contracting an edge e = xy in a graph deletes e,
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identifies nodes x and y and replaces iteratively all 2-cycles by an edge. An edge e is called

contractible if contracting e results in a 3-connected graph.

A node splitting takes a node v of a 3-connected graph, replaces v by two nodes x and

y with an edge between them and replaces every former edge uv that was incident to v

with either the edge ux, uy or both such that |N(x)| ≥ 3 and |N(y)| ≥ 3 in the new graph.

Node splitting as defined here is therefore the exact inverse of contracting a contractible

edge that has on both endnodes at least 3 neighbors.

Theorem 2.3. (Corollary of Tutte [13]) The following statements are equivalent:

A simple graph G is 3-connected

⇔ ∃ sequence of contractions from G to K4 on contractible edges e = xy

with |N(x)| ≥ 3 and |N(y)| ≥ 3 (2.1)

⇔ ∃ construction sequence from K4 to G using node splittings (2.2)

We describe next a straight-forward O(n2) algorithm to compute (2.1) for a graph

G on more than 4 vertices. First, we decrease the number of edges to O(n) in G by

applying the algorithm of Nagamochi and Ibaraki [9]. This preserves the 3-connectedness

or respectively, the non 3-connectedness of G. Moreover, it is known that the resulting

graph contains a vertex v of degree 3. By a result of Halin [5], every node of degree 3 is

incident to a contractible edge e. We get e by subsequently contracting each of the three

incident edges and testing the resulting graph with the algorithm of Hopcroft and Tarjan [6]

for 3-connectedness. Iteration of both subroutines gives us the whole contraction sequence

in O(n2) time. However, the Hopcroft-Tarjan test is difficult to implement and we will give

a much simpler algorithm that is capable of computing both characterizations later.

2.2. Barnette and Grünbaum’s Characterization and their Inverse

The Barnette and Grünbaum operations (BG-operations) consist of the following op-

erations on a 3-connected graph (see Figures 1(a)-1(c)).

(a) add an edge xy (possibly a parallel edge)

(b) subdivide an edge ab by a node x and add the edge xy for a node y /∈ {a, b}
(c) subdivide two distinct, non-parallel edges by nodes x and y, respectively, and add

the edge xy

In all three cases, let xy be the edge that was added by the BG-operation.

(a) parallel
edges allowed

(b) y, a, b distinct (c) e 6= f , e and f not parallel

Figure 1: The three operations of Barnette and Grünbaum.

Theorem 2.4. (Barnette and Grünbaum [2], Tutte [14]) A graph G is 3-connected if and
only if G can be constructed from the K4 using BG-operations.
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Theorem 2.4 was proven in this notation by Barnette and Grünbaum [2], but implicitly

described in a theorem about nodal connectivity by Tutte [14, Theorem 12.65]. If not stated

otherwise, every construction sequence uses only BG-operations. Let a BG-operation be

basic, if it does not create parallel edges and let a construction sequence be basic, if it only

uses basic BG-operations.

Like in Theorem 2.3, we want the inverse of a BG-operation. Let removing the edge

e = xy of a graph be the operation of deleting e followed by smoothing x and y. An edge

e = xy in G is called removable, if removing e yields a 3-connected graph. We show that

removing a removable edge e = xy with |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪ N(y)| ≥ 5 is

exactly the inverse of a BG-operation.

Theorem 2.5. The following statements are equivalent:

A simple graph G is 3-connected (2.3)

⇔ ∃ sequence of removals from G to K4 on removable edges e = xy

with |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪ N(y)| ≥ 5 (2.4)

⇔ ∃ construction sequence from K4 to G using BG-operations (2.5)

⇔ ∃ basic construction sequence from K4 to G using BG-operations (2.6)

Proof. Theorem 2.4 establishes (2.3) ⇔ (2.5). Moreover, the proof of Theorem 2.4 in [2]

implicitly shows that on simple graphs basic operations suffice, thus only the equivalence

for (2.4) remains. We first prove (2.6) ⇒ (2.4) and then (2.4) ⇒ (2.5).

BG-operations operate by definition on 3-connected graphs, this holds in particular for

the ones in (2.5). Let G′ be the graph obtained by a basic BG-operation in (2.5) that

adds the edge e = xy. The operation can clearly be undone by removing e in G′. Since

BG-operations preserve 3-connectedness with Theorem 2.4, |N(x)| ≥ 3 and |N(y)| ≥ 3 hold

in G′.

It remains to show that |N(x) ∪ N(y)| ≥ 5 in G′. If |N(x)| ≥ 4 or |N(y)| ≥ 4,

|N(x) ∪ N(y)| ≥ 5 follows, since x and y are neighbors and no self-loops exist. Thus, let

|N(x)| = |N(y)| = 3. Having N(x) \ {y} 6= N(y) \ {x} yields |N(x) ∪ N(y)| ≥ 5 as well,

so let N(x) \ {y} and N(y) \ {x} contain the same two nodes a and b. If |V (G)| > 4, a

or b must be adjacent to a node c that is neither adjacent to x nor y. But then {a, b} is a

separation pair, contradicting the 3-connectedness of G. On the other hand, |V (G)| = 4 is

not possible, since that implies the BG-operation to be (a) (since only (b) and (c) create

new vertices) and that is no basic operation on the K4.

We prove (2.4) ⇒ (2.5). Let G′ be the graph containing a removable edge e = xy that is

removed in (2.4). Note that G′ can have parallel edges due to previous removals but no self-

loops. The removal can be undone by one of the BG-operations. Which one, is dependent

on the number i of endnodes of e on which smoothing changed the graph, i. e., the number

of endnodes u of e with |N(u)| = deg(u) = 3 in G′. If i = 0, removing e just deletes e which

is inversed by operation (a). For i = 1, let x be the node with |N(x)| = deg(x) = 3 in G′

and f be the edge in which x was smoothed. Then (b) can be applied, because y /∈ f (see

Figure 8(a)) since otherwise x would have had only 2 neighbors in G′, contradicting the

assumption |N(x)| ≥ 3.

If i = 2, let f1 and f2 be the edges in which x and y were smoothed. Operation (c) can

only be applied if f1 and f2 are neither identical (see Figure 8(b)) nor parallel. But f1 = f2

would again contradict |N(x)| ≥ 3 in G′ and f1 being parallel to f2 would contradicts
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|N(x) ∪N(y)| ≥ 5 in G, since in that case x and y are only adjacent to each other and the

two nodes f1 ∩ f2.

We show that Barnette and Grünbaum’s characterization is algorithmically at least as

powerful as Tutte’s by giving a simple linear time transformation. Lemma 2.6 allows us to

focus on computing BG-operations only.

Lemma 2.6. Every construction sequence using BG-operations can be transformed in linear
time to Tutte’s sequence (2.1) of contractions.

Proof. We transform every BG-operation in reverse order of the construction sequence to

0, 1 or 2 contractions each. Operation (a) yields no contraction while operation (b) yields

the contraction of exactly one part of the subdivided edge (either xa or xb in Figure 1).

For an operation (c), let e = ab and f = vw be the edges that are subdivided with x and

y. Both edges share at most one node; let w. l. o. g. a = v be that node if it exists. We

create one contraction for each of the edges xb and yw in arbitrary order. In all cases,

contractions inverse BG-operations except for the added edge xy, which is left over. But

additional edges do not harm the 3-connectedness of the graph nor subsequent contractions.

Thus, we have found a contraction sequence to the K4 unless the first contraction in the

case of an operation (c) yields at some point a graph H that is not 3-connected. But H

can be obtained from the graph that results from contracting the second edge by applying

one operation (b) and therefore is 3-connected.

2.3. Identifying Intermediate Graphs with Subdivisions in G

Let K4 = G0, G1, . . . , Gz = G be the 3-connected graphs obtained in a construction

sequence Q to a simple 3-connected graph G using the basic BG-operations C0, . . . , Cz−1.

We can reverse Q by starting with G and removing the added edges of BG-operations in

reverse order. Suppose we would delete the added edge of every Ci instead of removing it

and treat emerging paths containing interior nodes of degree 2 as (topological) edges in Gi

(see Figure 2). Then iteratively paths are deleted instead of edges being removed and we

obtain the sequence of subdivisions G = Sz, . . . , S0 in G with S0 being a subdivision of the

K4. This leads to the following observation.

Lemma 2.7 (Observation). Let Q be a construction sequence from a graph G0 to G using
BG-operations. Then G contains a subdivision of G0 that is specified by Q.

In particular, Observation 2.7 yields with Theorem 2.4 that every 3-connected graph

contains a subdivision of the K4 (Theorem of J. Isbell [2]). Each graph Gi in our construction

sequence can be identified with the unique subdivision Si contained in G. Conversely,

Gi = smooth(Si) for all 0 ≤ i ≤ z, since smoothing a graph is exactly the inverse operation

of subdividing a graph without nodes of degree two. The nodes x in Si with deg(x) ≥ 3

are called real nodes, because they correspond to nodes in Gi. Real nodes have at least 3

neighbors in Gi, because Gi is 3-connected.

Note that in non-basic construction sequences smooth(Si) can have parallel edges, al-

though Si is always simple. We define the links of each Si to be the unique paths in Si with

only their endnodes being real. The links of Si partition E(Si) because Si is 2-connected,

has therefore minimum degree two and is not a cycle. Let two links be parallel if they share

the same endnodes.
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(a) K4 =
G0 = smooth(S0)

(b)
G1 = smooth(S1)

(c)
G2 = smooth(S2)

(d) G3 = G

(e) S0 (f) S1 (g) S2 (h) S3 = G

Figure 2: The graphs G0, . . . , Gz and S0, . . . , Sz of a construction sequence of G. On graphs

Si, the dashed edges and nodes are in G but not in Si and nodes depicted in

black are real nodes. For example, the path C0 = e → h → g is a BG-path for

S0, yielding S1. The links of S1 are the paths C0, a → b → c and the single edges

ae, ef , fc, cd, da, fg, gd.

Definition 2.8. A BG-path for Si is a path P = x → y in G with the following properties:

(1) Si ∩ P = {x, y}
(2) x and y are not both contained in a link of Si except as endnodes

(3) x and y are not inner nodes of links of Si that are parallel

It is easy to see that every BG-path for Si corresponds to a BG-operation on Gi and

vice versa. We will exploit this duality in the next section.

In general, construction sequences are not bound to start with the K4. Titov and

Kelmans [12, 7] extended Theorem 2.4 by proving the existence of a construction sequence

even when starting with arbitrary 3-connected graphs G0 instead of the K4, as long as a

subdivision of G0 is contained in G. This is a generalization, since every 3-connected graph

contains a subdivision of the K4 by Observation 2.7.

Theorem 2.9. [7, 12] Let G0 be a 3-connected graph. Then a simple graph G is 3-connected
and contains a subdivision of G0 if and only if G can be constructed from G0 using basic
BG-operations.

3. Prescribing Subdivisions

Both Theorems 2.4 and 2.9 choose a very special subdivision of the K4 (resp. G0) on

which the construction sequence starts, in fact one having the maximum number of edges in

G. The construction sequence is then obtained by adding longest BG-paths. Unfortunately,
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computing these depends heavily on solving the longest paths problem, which is known to

be NP-hard even for 3-connected graphs [4].

This gives rise to the question whether Theorems 2.4 and 2.9 can be strengthened to

start at a prescribed subdivision H ⊆ G of G0 instead of an arbitrary one. Note that this is

equivalent to the constraint S0 = H. Such a result would provide an efficient computational

approach to construction sequences, since it allows us to search the neighborhood of H for

BG-paths, yielding a new prescribed subdivision of a 3-connected graph.

Figure 3: Every possible BG-

operation adds a

parallel edge.

However, when restricted to basic operations it is not

possible to prescribe H, as the minimal counterexample

in Figure 3 shows: Consider the graph G consisting of a

K4 = H depicted in black with an additional node con-

nected to three nodes of the K4. Then every BG-path for

H will create a parallel link, although G is simple. But

what if we drop the condition that construction sequences

have to be basic? The following theorem shows that at this

expense we can indeed start a construction sequence from

any prescribed subdivision.

Theorem 3.1. Let G be a 3-connected graph and H ⊂ G with H being a subdivision of
a 3-connected graph. Then there is a BG-path for H in G. Moreover, every link of H of
length at least 2 contains an inner node on which a BG-path for H starts.

Proof. We distinguish two cases.

• H 6= smooth(H).

Then links of length at least 2 exist in H and we pick an arbitrary one of them, say

T . Let x be an inner node of T , and let Q be the set of paths in G from x to a node

in V (H) \ V (T ) avoiding the endnodes of T (see Figure 5). By the 3-connectedness

of G, the set Q cannot be empty and every path in Q fulfills Definition 2.8.2. There

is at least one path P = x → y in Q with y being not contained in a parallel link of

T , because otherwise the endnodes of T would form a separation pair. Let x′ be the

last node in P that is in T or in a parallel link of T and let y′ be the first node after

x′ that is in V (H). Then x′ → y′ has properties 2.8.1 and 2.8.3 and is a BG-path

for H.

• H = smooth(H).

Then H consists only of real nodes and since H 6= G, there is a node in V (G)\V (H)

or an edge in E(G) \E(H). At first, assume that there is a node x ∈ V (G) \ V (H).

Then, by the 2-connectedness of G and Fan Lemma 2.1 we can find a path P = y1 →
x → y2 with no other nodes in H than y1 and y2. For P the properties 2.8.1-2.8.3

hold, because no link in H can have inner nodes. Let now V (G) = V (H) and e an

edge in E(G) \ E(H). Then e must be a BG-path for H, since both endnodes are

real.

In Theorem 3.1, non-basic operations can only occur in the case H = smooth(H) when

a path through a node of V (G) \ V (H) is chosen. Although we cannot avoid that, it is

possible to obtain a basic construction by augmenting the BG-operations with a fourth

operation (d).

(d) connect a new node to three distinct nodes
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Figure 4: A 3-connected graph having a node x of degree 3 with no incident edge being

removable.

Operation (d) preserves 3-connectedness with Lemma 2.2 and is basic, because each new

edge ends on the new node. Whenever we encounter a node in V (G)\V (H) in Theorem 3.1,

we know by the Fan Lemma 2.1 and the 3-connectedness of G that there are three internally

node-disjoint paths to real nodes in H with all inner nodes being in V (G) \ V (H). Adding

these paths to H is called an expand operation and corresponds to operation (d) in the

smoothed graph. This gives the following result.

Theorem 3.2. Let G be a simple graph and let H be a subdivision of a 3-connected graph.
Then

G is 3-connected and H ⊆ G

⇔ δ(G) ≥ 3 and ∃ construction sequence from H to G using BG-paths (3.1)

⇔ δ(G) ≥ 3 and ∃ basic construction sequence from H to G using BG-paths

and the expand operation (3.2)

Proof. Let G be 3-connected and H ⊆ G. Then δ(G) ≥ 3 holds and if H = G, the desired

construction sequences are empty and exist. If H ⊂ G, we can apply Theorem 3.1 iteratively

with or without the additional expand operation and the construction sequences exist as

well. For the sufficiency part, both construction sequences imply H ⊆ G, since only paths

are added to construct G. Additionally, G must be 3-connected, as adding BG-paths to

each Si preserves Si+1 to be a subdivision of a 3-connected graph with Theorem 2.4, and

δ(G) ≥ 3 ensures that the last subdivision G of a 3-connected graph is 3-connected itself.

4. Representations

A straight-forward algorithm to compute Barnette and Grünbaum’s construction se-

quence of a 3-connected graph is to search iteratively for removable edges. But in contrast

to the algorithm in Section 2.1 that computes contractible edges, this approach only leads

to an O(n3) algorithm. The reason for the additional factor of n is that not all nodes with

degree 3 must have an incident removable edge (see Figure 4 for a counterexample on 9

nodes) and we have to try every edge in the worst case. Computing BG-paths instead of

BG-operations allows us to obtain better running times, but first we need to know how

exactly construction sequences can be represented.

An obvious representation of a construction sequence Q would be to store the graph

G0 = smooth(H) and in addition every BG-operation, which gives the sequence G0, . . . , Gz =

G. Unfortunately, the graphs Gi are not necessarily subgraphs of Gi+1, so we have to take

care of relabeled edges when specifying each operation.
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Figure 5: The case H 6= smooth(H). Dashed edges are in E(G) \ E(H), arrows depict the

BG-path x′ → y′.

Whenever an edge e is subdivided as part of an operation (b) or (c), we specify it by

its index in Gi followed by assigning new indices for the new degree-two node and one of

the two new separated edge parts in Gi+1. The other edge part keeps the index of e.

Similarly, on operations (a) and (b), real endnodes of the added edge are specified by

their indices in Gi. We assign a new index for the added edge in Gi+1, too. Finally, we have

to impose the constraint that Gz is not just isomorphic but identical to G, meaning that

nodes and edges of Gz and G are labeled by exactly the same indices, since otherwise we

would have to solve the graph isomorphism problem to check that Q really constructs G.

On the other hand, the identification of Gi with a subgraph in G allows us to represent

Q without indexing issues: We just store S0 ⊂ G and the BG-paths C0, . . . , Cz−1. Hence,

we can represent each construction sequence Q of G in the following two ways.

• Edge representation: Represent Q by G0 and a sequence of BG-operations, along

with specifying new and old indices for each operation, such that Gz and G are

labeled the same.

• Path representation: Represent Q by S0 and BG-paths C0, . . . , Cz−1.

Both representations refer to the same sequence of graphs G0, . . . , Gz and are of size

θ(m), assuming the uniform cost model. The next lemma states that it does not matter

which of the two representations we compute.

Lemma 4.1. The edge and path representations of a construction sequence Q can be trans-
formed into each other in O(m) time. Moreover, the representation computed is a unique
representation of Q.

Proof. Omitted.

5. Certifying and Testing 3-Connectedness in O(n
2
)

We use construction sequences in the path representation as a certificate for the 3-

connectedness of graphs. This leads to a new, certifying method for testing graphs on being
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3-connected. The total running time of this method is O(n2), however this is dominated by

the time needed for finding the construction sequence and every improvement made there

will automatically result in a faster 3-connectedness test. The input graph is a multigraph

and does not have to be biconnected nor connected. We follow the steps:

• Apply preprocessing of Nagamochi and Ibaraki to the graph and get G in O(n+m)

(This improves the total running time by decreasing the number of edges to O(n).)

• Try to compute a K4-subdivision S0 in G and prescribe it in O(n)

– Failure: Return a separation pair

• Try to compute a construction sequence from S0 to G in O(n2)

– Success: Return the construction sequence

– Failure: Return a separation pair

Figure 6: Finding a K4-

subdivision.

Dashed edges

can be (empty)

paths, arcs depict

backedges.

The preprocessing step preserves the graph to be 3-

connected or to be not 3-connected. We first describe

how to find a K4-subdivision by one Depth First Search

(DFS), which as a byproduct eliminates self-loops and par-

allel edges and sorts out graphs that are not connected or

have nodes with degree at most 2. Let a (resp. b) be the

node in the DFS-tree T that is visited first (resp. second).

If G is 3-connected, then a and b have exactly one child,

otherwise they form a separation pair. We choose two ar-

bitrary neighbors c and d of a that are different from b (see

Figure 6). W.l.o.g., let d be visited later by the DFS than

c. Let i 6= b the least common ancestor of c and d in T . As

d 6= i must hold, let j be the child of i that is contained in

the path i → d in T .

If G is 3-connected, we can find a backedge e that starts

on a node z in the subtree rooted at j and ends on an inner

node z′ of a → i in time O(n). If e does not exist, a and i

form a separation pair, otherwise we have found a K4-subdivision with real nodes a, i, z

and z′. The paths connecting this real nodes in T together with the three visited backedges

constitute the 6 paths of the K4-subdivision.

Once the K4-subdivision S0 is found, we follow the lines of Theorem 3.1 and try to

construct the path representation C0, . . . , Cz−1. If favored, this can be transformed to an

edge representation in O(m) later. We assign an index for every link and store it on each of

the inner nodes of that link. Moreover, we maintain pointers for each link to its endnodes.

In case H 6= smooth(H) of Theorem 3.1 we pick an arbitrary node x of degree two. Let

T = a → b be the link that contains x and let W be the set of nodes V (H)\V (T ) minus all

nodes in parallel links of T (see Figure 5). We compute the path P = x → y′ by temporarily

deleting a and b and performing a DFS on x that stops on the first node y′ ∈ W . We can

check whether a node lies in a parallel link of T in constant time by comparing the endnodes

of its containing link with a and b. Thus, the subpath x′ → y′ with x′ being the last node

contained in T or in a parallel link of T is a BG-path and can be found efficiently. The

links and their indices can be updated in O(n).

Similarly, in case H = smooth(H) we delete temporarily all edges in E(H) and start a

DFS on a node x ∈ V (H) that has an incident edge in the remaining graph. The traversal

is stopped on the first node y ∈ V (H) \ {x}. The path x → y is then the desired BG-path
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(a) Either
a or b has
degree 2.

(b) Both,
a and
b, have
degree 2.

Figure 8: Cases where 2.8.2 fails when a ∈ N(b).

and we conclude that for 3-connected graphs the construction sequence can be found in

time O(n2).

Otherwise, G is not 3-connected and no construction sequence can exist with Theo-

rem 3.2. In that case a DFS starting at node x fails to find a new BG-path for some

subdivision H ⊂ G. If H 6= smooth(H), the endnodes of the link that contains x must form

a separation pair. Otherwise, H = smooth(H) and x must be a cut vertex. Thus, if G is

not 3-connected, the algorithm returns always a separation pair or cut vertex.

If G is simple, the construction sequence can be transformed to the basic construction

sequence (3.2) with the following Lemma.

Lemma 5.1. For simple graphs G, the construction sequences (3.1) and (3.2) can be trans-
formed into each other in O(m).

Proof. Omitted.

Theorem 5.2. The construction sequences (3.1) and (3.2) can be computed in O(n2) and
establish a certifying 3-connectedness test with the same running time.

5.1. Verifying the Construction Sequence

Figure 7: No expand opera-

tion can be formed.

It is essential for a certificate that it can be easily val-

idated. We could do this by transforming the path repre-

sentation to the edge representation using Lemma 4.1 and

checking the validity of the BG-operations by comparing

indices, but there is a more direct way. First, it can be

checked in linear time that all BG-paths C0, . . . , Cz−1 are

paths in G and that these paths partition E(G) \ E(S0).

We try to remove the BG-paths Cz−1, . . . , C0 from G in

that order (i. e., we delete the paths followed by smoothing

its endnodes). If the certificate is valid, this is well defined

as all removed BG-paths are then edges. On the other hand we can detect longer BG-paths

|Ci| ≥ 2 before their removal, in which case the certificate is not valid, since then the inner

nodes of Ci are not attached to BG-paths Cj , j > i.

We verify that every removed Ci = ab corresponds to a BG-operation by using Defini-

tion 2.8 of BG-paths, and start with checking that a and b lie in our current subgraph for

condition 2.8.1.



644 J. M. SCHMIDT

Conditions 2.8.2 and 2.8.3 can now be checked in constant time: Consider the situation

immediately after the deletion of ab, but before smoothing a and b. Then all links in our

subgraph are single edges, except possibly the ones containing a and b as inner nodes.

Therefore, 2.8.2 is not met for Ci if a is a neighbor of b and at least one of the nodes a

and b has degree two (see Figures 8 for possible configurations). Condition 2.8.3 is not met

if N(a) = N(b) and both a and b have degree two. Both conditions can be easily checked in

constant time. Note that encountering proper BG-paths Cz−1, . . . , Ci does not necessarily

imply that the current subgraph is 3-connected, since false BG-paths Cj, j < i, can exist.

It remains to validate that the graph after removing all BG-paths is the K4. This can

done in constant time by checking it on being simple and having exactly 4 nodes of degree

three.

Theorem 5.3. The construction sequences (2.4)-(2.6) and (3.1)-(3.2) can be checked on
validity in time linearly dependent on their length.

References

[1] S. Albroscheit. Ein Algorithmus zur Konstruktion gegebener 3-zusammenhängender Graphen. Diploma
thesis, FU Berlin, 2006.
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ABSTRACT. Hybrid logic extends modal logic with support for reasoning about individual states,
designated by so-called nominals. We study hybrid logic in the broad context of coalgebraic seman-
tics, where Kripke frames are replaced with coalgebras for a given functor, thus covering a wide range
of reasoning principles including, e.g., probabilistic, graded, default, or coalitional operators. Specif-
ically, we establish generic criteria for a given coalgebraic hybrid logic to admit named canonical
models, with ensuing completeness proofs for pure extensions on the one hand, and for an extended
hybrid language with local binding on the other. We instantiate our framework with a number of
examples. Notably, we prove completeness of graded hybrid logic with local binding.

Introduction

Modal logics have traditionally played a central role in Computer Science, appearing, e.g., in the
guise of temporal logics, program logics such as PDL, epistemic logics, and later as description
logics. The development of modal logics has seen extensions along (at least) two axes: the enhance-
ment of the expressive power of basic (relational) modal logic on the one hand, and the continual
extension, beyond the purely relational realm, of the class of structures described using modal logics
on the other hand. Hybrid logic falls into the first category, extending modal logic with the ability
to reason about individual states in models. This feature, originally suggested by Prior and first
studied in the context of tense logics and PDL (see [5] for references), is of particular relevance in
knowledge representation languages and as such has found its way into modern description logics,
where it is denoted by the letterO in the standard naming scheme [2].

Extensions along the second axis – semantics beyond Kripke structures and neighbourhood
models – include various probabilistic modal logics, interpreted over probabilistic transition sys-
tems, graded modal logic over multigraphs [8], conditional logics over selection function frames [6],
and coalition logic [17], interpreted over so-called game frames. As a unifying semantic bracket
covering all these logics and many further ones, coalgebraic modal logic has emerged ([7] gives a
survey). The scope of coalgebraic modal logic has recently been expanded to encompass nominals;
we refer to the arising class of logics ascoalgebraic hybrid logics. Existing results include a finite
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model result, an internalized tableaux calculus, and genericPSPACE upper bounds, but are so
far limited to logics that exclude frame conditions and local binding [14]. What is missing from
this picture technically is a theory ofnamed canonical models[5]. Named canonical models yield
not only strong completeness of the basic hybrid logic, but also completeness ofpure extensions,
defined by axioms that do not contain propositional variables (but may contain nominals; e.g. in
Kripke semantics, the pure axiom♦♦i → ♦i, with i a nominal, defines transitive frames). More-
over, named canonical models establish completeness for an extended hybrid language with a local
binding operator↓ x. φ(x), read as “the current statex satisfiesφ(x)”. Both pure extensions and the
language with↓ (not addressed in [14]) are, in general, undecidable [1] (it should be noted, however,
that fragments of the language with↓ over Kripke frames are decidable and as such play a role, e.g.,
in conjunctive query answering in description logic [11]). As a consequence, completeness of pure
extensions and local binding is the best we can hope for – it establishes recursive enumerability of
the set of valid formulas, and it enables automated reasoning, if not decision procedures.

Specifically, we establish two separate criteria for the existence of named models. Although
these criteria are (in all likelihood necessarily) less widely applicable than some previous coalge-
braic results including those of [14], the generic results allow us to establish new completeness
results for a wide variety of logics; in particular, we prove strong completeness of graded hybrid
logic, and ultimately an extension of the description logicSHOQ, with the↓ binder over a wide
variety of frame classes.

1. Coalgebraic Hybrid Logic

To make our treatment parametric in the syntax, we fix a modal similarity typeΛ consisting of
modal operators with associated arities throughout. For given countably infinite and disjoint sets
P of propositional variables andN of nominals, the setF(Λ) of hybrid Λ-formulasis given by the
grammar

F(Λ) ∋ φ,ψ ::= p | i | φ ∧ ψ | ¬φ | ♥(φ1, . . . , φn) | @iφ

wherep ∈ P, i ∈ N and♥ ∈ Λ is ann-ary modal operator. (Alternatively, we could regardproposi-
tional variablesas nullary modal operators, thus avoiding their explicit mention altogether. We keep
them explicit here, following standard practice in modal logic, as we have to deal with valuations
anyway due to the presence of nominals.) We use the standard definitions for the other propositional
connectives→,↔,∨. The set of nominals occurring in a formulaφ is denoted byN(φ), similarly
for sets of formulas. A formula of the form@iφ is called an@-formula. Semantically, nominalsi
denote individual states in a model, and@iφ stipulates thatφ holds at statei.

To reflect parametricity also semantically, we equip hybrid logics with acoalgebraic semantics
extending the standard coalgebraic semantics of modal logics [16]: we fix throughout aΛ-structure
consisting of an endofunctorT : Set → Set on the category of sets, together with an assignment
of ann-ary predicate liftingJ♥K to everyn-ary modal operator♥ ∈ Λ, i.e. a set-indexed family of
mappings(J♥KX : P(X)n → P(TX))X∈Set that satisfies

J♥KX ◦ (f−1)n = (Tf)−1 ◦ J♥KY

for all f : X → Y . In categorical terms,[[♥]] is a natural transformationQn → Q ◦ T op where
Q : Setop → Set is the contravariant powerset functor.

In this setting,T -coalgebras play the roles offrames. A T -coalgebrais a pair(C, γ) where
C is a set ofstatesandγ : C → TC is thetransition function. Whenγ is clear from the context,
we refer to(C, γ) just asC. A (hybrid) T -modelM = (C, γ, V ) consists of aT -coalgebra(C, γ)
together with ahybrid valuationV , i.e. a mapP ∪ N → P(C) that assigns singleton sets to all
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nominalsi ∈ N. We say thatM is basedon the frame(C, γ). The singleton setV (i) is tacitly
identified with its unique element.

The semantics ofF(Λ) is a satisfaction relation|= between statesc ∈ C in hybrid T -models
M = (C, γ, V ) and formulasφ ∈ F(Λ), inductively defined as follows. Forx ∈ N ∪ P andi ∈ N,

M, c |= x iff c ∈ V (x) and M, c |= @iφ iff M,V (i) |= φ.

Modal operators are interpreted using their associated predicate liftings, that is,

M, c |= ♥(φ1, . . . , φn) ⇐⇒ γ(c) ∈ J♥KC(Jφ1KM , . . . , JφnKM )

where♥ ∈ Λ is n-ary andJφKM = {c ∈ C | M, c |= φ} denotes the truth-set ofφ relative to
M . We writeM |= φ if M, c |= φ for all c ∈ C. For a setΦ ⊆ F(Λ) of formulas, we write
M, c |= Φ if M, c |= φ for all φ ∈ Φ, andM |= Φ if M |= φ for all φ ∈ Φ. We say thatΦ is
satisfiablein a modelM if there exists a statec in M such thatM, c |= Φ. If A ⊆ F(Λ) is a set
of axioms, also referred to asframe conditions, a frame(C, γ) is anA-frameif (C, γ, V ) |= φ for
all hybrid valuationsV and allφ ∈ A, and a model is anA-modelif it is based on anA-frame. A
frame condition ispure if it does not contain any propositional variables (it may however contain
nominals). We recall notation from earlier work:

Notation 1. As usual, application of substitutionsσ : P → F(Λ) to formulasφ is denotedφσ.
For a setΣ of formulas and a setO of operators, we writeOΣ or O(Σ) for the set of formulas
arising by prefixing elements ofΣ with an operator fromO; e.g.Λ(Σ) = {♥(φ1, . . . , φn) | ♥ ∈
Λ n-ary, φ1, . . . , φn ∈ Σ} and@Σ := {@i | i ∈ N}(Σ) = {@iφ | i ∈ N, φ ∈ Σ}. Moreover,
Prop(Z) denotes the set of propositional combinations of elements of some setZ. Forφ ∈ Prop(Z),
we writeX, τ |= φ if φ evaluates to⊤ in the boolean algebraP(X) under a valuationτ : Z →
P(X). Forψ ∈ Prop(Λ(Z)), the interpretationJψKTX,τ of ψ in the boolean algebraP(TX) under
τ is the inductive extension of the assignmentJ♥(p1, . . . , pn)KTX,τ = J♥KX(τ(p1), . . . , τ(pn)).
We write TX, τ |= ψ if JψKTX,τ = TX, and t |=TX,τ ψ if t ∈ JψKTX,τ . A set of formulas
Ξ ⊆ Prop(Λ(Z)) is one-step satisfiablew.r.t. τ if

⋂

φ∈Ξ
JφKTX,τ 6= ∅. We occasionally apply this

notation to setsZ ⊆ P(X) with τ being just inclusion, in which case mention ofτ is suppressed.

In the sequel, we will be interested in bothlocal andglobal semantic consequence, where local
consequence refers to satisfaction in a single state and global consequence to satisfaction in entire
models. In fact, we consider local reasoning under global assumptions: given a setΦ ⊆ F(Λ) of
global assumptions (aTBoxin description logic terminology) and a classC of models, we say that
φ is a local consequence ofΨ under global assumptionsΦ for C-models, in symbolsΦ;Ψ |=C φ,
if for all M ∈ C such thatM |= Φ, M, c |= φ wheneverM, c |= Ψ (here, bothΦ andΨ are
sets of arbitrary formulas, in particular not subject to any restrictions on the nesting depth of modal
operators). The standard notions of local and global consequence are regained from this general
definition by takingΦ or Ψ to be empty, respectively.

The distinguishing feature of the coalgebraic approach to hybrid and modal logics is the para-
metricity in both the logical language and the notion of frame: concrete instantiations of the general
framework, in other words a choice of modal operatorsΛ and aΛ-structureT , capture the syntax
and semantics of a wide range of modal logics, as witnessed by the following examples.

Examples 1.1. 1. The hybrid version of the modal logicK, hybrid K for short, has a single
unary modal operator�, interpreted over the structure consisting of the powerset functorP (which
takes a setX to its powersetP(X)) and the predicate liftingJ�KX(A) = {B ∈ P(X) | B ⊆ A}.
It is clear thatP-coalgebras(C, γ : C → P(C)) are in 1-1 correspondence with Kripke frames, and
that the coalgebraic definition of satisfaction specializes to the usual semantics of the box operator.
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2. Graded hybrid logichas modal operators♦k ‘in more thank successors, it holds that’. It is
interpreted over the functorB that takes a setX to the setB(X) = X → N∪{∞} of multisets over
X by [[♦k]]X(A) = {B ∈ B(X) |

∑

x∈AB(x) > k}. This captures the semantics of graded modal-
ities overmultigraphs[8], which are precisely theB-coalgebras. A more general set of operators
is that ofPresburger logic[9], which admits integer linear inequalities

∑

ai · #(φi) ≥ k among
formulas. Unlike in the purely modal case [19], hybrid multigraph semantics visibly differs from
the more standard Kripke semantics of graded modalities, as the latter validates all formulas¬♦1i,
i ∈ N. However, both semantics agree if we additionally stipulate¬♦1i as a global (pure) axiom.
Thus, our completeness results for multigraph semantics derived below do transfer to Kripke seman-
tics. In particular they apply to many description logics, which commonly feature both nominals
and graded modal operators in the guise ofqualified number restrictions.

3. Hybrid CK , the hybrid extension of the basic conditional logicCK , has a single binary
modal operator⇒, written in infix notation. HybridCK is interpreted over the functorCf that
maps a setX to the setP(X) → P(X), whose coalgebras are selection function models [6], by
putting [[⇒]]X(A,B) = {f : P(X) → P(X) | f(A) ⊆ B}.

4. Classical hybrid logic(the hybrid version of the logicE of neighbourhood frames, referred to
as (the minimal) classical modal logic in [6]) has a single, unary modal operator� and is interpreted
overneighbourhood frames, that is, coalgebras for the functorNX = P(P(X)) (more precisely,
the double contravariant powerset functor). The semantics of classical modal logic is defined by
the lifting J�KX(A) = {S ∈ NX | A ∈ S}. Monotone hybrid logichas the same similarity
type, but is interpreted over upwards closed neighbourhood frames, or coalgebras for the functor
MX = {S ∈ NX | S upwards closed} where upwards closure refers to subset inclusion.

5. The syntax of coalition logic over a setN of agents is given by the similarity type{[C] | C ⊆
N}, and the operator[C] reads as “coalitionC has a joint strategy to enforce . . . ”. The formulas of
(hybrid) coalition logic are interpreted over game frames, i.e., coalgebras for the functor

G(X) = {(f, (Si)i∈N ) |
∏

i∈N Si 6= ∅, f :
∏

i∈N Si → X}

(a class-valued functor, technically speaking, which however does not cause problems). The seman-
tics arises via the liftings

J[C]KX(A) = {(f, (Si)i∈N ) ∈ G(X) | ∃(si)i∈C∀(si)i∈N\C(f((si)i∈N ) ∈ A}.

We proceed to present a Hilbert-style proof system for coalgebraic hybrid logics, which we prove
to be sound and strongly complete. This requires that the logic at hand satisfies certain coherence
conditions between the axiomatization and the semantics — in fact thesameconditions as in the
purely modal case, which are easily verifiedlocal properties that can be verified without reference
to T -models and are already known to hold for a large variety of logics [16, 19].

Proof systems for coalgebraic logics are most conveniently described in terms of one-step rules,
as follows.

Definition 1.2. A one-step ruleover Λ is a ruleφ/ψ whereφ ∈ Prop(P) andψ ∈ Prop(Λ(P))
(in fact, ψ may be restricted to be a disjunctive clause, which however is not relevant here). The
rule φ/ψ is one-step soundif TX, τ |= ψ wheneverX, τ |= φ for a valuationτ : P → P(X).
Given a setR of one-step rules and a valuationτ : P → P(X), a setΞ ⊆ Prop(Λ(P)) is one-step
consistent[20] if the setΞ ∪ {ψσ | σ : P → Prop(P);φ/ψ ∈ R;X, τ |= φσ} is propositionally
consistent.

One-step sound rules are sound, and we will assume one-step soundness tacitly in the sequel. Com-
pleteness hinges on variants of the notion of one-step completeness [19], which we define further
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below. As the notion of one-step rule does not involve hybrid features, suitable rule sets can just be
inherited from the corresponding modal systems; for graded logics, conditional logics, and many
others, such rule sets are found, e.g., in [22, 21]. We recall that the one-step complete rule set for
(hybrid)K consists of the rules

a

�a

a ∧ b→ c

�a ∧ �b→ �c
.

A setR of one-step rules now gives rise to a Hilbert systemLR by adjoining propositional tautolo-
gies and the hybrid axioms, and closing under modus ponens, rule application, and@-necessitation.
Formally, we writeΦ ⊢LR φ for a setΦ of formulas, theglobal assumptions(or theTBox), and a
formulaφ if φ is contained in the smallest set that

• containsΦ and all instances of propositional tautologies
• contains all instances of@-introductioni ∧ φ→ @iφ and make-or-break

(mob) @ip→ (♥(q1, . . . , qn) ↔ ♥(@ip ∧ q1, . . . ,@ip ∧ qn))

together with all instances of the axioms¬@i⊥, ¬@iφ ↔ @i¬φ, @i(φ ∧ ψ) ↔ (@iφ ∧
@iψ)), @ii, @ij ↔ @ji, @ik ∧ @jp→ @ip; and

• is closed under instances of@-generalizationp/@ip, instances of rules inR, and modus
ponens.

The second group of axioms ensures thati ∼ j :≡ @ij defines an equivalence relation on nominals
and that@i distributes over propositional connectives. The (mob) axiom captures the fact that the
truth set of an@-formula is either empty or the whole model; in the case of hybridK, it is equivalent
to the standard back axiom@iφ→ �@iφ.

We write Φ;Ψ ⊢LR φ if there areψ1, . . . , ψn ∈ Ψ such thatΦ ⊢LR ψ1 ∧ · · · ∧ ψn → φ.
That is,Φ;Ψ ⊢LR φ if there is a proof ofφ from global assumptionsΦ that additionally assumes
Ψ locally. As we assume that all one-step rules inR are one-step sound, soundness for both local
and global consequence is immediate: we haveΦ;Ψ |=C φ (for C the class of all models) whenever
Φ;Ψ ⊢LR φ. In [14], a criterion has been given forLR to beweakly complete, i.e. complete for
the case where both the TBoxΦ and the setΨ of local assumptions are empty. Here, we extend
this result to combined strongglobal and stronglocal completeness, i.e. to cover both an arbitrary
TBox and an arbitrary set of local assumptions, even ifLR is extended with pure frame conditions
and local binding.

2. Strong Completeness of Pure Extensions

Pure completeness is a celebrated result in hybrid logic [3, Chapter 7.3]. In a nutshell, adding
pure axioms to an already complete proof system for the hybrid extension of the modal logicK

(Example 1.1), one retains completeness with respect to the class of frames that satisfy the additional
axioms. In contrast to arbitrary modal axioms, pure axioms do not contain propositional variables,
and therefore define – in the classical setting of hybridK – first-order frame conditions. Here, we
show that the same theorem is valid for a much larger class of logics, namely all coalgebraic hybrid
logics satisfying one of two suitable sets of conditions. For the sake of readability, we restrict
the technical development (not the examples) to the case of unary operators from now on until
Section 2.2.

Definition 2.1. If A is a set of pure formulas andR is a set of one-step rules, we write
Φ;Ψ ⊢LRA+Name φ if there areψ1, . . . , ψn ∈ Ψ such thatψ1 ∧ . . . ψn → φ is LR-derivable
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from assumptions inΦ where additionally all substitution instances of axioms inA and the rule

(Name)
i→ φ

φ
(i /∈ N(φ))

may be used in deductions. As before, we writeΦ ⊢LRA+Name φ if Φ; ∅ ⊢LRA+Name φ.

In the above system, the rule(Name′) @iφ/φ (i /∈ N(φ) and the rule

(NameCong)
@j(φ↔ ψ)

♥φ↔ ♥ψ
(j /∈ N(φ,ψ))

are derivable. The system is clearly sound for both global and local consequence overA-models in
the same sense thatLR is sound overT -models.

Definition 2.2. Let A ⊆ F(Λ) be a set of pure axioms, and letΦ ⊆ F(Λ) be a TBox. A set
Ψ ⊆ F(Λ) is (LRA+ Name)-Φ-inconsistentif there areψ1, . . . , ψn ∈ Ψ such thatΦ ⊢LRA+Name

¬(ψ1 ∧ · · · ∧ ψn). Otherwise,Ψ is (LRA + Name)-Φ-consistent. A subset of@F(Λ), i.e. a
set of @-formulas, is called anABox (again borrowing terminology from description logic). A
maximally(LRA+Name)-Φ-consistent ABoxis a maximal elementK among the(LRA+Name)-
Φ-consistent ABoxes, ordered by inclusion. For such aK, we writeSK = {Ki | i ∈ N}, where
Ki = {φ ∈ F(Λ) | @iφ ∈ K}, and putVK(i) = {Ki} = {Kj ∈ SK | i ∈ Kj}.

For the construction of a named model, we now fix a maximally(LRA+Name)-Φ-consistent ABox
K. Later, we will takeK to be a maximally consistent extension of a given setΦ of formulas, where
we may assume, thanks to the rule(Name′), thatΦ ⊆ @F(Λ). We note the following trivial facts:

Lemma 2.3. We haveψσ ∈ Ki for all ψ ∈ A and all substitutionsσ, and moreoverK ∪ Φ ⊆ Ki.

Our goal is the construction of named canonical models in the following sense:

Definition 2.4. A named canonicalK-modelis a model(SK , γ, VK) such that

γ(Ki) ∈ [[♥]]φ̂ iff ♥φ ∈ Ki

for every nominali, whereφ̂ = {Kj ∈ SK | φ ∈ Kj}.

It is clear that named canonical models are countable, as there are only countably many nominals.

Lemma 2.5(Truth lemma for named canonical models). If M = (SK , γ, VK) is a named canonical
K-model andφ is a hybrid formula, then for everyKi ∈ SK ,

M,Ki |= φ iff φ ∈ Ki.

Hence,M |= Φ, andM is anA-model.

The last clause of the truth lemma follows from Lemma 2.3, the crucial point being that satisfaction
of all substitution instances ofA implies frame satisfaction ofA because every state in the model
is denoted by some nominal. We now establish two criteria for the existence of named canonical
models. The first criterion assumes a stronger form of one-step completeness than the second, which
instead demands that the modalities arebounded.
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2.1. Pure Completeness for Strongly One-Step Complete Logics

The construction of named models hinges on the following notion of pastedness, which assures that
nominals interact correctly across the whole model. For the rest of the section, we fix a one-step
complete rule setR, a setA of pure axioms, and a setΦ ⊆ F(Λ) of global assumptions, and we
write ‘consistent’ instead of ‘(LRA + Name)-Φ–consistent’.

Definition 2.6. An ABox K is 0-pastedif whenever@j(φ ↔ ψ) ∈ K for all nominalsj, then
@i(♥φ↔ ♥ψ) ∈ K for all nominalsi.

It is clear thatK can induce a named model only ifK is 0-pasted. The construction of pasted
ABoxes requires a Henkin-like extension of the logical language by adding new nominals.Gener-
ally, we denote byF(Λ)+ an extended language with countably many new nominals not appearing
in F(Λ). We note the fact (slightly glossed over in the literature) that this extension is conservative:

Lemma 2.7. If Ψ ⊆ F(Λ) is consistent, thenΨ remains consistent inF(Λ)+.

Lemma 2.8 (Extended Lindenbaum lemma for0-Pasted Sets). If Ψ ⊆ F(Λ) is consistent, then
there exists a0-pasted maximally consistent ABoxK ⊆ @F(Λ)+ and a nominali in F(Λ)+ such
that@iΨ ⊆ K.

(The proof of the above version of the Lindenbaum lemma uses Lemma 2.7, and exploits theName′

rule to introduce the nominali.) As we are aiming for strong completeness results, (weak) one-step
completeness as employed in weak completeness proofs usingfinite models [14, 19] is no longer
adequate. Accordingly, our first criterion assumes a stronger condition:

Definition 2.9. A rule setR is strongly one-step completeif for every setX, every one-step con-
sistent subset ofProp(Λ(P(X))) is one-step satisfiable.

Lemma 2.10(Named existence lemma, Version 1). If K is 0-pasted andR is strongly one-step
complete, then there exists a named canonicalK-model.

In summary, we have:

Theorem 2.11. If R is strongly one-step complete, then every extension ofLR by pure axioms
is both globally and locally strongly complete over countable hybrid models when equipped with
the Name rule. That is, ifΦ,Ψ ⊆ F(Λ) and φ ∈ F(Λ), thenΦ;Ψ ⊢LRA+Name φ whenever
Φ;Ψ |=C φ, whereC is the class of countableA-models.

Proof. As usual, we show that every(LRA + Name)-Φ-consistent setΨ ⊆ F(Λ) is satisfiable in
a countableA-modelM such thatM |= Φ (where satisfiability is clearly invariant under passing
from F(Λ) to F(Λ)+). The extended Lindenbaum lemma yields a0-pasted maximally consistent
subset ABoxK ⊆ F(Λ)+ and a nominali in F(Λ)+ such that@iΨ ⊆ K. By the named existence
lemma, we find a named, hence countable, canonicalK-modelM = (SK , γ, VK), and by the truth
lemma (Lemma 2.5),M is anA-model,M |= Φ, andM,Ki |= Ψ.

Remark 2.12. In the literature (e.g. [3, Theorem 7.29]), the above completeness theorem is some-
times phrased as “completeness with respect to named models”, i.e. models where every state is
the denotation of some nominal; such models also played a central role in the early development of
hybrid logic by the Sofia school (see e.g. [15]). In detail, this means that every state of the model
is the denotation of a nominalin a language extended with countably many new nominals. This
extension is necessary, as otherwise the consistent set{¬n | n ∈ N} would be satisfiable in a
model where every state is named by a nominaln ∈ N of the original language, which is clearly
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impossible. Completeness with respect to models where every state is named by a nominal in an
extended language, on the other hand, is an immediate consequence of completeness with respect
to countable models.

Example 2.13. The previous theorem establishes strong completeness results for pure extensions
of all hybrid logics with neighbourhood semantics (Example 1.1.4) that are defined by rank-1 ax-
ioms [20], i.e. modal formulas where the nesting depth of modalities is uniformly equal to1 (such
as the monotonicity axiom�(a ∧ b) → �b). For the monotonic cases, i.e. extensions of monotonic
hybrid logic, these results are essentially known [24], while they seem to be new for the non-
monotonic cases, i.e. extensions of classical hybrid logic not containing the monotonicity axiom,
including, e.g., various deontic logics [12]. Moreover, the theorem newly proves strong complete-
ness of the hybridization of coalition logic, as Theorem 3.2 of [17] essentially states that coalition
logic satisfies strong one-step completeness.

2.2. Pure Completeness for Bounded Logics

The condition of strong one-step completeness used in the previous section is a comparatively rare
phenomenon [20]; the strength of the condition becomes clear in the fact that, unlike in the classical
case of Kripke semantics, the above did not require a notion of1-pastedness [5]. We proceed to
present an alternative approach for the case where one does have an analogue of the (Paste-1) rule
— this is the case if the operators arebounded, i.e., their satisfaction hinges, in each case, on only
finitely and boundedly many states of a model.

Definition 2.14. A modal operator♥ is k-boundedfor k ∈ N with respect to aΛ-structureT if for
every setX and everyA ⊆ X,

[[♥]]X(A) =
⋃

B⊆A,#B≤k [[♥]]X(B).

(This implies in particular that♥ is monotonic.) We say thatΛ is bounded w.r.t.T if every modal
operator♥ in Λ is k♥-bounded for somek♥.

The boundedness of an operator can now be internalized in the logical deduction system. In partic-
ular, fork-bounded operators♥, one has thepaste rule

(Paste♥(k))
@j1φ ∧ · · · ∧ @jk

φ ∧ @i♥(j1 ∨ · · · ∨ jk) → ψ

@i♥φ→ ψ

with the side condition that thejr are pairwise distinct fresh nominals. We write
Φ ⊢LRA+Name+Paste φ if φ is derivable from assumptions inΦ in the systemLR + Name where
additionally the rule(Paste♥(k)) may be used in deductions fork-bounded operators♥. This in-
duces the notion of(LRA+Name+Paste)-Φ-consistency, which we briefly refer to as consistency
as we fixΦ, A, andR throughout. Again, the system is clearly sound, i.e.Φ;Ψ |=C φ whenever
Φ;Ψ ⊢LRA+Name+Paste φ, whereC is the class ofA-models.

Examples 2.15. 1. Hybrid K. The modal operator♦ is 1-bounded. The arising paste rule
(Paste♦(1)) is precisely the rule(paste♦) of [4].

2. Graded hybrid logic.The modal operator♦k is (k + 1)-bounded. One thus has a paste rule

(Paste♦k(k + 1))
@j1φ ∧ · · · ∧ @jk+1

φ ∧ @i♦k(j1 ∨ · · · ∨ jk+1) → ψ

@i♦kφ→ ψ

with side conditions as before.
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3. Positive Presburger hybrid logic.A Presburger operator
∑

ai · #( i) ≥ k (Example 1.1) is
k-bounded if theai are positive. E.g., this still allows expressing the statement, generally believed
to be valid in the German national football league, that a team that has at least37 points will not be
relegated:3 · #win + 1 · #draw ≥ 37 → ¬relegated.

The generalized1-pastedness condition for bounded operators is as follows.

Definition 2.16. Let Λ be bounded. An ABoxK is 1-pastedif whenever♥ is k-bounded and
@i♥φ ∈ K, then{@j1φ, . . . ,@jk

φ,@i♥(j1 ∨ · · · ∨ jk)} ⊆ K for some nominalsj1, . . . , jk.

Again, it is clear that ifΛ is bounded, thenK can induce a named model only ofK is 1-pasted. It is
easy to see that ifR is one-step complete andΛ is bounded (in fact already ifR derives monotony
for every♥ ∈ Λ), then every1-pasted set is also0-pasted (Definition 2.6).

Lemma 2.17(Extended Lindenbaum lemma for1-pasted sets). LetΛ be bounded. IfΨ ⊆ F(Λ) is
consistent, then there exist a1-pasted maximally consistent ABoxK ⊆ @F(Λ)+ and a nominali
in F(Λ)+ such that@iΨ ⊆ K, whereF(Λ)+ is as in Section 2.1.

Bounded operators now allow us to use a weaker version of one-step completeness. Instead of
requiring that all one-step consistent sets are one-step satisfiable, we may restrict tofinite extensions
of propositional variables.

Definition 2.18. We say thatR is strongly finitary one-step completeif for every setX, every
one-step consistent subset ofProp(Λ(Pfin (X))) is one-step satisfiable.

Clearly, any strongly one-step complete rule set is also strongly finitary one-step complete, but the
example of graded hybrid logic witnesses that the converse is not true. We note that the weaker
criterion still fails for probabilistic logics due to inherent non-compactness [23]; probabilistic logics
also fail to be bounded, as a given probabilityp ∈ [0, 1] can be split into any number of summands.
Together with boundedness, the above condition enables a second version of the named existence
lemma.

Lemma 2.19(Named existence lemma, Version 2). If Λ is bounded,R is strongly finitary one-step
complete, andK is 1-pasted, then there exists a named canonicalK-model.

Summarizing the above, we have the following extended completeness result.

Theorem 2.20. Let Λ be bounded, and letR be strongly finitary one-step complete. Then every
extension ofLR by pure axioms is globally and locally strongly complete over countable hybrid
models when equipped with theName andPaste rules. In other words, ifΦ,Ψ ⊆ F(Λ), φ ∈ F(Λ),
andC is the class of all countableA-models, thenΦ;Ψ ⊢LRA+Name+Paste φ wheneverΦ;Ψ |=C φ.

The proof follows the same route via extended Lindenbaum lemma, existence lemma, and truth
lemma as for Theorem 2.11.

Example 2.21. By Example 2.15 and the fact that the known complete axiomatizations of the
associated modal logics are in fact strongly finitary one-step complete, the previous theorem proves
completeness of pure extensions of hybridK, graded hybrid logic, and positive Presburger hybrid
logic. Except for the standard case of hybridK, these results seem to be new. In particular, we
obtain completeness of pure extensions of graded (or positive Presburger) hybrid logic defining the
following frame classes in multigraph semantics:

• The class ofKripke frames, seen as the class of multigraphs where the transition multiplicity
between two individual states is always at most1, defined by the pure axiom¬♦1i.
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• The class ofreflexivemultigraphs, defined by the pure axiomi→ ♦0i.
• The class oftransitivemultigraphs, defined by the pure axioms♦0♦ni→ ♦ni, n ≥ 0.
• The class ofsymmetricmultigraphs, i.e., those where the transition multiplicity fromx to y

always equals the one fromy to x, which is defined by the pure axiomsi ∧ ♦kj → @j♦ki.

Other frame classes of interest, see e.g. [3, Section 7.3], can be characterized similarly by translating
the corresponding frame conditions from Kripke to multigraph semantics.

2.3. The Mixed Case

In some cases, the two methods laid out in the preceding sections can be combined for modal
operators with several arguments that adhere, in each of their arguments, to one of the respective
sets of semantic conditions. For the sake of readability, we formulate this explicitly only for the
mixed binary case with a single modal operator, i.e. we assume in this section thatΛ = {♥} with
♥ binary; the generalization to arbitrary numbers of arguments, several modal operators etc. should
be obvious, and essentially only requires more elaborate terminology and notation.

Definition 2.22. We say thatR is (strongly, strongly finitary) one-step completeif every one-step
consistent subset ofProp(Λ(P(X) × Pfin(X))) is one-step satisfiable. Moreover, we say that♥ is
k-bounded in the second argumentfor k ∈ N if for every setX and allA,B ⊆ X, [[♥]]X(A,B) =
⋃

C⊆A,#C≤k [[♥]]X(A,C).

In the same manner as for Theorems 2.11 and 2.20, we derive:

Theorem 2.23. If R is (strongly, strongly finitary) one-step complete and♥ is k-bounded in the
second argument, then every extension ofLR by pure axioms is both locally and globally strongly
complete over countable hybrid models when equipped with the appropriateName andPaste rules.

Example 2.24.Hybrid CK (Example 1.1) is easily seen to be (strongly, strongly finitary) one-step
complete, and the operator> defined from the conditional operator⇒ by a > b :↔ ¬(a ⇒ ¬b)
is 1-bounded in the second argument. By the above, it follows that every pure extension of hybrid
CK is strongly complete over countable hybrid selection function models. E.g. we may define
the class of conditional frames where all expressible conditions induce transitive relations by pure
axioms(φ > φ > i) → (φ > i). Such frames satisfy also the dual axiom (using a propositional
variablea) (φ⇒ a) → (φ⇒ (φ⇒ a)), an axiom for duplicating conditional assumptions. Similar
statements apply to a combination of graded and conditional logic (obtainable compositionally using
the methods of [21]), which has operators of the forma ⇒k b “if a, then one normally has more
thank instances ofb”.

The semantics of conditional logics in general has complex ramifications, involving, e.g., pref-
erence orderings or systems of spheres (see, e.g., [10, 18]); application of our methods to conditional
logics beyondCK is the subject of further investigation. We note that pure completeness of a hybrid
extension of Lewis’ logic of counterfactuals has been established recently [18].

3. Local Binding

We next investigate completeness of a stronger hybrid language that includes the↓ binder, which
binds a state variable to the current state. Concretely, we allow formulas of the form↓ i. φ, wherein
the nominali is locally bound (for compactness of presentation, we give up the usual distinction
between nominals and state variables). Given a modal similarity typeΛ, we writeF↓(Λ) for the
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ensuing extension ofF(Λ). The reading of the formula↓ i.φ is “φ holds for the current statei”.
The satisfaction relation in the extended logic is defined by an additional clause for the↓ binder,

(C, γ, V ) |=↓ i. φ iff (C, γ, V [c/i]) |= φ

wherec is a state in a coalgebraC andV [c/i] is obtained fromV by modifying the value ofi to c.
The semantics of the↓ binder immediately translates into the axiom scheme (see e.g. [4])

(DA) @i((↓ j. φ) ↔ φ[i/j]).

Given a setR of Λ-rules, a setΦ ⊆ F↓(Λ) of formulas and a setA ⊆ @F↓(Λ) of pure ax-
ioms, we writeΦ ⊢LRA+Name+Paste+DA φ for the extension of the associated provability predicate
⊢LRA+Name+Paste with (DA). Using(DA), one easily proves an extension of the truth lemma for
named models (Lemma 2.5) toF↓(Λ), so that the completeness results for pure extensions proved
before (Theorems 2.11, 2.20, and 2.23) transfer immediately toL↓. We make this explicit for the
bounded case:

Theorem 3.1. If Λ is bounded andR is strongly finitary one-step complete, then every pure exten-
sion ofL↓ is strongly locally and globally complete over countable hybrid models. In other words,
Φ;Ψ |=C φ iff Φ;Ψ ⊢LRA+Name+Paste+DA φ for all φ ∈ F↓(Λ) and all Φ,Ψ ⊆ F(Λ), whereC is
the class of all countableA-models.

Remark 3.2. As noted in [24], the named model construction more generally yields completeness
for any locally definableextension of the hybrid language, i.e. any extension whose semanticsat
named statesis defined by a formula similar to(DA).

Example 3.3. Continuing Example 2.15, Theorem 3.1 reproves not only the known completeness
of pure extensions of hybridK with ↓, but also the completeness of pure extensions of graded (or
positive Presburger) hybrid logic with↓. This extends easily to the multi-agent case, or, in descrip-
tion logic terminology, to description logics with multiple roles. As, moreover, both a role hierarchy
and transitivity of roles can be defined using pure axioms, we thus arrive at a complete axiomati-
zation of an extension of the description logicSHOQ with satisfaction operators and↓, which has
been used in connection with conjunctive query answering [11], and allows, e.g., talking about the
number of stepchildren of a stepmother, in continuation of the stepmother example from [13], .

4. Conclusions

We have laid out two criteria for the existence of named canonical models in coalgebraic hybrid
logics — one that applies to cases where one has an analogue of the so-called Paste-1 rule of stan-
dard hybrid logic, and one which applies to cases where one does not need any such rule. While
the latter means essentially that the logic is equipped with a neighbourhood semantics, the former
requires that all modal operators of the logic are bounded, i.e. there is always only a bounded num-
ber of states relevant for their satisfaction at each point. Our main novel example of this type is
graded hybrid logic (and an extension of it using certain Presburger modalities [9]). The named
model construction entails completeness of pure extensions and completeness of extended hybrid
languages with the local binder↓ (of which the I–me construct of [13] is a single-variable restric-
tion), which we thus obtain as new results for, e.g., hybrid coalition logic, hybrid classical modal
logic, several hybrid deontic logics, hybrid conditional logic, graded hybrid logic, and an extension
of the description logicSHOQ. An open question that remains is the existence of so-called ortho-
dox axiomatizations [4] in the presence of↓, as well as to find an analogue of the characterization
result of [24] stating that a variant of the Paste-1 rule characterizes the Kripke models among the
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topological models ofS4. A further topic of investigation is to find decidable fragments of the lan-
guage with↓; we note slightly speculatively that the fragment used in [13] may, in our terminology,
be seen as requiring that a suitably defined NNF of a formula contains only positive occurrences of
bound nominals under bounded modal operators.
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Abstract. In the constraint satisfaction problem (CSP ), the aim is to find an assign-
ment of values to a set of variables subject to specified constraints. In the minimum cost
homomorphism problem (MinHom), one is additionally given weights cva for every vari-
able v and value a, and the aim is to find an assignment f to the variables that minimizes
P

v
cvf(v). Let MinHom (Γ) denote the MinHom problem parameterized by the set of

predicates allowed for constraints. MinHom (Γ) is related to many well-studied combi-
natorial optimization problems, and concrete applications can be found in, for instance,
defence logistics and machine learning. We show that MinHom (Γ) can be studied by
using algebraic methods similar to those used for CSPs. With the aid of algebraic tech-
niques, we classify the computational complexity of MinHom (Γ) for all choices of Γ. Our
result settles a general dichotomy conjecture previously resolved only for certain classes of
directed graphs, [Gutin, Hell, Rafiey, Yeo, European J. of Combinatorics, 2008].

1. Introduction

Constraint satisfaction problems (CSP ) are a natural way of formalizing a large number

of computational problems arising in combinatorial optimization, artificial intelligence, and

database theory. This problem has the following two equivalent formulations: (1) to find

an assignment of values to a given set of variables, subject to constraints on the values

that can be assigned simultaneously to specified subsets of variables, and (2) to find a

homomorphism between two finite relational structures A and B. Applications of CSP s

arise in the propositional logic, database and graph theory, scheduling and many other

areas. During the past 30 years, CSP and its subproblems has been intensively studied by

computer scientists and mathematicians. Considerable attention has been given to the case

where the constraints are restricted to a given finite set of relations Γ, called a constraint

language [3, 6, 13, 17]. For example, when Γ is a constraint language over the boolean set

{0, 1} with four ternary predicates x∨ y ∨ z, x∨ y ∨ z, x∨ y ∨ z, x∨ y ∨ z we obtain 3-SAT.

This direction of research has been mainly concerned with the computational complexity

of CSP (Γ) as a function of Γ. It has been shown that the complexity of CSP (Γ) is highly
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connected with relational clones of universal algebra [13]. For every constraint language Γ,

it has been conjectured that CSP (Γ) is either in P or NP-complete [6].

In the minimum cost homomorphism problem (MinHom), we are given variables sub-

ject to constraints and, additionally, costs on variable/value pairs. Now, the task is not just

to find any satisfying assignment to the variables, but one that minimizes the total cost.

Definition 1.1. Suppose we are given a finite domain set A and a finite constraint language

Γ ⊆
∞
⋃

k=1

2Ak

. Denote by MinHom (Γ) the following minimization task:

Instance: A first-order formula Φ (x1, . . . , xn) =
N
∧

i=1
ρi (yi1, . . . , yini

), ρi ∈ Γ, yij ∈

{x1, . . . , xn}, and weights wia ∈ N, 1 ≤ i ≤ n, a ∈ A.

Solution: Assignment f : {x1, . . . , xn} → A, that satisfies the formula Φ. If there is no

such assignment, then indicate it.

Measure:

n
∑

i=1
wif(xi).

Remark 1.2. Note that when we require weights to be positive we do not lose generality,

since MinHom (Γ) with arbitrary weights can be polynomial-time reduced to MinHom (Γ)

with positive weights by the following trick: we can add s to all weights, where s is some

integer. This trick only adds ns to the value of the optimized measure. Hence, we can make

all weights negative, and MinHom (Γ) modified this way is equivalent to maximization but

with positive weights only. This remark explains why both names MinHom and MaxHom
can be allowed, though we prefer MinHom due to historical reasons.

MinHom was introduced in [11] where it was motivated by a real-world problem in

defence logistics. The question for which directed graphs H the problem MinHom ({H})
is polynomial-time solvable was considered in [8, 9, 10, 11, 12]. In this paper, we approach

the problem in its most general form by algebraic methods and give a complete algebraic

characterization of tractable constraint languages. From this characterization, we obtain

a dichotomy for MinHom, i.e., if MinHom (Γ) is not polynomial-time solvable, then it is

NP-hard. Of course, this dichotomy implies the dichotomy for directed graphs.

In Section 2, we present some preliminaries together with results connecting the com-

plexity of MinHom with conservative algebras. The main dichotomy theorem is stated in

Section 3 and its proof is divided into several parts which can be found in Sections 4-8.

The NP-hardness results are collected in Section 4 followed by the building blocks for the

tractability result: existence of majority polymorphisms (Section 5) and connections with

optimization in perfect graphs (Section 6). Section 7 introduces the concept of arithmetical
deadlocks which lays the foundation for the final proof in Section 8. Finally, in Section 9

we explain the relation of our results to previous research and present directions for future

research.

2. Algebraic structure of tractable constraint languages

Recall that an optimization problem A is called NP-hard if some NP-complete language

can be recognized in polynomial time with the aid of an oracle for A. We assume that

P 6= NP .
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Definition 2.1. Suppose we are given a finite set A and a constraint language Γ ⊆
∞
⋃

k=1

2Ak

.

The language Γ is said to be tractable if, for every finite subset Γ′ ⊆ Γ, MinHom (Γ′) is

polynomial-time solvable, and Γ is called NP-hard if there is a finite subset Γ′ ⊆ Γ such

that MinHom (Γ′) is NP-hard.

First, we will state some standard definitions from universal algebra.

Definition 2.2. Let ρ ⊆ Am and f : An → A. We say that the function (operation)

f preserves the predicate ρ if, for every
(

xi
1, . . . , x

i
m

)

∈ ρ, 1 ≤ i ≤ n, we have that
(

f
(

x1
1, . . . , x

n
1

)

, . . . , f
(

x1
m, . . . , x

n
m

))

∈ ρ.

For a constraint language Γ, let Pol (Γ) denote the set of operations preserving all

predicates in Γ. Throughout the paper, we let A denote a finite domain and Γ a constraint

language over A. We assume the domain A to be finite.

Definition 2.3. A constraint language Γ is called a relational clone if it contains every

predicate expressible by a first-order formula involving only

a) predicates from Γ ∪
{

=A
}

;

b) conjunction; and

c) existential quantification.

First-order formulas involving only conjunction and existential quantification are often

called primitive positive (pp) formulas. For a given constraint language Γ, the set of all

predicates that can be described by pp-formulas over Γ is called the closure of Γ and is

denoted by 〈Γ〉.
For a set of operations F on A, let Inv (F ) denote the set of predicates preserved under

the operations of F . Obviously, Inv (F ) is a relational clone. The next result is well-known

[2, 7].

Theorem 2.4. For a constraint language Γ over a finite set A, 〈Γ〉 = Inv (Pol (Γ)).

Theorem 2.4 tells us that the Galois closure of a constraint language Γ is equal to the

set of all predicates that can be obtained via pp-formulas from the predicates in Γ.

Theorem 2.5. For any finite constraint language Γ and any finite Γ′ ⊆ 〈Γ〉, there is a
polynomial time reduction from MinHom (Γ′) to MinHom (Γ).

Proof. Since any predicate from Γ′ can be viewed as a pp-formula with predicates in

Γ, an input formula to MinHom (Γ′) can be represented on the form Φ (x1, . . . , xn) =
N
∧

i=1
∃zi1, . . . , zimi

Φi (yi1, . . . , yini
, zi1, . . . , zimi

), where yij ∈ {x1, . . . , xn} and Φi is a

first-order formula involving only predicates in Γ, equality, and conjunction. Ob-

viously, this formula is equivalent to ∃z11, . . . , zNmN

N
∧

i=1
Φi (yi1, . . . , yini

, zi1, . . . , zimi
).

N
∧

i=1
Φi (yi1, . . . , yini

, zi1, . . . , zimi
) can be considered as an instance of MinHom

(

Γ ∪
{

=A
})

with variables x1, . . . , xn, z11, . . . , zNmN
where weights wij will remain the same and for

additional variables zkl we define wzklj = 0. By solving MinHom
(

Γ ∪
{

=A
})

with the

described input, we can find a solution of the initial MinHom (Γ′) problem. It is easy to

see that the number of added variables is bounded by a polynomial in n. So this reduction

can be carried out in polynomial time. Finally, MinHom
(

Γ ∪
{

=A
})

can be reduced poly-

nomially to MinHom (Γ) because an equality constraint for a pair of variables is equivalent

to replacement of all inclusions of the first variable in a formula by the second one.
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The previous theorem tells us that the complexity of MinHom (Γ) is basically de-

termined by Inv (Pol (Γ)), i.e., by Pol (Γ). That is why we will be concerned with the

classification of sets of operations F for which Inv (F ) is a tractable constraint language.

Definition 2.6. An algebra is an ordered pair A = (A,F ) such that A is a nonempty set

(called a universe) and F is a family of finitary operations on A. An algebra with a finite

universe is referred to as a finite algebra.

Definition 2.7. An algebra A = (A,F ) is called tractable if Inv(F ) is a tractable constraint

language and A is called NP-hard if Inv(F ) is an NP-hard constraint language.

In the following theorem, we show that we only need to consider a very special type of

algebras, so called conservative algebras.

Definition 2.8. An algebra A = (A,F ) is called conservative if for every operation f ∈ F
we have that f (x1, . . . , xn) ∈ {x1, . . . , xn}.

Theorem 2.9. For any finite constraint language Γ over A and C ⊆ A, there is a polyno-
mial time Turing reduction from MinHom (Γ ∪ {C}) to MinHom (Γ).

Proof. Let the first-order formula Φ (x1, . . . , xn) =
M
∧

i=1
C (yi) ∧

N
∧

i=1
ρi (zi1, . . . , zini

), where

ρi ∈ Γ, yi, zij ∈ {x1, . . . , xn}, and weights wia, 1 ≤ i ≤ n, a ∈ A be an instance of

MinHom (Γ ∪ {C}). We assume without loss of generality that yi 6= yj, when i 6= j.

Let W =
n
∑

i=1

∑

a∈A
wia + 1 and define a new formula and weights

Φ′ (x1, . . . , xn) =
N
∧

i=1
ρi (zi1, . . . , zini

)

w′
ia =

{

wia +W, if a /∈ C,∃j xi = yj

wia, otherwise

Then, using an oracle for MinHom (Γ), we can solve

min
f satisfies Φ′

∑

j

w′
jf(xj)

.

Suppose that Φ (x1, . . . , xn) is satisfiable and f is a satisfying assignment. It is easy to see

that the part of the measure
∑

j
w′

jf(xj)
that corresponds to the added values W is equal to 0

and the measure cannot be greater than W −1. If g is any assignment that does not satisfy
M
∧

i=1
C (yi), then we see that this part of measure cannot be 0, and hence, is greater or equal

to W . This means that the minimum in the task is achieved on satisfying assignments of

Φ (x1, . . . , xn) and any such assignment minimize the part of the measure that corresponds

to the initial weights, i.e.,
∑

i
wif(xi).

If Φ (x1, . . . , xn) is not satisfiable, then either Φ′ is not satisfiable or

min
f satisfies Φ′

∑

j
w′

jf(xj)
≥W . Using an oracle for MinHom (Γ), we can easily check this.

Consequently, MinHom (Γ ∪ {C}) is polynomial-time reducible to MinHom (Γ).
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Theorem 2.10. If Γ is a constraint language over A that contains all unary relations, then
A = (A,Pol (Γ)) is conservative.

Proof. Let C = {x1, . . . , xn} ⊆ A. If a function f : An → A preserves the predicate C, then

f (x1, . . . , xn) ∈ {x1, . . . , xn}.

3. Structure of tractable conservative algebras

Let g : Ak → A be an arbitrary conservative function and S ⊆ A. Define the function

g|S : Sk → S, such that ∀x1, . . . , xk ∈ S g|S (x1, . . . , xk) = g (x1, . . . , xk), i.e. the restriction

of g to the set S. Throughout this paper we will consider a conservative algebra (A,F ). For

every B ⊆ A, let F |B = {fB|f ∈ F}. We assume that F is closed under superposition and

variable change and contains all projections, i.e., it is a functional clone, because closing

the set F under these operations does not change the set Inv (F ).

Sometimes we will consider clones as algebras and to describe them we will use the terms

(conservativeness, tractability, NP-hardness) defined for algebras. All tractable clones, in

case A = {0, 1}, can be easily found using well-known classification of boolean clones [15].

Theorem 3.1. The boolean functional clone H is tractable if either {x ∧ y, x ∨ y} ⊆ H or
{(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)} ⊆ H, where ∧,∨ denote conjunction and disjunction. Other-
wise, H is NP-hard.

Every 2-element subalgebra of a tractable algebra must be tractable, which motivates

the following definition.

Definition 3.2. Let F be a conservative functional clone. We say that F satisfies the

necessary local conditions if and only if for every 2-element subset B ⊆ A, either

(1) there exists f∧, f∨ ∈ F s.t. f∧|B and f∨|B are different binary commutative func-

tions; or

(2) there exists f ∈ F s.t. f |B (x, x, y) = f |B (y, x, x) = f |B (y, x, y) = y.

Theorem 3.3. Suppose F is a conservative functional clone. If F is tractable, then it
satisfies the necessary local conditions. If F does not satisfy the necessary local conditions,
then it is NP-hard.

In general, the necessary local conditions are not suffi-

cient for tractability of a conservative clone. Let M =

{B|B ⊆ A, |B| = 2, F |B contains different binary commutative functions} and M =

{B|B ⊆ A, |B| = 2} \M .

Suppose f ∈ F . By
a
↓
b
f we mean a 6= b and f (a, b) = f (b, a) = b. For example,

1
↓
2

2
↓
3

1
↓
3
f

means that f |{1,2,3} (x, y) = max (x, y).
Introduce an undirected graph without loops TF = (Mo, P ) where Mo =

{(a, b) | {a, b} ∈M} and P =

{

〈(a, b) , (c, d)〉 | (a, b) , (c, d) ∈Mo, there is no f ∈ F :
a
↓
b

c
↓
d
f

}

.

The core result of the paper is the following.

Theorem 3.4. Suppose F satisfy the necessary local conditions. If the graph TF = (Mo, P )

is bipartite, then F is tractable. Otherwise, F is NP-hard.
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The proof of this theorem will be given in two steps. Firstly, in the following section,

we will prove NP-hardness of F when TF = (Mo, P ) is not bipartite. The final sections will

be dedicated to the polynomial-time solvable cases.

4. NP-hard case

In this section, we will prove that if a set of functions F satisfies the necessary local

conditions and TF = (Mo, P ) (as defined in the previous section) is not bipartite, then

F is NP-hard. Let
a
b@�

c
d and

a
b@�

c
d denote the predicates {a, b} × {c, d} \ {(b, d)} and

{(a, d) , (b, c)}, where a 6= b, c 6= d. We need the following lemmas.

Lemma 4.1. A constraint language that contains
{

a0

b0 @�
a1

b1 , . . . ,
a2k−1

b2k−1
@�

a2k

b2k
,

a2k

b2k
@�

a0

b0

}

is

NP-hard.

Lemma 4.2. If 〈(a, b) , (c, d)〉 ∈ P , then either
a
b@�

c
d ∈ Inv (F ), or

a
b@�

c
d ∈ Inv (F ).

Proof of NP-hard case of Theorem 3.4. For binary predicates α, β, let α ◦ β =

{(x, y)|∃z : α(x, z) ∧ β(z, y)}. Obviously, if α, β ∈ Inv (F ), then α ◦ β ∈ Inv (F ), too.

Since TF = (Mo, P ) is not bipartite, we can find a shortest odd cycle in it, i.e. a

sequence (a0, b0) , (a1, b1) , . . . , (a2k, b2k) ∈ Mo, k ≥ 1, such that 〈(ai, bi) , (ai⊕1, bi⊕1)〉 ∈ P .

Here, i⊕ j denotes i+ j(mod 2k + 1).

By Lemma 4.2, there is a cyclic sequence ρ0,1, ρ1,2, . . . , ρ2k,0 ∈ Inv (F ) such that ρi,i⊕1

is either equal to
ai

bi
@�

ai⊕1

bi⊕1
or equal to

ai

bi
@�

ai⊕1

bi⊕1
. Note that all predicates cannot be of the

second type: otherwise, we have ρ0,1 ◦ ρ1,2 ◦ · · · ◦ ρ2k,0 =
a0

b0 @�
a0

b0 which contradicts that

{a0, b0} ∈M .

If the sequence contains a fragment ρi,i⊕1 =
ai

bi
@�

ai⊕1

bi⊕1
, ρi⊕1,i⊕2 =

ai⊕1

bi⊕1
@�

ai⊕2

bi⊕2
,

ρi⊕2,i⊕3 =
ai⊕2

bi⊕2
@�

ai⊕3

bi⊕3
, then these predicates can be replaced by:

ρi,i⊕3
∆
= ρi,i⊕1 ◦ ρi⊕1,i⊕2 ◦ ρi⊕2,i⊕3 =

ai

bi
@�

ai⊕1

bi⊕1
◦

ai⊕1

bi⊕1
@�

ai⊕2

bi⊕2
◦

ai⊕2

bi⊕2
@�

ai⊕3

bi⊕3
=

ai

bi
@�

ai⊕3

bi⊕3

Let us replace ρi,i⊕1, ρi⊕1,i⊕2, ρi⊕2,i⊕3 by ρi,i⊕3 in the sequence ρ0,1, ρ1,2, . . . , ρ2k,0. We have

〈(ai, bi) , (ai⊕3, bi⊕3)〉 ∈ P , since otherwise the predicate ρi,i⊕3 is not preserved. Hence, we

can delete two vertices in the cycle (a0, b0) , (a1, b1) , . . . , (a2k, b2k) ∈ Mo. This contradicts

that this sequence is the shortest among odd sequences. Therefore, such a fragment does

not exist.

If the sequence contains a fragment ρi,i⊕1 =
ai

bi
@�

ai⊕1

bi⊕1
, ρi⊕1,i⊕2 =

ai⊕1

bi⊕1
@�

ai⊕2

bi⊕2
,

ρi⊕2,i⊕3 =
ai⊕2

bi⊕2
@�

ai⊕3

bi⊕3
, then these predicates can be replaced by:

ρi,i⊕3
∆
= ρi,i⊕1 ◦ ρi⊕1,i⊕2 ◦ ρi⊕2,i⊕3 =

ai

bi
@�

ai⊕1

bi⊕1
◦

ai⊕1

bi⊕1
@�

ai⊕2

bi⊕2
◦

ai⊕2

bi⊕2
@�

ai⊕3

bi⊕3
=

ai

bi
@�

ai⊕3

bi⊕3

As in the previous case, we obtain a contradiction. Consequently, we have an odd sequence
a0

b0 @�
a1

b1 ,
a1

b1 @�
a2

b2 , . . . ,
a2k−1

b2k−1
@�

a2k

b2k
,

a2k

b2k
@�

a0

b0 ∈ Inv (F ). By Lemma 4.1, this class of predi-

cates is NP-hard.
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5. Existence of the majority operation

The necessary local conditions tell that every two-element subalgebra of a tractable

algebra contains certain operations. The simplest algebras over a domain A that satisfy

these conditions are the following: F1 = {φ,ψ} where φ,ψ are conservative commutative

operations such that φ(a, b) 6= ψ(a, b) for every a 6= b ∈ A, and F2 = {m} where m is a

conservative arithmetical operation, i.e. m (x, x, y) = m (y, x, x) = m (y, x, y) = y. This

leads us to the following definitions.

Definition 5.1. Suppose a set of operations H over D is conservative and B ⊆
{{x, y} |x, y ∈ D,x 6= y}. A pair of binary operations φ,ψ ∈ H is called a tournament
pair on B, if ∀ {x, y} ∈ B φ (x, y) = φ (y, x) , ψ (x, y) = ψ (y, x) , φ (x, y) 6= ψ (x, y) and for

arbitrary {x, y} ∈ B, φ (x, y) = x, ψ (x, y) = x. An operation m ∈ H is called arithmetical
on B, if ∀ {x, y} ∈ B m (x, x, y) = m (y, x, x) = m (y, x, y) = y.

Definition 5.2. An operation µ : A3 → A, satisfying the equality

µ (x, y, y) = µ (y, x, y) = µ (y, y, x) = y

is called majority operation.

Theorem 5.3. If F satisfies the necessary local conditions and TF = (Mo, P ) is bipartite,
then F contains a tournament pair on M .

Proof. Let M1,M2 denote a partitioning of the bipartite graph TF = (Mo, P ). Then, for

every (a, b) , (c, d) ∈ M1, there is a function φ ∈ F :
a
↓
b

c
↓
d
φ. Let us prove by induction that

for every (a1, b1) , (a2, b2) , . . . , (an, bn) ∈M1, there is a φ :
a1

↓
b1

a2

↓
b2

. . .
an

↓
bn

φ.

The base of induction n = 2 is obvious. Let (a1, b1) , (a2, b2) , . . . , (an+1, bn+1) ∈
M1 be given. By the induction hypothesis, there are φ1, φ2, φ3 ∈ F :
a2

↓
b2

. . .
an

↓
bn

an+1

↓
bn+1

φ1,
a1

↓
b1

a3

↓
b3

. . .
an

↓
bn

an+1

↓
bn+1

φ2,
a1

↓
b1

a2

↓
b2

. . .
an

↓
bn

φ3. Then, it is easy to see that

a1

↓
b1

. . .
an

↓
bn

an+1

↓
bn+1

φ3 (φ1 (x, y) , φ2 (x, y)) which completes the induction proof.

The analogous statement can be proved for M2. Moreover, M2 = {(x, y) | (y, x) ∈M1}.
So it follows from the proof that there are binary operations φ′, ψ′ ∈ F , such that

∀ (x, y) ∈ M1:
x
↓
y
φ′ and ∀ (x, y) ∈ M2:

x
↓
y
ψ′. Thus, the operations φ (x, y) = φ′ (x, φ′ (y, x))

and ψ (x, y) = ψ′ (x, ψ′ (y, x)) satisfy the conditions of theorem.

The proof of the following theorem uses the ideas from [3].

Theorem 5.4. If F satisfies the necessary local conditions and M 6= ∅, then F contains an
arithmetical operation on M .

Theorem 5.5. If F satisfies the necessary local conditions and TF = (Mo, P ) is bipartite,
then F contains a majority operation µ.

Proof. If M 6= ∅, then by Theorem 5.4, F contains a function m : A3 → A that is arith-

metical on M . Then the function µ1 (x, y, z) = m (x,m (x, y, z) , z) satisfies the conditions

∀ {x, y} ∈ M µ1 (x, y, y) = µ1 (y, x, y) = µ1 (y, y, x) = y. It is clear that, in the case where

M = ∅, we can take µ1 as majority µ.
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If M 6= ∅, then by Theorem 5.3, there is a tournament pair φ,ψ : A2 → A on M . Then,

the function µ2 (x, y, z) = φ (φ (ψ (x, y) , ψ (y, z)) , ψ (x, z)) satisfies conditions ∀ {x, y} ∈
M µ2 (x, y, y) = µ2 (y, x, y) = µ2 (y, y, x) = y, and ∀ {x, y, z} ∈ M µ2 (x, y, z) = x. If

M = ∅, then we can take µ2 as the majority µ.

Finally, if M,M 6= ∅, then µ (x, y, z) = µ1
(

µ2 (x, y, z) , µ2 (y, z, x) , µ2 (z, x, y)
)

.

6. Consistency and microstructure graphs

Every predicate in Inv (F ), when F contains a majority operation, is equal to the join

of its binary projections [1]. To prove Theorem 3.4, it is consequently sufficient to prove

polynomial-time solvability of MinHom (Γ) where Γ =
{

ρ|ρ ⊆ A2, ρ ∈ Inv (F )
}

, i.e. the

MinHom problem restricted to binary constraint languages.

Definition 6.1. Suppose we are given a constraint language Γ over A. Denote by 2 −
MinHom (Γ) the following minimization problem:

Instance: A finite set of variables X = {x1, . . . , xn}, a constraints pair (U,B) where

U = 〈ρi〉1≤i≤n, B = 〈ρkl〉1≤k 6=l≤n, ρi, ρkl ∈ Γ, and weights wia, 1 ≤ i ≤ n, a ∈ A.

Solution: Assignment f : {x1, . . . , xn} → A, such that ∀i f (xi) ∈ ρi and ∀k 6=
l (f (xk) , f (xl)) ∈ ρkl.

Measure:

n
∑

i=1
wif(xi).

We suppose everywhere that ρkl = ρt
lk (where ρt = {(b, a) | (a, b) ∈ ρ}). If ρkl 6= ρt

lk,

then we can always define ∀k 6= l ρkl := ρkl ∩ ρt
lk, which does not change the set

{(a, b) | (a, b) ∈ ρkl, (b, a) ∈ ρlk}. For a binary predicate ρ, define projections Pr1 ρ =

{a|(a, b) ∈ ρ} and Pr2 ρ = {b|(a, b) ∈ ρ}.

Definition 6.2. An instance of 2 − MinHom (Γ) with constraints pair U = 〈ρi〉1≤i≤n,

B = 〈ρkl〉1≤k 6=l≤n is called arc-consistent if ∀i 6= j : Pr1 ρij = ρi,Pr2 ρij = ρj and is called

path-consistent if for each different i, j, k : ρik ⊆ ρij ◦ ρjk.

Obviously, by applying operations of the type ρi := ρi ∩ Pr1 ρij, ρj := ρj ∩ Pr2 ρij ,

ρij := ρij ∩ (ρi ×A), ρij := ρij ∩ (A× ρj), ρik := ρik ∩ (ρij ◦ ρjk), we can always make an

instance arc-consistent and path-consistent in polynomial time. It is clear that under this

transformations the set of feasible solutions does not change.

Definition 6.3. The microstructure graph [14] of an instance of 2 − MinHom (Γ) with

constraints pair U = 〈ρi〉1≤i≤n, B = 〈ρkl〉1≤k 6=l≤n is the graph MU,B = (V,E), where

V = {(i, a) |1 ≤ i ≤ n, a ∈ ρi} and E = {〈(i, a) , (j, b)〉 |i 6= j, (a, b) ∈ ρij}.

Theorem 6.4. Let I = (X,U,B,w) be a satisfiable instance of 2 −MinHom (Γ). Then
there is a one-to-one correspondence between maximal-size cliques of MU,B and satisfying
assignments of I.

Proof. The microstructure graph of an instance with constraints pair U = 〈ρi〉1≤i≤n, B =

〈ρkl〉1≤k 6=l≤n is, obviously, n-partite, since V =
n
⋃

i=1
{i} × ρi and pairs (i, a) , (i, b) , a 6= b

are not connected. Therefore, the cardinality of a maximal clique of MU,B = (V,E) is not

greater than n.
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If the cardinality of a maximal clique S ⊆ V is n, then, for every i, |S ∩ ({i} × ρi)| = 1.

Then, denoting the only element of S ∩ ({i} × ρi) by vi, we see that the assignment

f (xi) = vi satisfies all constraints. The opposite is also true, i.e., if the constraints

〈ρi〉1≤i≤n, 〈ρkl〉1≤k 6=l≤n can be satisfied by some assignment f , then {(i, f (xi)) |1 ≤ i ≤ n}
is a clique of cardinality n.

Hence, 2 −MinHom (Γ) can be reduced to finding a maximal-size clique S ⊆ V of a

microstructure graph that minimizes the following value:
∑

(i,a)∈S

wia.

Definition 6.5. Let MMClique (Minimal weight among maximal-size cliques) denote the

following minimization problem:

Instance: A graph G = (V,E) and weights wi ∈ N, i ∈ V .

Solution: A maximal-size clique K ⊆ V of G.

Measure:
∑

v∈K
wv.

The following theorem connects perfect microstructure graphs and the complexity of

MinHom.

Theorem 6.6. Suppose we are given a class of conservative functions F containing a
majority operation. If the microstructure graph is perfect for arbitrary arc-consistent and
path-consistent instances of 2 −MinHom (Inv (F )), then F is tractable.

Definition 6.7. A cycle C2k+1, k ≥ 2, is called an odd hole and its complement graph an
odd antihole.

In Section 8 we will use the following conjecture of Berge, which was proved in [4].

Theorem 6.8. A graph is perfect if and only if it does not contain an induced subgraph
isomorphic to an odd hole or antihole.

We say that a graph is of the type S2k+1, k ≥ 2 if it is isomorphic to the graph with

vertex set {0, 1, . . . , 2k}, where vertices i (mod 2k + 1), i+1 (mod 2k + 1) are not connected

and vertices i (mod 2k + 1), i+2 (mod 2k + 1) are connected. Other pairs can be connected

arbitrarily. Obviously, every odd hole or antihole is of one of the types S2k+1, k ≥ 2.

7. Arithmetical deadlocks

The key idea for the proof of the polynomial case of Theorem 3.4 is to show that

path- and arc-consistent instances of 2−MinHom (Inv (F )) have a perfect microstructure

graph. We will prove this by showing that the microstructure graph forbids certain types

of subgraphs. The exact formulation of the result can be found below in Theorem 8.1.

This theorem uses the nonexistence of structures called arithmetical deadlocks which are

introduced in this section.

Definition 7.1. Suppose H is a conservative set of functions over D, m ∈ H is an

arithmetical operation on B ⊆ {{x, y} |x, y ∈ D,x 6= y} and the pair φ,ψ ∈ H is a

tournament pair on B. An instance of 2 − MinHom (Inv (H)) with constraints pair

U = 〈ρi〉1≤i≤n, B = 〈ρkl〉1≤k 6=l≤n is called an odd arithmetical deadlock if there is a subset

{i0, . . . , ik−1} ⊆ {1, . . . , n} , k ≥ 3 of odd cardinality and {x0, y0} , . . . , {xk−1, yk−1} ∈ B,
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such that for 0 ≤ s ≤ k − 1: ρis,is⊕1
∩ {xs, ys} × {xs⊕1, ys⊕1} =

xs

ys
@�

xs⊕1

ys⊕1
, where i ⊕ j

denotes i+ j(mod k). The subset {i0, . . . , ik−1} is called a deadlock subset.

Theorem 7.2. Suppose H is a conservative set of functions over D, m ∈ H is an arith-
metical operation on B ⊆ {{x, y} |x, y ∈ D,x 6= y} and the pair φ,ψ ∈ H is a tournament
pair on B. If an instance of 2 −MinHom (Inv (H)) is arc-consistent and path-consistent,
then it cannot be an odd arithmetical deadlock.

8. Final step in a proof of polynomial case

Theorem 8.1. Suppose that F satisfies the necessary local conditions and that the
graph TF = (Mo, P ) is bipartite. Then for every path- and arc-consistent instance of
2−MinHom (Inv (F )), its microstructure graph forbids subgraphs of the type S2p+1, p ≥ 2.

Proof. Suppose to the contrary that we have a path- and arc-consistent instance I =

(X,U,B,w) of 2 − MinHom (Inv (F )) with constraints pair U = 〈ρi〉1≤i≤n, B =

〈ρkl〉1≤k 6=l≤n and its microstructure graph has a subgraph of the type S2p+1, p ≥ 2.

For convenience, let us introduce ρii = {(a, a) |a ∈ ρi}. Then, there is a set of pairs

{(i0, b0) , (i1, b1) , . . . , (i2p, b2p)}, such that for 0 ≤ l ≤ 2p: (bl, bl⊕1) /∈ ρilil⊕1
and (bl, bl⊕2) ∈

ρilil⊕2
, where i⊕ j denotes i+ j(mod 2p+ 1).

From (bl, bl⊕2) ∈ ρilil⊕2
and the path-consistency condition ρilil⊕2

⊆ ρilil⊕1
◦ ρil⊕1il⊕2

,

we see that there is al⊕1, such that (bl, al⊕1) ∈ ρilil⊕1
and (al⊕1, bl⊕2) ∈ ρil⊕1il⊕2

.

Consider the predicate ρ′l,l⊕1 = ρilil⊕1
∩ {al, bl} × {al⊕1, bl⊕1} ∈ Inv (F ). Obviously,

ρ′l,l⊕1 equals to either
al

bl
@�

al⊕1

bl⊕1
or

al

bl
@�

al⊕1

bl⊕1
.

Let us show that if {al, bl} ∈ M , then {al⊕1, bl⊕1} ∈ M , too. Assume to the contrary

that {al⊕1, bl⊕1} ∈ M . Then, by Theorem 5.3, there is a φ ∈ F :
al⊕1

↓
bl⊕1

φ, where φ|{al,bl} is a

projection on the first coordinate. In this case, φ preserves neither
al

bl
@�

al⊕1

bl⊕1
nor

al

bl
@�

al⊕1

bl⊕1
,

because
(

bl
bl⊕1

)

=

(

φ (bl, al)

φ (al⊕1, bl⊕1)

)

.

Hence, we need to consider two cases only: 1) ∀l {al, bl} ∈ M and 2) ∀l {al, bl} ∈ M .

In the first case, we have 〈(al, bl) , (al⊕1, bl⊕1)〉 ∈ P , i.e., there is an odd cycle in TF which

contradicts that TF is bipartite.

Now, consider the case ∀l {al, bl} ∈ M . By Theorem 5.4, there is a function m ∈ F ,

arithmetical on M . If ρ′l,l⊕1 =
al

bl
@�

al⊕1

bl⊕1
, then we have that

(

bl
bl⊕1

)

=

(

m (al, al, bl)
m (bl⊕1, al⊕1, al⊕1)

)

∈ ρ′l,l⊕1

and ρ′l,l⊕1 =
al

bl
@�

al⊕1

bl⊕1
.

Consider the set {i0, i1, . . . , i2p}. Suppose first that all i0, i1, . . . , i2p are distinct. Then,

Theorems 5.3 and 5.4 show us that we have an arithmetical operation m ∈ F on M and a

tournament pair φ,ψ ∈ F on M . It is easy to see that an instance of 2−MinHom (Inv (F ))

with constraints pair U = 〈ρi〉1≤i≤n, B = 〈ρkl〉1≤k 6=l≤n is an odd arithmetical deadlock where

{i0, i1, . . . , i2p} is a deadlock set. This contradicts that I is arc- and path-consistent.
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The case when the elements i0, i1, . . . , i2p are not distinct can be reduced to

the previous case by the following trick: introduce a new set of variables X ′ =

{(i0, 0) , (i1, 1) , . . . , (i2p, 2p)} and ρ(is,s) = ρis , where 0 ≤ s ≤ 2p. If im 6= in, then

ρ(im,m),(in,n) = ρim,in , else ρ(im,m),(in,n) = {(a, a)|a ∈ ρim}. It is easy to see that an instance

with constraints pair U = {ρi}i∈X′ , B = {ρkl}k 6=l∈X′ satisfy the conditions of Theorem 7.2

and is an odd arithmetical deadlock, where the set {(i0, 0) , (i1, 1) , . . . , (i2p, 2p)} is a dead-

lock set. Therefore, we have a contradiction.

Proof of polynomial case of Theorem 3.4. The conditions of Theorem 3.4 coincides with the

conditions of Theorem 8.1 so the microstructure graph of an arc- and path-consistent in-

stance forbids subgraphs of the type S2p+1, p ≥ 2. By Theorem 6.8, it is perfect and, by

Theorem 6.6, we see that the class F is tractable.

Theorems 3.3 and 3.4 give the required dichotomy for conservative algebras, which

implies the dichotomy for conservative constraint languages. By Theorem 2.9, we have the

following general dichotomy.

Theorem 8.2. If MinHom (Γ) is not tractable then it is NP-hard.

9. Related work and open problems

MinHom can be viewed as a problem that fits the VCSP (Valued CSP) framework

by [5]. By a valued predicate of arity m over a domain D, we mean a function p : Dm →
N ∪ {∞}. Informally, if Γ is a finite set of valued predicates over a finite domain D, then

an instance of V CSP (Γ) is a set of variables together with specified subsets of variables

restricted by valued predicates from Γ. Any assignment to variables can be considered a

solution and the measure of this solution is the sum of the values that the valued predicates

take under the assignments of the specified subsets of variables. The problem is to minimize

this measure. It is widely believed that a dichotomy conjecture holds for V CSP (Γ), too.

Our dichotomy result for MinHom encourages us to consider generalizations that be-

long to this framework.

1. Suppose we are given a constraint language Γ and a finite set of unary functions

F ⊆ {f : D → N}. Let MinHomF (Γ) denote a minimization problem which is defined com-

pletely analogously to MinHom(Γ) except that we are restricted to minimizing functionals

of the following form:
n
∑

i=1

∑

f∈F

wiff (xi). We believe that the complexity of MinHomF (Γ)

is determined by Γ and a certain loopless digraph GF = (D, {(x, y) : ∃f ∈ F f(x) > f(y)}).
This conjecture holds when Γ is conservative and every two vertices of GF have an arc (of

any direction) between them. Of course, a complete classification of the complexity of this

problem is an open question.

2. Suppose we have a finite valued constraint language Γ, i.e. a set of valued predicates

over some finite domain set. If Γ contains all unary valued predicates, we call V CSP (Γ)

a conservative V CSP . This name is motivated by the fact that in this case the multi-

morphisms (which is a generalization of polymorphisms for valued constraint languages [5])

of Γ must consist of conservative functions. Since there is a well-known dichotomy for

conservative CSPs [3], we suspect that there is a dichotomy for conservative V CSPs.
3. MinHom has (just as CSP) a homomorphism formulation. If we restrict ourselves

to relational structures given by digraphs, we arrive at the following problem which we call
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digraphMinHom: given digraphs S,H and weights wij, i ∈ S, j ∈ H, find a homomorphism

h : S → H that minimizes the sum
∑

s∈S

wsh(s). Suppose we have sets of digraphs G1,G2.

Then, MinHom(G1,G2) denotes the digraph MinHom problem when the first digraph

is from G1 and the second is from G2. In this case, MinHom(All, {H}) coincides with

MinHom({H}) which is characterized in this paper. Another characterization based on

digraph theory was announced during the preparation of the camera-ready version of this

paper [16]. We believe that this approach could be fruitful for characterizing the complexity

of MinHom(G,G): for example, is there a dichotomy for MinHom(G,G)?
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Abstract. A fertile area of recent research has demonstrated concrete polynomial time
lower bounds for solving natural hard problems on restricted computational models. Among
these problems are Satisfiability, Vertex Cover, Hamilton Path, MOD6-SAT, Majority-of-
Majority-SAT, and Tautologies, to name a few. The proofs of these lower bounds follow
a certain proof-by-contradiction strategy that we call alternation-trading. An important
open problem is to determine how powerful such proofs can possibly be.

We propose a methodology for studying these proofs that makes them amenable to both
formal analysis and automated theorem proving. We prove that the search for better lower
bounds can often be turned into a problem of solving a large series of linear programming
instances. Implementing a small-scale theorem prover based on this result, we extract new
human-readable time lower bounds for several problems. This framework can also be used
to prove concrete limitations on the current techniques.

1. Introduction

Many known lower bounds for natural problems follow a type of algorithmic argument

that we call a resource-trading proof. Such a proof assumes that a hard problem can be

solved by a “good” algorithm, and tries to derive a contradiction by combining two essential

components. One is a speedup lemma, which simulates all good algorithms super-efficiently

on some “interesting” computational model, trading time for some resource. The second

component is a slowdown lemma, which uses the assumed good algorithm for the hard

problem to simulate computations from the “interesting” model by good algorithms, thereby

trading the “interesting” resource for more time. Clever combinations of speedup and

slowdown lemmas are used to contradict a known result, in particular some complexity
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hierarchy theorem. That is, by assuming a “good” algorithm for a hard problem, we derive

something like TIME[n2] ⊆ TIME[n], a contradiction.

As an example, one can prove a time-space tradeoff for satisfiability (SAT) as follows.

Assume SAT has an algorithm running in nc time and poly(log n) space, for some c > 1.

One speedup lemma is that computations running in na time and poly(log n) space can

be simulated by an alternating machine that switches from co-nondeterministic mode to

nondeterministic mode once (i.e., a Π2 machine), and runs in na/2+o(1) time. This speedup

lemma trades time for alternations. The relevant slowdown lemma is: if SAT has an nc

time, poly(log n) space algorithm, then (by a strengthening of the Cook-Levin theorem)

every language in NTIME[t] has tc+o(1) time, poly(log t) space algorithms. Consequently,

an alternating machine running in t time and making k − 1 alternations has tc
k+o(1) time,

poly(log t) space algorithms. Combining these speedup and slowdown lemmas, we derive

Σ2TIME[t] ⊆ DTISP[tc
2+o(1),poly(log t)] ⊆ Π2TIME[tc

2/2],

where the first inclusion holds by slowdown and the second holds by speedup. Now observe

that the alternating time hierarchy is contradicted when c2 < 2. This proof is the n
√

2−ε

time lower bound of Lipton and Viglas [LV99].

Some of the best known separations in complexity theory use resource-trading proofs.

Hopcroft, Paul, and Valiant [HPV77] showed that SPACE[n] * DTIME[o(n log n)] for mul-

titape Turing machines, by proving the “speedup lemma” that DTIME[t] ⊆ SPACE[t/ log t]
and invoking diagonalization. Their result was later extended to general models [PR81,

HLMW86]. Paul, Pippenger, Szemeredi, and Trotter [PPST83] proved that NTIME[n] 6=
DTIME[n] for multitape Turing machines. The key component in the proof is the “speedup

lemma” DTIME[t] ⊆ Σ4TIME[t/ log∗ t] for multitape TMs. Despite their age, the above sep-

arations still constitute the best known progress on P vs PSPACE and P vs NP, respectively.

In more recent years, resource-trading proofs have established time-space lower bounds

for NP-complete problems and problems higher in the polynomial hierarchy [Kan84, For97,

LV99, FvM00, FLvMV05, Wil06, Wil08]. For instance, the best known time lower bound for

solving SAT with no(1)-space algorithms is n2 cos(π/7)−o(1) ≥ n1.801, obtained with a resource-

trading proof [Wil08]. (Note if one could improve the 1.801 exponent to arbitrary constants,

one would separate LOGSPACE from NP.) For nondeterministic algorithms using no(1) space,

the best known time lower bound for solving the coNP-complete Tautology problem

was n
√

2−o(1) for several years [FvM00]. Certain time-space lower bounds for probabilistic

and quantum computations also follow the resource-trading paradigm [AKRRV01, DvM06,

Vio09, vMW07]. Resource-trading proofs are also abound in the multidimensional “hybrid”

Turing machine model, which has read-only random access to its input and an no(1) read-

write store, as well as read-write two-way access to a d-dimensional tape for some d ≥ 1.

This is the most powerful (and physically realistic) model known where we still know non-

trivial time lower bounds for problems such as SAT. Multidimensional TMs have a long

history; e.g., [Lou80, PR81, Kan83, MS87, vMR05, Wil06] proved lower bounds for them.

(For a more complete literature review, please see the full version of the paper.)

1.1. Main Results

We introduce a methodology for reasoning about resource-trading proofs that is also

practically implementable for finding short proofs. Informally, the “hard work” in these
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proofs can be replaced by solving a series of linear programming problems. This perspective

not only aids us practically in the search for new lower bounds, but also allows us to show

non-trivial limitations on what can be proved.

This methodology is applied to several lower bound problems. In all cases considered

here, the resource being “traded” is alternations, so we call the proofs alternation-trading.

Deterministic Time-Space Lower Bounds. Aided by results of a computer program, we show

that any SAT algorithm running in t(n) time and s(n) space satisfies t·s ≥ Ω(n2 cos(π/7)−o(1)).

Previously, the best known result was t · s ≥ Ω(n1.573) [FLvMV05]. It has been conjectured

that the current framework sufficed to prove a n2−o(1) time lower bound for SAT, against

algorithms using no(1) space. We prove that it is not possible to obtain n2 with the frame-

work, formalizing a conjecture of [FLvMV05].∗ A computer search over proofs of short

length suggests that the best known n2 cos(π/7)−o(1) lower bound [Wil08] is already optimal

for the framework. We also prove lower bounds on QBFk (quantified Boolean formulas with

at most k quantifier blocks), showing that the problem requires Ω(nk+1−δk) time for no(1)

space algorithms, where δk < 0.2 and limk→∞ δk = 0.†

Nondeterministic Time-Space Lower Bounds. Adapting our ideas to proving lower bounds

for Tautologies, a computer program found a very short proof improving upon Fortnow

and Van Melkebeek’s lower bound. Longer proofs suggested an interesting pattern. Joint

work with Diehl and Van Melkebeek on this observation resulted in an n41/3−o(1) ≥ n1.587

time lower bound [DvMW09]. Computer search suggests that this lower bound is best

possible for the framework. We prove that it is not possible to obtain an nφ time lower

bound, where φ = 1.618 . . . is the golden ratio. This is surprising since we have known for

some time that an nφ lower bound is provable for deterministic algorithms [FvM00].

Multidimensional Turing Machine Lower Bounds. Here our method uncovers peculiar be-

havior in the best lower bound proofs, regardless of the dimension. Studying computer

search results, we extract an Ω(nrd) time lower bound for the d-dimensional case, where

rd ≥ 1 is the root of a particular quintic pd(x) with coefficients depending on d. For ex-

ample, r1 ≈ 1.3009, r2 ≈ 1.1887, and r3 ≈ 1.1372. Again, our search suggests this is best

possible, and we can prove it is not possible to improve the bound for d-dimensional TMs

to n1+1/(d+1) with the current tools.

These limitations also hold for other NP and coNP-hard problems; the only property

required is that all languages in NTIME[n] (respectively, coNTIME[n]) have sufficiently ef-

ficient reductions to the problem. Also our linear programming approach is not limited to

the above, and can be applied to the league of lower bounds discussed in Van Melkebeek’s

surveys [vM04, vM07].

1.2. Some Remarks on the Reduction to Linear Programming

The key to our formulation is to separate the discrete choices in an alternation-trading

proof from the real-valued choices. The discrete choices consist of the sequence of lemmas

to apply in each step, and what sort of hierarchy theorem to use in the contradiction. We

present several simplifications that greatly reduce the number of discrete choices, without

loss of generality. The real-valued choices are the running time exponents that arise from

∗That is, we formalize the statement: “...some complexity theorists feel that improving the golden ratio
exponent beyond 2 would require a breakthrough” in Section 8 of [FLvMV05].

†Note the QBFk results appeared in the author’s PhD thesis in 2007 but have been unpublished to date.
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the choices of time bounds and rule applications. We prove that once the discrete choices

are made, the remaining real-valued problem can be expressed as an instance of linear

programming. This makes it possible to search for new proofs via computer, and it also

gives us a formal handle on the limitations of these proofs.

One cannot easily search over all possible proofs, as the number of discrete choices is still

about 2n/n3/2 for proofs of n lines (proportional to the nth Catalan number). Nevertheless

it is still feasible to try all 24+ line proofs. These proof searches reveal patterns, indicating

that certain strategies will be most successful in proving lower bounds; in each case we

study, the resulting strategies differ. Following the strategies, we establish new lower bound

proofs. The patterns also suggest how to show limitations on the proof systems.

Note: Due to space limitations, we can only describe how our methods apply to SAT time-
space lower bounds. Please see the full version of the paper for proofs and more details.

2. Preliminaries

We assume familiarity with Complexity Theory, especially the notion of alternationWe

use big-Ω notation in the infinitely often sense, so statements like “SAT is not in O(nc) time”

are equivalent to “SAT requires Ω(nc) time.” All functions are assumed constructible within

the appropriate bounds. Our default computational model is the random access machine,

broadly construed: particular variants do not affect the results. DTISP[t(n), s(n)] is the

class of languages accepted by a RAM running in t(n) time and s(n) space, simultaneously.

For convenience, we set DTS[t(n)] := DTISP[t(n)1+o(1), no(1)] to omit negligible o(1) factors.

In order to properly formalize alternation-trading proofs, we introduce notation for alter-

nating complexity classes that include input constraints between alternations. Let us start

with an example of the notation, then give a general definition. Define (∃ f(n))bDTS[na] to

be the class of languages recognized by a machine which, on an input x of length n, writes

a f(n)1+o(1) bit string y nondeterministically, copies at most nb+o(1) bits z from the pair

〈x, y〉 (in O(nb+o(1)) time), then feeds z as input to a machine M running in na+o(1) time

and no(1) space. Note the runtime of M is measured with respect to the initial input length

n, not the latter input length nb+o(1) of z.

We generalize this definition as follows. Let C be a complexity class. For i = 1, . . . , k, let

Qi ∈ {∃,∀} and ai, bi ≥ 0. Define

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1C

to be the class of languages recognized by a machine M that, on input x of length n, has

the following general behavior on input x:

Set z0 := x.

For i = 1, . . . , k,

If Qi = ∃, switch to existential mode.
If Qi = ∀, switch to universal mode.

Guess an nai+o(1) bit string y (universally or existentially).

Copy at most nbi+1+o(1) bits zi from the pair 〈zi−1, y〉.
End for

Run a machine recognizing a language in class C on the input zk.
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When an input constraint bi is unspecified, its default value is max{ai, 1}. We say that

the existential and universal modes of an alternating computation are quantifier blocks, to

reflect the complexity class notation. It is crucial to observe that the time bound in the ith
quantifier block is measured with respect to n, the input to the first quantifier block.

Notice that by simple properties of nondeterminism and conondeterminism, we can com-

bine adjacent quantifier blocks that are of the same type, e.g., (∃na)a(∃nb)bDTS[nc] =

(∃nmax{a,b})bDTS[nc]. This useful property is exploited in alternation-trading proofs.

2.1. A Short Introduction to Alternation-Trading Proofs

Here we give a brief overview of the tools used in alternation-trading proofs. In this ex-

tended abstract we focus on deterministic time lower bounds for satisfiability for algorithms

using no(1) workspace; the other lower bound problems use similar tools.

It is known that satisfiability of Boolean formulas in conjunctive normal form (SAT) is

a complete problem under tight reductions for a small nondeterministic complexity class.

The class NQL, called nondeterministic quasilinear time, is defined as

NQL :=
⋃

c≥0

NTIME[n · (log n)c] = NTIME[n · poly(log n)].

Theorem 2.1 ([Coo88, Sch78, Tou01, FLvMV05]). SAT is NQL-complete under quasilin-
ear time O(log n) space reductions, for both multitape and random access machine models.
Moreover, each bit of the reduction can be computed in O(poly(log n)) time and O(log n)

space in both machine models.‡

Let C[t(n)] represent a time t(n) complexity class under one of the three models:

• deterministic RAM using time t and to(1) space,

• co-nondeterministic RAM using time t and to(1) space,

• d-dimensional Turing machine using time t.

Theorem 2.1 implies that if NTIME[n] * C[t], then SAT /∈ C[t/poly(log t)].

Corollary 2.2. If NTIME[n] * C[t(n)], then SAT /∈ C[t(n)/ logk t(n)] for some k > 0.

Hence we wish to prove NTIME[n] * C[nc] for large c > 1. To prove time-space lower

bounds, we work with C[nc] = DTS[nc] = DTISP[nc, no(1)]. Van Melkebeek and Raz [vMR05]

observed that a similar corollary holds for any problem Π such that SAT reduces to Π under

highly efficient reductions, e.g. Vertex Cover, Hamilton Path, 3-SAT, and Max-2-

Sat. Therefore similar time lower bounds hold for these problems as well.

Speedups, Slowdowns, and Contradictions. Now that our goal is to prove NTIME[n] *

DTS[nc], how can we do this? In an alternation-trading proof, we attempt to establish a

contradiction from assuming NTIME[n] ⊆ DTS[nc], by applying two lemmas which comple-

ment one another. A speedup lemma takes a DTS[t] class and places it in an alternating

class with runtime o(t). A slowdown lemma takes an alternating class with runtime t and

places it in a class with one less alternation and runtime O(tc). The Speedup Lemma dates

back to Nepomnjascii [Nep70] and Kannan [Kan84].

‡In the multitape Turing machine model we assume that the tape heads are already oriented on the
appropriate cells, otherwise it may take linear time to find the appropriate cells on a tape.
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Lemma 2.3 (Speedup Lemma). Let a ≥ 1, e ≥ 0 and 0 ≤ x ≤ a. Then

DTISP[na, ne] ⊆ (Q1 nx+e)max{1,x+e}(Q2 log n)max{1,e}DTISP[na−x, ne],

for Qi ∈ {∃,∀} where Q1 6= Q2. In particular,

DTS[na] ⊆ (Q1 nx)max{1,x}(Q2 log n)1DTS[na−x].

Proof. Let M use na time and ne space. Let y be an input of length n. A complete

description (i.e. configuration) of M(y) at any step can be described in O(ne +log n) space.

To simulate M in (∃ nx+e)max{1,x+e}(∀ log n)max{1,e}DTISP[na−x, ne], the algorithm N(y)

existentially guesses a sequence of configurations C1, . . . , Cnx of M(x). Then N(y) appends

the initial configuration C0 of M(y) to the beginning of the sequence, and an accepting

configuration Cnx+1 to the end. N(y) universally guesses a i ∈ {0, . . . , nx}, erases all

configurations except Ci and Ci+1, then simulates M(y) starting from Ci, accepting if and

only if Ci+1 is reached within na−x steps. It is easy to see the simulation is correct. The

input constraints on the quantifier blocks are satisfied since after the universal guess, the

input is only y, Ci, and Ci+1, which is of size n + 2ne+o(1) ≤ nmax{1,e}+o(1).

Observe in the above alternating simulation, the input to the final DTISP computation

is linear in n + ne, regardless of the choice of x. This is a subtle property that is exploited

heavily in alternation-trading proofs. The Slowdown Lemma is the following simple result:

Lemma 2.4 (Slowdown Lemma). Let a ≥ 1, e ≥ 0, a′ ≥ 0, and b ≥ 1. If NTIME[n] ⊆
DTISP[nc, ne], then for both Q ∈ {∃,∀},

(Q na′

)bDTIME[na] ⊆ DTISP[nc·max{a,a′,b}, ne·max{a,a′,b}].

In particular, if NTIME[n] ⊆ DTS[nc], then

(Q na′

)bDTIME[na] ⊆ DTS[nc·max{a,a′,b}].

Proof. Let L be a problem in (Q na′
)bDTIME[na], and let A be an algorithm recognizing

L. On an input x of length n, A guesses a string y of length na′+o(1) and feeds an nb+o(1)

bit string z to A′(z), where A′ is a deterministic algorithm that runs in na time. Since

NTIME[n] ⊆ DTISP[nc, ne] and DTISP is closed under complement, by padding we have

NTIME[p(n)] ∪ coNTIME[p(n)] ⊆ DTISP[p(n)c, p(n)e] for polynomials p(n) ≥ n. Therefore

A can be simulated with a deterministic algorithm B. Since the runtime of A is na′+o(1) +

nb+o(1) + na, the runtime of B is nc·max{a,a′,b}+o(1) and the space usage is similar.

The final component of an alternation-trading proof is a time hierarchy theorem, the most

general of which is the following, provable by a simple diagonalization.

Theorem 2.5 (Alternating Time Hierarchy). For k ≥ 0, for all Qi ∈ {∃,∀}, 1 ≤ a′i < ai,
and 1 ≤ b′i ≤ bi,

(Q1 na1)b2 · · ·bk (Qk nak)bk+1DTS[nak+1] * (R1 na′
1)b

′
2 · · ·b

′
k (Rk na′

k)b
′
k+1DTS[na′

k+1],

where Ri ∈ {∃,∀} and Ri 6= Qi for all i = 2, . . . , k + 1.

Two Examples. Let us give a couple of examples of alternation-trading proofs. To simplify

the presentation we do not specify the input constraints to quantifiers in the below.
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(1) In FOCS’99, Lipton and Viglas proved that SAT cannot be solved by algorithms

running in n
√

2−ε time and no(1) space, for all ε > 0. By Theorem 2.1, if SAT is in n
√

2−ε

time and no(1) space then NTIME[n] ⊆ DTS[nc] with c2 < 2. We have

(∃ n2/c2)(∀ n2/c2)DTS[n2/c2 ] ⊆ (∃ n2/c2)DTS[n2/c] (Slowdown Lemma)

⊆ DTS[n2] (Slowdown Lemma)

⊆ (∀ n)(∃ log n)DTS[n]. (Speedup Lemma, with x = 1)

But (∃ n2/c2)(∀ n2/c2)DTS[n2/c2] ⊆ (∀ n)(∃ log n)DTS[n] contradicts Theorem 2.5. In

fact, one can show that if c2 = 2, we still have a contradiction with NTIME[n] ⊆ DTS[nc],

so the ε can be removed from the previous statement and state that SAT cannot be solved

in n
√

2 time and no(1) exactly.§

(2) Improving on the previous example, one can show SAT /∈ DTS[n1.6004]. If NTIME[n] ⊆
DTS[nc] and

√
2 ≤ c < 2, then applying the Speedup and Slowdown Lemmas one can derive:

DTS[nc2/2+2] ⊆ (∃ nc2/2)(∀ log n)DTS[n2] (Speedup)

⊆ (∃ nc2/2)(∀ log n)(∀ n)(∃ log n)DTS[n] (Speedup)

= (∃ nc2/2)(∀ n)(∃ log n)DTS[n] (Combining ∀ Quantifiers)

⊆ (∃ nc2/2)(∀ n)DTS[nc] (Slowdown)

⊆ (∃ nc2/2)DTS[nc2 ] (Slowdown)

⊆ (∃ nc2/2)(∃ nc2/2)(∀ log n)DTS[nc2/2] (Speedup)

= (∃ nc2/2)(∀ log n)DTS[nc2/2] (Combining ∃ Quantifiers)

⊆ (∃ nc2/2)DTS[nc3/2] (Slowdown)

⊆ DTS[nc4/2] (Slowdown)

When c2/2 + 2 > c4/2 (which happens if c < 1.6004), we have DTS[na] ⊆ DTS[na′
] for

some a > a′. One can show by a translation argument (similar to the footnote) that either

DTS[na] * DTS[na′
] or NTIME[n] * DTS[nc], concluding the proof.

Example (2) was discovered by a computer program. By “discovered”, we mean that the

program applied speedups and slowdowns in precisely the same way, having only minimum

knowledge of the lemmas. Furthermore, the program verified that above is the best possible
alternation-trading proof that applies the Speedup and Slowdown Lemmas at most 7 times.

A more formal definition of “alternation-trading proof” is given in the next section.

3. Formalizing Alternation-Trading Proofs

We formalize alternation-trading proofs of lower bounds on DTS classes as follows:¶

Definition 3.1. Let c > 1. An alternation-trading proof for c is a list of complexity classes

of the form:

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1 ], (3.1)

§Suppose NTIME[n] ⊆ DTS[nc] and Σ2TIME[n] ⊆ Π2TIME[n1+o(1)]. The first assumption, along with the
Speedup and Slowdown Lemmas, implies that for every k there’s a K satisfying Σ2TIME[nk] ⊆ NTIME[nkc] ⊆

ΣKTIME[n]. But the second assumption implies that ΣKTIME[n] = Σ2TIME[n1+o(1)]. Hence Σ2TIME[nk] ⊆

Σ2TIME[n1+o(1)], which contradicts the time hierarchy for Σ2TIME.
¶This formalization has implicitly appeared in several prior works, but not to the degree that we investigate

in this paper.
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where k ≥ 0, Qi ∈ {∃,∀}, Qi 6= Qi+1, ai > 0, and bi ≥ 1, for all i. (When k = 0, the class

is deterministic.) The items of the list are called lines of the proof. Each line is obtained

from the previous line by applying either a speedup rule or a slowdown rule. More precisely,

if the ith line is

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1 ],

then the (i + 1)st line has one of four possible forms:

Speedup Rule 0: For k = 0 and any x ∈ (0, a1), (Q0 nx)max{x,1}(Q1 n0)1DTS[na1−x].‖

Speedup Rule 1: For k > 0 and any x ∈ (0, ak+1),

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x})max{x,bk+1}(Qk+1 n0)bk+1DTS[nak+1−x].

Speedup Rule 2: For k > 0 and any x ∈ (0, ak+1),

(Q1 na1)b2 · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n0)bk+1DTS[nak+1−x].

Slowdown Rule: For k > 0,

(Q1 na1)b2(Q2 na2) · · ·bk−1 (Qk−1 nak−1)bkDTS[nc·max{ak+1,ak,bk,bk+1}].

An alternation-trading proof shows (NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2) if its first line is

A1 and its last line is A2.

The above definition comes directly from the Speedup Lemma (Lemma 2.3) and Slowdown

Lemma (Lemma 2.4). The rules are easily verified to be syntactic formulations of the

corresponding lemmas. For instance, Speedup Rule 1 holds, as

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1]

⊆ (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk nx)max{bk+1,x}(Qk+1 n0)bk+1DTS[nak+1]

⊆ (Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x})max{bk+1,x}(Qk+1 n0)bk+1DTS[nak+1 ].

Rule 2 is akin to Rule 1, except that it uses opposite quantifiers in its invocation of the

Speedup Lemma. The Slowdown Rule works analogously to Lemma 2.4. It follows that

alternation-trading proofs are sound.

Note Speedup Rules 0 and 2 add two quantifier blocks, Speedup Rule 1 adds one quantifier,

and all three rules introduce a parameter x. By considering “normal form” proofs (defined in

the following paragraphs), we can prove that Rule 2 can always be replaced by applications

of Rule 1. (A proof is in the full version of the paper.) For this reason we just refer to the
Speedup Rule, depending on which of Rule 0 or Rule 1 applies.

Define a class of the form (3.1) to be simple. Define classes A1 and A2 to be complementary
if A1 is the class of complements of languages in A2. Every known (model-independent)

time-space lower bound for SAT shows “NTIME[n] ⊆ DTS[nc] implies A1 ⊆ A2”, for some

complementary simple classes A1 and A2, contradicting a time hierarchy (cf. Theorem 2.5).

A similar claim holds for nondeterministic time-space lower bounds against tautologies

(which prove “NTIME[n] ⊆ coNTS[nc] implies A1 ⊆ A2”), for d-dimensional TM lower

bounds (which prove “NTIME[n] ⊆ DTIMEd[n
c] implies A1 ⊆ A2”), and other problems.

Normal Form. It will be very convenient to introduce a normal form for alternation-

trading proofs. We show that any lower bound provable with complementary simple classes

can also be established with a normal form proof. This greatly reduces the degrees of

freedom in a proof, as we no longer need to worry about which time hierarchy to contradict.

‖Please note that the (k + 1)th quantifier is n
0 in order to account for the O(log n) size of the quantifier.
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Definition 3.2. Let c ≥ 1. An alternation-trading proof for c is in normal form if (a) the

first and last lines are DTS[na] and DTS[na′
] respectively, for some a ≥ a′, and (b) no other

lines are DTS classes.

We show that a normal form proof for c implies that NTIME[n] * DTS[nc].

Lemma 3.3. Let c ≥ 1. If there is an alternation-trading proof for c in normal form having
at least two lines, then NTIME[n] * DTS[nc].

Theorem 3.4. Let A1 and A2 be complementary. If there is an alternation-trading proof
P for c that shows (NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2), then there is a normal form proof
for c, of length at most that of P .

Proofs of Lemma 3.3 and Theorem 3.4 are in the full version. The upshot of these results

is that we may focus our proof search on normal form proofs. For the remainder of this

section, we assume all alternation-trading proofs are in normal form.

Proof Annotations. Different lower bound proofs can result in quite different sequences

of speedups and slowdowns. A proof annotation represents such a sequence.

Definition 3.5. A proof annotation for an alternation-trading proof of ℓ lines is the (ℓ−1)-

bit vector A where for all i = 1, . . . , ℓ − 1, A[i] = 1 (respectively, A[i] = 0) if the ith line

applies a Speedup Rule (respectively, a Slowdown Rule).

An (ℓ − 1)-bit proof annotation corresponds to a “strategy” for an ℓ-line proof. For a

normal form proof of ℓ lines, it is not hard to show that its annotation A must have A[1] = 1,

A[ℓ − 2] = 0, and A[ℓ − 1] = 0.

Note that an annotation does not determine a proof entirely, as other parameters need

optimizing. (The problem of optimizing them is tackled in the next section.) To illustrate

the annotation concept, we give four examples.

• The n
√

2 lower bound of Lipton and Viglas has the annotation [1, 0, 0].
• The n1.6004 bound from Section 2.1 corresponds to [1, 1, 0, 0, 1, 0, 0].
• The nφ bound of Fortnow and Van Melkebeek [FvM00] is an inductive proof, cor-

responding to an infinite sequence of annotations. In normal form, the sequence is

[1, 0, 0], [1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0], . . .

• The n2 cos(π/7) bound [Wil08] has two inductive stages. Let A = 1, 0, 1, 0, . . . , 1, 0, 0,
where the ‘. . .’ contain any number of repetitions. The sequence is

[A], [1, A,A], [1, 1, A,A,A], [1, 1, 1, A,A, A,A], . . .
That is, the proof performs many speedups, then a sequence of many slowdown-

speedup alternations, then two consecutive slowdowns, repeating this until all the

quantifiers have been removed.

3.1. Translation To Linear Programming

Given a (normal form) proof annotation, how can we determine the best proof possible

with it? We need to optimally set the runtimes of the first and last DTS classes in the proof,

as well as the xi parameters that arise from each application of a Speedup Rule. It turns

out that an annotation A and c > 1 can be reduced to a polynomial size linear program

that is feasible if and only if there is an alternation-trading proof of NTIME[n] * DTS[nc]
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with annotation A. More precisely, the problem of optimizing parameters can be viewed as

an arithmetic circuit evaluation, where the circuit has max gates, addition gates, and input

gates that may multiply their input by c. Such circuits can be evaluated using a linear

program that minimizes the sum of the gate values (cf. [Der72]).

Let A be an annotation of ℓ − 1 bits, and let m be the maximum number of quantifier

blocks in any line of A (note m is easily computed in linear time). The target LP has

variables ai,j , bi,j, and xi, for all i = 0, . . . , ℓ − 1 and j = 1, . . . ,m. The variables ai,j

represent the runtime exponent of the jth quantifier block in the class on the ith line, bi,j is

the input exponent to the jth quantifier block of the class on the ith line, and for all lines

i that use a Speedup Rule, xi is the choice of x in the Speedup Rule. For example:

• If the kth line of a proof is DTS[na], the corresponding constraints are

ak,1 = a, bk,1 = 1, (∀k > 0) ak,i = bk,i = 0.

• If the kth line of a proof is (∃ na′
)bDTS[na], then the constraints are

ak,0 = a, bk,1 = b, ak,1 = a′, bk,1 = 1, (∀k > 1) ak,i = bk,i = 0.

The objective is to minimize
∑

i,j(ai,j + bi,j) +
∑

i xi. The LP constraints depend on the

lines of the annotation, as follows.

Initial Constraints. For the 0th and (ℓ − 1)th lines we have a0,1 ≥ aℓ−1,1, and

a0,1 ≥ 1, b0,1 = 1, (∀ k > 1) a0,k = b0,k = 0, and aℓ,1 ≥ 1, bℓ,1 = 1, (∀k > 1) aℓ,k = bℓ,k = 0,

representing DTS[na0,1 ] and DTS[naℓ−1,0 ], respectively. The 1st line of a proof always applies

Speedup Rule 1, having the form (Q1n
x)max{x,1}(Q2 n0)1DTS[na−x]. So the constraints for

the 1st line are:

a1,1 = a0,1 − x1, b1,1 = 1, a1,2 = 0, b1,2 ≥ x1, b1,2 ≥ 1, a1,3 = x3, b1,3 = 1,
(∀ k : 4 ≤ k ≤ m) a1,k = b1,k = 0.

The below constraint sets simulate the Speedup and Slowdown Rules:

Speedup Rule Constraints. For the ith line where i > 1 and A[i] = 1, we have

ai,1 ≥ 1, ai,1 ≥ ai−1,1 − xi, bi,1 = bi−1,1, ai,2 = 0, bi,2 ≥ xi, bi,2 ≥ bi−1,1, ai,3 ≥ ai−1,2,
ai,3 ≥ xi, bi,3 ≥ bi−1,2, (∀ k : 4 ≤ k ≤ m) ai,k = ai−1,k−1, bi,k = bi−1,k−1.

The constraints express that · · · b2(Q2 na2)b1DTS[na1 ] in the (i − 1)th line is replaced by

· · · b2(Q2 nmax{a2,x})max{x,b1}(Q1 n0)b1DTS[nmax{a1−x,1}]

in the ith line, where Q1 is opposite to Q2.

Slowdown Rule Constraints. For the ith line where A[i] = 0, the constraints are

ai,1 ≥ c · ai−1,1, ai,1 ≥ c · ai−1,2, ai,1 ≥ c · bi−1,1, ai,1 ≥ c · bi−1,2, bi,1 = bi−1,2

(∀ k : 2 ≤ k ≤ m − 1) ai,k = ai−1,k+1, bi,k = bi−1,k+1, ai,m = bi,m = 0.

These express the replacement of · · · b2(Q1n
a2)b1DTS[na1 ] in the (i − 1)th line with

· · · b2DTS[nc·max{a1,a2,b1,b2}]

in the ith line.

This concludes the description of the linear program. To find the largest c that still yields

a feasible LP, we can simply binary search for it. The following summarizes this section.

Theorem 3.6. Given an annotation of n lines, the best possible alternation-trading proof
following the annotation can be determined up to n digits of precision, in poly(n) time.
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3.2. Results

Following the above formulation, we wrote proof search routines in Maple. Many millions

of proof annotations were tried, including all those corresponding to prior work, with no

success beyond the 2 cos(π/7) exponent. The best lower bounds followed a highly regular

pattern; see the full version for more on this. We are led to:

Conjecture 3.7. There is no alternation-trading proof that NTIME[n] * DTS[nc] for all
c > 2 cos(π/7).

Proving the conjecture seems currently out of reach. However, we can show:

Theorem 3.8. There is no alternation-trading proof that NTIME[n] * DTS[n2].

A proof is in the full version. At a high level, the proof argues that any minimum length

proof of a quadratic lower bound could be shortened, giving a contradiction.

Despite this bad news, the theorem prover did provide enough insight to aid in a new

lower bound of n2 cos(π/7)−o(1) on the time-space product of any SAT algorithm.

Theorem 3.9. Let t(n) and s(n) be bounded above by polynomials. Any algorithm solving
SAT in time t and space s requires t · s = Ω(n2 cos(π/7)−ε) for all ε > 0.

These lower bounds have also been generalized to the QBF problem:

Theorem 3.10. For all k ≥ 1, QBFk requires Ω(nc) time on no(1) space RAMs, where
c3/k − c2 − 2c + k < 0.

4. Discussion

We introduced a methodology for reasoning about alternation-trading proofs of lower

bounds. It provides a generic means for computers to help us attack lower bound problems,

and lets us establish limitations on known techniques. We now have a better understanding

of what these techniques can and cannot do, and a tool for addressing future problems.

Previously, the problem of setting parameters to achieve a good lower bound was a highly

technical exercise. Our work should facilitate further research: once a new speedup or slow-

down lemma is found, one only needs to find the relevant linear programming formulation

to begin understanding its power. We conclude with two open-ended problems.

(1) Establish tight limitations for alternation-trading proofs. That is, show that the best

possible alternation-trading proofs match those we have provided. Our computer

search results have been met with healthy skepticism. It is critical to verify these

perceived limitations with formal proof. We have managed to prove non-trivial

limitations; it is possible that the ideas in those can be extended.

(2) Discover new ingredients to add to the framework. One possibility is to find new

separation results that lead to new contradictions. Another is to find improved

Speedup and/or Slowdown Lemmas. The Slowdown Lemmas are the “blandest” of

the ingredients, in that they are the most elementary (and they relativize).
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